WINDOWS ASSEMBLY
LANGUAGE & SYSTEMS
PROGRAMMING

16- and 32-bit low-level programming
for the PC and Windows

2nd edition

by

Barry Kauler

Lecturer, Edith Cowan University
M.Sc.(EE), C.Eng.

R&D Books
Lawrence, Kansas 66046

© Copyright 1997, Barry Kauler

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written permission of the Publisher.
In this book, many of the designations used by manufacturers and sellers to distinguish
their products may be claimed as trademarks. Due acknowledgement is hereby made of
all legal protection. Windowstu is a trademark of Microsoft Corporation.

Disclaimer. Whilst due care has been taken in the preparation of this book, no
responsibility is accepted for any inaccuracy, loss or damage to data, or consequential
loss or damage. The content of the Companion Disk is not guaranteed to be exactly as

described.

This edition published by R&D Books / Miller Freeman

ISBN: 087930474X

DISTRIBUTION:

USA

Publishers Group West
P.O. Box 8843
Emeryville, CA 94662
Tel: (800) 788-3123
Fax: (510) 658-1834

UK and Europe

McGraw-Hill Publishing Co.
Shoppenhangers Road
Maidenhead

Berkshire SL6 2QL

United Kingdom

Tel: 0800 810800 or 01628 502500
Fax: 01628 770224

e-mail: queries@mcgraw-hill.co.uk

Latin America

ID International

126 Old Ridgefield Road
Wilton, CT 06897 USA
Tel: (203) 834-2272
Fax: (203) 762-9725

Canada

Asa

Publishers Group West Canada
543 Richmond Street West
Suite 223

Toronto, Ontario M5V 1Y6
Canada

Tel: (416) 504-3900

Fax: (4 16) 504-3902

Longman Singapore

25 First Lok Yang Road
Singapore 2262

Tel: 65 268 2666

Fax: 65 268 7023

Editoria & Marketing Office

R&D Books

1601 West 23rd Street, Suite 200
Lawrence, KS 66046

Tel: (913) 841-1631

Fax: (913) 841-2624

e-mail: orders@mfi.com

Web: http://www.rdbooks.com

Ch.

1

Contents

Page

Preface Xi
CPU Architecture 1
Preambleooeei e |
Power-up the PCoiiiiiviiii s 2
The System FileS.....ovviiiiiiiniii i 3
NUMDEr SYSLEMS + v vvveetiiiiae et eeeieeeenieneeenns 6
Registers and MEMOrYoovvviiiiiiiiiiiiiiiiii e, 9
Memory Map ofthe PC 12
The CPU & Support Chips ««vvvvevriviiieeneniiennnn, 12
Conventiona and Extended Memorycvevvevnnvnnn.. 14
SEOMENES ..ot 14
ReaAl MOOE .. eveie e 17
DOS Rea Mode Programming <.« -..veoveveneeeenenn. 18
DOS Protected Mode Programming -« ...vvovvvnennn 18
Coding RESIFAINES ... vvvvieeiiiiiie e 20
Inside the 286/386/486/etC.c.covviviiernneiinannn. 21
CPU REJISIENS +ovvveeeiiiiieeiiiiiaeenaeanennss 22
INSITUCLIONS '+« vvevees et eaeneeans 23
Rea and Protected MOdES « -« - vvvvveriinininninnannn 25
Memory Managementvvrvuneernnemnaneenaarenneenn. 25
Segmentation Only ...o.oveviniiiin i 25
Shadow REGISIEIS ..o 26
DESCIPIOIS + .ttt e et e e et e e e e aeeeene 28
386 Paging -« cvvieiin e 28
VIrtUA-86 v eeie ettt 29
COoNtENtION ISSUES .+« vvvvernieneinieiieraeeieeenenneennen, 31
Privileges.. ...ooooiiii 31
/O PriVIlEgE « .o e e 31
Task SWItChiNG «...ovvvviiiiiiiiii e 32
INEEITUPLS vt et 33
Real Mode INtermuptSoovvvvie e eiaeeeens 33
Protected Mode INnterrupts « ... vvvvenernnenieeenan. 34
POSEAMDIE it ee et e 36

Ch.
2

3

Basic Assembly Language

Preamble ..o e
Stack INStIUCHIONS v v v e e eeass
Transfer of Controloevvvininiiiiiiiiii e,

Conditional JUMP «...ovvvniiiiii i
Addressing MOES «..cuvvriiniiiieeiiiiai s

Segment REGISIENS . .vvvvivrinniiieieiiinanaes
Sing INSIUCHONS <o vvvvivii i

Arthmetic INStrUCHONS . oo v vt e ie e ee e
Logical INStrUCHONS « ... vvvvvieiiii e
Codeand Data Labels . ovvvvveneneii i
Code Labals .o.vveii e
Data Labels ..o et
ACCESSING Data - ovvvvviiiie i

POINEEIS .ttt s

LES, LDS, and LEA Instructionsccovvvienenn
[IoTe" I DT v- NP
TYPE OVEITIAE «.vvvriiiii it

SIUCIUIES v
Label EQUAES ... o v
Postamblecoiiiiiiiiii e
Opening Windows
Preambleo.ovieniiiii i
DOS versus Windows Programming «........oevveieens
Internal Differencesoooveviiiiiiiniinennn.
Building a Windows Applicationcoooovnenn.
Library FUNCLIONSovvviiiiii e
The Mechanics of Assembling and Linking..........
The Link SR ..o vvv e
Two Steps for RESOUICES «..vvvvevieiininii e
Windows Programming Mechanics..........ooveennnnn.

MESSAgE LOOD - evvvvveniieiieeaniiianane e

Data TYPES .« v

Ch. Page
4 The Bare Bones 85
Preamble ... i e 85

Getting Startedovvii i 86

Tools Requiredccovviiiiiiiiiiiiiiinaaenn, 86

Source Files «ovvnie i 89

Resource and Definition Files 89

Message Formatooviiiiiiiiiiiiii i 90

Make File...ooeeer e 91

Development Cyclecoovviiiiiiiiiiiiiii 92

Application SIrUCtUreoovvi i 94
Preliminary Codeccocoviiiiiininiinnnn. 94

Startup Code ..o 96

WINMATINQ e 98

Callback Functionccooiiiiiiiiniiiinnan 102

5 High-Level Assembly 109
Preambleoviii e 109

Include FleSovvve e 109
Microsoft versus Borland ...l 110

SKeleton ANalYSIS ..ovvviiiieiii i 111
MODEL DireCtiVe - ..o evvveeneiiieeei i 119

Private and Global Dataovvviviiniiineniinainn. 120

MASM versus TASM SCOPE +«vvvvvievnerenrnannnns 121

TASM'S @@ «vvvvoveieiiiiiiiiiiiiie e 121

Life of Automatic Data......ccvvevviuiieiiiniannnn. 122

Assembling and Linkingoooviiiiiiiiie 123

MASMB versus TASM ...ovivniiiiiiiiiniiiiiia s 125
WINDOWS Qualifiercovvvviiiiiiiiiiion. 126

Prototypesvcovnrvniiiiii e 127

Callback Design . .vvvvvvveeeeiiiiiiee e, 129

Other Incompatibilities...........ccovvviiiiiiannnt. 130

MASM Assembling and Linking 131

MASMG6 Program Listing «......oovvivieninennenaonn, 132

6 Program Design 137
Preamblecoooiriiiii 137

Object Adressing «..ovveviiiiiiiiiriiiina e, 138

Caling a Functioncovvviiiiiineiiineennn. 138

Early Bindingcovvvviiiiiiiiiiiiiienn, 141

Late BiNdingcoovvvviniiiniiiniiniineenn. 142

CH-BINAING . .ovieeein i 142

Ch.

7

8

vi

Assembly Language Bindingovveniiiaint
Useof THIS ooviitiei it
Interfacing With CH+ ...ooviviiiiiii i

Compilingto ASM O/P ...viviiiiiiiieieaiinnes

IN-Line ASSEMDIY ...ovvvniiiiieiiini e

In-Line Dosand DONM'tSvvvviiiiiiininiieneines

The ASM SHUD «vvvevee e

Compile and Assemble StEPS ... vvvevrenerrcinnn.
The Amazing 9-Line Programc..ooovveiinninnt
A SKEIEtON Programoovvvirmniieneeeeereniiiiee..

OVEITIES oo

KicKStart «.ovoeie i

Message Handlingcooovviiiiiiiinn,
The WINDOW ObJECt «vvvevveviiiniiianeaneiiniienns
WINMAIN() e
CallDACK .+t eie e
MAKE() ..o
Inheritance
Getting it Togetheroovivieiiiii
Postambleeer e

PC Hardware
Preamble ... e

JJOPOILS -« - v v vttt ittt
[/O INSEUCHIONS + v vvevneeeneiiiineiannieneenenns
Keyboard Interfacecvvvveeeviiinnieniniiiies
AT-Class Keyboard Port Enhancements ---..........
PC EXPanSion BUSES .. vvvvrrvrrnnnnnnareiseieimninnn
Industry Standard Architecture (ISA) ««vvvvvneveenns
Peripheral Connect Interface (PCI) «vvvvvreeeereieennnnn.
POStAMBDIE ot e
BIOS, DOS, & Windows L ow-Level Services
Preamble ...oovvreii e
BIOS and DOS SEIVICES - v.vvvvriiiaeninrereeeneniannsn,
Standard DOS INEMTUPLS .« v vvvvvnnvennernneeieneenn.
DOS Protected Mode Interface (DPMI) «...oovvevveennnn
INT-2Fh EXIENSIONS ot evvnenriienrirneneineeeacaienens

Ch.

10

11

vii

Page

Windows FUNCHONS .. .vvvvivniiiieeieiiieiiaiees 207
ThUNKING «vvve e i 219
Generic Thunkingoovviiiiiiiiiiiiiies, 219
More Win95 “Improvements’c.oooiinainnn 222
Device /O Controloovviiiiiiiiiiinn, 222
Dynamicaly Loadable Driversc.....o..... 223

B 102 < T 223
Memory Mapped Filesoovvvivnniniiiiiinn 224
POStAMDIE .+ . et 224
Direct Hardware Access 225
Preamblevvniieii e 225
INItTAliSAON «vveen et cia i i aeaen, 226
Addressing SEgMENtS «.vvvvvnereiniriiiriiia i 227
DireCt VidEO ...ovviiiii i 229
ReStore Video . .vveverevniiiii it 231
Change Video Modevvivreniiiiiieninnennnn, 232

A Direct-Video Text-Mode Routing 232
Cal REPAINTSCREEN()cccocvvvvnnnnn 234
Ordina Coordinatesoovvvviiiiiinineaennnns 235
Toand From Text Mode ...ovvevvnernirenennennnnn. 236
Video OULPUL ISSUES ..o vvvneviviiineeniiienaennnee 237
MessageInput ... 238
EXperimentingoovveiiiiiiiiii 239

A Direct-Video Window Programc....c...... 239

1] =05 1= 244
Real-Time Events 249
Preambleooeri e 249
TSRS ..ovvvniiiiiiiiennns e 250
Hooking a VECtoroovvviiiiiiinniiiinnnnn. 251
Service Routing (ISR) -« .vvvvinieeriniiaeeniiannnenns 253
L= 11 T 255
Hardware INtEmUpPS .. .vvvvrneneeeren e 256
XT Hardware Interrupts -........oooeeeeiieieaann... 256
AT Hardware INtErmuptsS .« ovvvneveneerenarennerannns 257
Windows Standard Mode Hardware Interrupts -« - - 258
Interrupt Handler Code.....vvvvveevnneennnniennnn. 260
Enhanced Mode Hardware Interrupts «.........ccoc.. 263
DireCt MemOry ACCESS .« v.vvvrrnnrnareeeseeennnens 264
Real Mode Access 267

Ch.

12

13

14

15

viii

Page

Preamblevvviiiiiiee e 267
Accessing Real Mode from Protected Mode 268
Accessing Real Mode via the IVToeee 269

Virtual Machinescocovvinineraenininiaiann, 271

DOS TSRS .\ vvt et iitiene et 273
Accessing Protected Mode from Real Mode 275
Signalling a WinApp from a DOSApp 276
Passing Control to the WinAppcooovvvneens 278

The DOSApp "Signaller"oooviiiiiinns 280
Hooking a Real Mode Interrupt from a WinApp 283

32-Bit Ring 0 287
Preamble ...onieeti i 287

16- and 32-Bit Programmingcooeveiianeenn. 288
Ring Transition Mechanism ... 291
Call Gate StruCtureocvenivvnnenenne e 292

Ring Transition Example Code 294

FLAT MEMOTY . .evteiineanaeenseniinnrnaanaaee s 300
MoOVING ON ..vvvviiiiiiiiaane e 305
32-Bit Ring 3 307
Preamble ...ttt e 307
TASMS versus MASMOooiiiiiiiiiiiiiiiannnns 308
Installing TASMSo 309
Example Skeleton Programoooiiiieeeenies 310
Support Filesvvveeee 314
POStAMDIE ..ot tette e 318
DOS-Win Transitions 319
Preamble ...o.vniii e 319
Interrupt Handlers ..o 320
Example Protected Mode ISR Code 321
Problems/Issues with the Protected Mode ISRs 323

The Real Mode Handlerccoovvveiiinnn. 324
DOS-to-Win Device Driver/TSRc.cooviiiininn. 330
Automatic Loading of Windows Programs/Drivers .. 330

TSR Installationcovcvveniirirnerierienennenns 331

TSR Resident Codevvvvvviniininnienanienenn. 338
Getting it Togetherooviiiiiiiiiiies 339
Advanced Systems Programming 341
Preamble . .ovetr e 341
Mapping Across VMS ..o 343

Ch.

= >

Page

Mapping the 4.3G Linear Address Space of a VM
to Physical Memory 344
The Windows/DOS/DPMI Relationship 348
Windows Extensions to INT-2Fh 348
The Windows/INT-2Fh Relationship 349
Writing Windows-Aware DOSApPpS 349
Sharing Memory Between 16- and 32-bit WinApps 350
Anatomyofa VxD ... 351
Maximum Productivitycco L 358
LabView Programming 359
Disadvantages of LabView 360
Integration with Assembly 362
Layout Programming....................covviivnnin.... 363
Comparison with LabView 364
Integrating with Assembly 365
Assembly versus High-Level Languages 367
Instruction Summary 369
Keyboard Tables 379
Virtual Keysoooiiiiiiiii e 379
Extended ANSIo, 382
IBMASCIH ... e 383
DPMI Services 385
DPMI INT-31h Functions Listed by Functional Group ... 385
DPMI Services Detailooiiiiaa.. 389
INT-2F Extensions 401
INT-2F Extensions Detail 403
Index 413
Product & Publication References 419
People ... 419

CPU Architecture

Structure of
the first two
chapters

A study
method

x86 family
compatibility

Preamble

This chapter starts off from when a PC is first turned on, and I
have assumed only a basic familiarity with computer principles.
The focus is on the architecture of the CPU, that is, how the
processor itself works.

Chapter 2 takes the next step by introducing the instruction set, the
machine instructions that the processor understands.

I have structured the material like a ladder from a very basic level,
so feel free to jump over any parts that you are already familiar
with.

I recommend going through it with the objective of picking up the
overall ideas, not worrying too much about nitty gritty details. A
practical plan of action is to surge forward until you get to the
chapters with some hands-on examples, then when you need to
know some of the fine details, refer back as needed. You'll find
the index to be comprehensive, with this in mind.

In keeping with the ladder concept, I have covered the entire x86
family of processors, from the humble 8088 to the Pentium.

It is very important to note that these later CPUs are downward
compatible, meaning they will run software from an earlier CPU,
though the reverse is not necessarily true.

In this chapter I point out some of the major differences between
the CPUs of the Intel family.

1

2 Windows Assembly Language & Systems Programming

A
"grassroots”
approach

As the book develops, we get into areas of programming that will
require you to have a knowledge of the architectural concepts
presented in this chapter. This book is about Windows
programming and can even be used as an introductory text for
Windows, but the emphasis is at a more fundamental level than
found in other Windows programming books.

Having such a fundamental knowledge will make it easier for you
to do all kinds of "tricks" with Windows, such as direct keyboard
input, direct video output, and signalling via interrupts.

Power-up the PC

It is a nice place to start: from when we sit down and turn on the
computer. What happens behind all that whirring of the hard drive
and text and graphics flashing on the screen?

Power-on
Load bootstrap program from BIOS ROM

Load another bootstrap program from the "Boot Record" on the disk

... which loads the system files from the disk

Finally COMMAND.COM executes and the DOS prompt appears,
OR WIN.COM executes and Windows loads. :

10.5YS,
MSDOS.SYS,
COMMAND. -
COM,
WIN.COM

The boot
sequence

You must have a system disk in either drive C: or drive A:, that is,
a disk that contains the files I0.SYS, MSDOS.SYS, and
COMMAND.COM if DOS is to run or WIN.COM and the rest of
the Windows files if Windows is to run. Note that the first two are
"hidden", that is, you can't see them with the normal DOS DIR
command; however, they are there in the root directory. Note
also, that on IBM PCs, these two hidden files are named
IBMIO.COM and IBMDOS.COM.

After first turning on your PC, or after pressing the key
combination <alt-ctrl-del>, it will execute a bootstrap program that
is permanently stored in the PC's ROM (Read Only Memory).
When this bootstrap program executes, it will look at drive C: to
see if the system files are on it. If not (or if drive C: does not
exist), it will then look at drive A:. This second choice is where
you have an opportunity to "boot" from a floppy disk — if there is
a floppy disk inserted that has the system files on it.

DOS prompt
or Windows

Boot Record

10.8YS

MSDOS.SYS

Booting to
DOS or
Windows

CPU Architecture 3

The end result of the above sequence is that COMMAND.COM is
loaded and executed, at which point in time you will see the DOS
prompt, which usually shows the current drive, followed by a ">"
character. For example: A:>

Or, WIN.COM executes which loads the rest of Windows.

In the case of Windows 3.x, COMMAND.COM loads first,
optionally followed by WIN.COM. However, Windows 95
bypasses COMMAND.COM.

The System Files

To boot DOS or Windows requires a Boot Record on the system
disk. The boot program in ROM on the PC's motherboard looks
for the presence of the Boot Record, part of which is a program
that is then loaded into RAM and executed. When loaded and
executed, the Boot Record checks to see if the system files are
stored on the disk. It looks for and loads into RAM the files
10.SYS and MSDOS.SYS.

During the loading process, the files CONFIG.SYS and
AUTOEXEC.BAT are looked for and referenced if they exist.
They help to configure the system and create a personalised
environment for the user:

10.SYS contains extensions to the ROM-BIOS. These extensions
may be changes or additions to the basic I/O operations and often
include corrections to the existing ROM-BIOS, new routines for
new equipment, or customised changes to the standard
ROM-BIOS routines.

This file contains the DOS version number — yes, Windows 95
still has DOS, so there is still a version number.

MSDOS.SYS contains all the DOS service routines. The
MSDOS.SYS routines are more sophisticated, and we can think of
them as the next level up from the BIOS routines.

That is, the file contains code. However, with Windows 95 the
functionality of MSDOS.SYS is changed. It is merely a small text
file.

You might like to investigate this for yourself if you are currently
using Windows 95. Make sure that Windows Explorer is setup to
show all filename extensions and hidden files. Then, view the C:
drive root directory. Double-click on MSDOS.SYS and select
NOTEPAD.EXE to view the file.

Be careful about making changes, but do note the following very
interesting lines:

4 Windows Assembly Language & Systems Programming

[Options]
BootGUI=1

BIOS & DOS
service
routines

COMMAND. -
coMm

Internal &
external
Dos
commands

If you change the entry to "BootGUI=0", the next time you boot
the PC it will load COMMAND.COM, not WIN.COM, so you will
be in plain old DOS!

Of course, the DOS service routines are elsewhere (in the case of
Windows 95), not in MSDOS.SYS, but the boot process still
knows where they are and loads what is required.

Note that the BIOS and DOS service routines are there for us to
use when writing programs. There is a simple method for us to
call any one of these "subroutines" from our program. Basically,
these routines enable us to interface with the hardware of the
computer, such as the keyboard, screen, printer, disk drives, and
serial port.

These service routines existed before Windows was conceived of,
so are primarily designed for use with DOS. They still work under
Windows, but there are many "ifs" and "buts" here. Complete
books have been written around this issue.

DOS itself is really the COMMAND.COM program. In the case
of Windows 3.x, DOS is started first, i.e., COMMAND.COM then
WIN.COM are executed.

COMMAND.COM is the keyboard interpreter. It reads what you
type at the keyboard and obeys your command. If you tell it to
load another program, such as WIN.COM, it will do, even though
it means starting another operating system (Windows) on top of
DOS.

Windows 95 simply eliminates the COMMAND.COM step, but
COMMAND.COM is loaded if you start a "DOS box" inside
Windows or choose to exit to DOS from Windows.

COMMAND.COM contains the routines that interpret the
commands from the keyboard when we are in the DOS command
mode. Note that there are two classes of commands: internal and
external.

The internal commands are contained within COMMAND.COM,
while the external commands are kept on disk. FORMAT.COM,
for example, is the program for the FORMAT command and is
external. DIR is internal.

The reason that some of DOS's commands are kept as separate
programs on disk is due to space constraints in RAM. Obviously
there is limited RAM, so it makes sense to keep the less-used
portions of DOS on the disk, bringing them in as needed.

CPU Architecture 5

CONFIG.SYS "System" files have an extension of .SYS and may be programs or

text files. I have already mentioned above that MSDOS.SYS is a
code file in early versions of DOS and a text file in Windows 95
systems. A major group of .SYS files are what is known as device
drivers: these are programs that load and become semi-
permanently resident in memory.

CONFIG.SYS is a system text file that is automatically read from
disk during the PC's startup procedure. CONFIG.SYS can be

created by any text editor and consists of a number of commands.
Here is an example of a CONFIG.SYS file:

FILES= 40

BUFFERS= 40

DEVICE= ANSI.SYS

DEVICE= GMOUSE.SYS *21

COUNTRY= 061

Real mode Refer to your DOS User's Manual for more details. An important

device drivers point to note here is that "DEVICE=" is a command that allows you

AUTOEXEC. -
BAT

to load more device drivers into the system. GMOUSE.SYS, for
example, is driver software for a mouse, and loading this driver
will allow any program that can utilise a mouse to do so. But note
that this will be what is called a Real mode driver designed to
work with DOS.

Windows applications can use Real mode drivers, but there is a
performance penalty. Therefore, Windows has its own drivers,
that are not specified in CONFIG.SYS (instead, they are specified
in another file, SYSTEM.INI, located in C:A\AWINDOWS\SYSTEM
directory).

After DOS has loaded CONFIG.SYS, it then looks on the disk for
AUTOEXEC.BAT. Any file with an extension of .BAT is known
as a "batch" file, and AUTOEXEC.BAT is a special batch file that
DOS looks for at power up. Here is an example of an
AUTOEXEC.BAT file:

@echo off

PATH=C:\; C:\SYSTEM\DOS; C:\GALAXY
PROMPT pg

WIN

In a nutshell, a batch file is created by any text editor and contains
DOS commands, as well as special batch commands, that enable
you to automate the operation of DOS. Instead of having to type
in the same DOS commands every time you start the computer, by
putting them into the AUTOEXEC.BAT file, DOS will execute
them automatically for you every time.

6 Windows Assembly Language & Systems Programming

Power-on
self test
(POST)

RAM and
ROM

Byte-
addressed
memory

Successive versions of Windows have made less and less use of
CONFIG.SYS and AUTOEXEC.BAT. However, even Windows
95 will still obey whatever you put in these files.

The power-up sequence of the PC is quite involved, and many
references are made to it throughout this book. Of particular
interest is the configuration RAM that the BIOS uses during the
Power-On Self Test (POST) sequence.

The configuration CMOS RAM is a part of the real-time clock
chip.

Number Systems

Well, maybe I shouldn't assume too much knowledge on the part
of my reader! I'm already throwing around words like "RAM",
"ROM", and "boot". Perhaps some discussion of the mathematics
is in order before I throw more words at you, like "hex", "byte",
"ascii", and "BCD".

You also need to understand the concepts of "address" and "data".

The computer has memory, called either RAM or ROM, in which
information is stored. Floppy and hard disks also store
information. This information can be either data, such as
documents that have been typed in, or programs, such as a word
processor.

All information is stored in the computer as binary values, that is,
as 1's and 0's. The computer's memory, whether RAM, ROM,
floppy disk, tape, or hard disk, records information in groups of 8
bits. That is, each memory /ocation contains 8 binary bits.

Furthermore, every memory location is addressable, which is
logical, since the computer must be able to store and retrieve the
information from each location. So, there is an address, which is a
binary number, and it references a location, which is an 8-bit
binary code. This is shown pictorially in Figure 1.1.

So, what does "00110100" mean? "00110100" (in Figure 1.1) is
just a string of binary bits stored in memory, but the PC will
interpret it in some meaningful way. There is a pictorial answer in
Figure 1.2,

CPU Architecture 7

Figure 1.1: A memory location.

ol

Memory addresses

from zero to 00110100 <</ Typical
tent of
one million content o
\ a memory
(or more) IMI | location

Figure 1.2: Interpretations of a memory content.

Other codes,

00110100 = poer o

Unsigned, or 35 complement Binary American

magnitude pumber decimal for Information ~ Operation code
number Interchange (ASCII)
Straight Considering each of the above, 00110100 could be treated as a
binary magnitude only, "straight" binary number, or the most significant
bit (MSB) could be a sign, leaving 7 bits for the magnitude: this is
not the same as 2's complement.
Considering it as a straight binary number:
00110100
= 0%27 +0%2% + 1%2° + 1%2° + 0%2° + 1%27 + 0%2' + 0*2°
= 52 decimal.
That is, 52 decimal is represented in memory by 00110100 binary.
2's Positive numbers in 2's complement look just like unsigned
complement straight binary numbers. They are distinguished as +ve by the

MSB, i.e., the left-most bit, being 0.

A 2's complement negative number is distinguished by the MSB
being 1.

8 Windows Assembly Language & Systems Programming

Binary coded
decimal
(BCD)

ASCll

Instruction
code

Base or
radix

Hexadecimal

The value 00110100 is 52 decimal — so, how does -52 look? The
rule is, invert all bits to the left of the first-bit-from-the-right-
set-to-1. Thus: 11001100.

BCD is another way of storing decimal values in the computer.
The bits are grouped into lots of four, each group converted to
decimal:

0011 and 0100 become 3 and 4
That is, 34 decimal is represented in memory by 00110100.

The code does not represent a number at all, but a character. From
an ASCII table, 00110100 represents ASCII character 4.

An ASCII "character" is any single symbol, such as a numeric
digit, letter, punctuation symbol, etc. Each key on the keyboard
represents one character. The "4" key for example, when pressed,
is stored inside the computer not as the binary value 00000100 but
as the ASCII code 00110100.

The bit-string does not represent a character or a value, but an
instruction operation code. Machine language instructions are
stored in memory as op-codes followed by zero or more operands,
depending upon the instruction: the interpretation of this code is
up to the CPU.

There are many more possibilities: for example, a value stored in
memory could be an address. This may at first seem confusing,
but you could store address pointers to data in memory.

So far in this section, we have looked at the different
interpretations of 00110100, but it is also important to know that
there are different bases, or radices, in which the number can be
represented.

We saw above that 00110100 is 52 in decimal. That is, 00110100
is the representation in binary, with radix = 2, and 52 is the
representation in decimal, with radix = 10. Note that 52 is just a
"digit-string", like 00110100, and interpretation as a number is our
choice.

Actually, numbers can be represented in any base. Most important
for us, apart from binary and decimal, is the hexadecimal
representation:

The next section will start to throw "hex" numbers at you, so now
is the time to be clear on what they are.

Hexadecimal numbers are base-16, i.e., are based upon a number
system with 16 digits, rather than the 10 in decimal or the 2 in
binary. They are:

CPU Architecture 9

1 2 3
Decimal:
0 1 2 3
Binary:

4 5 6 7 8 9 A B C D E F

4 5 6 7 8 9 10 11 12 13 14 15

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

x86 CPU
initialisation

Registers

20-bit
address

Major
components
ofa PC

The first row shows hex digits, followed by decimal, then binary:
note that hex numbers are just a shorthand notation for binary,
which is why they're used. Each hex digit represents 4 binary bits,
and FFFFO hex is the same as 1111 1111 1111 1111 0000 binary.
Note that hex is not quite the same as BCD, as described above.

Registers and Memory

We haven't finished covering the really basic stuff.

When powering up the PC, you are also powering up the 8088,
8086, 80286, 80386, 80486, or Pentium CPU, whichever your
particular computer has. The CPU has internal registers that are
initialised to certain values at power up. Two of them, the Code
Segment (CS) register and the Instruction Pointer (IP), are
initialised in a very special way.

Hey, before we go on about registers, just what are they? Figure
1.3 introduces the registers of the PC, but do note that registers can
be in any integrated circuit, such as the video adaptor card.

To return to the Code Segment register, CS, and the Instruction
Pointer, IP: at power on, or after resetting, the CPU combines
these two in a certain way to produce an address on the address
bus.

Note that this address is 20 bits in size, because the 8088 and 8086
have a 20-bit physical address bus. The 286, 386, 486, and
Pentium have larger physical address buses but only use 20 bits in
startup "Real mode". That is, even the powerful Pentium starts up
behaving just like its ancestor — this is a very important point.

Figure 1.3 also shows the major components of a PC: note that
they are all connected by something called the bus. To access
memory contents, addresses must be sent out from the CPU
(microprocessor), and the very first address is a combination of CS
and IP.

10 Windows Assembly Language & Systems Programming

Figure 1.3: What is a register?

WHAT IS A REGISTER?

Just as the PC has memory chips, called
RAM (changeable, contents lost when turned off) or
ROM (permanent program storage),
which sit somewhere in the memory map, so too the CPU chip has
internal RAM memory, called registers.
Registers are 8-, 16-, or 32-bit memory locations but are not addressed
like external memory. Instead, each of these registers has an explicit
unique name that can be used in the machine language instructions.
The 8086 has these registers:

AX, BX, CX, DX, SI, DI, SP, BP, CS, DS, SS, ES
Some are general purpose and some have special purposes: this is
something that is learnt with time, as you practise with the machine
instructions.

Power-on CS = FFFF

address

Jeulati IP = 0000 p— BJOS ROM
caleulation a gdress produced
= FFFF0 P RAM
At power on, the CPU will
put this address onto the other 1/0 chipsCOntain intemal

CPU & support.chips —
]
| T
These registers are 16 bits in Crystal oscillator
size, so representing the System clock
values in hexadecimal (e.g., 20,33,
notation requires four hex 66, 120MHz)
digits. The address is 20 [,

bits, and so requires five hex
digits. At power on, the yﬂ'ed CPU (system) bus . intemal
CPU initialises CS and IP, as registers,
Figure 1.3 shows. VA

P Math coprocessor

registers

address bus and fetch the
first instruction from this

address. ey Expansion bus interface
A
Mncludes video adaptor

with RAM and BIOS ROM extensio

CPU Architecture 11

BIOSROM Thus, the program that takes control when the computer is
switched on must start at address FFFFO. Furthermore, it must be
in BIOS ROM so that it is there at power on (see Figure 1.3
alongside).
This program has a special name — it is part of the BIOS — Basic
Input/Output System.
The BIOS routine with the start address of FFFFO takes control of
the boot procedure. This routine looks for the Boot Record on the
system diskette in drive A: or C:. The Boot Record is a small
program, with certain important system information, that is then
loaded from disk and executed. The Boot Record has already been
introduced earlier in this chapter.
We will do a number of passes through the same topics as the
chapter progresses, going a little deeper each time. So, to find out
more about the registers, memory, etc., read ahead.
Figure 1.4: Memory map of the PC.
ADDRESS CONTENTS .
0000h Interrupt Vector Table This is a memory map of the
00400h BIOS data area PC. Any of the x86 CPUs
00500h DOS data area running in Real mode, which
Resident part of DOS, is the default at power on,
device drivers, & TSRs only utilise a 20-bit address
Free memory bus, so only address up to
IM. This is referred to as
the conventional memory,
640K (dec)| Transientpart of DOS while that above 1M is
A0000h Color display RAM extended memory.
B000Oh Monochrome display RAM The memory map haS,RAM
B800Oh Color display RAM and ROM hardwired _1nto
C0000h VGA BIOS extensions fixed addresses, and in some
C8000h Hard disk BIOS extensions | locations there may be
F0000h ROM extensions nothing.
F4000h User ROM space
F6000h ROM BASIC (maybe)
FE00Oh ROM BIOS
ffﬁf‘Fh 1 64K higher memory area l Extended
memory

12 Windows Assembly Language & Systems Programming

Size of the
address bus

The famous
640K limit

Scan for
extra ROM

Memory Map of the PC

The 8088 and 8086 have a 20-bit address bus, which means that
they can address 22 _ 1 = FFFFF (hex) = 1 megabytes (decimal).
The 80286 has 24 bits, and the 80386 has 32 bits.

A good starting point is at the beginning. For the 8088/6 the
memory organisation on the PC looks like Figure 1.4.

You know the 640K RAM specification given for the PC — this
RAM exists in the memory map from address 00000 up to the
640K shown in Figure 1.4. You can see that the first 140K or
thereabouts is occupied by various things, which leaves about
500K free for user programs. Of course this free memory is a very
variable thing, depending on a number of factors.

For example, if the CONFIG.SYS file specified some device
drivers, they would be loaded into memory and kept there. If DOS
is to run, COMMAND.COM will have to load, and for Windows it
will be WIN.COM. Same for any resident "pop-up" programs
such as Sidekick — though, it is rare that anyone uses these today.
All of these will reduce your free memory.

Figure 1.4 is simplified, and in practise there will be a lot more
functions occupying the memory space. Do be clear on one thing:
not all of the address space is necessarily occupied. The address
range from 00000h down to 9FFFFh (640K) is occupied by
contiguous RAM, and the region marked as "free RAM" is
available for a program to load into from disk.

At the end of the 1M region is the BIOS ROM, and maybe other
ROMs before it. Basically, ROM and RAM in this middle region
are provided by plug-in expansion cards. Examples of video and
hard drive cards are shown, though the addresses are in some cases
adjustable.

It is useful to note at this point that during the power-on sequence,
the region C0000h to F4000h is scanned to see if any programs are
present in ROM, and if they are, subject to certain identification,
they are immediately executed. Thus, these programs are able to
modify the system to suit themselves.

The CPU & Support Chips

One step at a time: we are focusing for now on the 8086, as that is
the mode that all of the x86 family power up into. It is the CPU
used in the first IBM PC — no, strictly speaking, it was the 8088.
The only difference between the two is that the 8088 had an 8-bit
data bus, while the 8086 had a 16-bit data bus. The first PC was

Embedded
systems

Book on
design of
embedded
systems

CPU Architecture 13

thus able to use the cheap and readily available interface chips
designed for an 8-bit data bus.

The 8086 is still used, not just in PCs, but in a host of dedicated
(embedded) controller applications, though usually in the latter
case it is some derivative of the 8086. So, the 8086 is not dead,
and its presence is to be found even in the very latest Pentium
CPUs. Why? — because of the requirement for backward
compatibility.

In fact, you may be very surprised. I don't have the exact figures,
but processors for embedded systems far outweigh annual sales for
PCs. Quite literally, billions of processors are manufactured
annually for embedded systems. This would include humble home
appliances, such as your washing machine and video player. The
8088 would be considered too powerful for most of these
applications! But you will find that the 8088 derivatives are
selling very strongly today, possibly in larger quantities than the
Pentium.

I'm very much into the design of the lower end of embedded
systems, using the more humble 8- and 16-bit processors, as
covered in my book:

Flow Design for Embedded Systems, R&D Books/Miller Freeman,
USA, 1997. For more information see:

http://www.rdbooks.com/

Figure 1.5: Three parts of a computer bus.

Address bus. 8086 CPU: 20 bits,
286 CPU: 24 bits, 386 CPU: 32 bits.

Data bus. 8088 CPU: 8 bits, 8086
& 286 CPU: 16 bits, 386: 32 bits.

Control bus

Three parts of The 8088 is the Central Processing Unit (CPU) of the PC. It

a computer
bus

executes instructions contained in RAM or ROM.

The CPU and a few support chips produce various signals, known
as the bus, which can be broken down as shown in Figure 1.5.

The lines are physical wires going to and from the CPU and
support chips. The bus goes to all the memory and I/O
(input/output) chips in the computer and is the means by which
everything communicates.

14 Windows Assembly Language & Systems Programming

Extended,
conventional,
high

Memory map
of the PC

Protected
mode

History of
Intel CPUs

Conventional and Extended Memory

Extended memory is that above the 1 megabyte (M) address limit,
while conventional memory is below 1M. Expanded memory is
bank-switched memory that can be mapped into the conventional
memory area. The first 64K of extended memory is sometimes
referred to as high memory.

The map in Figure 1.4 is a rough indication of how everything
looks.

When Windows has loaded, however, the processor will be in
what is called Protected mode.

Chapter 12 goes a lot more into the particular complications of
Protected mode, in which the basic memory map in Figure 1.4 can
no longer be considered as residing at the actual physical address
range zero to 1M. The 386 is capable of creating virtual machines,
each with an apparent 1M address space. Note that the addresses
in these virtual machines are called virtual addresses.

Unfortunately, the PC is a mess. It started out life in 1980 with a
text-only screen, cassette mass-storage (no hard disk), no real-time
clock, only 64K of RAM, and an 8088 CPU. Features got tacked
on over the years, and the operating system and hardware grew
and grew.

One of the most fundamental problems inherited from the 8088,
and something that causes headaches for programmers now, is —
segments.

Segments

Popular desktop PCs prior to IBM's PC used 8-bit processors, such
as Intel's 8008 and Zilog's Z80 (Figure 1.6). They have an
8-bit-wide data bus, while the 8088 introduced the 16-bit
architecture. Although the 8088 has only 16-bit data paths
internally, with an external data bus of 8 bits. The 8086 is
identical to the 8088, except it has a full external 16-bit data bus.

The earlier 8-bit CPUs had 16-bit address buses. Now, if you are
up to some binary calculation, this means that the possible range
of addresses is from zero to (2'°- 1). In binary, that is an upper
limit of 1111111111111111, or in hexadecimal FFFF, or in
decimal (64*1024) - 1 = 65,535. We normally refer to this
memory capacity as 64K, where K represents "times 1024" (note
that a megabyte is 1024*1024, so 1M = 1¥1024*1024 = 1,048,576
bytes).

The upgrade
from 16- to
20-bit
address bus

16-bit IP
matches a
16-bit
address bus

Byte

addressing

How
segments
started

64K segment
limit

CPU Architecture 15

Figure 1.6: 16-bit addressing prior to the x86 family.

8008/Z80 CPU | Address | Miemory
bus
Ins-truction > 8- bit
Pointer, IP (16-bit)
<>
Data bus
(8-bit)

The Intel engineers thought that with the 8086 family they would
increase the memory capacity to something more than plenty, so
they gave the 8088 and 8086 a 20-bit address bus. 2°=1M. A
million or so bytes of memory seemed like an enormous amount at
the time, but this has turned out to be a serious limit and
constitutes half of our headache.

The other half of the headache is how the engineers designed the
chip to address that 1M.

They wanted to make it easy to port software from the 8-bit CPUs.
Internally, those earlier CPUs have an Instruction Pointer, IP,
which is a register that marks the address of the next instruction to
be executed. It is 16 bits, to match the external address bus.

Note that each memory location, as addressed by a unique address,
1s 8 bits (1 byte), and this is retained even for the latest Intel x86

CPUs with 32-bit or more data buses.

They decided to keep the 16-bit instruction pointer, but it only
addresses 64K and so is incompatible with a 20-bit external
address bus.

Enter the segment. The designers introduced registers, called
segment registers, to map the 64K region addressed by IP to
anywhere in the 1M range. Code could stil] think it was in a 64K
space, but transparently would be mapped to wherever the segment
registers specified. One tick for compatibility, and one also for
complexity. Figure 1.7 shows how it is done,

It is absolutely vital that you understand this process. The 16-bit
IP is added to the 20-bit starting address, to give the 20-bit address
from where the CPU will fetch the next instruction. Thus, the IP is
an offset within the segment; therefore the segment can have a
maximum size of only 64K.

16 Windows Assembly Language & Systems Programming

.COM
executable
file format

EXE
executable
file format

Figure 1.7: Concept of segmentation.

The segment register CS is
8088/8086 CPU only 16 bits, but has four
binary 0's stuck on the end
CS 0 (one hexadecimal 0 digit)
to provide a 20-bit starting
1P address for the segment.
IP is added to this and thus
20-bit address is only an offset within the
segment.

Memory

| Y (up to 1M)

Executable files of .COM format are restricted to 64K maximum,
as they were born back in the 8-bit-CPU days; however, the
engineers realized this to be a problem and "solved" it by
introducing three more segment registers: DS (Data Segment), SS
(Stack Segment), and ES (Extra Segment). To support these
registers, the designers introduced the .EXE executable file
structure that allows code to be stored in the segment pointed to by
CS, data to be in another segment pointed to by DS, the stack to be
in yet another segment pointed to by SS, and ES to be a segment
that can be used by the application programmer. Figure 1.8 shows
a pictorial representation of how these registers might be laid out
in memory.

Although segments are still only 64K maximum, it is possible to
have multiple segments of code and data for large programs.

One aspect of the headache associated with segments is this 64K
limit. Obviously large code or data could exceed this, and
problems arise. Another aspect is that this segmentation scheme
of addressing has carried over to the 286/386, etc., again, for
compatibility reasons.

CPU Architecture 17

Figure 1.8: .EXE program segments.

(DS),ES Resident part of DOS
20-bit starting address
of the code segment is

Program Segment Prefix CPU
CS e p CSx 16
z i.e., 4 binary 0's stuck
Program code 0 onto the right side, or
IP _ one hex 0 digit.
; Instruction & ‘

20-bit address

DS The 20-bit address The next instruction to be
is applied to the executed is pointed to by
Data external address IP (16-bit), which is an
SS N bus to fetch an offset from the start of
instruction. the segment.
k
Sp Stac Increasing
> addresses The CPU adds the offset IP to
Free memory ... J'downward the segment address CSx16,
giving a 20-bit physical
N | address.
Real Mode

The 8088/8086 operate in what we now call Real mode. This
means that the segment registers hold real addresses, in
accordance with Figures 1.7 and 1.8. The 286/386, etc., chips also
run in Real mode when first turned on and employ the same 20-bit
segmented addressing mode. For the sake of compatibility, the
more advanced CPUs can only address 1M, and the extra address
lines are inactivated.

High The fundamental problem with DOS and DOS applications is the

memory IM limit. There is, however, a qualification to this: Real mode
addressing can address over the 1M limit, by an extra 64K, known
as the high memory segment. A quick look at Figure 1.8 will show
why. If we put maximum values in them, that is, CS = FFFF and
IP = FFFF, the computed 20-bit address is 10FFEF. The 1M limit
is FFFFF.

The 21st The 20-bit upper limit is FFFFF hex (1M - 1), but the offset IP

address bit allows, in theory at least, addressing just over this. Physically this
would require a 21st address bit, which the 8088/8086 don't have,
and it's disabled on the 286, etc. chips also. But the PC can be
instructed to turn on the 21st address bit on the 286/386 chips, thus
allowing them access to that 64K above the 1M.

18 Windows Assembly Language & Systems Programming

Using
segment
registers in
a program

Selectors

An extra 64K is peanuts. The 286 has 24 address lines and can
theoretically have 2* bytes of memory, which is 16M. The 386
has 32 address lines, allowing 4.3 gigabytes (G). But all of this is
inaccessible with the CPU in Real mode. Or is it? Later in this
book you will see that 386 and later processors can access the
entire 4.3G from Real mode.

DOS Real Mode Programming

DOS itself, the DOS and BIOS I/O services, DOS applications,
device drivers, and TSRs are all designed to work in Real mode.
This is because they rely on real addresses being in the segment
registers.

Consider an example. A programmer could use the ES register to
write directly to the video RAM. Video RAM is just like any
other RAM, except that what you store there appears on the screen
also. A programmer could load B800 hex into ES, which will
address the CGA video RAM (i.e., the full 20-bit starting address
for the segment will be B8000 hex). In assembly language, the
programmer writes an instruction like "MOV ES: [DI],AL" or
"STOSB", to store a value from general-purpose register AL to the
address ES:DI.

Note that the terminology ES:DI refers to the address in the form
of segment:offset. ES is the segment, and DI (or some other 16-bit
register) has the offset. DI and AL would both need to be loaded
beforehand, of course.

The point here is that the program loads an actual segment address
into ES. This reliance upon real values being in the segment
registers means that DOS programs cannot work above 1M.

The 286/386/etc. CPUs can be switched into what is known as
Protected mode, which allows memory access up to the 16M or
beyond limit, but the real addresses have to be dumped from the
segment registers. Instead, they contain selectors or indexes into
tables, and the tables have the real addresses of the segments.

DOS does have some mechanisms for switching into and out of
Protected mode, and a couple of early DOS services are introduced
here.

DOS Protected Mode Programming

Oh, what a can of worms! I didn't quite know where to start, as
there are so many considerations. I have written about the
problems, at least some of them, of running DOS applications in
Protected mode, and DOS's own failure in this regard.

INT-15h

INT-15h,
AH = 88h,
AH =87h

Local and
global
descriptor
tables

Switching
the CPU into
Protected
mode

Machine
Status Word

CPU Architecture 19

However, Microsoft gradually extended DOS, and one of the first
services they added was the functions invoked via INT-15h. So
I'll start with these.

The idea was to provide some means of switching from Real mode
to Protected mode and back, to transfer code to and from
conventional and extended memory, and to transfer execution
from a Real mode program to a Protected mode program,

INT-15h, AH = 88h, will tell us how much extended memory there
1s, though not how it is being used. It simply returns with a value
in the AX register. There is a picture of the CPUs registers in
Figure 1.11.

INT-15h, AH = 87h, moves a block of data between conventional
and extended memory. A use that immediately comes to mind
with this is a TSR manager that could keep them all out of the way
and bring one back as needed (there are such managers available).

A problem with Protected mode is all the housekeeping required,
that is, the various tables required for addressing. The segment
registers no longer have the actual addresses: they are kept in the
Local Descriptor Tables (LDTs) or the Global Descriptor Table
(GDT). Furthermore, if interrupts are to be handled by the
program in Protected mode, an Interrupt Descriptor Table is
required. There's more — if task switching is to be supported, a
Task State Segment (TSS) is required for each task.

Fortunately, INT-15h, AH = 87h, keeps it simple. All that is
required is a GDT to get the service to work, and it is up to the
application program to set this up. The service requires:

cxX = Number of words to transfer.
ES:SI = Physical address of GDT

(in conventional memory).
AH = 87h

The DOS service takes care of differences between switching the
286 and 386: in the 286 it involves setting the Protect-Enable bit
in the Machine Status Word register, setting up descriptor tables,
and loading the address of the GDT (Global Descriptor Table) into
the GDT pointer register.

In both the 286 and 386, getting into Protected mode involves
setting certain bits in the Machine Status Word, and in the 386 it is
a simple matter of setting a bit in an appropriate way to come back
to Real mode. However, the 286 has no mechanism for returning
to Real mode, and it has to be done by the incredibly slow method
of resetting the CPU, which takes several milliseconds. This is
one of the reasons that the 286 has become history.

20 Windows Assembly Language & Systems Programming

INT-15h,
AH = 89h

Creation of
aGor

Initialisation
of segment
registers

Why have
selectors?

A problem to
call Real
mode code
from
Protected
mode

INT-15h, AH = 89, is the service that actually transfers control
from the Real mode code to Protected mode code. Since hardware
interrupts must occur if the PC is to continue to operate, and the
application may need to generate software interrupts (see Chapter
2 for the distinction), an IDT must be in existence; therefore, this
service needs more housekeeping.

Just to give an idea of what goes into a GDT, Figure 1.9 shows a
basic GDT as required for INT-15h/AH = 87h. The format shown
needs a little modification for 386 systems.

A point about Figure 1.9 is that our application needs to create a
GDT, and maybe an IDT, and put their addresses into the GDT
prior to invoking INT-15h. But when the service performs the
transfer to Protected mode, it loads the other descriptors (for DS,
ES, SS§, and CS) into the GDT.

The DOS service will put selectors into DS, ES, SS, and CS
inside the CPU. These are just indexes into the GDT, which has
the actual addresses.

You may know that when DOS in Real mode loads a program
from disk, DOS puts it where there is free memory (see page 14)
and automatically sets DS, ES, SS, and CS appropriately (see
Figure 1.8). In Protected mode, however, the actual addresses of
the segments are put in the Descriptor Table, while the segment
registers only have pointers into the table.

A small, but vital, question ... why? Why put the actual addresses
out of the CPU in tables? The answer is simple — segment
registers are 16 bits, thus limiting the address range to 1M, while
the segment-address in the table is at least 24 bits, thus giving at
least 16M address range.

Coding Restraints

Yes, you can write DOS applications that will run in Protected
mode. You can see from the above notes that DOS can load code
or data above 1M and can also switch into Protected mode and
execute the program above 1M.

The requirement is that the program must not expect actual
physical addresses to be in the segment registers.

Another implication is that the program cannot call the BIOS and
DOS I/O services (normally called by the INT instruction), since
these are designed to run in Real mode. Ditto there is a problem
with device drivers and TSRs.

It is possible to switch back to Real mode just to run an I/O service
or device driver, or Protected mode versions of the BIOS and DOS

A Pentium is
Just a fast
386

32-bit
instruction
pointer (EIP)

CPU Architecture 21

I/O services can be provided. This is discussed further later in the
book.

Figure 1.9: Basic setup of a GDT.

OFFSET CONTENT

00-07h | Reserved (should be 0)

08-0Fh | Descriptor for this GDT

10-17h | Descriptor for the IDT

18-1Fh | Descriptor for DS

20-27h | Descriptor for ES

28-2Fh | Descriptor for SS

30-37h | Descriptor for CS

38-3Fh | Descr. temp. BIOS CS

Inside the 286/386/486/etc.

Mostly I have concentrated on the 386, since the 286 is history.
You can consider later processors to be functionally equivalent,
just faster. Do not get the idea that later processors, such as the
Pentium, are fundamentally different from the 386. Just about all
32-bit code written today will run on a 386. Most architectural
differences are to do with speed enhancements.

There are some architectural differences between the 386, 486,
586, 686, and Pentium, but I have focused here on the basic
architecture: the 386. This is the common factor underlying them
all.

Everything, almost, has become 32 bits, including 32-bit address
and data buses. The Instruction Pointer has grown to 32 bits (see
Figure 1.10), which means that the original rationalization for
introducing segment registers has been nullified. However, the
segment registers are still there, and still 8 bits — the curse of
compatibility is still with us!

22 Windows Assembly Language & Systems Programming

Memory and
/0 address
spaces

Downward
compatibility

32-bit
registers

Thirty-two bits gives us an enormous addressing capability: 4.3
thousand million bytes (gigabytes). Note that, for compatibility
reasons, each address actually addresses 8 bytes of data in
memory, even though the data bus is 32 bits.

Addressing of 1/0O ports is still the same as for the 88/86/286, using
the lower 16 bits of the physical address bus, coordinated with the
IOR and IOW control lines. 16 bits allows up to 65,536 I/O ports.
It is important to note that the I/O address space is separate from
the 4.3G memory address space — this differs markedly from the
Motorola 68000 family, in which there is no separate /O space.
I/O ports are accessed by the IN and OUT instructions (see page
244).

Figure 1.10: 386 32-bit address and data.

386 CPU Memory
Instruction Ptr Maximum
possible

(EIP) 32-bit address bus > is 4.3G

32-bit
data
bus

CPU Registers

Obviously, if the 386 is to be downwardly compatible it must have
the same registers as its older relatives, and yes, they're all there.
AX, BX, CX, DX, SI, DI, BP, and SP are the 16-bit registers
inherited from the 86 and 286. Incidentally, the 286 has the same
register set as the 86 (plus some extra ones for managing Protected
mode). It is only with the 386 that significant enhancements of the
registers occur: they are all 32 bits, except for the segment
registers.

It is important to understand that the registers you can use in an
application can be used as 32-, 16-, and, in some cases, 8-bit
registers, for full downward compatibility.

Here are examples:

CPU Architecture 23

mov BL, 0 iexamples of different size regs.
mov BH, 0 ;

mov BX, 0 ;16

mov EBX, 0 ;32

Learning
the basic
instruction
sef

Coding
specifically
for the 386

The "E" prefix denotes a 32-bit register. BX is the bottom half of
EBX, and BH and BL are the top and bottom halves of BX.

At this stage, I'll present an overall picture of the registers of the
CPU.

The registers shown in parentheses in Figure 1.11 are the portions
of the extended registers that are found in the 86 and 286. For
example, the 86 and 286 have the Stack Pointer, SP, that is the
bottom half of ESP in the 386.

The purpose of each register is somewhat more involved than the
tiny descriptions given in the figure, of course. The segment
registers are described as being selectors, which is valid for
Protected mode. In Real mode they would hold segment
(paragraph) addresses. Note that the 86/286 don't have FS and GS.

Only AX, BX, CX, and DX can be operated upon in halves, that is
as AH/AL, etc. This is convenient for handling 8-bit data.

Instructions

It is somewhat back-to-front, but I have given a thorough coverage
of the basics of the instruction set in Chapter 2. Therefore, if this
discussion of registers and instructions is "double Dutch" to you,
Jump to Chapter 2 then come back here. Otherwise, keep reading.

Obviously the 386 has all the instructions of the 86 and 286, but
you'll find them enhanced, plus many new ones.

Note that I've put a summary in Appendix A showing which
instructions work on the 86, 286, and 386.

Once you start to code explicitly for the 386, beware that there is
no turning back — your program won't run on the 86 or 286. Most
important of all incompatible enhancements is the removal of the
64K segment limitation by means of EIP to access the code
segment, ESP to point to the top of stack, and the various other
general and data-segment addressing registers (EBX, ESI, EDI,
etc.).

mov AL, ES: [BX] ;16-bit index.
mov AL, ES: [EBX] ;32-bit index.

24 Windows Assembly Language & Systems Programming

Figure 1.11: Registers of the 386.

386 CPU
General Data/Addressmg Registers:
31 15 PURPOSE:

EAX (AX,AH,AL) Accumulator (general use)
EBX (BX,BH,BL)| Base (general, indexing)
ECX (CX,CH,CL)| Count (general, string)
EDX (DX ,DH,DL)| Data (general)

ESI (SI) Source Index

EDI (DT) Destination Index

EBP (BP) Base Pointer (stack)

ESP (SP) Stack Pointer (stack)
Segment Registers:

1 0 PURPOSE :

cs Code selector
DS Data selector
SS Stack selector
ES Extra selector
FS selector

GS selector
Instruction Pointer and Flags:

31 15 0 31 15 0

[EIP (IP) | | EFLAGS (FLAGS)|

System Segment/Address Registers:

47 23 0 PURPOSE:
GDT-register Address of the GDT
IDT-register Address of the IDT

15 0

TSS segm't selector
LDT segm't selector

LDT-reg
[Control (CR0-3), Debug (DR0-7), Test (TR6-7) regs. |

This code shows how to get the single-byte memory contents in
the ES segment at offset BX, in the first case, and EBX in the
second. Obviously, the first instruction is limited to a 64K
segment, due to BX being 16 bits, while the use of EBX extends
the limit to 4.3G.

Memory
management

Multitasking
problems

Distinction
between 286
and 386

Purpose of
the LDT

CPU Architecture 25

Real and Protected Modes

It has already been stated that when in Real mode, the 386 (and
286) operate like the 86, with segment registers having actual
segment (paragraph) addresses. The limitation this imposes is that
the maximum address range is 1M (plus the extra 64K high
memory area — see page 17). Another limitation is that there is
no built-in support for memory management.

Windows allows more than one program (task) to run at once, and
this introduces some incredible constraints. Also, simplicity goes
out the "window". Obviously the CPU must be able to divide its
time between running the various programs; each must sit in
separate areas of memory and none must write to memory where
another program is sitting. They must be able to share keyboard
input and not scribble all over the screen — each task must only
output to its own window. Other resources and I/O must be shared
without a fight.

This is asking a lot, but the Protected mode inherited from the 286
will do it, while the Enhanced protected modes of the 386 will do
even more.

Memory Management

The 286 has just one Protected mode, also inherited by the 386,
and we will look at that first. It employs mapping of the segments
to memory via Local Descriptor Tables (LDTs) and a Global
Descriptor Table (GDT).

Note that the 386 can work exactly like the 286 but also has other
modes: an extension to the descriptor tables, with page tables, and
a system with page tables only, known as virtual-86 mode.

Segmentation Only

There is only one GDT, but the operating system maintains an
LDT for each program currently running (Windows 3.x and 95 are
special cases: see footnote on page 32). Think about the LDT — it
contains the actual segment addresses, while the segment registers
inside the CPU (we will now call them selectors) are just indexes
into the LDT. When a task switch occurs, the CPU has a simple
mechanism for changing to the next LDT, but the selectors don't
necessarily have to change, since they only index into the table.

26 Windows Assembly Language & Systems Programming

Purpose of
the GDT

How many
LDTs?

Descriptors

Fundamental reasons for having the LDT are the increased
addressing, plus protection. Ok, here is a picture: take a look at
Figure 1.12.

The figure gives a fairly good idea of the relative roles of GDT
and LDT. When the operating system first creates the GDT, it
uses special instructions to put the base (starting) address of the
GDT into the 32-bit GDT-register. Thus the CPU will always
know where the GDT is.

So, what purpose does the GDT perform? One major use is to
hold the base addresses of all the LDTs. Whenever the operating
system creates a new task, it also creates an LDT for that task and
makes a new entry in the GDT. This entry has the address of the
LDT.

Bear in mind that I'm generalising here — Windows 3.x and 95
use one LDT for all Windows applications and separate LDTs for
each DOS application, while NT is different again. Seem
complicated? — It is, which is why I'm generalising for now!

The GDT has the base addresses of the LDTs, but which one is
currently executing? For this, the CPU has the LDT-register,
which is just an index into the GDT, pointing to the current LDT
descriptor.

Let me use the term descriptor from now on. Each entry in a GDT
or LDT is called a descriptor.

So, let's suppose the CPU wants to fetch the next instruction of
whatever task is currently executing. The CPU will already know
where the current LDT is, because it already would have read the
GDT entry as indexed by the LDT-register.

Shadow Registers

Incidentally, a most important element is shadow registers. Look
back to the picture of the CPU registers in Figure 1.11 (page 24),
and you will see that some of them have shadow registers. So
does the LDT-register. These shadow registers hold the actual
addresses or, more correctly, the descriptors read from the table.

When the CPU reads the GDT and gets the descriptor for the
current LDT, it puts this into the corresponding shadow register
(alongside the LDT-register), so from then on, until a task-switch
or until the LDT changes position, the CPU will know where the
LDT is, without having to reread the GDT (Figure 1.12).

CPU Architecture 27

Figure 1.12: Memory management.

386 CPU Actual memory
15 0

[LDT-reg

31
| GDT-register

15 4 0

index|¥rpl

This is the internal
format of the 4
segment registers I_' LDT. task 1
(selectors) CS, DS,
etc.
* = 0 if pointing to
the GDT, 4 ‘
1 if pointing to LDT, task 2
an LDT.
rpl = requested . task 3, etc.

privilege level.

*

Each entry in an LDT or
the GDT is called a program segment
“descriptor” & has the/.. (data, code, or stack}
address of a segment.

Association The next step in this saga is that the CPU can use the selector in
between the CS register to index into the current LDT and get the actua
descriptor address, or more correctly the descriptor, of the code segment.
and shadow The IP register (or EIP) will have the offset into that segment from
register which the CPU will fetch the instruction.

Having read the descriptor from the LDT, the CPU then has the
base address of the code segment. To avoid having to look in the
LDT every time it wants to fetch the next instruction, the CPU

makes use of shadow registers again. Every segment register has
an associated shadow register.

28 Windows Assembly Language & Systems Programming

The CPU will only have to look in the shadow register to find out
the starting address of the segment (plus some other information)
and can then go ahead and put together the full 32-bit address for

fetching the instruction.

The CPU will add the base address to the offset IP and get a 32-hit

address that can be put onto the address bus.
Descriptors

| have introduced the descriptor as being an entry in the GDT or
There are various types of descriptors, but the most
common is the normal addressing type that we have been

LDT.

discussing so far.

Each descriptor is 8 bytes in size, and Figure 1.13 shows what a

normal descriptor looks like.

Figure 1.13: Descriptor format.

to zero on the of the segment.

286.

24 bits. “#'extends the limit beyond 64K.

64 55 47 39 15
base+ # access base [limt
7_ / |

y y Size of
Normally set Base” is the address gegment.

“Baset” extends the base segment addressing beyond

Access field The access byt e in Figure 1.13 has various flags and codes. It has
a two-hit DPL field (Descriptor Privilege Level) that determines
the privilege level of the segment. It has P (Present) and A
(Accessed) bits that are used for moving the segments in and out
of memory. There are R (Read) and W (Write) bits that set
congtraints on reading and writing the segment. There is also the
C (Conforming) bit and ED. The latter is set if the segment is a

stack.

| go into the description of the descriptor in far greater detail in

Chapter 12.

386 Paging

There are two paging modesin the 386. Oneis built on top of the
descriptor tables, and the other, called virtual-86, does away with

the descriptor tables altogether.

What's
wrong with
segments?

Page tables
and control
registers

Linear
address

CPU Architecture 29

I'll ook first a the one built on top of the desriptor tables. From
our program point of view it looks just like the segmentation
mechanism with the GDT and LDTs. The only difference is that
the CPU secretly stores the segments in actual memory not in one
contiguous chunk, but al over the place as 4K pages.

Why go to this trouble? The operating system has trouble bringing
segments in and out of memory because they are al different sizes
— if anew segment is to be brought in, space must be found for it,
but space released by a segment that has vacated its spot may not
be the right size. This is a real problem for the operating system,
and it ends up with lots of little unused gaps everywhere.
Inefficiency.

By transparently parcelling the segment up into lots of little pages
al the same size and storing them wherever there is a space, the
mismatch of segment sizes is no longer a problem. We know that
a space vacated by a departing page will be exactly the right size
to take a new page. No problem.

Well, there is one. To achieve this, more trandation tables are
required, called page tables. The CR registers are used to address
these, and the page tables are kept in memory just like the
descriptor tables.

The CPU has various extra registers for maintaining the paging
mechanisms, most importantly, CR3, which contains the base
address of the Page Table Directory.

Just for the record . . .

The address computed from the descriptor table, now renamed the
linear address (as it is no longer the fina physical address), is
divided into fields, with bits 22 to 31 being an index into a
page-table directory that gives the address of a particular page
table. Bits 12 to 21 are the index into this second table, which
contains the final address. Bits 0 to 11 are unchanged and become
part of the final address.

You will come across the words linear address later in the book.
Note that sometimes the words virtual address are used in various
books to mean the same thing, though there is a distinction. The
linear address is that 32-bit address that would be the physical
address if page tables didn’t get in the way.

Virtual-86

This is another paging mechanism that does away with descriptor
tables. It was intended to provide the 386 with better Protected
mode emulation of the 86 CPU than the 286 can manage, which it
does very wdll.

30 Windows Assembly Language & Systems Programming

This mode is fascinating. It also does away with selectors and
brings physical segment (paragraph) addresses back into the
segment registers! Thus we come full circle, but with a vita
difference.

Paragraph Although the 16-bit segment address is back, and once more
addresses programs designed to directly manipulate segment registers can do
are back! so. The CPU does compute a 20-bit address consisting of
paragraph address plus offset, but this is not put on the external
address bus. Instead, it is processed via page tables, that is,
trandated to some other 32-bit address then put onto the address
bus.
Once again, this paging is transparent to the programmer, but it
does mean that the program, data, etc. are not where you think
them to be judging from the segment registers.
Virtual Virtual-86 mode is useful not just for emulating the old XT
machine computer, but is the very foundation of Windows Enhanced mode.
True, each virtual machine will have an addressing limit of 1M,
but Windows can create many of these (Figure 1.14).
Figure 1.14: Virtual Real mode.
386 PC :
VIRTUAL XT PC I Physical
Virtual ||
86 CPU, ||Appar-||il
with ent 1M
segment address
addresses || SPace.
in CS, DS,
SS, ES,
etc. | _J
| Virtual XT PC
l Virtual XT PC |
The upper 8 |nstead of putting the 20-bit linear address onto the address bus, as
bits of the for Real mode, virtual-86 mode uses the upper 8 bits of this
linear address as a lookup in the current page table — note that the table
address are &ty contains the base address of the page, which is combined
q with the lower 12 bits of the linear address to form the actual
remappe 32-bit address. It is this final 32-bit address that the CPU puts out

for a memory access. Refer also to page 274, Figure 11.2.

Four
privilege
levels

10PL field

IN, OUT,CLI,
and 877

CPU Architecture 31

So what happens if your program writes directly to video RAM at
segment B800? This is up to the operating system, which most
likely will create virtual screens for each task, setting them up
anywhere it wants to in RAM.

Contention | ssues

There are various things to think about under this heading, but |
have at this stage just addressed the issues of privileges, 1/O, and
task switching.

The topics are brought up at various points through the book, so
look in the Index for other page references.

Privileges

The dp! field in the descriptor defines the privilege level of that
segment. Also you will see back on page 27, Figure 1.12, that the
selector has a requested privilege level (rpl).

Because it is a 2-hit code, there are four possible levels, zero being
the most privileged. The kernel of the operating system will
operate up here (zero), while your lowly program will reside a a
lower privilege level.

Your program’s level is basicaly reflected in what the rpl is set to,
and this must be numericaly equal to or less than the segment’s
dpl to alow access to that segment — otherwise the CPU exits to
an error routine and the dreaded UAE (Unrecoverable Application
Error) dialog box appears, and that’s the end of your program!

/O Privilege

Privilege levels do have some impact on I/O. If you look at the
FLAGS register (see page 244), you'll find 2 bits that hold the
Input/Output Privilege Level (IOPL). Your application must have
a privilege level numerically equal to or less than this to be able to
perform 1/O. With Windows, the IOPL field is set to zero, most
privileged.

However, it is possible for the operating system to give permission
for certain 1/0O to occur, even though the application doesn’'t have
the right privilege. 1/0 access involves use of the IN and OUT
instructions and control of the interrupt flag by CLI and STI

' Windows 3.0 runs WinApps at level 1, DOSApps at level 3, and DLLs at level 1. Windows 3. 1
and later run al three at level 3.

32 Windows Assembly Language & Systems Programming

PUSHF,
POPF

Changing
LDTs

Task State
Segment

instructions. The interrupt flag is in the FLAGS register and when
cleared, prevents hardware interrupts from occurring.

If the application has sufficient privilege to perform direct 1/0O, it
can also set and clear the interrupt flag. Although a Windows
program does not have the privilege of direct 1/0, Windows does
alow it, to an extent. If 1/O is attempted, the CPU goes to a
Windows error (exception) routine, which does have the privilege
to do what it wants — the routine allows CLI and STI (clear or set
interrupt flag instructions) but does not let PUSHF or POPF
instructions affect the interrupt flag. This is something to be
aware of and a possible source of incompatibility with old DOS
code. It also means that an IRET from an interrupt routine may
not set the flag as it was prior to the interrupt.

For more information on 1/O, refer to page 244.

Task Switching

Considering the complications of multitasking, | sometimes
wonder if it is al worth it. Perhaps a more effective solution
would have been multiple CPU-boards, each single-tasking.
Anyway, we are stuck with the current situation.

Changing from one task (program) to another is a matter of
changing to a new LDT, which involves the CPU looking into the
GDT and getting the new LDT's address.

However, the “state” of the task about to be suspended must be
saved, and the “state” of the incoming task must be restored. This
state consists of the CPU and coprocessor registers plus various
memory pointers and values, and an incredible time overhead is
involved to save and restore this lot.

The CPU has to maintain a specia segment for each task, called
the Task State Segment (TSS), into which all of this goes. Then, of
course, the CPU must keep track of where these TSSs are, so it
maintains descriptors for the TSSs in the GDT. Thus the GDT
contains more than just descriptors for the LDTs.

' Windows 3.x and 95 have only one LDT for al applications, whether in Standard or Enhanced
modes, which is a compromise in its design that can potentially cause trouble. This limitation
tallies with DPMI version 0.9, which in Windows maintains one LDT per virtual machine, not
per task. Windows is seen as a single client to DPMI. Windows 95 32-bit applications have
individua LDTs.

Real mode
interrupts

CPU Architecture 33

I nterrupts

Like everything else, Protected mode interrupts are a whole new
ball game. First, let’s review the mechanism in Real mode.

The standard method of doing 1/0O and file and memory
management, plus a heap of other operations, was by the BIOS
and DOS interrupt services. These are accessed from an
application program by means of the INT instruction, with this
syntax:

;software interrupt

INT-2 15, the
main DOS
service

Windows
functions

Interrupt
Vector
Table (1¥T)

where "n" is an integer (whole number) from zero to FF (hex).
The usual procedure is that certain registers have to be loaded
prior to the INT, depending upon the particular service, and many
of the services have subfunctions, usualy selected by a value in
the AH register.

The most important of these is INT-2lh (h = hexadecimal), which
is the main DOS service, with dozens of subfunctions.

A comprehensive list is to be found in my previous book. In this
one you'll find extra INT services especiadly relevant to Windows.
It is not that we do away with INT services entirely with
Windows, it's just that many of the BIOS and DOS services are
designed for DOS and the Real mode and are no longer

appropriate.

We access the Windows services by CALL instructions, not INTs,
and from the CPUs point of view there isa difference. Windows
services, or functions, do al that many programmers would want,
though we dig a little deeper in this book and aso show how
useful the INT services can be.

Real Mode Interrupts

Interrupts, whether from an external source (hardware) or
generated internally by the program (software), cause the same
reaction in the CPU:

1. The CPU pushes the current Instruction Pointer (IP), Code
Segment (CS), and FLAGS register onto the stack.

2. Then the CPU uses the value "n" as an index into the
Interrupt Vector Table (IVT), where it finds the FAR address
of the service routine.

34 Windows Assembly Language & Systems Programming

IRET
instruction

CALL to an
ISR

3. The CPU then loads the FAR address into its CS.IP registers
and commences execution of the service routine.

4. Interrupt routines always terminate with an IRET instruction,
which has the effect of popping the three values saved on the
stack back off, into CS, IP, and FLAGS. Thus the CPU
carries on as before, as though nothing had happened.

Note that when a CALL instruction executes, it works in a similar
way, but a FAR CALL only saves CS and IP on the stack, not the
FLAGS. Also, if it is a NEAR CALL, only IP is saved on the
stack. In addition, the routine called must terminate with RET, not
IRET, as the latter pops three values off the stack (expecting
FLAGS to be on there as well).

Incidentally, a useful point arises from what | have written above.
You can use the CALL ingtruction to cal the BIOS and DOS
services, despite the fact that they terminate with an IRET:

PUSHF

;push flags on stack.

CALL rou tinename

Structure of
the VT

Interrupt
Descriptor
Table (/D7)

That is, you push the FLAGS on beforehand, using a specid
instruction, PUSHF (there is also a POPF). You do need to know
the address of the routine that you are calling, however, since it
doesn’t make use of the IVT, as INT does.

Protected M ode Interrupts

Just as segment registers no longer represent real addresses, so too
the interrupt mechanism no longer uses the Interrupt Vector Table
(IVT). Interestingly, when Windows is running, the IVT is ill
there, but our applications don't use it. It is still used by Windows,
but that’ s another story.

So, just where is this IVT? Have a look back at page 11. The IVT
sits in RAM right down at OO00:0000, occupying the first 1024
bytes. It is set up by the BIOS startup routine and filled in by DOS
also.

The fundamental problem is that it contains real segment
addresses, which is a no-no in Protected mode (though is ok in
virtual-86 mode). Therefore a special table has to be created by
the Windows operating system, called the Interrupt Descriptor
Table (IDT), which contains the linear addresses of the services.
Linear addresses are real, but they are actual 24- or 32-bit
addresses, without the segment:offset structure.

Using INT
within
WinApps

Redirection
of IDT to IVT
(Protected
mode to Real
mode)

Virtual
WVTs

CPU Architecture 35

There is a fascinating outcome of this. From within a Windows
application, you can have an INT instruction — let's say that you
want to call the BIOS INT-10h service, which controls the video
adaptor. INT-10h is not a service that Microsoft would want you
to cal from your application, since dl control of the video should
be done by the Windows functions — but you can do it.

A warning here: some services will crash if called while in
Protected mode, and others will behave strangely.

Microsoft has in some cases provided alternative BIOS and DOS
services, written especially to run in Protected mode, and when
your program executes, say, INT-21W/AH = 35h, the CPU will
look up that entry in the IDT (not the IVT) and get the address.
Thus it is very easy for Microsoft to substitute its own services
into the IDT.

In many cases (probably most) Microsoft services have not been
substituted, and execution goes to the origina BIOS or DOS
service. Although the Real mode services may in some cases
manipulate addresses in the form segment:offset, which will cause
the code to crash if the CPU is running in Protected mode,
Windows gets around the problem by switching the CPU into Real
mode, or into virtual-86 mode, then calling the service.

For such cases, the entry in the IDT points to a specia handler,
which, apart from changing the CPU to Rea mode, must also
convert any pointers from selector to segment vaue. Then the
handler will have to look in the IVT to get the address of the Real
mode service.

Thus, even the services in the BIOS-ROM will work. At least they
will return without crashing the system (in most cases), though
whether they do what you want is another matter.

Note however, that there is a difference in accessing interrupts
from a 32-bit compared with a 16-bit Windows application. This
is a complicated issue and is developed in Chapter 16.

Another fascinating thought occurs about virtual-86 mode, which
uses the IVT, but in plura. Although there is an IVT at actual
physica address OO00:0000, each virtual-86 task will have its own
copy of the IVT, which appears to be at OO00:0000 but is paged
anywhere. You need to be aware of this proliferation of IVTs if
you want to hook a vector.

Refer to Chapters 10, 11, and 12 for more information, particularly
page 282 and thereabout.

36 Windows Assembly Language & Systems Programming

Postamble

This chapter mapped out the overall architecture of the x86
processor, and you may have found some of it heavy going.
Subsequent chapters are a step back, and topics are revisited in
depth. Chapter 2 is an in-depth treatment of the basics of

assembly language.

Content
of this
chapter

Basic Assembly
L anguage

Preamble

This chapter contains an introduction to assembly language for the
x86 family of processors. The focus is on 16-bit programming.
Later chapters will expand this to 32-bit programming.

Real mode 16-bit programming can be considered an essential step
up the ladder of understanding, climbing through 16-bit Protected
mode, toward 32-bit Protected mode programming.

Chapter 4 puts this knowledge to use in a first 16-bit Windows
application.

Discussion relates to the Microsoft and Borland assemblers,
though of course there are other compatibles.

37

38 Windows Assembly Language & Systems Programming

Initialisation
of the stack

Purpose of
the stack

... temporary
storage

... CALL/ RET

... interrupt
mechanism

Stack Instructions

The computer maintains a stack somewhere in memory. DOS wiill
set the Stack Segment register SS when your program is loaded,
and the Sack Pointer SP will be initiadlised to FFFEh, or some
value that means the stack is empty. The stack is used by the
computer and by your program. For example, whenever an
interrupt occurs the CPU pushes the IP, CS, and FLAGS onto the
stack, so that when the interrupt routine is finished (terminated by
an IRET ingtruction) the CPU will pop these values back into the
respective registers and continue from where it left off.

Thus the stack is used to hold register values to enable the CPU to
return from an interrupt and also from a procedure CALL.

However you can make use of the stack in your program, by
means of the PUSH ingtruction, which pushes a 16-bit vaue onto
the stack, and POP, which pops the top value off the stack into a
register or memory location. Also PUSHF and POPF can be used
to push the FLAGS onto the stack and pop them off.

Whoa! This is a lot to think about! I've just stated above that
there is a memory area called a stack, that it is used by the CPU to
store register values for interrupt and CALL-instruction execution,
and it is used by the PUSH and POP instructions. You may find it
extremely helpful at this point to visualise what is happening.
Look at Figure 2.1 and examine the effect of the PUSH and POP
instructions.

In Figure 2.1 you see two instructions, PUSH and POP, that you
can use in your program. You can push values onto the stack, and
take them off again — why? — one reason is that it serves as a
convenient temporary storage.

| also mentioned that the stack is used by the CALL instruction —
this is one of the “transfer of control” instructions and is described
in the next section.

| mentioned that interrupts also use the stack — again, explanation
is deferred.

Do not worry about these deferred explanations — one thing at a
time. Examination of Figure 2.1 will give you an idea about what
the stack is, which is satisfactory for now.

Basic Assembly Language 39

Figure 2.1: Concept of the stack.

From a“logical” user’s point of view, the stack is like a bucket: pushing a
value on adds to the top of the bucket, while popping takes off the top
entry inthe bucket . . .

PUSH | IS~ SS = gtart of stack
segment.
"bucket"
~—3> POP

I
[| If there is nothing in the bucket, SP=

i/ Higher addresses FFFFEN (or whatever the stack size

this way. is. FFFFEh is correct for .COM tiles).
SP = top of Now put a couple of valuesin:
stack (stack
grows down This is the program:
in memory). PUSH CX value from AX |
PUSH AX value from CX |
POP BX

The stack always treats values as 16 bits
(word), so each entry actually occupies two
memory locations (not shown here).

Note that the last instruction popped the top off | valuefromCX |
the stack, into BX.

The stack is a temporary storage area, whose actual address we don't
need to know. It does have a limitation: when SP=0 the stack is full.

Transfer of Control

The idea of a computer program is that it is a sequence of
instructions: in this book we are looking at machine instructions
that the CPU directly understands. Assembly language is just a
symbolic (more meaningful) way of writing the machine
instructions.

40 Windows Assembly Language & Systems Programming

The CPU executes the instructions sequentially — that is, one after
the other in order of increasing addresses — but can aso jump out
of seguence.

LOOP, JMP, The topic of this section is those instructions that cause execution
CALL. T, to go to some other place in the program. The main ones are:
Jx LOOP, IMP, CALL, INT, and Jx. In this section we will examine
CALL, JMP, and Jx. LOOP and INT are examined a little bit
|ater:
Figure 2.2 Stack handling for CALL and RET.
Involvement of the stack for CALL cs —> Code segment
and RET. Thesetwo must dways | ..
oceur in pairs. CALL ROUTINEX
InthecaseofaNEARCALL ,onlythe Pm>/..... A

CPU’s offset IP is dtered: a FAR CALL

willdsodteerCcs. X | ... value IPx as its
The CALL pushes IPm onto the stack, operand.
and loadsits operand (IPx) into IP. IPx ROUTINEX:
CPU RET
IP 1

s SS > Stack segment
When IP has the new value, IPx, tm\

subroutine ROUTINEX is executed, SP—> IPm
and the RET instruction causesa |
returntothe caler, by poppingPm | e
off the stack, back into IP.

Note that the CALL.
------ instruction has the

Figure 2.2 illustrates how the CALL and its companion RET use
the stack. The basic idea is that the value in the Instruction
Pointer, IP, is always the next instruction to be executed, so when
“CALL ROUTINEX" is executing, IP will have IPm in it. Since
the value in IP has to be changed to the subroutine, IPx, the return
value has to be saved somewhere: hence the stack is used to save
IPm. The RET instruction must always be placed at the end of a
procedure, as it pops the top off the stack, back into IP.

If you have programmed in C or Pascal, you know that you don't
put a RET, or anything special, at the end of a procedure or
function. CALL and RET do go into the code, though, because the

FAR and
NEAR

Code labels

Code /abels

Basic Assembly Language 41

compiler translates the high-level source code to machine
instructions.

This topic does need some careful thought. Any CALL, RET, or
JMP instruction can be a FAR or NEAR jump. What this means is
that if the jump is NEAR, the jump is only within the current code
segment; that is, only the IP is altered, as per Figure 2.2.

A FAR jump or cal, however, can be to anywhere in the entire 1M
address range, as both CS and IP are atered. In Figure 2.2, the
procedure ROUTINEX is shown as being in the same code
segment as the CALL instruction, but it could be somewhere
entirely different. Obvioudly, if ROUTINEX is in a different code
segment, then both CS and IP in the CPU would have to be
changed to the new values.

Note that it also logically follows that the origina values of CSIP,
immediately after the CALL, would both have to be saved on the
stack, and RET would have to restore both of them at the end of
the procedure.

Note that with what is called 32-bit programming, the distinction
between NEAR and FAR just about disappears.

One thing that you will notice from Figure 2.2, is that | used a
code label, ROUTINEX, to name the start of the procedure. This
is basically what you expect to be able to do in any high-level
language, and you can aso do this in assembly language. A code
label marks, or identities, that point in the code, hence a CALL
was able to be made to that place.

With a professional assembler, such as the Borland TASM, or

with MASM, Microsoft MASM, these labels are a norma part of writing a
TASM, program, but DEBUG is a different story.
DEBUG DEBUG CANNOT HAVE LABELS!
With DEBUG any ingtruction that transfers control to another
address must contain the actual offset.
What is What is DEBUG? It is a program that comes with DOS, and from
DEBUG? the DOS prompt you will only have to type the name of the
program to execute it. DEBUG.EXE is a way of becoming
familiar with the instruction set — it alows you to try out the
instructions and put together simple programs.
These examples show that DEBUG must have an actual address,
not labels:
MOV CX,9]
PLACE1: ;this is at 113 (say)
MOV AX,0 ;arbitrary instr
LOOP 113 ;absolute of fset (no |abel)

42 Windows Assembly Language & Systems Programming

LOOP PLACEL ;using a label.

JMP
instruction

SHORT,
NEAR, and
FAR

However, by writing the code in “proper” assembly language, we
do not need to know actual addresses. The second example here
shows how a proper assembler can have a symbolic address
marker, in this case PLACEL .

In Figure 2.2, we looked at a CALL instruction, but there is also a
JMP (jump) instruction that transfers execution to the address
specified in its operand in the same manner as the CALL
instruction, but with a major difference: no return address is saved
on the stack. This is because JMP is used when you do not want
execution to come back.

It was also explained above that the CALL can be NEAR or FAR,
but the IMP can be SHORT, NEAR, or FAR.

The example code below shows a JMP to a label. Usualy, an
assembler defaults to a NEAR jump, as the destination is usually
in the same segment.

j mp PLACEL

PLACEl:
mov ax, 0

;code label. .
;arbitrary Instruction.

NEAR JMP

At this point, it is instructive to consider how the assembler will
assemble this JMP instruction into memory. Obvioudly, it has to
be converted to “machine language’, or binary bits. That is what
any compiler or assembler does.

Figure 2.3: Generation of machine code, NEAR jump.

Increasing Operation-code
addresses Operand-low
downward Operand-high

v

In Figure 2.3 you can see the basic scenario. The first one (or
sometimes two) memory location(s) contain the instruction-code,
or operation-code, often referred to as the op-code, that identifies
this as a JMP instruction (or whatever), while the following zero
or more bytes are the operand.

In the case of the NEAR jump instruction, the operand contains a
16-bit offset, which is the place to jump to. But, and this is most
important, the addressing structure of all the Intel x86 CPUs uses

FAR JMP

SHORT JMP

Range of a
SHORT jump

Basic Assembly Language 43

byte addressing, meaning that each address addresses a one-byte
(8 bit) memory location.

Therefore, the operand requires two memory locations, as shown
in Figure 2.3 as operand-low and operand-high. The Intel x86
convention is that the low-half of the value is stored at the lower
address.

It is also useful to note that if the IMP is a FAR jump, that is, to
another code segment, the operand of the instruction will have to
contain the degtination CS:IP, which is two 16-bit values. Hence it
would be 32 hits.

The FAR jump would assemble as the one-byte (or two) op-code,
followed by a one-word IP then one-word CS vaue. Note that the
FAR jump can also jump within the current code segment but is
dightly inefficient because it is a longer instruction, taking a little
longer to execute and using more memory.

The IMP instruction has one interesting difference from the
CALL: it is able to perform a SHORT jump. This is shown in
Figure 2.4:

Figure 2.4: SHORT jump machine code.

Increasing ("Gperation-code

addresses Operand
downward

v

This reduces the instruction down to the one-byte (8-bit) op-code
followed by a one-byte 2's-complement displacement. This
displacement allows jumps to be only +127 to -128 about the
current |P position.

In some circumstances, the assembler will automatically make the
jump SHORT, but it can aso be forced to, by means of the
SHORT directive.

Conditional Jump

The conditional-jump instructions test various flags before
deciding whether to jump or not. These instructions are aways of
the SHORT type. This is very important — they can only jump
128 locations away from the current code location.The conditional
jump instructions are sometimes confusing for the student,
however the concept becomes quite clear with a little practise.
Most CPU instructions affect the flags after they have executed,

44 Windows Assembly Language & Systems Programming

and the conditional jump instructions can be used to test the flags
and jump accordingly.
Below is a summary of the conditional jump instructions:

JZ ;jump if previous result was 0
INZ ;jump if previous result not 0 _ o
JGrea ter ;this means "if the SIGNED difference is positive"
JAbove ;this means "if the UNSIGNED difference is positive"
JLess ;this means vif the SIGNED difference is negative"
JBelow ;this nmeans vif the UNSIGNED difference is negative"
JCarry ;assembles the sane as JB.

When using these instructions, you do not enter the part in italics.
Signed and Note that when comparing two values, we need to distinguish
unsigned between whether the values are unsigned or 2's complement.
compare Here are smple examples:

ADD AX,VAL1 _ _
JZ ZERORESULT ;jumps if previous result=0(zero-flag

e ; set)

cMp AX, 56 ;compare instr.

JA ABOVE56 ;jumps i f AX>56

;Variations .)

JNC placel ;3ump i f Carry flag=0

JE pl acel ;same as JZ ("Equal")

JAE placel ;unsigned junp, if above or equal.

JBE placel ¥unsigned ‘junp, if below or equal.
The ADD instruction, given as an example above, is explained a
little further on. Ditto for the CMP instruction.
Note that "ZERORESULT", "ABOVES56", and "placel" are code
labels, chosen to have meaningful names.
Addressing M odes
Obvioudly, the instructions of your program will be accessing
registers and memory, and the mechanisms by which this is done
are called the addressing modes.
The best way to show thisis by example:

varLl DWO

‘Mov AX, BX *register addressing node.

MOV AX 567 Fimedi at e addr essi ng node.

MOV RX, [567] ;direct addressing node

Basic Assembly Language 45

MOV ax, vaL1 ;direct addressing node.

Mov The humble MOVe ingtruction is the equivalent of the LoaD-Acc

instruction and STore-Acc ingtructions of the 6800 CPU, for those who have
had exposure to that beastie. It smply moves a value from one
place to another, in this case copying the value of BX to AX.

Register & Because only registers are involved in the first instruction of the

immediate above example, thisis called register addressing.

addressing The same MOV instruction appears again on the second line, but
note that a vaue is specified this time. This value is NOT an
address; it is an immediate value that is loaded into AX. This is
caled immediate mode addressing

Direct Now this is different. The square brackets of the third instruction

addressing signify “the contents of’ and it is the contents of address 567 that
is loaded into AX (there is a qudification to the above comment,
as the example loads the AX register, which is 16 bits, from a
memory location, which is 8 bits).

Note too that with an assembler (not primitive DEBUG though)
any address can be replaced by a label, so if you had defined
address 567 as being represented by label VAL1 (for example),
then this would do the same thing:

Both of these are called direct addressing.

[] syntax Do note one point about syntax. The last instruction could have
square brackets around VAL 1, and it would be interpreted exactly
the same by the assembler (TASM or MASM).

Indirect and |ndirect addressing is somewhat more abstract. It means that the

indexed contents of the operand are used as the address. So, the content of

addressi ng BXisthe address from which the value is fetched into AX:

mov ax, [bx] i ndexed addressi ng mode.

nmov ax, [bx+5))

mov ax, [bx+si+s] ;/
That just about covers it, except that indirect addressing does have
some options, as shown in the last two instructions above.
The first one adds the contents of BX to 5, and the result is the
address, while the second example adds the contents of BX, SI,
and 5 to form the address. This modified form of indirect
addressing is cdled indirect plus displacement if a constant is
specified, or indexed indirect if two registers are specifed.

Restrictions Not e that we often just label these various indirect modes under

on indexed thetitle of indexed addressing.

addressing

46 Windows Assembly Language & Systems Programming

Note also, that there are restrictions on the combinations of
registers alowed within the brackets. you can have Sl or DI, but
not both, and you can have BX or BP, but not both. No other
registers are alowed.

Segment Registers

Another thought: how do you access data in DS, the data segment?
This is the place to keep data, so obvioudly your program must be
able to get to it. Simple: most instructions automatically reference
the DS.

For example, the listing below shows how VALTL is defined and
referenced:

.DATA

vaLl DB O ;in data segment.

. CODE

myv ax, VALl ;in code segment.

Later, you will see more details on how to use the assembler, so
don't worry about that side of things. Suffice to say that you can
define a label in the data segment and reference it from the code
segment.
When the program is assembled, the address of VAL1 will be put
into the operand of the MOV ingtruction: note however that this is
an offset relative to the DS.
Most importantly, when your program is executed, it must have
DS set to the beginning of the data area, as the MOV instruction
will automatically use DS to compute the physical address.
Sometimes, especially with pop-up and interrupt routines, the
program may be entered with DS not set correctly, so you have to
take care of that at the beginning of the program.

Segment Although the MOV instruction in the above example automatically

override referenced the DS register, it is possible to override this. For
example you could have data in the code segment, so your
program would have this:

.DATA

.CODE

jmp placel _ ,
VAL1 0 ;data defined in code segment.
placel:

mv ax,c¢s:VALL

.COM format

ES register

Concept of
the string
instructions

W/B pos tfix

Basic Assembly Language 47

Some notes on this:

« Inthe case of .COM programs CS = DS = S8, so the question
of override doesn't arise normally. With a .EXE program,
data could be kept in the code segment, as long as execution
jumps around it: but note also that OS/2 and other operating
systems that operate the 286 and 386 CPUs in Protected mode,
may be very unhappy with data kept in the code segment/s.

* Sometimes data is kept in a segment pointed to by ES (or FS
and GS in the 386), so ES override might be useful in this
situation. The BP register, athough a general-purpose
register, is treated by the assembler as an offset into the stack
segment, SS, by default. Thus, if you want to use BP to access
data in segments pointed to by DS or ES, an overide is
required.

String Instructions

This group of instructions are designed for moving blocks of data
from one place in memory to another, and some of them are for
searching through and comparing blocks of data. The word
“gtring” does not necessarily imply text, but any block of data.

Mostly you will use the string instructions responsible for moving
data around, such as MOVS, LODS, and STOS. Basically, you
have the source block in one part of memory and the destination
somewhere else, and you have to set certain registers to point to
these source and destination areas before using the string
instruction.

The string instructions have an “implied” addressing mode, in that
they use certain predefined registers, as shown in Figure 2.5.
Figure 2.5 is a picture of memory. DS:SI is where the data is, and
ES:DI iswhereit’s sent.

MOVSB, for example, would read a single byte from DS:SI, copy
it to ES:DI, and automatically increment both SI and DI, so that
the next time the instruction is executed the next byte will be
copied.

All the string instructions can be postfixed with a"B" or a “W".
MOV SW would move two bytes of data (one word) and SI and DI
would automatically increment by two.

48 Windows Assembly Language & Systems Programming

Auto-
increment

Direction
flag, DF

REP prefix

Figure 2.5: Concept of the string instructions.
DS

Source
S ! plock

ES

Destination
DI —>! block

String operations make use of Sl and DI to point to the source and
destination strings respectively, and they are automatically
updated each time the string instruction is executed.

There is a direction flag, DF, that is cleared by instruction CLD,
and set by instruction STD. If DF is clear, the string instruction
will automatically increment S| and/or DI to point to the next byte
or word, and if DF is set they will be decremented. It is normal to
operate on a string starting from the lowest address in memory, so
use CLD before a string operation (this is the default for the 80x86
family anyway).

DF is one bit of the FLAGS register, shown on page 244.

CLD and STD are described in the Appendices.

REP is a prefix, placed on the same line and before a string

instruction. It means “check if CX = 0, if not perform the string
instruction, decrement CX, then start again”. Example:

mov cx,str_length

rep movsh

;repeat Wth ¢cx = count.

LOOP
instruction

A variation on this is REPNE, which is basically the same but will
also terminate if the zero-flag is set.

REP variations are summarised in the Appendices.

Note that the LOOP instruction can do much the same as REP.
Again, CX is decremented before CX is compared with zero, so
MOVSB will be executed exactly the number of times originaly
loaded into CX. The loop will terminate with CX = 0. There are
some variations on the basic LOOP instruction: have a look in
Appendix A.

mov CcX,str_length

Basic Assembly Language 49

again: ;code | oop does sane as above.
movsh _ _ _ _
loop again *loop is an actual instruction.
One warning with LOOP is don't initidlise CX to zero before
entering the loop, as it will then loop around 65,000 times!
When to use LOOP rather than REP? LOOP is not restricted to
the string instructions because it is an instruction in its own right,
whereas REP is only an instruction prefix designed to work with
the string instructions. LOOP can be used wherever a program
loop is required, and more than one instruction can go inside the
loop: though note that LOOP can only do a SHORT jump.
MOVSB, Transfer contents (byte or word) of source-pointer DS:SI to
MOVSW location specified by destination-pointer ES:DI (hence the name
Source-Index and Destination-Index).
CMPSB, These ingtructions compare bytes or words pointed to by ES.DI
CMPSW and DS:SI and set flags for use by J-condition instructions. For
example, to use CMPSB with REP:
mov cx,str_length
rep Ccmpsb
jnz difference_fnd
This example will compare the two strings until the end of the
string (set by value in CX) OR until a non-equal comparison is
reached (in which case CX will point to the position in the string at
which the difference was found, and the zero-flag will be clear).
SCASB, Use these instructions to compare AL or AX with the value
SCASW pointed to by ES:DI. Note: they are most often used with REPNE.

A typica useis:

;setup DS to beginning of PSP (will be for COMfiles & at
;start of EXE prog). else use ES override....

Twe W

al,"/"

di, 080h ;length of tail in PSP
cx, [di] ; (could use override)
di,o081h ;command-tail in PSP.

assune that ESis set to the start of the psp--

;should be for EXE & COM files.

REPNE

SCASB

j Xz no-slash ;yes, slash was found...

nmov

al,

[di] ;could use overri de.

50 Windows Assembly Language & Systems Programming

Command-
line tail

LODSB,
LODSW

STOSB,
STOSW

The code searches the DOS command-tail in the PSP (see Figure
1.8) to seeif thereis a“switch” ("/" followed by a |etter).

If the loop terminates without finding a dash, CX will equa zero,
so the special conditional jump instruction, JCXZ, which tests if
CX =0, can be used to detect that no slash was in the string.

Because the string-instruction automatically increments DI each
time, at termination DI will point to the next character past the last
one tested. If the dash was found, this next character will be the
switch.

Note that Windows 3.x and 95 applications till have a PSP.

The vaue in the location pointed to by DS:Sl is loaded into AL or
AX. Sl is automaticaly incremented (+/-1 if LODSB, or +/-2 if
LODSW).

The value in AL or AX is stored at the location pointed to by
ES.DI. DI is automatically incremented (+/-1 if STOSB, or +/-2 if
STOSW).

STOS and LODS are most useful for video access, as the format of
video-RAM in text-mode requires every odd byte to be an attribute
character:

. setup ES: DI .
. setup DS: SI .
mov CX, string _ Iength
Mmov ah,attribute

next char:

lodsb
stosw

Ioo? Inext

;char-->AL
;AX-->destination.
char

s code will send characters to the screen

Arithmetic Instructions

These include addition, subtraction, multiplication, and division. | expect you to have
awaorking knowledge of the principles of binary arithmetic: unsigned binary numbers,
2' s complement binary numbers, radix conversion among hex/binary/decimal.

For example, suppose | ask you to express -2 as a 32-hit binary number, and dso as a
32-hit hexadecimal number. Can you do it? If the answer is yes, then you do have a
few clues, so read on. Otherwise look back at Chapter 1, and consolidate with further

PREREQUISITES

study if required.

cMP

instruction

Basic Assembly Language 3/

The CMP ingtruction has aready been introduced but involves
arithmetic comparisons, so it will be considered again here.

The example below subtracts 127 from AL, and the result sets the
appropriate flags. Decimal is the default with an assembler, unless
an "h" is appended to designate hex. DEBUG can only have hex.
We will treat 127 as being decimad in this case.

cmp d, 127

;hypothetical subtract.

2's

complement

Versus

unsigned

The CMP instruction can be followed by a conditional jump that
jumps or doesn’t jump depending upon the flags.

Although CMP subtracts the two values, it is only done
hypotheticaly, and the two operands are left unchanged. CMP
doesn't care whether the number is unsigned or 2's complement —
it just subtracts them. It is the same for al the addition/subtraction
arithmetic instructions — it is up to the programmer to decide how
to treat the operands and the result.

This point can be clarified. Since the above example is deding
with S-bit operands, the range of values depends upon whether we
are treating them as 2's complement or unsigned number:

Unsigned :
2's conpl :

0 <—> 255 or 00 <—> FF i
-128 <—> +127 or 80 <—s 7F i

So if AL = 128, the example CMP instruction will give a
hypothetical result of:

128-127=1,i.e, theresult is +1, or in binary 00000001.

Obviously AL is greater than 127, but that is only if you treat the
numbers as unsigned. As a 2's complement number, 128 is
actualy -128!

uUnsigned :
2's conpl :

0<—>127, 128<—>255 Of 00—7F,80-FF in Hex.
0<—>127,-128<—>-1 or 00—7F,80-FF in Hex.

So from a 2's-complement point of view, AL is less than the
operand 127. That is why there are different conditiona jump
instructions for signed and unsigned numbers.

Following the "cMp AL, 127", we could have any one of the
following, depending upon how we want to treat the number:

JA
JB
JG

a
a
a

bel
bel

bel

;jump if AL above 127, unsigned.
;jump i1 AL bel ow 127, unsigned.
;junp if AL greater than 127, signed.

52 Windows Assembly Language & Systems Programming

JL label ;junp if AL less than 127, signed.
This can be a point of confusion for novice programmers, so be
careful. It is a good policy to stick with unsigned compares, unless
you have particular reason to do otherwise.
NEG This is strictly for 2's complement numbers — it changes the sign
instruction of an operand. For this example, the result will be -127 in AL:

mv al, 127

neg a
mov al, -

127

INC, DEC
instructions

A useful point to note about the assembler is that you don't ever
have to calculate the binary or hex negative 2's complement
number; just put a minus sign in front and the assembler will do
the conversion. The last line shows this.

(INCrement, DECrement). These two do what their names
suggest; add 1 to an operand or subtract 1 from it.

Since we have specified an 8-bit operand in the examples below, if
INC goes beyond 255 (FF hex), then it will ssmply roll around and
start from zero. Ditto, but the opposite, for DEC.

inc al
dec al

ADD, SUB
instructions

Recall from the above notes that ADD/SUB arithmetic instructions
don’'t know whether your operands are 2's complement or unsigned
numbers — that interpretation is up to you. The size of the
operands are important in these calculations, and the instruction
determines that from the operands themselves.

SUB works just like CMP, setting the same flags (and so can be
followed by a conditional jump), but the subtraction is not
hypothetical — the result of the subtraction is left in AX.

add al,1
sub al,1

27
27

These instructions can handle numbers bigger than 16 bits. Of
course so can the 386, since it has 32-hit registers, but for now I'll
assume | only have 16-bit registers and | want to add numbers that
could possibly have a 32-bit result.

add ax,cx
adc bx, dx

;add cx to ax, result in ax.
;add dx to bx, with carry.

ADC, SBB
instructions

DAA, DAS

Basic Assembly Language 53

For this example we have two 32-bit values in BX:AX and
DX:CX. The two lower halves are added, leaving the result in
AX. The ADD ingruction will set the carry flag if the unsigned
result is greater than the limit (FFFF hex).

ADC means ADd-with-Carry, and adds the carry flag bit plus DX,
to BX, with the result in BX. Thus the tota result isin BX:AX.

For subtraction of 32-bit numbers, the principle is the same, and
there is an appropriate instruction: SBB (SuBtract with Borrow).

For addition and subtraction of BCD numbers, you need to use
DAA and DAS.

The operation of DAA (Decimal Adjust for Addition) is shown
pictorialy in Figure 2.6. It corrects the result of adding two BCD
(packed decimal) values. Operates on the AL register. If the
rightmost four bits of AL have a value greater than 9 or the half
(auxiliary) carry flag is 1, DAA adds 6 to AL and sets the
half-carry flag. If AL contains a value greater than 9Fh or the
carry flag is1, DAA adds 60h to AL and sets the carry flag.

Figure 2.6: Decimal arithmetic.

85 hex
+20 hex

a5 % %]

(these numbers are
packed BCD)

apply
DAA

Fiag’ (2]

50 hex
-21 hex

o2 7}
Carry

(these numbers are
packed BCD)

apply
DAS

MUL, DIV,
IMUL, IDIV

DAS (Decima Adjust for Subtraction) is the opposite of DAA.

After subtracting two numbers, perform DAS operation on AL. If
the rightmost 4 bits have a value greater than 9 or the haf-can-y
flag is set, DAS subtracts 6 from AL and sets the Carry Flag.

There are two groups of multiply and divide; MUL and DIV for
unsigned numbers and IMUL and IDIV for signed numbers.

One problem we have with multiply is that two 16-bit operands
can produce a result up to 32 bits long. Thus in the case of CPUs
with only 16-bit registers, the result may have to reside in two
registers. The MUL instruction uses AL and AX, or AX and DX,
by default.

mul bl
mul bx

;al *bl --> ax
pax*bx --»> dx:ax

54 Windows Assembly Language & Systems Programming

The first example makes the assumption that the other operand is
in AL, so the result will appear in AX. The second example
makes the assumption that the other operand is in AX, and the
result will be in DX:AX.

Division has problems of its own. The dividend (the operand to be
divided) is in either AX or DX:AX, and the divisor is in any other
register or variable (8 or 16 bits).

div bl
div bx

;ax/bl--> ah and al.
;dx:ax/bx --> dx and ax.

AN.., TEST

The first example assumes the dividend to be in AX and puts the
result in AX in this format: AH = remainder (left over), AL =
quotient (result).

The second example specifies a 16-bit divisor, which assumes that
the dividend is in DX:AX and the result in DX:AX as follows:
DX = remainder, AX = quotient.

A feature built into the CPU is that if there is an error in the
calculation, a certain interrupt is generated, and DOS displays an
appropriate error message. In the case of DIV, it is possible for
the quotient to be too big for AL or AX — DOS will abort your
program with a “division overflow” message.

Logical Instructions

Logica instructions basically work on individua bits rather than
complete numbers. They relate back to boolean agebra, and as
with the arithmetic instructions, | assume a certain background
knowledge. You should have a basic understanding of the boolean
AND, OR, EXCLUSIVE-OR, and NOT functions.

AND performs a logical AND on corresponding bits in two
operands, leaving the results in one operand.

mov al,01001000b
and al, 00001000b ;answer al = 00001000b

OR

TEST is just like AND but only does the operation hypothetically
and doesn’t change the operands (this is very similar in concept to
the relationship between SUB and CMP).

OR performs a logical OR operation on two operands.

mov al, 01001000b

Basic Assembly Language 5.5

ok al,00001000b ;result al = 01001000b
XOR XOR performs a logical EXCLUSIVE-OR on two operands.
nov al,01001000b
xor al,00001000b ;result al = 01000000b
NOT NOT complements all bits in an operand (this is not a 2's
complement conversion — see NEG).
mov al,01001000b
not al ;result al = 10110111b

SHL, SHR SHL (SHift Left) and SHR (SHift Right) do what they suggest, but

it is clearer if their operation is viewed diagrammatically (Figure
2.7):
Figure 2.7: Shift instructions.

Examples of shift and rotate
instructions ...
SHR AL,1 7 0
—{AL [|
i
a
SAR AL, 1 7 0 8
(Al
G
a
ROR AL, 1 7 0 &
Eﬁ[l
Carry
Flag
RCRAL, 1 7
(—>—>
Carry
Flag

The example of SHR moves all bits in AL one place to the right,
and a 0 into the most significant bit (MSB). Note that the least
significant bit (LSB) goes into the carry flag, CF.

This instruction is sometimes used to test individua bits, since it
can be followed by JC (Jump on Carry set) or INC (Jump on Carry
not set).

56 Windows Assembly Language & Systems Programming

A limit with the 8088/8086 is that the “count” operand can only be
a vaue of 1 if in immediate mode, as shown in Figure 2.7. If the
shift is to be more than 1 bit, a count value must first be moved
into CL:

mov c¢l,3 .
shr al,cl ;shift 3 bits right.

SAR

ROL, ROR

RCR, RCL

Note that the shift operations can also be on 16-bit (and 32-hit)
registers.

SHL does exactly the opposite of SHR, moving zeros into the LSB
and the MSB out to the carry flag.

SAR (Shift Arithmetic Right) works like SHR, except it maintains
the sign. This is most useful for signed numbers. Refer to Figure
2.7.

ROL (Rotate Left) and ROR (Rotate Right) work similarly to the
shift instructions, except what falls out is rotated around back in
the other end. Refer to Figure 2.7.

Thus the contents are never lost, but circulate around the register.
ROL is the mirror-image of ROR, sending the MSB to the carry
flag and back around to the LSB.

RCR (Rotate through Carry Right) and RCL work as per ROR and
ROL, except the path of the bits goes through the carry flag. See
Figure 2.7.

Code and Data L abels

Labds are potentially an area of enormous confusion, so | review
them here very carefully. Labels can be used to mark a “place’ in
the code or to name some data. They are introduced back on page
41.

Code Labels

In the case of a code label, the syntax is that it should start in
column 1 and be suffixed with a colon ":", as in this example:

Jrrp placel Fjumping to somewhere in the program

;a code |abel.

Basic Assembly Language 57

When the assembler assembles the source code, it replaces " j mp
placel” with the operation code for a JMP (jump) instruction,
followed by the address placel as the operand to the instruction.

Code Thus the assembler equates placel to the offset it is marking. This
labels is a vital point: the assembler simply replaces all occurrences of
equate to placel in the code with the offset address it equates to.

their Normaly we would be jumping within the current code segment,
address so placel equates to an “offset” from the start of the segment; that

is, the IP value of that point in the code. A jump within the
segment is called a NEAR jump.

NEAR and Note that it is aso possible to jump between segments, which
FAR would be a FAR jump, and | have eaborated on this later in the
book.

Another very important point is that any transfer-of-control
instruction, such as a JMP or CALL, can have various addressing
modes. These modes are encoded by the assembler as part of the
instruction operation code. The above JMP example would be
what we cal immediate addressing, asthe operand itself isused as
the target address to jump to. Addressing modes have been
introduced on page 44.

Procedures Another kind of label is the procedure name, as shown here:

cal | routinel ;jcalling a procedure.
routinel PROC ;the procedure.

..... ;body goes in here.

ret ;must have explicit ret.
routinel ENDP

PROC and Procedures alow you to organize code into structured modules,

ENDP that can be called from a main procedure. In some languages they
are caled subroutines. A function is aspecia case of a procedure
that returns a value via a register. For example, C functions return
a value in the AX register or DX:AX register pair (though when
writing C programs you don't know this underlying mechanism of
the registers).
The point | want to make here is that procedure names are treated
by the assembler just like code labels. In the above example,
"routinel PROC" could have been replaced by "routinei:" (in
which case the “routinel ENDP" would not be needed, since it is
a syntactical requirement to match the PROC directive).

58 Windows Assembly Language & Systems Programming

Data Labes

Data labels define constant or variable data, including numerical
values, strings, arrays, and pointers.

str| DB "message",0 ;defining an ascii string.
varl DWs6 ;define word, 16 bits.

ptrl DW89 _
var2 DDO ;define doubl eword, 32 bits.
aryl DB64 DuP(0) ;array of 64 bytes.

Normally we would think of data as belonging in the data segment,
where the code normally expects to access it, but it could just as
easily be defined in the code segment, amongst the code, or in the
stack. Chapter 4 explores the use of the stack for holding data
Segment override is introduced on page 46.

DB, DB, Define Byte, DW, Define Word, and DD, Define
ow, Doubleword, define 8-,16- and 32-bit data respectively. For
DD, example, var2 is a 32-bit value of 0. "ary1" shows the use of the
DUP DUPlicate directive, which causes the assembler to assemble 64-

byte-size values initialized to 0.

Now for the key points: the assembler equates a data label to its
address, just as for code labels. However, depending on the
instruction, it assembles a non-immediate (i.e., direct, see page 45)
addressing mode into the instruction operation code (op-code).
This difference is vital.

nov AX,varl ¥referencing a data |abel.
nov AX,placel ;referencing a code |abel.
Major The above examples show the difference. At execution time the

distinction second MOV ingtruction will move the actual address of placel
between code into AX, while the other MOV instruction will use a
and data non-immediate mode, moving not the address varl, but its content.

labels Thus, athough "Mov AX,var1l" assembled with the address of
varl as the operand to the instruction, at execution-time the
instruction looks at the content of that address. Make sure you
have grasped this distinction before continuing.

Accessing Data

Sometimes, when writing a program, you want to know the
address of something, say a point in the program, or the starting
address of an ASCII string. | gave an example of how to define a

Basic Assembly Language 59

text string (above), and labelled it "str1". The assembler equates
strl to the starting address of the string.

mov AX, strl ;loads contents.
mov AX, OFFSET strl ;loads address.
OFFSET Unfortunately, because the assembler has assembled the first
override MOV instruction as non-immediate-addressing, the first MOV
here would only load the first two ASCII characters (“me”) into
AX (two characters are fetched because the dedtination is AX,
which is a 16-bit register).
This is not what we want. We want to load the starting address of
the string into AX. What we have to use is an override directive
that forces the instruction into an immediate addressing mode.
Thus the second example will load the actual operand into AX,
which is the required address.
SEG Note too that you can get the segment value where that string is
override stored (which would normally be the data segment), by this

override:

mov AX, SEG strl ;load segment address.

OFFSET and SEG only work for static data; that is, data that is
defined in the data or code segments. It is possible to have
dynamic or automatic data that is created during execution on the
stack or heap: getting the addresses of this data involves other
techniques, discussed on page 60 (and in Chapters 4 and 5).

Pointers

Data labels can also be pointers. This means that the data content
is itsalf an address. Earlier, | defined "ptri DW 789", but the
treatment of the content "789" is up to the program. Consider
these examples:

call
call

ptrl ;calls address pointed to.

placel j;calls placel.

Immediate
versus fon-
immediate
mode CALL

“call ptr1" at execution-time will not jump to the ptrl data in
the data segment — obvioudy that wouldn't make sense. No,
since the CALL ingtruction has assembled as a non-immediate
addressing mode, even though the operand of the instruction is the
address ptrl, the instruction looks at the content of ptrl and uses
that. Thus execution will transfer to offset 789 in the code
(wherever that ig!).

60 Windows Assembly Language & Systems Programming

“cal placel” is here for comparison. Again the operand will
have the address of placel, but the immediate addressing mode
will cause execution to go to placel .

Now I'm going to be a little tricky. | will redefine ptrl:

.DATA ,
ptrlI DW placel ;defining a pointer.
CODE
call ptrl
plééél:
Always remember that as the assembler goes through the source
code, it smply replaces any data or code labels with the addresses
they represent. So where will the CALL instruction transfer
execution to?
NEAR & The above examples of pointers are jumps within the current code
FAR segment, so they are NEAR; however, pointers can also be FAR.
pointers This is discussed in Chapter 4; | have also made some references
to FAR pointers over the next four pages. Always keep in the
back of your mind that for the 386+ the distinction between NEAR
and FAR becomes blurred — you will see why.
LES, LDS, and LEA Instructions
As my example code further on in the book makes use of these
instructions, some clarification is in order here.
.CODE
mov DI, OFFSET place2
mov ES, SEG place2
les b1, place2 ;I Example of what NOT to do!
pléééi:

LES with
code-label
operand

Although | have implied that place? is a code label in the current
code segment, let’s assume that it is in some other code segment,
maybe in a large .EXE program with multiple code (and/or data)
segments.

The first two MOV instructions will load the FAR address of
place? into the two registers ES.DI.

However, the LES instruction will not work. | have put it here to
emphasize this point. LES and LDS (also LGS and LFS) are
constrained to non-immediate addressing mode only: they are
designed to load pointers. What will happen here is a “type

MOV
addressing
-mode
limitation

Restriction
of OFFSET
directive

Basic Assembly Language 61

mismatch” error, because "place2" is a code label. The operand
of these instructions must be a data label, as it isthe content of the
label that is loaded. Read ahead to see code in which it does work.

Whenever you want to load a segment and/or offset, use the MOV
instruction, as shown above, or LEA. However, in some
circumstances you cannot use the MOV with OFFSET override
and must instead use LEA (Load Effective Address). LEA is
clarified below, but first, why can't OFFSET aways be used?

The answer is that you would only use OFFSET if place2 is
defined in the data (or code) segment, and not if defined as
LOCAL (see page 62).

The fundamental reason is a built-in limitation to the addressing
modes of the MOV instruction. Automatic data, or any data of a
temporary nature (created and destroyed during run-time) as
opposed to permanent data assembled into the data (or code)
segment, is usually addressed using indexed mode or
register-relative mode.

Look at this example:

routine2
LOCAL

PROC
ptr4: DWORD ;local data created on stack.

leé) DI,ptr4

ret
routine2

ENDP

LEA
compared
with OFFSET

The assembler will equate ptr4 to [BP-v&€], whereas if ptr4 had
been defined in the data segment by something like "ptr4 owo",
the assembler would equate ptr4 to an offset relaive to DS.

BP is something that varies at run-time, so in the first case, ptr4
can only be equated in this way. The problem arises if you
compare the above LEA instruction with something like "mov
di, OFFSET ptr4" — the latter will not work — it will load the
content of ptr4 rather than its offset.

ThisMOQV instruction is translated by the assembler to "mov di
[bp-value]", and this indexed mode cannot be immediate. It
must be non-immediate. So, the golden rule is:

Only use
MOV reg, oFFSET |label

if label is defined in the data (or code) segment.
For temporary data always use
LEA reg, | abel

62 Windows Assembly Language & Systems Programming

LES with
data-label
operand

How the
assembler
equates
automatic
data fabels

Some further clarification: the local data label ptr4 only exists
within routine2. LEA will load the offset ptr4 into DI.

“LEs DI,ptr4e" will load the content of ptr4 into ES:DI
(non-immediate mode, since ptr4 is a data label — which is the
only mode LES can handle).

Note that LDS works like LES, but loads DS instead of ES.

The LEA instruction differs from the other two in that it loads the
offset of the labd regardiess of whether it is a data or code label.
“LEA DI, placel”, for example, would just load the offset
(NEAR address) of placel into DI, not the segment value.

Local Data

An example is given above, and there is more explanation in
Chapter 5.

So far | have been treating labels (code and data) as being equated
by the assembler to their addresses. But what of the case of loca
or automatic data labels that only come into existence when
execution enters the procedure in which they are defined?

The assembler equates local labels to [BP-value], where value is
known at assembly-time, but the BP register will have a certain
value a execution-time. If you want to know more about the
specia role of the BP register, study Chapter 4. Basically, when
execution enters a procedure, BP has an offset pointing to a region
in the stack segment (see page 99). Addresses going down from
BP can be reserved by the assembler for loca data. In the above
example, if ptrd was the only local data, of DoubleWord size (32
bits, or four memory locations), then the assembler would equate
ptr4 to [BP-4].

Thus an ingtruction like “lea DI, ptr4" would actually assemble
with the ingtruction operation code specidly encoded to refer to
BP for calculation of the address, immediate mode, and with the
value of 4 as the operand.

(Again, | remind you that the MOV instruction with BP-relative or
index-register-relative addressing cannot be immediate-mode
addressing — see the golden rule above).

Basic Assembly Language 63

Type Override

Looking back to that example of a local data label, ptr4 (see page
61), what if | wanted to see what it contains, from within my
program?

mov BX,

tra ; wrong !

nmov BX,WORD PTR ptr4
mv ES, WORD PTR ptrd+2

BYTE,
WORD,
DWORD,
QWORD,
JWORD,
SHORT,
NEAR, FAR

Type
mismatch

Size
override

Accessing

32-bit data in

halves

The assembler will be rather rude to you if you give it the first
instruction. The reason is that source and destination operands
must always have the same type.

Type has two aspectsto it: size and address.

Size can be of type BYTE (8 hits), WORD (16 bits), DWORD (32
bits), QWORD (64 bits), or TWORD (80 bits).

Address can be SHORT (within 128 bytes either way of the
current IP; 8-bit signed offset), NEAR (within the current
segment; 16-bit offset), or FAR (in another segment; 32-bit
segment:offset).

In light of this, take a closer look at that example M OV
instruction. BX is a 16-bit register, while the content of ptr4 is
DWORD (32-bit). In other words a type mismatch.

The assembler will pick this up as a possible error and will tell you
S0.

Any data values you define must have a size that matches the
register. "mov Ax, vale" would not work if valé was defined as
"valeé DB 0". Get the idea?

The above code shows a solution: overrides. We have already
looked at the overrides OFFSET and SEG, now you are seeing
“worD PTR". This is a size override. A syntactical note here: in
front of "PTR" we can place BYTE, WORD, DWORD, NEAR, or
FAR, as appropriate.

The example, using “WORD PTR", tells the instruction to ignore the
size-type of the operand and instead treat it as being of size
WORD. This override is encoded by the assembler into the
instruction op-code, and at execution-time the override only
applies to that instruction.

But . . . if ptr4 contains a 32-hit value, and by means of the override

we are going to stuff it into a 16-bit register, what will actually
happen? In the code above | show two MOV ingtructions with

64 Windows Assembly Language & Systems Programming

WORD PTR override. The first will grab the lower 16 bits of ptr4,
while the second will grab the higher 16 hits.

Order of Make a note of this. All values are stored in memory with the
storage of lowest byte at the lowest address and the highest byte at the
data in highest address. That iswhy | added "+2" to the second MOV
memory instruction.

It may be that in my program | want to see what is contained in
ptrd. Any data label defined as having a 32-bit value has a
problem with the 8088, 8086, and 80286, because there are no
32-hit registers. So if | wanted to get that value into a register, |
would actualy have to use two registers. That is why | am forced
to use those two MOV instructions with " woro PTR" overrides,
even for the 386 (for compatibility with the other CPUs). In
Chapter 4 you will see plenty of examples of this.

If we write code for the 386 and upwards exclusively, then a
ample "mov EAX, ptr4" would do the trick.

Storing 32-bit There is another way to approach the problem of handling 32-hit
data under data split it in half.

two 76-bit |f you have to store a FAR address, say in a pointer, you can split
label.. it into two data labels:

.DATA

pt rof f set DW 789h ;far pointer stored in
pt r segment DW 1234h ;two pi eces.

.CODE

nov BX, ptrof f set
nmov ES, ptrsegnent

This may not be practical for data values, but for FAR addressesin
the form of 16-bit segment:offset it works fine. It means that
source and destination types will match, so no override is required.

... more on Another little note: just as with the x86 family we always store
order of values with the lowest byte at the lowest address. The same goes
storage of for FAR addresses; the offset always comes first, that is at the
data in |0W€St wdr%

memory In the above code | suffixed the values with "h" to indicate that
they are hexadecimal values, not decimal. The memory would
look like Figure 2.8 after assembly.

Always remember: the lowest byte at the lowest address.

Basic Assembly Language 65

Figure 2.8: Order of storage.

Offset in datg
segment of 89h
“ptroffset” -

07h

Offset in data
segment of * 34h

“p& segment”
12h

Increasing
addresses |

$Structures

Whatever language you have experience with, you have probably
encountered the concept of data structures. These are in fact the
foundation of object oriented programming (OOP).

Windows programming makes extensive use of data structures, so
it is appropriate to introduce the topic here.

.DATA
W NDOW STRUC ;Definition of structure...
fieldl DB "ABCDEFGH J"
field2 DW O
field3 DD O
W NDOW ENDS _
..... ;Assembling instances...
winl WNDOW <"KLMNO",35,0>
win2 WNDOW <*PQRSTUVWX",55,234>
. CODE .)
.... ;Accessing the instances...
nov ax,winl.field2

nmov si, OFFSET winl
nov ax, {si.field2]

mov ax, [si+10]

66 Windows Assembly Language & Systems Programming

Object
oriented
programming

Instances

Dot"."
operator

This listing shows how a structure is declared and used. In OOP
terminology the definition is the class. The instances are
objects ! A dtructure is just a convenient way of getting at data.
In this case we have data labels fieldl, field2, and field3. By
putting the STRUC and ENDS directives around them, we have a
convenient mechanism for creating mutiple copies of those same
data declarations.

The declarations between STRUC and ENDS don't actually get
assembled: it is a template, and wherever we create instances, they
are what actually assembles. In this case there are two instances:
winl and win2. These are identical blocks of data, able to have
their own values, but with identical variable (field) names. In
OOP we would call each field a member.

The example code shows how we can get at these two instances.
The most common method would be the first example. If | had
want to access the "field2" field of win2, the instruction would
simply be "mov ax, win2.field2".

You can have as many instances as you wish, and as you will see
in Chapter 5, structures can be automatic or local to a procedure.

Label Equates

It is extremely useful to understand how the assembler assembles
structures. Normally the assembler equates data labels to their
offset from the start of the data segment, but fields of a structure
are equated to offsets relative to the start of the structure. In the
example, fieldl equates to 0 and field2 equates to 10. When the
instances are created, the names winl and win2 are treated as
normal data labels and thus are equated to offsets from the
segment start.

In assembly language the "." (period) means exactly the same as
"+", s0 the first code example is really:

mov ax, winl+10 ;same as mov ax,winl.field2

Field

The assembler will add the offset of winl to 10 and assemble the
result as the operand, with non-immediate addressing encoded into
the operation code. Thus, at execution-time, the content of field2
will get loaded into AX.

You will see from the listing that the structure declaration

initialisation initialises the values. These initialisations will be put into the

instances, unless overridden.

' In some languages the structure-definition is called the object, and an instance is called an
instance-object.

Basic Assembly Language 67

Overriding by the instances is done by placing vaues between the
"< >" as shown in the code on page 65. Nothing between "<>"
means leave original vaues as they are. In the examples of winl
and win2, | have overridden the origina vaues, but should | have
decided to override some but not all values, | would have put
something like this: "<"asafgh",,55>". This will leave
field2 aone.

Postamble

There are ahost of other considerations for assembly language
programming for Windows, but hey, why should | throw it dl a
you a once? Enough is enough.

Opening Windows

Triple
purpose of
this book

Content of
this chapter,

Preamble

You'll find this book a nice way for beginners to learn Windows
programming, as well as a look “under the hood” for those with
Windows programming experience but with an urge to know
more. You can aso use it to learn assembly language.

By the very nature of tackling a topic from a fundamenta point of
view, the “nut and bolts’ if you like, the beginner can develop very
concrete concepts on which to build. When you have a grasp of
what is going on underneath, a lot of what happens “on top” makes
more sense. Therefore, a beginner can progress to being
“advanced” in the same book, with a solid foundation of
understanding.

This chapter is an introduction to the basic principles of Windows,
followed by a complete assembly language program in Chapter 4

and beyond — don't worry if the “skeleton” program looks intimidatingly

long; this is done to show the nitty-gritty of how an assembly
language program works. Chapter 5 shows you how to write an
assembly language program that is amost as short as the same
thing written in a high-level language such as C.

69

70 Windows Assembly Language & Systems Programming

Other
references

Skeleton
program

DOS versus Windows Programming

S0, just how different is Windows from DOS? Below, | have
summarized some new concepts you'll need to come to terms with.
If you come across a reference to a DOS concept or programming
method that you don't understand, refer to a good DOS assembly
language book.

There are a dozen or so introductory Windows programming
books that could be used to compliment this book, not the least
being Microsoft’s own Microsoft Windows Software Development
Kit: Reference Vol. 1, available separately from the SDK.

You do need a book with in-depth coverage of the Windows
functions, and again Microsoft's own Microsoft Windows Software
Development Kit: Programmer’s Reference Vol. 2 is excellent.

The next chapter puts together a simple skeleton program, but
before we launch into that, let's consder some of the conceptual
differences involved. The output on the screen will look different
for Windows 3.x and 95. Figure 3.1 is what the skeleton will
produce on the screen when running Windows 3.1.

Figure 3.1: Output of skeleton program.

SKELETON PROGRaM |

This is a window, amongst other windows, with its own title,
system controls, menu-bar, and demo message.

So, a mgjor conceptud difference from DOS is that our program
doesn’t output to just anywhere on the screen; normally we are
constrained to output only within our application’ s window (or
windows).

Interestingly. another major difference is the role of the operating
system. -Windows does alot of housekeeping and looks after
much of the usual upkeep of the window, such as moving it
around, iconizing, and resizing.

Event-driven
program
structure

Application
queue

.Multitasking
.operating
.system

Opening Windows 71

In fact, Windows does even more than that, allowing us to
program at a more abstract level. Instead of being concerned
about the precise hardware details of the I/O device that our
program is dedling with, we can use the Device Independent
Graphics (graphics device interface (GDI)) tools. Translation
from our program to the particular device is taken care of by
device drivers, and our program can have code that will work on a
wide range of different devices, such as various video standards
(for example, Hercules, CGA, EGA, and VGA).

Internal Differences

Of course, the results appear on the screen, but the fundamental
structure of our Windows program is different from a DOS
application. The rest of the chapter is devoted to exploring those
differences and the design methodology required to implement
them (such as handles and messages).

A Windows program is what we call event driven. The entire
structure revolves around this concept. Those of you who have
done any programming at al under DOS will know how to read a
character from the keyboard. In assembly language, you could use
INT 16h, AH = 0. However with Windows we don't do that. In
fact INT 16h won’'t even work — Windows will hang.

The essence of being event driven is that for mouse, keyboard, and
much other input, we don't write code to explicitly ask for input.
Instead we perform a call to Windows, requesting a message, and
Windows will send any message that it thinks is relevant to our
program.

Thus our program plays a very passive role, taking whatever
Windows dishes out.

With Windows there is a system queue and an application queue
for each application. Our program calls Windows and asks for the
message at the head of our application’s queue or waits until a
message is put into the queue. Returning from the call, our
program then deciphers the message and acts upon it.

There are some little wrinkles in this basic explanation, but that’s
the gist of it. Technicaly, Windows 3.x has one application queue
for all applications, while Windows 95 32-bit applications have
separate queues. This does not affect the programmer. It is an
issue for Windows itself, with regard to scheduling of applications.

Another major conceptual change is due to the multitasking nature
of Windows. Unlike DOS, where everything usually stays put after
it is loaded, code and data can move around. Even video-RAM
cannot be treated as being at a particular address — athough it
actualy is, an application may have to output to a “logical” video

72 Windows Assembly Language & Systems Programming

buffer located somewhere else. Consider another example: the
heap. You can request local or global heap space (this is just
memory that you can use for storing data), but unlike
single-tasking DOS, you cannot just get its address and then write
to it. The heap could be moved around by Windows (though you
can freeze things also).

These shifting sands impose constraints, such as requiring handles
to access al screen I/O and of course using selectors instead of
segments for data and code manipulation.

Perhaps the newness of this is making you feel uneasy. However,
the hands-on examples a bit later should alleviate that.

Building a Windows Application

Library Functions

The Windows routines operate like C functions (though stack
handling follows the Pasca convention’). The library of functions
can be split into three types:

. KERNEL
. GDI
. USER

Whenever you want to do any kind of 1/O operation, including
everything else involving the operating system, such as various
memory management operations, you can cal these functions.
They are just like the BIOS and DOS INT services, except they are
caled by the assembly language CALL instruction.

Locations of So, where are these functions actually located? If you look in the

the DLLs C:\WINDOWS\SYSTEM subdirectory (assuming that you
installed Windows in the default directory), you will see the three
files KRNL386.EXE, GDI.EXE, and USER.EXE. You will aso
see KRNL286.EXE, which is the version of KERNEL for
Windows 3.x running in Standard mode. Windows 95 only has
KRNL386.EXE, not KRNL286.EXE. These files provide the API
for 16-bit WinApps. For 32-bit WinApps, Windows 95 also has
KERNEL32.DLL, GDI32.DLL, and USER32.DLL.

" Actualy, Windows 3.x follows the Pascd calling convention and Windows 95 and NT follow a
mix of Pascal and C convention; that is, parameters are pushed from right to left (C) and stack
cleanup is done by the called function (Pascd).

ASM, .DEF,
.RC, MAK

Source files
needed

. 160 icon
file

UNC, .H
Include
files

Opening Windows 73

Other functions are available in other .DLL and .DRV files, many
of them undocumented, and I'll take you a little bit of the way into
this uncharted, but very exciting, territory.

The Mechanics of Assembling and Linking

It is instructive at this point to consider the path we need to
traverse to get from our modest little first program, written using a
text editor, to the final .EXE program — that hopefully won't
crash.

The steps shown here look pretty awful, but in practise you'll find
it's a cinch.

The main problem is that we need to produce many more files than
the program source file:

« AASM Your source program(s).
. .DEF Module definition file.
. .RC Resource script(s).

. .MAK Make file.

You can produce dl of these using a text editor, though there are
some specid programs that help generate them automatically.

In practise, more file types may be required than | list above, but
for now we are working toward a smple skeleton program only.
An example of another tile is the icon for your program — the
graphic image of this would be in an .ICO file.

Figure 3.2 shows a picture of the steps involved.

I mention the C compiler and .C source file here, but it could be
any language, or none if you are writing the entire program in
assembly language. In this book we stick entirely with assembly.

Notice also the .H and/or .INC Include tiles. Strictly speaking,
these are optional, which iswhy | didn’'t list them above. The
introductory program in this chapter only requires the .ASM,
DEF, .RC, and MAK files, but in later chapters | have shown the
use of WINDOWS.INC.

H files are used with C programs and .INC with assembly
programs. Borland and Microsoft supply utilities to trandate .H
files to .INC. Functionally, both types are the same; just with
different syntax to suit the C compiler or the assembler.

Include tiles contain equates and definitions that make the
program more convenient to write.

74 Windows Assembly Language & Systems Programming

Figure 3.2: Steps to generate an executable file.

C

C Source file| | include file/s | | Assembly language

H/.INC .ASM

v v source files

C

Compiler Assembler

Windows & C
libraries

Linker

v .DEF Module
Resour ce Definition file

compiler

v Resour ce q_.fBC Resource script
compiler iles
.EXE!

Note that linkers for 32-bit Windows 95
perform the function of the final
resour ce compiler step

. DEF Module
Definition
file

Dynamic link
library (DLL)

Resource
compiler

The Link Step

Notice how overloaded the LINK program isl The job of a linker
is to combine the various program modules to produce the final
EXE, but in this case there are extra complications.

The .DEF Module Definition tile defines various program
parameters that the linker needs to generate the .EXE tile.

What we call static library functions can be linked into the .EXE,
and become a permanent part of it, which is the way things work
in the DOS world.

However, the Windows library functions get linked in without
actually adding to the size of the .EXE. That is, they stay where
they are, and are only loaded into RAM memory when the
program executes. This keeps .EXEs small. This kind of library is
caled a dynamic link library.

Two Steps for Resources

The .RC resource file defines parameters connected with the
windows, icons, menus, dialog boxes, and segments. The resource
com%iler is run twice, first to compile the .RC file(s) and second to
combine the .EXE from the linker with the compiled resources to
produce a fina .EXE.

Opening Windows 75

After the first compilation, it becomes a .RES file, which has the
information in binary form.

With recent LINK programs, there is support to perform the fina
step by the linker. That is, the RES file is fed to the linker.

Windows Programming Mechanics

There are some mgor philosophical differences between Windows
programming and conventional DOS-based programming. It is
useful to start off with some appreciation of some new terms
intrinsic to Windows: objects, handles, instances, messages, and
callback functions. These give us the mechanics of programming
in this environment, that is, they are tools that we need to use.
Have alook at each one first, then we'll go ahead and put it
together into a working program.

Objects

Borland’s latest assembler is described as object oriented, and
there are various C++ compilers around. There is also Turbo
Pasca with Objects. So, what are they?

You'll find a chapter on object oriented assembly language later
(see page137), but for now consider just a basic idea. Whatever
you can lump together as a whole, as a distinct entity, think of as
being an object. Y our application’swindow is an entity on its
own, separate from other windows — it is an object. In fact, so
too are the digtinct elements of that window, such as the various
controls, the menu-bar, and the client area (where you output text
and/or graphics to).

You can consider these latter objects as being children of, or
related to, the parent window and subject to its dictates, though
there are limits as Windows is not a true object oriented
environment.

Furthermore, you access any object by getting its handle. As
you'll see in the skeleton, even writing text to the screen reguires
you to get a handle for the client area.

Handles

A handleis just an ID, a unique number, that our program can use
to access the object. Actualy, you probably already have some
exposure to the concept. Various PC programming books discuss
handles in relation to file access under DOS.

76 Windows Assembly Language & Systems Programming

DOS file
“handle "

Multiple
program
instances

All that has been done in Windows is generalise the concept, so
that a handle can be obtained for any object. | am generalising the
word object here, as Windows literature uses other terms that are
still objects but used in a particular context. One that comes to
mind is the device context — thisis also a handle to an object.

Just to elaborate: with DOS, you do a call to open afile or device,
and DOS returns a handle. This handle is just a 16-bit number that
you can use within the program to read or write the file. Sinceit is
possible to simultaneously open many files, it is convenient to
have these handles, a unique one for each file, to read/write the
one you want. So, a handle is an ID, an identifier, for that file,
device, object, or control.

In Windows programming, just about every resource is referenced
by a handle. Even your program has a handle, and indeed so too
has each instance (see below) of your program.

Instances

A fascinating aspect of Windows is that there can be multiple
copies of an application running, or at least residing in memory,
concurrently.

After all, why not, since this is a multitasking environment? Y ou
can, for example, have two copies of your word processor
executing simultaneously, and you can jump between them. In
such a situation, each copy would be an instance of the program.
The current instance refers to the one you are dealing with at this
moment.

There are some interesting considerations from this ability to have
multiple copies or instances. Windows is not wasteful and only
loads one copy of the code into RAM. Windows will, upon entry
to each instance, give it a unique handle, but the redlity is that
there is just the one copy of the code. For this to work, each
instance needs to have its own copy of the data segment or
segments.

The downside is that your program needs to have some extra
statements to handle multiple instances. In practise this is fairly
standardized, and you can use the supplied skeleton program as the
basis for much more complicated projects, without having to
worry about multiple instances.

With 32-bit applications running in Windows 95, multiple

instances are treated as totally separate programs, so special
instance-handling code is not required.

Opening Windows 77

M essages

Event driven | introduced the basic concept of event driven back on page 7 1;
intertwined with this is messages. | aso said that Windows sends
messages to an application, and the latter has to decipher them and
act accordingly. Let us consider this in more detail, since it affects
the very soul of our program.

Our program has to call Windows and wait for a message — while
waiting, it isin an idle state and other tasks can be executing.

Windows does an incredible amount of housekeeping, including
receiving al of the incoming messages and parcelling them to
individua queues. Any mouse activity on your application’s
window, for example, that Windows determines will affect your
program will result in the generation of an appropriate message.
Windows is dways working, seeing everything that happens.

Structure Of Below is the application’s main function, entered from Windows
WinMain{) when the program starts executing. It is called WinMain() — and
I’ve used C syntax — straight from the textbooks:

int PASCAL FAR winMain(hInstance,hPrevInstance,lpCmdLine,nCmdShow)

HANDL E hInstance; [[current 1nstance
HANDL E hPrevInstance; /[previous inst.
LPSTR 1pCmdLine; [[command line ptr
int nCmdShow I/ showtype

//...initialization...
//...instance handling...
//...create and display a w ndow. ..

\?:hi | e (GetMessage (&msg, NULL,NULL, NULL))

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

32-bit The above code is ok for a 32-bit application as well as a 16-bit

differences application. One difference is the size of the parameters passed to
WinMain() — see Table 3.1. A 32-bit application does not have to
worry about hPrevInstance. Also, a 32-bit application does not
have to name its first entry point WinMain(), but we can continue
to do this as a convention. Also, as explained below, and on page
3 14, the Pascal calling convention is only applicable to 16-bit
applications.

78 Windows Assembly Language & Systems Programming

Pascal
calling
convention

STDCALL
calling
convention

Data label
prefixes

Get/
Translate/
Dispatch
Message()

C Syntax

The code sample should be readable, even if you don't know C.
Note that some of the Windows textbooks give the basic program
structure in “classical” C, not ANSI C, and | have stuck with that.

You will notice "smsg" specified as a parameter, and this may
need some clarification to those unfamiliar with C. It should
become clear later on when you see it in assembly language. This
function requires that an address, to which the returned message
can be placed, be provided as a parameter. The "&" means
“address of’, in this case the address of a data area labelled as
"msg" (not defined in listing).

You will aso notice the PASCAL qudlifier in the declaration of
WinMain(). This is because Windows 3.x uses Pascal calling
conventions, not C conventions. So the override is needed. This
is explained in more detail later (see page 112, if the fancy takes
you), and a note was made earlier, on page 72.

You might like to glance ahead to Chapter 13 to see a complete
32-bit application written in assembly language. There, you will
see the procedures default to the STDCALL convention (as
specified in the MODEL directive: see page 111). This is a
mixture of C and Pascal, in which parameters are pushed onto the
stack from right to left, and stack cleanup is performed by the
caled procedure.

| suppose this is as good a place as any in which to introduce the
Windows labelling conventions. You have had a first exposure to
them in the above listing. What I'm talking about are the prefixes
to the parameters. These are put there to clarify the type of data
the parameter represents. It would be bresking the flow of the
explanation to describe this in detail, but the prefixes used above
are "h" to signify type of “handle” and “Ip” to signify “long
pointer”. A more complete list of prefixes and data types is given
on page 82.

Message Loop

The WinMain() function contains what we refer to as the “ message
loop”.

Looking at the above listing, it commences with declarations of
the passed parameters and their data types. A little further down
you'll see GetMessage(). This is the one I’ ve been talking about —
it goes back to Windows and waits for a message.

Whenever a message is available on the queue, and also whenever
Windows decides the time is appropriate, control will return to
your program with the message.

Callback
function

WhndProc()

Opening Windows 79

TranslateMessage() is specifically for converting keyboard
messages into a more usable form.

It is possible for more processing to be done, but usualy nothing
much more happens, and strange though it may seem, the next
function, DispatchMessage(), sends the message straight back to
Windows.

Windows then calls another part of your program, named
WndProc(), that we know as the callback function (see below).
is this function that finally does something with the message.

There is a cdlback function for each window that your program
Creates.

Callback Functions

| said above that, having got the message via GetMessage(), your
program must then give it back by caling DispatchMessage().
Windows then sends the message to another part of your program,
known as a callback function. In fact, each window (including
windows called dialog boxes) has its own unique callback
functions.

The name | gave above, WndProc(), is only a suggestion. Unlike
the main function, which must always be called WinMain()
(though this has become more of a convention only), your
calbacks can be caled whatever you want. There is a simple
mechanism for informing Windows of the names of the callbacks,
so it can call them.

This is a C skeleton of a callback:

IorRANBAR PASCAL WhdPr oc(hwid, rressa%e vaar am I Par am

unsi gned
VORD
LONG

hwnd; ow hand
nessage; [Itype of rressage
wParam; [Inbre information
lParam; [Imore information

//...case-logic to analyse nessage,..

//...user-witten message- handl i ng. . .

//...default nessage-handling........
DefW1ndowProc(hWnd message, wParam lParam)

Therei s yet another twis. The message, getting a bit ragged
around the edges by now with al that travel, goes to the calback

80 Windows Assembly Language & Systems Programming

Default
message
handling

function, which can then process it. But the twist is that most
messages are of no interest to your program, and your callback just
sends them back to Windows again, for find default processing.

DefWindowProc() is a kind of rubbish bin for messages that you
don’t know what to do with. And believe me, there are alot of
them.

After sending the message to its fina resting place, or handling it
in some way within the callback, execution returns to the next
statement after DefWindowProc(), which is usudly a return from
the callback function (designated by "}" above, or by a RET
ingtruction in assembly). However, this will take execution back
to Windows again

Figure 3.3: Event-driven structure.

APPLICATION WINDOWS
WinMain function - Start. Windows

w—
>y calls WinMain.

GetMessage() —— Wait until
ait unti

//application can an event occurs
//preprocess message related to your
application

DispatchMessage() -

Windows calls the
— //loop back application’s

/lunless exit condition callback function.
This processes

the messages
WndProc function /(WndPI’OC will

return back here

and hence to the
/lcase structure message-loop).
/[for processing
//messages
/ Default processing

DefWindowProc() : of messages
(then return to

WinMain via
WndProc and
Windows).

Follow this tangled path right through

Opening Windows 81

Windows will return to the statement just after
DispatchMessage(), so we are back in the main loop.

The main loop is an endless loop, executing GetMessage(), then
TranslateMessage(), then DispatchMessage(), though there is a test
for exiting. Figure 3.3 puts the whole lot together pictorialy.

A word of advice: don't let this confuse you. See the simplicity
behind al of the detail. Windows sends messages to a window,
and your program can have as many windows as it wants. The
message goes (via WinMain()) to the callback function for that
window, where you can respond to it. If you don't know what to
do with the message, just call DefWindowProc(). End of story.

Data Types
Hungarian Tabulated in Table 3.1 are prefixes to data and pointer labels. It is
convention known as the Hungarian convention and is the voluntary prefixing
of data labels with a character or characters to indicate the type of
content.
Table 3.1: Data types.
PREFIX MEANING SIZE COMMENTS
b Boolean vaue | WORD* jO = false, non-zero = true
¢ Character BYTE | Extended ANSI character code
dw Long unsigned 'DWORD* Unsigned value
I1nteger A .
f | Bit flag value (WORD* | 16 individual flags
Ih |Handle | WORD* | Handle of a resource
) ‘Long integer value |[DWORD $igned value
Ip Long pointer DWORD* [FAR pointer
n Short integer value [WORD Signed vaue
p Short pointer WORD* |NEAR pointer
pt x,y coordinate point |DWORD* Unsigned, 2-word value
rgb RGB color vaue DWORD* [Unsigned
w Short unsigned WORD* [Unsigned value
integer

82 Windows Assembly Language & Systems Programming

Reference
source

Other
prefixes

Types of
handle

The asterisk means that these sizes only apply to 16-bit
applications. For 32-bit applications, they are al 32 hits.

We should make use of this notation wherever possible while
writing programs, as it improves readability.

The source of Table 3.1 is Thorn Hogan's superb book, The
Programmer’s PC Sourcebook, by Microsoft Press, second edition,
1991. Of course BYTE is 8 bits, WORD is 16 bits, and DWORD
is 32 bits. Unfortunately, Thorn’s book is out of print.

It is common practise also to use "s" for string, and "sz" for
zero-terminated string.

Combinations are allowed, for example "lpsz" means “long pointer
to zero-terminated string”. For 32-bit applications, the distinction
between a long pointer and a pointer is blurred, so the prefixes "p"
and “lp” can mean the same.

However, it is a case of “do as | say, not as | do!” For old habits
die hard. | do tend to lapse back into non-Hungarian naming of
data labels, and where you encounter such lapses, forgive me.
Mostly | have not followed the Hungarian notation when writing
Windows-aware DOS code, examples of which you'll see in
Chapters 10, 11, 12, and 14.

| have described the handle as being used to access amost al
resources. However, it is useful to formalize this. Again, the
origina source of this tabular information is Thorn Hogan's book.
Refer to Table 3.2 below.

Table 3.2: Types of handle.

NAME FUNCTION
GLOBALHANDLE |Global memory handle
HANDLE General handle
HBITMAP Physical bitmap handle
HBRUSH Physical brush handle
HCURSOR Cursor resource handle
HDC Display context handle
HFONT Physical font handle
HICON Icon resource handle
HMENU Menu resource handle
HPEN Physical pen handle

Opening Windows 83

HRGN Physical region handle

HSTR String resource handle
(LOCALHANDLE |Local memory handle
|HWND |Handle of a window

One thing that you will notice throughout much of this book is my
disregard for upper- or lowercase. For example, | have usualy
used uppercase for function names. This stems from the dynamic
link libraries themselves, in which the functions are recorded
(exported) in upper case. Mixed case, in the case of Windows
functions, is for readability only. Another factor is that the
assembler treats upper- and lowercase alike — well, that can
usually be controlled by a switch.

| did have a change of heart in the matter of case sensitivity, and
you will find the 32-bit application in Chapter 13 has correct case
on everything.

The link step also can be made case sensitive or not, by the use of
switches. Note that the command line switches for the linker are
themselves case-sensitive (not al linkers, and not earlier Microsoft
and Borland linkers), which is not something that you associate
with the DOS command line.

Skeleton
program

Assembly for
and against

The Bare Bones

Preamble

The earlier theory will only really make sense when actua code is
shown, so in this chapter | have done a complete application: a
skeleton program that just puts “Hi there!” on the screen. Nothing
too ambitious, but the skeleton can be built upon for much more
ambitious projects.

It's quite feasible to write entire applications for Windows just in
assembly language, though it is more usual to restrict assembly to
critical sections of the program. Although there's no concrete
argument against writing the whole thing in assembler, its a
matter of preference and persona requirements. | will show that
the argument that assembly programming is more tedious and
time-consuming than C is not true.

From the professiona’s point of view, assembly gives very precise
control over what is going on, is more appropriate for low-level
and getting-behind-the-scenes development, and is potentially
extremely compact and fast.

From the beginner’s point of view, looking a how to write the
entire program at the assembly level is most useful for learning
purposes and gives us useful insights into how Windows works.
The argument in assembly language's favour is developed further
in the last chapter (see page 367).

85

86 Windows Assembly Language & Systems Programming

Organisation | have organised this section by example with asimple “Hi there!”

of this
chapter

32-bit
skeleton
application

Microsoft
SDK

introductory program, as shown on page 94. We go through it

here step by step and put together the complete application. This

program is on the Companion Disk, in directory SKELETN1.

Note that | have written the program at the most fundamental level
for instructional purposes. However, the next chapter introduces

the same skeleton program, but makes use of advanced assembler

features, so it is more practical. The program of this chapter has

the advantage that it represents the lowest common denominator

and should work with just about any assembler.

| recommend that you use this chapter as a theoretical learning
tool and focus hands-on experimentation in the next chapter.

Chapter 13 describes a 32-bit skeleton program; however, |
recommend that you follow the steps of the “ladder of learning”.
The16-bit applications of this and the following chapter will work
fine under Windows 95. By al means refer to Chapter 13 as you
study this chapter and the next, as you wish, to see the contrast—
you will find the 32-bit code is structurally the same, and very few
changes are required to convert a16-bit application.

Getting Started

Tools Required

So what do you need? Many people will have access to the
Microsoft Software Development Kit (SDK) and Microsoft
assembler (MASM), so thisis a good starting point. In my
previous book | showed how the SDK and MASM v5.1 could be
used to write a complete assembly language program, but | now
consider v5.1 to be behind the times. However, | constrained the
program in this chapter to work with v5.1, in which case the
earliest tools that | can guarantee the program to successfully
assemble and link with are in Table 4.1.

Note that SLIBCEW and CWINS are C run-time libraries, and are

not required for the skeleton. However, in a situation where you

would need them to call C run-time functions, investigate using

startup code supplied by the vendors, for correct initialisation (the
next chapter shows how to link the Borland startup tile,

COWS.OBJ; Microsfts MASM v6.1 supplies APPENTRY.OBJ).

Whenever you see the letter "S" in alibrary filename, it usually
means “Small model”, while the letter "W" designates “Windows'.

The Bare Bones 87

Table 4.1: Earliest versions that will generate an executable.

MASM.EXE v5.10 TASM.EXE (C++v2.0)
LINK.EXE v5.10 (C v6.00) TLINK.EXE (C++v2.0)
NMAKE.EXE v1.11 (C v6.00) ditto
RC.EXE v3.00 (SDK v3.0) ditto (")
RCPP.EXE (SDK v3.0) ditto (")
RCPP.ERR (SDK v3.0) ditto (")
LIBW.LIB (SDK v3.0) IMPORT.LIB (")
SLIBCEW.LIB (SDK v3.0) CWINS.LIB (")
WINSTUB.EXE (from the SDK) ditto (")
Borland & The second column of Table 4.1 contains the earliest Borland
other tools versions that will work. Other LINK versions should be ok, as
long as they are Windows-compatible. MASM prior to 5.10
should also be ok.
Installation The normal situation is to have the SDK installed with everything
of the in the appropriate directories. The manuals with the SDK, C
development v6.00, and MASM explain how the environment variables need to
tools be set so that MASM and LINK can find the appropriate files. Or,

you could have one of the other development systems installed,
such as Borland C++, that do not need the SDK as a separate
entity. Note aso the Microsoft C/C++ v7.0 and later is bundled
with elements of the SDK.

Actualy, the main reason that you require the SDK is for the
programs RC.EXE, the import file LIBW.LIB, and
Windows-compatible LINK. The SDK does have some other
tools, such as a debug version of Windows, but most of these tools
are available with recent compilers. There are also a lot of useful
manuals with the SDK. Microsoft has gone away from supplying
printed manuals, and wherever | refer to a Microsoft manud in
this book, it will be on-line; athough, in most cases it should aso
be available for purchase separately. | personally prefer printed
manuals.

If such housekeeping (i.e., the correct instalation of all the
software tools) is too much trouble, get together all the above files,
or suitable equivaents, and put them al into the same directory.
Problem solved.

Look ahead through this book and youll see examples of Make
files for both Microsoft and Borland.

88 Windows Assembly Language & Systems Programming

"Legacy
chapter”

Microsoft
and
Borland
version
notes

TASM
v2.5

Microsoft
Quick
assembler

| must emphasize again that this chapter is a “legacy chapter”.
| am using the oldest tools and the most primitive assembly
language skeleton. This is not what | recommend for actua
development, but the very basic skeleton is excellent for
learning. | have included all of the meandering through
version numbers below, partly to record what | remember,
before | completely forget! Should you wish to learn this
skeleton and you only have old development tools, or you
need to modify or maintain legacy code, you will find this
information useful.

MASM prior to version 6.00 cant handle the high-level language
used in subsequent chapters, so | recommend upgrading if you
dont have it. The aternative is the long-winded program given in
this chapter. In fact, a the time of writing, the latest version is
6.11, and | recommend that you use it in preference to al earlier
versions, including version 6.10. Microsoft made some important
changes in the upgrade from 6.10 to 6.11!

Other older assemblers may be able to handle the code in this
chapter.

Borland TASM prior to v2.5 should be ok for this chapter, but
v2.5 has enhanced features and is the basis, aong with TASM
v3.00, of the program in the next chapter. At the time of writing,
the latest is version 5.0 (see Chapter 13).

Microsoft Quick assembler should be ok for this chapter. | think
that Quick assembler version 2.01 can be considered equivaent to
MASM version 5.2.

All of this upgrading is difficult to keep up with, but the above
notes should prove helpful.

Of course, as mentioned above, with some language products, such
as those from Borland, you dont need to have the SDK installed,
though | certainly recommend the SDK documentation.

Note that even if you are only interested in writing in-line
assembly within your high-level code, consider this chapter to
have important buiding-block educational information. Many
modern compilers alow in-line assembly, and this is developed
further in Chapter 6.

| have gone through the above outline of products and versions
and based this chapter on early tools, as not everyone has access to
the latest tools. Also, it is actually quite educational to analyse a
Windows assembly language program written with an earlier
assembler minus the high-level features. Having understood

The Bare Bones 89

exactly what is happening, high-level features can be introduced
later, for much more streamlined programs.

Source Files

The next step is to w-rite the application, for which, of course, you
use atext editor. However, it isno longer a case of producing a
single .ASM source file — let'scall it SKELETON.ASM. The
absolute minimum files required are:

« SKELETON.ASM (program source)
« SKELETON.RC (resource script)
. SKELETON.MAK (Make file)

. SKELETON.DEF (definition file)

Resour ce and Definition Files
Resource (.RC) and definition (.DEF) files are produced by atext

editor, though you can get some help with specia paint programs
to generate the resource scripts.

END

. RC file Resource scripts describe the appearance of what is seen on the
screen — dialog boxes, menus, etc. It can also store other
information. | wrote SKELETON.RC directly using atext editor,
snce it is a Ssmple example.

.DEF file The definition file defines the name, segments, memory
requirements, and exported (including callback) functions of the
application, and is straightforward enough to write with a text
editor. All functions in your program that are to be called by
another program must be declared asexported — in the case of the
callback function, it is called by Windows. The only function that
doesnt need to be declared as exported is your WinMain().

Here is the .RC file:

SKELETON. RC

#defi ne IDM QU T 200

#defi ne | DM MESSAGE 201

skel et on MENU

BEG N
POPUP "File"
BEG N
MENUITEM "Quit", IDM_QUIT
MENUITEM "Message. .."l,DM MESSAGE
END

90 Windows Assembly Language & Systems Programming

Menu-bar

wM_
COMMAND
message

message,
wParam,
/Param

You will be able to figure out what this .RC file does by observing
the execution of the program. A menu-bar with only one
selection, “File’, drops down two menu-items; “Quit” and
“Message...”. The next chapter has the same “Hi there” program,
but written using high-level assembly constructs.

IDM_QUIT and IDM_MESSAGE are arbitrary labels, assigned

(amost) arbitrary values. One of these values is passed within a
message as an identifier to Windows, if a menu-item is selected.

M essage For mat

Sdlecting a menu-item generates a WM_COMMAND message,
which is one of many possible messages that can be sent to the
callback. It is a 16-bit value, and also has other parameters,
notably "wparam" and "lParam", that constitute extra data
attached to the message.

So, thisis what constitutes a message:

. message (16-bit number) (32-bit WinApp: 32 bits)
« wParam (16-bit number) (")
« 1Param (32-bit number) (")

wParam is 16 bits aso, hence the "w" (word) prefix. Every
message has two parameters attached to it, wParam and 1Param,
the latter being 32 bits (hence the “1” prefix, meaning “long”).
What these parameters contain depends upon the message. The
prefixes are just a convenient notation for labels, so that we know
what they represent (see page 82). Note that for 32-bit
applications, these parameters are al 32 bits (making the "w" and
“1" rather confusing, as these prefixes are till used).

Before we delve further in this direction, here is the .DEF file;

SKELETON.DEF. . .

NAME SKELETON

DESCRI PTI ON 'Hi there! program’
EXETYPE W NDOWS

STUB 'WINSTUB.EXE'

CODE PRELOAD MOVEABLE

DATA PRELOAD MOVEABLE MJLTI PLE
HEAPSIZE 1024

STACKSI ZE 8192

EXPORTS SKELETONPRCC

Skeletonproc() is the callback function, referred to as WndProc()
in earlier notes. This is where Windows sends messages to be
processed. An application can have a separate callback function
for each window, dialog box, or contral.

The Bare Bones 91

DOS stub | have explained various aspects of the .DEF tile throughout this
book, so investigate via the index. Some of the lines are
self-explanatory. "WINSTUB.EXE" is a program supplied by the
software vendor, that is incorporated into the overall .EXE tile,
and is executed if you try to run the program from the DOS
command line. It just displays a short message and quits.

| have put the DOS stub to very interesting use in Chapter 14.

Make File

Before we go ahead with the application itself, let's consider the
Make file. This determines the assemble, compile, and link steps.

With reference to Figure 3.2 on page 74, the first step is to
assemble SKELETON.ASM to produce SKELETON.OBJ (any
Include files are also assembled). MASM and TASM have
various directives to aid with creating Windows applications;
however, by writing the program at the most fundamental level |
have avoided these, which means that just about any assembler
should work. You can see in the listing below how RC.EXE is
used to compile SKELETON.RC and how to incorporate
SKELETON.RES into SKELETON.EXE. LINK converts the
.OBJ to .EXE, and LIBW.LIB provides connection to the
Windows functions. LIBW.LIB is not itself a library. Note aso
that LINK refers to the .DEF tile.

SKELETON.MAK...

fn = skeleton

all:$(fn) .exe

$(fn) .obj : $(fn) .asm
masm $ (fn) ;

$ (fn).res:$ (fn) .rc
re - $ (fn).rc

$(fn) .exe : $(fn) .obj $(fn) .def $(fn) .res
[Ink $(fn) /NOD, ,, libw , $(fn).def
rc $(fn) .res

You create this on a text editor. It requires a certain syntax, and
Make programs from different vendors have their own
peculiarities. The above will work with Microsoft's NMAKE.EXE
and is for MASM versions prior to 6.00. The latest MASM
requires modifications to the Make file (refer page 125), though it
can be made command line compatible with v5.1.

Borland vs Borland's TASM is different again (refer to page 124), because
Microsoft TASM and TLINK have their own command line syntax.
Make Borland's MAKE.EXE also has its own peculiar syntax

requirements, but note that the version supplied with C++ version

92 Windows Assembly Language & Systems Programming

Why usea
Make fife?

3.00 (and later) is supposed to be more compatible with NMAKE
(this is doubtful — see my comments in Chapter 14).

The Make file saves you the trouble of typing in al the assemble,
compile, and link steps at the command line. Some integrated
environments generate the Make file automaticaly, so you dont
even have to do that much, but there are some sound reasons for
learning about and using Make files, not the least of which is
flexibility. Some integrated environments generate what is called
aproject file, which is saved with a special extension, and with
some products it is possible to convert a project tile into a Make
file. The fundamental difference in usage is that in the integrated
environment you do everything via pull-down menus, while you
run the Make file from the command line.

Programmers Microsoft's Programmers Workbench (PWB) is an example of an

Workbench
(PWB)

Exp lanation
of above
Make file

Within
Windows

integrated environment that works with Make files in its native
mode, though the Make files are highly stylised. PWB can,
however, read ordinary Make tiles, and you can open a “project”
by opening many of the Make files given in this book.

You can figure out what the above Make file does: it assembles
SKELETON.ASM using MASM.EXE, then it compiles
SKELETON.RC using RC.EXE, then LINK.EXE links everything
together, and finally RC.EXE is executed again to combine
SKELETON.EXE and SKELETON.RES (the compiled output
from the firs RC execution) to produce the fina
SKELETON.EXE.

Development Cycle

You can run the Make file from the DOS prompt, but you can also
do it from within Windows. What you should do is open the File
Manager and go to the directory containing the application. Then
iconize the File Manager and open the Notepad. Use the Notepad
to view and edit SKELETON.ASM, and iconize when finished. It
is a simple matter to flip between the Notepad and the File
Manager.

When in the File Manager, and the directory containing the
application is open (and the directory must contain all software
tools if the SDK is not installed properly on the PC), select
“Run...” from the “File’ menu.

In the box, type “NMAKE SKELETON.MAK", just as you would
on the DOS command line. After running the Make file, al you
need to do to test your program is double-click on
SKELETON.EXE in the File Manager.

Other ways

The Bare Bones 93

The above is not the only way to do it. There are various reasons
why you may want to do everything from DOS and load Windows
to test the program, or, have a “DOS-box” open and use <ctrl-esc>
to flip between it and Windows. Or, you may be working within
an integrated environment, which may have something cdled a
projectfile rather than a Make file. Many integrated environments
can generate a Make tile from a project file, and can also execute a
Make file from within the environment. | have never been entirely
satisfied with integrated environments and prefer to be outside
one, using the traditional Make file from the command line: but |
dont want to pregjudice you. If your product has an integrated
environment, give it a go. One problem you may have is getting it
to handle stand-alone assembly programs.

Programmer3 However, | have rather grudgingly come to like Microsoft's

Workbench

When can !
"get
started” ?

Programmers Workbench (PWB). If you install PWB, you can
open amost any of the Make files supplied on the Companion
Disk, and thus you will have opened a project. You will however,
have to click the “non-PWB Makefile” button. Then you can
select “Rebuild All” from the “Run” menu, and see the result in a
“Build” window.

PWB can be started from within Windows, and after running the
Make tile, you can use <alt-tab> to flip over to Windows and try
the program.

This is, of course, just theory if you are reading through the book
linearly — dont worry though, as the hands-on exercises begin
soon. If you feel the overwhelming desire to try the program, why
not? (flick ahead to the next chapter if you want to assemble the
simplified skeleton). Copy the appropriate tiles off the
Companion Disk. Then, assuming that you have all the
development tools installed, follow the above instructions to
assemble, link and test your program. Later on you can learn how
it works internally.

Alternatively, you may feel that you dont want to get “bogged
down” in a skeleton that is very primitive and would prefer to
jump directly into a skeleton that uses the higher level assembler
features. In that case, study this chapter theoretically only, and do
your hands-on work in Chapter 5. Or, if you really insist on
short-circuiting my “ladder of learning”, you can get hands-on
experience with the 32-bit application in Chapter 13.

94 Windows Assembly Language & Systems Programming

Application Structure

It doesnt do much more than put “Hi there’ on the screen, but
wow, so much red tape! A far cry from the few lines a DOS
program would need.

Try to understand as much as possible and identify the major
structural elements.

Preliminary Code

; SKELETON. ASM Windows assembly language program

.286

;286 Instruction set.

WINDOWS. -
INC

The identifiers (equates) shown below would normally be in the
WINDOWS.INC Include file (refer page 109). With this skeleton
| have minimized the number of files involved.

| D1 APPLI CATI ON EQU 32512 ;default icon type.

| DC- ARROWV EQU 32512 ;default cursor type.

CEM FI XED_FONT EQU 10 ; font type.

COLOR BACKGROUND EQU 1 ;background col or

WM CREATE EQU 1 ;Windows nessage

WW DESTROY EQU 2 ;

WWt PAI NT EQU 15 ;

W COVIVAND EQU 273 0/

VWt LBUT TONDOWN EQU 513 ; /

WV CHAR EQU 258 ; _ o

IDM QU T EQU 100 ;menu-identifiers from

| DM ABOUT EQU 101 ; .RCfile. o

MB_OK EQU O ;messagebox identifier.
Program listing The Windows startup code would normally be in a
continues until page separate .OBJ module supplied by the compiler vendor;
107 however, in this fundamental skeleton, | have put the

startup code into this module. This code is taken from
APPENTRY.ASM, which is the source file for

Generic program for
any assembler

APPENTRY.OBJ, supplied by Microsoft. These are a

couple of egquates used by the startup code:

;This is the equates for

STACKSLOP

maxRsrvPtrs EQU 5

the startup code...]
of stack slop space required

EQU 256 ; anount
of Wndows reserved pointers

; nunber

The Bare Bones 95

Below are the Windows functions that the program cals. In
assembly language we must declare al externa functions, which
is not an essential requirement in C.

High-level MASM version 6.00+ is an interesting exception to this, as its

CALL INVOKE (high-level CALL) is C-like and doesnt need an explicit
EXTRN declaration. MASM v6.00+ is also C-like in that it
accepts the C spelling of EXTERN. See Chapter 5 for an
explanation of INVOKE. TASM version 5 has PROCDESC, that
does the same job as INVOKE (see Chapter 13).

EXTRN INITAPP:FAR

EXTRN INITTASK:FAR

EXTRN WAl TEVENT: FAR
EXTRN DOS3CALL:FAR

EXTRN UPDATEW NDOW FAR
EXTRN BEG NPAI NT: FAR
EXTRN ENDPAI NT: FAR

EXTRN DEFW NDOWPRCC: FAR
EXTRN POSTQUI TMESSAGE: FAR
EXTRN REG STERCLASS: FAR
EXTRN CGETSTOCKOBJECT: FAR
EXTRN CREATEW NDOW FAR
EXTRN SHOMNN NDOW FAR
EXTRN GETMESSAGE: FAR
EXTRN LOADCURSOR:FAR
EXTRN TRANSLATEMESSAGE: FAR
EXTRN DI SPATCHVESSAGE: FAR
EXTRN LOADI CON: FAR

EXTRN TEXTOUT: FAR

EXTRN MESSAGEBOX: FAR
EXTRN SELECTOBJECT: FAR

Below is the data segment. Here we define al of the variables,
strings, and arrays that the program will use.

.DATA
;This must be at beginning of data segnent...
DWORD 0 ; Wndows reserved data space.
rsrvptrs WORD maxRsrvPtrs; 16 bytes at top of DATA seg.
WORD maxRsrvPtrs DUP (0) - Do not alter
hPrev WORD 0 ; space to'save WinMain paraneters
hInst WORD 0 i/
lpszCmd DWORD O i/
cmdShow WORD 0 i/
.DATA
szwintitle DB ' SKELETON PROGRAM , 0
szskel etonname DB ' SKELETON , O
hOemFont DW 0 ;handle to OEM font.
sout DB ' H there! !
szabout DB ' Assenbly Language Skeleton',0 ;nessagebox
sztitle DB 'Barry Kauler',0 i/

96 Windows Assembly Language & Systems Programming

Startup Code

The startup code is fascinating, because it is something you
normally dont see in a Windows program. It is the code that is
first entered when the application is loaded, and it performs
various initialisations before calling the entry point of your
program, WINMAIN().

DOS3CALL() This code is also the exit point, performing the standard
INT-21h/function 4Ch to exit back to the calling program. Look
below, but dont be mislead by the DOS3CALL(): this simply does
the same as INT-21h, except by a FAR CALL rather than by
software interrupt. As far as I'm aware, there is no other
difference, except that the CALL is faster.

.CODE

;Here is the startup code...

start:

X0or bp,bp ; zero bp
push bp .

call I NI TTASK ; Initialise the stack

or ax, ax

jz noinit ,

add cx, STACKSLOP ; Add in stack slop space.
je noinit ; If overflow, return error.

mov hPrev, si

mov hl nst, di

mov word ptr lpszCmd,bx

mov word ptr lpszCmd+2,es

mov cndShow, dx

XO0r ax, ax - 0-->ax

push ax

;paramete’r for WAl TEVENT

call WAITEVENT ;Clear initial event that started this

; task.
push hInst sparameter for | N TAPP
call NI TAPP ; Initialise the queue.
or ax, ax
jz noinit
push hInst ;paranms for WINMAIN
push hPrev , .
push WORD PTR 1lpszCmd+2 ; / (seg. first)
push WORD PTR 1lpszCmd ; / (offset second)
push cmdShow P
_ call WINMAIN
iX:
nov ah, 4Ch))
cal | DOS3CALL ; Exit with return code from app.
noinit:
mov al, OFFh ; EXit with error code.

jmp short

i X

Register
initialisation

INITTASK()

The Bare Bones 97

What does the above startup code do? There is an explanation in
Programmers Reference, Volume 1: Overview, supplied with the
SDK v3.1 (or on the on-line documentation supplied with the
SDK). This reference has definitions for each of the above
functions, plus explanation of the startup segquence.

It isinstructive to consider what the status is when Windows calls
'start:" — incidentally, scan ahead to the very end of the
program, and youll see that termination is with ‘enD start”,

which is standard practise for DOS programs and defines the
starting point of the program.

"start :"isentered with the CPU registers set as per Table 4.2.

However, INITASK() returns its own information in the registers,
as per Table 4.3, which are passed as parameters on the stack to
WINMAIN().

Table 4.2: Registers at entry to application.

Register | Value

AX zero

BX Size, in bytes, of stack

C X Sze, in bytes, of heap

DI handle of application instance

SI handle of previous application instance
BP Zero

ES segment address of PSP

DS segment address of automatic data segment
Ss same as DS register

SP offset to first byte of application stack

Table 4.3: Register values returned by INITTASK().

Register [Value

AX 1 = ok, zero = error

ES.BX FAR address of the DOS command line
C X stack limit, in bytes

DI instance handle of new task

S handle of previous instance of program

98 Windows Assembly Language & Systems Programming

DX nCmdShow parameter
ES segment address of PSP

INITTASK() aso fills the first 16 bytes reserved in the data
segment with information about the stack.

WAITEVENT(), The parameter zero when supplied to WAITEVENT() clears the

INITAPP()

event that started the current task.

INITAPP() initialises the queue and support routines for the
application.

WINMAINQ

Below is the rest of the code segment, which has WINMAIN() and
the callback function SKELETONPROC(). Functions that are to
be called by Windows must be declared as PUBLIC.

.CODE

PUBLI C WINMAIN _ _
WINMAIN PROC NEAR ;entry point from Windows.

Parameters passed on the stack will be as per the listing on page 77
and will have been pushed on from left to right, with the return
address pushed on last (Figure 4.1). You can check this against
the startup code above.

push bp ;save BP so can use to access params.
mov bp, sp ;BP will now point to top-of-stack.
sub sp,46 ;mov stack to free region.

Figure 4.1: Stack at entry to WinMain().

Stack Pointer SP =———

Base Pointer BP
register points here

old BP.

return address
Thisiswhat BP+4 —* nCmdShow
the stack looks ~ BP+6 —% IpCmdLine
like at this |

point in the BP+10
program BP+12

hInstance

Ve (see next page)

The Bare Bones 99

chp WORD PTR [bp+10] , 0 ;hPrevinstance.

; (=0 if no previous instance).

jne createwin

Prolog
code

First-
instance
handling

One important thing to notice from Figure 4.1 is that after the
prolog code, BP points to the parameters (so that the program has
ready access to them), while SP has been moved away (so that the
stack can grow downward in memory without interfering with the
parameters or the intermediate area that is to be used for
temporary data).

In Figure 4.1, increasing addresses are downward. Note that the
return address is not FAR, but NEAR, as WINMAIN() is called by
the startup code within the same segment, not directly from
Windows.

Note that the old value of BP is saved on the stack. Note that
"1lpCmdLine" is a 32-bit value and so occupies four memory
locations (for explanation of label prefixes, refer to page 82).

The first instance of the program has to create a window-class data
structure and call RegisterClass(). It determined this by testing
"hPrevInstance", which is zero if this is the first instance. Note
that the handle for this particular instance is "hInstance".

ALL OF THIS STUFF DOWN TO CREATEWIN IS PRETTY
HORRIBLE, SO LET YOUR EYES GLAZE OVER AND READ
QUICKLY ONWARD TO CREATEWIN:

nov

WORD PTR [bp-46],3 ;wndclass

mov. WORD PTR [bp-44],0FFSET SKELETONPROC

;addr of call back

mv WORD PTR [bp-42],SEG SKELETONPROC

sub
mov
mov
nmov
mov
sub
push
mov
sub
push
push
call
mov
sub

push ax ' J
mov ax, | DC_ARROW ;Standard arrow cursor.

; function for w ndow.

ax, ax
WORD PTR [bp-40],ax
wWorD PTR [bp-38],ax
ax, WORD PTR ([bp+12] ; hl nstance
PTR [bp-36] ,ax . .
ax, ax ;null - l;se W ndows default icons.
cx, IDI_APPLICATION ;Default application icon.
dx, dx ; /
dx ; /
; /
LOADICON
WORD PTR [bp-34] ,ax .
ax, ax ;null -- use Wndows default cursor.

100 Windows Assembly Language & Systems Programming

cwd , /
push dx ; /
push ax ; /
call LOADCURSOR
NV WORD PTR [bp-32],ax
MoV ax, COLOR_BACKGROUND
nNov WORD PTR_ [bp-30],ax
mov ax, OFFSET szskel et onnane
NV WORD PTR [bp-28],ax
mv WORD PTR [bp-26],ds
MV WORD PTR [bp-24],ax
mv WORD PTR [bp-22],ds
lea ax, WORD PTR [bp-46] ;wndcl ass
push ss ;this i s address of above data
push ax ;structure.
Register- Not e that we only have to call RegisterClass() for the first instance
Class() of the program. If you double-click on the program icon a second
time, the second instance of the program created in memory will
not have to register the window with Windows.
cal | REGISTERCLASS ;registers this class of w ndow.
or ax, ax. . ;error test.
je quitw nmain
Displaying The above block of code registered the “specifications’ of our
a window program’s window with Windows. Now to display it:
Create- Parameters that have to be pushed on the stack prior to caling
Windowy) CreateWindow() are a long-pointer to window class-name, Ip to
the window title-name, type of window, x and y coordinates, width
and height, parent-handle, menu-handle, instance-handle, and an Ip
to parameters to link with the window.
createw n:
mov ax, OFFSET szskel et onname
push ds ;long-pointer (far address) of
push ax ; cl ass- nane.
mov ax, OFFSET szwintitle . .
push ds ;far address of w ndowtitle.
push ax , /.
sub ax, ax ;type of wi ndow (32-bit val ue).
nov dx,207 ;
push dx ; /
push ax . /
nov ax, 150 ;x-coord (16-bit).
push ax ; /
sub ax, ax ;y-coord (16-bit).
push ax ;
mov ax, 250 ;width (16-bit).
push ax ' /
nov ax, 200 ;height (16-bit).
push ax ; /

The Bare Bones 10!

sub ax, ax _ .
push ax ;0=no parent for this w ndow
push ax ;0=use the class nenu.
nov ax,WORD PTR [bp+12] ;hInstance
push ax ;
sub ax, ax
push ax ;0=no params t0 pass-on.
push ax ; (32-bit | ong-pointer).
call CREATEWINDOW .
mv WORD PTR [bp-2],ax ;returns hWwnd in AX
; (handle t0 the w ndow).

;Here We save it tenporarily.
push ax i ShowWindow () requires hwnd
push WORD PTR [bp+4] ; and nCmdShow oOn the stack.
call SHOWWINDOW ;Tells Wndows to display w ndow.
push WORD PTR [bp-2] ; hwad
call UPDATEW N ;tells Wndows to redraw now.

jnp SHORT nessageloop ;go to the main nessage |oop.

Message Refer back to page 77 for an explanation of the message loop. The
loop event-driven nature of a Windows application means that

GETMESSAGE() goes to Windows and waits for a message from
the queue. After return, key presses are preprocessed by
TRANSLATEMESSAGE(), then control is passed to the callback
function via DISPATCHMESSAGE() and Windows.

mai nl oop:

2

| ea ax, WORD PTR [bp-20] ;far-addr of nessage
push ss H
push ax i/

cal | TRANSLATEMESSAGE

| ea ax, WORD PTR [bp-20] ;far-addr of nessage.
push ss i

push ax ;
cal | DI SPATCHVESSAGE

nessageloo&tR

| ea ax, D PTR [bp-201 Flong-pointer (far addr) of
push ss ;message. (we use the stack
push ax ;region for convenience).
sub ax, ax
push ax ;null
push ax ;null
push ax ;null
cal| GETMESSAGE o
or ax,ax ;only exit if returns Ax=0

jne mainloo)
Get Message() returns FALSE (Ax=0) if a "quit" nmessage. ..

;so here we are quiting

mov ax, WORD PTR [bp-161 ;return wParam to W ndows.

qui twi nnai n:

nmov sp,bp .
pop bp irestore SP to point to the return address.
ret 10 7Causes RET to add 10 to SP after popping

102 Windows Assembly Language & Systems Programming

;ret-address, effectively dumping all params
; (as for PASCAL convention) .
WINMAIN ENDP

Figure4.2: Stack at entry to GetMessage().

The above section of SP

code, starting at

“messageloop:” and :

looping-back to 5 —P

“mainloop:” is the Egig__. g?s‘;gge
message |oop. BP-16 —M P

Notice that the value L wParam
[BP-20] was pushed IParam

onto the stack. —

This an offset (address) ppaa — pfoi0e

in the stack segment PT

where GETMESSAGE()

will place the message

upon return.

The stack Segment is a BP >1d BP
convenient temporary —»

storage place. BP+2 ret. addr, etc...

Callback Function

Thus ends WINMAIN(). For the callback function, refer to the
listing on page 79. The parameters are passed on to the stack in
the order of left to right, with a FAR return address on top.

If this program looks similar to the example in my last book, it's
not surprising, since both were originaly created from a C
skeleton with the compiler set to generate assembly output (see
page 151). This listing is, however, substantially different from
before.

PUBLI C SKELETONPROC
SKELETONPROC ~ PRCC FAR .
; The function is entered with far-return-addr (4 bytes),
;1Param (4), wParam (2), nessage-type (2),and
;swindow-handle (2 bytes) on the stack (ret-addr on top).

push ds ;This is some Standard prelimnary
pop ax ;shuffling of the registers.

" bp ;7 (it is called the prolog code)
push bp ; /

The Bare Bones 103

mov bp, sp ; /
push ds ; /
mov ds, ax

/ /
sub sp,146 ;move the stack to a free region
;(so as not to ness-up the params).

Prolog The above prolog code may seem strange. It is at the start of all
code callbacks. However, the above code can be simplified if the

application is never to run in Real mode. A Windows application
running in Real mode is only possible with Windows v3.0 and
earlier and is an unlikely requirement these days.

Alternative simplified |f the application will always be run in Protected mode,

prolog code the prolog can be simplified as follows:
ush b ;prolog
?nov rt))p,sp ; / (set up stack frame)
push ds i/ save calling function’s dsc?
push ss ; / (nove ss to ds -- |ocal daa segment)

pop ds i/ o
sub sp,146 ;/ (reserve |local data area)

An appropriate modification of the epilog code will also be
required. The simplified prolog is more suitable for explanation.
You can see that BP and DS are saved. The main task of the
prolog is to set DS to the current application’s data segment, but
this is easy, as SS aways points to it, even while execution goes
back to Windows. That is, after the application is first entered, SS
remains always unchanged and always pointing to the data
segment.

After the prolog, the stack looks like Figure 4.3.
Figure 4.3: Stack after executing prolog.

Stack Pointer SP 1
Base Pointer BP
register points here A DS
od BP+1
return address
This is what (FAR)
the stack looks BP+6 1Param
like at this
point in the BP+10 ~®[wParam
program BP+12 :: message
/(see next page) BP+14 hWnd

104 Windows Assembly Language & Systems Programming

mov ax, WORD PTR [bp+12] ;get NMessage- nunber.
cnp ax, W CREATE ;message received after
je create ;CreatewWindow () i s call ed. .
cmp ax, WM DESTROY ;melssagg received if a window is
; closed.
je quitnessage . . .
cnp ax, WM_PAI'NT ;message received if Wndows has
Cnt 7 (already) redrawn any part of the w ndow.
je pan . .
me ax, WW_ COMVAND ;any selection of the menu will
| né notcommand ;the WM_COMMAND
j menu ;messagde.
not'command:
cmp ax,WM_LBUTTONDOWN ;one of many mouse
[ne notlbutton S messages.
np break
not'l but t on:
cnp @x, WM_CHAR ;message that a key pressed.
je char
;Default handling of messages....
push WORD PTR {bp+14] : hWad
push WORD PTR [bp+12] : Message-type
push WORD PTR {bp+10] ; wParam
push WORD PTR [bp+8] ;hi-half of 1Param
push WORD PTR [bp+6] ;1 owhal f of 1param
cal | DEFWINDOWPROC .
jnp return ;Back to W ndows.
“Case” The above code determines the type of message and jumps to an

stlatement appropriate routine. If the message is not to be handled explicitly
by the callback, it falls through to DEFWINDOWPROC() for
default handling.
WM_CREATE Follow through the case of WM_CREATE. The earlier case logic
message will bring execution to “create :", where | have abtained the
handle to a font. WM_CREATE is sent by Windows when the
window is created, in response to CREATEWINDOWY(), and for a
simple skeleton you do not realy need to do anything with this
message -just send it on to DEFWINDOWPROC().
Note that even fonts have handles, and to use the OEM font in the
program, this is a convenient time to get its handle.
Create :
mov ax, CEM_FI XED_FONT
push ax
call GETSTOCKOBJECT
nov hOemFont, ax ;handle to font.
jmp SHORT br eak

sub

ax, ax

The Bare Bones |05

push ax
cal| POSTQUITMESSAGE
j mp SHORT break

WM _CHAR | implemented the WM_CHAR case to show how to respond to a

message keyboard character. See the keyboard tables in Appendix B.
Refer to a Windows programming book on the difference between
ANSI and ASCII.

char:
;1 haven't bothered to respond to key-presses in any way
;in this sinple skeleton . . .

jm S br eak

WM_PAINT Even the most basic skeleton will need the following code in

message response to WM_PAINT. You will need to put in BeginPaint()
and EndPaint(), even if you dont output anything. WM_PAINT is
sent if anything has happened to the window that-will require its
client urea to be redrawn. | need a handle (hDC) to the client area
before | can output to it.

ush WORD PTR [bp+14] hwid is handl e of w ndow.
ea ax, WORD PTR [bp-42] ;ps -- far-addr of
; pai nt-structure.

push ss ; (BeginPaint () wWill fill,, the structure).
push ax
cal| BEGINPAINT ;BeginRaint () 'returns handl e hpc.

mov WORD PTR [bp-146],ax ;hDC -- display-context,
; required before can output to screen.

push ax ; hDC

push hoemFont

cal| SELECTOBJECT ;attaches hOemFont t 0 hDC.
push WORD PTR [bp-146] ; hDC

mv ax, 8 ; 16-bit x-coord

push ax . /

mov ax, 15 ;16-bit y-coord

push ax .

rmvh gx,OFFSET sout ;far-address of string to o/p
push ds ;

push ax ; / (note lo-half pushed 2nd)
mv ax, 9 ;number of chars in string.
push ax

cal | TEXTOUT

ush WORD PTR [bp+14] ; hWd .

ea ax, WORD PTR [bp-42] ;far-addr of paint-structure
push ss ; (was filled by BeginPaint()).
push ax ; /

cal | ENDPAINT
jm SHORT br eak

106 Windows Assembly Language & Systems Programming

wu_commAanD Selection of a_ menu-item will resultin a WM_ COMMAND

message

message, with the 1déntifier in wParam, and zero in the Tow-haif of
Param.

cnp WORD PTR [bp+6] , ;low-half of lParam
break ;test if a menu-nessage.

jne

Menu-item
selection?

If our program determines that the message is a
WM _COMMAND, we find out more about it by looking at
wParam and 1Param.

The low-half of 1Param = O if the message is a menu-selection, in
which case wParam contains the identifier, and the high-haf of
IParam = 1 if an accelerator key has been pressed.

If the low-half of 1Param is not zero, then the message is from a
control (such as a scrollbar), and the low-haf of 1Param = the
handle of the control, and the high-half of IParam = the
notification code.

So wParam can contain the menu-item identifier, the control
identifier, or the accelerator-key identifier.

cnp VWORD PTR [bp+10],IDM_QUIT s wPar am

| ne noquit
] np qui t nessage
noquit:
cnp WORD PTR [bp+10],IDM_ABOUT .
j ne break ;no other nenu items.
dls laying a nmessage about this program.
pl?shyV&D PTR [bg+14] hV\hddlsp hgndl e of parent
ax, OFFSET szabout ;far-addr of stri ng to display.
push ds ; /
push ax J
mov ax, OFFSET sztitle ;far- ‘addr of title of
; dial og- box.
push ds ; / (see data segnent)
push ax i /
mv ax, MB_OK . :type of message box.
push ax i/ (dl splays single "ok" button)
cal | MESSAGEBOX
Epilog Findly we have the epilog code, which compliments the prolog
code code on page 102. At this stage, BP is pointing to the saved “old

BP+1" which we decrement twice so it points to the saved DS,
which we make the top of stack and then pop to restore the
origina DS, followed by the “old BP+1", which we decrement to
restore to its original value.

The Bare Bones 107

RET 10 causes RET to add 10 to SP after popping the return
address, effectively dumping al parameters, as required for the
Pascal convention.

break:
sub ax,ax ;returns O in DX AX (cal l back functions
tcwd ;return a 32-bit (long) val ue).

return:
dec bp Ffinal Standard manipulation of regs.
dec bp . /.]
mv sp,bp ;/(it is called the epilog code).
pop ds i /
pop ;
dec B ; /
ret 1 ;removes paraneters.

SKELETONPROC ~ ENDP

END start ;execution entry point of program

Simplified | showed earlier that there is a simplified alternative for the prolog
epilog code code. The matching epilog is similarly smple:

pop ds iepilog
pop ;
retf qB

So, here again refer to Figure 3.1 to see what it looks like.
Clicking on the “File” menu-item pops down two selections:
“Quit” and “Message...”. Selecting the latter results in a message
box looking very much like that shown on page 172.

High-Level Assembly

What's in
this chapter

Equates

Preamble

What | have for vou in this chanter is the same program from the
previous chapter (page 94), but-wow is it smaler! bne thing you
will have noticed from that first program is that it does an
incredible amount of stack manipulation: this makes the program
both long and very tedious to write.

The Borland and Microsoft (plus other vendors) assemblers have
some high-level features that ease the coding burden considerably,
even to the point of the program being as short as the equivalent
written in C or some other high-level language. That's saying
something!

What follows is a breakdown of each section of the previous
program, showing how it can be improved . . .

Include Files

Refer back to page 94. You will see a whole pile of equates, for
example, "WM_PAINT EQU 15". WM_PAINT is simply a
meaningful label, a constant, that equates to value 15. This means
that wherever the assembler finds the label WM_PAINT, it will be
replaced by the value 15.

109

110 Windows Assembly Language & Systems Programming

.INC files

Structures
defined in
ANC file

Assembler
version
notes

These semi-English labels are more meaningful to us and therefore
make programming easier. Windows has hundreds of these
predefined equates, though the example program only uses some
of them.

Those people familiar with writing Windows programs in C will
recognize this. "#INCLUDE <WINDOWS.H>". It iS a statement
placed right near the beginning of the program, and has the effect
cﬁ inserting the file named between the "< >" into the program at
that point.

WINDOWS.H contains al of the equates, plus other definitions
such as structure definitions. Windows programming also makes
extensive use of structures (look back to page 65 for an
introduction to structures).

Microsoft versus Borland

Instead of explicitly naming all the equates and structures in my
program, as | did for the first example program, an assembly
language program can also include WINDOWS.H. Or rather, it
cant. Thereis a problem with syntax. WINDOWS.H has a syntax
designed to be understood by the C compiler, and this is mostl
gibberish to the assembler — however Microsoft introduced wit
version 6.0 of their Macro assembler (MASM) and Borland with
C++ v3.0, a.H-to-.INC trandator. Note the convention that all
C-syntax Include files have the extensior” H".

Instead of WINDOWS H, in assembly we use WINDOWS.INC,
which is supplied by Borland and Microsoft. Note the convention
that Include files for assembly language have the extension .INC,
though |1 cant vouch for this for all software vendors.

The listing starts on the next page, and as you look through it, you
will see how | have included WINDOWS.INC, and how | have
accessed the structures. There are some example extracts from
WINDOWS.INC to clarify the explanation.

Thefirst listing is designed around Borland TASM version 2.5, so
once again | am aiming for the earliest possible version. If you
only have MASM version 5.1 or earlier, or TASM prior to version
2.5, which do not have the necessary high-level constructs, you
can only assemble the Windows program from the previous
chapter. For further discussion of version numbers, see page 88.
If you want to make use of the latest features for writing
streamlined code, especiadly if writing for Win32, then the later
the version the better.

Complete
MASM &
TASM
skeleton
listings
for all
versions

High-Level Assembly 1/1

It is fascinating to watch the game Microsoft and Borland are
playing with each other. One tries to leapfrog the other, and
Microsoft's verson 6.0 was released in response to Borland's
verson 2.5. MASM version 6.0 has some very nice features, and
the releases of 6.10 and 6.11 added enhancements to further
streamline coding for Windows. Ive put some specid notes on
compatibility issues for v6.0+ at the end of this chapter (see page
125), and to be completely fair to both vendors and to those
readers who have MASM v6.x, Ive placed a complete listing of a
MASM skeleton program at the end of this chapter.

You will also find the MASM skeleton program on the Companion
Disk, in directories \ASMDEMO1 and \ASMDEMO?2. The first is
a skeleton program that has the startup code inside the program, as
is done in the skeleton program of the previous chapter. In the
second directory is the same program, but it has the startup code as
a separate linkable module. It is the latter case that is listed at the
end of this chapter.

You will find the TASM skeleton program on the Companion Disk
in directory \SKELETN2. This is the same program listed
immediately below. Note that it has a separate linked startup
module, COWS.OBJ. (You may have aready noticed that there is
nothing apparently logical about the naming of directories or files
on the Compnaion Disk. The justification is historical; | have kept
the same names as used in the first edition.)

A skeleton written for TASM version 5 is in Chapter 13.

Skeleton Analysis

; WINHULLO . ASM- - >SWINHULLO . EXE W ndows denp
.MODEL SMALL

Program fisting The " .MODEL" directive is an instruction to the
continues until page assembler. If you leave it off, the program will il
119. assemble ok. It tells the assembler how many data

This program works wit

TASM v2.5+
.MODEL

h and code segments this program will need and gives
Standard names and qualifiers to the segments.

rhave specified "sMaLL", which means that the program will have
one code segment and one segment with combined data and stack.
You have a choice of TINY, SMALL, MEDIUM, COMPACT, and
HUGE: your assembler manua will have details on each of these.
See page 119 for more information.

112 Windows Assembly Language & Systems Programming

If your assembly program has to be linked with a high-level
program, you would normally choose the same mode that was
used for compiling the high-level code. This ensures smooth

linking.
| NCLUDEW NDOAS. | NC _ N
IDM QU T EQU 200 ;menu-identifiers: must be
IDM_ABOUT EQU 201 ;same as defined .RC file.

WINDOWS.- Here is where WINDOWS.INC i s inserted. If you look back to

INC page 94 you will see that | have till left in the above two equates.
These come from the .RC file (see page 89). If there were enough
of these, | would have put them into their own INC file and
included it in both WINASMI .ASM and WINASM1 .RC

Unlike C, external functions must be explicitly declared in
assembly language, MASM version 6 is a bit different (see page
125), asis TASM version 5 (see Chapter 13).

EXTRN UPDATEW NDOW FAR
EXTRN BEGINPAINT:FAR, ENDPAINT:FAR
EXTRN DEFWINDOWPROC:FAR
EXTRN POSTQUI TMESSAGE: FAR
EXTRN REG STERCLASS: FAR
EXTRN GETSTOCKOBJECT :FAR
EXTRN CREATEW NDOW FAR
EXTRN SHOANN NDOW FAR

EXTRN CGETMESSACE: FAR

EXTRN LOADCURSOR: FAR

EXTRN TRANSLATEMESSAGE: FAR
EXTRN DI SPATCHVESSAGE: FAR
EXTRN LOADI CON: FAR

EXTRN TEXTOUT: FAR

EXTRN MESSAGEBOX: FAR

EXTRN SELECTOBJECT:FAR

Data segment, no major change from before.. . .

.DATA

szwintitle DB " HULLO DEMO PROGRAM , O
szwinasmlname DB 'WINASM1',0
hOemFont DW 0 ;handle to CEM font.
sout DB '"Hullo Worl d'
szabout DB " Assenbl y Language W ndows Demo',0
Szt itle DB 'Karda Prints', ;
.CODE

PUBLI C WINMAIN

W NVAI NPROC PASCAL NEAR hl nst ance: WORD, \
hPrevInstance :WORD, 1pCmdLine : DWORD, nCmdShow : WORD

High-Level Assembly 173

High-level Now for the first major enhancement. If you refer back to page 98
PROC you will see this same section of code and a picture of the stack.
The parameters passed on the stack have to be accessed by direct
addressing of the stack segment. "emp worD PTR [bp+10]1, 0"
for example, to get a "hPrevInstance". However, by declaring
all passed parameters as above, they can be accessed within the
procedure by name. The example would become "cmp
hPrevInstance, 0" — simple heyl The assembler equates
hPrevInstance to [bp+10], so it does the dirty work.
PASCAL There's another important aspect to the above high-level PROC —
epilog/ the PASCAL qualifier. This eliminates the need to explicitly code
prolog the prolog and epilog code. Again, look back at page 98.
The standard prolog code, which is not part of the program listing,
is:
push bp ;save ol d bp val ue.
mv bp,sp ;set bp pointing to return address.
sub sp,46 ;operand varies (see notes bel ow).
The standard epilog code, whichisnot part ofprogramlisting, is:
mv sp,bp ;set sp pointing to return address.
pop bp *restore old bp val ue.
ret 10 ;operand depends on # of parameters to dunp.
Now back to the program listing:
;Define al|l 'automatic' data...
LOCAL hwWhd: WORD

;window cl ass structure for REGISTERCLASS(}....
LOCAL s1:WNDCLASS

;message Str
L

ucture for GETMESSAGE() .

82 :MSGSTRUCT

LOCAL
directive

The original prolog code contained "sub sp, 46" to move the
stack further down in the stack segment, allowing a free area in
which to store local data. Once again, we can diminate the need
to explicitly code this. Declare dl local data using the LOCAL
directive, with a syntax as shown above. Incidentally the default
type is WORD, so if the data is of type WORD you dont have to
declare it.

Note that you cannot initialise this data, since it is only created at
execution entry to the procedure, not at assemble time.

For an introduction to local data, refer back to page 62.

114 Windows Assembly Language & Systems Programming

Note also a particular problem due to the temporary nature of local
data, with regard to getting its address within the program — see
page 60.

Thislocal data can be referred to by name, and the assembler will
do the job of equating the labels to [bp-value]. A most useful
side-effect of local labelsis that the names are only recognized
within the current procedure, not even inside nested procedures.
This means that you can use labels elsewhere with the same names
(thisis a highly qualified statement: refer to page 120).

The syntax is (not part of program listing):

LOCAL label : type [,label: type 1[,...]

STRUC Notice the data types WNDCLASS and MSGSTRUCT above.
directive Structures are introduced back on p%e 65. Structures used by
Windows are defined in WINDOWS.INC, the Include file.
WNDCLASS and MSGSTRUCT are the names of structures, and
they can aso be used in data declarations as the data-type, as has
been done with our LOCAL declarations d and s2. d is merely
an instance of structure WNDCLASS, whiles2 is an instance of
MSGSTRUCT.
For your reference, extracting the definition of WNDCLASS from
Borland’s WINDOWS.INC (not part of program listing):
MSGSTRUCT I:S)\T/\I/?UC R NOTE:
MSHWNOAGE DWW 2 For 32-bit programming, all of
msWPARAM B\év '; these fields become 32 hits.
msLPARAM : The Companion Disk has
?
$Z§%ME BDD ? different Include files. For 16-bit
MSGSTRUCT ENDS Windows applications there is
; Aod here is the other: WINDOWS.INC and
WNDCLASS STRE v 5 WINASM60.INC, and for 32-bit
clsStyle DW ~ ke .
clsLpfnWndProc DD ? applications thereis W32.INC.
clsCbClsExtra % ';
dExt : : ,
‘éiiﬁ?ﬂé‘ta’écia DW ? There is also an extended window
clsHIcon DW ’; class, with a structure called
clsHCursor bw - WNDCLASSEX, that has an extra
clsHbrBackground DW ? fiddd. It is used with
clsLpszMenuName DD ? letd. It Is used wit
clsLpszClassName DD ? REGISTERCLASSEX().
VWNDCLASS ENDS

Now back to the program listing:

High-Level Assembly 115

cnp
je
| np

9es|st:
- Setup
mov

mv

nov
mv

nov
nov
nov
cal |

hPrevInstance, 0 ;=0 if no previous instance.
yeslst
createw n

the wi ndow cl ass structure for REGISTERCLASS{() .
sl.clsStyle, 3

s1. WORD PTR c1sLpfnwndProc, OFFSET W nasni Proc

s1. WORD PTR clsLpfnwndProc+2,SEG WinasmlProc
s81l.clsCbClsExtra, 0

sl . cl sChWwhdExtra, O

ax, hl nst ance

sl . cl sH nst ance, ax

LOADICON PASCAL,null, O/ | DI _APPLI CATI ON
sl.clsHIcon,ax

LOADCURSOR PASCAL,null, O | DC_ARROW
sl.clsHCursor, ax

s 1 rBackground, COLOR BACKGROUND
ax,CFEéE%QSZwingsmlname -

s1.WworRD PTR cl sLpszMenunane, ax

s1.WORD PTR clsLpszMenuName+2,ds
s1.WORD PTR clsLpszClassName, ax

s1.WORD PTR clsLpszClassName+2,ds

Registering The above block of code is setting up the data structure prior to

a window

cal li ng REGISTERCLASSO. Compare that with the previous
program, page 99. You will see there that we had to explicitly
access the stack segment between [bp] and [bp-46], in which the
instance of the structure was kept. (Locations greater than [bp]
contain the return address and passed parameters, while addresses
below [bp-46] is the new working area for the stack.)

WORD PTR override is introduced on page 63.

High-level Now we have another high-level feature, the high-level CALL.

CALL REGISTERCLASS() only requires one parameter, the FAR

address of the d data structure.
Refer back to how it was done before: after everything was loaded
into the structure in the stack segment, ss:[bp-46] was passed as
the FAR address required by REGISTERCLASS(). See page 99
onwards.
Below, we do the same thing but use the name of the structure
instead:

lea ax,s1

call REQ STERCLASS PASCAL, ss, ax

or ax, ax

jne createwn

| P qui twi nmain

116 Windows Assembly Language & Systems Programming

The time has come to create the window on-screen. The
high-level CALL has various qualifiers and can take multiple
parameters.

Note that if the parameters have no defined size, they default to
WORD.

Notice the qudifier PASCAL.:

createw n:

cal | CREATEW NDOW PASCAL, ds, OFFSET szwinasmlname, \
ds, OFFSET szwintitle, 36%7'06’ 1501{1 @, 4060 ,\

nov hWhd, ax

call SHOMN NDOW PASCAL, ax, nCrrdShow

call UPDATEW NDOW PASCAL, hwd _

jmp SHORT nessagel oop ;0o to main message | oop.

0, hInstance, 0,0

PASCAL,
C, BASIC,
FORTRAN,
STDCALL,
PROLOG
qualifiers

You may have noticed that | have not used the FAR PTR override
for the cal instructions. the assembler is smart enough to know
from the "EXTRN functionname : FAR” declarations that the call
should be FAR. The override could be put in, but for the
programmer’s information only.

So, what about the PASCAL qualifier? The choices here are
nothing, PASCAL, C, BASIC, FORTRAN STDCALL, or
PROLOG. The qudlifiers available vary with different assemblers.

Normally, a CALL instruction just pushes the return address on to
the stack, and the RET at the end of the called procedure pops it
off.

The PASCAL qualifer will cause the parameters to push on in the
correct order and will also remove them, assembling a “RET
number " at the end of the procedure, as discussed above and on
page 107. We require the PASCAL qudifier to cal Windows
functions.

We would use the C quadlifier to cal C functions, perhaps some
third-party C library we want to use. The effect is the same, but
the parameters are pushed on in the reverse order and not removed
by the called routine: they are removed from the stack after
execution returns from the procedure.

Whatever language we are caling, the result is that the high-level
CALL instruction assembles with al of the pushes, pops, and other
stack manipulations generated automatically — unassemble such
code and you will see something like the program of the previous
chapter.

¥This i.s the main nmessage |oop .

mainloop:

| ea ax,s2

High-Level Assembly 117

cal | TRANSLATEMESSAGE PASCAL, ss,ax

| ea ax,s2

cal | DI SPATCHVESSAGE PASCAL, ss, ax
messagel oop:

| ea ax,s2

cal | eeTMEssace PASCAL, ss,ax, null, null, null

or ax, ax

jne mainloop _
;GetMessage() returns FALSE (ax=0) if a "quit" nessage. ..
;so here we are quiting....

MoV ax, s2.msWPARAM ;return wparam to w ndows OS.
qui t wi nmai n:

ret
W NVAI NENDP

Figure 5.1: Stack upon entry to callback.

Stack starts

Stack Pointer SP — here

PShdc
An instance s3 of PSfErase
PAINTSTRUCT PSrcPaint.rcLeft
is here. s3 actually PSrcPaint.rcT op
equates to this point PSrcPaint.rcRight
[BP-44] PSrcPaint.rcBottom
PSfRestore
These field names 5 | PSfIncUpdate
are defined in PSrbReserved
WINDOWS.INC (8 words)
Note hDC equates I
to [BP-12], &
dummy equates hDC
to [BP-10]—» dummy (5 words)

Base Pointer BP
register points here —_ | DS v

old BP+1
return address
This is what (FAR)
the stack looks BP+6 IParam
like at entry
to the callback BP+10 Param
function (after BP+12 message

the prolog). BP+14—% hWnd

118 Windows Assembly Language & Systems Programming

..

PUBLI C W NASM PROC
W NASM PRCC PROC W NDOWS PASCAL FAR \
hwhd: WORD, nsgt ype: WORD, wPar am WORD, | Par am DWORD
LOCAL dummy : WORD: 5
LOCAL hDC:
LOCAL s3 : PAINTSTRUCT

WINDOWS Notice two things here: the WINDOWS qualifier, and the

qualifier "dunmy" local variable. Local declarations can take a
repeat-count, which in this case declares five words, the first
pointed to by label " dummy™” .

The WINDOWS qualifier takes care of generation of the special
prolog and epilog required for a callback function. Refer back to
page 103 for the prolog code, and page 107 for the epilog code.
MASM v6 achieves the same thing with a different syntax, while
32-bit programming uses the STDCALL language qualifier and
doesn't need further qualification.

Figure 5.1 shows the stack upon entry to the callback function.
Now for the case-logic that processes the messages. . . .

mov ax, negt ype ; get message-t

cmp ax,VW([] gF?EATE r%sg received a?ter

je xcreate CreateW1ndow()func is called.
cmp ax, WM_DESTROY ,message if a windowis closed.
je xqultmessage

cmp ax, WM _PAI NT ;meg if Wndows has (already)

,.redrawn any part of the window
;(due to size-change for exanple).

je xpaint
cmp apx WV _COMVAND; any sel ection of the nmenu wll
jne notwmcommand ; produce this nessage.
i xnenu
notvxr/TrPco
cmp ax, V\M LBUTTONDOWN ;one of many nouse
jne notmebutt:on ; messages.
j xbr eak
not \M‘ﬁ button:
cmp ax VW _CHAR ;message that a key pressed.
e Xchar
Delfault handl i of messages.
cal | DEFWN ROC PASCAL, hwd, msgt ype, wPar an] 1Param
jnp xreturn ;Back to Wndows, “which will in turn

; return to after DispatchMessage () .

Now t 0 process the messages . . .

xcreate:
cal | GETSTOCKOBJECT PASCAL,OEM_FIXED_FONT

High-Level Assembly 119

nov hoOemFont, ax ;handle to font.
jmp xbreak

xdfji't message:
cal| POSTQUITMESSAGE PASCAL,O
jm xbr eak

jmp xbreak
xpaint: .

| ea ax,s3 ,-gs -- far-addr of paint-structure.

cal | BEG NPAINT PASCAL, h\Wd, ss, ax

nmov hDC, ax ; hDC -- displ ay-cont ex.

cal |l SELECTOBJECT PASCAL, ax, hCenfont

cal | TEXTOUT PASCAL,hDC,10,20, ds, OFFSET sout, 11

| ea ax,s3 ;-- far-addr of paint-structure.

cal | ENDPAINT PASCAL, hWid, ss,ax

jmp SHORT xbreak

cmp WORD PTR 1lParam, 0 ;1 ow hal f of lparam
jne xbreak Ftest if a nenu-nessage.
I wParam | DM QUI T ; wPar am
jﬂg notquit
imp Xquitmessage
notquit:

cnmp wParam | DM_ ABCUT _

jne xbreak ;N0 _other nenu itemns.

call MrssAGEBOX PASCAL, hwnd, SEG szabout, \
OFFSET szabout, SEG sztitle, \
CFITSET sztitle, MB_ K

xbr eak: .

sub ax, ax ;returns 0 in DX:AX.

cwd ;return a 32-bit (long) value).
xreturn:

ret
WinasmlProc ENDP
END

MODEL Directive

lal ready introduced the MODEL directive on page 111 and made
reference to the TINY, SMALL, MEDIUM, COMPACT, and
HUGE memory quaifiers. The .MODEL directive can aso take
other qualifiers, for example:

.MODEL SMALL, PASCAL

120 Windows Assembly Language & Systems Programming

This sets the defaults for the program, and “ PASCAL" means that
all procedures are to be of Pasca-type, which also means that the
PASCAL qualifier is not needed in the PROC declarations.

However, high-level CALL instructions still need language
qualifiers to pass parameters automatically, so leave the PASCAL
qudifier in.

The choices of language qualifier are PASCAL, C, BASIC,
FORTRAN, PROLOG, STDCALL, or NOLANGUAGE.

The formal syntax for .MODEL is:

.MODEL memorymodel [, [language-nodifier] |anguage 1

Global
labels

The language modifier is WINDOWS, ODDNEAR, FARNEAR,
or NORMAL. The exact syntax may vary with some assemblers.
I got this information from the Borland TASM version 2.5 manual.
Specia notes on Microsoft MASM compatibility are on page 125.

We would not normally put the WINDOWS language modifier in,
because WINMAIN() doesnt need it. However, if you were
writing callback functions only in assembly language, and perhaps
the WINMAIN() in a high-level language, then yes, put it in. This
note only applies to 16-bit TASM applications.

Private and Global Data

Traditional assembly language people are accustomed to al labels
being global, but with the high-level procedures this is not
necessarily the case. Any procedure that uses a language qualifier,
such as PASCAL, automatically has private labels — at least that
is the case with recent versions of MASM — let us treat MASM as
the reference standard. All data and code labels declared inside
the procedure are private to that procedure and are unrecognized
outside it, which means of course that you can use the same labels
elsewhere.

High-level procedures are declared either explicitly, by putting a
language qualifier into the PROC declaration, or implicitly in the
.MODEL declaration.

Do note that the defaults set by .MODEL can be overriden in
individual PROCs and CALLs, as required.

So what labels are global? Those declared in the data segment or
in WINDOWSINC. This means that the structures declared in
WINDOWSINC are also global, so instances of them can be made
and accessed anywhere. So be careful not to use names that
conflict with any of those in WINDOWSINC.

High-Level Assembly 121

It is a good move to print out WINDOWSINC for reference. In
some cases you heed to know the names of the fields in a structure
or an equate, so a printout can be extremely handy.

WNDCLASS |f you look back at pages 113 and 114, you'll see how

WNDCLASS is used and how it is defined in WINDOWS.INC.
Notice the names of the fields: these are different than field names
in WINDOWS.H. In the message structure, aso shown on the
same pages, you can see the fiedlds — msWPARAM, instead of
just wParam. Dont worry about upper or lower case, as traditional
assemblers dont care. However the "ms" prefix is there to
distinguish this globa label. | have used WPARAM as a locd
label within a program, athough an assembler would complain
bitterly if it found a globa with the same name.

Global Although code labels are loca to the procedure, you can declare
override them as global if necessary:
globalplace:: :a global label (MasM) .

That’s al you need: double colons.

MASM versus TASM Scope

Be careful about differences in the scope of labels between MASM
and TASM and the various versions of each. It is wise to check
your particular manual to clarify this. The above notes are based
on reading the MASM manuals, particularly Quick-assembler
version 2.01. This version supports high-level PROCs and the
LOCAL directive, as discussed in this book. Quick-C with
Quick-assembler supports Windows development.

MASM introduced local scoping of labels by default, and looking
back through my manuas | see that v5.1 defined all labels as
global, so the concept came in after that. Version 5.1 has global
code labels only, but local to the module (a module being a source
tile that will be linked with others). TASM v3.0's VERSION
directive claims to be able to emulate MASM versions 4.0, 5.0,
5.1, and 5.2.

Incidentally, MASM version 5.2 appears to be equivalent to
Quick-assembler version 2.0 1.

TASM's @@

TASM's native mode is a bit different — if you want a label to
have scope only within the current procedure, prefix it with "@@"
and put the LOCALS directive right at the beginning of the file.
This holds true for code labels and all labels defined by high-level
PROCs and LOCAL directives.

122 Windows Assembly Language & Systems Programming

LOCAL
directive

So, what about TASM's default treatment of labels as global?
Quite frankly it's a nuisance. Let me quote the TASM v3.0
manual:

“All argument names specified in the procedure header,
whether ARGs (passed arguments), RETURNS (return
arguments) or LOCALSs (local variables), are global in
scope unless you give them names prepended with the
local symbol prefix.”

Y ou could have the habit of putting "@@" in front of every label
that is to be local to a procedure. This seems ok in principle,
except that | encountered assembly errors that do not make sense
to me. Apart from my negative personal experience, you can take
it as good policy to use"@@" prefixing as much as possible when
using TASM. Dont forget to put the LOCALS directive at the
start of the file.

Look ahead to Chapter 6 for examples of using'@@". | have had
alot of trouble using "@@" in WINASMOO.INC (Chapter 6) —
you can seein thelisting on page 168 that | defined “now” asa
parameter passed to procedures, which according to Borland's
statement above, is global. Yet | have reused it in many
procedures, and in each case it assembles correctly. This
Indicates, though | cant find it mentioned anywhere in the manual,
that the loca definition of “now” overrides any other local
definitions.

So "now" is not really global. It only exists on the stack anyway,
so sensibly it isonly valid for the life of the procedure in which it
is declared. Borland, would you kindly be a little more precise.
The only difficulty with “now” would be if you had a statically
declared “now” as well, say in the data segment — then you have a
clash. Then it is essential to use"@@" or another name.

Borland has tidied up label scope by using the C-like approach
found in MASM version 6 in their TASM version 5.0. See
Chapter 13.

Life of Automatic Data

| have mentioned TASM's apparently anomal ous handling of local
symbols. LOCAL data of course exists on the stack and is created
on entry to a procedure and destroyed on exit.

However, it will still be in existence at lower level nested

mrmseesdi irAae Tlhaat i | YA L AAata AAAl aradd AF +laAa LeAad: st vy ~F

. RC file

High-Level Assembly 123

procedure A will be "accessable" by procedure B if procedure B is
nested within (called from within) procedure A.

What I'm talking about here is the availability of the data, not the
scope of the symbols. Scope is discussed above, and varies with
MASM and TASM.

There is no problem with the availability of procedure A's data
conceptualy, because procedure B will be using the stack further
down in memory. The stack grows with a procedure call and
shrinks upon exit. What is not so apparent is that any LOCAL
data declared in WinMain() is also available in a callback. A
calback is not what you immediately think of as being nested
within WinMain(), but it is, even though the call to it has gone via
DispatchMessage() and Windows. See Figure 5.2:

Figure 5.2: Accessing WinMain() local data.

After prolo Stack T

grows

Entry point | Callback LOCAL
to callback =gl data,

After prolog Stack T
grows.

Entry point WinMain LOCAL.
to WinMain s‘t_ data.

Assembling and Linking

That's it — a complete assembly language program! Of course,
you do need those other files to assemble and link. I've listed them
here for your convenience. Note that the Make file is designed for
Microsofts NMAKE.EXE, but you should be able to get it going
with other Make programs. | prefer NMAKE, even for “making”
Borland code. What follows is particular to TASM. Look at the
previous chapter for specifics on .RC, .DEF, and .MAK files for
Microsoft.

This is the WINHULLO.RC file (in \SKELETN2). Nothing new
here. ..

//these (arbitrary) equates could have been in an Include

//file. ..
#tdefine

IDM_QUIT 200

124 Windows Assembly Language & Systems Programming

#define | DM ABOUT 201
wi nhul | o MENU
BEG N
POPUP "File"
BEG N MENUITEM "Quit", IDM_QUIT
MENUITEM "About . ", IDM_ABOUT
END
END

.DEF file Now for the definition file. . .

NAVE WINHULLO

DESCRI PTI ON "Deno ASM hul | o program
EXETYPE W NDOWE

STUB 'WINSTUB.EXE'

CODE PRELOAD MOVEABLE

DATA PRELOAD MOVEABLE MJLTI PLE
HEAPSIZE 1024

STACKSI ZE 8192

EXPORTS W NHULLOPROC

Note that some LINK programs are case sensitive and some are
not. Borland's TLINK.EXE prior to version 2.0 is not, while
version 2.0 onwards is. This did create some problems for me,
when upgrading. One problem | found was that the line " Nnave =
WwINHULLO" i n the .DEF file had to bein capitals.

Borland | have designed the WINHULLO.MAK file for Borland's TASM
Make file and TLINK to be comprehensive and well documented.

#NOTE this Make file has been nodified for Borland C++,
to be used with TASM and TLINK, however 1'm still using
Mcrosoft's NMAKE.

To run this file: NVAKE W NHULLO. MAK

fn = winhullo
all:$(fn) .exe

| pat h = \borlandc\1lib #path for libraries
ipath = \Dborlandc\i ncl ude #path for Include files.
epath = \borlandc\bin #path for EXEs.

sw= /¢ /n /v /Tw /L$(lpath) #sw tches for_ tlink.
/n =ignore-default-1libs, /Tw =generate Wndows exe,
/L$(1lpath) = |lib path, /v =debug-on.
ﬁ (lj\lo_te that these paths all assune you are in the sane
rive.

$(fn) .obj : $(fn) .asm
tasm /zi $(fn);

High-Level Assembly 125

-r =dont append to exe, -x=dont| ook in | NCLUDE .
environnent-variable for incl-files, -i =look in this
path instead....
fn) .res: $(fn).rc

rc -r -x -i$(ipath) $(fn).rc

cOns=W ndows small start-up-lib, cw ns=Wndows small

Standard run-time-library, cs= Standard-run-tine lib,

i mport=access to Wndows built-in library functions.

(fn) .exe : $(fn) .o0b] $(fn).def $(fn).res

[ink $(sw) cOws $(fn),$(fn),$(fn),import cwins cs, $ (fn) .def
rc /30 -x -i$(ipath) $(fn) .res

—~+r

that Bor|and C++ v2.5 nanes the Wndows |ibrary
.LIB, while v3.0o nanes it CW5.LIB. The BorlandC
me library is CS.LIB, which could be placed
ately after CWs, if you need it. Note that the
X
[

= ——
2522
@D
28~

n-

stfix designates the small nodel.

hat if you use the tools fromthe SDK3.1, such as
, and you want your programto work with both
3.0 and 3.1, put "/30" in second execution of
as shown. Also your source program should have
NZVER = 0x0300" before the WN .INC is included, if
sing a WNDOAS. | NC derived from WINDOWS.H supplied
th™SDK 3. 1. _ _ . _

my WINDOWS.INC on the Conpanion Disk is derived from
DK 3.0, wii€th avaoids certain problens.

g

=]
Q.
o
%

cEAR=
58 _

HHF TR HFR
= 3
2
m

[

When you type this in, there is no need to put in al the comments,
but be careful about unnecessary blank lines, and leave a blank
line where | have put one. There are certain syntax reguirements
that can be messed up otherwise. Note that it's on the Companion
Disk (\SKELETN2), to save you al that trouble.

The MAK tile shows where it expects al of the files to be located,
but you can make changes as necessary. You could even put
everything in the one directory, as | suggested, as a quick and dirty
option for Microsoft, if the SDK isnt instaled (see page 86).
Ditto, you could do this with the Borland tiles, but if you have the
complete distribution disks, then why not install properly, in which
case the files will load into the above directories by default.

MASMG6 versus TASM

MASM version 6.00 is a curious beastie. It was in some respects a
disappointment, especialy as | acquired it soon after obtaining
TASM v3.0 and had been spailt by the wonderful new features
Borland had incorporated into their assembler.

However, while MASM may not be OOP-aware, it does make
ground in other ways. Hmmm — MASM v6.0 isnt even

126 Windows Assembly Language & Systems Programming

CMACROS
Include file

TASM's
WINDOWS
qualifier

Windows-aware — but its C-like features did (in time) endear
themselves to me. Note however, that Microsoft did make MASM
much more Windows-aware with the release of version 6.1.

MASM v6.00 is a stand-alone product and as such cannot be used
for Windows development (again, corrected by 6.1). The user’s
manual has barely aline or two on Windows (the documentation
for 6.1 is aso a disappointment in this regard). The product (6.0)
is for DOS and OS/2 development, and those interested in
Windows programming are referred to the SDK.

Obvioudly, if you have v6.0, upgrade it! Note however that you
still need the SDK with MASM v6.1. To quote from the Microsoft
Programmers Guide, supplied with MASM vé6.1 (page 258):

“MASM 6.1 does not provide al the tools required to
create a standalone program for Windows, To create
such a program, called an “application,” you must use
tools in the Windows SDK.”

The required tools, such as resource compiler and libraries, arent
there, so you need the SDK or one of Microsoft's recent
Windows-aware higher level languages. The 6.x package does
have CMACROS.INC, which Is required for Windows
development, but it is not described in the manual. Once again,
the SDK is the place to look.

WINDOWS Qualifier

TASM v3.x (TASM3) has extended the syntax of the language in a
very systematic manner, notably with the extended PROC and
CALL, and most especialy the WINDOWS qualifier. Curioudly,
Microsoft has only gone partway aong that road, with an extended
PROC, very much like TASM's, but no WINDOWS qualifier.
Microsoft doesnt have an extended CALL either but has opted for
something else called INVOKE, which isreally an extended call.

MASM v6.x's (MASM6's) lack of a WINDOWS qudifier for
PROC means that declaring a callback PROC becomes an absolute
pain. Rather than resort to CMACROS.INC and
PROLOGUE.INC to insert the required prolog and epilog code,
how much simpler it would have been if Microsoft had thought
ahead just that little bit further.

There is a mechanism, using “OPTION PROLOGUE” and
“OPTION EPILOGUE” directives, to overrride the default prolog
and epilog, and there is a method for suppressing default prolog
and epilog, as well as a method for restoring the defaullt.

MASM6
skeleton
program

INVOKE
high-level
call

High-Level Assembly 127

The issue of prolog and epilog have become more streamlined
with 32-bit applications, requiring only the STDCALL qualifier —
see page 78.

Anyway, | guess we have to “go with the flow”, so the 16-bit
skeleton program on the Companion Disk, in directory
\ASMDEMO?2, and listed at the end of this chapter, uses
CMACROS.INC. Note that you cant see it explicitly included in
the listing, as that is done indirectly by the WINDOWS.INC tile.

The Companion Disk aso has a similar program in \ASMDEMOL1,
which has the startup code in the program, rather than as a separate
module.

Prototypes

The program at the end of this chapter can be assembled under
MASMS6, or more correctly, ML. As the product is not terribly
compatible with earlier MASMs, Microsoft has renamed it, though
you do have the option of switching on compatibility with version
5.1

MASMS6 has developed features that make it look more like C,
most notably the use of prototypes. These are skeleton
declarations of a procedure, which you place at the beginning of
the file, and are used by the assembler for syntax and type
checking. These are best illustrated by an example, and an
excellent example presents itself in the use of INVOKE.

Borland introduced the equivalent with TASMS, though they have
given it adifferent name: PROCDESC. See Chapter 13, page 308.

MASM6 CALL is definitely low level, so to call Windows
functions in the convenient manner that we have become
accustomed to in this chapter, we need to use INVOKE instead.

In fact, TASM3's high-level CALL is quite primitive alongside the
sophisticated INVOKE, as youll see.

The first line shows the call to MESSAGEBOX() as we would do
it with TASM:

;TASM 3.00 high-level call...
cal | MESSAGEBOX PASCAL, hwnd, ds, OFFSET szabout, ds, \

OFFSET sztitle, MB_OK

; MASM 6. 00 high-1evel call...
| N\VOKE MESSAGEBOX, hwnd, ADDR szabout, ADDR sztitle,\

MB_OK

PROTO

declaration

INVOKE does the same job! However if you put it in as shown, it
won't work, because something else is required — the prototype.

128 Windows Assembly Language & Systems Programming

You can only use INVOKE to call a procedure that has a PROTO
declaration, even if the procedure is external, as in the case of
Windows functions.

Previously | used EXTRN to declare MESSAGEBOX() as
external, and that is still recognized by MASM, but PROTO can
be used to replace EXTRN. So, for each and every Windows
EXTRN declaration, replace with PROTO, as shown:

; TASM

(and MasM) external declaration...

EXTRNMESSAGEBOX : FAR

:MASM 6. 00

prototype for | NVOKE. . .

MESSAGEBOX PROTO FAR PASCAL,. HWD,. :LPSTR. :LPSTR. :WORD

Passing
32-bit
values

ADDR, ::

Hto.INC
convertor

You should find the syntax of PROTO to be self-explanatory. The
parameters have to be declared, with their types, and can have
arbitrary (or no) names. You can aso get away with declaring dll
types as WORD (16 bits) rather than more specific 16-bit types
such as HWND or .BOOLEAN.

Actually, it's not PROTO itself that replaces EXTRN, rather
INVOKE defaults to external, in line with C's default behaviour.

Notice how | passed the FAR address (long pointer) in TASM
compared with ML. In the PROTO declaration above, you can see
the data type HWND, which is 16 bits, but LPSTR is a 32-bit
value (Long Pointer to STRing). With TASM, | passed the
segment:offset as two separate items (though it is possible to
declare a 32-bit pointer), but this will cause an assembly error with
ML, due to a clash with the PROTO declaration.

The idea behind this is the extra safety checking that high-level
programmers are accustomed to. ML has two very convenient
mechanisms for defining a 32-bit parameter. ADDR is a directive
that will pass the NEAR or FAR address as appropriate. The other
mechanism is where we pass a FAR address in two registers. In
the skeleton program you see this done often: in ML we combine
them with double-colons, for example: "ss::bx". You can see this
in action on the Companion Disk and the listing a end of this
chapter.

Microsoft has put a lot of thought into making MASM6 behave
like C, despite a very different syntax. There is a utility caled
H2INC.EXE, that will convert a C Include file (.H) into an
assembler Include file (INC). Most importantly, if used on
WINDOWS.H, it will produce the prototypes for the Windows
functions, so we dont have to type them in. This WINDOWS.INC
is peculiar to MASM6 and dont expect it to be usable by TASM.
The reverse is ok however — MASMG6 happily reads the

CMACROS.-
INC

High-Level Assembly 129

WINDOW.INC that Borland supplies with TASM (and licenced
from Microsoft actualy).

| used H2INC to generate a WINDOWS.INC for the example
program, though note that | had to edit it somewhat (the .INC file)
to get it to work with my assembly program.

Callback Design

So, you can very happily go through the earlier TASM program of
this chapter replacing CALLswith INVOKEsand EXTRNs with
PROTOs (or delete the EXTRNs entirely). However, a major
problem still exists: the lack of a WINDOWS qualifer for PROC.

This means that you cannot have a high-level PROC declaration
for the callback function, and you have to resort to a macro or
insert the prolog and epilog code manually. The demo program
uses CMACROSINC to achieve this.

Without the high-level PROC you cant have the LOCAL
directive, for convenient creation of data on the stack
(CMACROSINC gets us around this problem).

Because a program isnt going to have too many callbacks, it's not
a total disaster, just a nuisance, if you dont want to use
CMACROSINC. The manual approach is to insert the code as
follows:

:Prolog code for callback function.

<
o3
ke]
0
o)

Epilog code

e me we e he e ws

NN

You can have locd data on the stack, but you will have to
manipulate the stack directly. To get at al of the data on the stack
segment, you could do something like this:

hwnd TEXTEQU <WORD PTR [bp+14]>
nmegtype TEXTEQU <WwORD PTR [bp+12]>
wpar am TEXTEQU <WORD PTR [bp+10] >

130 Windows Assembly Language & Systems Programming

lparam TEXTEQU <DWORD PTR [bp+6]>
dummy TEXTEQU <WORD PTR [bp-10] >
hdc TEXTEQU <WORD PTR[bF- 12]>
s3 TEXTEQU <[bp-(12+ SIZE PAINTSTRUCT) 1> .
LEA sp, s3 ;move stack to’ free region.

TEXTEQU, Something along these lines will give you access to the labels

EQu within the callback. Note that | used TEXTEQU, because EQU
cannot be used for text aliasing with ML, a mgjor divergence from
earlier MASMs and from TASM. Notice that the text to be aliased
must be inside "<>".

Anyway, this is academic.

Other Incompatibilities

PROC syntax So what else needs changing . . .

differences There is a dight difference in the syntax of the high-level PROC
directive. If you look back to the declaration for WINMAIN, you
will see that it started like this: "WINMAIN PROC pascaL NEAR
hi nst ance: WORD". With MASMG6 it has to be rearranged
likethis: "WINMAIN PROC NEAR PASCAL, hinstance: WORD

With TASMS, Borland has allowed MASM high-level PROC
syntax.

STRUC | also came across an interesting problem with fields of a structure.

assembler Incidentally, MASM6 alows nested structures, which previous

differences versions didnt. Nesting is vital for OOP, though MASME6 is till
nothing like OOP-aware.

The problem is that the program of this chapter has a couple of
lines like this:

;where cl sl pszmenunane is a 32-bit field of
»structure-1nstance sl ..

mv WORD PTR sl.clslpszmenuname, ax

nmv WORD PTR sl1.clslpszmenuname+2,ds

| loaded each half of the field with separate instructions. MASM
objects to a field being accessed in halves, so | had to resort to:

;MASM6's sol ution .
| ea di, s1l.clslpszmenuname
nmov [di],ax
nov [di+2],ds

Oh, and make sure that your callback procedure name is all capital
letters.

Label scope
differences

Which one?

High-Level Assembly 131

Anocther mgjor differenceisin thescope of labels. | have covered
that topic beginning on page 120. Thisis one aspect of MASMé6's
move toward the code integrity we expect from a high-level
compiler. Prototyping is another. | think that many serious
programmers will choose MASM on thisbasis, and it isan area
where Borland had to play catch up, witFTASMS.

All of these comments are, of course, my personal opinion, not the
final truth engraved in stone, and | suggest that potential buyers
consider most carefully what features are most important. Have a
look at reviews in magazines. If OOP is your thing, then look
closely at TASM. Do bear in mind that my comments are based
upon particular versions, and even “maintenance releases’ of the
same version number can have significant improvements.
Therefore, take al of the above comments with a pinch of salt, and
check out the features for yourself before buying.

One interesting point is that MASM6 comes with Programmer’s
Workbench (PWB), an editor and IDE, as well as CodeView
debugger. Borland does not provide an editor or IDE, but the
Turbo Debugger is very nice.

| have made some further comments on this on page 309.

MASM Assembling and Linking

Resource compiling and linking are as per Chapter 4, though you
can use the Borland TLINK and COWS.OBJ, CWS.LIB and
IMPORT.LIB library files, instead of the Microsoft equivaentqif
you wish).

Y ou only need to change one line in the Make tile, that of the
assembly process:

ML

/c

$ (fn) . ASM

where /c suppresses linking (ML normally automatically invokes
the linker), and $(fn) is the macro for the filename.

If you want debugging information so the source file can be traced
by the Codeview debugger, then you will need the /Zi switch and
you will need to use Microsoft’s LINK, with the /CO switch- the
example Make tile on the Companion Disk to show thisis named
MASMG60.MAK.

Thisisthe command line | used to generate WINDOWS.INC from
WINDOWS . H:

H2INC /C /Gc WINDOWS.H .

132 Windows Assembly Language & Systems Programming

MASMG6 Program Listing

; ASMDEMO2 .ASM --> ASMDEMO2.EXE W ndows demp program

; This skel eton assenbly | anguage program has been witten
;for Mcrosoft MASM (ML.EXE) v6.1. (Do NOT use
;Borland's TASM). _

;1t uses PROLOGUE. INC to force the correct W ndows
;prolog/epilog on all FAR PROCs.))

;This program does NOT have the startup code built-in.
;Note that Borland provide startup object nodule as

; CONS. OBJ (small nodel) and Mcrosoft provide

: APPENTRY. with v6.1. One of these nust be |inked.
;Note that APPENTRY.OBJ should be for the snall nodel, to
;suit this program-- if not assenmbl e APPENTRY.ASM wth

;switches as described in APPENTRY. ASM conment s.

.MODEL SMALL

WNVER EQU 0300h _
?WNPROLOGUE EQU 1 ;forces Win prolog/epil on far procs.
INCLUDEwinasmé60.INC ;this i S not the sane W NDOWG. |_ﬁc
;used hy the TASM prograns. It is
;generated by H2INC.EXE, and contains
;prototypes. Cenerated by...
; H2INC /C /Gc WINDOWS.H...

IDM_QUIT EQU 100 ;menu-identifiers -- nust be
IDM_aBouT EQU 101 ;same as defined in .RC file.
EXTRN _ astart:FAR ¢startup code, in APPENTRY. OBJ
; (referenced at END)
.DATA
szwintitle DB "HULLO DEMO PROGRAM , 0
SzASMDEMOname DB "ASMDEMO2', 0
hoemFont DW 0 ;handle to CEM font.
soutstring DB 'Hullo Worl d' .
szabout str DB "Assenbly Language W ndows Demo!',0
. ; messagebox
sztitlestr DB 'Karda Prints!',0 ;
. CODE
PUBLI C WINMAIN
WINMAIN PROC NEAR PASCAL, hlnstance: WORD, \
hPrevl nstance: WORD, 1pCmdLine:LPSTR, nCmdShow. SWORD
LOCAL @WwWhd: HAND
LOCAL s1:WNDCLASS
LOCAL 52:MSG
CNp hPrevInstance, 0 ;=0 if no previous instance.
je yeslst

createw n
yeglg?: _
;Setup the window class structure for REGISTERCLASS()...

High-Level Assembly 133

mVv sl.Style,3

lea di,s1.lpfnwnd

nov [d1] OFFSET A I\/CPROC
nov [d1+2] sec ASMVDEMOPROC
mv si.ChC sExtra, O

nmov sl . CbWhdExtra, O

nov ax, hl nstance

nmov sl . H nstance, ax

i nvoke LOADI CON, null, 1Dl APPLICATION
MV sl.@HIcon,ax
invoke LOADCURSOR, null, 1DC_ARRON

nmov sl. @4Cur sor, ax

mov sl . hbrBackground, COLOR BACKGROUND
mv ax, OFFSET szASMDEMOname

| ea di,sl.lpszmenuname

mov {di) ,ax

nov [di+2],ds

| ea di,sl.lpszclassname

nmov [di],ax

nov [di+2],ds

lea ax,
i nvoke REG STERCLASS, gs::ax
or ax, ax

| jne createwn
| j NP qui twi nmai n

createw n:
i nvoke CREATEW NDOW ADDR szASMDEMOname, \
ADDR Szwintitle, 00CF0000h 150, O\
400, 300, O, O, hInstance, 0
mv @Whd, ax

i nvoke SHOWN NDOW ax, nCmdShow
i nvoke UPDATEW NDOW @hwnd _
jmp SHORT messagel oop ;go to the main message | oop.

;This i S the main nessage |oop, in which Wndows waits
:for Messages
nalnloop

| ea ax,

;nvoke TRANSLATENESSAGE 88::ax

ea ax,

i nvoke DISPATCHNESSAGE 8s::ax
nessageloop

| ea ax,

i nvoke GETNESSAGE ss::ax, null, null, null

or ax, ax

| ne mainloop

;GetMessage () returns FALSE (ax=0) if a "quit» nessage. ..
;80 here we are quiting..
MOV ax, s2.WPARAM “;return wparamto wi ndows CS.

qui twi nmai n:
ret

134 Windows Assembly Language & Systems Programming

W NVAI NENDP

ASI\/DEI\/[PROC PROTO FAR PASCAL, : HWND, :WORD, :SWORD, \

- SDWORD
ASMDEMOPROC PROC FAR PASCAL, ihWid: HWRD, \
i Message: WORD, i wParam SWORD, i | Par am SDWORD

LOCAL dummy [5] :WORD
LOCAL @hDC:HDC
LOCAL 53 : PAINTSTRUCT
mov ax, i message get massage type.
cnp ax, W E; message feceived. after CreateWindow ()
e Xcreate ;function is call ed.
mp ax, WM _DESTROY meissagg received if a window is
; close

j exqui t ness ﬁ(\;
cnp - ax, WV PAINT ;message received if Wndows has
(aIready) redr awn any part of the window (due to
;a size-change for exanple).

je xpaint
CnE ax, WM COMMAND ; any sel ection of the menu will
Jn notwmcommand ;produce
Jv\r}Pc Xmenu ;this message.
not'wircomma

nd:
nB ax, W LBUTTONDOM ;one of many nouse nessages.
Jn ngt wm but ton
xbr eak
not]v\rm but t on:
"Q(ax VW CHAR ;message that a key pressed.
J exch

def handl er:
;Default handl i ng of messages.
i nvoke DEFW N ROC, i hVind, |rressage i wPar am ilParam

]np Xreturn

.................................

xcreate

i nvoke GETSTOCKOBJECT, CEM FI XED- FONT
mov hCenfont , ax ;handle to font.
jmp Xxbreak

Xqui t massa% e:
i nvoke POSTQUI TMESSAGE, O
]np xbr eak

xchar:
jmp xbreak

xpai nt:
| ea ax.,er sesrax.-- far-addr of paint-structure.

i nvoke BEGINPAINT, ihWnd,ss: ;ax
MoV @hDC, ax ;hDC -- di spl ay-context, required
:before can output to screen.

;For this sinple deno, any redraw of the Wndow will
;cause output of our "hullo world" string..

High-Level Assembly /35

i nvoke SELECTOBJECT, ax, hCenfont

i nvoke TEXTOUT,@hDC, 10,20, ADDR soutstring,11

|l ea ax.s2 ,-- f'ar-addr of pai nt - structure.
i nvoke ENDPAINT, ihWnd, ss: :ax

jmp SHORT xbr eak

cmp WORD PTR ilpParam,0 1 owhal f of lparam
jne xbreak ;test if a nenu- nessage.
cmp iwParam IDM QUIT ; wPar am

jne notquit

inp Xquitnessage
notquit:

emp iwParam | DM_ABCUT

j ne xbreak ;no other menu itens.
;let's put_u nmessage about this program.

i nvoke MES AGEBOX ihwnd, ADDR szabout str, \
ADDR sztitlestr, 'MB_OK

xbr eak:
sub ax,ax ;returns 0 in DX AX (cal I back functions
cwd ;return a 32-bit (long) value).
xreturn:

ret
ASMDEMOPROC ENDP

END astart Fname of startup code.

Run-time Hereisan exercise. Locate the above program in \AASMDEMO2

N/ 74 on the Companion Disk, and assemble and link it. When you have
.ELSEIF/ succeeded, have a go a modifying the code with something
*E|SE wonderful availablein MASM6. Borland did not catch up with

this capability until TASMS.

.1 F ax==WM_CREATE ;*Runtime* | F/ ELSElI F/ ELSE
; (note that nesting is allowed).
.ELSEIF ax==WM_PAI NT

.ELSEIF ax==\Wl DESTROY
. ELSE

.ENDIF

If you cant quite see how to use this, look at the skeleton in
Chapter 13.

Run-time high-level IF/ELSEIF/ELSE constructs tidy up your
assembly code enormously, and I'm hooked on it. Note that it
assumes nothing and does not change any register values. This

136 Windows Assembly Language & Systems Programming

means that you can jump out from anywhere and jump around

inside, like this:
AF ax==0
jmp placel ;goto anywhere, quite legal.
.ELSEIF ax==
placel :
.ELSEIF ax==2
jmp place2
.ENDIF
place2:

Your mission, should you decide to accept it, is to introduce the
high-level decision constructs to the above example program.

You will also find other high-level constructs in the MASM6 and
TASMS5 manuals, such as DO/WHILE.

Program Design

Preamble

This chapter is about interfacing assembly language with C and
C++ and about one aspect of program design that is an outcome of
the interface with C++ — objects. | have not gone into any
genera methodology of software design.

History of Programmers are migrating from C to C++. Ditto with other

OOP and languages, and of course the new kid on the block is Java You

assembly have got to think in terms of objects. Early in 1991 | put a lot of
thought into object oriented assembly language, including the
presentation of a paper.
| developed techniques for OOP, but found the assemblers of that
time to be somewhat inadequate. So about mid-1991, | wrote to
Borland in the USA explaining in detail what was wrong with their
assembler and what it needed to be able to handle objects. Then,
in February 1992, | was fascinated to learn that Borland had
released a new assembler that they advertized as “object oriented”.
| like to think that |1 was one of their inspirations.

A rationale Why should you even bother with objects when programming at
for 00P the assembly level? The answer is very simple:

1. To interface with 00 languages such as C++.

2. To “improve” the development and maintenance of the
assembly language code.

137

138 Windows Assembly Language ¢ Systems Programming

What is
ooP?

Windows
assembly,
generic
Windows,
386/486

architecture,

00P, C++!

Class

Object =
instance

The much-touted advantages of OOP also apply to assembly
language. Do you want reusable and maintainable code? Do you
want to program faster and debug faster? Then go for objects.

In a nutshell, OOP is just the use of structures. In C++ the
STRUCT declaration is amost exactly the same as CLASS. The
reason is very smple: aclassis only a structure (with some bells
and whistles!). Look back to page 65 to clarify what structures are
and how they are used, and youVve already grasped the principle of
objects. Objects are just instances of a structure, or the actual
copies of the structure that are created. In Chapter 5, | used
structures in a skeleton program.

OOP terminology is what confuses everything.

In the second half of this chapter | have shown the impressive
power of OOP when applied to assembly language, but for now
you need to know afew basics. . .

Object Addressing

C++ hasalot of terminology that can be very intimidating. Y et
the underlying concepts are quite smple.

It is also quite true that you can read an explanation from a C++
manual or textbook a dozen times, and not fully grasp it. But if
ou were to see how that concept isimplemented at the assembly
evel, it would become clear.

Thisis one reason why | am in favour of this book being used as a
prerequisite, not just to Windows, but aso to C++ programming.

The way we write a program using 00 techniques is by grouping

data and code that naturally belongs together into a class (Structure

definition). A structure need not contain just data; it can also have
pointers as fields in the structure (or a pointer to another structure
of pointers), and this is one of the key features of the 00

technique.

Calling a Function

With C++ there are objects, and a procedure or function (now
caled afunction-member or method) is part of aclass. The objects
areinstances of aclass. Datais aso part of the class. An instance
is a complete copy of the class, with possible unique
initialisations, created In memory.

CAlLing a
function
member
(method)

Program Design 139

For now we will focus on just one implication of this. how
functions are called.

After all, that's something we want to do all the time while writing
a program. A simple CALL ingtruction is what we are familiar
with, and of course, as you saw in Chapter 5, there are high-level
qualifiers for calling Pascal or C procedures/functions and for
passing parameters. This simplifies the stack manipulation, but
now, with procedures that are part of a class, we have something
more to consider.

Say that you have a procedure in a program, and for argument’s
sake give it a name: TEXTOUT(). Also say that it uses the Pasca
stack-handling convention, for no other reason than consistency,
since the externa windows functions do.

Our problem is that we want to call this function from somewhere
ese in the program. No problem, you think: just do this:

cal |

TEXTOUT PASCAL,paraml,param2

Object
pointer

32-bit
coding

(Assume also that it requires two parameters.)

Yes, this will work, or at least will get execution to the TEXTOUT
routine, but there are other factors to consider . . .

o THIS
o Polymorphism

“THIS’ is a keyword in Borland assembly language and C++. It is
just an equate:

THIS = address of current object.

Borland C++ often uses the Sl register to hold THIS. Generaly,
an “object pointer” points to the current object or whatever object
we wish to deal with.

A little note on the side that will help as you study this chapter.
The use of Sl to hold THIS applies to 16-bit code. For 32-bit
code, it becomes ESI. Quite simple. In general, convert any
examples in this chapter to 32-hit code by prefixing the registers
with “E". Any reference to FAR pointers may not be relevant
because the 32-bit addressing can address the whole 4.3G with just
the offset.

Also, when writing 32-bit Windows applications, use the
STDCALL language qualifier (see .MODEL on page 111), not
PASCAL. STDCALL convention is that parameters are pushed
right to left, with stack cleanup in the called function.

140 Windows Assembly Language & Systems Programming

“Polymorphism” means that TEXTOUT() can in fact be many
different routines, all with the same name.

At this point some code will help:

.DATA
W NDOW STRUC
active DB 0 ;example data-member.

TEXTOUT DW textoutmain ;example function-member.
W NDOW ENDS

WINCLASSA STRUC 'sub-class of W NDOW
WNDOW < > ~d.nherits everything
W NCLASSA ENDS ; from W NDOW
WINCLASSB STRUC ;Ditto, but a function override.

WNDONV <« , textoutdl g >
W NCLASSB ENDS

;crearing instances . . .

windowl W NCLASSA < >

w ndow2 W NCLASSB c¢ »>

wi ndow3d W NCLASSA < > ; ec

.CODE
lea si,windowl _
cal| textoutmain PASCAL,parl,par2,si
call [si] .TEXTOUT PASCAL,parl,par2,si

"i ka si,window2 _
cal| textoutdl g PASCAL,parl,par2,si
call [si].TEXTOUT PASCAL,parl,par2,si

textoutmain PROC PASCAL p1,p2,THIS

;this is the textoutmain procedure . . . etc...
An object Further down in the code you would have to have the two
combines procedures. textoutmain() and textoutdlg().
code and Look very carefully at the above listing. First | defined a class
data (structure) called " wnpow' , with a datamember “active” and a

function-member "TEXTOUT". The latter is a pointer to a

procedure’ called "textoutmain"’

! The purists are probably very unhappy with my interspersionof t he words "procedure" and
"function" asthought heymean the samething. For ourpurposesthey do. So there!

2 Most assemblers do not let you put a forward-reference into a structure field. It must be done
when the instances are created. In this example, “textoutmain” would have to be placed in the
"<>" portion of each instance-declaration. This is messy. TASM v3.0 is the first truly object
oriented assembler, and has a mechanism for alowing forward-references, as shown in the
second half of this chapter.

The
polymorphic
principle

Object
pointer
passed on
the stack

Program Design 141

TEXTOUT could be a routine that sends text to a window, but
there could be many such routines designed for different output
mediums. In this case | have arbitrarily created a class,
WINCLASSB, that overrides the pointer with textoutdlg(), while
WINCLASSA does not.

The key point here isthat | can call TEXTOUT, but because it is a
pointer, the actual routine that gets caled depends upon what is
stored in that field. In the case of instance windowl it is
textoutmain(), and in the case of window? it is textoutdlg().

You could imagine two windows of different types on the screen,
requiring different textout routines. C++ uses THIS to specify
which instance (object) is currently being referenced.

Each sub-class (and indeed each instance of a class) can have its
own TEXTOUT function, so our code must be able to distinguish.
Look again at the above listing to see how | have done it.

| have disassembled a lot of C++ code to find out what makes it
tick. Borland usually put the value of THIS into SI, which may be
worth noting if you have to interface with C++ code. When
coding a the assembly level, we need to think carefully where we
want to store THIS, if anywhere at all.

Notice that | aso used SI’ to hold THIS (see the code examples in
previous listing).

Whenever Borland C++ calls a function-member, it always passes
THIS on the stack (last parameter), so that the called function
knows which object it is dealing with.

Notice that in the PROC declaration, | gave the passed THIS
parameter the same name — in practise you would have to use a
different name, because the assembler will object to one of its
keywords being used as a label.

Early Binding

The first call in the above listing is an example of early binding.
Why? Because | have hard-coded the address of the function |
want to cal into the CALL instruction, in this case textoutmain().

' A warning here, though, isthat if your instances are LOCAL and if you use amemory model in
which data and stack segments are different, then there are potential problems with using SI. A
memory access to the stack segment requires BP-relative addressing or an SS: override if using

Sl

It is possible for the object to be located in some other segment entirely, and in that case THIS
would have to equate to a FAR address, such as ES:[SI]. This comment does not apply to
32-bit programming, which uses a FLAT memory model in which there is only one segment.

142 Windows Assembly Language & Systems Programming

Thijs v_viII be an immediate-mode instruction and is fast, but it is a
deviation from ‘pure” 00 principles.

C-t+ will normally compile a C++ program into cals having early
binding, except for the case where the call is to take polymorphism
into account.

Look at the rest of the line. | passed two parameters, arbitrarily
named "parl" and "par2". At the end | passed the address of the
object that is to be acted upon. Further down in the actual code for
textoutmain(), see how | used a variable THIS to receive that
address. This is important: we must always pass the address of the
object to the function.

Late Binding

The second call in the above listing (page 140) is an example of
late binding. The meaning of this is “cal the TEXTOUT function
in the instance windowl”. Ancther way of writing it is:

call [OFFSET_windowl + TEXTOUT]

This is non-immediate and will call the function pointed to at
offset windowl + TEXTOUT, which in this case is textoutmain().
The end result is the same as for early binding, except that this one
cdl instruction will cal whatever TEXTOUT function we want,
simply by setting S| appropriately beforehand.

lea si,

window?2

call window2.TEXTOUT PASCAL,parl,par2,si
call [si] . TEXTOUT PASCAL,parl,par2,si

This code calls textoutdlg(). The last two lines are actually the
same, due to the way in which the assembler treats the window?2
label in this context, but | recommend that you stick with the latter
to avoid confusion. THIS passed on the stack must aways be the
register, not the label, so be consistent and use Sl in both places.

This implements polymorphism.

C++ Binding

Examine this C++ code. . . .

class WINDOW ;/Everything here does exactly the same

/as the assembly language on page 140.

public :

int

active;

virtual void TEXTOUT(int, int);

Program Design 143

// Define any other nenbers here ...

void WNDOW :: TEXTOUT(int param, int param2) _
{// actual code for function here. This function is
// the equivalent Of textoutmain() in the assenbly
// lasting..

class WNCLASSA : WNDON /7 subclass of W NDOW
/1 (inherits active and TEXTOUT nenbers).

class W NCLASSB : W NDOW // override TEXTOUT()
voi d TEXTOUT (int param, int param2)

void WNCLASSB :: TEXTOUT(int param, int paran®) .
{ /lactual code for function here. This function is
// the equivalent of textoutdlg() in the assenbly

// listing.

/lcreate instances . . .
W NCLASSA windowl, W ndows;
W NCLASSB W ndow2;

main ()
/ code exanple of early binding .
windowl.TEXTOUT (valuel, value2);
//code exanple of late binding .
W NDOW_ *ptr;

ptr = &wi ndow ;
ptr -> TEXTOUT(valuel, value2);

}
i The program starts by declaring a class called WINDOW and the
operator data and function members it has. | only put in two members:

active and TEXTOUT. After that | put in the actual code for
TEXTOUT. Notice the syntax for doing this — the "::" means that
this function belongs to the class named to its left, which is
WINDOW.

Subclassing Because | wanted this code to do exactly what the assembly listing

with override does (page 140), | created two subclasses — WINCLASSA and
WINCLASSB. WINCLASSA is identical in every way to
WINDOW, but in WINCLASSB | have overidden TEXTOUT.
Notice that | didnt have to give the new procedure a different
name.
Then | declared three static instances (permanently in the data
segment). | could have made them automatic simply by moving
them down into main().

144 Windows Assembly Language & Systems Programming

H_} »
object
pointer

The code within main() shows how easy it is to cal the function
associated with a particular object. A call to this function means
that TEXTOUT() will execute but will automaticaly work on the
data and functions that are part of the referenced object. This is
because the THIS pointer is passed on the stack (see page 140).
The example of late binding may look rather complicated. "ptz"
is a label that is a pointer to data of type WINDOW. The "*"
simply declares that it is a pointer. The data type tells C++ that ptr
can only be used to address objects (instances) of WINDOW.

The next line sets ptr to point to windowl.

The following line uses ptr to call window1l. TEXTOUT(). This
line corresponds exactly with the assembly language code:

call [sil .TEXTOUT PASCAL,valuel,value2,si

Compiler
optimisation

(I have used the PASCAL qudlifier here, rather than C, for
consistency with later examples. It does cause some differences,
such as reversed order of stack pushing and stack clean-up. For
more specific details see ahead to the section “Interfacing With
C++" on page 147.)

It is interesting to analyse how the compiler decides whether to
compile early or late binding. When the compiler sees that the call
is fixed (that is, to a particular routine) and will not change at
run-time, it optimises and compiles early binding. Note that any
function that is to be called by late binding must be declared as
“virtud” in the C++ source code, but such a declaration does not
mean that the compiler will do so.

The compiler will compile a call using late binding if the function
is virtual, and if the call involves THIS as a pointer. The cal
immediately above is an example in which THIS is contained in
Sl, so its value is not actualy known at assembly-time. Therefore
late binding is required.

In my assembly language example | gave windowl and window?2
different routines for TEXTOUT ...

Manual
optimisation

Program Design 145

Assembly Language Binding

Binding has been discussed over the previous few pages; however,
further clarification is in order.

In assembly language, we have full control over whether to use
early or late binding, since we dont have a compiler to make such
a decision for us. Look back once more to the listing on page 140.
The example of a cal to textoutmain() by early binding (the cal
immediately after the LEA instruction) is ok, because S will
aways be the same when execution reaches the CALL instruction.

However, what if the code has multiple entry points to the CALL?

lea si,windowl
jmp redraw

lea si,window2
jmp redraw

redraw.

cal | [si] .TEXTOUT PASCAL, X, YV, Si

Accessing
the right
data

In this case you must do a late-binding call, because the Sl value
can have different values at execution-time. The CALL will
automatically call the correct routine.

Use of THIS

THIS is a pointer to the current object and is aready introduced
and discussed at length earlier in this chapter. However, this
section will consider the rules of usage of THIS,

| have explained how Sl is passed on the stack to the function.
Why pass it on the stack, since Sl will be the same value upon
entry to the function anyway and can thus be accessed from the
register?

C++ does it that way, but your assembly program doesn’t
necessarily have to. However, it may be wise to stick with C++
conventions to enable smoath linking with C++ code.

You can see back in the class definition for WINDOW (page 140)
that | put an example data field labelled “active’. Perhaps this is
a flag indicating whether this is the active window or not —
whatever.

146 Windows Assembly Language & Systems Programming

Obvioudly the instances "windowl" and "window2" will have
their own copies of “active’, so the TEXTOUT function must
access the “active” field in its own instance.

Thus if you have:

lea si,windowl
call [si] .TEXTOUT PASCAL,X,y,si

Encapsulation
of data within
an object

Structure of a
function
-member

S| would be passed to the function to let it know which object to
communicate with. For there is a general rule with OOP:

A function should only write to (and even only read from)
data-members of the current instance, as pointed to by THIS.

In OOP terminology, this is the principle of encapsulation. The
data belonging to a particular object should only be accessed by
functions belonging to that object, and only if THIS is set to that
object. C++ does allow you to get around this, but think of it as
the ideal to be aimed for.

In assembly language you can break all the rules, but you should
try not to write 00 code that accesses data belonging to other
objects. If your function wants to access some data elsewhere, the
proper way to do it is to change THIS to that object and then call a
function that is part of that object. If no such function exists, then
you will have to write one.

Referring back to our earlier call to TEXTOUT, with THIS set to
window1, t he actual procedure called will be textoutmain(), which
could have the following structure:

t ext out mai n

PROC PASCAL, X, y, now

myv SI, NnOwW

nmov al,

{si] .active

lea bx,window3
cal | [bx].TEXTOUT PASCAL, X, Y, bx

ret
textout maln

ENDP

Thi s skeleton shows how data-member "active" is accessed.
Since the data ofany other object shoul d notnormally be accessed
di rectly, | haveputinsome code to show how to change to another

Pascal
versus C++
stack
handling

Program Design 147

object and then call a function belonging to that object. Upon
return, Sl is still set to this function’s current object.

Examine this code and you may be surprised. What function is
actually being called by the CALL, and why is it ok? That's for
you to think about.

Interfacing with C++

Although | have standardized on the Pascal calling convention for
most of this book, for compatibility with Windows functions,
standard C handles the stack somewhat differently. It is not
something that will cause much trouble, since you can take care of
everything by use of the high-level CALL ingtruction and PROC
directive.

However, in the case of passing THIS to the called routine, you
will need to know whether it is pushed on first or last.

With Pascal, the high-level CALL pushes the parameters on in the
order in which they are listed; that is, the leftmost one first. The
high-level procedure that is being called will automatically remove
the parameters from the stack before returning to the calling level.

With C, the high-level CALL pushes the parameters onto the stack
in the reverse order, so the leftmost one gets pushed on last. The
called procedure does not clean up the stack before returning, and
the parameters must be removed from the stack after return to the
calling level. Code for the latter operation is generated
automatically by the high-level CALL by the "C" qualifier.

C++ also pushes THIS onto the stack last in the case of calls to
function members. Thus your PROC declaration will need to
show THIS as the leftmost parameter if it is called as a
function-member from C++ code.

Fortunately, there is an easy way to figure out the interfacing
requirements between C++ (or C, or any other language) and
assembly language, and that is to utilize the compiler’s ability to
generate assembly language output.

Compilingto ASM O/P

Most high-level compilers will do this by means of a switch on the
command line. The compiler will produce an assembly language
listing of the C program, showing the exact correspondence of
lines of C to the equivalent assembly code. This is highly
educational, but it is particularly useful for linking between C and
assembly.

148 Windows Assembly Language & Systems Programming

Compile a The trick is to write the assembly language module into the C

ASM stub program in the form of a stub or skeleton. That is, it wont do
anything except have the data transfer C instructions. Compile it,
and look at the assembly listing for that routine. Extract that
routine into a separate assembly language tile, and delete the
origina stub.

Name This works fine and is surprisingly easy to do. The method

-mangling overcomes some serious hurdles, especially that of
name-mangling. It is a C++ feature that the source code can have
the same name for different functions, and other labels can aso
have identical names. The compiler gets around this problem by
“mangling” the labels — applying an agorithm so that even labels
of the same name will have new unique names. The problem is
that, if you are writing an assembly language module that must
access labels in C++ modules, you cant reference them by name
— you can only reference them by their mangled names.

The only way to know the mangled names is by the stub method
described above, because the assembly language output will show
all labels in their mangled form.

In-Line Assembly

A completely different approach is not to write the assembly
language module as a separate tile, but to write it in-line with the
C code. You have to have a compiler that supports this, and of
those that do, the in-line assembler is not quite so fully-featured as
the stand-alone assembler. You lose in one way, but gain in
another. What you gain is seamless integration with the C
program. You can write the assembly code with full access to the
C labels, and the registers that you use are automatically saved and
restored by the compiler upon entry to and exit from your
assembly module.

Here is a simple example:

class W NDOW
public:
int active;
vi rtual voi d TEXTOUT (int);

V(;)i d WNDOW:: TEXTOUT (int x)

asm nov si,this))
asm nov dx,£5|].act|ve //addr relative to DS
asm nov ah,

asm int 21h

7

Program Design 149

//.WN(E))QNwindowl; //static object, in data segment.
mai n

W NDOW windowl ; /lautomatic object, in stack seg.
windowl.active = 07,

wi ndow . TEXTOUT (0) ;

"_asm” | have shown here how the function-member TEXTOUTY(),

keyword belonging to class WINDOW, can be written in in-line assembly
code with data members fully accessable. THIS is also available
to the assembly code, and | have put it into SI for convenient
usage.
Note that | preceded each line with the "asm" keyword; however,
it is also alowed to have a single "asm" keyword followed by an
opening "{" brace and then multiple lines of assembly code not
requiring the asm keyword, terminating with a closing "} ".

Static versus | have shown two ways of creating the instance windowl. The

automatic commented-out example is static, because it is outside main(),

instances while the other is automatic, because it is created on the stack, for
the duration of execution within the function.

See how | have addressed the data-member “active’ from
assembly code. Actualy, this is dependent upon memory model
and whether the object is static or automatic. For the SMALL
(and FLAT) mode the SS and DS registers are the same, so there
is no problem. For those models in which SS and DS may be
different, the code given here would be ok for a static object, but
SS override will be required for automatic data. This can be taken
care of by using BP instead of S, since BP by default references
the stack segment.

What the By the way, the above program passes the value 07 to
above TEXTOUT(), which sends it to the screen. 07 is the “bell”
program character, so you get a beep to indicate success.

tloes” Although a parameter is passed to TEXTOUTY(), | havent used it

within the assembly routine. | put it in to show that it is an option.
Note that the compiler will give a warning (at least Borland's BCC
compiler does) that the passed parameter is unused.

In-Line Dos and Don’ts

While we are on the topic of in-line assembly, | might as well
cover the mgjor do's and donts.

I've grouped these below for easy reference:

150 Windows Assembly Language & Systems Programming

« The "asm" keyword differs for different compilers. Borland
C++ will accept "asm" and the latest version accepts "_asm"
for compatibility with Microsoft's C/C++.

« Notice in the example that | chose to use the "asm" keyword
a the start of every line, rather than use the "{ }" opening
and closing braces. | prefer doing it this way because the
in-line assembler cannot define code labels (at least Borland's
C/IC++ cant). By using the keyword on every ling, a the
termination of each line the compiler regains control and a
label is alowed. For example:

asm je placel
asm nop

placel :
asm nov ax,vall

« You have complete access to al data and code labels in the C
program, barring the usual C constraints.

« Note that the compiler saves and restores some CPU registers
upon entry and exit from an in-line assembly section.
Compilers differ in what they save and restore.

« You cannot use the ";" (semicolon) to start a comment.
Instead you have to use the standard C delimiters. For
example:
mov ax,vall //moves wvall into AX

. But aso note that you do not use the ";" to separate in-line
statements, not even the last one.

The ASM Stub

Object If you refer back to the program listing in the section "C++

pointer Binding”, on page 142, you will see the creation of an instance
"window1" and the use of a pointer "ptr" to implement late
binding.
Recapitul ating:

W NDOW *ptr;

ptr = &windowl;
ptr -> TEXTOUT (vall, val2);

So that you are absolutely clear on what this compiles down to,
here is the actual assembly language generated:

Program Design 151

mov Si, OFFSET w ndowl

mv ax,val2 ;notice the order of pushing.

push ax

nmv ax,vall

push ax

push si ;notice that TH S pushed I ast.

nMov bx, [si+4] ;4 is the offset of the pointer to
call [bx] ; TEXTOUT (), in object windowl.

Looki ng back again atthecode from "C++ Binding" onpage 142,
you w || seethedefinition of TEXTOUT(). But if TEXTOUT() is
to be the assembly language module, you would leave it in the C
program for now, as a stub. You would put in the skeleton code,
as follows:

void WNDOW :: TEXTOUT (int vall, int val2)

int x;

boxl . draw (1,2); [
this -> dosonething (); [
X = active; /1

menber of another object.
hypot heti cal function.
data of current object.

Calling a This code shows various ways of getting at data. Dosomething() is

member, an example of calling a function-member belonging to the current

current object, though | havent actually defined such a function.

object "active" is a data-member of "windowl" and | have accessed it
in the sack. Notice also how | can access functions of other
objects.

...and a "box1" is some other object belonging to a different class, say

different "BOX". The choice here is arbitrary. It has an arbitrary function

object caled draw().

Compile and Assemble Steps

If we use Borland's BCC compiler, the command line to compile
to assembly is as follows:

BCC -c -S filename. CPP

Wiere "-c¢" suppresses linking and "-s" generates ASM output.
Note that case is important with the switches.

Mangled The filename.ASM file that you get will not have any high-level

names assembly language features in it, so you have to look through it
and extract the useful information. Then you can put together
your own assembly module. It will look something like this:

152 Windows Assembly Language & Systems Programming

.MODEL SMALL ;must match C++ module.
PUBLI C @WINDOW@TEXTOUTSqii
EXTRN @WINDOW@dosomething$qv :NEAR
EXTRN @BOX@drawsqii
EXTRN _boxl

.DATA
x DWO ;local data.

.CODE

@WINDOW@TEXTOUTSgil PROC C now,vall,val2

ihow to get at the passed parameters

nov si,now ;actually at [Bp+4] Addr of windowl.
nov ax,vall ;actually at [bp+6]
mov bx,val2 ;actually at [bp+8]

;to access another function, another object

; boxl.draw (1,2) .
lea ax,_boxl o
call eBOXedraw$qgii C ax,1,2 ;early binding.

to access a function, current object
; this -> dosonething O .
call [si]. @WINDOW@dosometh1ng$qv C si
;late binding. no other params to pass.

:-getting at dat a-nenber of current object

;x= active . . _ , _ _ . .
nmov ax, I[sil.o ;offset is 0, since field is first in
mv X, ax ; object.
ret

@WINDOW@TEXTOUTS$gii ENDP
END

The skel eton program gi ves you the mangl ed names and how to
accessthedat aandf uncti onmenbers. Thenyoucango ahead and
flesh outtheassenbly nodul e.

Your next step would be to renove the stub from the C++module
and compile as follows:

BCC filenamel. CPP filename2. ASM
or, if the fancy takes you, it can be done in steps:
BCC -c¢ filenamel. CPP

TASM /ml fil ename2 (.asM file)
TLINK filenanel filenane2

Note that Borland C++ does have a mechanism to suppress
name-mangling for linking with Standard C modules, but | found
it too limited for assembly work. It doesnt work for data and
function members.

Coding
development
over previous
chapters

A 9-line
skeleton

Program Design 153

Note also that C++ does have an EXTERN declaration, so that any
function that is referenced in the C++ module but is defined in the
assembly module can be declared as EXTERN. However, this
also has limitations and is optional anyway.

The Amazing 9-Line Program

So you think assembly language programming for Windows is
difficult — think again!

The “high-level” assembly language program of Chapter 5 is not
much longer than one written in C or any other conventiona
high-level language. In the first half of this chapter, | introduced
objects and some details about the inner working of C++ and how
to interface to it — now, applying 00 techniques brings an
assembly language skeleton program down to just nine lines!

OOP and assembly language go together in a most natural way,
with the result that coding becomes a breeze. Here is an 00
skeleton program:

; WNASMOO. ASM --> W NASMOO. EXE
INCLUDE WINDOWS . INC
I NCLUDEW NASMOO. | NC

.DATA
windowl WINDOW { }
.CODE
ki ckstart:))
| ea si,windowl ;addr of w ndow obj ect.
call [si] .make PASCAL, si ;make t he w ndow.
ret
END
There are eleven lines there, but take off the comment line and put
the code-label on the same line as the following instruction, and it
becomes nine lines.
This program is the most basic skeleton, putting only a window on
the screen and nothing else. In a moment I'll show you how
simple it is to add the menu-bar and message box, as per skeletons
from previous chapters. But first have a look at the above.
Kickstat: In the data segment | created an instance of a WINDOW structure

cdled"w ndow ". Inthecoderoutinecalled" ki ckstart :"I set
THIS to windowl and then called make(), which, as its name
suggests, creates the window and puts it on the screen.

1.54 Windows Assembly Language & Systems Programming

Hiding the
fed tape”

Simple C++
classes for
Windows

Y ou may have noticed that the syntax for creating the instance of
WINDOW doesnt look much like that for structures (see page 65),
but dont worry about that for now.

There is a tick here: | have taken al the “red tape’, the
complexity, of the Windows program and hidden it away in the
Include file WINASMOO.INC. This hiding of the unnecessary
complexity and exposing only what is needed can only be done by
using 00 techniques.

My object oriented Include file is a world's first. Nobody has done

this before. No Microsoft or Borland documentation will tell you
how to do this. The Microsoft documentation is appalling from
the assembly language programmer’s viewpoint. The Borland

manuals keep getting thinner too. Mind you, the simple program
you see above didnt just materialize in my mind. | just about tore
my hair out at times.

| came across avery interesting article by John Dimm titled “A
Tiny Windows Class Library” in Programmers Journal, USA,
Dec. 1991. | aso studied Norton and Yao's Borland C++
Programming for Windows, Borland/Bantam, USA, 1992. A few
ideas come from these and other sources, but | ended up doing m
own thing, and what is presented in this chapter is quite Smple an
elegant.

It iswritten in Borland TASM version 3.0, for the simple reason
that this assembler is specifically designed for OOP. However, |
must emphasize that the code is very general and with some
modification will work with earlier versions of TASM and with
MASM. | have pointed out the divergence from non-OOP
assemblers within this chapter. The disadvantage of the non-OOP
version isthat it is awkward, cumbersome, and verbose. The OOP
version is easier to use, conceptually simpler, and requires fewer
lines of code.

Look on the Companion Disk for various example 00 programs.

A Skeleton Program

You might like to recall how complicated and enormous was the
skeleton from Chapter 5. Now, here is the samething . . .

; W NASMOO. ASM --> W NASMOO. EXE

I NCLUDEW NDOWS. | NC
INCLUDE WINASMOO. INC

Program Design 155

.DATA

wi ndowl WNDOW { szclassname= "WINASMOO", sztitlename= \
"Main W ndow', paint= w paint, create= wlcreate,)\
comand= w conmand

N

CODE

ki ckstart: . _
| ea si,windowl) ;addr of w ndow obj ect.
call [si].make PASCAL, si ;make the wi ndow.

ret

w pai nt PROC PASCAL
LOCAL hdc: WORD
LOCAL pai ntstructa: PAI NTSTRUCT
| ea di,paintstructa _
cal | BEG NPAI NT PASCAL, [si].hwnd, ss, di

mov hdc, ax
call SELECTOBJECT PASCAL, ax, [si].hfont
cal | TEXTOUT PASCAL,hdc,10,20, cs,OFFSET sout, 16
catII ENDPAINT PASCAL, [si].hwnd, ss, di
re
sout DB "pDemo 00 Program"
wlpaint ENDP
W create:
call GETSTOCKOBJECT PASCAL, CEM_FI XED_FONT
mov [si) . hfont, ax
ret
wlcommand:
cnmp WORD PTR [si] .1lparam,0;1lo hal f
J Né notmenu
cnp [si] .wparam,200 ;IDM QUIT. Is "Quit" selected?
| ne notquit
call [si].destroy
ret
notquit:
cnp [si) .wparam,201 ;| DM_ABQUT. sel ected?
| né notabout

cal | MESSAGEBOX PASCAL, [si].hwnd, cs,OFFSET szmsg, \
cs,OFFSET szhdg, MB_OK

not about: ret

notmenu: ret
sznsg DB "Created by Barry Kauler, 1992",0
szhdg DB "Message Box",0
r et
END

What you will recognize from this is all of the essential
functionality from the skeleton of Chapter 5 without the red tape.

Overriding In the data segment, | have created an instance windowl of the
class structure WINDOW. Now, if | had just ended that line with "{}",
defaults the window would have the defaults as defined in
WINASMOO.INC. However, any of the defaults can be
overridden to create any kind of window. You need to know

156 Windows Assembly Language & Systems Programming

Overriding
PAINT
message

COMMAND
message
override

PROC...
ENDP
syntax
notes

precisely how to do this, of course, but for now just look at the
overrides in the above example.

I have given the window a class-name of “WINASMOO” and |
have given it a title to appear in the title-bar at the top of the
window. If you remember back to Chapter 3, and in particular
page 77, youll know that whenever anything happens over your
application’s window while the window is active, such as a
menu-item being selected or key being pressed, then Windows
will send a message via the message loop in WinMain() to the
window’s callback function. It is then up to the callback function
to process the message.

Overrides

WINASMOO.INC handles al the messages in a default manner,
but should you want to process any message, just put in an
override when creating the instance of the window. All Windows
messages are prefixed with "WM_", such as "WM_PAINT", or
"WM_COMMAND”. In my skeleton program | wanted to
override default handling of WM_PAINT, so | put "pai nt =
wlpaint", where "wlpaint" is my routine (see above). You will
find the code for WM_PAINT handling is just about identical to
that of Chapter 5.

Ditto for WM_COMMAND. | put in my own routine called
"w conmand”, because | wanted to respond to menu-bar
selections. | aso overrode WM_CREATE. It's that simple.

One thing you will notice with my routines "wlcommand" and
"wlcreate" is that | didnt put in PROC — ENDP directives.
These are not essential, and the routines work perfectly well
without them. Putting them in would make no difference. In fact,
putting the PASCAL qualifier on would also make no difference,
since no parameters are being passed.

However, notice that | did put PROC PASCAL — ENDP around
the "wipaint" routine. The reason for this is that | wanted to
have LOCAL data, and only TASM's “high-level” PROC
automatically takes care of LOCAL declarations. The simple act
of putting the PASCAL qualifier onto the PROC directive
transforms it into a “high-level” PROC.

Leave off PROC [PASCAL] — ENDP if you wish, but put it on if
your routine has LOCAL data. The only effect of the high-level
PROC will be to correctly handle LOCAL data within the
procedure.

This is a syntactical deviation from the main discussion, so | will
weave my way back to the next step.

Processing

the CREATE

message

Processing
the PAINT
message

Processing
the
COMMAND
message

Program Design 157

Kickstart

“kickgtart :" is where the ball starts rolling. Of course the entry
point to your program is at WinMain(), but this function is inside
WINASMOO.INC. WinMain() takes care of al the red tape and
ends up calling “kickstart :". “kickstart :" must always be
in your object oriented program. Again, Ive left off the PROC
[PASCAL] — ENDP, for the sake of brevity and simplicity.

A satic instance of the WINDOW structure aready exists in the
data segment, so the first thing that kickstart() does is get the
object's address. The next thing it does is actually create the
window and display it on the screen. You will remember from
previous chapters that this was a particularly long-winded process.

Look back to page 116 and you will see that the application calls
Windows CREATEWINDOW() function to create the window,
then SHOWWINDOW() and UPDATEWINDOW() to actually
show it on the screen. All of this is red tape and is hidden away.

M essage Handling

After creating the window, Windows sends a WM_CREATE
message to the window’s callback function. | used this message to
get the handle to a particular font that | used in the program (yes,
even fonts have handles!). Hence | put in the wlcreate() routine.

Whenever Windows redraws any portion of the client area of the
window, it lets the callback know by sending WM_PAINT. This
is so the calback can redraw the client area or the portion that
requires redrawing. The UPDATEWINDOW() function also
generates a WM_PAINT message.

| wanted to put out a simple text message, in this case “Demo 00
Program!“. It also uses the font that | previously got a handle for,
rather than the default font. There is a bit of red tape involved to
output the message, and some temporary data storage is required.
"hDC" is the handle to the window’s client areg, that is, the area of
the window that we can output to, and this handle must be
obtained before we can gain access to the window client area. It is
normal practise to release this handle immediately after use, which
has been done by ENDPAINTY().

The other thing | did in my skeleton was respond to the “File”
menu-item, with its “Quit” and “About . .." sub-items. The normal
way to define these is by the resource file .RC, and | have used
exactly the same one as before. The WM_COMMAND message
needs to have its Iparam and wparam analysed to determine what
kind of command has been sent to the callback, and this example

158 Windows Assembly Language & Systems Programming

Handling
QuIt
menu-item

TABLE
directive

shows that if Iparam = 0 then the command has come from the
window's menu-bar. In such a case, wparam is analysed to see

which item has been selected f

Notice that selection of “Quit”
also that it is prefixed with
parameters of the window.

principle of structures. The SI

function-members (methods

rom the menu-bar.

results in calling destroy(). Notice
.", as are dl the other
You can understand this from the
register contains the address of the
object or the instance of the structure. “Destroy” is a field in this
structure. Fields can, in OOP terminology, be data-members or
in Pascal terminology). The field

"I si]

"des t roy™ does not contain data, but a pointer to a routine.

To effectively use this object oriented approach, you need to know

the fields of the WINDOW structure and the purpose of each . . .

The WINDOW Object

Here is the structure definition of WINDOW. It is actualy located

inside WINASMOO.INC

.DATA
W NDOW TABLE {

VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL
VI RTUAL

defi newndcl ass: WORD
create: WORD =

pai nt: WORD =
command : WORD =
tinmer: WORD =
resize: WORD =
mousenove: WORD =
lbuttondown : WORD
lbuttonu WORD =
char: WORD =
defaultproc :WORD
destroy: WORD =
make:WORD =
vvndproc WORD =
hwnd: WORD =
wressage: WORD =
wpar am WORD =
lparam:DWORD =

1]

= WINDOWdefinewndclass
WINDOWcreate
WINDOWpaint
WINDOWcommand
WINDOWtimer
WINDOWresize
WINDOWmousemove
WINDOWlbuttondown
WINDOWlbuttonup
WINDOWchar
WINDOWdefaultproc
WINDOWdestroy
WINDOWmake
gINDOandproc

0
0
0

VIRTUAL classstyle: WORD = LbVREDRAW+CS _HREDRAW

VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL

sziconname :BYTE
szcursorname: BYTE 3
hbrbackground:WORD
szclassname:BYTE: 32
sztitlename:BYTE:32
hmenu:WORD =
hwndparent :WORD =
wheight WORD =
h:WORD =

2:0

= CC)JOLOR_BACKGROUND
0
0

0
200
250

Program Design 159

VIRTUAL y_coord:WORD = 0
VIRTUAL Xx_coord:WORD = 150
VIRTUAL createstylelo:WORD 0

VIRTUAL createstylehi:WORD = WS_OVERLAPPEDWINDOW
VIRTUAL hfort :WORD = 0

This doesnt look like any structure definition yowe seen before!
Instead of using STRUC, | have used TASM's TABLE directive,
which has some advantages but a different syntax.

00 The Borland programmers will probably gag when they see how |

limitations have used their TABLE directive, but | found it useful to define

of STRUC both data and procedures. | wanted to retain a program that would
work with other non-00 assemblers with only minima change.
The above TABLE can be replaced with the conventional STRUC,
but the latter has disadvantages, the two most glaring being:

« it cannot initialise fields with forward references; and
. initidizing fields of instances is rigid and awkward.

However, it can be done — check out “Object Oriented
Programming in Assembly Language” by R. L. Hyde, Dr. Dobb's
Journal, March 1990, p. 66-73, 110-1 11.

The TABLE directive only exists with TASM version 3.0, not
before. 1 have only bitten off a little bit of the new TASM's 00
capability; however, my end result is quite smple and elegant.

TASM User s Despite a wonderful new assembler, Borland's manual has only

manual; about two and a half pages devoted to Windows programming and
limitations & only two demo programs on disk. The OOP neophyte will find the
TABLE TASM manual to be quite daunting, with all of the 00

description terminology. The manual supplied with TASM version 5 has even
less documentation. This book addresses al of these problems.

Not only do | demystify OOP, but | show how to write windows
programs effortlessly.

The Borland manual describes the use of TABLE to define
function-members (methods) for an object, with the data-members
defined separately. There are certain reasons for this, but | wanted
a system that is conceptually smple.

Notice the VIRTUAL quadlifier in front of every field declaration.
Dont worry about this -just pretend it isnt there.’

I Readers with some knowledge of OOP will know that VIRTUAL is a qualifier used with
functions, but 1've also put it in front of data-members, because | have used TABLE in a way
that Borland never intended (or thought of?).

160 Windows Assembly Language & Systems Programming

Analysis of
the table

TABLE
overrides

Look at the first field. “def inewndclass" is a NEAR pointer to
a procedure "WINDOWdefinewndclass". What this actually
means is that when an instance of the structure is created, the field
will be as per Figure 6.1.
Windowl equates to the offset in the segment at which the
structure-instance starts.

Detinewndclass equates to 0, being the first field, while create
equates to 2. This is exactly as in any norma structure. The
contents of the fields are addresses of the procedures; in this case
they are default procedures defined within WINASMOO.INC,

Figure 6.1: definewndclass pointer.

window1

definewndclass | WINDOWdefinewndclass
create WINDOWcreate

paint WINDOWhpaint

... Btc... .. etc ...

These addresses are forward references, which is why STRUC
wont accept them, and why | have used TABLE. With STRUC
you have to put them in when creating the instance, which | used
to do by means of a macro.

Further down in the WINDOW structure youll see plain old data,
which should be easy enough to understand.

Apart from being able to declare forward references, the beauty of
the TABLE directive (and TASM's new extended STRUC) is the
declaration of overrides when creating instances.

A TABLE or STRUC declaration is only for the assembler's use,
and is not actually assembled. It is the instances that get
assembled. A dtatic instance is one that you declare in the data
segment. You could declare automatic instances on the stack or
dynamic instances on the heap. Dynamic instances involve an
extra level of complexity, so let me shelve that one for now.

The skeleton program on page 154 declared a static instance as
follows:

.DATA

wi ndowl WNDOW { szcl assnane= "WINASMOO", sztitlename= \
"Main W ndow', paint= w paint,create= wcreate, \
comand= w comand }

Program Design /61

Overriding The instance-declaration of a conventiona structure would require

the message a very rigid syntax of comma delimiters. Here, al you have to do

handlers is override only those fields you want, and you can put them in
between the "{}" in any order. No commas are required for
unchanged fields.

You need to have an understanding of each field of the WINDOW
structure to make use of them in the program.

Create(), paint(), timer(), etc., down to destroy(), are the main

_ messages that Windows sends to the callback function. |
have only implemented the WINDOW structure with these,
although there are many more. The others all go directly to
Window’s default handling.

You are quite welcome to expand the structure with more
messages.

Overriding Definewndclass(), defaultproc(), destroy(), make(), and wndproc()
the major are mgor routines within WINASMOO.INC. By putting them in

*hidden ” the structure, you can override them for any sub-class or instance.
functions of For example, wndproc() is a pointer to the callback function for
the Include that window — it basically performs a case-switch, calling the
file appropriate message-handler create(), paint(), timer(), etc. But,

there is nothing to stop you from overriding it and defining your
own specia calllback, say for example, to handle a dialog box.

These pointers are probably ones that it would be wise to leave
alone until youve become familiar with this software.

Data members of The rest of the structure comprises various data associated
the WINDOW c¢lass with the window. Here are explanations:

hwnd handl e of this w ndow .

wressage the nessage sent to this wi ndow
aram,lFaram data associated with the nessage

classstyle paranmeter used by REGISTERCLASS()

szi connane ditto. What will-look |ike when iconized

szcursorname ditto. What cursor |ike over w ndow

hbrbackground ditto. Color of client area)

szcl assname ditto. ASCIIZ nane this class of w ndow

sztitlenane . used by CREATEW NDOWD

title appear at top of w ndow

&
=
N

hmenu ditto. Menu or child identifier
hwndpar ent ditto. Handle of parent w ndow
whei ght ditto. Height of the w ndow

wwi dt h ditto. Wdth of the w ndow
y_coord ditto. Top-left y-coordinate

x coord ditto. Top-left Xx-coordinate

createstylel o appearance features of w ndow
createstylehi ditto. o
hf ont application-specific

162 Windows Assembly Language & Systems Programming

Creating
multiple
windows

WinMain()
is hidden
inside the
Include file

So override any of these parameters to make your window ook
and behave exactly as you want.

You are not limited to just one window. Aswell as being able to
have multiple instances of your pro%:am quite happily sharing the
same screen, any one instance can have multiple windows. Itis
simply a matter of declaring another instance and calling make().

Make() doesnt have to be called in the kickstart() routine, though
that's where you would create the main window. No, you can make

windows from anywhere in the message-handling routines.

Nor are you limited to the one WINDOW structure. You can
declare sub-classes; which inherit the fields from WINDOW, but
with their own extrafields. These sub-classes can also override
any of the parent-classes fields.

It istime to peek further inside WINASMOOQ.INC . . .

WINMAIN()

WINASMOO.INC has the job of hiding the “red tape” of a
Windows program. It must handle multiple instances of a
program; that is, if you double-click on the program’s icon more
than once. It must handle multiple windows within the one
instance.

Any one window would have its own instance of the window

structure or object, as| did by creating “windowl ", For a second
window, | could create an instance of WINDOW called

"window?2".

Program listing WinMain() looks similar to code that you would find in a
continues @nti! conventional WinMain() function, with some curious

page 777

differences. Well, look at the wholelot...

; W NASMOO. | NC + W NASMOO. ASM - -> ;
W NASMOO. EXE W ndows 00 program

Freneaber

that Wndows funcs only preserve SI,D,BP & DS.

.MODEL SMALL

LOCALS

......

jturns on "e@e@" prefix for auto |ocal
; name-mangl i ng (Borland only).

;These are Wndows functions . . .

EXTRN UPDATEW NDOW FAR, BEGINPAINT:FAR
EXTRN ENDPAI NT: FAR, DEFW NDOWPRCC: FAR

EXTRN POSTQUI TMESSAGE: FAR,

EXTRN REGQ STERCLASS: FAR, GETSTOCKOBJECT: FAR
EXTRN CREATEW NDOW FAR, SHOWN NDOW FAR
EXTRN GETMESSAGE: FAR

EXTRN LOADCURSOR: FAR, TRANSLATEMESSAGE: FAR

Program Design 163

EXTRN DISPATCHMESSAGE:FAR, LQOADI CON: FAR
EXTRN TEXTOUT:FAR

EXTRN NMESSAGEBOX: FAR, GETDC:. FAR

EXTRN RELEASEDC: FAR

EXTRN SELECTOBJECT: FAR, GETWINDOWWORD:FAR
EXTRN SETW NDOMMORD: FAR, SENDMESSAGE: FAR
EXTRN DESTROYW NDOW FAR

DATA
MAI N TABLE {
VI RTUAL initinstance: WORD = ki ckstart
VI RTUAL hi nst ance: WORD = 0
VI RTUAL hprevi nst ance: WORD = 0
\}/I RTUAL ncndshow: WORD = 0
W NDOW TABLE {
VI RTUAL def # newndcl ass: WORD = WINDOWdefinewndclass
VI RTUAL create: V\lRD WINDOWcreate
VI RTUAL paint:WORD = WINDOWpaint
VI RTUAL command: WORD = WINDOWcommand
VI RTUAL timer: WORD = WINDOWtimer
VI RTUAL resize:WORD = WINDOWresize
VI RTUAL nousenove: V\U?D = WINDOWmousemove
VI RTUAL lbuttondown:WORD = WINDOWlbuttondown
VI RTUAL lbuttonu WORD = WINDOWlbuttonup
VI RTUAL char: WINDOWchar
VI RTUAL def aul t pr oc: WORD = WINDOWdefaultproc
VI RTUAL destroy: WORD = WINDOWdestroy
VI RTUAL make: V\i/]?D WINDOWmake
VI RTUAL wndpr oc: V\lRD WINDOWwndproc
VI RTUAL hwnd: WORD 0
VI RTUAL wressage: VORD = 0
VI RTUAL wpar am WORD = 0
VI RTUAL lparam:DWORD =
VIRTUAL classstyle: WORD = CSVREDRAW+CS HREDRAW
VIRTUAL sziconname :BYTE:32
VI RTUAL szcursorname:BYTE:32 = 0
VI RTUAL hbr background: VWORD = COLOR_BACKGROUND
VI RTUAL szclassname:BYTE:32 =
VI RTUAL sztitlename:BYTE:32 = (
VI RTUAL hmenu: WORD = 0
VI RTUAL hwndparent WORD = 0
VI RTUAL whei ght : WORD = 200
VI RTUAL wwi dt h: WORD = 250
VI RTUAL y_coord; WORD = 0
VI RTUAL x_coord: WORD = 150
VI RTUAL createstylelo:WORD = 0
VIRTUAL createstylehi:WorD = WS OVERLAPPEDWINDOW
‘\}IIRTUAL hforit :WORD = o
mai nl MAIN { } ;create static instance.
pwindowDW 0 ;ptr to current wi ndow obj ect .
pWI ndowf | ag DB O ; =O pwi ndow not val i d.

164 Windows Assembly Language & Systems Programming

PUBLIC WINMAIN

WINMAINPROC PASCAL NEAR @@hInstance:WORD, \
@@hPrevInstance :WORD, @@lpCmdLine : DWORD, @@nCmdShow : WORD
LOCAL msg:MSGSTRUCT ;see WINDOWS.INC

Notice the use of the "@@" prefix. This keeps these labels unique
to this procedure. Refer back to page 12 1.

lea si,mainl]]]
mov ax, @@hinstance ;save params in mainl object.
mov [si].hinstance, ax ; /

It should make sense so far. In the data segment | defined two
structures, MAIN and WINDOW. There will only be one instance
of MAIN in the application, called "main1" (see above). The
application is entered from Windows at WinMain(), and | have
used mainl to save the parameters.

This is what is happening now . . .

mov ax, @@hprevinstance , /

mov [si]l. hprevinstance, ax ; /

nmov ax, @@ncmdshow ,

mov [sil] .ncmdshow, ax i/

call [si].initinstance ;call kickstart() **no pascal**
or ax, ax

j ne nmessagel oop

ret

You should be able to recognize the message loop below. Usually
WinMain() will have instance initialisation and window creation
code in here, but I have shifted it out to make(), via kickstart().
This enables me to make as many windows as | want and also
enables me to bring out only the essential part of the program to
the ‘front end” This diversion is implemented via the above
CALL.

loopback:
call TRANSLATEMESSAGE PASCAL, ss,di
call DISPATCHMESSAGE PASCAL, ss,di
messageloop:
lea di,msg
call GETMESSAGE PASCAL, ss,di, null, null, null
or ax, ax
j ne loopback
mov ax, [dil .msWPARAM ;return wparam to windows.
ret
WINMAIN ENDP

Program Design 165

One callback There is nothing new about the message loop. Remember how

for all Windows calls GETMESSAGE() to get a message from the

windows application’s queue, then calls DISPATCHMESSAGE() to send it
on to the callback function. Because each window has its own
callback function, we have to design the program so that the
message will end up at the correct callback — except that in this
program there is a trick. There is only one callback function,
called exportwndproc().

It is a common practise with Windows programming to reuse one
set of code with different data for each window.

Most Windows programs can have multiple instances, that is,
multiple copies running simultaneously without conflict, even
though they use the same code. Each time you double-click on the
application’s icon, a new data/stack/heap segment is loaded, but
the original code segment is used. This practica functionality is
enabled in the .DEF file by specifying the data as MULTIPLE (see

page 177).
The same principle can be applied to multiple windows within the
one instance.

Callback

One callback, Now this is interesting. Despite the fact that a program can create

but each as many simultaneous windows as it wants, there is only one

window is a calback function, exportwndproc(). Exportwndproc() determines

separate which window has sent the message, which is easy enough,

object because its handle, hwnd, is passed to the callback, then it gets the
address of the corresponding window object, which it loads into
SI.

This is conceptually quite simple. Any activity related to the
active window on the screen will result in Windows sending a
message. The callback can use the same code for al windows,
except for overrides — all it needs to know is the address of the
object (the data and pointers) for that window . . .

PUBLI C expor t wndpr oc
exportwndproc P WND&/\B PASCAL FAR \
@@hwnd : WORD, @@message : WORD, \
@@wparam:WORD, @@lparam: DWORD
LOCAL dummy:WORD:5
chp pwindowflag, 0 ;Make() controls this flag.
jne normal wndproc
call DEFWN ROC PASCAL, @@hwnd,@a@message, \

@@wparam, @@lparam

166 Windows Assembly Language & Systems Programming

ret
nor mal wndpr oc:
push si ;cal | back nust preserve si.
push di ;and di
call GETWINDOWWORD PASCAL,@@hwnd, 0
; O=of fset in Wndows internal data.
nmov pwi ndow, ax ;get addr of current w ndow object.
nmov si, ax ;jdon't use LEA

Saving & Dont worr about pwindowflag for NOW.
restoring a GETWINDOW\X/ORD() is a Windows function that returns
pointer to a information about the window that Windows has stored internally.
window The intention here is that | have the handle to the window, hwnd,
object and | want to know the address of the object for that window.

In the case of my simple skeleton program, there was only one
window anyway, and | created the windowl object for it (refer to
page 153). There is a bit of a trick here, because when | used
make() to create the window, | aso gave the address of the object
to Windows for Windows to store as part of its own record about
that window. GETWINDOWWORD() enables me to retrieve any
information that Windows has about that window, plus the extra
information | gave it.

This is a mechanism for associating a particular set of data, in this
case object window1, with a particular window.

| stored my specia data at an offset of O in Windows internal data
structure, so here | get it back, returned in AX. | then put the
address into the global pointer "pwindow", and into Sl.

mov ax,@@message -save params in window object.
nmov [si] .wmessage, ax

nov ax,@@wparam

mov [si] .wparam, ax

mov ax, WORD PTR @@lparam

nmov WORD PTR [si] .lparam,ax

mov ax, WORD PTR @@lparam+2

mov WORD PTR [si] .lparam+2,ax

call [si] .wmdproc PASCAL, si

pop di
pop si
ret

expor twndproc ENDP

Havi ng got the address of the object, | then save the parameters
that Windows passed to the callback into the object.

| then caled wndproc(), whose address is actually in the object.
By default it is WINDOWwndproc(), shown below. You can

Program Design 167

override this to provide your own wndproc() for a particular
window, such as adialog box, but in most cases you will leave
well enough alone. wndproc() works fine for normal windows,
and has a very simple task — it just implements a CASE statement
to call the appropriate message handler. These message handlers
(paint, create, timer, etc.) are all pointed to viathe object, and can
be overridden for any particular window. Any "WM_" message
not catered to in the CASE statement resultsin a call to the default
routine, and |'ve even provided for overriding this.

WINDOWwndproc PROC PASCAL now

nov si,now :current W ndow obj ect.

nmov dx, ;hi return flag. set default O.
nov ax [s1] wmessage ,get nessage

c ax, WM_ CREATE ;msg rec'd after CreateWindow()
jn case2

call [si].create F¥*note no pascal**

[np SHORT endx
case2:))
cmp ax, WM_ DESTROY ;msg if a window closed.

jne case3
call [si].destroy

[np SHORT endx
case3: i)
cmp ax, WM_PAI NT ;msg if Wndow redrawn.

jne case4
call [si] .paint
jmp SHORT endx

case4)
cmp ax, WM_ COMVAND ;any selection of the menu.
jne cases
call [si].command
i SHORT endx
casg?:
cmp ax, WM _LBUTTONDOMN ;a nouse msg.
jne caseb6

call [si]. | buttondown
jmp SHORT endx

cmp ax, WM_CHAR ;msg that a key pressed.
jne case?7
call [si].char
jn;) SHORT endx
case

call [51] defaultproc
endx: ret ;return dx:ax flag (maybe).
W NDOWwndproc ENDP

| could have been a bit more impressive and emulated the case
statement with a dual-column table and a program loop to find a
message that matches, which would be better If alot of messages
are to be handled. The above code is ok though.

168 Windows Assembly Language & Systems Programming

MAKE()

Now for the part that actually creates the window; herein are some
secrets that make the program work. By referring back to
Chapters 4 and 5 you will see the code that remains from before,
suich as RIEGISTERCLASS(), = CREATEWINDOW(),
SHOWWINDOW() and UPDATEWINDOW().

The data structure WNDCLASS is there, or rather an instance of
it. It needs to have data put into it, and rather than do it in-line |

have called the function definewndclass() to do it. Compare this
with the listing starting on page 112— ook back there also to see
how WNDCLASS is defined in WINDOWS.INC. The data for
this structure is from the window object (pointed to by SI).

WINDOWmake PROC PASCAL now
LOCAL wndcl assa: WNDCLASS
mov Si, now
Xor ax, ax ;clear ax (default return val ue)

;does this window already exist? . . . check hwnd .
cnp (si] .hwnd, 0
je nexi st
jmp endhere

,1s|t a child? . this make() can't handle a child .
; (needs slight nod to handl e normal child w ndow)
nexist:

cnp [si] . hwndparent, O

je nochild

jmp endhere
nochild:

lea di, [si].wndclassa _ _

call [si].definewndclass PASCAL, di, si

cal | REGQ STERCLASS PASCAL, ss,di

MoV pwindowflag, 0 ;disable wndproc() processing.

| ea bx, [si].szclassname

| ea ax, [si] .sztitlename

cal | CREATEW NDOW PASCAL, ds, bx, ds,ax, \
[si] .createstylehi, (si] .createstylelo, ([si] .x_coord,\
[sil. coord, [sil. ww1dth, [si] .wheight, \
[si]. hwndparent [si] .hmenu, mainl.hinstance, 0,0

pwindowflag STOP! Go no further. Look at what | have done above. Just
before CREATEWINDOW(), | cleared" pwi ndowf 1ag". You
must remember that this program is capable of handling multiple
windows, but with only one callback function.

Therefore the callback must be able to determine which object is
associated with the window, to access al the data and pointers for
that window. However, at the moment, the cart is before the

Program Design /69

horse. CREATEWINDOW() will send some messages to the
callback, but |1 do not put the address of the object into Windows
internal record until after CREATEWINDOW().

Exportwndproc() used GETWINDOWWORD() to retrieve the
object address, but | put it in bedow by wusing
SETWINDOWWORD(). This latter function can only be called
after CREATEWINDOWY(), because it requires the handle that
CREATEWINDOW() returns.

Since CREATEWINDOWY() itself sends messages to
exportwndproc(), the latter has to test pwindowflag and disable
normal processing until it is set.

mov [si] . hwnd, ax ;save handle in wi ndow object.
mov di, ax . .
or ax, ax ;exit if handle is 0.

jz endhere . .
cal | SETW NDOMMORD PASCAL, di, O si . . _
;stare addr of window object in Wndows
;internal data (at offs.01 _
nov pwindowflag,1 ;enable callback nornmal processing.

;éail'lback di sabl ed above, but ny call back needs
;WM _CREATE. So send it now. ..

One deviation leads to another — a problem arises because
CREATEWINDOWY() sends the WM_CREATE message to the
callback, which my exportwndproc() has ignored due to
pwindowflag being cleared.

However, now that SETWINDOWWORD() has done its jab,
pwindowflag has been set. | have used SENDMESSAGE() to
resend the WM_CREATE message. Now it goes to the callback
(via all the usua rigmarole — the application queue and the
message loop) and is processed in the norma way, caling the
create() routine.

cal | seNDMESSAGE PASCAL, di, WM _CREATE, 0, \
0,0 ;last 2 are incorrect!

cal | SHOMV NDON PASCAL, di , mainl.ncndshow
cal | UPDATEW NDOW PASCAL, di

e

nv ax,1
endhere: ret
WINDOWmake ENDP

If you have done much Windows programming, you may have
noticed something missing — atest for hPrevInstance followed by
a conditional jump. Actually it isnt realy needed!

170 Windows Assembly Language & Systems Programming

Window class
data structure Continuing the program listing . . .

WINDOV'v]d?j_finewndclass PROC PASCAL pwndcl ass, now
pusn di
push si

myv
nov

si,now
di , pwndcl ass ;pointer to wndcl assa (see make())

;éééﬁp the wi ndow class structure for REGQ STERCLASSO .

ax, [si].classstyle ;get specs from object and | oad

mov
mov [dil.clsStyle,ax ;into wndcl assa structure.. ..
""hov [di].worRD PTR cl sLpf nWhdPr oc, OFFSET export wndpr oc
mv [di] .WORD PTR clsLpfnWndProc+2,SEG exportwndproc
"“mov [di] .clsCbC sExtra, O
mov [di] .clsCbWndExtra, 2
""hov ax, mainl . hi nstance
mov [di] .cl sH nstance, ax
' Eﬁb [si] .sziconname, O
je noicon
lea ax, [si] .sziconname]
call LoaDIcoN PASCAL, mminl.hinstance, ds, ax
jmp yesicon
noicon:
cal |l rLoapIcoN PASCAL, null, O 1D _APPLI CATI ON
yesicon:
nov [di].clsHIcon,ax
. Crrp [sil . szcur sor nane, O
i e nocursor

ea ax, [si].szcursorname

cal |

LOADCURSOR PASCAL, nminl. hinstance, ds, ax

np SHORT yescur sor
nocur sor:

cal |

r:
LOADCURSCR PASCAL, nul I, O, | DC_ARROW

yescur sor:

nov
mov
mv

| ea

[di] . cl sHCur sor, ax

ax, [si] .hbrbackground
[di I . ¢l sHor Backgr ound, ax

ax, [si] .szcl assnane

[di] .worD PTR cl sLpszMenunane, ax
[di]) .WORD PTR clsLpszMenuName+2,ds
[di] .worD PTR cl sLpszd assName, ax
[di] .WORD PTR clsLpszClassName+2,ds
Si

di

WINDOWdefinewndclass ENDP

Program Design /71

The above routine simply copies data from the object into
wndclassa

Default What follows are the default routines (function-members, or

message methods) that the WINDOW structure is initialized to. As you can

handling see, they dont do much, and if not overridden, al you will get on
the screen is a blank window. It will have a system menu, so you
can quit the program, and it can be minimized, etc. — al of this
functionality was set by REGISTERCLASS() and
CREATEWINDOW().

WINDOWdestroy:

cal |l POSTQUI TMESSAGE PASCAL, 0

ret

WINDOWpaint:
WINDOWcommand:
WINDOWlbuttondown:
WINDOWlbuttonup:

WINDOWchar:

WINDOWtimer:
WINDOWresize:
WINDOWmousemove :
WINDOWdefaultproc: .
cal | DEFW NDOANPROC PASCAL, [si] .hwnd, [si].wmessage,\

ret

[si] .wparam, [si].lparam

Example 00
program with
a control

| nheritance

The next example shows how to create a control. You will need to
refer to a Windows programming book to learn all about controls;
however, this example will give you some idea.

A control is a child window, that is, a window that resides within
the client area of the parent window and normally sends its
messages to the callback function of the parent.

The example creates a simple “button”, with the title “OK” inside

it. When the mouse is clicked over the button, it disappears.
Pressing any key brings it back. Not much, but it does illustrate
some useful principles. Figure 6.2 shows what it looks like.

The button that is added by this program is the one on the main
window. The message box is aso a type of child window, created
by MESSAGEBOX(). Controls can be all sorts of things,
including edit boxes, check boxes, buttons, and scrollbars.

172 Windows Assembly Language & Systems Programming

Control/
class

Complete 00
program with
a control

Figure 6.2: Simple 00 demonstration program.

Main Window

Since a control is just a window, why not use the WINDOW
structure and make()? Well, yes, it can be done, except that
controls do have some specia requirements.

If you think in terms of conventional programming, you would
probably delve into make() and see how to patch in the handling of
such a specia case. Unfortunately, this is one of the major
problems with such programming; the continual patching of code
to handle special cases. If your code works, the process of
patching is liable to make it less stable and predictable.

Better to leave well enough alone. We have a functional make()
for normal windows, so let's think like 00 programmers. We
could simply create another instance of WINDOW, say
"window2", and override the make() with a new routine.

That is ok if al we ever want to do is create one control, but it is
nicer if we think in the long term. Why not create another class,
cal it CONTROL, and let it inherit everything from WINDOW,
but with any necessary overrides?

This is what has been done with my program, and the new make()
routine can become part of WINASMOO.INC, aong with the new
class. First, here is the final program:

; W NASMOO, ASM - -> W NASMOO. EXE
| NCLUDE W NDOWS. | NC
| NCLUDE W NASMOO. I NC

| DM_QUI T
IDM_ABOUT

.DATA

EQU 200
EQU 201

Program Design 173

wi ndowl W NDOW { szclassname="WINASMOO",\
sztitlename="00 Denp", paint=w paint, |\ .
create=w create, commnd=w command, createstyl ehi =\
W5_ OVERLAPPEDW NDOW + WS CLI PCHI LDREN,
char=wlchar, Sziconnane = "icon 1" } _
control 1 CONTROL { szcl assnane= "BUTTON", sztitlenane=\
"K' , x_coord=20,y coord=40,wwidth=30,wheight=20,\
\ hmenu=IDOK, createstylehi=WS CHILD+ \
WS_VISIBLE, createstyl el 0=BS_PUSHBUTTON }

.CODE
ki ckstart: _ _
| ea si,windowl _ ;addr of wi ndow object.
call [si] .make PASCAL, si ;make the wi ndow.
| ea si,controlil) .)
call [si] .make PASCAL, si ;make child w ndow

ret

wlpaint PROC PASCAL
LOCAL hdc: WORD
LOCAL ~paintstructa: PAI NTSTRUCT
| ea di,paintstructa _
call BEG NPAI NT PASCAL, [si].hwnd, ssS, di
mov hdc, ax
call SELECTOBJECT PASCAL, ax, [si] .hfont
cal | TEXTOUT PASCAL,hdc,10,20, cs,OFFSET outstring, 16
cal | ENDPAINT PASCAL, [si].hwnd, Ss, di
ret
outstring DB "Demb 00 Program”
wlpaint ENDP

1
wlcreate:

call GETSTOCKOBJECT PASCAL, CEM FI XED FONT
nov [si] . hfont, ax
ret

wlcommand:)
cmp WORD PTR [si].lparam,0;lo half=0 if a nenu select.
JnNé notwmenu
cnp [si].wparam,IDM_QUIT ;Is "Quit" sel ected?
| né notgquit

call [si].destroy
ret
notquit:
chp [si] .wparam | DM ABOUT ;Is "About.." selected?

| né notabout
cal | MESSAGEBOX PASCAL, [si] .hwnd, cs,OFFSET sznsg, |\
cs,OFFSET szhdg, MB_OK
not about: ret
notmenu: . .
cnp [si] .wparam,IDOK ;button child w ndow sel ected?
;note that lo-word of |param has handl e of control
;window, hi -word of | param has notification code.
ne notbutton))
ea si,controll :since SI points to windowl.
cal | DESTROYW NDOW PASCAL, [si].hwnd ;kill button
mov [si] .hwnd, O ;must clr hwnd, if want to nakeO |ater.

not but t on:

174 Windows Assembly Language & Systems Programming

ret
szmsg DB "Created by Barry Kauler, 1992",0
szhdg DB "Message Box",0
w1char
;let's bring back the button if any key pressed..
| ea si,controll ssince si points to windowl.
cal | [si] make PASCAL, si
ret
By
"IDOK" equates to 1 and is defined in WINDOWS.INC.ltisa
convenient identifiert o pass to the parent callback in the wparam
of the WM_COMMAND message.
Pressing the button results in this message.
Make() for

CONTROL class Now for the new make() routine:

;Here are extensions for handling controls .

CONTROLTABLE {
W NDOW
\}/I RTUAL make: WORD = CONTROLmake

CODE
CONTROLmake PROC PASCAL now
mov Si, now

Xor ax, ax ;clear ax (default return value).
does this w ndow al ready exist? check hwnd. ..

cnp [si] . O

jnz endi ng . .
;Is it achild all controls are child w ndows .

m [si] hmndba}ent ,0
Jne nendi ng

;so, Wwe have to give it one . . . (this involves an
FASSIUPY i on)
;pwindow sti'l I p0| nts to the parent w ndow object, so...

nov bx, pwi ndow
nov ax, [bx] . hwnd
nov [si] . hwndpar ent , ax

nendlng
| ea bx, [si].szclassname
| ea ax, [si] .sztitlename

cal | CREATEW NDOW PASCAL, ds,bx, ds,a \
si] .createstylehi, [si createstylelo [si] .x_coord, \
si .y coord, ¥S|] ww dt h, [sil . whei ght,\
si] .hwndparent, [si] . hmenu, mai nl . hi nst ance, O, O

nov [si] . hwnd, ax ;save handle in w ndow obj ect.

ending

Program Design | 75

CONTROLmake ENDP

Comparison You can treat the control object just as you would a window

between

object, using al the same data and function members. To make

CONTROL and this statement amost completely true does actualy require a little

WINDOW
classes

oor
overhead

Make file

more refinement — message, wparam and Iparam data members
of the control object are not actually used, so it would be wise to
put in some testing to avoid them being accidentally accessed —
though this is unlikely. Ditto for most of the functions.

The problem with inheritance is that | cant throw away the
previous structure’s fields. All | can do is redefine them.
Actualy, athough there is redundancy here, it is possible for a
control to have its own callback, which means that all of the fields
would be of use.

One immediate refinement could be to override al of the message
handlers for the CONTROL class, so that they just return without
doing anything.

Anyway, Ive kept this code as simple and as elegant as possible.

Getting it Together

One thing you may be starting to appreciate is that Windows adds
an incredible processing overhead — even a simple key press has
to go through so many steps before it reaches the destination.
Then we go and make things even worse by using 00 techniques,
that add yet another layer of processing. If you want code that
rockets aong, for a video game for example, you will want to
know mechanisms for speeding things up. OOP may make the
coding easier, but it may be going againgt a fundamental reason
why we are using assembly language. Let me post this as a
thought for now.

Oh yes, thc WINASMOO.MAK file has a couple of minor
changes from before, so here is the listing:

NOTE

this Make file has been modified for Borland C++,

to be used with TASM and TLINK, however I'm still using
Microsoft's NMAKE, as Borland's MAKE has some strange

quirks

. though the version supplied with TASM v3.0

..
ﬁ claims to have improved compatibility with NMAKE . . .

this |

haven't yet tried.

To run this file: NMAKEWINASMOO.MAK

fn =

Wwinasmoo

all:$ (fn) .exe

176 Windows Assembly Language & Systems Programming

| path = \borlande\1lib #path for libraries
ipath =\borlandc\include #path for Include files.
epath =\borl andc\ bi n #path for EXEs. _
sw= /¢ /n /v /Tw /L${(lpath) #switches for tlink.

/n =ignore-default-libs, /Tw =generate W ndows exe,
/Le:$(1path) =1ib path, /v =debug- on.

$(fn) .obj : $(fn) .asm $(fn).inc
tasm /zi /p /w+ $(fn);

#-r=dont append to exe, -x =dont |ook in | NCLUDE

envir-variable for incl-files, -i =look in this path
instead....

$(fn) .res : $(fn).rc

rc -r -x -i$(ipath) $(fn) .rc

cOns=start-up-lib, cws=Wndows-runtime-lib,
cs=Standard-runtime, inport=access-builtin-libs
$(fn) .exe : $(fn) .obj $(fn).def $(fn).res $(fn).inc
tlink $(sw) cOows $(fn),$(fn),$(fn),import cws,$ (fn) .def
rc -x -i$(ipath) $(fn) .res

Note that Borl|and C++ v2.5 names the Wndows |ibrary
CWNS.LIB, while vi.onanes it CWS.LIB. | used the

atter above. The C runtime library is CS.LIB, which
ould be placed imediately after CA5, if you need it.
Note that the rs» postfix designates the small nodel.

o—

#
#
#
#
#

Program So, that's WINASMOO.MAK -~ much the same as before. The

custom icon .RC and .DEF tiles can be the same as for previous skeletons,
though of course if you want to try experimenting with OOP you
might like to try adding on to the .RC tile.

Most Windows programs will want to have their own icon, rather
than one of the defaults, and | have done this with the extended
program example (the one with the child control button). Icon
images have to be created with a specia paint program — | used
Borland's Resource Workshop — alovely product — to design my
icon, which | then saved as WINASMOO.ICO.

Resource Resource Workshop then automatically added an extra line into
script my WINASMOO.RC tile:

%these (arbitrary) equates could have been in an include
file...

#define IDM QUIT 200

#defi ne IDM ABOUT 201

W nasnoo MVENU
BEG N
POPUP "File"
BEG N
MENUITEM "Quit", IDM QUIT
MENUITEM "About . r, | DM ABOUT

Program Design 177

END
END _ _

| CON_1 I CON winasmoo.ico
The icon resource is arbitrarily named “icon 1", so when |
created "windowl" in my program, | put in the override
sziconname =" icon-1".

Definition There is a useful note that | can make about the .DEF tile, so here

file itis:

NAVE W NASMOO

DESCRI PTI ON "Denmp 00 asm program

EXETYPE W NDOWS

STUB 'WINSTUB.EXE'

CODE PRELOAD MOVEABLE

DATA PRELOAD MOVEABLE MULTI PLE

HEAPSIZE 1024

STACKSI ZE 8192

EXPORTS export wndpr oc

Multiple What | would like to point out in particular here are the

instances specifications for the data segment. PRELOAD means that it
loads when the program is first loaded. MOVEABLE means that
it can be moved by WINDOWS. MULTIPLE means that every
instance will have its own copy of the data segment. The latter
point is important if you want the program to support multiple
instances. | have designed the code to support multiple instances
with the same ease that it supports multiple windows within the
same instance, but this only works if each instance has its own
complete copy of the data/stack/heap. Note that all instances will
use the same code segment, which is no problem at all.
This works because code cannot be changed. Even though you
can keep data in the code segment, and | have done so in the
skeleton program, you cannot change it. Windows sets the
attribute of code segments such that they cannot be written to, and
your program will crash if you try. Most interestingly, though,
there is a way around this, because Windows has a function that
gives you a DS sdlector for a code segment (see Chapters 10, 11
and 12).

SMALL Note that my OOP code is designed for the SMALL model. The

model major limiting factor is the pervasive use of NEAR pointers. It
would probably be easier to design a completely different Include
file for other memory models. It should be easy to upgrade to
32-hit code though.

Virtual TASM v3.0 encourages the classical implementation of objects, in

Method V- 2 P S

Table

which the pointers to procedures (Virtual Method Table, VMT) are

178 Windows Assembly Language & Systems Programming

Improving
Make()

not stored physically with the data of each object instance, but
somewhere else (which is why they invented the TABLE that |
have misused). There are arguments for and against this. Any one
class can have one VMT, and instances could all access a single
instance of the VMT. This would be efficient in terms of memory
but would not alow individual overrides by each object instance.
As mentioned earlier, | decided on an approach that allows easy
conversion to non-OOP assemblers, is conceptualy simple, and
offers some flexibility advantages that the VMT doesnt.

Make() has been presented in this chapter in a simple, uncluttered
form, as has the rest of the code. The .INC tile can be massaged in
various ways to do more. For example, make() can be made to
handle normal child windows with only minor modifications.
Thus the same WINDOW class could be used for parent and child
windows. The aternative would be to create another class, called,
say, CHILD, just like | did for CONTROL. The product is
evolving al the time, and you may find some interesting new stuff
on the Companion Disk or my Web site.

Postamble

You can have a lot of fun playing with these tools. You may think
of improvements — let me know.

PC Hardware

Preamble

This could be an enormous chapter. I'm an eectronic engineer, so
the hardware is my forte, and | could keep writing for some time.
However, the publisher only agreed to a book of around 400 pages,
and I'm already pushing it!

Very few assembly language books delve deeply into the
hardware, and certainly no Windows books do. Well, many
Windows programming books do cover, more or less, the CPU
architecture and memory management, as | have done in Chapter
1. For systems programming, it is very helpful if you understand
something about the hardware beyond the CPU, i.e, the other
chips on the motherboard and plug-in cards, how they work
together, and how to utilise them.

CPU Bus

Look a any block-diagram of a computer system, and you are
likely to see more than one distinct bus shown. In a nutshell, the
bus carries the address and data, and the bus that is directly
connected to the CPU, or processor, is called the CPU, system, or
processor bus.

The other possible buses perform the same basic task, i.e., carry
address and data, but they are optimised for some specific purpose,

179

180 Windows Assembly Language & Systems Programming

Address,
data, and
control
buses

Difference
between
memory
and /0
access

Machine
cycle

such as for connection to I/O (input/output) plug-in adaptor cards.
Anybody who has been around PCs for awhile will have heard of
the | SA bus — thisis an example of such a special-purpose bus.

The best starting-point is to consider the structure of the bus that is
directly connected to the CPU.

First, we can analyse the CPU bus by breaking it into three logical
groups of lines. Redly, the bus is a big bunch of wires, with
certain wires carrying the address, some carrying data, and some
performing control functions — this is shown in Figure 1.5 on

page 13.
In fact, each of these groups is sometimes referred to as a bus in its
own right.

Intuitively, you can imagine that if the CPU is to access memory,
it would have to send the correct address to memory on the
address bus, and the data transfer would take place over the data
bus. But what about I/0? If the CPU wants to send data to an
output device, for example a printer, there is the same scenario of
these three buses.

The CPU has to put the appropriate address of the printer output
port onto the address bus, and then the CPU will have to put the
data onto the data bus.

The essential point here is that the address and data buses are
being used for two different purposes. So how do the various
chips that are connected to the bus know whether the current
operation is an 1/O-port access or a memory access? After al,
they are al wired onto the same bus, as Figure 1.3 shows.

Control Bus

To understand the problem introduced above of how the bus
performs access to two different kinds of chips — memory and 1/O
— it is necessary to have a closer look at the control bus. First,
look at Figure 7.1. Also look at Figure 7.2.

For a memory access, say, to read the next instruction, the CPU
goes through what is called a machine cycle, which smply means
it reads or writes memory. There is also such a thing as a “null
cycle’, in which the CPU is doing something within itself for that
clock-period.

When the CPU wants to access the memory, it puts an address

onto the address bus at the beginning of the cycle, then it puts ALE
low to let the rest of the system know there is a valid address.

Depending upon whether the CPU wants to do a read or write
operation, it pulses MEMR* or MEMW* |ow. In the case of a

PC Hardware 181

memory read it would send MEMR* low, which tells the memory
chips that they are supposed to send data to the CPU.

The memory responds by putting the data on the data bus, and the
CPU reads what is on the data bus near the end of the cycle — the
exact moment when the CPU reads the data bus is when MEMR*
goes high.

Figure 7.1: CPU bus showing some of the control signals.

associated
chips

| ——

7

These are control signals
from the CPU (& maybe
viadecoding/buffering
associated chips). There
are also signals going the
other way.

Address bus
20 bits for 8088/6)
24 bits for 80286
32 bitsfor 80386;

Data bus
8 bits for 8088)
16 bits for 8086 & 80286)
32 bits for 80386)

Control bus

INTA (Interrupt Acknowledge)
IOR* (VO Read)

IOW* (1/0O Write)

MEMR* (Memory Read)
MEMW* ‘(Memory Write)
ALE (Address Latch Enable)

NOTE:

The "*" appended to some
signal names indicates they
are“low active’.

Time -

1

r— Start of machine cycle

CPU puts an address on address bus

\J/— End of machine cycle
amachine cycle corres-

(hi I

ponds to one or more clock
cycles, depending upon
which CPU)

CPU puts ALE low while address valid |
Data bus e to or from the CPU

1

MEMR* or MEMW* pulsed low < |

—T Or neither if this is a

Valid data on data bus,

— "null" cycle

182 Windows Assembly Language & Systems Programming

There is still a loose end to the above description. How does
memory determine which data to put on the data bus? The CPU is
sending out an address asking for the data at a particular memory
location. Figure 7.3 shows what the circuitry looks like at the

memory end.
Figure 7.3: Interface, CPU to memory.
I
ALE ———D'CS* “t Detectsfthﬁ:- aggr&ss
range of the
AQ - Al9 Al 9]Address ﬁhi 50 hgsthe
address bus Al Igher oraer
[decoder address bits as
* input.
CS*
A0 S CS means
A0 RAM “Chip Select”
MEMR* ———» Regd*
MEMW* —— »f\Write*
data bUS %

Address Decoder

Basically, a memory chip has a data bus, an address bus, chip
select input(s), and read/write control input(s). This example
RAM (Random Access Memory) chip has an active-low chip
select line coming from an address decoder.

This decoder detects the presence on the address bus of the
appropriate addresses for this particular memory chip — this chip
is being addressed, it “selects’ the memory chip.

Note that the address decoder itself has a CS* (chip select) input
— ALE is connected to this. It ensures that the address decoder
only operates when there is a valid address on the address bus.

Assuming that the RAM is addressed correctly, the CPU tells it via
MEMR* and MEMW* which way the data is to go.

Notice that only Al7 to A19 go to the address decoder — thisisan
example circuit only, and specific circuits may differ from this, but
generally it is only necessary for some of the address lines to go to
the decoder. This is because the memory chip resides at a range of
addresses — the lower order address bits go directly to the chip to
select a particular memory byte.

Get the idea? The higher address lines select the chip, while the
lower lines select a particular location on that chip.

BIT:

PC Hardware /83

There are three address lines into the decoder in this example, Al 7
to A19. Say that the decoder is designed to detect an input of 101
binary:

19 18 17 16 15 14 13 12 11 10 9 8 7 .

. . 0
1 o010 0 0 0 0 O O O O o . .. 0
10 11 1 1 1 1 1 1 1 1 1 ... 1

This means that the RAM chip occupies address range A0000h to
BFFFFh, and the size of the RAM would have to be 2717 = 128K

bytes.

/O Ports

If you peek back at the diagram of the control bus for the CPU
(Figure 7.1), you will see that there are a couple of lines called
IOR* and IOW*. These are for reading and writing 1/0O ports.
Unlike some CPUs, such as the 6800 family, that do not
distinguish between memory and /O operations, the Intel 86
family have special instructions and specia control lines for 1/0.

Figure 7.4 is a typica 1/O circuit. Notice its similarity to the
memory interface shown in Figure 7.3. A mgjor difference is that
[OR* and IOW* go to it, instead of MEMR* and MEMW*,

Figure 7.4: Interface, CPU to I/O port.

ALE CS* ot Detectsfthﬁ address
range of the RAM
AO - A19 Al5| Address chip, so has the

address bus AD decoder higher order
address hits as

} input.
CS*
Al

A0 | PPI g Port A

IOR* ———»{ Read*
JOW* —— o Write* Port B

data bus -—+ f— Port C

Whenever the CPU executes a read-port instruction (IN), it
performs an 1/0O read machine cycle that looks just like the timing
diagram for memory access, except IOR* gets pulsed low. Now
we have fully answered the question regarding the dua purposes
of the bus.

184 Windows Assembly Language & Systems Programming

ProgrammableMore special chips are used for the interface between the buses

Peripheral
Interface

and the external world. By external | also mean the keyboard, disk
drive, etc. Notice that the 1/0 chip in Figure 7.4 is labelled "PPI".
This is the name given to a chip used in early-model PCs. PPI
means Programmable Peripheral Interface, and it is a simple
general purpose 1/0 chip, with three externa 8-bit ports, as shown.

The functionality of the original PPI is till in the latest PCs — it
is just contained within a larger chip. We refer to big chips as
VLSI technology (Very Large Scale Integration).

Notice that the PPl in Figure 7.4 has only two address lines going
directly to it. That is because it only has four ports, or registers.
Three of them are ports A, B, and C, and the fourth is a
configuration port.

/O Instructions

Although the address bus is used to select I/O ports, only AQ to
Al5 are used, so the address range is only 64K. With the 1/O
instructions, data is adways via the AX register. The 1/0O port
address must be placed in DX before executing the I/O instruction
if the address is over 256.

Examples:

IN AL,2Fh
I N AX,2Fh
5, AL

S

; A byte from port-address 2Fh | oaded into AL.
lagnut A word from 2Fh to AX
;Contents of AL written to port 5.

Hardware
description

Keyboard Interface

This section talks a little bit about interrupts in general, since
interrupts are tied in with how the keyboard interfaces to the
computer. | have introduced interrupts on page 33, and in further
depth on page 250.

Refer to the circuit of Figure 7.5. The keyboard scancode is routed
to port A on the PPI chip, when PB7 = 0. The address of port A is
60h, port B is61h, port C is 62h, etc. The keyboard also generates
an interrupt to the 8259 Interrupt Controller chip, causing INT-9.

With AT-class PCs, including most 386, 486, and Pentium PCs,
we can still visualise the operation as following this pattern. There
are two microcontrollers, an 8031 on the actua keyboard, and an
8042 on the motherboard. The latter implements the functionality
of the original PPl with some changes. For example, port C (62h)

PC Hardware 185

has completely fdlen by the wayside. The 8042 has itself been
consumed into larger VLS chips.

Figure 7.5: Keyboard interface.

| <+—IRQI15
Programmable —
CPU IRQ =
«——nterrupt IRQI
Controller (PIC) ’;
0
VLS chip
Kscan 803
Bus <
Keyboard
N
RN
8042 microcontroller on
older AT-class PCs.

Scancodes

INT9

IRQ to VT
mapping

Each key generates a unique scancode. The keyboard outputs a
scancode when a key is pressed and again when it is released (and
of course generates an interrupt each time). The difference is
determined by PA7 = 0 when pressed, and PA7 = 1 when released.

Note that it is the job of the BIOS routine INT-9 to convert the
keyboard scancode to ASCII and place it in the input buffer.

A small detail to keep in mind is that the keyboard interrupt goes
into the IRQ1 input of the Interrupt Controller chip, hence to the
CPUs interrupt input, IRQ.

Question — how does the CPU know that a keyboard interrupt is
“INT-9" (i.e., to look at the ninth entry of the interrupt table for the
address of the keyboard-handler routine)?

Answer — The CPU and the Interrupt Controller communicate
automatically over the data bus, and take care of this detail. INT-8
to INT-F correspond to IRQO to IRQ7.

With the AT-class PC though, a view under the hood shows that
the 803 1 sends a Kscan byte for each key press/release, which the
8042 converts to the normal scancode. Thus, it may be that we
never have to encounter Kscan codes, unless our work involves
directly programming the 803 1.

186 Windows Assembly Language & Systems Programming

Keyboard

This is the basic structure of INT-9 in the BIOS, as pointed to by

housekeeping entry 9intheIVT:

...di sabl e keyboard... (AT)

in al,60h ;read scancode from PA
push ax ;save 1 1.

In al,é61h ;read PB

or al,80h ;set PB7=1

out 61h,al ; /

and al,7Fh ;clear PB7Y.

out 61h,al ; /

pop

ax
.INT-15h... (AT only)

...Check for Kkeyboard commands Resend, Ack, Overrun.. (AT only)
.Update rEDs... (AT only)

. .pracess

key

. ..issue End OF | nterrupt (EOI)...

Controlling
the 8031
and 8042

Status of
the 8042

How to read
and write
port-m &
-64h

AT-Class Keyboard Port Enhancements

Port-60h has been expanded beyond that of merely reading the
scancode from the keyboard, as was its sole role in the earlier
XT-model PC. Now, there are two groups of functions it can
perform.

Port-60h is now capable of sending commands, mostly directed to
the 803 1 controller on the actua keyboard.

Port-60h can also be used to receive other data, which works in
conjunction with port-64h. Basically, port-64h is for sending
commands to the motherboard 8042 controller, and if any of those
return data, it is read at port-60h. Therefore, you use these two
ports in a particular sequence — an OUT to port-64h, followed by
an IN from port-60h.

Port-64h can aso be read, and it provides status information about
the 8042, or whatever chip is being used as the AT-class
motherboard keyboard controller, as shown in Table 7.1.

A most important point that you should note from Table 7.1 is that
you must test bit-l before performing any OUT to ports 60h or
64h, and you must test bit-0 before doing an IN from port-60h.

In fact, a curious piece of information is that on a “Type 1" MCA
PC, you must wait seven microseconds after bit-0 becomes
logic-l, before reading port-60h. MCA is IBM’s own proprietary
expansion bus system. Fortunately, it implements ports 60h and
64h much the same as in AT machines. MCA is just about history.

Testing for
the XT
model

Further
references

PC Hardware /87

Table 7.1: Port-64h input.

BIT MEANING
7 =1: Parity error on seria link from keyboard
6 = 1: Receive timeout error from keyboard
5 =]1: Transmit timeout error to keyboard
4 =0: Inhibit keyboard, from keyboard lock switch
3 =0: Data was just sent to 8042 via port-60h
=1: Datawas last sent to 8042 via port-64h

2 =0: Power-on caused reset
=1:8042 self-test completed successfully
1 =0: A write can be made to port-60h or 64h
= 1: No writes alowed to port-60h or -64h
0 =0: A read from port-60h will not be vaid

=] Data available, use port-60h to read them.

There are a whole lot of commands that you can send to port-64h.
Of course, this presumes that you are not using an IBM-XT PC. If
your software is to run on AT-class machines only (including
MCA, EISA, PCl), then you may have to state that fact with the
documentation, and/or your software could perform a simple test.
For example, the AAh command to port-64h is a self-test, and if
the keyboard controller passes the self-test, it will return the value
55h in port-60h. The XT would not respond to this at al. Of
course, what you read from port-60h in an XT could accidentally
(though very unlikely) be scancode 55h.

Some of these commands result in data returned via port-60h, but,
as noted above, you must read port-64h, in aloop, testing bit-O.

Further details, such as the commands that port-60h can send to
the 803 1, are to be found in The Undocumented PC by Frank Van
Gilluwe, Addison-Wesley, 1994.

For further details on keyboard interrupt handling, refer to Chapter
10.

PC Expansion Buses

If you look under the lid of a PC, the plug-in cards are most
obvious. These may include video, printer, serial communication,
and disk adaptor.

188 Windows Assembly Language & Systems Programming

8-bit 1SA

bus

16-hit ISA
bus
Reference
book

Auto-

co nfiguration
of plug-in
cards

Some PCs will have some of these on the motherboard rather than
as plug-in cards.

The socket into which these boards plug is basically an extention
of the CPU bus, with address, data, and control lines, but usualy it
isin a somewhat modified form.

Some expansion bus standards have become history, such as
MCA, VESA local bus, and EISA, so | won't mention them
further. The ancient ISA (Industry Standard Architecture) standard
is remaining popular and is on just about all new PCs. New PCs
usually have another bus for high speed known as the PCI
(Periphera Connect Interface) local bus.

Industry Standard Architecture (ISA)

Early PCs use an 8088 CPU, which, despite advertisements, is
only an 8-bit CPU, since it is based on the size of the data bus.
Hence the I|SA bus aso has only an 8-bit data bus.

Some early PC compatibles have an 8086 CPU, which internaly is
identical to an 8088 but has an external 16-bit data bus. Asfar as |
am aware, these machines till have only an 8-bit ISA bus.

The advent of the AT-model PC, with an 80286 CPU having a
16-bit data bus, saw the introduction of the ISA bus with a 16-bit
data bus.

So that 8-bit cards would still work, the older connector was
retained, but a second connector, that the 16-bit cards used, was
placed end-on to it.

Although 8-bit cards will work ok in a 16-bit ISA system, they
will not run quite so fast as 16-hit cards. This is something to be
aware of when shopping around — a display adaptor card, for
example, could be 8 or 16 bits.

There are other books with a stronger hardware focus that will
give you further details, such as the functions of the pins on an
ISA bus connector and timing diagrams. One such book is
Interfacing to the IBM Personal Computer by Lewis Eggebrecht,
Sams, USA, 1990.

A plug-in card gets an opportunity to execute configuration code
stored on ROM on the card during the power-on sequence. One of
the typical things that this code does is “hook” interrupt vectors.
For example, avideo card may hook the BIOS INT- 1 Oh interrupt.

In such a case, the address in the IVT will point to the new code
that replaces it. This “redirection” is done by DOS itsdf, by
device drivers and TSRs, and by plug-in expansion cards (that may
have their own ROM with startup code and new BIOS routines).

PC Hardware 189

Video is a very good example of this. Most PCs have plug-in
video adaptor cards that are the interface between motherboard
and monitor. This card plugs into an expansion bus connector.
The origina video services provided by the BIOS-ROM are at
entry 10h in the IVT, however, it is normal for the video card to
execute some code during start-up, that replaces the address in the
the IVT with a new address that points to code in ROM on the
video board.

Figure 7.6 shows the effect of an adaptor card. During the
power-on segquence, the BIOS startup code sets up the IVT at the
beginning of RAM and puts ISR pointers into entries zero to 1Fh.
Entry 10h is the video-handling ISR, and this entry points to an
ISR in the BIOS-ROM.

Figure 7.6: BIOS extensions during power-up.

640K
\0000

30000

MEMORY MAP

Entry-10h in the IVT pointsto an ISR in the

IVT BIOS ROM, however, start-up code in the
video-ROM changes the vector, to point to
anew ISR in the video ROM.

RAM VIDEO ADAPTOR CARD

on

motherboard Connector for

monitor.

20000

20000
30000
‘000

IME

Plugsirito PC
expansion bus.

.y

A little bit later in the start-up sequence, the memory address
range C0000h to C8000h is scanned, in 2K increments, looking for
any code that may be present on plug-in cards. Usually, an
adaptor card has switches that set the address range of the

190 Windows Assembly Language & Systems Programming

BI0S & DOS
VECLOrs in
wr

Difference
between
BIOS and
DOS
services

on-board ROM to a vacant place in the PCs memory map. Note
though, that Plug and Play is replacing switches with
programmable configuration.

It is normally expected that a video adaptor will have video-ROM
in the CO000h to C8000h region, in which case it executes. When
the start-up code of the video-ROM executes, it changes the
contents of entry-10h in the IVT to point to its own video-ISR,
contained in its own ROM.

Note also that a little later, the start-up sequence scans the address
range C8000h to F4000h looking for more ROMs, which will also
be executed. Incidentaly, valid code is identified by 55AAh at the
first two memory locations, with offset-2 holding the size of the
ROM module, expressed in 5 12-byte blocks. Execution will
commence at offset-3 of the ROM.

In the case of video, there is a very practical outcome of the above
mechanism: when writing a program, use INT-10h to access the
video, i.e., to send characters to the screen, etc., and you know that
it will work, regardless of what video adaptor card you have
plugged in. The original INT-10h ISR in BIOS-ROM s fairly
basic and may not work properly with your video adaptor card,
especiadly if the PC is old. The redirection of INT-10h to a new
ISR avoids the problem of obsolesence.

It is interesting to note that al of the above is done by the BIOS
start-up code before the system disk is accessed. Later, the
bootstrap program from the Boot Record on the system disk is
loaded, followed by 10.SYS and MSDOS.SYS, in the case of
loading the DOS operating system. When 10.SYS is loaded, and
executed, it sets up interrupt vectors 20h to 3Fh, in the IVT.

BIOS-ROM (or the extensions) provides services with addresses in
the IVT. So does DOS, and the DOS services are loaded into
RAM during power-on.

Actualy, you may recal from Chapter 1 that the hidden system
tile, MSDOS.SY'S, has these DOS routines (except in the case of
Windows 95).

So what is the magjor difference between the services provided by
BIOS and those provided by DOS?

The answer is that the BIOS services are low-level, that is, they
are for more basic access to, and control of, the hardware of the
PC. The DOS routines provide mostly higher level access to, and
control of, the hardware and resources of the the PC. Note also
that some of the DOS routines are not actualy for accessing
hardware: rather they are operating system management functions.

PC/ bridge

Configuration
memory

PC Hardware /97

Peripheral Connect Interface (PCl)

Figure 7.7 shows a typica configuration, though do note that there
can be variations on this. For example, RAM memory could be
interfaced to the PCI bus, rather than directly onto the CPU bus (or
both).

Figure 7.7: PC&-CPU--I1SA bridges.

CPU Memory
I CPU-bus l
PCT bridge s
| PCl-bus P

|

PCI bridge s
| |SA-bus E

|

The PCI bridge is a chip, and athough it is not obvious from the
figure, there are different kinds of chips for different bridges, such
as between CPU-PCI and PCI-ISA. Also, the PCI plug-in cards
themsalves will have a PCI chip. One great advantage of having a
special bridge chip between buses is that they allow address
trandation, so that a memory or 1/O address on the CPU bus will
be a different address on the PCI bus. In fact, the bridge chip is
highly programmable and has its own configuration memory that,
most importantly, is independent of the main memory and /O

map.
With PC systems, the standardized method of accessing the
configuration memory of a PCI chip is by two reserved 32-bit I/O
ports, OCF8h and OCFCh. The former is used for addressing a
location in configuration memory and the latter for reading/writing
it.

The former, OCF8h, is caled CONFIG_ADDRESS, and the latter,
OCFCh, is called CONFIG_DATA.

It is important to know that these two ports can alow you to
access the configuration memory on any of the PCI interface chips

192 Windows Assembly Language & Systems Programming

(on any adaptor card). The 32-bit data that you write to
CONFIG_ADDRESS, is formatted as in Figure 7.8.

Figure 7.8: CONFIG_ADDRESS write format.

31

24 23 16 15 11 10 87 20

A
\ Enable CONFIG_DATA Trandation Type

Bus# Device Function Register ’i

PC/ BIOS
extension

Reference
source

Protected
mode PCI/
BIOS

Bit-3 1 has to be set, otherwise the OUT instruction is treated like a
normal 1/0 operation (not accessing the PCI bridge chip).

Bus# is for use in systems with multiple PCI buses, Device selects
a particular adaptor card, Function selects a function that the card
understands, and Register selects a register in the configuration
memory. An OUT to CONFIG_ADDRESS would be followed by
an IN or OUT to CONFIG_DATA.

Fortunately, a BIOS extension has been defined to give
programmers a dightly less hardware-dependent mechanism for
accessing the PCI chips. One point to be careful about, however,
is that not all BIOSs implement the new specification fully, or,
maybe, they may not have implemented the latest version of the
specification (2.1 at time of writing).

Of particular interest is that version 2.1 specifies entry points for
Rea mode, 16-bit Protected mode, and 32-bit Protected mode.
The 386 and later CPUs can operate in 16-bit Protected mode,
which is what Windows 3.x applications run in, and they can aso
operate in 32-bit Protected mode, which is what “native” Windows
NT and Windows 95 applications run in.

A further source of information about this is PCl System
Architecture (third edition) by Tom Shanley and Don Anderson,
Addison-Wesley, USA, 1995.

The norma BIOS that we have considered so far in this book is
designed, at least originaly, for an 8088 CPU, which only runs in
Real mode. In a nutshell, Real mode uses the now-familiar
segment:offset form of addressing, which has a 1M upper limit.
The 286 and 386 CPUs are able to operate in Protected mode,
which uses a different addressing mechanism and is able to
address extended memory beyond 1M (as explained in Chapter 1).

One of the greatest criticisms of Windows 3.x, is its reliance on

DOS and BIOS — to cal any of these software interrupts, the
CPU must switch back into Real mode (which takes time).

PC Hardware 193

It is possible to write code that can execute in either Real or 16-bit
Protected mode, and PCI BIOS has done this — via INT-1 Ah,
function Blh (Table 7.2). Great — you can cal this from a
Windows 3.x application, and the CPU will not have to switch
back to Real mode.

The PCI BIOS requires an entirely different set of routines for
32-bit Protected mode.

Table 7.2: PCI BIOS access.

Real mode. Use MT-1 Ah, AH =B |h, like any other software interrupt
16-bit Protected mode ...ditto. ..
Virtual-86 mode ... ditto. ..

32-bit Protected mode BIOS is scanned, for a signature, indicating presence of

32-hit BIOS, and an entry point is located. The services
are accessed by a FAR CALL.

PC/
summary

Note that, technically, it is possible, if you are writing a 32-bit
application, to get it to cal the Rea mode/16-bit Protected mode
PCI BIOS services, but this is starting to get too involved at this
stage.

Here are some of the highlights of the PCI architecture:

* Multiple independent PCI buses in the one PC.

e 32-bit data bus at up to 132M/sec (megabytes/sec), and 64-bit
at up to 264M/sec.

* Fully synchronous with CPU bus up to 33MHz.

e PCI connector can be mounted alongside an ISA/EISA
connector, so either type can occupy that physical space on the
motherboard/chassis.

* Processor independent

e Support for 64-bit addressing

¢ Support for 5V and/or 3.3V supply

e Full multi-master capability, allowing any PCI master
peer-to-peer access to any other PCI master/target.

¢ Full auto-configuration (no dip switches on cards).

194 Windows Assembly Language & Systems Programming

Postamble

| have introduced PC hardware, but so much remains to be
explained. | covered the keyboard interface and expansion bus,
but these are only “samplers’. What about parallel and seria, disk
drive, timer, real-time clock, and other interfaces? Some of these |
do touch on in later chapters, however this book will grow into
something enormous if | try to cover everything.

| could cover these in the next edition though. Let me know if you
redly like the idea

Choice of keyboard interface and expansion bus serve as case
studies, so that you can see how the principles earlier in the
chapter are applied.

BIOS, DOS, &

Windows L ow-L evel

What's
in this
chapter

DOS/BIOS
INTs

Services

Preamble

This chapter introduces the services available to the Windows
programmer, but from a viewpoint that you would expect of a
book on assembly language. | have covered two major aspects:
the DOS services and the Windows low-level services.

This chapter gives an overview, and the next chapter provides
practical code.

We havent been so far away from the operating system in earlier
chapters, but now is the time to delve in further.

In this chapter | have particularly been concerned about the
relationship between DOS and Windows. We have a new
operating system running on top of DOS, with the CPU in
Protected mode — how much of the old DOS can we still use?

Then there is the related issue of how DOS itsdf has been changed
to handle the new CPUs and operating conditions. What are these

195

196 Windows Assembly Language & Systems Programming

Why use
DOS/BIOS
services?

DOSin
the future

changes? For example, INT-16h, the keyboard handler under
DOS, doesnt work under Windows.

| have aready mentioned the problem of cdling the old DOS
interrupt services with the CPU running in Protected mode (page
33).

| introduced some of the first DOS services to utilize Protected
mode (page 18).

Old habits die hard, and DOS programmers are going to be loath
to give up their familiar DOS and BIOS services in favour of
Windows functions, especialy if some of the old services seem
better suited to certain tasks or if the Windows functions dont
seem to do anything equivalent, or do it poorly.

In many cases, the Windows solutions are painfully slow. If you
are after performance, for certain kinds of applications it may be
optimal to use certain DOS services.

An interesting example comes to mind — that of printing.
Windows printing is designed for dumping a complete page at a
time to the printer, but if all you want to do is output a line a a
time to your faithful old dot matrix, perhaps to log some systems
events, it is darned awkward. It is, of course, a pushover for DOS
— you can use INT-2 1 h to output a single character at a time, and
when you send a carriage-return character, the line prints.

Since Windows uses its own specia printer drivers for output, the
guestion naturally arises about whether you can use the old DOS
service. Will it work? Will there be a clash?

The answer is that it works fine, but yes clashes are possible.
However for every problem there is a solution, including that of
contention over resources.

Another qualification that needs to be made is that Microsoft has
taken the opportunity with 32-bit applications to restrict
BIOS/DOS and other low-level access. This will be explained as
you read ahead.

The advent of Windows 95 does not mean that DOS is dead. Even
though Windows 95 does not identify DOS as a separate product,
still, it is there. You can start the PC with the DOS prompt, or
launch a DOS box from Windows, just as before. It's really more
of the same thing, despite the Windows 95 publicity hype.

There are a number of issues with regard to how DOS lives
alongside Windows, some of which | have gone into in Chapters
11 and 14.

BIOS and DOS Services

Overview This is a mysterious gray area, very poorly documented by
Microsoft. Although Windows runs in Standard or Enhanced
Protected mode, most BIOS and DOS services dtill work, with
various caveats.

DPMI Apart from the standard services, Windows also supports a specia
group of DOS services, called the DOS Protected Mode Interface
(DPMI). These consist of some INT-2Fh services and INT-31h
services.

INT-2Fh has a range of sub-functions available under DOS, but
Windows adds some extra functions. If you look in any DOS
programming book you wont find anything on these extra
functions, nor on INT-3 |h. Even Microsoft’s own reference bible,
The Programmers PC Sourcebook (second edition) by Thorn
Hogan, USA, 1991, has nothing on these services.

Reference You have to scratch around in strange places to find the

sources information. This book brings much of it together, and where it
does not, | give the appropriate reference. Microsofts Device
Development Kit (DDK) has reference material on DPMI, and |
think their Archive Library CD-ROM has aso. Obtaining these
requires that you join the Microsoft Developers Network (MSDN),
and this is where Microsoft has us “over a barrd” — they want
quite a lot of money for membership.

You can find a lot of information on the Internet. For example, a
site with lots of links for developers is:

http://www.r2m.com/windev/
Another site with DPMI reference information is:
http://www.delorie.com/djgpp/doc/

DPMI First, 1 will fit DPMI into its place in the overal scheme of things
overview (the meaning of life and al that), before getting into a look at the
standard BIOS and DOS services:

“DPMI enables DOS applications to access the extended
memory of PC architecture computers while maintaining
system protection. It also defines a new interface, via
software interrupt 31h, that Protected mode applications
use to do such things as allocate memory, modify
descriptors, and call Real mode software (using
segment:offset addressing and running within the 1M
limit).”

198 Windows Assembly Language & Systems Programming

This is a direct quote from some loose-leaf pages sold by
Microsoft under the title Windows Developers Notes (part number
050-030-313). It is extra materia not found in the SDK’ and has a
couple of pages on DOS and DPMI — hardly anything, though, as
it appears that Microsoft has the attitude that the less we know
about how Windows works “under the hood”, the better.

DPMI 0.9 Despite documentation to the contrary (see quote below),
and 1.0 Windows 3.0, 3.1, and 95 only support DPMI version 0.9. The
Windows Developers Notes have the following warning:

“Windows 3.0 running in 386 Enhanced mode supports
DPMI version 0.9. Windows 3.0 running in Standard
mode supports a subset of DPMI that enables
applications to call TSR programs and device drivers
running in real (or virtual-86) mode.”

“Windows applications should call only the following AX
values for DPMI version 0.9 functions: 0200h, 0201h,
0300h, 0302h, 0303h, 0304h, 03 05h. Windows
applications should not use DPMI's MS-DOS memory
management functions. The Windows 3.0 Kernel has
two functions, GlobalDOSAlloc() and Global DOSFree(),
that should be used by Windows applications and DLL’s
for alocating and freeing MS-DOS addressable memory.
Other than those listed above, no DPMI functions are
required for Windows applications since the Kernel
provides functions for allocating memory, manipulating
descriptors, and locking memory.

Non-Windows applications running in 386 Enhanced
mode can use all the DPMI version 0.9 functions, since
they are not restricted by the Kernel.”

However, to throw a spanner into the works, Microsoft has stated
this in documentation supplied with the SDK v3.1:

“Windows 3.0 and later in 386 Enhanced mode supports

DPMI version 1.0. Windows 3.0 and later in Standard
mode supports a subset of DPMI that enables
applications to call terminate and stay resident (TSR)
programs and device drivers running in Real (or
virtual-86) mode.”

' Much of the material from the Developer’s Notes has found its way into the latest SDK for
Windows version 3.1. This consists of about 12 books. DOS and DPMI notes are to be found
in Microsoft Windows Programmer’s Reference, Volume I: Overview, the first of four volumes.
This is now on CD-ROM supplied with the SDK, though in many cases Microsoft will sell
printed versions.

BIOSDOSWindows Services 199

If you think that the above two quotations are contradictory, join
the club. What's it to be: 0.9 or 1.0? | received a clarification
from Microsoft that Windows 3.0 and 3.1 (and now 95) only
support DPMI 0.9. Their reply to me also had another interesting
comment:

"... Standard mode understands how to alocate memory
from a DPMI provider . . . Enhanced mode does not.”

When to There are Windows functions that overlap DPMI services, but
use DPMI most of the latter are undocumented, and in the light of the above
services comments from Microsoft, we are left between a “rock and a hard

place’. Andrew Schulman, PC Magazine, Jan. 28, 1992, page 323,
puts it this way:

“Youre stuck with using either DPMI INT 31h functions

... which Intel documents but Microsoft doesnt sanction

. or Windows KERNEL functions, which Microsoft
doesnt document. What a choice!”

Newly Windows 3.1 does make some of the previousy undocumented
sanctioned functions “officid”, by documenting them in the SDK, and aso
functions introduces some new low-level functions, many of which cannot

be used with Windows 3.0. Since there are going to be a some (?)
users out there still using 3.0, | have been careful in this chapter to
clarify which functions are not backwards compatible.

Microsoft has put some functions into a library, TOOLHELP.DLL,
that you can bundle with your application for backwards
compatibility with Windows 3 .O.

Restrictions A fina note is that other programmers have commented in the
on using press (and it is my own empirica experience) that the DPMI
DPMI services work under Windows. 1ve tried most of them, but not all.

The main thing to be careful about is using those DPMI services
that might conflict with Windows management of the memory,
such as alocation of memory blocks (see quotation on page 198).

In a virtua machine other than the system virtua machine (see
page 274), there should not be any conflict with Windows
memory management, and you can use al the DPMI services
(Microsoft sanction this statement).

I've done the right thing and printed Microsoft’s discouragement
for extensive use of DPMI. Code that you will see in subsequent
chapters has been tested in both Standard and Enhanced modes,
but with a book of this nature | do have to insist on a tota
disclaimer of any liability. You use the code with this
understanding.

200 Windows Assembly Language & Systems Programming

Windows95 Most of my code has also been tested under Windows 95 and
works. However, this statement is true of 16-bit applications
running in Windows 95 — native 32-bit applications are
somewhat more restricted. There are work-arounds. For example,
many of the low-level API functions are available as 32-bit
versions, but are not supported by the import library (during
linking), nor are they documented. However, we can till use them

(refer page 235).

One problem is that you cant just call 16-bit functions such as the
16-bit API functions from 32-bit code. Most of the interrupt
routines also assume that the caller is 16-bit code.

Standard DOS Interrupts

Microsoft implies from their Developers Notes that most of the
DOS services will work ok when called from a Windows program
running in (16-bit) Protected mode.

Those specificaly not supported in Protected mode, and which

will fail, are

o INT-20h Terminate program

« INT-25h Absolute disk read

« INT-26h Absolute disk write

o INT-27h Terminate and stay resident

. INT-21WVAH =

00h
OFh
10h
14h
15h
16h
21h
22h
23h
24h
27h
28h

Terminate process
Open file with FCB
Close file with FCB
Sequential read
Sequentia write
Create tile with FCB
Random read
Random write

Get file size

Set relative record
Random block read
Random block write

The following DOS INT-21h functions will work, but will behave
differently from Real mode DOS versions:

Hooking
Protected or
Real mode
interrupts

o AH=25h and 35h
“These functions set and get the Protected mode interrupt
vector. They can be used to hook hardware interrupts,
such as the timer or keyboard interrupt, as well as to

Set/Get interrupt vector.

BIOSDOSWindows Services 201

hook software interrupts. Except for INT-23h, INT-24h
and INT-1Ch, software interrupts that are issued in Real
mode are not reflected to Protected mode interrupt
handlers. However al hardware interrupts are reflected
to Protected mode interrupt handlers before being
reflected to Real mode.”

« AH = 38h Get country data.

“This function returns a 34-byte buffer containing a
doubleword (DWORD) call address at offset 12h that is
used for case mapping. The DWORD contains a Rea
mode address. If you want to call the case-mapping
function, you need to use the DPMI trandation function
to simulate a Real mode FAR call.”

« AH = 44h, subfunctions 02h, 03h, 04h, and 05h.
“These /O control (IOCTL) subfunctions are used to
receive data from a device or send data to a device.
Since it is not possible to break the transfers
automatically into small pieces, the caler should assume
that a transfer of greater than 4K will fail unless the
address of the buffer isin the low 1 megabyte.”

« AH = 44h, subfunction 0Ch.

“Only the minor function codes 45h (Get Iteration Count)
and 65h (Set lteration Count) are supported from
Protected mode. The extensions of this IOCTL
subfunction that are used for code page switching (minor
function codes 4Ah, 4Ch,4Dh, 6Ah and 6Bh) are not
supported for Protected mode programs. You must use
the DPMI trandation functions if you need to use this
IOCTL subfunction to switch code pages.”

o AH =65h, Get extended country information.

“This function is supported for Protected mode programs.
However, al the DWORD parameters returned will
contain Real mode addresses. This means that the
case-conversion procedure address and all the pointers to
tables will contain Real mode segment:offset addresses.
You must use the DPMI trandation functions to call the
case-conversion procedure in Rea mode.”

This is a direct quotation from the Developer’s Notes. The term “Real mode’ in this publication
is also taken to cover virtual-86 mode.

202 Windows Assembly Language & Systems Programming

NetBIOS
interrupts

Accessing
BIOS/DOS
from
Protected
mode

More
vagueness

Windows also supports the DOS NetBIOS interrupts. The
Developers Notes advise that al of the network control blocks
(NCBs) and buffers must reside in fixed memory that is page
locked. Also, dl code that calls NetBIOS directly should reside in
a DLL to ease the porting of the application to other operating
environments. | havent written anything more about NetBIOS
support in this book. If you want more information, go to the
Device Driver Developer Kit (DDK).

Earlier in the book (pages 33+) | explained about the Interrupt
Vector Table (IVT) used by Real mode interrupts and the Interrupt
Descriptor Table (IDT) used in Protected mode. | explained that
Windows has in some cases provided alternative services via the
IDT where necessary, but in many cases the vector in the IDT
points to a handler that changes the CPU to Real mode (virtual-86
actually) and calls the Real mode service as pointed to by the IVT.
This mechanism is shown diagrammatically on page 268.

The Developers Notes say that Windows provides support for “all
MS-DOS interrupts’ other than those specifically blacklisted
above.

Despite the above comment, heed the warning from Guide to
Programming (SDK 3 .0 manual):

"... you should use interrupts with extreme caution and
only when necessary”.

The SDK documentation leaves you hanging on the cliff at that
point — there is virtually no further clarification about what you
can and cannot use and under what conditions and circumstances.
Furthermore, the SDK 3.1 documentation does not have this
warning! The Windows 95 SDK just about ignores BIOS and
DOS interrupts entirely.

| have dready mentioned that INT-16h, the keyboard handler,
works tine — except that you need to be aware that Windows
hooks the INT-9 hardware vector that puts characters from the
keyboard into the keyboard buffer. Windows has its own
128-character buffer and its own keyboard handler.

Leaving the standard BIOS and DOS services for now, | will focus
on DPMI.

DOS Protected Mode Interface
(DPMI)

Reference The main sources of information for DPMI are the specification

sources itself: DPMI Specification, version 1 .0, DPMI Committee, 1991.
This committee is hosted by Intel Corporation, and members
include Microsoft, IBM, and Borland. Further information is in
Microsoft's DDK and in Writing Windows Device Drivers by D. A.
Norton, Addison Wedley, USA, 199 1, and on-line at:

http://www.delorie.com/djgpp/doc/

| have summarized the mgjor DPMI services in Appendix C, and
you will find practical code with further explanation in subsequent

chapters.
DPMI What follows are some of the underlying principles of DPMI. If
elsewhere jn any of it doesnt make sense, dont worry, as it should be much
this book clearer when actua code is shown in the next chapter. | have aso

provided more underlying detail in Chapters 11 and 14.

You can get a good overall idea of what the DPMI services do by
examining Appendix C. They provide the kind of services that the
old Rea mode DOS services dont, that is, services connected with
the descriptor tables, managing extended memory, going between
Real and Protected modes, getting at real memory from Protected
mode, and getting at the CPU control registers.

| introduced some DOS services back on page 18, but they are
primitive. DPMI does a much more thorough job and is specially
designed for the multitasking environment.

Host and Windows provides the DPMI services for our program to use, so
client the correct terminology is that Windows is the DPMI host, while
our program is the client.

INT-31h, The DPMI services are available through INT-3 Ih, which is only

INT-2Fh available in Protected mode. DPMI provides INT-2Fh services to
obtain information about DPM| — these run in Protected or Real
mode (see Appendix C and Chapter 9). A DPMI host must be
running to provide INT-3 Ih services, though note that Windows is
not the only DPMI host. Other DOS extenders and memory
managers are also DPMI hosts. For example, 386Max is a superb
memory manager and DPMI 0.9 host from Qualitas Corp. that
enables you to write DOS applications that can run in Protected

INT-2Fh mode.

extensions

provided by

a DPMI host

The basic INT-2Fh services are;

204 Windows Assembly Language& Systems Programming

INT-31h
logical
groups

AX =1680h Release current virtual machine's
time dice.

AX =1686h Get CPU mode.

. AX= 1687h Return Real-to-Protected mode

switch entry point.

. AX= 168Ah Get vendor-specific APl entry point.

Apart from these functions, DOS has a lot of other functions under
INT-2Fh. Other software products provide enhancements to
INT-2Fh. Windows provides extra services for device driver
development (discussed a hit further on), and the new specification
for FAX and modem communication adds further functions.
INT-2Fh is a mixture of al sorts of stuff.

INT-3 |h has these major groups of services:

Extended memory management services.

Works with blocks of linear memory abovelM and deals with

linear addresses (refer back to pages 28+). These services
allocate and release memory, but you still have the problem of
accessing it, for which you need a descriptor — for that you
need the descriptor management services.

LDT descriptor management services.

These alocate, modify, inspect, and deall ocate descriptorsin
the application’s Local Descriptor Table (LDT).

Page management services.

These will only work on a system with paging. They are used
for locking and unlocking pages in memory.

Interrupt management services.

These alow Protected mode applications to intercept Real
mode interrupts and hook processor exceptions. Some also
enable cooperation with the DPMI host in maintaining a
virtual interrupt flag for the application.

Trandlation services.

These enable Protected mode programs to call Real mode
software directly. They also provide the reverse.

DOS memory management Services.
These work like the DOS INT-21h functions 48h, 49h, and
4Ah, but work from Protected mode. They automatically
create and destroy descriptors, so that memory blocks can be
accessed easily from Protected mode.

Debug support services.
These set and clear watchpoints; used by debuggers.

Miscellaneous services.
These provide information about DPMI, support for the

Display
driver
services

BIOSDOSWindows Services 20.5

cregtion of TSRs, direct access to memory mapped peripheral
devices, interrogation of the numeric coprocessor status, and
emulation of the coprocessor.

INT-2Fh Extensions

Apart from the DPMI extensions to INT-2Fh provided as part of
the DPMI, Windows also provides other extensions.

Functions 4000h to 4007h are for use with the display driver.
Note that conceptually there are two different display drivers: the
virtual driver (VDD) at the Windows end and the actua driver that
does the dirty work:

e AX=4000h
A program calls this function to determine how much work
the Windows Virtual Display Driver (VDD) must do when it
switches Windows between the foreground and the
background. It aso tells the VDD to alow the program to
have direct access to the video hardware registers.

e AX =4001h
Tells the display driver to save the current video state.

e AX =4002h
Tells the display driver to restore the video hardware state
saved by 400 1 h.

* AX =4003h
Tells Windows Virtual Display Driver (VDD) that execution
is currently in a critical section. This function appears to
make the VDD pause until 4004h releases it.

e AX =4004h
Tells VDD that critical section is finished.

e AX =4005h
Similar to function 400 1 h

e AX =4006h
Similar to function 4002h.

e AX =4007h
A program tells the VDD that it has finished accessing the
hardware registers. This is the complement of 4000h.

| think it unlikely that you will need to call 4000h and 4007h,
unless you are designing your own display driver. 4000h is
designed for use by a display driver to communicate with the VDD
prior to the VDD calling 4005h. This sequence terminates when

206 Windows Assembly Language & Systems Programming

Real and
virtual driver
interaction

the VDD calls 4006h to let the display driver restore its state and
continue functioning. After this the display driver calls 4007h to
tell the VDD that it's all over. Chapter 9 has an example of usage,
and Appendix D is an INT-2Fh reference.

Another group of INT-2Fh functions has to do with
communication between DOS Real mode drivers and virtua mode
drivers (VxDs).

I have noted below that some of the functions have been used in
example programs, along with more detail on their usage. Also
Chapter 11 discusses these functions in more depth.

Note that only functions 1605h and 1606h are available in
Windows Standard mode.

Note also that these services, although designed for
communication between device drivers, are quite general and can
be us?wd by any program. Chapters 11 and 14 develop a TSR that
uses them.

e AX = 1600h
Obtains the version number of 386 Enhanced mode Windows.
e AX = 1605h
Windows calls this to tell DOS drivers that it is loading
(example of usage Chapter 14).
e AX = 1606h
Windows calls this to tell DOS drivers that it is quitting
(example of usage Chapter 14).
e AX =1607h
A virtual driver cals a DOS driver.
e AX =1608h
Windows calls this to tell DOS drivers that it has completed
initialisation.
e AX = 1609
Windows callsthisto tell DOS driversit is exiting Enhanced
mode.
e AX = 1680h
Yields the current virtual machine's time dlice.
e AX =1681h
A driver calls this to tell Windows not to switch virtual
machines.
e AX =1682h
This is the complement of 1681h
e AX =1683h
Returns the ID of the currently executing virtual machine.

INT-4Bh:
DMA
Services

Overview

Low-/eve/
function
summary

BIOSDOSWindows Services 207

e AX = 1684h
Allows a DOS mode driver to request services from a virtual
driver.

e AX = 1685h
Allows a driver to switch virtual machines (examples of
usage, Chapters 11 and 12).

Windows drivers also make use of INT-4Bh for virtual Direct
Memory Access (DMA), and | refer you to page 264.

Again, these are extensions that are not part of DOS but are
provided by Windows. They are designed especidly for the
difficulty of using DMA controllers with a CPU running in
Protected mode.

Windows Functions

There are some Windows functions that perform in a similar
manner to DPMI services, so there is overlap.

What | have done in this section is not give exhaustive definitions
of the functions, as that would require a complete book on its own.
You need alot of reference materia for Windows development,
and where appropriate | have given the reference.

There are two broad groups of functions: those available in USER,
KERNEL, or GDI DLLs and those available within device drivers
and other DLLs.

In the latter case, you will find functions of the same name. For
example, enable() and disable() exist in al drivers. Obvioudy
your program must be able to select which one it is to call, and that
| have shown in the next chapter.

The Windows functions are al in files known as Dynamic Link
Libraries (DLLs), and are loaded at run-time.

What follows is a collection of Windows functions that you may
find useful for low-level work. The list immediately below all
belong in either USER, KERNEL, or GDI DLLs.

Note that although many of the memory management functions
could be considered low-level, | have only included those directly
concerned with descriptors and selectors, with one exception:
GLOBALPAGELOCK.

Functions arein Windows 3.0 and 3.1, unless stated otherwise,

even if documented in one version and not the other. References
to the “SDK” without specifically naming 3.0 or 3.1 apply to both.

208 Windows Assembly Language & Systems Programming

L ow-level
USER/GDI/
KERNEL
function
summary

| have used an asterisk if a function is not directly supported by
32-bit applications in Windows 95, optionally followed by a
recommended 32-bit aternative. | have used a "$" if a function is
unofficially available in the 32-bit Windows 95 API.

ALLOCCSTODSALIAS

Not described in the SDK. Allocates a new data selector that
aliases an existing code selector. *

ALLOCDSTOCSALIAS

Accepts a data segment selector and returns a code segment
selector that can be used to execute code in a data segment. *
ALLOCSELECTOR

Allocates a new selector. *

ALLOCSELECTORARRAY

Not described in the SDK. Allocates an evenly spaced array
of selectors. *

CALLMSGEILTER

Passes a message and other data to the current message filter
function.

CATCH

Copies the current execution environment to a buffer.
Complement is THROW. *

CHANGESELECTOR

Generates a temporary code selector that corresponds to a
given data selector, or a temporary data selector that
corresponds to a given code selector. Note that SDK 3.1 has
renamed this PRESTOCHANGOSELECTOR! (both names
will work). *

DEATH

Not documented in the SDK. Turns off the Windows display
driver and changes screen to text mode. Used in Chapter 9.
Complement is RESURRECTION. *

DEBUGBREAK

Not documented in the SDK. Forces a break to the debugger.
DEBUGOUTPUT

Available with Windows 3.1 only. Sends formatted messages
to a debugging terminal.

DEFHOOKPROC

Calls the next filter function in a filter function chain.
*CallnextHookEx()

DIRECTEDYIELD

Not documented in SDK 3.0. Forces execution to continue at
a specified task. *

LA LSS g VYT TUUVV Y JUT ViIvL oY U

. DISABLEOEMLAYER
Not documented in the SDK. Turns off Windows display,
keyboard, and mouse and changes to text mode; restores DOS
I/O. Complement is ENABLEOEMLAYER. *

. DOS3CALL
Issues aDOSINT-2 1 hinterrupt (but doesnt use INT). *

« ENABLEHARDWAREINPUT
Enables or disables keyboard and mouse input throughout the
application. *

« ENABLEOEMLAYER
Not documented in the SDK. See Chapter 9. Complement of
DISABLEOEMLAYER. *

. ENABLEWINDOW
Enables or disables keyboard and mouse input to a specified
window or control.

« FATALEXIT
Displays current state of Windows on debugger monitor and
prompts on how to proceed.

« FBEESELECTOR
Frees a selector originaly alocated by ALLOCSELECTOR(),
ALLOCCSTODSALIAS(), or ALLOCDSTOCSALIAS()
functions. *

« GETASYNCKEYSTATE
Returns interrupt-level information about the key state.
GETCURRENTPDB
Returns the current DOS Program Segment Prefix (PSP).
*GetCommandLine(),GetEnvironmentStrings()

« GETCUBBENTTIME
Returns the time elapsed since the system was booted.

. GETDOSENVIRONMENT
Retrieves the environment string of the currently running task.
*GetEnvironmentStrings()

« GETFBEESY STEMBESOUBCES
Only available in Windows 3.1. Returns the percentage of
free system resource space. *

« GETINPUTSTATE
Returns TRUE if there is mouse or keyboard inpuit.
GETINSTANCEDATA
Copies data from a previous instance of the application to the
data area of the current instance. *

. GETKBCODEPAGE
Determines which OEM/ANSI code pages are loaded.

210 Windows Assembly Language & Systems Programming

GETKEYBOABDSTATE
Copies an array that contains the state of keyboard keys.

GETKEYNAMETEXT

Retrieves a sting containing the name of a key from a list
maintained by the keyboard driver.

GETKEYSTATE

Retrieves the state of a virtua key.

GETNUMTASKS

Returns the number of tasks currently executing in the system.

GETSELECTOBBASE

Not described in SDK 3.0. Getsthe linear base address of the
specified selector from the descriptor table. *
GETSELECTORLIMIT

Not described in SDK 3.0. Gets the limit of the specified
selector from the descriptor table. *
GETSYSTEMDEBUGSTATE

Only available in Windows 3.1. Returns system status
information to a debugger. *

GETWINDEBUGINFO

Available in Windows 3.1 only. Queries current system
debugging information. *

GLOBALDOSALLOC

Recommended by Microsoft instead of equivalent DPMI
service. Allocates a block below 1M linear address space.
Returns both a selector and segment. Complement is
GLOBALDOSFREE. *

GLOBALFIX

Prevents the memory block from moving in linear memory.
You would use this in Standard mode to lock a block in place.
Complement is GLOBALFREE. $ *WOWGetVDM PointerFix
GLOBALHANDLE

Supplies a selector and returns a handle to the memory block.
GLOBALPAGELOCK

Prevents a segment from being paged out or moved. Y ou can
use this in Enhanced mode to guarantee a segment will be
present at all times. Locks the segment at a physical address.
Complement is GLOBALPAGEUNLOCK. *VirtualLock()

GLOBALWIRE
I'm not sure what this one does — it seemsto be similar to
GLOBALFIX. $*

BIOSDOSWindows Services 21 /

« HARDWARE EVENT
Available in Windows 3.1 only. Places a hardware-related
message into the system queue. *

« HMEMCOPY
Available with Windows 3.1 only. Copies a block of data
from one address to another. *

. LOADMODULE
Executes a separate application. * Supported but recommend
CreateProcess().

« LOCKINPUT
Available in Windows 3.1 only. Locks (and unlocks) input to
all tasks except the current one. *

« LOCKSEGMENT
Locks a segment in memory. Its complement is
UNLOCKSEGMENT() . *

« NETBIOSCALL
Issues a NetBIOS INT-5Ch interrupt. *

« OUTPUTDEBUGSTIUNG
Sends a debugging message to the debugger if present, or to
the AUX device if the debugger not present.

« PEEKMESSAGE
Checks the application message queue without waiting.

« PBESTOCHANGOSELECTOR
Described in the SDK 3.1. Same as CHANGESELECTOR
documented in SDK 3.0. Obtains an alias to a code or data
selector. *

« REPAINTSCREEN
Not described in SDK. Tells the GDI to repaint the entire
display. *

« RESURRECTION
Not documented in SDK. Turns on Windows display driver.
See the example, Chapter 9. Complement is DEATH. *

« SELECTORACCESSIUGHTS
Not described in the SDK. Sets the attributes of the specified
selector in the descriptor table. *

« SETSELECTORBASE
Not described in SDK 3.0. Sets the linear base address of the
specified selector in the descriptor table. *

« SETSELECTOIUIMIT
Not described in SDK 3.0. Sets the limit of the specified
selector in the descriptor table. *

212 Windows Assembly Language & Systems Programming

L ow-level
GD/

functions

Low-level
Comm
functions

e SETWINDOWSHOOK
Installs a system and/or application filter function.
Applications specific to Windows 3.1 should use
SETWINDOWSHOOKEX. *

e THROW
Restores the execution environment to the specified vaues.
Complement is CATCH. *

¢ UNHOOKWINDOWSHOOK
Removes a Windows filter function from a filter function
chain. Complement is SETWINDOWSHOOK. Applications
specitic to Windows 31 should use
UNHOOKWINDOWSHOOKEX. * Supported but
recommend UnHookWindowsHookEx().

e SETWINDEBUGINFO
Only available with Windows 3.1. Sets current system
debugging information. *

e WINEXEC
Executes a separate application. * Supported but recommend
CreateProcess()

e YIELD
Halts the current task and starts any waiting task. *

There is a group of low-level GDI functions apart from
REPAINTSCREEN() listed above and apart from those inside the
display and printer drivers. They are:

ADVANCEDSETUPDIALOG, BITBLT, CHECKCURSOR,
COLORINFO, CONTROL, DEVICEBITMAP,
DEVICEBITMAPBITS, DEVICEMODE, DISABLE,
ENABLE, ENUMDFONTS, ENUMOBJ, EXTDEVICEMODE,
EXTTEXTOUT, FASTBORDER, GETCHARWIDTH,
GETDRIVERRESOURCEID, GETPALETTE,
GETPALTRANS, INQUIRE, MOVECURSOR, OUTPUT,
PIXEL, QUERYDEVICENAMES, REALIZEOBJECT,
SAVESCREENBITMAP, SCANLR, SELECTBITMAP,
SETATTRIBUTE, SETCURSOR, SETDIBITSTODEVICE,
SETPALETTE, SETPALTRANS, STRETCHBLT,
STRETCHDIBITS, UPDATECOLORS,
USERREPAINTDISABLE, WEP.

There is aso a group of low-level communication functions:

BUILDCOMMDCB, CLEARCOMMBREAK,
CLOSECOMM, ESCAPECOMMFUNCTION,
FLUSHCOMM, GETCOMMERROR,
GETCOMMEVENTMASK, GETCOMMSTATE,

TOOLHELP
low-level
functions

BIOSDOSWindows Services 213

OPENCOMM, READCOMM, SETCOMMBBEAK,
SETCOMMEVENTMASK, SETCOMMSTATE,
TRANSMITCOMMCHAR, WBITECOMM.

In addition, there is a group of sound functions, utility macros and
functions, file 1/O functions, and debugging functions. For lists of
these groups refer to Microsoft SDK Reference Volume 1.

A specia group of low-level functions have been provided with
Windows 3.1 and documented in the SDK 3.1. They are supplied
in TOOLHELP.DLL, and are backwards compatible with
Windows 3.0, but you must bundle TOOLHELP.DLL with your
program. The equivalent Win95 functions follow this list. The
TOOLHELP functions are:

+ CLASSFIRST

Retrieves information about the first class in the class list.
e CLASSNEXT

Retrieves information about the next class in the class list.
*+ GLOBALENTRYHANDLE

Retrieves information about a global memory object.
e GLOBALENTRYMODULE

Retrieves information about a specific memory object.
e GLOBALFIRST

Retrieves information about the first global memory object.
¢ GLOBALHANDLETOSEL

Converts a global handle to a selector.
e GLOBALINFO

Retrieves information about the globa heap.
e GLOBALNEXT

Retrieves information about the next global memory object.
o INTERRUPTREGISTER

Installs a function to handle system interrupts.
e INTEBBUPTUNBEGISTER

Removes the function that processes system interrupts.
e LOCALFIRST

Retrieves information about the first local memory object.
¢ LOCALINFO

Fills a structure with information about the local heap.
e LOCALNEXT

Retrieves information about the next local memory abject.
e MEMMANINFO

Retrieves information about the memory manager.

214 Windows Assembly Language & Systems Programming

e MEMORYREAD

Reads memory from an arbitrary global heap object.
e MEMORYWRITE

Writes memory to an arbitrary global heap object.
» MODULEFINDHANDLE

Retrieves information about a module.
« MODULEFINDNAME

Retrieves information about a module.
e MODULEFIRST

Retrieves information about the first module.
* MODULENEXT

Retrieves information about the next module.
e NOTIFYREGISTER

Installs a notification callback function.
e NOTIFYUNREGISTER

Removes a noatification callback function.
e STACKTRACECSIPFIRST

Retrieves information about a stack frame.
e STACKTRACEFIRST

Retrieves information about the first stack frame.
o STACKTRACENEXT

Retrieves information about the next stack frame.
o SYSTEMHEAPINFO

Retrieves information about the USER heap.
» TASKFINDHANDLE

Retrieves information about a task.
e TASKFIRST

Retrieves information about the first task in the task queue.
e TASKGETCSIP

Returns the next CS:IP value of a task.
¢ TASKNEXT

Retrieves information about the next task in the task queue.
e TASKSETCSIP

Sets the CS:IP of a deeping task.
e TASKSWITCH

Switches to a specific address within a new task.
» TERMINATEAPP

Terminates an application.
 TIMERCOUNT

Retrieves execution times.

Windows 95 replaces all of the above with the following:

¢ CreateToolhelp32Snapshot
‘ Takes a snapshot of the Win32 processes, heaps, modules, and

threads used by the Win32 processes.

¢ Heap32First
Retrieves information about the first block of a heap that has
been alocated by a Win32 process.

e Heap32ListFirst
Retrieves information about the first heap that has been
allocated by a specified Win32 process.

s Heap32ListNext
Retrieves information about the next heap that has been
alocated by a Win32 process.

e Heap32Next
Retrieves information about the next block of a heap that has
been alocated by a Win32 process.

¢ Module32First
Retrieves information about the first module associated with a
Win32 process.

* Module32Next
Retrieves information about the next module associated with a
Win32 process or thread.

¢ Process32First
Retrieves information about the first Win32 process
encountered in a system snapshot.

¢ Process32Next
Retrieves information about the next Win32 process recorded
in a system snapshot.

¢ Thread32First
Retrieves information about the first thread of any Win32
process encountered in a system snapshot.

¢ Thread32Next
Retrieves information about the next thread of any Win32
process encountered in the system memory snapshot.

» Toolhelp32ReadProcessMemory
Copies memory allocated to another process into an
application-supplied buffer.

river What follows are functions available inside the drivers. They

functions cannot be called directly as you would a norma Windows
function, but require an extra step. See the practica code in the
Chapter 9. Also, they are not documented in the SDK.

216 Windows Assembly Language & Systems Programming

Mouse - INITIALIZATION

driver Initialises the mouse device driver.

functions - DISABLE
Suspends interrupt callbacks from the mouse device.
ENABLE
Enables calls to the Windows mouse event procedure.
INQUIRE
Gets information about the mouse characteristics.
MOUSEGETINTVECT
Gets the interrupt level used by the mouse hardware.

WEP
Performs cleanup when the Windows session ends.

cCoMM . CCLRBRK

driver Clears the Comm line break state.

functions - CEVT
Returns the address of the Comm event word.
CEVTGET
Clears and gets specified events in the Comm event word.
CEXTFCN
Performs an extended driver function.
CFLUSH
Discards the contents of a receive or transmit buffer.
COMMWIUTESTIUNG
Transmits a block of data over the serial port.
CSETBBK
Initiates a Comm line break state.
CTX
Transmits a single byte before al others in the transmit queue.
GETDCB
Returns the address of the DCB structure for the specified
port.
INICOM
Initidizes the specified Comm port.
BEACTIVATEOPENCOMMPORTS
Re-enables Comm ports disabled by
SUSPENDOPENCOMMPORTS().
READCOMMSTIUNG
Reads bytes from the Comm receive buffer.

BECCOM
Reads a byte from the Comm receive buffer.

BIOSDOSWindows Services 217

e SETCOM

Sets the device configuration and state.
e SETQUE

Specifies the memory input/output buffers.
e SNDCOM

Places a character in the transmit queue.

e STACOM
Gets the hardware and buffer status of the specified port.

e SUSPENDOPENCOMMPORTS
Temporarily disables all Comm port activity.

e TRMCOM
Closes the specified port.

Keyboard e DISABLE
driver Suspends interrupt callbacks and removes hooks.
functions e ENABLE

Enables cdls to the Windows keyboard event procedure.
¢ ENABLEKBSYSREQ
Enables or disables SysRq key processing.
¢ GETBIOSKEY PROC
Gets the address of the BIOS interrupt service routine.
¢ INQUIRE
Returns the keyboard configuration structure that contains the
DBCS ranges.
¢ NEWTABLE
L oads the keyboard trandation tables.

System - CREATESYSTEMTIMER
driver Allocates a system timer to be used by a device driver.
functions - GETSYSTEMMSECCOUNT

Gets the amount of elapsed time.

INQUIRESY STEM
Gets various system configuration parameters.

e KILLSYSTEMTIMER
Frees a timer to be used by a device driver.

Grabber Earlier | described mechanisms for Windows to save and restore
functions its video hardware state, if an application wants to do something
with the video. From the application’s point of view, after getting
control of the video, it can call some functions to manipulate the
display driver. Cdling these functions is not straight forward;
refer to Writing Windows Device Drivers by D. A. Norton,
Addison Wedley, 1991, page 79. This reference aso has more

218 Windows Assembly Language & Systems Programming

detail on these functions in its appendix D, page 247. They are
summarised here:

* DISABLESAVE
Disables switching between Windows and DOS sessions.
* ENABLESAVE
Enables switching between Windows and DOS sessions.
e GETBLOCK
Copies the specified rectangular portion of the screen to a
buffer.
e GETINFO
Gets the grabber's GRABINFO structure.
e GETVERSION
Returns the grabber version number.
e INITSCBEEN
Initializes the screen to text mode.
e INQUIREGRAB
Gets the size of the text or graphics grab buffer.
e INQUIRESAVE
Gets the size of the text or graphics save buffer.
¢ RESTORESCREEN
Restores the state and contents of the display.
e SAVESCBEEN
Saves the state and contents of the display.
¢ SETSWAPDRIVE
Specifies the drive and path of the grabber swap file.

The above group only work in Real and Standard modes. The 386
Enhanced mode has a different set of functions.

Undocumented Many functions available in Windows 3.0, 3.1, and 95 are not

functions

Reference
books

described in the SDKs, nor anywhere for that matter. These are
“undocumented” functions, which means that Microsoft doesnt
want us to know about them (see aso page 235).

gh?(re are various chaps who have dug up the dirt, and written
00KS.

Undocumented Windows: A Programmers Guide to the Reserved
Microsoft Windows API Functions by A. Schulman, D. Maxey,
and M. Pietrek, Addison Wesley, USA, 1992.

Unauthorized Windows 95 by Andrew Schulman, IDG Books,
USA, 1994.

Windows 95 Systems Programming Secrets by Matt Pietrek, IDG
Books, USA, 1995.

Generic
thunking

Flat
thunking

Universal
thunking

Reference
sources

Function
prototypes

BIOSDOSWindows Services 219

Thunking

The mismatch between 16- and 32-bit code is a major headache.
Windows internally is also a mixture, including Windows 95
(especialy Windows 95!). | have shown in this chapter that some
functions available to 16-bit applications are not available to
32-bit applications and vice versa. This is because each has its
own set of APIDLLs (see page 235).

However, we can “mix and match” — with caution of course.

The process of trandating between 32- and 16-bit code is known
as thunking, and Windows 95 provides two mechanisms: Generic
thunking and Flat thunking.

Flat thunking is specific to Windows 95 — it is not portable to
Windows NT. It alows 16- to 32-bit and 32- to 16-bit function
calls, so it is most flexible.

Generic thunking works on both Windows 95 and NT but only
alows a16-bit application to call 32-bit functions, not the other
way around.

Universal thunking is for Windows 3.1 applications to access the
win32s API.

A good explanation of Flat thunking isto found ininside Windows
95 by Adrian King, Microsoft Press, USA, 1994. Also ook at the
Win95 SDK CD-ROM.

Generic thunking is also explained in the Win95 SDK CD-ROM,
in file DOC\WMISC\GENTHUNK.TXT. The following information
is based on this and other documents on the SDK CD-ROM.

Another excellent document that covers both Generic and Flat
thunking and has detailed descriptions of all the Generic AP
functionsis Programmers Guide to Microsoft Windows 9.5 by the
Microsoft Windows Development Team, Microsoft Press, USA,
1995.

Generic Thunking

Windows on Win32 (WOW) presents 16-bit APIs that allow you

to load the Win32 DLL, get the address of the DLL routine, call

the routine (passing it up to thirty-two 32-bit arguments), convert

16:16 (WOW) addresses to 0:32 addresses (useful if you need to

build a 32-bit structure that contains pointers and pass a pointer to
it), and free the Win32 DLL.

| hope you can read C code. | have taken these examples straight
from the SDK documentation.

220 Windows Assembly Language & Systems Programming

The following prototypes should be used:

DWORD FAR PASCAL LoadLibraryEx32W(LPCSTR, DWORD, DWORD) ;
DWORD FAR PASCAL GetProcaddress32W(DWORD, LPCSTR) ;

DWORD FAR PASCAL CallProc32W (DWORD, ...,LPVOID, DWORD, DWORD) ;
DWORD FAR PASCAL GetvDMPointer32W(LPVOID, UINT) ;

BOOL FAR PASCAL FreeLibrary32w(DWORD) ;

Note that although these functions are called in 16-bit code, they
need to be provided with 32-bit handles, and they return 32-bit
handles. Do not forget that the 32-bit functions must be called
with the STDCALL convention.

CallProc32W() CallProc32W() follows the PASCAL calling convention. It is
designed to take a variable number of arguments, a Proc address, a
mask, and the number of parameters. The mask is used to specific
which arguments should be treated as being passed by value and
which parameters should be transated from 16: 16 pointers to Flat
pointers. Note that the low-order bit of the mask represents the last
parameter, the next lowest bit represents the next to the last
parameter, and so forth.

Code | didnt really want to put actua code into this chapter, but a little
examples sample of Generic thunking is useful while I'm on the topic.

Assume that the Win32 DLL is named DLL32. First you need to
load the 32-bit library:

ghLib = LoadLibraryEx32W ("d1132.d411", NULL, 0)

Then you need to get the address of the 32-bit function, in this
case MyPrint():

hProc = GetProcAddress32W(ghLib, "MyPrint")

Then call MyPrint(), passing it the required parameters TestString
and hWnd:

CallProc32W((DWORD) TestString, (DWORD) hwnd|Oxff££0000,hProc,2,2);

The hWnd is OR'd with 0xffff0000, because this is the way to
convert a 16-bit window handle to a 32-bit window handle in
Windows NT and 95. If you want to convert a 32-bit window
handle to a 16-bit window handle, simply truncate the upper word.
Note that this only works for window handles, not for other types
of handles. You should use the following functions exported by
WOW32.DLL: WOWHandle32() and WOWHandlel6(), in all

BIOSDOSWindows Services 221

cases, rather than relying on this relationship. These functions are
discussed in the SDK.

A mask of 2 (0x10) is given because we want to pass TestString
by reference (WOW trandates the pointer), and we want to pass
the handle by value.

Finaly, we must free the 32-hit library:

FreeLibrary32W(ghLib);

NOTE: When linking the Windows-based application, you need to
put the following statements in the .DEF file, indicating that the
functions will be imported from the WOW kernel:

| MPORTS
kernel.LoadLibraryEx32W
kernel .FreeLibrary32w
kernel.GetProcAddress32W
kernel.CallProc32W

The use of the 16-bit versions LOADLIBRARY() and
GETPROCADDRESS() is described in Chapter 9. The principles
apply to the 32-hit versions also.

WOow Very briefly, here they are:
functions CallProc32W, CallProcEx32W
called from Used by 16-bit code to call an entry point function in a 32-bit
16-bit code DLL.
FreeLibrary32W

Allows 16-bit code to free a 32-bit thunk DLL that it had
previously loaded by using the LoadLibraryEx32W() function.
* GetProcAddress32W
Allows 16-bit code to retrieve a value that corresponds to a
32-hit routine.
* GetVDMPointer32W
Allows 16-bit code to trandate a 16-bit FAR pointer into a
32-bit FLAT pointer for use by a 32-bit DLL.
* LoadLibraryEx32W
Allows 16-bit code to load a 32-bit DLL.

WOW These are a different group of WOW functions:
jfc‘;rl'l‘;g")?fom . WOWCallbackls, WOWCallback16Ex

B Used in 32-bit code called from 16-bit code to cal back to the
32-hit code 16.bit Side

« WOWGetVDMPointer
Converts a16:16 address to the equivalent FLAT address.

222 Windows Assembly Language & Systems Programming

WOWGetVDMPointerFix

Converts a 16: 16 address to the equivalent FLAT address.
Unlike the WOWGetV DM Pointer() function, this calls the
GlobalFix() function before returning.
WOWGetVDMPointerUnfix

Uses the GlobalUnfix() function to unfix the pointer returned
by WOWGetV DM PointerFix().

WOWGI obal Allocl6

Thunks to the 16-bit version, GLOBALALLOC().

WOWGI obal AllocL ockl6

Combines the functionality of WOWGlobalAlloc16() and
WOWGlobalLock16().

WOWGI obalFreel6

Thunks to the 16-bit version of GlobalFree().

WOWGI obal L ockl6

Thunks to the16-bit Global Lock()

WOWGI obalLockSizel6

Combines the functionality of WOWGlobalLock16() and
Global Size().

WOWGIobalUnlockl6

Thunks to16-bit GlobalUnlock().
WOWGIlobalUnlockFreel6

Combines the functionality of WOWGlobalUnlock16() and
WOWGlobalFreel6().

WOWHandlel6

Maps a 32-bit handle to al6-bit handle.

WOWHandle

Maps al6-bit handle to a 32-bit handle.

More Win95 “Improvements’

Devicel/O Control

Windows 95 introduced DeviceloControl() as a standardized
channel for performing 1/0, that is, to communicate directly with
virtual device drivers. Thisis aso the preferred way to access
INT-21h services, though very few are supported.

Software interrupts will crash a 32-bit application, so Microsoft is
trying to force you to do most low-level and direct access to the
hardware through device drivers.

Much wider usage of the tile I/O functions is found in Windows
95. DOS programmers will know that the INT-2 Ih file handling
functions can also operate on device drivers. That is, a device
driver can be opened, a handle obtained, the “tile” read from and
written to, and then closed. The concept is alive and well in
Windows 95. CreateFile() is used to open a virtua device driver
prior to using DeviceloControl(), and CloseHandle() is used to
close the driver.

Dynamically Loadable Drivers

The ability to open a virtual device driver a any time is related to
the new capability of Windows 95 to support dynamic loading.
CreateFile() loads a driver and CloseHandle() unloads it.

Threads

A Windows process is an application, be it a Windows application
or a DOS Virtual Machine (VM). However, 32-bit Windows 95
applications can also have multiple threads of execution, and the
thread becomes the basic unit that can be scheduled by the
operating system.

With Windows 3.x, the System VM (running dl the Windows
applications) and the DOS VMs (each running a DOS application)
are preemptively scheduled, while the Windows applications
themselves are cooperatively scheduled (i.e, amongst themselves).

Windows 95 adds to this picture with 32-bit applications that have
one or more threads that can be preemptively scheduled. Because
scheduling is thread-based, the term process is awkward — the
16-bit applications become one thread and each DOS VM is one
thread.

Here are al the Windows 95 thread- and process-related functions:

AttachThreadIlnput, CommandLineToArgvW, CreateProcess,
CreateRemoteThread, CreateThread, ExitProcess,
ExitThread. FreeEnvironmentStrings, GetCommandLine,
GetCurrentProcess, GetCurrentProcessld,
GetCurrentThread, GetCurrentThreadld,
GetEnvironmentStrings, GetEnvironmentVariable,
GetExitCodeProcess, GetExitCodeThread, GetPriorityClass,
GetProcessAffinityMask, GetProcessShutdownParameters,
GetProcessTimes, GetProcessVersion,
GetProcessWorkingSetSize, GetStartuplnfo,
GetThreadPriority, GetThreadTimes, OpenProcess,
ResumeThread, SetEnvironmentVariable, SetPriorityClass,
SetProcessShutdownParameters, SetThreadAffinityMask,

224 Windows Assembly Language & Systems Programming

SetThreadPriority, Sleep, SleepEx, SetProcessWorkingSetSize,
SuspendThread, TerminateProcess, TerminateThread,
TlsAlloc, TIsFree, TlsGetValue, TlsSetValue,
WaitForInputldle, WinExec.

Memory Mapped Files

Windows 95 introduces memory mapped tile functions for sharing
data between applications. CreateFileMapping() creates such a
tile, while MapViewofFile() maps it. OpenFileMapping() and
DuplicateHandle() can be used by processes to access the tile.

Despite the name “file”, it does not have to be on a disk — the file

can reside entirely in memory. Such a globa file is visible to al
applications.

Postamble

This chapter is notable more for what it doesnt say than what it
does! Various functions, interrupts, and concepts introduced here
are developed in the chapters ahead.

What s
in this
chapter

Direct Hardwar e

Access

Preamble

This chapter contains practical code to “get behind the scenes’.
The first part of the chapter focuses on the issues of direct reading
from and writing to memory, particularly video-RAM, and the
second part focuses on 1/0.

| have shown the use of DPMI INT-3 |h services and of the
INT-2Fh extensions, plus the use of low-level Windows functions.
| have pointed out overlap between the two where it occurs.

You will be amazed to learn that it is possible to have an
application running in a window, yet the application can write
directly to the video hardware, at breathtaking speed, without al
of the Windows rigmarole. This is the kind of practica code
developed in this chapter.

You will aso learn about 1/0O aspects, such as use of the IN and
OUT instructions.

Mostly | view the material of this chapter as educationa. It pokes
around doing fun things that may be viewed as “hacking”. It may
be that you will never use some of the less orthodox material in
professiona applications, but what will be formed now is a good
solid foundation of understanding of the fundamentals.

225

226 Windows Assembly Language & Systems Programming
I nitialisation

Is DPMI First 1'11 address the question of initialisation. Since your program

available? is running in Protected mode, aongside other programs, you cant
simply go reading and writing all over memory and 1/O. There
have to be rules to prevent contention. Initialisation is code that
clears the way for you to get directly at the hardware.

The code below is a good way to start. For the moment, dont
worry about the red tape of PROC — ENDP; etc. Youll put it

together later.
Before you can use DPMI services, you need to check out a few
things:

.DATA _ .

dpm flag ;=1 dpm running ok

dpmi versi on ;ah=major, al =mi nor.

386nodef | ag =1 388 dpm type.

;=1 Real node interr.

r eal modei ntsfl ag .
;=1 virt. nemsupport.

vi rtual menfl ag

383323

cputype ;=2,3,4 286,386,486
.CODE . . .
nov ax,1686h ¥test if dpm running.
int 2Fh
or ax,ax
jnz nodpm .
nov dpmiflag,1 ;set flag, dpm ok.
MV ax,0400h ; get dpm version.
int 31h _
nmov dpmi ver si on, ax
nmov al,bl))]
and al,o1 ;bit-0 =1if 386 dpm
MV 38emodeflag,al
mov al,bl
shr al,1

and al,01 ;bit-1 =1 if not virtual86 int handling
NV realmodeintsflag,al

shr bl,2 . _ .

and bl,o01 ;bit-2 =1 if virtual mem supported.
MoV virtualmemflag, bl .

nov cput ype, cl ;cl=2,3,4 if 286, 386, or 486.

Refer to Appendix C for a full description of all DPMI services.
INT-2Fh/AX = 1686h is used to check if the CPU is running
DPMI and is in Protected mode. This service returns a fase flag if
Windows is loaded in Real mode or DPMI is not running.

You would only need to perform this check if you were running
Windows in Real mode, but version 3.1 of Windows wont even
run in Real mode, so these days this test isnt required.

Which
version of
DPMI is
run fling?

Direct
access to
memory
and video
-RAM

Text-mode
Windows
applications

Direct Hardware Access 227

Note that most of the INT-2Fh services work in Rea and Protected
mode, with or without DPMI, but INT-31h will only work with
DPMI and in Protected mode.

The next service is INT-3 1h/AX = 0400h, which returns the DPMI
version number, plus other status information. Since version 1.0
of DPMI has more features than version 0.9, this test is necessary
if you want to use the extra features of v1.0. Note that Windows
3x and 95 only support DPMI v0.9 (refer to page 198). | have
written the code in this chapter for v0.9. So, again, this test is not
really required.

| have stored all of the flags as static data, to be used as needed by
the rest of the program.

Addressing Segments

Assuming that DPMI is up and running, which it should be under
Windows, you are ready to start doing interesting things. One of
your objectives is to access read memory directly. That is, you
hunger for the good old days when you could write directly to the
video-RAM, not via some tortuous method using GETDC(),
TEXTOUT(), and RELEASEDC(), with a hundred messages to
worry about. You want control (slobber, sobber), and you want
speed!

You may even be totally retrograde and want to run your Windows
program with the screen in text mode (horror!). Remember good
old text mode? It was good enough for most things, and even did
quite a good job at graphics, using the IBM graphics character set.
The MDA (Monochrome Display Adaptor) only has a 4K
video-RAM, with the result that screen redrawing is instantaneous.
Forget about delays with text mode.

This text mode topic raises an interesting side issue. There are a
lot of other "retros" like me out there, and there is even a specia
product available for those who want to write Windows programs
but dont want to give up the advantages of Real mode and of
text-mode video. The product is called Mewel,” and it is a
complete library for writing Windows applications that run
without Windows, under DOS, in Real mode (or Protected mode),
with the screen in text mode (or graphics mode). It's a lovely
product and works well. The only major deficiency is that there is
no multitasking. Mewel even alows source code to specify

' Magma Systems, 15 Bodwell Terrace, Millbum, New Jer sey 07041, USA
http://ww. uno. conl nagna. ht m

228 Windows Assembly Language & Systems Programming

standard Windows screen coordinates, so a stock-standard
Windows program will compile and run under Mewel. Mewe
applications are stand-alone, as the library files are linked
statically. But it does mean that a simple "Hullo world” program is
about 100K. Mewel even manages to represent icons in text
mode!

Addressing

memory below Bk 1o the main topic. Let your first chalenge be to directly

1M in Protected access memory. No problem. DPMI has INT-3 Th/AX = 0002h:
mode

.DATA

0000selector DW O ;selector, addr-0.

B0OOselector DW 0 ;selector video-RAM

.CODE
mv ax,0002* ;supply a segnment, returns a selector.
NoV bx,B000Oh ;segment addr of video RAM
int 31ih
NoVv BOOOselector,ax ;save sel ector.
nmv ax, 2 ;get selector for segment addr 0000.
NMoV bx, 0000h ;start of physical memory.
int 31h

noV 0000selector,ax ;save. (label cannot start with G9).

LDT What this service does is create an entry in your application’s
Local Descriptor Table,” and returns the index to that entry, that is,
the selector. The way selectors work is that you can treat them
just like the old segment values. Something like:

novV ax,B000Oselector

mov es, ax

nmov bx, O

mv es: [(bx],"x"
Linear This code will write the ASCII character "x" directly to the
address video-RAM at address B000:0000. From the theory in Chapter 1,

that will be a physical and/or linear address of 000B0000h. | made
the complete linear’/physical address up to 32 hits, since that's |

' Inte’s DPM specification places a few caveats wonthe0002 function.
The descriptor’s limit will be set to 64K.
Multiple calls to this function with the same segment address will return the same selector.

Descriptors created by this function can never be modified or freed. For this reason, the
function should be used sparingly. Clients which need to examine various Real mode addresses
using the same selector should allocate a descriptor with INT-3 1h/AX = 0000h and change the
base address in the descriptor as necessary, using function 0007h.

2 Note that all WinApps share a single LDT. The system VM maintains one each LDT, GDT,
and IDT.

3 Notice above that | used the word “linear” address. Thisis explained in Chapter 1. Basicaly, in

... MOW,
the same
thing, but
using a
Windows
function

Saving and
restoring the
Windows
screen:
INT-2Ft/
AX=4001/2h

Direct Hardware Access 229

what the 386 actualy puts out. In the case of the 286 it will only
be 24 bits.

Look carefully at that above code fragment. See that | treated the
selector as the exact equivalent of the segment (paragraph) address
it represents. Behind the scenes, the CPU will use the selector
value in ES to lookup the LDT and get the physical address.

This service is wonderful, because it gives you direct access to al
memory below 1M. It aso gives you enormous potential to “stuff
up” the system.

Pardon the crudeness, but “there's more than one way to skin a
cat”. Ditto with DPMI services and low-level Windows functions.
If the two overlap, which ones do you use? Interestingly, some of
the Windows functions internaly call the DPMI services!

In the above case, the Windows function equivalent is — wall,
there are choices here, just as there are some different avenues
with DPMI. SETSELECTORBASE()' is appropriate: it creates a
new entry in the LDT and will set the “base address’ (linear
address) field in the descriptor. You provide a selector value as a
parameter to this function, the descriptor of which is used as the
model for the new descriptor. So, if you want to treat the new
memory block as data, use DS as the model. The SDK 3.1
documentation does not explain any of these vital details.

Note that SETSELECTORBASE() is available in Windows 3.0 but
was undocumented until Windows 3.1 made it official.

Direct Video

You dont want to “stuff up” the system, of course, so you need to
take whatever precautions are necessary. If your Windows
application is going to do something drastic, like change the screen
to text mode, then obviously it will not be outputting to a pretty
little Windows box. The Windows screen will no longer be there.
This may be ok for what we want, but if our program is to work
with other Windows programs, and with Windows itself, then our
program must be able to restore the original screen.

Microsoft does have a very suitable service: INT-2FW/AX =
4001h. Itissummarised in Appendix D, described in Microsoft's

Windows StanFard mode (286 mode), the linear and physical addresses are one and the same.
In Enhanced (386) mode, an address goes through an extra paging step, so the physical address
is renamed as the linear address, and is no longer the actual physical address.

' SETSELECTORBASE() is passed two parameters. the selector (16 bits), and the starting linear
address (32 bits). It returns a new selector value in AX, or AX = 0 if an error.

230 Windows Assembly Language & Systems Programming

Directly
overwriting
the Windows
screen

Running the
screen in
text mode

Device Development Kit (DDK), and rather briefly touched on in
Wkiting Windows Device Drivers by D. A. Norton, Addison
Wedey, USA, 1992. Windows Virtual Display Driver (VDD)
usesit to control the actual (non-virtual) display driver. Basicaly,
it saves the adaptor registers: it works and is dam useful, so | have
used it in this example code.

The complement of the above is available also; INT-2Fh/AX =
4002h, which tells the display driver to take back control.’

Mighty handy. So far you know how to w-rite directly to the
video-RAM and you have a selector to do it with. It may be that
you dont want to save the screen at all — you just want to scribble
all over what is already there. Perhaps if you want somelittle
message to appear on the screen, independently of everything else
chS%I)Wi ndows is doing on the screen, then yes, go ahead (see page

At the moment, I'm thinking more along the lines of taking over
the screen directly for very fast video output, such as games or
where text-mode is good enough or preferred.

To save the current video state:

mov ax,4001h ;Note that undocumented DEATH() does this

int 2Fh

;also, plus switches screen to text mode.

The next obvious step is to change the video mode. There are
some interesting thoughts here. Wont Windows and other
applications expect to be able to output to the screen also?

Y es they will, but always remember that Windows' 16-bit task
management is non-preemptive. This means that once Windows
has passed control to your program, you can keep control for as
long as you like. You can lock out other applications and do
whatever you want.’

Normally, when Windows sends a message to the callback
function, your callback processes it, then has nothing more to do
s0 returns to Windows. If control stays in the callback, for

' There are two other services, AX = 4005h and 4006h, that are similar to 4000h and 4001h,
respectively. The description of 4005h is “The Windows VDD calls this function to tell the
display driver to save the video hardware state.” And for 4006h “The Windows VDD calls this
function to tell the display driver to restore the video hardware state that was saved by the last
cal to function 4005h" (Writing Windows Device Drivers, page 78). The 4000h and 4007h
services are used in conjunction with 4005h and 4006h. 4000h gives the display driver direct
access to the video hardware registers, while 4007h disables register access and tells the VDD
that the display driver has finished accessing the video hardware.

2 Though the DPMI host does perform preemptive time slicing between VMs (see Chapter 11).
Even this can be disabled by a DPMI service.

Direct Hardware Access 231

whatever reason, then no more messages are sent to it; therefore,
your callback is not receiving anything from Windows. At least
not in the norma way -just register that as an interesting point
for now.

Restore Video

For now, |1l just say that you can save the screen upon entry to the
callback, and you can write directly to the screen. But before going
back to Windows, you must restore things to how they were. This
means that whatever you displayed in text mode (or whatever) will
be logt, unless you save it in a buffer.

This is some video cleanup code prior to returning to Windows:

mov ax,4002h ;Note undocunment ed RESURRECTION ()

int 2Fh

;is simlar.

cal | REPAI NTSCREEN PASCAL

REPAINT-
SCREEN()
function

32-bit
applications

REPAINTSCREEN() is a Windows function, but you wont find it
mentioned in Microsoft's Software Development Kit (SDK), nor in
most other places. It is described in the Device Driver
Development Kit (DDK) (3.x versions), from Microsoft, and is
another one that Microsoft seems to want to maintain a low profile
on. In the latest set of MSDN CD-ROMs (January 1997),
REPAINTSCREEN() is mentioned only in the Library Archive
CD-ROM.

Although it is in the Windows library file USER.EXE (the other
two are GDI.EXE and KERNEL.EXE, located in \WINDOWS\
SYSTEM directory), you may not be able to simply call it as Ive
shown above’ Later on, when you see the whole program
together, youll see what | did to cdl it.

| am referring through most of this chapter to the 16-bit API
DLLs. Thirty-two-bit applications can, by indirect means such as
thunking (see Chapter 8), or some kind of separate 16- and 32-bit
programs that cooperate (see Chapters 12 and 14) access the 16-bit
API. However, many of the low-level functions have been ported
to the 32-bit DLLs, except that linkage information is not provided
in the IMPORT library (see footnote below and page 235).

' The Windows library file supplied by your software vendor, such as LIBW.LIB (Microsoft) or
IMPORT.LIB (Borland), provide your program with access to the DLL functions. Whether or
not you can access REPAINTSCREEN() directly from your program is determined by the
inclusion of the linkage information in these link files. You will find that later versions may
provide the linkage, even to undocumented functions; however, | have shown how to do it the
hard way here, in case you have to do it for any functions, including those in other DLLs.

232 Windows Assembly Language & Systems Programming

BIOS
INT-10h

REPAINTSCREEN() redraws the screen, and is redundant here
actudly. INT-2Fh/AX = 4002h restores VDD (Windows) access
to the display driver and also causes the screen to be redrawn.
REPAINTSCREEN() isrequired after RESURRECTION() .

Change Video Mode

Soin between having saved the screen and cleaning up prior to
going back to Windows, how do you change the video mode?

If you are familiar with DOS and BIOS INTs, youll know it is
INT-10h — well, it still is!

Since an INT causes the CPU to look in the IDT (Interrupt
Descriptor Table) for the location of the routine and not in the old
IVT (Interrupt Vector Table) (see pages 33+), any of the routines
can be replaced as required or the CPU redirected to the Rea
mode routine with appropriate trandations. Thus INT-10h stills
works, even though it is caled from a Protected mode Windows
program.

Here is how to go to text mode 7:

mov ax,0007h ;Note that DEATH() wWill have got us to

int 1o0h

;the text node prior to Wndows |oading.

Text-mode
direct-video
listing

A Direct-Video Text-Mode Routine

I'll put it al together. | have named this routine directvideo().
You can cal it from wherever in your program you want and
modify it as required — some suggestions and possibilities follow
after the listing. If you want to test it, you could take one of the
earlier programs and perhaps call it from the WM_CHAR case, so
whenever a key is pushed the routine will execute. There is code
for this section on the Companion Disk.

Here is the listing:

EXTRN GETMODULEHANDLE: FAR
EXTRN GETPROCADDRESS: FAR

dpmiflag.
dpmi versi on

mode386flag

r eal nodei nt
vi rt ual menf

cput ype

.........

;=1 dpmi running ok
;ah=major, al=minor.
;=1 386 dpm type.

;=1 Real node interr.
;=1 virt. nem support.
;=2,3,4 286,386,486

sfl ag
| ag

sieisleisle

BOOOselector
sznodul enane
| prepai ntscreen

7

Direct Hardware Access 233

;selector vi deo- RAM

(')'USER .EXE", 0

ds, OFFSET sznodul enane
;gets a handl e for user.exe
;Returns handle in AX
;user.exe doesn't exist.

CODE

di rectvi deo PROC PASCAL NEAR
LOCAL Wi nvi deonode: BYTE
USES ax, bx, cx, dx, si, di
call GETMODULEHANDLE PASCAL
mv Si, ax
or si,si
jne userexists
i mp . nomodule

usdr'xi st s:

HEPN
cal |

FAR PTR GETPROCADDRESS PASCAL,si, 0,275 _
;275=ordinal val ue of REPAINTSCREEN(), i n
mov WORD PTR | prepai nt screen, ax ; USER. EXE.
mv WORD PTR lprepaintscreen+2,dx ;Returns far addr
;DX :AX.
MV ax,1686h ;test if dpnmi running.
int 2Fh
or ax, ax.
iz yesitis
jmp hodpm
yesitis:)
nmov dpmiflag,1 ;set flag, dpm ok
mv ax, 0400h ;get dpm version
int 31h _
nov dpmi ver si on, ax
nv al,bl _ _ _
and al,o1 ;bit-0 =1if 386 dpmi
nbVv mode386flag,al
nmv al,bl
shr al,1 .) .)
and al,o01 ;bit-1=1if not virtual86 int handling
MV realmodeintsflag,al
shr bi1,2] .)
and bl,o1 ;bit-2 =1 if virtual mem supported
nmoVv virtualmemflag, bl)
nov cputype,cl ;cl=2,3,4 if 286, 386, or 486.
mov ax, 0002)
mVv bx,0B000h rsegment addr of video RAM
Int 31h ;Note that although DEATH() is
MV BOOOselector, ax ;undocumented, | figured out
mv ax, 2 ;how to use it . . .
P call GETDC PASCAL, hwnd
myv ax,4001h nmov hdc, ax
int 2Fh cal | DEATH PASCAL, hdc _
P ;...Wndows display driver is
mov ah, CFh :now turned of f and scrn in
Int 10h ;text node.
mov W nvi deonode, al ;Note that DEATH() | eaves the

mov ax,0007h ;mode 7

:CPU in Protected node.

234 Windows Assembly Language & Systems Programming

int 10h

MV ax,B000selector

mov es, ax

nov bx, O
mm

MoV ¢x, OFFFFh
mm nop

| oop mm ;delay

nOV BYTE PTR eS: [bx],"X"

nmov BYTE PTR es: [bx+1],10001111b ;attribute

inc bx

i nc bx

cnNp bx,1998 ;put 1000 X's on screen.

jbe MM
P ;Undocumented RESURRECTI ONO

mov ah,00 ;will change back to graphics

mov al , wi nvi deonode ;mode and restore W ndows

int 10h ;displaﬁ driver. ..

MoV ax,4002h cal'l ESURRECTI ON PASCAL\

int 2Fh ,hdc,0,0 0000
PR) cal | RELEASEDC PASCAL, hwnd\

call |prepaintscreen \ , hdc
PASCAL ; t(Thanks 't o Undocumented Windows

P ; Tor showing me how many params
nodpmi : ; tof eed RESURRECTI ONO 1)
nonodul e:

Cret
directvi deo ENDP

There are a host of things | can say about this routine. | have
itemized major points below.

Call REPAINTSCREEN()

Calling a | mentioned earlier that | have used REPAINTSCREEN() as an
function /m example to show how to get at a DLL function at run-time, which
a DLL is one option if linkage information is not provided in the library

file. The standard technique is to call GETMODULEHANDLE()
to get a handle for USER.EXE (a file is a module in Windows
parlance, but the file name can be different from the module
name), then call GETPROCADDRESSO to get the FAR address
of the function within that module. If you would like to see
another example of accessing a function in this way, Microsofts

Programmer's Reference, Volume 2: Functions, provided with the
SDK 3.1 (and available separately), gives an example of
LOADLIBRARY() (instead of GETMODULEHANDLE()),
GETPROCADDRESS(), and FREELIBRARY() to access a
function in TOOLHELP.DLL.

Thity-two-bit applications are somewhat more constrained — see
notes on page 235.

EXE
header
extraction
utilities

32-bit
applications

http://ftp.

Reference
book

Direct Hardware Access 235

Ordinal Coordinates

USER. EXE isaDynamic Link Library and is a standard feature of
Windows. It has a heap of useful functions, and the question
naturally arises. what are the other functions in USER.EXE?
Furthermore, where did | get that ordinal coordinate of 275?

Each function in USER.EXE, or any DLL for that matter, can be
referenced by a unique ordinal coordinate. You can find out al of
the functions in a DLL and their ordina coordinates, by use of a
utility program supplied with Microsoft C/C++, called
EXEHDR.EXE (or TDUMP.EXE from Borland C++). Since you
may not have access to this utility, | have listed the output of
EXEHDR.EXE for many of the Windows DLLs and drivers (see
the Companion Disk). The file on the disk has a comprehensive
alphabetical list of functions, with a short description, where it is
documented, what DLL it belongs to, and its ordina coordinate.
Each device driver has built-in functions that can be called also.

Thirty-two-bit applications are a problem. Apart from crashing if
you try to use a software interrupt, the low-level undocumented
(and many previously documented) functions are not readily
available. Matt Pietrek, arguably the Windows systems
programming guru of gurus, covers this problem in Dirty Little
Secrets about Windows 95, on-line at:

uni-mannheim.de/info/OReilly/windows/win95.update

/dirty.html

In this Web page, Matt is actually quoting from his book Windows
95 Systems Programming Secrets, IDG Books, USA, 1995:

“In Unauthorized Windows 9.5, Andrew Schulman made
extensve use of undocumented functions in
KERNEL32.DLL. Although there obviously weren't
header files for these functions, the functions appeared in
the import library for KERNEL32.DLL. Calling these
functions was as simple as providing a prototype and
linking with KERNEL32.LIB.

In subsequent builds of Windows 95 after Andrew's book
came out, these functions disappeared from the import
library for KERNEL32.DLL. (Surprise! Surprise!) At the
same time, these function names disappeared from the
exported names of KERNEL32.DLL. These
undocumented functions were dtill exported, however.
The difference is that they were exported by ordina only.

' IDG Books, USA, 1994.

236 Windows Assembly Language & Systems Programming

RESURREC-
TION(,)

Video
mode 7

Now, normally this would have been only a small
nuisance to work around. You should be able to simply
cal GetProcAddress and pass in the desired function
ordinal as the function name (0 in the HIWORD, the
ordina in the LOWORD) and get back the address. In a
normal, sane world, this would work. However, a some
point during the beta, Microsoft added code to
GetProcAddress to see if it's being called with the ordinal
form of the function. If so, and if the HMODULE passed
to GetProcAddress is that of KERNEL32.DLL,
GetProcAddress fails the cal. In the debugging version
of KERNEL32.DLL, the code emits a trace diagnostic:
"GetProcAddress: kernel 32 by id not supported.”

Now, let's think about this. Since the undocumented
functions arent exported by name, you cant pass the
name of a KERNEL 32 function to GetProcAddress to get
its entry point. And GetProcAddress specifically refuses
to let you pass it an ordinal value. The Microsoft coder
responsible for this abomination really didnt want people
(Andrew Schulman?, myself?) from calling these
undocumented KERNEL32 functions. Apparently, the
only way you can cal these functions is if you have the
magic KERNEL32 import library that Microsoft isnt
supplying with the Win32 SDK.

Never fear. As youll see later in the book, | make
extensve use of the KERNEL32 undocumented
functions (for good, not evil). With a little bit of work, |
was able to coerce the Visual C++ tools to create a
KERNEL32 import library that contains these
“documentation-challenged” functions.

Appendix A contains information about these functions
and an import library for them.”

Page 208 lists some of these functions

To and From Text Mode

If you choose to use RESURRECTION() to come back from text
mode, the screen will stay black, and bits will be redrawn as you
use Windows. If you do want the entire Windows screen to be
redrawn, then REPAINTSCREEN() is necessary.

There are various options for going to and fro between text and
graphics modes, apart from INT-10h. You could try the C
run-time library, or DEATH/RESURRECTION. The latter,
although undocumented, is probably the best supported and
cleanest method.

Overwriting
the current
Windows
screen

Virtual vs
physical
video-RAM

Suppressing
redrawing

Direct Hardware Access 237

Notice from the above listing that I used INT-10b/AH = OFh to
obtain the current video mode before changing to mode 7. After
doing my thing, | used INT- 1 Oh/AL = 00 to change the mode back
to what it was. Made 7 is the original text mode for the MDA
card, giving monochrome 80 columns by 25 rows. It works on
EGA and VGA adaptors, but not on CGA. The reason for this is
that CGA does not have high enough resolution. CGA text mode
ismode 2 or 3, and is only 640 x 200 pixels, while mode 7 is 720 x
350 pixels. The old mono MDA screen gives a nice sharp image.

This problem is a point in favour of DEATH().
Video Output Issues

You do not necessarily have to change the video mode. A typica
application might be to leave the Windows screen as-is and
overwrite it. Think about this — there are Windows functions to
obtain coordinates of your application’s window, or you could call
functions to set your window to certain coordinates. Then you will
know exactly where it is, so when you go into direct-video-access
mode, you will be able to write to the portion of the screen that is
within your window.

This means that you can have your program running as a window,
but you are still employing super-fast direct access to the
video-RAM. Yes, you can have your cake and eat it too!

By getting a sdlector to the video-RAM, you can write directly to
it. But what about “virtual” video-RAM? Since we are running in
virtual machines, shouldnt output to the video-RAM be to a
virtual video-RAM, that does not necessarily correspond with the
physical video-RAM? This is potentialy true, but al WinApps
run in the system VM, and the virtua video-RAM does correspond
to the physical.

I am perhaps getting a bit ahead here. Even though the concept of
a VM was introduced in Chapter 1, | havent fully developed it
until Chapters 10, 11, and 12. A DOSApp running in another VM
does write to a virtual video-RAM, which Windows can map
directly to full screen or into a window (depending upon the
settings of the .PIF file).

The problem with the above (overwriting the current Windows
screen) is that when you exit your callback and return control to
Windows, the screen will be redrawn. Of course you may not want
to return to Windows until you have finished running your game
or whatever, but suppose you do. A return to Windows without
redrawing the screen can be done by not executing INT-3 1h/AX =
4002h, or REPAINTSCREEN().

238 Windows Assembly Language & Systems Programming

Dumping
the queue

PEEK-
MESSAGE

DOS
keyboard/
mouse
input

These can be executed later, when the time is right, or not at all.
Message Input

One thing to bear in mind is that although Windows 3.x is
non-preemptive, the device drivers ae still working
asynchronousdly, as indeed is the case in Windows 95. Key presses
and mouse activity can sill generate messages, which will be
placed into your application’s queue.

So, your program may have saved the Windows video state and
gone to mode 7, or whatever, and done its thing. When finished,
and after the clean-up of restoring the video state and maybe
calling REPAINTSCREEN(), your program would normally
continue on in the norma fashion — if execution is within a
callback, control will continue on and return to Windows, and a
message waiting in the queue will then be sent to the message loop
in WinMain() .

If, perchance, you dont want to respond to messages received
during the direct-video period, you can use PEEKMESSAGE() to
see what is there, and discard it.

Note that PEEKMESSAGE() can be used at any time within your
calback to interrogate the queue. It gives you the options of
checking the gqueue with or without removing messages, checking
for a range of messages only, and of not yielding to Windows.

The main advantage of PEEKMESSAGE() is that it doesnt wait if
there are no messages on the queue; it returns immediatedly —
great for getting keyboard or mouse input in a non-event-driven
manner (a bit like old timesl). The next advantage is that if you
are doing some kind of direct access and dont want any other
application to run, you can cal PEEKMESSAGE() with the “no
yield” option.

Windows undocumented functions can be a bonanza, if we can
figure out what they do. DEATH(), RESURRECTION(),
DISABLEOEMLAYER(), and ENABLEOEMLAYER() are
extremely interesting. The latter two go the whole way, turning
off Windows screen, mouse, and keyboard and restoring all
normal DOS VO, with the vita exception that we are till in
Protected mode.

Writing
pixels to
the video
-RAM

Overwriting
the screen
using BIOS
and DOS
services: a
renegade
window

Direct Hardware Access 239

Experimenting

One thing that you might like to do as an exercise is modify my
code so that the mode is not changed. Leave it as it was, and
change the segment address from B00Oh to A00Oh, then you will
have a selector to the graphics video buffer. The EGA and VGA
physical video buffers are at segment address A000h. If the
program sends ASCII "X"s to the screen, you wont see "X"s,
because the screen is in graphics mode.

ASCII codes are only appropriate when the screen is in text mode.
In graphics mode you write pixels to the buffer, and to know how
to do that you need a good EGA/VGA programming book. In this
simple example, the "X"s will produce an interesting pattern on
the screen. You might like to experiment with commenting out
the INT-3 1h/4002h and the REPAINTSCREEN().

A Direct-Video Window Program

| introduced the idea of overwriting the existing Windows screen
back on page 237, and above | suggested the relatively
complicated approach of writing directly to the video RAM (which
will aso involve manipulation of /O registers on the adaptor
card). However there is another way: the BIOS and DOS services.
These services will do whatever you want.

What | have listed below is a complete program that is an
extension of the 00 program with a control button, developed in
Chapter 6. Clicking on the button causes another window to
appear — but this window is different! It is a pseudo-text-mode
window, that uses the IBM graphics character set (not ANSI
characters. See Appendix B). Furthermore, this window aways
remains visible — no matter what you do, this window will always
appear, until the application is terminated.

The most fascinating aspect of this program is that it uses the
plain-vanilla BIOS and DOS video services to generate this
window, without the least complaint from Windows. This window
is your own persona possession: as far as Windows is concerned it
doesnt exist. Yet | have arranged the program so that Windows
can never overwrite it (unless you want it to).

| have listed this program here (and it is aso on the Companion
Disk in directory \DPMIO) as a source of ideas — possible
building blocks for other more wondrous programs.

Ok, hereitis:

;This demD programis witten in TASM v3.0.

:1t uses the

NASMOO. INC OO-file devel oped in Chapter 7.

240 Windows Assembly Language & Systems Programming

;Thie nr.aar.am nmakes use of BIOS/DOS & | ow | evel W ndows
;functions. .
;remember that Wndows funcs only preserve SI,D,BP & DS.

| NCLUDE W NDOW6. | NC
| NCLUDE W NASMOO. | NC

| DM QUI T EQU 100
| DM ABOUT EQU 101
.DATA

windowl WNDOW { szclassname="DPMI",sztitlename= \
"DPMI DEMO' paint=wl paint, create=w create, command= \
w command, ' createstyl ehi= W5 _OVERLAPPEDW NDOWM \
W5 CLIPCHILDREN char=wlchar, sziconname="icon 1", \
y_coord= 10, timer= W ti mer, destroy=w destroy }
controll CONTROL {\
szclassname-"BUTTON",sztltlename-"OK" \
x_coord=20,y_coord=40,wwidth=30,wheight=20, \
himenu=I DCK, ‘Creat estylehi=Ws _CHI LD+ , VI Sl BLE \
createstylelo=BS PUSHBUTTON }

CODE
ki ckstart:
| ea si,windowil . ;addr of w ndow obj ect.
call [si] .make PASCAL, si ;make t he w ndow.
| ea si,controll .
call [si] .make PASCAL, si ;make child w ndow

ret
W paint PROC PASCAL
LOCAL

hdc: WORD
LOCAL pai nt st r uct a: PAI NTSTRUCT
| ea d| ai ntstruct _
cal | NPAINT PASCAL [si].hwnd, ss,di
nov h

cal | SELECTCBJECT PASCAL, ax, [si] .hfont
cal | TEXTOUT PASCAL,hdc,10,20, c¢s,OFFSET outstring, 29
cal | ENDPAINT PASCAL, [si] .hwnd, SS, di

ret
outstring DB "click button for direct video »

wlpaint ENDP

W.éfé.t ..
cal | GETSTOCKOBJECT PASCAL, CEM_FI XED_FONT
ﬁﬂy [si] .hfont, ax
re

...

cmp WRD PTR [si] .lparamO
;1o half=0 if a nmenu sel ection.
jne notmenu
ret
notmenu:
cnp [si] .wparam I DOK ;button child w ndow sel ect ed?
;note that [o-word of Iparam has handl e of control
;window, hi-word of | param has notification code.
jne not but t on

Direct Hardware Access 241

lea si,controlil -ainpa & points to windowl.
call DESTROYW NDOW PASCAL, [si].hwnd ;kill the button
mov {si] . hwnd, O ;must cl ear hvvnd if want to

:makeO | ater.

;what Wwe will do now is make the new w ndow al ways stay
;visible. ...
| ea si,windowl)
cal| SETTIMER PASCAL, [si] .hwnd, 1,200, 0,0 ;l=timer id.
;post WM_TIMER to wi ndow every 200nS.

not but t on:
ret
sznsg DB "Created by Barry Kauler, 1992",0
szhdg DB "Message Box",O0
wiéfxé:}: ...
;let's bring back the button if any key pressed..
|l ea si,controll ;since Si points t0 windowl.

catl [[si] .make PASCAL, si
re

w destro

cal l ¥<'I LLTI MER PASCAL, [si].hwnd,1 ;kill the tiner.
call POSTQUI TMESSAGE PASCAL,0 ;normal exit.
ret

V\A.t.l.r‘;E.I‘ ...

;comes this way if a wM_TIMER nessage. .
;this erlAtp keeps on pdsting a WM _TIMER nessage to
u

;itself s this section is in a continuous Toop..
call dpmi deno
ret
dbr'n'de'rfo ..

cgmes here if button selected. now we wll do sone direct
vi deo

. gDV ah, Ot:h deo st at Note that this only works for
rget current video state standard VGA. Modification is
; -->al=mode, ah=width, bh=page required for SYGA — see

MV mode, al ;save \DPMIONREADME.TXT on

mov columns, ah ; / the Companion Disk.

nov vpage, bh 3 -7

nov , ;get current cursor position

nov bh, vpage ;video page

I nt ; -->dh=row, dl col CcX=cur.size

mov curpos dx
;all of this beI ow, vvrltes the pseudo text nmode wi ndow on

:to the scrn.

mov ah, 2 ;set cursor position
nov dh,S ;row=5

nmov dl, col uims

shr 41,1 ;centre cursor on screen
nov bh, vpage ;video page

push dx ; save

int 10h

mov dx, OFFSET sdirect

242 Windows Assembly Language & Systems Programming

mov ah, 9 ;wite a string to scrn
int 21h
pop dx ; restore
inc dh ;next row
mov bh, vpage
mov ah, 2
push dx ; save
int 1oh ;set cursor
mov ah, 9 ;write string
MoV dx,OFFSET sdir2
int 21h
pop dx ; restore
inc dh ;next row on scrn
mov bh, vpage
mov ah, 2
int 1oh ;set cursor
mov ah, 9] ;write string
mov dx,OFFSET sdir3
int 21h
mov ah, 2 ;restore CUrsor pos.
mov dx,curpos
mov bh , vpage
int 10h
ret
. DATA
mode DBO
columns DB 0
vpage DB 0
curpos DW 0
sdirect DB " s
sdir2 DB " |BIOS/DOS O/P|§"
sdir3 DB " g
END
Reference Refer to agood DOS/BIOS programming book for details on the
sources video services. A person by the name of Ralph Brown has
compiled a detailed document on all of the interrupts and this can
be located at various places on the Internet, such as:
http://www.cs.cmu.edu/afs/cs/user/ralf/pub/WWW/files.html
The above code for drawing the box isnt particularly elegant
(there are a hundred possible ways) but shows the idea.
VGA and One lovely feature of the BIOS/DOS servicesisthat the cursor and
SVGA text 1/0O services treat row and column just like text-mode, even if

the screen is in graphics mode. The number of rows and columns
for each graphics mode can be found from a table, such as in
Thorn Hogars PC Sourcebook (see page 82). | used INT-10h to
obtain the current mode and number of columns, but do read
\DPMIO\README.TXT for specia information on Super-VGA.

hosting

Direct Hardware Access 243

Before you run this program, change Windows to standard VGA,
640 x 480 x 16, that is, 16 colors, and restart Windows. Yes, it
works on Windows 95!

The not-entirdly-appropriately-named dpmidemo() is called every
200ms, which is how the window always manages to stay on top.
You can see that | called SETTIMER() to create a Windows
software timer, and note aso that | killed it before exiting the
program. The reason for this is that Windows timers are a limited
resource.

Figure 9.1 shows the result of this program on-screen.

Figure 9.1: BIOS/DOS O/P to screen.
{elp

BIOS/DOS O/P 4
AmiPi

(=
|
—— =
Print Manager Clipboard 4
iecth
— A Obiect

It's abit like trying to mix water and oil!

If you try the program, one “feature” that you will observe is that
“ghosting” can occur in windows moved underneath, so an
improvement would be to hook al WM_MOVE messages and
append a WM_PAINT message. The problem is that whenever
you move (drag) a window on the screen, Windows simply
performs a shift of the window image, and does not tell the
window callback to repaint the window. Thus, shifting a window
under our “specid” window can result in the underlying window
picking up a ghost of our specia window. | have toyed with
various ideas for telling the window to repaint its client area, but
did not put any code into this example, for the sake of simplicity.

Anyway, | see this more as a learning exercise, and | dont think
you should put these techniques into that professional office
business suite youre working on! On the other hand, you never
know when low-level knowledge like this will come in handy.

244 Windows Assembly Language & Systems Programming

EFLAGS
register

/O Ports

DOS assembly language programmers will be accustomed to using
the IN and OUT instructions to talk with 1/O ports.

Of course, with DOS it was very straightforward. Execute “OUT
28h,AL" to send a byte of data from the AL register to port
(address) 28h, and it happens immediately, without question.

However, with the CPU running in Protected mode, there is some
extra rigmarole. Since more than one task can be executing, there
has to be a mechanism to prevent contention. First, look at the
flags register inside the CPU (Figure 9.2):

Figure 9.2 EFLAGS register.

FLAGS REQ STER

VWIRE # NT IOPL OF DF IF TF SF ZF # AF # PF # CF

17 16 14 13/2 11 10 9 8 7 6 4 2 0
= reserved
CE = carry flag FLAGS = 16-bit
PF = parity flag register,
AF = aux. carry flag 86/286
ZF = zero flag EFLAGS = 32-bit
SF = sign flag 386 '
TF = trap flag
I F = interrupt enable
DF = direction flaa
OF = overflow
lo’L = 1/oprivilege level y 286/386only
NT = nested tank flag
RF = resune flag ; 386 only
VM = virtual -86 node
[OPL field The field of immediate interest to us is IOPL, which means

Input/Output Privilege Leved. Referring back to page 3 1, privilege
level varies from O to 3, with 0 being most privileged. IOPL is set
by the operating system, and an application must have a privilege
level at least as privileged as IOPL for it to be alowed to perform
1/O.

With Windows, the IOPL is set to 0, while applications and DLLs
run down at 3, so it appears that they cant do 1/0O. But this is only
how it appears, for the protection mechanism is only used by
Windows as a control mechanism, and in some cases |/O is
allowed — clarification is needed here!

/0 and
related

instructions:

cLi, 87,
PUSHF,
POPF

o
exception
handler

Windows
95 /O

Direct Hardware Access 245

First however, we should be clear about what we mean by
“alowing 1/O". Hardware interrupts are, of course, part of 1/0O, as
is control of the interrupt flag, IF.

IF is a mask that determines whether external interrupts are
alowed to occur. It is O if interrupts are disabled and 1 if enabled.
There are two instructions that control this flag: CL{, meaning
ClLear Interrupt, and STI, meaning SeT Interrupt.

There is another means of controlling this flag: PUSHF and
POPF, which push and pop the flags register respectively. If
POPF is executed, whatever value is on top of the stack will be
popped into the flags register, thus affecting |F.

IN, OUT, CLI, STI, PUSHF, and POPF all work without question
under DOS in Rea mode. However, in Protected mode, since the
application doesnt have permission to do /O, execution of any of
the above causes an exception, which is a special reserved
interrupt that causes a Windows exception-handler to execute. It
is the hardware in the CPU that does this detection.

The Windows exception handler may alow the IN, OUT, CLI,
STI, and PUSHF to go ahead, with due regard for contention with
other applications, but it modifies the POPF instruction so that it
does not change the interrupt flag IF. The mora of this story is
never use POPF to change the interrupt flag.

There are many caveats to 1/0O under Windows. Yes, it's fine in
Real mode. It may aso be tine in virtua-86 mode, i.e., running in
a DOS box inside Windows. Note that some references call
virtual-86 mode Real mode, though it is redly a Protected mode
simulating the “real” Rea mode! Interrupts and IN/OUT to most
of the ports is allowed for WinApps in Windows 3 .0 and 3.1.

It works for 16-bit WinApps in Windows 95 aso.

The problem is 32-bit WinApps. | recently read this nice
submission to the comp.os.ms-windows.programmer.win32
newsgroup from Eugine Nechamkin;

>1 require to be able to
> intercept _
>5a dos application,

an interrupt (that being int ox78) perforned by
and respond to it from my w ndows 95

appl i cation.

if({don't care about

interrupt latency tine) &&! (nmust wite vxD))

// Make Wnl16 DLL controlling your interupt vector and

// processsing interrupts in usual
// {setintvect ()}, getintvector()) !!!
if (you are happy with Wnl6 app.

DCS - |i ke nanner

under W ndows 95)

/I Make sone front end Wnl6 app communicating with your Wnl6

246 Windows Assembly Language & Systems Programming

// DLL ;
el se

// Make Fl at - Thunk Wn32 DLL to communicate with Wnl16 DLL;
// Make sonme front end Wn32 app using Flat-Thunk Wn32 DLL ;

end $$3555 on Wn95 MsSDN, DDK, Nu-Mega's "Soft-Ice";
te a vxd for Wn95;
ite your Wn32 (or winlé) front end;

NN
NS
=0

There is a cheap option for developing VxDs, known as VxD-Lite
(see Chapter 14). Chapters 12 and 14 explore transitions between
DOS, 16-bit and 32-bit WinApps, and VxDs. There are many
options for getting at the low-level (hardware and underlying OS
management) from 32-bits, though it's all awkward.

Example Now for some example code. What | have here is a smple routine
program; to emit a tone from the loudspeaker. Nothing startling, but it is
Joudspeaker significant because it is done by programming the /O circuitry
control directly. The PC has three hardware timers, the first dedicated to

producing an interrupt every 55 milliseconds (ms): the INT-8
hardware interrupt. The second generates continuous pulses that
are used by the dynamic RAM refresh circuitry. The third is
general purpose, and is most often used to produce tones on the
loudspeaker, since its output is connected physically to the

loudspeaker.’
:to initidise and start hardware timer . . .
nmov al, 0B6h ;setup the mode of timer-2.
out 43h, 4 ;
nov bx,0700h ;load the counter.

mov al,bl ; /

out 42h,al ; /

mov al,bh ; /

out 42h, al . /

in al,61h ;set bit-0 and 1 of port 61h.
or al,3 ;

NS

out 61h, a

' The hardware timers used in the PC are 16-bit down-counters that can be loaded with a value
and then started. Once started, they count to zero and then either stop or automatically reload
and count down again. They can be programmed to produce a pulse at the output pin upon
reaching zero or simply flip state (which gives a square wave output). In continuous mode,
their frequency obviously depends upon the value first loaded; this has to be programmed to
port 42h in two steps. Bit-O of port 61h starts and stops the timer. It is important to note that
once started, the timer is completely independent of the CPU and will keep on going until an
OUT to port 6 1 h stopsit.

Direct Hardware Access 247

is NOW running. To turn it off

al,61h clear bit-0 and 1 of port 61h.
al,0FCh /
61h,al , /

You could arrange this code in your Windows application in
whatever way is appropriate. It illustrates the use of both IN and
OUT instructions and shows that they work tine from Protected
mode (subject to the above-mentioned caveats).

- Real-time While we are on the subject of timers, another issue arises; that of
events synchronisation, or response, with or to real-time events. An
interrupt from a hardware timer is a real-time event. Any
hardware interrupt is a real-time event. “Rea time” need not
necessarily imply externa hardware: if one application wants to
signa another and if the other is to respond immediately, it will be

a real-time response.

It may be that an external device has to signa a Windows
application, and it may be important that the application respond
in a very predictable way, within a predictable time frame.
Unfortunately Windows' response is anything but rea time. This
is a very important issue, and worthy of a new chapter.

Windows A little note before | launch into the real-time section — Windows

timers does have “software” timers that can be programmed to time out at
regular periods, just like the hardware timers discussed above. See
the usage of SETTIMER() on pages 239+. However, upon time
out they send a message to the application over the standard
message queue, so its arrival time at the application is highly
unpredictable. It is even possible for the timer to time out a few
times, and queue the messages, before the application gets them —
suddenly the application will get three or more timer timeout
messages at once! Hardly useful if you want your application to
be triggered at precise intervals.

As a fina thought, Windows has an undocumented function,
CREATESYSTEMTIMER(), that is documented in the DDK,
Daniel Norton's book (see page 203), and in Undocumented
Windows (see page 218). It bypasses the message queue and calls
the callback directly. Thus, it is possible to make code execute at
precise intervals (though the calback has the major restriction that
it can only call certain Windows functions, just like an ISR).

Threads Windows 95 has made timers less important, with the introduction
of threads. These introduce an execution overhead though.
Threads are only supported in 32-bit applications, with the Win32
API. Even though a 16-bit application can call 32-bit API
functions (see thunking section in Chapter 8), it cant use the

248 Windows Assembly Language & Systems Programming

thread functions. Threads can synchronise their execution aso
(see Chapter 8 page 223).

10

Real-Time Events

Windows
preemptive
aspects

Application
preemption

Preamble

So you think 16-bit Windows applications are non-preemptive?
Think again!

Just about everything you read will tell you that a disadvantage of
Windows 3.x is non-preemption. That is, once control is passed to
an application, Windows cannot regain control until the
application has passed control back, by a RET. One of the touted
advantages of 32-bit applications under Windows 95 is
preemption.

Actualy, whether it be Windows 1 .O or 95, interrupt-driven device
drivers, including keyboard input, must always be working in the
background. When a key is pressed, a hardware interrupt is
generated, which invokes the keyboard device driver.

The immediate response to a key press is preemption, nothing else,
and contrary to common knowledge, Windows 3.x applications
can make use of similar mechanisms.

Also, the DPMI host maintains preemptive time-diced switching
between VMs on Windows 3.x and 95.

A Windows application can respond immediately to an externa
hardware event, or a timer interrupt for that matter (refer back to
page 246 for a brief introduction to the PCs hardware timers, and
to pages 239+ for an introduction to the Windows “software’

timers).
249

250 Windows Assembly Language & Systems Programming

Preemption
by interrupts

Hooking an
interrupt

Hardware
VS
software
interrupts

You can also signal between Windows applications, immediately,
without going through the messaging mechanism.

Just as device drivers can be interrupt driven, so too can your own
application to provide predictable real-time response.

It is not al peaches and cream however.

The chapter starts with code for software interrupts, because it is
the easier case. The interrupt mechanism is particularly useful for
signalling and passing data between Windows programs.

The chapter then progresses to hardware interrupts, with example
code.

TSRS

What originally started me thinking about this topic was a problem.
some colleagues of mine at Edith Cowan University were having.
They wanted a Windows 3.0 application to sit in memory, like a
TSR (Terminate and Stay Resident) program, logging external
real-time events, while Windows was running other applications.
In other words, they were asking for preemption. Windows, they
concluded, was not suitable, so they chose OS/2.

After some experimentation, | discovered that it is very simple to
create a Windows application that behaves just like a DOS TSR
and hook an interrupt vector, yet be operating in Protected mode
and be in every respect a norma Windows application.

“Hooking an interrupt vector” means to change the entry in the
interrupt table (refer back to page 33) to point to the new TSR. In
DOS it was very common for a TSR to hook INT-16h — the code
that follows also hooks this vector, but note that Windows doesn’t
use INT-16h for keyboard input, so it doesn’t matter what damage
we do to this vector!

An interrupt can be either a hardware or a software interrupt — a
good DOS programming book will clarify the distinction, but
basicaly a hardware interrupt occurs as the result of an external
event, via the Interrupt Controller chip, and maps to various
reserved entries in the interrupt table.

Software interrupts are invoked from a program by the instruction
“INT n”, where "n" is any number from O to 255. Note that some
of those numbers will also correspond to hardware interrupts,
which means that such interrupts can be called either by a
hardware event or from a program.

Exceptions

TSR
installation
routine

Real-Time Events 251

Yet another class of interrupts is exceptions, generated by the
CPU.

Invocation of the hooked interrupt, either software or hardware,
will result in transfer of execution to the TSR. This happens
“immediately”. The TSR terminates with an IRET instruction,
which sends control back to whatever was running before the
interrupt.

Hooking a Vector

What | have done in the first part of this chapter is put together a
program that hooks INT-16h. The new INT-16h service routine
uses the music code from page 246, so there is audible feedback of
it executing.

Once the service routine is installed, INT-16h can then be
executed from anywhere, including another program, and the
service routine will be invoked.

The program can be any basic skeleton to which you patch the
following code. The “install” portion could be wherever you want
it; in WinMain(), in kickstart: (00 program), or in the callback.
You could start the program up as an icon (or invisible) and
immediately execute the ingtall code.

This is what the install code would have to be;

.DATA
offsetint
selectorint
.CODE

DW O ;0ld int-vector
DW O , /

install PROC PASCAL NEAR ;no params
USES ax,bx,cx,dx,si,di,es o
nov al,1éh ;get vector in idt
nov ah, 35h

int 21ih ;returns vector in es:bx
mov of f setint, bx ;save ol d vector.

nov selectorlnt es /

nmov dx, OFFSET runt ime ;new vect or.

push ds ;save ds.

push cs

por ds ;new vector in ds:dx
nmv al,16h ,1nt to be hooked.
mov ah, 25h ;set vector

int 21h

popr ds ;restore ds.

ret

install ENDP

252 Windows Assembly Language & Systems Programming

INT-21h/AH Some interesting points arise from this code. INT-21h/AH = 35h

= 35/25h

IDT vs VT

The rest
of the
WinApp

fixed vs
moveable
segments

or 25h are functions for getting the interrupt vector and for setting
it. Look back to the specia note on how these work with
Windows on page 200.

It is most important to know that they work on the IDT, not the
IVT. When the CPU is running in Protected mode, an interrupt
will cause the CPU to look in the IDT to find the selector:offset of
the interrupt routine.

In the code above, | have not hooked the old INT-16h routine in
the IVT. | have only hooked INT-16h in the IDT, which for
normal Windows programs isn't used.

Notice in the above code that | saved the old vector. This is in
case | want to cal it or jump to it, possibly from within the new
interrupt service routine.

Having done that, all that remains is to go into the usual message
loop, as per a norma program, which returns control to Windows.
There is one little complication with this — since the vector has
been hooked, don't close the application, because executing that
interrupt from some other application will cause the CPU to try to
execute a service routine that is no longer there. In fact, it will
crash rather rudely. It is possible to create a window for the
program but keep it invisible’ to prevent accidental closure, or
unhook it before closing. See an example of unhooking on page
260.

Is that all there is to it? Yes. Even the old .DEF file can be used,
and you can have MOVEABLE and DISCARDABLE segments.
It is not necessary for the CODE and DATA segment statements in
the .DEF tile to have FIXED qualifiers. FIXED forces Windows
to leave the segments at a fixed place in memory, rather than
moving them around as it normally does. You would think, from
the way TSRs are designed under DOS, that a resident interrupt
handler should be FIXED, but not with Windows.

If the operating system determines that the segment referenced via
the IDT is not actualy in memory, then it will get it back, and
update the descriptor. If you want, modify the .DEF file as
follows:

DATA
CODE

PRELOAD FIXED
PRELOAD FIXED

' Note that it possible to have an application without any window at al. Since al messages
usually are posted to a window, this requires special consideration. For example,
POSTAPPMESSAGE() will post a message to an application without a window and leave the
message' s hWnd parameter NULL.

Real-Time Events 253

Related Specifying FIXED is not a bottleneck itself, from the point of view
ISSUes of memory management, as some books will have you believe: |

discuss this issue on page 324.

Perhaps | am getting ahead of myself, since | haven't even
discussed the service routine itself. The above points do tie-in
with the service routine however. We may want to store writable
data in the code segment of the ISR, which will cause problems.
Also, hardware interrupts are a special case. In practise you may
have to do more than just specify FIXED: | have gone into this in
more detail on page 323. Also some relevant Windows functions
(GLOBALHANDLE, GLOBALFIX, and GLOBALPAGELOCK)
were introduced on page 2 10.

While I'm referring you al over the place for extra information, |
might as well do it some more. The above install routine works
for hardware or software interrupts, that is, any entries in the IDT
(or IVT if the CPU is running in Real mode). There are DPMI
equivalents. see the Appendices. What about exceptions? These
have to be treated as a specia case: see page 258.

Service Routine (ISR)

Accessing No, an ISR doesn't have to be a DLL’ or some other separate
data in the program. It can simply be a procedure in the same program that

ISR

has the install code. It will not be called from the program
however.

There is a problem with addressing data upon entry to the service
routine, because DS will be an unknown value’ Look back to
page 33 for a review of the steps that the CPU goes through upon
an interrupt occurring. It pushes CS, IP, and flags on to the stack,
and gets the new CS:IP from the IDT. The other registers are as
they were before the interrupt.

Thus, upon entry to the service routine, only CS is set to the code
segment of the service routine. How do you access data in the
service routine? One solution is to put data into the code segment.

Normally this is not allowed, or rather it is but you can't write to it,
because code descriptors have their access-field set to read-only —
however DPMI has a service that gets around this very nicely.
What you can do is obtain an “aias’; that is, a data selector that

Implementation as a DLL does have some advantages, however. If a DLL segment is declared
FIXED in the .DEF tile, it loads below 1 M, and is also guaranteed to be in contiguous memory.
These features alow the DLL to have Real mode code as well as Protected mode code. The
DLL runs at privilege level 3 (level 1in Windows 3.0), so I/O till causes an exception.

MAKEPROCINSTANCE() can be used to attach prolog code that binds data to code, though I
have not used it here, for certain reasons. See further notes in the Companion Disk.

254 Windows Assembly Language & Systems Programming

points to the same code segment. This will dlow you to write to
the code segment.

Windows has various functions for segment manipulation, though
many of them were unofficia until 3.1 was released. Of most
interest is CHANGESELECTOR(), which is officia for both 3.0
and 3.1 (see page 208). ALLOCCSTODSALIAY() is an unofficia
aternative. With Win95 they al go back to being unofficial.

There is another interesting, related function introduced with
TOOLHELP.DLL, and so is backwards compatible with 3.0:
MEMORYWRITE(). This will copy a block of memory from one
segment to another, regardiess of their attributes. Thus it will
write to a code segment.

Actudly, it is quite easy to get data segment addressability from
within an ISR, but I'll leave that one for now.

Data alias Before | show you the actual ISR, I'll provide a little bit of extra
to code setup code using the abovementioned DPMI service:

;will create diasin LDT of CS .
nmov ax, 000Ah

push cs

pop bx ;selector t0 be aliased

Int 31h ;returns alias selector i n ax
push ax

pPop

es . .
mov es: dssel ector,ax ;save the alias in the code seg.

Normally | would perform the above aiasing in the install code
and save the dias selector in the code segment. The ISR can then
read it and use it. This works, as long as the ISR doesn’t move in
memory. The same principle can be used to obtain addressability
to the WinApp's data segment.

Having got into the service routine and established data
addressability, all that remains is to do something. | have used the
code from page 246 to produce a tone on the loudspeaker. Here it

is:

.CODE . .
:I've put this data in the code segnent . . .
&sel ect or DW 0 ;data alias to code seg
musi cf | ag DB 0 ;turn nusic on/of f
runtime:

pusha ;save all regs.

push ds

push es .

mov es, cs: dssel ector ;get alias .

push es ;can also set ds to alias.

pop ds ;(so seg.override isn't needed to access data).

Real- Time Events 255

sti _ *enable interrupts.

; (STI and reentrancy issues discussed on page 3232.
cmp wmusicflag,20 ;musicflag | s used as a counter, for
jb jumpout3 ;turning the tone on or off on each

. mov musicflag,0 ;10th entry to the routine.
P jmp turnoff
] unpout 3:

inc musicflag
cnp musicflag, 10
J né jumpout2

i timeron

mov al, obsh ;turn on the hardware timer.
out 43h,al

mv bx, 07c5h -frequency 600Hz.

mov al,bl

out 42h,al

mv al,bh

out 42h,al

In al,61h

or al, 03

out glh,al
i HORT jumpout2
t ul ot f
In

al,61h ;turn of f the hardware tiner
and al,ofch

pop ds frestore all regs.

Testing

Stick this service routine somewhere in your program, then
assemble and link as per normal. To test it, you will have to
modify some other program, by inserting an "INT 16h" instruction
into it. Perhaps you could put this instruction into the other
progran’s WM_CHAR case, so whenever you press a key and the
other program’s window is active, the program will execute “INT
16h", which will cal the service routine.

Don’'t be confused here. A key press has nothing to do with
INT-16h under Windows, at least as far as normal code is
concerned. | have just arbitrarily suggested that you use the
WM_CHAR message as a convenient means of invoking the
service routine.

Having modified another program, start both it and the “TSR”
program. With the “other” program active, try key presses, at least
ten, and you should be able to toggle the tone on and off.

256 Windows Assembly Language & Systems Programming

Only one
LDT and
T

IRQ O-7

What you are doing here is accessing a globa variable! Other
applications can also access that same variable, which raises
interesting possibilities for inter-process communication.

If you know much about LDTs and GDTs, you might be puzzled
as to how the above code can work. The classical theory states
that each application has its own LDT (see Chapter 1), so
modifying the TSR's LDT has nothing to do with any other
application's LDT. Not so with Windows! As is explained in
more detail in the next chapter, al WinApps share the same LDT.
Ditto for the IDT.

The IDT is a very grey area. It is another case of Microsoft hiding
the truth. The classicd mode for the IDT would be that there is
only one, but Windows does maintain copies, as far as | know, for
each VM. So maybe there is just one “main” IDT that interrupts
“go to” but the interrupt handler references the copy in the current
VM. This is a very very grey area, but you can get by with just
thinking that there is only one IDT. Certainly, as al WinApps are
in the same VM, this assumption is safe.

Hardware Interrupts

You will notice that my example code earlier in this chapter dealt
only with software interrupts. Hardware interrupts can work, but
there are some complications. The problems are associated with
how interrupts are mapped and the difference in treatment of
interrupts in Protected and Real modes.

The issue is very complicated and it behooves us to start with the
handling of hardware interrupts from the point of view of the XT;
that is, with an 8088 or 8086 CPU.

XT Hardware Interrupts

The PC modd XTs are based upon the 8086 CPU and have a
hardware interrupt controller chip that allows eight devices to
interrupt the CPU. That is, the chip has eight inputs, labelled
IRQO to IRQ7 and one output labelled IRQ (Interrupt ReQuest)
that feeds into the maskable interrupt pin of the CPU.

A flag named IF (Interrupt Flag) enables this IRQ input with the
STI instruction or disables it with the CLI instruction (see page
33).

The interrupt controller chip can be, and is, programmed to map
IRQO to IRQ7 to any group of eight entries in the IVT or IDT

Real-Time Events 257

(look ahead to page 268 for the relationship between the IVT and
IDT) (see page 185 for an introduction to the interrupt controller
chip).

The XT maps IRQO through 7 to entries 8 to 0Fh in the IVT. Thus
if you were to access these by software interrupt, you would
execute "INT 8" to “INT OFh".

AT Hardware Interrupts

The IBM moded AT, based upon the 80286 CPU, introduced more
hardware interrupts, by cascading a second interrupt controller
chip, as shown in Figure 10.1.

Figure 10.1: AT hardware interrupts.

REAL-MODE n IVE
HARDWARE 0 [Divide by 0
INTERRUPTS ; 1§Illr\n/[glle-step
3 | Breakpoint
- 4 | Overflow
IRQO— to IRQ 5 | print soreen
%%8; B > pin . 6 | reserved
IRQ3 7 | reserved
IRQ4 8 | 55mSec timer
IRQS5 7 9 | Keyboard
IRQ6 T A | Cascade for IRQS8-0F
IRQ7 B | Usually COM2
C | Usually COM1
IRQS8 D | Usually LPT2
IR89 - E | Diskette
IRQA - F | Usually LPT1
IRQB 10| Video 1/0
IRQC 11| Equipment check
IRQD 7
R —
%Rglliz‘— 70| Realtime clock
72| general
73| general
Second interrupt 74| general
controller chip 75| Coprocessor
added to the AT. ;g glgr?reorl a?Irlve

258 Windows Assembly Language & Systems Programming

Exception
handling
conflict

Windows
remapping
of vectors

At power-on, the interrupt controller chips are programmed to map
to certain entriesin the IVT. When an interrupt arrives, IRQ is
forwarded to the CPU, and the CPU then interrogates the
controller chip, which passes the interrupt number "n" to the CPU
over the data bus. The CPU then looks up that entry inthe IVT
and goes to the interrupt service routine.

When the CPU is operating in Real mode, INT-0 is what is called
a processor exception; that is, an interrupt %enerated by the CPU
itself, not by the program or by external hardware. Ditto for
INT-1.

| have shown INT-6 and -7 as reserved, which is the case for the
XT. However on the AT, the 286 CPU uses these for “invalid
op-code” and “device not available’, respectively. Again, these
are exceptions.

There is a very serious problem with this arrangement. With the
286 and 386, Intel uses the first 16 entries of the interrupt table —
and now we must refer to the IDT — as exceptions when the CPU
is operating in Protected mode.

However, the hardware interrupts IRQO through 7 are mapped into
INT-8 to -Fh. Quandary — how is this conflict resolved?

Windows (and 0S/2) map IRQO through Fh elsawhere in the IDT,
at INT-50h to -5Fh. Obviously, these entries would point to the
same routines as before, but even so, there is room here for
trouble.

You might deduce from this that if you wanted to hook the
origina INT-8, you should instead hook INT-50h. Thisisvalid,
but only to a certain extent. Windows can be in Protected or V86
mode at the time of interrupt, and in the latter case we have to go
back to the IVT in the V86 virtua machine currently active’
Therefore, we (may) actudly have to hook two (or more) vectors.
Headache!

Windows Standard Mode Hardwar e Interrupts

Somewhere earlier in the book | promised not to mention Standard
mode again, asit’'s history -— amost. Maybe in some third world

' | don't want to be misleading here. In Windows Standard mode when a DOS program is
running, the CPU will be in the one-and-only Real mode and interrupts vector via the
one-and-only IVT. However, in Enhanced mode with a DOS VM active, it is still a Protected
mode, and hence, hardware interrupts still go to the IDT in the current VM (note the emphasis
on current). Because the DOS VM is supposed to behave in all respects like an XT-model PC,
the interrupt will eventually come down to the IVT.

INT-51h

POSTMES-
SAGE()

A skeleton
hardware
interrupt
handler

Real-Time Events 259

countriesit's all therage However, the following is extremely
interesting, and I’ve put it in for the education it gives us about the
warp and weave of interrupt handling.

What | have for you here is a useful program that hooks INT-9, the
keyboard hardware interrupt — except to illustrate how Standard
mode works, | have hooked INT-5 Ih!

This keyboard hook can be very useful for filtering whatever
comes from the keyboard before Windows has a chance to see it.
Note that INT-5lh is invoked every time a key is pressed or
released, with bit-7 of the scancode distinguishing which.

Hardware interrupts are somewhat more delicate than their
software cousins — for example you can't call Windows functions
from them — with one exception: POSTMESSAGE(). Microsoft
especialy made sure that this would work from the hardware
interrupt level, so that a hardware interrupt service routine can
signal a Windows application.

There is a particular problem with these hardware interrupts, due
to the way they are mapped. With Windows in Standard mode' |
have shown on the previous pages that the keyboard interrupt
maps to INT-5 1h in the IDT, with certain qualifications, and this
example code hooks that vector. This point is elaborated on a little
later.

Incidentally, if you need to know which mode Windows is running
m, there 15 a function that will do tha for you;
GETWINFLAGS(). | haven't shown the «cadl to
GETWINFLAGS() in the example below, but in a practica
program you could include it.

What follows is just an extraction of the bare essentials to get a
hardware interrupt working — the flesh can go on later.

Ok, now for some code:

radd this extra function to the external declarations...
EXTRN POSTMESSAGE: FAR

.CODE

;put in the usual WINMAIN() function ...

Xfollowed by a callback ...

PUBLI C

DPM CALLBACK

DPM CALLBACK PROC W NDOWS PASCAL FAR \

hwhd: WORD, msgt ype: WORD, wPar am WORD, 1Par am DWORD
;put in the usual CASE structure to process nessages,
but with sone additions ...

' Put Windows in Standard mode by typing “WIN /8" when loading it. That is what it will be
anyway if the CPU isa 286, or a 386 with insufficient RAM (usually less than 2M).

260 Windows Assembly Language & Systems Programming

mov ax, nsegt e
cmp ax, V\M?C%EATE
je xcreate

cmp ax, WM DESTROY
je xdestro

cmp ax, WM _USER

je Xxuser
...etc
;here is the handling of the WM CREATE case ...
Xcreate: . jwhatever you want, plus ..
call installint ;hooks t he 'vector.
imp . Xexit .
;here is the handling of the WM USER case ..
Xuser:
push ax
push dx
mov ah, 2 ;write char to sern
nmov di, 07 ;beep
int 21ih
pop dx
POp ax .
jmp xexit
xdestro

y
cal | ~ POSTQUI TMESSAGE PASCAL, 0
;unhook the int-51h...

push dx

push ds . .

mov dx, of f setint ;this is the old INT-51 vector
nov ds, sel ectorint o / . .
mov ax,2551h ;before quitting, we are restoring it.

int 21h
pop ds
pop dx
inp Xexit
;wha tever else you want here ...
xexit: .
sub ax, ax ;returns 0 in DX AX
cwd ;return a 32-bit (long) value).

ret
DPM CALLBACK ENDP

Hooking/ A WM_CREATE message is sent when the window is first
unhooking created, so this is a convenient time to hook the vector. Therefore
the vector acal to INSTALLINT() is included.

Similarly, upon exit it is necessary to unhook the vector, otherwise
Windows will crash. Unhooking on receipt of the
WM_DESTROY message is most appropriate. This code simply
uses INT-21W/AH = 25h to restore the old vector, which has
previoudy been saved in "offsetint" and "selectorint" by
the installint() procedure.

Real-Time Events 261

Interrupt Handler Code

POSTMES- The interrupt service routine will be entered every time a key is

SAGE() pressed or released, and all that | have done inside it is call
POSTMESSAGE() to send a WM_USER message to the
window’s callback function DPMICALLBACK().

WM_USER WM_USER equates to a message number that is not used by
Windows as amessage, so it isfreefor an application to use. A
range of such numbers is available for an application to use: look
in WINDOWS.INC.

Ok, now for the installint() function:

.DATA

descrbuffer DB 8 DUP(0) ,

of fsetint DW 0 ;old int. vector

sel ectorint DW 0 , /

. CODE

dssel ect or DW 0 ;data alias to code seg
hwndcs DW O ;save window handle for use in isrf

installint PROC ;no params
pusha
push es
push ds
;will create alias in |dt of current task.
MV ax,000ah ;create alias data descr. for code seg.
push cs

pop bx ;selector t0 be aliased
int 31h ;returns ax
push ax
pop es
mov ax, hwnd .
mov es: hwndcs, ax ;handle of wi ndow
nmov ax,es
mov es: dssel ector, ax ;alias
;now to get the old INT- s1h vector, and save it . .
mv al,51h ;get vector in idt
mv ah, 35h ;- ->ES: BX
int 21ih
push es
pop
mov offset|nt bx ;save the old vector
mov sel ectorint, ax ;
anhdx OFFSET runtime ;get the new vector
ush cs ;
Eop ds ;new vector in ds:dx
nov al.,51h
mov ah,25h ;set vector
int 21h
pop ds ;restore ds.
push ds isave it agaln

;let's hook int60, to use as 'old vector.
mov dx, of f seti nt

262 Windows Assembly Language & Systems Programming

mv
nov
mv

int 21h

ax, sel ectorint
ds, ax
ax,2560h

;installation now finished .

pop ds
pPop es
popa
ret

| can put the interrupt service routine in the same procedure as the
install code, if | wish, but before listing it, | want to comment on
the above code.

To be able to get at data in the service routine (I'll cal it an | SR
from now on), | had to create a data dlias, that is, a data selector
that points to the code segment. This enables me to write to the
code segment.

Into the code segment | saved the handle (hwnd) of the
application’s window. The reason for this is that within the ISR |
cdled POSTMESSAGE(), which needs the handle as a parameter.

Calling the You can see that | hooked the vector and saved the old vector, but
old handler | also put the old vector into INT-60h. That is, | hooked INT-60h
so that it now points to the Windows keyboard handler. This is
convenient, because from within the ISR | wanted to be able to
cal the old ISR, for proper handling of the keyboard input.
Note that there are other ways of doing this, such as by use of a
CALL instruction.
Now for the ISR:
runtime:
int 60h ;call the old INT-51h
pusha , save all registers.
push ds
push es
push ss .
mov ax, ¢s: hwndcs ;get wi ndow handl e
; cal | 'POSTMESSAGE PASCAL, ax, W USER O, 0,0
;no, Wil do it this way, as PASCAL qualifier very
;inefficient .
push ax
push wM_USER
push 0
push 0
push 0
cal | POSTMESSAGE ;put message on queue.
PopP ssS ;now restore and get out.
pop es
pop ds
popa

installint

Real-Time Events 263

ENDP

INT-9
keyboard
handler

Real mode
keyboard
handler

See how simple the ISR is! | was able to call the original
keyboard handler for proper handling of the key pressrelease,
though note that | could have put the "INT eoh" at the end of the
ISR if required.

| accessed "hwndcs", the handle of the window passed as data in
the code segment, and then called POSTMESSAGE().

Note that | did not make use of aiasing in this simple skeleton.

I chose to explicitly push the parameters onto the stack prior to the
CALL, rather than use the PASCAL qualifier — TASM's
generation of code with the PASCAL qualifier is horribly
inefficient, so | felt better about doing it this way.

Enhanced Mode Hardware Interrupts

So what about Windows in Enhanced mode? Remember that
Windows 95 can only run in Enhanced mode.

I mentioned earlier that Windows gets up to some tricky business,
and for both Standard and Enhanced modes reflects the INT-5 1 h to
INT-O.

However, this mechanism is different in each case, as Enhanced
mode is able to make use of virtual machines, with the result that
hooking either INT-5 Ih or INT-9 will work in Standard mode, but
in Enhanced mode only INT-9 will work.

So the earlier example code that | wrote to hook INT-5 Ih for
illustration purposes simply needs to be modified to hook INT-9,
and it will work in both Standard and Enhanced modes.
Unfortunately there is is still one complication — DOS.

| keep hoping it will go away — but it won’'t. The hardware
interrupt handler developed in this chapter will work with any
number of Windows applications multitasking, but not when a
DOS program is running. In the former case, it doesn't matter if
the program containing the ISR is iconized and another WinApp
has the active window — dtill, all key presses will in real time be
routed to the ISR and be posted to the iconized progran — and
Windows will call the iconized program’s callback function,
giving it the message, even though it is iconized.

So you'll aways get the beeps when pressing and releasing a key.

However, if you run the “DOS Prompt” program, the beeps will
stop. Upon exiting back to Windows, the beeps will start once

again.

264 Windows Assembly Language & Systems Programming

What the
program
“does”

Reference
sources

What is
DMA ?

If you redly must have the ISR continuing to function when the
CPU is running a V86 or Red mode program, refer to Chapter 11,
as | decided to make the handling of Real mode a specia chapter
al on its own. See aso the footnote on page 258.

| suppose you do realise by now what the example program does
—' it beeps the loudspeaker every time you press or release a key.

Because the ISR only posts a message to the main Windows
program, it iswhat | would class as pseudo-real-time response.
Don't forget, however, that the ISR shares the same code segment
as the main program, and by way of a data alias, data can be
passed to and fro. Or the actual WinApp data segment can be
readily accessed.

For example, harking back to the problem that my colleagues had
— they wanted to measure an external parameter at precise
intervals and log it for internal analysis. The interrupt mechanism
provided the precise intervals, and the ISR could have read the
param?]ter from the input port and recorded it, then exited. Simple
enough.

You will find the program on the Companion Disk in \ISR1.

Direct Memory Access

In this and the previous chapters | have covered the basic eements
of hardware access, namely direct memory access, 1/0 port access,
and interrupts, but there is another aspect that is worth
introducing: DMA.

DMA is perhaps somewhat too esoteric for a book of this generd
nature; however, a few notes are in order and | can point you in the
right direction.

The best reference would be Microsoft’s Virtual DMA Services
Specification, part number 098-10869.

Ancther introductory reference is “DMA Revealed” by Karen
Hazzah, Windows/DOS Developer’s Journal, April 1992, pages
5-20.

Basicaly, DMA takes the job of data transfer away from the CPU
for the sake of speedy transfer of blocks of data, usualy between a
hardware device and memory. It requires a DMA controller chip.
Initialization involves telling the controller the address of the
memory buffer and how many bytes to tranfer.

Bolting a
segment

L down

INT-4Bh

Real-Time Events 265

With Windows, there are complications, because the CPU can be
in Real or Protected mode. In Protected mode the buffer should be
constrained to be below 1M and should aso be contiguous.

Paging normally will split a segment up al over the place, but
there are mechanisms in Windows for keeping a segment together.
The DMA controller is given the selector:offset and simply
increments the offset without regard to paging — remember that
the CPU is turned off at this time, and the DMA chip has complete
control of the bus.

Another implication of this is that it is wise to keep memory
buffers to no more than 64K.

| did note earlier that by declaring the DLL data segment FIXED,
it will load below 1M and be contiguous. However there appears
to be some doubt about the latter, as the recommendation is that to
ensure that pages are contiguous, ancther service must be called:
the INT-4Bh/Lock-DMA function.

INT-4Bh provides the extensions to DOS for DMA handling, and
you will find these documented in the above Microsoft reference
— not anywhere elsg, that I'm aware of.

The services, available from both Windows Standard and
Enhanced modes, are;

« INT-4B0/AX =8103h VDS_LOCK

« INT-4B/AX =8104h VDS UNLOCK

« INT-4Bh/AX=810Bh VDS_ENABLE_TRANSLAT.
« INT-4B0/AX=810Ch VDS DISABLE TRANSL.

Some of the discussion in this and earlier chapters has referred to
Real mode. Although Windows normally runs in Protected mode,
Rea mode is still encountered, as is virtual-86 mode, and more
specific treatment is provided on this topic in the next chapter.

11

Real Mode Access

Wy bother
with Real
mode?

Preamble

The topic of Real mode has aready been encountered at various
earlier stages in the book. There is, however, a lot more to the
issue of Rea mode.

Windows 3.1 won't run in Real mode, only Standard or Enhanced,
version 3.0 loads in any of the three, while 95 only loads in
Enhanced mode. “Red mode” in this context means that the
WinApps themselves run in Real mode, which just isn't practical.
So, we load Windows in Standard or Enhanced mode — why
bother with Real mode?

One need is to run a DOSApp. In the case of Standard mode, the
CPU has to switch back to Real mode, effectively freezing
Windows. However, Enhanced mode will create another VM
(virtual machine) in which to run the DOSApp, and we till say
that the DOSApp is running in Real mode (though it would be
more correct to say virtual-86 mode).

Then there are DOS device drivers and TSRs. Most likely these
will be running in Real mode. And there are the BIOS and DOS
services that we may till want to use.

A lot of code is till being developed to run in a DOS box, maybe
in Protected mode, but still involving transitions between
virtual-86 (“Read mode’) and Protected mode in the DOS VM.

267

268 Windows Assembly Language & Systems Programming

A typical
problem
with porting
code from
DOS to
Windows

Interrupts
reflected
from DT to
nvr

Code in Protected and Real mode must be able to communicate,
and interrupts occurring in both modes must be handled correctly.
The former is the major topic of this chapter, with hardware
interrupts focused on in Chapter 12.

This chapter is split into two major portions: getting at Real mode
code from Protected mode in the first half, and vice versa in the
second half.

Accessing Real M ode from Protected
Mode

Recently someone came to me with a problem. They had ported a
Pascal program from DOS to Windows, which was quite easy
using the excellent Borland tools, but the program didn’t work.

The problem was traced to a section of code that looked at a
certain interrupt vector, which was a pointer to an interrupt
routine. But at a certain offset in this routine is some data that the
program accessed. The code used INT2 1W/AH = 35h to get the
vector — but of course you and | know that the vector will come
from the IDT not the IVT (running in Protected mode) (Figure
11.1):

Figure 11.1: Interrupt deflection to Real mode.

Windows application: IDT
INT n
Windows
o handler
Original Real 0
mode routine /
(below 1M):

IRET

The INT-21W/AH = 35h retrieves the vector from the IDT. When
an interrupt occurs, the IDT points to a specia handler that passes
control to the Real mode DOS routine pointed to by the IVT (and

Solution
to the
above
typical
problem

Real mode
execution
versus data
access

Routine to
call a Real
mode /SR

Real Mode Access 269

remember that the IVT is located at Real mode address
segment:offset of 0O00:0000).

The routine terminates with IRET, which will bring it back to the
Windows handler, which will change the CPU back to Protected
mode and then return to your program.

Accessing Real Modeviathe VT

So my advice to this person was. you have to look in the IVT, and
for that you need DPMI service 0200h: Get Real Mode Interrupt
Vector. The vector obtained is in the form of segment:offset,
which cannot be used while your program is in Protected mode. So
then you need DPMI service 0002h, Segment to Descriptor, which
will create a descriptor for the segment:offset address and will
return a selector (0002h was introduced on page 228).

Problem solved.

Figure 11.1 relied upon a Windows handler to transfer control to
the original Real mode routine, but this only works for the
recognized BIOS and DOS services. Any other interrupt will most
likely crash.

The question of an interrupt being reflected down to Real mode or
not is a different question from the “typical problem” above, in
which it was necessary to look at a certain offset inside the Real
mode code.

I will not worry too much about the various scenarios that will
require you to access Real mode software; just think for now what
the solution is. | outlined above how to locate a Real mode routine
for data access, but what if you want to call it?

DPMI to the rescue again!

There's an invaluable service, 0300h, that does everything. Some
code will illustrate;

.DATA
regstruc
edi |
esi |
ebpl
resl
ebx|
edx|
ecx|
eax|
flagsl DW
esl DW

SISISISISISISIS

STRUC ;Real nmode register data structure

OO DO O ODDODODOO

270 Windows Assembly Language & Systems Programming

dd DW 0
fs1 DWW 0
gsl DW 0
i pl DW 0
csl DW 0
spl DW 0
ss| DwW 0
regstruc ENDS
. CODE
callreal PROC PASCAL NEAR
LOCAL regl:regstruc
USES ax, bx, cx, dx, si, di
push ss .
op es ;setup ES: DI point to data struc
ea di,reql , .
nmov WORD ETR {di] .eax1,0500h ;5 into ah.
mov WORD PTR [di] .ecx1,0007h ; 07=beep
MoV bx, 0016h ;int to call
mov CX,0 .
mov ax,0300h ;simulate Real npde int
int 31h ; /
jc error
mov ah, o0 . ;get char from key buffer
int 16h ;returns in ax . . .will hang if no char in buff!
nov dl,al ;char in dl
mov ah, 2 ;display a char
i nt 21h
ret
INT-31h/ Intel’s DPMI sPeciﬁcation does place some caveats upon the

AX=03001 0300h function.

' The CS:IP in the Real mode register data structure is ignored by this function. The appropriate
interrupt handler based upon the value passed in BL will be called.
If the SS:SP fields in the Real mode regilster data structure are zero, a Rea mode stack will be
provided by the DPM host. O herwi se, the Real mode SS:SP will be set to the specified values
before the interrupt handler is called.
The flags specified in the Real mode register data structure will be pushed on the Rea mode
stack’s IRET frame. The interrupt handler will be called with the interrupt and trace flags clear.
Values placed in the segment register positions of the data structure must be vdid for Real
mode; i.e., the values must be paragraph addresses and not selectors.
All genera register fields in the data structure are DWORDs, so that 32-bit registers can be
passed to Red mode. Note, however, that 16-bit hosts are not required to pass the high word or
32-hit general registers or the FS and GS registers to Rea mode.
The target Real mode handler must return with the stack in the same state as when it was called.

When this function returns, the Real mode register data structure will contain the values that
were returned by the Real mode interrupt handler.

What the
above
program
“does”

Calling a
DOSApp

Virtual
Real
mode

Real Mode Access 27]

What | have done here is called INT-16h/AH = 5, which puts a
character into the old DOS keyboard buffer. The character has to
be provided in CX (as scancode:ascii).

All of the register values to be passed to Real mode have to be
placed into an array pointed to by ES:DI.

That's it. The Real mode routine executes, then returns. To find
out if the character really was placed in the buffer, | then called
INT-16h/AH = 0O, which gets a character from the buffer (and will
hang if nothing is in the buffer!). Notice that | called this in the
normal fashion — this will go viathe IDT and IVT as per normal.

The previous INT-16W/AH = 5 would have worked in this way
also, but | have used the DPMI service to show how to call code
that is not necessarily a Standard BIOS or DOS service.

By this DPMI mechanism, you can call any code below 1M with
the CPU running in Real mode — actually, this opens up some
possibilities.

Staying on track for now, | used INT-16h/AH = O to get the
character back off the buffer — and the character |1 chose was 07,
the “beep” character. | sent it to the display, using INT-21hW/AH =
2, supplying the ASCII code in DL.

The “beep” character doesn't go to the screen, however; it is
treated as a control character (all characters below 32 decimal are)
and in this case causes a beep on the loudspeaker.

Hence, there is immediate feedback that the code has worked.

The above code works fine, at least for caling a BIOS or DOS
service, but if you want to call code or access data in a DOSApp,
there are more complications.

A DOS program (DOSApp) running under Windows would be
running in Real mode in what is sometimes called a “DOS
compatibility box”. Windows in Standard mode can only have one
of these running at any one time, as Standard mode is based upon
the capabilities of the 286 CPU (which cannot just flip between
Real and Protected modes on a per-task basis). Windows in
Enhanced mode is based upon the virtual-86 capahility of the 386,
which alows multiple “DOS boxes’ or virtual machines.

Virtual Machines

There is a section back on page 29 that introduces the concept of
virtual 8086 machines. The 386 can happily multitask just about
any number of these virtual machines, athough Windows has a
limit of 16. However, it does place a caveat on everything I've
written so far about the so-called “Real mode”.

272 Windows Assembly Language & Systems Programming

Virtual
video
-RAM

Mapping
virtual
address to
physical
address

Multiple
VMs means
multiple
VTs and
DOSApps

You think of Real mode as using the segment:offset addressing
method, without any of the memory management features and
restriction to the first 1IM. That is quite true for Windows
Standard mode, because to run a DOS program, Windows switches
the CPU back to Real mode.

But in Windows Enhanced mode, to run a DOS program the CPU
is not switched back to “real” Real mode. Instead it is switched to
virtual-86 mode.

This can have unfortunate repercussions for those of us wanting
direct access to hardware. | wrote in Chapter 9 about obtaining a
selector to video-RAM and writing directly to it — you will have
gained the impression that that is what really happens, and | didn’t
want you to think otherwise. However, with Windows in
Enhanced mode, what you are really doing is writing to a virtua
video-RAM’

In practise it worked, because Windows mapped the virtual
video-RAM directly to the actua video-RAM, which is the normal
situation for WinApps running in the system VM. However, the
potentia is there to cause trouble for you. Note however that it is
possible to directly address the actual physical memory from
within a VM — see page 344.

The idea of a virtua video-RAM and a virtual machine, in fact
many of them, is awkward for many people to grasp, which is why
| tended to delay this little detail until later in the book.

So whenever we communicate with Real mode from a Windows
program running in Enhanced mode, we are only communicating
with a smulated Real mode, that is, a virtual-86 machine. The 1M
address space of this machine will in reality be mapped, via
paging, to anywhere in RAM that the operating system decides.
The virtual addresses may map to the same physical addresses —
see page 343 for more detail on this.

When Windows is running in Enhanced mode, and you load a
DOS program, Windows will create a virtua machine just for it.
You could in fact load any DOS program, including a TSR.
Another way to do this is to go to the DOS prompt from within
Windows and load the program from there.

A TSR loaded in this way will sit inside the virtual machine and
will only be usable from within that virtual machine. This is a
vital point.

' Itisthisfeature that enables Windows Enhanced mode to multitask DOS applications in
Windows, not only full-screen as required by Standard mode.

Real Mode Access 273

Earlier, | described how to cal a Real mode ISR directly by a
DPMI service. | adso explained that any BIOS or DOS service can
be called by a software interrupt, "INT n", which is reached via the
IDT and IVT.

Accessing a TSR via the IVT is a very convenient avenue for
getting at Real mode code and data. Later on in the chapter | look
a going the other way, and again the IVT is an excellent avenue.

However, | have been describing (above) the concept of multiple
virtual machines, each with its own IVT, TSRs and DOSApps.
The big question now is, how do we know which IVT and DOS
program we are accessing from our WinApp? To answer this
question, read on....

DOS TSRs
Concept DOS TSR (Terminate and Stay Resident) programs, which aso
of 7SRs include device drivers, are covered in many DOS programming

books. They load like any other program, but only have a short
“install” procedure then exit back to DOS. The exit is via a specia
DOS service that leaves the program resident in memory, rather
than freeing up that memory space, as with norma programs.

TSRs usualy hook a vector, such as INT-8, -9, or -16h.

For example, by hooking INT-16h or -9 al DOS keyboard input
can be filtered. Usualy the TSR passes control to the old vector
after doing whatever it wants.

Once a TSR is loaded and control returns to DOS, you can then
load another program, so even under “single-user” and
“single-tasking” DOS you have two (or more) programs sitting
together in memory. The TSR will be executed, or rather its
“run-time” portion will be executed, whenever the particular
interrupt is called.

The Companion Disk has a useful TSR skeleton that hooks
INT-16h with many of the tricks of the trade incorporated into it,
fully commented for your convenience. Look in \DOSTSR.

A TSR sits If you load the TSR from within Windows or a a DOS prompt

inside a VM within Windows, the TSR will be inside a virtua machine. If the
TSR hooks an interrupt vector in the IVT, it will only be hooking
the vector in the virtual machine.

Whenever a DOS virtual machine is created, Windows copies
everything from the actual 1M region into it, or rather, “maps’ it
in. TheIVT is not the same IVT as the original 1VT.

This is the crux of the problem. Perhaps Figure 11.2 will help:

274 Windows Assembly Language & Systems Programming

Figure 11.2: A TSR isin a VM.

- [O1vT 0
The “System VM”
(Virtual Machine)
includes a V86 TSR ~V86
0-1M “real” address mode
space, and a protected
mode running WinApps.
0 Video-RAM
IVT
BIOS ROM
0 vt : M
TSR Windows
TSR DOS applications |[FProt.
DOS App mode
App — 4.3G
f
Video- The System-VM
B-IOS ROM has its own V86
1mL_BIOS and Protected
modes.
—" All WinApps
DOS virtual machines. Real mode access
Note that they can even is to this V86
have their own extended machine.
memory,

A TSR loaded By loading the TSR before loading Windows, for every virtua
before machine that Windows creates, it will also “copy” the hooked
Windows vector and the TSR. Thus by this method you ensure that the TSR
appears in is available to all applications.

every VM Note that | put the word “copy” in quotes, as this is not aways to
be taken literaly. See ahead for clarification (page 343).

Each VM has Note also something most important: the descriptor tables. The
its own LDT system VM will have just one of each LDT and IVT. Despite the
fact that one of the fundamental concepts behind the LDT is that
there should be one per task, Windows maintains just one for the
entire VM. This is why obtaining a selector when installing a TSR

Real Mode Access 275

will work within the TSR’s run-time code, no matter which
WinApp is running at the time of the interrupt. However, an
interrupt when in another VM will access a different LDT and
IVT. This idea of one LDT per VM is in keeping with DPMI
version 0.9. Version 1 .0 has an LDT per client (task). Windows is
one client only.

Accessing The conclusion here is that accessing Real mode code (via the

Real mode IVT) from a Protected mode WinApp accesses it in the system

code in all VM. If you want to get at code or data of a DOSApp or TSR in

VMs another VM you have to look into mechanisms for going between
VMs — or, if you load a DOS TSR before Windows, it will be
automatically in all VMs and thus its code and data will be global.
Even its hooking of the IVT will be in every IVT.

Thus the DOS TSR is one convenient mechanism for
communication between Protected and Rea modes across all VMs
and is developed further in this chapter. Also, a method for
switching VMs is developed.

Accessing Protected Mode from Real
Mode

Global data Actualy, using the globa DOS TSR method by passing data
via a DOS between Real and Protected modes is very easy.

JSR All that the DOS application has to do is execute a software
interrupt to invoke the TSR or use the vector as a pointer to global
data. Any data passed to the TSR’s own data area will also be
available to a Windows application that calls that same TSR. End
of story.

This method works quite happily for Enhanced or Standard modes,
but is awkward in that the TSR must be loaded before Windows.
Also it takes up “vauable” spacein that first 1M.

This ssimple technique for sharing data works across al VMs,
because the same TSR is present in al. | develop this point as | go
along. This idea of using a globa DOS TSR is not the only
approach but is quite powerful, and it is the basis for discussion in
this chapter.

Reference The problem of different IVTs in each virtual machine is discussed

source by Thomas Olsen in “Making Windows & DOS Programs Talk”,
Windows/DOS Developer’s Journal, May 1992, p 21.

276 Windows Assembly Language & Systems Programming

Mapping the
VT and TSR
across VMs

He does not see any way around this problem except by loading
the DOS TSR before loading Windows. Actualy, if you only
want the DOS TSR to load into the system VM, and not
subsequent VMs, you can force this by naming it in a file called
WINSTART.BAT, which Windows looks at to see what has to be
done before loading itself (but after creating the system VM).
Simply put the name of the TSR in it, as per a normal batch file.

When | say “there’'s nothing to it”, I'm being a bit flippant. A DOS
TSR loaded before Windows can have a data area that a Windows
program can get at, but there are certain extra considerations.

If the TSR is being copied to each V86 machine as it is created,
won't each have its own code and data? Therefore, if a Windows
program looks in the IVT to access the DOS TSR, which one will
it see? Will it just see the copy in the system VM?

Yes, the WinApp will only see the IVT in the syssem VM and
hence the TSR in the system VM, but Microsoft arranged things so
that the subsequent copies of the TSR are not really “copies’ as
such — they al map back to the one physical TSR. So there only
appear to be multiple copies of the TSR." Thus the TSR is truly
global.

| have elaborated upon this point with a supporting figure on page
343

There is ill another major problem. Yes, the WinApp can get at
the DOS TSR, but what if a DOSApp in a VM, via the TSR (or
whatever method), wants to asynchronousy send a message to a
WinApp in the system VM? | taked about signaling between
applications back in Chapter 10, but that was between WinApps.
Getting a DOSApp to signa a WinApp across VMs is a new ball
game.

Signalling a WinApp from a DOSApp

A DOS TSR can be made to appear in al virtual machines or only
in the system VM, so it is a ready means of providing the
signalling.

' You can verify this by running COMMAND.COM in two different windows. Run the DOS
“MEM"” program to see where the DOS TSR is located, then go into DEBUG.COM and dump
the start of the TSR (use the Dump command), then enter a new value somewhere (Enter

command) .

.. and you will find the same new value showing up in the other DOS window.

Note that DEBUG is a standard DOS program, and DRDOS also has a program (amost)
equivalent to DEBUG. | do have a modified DEBUG that will run on any version of DOS, but
at this stage | don't have permission from Microsoft to put it on the Companion Disk. You may
be able to locate a similar modified DEBUG on the Internet. Usage of DEBUG is described in
many DOS programming books.

Real Mode Access 2 77

A DOS application can call the DOS TSR by a software interrupt,
but since the DOS TSR is running in Real mode, how does it
communicate with a Protected mode WinApp?

Reference Walter Oney has solved this particular problem in “Using DPMI to

source Hook Interrupts in Windows 3", Dr Dobb’s Journal, February
1992, page 16. He does not tackle hardware interrupts; his focus is
purely on the issue of passing a message from a DOSApp to a
WinApp across VMs.

Mechanism A DOS TSR can be made to load into the system VM only, by

for forwarding specifying it in WINSTART.BAT; however, what we want is to

up to a hook an IVT vector that will appear in al VMs. The reason for

WinApp this is that we want a mechanism for a DOSApp in any VM to be
able to find out the address of a “forwarding” routine (in the DOS
TSR) in the system VM.

Did | just say that we want the TSR to be in every VM? It will be,
but the IVT hook’s appearance in every VM is what matters: we
want a DOSApp in ancther VM to pass control over to the “copy”
of the TSR in the system VM, which can in turn pass control up to
a WinApp. This may seem complicated, but hopefully | can
explain it clearly.

First consider the DOS TSR. It will have to be loaded before
Windows and will have to hook a vector in the IVT:

; DOSTSR. COM Resi dent program to pass control up to a

W nApp.

.286 PP

DOSTSR SEGMENT BYTE PUBLIC ' CODE
ASSUME cs :DOSTSR, ds : DOSTSR, es : DOSTSR
ORG 100h

begi n:
jmp sStart

; Put any local data in here.

;mode. . .

f or ar der: . .
push es ;save Working registers
push ds ; /
pusha , / /
sti ;enable interrupts, unless you want a crash!
push cs ;routine entered with DS unknown.
POP ds ; / want to addr. l|ocal data.

;To pass control up to a WnApp, the WnApp has to
;provide its address (selector:offset) in the |VT.
) must test if that has been done...

Xor ax, ax ;get current int-60h vector.

278 Windows Assembly Language & Systems Programming

mv es,ax ; / (don't use int-21/35, as under

MoV si,60h*4 / , certain circunstances

nov bx, es: [si) ;/ may not be stable)

MOV ax,es: [si+2] P . .

or ax, bx ; / it will be o:0if not hooked.

jz done60 ;if not, don't forward to it!

I nt ;issue int-60h to call WinApp.
done60:)

popa ;restore reglsters.

pop ds H /

pop es A .

iret ;return t0 DOSApp (i n anot her VM).

........

start:
mv ax,2561h ;hook int-6lh inivt.
| eta dx, f orwarder ;/ ad/dr. of forwarder in TSR
In ;
| ea dx,endprog+17 ;peint past all code in this nodule.
shr , ;compute # paragraphs to keep.
m)tv ax,3100h ,-terr}mate and stay resident.
In ;
DOSTSR™ ENDS
END begin
So there you are, a complete DOS TSR! Note that this particular
one has been written without the "simplified" directives, which is
no big deal. Actually my own experience has been that it is
difficult to write .COM programs using the simplified directives,
and you are better off sticking with the “long hand” notation
shown above. You can write a TSR using .EXE format and the
smplified segment directives, which | have done for one of the
examples of Chapter 14 (see aso directory \TSR2WIN on the
Companion Disk).
Install Have a close look at what the “install” portion does. It hooks
portion INT-61h in the IVT then exits.

Because this TSR is loaded before Windows, it will be in the
system VM and will hook the vector in the system VM. But it will
also be copied to every VM.

Thus, every time a DOS program is run within Windows Enhanced
mode, the new VM will have that hooked vector.

But what you should note in particular is that INT-61h contains the
address segment:offset of the “forwarder” code for the TSR.

Passing Control to the WinApp

A major problem is created if our code must work for both
Standard and Enhanced modes. With Standard mode, the question

Real Mode Access 279

of VMs doesn’t arise.’” This means that all access to the IVT from
aWinApp is to the actual, original, real, physical, bona fide IVT!

That's not the problem: in fact that’s good, because there's no need
to jump VMs. However, Windows itself is in a strange state while
a DOSApp is running. | have elaborated more upon this in
Chapter 12.

Both Enhanced and Standard modes, however, can use the same
mechanism for transferring up to Protected mode.

? Installing 2 There is a DPMI service that alows us to hook (from a WinApp) a
Real to vector in the IVT (function 0201h:*> Set Real Mode Interrupt
Protected Vector) and another that will redirect it up to Protected mode

(function 0303h:> Allocate Real Mode Callback Address).
handler Actually, 0303h is called first, followed by 0201h.

Get the picture here — an interrupt occurs while the CPU is in
Real mode, but the vector is to a DPMI routine that switches the
CPU to Protected mode and passes control up to a WinApp.

The above may seem like a suitable method for a DOSApp to
communicate with a WinApp, but executing 0303h and 0201h
from the WinApp will only hook the vector in the IVT of the
system VM in the case of Enhanced mode. However, in Standard
mode, there's only one IVT anyway, so (in theory) this method
works !

The obvious point here is that if Windows is loaded in Enhanced
mode, then as well as ingtaling the handler as outlined above, we
will also have to perform a jump from the VM running the
DOSApp into the system VM.

Actually, thisis a qualified statement. It is better to say that Standard mode cannot have V86
VMs, or DOS VMg, since it can, by the DPMI hogt, have multiple Protected mode VMs.
Windows, however, only runs the one VM, in which al WinApps reside.

Intel’s DPMI specification places some caveats upon function 0201h:

The address placed in CX must be a Real mode segment address, not a selector. Consequently
the interrupt handler must reside in DOS memory (below | M) or the client must allocate a Real
mode callback address. See functions 0100h and 0303h in Appendix C.

If the interrupt is a hardware interrupt, the memory that the interrupt handler uses must be
locked.

The Intdl DPMI specification places these caveats upon function 0303h:

A descriptor may be alocated for each callback to hold the Real mode SS descriptor. Real
mode callbacks are a limited resource. A client should use the Free Real Mode Callback
Address function (0304h) to release a callback that is no longer required.

The contents of the Real mode register data structure are not valid after the function call, only a
the time of the actua callback.

280 Windows Assembly Language & Systems Programming

Handling

hardware
interrupts

A line of thought — If the CPU happens to be in Protected mode
when a hardware or software interrupt occurs and if the interrupt is
one of the BIOS/DOS services, Windows will redirect control
down to Real mode and the routine pointed to in the IVT in the
system VM.

Therefore, if you want your interrupt routine to work for the CPU
in both Real or Protected mode, especially in the case of hardware
interrupts, why not use functions 0303h and 0201h to hook only
the IVT and have just one ISR?

This will work for all normal DOS interrupt services, which do get
redirected from the IDT to the IVT. Unfortunately, the particular
case of INT-9, which we have been using as a case study, does not
get redirected in this way.

This deviates somewhat from my current line of thought. For
more on handling hardware interrupts, refer to Chapter 12.

The DOSApp "Signaller"

Whenever a V86 machine is created, it will be in response to
loading a DOSApp. This DOSApp may want to send a message to
a WinApp, so it will need some code inside it to call the
“forwarder” routine in the DOS TSR.

This is how the section of code would look:

; DOSAPP. ASM DCS signal l er program

1

7

what

h
,DATA

ivteloff
ivtélseg
tsrl oaded

| CODE

’
l
1
l

!

’

HE

1

étandard:

7

Test
mode.

follows is only a fragment of the whole DOSApp...

g% 0 ;addre57 of "forwarder® in DOS TSR
0 ;
DW 0 :set if TSR has hooked int-61h.

if Wndows was | oaded in Enhanced or Standard

(the method for doing this is shown in Chapter 12...
here | have just supplied a flag, "winmode",

nmode.
nmov
and

jz

. al 'ready set or cleared)

it is only necessary to switch vM's i f Enhanced
al,winmode .

al,1 ;set if Enhanced.

Enhanced

(see Conpani on Di sk)

Real Mode Access 281

jmp doneit

]Ithanc_:ed:)))
;see if forwarder TSR is present by checking interrupt
;vector 61ih...

mov ax,3561h ;get int-6lh vector address
int 21h ; -->es:bx

mov ivtéloff,bx ;save it.

mov ivtélseg,es ,

mov ax, es ;be sure there is one.

or ax, bx ,
mov tsrloaded, ax ; set if TSR loaded.)
jz cantcall ;if not, complain and quit.

;use2F/1685h to switch to system virtual machine and
;call forwarder program in the DOS TSR.

cmp tsrloaded, O

jz dontswitch

mov ax, 1685h’ ;switch VM's and execute.
mov di,bx ;es:di = callback addr. (int 61 hndlr).
mov bx,1 ;bx = VM to switch to (system VvM).
mov cX, 3 ;ex = 3 wait until interrupts enabled
;and critical section unowned.
xor dx,dx ;dx:si = priority boost (0).
xor si,si ;
int 2Fh Xswitch to system VM and do INT-60.
dontswitch:
doneit:

i .
; DOSApp continues. ..

I

This program, or any DOS application with this code in it, looks at
the INT-6lh vector to see if there is anything in it (there will be O
if not hooked). If so, the program goes ahead and calls the
“forwarder” portion of DOSTSR.COM, the DOS TSR.

However, this is where you need to think. If you loaded the TSR
from the DOS prompt before loading Windows (in contrast to
loading it from WINSTART.BAT), there will be a copy of the
DOS TSR in the current VM where the DOSApp is running, but
the TSR is usdless. The reason is that its purpose is to cal the
WinApp, but it will try to cal the Protected mode WirApp in the
current VM, where it isn’t.

I'll look at this diagrammatically in Figure 11.3:

' INT-2FWAX = 1685h is described in Appendix D. It isfor switching VMs.

CX = hit-0 is set to indicate that Windows must wait until interrupts are enabled before calling
the callback inthe VM; bit-I is set to indicate that Windows must wait until the critical section
is unowned before calling the callback in the specified VM; the remaining bits must be zero.

DX:SI = the 32-bit amount by which to boost the target VM's priority before changing contexts.
ES:DI = the segment:offset of the routine to call in the target VM.

282 Windows Assembly Language & Systems Programming

Figure 11.3: Execution in System VM from another VM.

A DOS program can
at vector 61h in the |

0

"The TSR has a
imechanism for
calling Protected
mode code in the
current VM.
This will crash,
as the Protected
mode ISR is in
the WinApp in
the System VM.,

"

nemory.

System Virtual Machine

to get the seg:offs addres
of the TSR’s "run-time' cgde

DOS virtual machines.
Note that they can even
have ther own extended —

IVT
look TSR
VT

Video-RAM
INT

BIOS ROM

R WinApp

DOSApp ISR

0

~V86
mode

1M
0

Prot.
mode

4.3G

The DOSApp has to use
INT-2Fh/AX=1685h to

pass control back to the

System VM and execute
the address that it found
in INT-61h in the IVT.

WinApp.

The copy of the TSR in
the System VM will
correctly pass up to the

If you have a look at the DOSApp, you will see that it looks at
vector 61h in the IVT to get the address of the “forwarder” routine
in the TSR, and then it uses INT-2FWAX = 1685h to switch over
to the syssem VM and aso to execute the forwarder code in the

copy of the TSR located in the system VM.

These little programs are two pieces of the puzzle, but there is a
third. The WinApp has to hook INT-60h in the IVT of the system

VM.

Real Mode Access 283

Hooking a Real Mode Interrupt from a WinApp

| have aready written a little about this, back on page 279 and
introduced two DPMI functions that will alow a WinApp to hook
a vector in the IVT in the system VM and pass control up to a
Protected mode ISR.

WinApp What your WinApp needs to do is call DPMI function 0201h (Set

ISR Real Mode Interrupt Vector), and 0303h (Allocate Rea Mode
install Callback Address).
routine Hereisan “install” portion of a WinApp:
.CODE
of fsetreal i nt DW 0 ;old ivt vector
segnentrealint DW O , /
dsselector DW 0 ;data alias to code seg

hwndcs ;save W ndow handi e for use in isr
cal | backbuf fer REGSTRUC < > ;Real node register structure

installint PROC ; N0 params
install:
pusha
push es
push ds
;will create alias in 1dt of current task.
MV ax,000Ah ;create alias data descrlptor for code.

push cs
POP bx ;selector to be aliased
Int 31h ;returns ax
' push ax
bop es

mov ax, hwnd . .

mov es: hwndcs, ax ;save handl e of window in code seg.
NV ax,es .)

nov es: dssel ector, ax ;save data alias in code

;could put some code for hooking the IDT .

hookr eal :
po :restore it again.

; 0k, now?o hook Real node in; hook 60....
nov ax, 0200h ,get Real node vector
nov bl,60h
int 31h ;~->cx:dx (seg:off)
nov es,cs:dsselector
mov es:offsetrealint, dx ;save ol d vect
MOV es:segmentrealint,cx ; /

inow must reflect the Real node int up to prot node
;code. ..

push ds . ;save .
NOV es,cs:dsselector ;get alias. Addr of buffer in es:di

mov di , OFFSET cal [backbuffer ;/

284 Windows Assembly Language & Systems Programming

mov ax,0303h ;alloc Real node call back
push cs
pop ds ;addr of prot code
mov Si, OFFSET runtime2 ;
int 31h ;-->cx:dx (seg:off)
pop ds) ;restore

; now hO(ﬂ(the ivt....
MV ax,0201h ;set Real node vector
nov bl,60h ;hook int in ivt
int 31h

éetout:
pPop es
popa

ret

Real mode The data structure referred to as " cal | backbuf f er"isthe same
register callback structure used to pass register values between Rea and
structure Protected modes, as discussed on page 269, where function 0300h

is introduced (this is for calling a Real mode interrupt from

Protected mode, which is going the other way).

WinApp Actually, the piece of the puzzle, consisting of the WinApp code,
ISR is in two parts: the “ingtall” portion above, and a “run-time’
portion. The latter is the ISR (Interrupt Service Routine) that is
the end result. Wherever the interrupt originated, control should
end up there. I want this ISR to behave much like the ISR
introduced in the previous chapter; that is, to post a message to the

main window.

A Protected mode ISR is shown back on page 262, illustrating how

to post a message.

Because the WinApp has hooked INT-60h in the system VM, any
software interrupt within the system VM while the CPU is in Rea
mode will cause execution of the Protected mode ISR “run-time”
portion of the WinApp. You can see in the DOS TSR that this was

very simply done by an "INT 60h" instruction.

Entry to When control is “passed up” from Rea to Protected mode, the ISR

the ISR is entered with certain registers loaded:

DS:Sl = Real mode SS:SP
ES:DI = Real mode call structure

The “call structure” is that same data structure containing the Real
mode register values. Return from the ISR is by an IRET, but the
data structure is modified as appropriate. At exit, the registers
ES:DI must be pointing to the data structure, because the DPMI
handler will put whatever is contained in the structure into the

Real mode CPU registers.

Red Mode Access 28.5

Exit from For example, if we want the ISR to chain to the old ISR, we need
the /SR t o get the old vector and put it into CS:IP in the data structure:
;end of ISR . .

nmov ax,cs:segmentreal
mov es: [di].csl,ax
mov ax,cs:offsetreal
mov es: [di].ip1l,ax

iret
On the other hand, if the ISR is not to chain to the old vector but
instead is to return from whence it came, the return address on the
stack must be put in CS:IP in the data structure:

cld

| odsw . ;get Real node IP off stack.

mov es:[di] .ipl,ax ;put Tt into IP in data structure.

| odsw ;get Real node CS off stack.

mov es:[di].csl,ax ;put it into CS in data structure.

| odsw ;get Real node flags.

nov es:[dil.flagsl,ax ;put Into flagsl in data structure
add es:[di].spl,6 ;adjust SP on data structure.
iret

The above mechanism is elaborated upon in Chapter 12.

DPMI 1.0 This is all quite involved, just to post a message from a DOSApp
global t o aWinApp, but while | think of it, if your need is not to signal or
memory execute but just to share data, DPMI version 1.0 does have a neat
solution. OK, this is academic, as no versions of Windows run
DPMI vl .O — but maybe one day.
DPMI version 1.0 (not v0.9) has a function, 0D00h (Allocate
Shared Memory), that creates and allocates a memory block that is
accessible across al VMs. Thus al Windows and DOSApps have
access to it.
There are aso 0D01h (Free Shared Memory), 0D02h (Serialize on
Shared Memory), and 0D03h (Free Serialization on Shared
Memory).

The latter two alow synchronization of access to the shared block.

Privilege
levels

12

32-Bit Ring 0

Preamble

As explained in Chapter 1, the 286 and 386 have four privilege
levels, numbered from 3 to 0. With Windows 3.0, the operating
system kernel and device drivers run at the most privileged leve,
0, while Windows applications and DLLs run a level 1. DOS
applications, being the least trusted, run at level 3.

However, Microsoft changed its mind with Windows 3.1, and
moved Windows applications and DLLs down to level 3 aso.
This includes al the DLLs of the Windows API.

When | upgraded from Windows 3 .0, to 3.1, | had the distinct but
subjective fedling that the new version was a tad dower. The
changes in privilege could be the reason. Of course, Microsoft
claimed just the opposite — that the new version was faster, which
could have been true, taking into account the new 32-bit file and
disk access (which | originally had turned off).

Then, when | upgraded to Windows for Workgroups 3.11, | again
had the subjective feding that everything had slowed down. |
have never tried to quantify this. Version 3.11 seemed to take
longer to load, which may have had something to do with the fact
that when going from 3.1 to 3.11, I decided to network two PCs.

Then, when | upgraded to Windows 95.. ..

Anyway, the current situation with Windows is that applications
run at level 3, least privileged. Unfortunately, this seriously

287

288 Windows Assembly Language & Systems Programming

Device
driver

Reference
source

hampers my style, if | want to do my own 1/O. If my requirement
is direct access to memory and I/O ports or interrupt handling,
invariably, the problem with Windows comes down to lack of
speed and unpredictability of response times. A hardware
interrupt will quite literally propogate through hundreds of
instructions before it reaches your application.

Then there is the general issue of the protected environment: you
may want to access a particular 1/O port or memory location, but
the operating system may prevent access. You may want to tweak
the system hardware or operating system in some way but not be
allowed to.

The traditional way to obtain unrestricted access to everything is
to write a device driver. Development of a device driver requires
the Device Development Kit (DDK), and once developed, its name
must be entered into the SYSTEMINI file in the \WINDOWS
directory. Device drivers are difficult to write, and it is a nuisance
that the SYSTEM.INI tile has to be altered. Though with
Windows 95 you have the possibility of dynamically loading and
unloading device drivers, on the fly.

This chapter, however, explores an aternative approach. It is a
technique in which your application can switch up and down
between rings 3 and 0 at will, without requiring a device driver.
With this technique, you can get nearly al of the benefits of device
drivers, with fewer hasdes.

16- and 32-Bit Programming

As far as | am aware, the first person to publish this technique was
Matt Pietrek in an article titled “Run Privileged Code from Your
Windows-based Program Using Call Gates’, Microsoft Systems
Journal, May 1993, pages 29-37.

Early in 1993, | was trying to figure out how to do this, but Matt
had an advantage over me: “inside’ information. His technique
makes use of two undocumented features, which he thinks are
likely to stay in future versions of Windows.

Basicaly, Matt was writing from the point of view of a Windows
3.1 application, which would normally be running in 16-bit mode.
Now, let me clarify one point: this entire chapter assumes
Enhanced mode Windows only, using a 386 or above. Windows
3.1 can run in Standard mode, but the 286 CPU has gone the same
way as the 8088.

This confuses everybody, but Windows running in Enhanced mode
can be running in 16-bit or 32-bit mode. Windows NT runs

32-Bit Ring 0 289

normal native applications in 32-bit mode, and Windows 95
encourages this. In Maitt’'s article, his application was running in
16-bit mode, and when he switched up (or down!) to ring O, he
stayed in 16-bit mode.

Obvioudly, this is a point of great potential confusion, so this
chapter commences by explaining the difference between 16-bit
and 32-bit programming.

Chapter 1 shows the structure of a descriptor, however it is now
time to examine it in more detail. Figure 12.1 shows the full
detail:

Figure 12.1: Detail of the code descriptor.

CODE DESCRIPTOR

OFFSET ;7 0 / Low part of the size of the segment (bits 0- 15).
0 |Limit.0.7 / Linear starting address of the segment
I |Limit 8_15 / (bits 0-23).
BIT
2 |Base 0.7 / 0 A |
3 |Base.8.15 1 Readable
2 Conforming
4 |Base-l 623 3 Code-data
4 App_system
5 |Access-byte 5.6 DPL
6 7 Present
7 Base_24_m\ Limit_16_19:
‘ BIT Bits O-3 in offset-6 of a
4 Unused descriptor, isthe upper part
High part of the linear 5 Alwaysr(; \ of the size of the segment.
starting address (bits 24-3 1). 6 Seg 16
7 Granularity

The vital bit in this descriptor is bit-6 in offset-6, labelled
Seg 16_32. If this is set, the CPU is in 32-bit mode. When the
Granularity bit is cleared, the limit value is the size of the segment
expressed as number of 4K pages, or if set, the limit value
expresses size in bytes. DPL, meaning descriptor privilege level,
is the level of this segment. Present is set if the segment is
physicaly present in memory. You likely will not need to modify
the other fields of the Access byte.

290 Windows Assembly Language & Systems Programming

Instruction
size-prefix

The current mode of the CPU, whether 16-bit or 32-bit, is
determined by Seg_16_32. |If it is set, the 32-bit registers are
enabled, and just about all operations become 32 bits. This
includes PUSH and POP operations on the stack. However, this
does not preclude you from using parts of the 32-bit registers, such
asAL, AH, and AX in EAX.

Just to keep confusing you: even if the the segment is in 16-bit
mode, you can still use the 32-bit registers!

For starters, I'll take the case of an “old fashioned” Windows
application, running in 16-bit segments, and consider a very
ordinary instruction that may appear in that program:

0907:0200
0907:0201

58 POP Ax
6658 POP EAX

32-bit
default

This example is a typical unassembly, showing address, machine
code (in hex), and assembly language mnemonic. The first line
contains no surprises: the code "58h" is the machine code for " por
ax"; asimple one-byte instruction.

You would logicaly expect “POP EAX” to have a different
machine code, but note that the “58" is still there. All the
assembler does is insert an instruction prefix of value 66h.

The 66h prefix is an operand size prefix, which tells the CPU to
execute the following instruction in the opposite mode than it is
currently in.

S0 the same "58h" is used for both pops, but the prefix determines
the size of the pop. There is aso another type of size prefix, the
address size prefix, of value 67h, that overrides the current
address-size mode. Therefore, even though you are programming
in a 16-bit segment, you can use the 32-bit registers: the assembler
will insert the prefix in front of any such instructions. Note
though, that the prefix overrides the default sesgment size, but
only for the current ingtruction.

When | first had to tackle this problem, | was using Microsoft's
Codeview debugger, version 4.01. In my program, | had the
instruction “POP EAX”, but when the debugger unassembled my
program, it showed “POP AX”. This caused me enormous
confusion, until | realised that Microsoft's own debugger can’t
even recognize what mode it isin.

The situation was, | was writing code in a 32-bit segment, i.e.,

with the Seg 16 32 field in the descriptor set, as introduced in the
previous Figure. In this situation, the default size is 32 bits.

32-Bit Ring 0 291

Therefore, al ingtructions will reference 32-hit registers, operand
size, and address size, without requiring an instruction prefix.
Thus:

0907:0200
0907:0201

58 POP EAX
6658 POP Ax

32-bit Real
mode

Reference
book

The situation is now reversed: the "58h" means " e EAX", bUL if
we write an ingruction that only accesses a 16-bit register, it will
have the prefix appended. It doesn't say much for Microsoft, but
Codeview verson 4.01, despite being fully operationa in 32-bit
mode, able to display the 32-bit registers, and able to trace, did not
unassemble correctly. At the time of writing, 4.01 is my latest
version — it came with MASM version 6.1 — and I'm sure that by
the time you read this book, the bug will have disappeared.

So what of Real mode and virtual-86 mode? In both of these
modes, the default is 16 bits, but you may be very surprised to
learn that in both modes, you can use the 32-bit registers. Of
course, the prefix (or prefixes) will be in front of every 32-bit
instruction.

This may come as a complete surprise, but use of 32-bit registers
allows you to have segments greater than 64K — up to 4.3G —
and thus bresk the 1M conventiona memory limit for Rea mode.

Of course, Real and virtual-86 modes have paragraph addresses in
the segment registers, so these can only reference the first 1M:
however, you are quite at liberty to use offsets to access code and
data beyond 1M.

A bit of setting-up is required to use Red and virtual-86 modes in
this way, and | recommend a good book: Al Williams has worked
it al out, and has an entire chapter dedicated to this, in his book
DOSS A Developer's Guide; Advanced Programmir;% Guideto
DOS M&T Publishing Inc., USA, 1991. There is probably a more
recent version of the book (probabIY with anew title!), but the
chapter on 32-bit programming is still quite relevant, even in the
1991 book.

Ring Transition Mechanism

Say that for whatever reason, you want your program to have the
unrestricted access, and the total control, of ring zero.
Unfortunately, your program will be executing in ring 3 segments,
which means that if you try to do an 1/0 operation, such as use the
IN and OUT ingtructions, there will be a CPU exception. And if

292 Windows Assembly Language & Systems Programming

Interrupt
gate

Call gate

we want to hook an interrupt, we will be doing so at the "asse end”
of the animal. What if we want to cal some of the powerful
functions in the Windows kernel and in virtual device drivers?
Sorry, but even if you knew how to address them, you'd get a CPU
exception, because they are ring-0 segments.

The 386 does provide a mechanism for going to a more privileged
ring, called a gate, of which there are call gates, interrupt gates,
task gates, and trap gates. However, only code in ring O is
supposed to be able to create such gates.

| kind of glossed over this little detail in an earlier discussion (look
back at Figure 11. 1), but the interrupt services are at ring 0, so the
entries in the interrupt descriptor table (IDT) of the form
selector:offset reference an interrupt gate, not a descriptor.

An interrupt gate, or any gate for that matter, sits in the LDT or
GDT as an 8-byte entry, just like any other descriptor (see Figure
12.1), but it has a different format. In the case of interrupt
handling, if there is to be a ring trangition, i.e, if the ISR is at a
more privileged level than 3, then the entry in the IDT is not a
descriptor: it is an interrupt gate. However, the code descriptor for
the ISR is still there at another entry (also in the IDT, | presume).

A call gate is the mechanism for a CALL instruction to call code at
a more privileged level. It works just like the interrupt gate, in
which the descriptor in the LDT or GDT, of the code to be called,
is not caled directly. Instead, you call a cdl gate, which in turn
calls the more privileged code via its descriptor.

Call Gate Structure

I'll postulate that you want to call some ring-O code a some
address, say 0907:0000. How you would get the selector of some
ring-0 code is another question, but I'll say you've got it. You try
to perform a CALL to that address, but the CPU intervenes, since
you are at lowly ring 3, and passes control to Windows, which
informs you that there has been a general protection error.

The way around this problem is to create a call gate. Normaly,
only the operating system (ring 0) is supposed to be able to create
a call gate, but we can do it from ring 3, using undocumented
features. | wonder whether this loophole will be closed: the
technique has been published in Microsoft's own Microsoft
Systems Journal, which would tend to give it some authority (I
suppose?), and the loophole remains in Windows 95.

32-Bit Ring 0 293

A cal gate is 8 bytes and can be an entry in the LDT or GDT, just
like a descriptor. However, it has a different structure to a
descriptor, as Figure 12.2 shows:

Fieure 12.2: Detail of the call gate.
CALL GATE
OFFSET 7 0 Low part of the offset to be called (bits O-I 5).

0 | Offset 0 7 2

Linear starting address of the segment
1 Offset 8 15 - (bits 0-23).

2 | Selector 0_7 / BIT
O-3 Param_count
3 | Selector.8.15

4-7 These bits must be zero.

BIT
5 «— 03 Type (4=286 call gate, C=386)
4 App_system
6 |Offset_ 16_23| 5-6 DPL
- 7 Present

7 | Offset 24 31

\ High part of the offset
to be called (bits 16-31).

Actualy, what distinguishes this as a call gate, and not some other
kind of gate, is the Type field. The value Type = 4 means that it is
acall gate to a 16-bit (286) segment, while a value of C (hex)
means that it is a call gate to a 32-bit (386) segment. For the
record, the other possible values are 5 = task gate, 6 = 286
interrupt gate, 7 = 286 trap gate, E = 386 interrupt gate, and F =
386 trap gate.

The Sdector field is the ring-0 segment that we want to call, and
Offset is where in the segment. Note that the code descriptor for
the ring-0 sdlector ill has to exist, and it will be elsewhere in the
LDT or GDT.

App_system would normally be zero and Present set to 1. The
DPL field is important: it specifies the least privileged code that is
permitted to use this call gate. Therefore, we st it to 3.

Putting call |f we create a cal gate, we can then put it in the LDT or GDT, and
gate & thus we will have a selector for it. Then, all we need to do in our
descriptor ~ program is cal the selector: the CPU will recognize it to be a call
together gate, look inside it, and get out the selector:offset. The CPU will

294 Windows Assembly Language & Systems Programming

then use that selector to get the code descriptor and will call the
code.

Note, however, one peculiar thing: if you perform a FAR call from
your application to the cal gate selector at some offset, any offset
that you specify is ignored. Instead, the offset in the call gate is
used.

At this point, | think it best to show some code.

Ring Transition Example Code

This first code extract shows just one example of how we could set
up addressing of the ring-0 code and then call it.

The program is written as a 16-bit, small model program, hence
the ". 286" and".MODEL swaLL" at the very start. The ring-0
code is a function, called RINGOFUNC(), and is in its own 32-hit
segment in a separate file called HEAVEN.ASM. This file is
assembled separately and linked with ASMRINGO.

; ASMRI NGO, ASM --> ASMRI NGO. EXE Windows deno pr ogram
FIhis skeleton assenbly |anguage program has been witten
:for M crosoft

;M;AGSM v6.1. Or,youcoul d put this:
-MODEL SMALL -MODEL SMALL

It is till a 16-bit seg., but alows use of 32-bit regs!
EXTERN RINGOFUNC:NEAR ;thig i s in HEAVEN. ASM

;It is the ring0 code.

...

ASMDEMOPROC prOTO FAR PASCAL, : HWND, :WORD, : SWORD \

ASMDEMOPROC PRCC FAR PASCAL, ihWhd: HWND, \
i Message: WORD, i wParam SWORD, i | Param SDWORD

- SDWORD

LOCAL dunmy {51 :WORD
LOCAL @ DC: HDC
LOCAL 83 : PAINTSTRUCT
mov_ ax, i message ; get mess.age-tyPe.
IF ax==WV_| TE ;message received arter
call xcreate ;CreateWindow() function is called.
. ELSEI F ax==WM DESTROY ;message i f W ndow i s cl osed.
cal | xqwtmessagﬁ ;posts WM_QUIT & does cleanup.
. ELSEI F ax==WM_PAI
call xpaint . .
. ELSElI F ax==\W COMMAND ; any selection of the menu wll
call xnmenu ;produce thi s nessage.
. ELSEI F ax==\W LBUTTONDOMN ; one of many npuse messages.

32-Bit Ring 0 295

call xlbutton

. ELSEI F ax==WM_CHAR ;message that a key pressed.
call xchar
.ELSE . . .
i nvoke DEFW NDOAPRCC, i hWhd, i message, i wParam ilParam
ret
.ENDIF
sub ax,ax ;returns 0 in DX AX (cal I back functions
cwd ;return a 32-bit (long) value).
ret
ASMDEMOPRCC ENDP
xc.r.e.a.t.e. DO T

cal|l makering0selector

i nvoke GETSTOCKOBJECT, OEM_FI XED_ FONT

rmtv hCenfont , ax ;handle to font.

re

xcreate ENDP

xr'rériti T
cnp WORD PTR ilParam, 0 ;lowhal f of lparam
jne zxcv ;test if a nenu- message.

i wParam | DM QUI T ; wPar am
JHB notquit
cal | qu| t message

imp ZXCV
notquit:
cmp | v\Par am | DM_ABOUT .
] ne ;no other nenu items.

|nv0ke I\/ESSAGEBOX, ihwnd, ADDR szaboutstr, ADDR \
sztltlestr, MB_OK

cli
call R NGOCALLGATE ;will call ring O code
sti
ZXCV: ret
xmenu ENDP
xdlll't.r'rés's'a' PR(IZ

i nvoke %CBTQJI TMESSAGE, O
call freeourselectors
r et
Xqui t nessage ENDP
er'r'ér'r'régjpir'dc' .. PROC
;entered W th ds:si pointing to nessage. .
i nvoke MESSAGEBOX, handl enai n, ds::si, ADDR szerror,\
MB_OK+MB | CONEXCLANATI ON
r et
errorm;gproc ENDP

The rest of the message-handling code renoved ---

296 Windows Assembly Language & Systems Programming

Creation For this demo program, | chose to use the WM_CREATE message
of a call to call makeringOselector(), which sets up the addressing to the
gate ring-0 code.

Then, | arbitrarily chose to use a press of the “ok” button on the
messagebox, which occurred in response to IDM_ABOUT, to call
RINGOCALLGATE, which is a pointer to the call gate, which takes
execution to the ring-0 code.

Finaly, before exiting from the program, it cals
[freeourselectors(}, which removes the descriptor and call gate that
we had created in the LDT.

Now for the part that does the real work:

.DATA
dei roc DD 0 ;dpmi extensions_entr% point.
R LLGATE LABEL DWORD ;use this to call ring code.
ring0 off DW 8 ;callgate sel ector for Rl NGOFUNC

ring0_cs DW ; / (offset is ignored)

Ms_dos sStr DB "MS-DOS", 0 . o

1dt_ seTector DW O ;for direct witing to |dt.

descriptor_selector DW 0 ;ring0, cannot be accessed
jdirectly.

ringOerrormsg DB "Error creating ring 0 access... \

aborting program.",0

.CODE
makeringOselector PROC

i nvoke GLOBALPAGELOCK,cs
cnp ax, o
je | ockfailed

;find out where the LDT is .
lea si,ms_dos _str

mov ax,168Ah ;get dpni extensions entry point.
int 2Fh ;-->es: di (undocurent ed)
PR c al,o 2?9777
JEEK] Hg ext ensi onsnot f nd
mov VWORD PTR [dpmiproc],di ;save entry point
mv WORD PTR[dpmiproc+2],es; /
nov ax,100h ;undocumented
call dpmi proc ;-->ax=selector to |dt.

¢ extensionsnotfnd
h‘DV | dt _sel ector, ax
nmVv es,ax

;create a ring 0 32-bit descriptor...

push es

i nvoke ALLOCSELECTOR, CS ;-->ax=alias to cCs.
pop es

cmp ax, 0

je selectorerror . .

and ax, OFFFsh ;get offset of descriptor in ldt.

nmov bx, ax

32-Bit Ring 0 297

NoV al,es: [bx+5] ;get access-rights byte.

and al,10011111b iclear dpl field.#

nov es: [bx+5],al . .

nov al,es: [bx+6] ;get granularity & seg-size bits.

or al,01000000b ;set bit for 32-bit.
nov es: [bx+6],d _

or bx,0100b ;set bit-2, selects 1dt.leave dpl=0.#
nmov dij, bx ;tenp save.

nmov descri ptor_sel ector, bx ;save.

Fcreate callgate, to above descriptor.....

push es ,

I nvoke ALLOCSELECTOR, O ;Create a descriptor in |dt
pop es

chp ax, 0

je sel ectorerror

mov ring0 cs, ax ;save final selector.

and ax, OFFFsh ;get offset of descriptor in |dt.

nmov bx, ax

mv es: [bx] ,ringOfunc ;my ring0 code (declared EXTRN)
mv es: [bx+2],di ;r1ng0O alias.

mv BYTE PTR ‘es: [bx+4],0 ;dwords copied to stack.***
nmv BYTE PTR es: [bx+5],11101100b

,present 1,dpl=3,app=00, typ
t BTR es: [bx+6],0 ; =C (386 callgate)
quer

jmp SHORT qwerty

| ockf ai | ed:
ext ensi onsnot f nd
sel ectorerror:
| ea si,ringCerrormsg
call errornsgproc
cal | xquitmessage ;quit program
querty:
ret
makeringOselector ENDP
freeourselectors PROC
i nvoke FREESELECTOR, descri pt or _sel ect or
i nvoke FREESELECTOR, ringO cs
i nvoke GLOBALPAGEUNLOCK, c8
ret
freeourselectors ENDP

INT-2Fh, The first thing that makering0selector() does is lock the segment in

function memory, as the ring-0 descriptor and call gate that are about to be

168A4h created will have their present bit set, indicating that they are in
physica memory.
The next problem is, where is the LDT? The exact location of the
LDT is not something that a ring-3 program is supposed to know,
but an undocumented feature of INT-2Fh, function 168Ah with
address of string “MS-DOS’ in the SI register, returns a selector to
the start of the LDT.

298 Windows Assembly Language & Systems Programming

Creation of a
ring-0 code
descriptor

16- & 32-bit
code in same
segment

call gate
fields

Ring-0
stack

The next job is to create a descriptor for the ring-0 code. Thisis a
SMALL model program, which means that all code is in the same
segment. ALLOCSELECTOR() creates a new descriptor in the
LDT that is an dias to, in this case, CS. The code immediately
after uses the selector to the LDT to directly access the LDT and
modify the privilege level of the segment. Also, since the newly
created descriptor is an dlias to CS, it is a 16-bit segment: this
example code requires the ring-0O code to be 32 bits by default.
Therefore, the seg_16_32 hit is altered also.

Normally, an application cannot directly modify an entry in the
LDT, for the smple reason that you don’t know where it is. Now,
having modifed it, you can't call it because it is a ring-0 descriptor
whereas your code is running at ring 3.

Note that there is a trick being performed here, as there is only the
one segment. | defined ASMRINGO as SMALL, and when the
ring-0 file, HEAVEN, is linked, there will only be one code
segment. CS is a ring-3, 16-bit descriptor, so that is how the code
is treated when executed using CS. However, the newly created
adlias, descriptor_selector, is ring 0, 32 bits, but is referencing the
same segment.

The fina step is to create the call gate. Again, an entry is made in
the LDT, and it is directly written to, to make it into a call gate.
The selector for this call gate is saved as ring0_cs. The call gate
must contain the offset of the code to be caled, which in this case
is ringOfunc, defined as external, at the beginning of the code
listing. You will see that descriptor_selector is aso put into the
cal gate.

Offset-4 in the cal gate, which | have marked in the listing with
three asterisks, is where you can specify how many doublewords
you have passed on the stack: the CPU will copy these from your
ring-3 stack to the ring-0 stack. In this case, no parameters are
copied.

Now that the stack has been mentioned, this is an important issue
that must be addressed. Windows maintains a separate stack for
ring 0, and the call gate will automatically transfer to it. The CPU
will copy the number of parameters specified from the ring-3 stack
and will put the return address on top of the new stack.

Note that the ring-0 segment has also been defined (in this case) as
a 32-bit segment, which means that the return address is two 32-hit
values for selector:offset.

The default ring-0 stack is very small, which is why this program
executes CLI (clear interrupt) before caling the ring-O code. Have

32-Bit Ring 0 299

alook at the listing, and you will see RINGOCALLGATE, which is
the pointer that is called to get to the ring-O code. Actually,
RINGOCALLGATE is an dlias to ring0_cs:ring0_off.

| 32-bit So the ingtruction " cal | rINGocarreate" will call the ring-0
L ring-0 code code. What does the ring-O code look like? Here is the ligting for

HEAVEN.ASM:
| this file is named HEAVEN. ASM as it's as hish as we can
L ;90. ..
| .386p ;masmis stupid. this proc has to be a separate
file, to generate 32- blt cof wi t hout the 66 prefix.
PUBLI C R NC

TEXT2 SEGVENT DWORD pusLic USE32 ' CODE
- ASSUME CS: TEXT2

RI NGOFUNC PROC FAR
retf ;NOTE must renove any params passed by callgate.
RI NGOFUNC ENDP

TEXT2 ENDS
~ END

This example is doing absolutely nothing, just returning. You will
know that it worksif you don’t get a*“general protection error”

message!
Structure Note that | did not use " .moper" in this file, because it would
of ring-0 create a code segment with the name " TEXT" and the". 386P"
segment athevery beginning ofthefile, ifpreceeding ! MODEL SVALL"

woul d cause a32-bit code segment. The linker would give the
error message that two segments with the same name (_ TEXT)
cannot be combined if one is 16-bit and the other 32-bit.

Combining It's pretty stupid, but we are able to combine 16-bit and 32-bit
16- & segments, by giving them different names and placing them in the
32-bit same “class’. The TEXT segment in ASMRINGO.ASM has class
segments “CODE”, so putting " cobe" at the end of the SEGMENT
dedlaration above will cause them to be combined. What I think is
stupid is that | have to resort to the “old fashioned” SEGMENT
directives to achieve this.
Anyway, note that | gave the ring-0O segment a different name,
_TEXT2, but the choice is arbitrary. The qualifier "use32"
defines the segment as 32-bit, which means that the assembler will
assemble 32-bit instructions without the prefix (and 16-bit
ingtructions with the prefix).
The "P" on the end of .386P permits use of the ring-0 restricted
ingtruction set; that is, the assembler will assemble them.

300 Windows Assembly Language & Systems Programming

What you
can doin
ring 4

Fixing code
& data at
known
linear
addresses

Finally, you can put a number after RETF to indicate the number
of bytes to pop off the stack. Use this to remove parameters passed
by the call gate, if caling in conformance with the Pascal
convention.

So what can we do in this 32-bit ring-0 procedure?

FLAT Memory

You will find the program discussed so far on the Companion Disk
in directory \ASMRINGO0. This chapter also describes an
enhancement to this program that is contained in \FLATASMO.

ASMRINGO.EXE, as described so far, demonstrates how a 16-bit
ring-3 program can make the transition to a 32-bit ring-O code
segment and come back. Once in ring 0, you can execute OUT,
IN, CLI, STI, etc., without intervention by the CPU. You can aso
use the privileged instructions of the 386 that allow direct
manipulation of LDT, GDT, and page tables.

However, one other thing you might want to do is cal the
functions in the Virtual Machine Manager (VMM), which you can
think of as the “core” of Windows, and the functions in the Virtual
Device Drivers (VxDs). Conceptudly, you can view Windows as
having two APIs — the ones you know abuut and that are
described in al the Windows programming books (and in the
SDK) and another set that can only be called by VxDs.

The latter functions are inside the VMM and the VxDs and are
ring-0 code. The conventional wisdom is that you must write a
VxD to be able to cdl them, but in fact our RINGOFUNC can do
so. The requirement simply is that you must be in ring O and you
must be in the FLAT memory model. The program developed so
far falls down on the latter point.

One little note while | think of it -— | used
GLOBALPAGELOCK(), a Windows APl function, to lock the
entire code segment of ASMRINGO, which means that it cannot be
paged out and remains a the same linear and physical address.
There are advantages to locking a segment, but one disadvantage
is that Windows 3.1 tends to shift the segment down below 1M
(physical) before locking it, which ties up some of that “valuable”
conventional memory.

Fortunately, Windows 95 does not move it down below 1M.

If you write code that computes a certain linear address, you want
to be sure that it stays at that linear address. Normally, when you

32-Bit Ring 0 301

use a selector, the linear address contained in the descriptor can
change, and it is of no concern to you. GLOBALPAGELOCK()
keeps it fixed and also ensures that the pages remain in memory —
which would be optimal for interrupt handlers.

There is another APl function that you might like to consider if
your requirement is only that the linear address remains unchanged
and paging is ok. If paging is left on, as per normal, the only
repercussion is a possible access delay — unless you are doing
coding that involves talking to specific physical locations.

Consider another alternative, GLOBALFIX(), which fixes a
segment at a fixed linear address but allows paging-out.

Getting Back to the centra argument. The objective now is for our ring-O,
addressability 32-bit procedure to be able to call VMM and VxD functions, The
to FLAT ring-0 following code is a re-do of MAKERINGOSELECTOR, which
code sets up addressability to ring O:

makering0selector PROC
; get addressability of ring0,ringOfunc.....

invoke GLOBALPAGELOCK, cs
cmp ax,o0

je | ockfail ed
lea si,ms_dos_str . _ .
mov ax, 168Ah ;get dpnmi extensions entry J)OI nt .
int 2Fh ;-->es:di (undocunented)
jrE* cmp al,o 7?7777
jEEH | ne ext ensi onsnot f nd .
mov VWORD PTR [dpmiproc],di ;save entry point
mv WORD PTR[{dpmiproc+2],es;
nmov ax,100h ;undocumented
cal | dpmiproc ; --sax=selector to |dt.

ic ext ensi onsnot f nd
v | dt_selector, ax
MV es,ax

;find the linear address of CS...

nov bx, cs .
and bx, OFFF8h ;get offset in |dt
nov ax,es:[bx] ;get size of segnent.
MOV CSSi ze, ax .
mv ax,es:[bx+2] ;get lo-half of I|in.addr.
mov WORD PTR flatlin,ax .)
mov al,es: [bx+4] ;get hi-half of lin. addr.
MoV ah,es: [bx+7] ; /

nov WORD PTR flatlin+2,ax
Fcalculate FLAT linear address of ringOfunc...
mov ax, WORD PTR flatlin . .
add ax,ring0func ;note: "OFFSET" is optional
jnc moppi
mov bx, WORD PTR flatlin+2

302 Windows Assembly Language & Systems Programming

i nc bx
nov WORD PTR flatlin+2,bx

moppi:
mov WORD PTR flatlin,ax

fcreate callgate tO ringOfunc.....

push es) .
I nvoke ALLOCSELECTOR, O ;create a descriptor in |dt.
pop es 0
C ax,
jgp sel ectorerror
mv ring0 cs, ax ;save final selector.
and ax, OFFF8h ;get of fset "of descriptor in | dt .
nmov bx, ax

mv ax, WORD PTR flatlin ;my ring0 linear address
mv es: [bx],ax / y

mov ax, WORD PTR flatlin+2
nmov __es: [bx+6],ax /
mov. WORD PTR es: [bx+2],28h; FLAT code selector (in gdt) .
mov BYTE PTR es: [bx+4],0 ;04;****?dwords copied to stack
mov BYTE PTR es: [bx+5] "11101100b
;present:l,dp1=3,app=00,type=C (type=C: 386 callgate)

’

;find the FLAT linear address of this program s data

*segnent
nov bx, ds
and bx, OFFF8h ;get offset in |dt
nmov ax,es: [bx+2] ;get lo-half of 1lin.addr.
nov WORD PTR flatdatalin, ax .
mv al,es: [bx+4] ;get hi-half of lin. addr.
nov ah,es: [bx+7] /

mov WORD PTR flatdata11n+2 ax

qwert
SHORT qwerty
Iockfalled ;... put in handlers
ext ensi onsnot f nd:
sel ectorerror:
gquerty:
r et
makeringOselector ENDP

Whatyouwi || notice in the above code is that | have not created
code or data descriptors. Wat you do see above is the use of
selector 28h. | have obt ai ned the base addresses from
ASMRINGO's DSand CS descriptors, and to obtain the code
FLATlinear address, | have added the offset of RINGOFUNCto

the base addr ess of CS and saved the result in flatlin.

To obtain aFLAT linear address to the data segment, | extracted

the base address from DS and saved itas flatdatalin.

Calling VMM Now, going up to ring 0 HEAVEN, by exactly the same method of

and ¥xD
Services

"cal | RINGOCALLGATE", will cause entry to RINGOFUNCwWi t h
(S=28h, the FLAT sdlector.

32-Bit Ring 0 303

| HEAVEN, Here is some 32-bit ring-0 code for RINGOFUNC that calls a
 enhanced VMM function:

. .386P

t 1 NCLUDE vmmtiny.inc ;enables us to call vmm and vxd
. ;functiona/é]%:e)rl ved from vmm.INC, in the DDK).

l EXTERN ringQstack:

. EXTERN def aul t Qesp: DWORD

EXTERN defaul t Gss: WORD

PUBLI C_ Rl NGOFUNC
TEXT2 SEGVENT DWORD PUBLI C USE32 ' CODE'
- ASSUME CS:_ TEXT2

RIN&) FoNC PROC FAR)

;assuming that no paraneters are passed, the ring 0 stack
;jcontains:

;return-gEIP, return-CS, ol d-ESP, ol d-SS. .
;the last two, deepest in the stack, reference the ring-3
;application stack.

;I'think DS still points to old data segnent, so can
;still use....

cli ;make sure actual flag is clear.
pushf d

pushad

push ds

push es

push fs

push gs .

mov defaultOesp,esp ;save default ring 0 stack.
nov defaultOss, ss ; /

;setup a new stack. ..
myVv ax,30h
nov ss,ax
lea esp,ring0stack+1996 .
a{j,d esp, flatdatalin ;calc Flat |inear addr.
sti

;ring-1-As works here, but let's replace it with
;FLAT-ds... .

mov ax, ds ;use fs to access data in our prog.

nmov fs, ax ,

nmov ax,30h ;Flat ds.

nmov ds, ax ;

mov es, ax

nov gs, ax

;example of calling a VMM service.
i nt
DW GET _cor_vM_HANDLE

;=1
DW vMM DEVICE_ ID ;=1

nn

rexanple of using a '386 privileged instruction...
str cx ;get task (tss) register (selector)

304 Windows Assembly Language& Systems Programming

Fexanple of another call to the v\ ..
. paraneters are passed by stack, so push them on...

pushd 0 ;get its descriptor out of gdt
pushd 0 ; /
pushd ecx ; /
| nt 20h , /
DW GETDESCRI PTOR ; /
DW vmd DEVICE-1D ; /
add esp,12 . / '
nov ecx, eax ;zero in 'eax and edx if error
or ecx, edx ;
jz errorl ; /
J np bypassi
errorl: do something here
bypassl : .
Frestore default ring0 stack..
cli ;make SUre.

MV ss,fs:default0Oss
MV esp,fs:defaultOesp

pop ?S
pPop Ts
pop es

pop ds
popad
Pept
RI NGOFUNC ENDP
_TEXT2 ENDS
END
Because the default stack is very small, | have replaced it with
another that physicaly exists in the data segment of ASMRINGO.
Execution enters RINGOFUNC with DS still set to the data
segment of ASMRINGO, but | have moved it into FS and have put
DS =30h, the GDT FLAT data selector. Thereis no problem with
accessing al the data in ASMRINGO, using FS (ring-3 selector) or
DS. In the latter case, we would also have to add “flatdatalin”.
INT-20h Notice the peculiar method for calling aVMM or VxD service by

means of an"INT 20h" instruction, followed by a couple of
Barameters. Inserting data directly into the code may seem odd,

ut on the first execution-pass, Windows modifies these three lines
and replaces them with a CALL. The first parameter specifies
which serviceto call, and the second parameter specifies which
VxD. These are smple equates defined in VYMM.INC or in my
cut-down version VMM-TINY.INC on the disk.

Note also that GETDESCRIPTOR() uses the standard C calling
convention, which means that parameters are pushed right-to-left,
and the stack must be cleaned up after return.

32-Bit Ring 0 305

Moving On

To be able to go up to ring O from inside a ring-3 application is
“real neat”. This chapter also showed how to go from a 16-bit
segment to a 32-bit segment, and actually have them overlap, that
is, be the same segment, fitting the SMALL memory modd.

The work done in this chapter can also be applied to Windows 95
native 32-bit applications, in which case the segment is aready 32
bits, but the ring transition is till required.

It may be perverse, but | redly like the idea of writing 16-bit
applications that have 32-bit and/or ring O functions in them.
These will run fine in both Windows 3.1 and 95.

A 32-bit application will run in Windows if it has the Win32s
library ingtalled, and it will run natively in Windows 95. So, |
guess we need to move ahead into the pure 32-bit world. A lot of
the material earlier in this book has focused on 16-bit code,
although the principles are in most cases applicable to 32-hit code
also.

We need a chapter that elaborates on the differences in coding for
32-bit segments and Win32, the 32-bit Windows API library. We
also need to see a pure 32-hit application. The next chapter does
this.

Other
chapters

13

32-Bit Ring 3

Preamble

This book has been structured in a quasi-historical sequence,
starting with 16-bit programming in the early chapters, gradualy
introducing 32-bit issues in latter chapters. | didnt want to dump
16-hit, as it is till relevant and will remain an issue for a long
time. Even if a systems programmer wants to program entirely in
32-bit mode, Windows 95 internally is surprisingly 16-bit
oriented. This means that a thorough knowledge of the 16-bit
issues and the interaction between 16- and 32-bit modes is
required. Therefore, the gradual progression of the chapters from
alé6-bit foundation is most relevant.

Of course, many developers are ill programming for Windows
3.x, and 16-hit applications run fine on Windows 95 and even have
some advantages with regard to system privileges, compared with
32-bit applications. As described in the last chapter, putting 32-bit
instructions into a 16-bit segment incurs only a small instruction
prefix penalty. Putting 32-bit segments into a 16-bit application
can aso be done. Considering these points, many developers do
not feel any urgency to go totaly 32-bit.

However, if you want to move ahead and write a true native 32-bit
application, this is the chapter.

307

308 Windows Assembly Language & Systems Programming

TASM 32-bit
support

Porting code
from MASM
to TASM

Itemising the
differences
between
MASM6 and
TASM5

TASMSversus MASM6

Back in Chapter 5, | compared the features of the various versions
of TASM and MASM, targeting 16-bit applications.

The two products have tended to leap-frog each other, but MASM
has remained stuck on version 6.11 for some time now. Borland
has recently released version 5.0, which does not leap-frog
MASM: it only brings it to about even.

QUESTION: How many Microsoft Officials does it take to
change a light bulb?

ANSWER: None. They will just declare darkness to be the
new standard.

Not so far from the truth! Microsoft has put MASM “on the back
burner” for some time, because it is a very “small fish” for them.
At the time of writing, rumour is that they are selling it to another
company.

Borland, to their credit, does not consider itself to be too big to
ignore the lower-end of the market. That is, the relatively
small-volume sdllers like assemblers.

Both companies have moved toward less printed and more on-line
documentation. My persona viewpoint is that you cant beat a
good printed manual, which is why the supplementary printed
books business is booming.

TASMS supports 32-bit programming for Windows 95 and NT,
but the documentation, both printed and on-line, is pitiful. The
one example program is also pitiful, as it is written for TASM 4.

So, | had to figure it out from scratch. | had a 32-bit program
written for MASM, which | converted. Now, this is an interesting
story, and there were nights spent working to 3:00 am trying to
figure it out.

TASMS amost supports al of the features of MASM version 6.1.
Therefore, the example program given in this chapter, though
written for TASMS, should also be very easy to convert for
MASM.

« TASMS has prototypes for procedures, except they are
designated by the “PROCDESC” keyword, not "PROTO".
Otherwise, the syntax is the same, and | was able to create an
Include file, W32.INC, on the Companion Disk in directory
\TASM32 that is very easy to convert for MASM.

All the

32-bit Ring 3 309

e TASMS does not use “INVOKE" for high-level procedures,
just the plain old “CALL” keyword.

e TASMS dlows parameters passed to a procedure to be
declared on the same line as the "PROC" declaration, but it is
not quite so sophisticated as MASM. You cannot use
MASM's "TADDR" prefix, or the "::" for composing two 16-bit
registers into one 32-hit value. However, you can achieve the
same results with different syntax.

* I'm not so sure about passing dynamic data parameters to
high-level PROC declarations. If you specify a parameter
“OFFSET S1", it means “pass the address of S1". However,
that works if the data is declared statically, in the data
segment. For data declared by the “LOCAL” directive, that is,
dynamic, stack-based data, it seems to be necessary to load the
data into a register first and pass the register as a parameter.
MASM doesnt have this limitation with its “ADDR”
directive.

Installing TASM5

TASMS is designed to work from the command line in a DOS box.

TASM5 tools There is no editor or IDE. There is, though, the wonderful Turbo

are DOS
programs

Debugger. | prefer to use the command line, though an IDE does
have advantages, such as seeing where assemble errors occur in
the source code. With the command line approach, the assembler
spews out a list of errors and the developer must then find those
lines in the source code, which is easy enough.

¢:\> make -B -DDEBUG | more

TASM32,
TLINK32,

If the assembler generates a huge error listing, this is what you do
to make output fill the screen and pause. Simple enough. The
“make’ program will execute "makefile" if it existes, otherwise
a filename needs to be entered on the above command line, after
the switches. "-B" means to rebuild everything, " -DDEBUG" is
interpreted inside the Make file to include debug information. The
“more”’ postfix is what pauses the screen.

For 32-bit development, you will be using TASM32.EXE,
TLINK32.EXE, and BRC32.EXE. The latter is the resource

BRC32 32-pit compiler. There is also BRCC32.EXE, but the documentation

too/s

does not mention anything about it. In fact, the documentation
barely says anything about the resource compilers at al, and there

310 Windows Assembly Language & Systems Programming

i s no demonstration 32-bit program that utilises them. Never
mind, Uncle Barry figured it al out.

Fine-tuning After installation, when | first ran TASM32, it crashed. | fiddled

the around, and suddenly it started working. Later that night, for no

installation apparent reason it crashed again. That is, it aborted on loading. |

for stability hid no idﬁa why. | made some changes, and everything has been
ok since then.

| found a reference in the documentation that the WIN.INI file
should have this entry:

;in WNIN file
[W ndows]
spool er=yes

So, | put that in. Then | read that the install process puts these two
lines into the SYSTEM.INI file:

SYSTEMIN file

[386Enh]
device=c:\tasm\bin\windpmi.386
device=c:\tasm\bin\tddebug.386

What is the purpose, | asked myself, of WINDPMI.386, when
Windows aready provides DPMI for DOS boxes? So, | erased
that line.

Example Skeleton Program

Ok here it is. Thirty-two-bit coding has certain refinements, one
of which is the prolog/epilog code: the simple use of the
STDCALL language qualifier takes care of everything.

;By Rarry Kauler 1997

;Companion Disk, "Windows Assembly Language & Systems

; Programming ".)

;W32DEMO.ASM - - > W32DEMO.EXE Windows 95 denp program
;This skel eton assenbly | anguage program has been witten
; for TASMb. 0. . .

;It has the startup code built-in, rather than as a
¥separate object file.

.386
.MODEL FLAT, STDCALL
UNICODE = 0 ;thie equate used by W32.INC.

| NCLUDE w32.INC ;equates, structures, prototypes.

32-bit Ring 3 311

IDM_QUIT EQU 100 ;nmenu-identifiers -- must be
IDM_ABOUT EQU 101 ;same as defined in .RC file.
DATA

hInst DD 0

mai nhwnd DD 0

sl VWNDCLASS <«?>

S2 MSG <?>

s3 PAI NTSTRUCT «<?>

szTitleName DB "win32 Assenbly Language Denp Program", 0
szClassName DB "w32DEMO", (. _ .
szi connane DB "ICON_1",0 ;name of iconin .RCfile.

g_hwnd DWORD 0
g- message DWORD 0
g_wparam DWORD 0
g_lparam DWORD 0

szaboutstr DB "This i S an about-box",0 ; nessagebox
sztitlestr DB "Barry Kauler 1997",0 ;/

cal | GetModuleHandle, NULL
nmov hl nst, eax

;initialise the wndClass structure
mv sil.w_style, CS_HREDRAW + CS_VREDRAW + CS DBLCLKS
MV sl.w_lpfnWndProc, of fset ASMWNDPROC
NV sl.w cbClsExtra, O
mVv sl.w_cbWndExtra, O

nov eax, hInst
MV sl.w_hInstance, eax

call LoadIcon, NULL, | DI _APPLI CATI ON ;loads default icon.
let's Toad a custoricon....
caII LoadIcon, hinst, OFFSET szi connamne
MV sl.w_hIcon, e€ax

cal | LoadCursor, NULL, IDC_ARROW
nmv sl.w_hCursor, eax

mov sl.w hbrBackground, COLOR WNDOW + 1
MV sl1l.w_lpszMenuName, OFFSET szClassName
MV sl.w_lpszClassName, OFFSET szClassName

cal|l RegisterClass, OFFSET sl

call createWindowEx, 0,OFFSET szClassName, \
OFFSET szTitl eNan’E W8 OVERLAPPEDW NDON \
CW USEDEFAULT, CW USEDEFAULT, CW USEDEFAULT, CW USEDEFAULT, \

0, O, hInst, O

312 Windows Assembly Language & Systems Programming

mov mai nhwnd, eax

cal | ShowWindow, mainhwnd, SW_SHOWNORMAL
cal | uUpdateWwindow, mai nhwnd

msg_loop:
cal |l GetMessage, OFFSET 82, O O O

cnp ax,
je end- | oop
cal |’ TranslateMessage, OFFSET s2
~call DpispatchMessage, OFFSET s2
J p msg_loop

end | oop:
cal | ExitProcess, s2.ms_wParam

PUBLI C ASMANDPROC
ASMMDPROC proc STDCALL, hwnd: DWORD, wmsg:DWORD, \

) wpar am D, lparam:DWORD
USES ebx, edi, esi
LOCAL hDC: DWORD
mov eax, hwnd ;useful to make these static.
mov g_hwnd, eax ; ... be cautious though, as
nOV eax, wmsg ;sometimes W ndows reenters
NoOV g _message, eax ; ASMANDPROC. For exanple, it is
nov éax, wpar am ;possible for Wndows to call
MoV g_wpar am eax ; ASMANDPROC wi th a WM_PAINT
mov eax, | param ;message even though €execution
mov g_| par am eax sig currently inside ASMANDPROC

;...alternative is pass these via stack to functions.

Xor eax, eax
mov ax, WORD PTRR&-(massage
.1 F ax==WM_DEST

call wmdestro
.ELSEI F ax==WM_ RBUTTONDOMN
call wmrbuttondown
.ELSEI F ax==WwM_SI| ZE
call wmsize
. ELSEI F ax==WM_CREATE
call wmcreate
.ELSEI F ax==WM _LBUTTONDOMN
call wmlbuttondown
.ELSEIF ax==WM_PAI NT
call| wmpaint
. ELSEI F ax==WM_COMVAND
call wmcommand
.ELSE
cal | pefwindowProc, hwnd, wrsg, wpar am | param
ret
. ENDI F

Xor eax, eax
ret
ASMANDPROC ENDP

32-bit Ring 3 313

wntonmand PROC
mov ax, WORD PTR g_lparam

1 F ax==0

mv ax, WORD PTR g _wparam
JAF ax==IDM QUI' T
cal | Post‘Qutl\/bss e, 0
.ELSEIF ax==I DM A
cal | MessageBox, g_hwnd OFFSET szaboutstr, OFFSET

sztitlestr, MB_OK

ret

wrrpal nt PRCC
call BeginPaint, hwnd, OFFSET s3

nov hDC, eax

call EndPaint, hwnd, OFFSET s3

é ret
~ wnpaint ENDP

wrmrteate PRCC
re
wntreat e ENDP

wndest roy PROC
ca{l ost Qui t Message, O
re

wndest roy ENDP

wii btjt t ondown PROC
re
wnl but t ondown ENDP

wnt but t ondown PROC
Catll MessageBeep, 0
re

wnt but t ondown ENDP

wnsi ze PRCC
r et
wnsi ze ENDP

ENs T
END start

Elegant isn't it? You can refertoearlier chapters for explanations

of how each part works. Youmight like to conpare it with the

16-bit MASM6 program in Chapter 5.

The differences are small. Most importantly, you do everything in
32 hits.

314 Windows Assembly Language & Systems Programming

The
differences
hetween 76-
and 32-bit
coding of
Windows
apps

Code
conversion
from MASM
to JASM

Resource
files

¢ The fields of the structures mostly become 32 hits.

¢ FAR addresses become the same as NEAR addresses and are
32 bits. The OFFSET prefix in an instruction will load the
32-bit address of a static data item, and you do not need to
worry about the segments.

o All stack pushes and pops are 32-bit.
e Values returned from functions are in EAX.

¢ Note that the Win32 API isablend of C and Pascal calling
convention. That is, stack cleanup is performed by the
function, but parameters are pushed right-to-left. Please note
that the 16-bit API pushes parameters left-to-right. However,
using the high-level procedures, you do not need to worry
about this. When using Turbo Debugger, you will need to be
aware of this fact, though. For example, in GetMessage(),
" orrser 52" gets pushed last.

When | first converted a MASM6 program for TASMS, it
assembled and linked but crashed when execution got to
CreateWindowEx(). | paid closer attention to the skeleton
example supplied with TASMS, even though it is written for
TASM4. | made a couple of changes, and it now works and is
rock solid, though I'm not sure which change was the culprit.

Notice that there is an ENDS directive at the very end of the
program. Y ou could experiment and see what happensiif that is
left off. | never needed it for MASM programs.

The rest of the program looks very much like aMASM6 program,
and TASMS aso accepts the same syntax for the high-level
procedures, though it does not support ADDR and "::". "::" isnt
needed in 32-bit programming, and ADDR can be replaced by
OFFSET for dtatic data.

You will noticethat | have used correct casein al symbols. | used
the"/m1" switch to turn on case sensitivity, which is a break from

my past. | decided to invoke case sensitivity for al true 32-bit

code, which iswhy | have shown correct case for al the 32-bit

API functions.

Support Files

There is nothing much to say about resource tiles. They work the
same as before.

32-bit Ring 3 315

//W32DEMO.RC resource file. . '
;/these (arbi‘trary) equates could have been in an include
/file. ..
#define IDM QUI T 100
#defi ne IDM_ABOUT 101

| CON-1 1 CON GOOFEE.ico
W32DEMO MENU

BEG N
POPUP "File"
BEG N
MENUITEM "Quit", IDM_QUIT
MENUITEM "About . ", IDM_ABOUT
END
END

The program BRC32.EXE isrequired to compile a.RC file to
.RES.

Make file Now may be the best place to show the Make file:

#MAKEFI LE. . .

#W32DEMO W n32 deno application

#TASM32 .EXE, TLINK32.EXE, BRC32.EXE, MAKE. EXE

#are from TASM v5.0. Make sure the path points to them
#Path only needs to point to \bin subdirectory, TLINK32
#finds IMPORT32.LIB in the \lib subdirectory ok.

#You should be in a DOS box, by executing the PIF file
#B32TOOLS.PIF (make a shortcut on your desktop).

#TLINK32 switches: /Tpa = build 32-bit EXE, /aa = target
#W ndows 32-bit application, /v = include debug info.
#TASM32 switches: /zi = include debug info.

#the last paraneter is the resource Tile to be bound to
#the executable

#the 2nd | ast param. is the definition file.

make -B WII build .EXE
make -B -pDEBUG WI I build the debug version

FN = W32DEMO
IS = $(FN) . 0obj
DEF = $(FN) .def

I'i f $d(DEBUG)
TASMDEBUG=/z1i
LNKDBG=/v
lelse
TASMDEBUG=
LNKDBG=

' endi f

t

316 Windows Assembly Language & Systems Programming

I'i f &4 (MAKEDIR)

IMP=$ (MAKEDIR)\..\lib\import32
lelse

IMP=import32

lendi f

$ (FN) .EXE: $(OBJS) $ (DEF)
i Nk32 /Tpe /aa /c $(LNKDBG) $(OBJS),$(FN),,$ (IMP), $(DEF),$(FN)

.asmobj:
tasnB2 $(TASMDEBUG) /nl $&.asm
brc32 -r §(FN).rc

In the above Make file, you can see the invocation of
BRC32.EXE. It is used with a"-r" switch to mean compile only,
which is probably optional.

Binding In earlier examples, | have run RC.EXE again after LINK, to bind
resources the .RES file to the .EXE tile. However, TLINK32 does this
to the automatically if the name of the .RES file is appended onto the end

executable Of the command line. The last $(FN) achieves this.

Compeatibility | have alot of trouble with Borland Make tiles. Although there is
of Borland & a switch for setting compatibility with Microsoft's NMAKE.EXE,
Microsoft it is still not compatible. | have never been able to get a Make file
Make files | have created for NMAKE to work with Borland's MARE.

| have to resort to taking an example Make file provided by
Borland, which is what | have done above. It is not quite
optimum, as the resource compiler executes every time, but at
least it works. | recommend that you use the "-B" switch to force
everything to build:

¢:\> nmake -B -DDEBUG

There is something weird about Borland's MAKE.EXE and |
personally use NMAKE.EXE mostly.

B32T00LS.- Note dso that Borland supplies B32TOOLS.PIF. | recommend
PIF, to that you put a shortcut to it from your Windows 95 desktop. It has
fine-tune the the correct settings for the DOS box. You will find it in
DOS box CA\TASM\BIN.
Also, place CA\TASM\BIN into the path statement of your
AUTOEXEC.BAT file, so DOS can find the executables.
TLINK32 finds the library tile IMPORT32 without any help.

. DEF file Finaly, the definition tile, W32DEMO.DEF:

NAVE W32DEMO
DESCRI PTI ON "ASM progran

EXETYPE
STUB
. CODE
' DATA
. HEAPSIZE
| STACKSI ZE
EXPORTS

32-bit Ring 3 317

W NDOWG

'WINSTUB.EXE'

PRELOAD MOVEABLE

PRELOAD MOVEABLE MJLTI PLE
8192

8192

ASMANDPROC

Turbo
Debugger

W32DEMO.DEEF is referenced by the second-last parameter in the
TLINK32 command line.

If after assembling and linking, it doesnt work, it is time to use the
debugger. Stay in the DOS box to use it, and type this:

C:\> TD32 W32DEMO.EXE

A text
editor/IDE for
use with
TASM

WALK32,
development
suite for
MASM

Turbo Debugger has been an old favourite of mine. It's realy
nice, and very easy to use.

One thing to bear in mind is that you are in a multitasking
environment, so feel free to run Windows programs aongside the
DOS box.

You can have File Manager (I mean, Windows Explorer) running
for the purposes of testing the program.

You can use a Windows-hosted text editor or a DOS-based text
editor. Everybody has a favourite. | use Microsoft's Programmer’s
Workbench v4.01, which is DOS based.

There are a zillion editors on the Internet that can be downloaded.
Arguably the best for assembly language development is
ASM_EDIT, a complete IDE with extensive help files. It is quite
interesting to see color-coded assembly code. ASM_EDIT is
shareware, but the warning window comes up so frequently it is
almost unusable — that is, if you have alow tolerance level!

The price in February 1997 was US$20. The main Internet page
is:
http://www.skysurf.de/~asmedit/ae_whats.htm

Various people have experimented with stand-alone Windows
applications written entirely in assembly language. Sven
Schreiber has developed WALK32, a complete package for
MASM, even with its own linker. It is public domain and can be
found at the site:

http://www.thepoint.net/-jkracht/pdnasm.htm

318 Windows Assembly Language & Systems Programming

SKELETON.-
ZIP, a
skeleton for
MASM6

A 32-bit skeleton program written by Wayne Radburn for MASM
v6.11 uses the latest features of MASM, much like the example
given in this chapter. If you have MASM v6.1x, have alook at
this package. It is on the Companion Disk in
\RADBURN\SKELETON.ZIP.

Wayne has produced an very nice help file that explains how the
program works. His Include file is very cut-down, without all the
equates, structures, etc. | took hisfile, Sven's Include file, plus
some extra stuff and put it together into one file, did a lot of
editing, and ended up withW32.INC.

He has a bit more code in the startup than my above skeleton, and
| suggest you examine it and maybe include the same code if you
want to use my skeleton for actual projects.

Postamble

Chapter 12 showed how a16-bit application can move into 32-bit
ring-0 code. What about the 32-bit application of this chapter?
Another question: what if the 32-bit application wanted to cal a
function in a16-bit DLL? Or an interrupt? Or perform an IN or
OUT instruction?

It is a strange fact of the historical evolution of Windows that
16-bit applications have greater freedom getting into the insides of
Windows than 32-bit applications. DOS TSRs aso have great
advantages. Because support for legacy applicationsis going to
continue for the forseeable future, it is sensible to use whatever
easy paths are available.

A 32-bit application cannot use the technique of Chapter 12. The
reason is that the interrupt handlers provided by Windows for
certain interrupts assume that it is 16-bit code executing the
interrupt. The most fundamental problem isthat it is only a 16-bit
stack, so the interrupt handler will crash. Nor can a 32-bit
application cal a 16-hit function.

The next chapter backtracks somewhat and looks at the transition
between DOS and Windows as Windows loads. Understanding
this can be very useful and will help with the above questions.

14

- DOS-Win Transitions

Integrating
the code
from
previous
Chapters

Preamble

This chapter further develops many of the concepts introduced in
the previous chapters and also discusses some overall and related
issues.

In this chapter, | have built upon the issues of moving between
various modes, such as between VMs and between Rea and
Protected modes. What happens to registers? What about the
stack? What are the address mappings?

| have further developed the discussion of interrupt handling for
Real and Protected modes.

| have adso considered the issue of synchronizing between DOS
and Windows. For example, how does a DOS driver know when
Windows is loading? How do you get a virtual device driver to
cooperate with a DOS device driver? Or to cooperate with a
WinApp?

When writing the first edition of this book, | paid a lot of attention
to Standard mode. In this edition, | have considered it to be
“amost” history, so just about al of the code and description in
this chapter is geared toward Enhanced mode, i.e., requiring at
least a 386 CPU.

319

320 Windows Assembly Language & Systems Programming

API,
WinApps,
at ring 3

16-bit
WinApps
inferior to
32-bit
WinApps?

System-level
access in
Windows 95

Structure of
this chapter

Sometimes | feel quite disgusted with Miscrosoft, because the
“playing field” keeps changing. For example, Windows 3.0 had
WinApps and the APl DLLs running at ring 1, while DOSApps
ran down at ring 3. Then, in Windows 3.1, everything went down
to ring 3, including the DLLs. Windows 95 also has everything at
ring 3, except of course the “insdes’ of Windows, such as much of
the VMM (Virtual Machine Manager) and the VxDs (virtua
device drivers).

Actudly, 16-bit Windows applications should not be viewed as
inferior, as it may turn out that they will give better performance
than equivalent 32-bit applications. As explained in Chapter 12,
all that is meant by 32-bit is that instructions in a 32-bit segment
default to address and size of 32-hits, and they no longer have the
64K segment-size limitation.

Sixteen-bit WinApps actually have some advantages when it
comes to global addressing and general messing around inside
Windows and with the hardware. Microsoft has tried to “close the
door” to low-level access for 32-bit WinApps, so there is no direct
access to the interrupts or the low-level API functions. All the
low-level facilities are still there, however, and will continue to be
there — it is a matter of knowing how to get at them. Sixteen-bit
WinApps running in Windows 95 have easy access to them, for
backwards compatibility reasons.

Most of the development that ended up in the first edition of this
book was on Windows 3.0, while for this edition | worked mostly
on 3.1 and 95. Some descriptions in this book will be more
appropriate to 3.x than 95 — | have tried to be clear on what target
environment I'm writing about.

You will find that the 16-bit code in this chapter works fine in
Windows 95.

The structure of this chapter is in two halves: the first focuses on
interrupt handlers for DOS and Windows, and the second focuses
on the transition between DOS and Windows, the smooth transfer
of control, and communication between TSRs, WinApps, and
VxDs.

Interrupt Handlers

Chapters 10 and 11 give the elements required for interrupt
handlers, and | have put various example programs on the
Companion Disk. This section develops the topic further.

DCS-Wn Transitions 321

An interrupt handler that must work regardless of whether the
computer is running a DOSApp or a WinApp requires a number of
specia considerations.

Rather than list complete example programs that go on for many
pages, | have given only partial listings here and focused on
discussion of the various issues.

Chapter 10 shows a Protected mode ISR invoked from a WinApp
running in Protected mode. That is, the software or hardware
interrupt occurred while the CPU was in Protected mode. This is
the easiest case.

If the CPU isin Real mode at the time of the hardware or software
interrupt, and you want to pass control up to a Protected mode
handler, beware of various constraints. Chapter 11 introduced this
topic.

Example Protected Mode | SR Code

The structure of the Protected mode ISR in each case is somewhat

different:

This is the same exanple ISR from Chapter 10 . .
runtime: ;isr for prot node interrupts, via idt.

int 60h ;call old vector

; (it was saved in int-60 for convenience)

pusha

push ds

push es

nmov ax,cs:hwndcs ;post nessage to wi ndow

push ax , /

push WM_USER i /

push 0 ; /

push 0 ; /

push 0 ; /

cal | POSTMESSAGE /

nov es,cs:dsselector ;for witing to data in code seq
Pop es
pop ds

popa
iret

; The ISR for interrupts reflected up from Real node has
; a.different structure ... (refer Chapter 11)...
runtime2:

;isr for Real node ints via ivt, reflected up to
;prot-node. entered with ds:si = Real node ss:ip,

;es:di = Real node call structure,

;and interrupts disabled...

;should exit with es:di still pointing to Real node call
;structure. ..

pusha

322 Windows Assembly Language & Systems Programming

push
pusih

ds

; get addressablllty of data in code seg..
mov ax, cs: hwndcs ,post massage to w ndow

push ax

push WM_USER

push 0
push 0

sh 0
gal | POSTMESSAGE
NMoV es,cs:dsselector ; for

pop es
pop ds
opa

N N N

£ u nen e m

riting to data in code seg.

P .
;for returning to Real node pr og prior to interrupt.

cld
| odsw

nov es:

| odsw

nov es:

| odsw

nov es:
add es:

;can chain

(de/scrlbed in Chapt er 11)

(di] .ip1,ax : .
; /
[di] .cs1,ax ; .
, /
(di] .flagsl,ax ; ,
[di] .spl,6 ; /

to original vector by putting it into callback

;data structure. ..)
mv ax,cs:segnentreallnt

nov es:

nv es:

[di] .cs1,ax

{di]l .ip1,ax

; mov ax,cs:offsetrealint

iret

installint ENDP

...

Separate
ISRs for VT
and JDJ

Note that there are two ISRs, one each for interrupts that come via
the IDT and those that get reflected up from Rea mode via the
IVT. With regard to the ingtallation of these ISRs, note that | did
not hook the vectors as soon as the WinApp received the
WM_CREATE message, as this can, under certain circumstances,
impair the display of the window. Instead, | posted a message,
WM_USER+1, which at a later stage calls the install code (see the
complete program on the Companion Disk, in \WIN2REAL and
further development in \REAL2WIN).

With regard to exiting from the program, | did of course unhook
the vectors upon receipt of a WM_DESTROY message.

. VMs have
preemptive
- time-slicing
by the DPMI
- host

ISR
reentrancy

Reference
source

The case of
the missing
code
segment

DOS Win Transitions 323

Problems/l ssues with the Protected M ode ISRs

POSTMESSAGE() will work for both ISRs when Windows is
loaded in Enhanced mode. Even when running a DOS application,
POSTMESSAGE() will send the WM_USER message to the
window immediately. In this example code, the
DPMICALLBACK() function acknowledges receipt of the
WM_USER by beeping the loudspeaker. Note that this beep
OCCUrs as soon as you press a key — how can this be, since youre
in a DOSApp? The answer is that the DPMI host, as the real
Windows kernel, switches VMs on a time-sliced basis and so flips
over to the system VM periodicaly to do housekeeping, including
sending the waiting WM_USER message to the callback function
for the window.

Another issue with the Protected mode ISRs is reentrancy. This is
especialy a problem with hardware interrupts that can come in at
any time. Upon entry to the ISR, hardware interrupts are disabled,
but once you put in the STI instruction, they can occur. Note that
you would aso send an End Of Interrupt (EOI) signal to the
interrupt controller chip to tdl it that it is now alowed to send
more interrupts (this is done by the default handler, if you chain to
it). You could argue to avoid the problem by leaving the interrupt
flag clear — but this should not be done for too long. The same
point applies to the EOI signal — | did it by caling the origina
handler (via INT-60 in the ISR reached via the IDT).

If you put in an STI (and an EOI has been sent in the case of
hardware interrupts), think about reentrancy. You may have to
organize the data used by the ISR to be dynamic (on the stack): I'm
thinking in particular of the data register structure, in which DPMI
passes the Real mode registers to and from the Protected mode
ISR.

The “DPMI Toolkit”, available from Qualitas (see
http ://www.qualitas.com/), has mechanisms for this.

In your .DEF file, FIX the code segment in place, and do not mark
it as DISCARDABLE. This will not stop Windows from
removing the segment from memory, but whenever your program
needs to access the segment it will be reloaded into the same place
— wdll nearly aways!

If you get a selector dias to store data into the code segment, such
as a window handle to be used by the ISR, or even the dlias itsdlf,
for writing data to the code segment within the ISR, it will work.
The adias will not require updating, because the code segment
marked as FIXED in the .DEF file will remain at the same place in

324 Windows Assembly Language & Systems Programming

Bolting the
segments
down

... and the
wayward
data
segment

Some

philosophic
points about
DOS drivers

“Using up”
the first IM
of physical
memory

memory (even though Windows may temporarily remove it). The
potential problem here is that Windows does not think that you
should be writing to the code segment, so will never “swap it out”.
Instead, it is just dumped, and when needed again it is copied from
the original on disk- so you lose your data.

If you look at the above listing on the Companion Disk, youll see
that | used GLOBALHANDLE() and GLOBALFIX(). The first
returns a handle for a selector or segment address, while the
second Windows function locks the segment into that linear
address. This is the only sure way to stop Windows from moving
the segment, and it works in both Standard and Enhanced modes.
However, in Enhanced mode you can use GLOBALPAGELOCK()
to prevent paging, and guarantee that the segment is locked into
physica memory. What these functions will do for you is speed
up operation as the ISR's will be kept in memory (and you won't
lose what you write to the code segment). They are not essentia,
however.

What about getting at data in the data segment from inside the
ISR? No problem, because you can store the value of DS in the
code segment. The data segment doesnt even have to be FIXED,
because its descriptor will be automatically updated, unlike an
dlias.

None of this will work under Standard mode. Why am | even
bothering to discuss Standard mode — it's dead, dead, dead.
Maybe in some remote parts of the world there are ill people
running Windows in Standard mode. | promise not to mention it

again.
The Real Mode Handler

Ok, now for the DOS TSR interrupt handler. Actudly, this is the
most fascinating part of the exercise. There is a bit of a myth that
you shouldnt develop Windows-aware DOS TSRs and device
drivers, but should instead be going for virtual device drivers. The
DOS driver has alot going for it.

The fact that it takes up “vauable RAM red estate” in the first IM
is aways brought up as a negative factor. However, this is not
such a big issue as it was in the DOS-only days. The same thing
goes for locking segments in place: the Windows textbooks make
a noise about how this is undesirable, yet in redity it isnt if you
dont lock too many bytes — this is assembly language, remember
(super compact). Lock as many segments as you want, and even
lock them in the first IM if you want. Note that Windows has

DOS-Wn Transitions 325

functions for this (see above) and so does DPMI, apart from the
specifications in the .DEF file.

Put those TSRs in that first 1M and dont worry about it!

My little DOS TSR hardly impinges on the “vauable” 1M
anyway: it's under 300 bytes. It hooks INT-9, which is a specia
case hardware interrupt. Here it is, somewhat abridged:

; DOSTSR. ASM Hardware interrupt keyboard handler for
;Windows.
f .286
- int9 SEGVENT BYTE PUBLIC ' CODE
ASSUME cs:int9,ds:int9
~ ORG 100h
install :
jmp start

oldoffivt2F DW 0 ;save ol d int-2F vector here.
oldsegivt2F DW 0 .

wi nl oaded DB 0 ;set when Wndows is |oaded, & viceversa.
winmode DB 0 ;bit-0=1 if Standard, =0 if Enhanced.
oldoffivts DW 0 ;save ol d vector here.
oldsegivt9 DW o , -/
ol dss DWW 0 ;host stack
ol dsp DW O ;
t srpspseg DW 0 ;seg. addr. of psp
| srbusy DB 0 ;set to prevent reentrance.
start:

MoV tsrpspseq,es ;save psSp seg. addr.
; Test if this TSR already installed. If so, get out.

; Code for synchronizing and co-existing with DOS (save
; segment address of this PSP, get address of "inbpos*
; flag, hook IVT vectors 28hn, and naybe ich)

;hook int-2Fh vector inivt. Wndows calls this with
;AX=1605h when it loads, wth regs telling useful info,
Fsuch as if loading in Standard or Enhanced node....
MoV ax,352Fh ;get int-2F vector in ivt.
Int 21h ;)
MoV oldoffivt2F,bx ;save It
NV oldsegivt2F, es ;
nov ax,252Fh ;hook int-2F
| ea dx,runtime2F ;set ivt vector.
int 21h , /
doit:)
mov ax, 2561h ;hook | NT 61h so signaller can find
|l ea dx, callback ;forwarder in system VM from
int 21ih ; anot her " vM.

;hook keypresses/releases . . . o
nmv ax,3509h ;get | nt-9 vector in ivt.
int 21h i/

326 Windows Assembly Language & Systems Programming

nv oldoffivt9,bx ;save it

NV oldsegivtg,es . .

nmov ax,2509h ;hook Int-9

| ea dx,runtime9 ;set vt vector.
Int 21h :

;initiallise int-60h in ivt, as used to test if winApp has
;hooked I1t...

push ds ;actually, this will be 0:0 anyway,
; but make sure. (tough luck i'f some
mv ax,o0 ; other App has hooked it!)
nov ds, ax
nov dx, O . .
mov ax,2560h ;put 0 into int-60.
int 21h ; (this hook will be in all vm's).
pop ds

| ea dx,endprog+17 ;point past all code in this
;module (Ilj\lote t hat an opti mum program woul d rel ocate
;the install portion of code at the end, so it can
: be discarded).

shr dax,4 ;compute # paragraphs to keep.
nov ax,3100h ;termnate and Stay resident.
Int 21h ;

£ * % e o 3 s % e s e o w s @ s e s w s s = e e now s s s e s s s s e s s aae s e e ms e e

runtime9:

;this is now the "signaller". it is entered at every key
;press/release. ..

;but only when in Real node... _ .
;First, | only want this ISR to work when Wndows is

;loaded, so test winloaded flag... .
CNP cs:winloaded, 0 ;note CS override, since ds not set.
jne firsthurdle
chain: .
~jmp DWORD PTR cs:oldoffivt9 ;chain to old int-9.
firsthurdl e
cs:isrbusy, 0
fﬁg chain
MV c¢s:isrbusy,l ;prevent reentrance.
secondhurdl e:) .))
;we're in, but call old int-9 first, which will take care
cof EQ...
pushf
call DWORD PTR cs:oldoffivt9
;now Setup registers...

pusﬂ Ss ,-save/ working registers
push ds H

pusha ’ /

push cs ;set ds == cs

pop ds ; /

; Code to co- exi st and synchronise with DOS, if you want
; tocall DOS INT-2lh Xunctl ons (only a_Iiovved above obh)
. ... test the "inpos® flag, wise to'switch to a |ocal

. stack, change to PSP of "TSR, save "break" setting and
; turn off, redirect INT's 1Bh, 23h and 2¢h, save

- extended error checki ng (whew).

DCS-Wn Transitions 327

sti ; EO already achieved by call to old vector.

;next hurdle is to find out if Wndows is in Standard or
;jEnhanced node. S .
;One way is to test INT-60 to see if it is hooked -- if
;not then we nmust be in Enhanced node, as Winapp only
;hooks | VT in system VM However all we will do is test
;winmde flag...

nov al, winmode

and al,1 . .
jz Enhanced ;bit-0 =0 if Enhanced.

,Standard:)
jmp SHORT exit4

Enhanced:)))
;T will be a little bit fussy here. In theory, this ISR

;could be entered when the CPU is in the system VM hence
;we will not want to do the transfer from'another VM as
;performed by 2F/1685... though it appears that this wll
;still function. Instead | have used 2F/1683 to query
;the current VWM..'

MV ax,1683h) .
int 2Fh ;jreturns VM id in BX

cnp_ bx,1 ;1=system VM
je Standard
;switah. ta the system virtual machine and call the forwarder
program. ..)
nov ax, 3561h ; get int 61 vector address
int 21h ; -->ES: BX

mov ax, 1685h - fcn 1685: switch vM's and cal | back
mov di, bx ; ES:DI = callback address (int 61 hdlr)

mov bx, | ; BX = vMto switch to (system vmM)

mov cx, 3 o

xor dx, dx ; DXCSI = priority boost (zero)

Xor Si, Si , ..

int 2Fh ;switch to system VM and do INT 60
exit4:

; Restore host PSP, restore old break setting and |IVT
vectors 1Bh, 23h and 24h. Restore host stack.

popa Frestore registers.
pop ds ; /
pop es ; /
popf ; /

' Wndows provides various extensions to INT-2Fh, as introduced inChapter 9. Int-2F/AX =
1683h queries the current VM. No parameters are supplied to it, and it returns only one value:
the VM 1D number in BX. We expect the system VM to be number 1; however, it is possible to
confirm this: after Windows has initialized al virtua device drivers, it then cals
INT-2F/1608h, to inform the DOS device drivers (or TSRs). W ndows supplies the system VM
ID nunber withtiscal | .

328 Windows Assembly Language & Systems Programming

mov cs:isrbusy,0 ;allow reentrance.
iret jreturn frominterrupt.

callback:) .
;this is the forwarder, entered from the signaller in
;another VM via the int-2F/1685h nechanism. .

push es ; save working registers
pushds P .
pusha P .
St ;essential.
mv ax, cs ; set DS == CS
mov ds, ax . ..
mov ax, 3560h ; get current | NT 60 vector address
Int 21h P .
mov ax, es ; 1s there a WnApp handl er?
or ax, bx P _
jz done60 ; if not, don't call it!
int 60h ; call WnApp
done60: .
popa ; restore registers
pop ds
pop es FER
iret ; return to other VM
T R R R R

;entered when W ndows |oads, with AX=1605h, and when
;Windows unl oads, W th Ax=1606h....
;detect when W ndows | oads, and set a flag so that
;runtime9 Wi || be activated... _
st ;documentation says this req'd.
c ax,1605h ;test if Wn is |oading.'
Jﬂg notload
c CX, 0 ;this must always be 0, else error
Jﬂg not unl oad
NV c¢s:winloaded, 1
mov CS: Wi nrode, d
notload: cmp ax,1606h ;test if Win is unloading.’
jne notunload
mov cs:winloaded, 0
notunload:
jmp DWORD PTR cs:oldoffivt2F ;o0ld int-2F.

! Thisis avery interesting extension to INT-2Fh. Function 1605h is called by Windows when it
first loads. This enables DOS device drivers and TSRs to perform any necessary initialization.
It isimportant to follow the rules here, by first enabling interrupts and then calling the old
INT-2Fh vector. The latter is because other drivers/TSRs may have hooked the vector. CX
must have zero. If you for any reason decide that Windows should not go ahead and load, then
put a non-zero value into CX and IRET: other drivers have the option of doing this also, which
is why we called the old vector. Windows also supplies ESBX = 0:0 in Standard mode, DS:SI
= 0:0; DX bit-0=1if Windows in Standard mode, =0 if Enhanced mode; and DI contains the
version number = 030Ah for version 3.1

2 Thisisthe opposite of 1605h, called by Windows when it unloads. Windows supplies DX bit-0
= 1 for Standard mode and = 0 for Enhanced mode.

DOS Win Transitions 329

install

Some
| coding
| Issues

' Outline of
i DOSTSR
operation

Data
contention

The entire program was too much to print, hence the sections in
italics. The complete program is on the Companion Disk;
however, if you know much about TSRs there is sufficient
information in this listing for you to construct it.

One interesting little point about this code is that we obviously
dont want to try jumping VMs if Windows isnt even loaded, and
indeed the INT-2Fh extensions are not even available until
Windows is loaded. At one stage in the program’'s development, |
did call INT-2F/1685h to switch VMs before Windows had
loaded, and before | had put in the “winloaded” checking — and it
worked! Or rather the switch didnt take place, so nothing
happened. However, on another computer it crashed. The only
difference | can see is that the one that worked was running
DRDOS version 6, and the one that failed was running MS-DOS
version 5.

At this stage of the game you should be able to follow through the
logic of DOSTSR.ASM. Note that INT-60h in the IVT is hooked
by the WinApp and is where the Protected mode ISR is located.
INT-61h is hooked by DOSTSR itself, merely to pass its own
forwarder address to the same DOSTSR in another VM.
Paradoxically, there is only the one TSR, and they only appear to
be in different VMs — al virtual addresses map back to the same
physica addresses. However, the DOSTSR, while executing in
another VM, does not necessarily know the segment:offset address
of the forwarder in the system VM.

Something else you should pay some attention to when developing
robust code is the possible contention if more than one VM wants
a piece of the action at the same time. That is, programs in two
different VMs enter the TSR and work on the same data. Crash!
Anticipate this and either design the data to be reentrant or force
instantiation by an entry in SYSTEM.INI, or use INT-2Fh/1605h
to create instantiation of specific data areas (see Writing Windows
Device Drivers by Daniel Norton, Addison Wesley, 1992, page
170). Or prevent reentrancy, as | did with my demo program. See
earlier notes on the problem of reentrancy on page 323.

330 Windows Assembly Language & Systems Programming

Device
drivers for
DOS and
Windows

DOS 75Rs
and
Windows

TSR2WIN
example
code

DOS-to-Win Device Driver /TSR

This book, so far, has dealt with various issues of how a DOS
program (and TSR) can communicate with Windows and
Windows programs. Now the picture is to be tilled in a little more.

One thing that you may have noticed with some hardware
products, such as network cards, is that they come withswo sets of
device drivers: one for DOS and one for Windows. Actualy, in
most cases, the DOS driver will work under Windows, but less
efficiently than one written specifically for Windows. The reason
for thisisthat Windows has to pass control down to V86 mode, to
access the DOS driver, which means time overhead.

To be more correct, there are three different types of device
drivers, because the old Standard mode (sorry I'm mentioning it
again!) cannot use virtual device drivers. However, | wont worry
about Standard mode drivers.

Therefore, alogical question arises: if you install aDOS device
driver via the CONFIG.SY Stile, that will be tine for DOS, but if
you then load Windows, which will load device drivers specified
in the SYSTEM.INI file, how do you avoid the two drivers
clashing?

Now apply this line of thinking to TSRs. You have a DOS TSR,
which, as described earlier, you can make Windows-aware.
However, the same problem exists — a TSR iswritten for Real
mode. Therefore, maybe you would like an automatic transition to
take place from the TSR to a Windows application.

For both the device driver case and the TSR case, you want a
smooth and transparent mechanism for transferring to an
equivalent Windows program. Microsoft has catered to this need.

Automatic Loading of Windows Programs/Drivers

The example code for this section is on the Companion Disk in
directory \TSR2WIN. It contains a TSR, called TSR2ZWIN.ASM,
that assembles and links to TSR2ZWIN.EXE.

What this TSR does is detect when Windows is loading,
automatically loads a virtual device driver(VxD), and also loads a
Windows application. Note that you could just as easily have
loaded the virtual device driver from a DOS device driver: the
principle is the same.

Global
data

The
invisible
WD

TSRZWIN
TSR

The TSR is
“inside”
the WxD

DOS- Win Transitions 331

Another bonus of this TSR is that it establishes a global data area
and provides a FLAT 32-bit linear address for it that the Windows
application and the device driver can access.

An interesting aspect to how this TSR works is that neither the
VxD nor the WinApp need to be specified in a .INI file.

It is usual to put a “DEVICE= " line inside SYSTEM.INI, to cause
a VxD to load, but the TSR will load the VxD without such a line.
Furthermore, although Microsoft recommends that all VxDs
“should” be in \WINDOWS\SYSTEM directory, the
documentation does not say that they “have’ to be. Thus, you can
put your VxD anywhere.

TSR Installation

Essential portions of TSR2ZWIN are reproduced here, and this is
sufficient for you, without having the origina source files from the
Companion Disk, if you are familiar with basic TSRs.

Reproduced below is the portion of the installation code that sets
up the data structures required for auto-loading of the VxD and
WinApp.

A vital point must be brought out now. | chose to put the TSR,
TSR2WIN.EXE, “insde’ the VxD asa DOS stub.

All Windows programs have a DOS stub, which is a DOS program
that resides inside the Windows program. Should the user execute
the Windows program from the DOS prompt, only the stub will
execute. It is usua for the DOS stub to display a simple message
that you need Windows to run this program, then it terminates.

Putting the TSR inside a VxD is easy. | have placed a typica
.DEF file, used for linking a VxD, in directory \TSR2WIN, and
this file is caled VDEMOD.DEF. It shows how easy it is to
specify the TSR as a stub to the VxD.

It is not essential to do this, but it offers a simplification: for the
TSR to automaticaly load the VxD, the TSR needs to know the
path of the VxD. If the path is fixed, then you can specify it in the
TSR, or maybe you could pass it to the TSR on the DOS command
line-tail (when loading the TSR). Or, by having the TSR inside
the VxD, the TSR need only look at its own path to determine
where the VxD igl

It was an arbitrary choice, but | chose to put the WinApp in
another directory and have specified the path in the TSR, but |
could have aso put the WinApp in the same path as the VxD.

332 Windows Assembly Language & Systems Programming

Start of TSRZWIN TSR

; TSR2ZWIN.ASM --> TSR2WIN.EXE .

;this is a wi ndows-aware tsr, that is | oaded before
;windows. .] .

;Wwhen wi ndows | oads, this tsr will automatically cause a
*mi.ndows application to start, *and* wll autoratically
;load a virtual device driver.

;This tsr must *not* be a separate file -- .
Fit ds specified as the "dos stub" for the virtual device
;driver (VxD) that is to be automatically |oaded.

; -- if your only requirement is to auto-load a w ndows
;app, thén you can have this tsr stand-alone (or as stub
;for the WinApp).

;the Wi ndows application is called W NAPP. EXE

;the virtual device driver is called VDEMID. EXE

;-- W.NAPP nust be in the root directory (or path spec'd
;below) -- VDEMOD. EXE can be anywhere. .

;An interesting aspect of this tsr, is that it creates a
;global data structure, and passes a FLAT 32-bit pointer
;via the VT -- WNAPP and MOD can access this

; pointer

;Note that this is a .EXE file, but data is in the code
;segment -- nmkes it easier to nake into a tsr.

.286
.MODEL SMALL
.STACK

start: jmp i nstal | hooks

wi nl oaded DB
dpmi | oaded DB
winmode DB
oldoffivt2F
oldsegivt2F
oldoffivtiC
oldsegivtlC
oldoffivt9
oldsegivt9
oIdof?!vt28
ol dsegi vt 28
bypasslC
bypass28
dosbusyof f
doshusyseg

W N386 _ STARTUP_| NFO _STRUC STRUC .
SIS VERSION DB 3,0 ;3,0ah for Wn3.1.
SI S- NEXT _PTR DD 0
SIS_VIRT DEV_FILE_ PTR DD 0

;2F saved vector

; /
;1C saved vector

1

;fix reeg}rancy probl ens.

H

FEBR2EILLEEY

DOS-Wn Transitions 333

SI'S_REFERENCE_DATA DD 0

SIS_INSTANCE_ DATA PTR DD 0 . .

SIS Opt_Instance_Data_Ptr DD 0 ;extra field Wn95 only.

j ;i.e., if put 4,0 into first field.
WIN386_STARTUP_INFO_STRUC END!

InstData Win386_Startup Info Struc <>
' TSR Info_struc STRUC
’ - TSR Next dd ?
TSR- PSP Segment dw ?
TSR-API -Ver 1D dw 100h
TSR Exec Fl ags dw 0
TSR- Exec- Cnd _Show dw 0O
TSR Exec Cmd dd 0
TSR- Reser ved db 4 dup (o)
TSR-1D Bl ock dd O
TSR- Dat a_ Bl ock dd 0O
TSR_Info_Struc ENDS
tsr_info TSR I NFO STRUC <>

Exec_Path_Name db "C:\WINAPP.EXE",0,0 _
;path & filenane of wi ndows app.

psp_size DW 0

My ID Block dw ? .
My Name db ' TSR autoload WnApp & vxD',0
My Name_End LABEL BYTE

;this ptr must Rl?:t put into INT-60h....
| NCLUDE GLOBL. | ;global data, accessed by
;W NAPP/ VDEMOD.
gl obal data GLOBALSTRUCTURE <> ;instanced here only, but
include file must be in other programs.

I

Data Notice the two data structures above: TSR_INFO STRUC, and
structures WIN386_STARTUP_INFO_STRUC.

GLOBL.INC is not part of loading the VxD and WinApp: it has to
do with global data between all programs.

| have left out most of the “ho hum” installed portion of this TSR
and reproduced only the interesting bits, however, you first need to
examine the installation code. Therefore, | have turned this listing
around and shown the install code immediately below:

DB 17 Dbpup(0) ; Resident part is above herel!
dumpme :
hkkhkhkhkkhkhkhkkhkhhkhkhhkkhkhrhhkhhhhkhrhhkhkhrhhkhrhhkhkdkhkhkkhhhhkkhhhhkhhkkk
installhooks:

;ig thig tsr already installed?. .. i have given it a
;signature of cCh... .
push es ;just in case

mov ax, OCCOGCh ;BL=0 1s install-test code for

334 Windows Assembly Language & Systems Programming

,~my 2k handl er.

int 2Fh ;multiplex interrupt (that we will hook)
pop es
or al,al :AL=non-0 means abort.
jz abba
jmp abort load

abba :

;**
push cs
ds ;note cS: overrides thus not really reqd.
get a p0|nter to the nane of the load file in the
environnent seg. entered with es=psp..
nov ax,es

nmov bx, cs
mv WORD PTR cs: [TSR_info.TSR PSP Segnent], ax
sub bx, ax ; size (in paras) of PSP
nmv WORD PTR cs: [PSP_Size], bx
MoV bx,2ch ,*enV| ronnment segnent
nov es,es: [bx]
xor di, di
mv cx, -1 ; bi g number
Xxor al,al ,search for a null
cld
aq:
repne scasb ;get past one null and stop
cnp byte ptr es:[di],o0 ;another nul |
jnz aa ;No.
add di,3 ;skip the word before the nane.

Setting up the Continuing from above, look now at setting up the data structure
VxD data for the VxD.
structure

. prepare part of the instance data list. Stuff in

; p0|nter to the file name

nd reference data

m)v word ptr Cs:[instdata.SIS_Version],0A03h

nmov word ptr CS: [instdata.SIS Virt Dev File Ptr] , di
mov word ptr : [instdata.SIS Virt Dev_File Ptr] [2].,es
mov word ptr [instdata.SIS Instance Data Ptr],0

mov word ptr cs [|nstdata SIS Tnstance Data Ptr] 121, 0

;notes: above code searches the environnent-bl ock,
;looking for fully-specified path/filenane of this file,
;then, Tnserts this address (es:di) into instdata.

7

Path of A point of clarification about the above code is needed. A data

the VxD structure has been filled in that Windows requires for loading the
device driver. We need to provide its path, so the code looks into
this TSRs PSP, where the path/filename is kept (we can reuse the
filename for the VxD, since the TSR is embedded in the VxD).

Segment
structure
of TSR

DOS- Win Transitions 335

This code should be easy to read, but do note that this TSR is
.EXE format, which means that the PSP is a separate segment
from the code segment. | havent used the data segment. For the
SMALL model, the code segment and PSP get loaded into
memory contiguoudy; that is, the code immediately follows the
PSP.

That is why, to get the size of the PSP, | merely subtracted ES
from CS (as ES initidly points to the PSP segment).

;next problem, is we need to force W NAPP, our windows
Fapplication, to load...

JInitiali

mov WORD P

ise Ienglgth of ID string..
R c¢s: [My_ID Block], OFFSET My Name End - \
OFFSET My Name

Setting up the The following code, which is another data structure required for
WinApp data launching the Windows application, continues from above

structur

e

nmov

nov
nmov

nmov

nmov

nmov

nov
nov

WORD PTR c¢s: [TSR_Info.TSR_Exec_Cmd],\
"OFFSET Exec Path Name
WORD PTR cs: [TSR I nfo. TSR Exec Cmd+2] ,
WORD PTR cs: [TSR_Info.TSR_Exec Flags] 1
; =TSR MYNEXEC
WORD PTR cs: [TSR_Info.TSR_ Exec Cmd Show), 4
; =SW _SHOWNOACTI VATE
WORD PTR c¢s: [TSR_Info.TSR 'ID Block],\
OFFSET Wy ID Block
WORD PTR cs: [TSR_Info. TSR | D Block+2], Cs
WORD PTR cs: [TSR _Info.TSR Data Bl ock], O
WORD PTR cs:[TSR_Info.TSR_Data_Block+2], 0

Path of fhe As mentioned earlier, my choice to put WINAPP.EXE into a

WinApp

different directory is done here purely to illustrate something
different. In practise, you would most likely have it in the same
directory as the VxD. However, that option would introduce
another small complication: you would need to extract the path
from the environment segment and append the filename
WINAPP.EXE (or whatever).

To see more detail on a couple of those fields, refer to Appendix
D.

Hooking the vectors follows:

;get the addr of the dos-busy flag...

nowvr
i nt
nov
nov

ah,34h

21h ;-->es:bx
dosbusyof f, bx

dosbusyseg, es

336 Windows Assembly Language & Systems Programming

MoV ax,352Fh ;get int-2F vector in ivt.
int 21ih .
oV oldoffivt2F, bx ;save It
NV oldsegivt2F,es , /
NV ax,252Fh ;hook int-2F
| ea dx,runtime2F ;set ivt vector. ds:dx
int 21h . /
; ... hook any other vectors required .

FLAT pointer This is the nice fina touch.
to global data

¥finally, pass the address of our global data..
| ea dx,globaldata

mv ax, ds
shl ax, 4 ;convert para. to offset.
C over64k . .
5 dx, ax ;get FLAT linear 32-bit address
xor ax, ax ;
nov ds, ax ; / -->ds:dx
bb2: .
myVv ax,2560h ;hook int-60h
int 21h
push cs

pOp qi{qu bb3 ; restore ds

,1fe ieausa?dress I S segment=0, offset=dx (works only
if in 1st

; WNAPP can check the hi 2 bytes of int-60h ivt, to
*confirm that t hey .

;are zero, and that no other Progranlhas overwitten.

;no, be careful... take care of over 64K...
overé64k:
add dx,ax ;as above (not likely to produce carry)
mv ax,1 ;this is the carry.
nmov ds, ax
np
bbg
;terminate, |eave resident.
| ea dx, dunpre ;point past all code in this nodul e.
shr dx,a ,compute # paragraphs to keep.
add dx,psp_size
mVv ax,3100h ;terminate and stay resident
int 21ih ; /
abort| oad:
cal | longbeep .
myv ax,4C00h ;don't make resident.
int 21h

END start

DOS- Win Transitions 337

Universal The hooking of IVT vectors in the above code is very ordinary, but
- global you will find the creation of the global data and FLAT linear
- pointer address to be interesting.
: A dlightly negative point about this global data is that it is in the
first 1M, i.e.,, conventional memory.
The FLAT address is simple to calculate, because it is just an
addition:

DS* 16 + OFFSET globadata
It is actualy only 16 or 17 hits in size, as this TSR is close to the
start of linear memory, so the higher bits are zero. | stuck this
pointer into the IVT, at entry-60h, which is a convenient place
from which the VxD and WinApp can retrieve it. IVT-60h is thus
not in conventional segment:offset form!

How a WinApp This FLAT pointer is immediately usable by the VxD. All that the
& WxD can VxD needs to do is get it out of the IVT.

access global Ordinary 16-bit or 32-bit Windows applications can aso use the
data FLAT pointer, but they do need to obtain a ring-3 FLAT data
selector. The global data can then be accessed in this manner:

mov es, flatr3selector ;FLAT data selector, ring-3.
MoV ebx,lpglobaldata;FLAT linear pointer, from 1vt-60h.
mov es:[ebx] .GLOBAL, 1 ; accessing a field of global struc

The above code sample is not from the TSR — it shows how a
WinApp can access the globa data, where GLOBAL is a field of
the global structure.

There are various ways to obtain a FLAT data selector. One thing
that you could do is make an alias of DS and then modify the base
address in the descriptor (if you can locate the LDT! — see
Chapter 12).

Another way is for the WinApp to go to ring 0 and cal a VMM
service to create a FLAT ring-3 data selector — the service to call
is GETAPPFLATDSALIAS(), described in the DDK. If you have
aVxD as part of your system, you can get it to call this function
and pass the slector back to the WinApp.

A great advantage to using GETAPPFLATDSALIAS() is that the
returned selector is in the GDT and will thus continue to work
across VMs. This is not such an issue with Windows 3.x and 95,
because all WinApps run under the same LDT, but beware
Windows NT.

The word of warning here is that if you want your selectors to be
global across 32-bit Windows NT applications, which will run
with private LDTs, then put your selector into the GDT

338 Windows Assembly Language & Systems Programming

Now for the part that actually loads the VxD and WinApp.
TSR Resident Code

INT-2Fh The resident code monitors 1VT-2Fh and detects when Windows is
handler loading, as follows:
runtime2F:

;entered when Wndows | oads, w th ax=1605h, and when
;Windows unl oads, with Ax= 1606h.
:detect when Wndows |oads, and set a flag . .

sti ;documentation says this req'd.

C”E ax,1608h iEnhanced node | oaded.
jn nexttry
¢s:winloaded, 1

jmp SHORT go2F

nexttry: .)
c ax,1605h itest if Wn is |oading
Jﬂg notload
cnp €X, 0 ;this must always be 0, else error.
] Né goerror2F)
mov cs:w nnode, dl ;bit-0=0 if Enhanced node.
test 41,1 ;test bit-0

jnz standardl oad

,1nserts our vxd into vxd chain (see nmy book, Appendix D)

mov word ptr cs:[instdata.SIs_Next ptr], bx

rmvh word ptr cs: [instdata.SIS Next Ptr] 121, es

pus cs

op ;chain, with es:bx ptg to our instdata

ea bx InstData ;structure (our vxD data structure).
standardioad,”

j mp SHORT go2F

C”B ax,1606h itest if Wn is unloading.
Jne notunl oad
MV c¢s:winloaded, 0
noVv c¢s:dpmiloaded, 0
jmp S go2F
notunl oad: . . _ ,
cnp ax,160Bh ;used for tsr registration with w ndows.
| ne givei t anot her go

| mp dorego

g| vei t anot her go:

c ax,1687h . . .

je go2F Fotherwise will get in endless |oop!
cnp c¢s:dpmiloaded, 0 .

| ne go2F ;for all other cases, exit.

go2f:

DOSWin Transitions 339

after W ndows has |oaded, if we want to hook the |DT,
I ;need to test if ok...
cmp cs:winloaded, 0

{ je ?OZF)))

;a problem exits... what if come here before the idt

;properly setup?...

. pusha .
mvV ax,1687h Fftest for dpm host
int 2Fh ‘¢ domi host :

ax, 0 ;ax=0 | pm host present.

jcrr{g exits

‘ MoV cs:dpmiloaded, 1
exith: popa

jmp DWORD PTR cs:oldoffivt2F

..

; return a pointer to the TSR structure...

nov D PTR cs:(TsrR |Info. TSR Next], di
mov - WORD PTR cs: [TSR Info.TSR Next+2), €S
push cs - -
pop (?s . :
mov di, OFFSET TSR-Info ;this chains the tsr data
J] P go2f ;structures.
Reference The TSR data structure is particularly interesting, because it
sources allows you to pass various information about your TSR to
Windows (see Appendix D). Also, for Microsoft Developer
Network (MSDN) members, the January 1997 set of CD-ROMs
has further information on this topic in the Archive Library
CD-ROM.
You can control whether your TSR is instantiated in each VM or
not. The default is not, which means that every VM maps back to
the same TSR. In most cases, this is highly desirable, including
our case of aglobal data areain the TSR.
Getting it Together
Testing the \TSR2WIN directory on your version of the Companion Disk may
programs contain the executables, in which case you can run them

immediately. You will need to place WINAPP.EXE into C:\, i.e,
the root directory of the C: drivee. VDEMOD.EXE can be
anywhere. From the DOS prompt, not a DOS box inside
Windows, go to the directory that has VDEMOD.EXE and run it
by typing “VDEMOD”. Then type “WIN” to load Windows.

340 Windows Assembly Language & Systems Programming

Assembling
and linking

The loudspeaker should start a continuous tone, letting you know
that the VxD has loaded. Then, the WinApp will load. When |
first did this on Windows 3.1, up came the Program manager, but
not my WinApp — where was it? This is interesting —
WINAPP.EXE loads before Program Manager, so it is hidden
underneath.

This is not a problem with Windows 95, and you should see the
WinApp appear on the desktop. Mind you, it's a stupid WinApp,
asyoull see.

To assemble and link everything, type this:

cop

naonn
vVVVvy

nmeke /A wi napp. mak
Wi napp. exe c:\
nmake /A tsr2win.mak
nmake /A vdenod. nak

VxD-Lite

You must assemble and link TSR2WIN before VDEMOD.

To assemble and link VDEMOD, the VxD, you need special tools
and Include files from the Device Development Kit (DDK), which
normally means that you have to join the MSDN (which means
considerable expenditure!). There is, however, VxD-Lite, which
Microsoft did provide free a couple of years ago. It is now
withdrawn and | was unable to obtain permission to place it on the
Companion Disk. Although VxD-Lite targeted Windows 3.1
systems, the VxDs will run fine in Windows 95 — aVxD isa
VxD.

You can find VxD-Lite bundled with Writing Windows Virtual
Device Drivers by David Thielen and Bryan Woodruff,
Addison-Wedey, 1994. Although this book is still in print, the
publicity does not mention VxD-Lite — as one of the authors
works for Microsoft, | fear the worst. Locate an older copy
somewhere!

15

Advanced Systems
Programming

Preamble

Other Chapter 12 shows how a 16-bit Windows application (WinApp)
chapters can access 32-bit ring-0 code. Chapter 13 shows how to construct
a “pure’ 32-bit ring-3 WinApp. Chapter 14 shows how DOS
applications (DOSApps), Winapps, and Virtua Device Drivers
(VxDs) can communicate. In Chapter 14, the communication is
established by the DOSApp while Windows loads.

Much of this book has described how BIOS and DOS interrupts,
plus the interrupt extensions (31h and 2Fh in particular) provided
by Windows, can be used. However, this is al from the viewpoint
of al6-bit DOSApp or WinApp.

Execution of an interrupt causes a processor exception, and the
Windows handler is in most cases in a 16-bit segment. Therefore,
a 32-bit WinApp cannot use the interrupt services, even though
they are there and likely to stay there for future versions of
Windows.

Just as Chapter 12 shows an application going from a 16-bit
segment to a 32-bit segment (called thunking), it is necessary for a
native 32-bit WinApp to thunk down to 16-bits to use the
interrupts! Thunking is introduced in Chapter 8.

341

342 Windows Assembly Language & Systems Programming

32-bit Actually, Chapter 12 describes how a 16-bit application can go to
WinApp 32-bit ring O. It is interesting that Matt Pietrek, in Windows 95
access to Systems Programming Secrets (IDG Books, 1995), describes a
ring 0 32-bit WinApp that goes to 32-bit ring 0, but he does it by

thunking down to 16 bits and using the same techniques as
Chapter 12. It is amusing to see that Matt often has to resort to
assembler, due to the awkwardness of C

Thinking Chapter 14 showed how a DOSApp can get its hooks into a 16-bit

further about WinApp and a VxD, but this could also apply to a 32-bit WinApp.

Chapter 14 It is quite feasible for a 16-bit WinApp to load, do al the low-level
dirty work, such as getting selectors to forbidden areas, then call
WINEXEC() to load a 32-bit WinApp. It is possible to pass
parameters to a 32-bit WinApp via the command line and redly
easy to insert them into the argument passed to WINEXEC().

You could have a16-bit WinApp and a 32-bit WinApp, there is no
need for a DOS TSR, and run the 16-bit WinApp first.

Demo code for | dont have the room to put a detailed description into this
16- and 32-hit chapter, but there is demonstration code on the Companion Disk,
WinApp in directory \SHAREALL, that shows how a 16-bit WinApp and
communication @ 32-bit WinApp can communicate and share data.

This chapter This chapter is a mixed bag. | have likened the learning process to
climbing a ladder, as illustrated in Figure 15.1.

This book is intended to satisfy al the alternative needs of the
pondering man, sitting with hand to mouth. It is the nuts and
bolts, not the latest high-level techniques such as programming
using visual 00 components in Borland's C++Builder. Move onto
those tools if you want, and you may well do, to produce mgjor
applications. You may aso move deep into VxDs, and again, Ive
led you to the point where you can jump in — to the “brink” so to
speak.

| also make no apologies for focusing strongly on 16-hbit
programming and the software interrupt services, as the needs of
our pensive man in Figure 15.1 will remain valid for many years to
come.

What | do need to do in this last chapter is fill in a few gaps and
make some suggestions. After that, go where you will . . .

Advanced Systems Programming 343

Figure 15.1: The ladder of learning.

ﬁ know DOS programming ... W
it's about time I got into Windows

All'T know is assembly language ...
how on earth can I learn to program
for Windows?

I've got this DOS application . . . C+
it's overdue for porting to Windows Object orientation

Virtual device drivers

I'm a student and | want to learn the
nuts and bolts, before progressing
to C++ etc.

Windows 32-bit architecture
Virtual machines

Transitions b DOS/Wi
I've got to maintain this old 16-bit ransitions between DOS/Windows

Qdeows code ...

Windows 16-bit architecture
DOS Protected mode extensions

Assembly language
PC architecture
CPU architecture

Mapping Across VMs

The question arises: when a new VM is created, just what is
copied and what is mapped back to the origina? Figure 15.2
clarifies this.

You will observe some interesting features of this mapping.

For a start, consider the TSR loaded before Windows. Because it
is a one and only instance, any data in it is globa across al VMs.
Think about this — it may be good from the point of sharing data,
but there are no safeguards. If one program accesses the TSR and
causes its data to be modified, perhaps that will clash with another
program’s use of the TSR.

Commercial TSRs may not be designed with this in mind, so it
seems wise to minimize TSR requirements prior to loading

Windows.
Global Notice something else: according to my experiments, it appears
mapping that the entire high memory, that is the segment starting at

FFFF:010h, is mapped back to the original and thus shared across
all VMs.

344 Windows Assembly Language & Systems Programming

Forced
instan-
tiation

Linear
address

System VM
& physical
memory

This experimenting was done on a particular system configuration,
and | cannot guarantee it to be the same on other systems.

Do not take Figure 12.1 as the gospel truth for all situations, but as
a starting point for your own investigations. Note that there may
be some “upper memory blocks’ that are global also.

If you want to investigate this topic further, note that instantiation
can be forced. For example, a device driver can be actualy copied
to al VMs, rather than all VMs mapping back to the original.
Thus the memory illustrated in Figure 15.2 is configurable, which
is why you should teke it as a guide only. Instantiation can be
forced by an entry in the SYSTEM.INI file. This works at the
level of files, and you can find how to do it from Microsoft's
documentation on the SYSTEM.INI file. However, it is also
possible to force instantiation at a lower level, for example, certain
data areas. Refer to Writing Windows Device Drivers by D.
Norton, Addison Wedey, page 170.

Mapping the4.3G Linear Address Space of a VM to
Physical Memory

| have introduced the question of how the VMs map between each
other and physical memory from the point of view of the first IM
region, but what of the entire 4.3G of linear memory?

Figure 15.2 shows the mapping below 1M, that is common
between VMs. However, each VM, including the system VM, can
have its own Protected mode so each can address a linear address
space of 4.3G. To give a complete picture, | have elaborated
below on the question of common mapping of physica memory.

In each VM, if the CPU is in Protected mode (not V86 mode), the
selector:offset address is trandated via descriptor tables to a linear
address. This is described in Chapter 1.

In the case of 286-based Windows Standard mode, the linear
address is also the physical address, and there are no virtual
machines (though there can be). The linear address in this case is
24 bits and can address 224 physical locations.

Windows Enhanced 386-based mode uses the extra step of paging,
thus the linear address no longer corresponds with the physical
address. However, this 32-bit linear address gives the 4.3G linear
address space we are talking about. Paging will map it into a
much smaller physical memory space.

First, a note on the first IM of a VM. The system VM's V86
portion, being the first created, is mostly below the physical IM.
The mappings of Figure 15.2 on page 343 apply, but the virtual
addresses, such as the “freeg’” RAM within the 640K, map directly

Advanced Systems Programming 345

to the actual physical conventiona memory. The “freg’ virtua
conventiona RAM of other VMs will be physicaly in extender

{ memory.
Figure 15.2: Global memory below 1M.
0
i System Virtual Machine|IVT 0
il (VM number 1) BIOS data area
i _IDOS data area ______ B
. In-built device drivers
The shaded areas are | DOS system 1
'| mapped back to the _[N_U_L device driver Protected
¥| original and are not . DOS system mode
| copies. : Loadable device drivers
' | Thus this code and . DOS system
*| data is global across | COMMAND program
| | all VMs. . TSRs
1 . WIN
' | Programs that load | WIN386
| | within a virtual ¢ EMMXXXX0 .. .
machine are local COMMAND program
to it. In this Free RAM. ... ete
example the AL T |
COMMAND.COM i COMMAND
program is running . Free
(a second one). ' DOS system
+ Free
Note the entire . SHARE program
64K “high” memory : DOS system]
is global. '
4.3G

Considering the Protected mode of the system VM, Windows runs
the WinApps at the linear address ranges:

0000 0000 to OOOF FFFF
8050 0000 to 80FF FFFF

The first region is below 1M, wherever Windows can find some
free RAM. The second region may seem like an amazingly high
memory range, but remember that these are linear addresses, and
paging will map them into the available physica memory.

346 Windows Assembly Language & Systems Programming

Reference
sources

32-hit
WinApps

Reference
books

Accessing
physical
memory
from a M

32-bit
WinApp
selectors

You may well wonder where | got these addresses from — the
source is the Soft-ICE/W Users Manual. The address ranges
guoted here are what Windows 3.x currently uses, or so I'm led to
believe, but they are not guaranteed. Incidentally, Soft-ICE/W is a
specialised Windows debugger, for Enhanced mode only, that is a
resident program and can be popped up at any time. It is about the
only tool available for debugging virtual device drivers and similar
tricky code. It is sold by NuMega Corporation.

Specific information on Windows 95 addressing should be in the
latest Soft-ICE/W manual, and another reference is Inside
Windows 95 by Adrian King, Microsoft Press, USA, 1994.

The system VM has just one LDT, and al the 16-bit WinApps
have one set of pages tables. Each 32-bit WinApp has its own set
of page tables. Therefore, each 32-bit WinApp can be mapped to
physica memory totaly independently of any other application.
They sit in linear address range 2G to 4G, but of course big chunks
of the linear address range map back to the same physical memory
as other WinApps, DOSApps, and Windows.

The best places to look for extreme detail on this mapping is
Unauthorized Windows 95 by Andrew Schulman, IDG Books,
USA, 1994, and Windows 95 Systems Programming Secrets by
Matt Pietrek, IDG Books, 1995.

DPMI alows us to obtain a selector for a particular linear address
(see functions 0000h and 0007h), but what use is that to us if we
dont know what the linear address represents?

One extremely interesting aspect of Windows 3.x mapping of the
4.3G virtual space is the linear address starting from 0040 0000.
This range maps directly to physical memory. Again, | cannot
guarantee this for all versions of Windows. Thus, if you wanted to
access the physical video buffer a segment:offset A000:0000, you
would convert it to a full 32-bit linear address, OOOA 0000, and
add it to 0040 0000. That is, 0040 0000 maps directly to physica
address 0, and 004A 0000 maps to the physical video-RAM.

Chapter 12 shows that the VxDs use 32-hit ring-0O selectors 28h
and 30h that are in the GDT. These are FLAT sdlectors, having a
base address in the descriptors of zero. Thus the linear address
range from O to 4.3G is addressable.

Ring-3 32-bit WinApps use a code segment selector of 13Fh and
data segment selector of — wadll, | dont want to gurantee that it
will always be the same. You can look at the segments using a
debugger.

... and a
DoPMI
service

Mapping
between
system VM
and DOS
VMs

Advanced Systems Programming 347

The same selector value is loaded into DS, ES, FS, and GS, and it
is extremely interesting that the type of selector has the expand
down limit of 1M, that is, must be greater than 1M. This prevents
data accesses into the first IM of linear memory, that maps in the
DOS VM.

The above description of linear addresses that map to physical are
not the only method for getting at physical memory from Protected
mode.

There is a DPMI function that performs mapping between a linear
address and a physical address: function 0800h' (Physical Address
Mapping). You supply it with a (32-bit) physica address and it
will give you a (32-bit) linear address. You could then use
function 0007h (Set Segment Base Address) to put the linear
address into a descriptor. Of course, the descriptor would have to
have been previoudy created, for example, by function 0000h.
Curiously, function 0800h is not recommended for addressing
below physica 1M, | presume because there are other DPMI
functions for that purpose.

Windows does set aside other parts of the linear address space for
specia purposes. For example, the DOS VMs are located at linear
address range:

8100 0000 to FFFF FFFF

If youve been following this with an attentive mind, you may see
a problem here — wont each DOS VM be in its own completely
isolated virtual address space? Yes, but this is an example of
where Windows maps different virtual addresses to the same
physical place. Thus, from the system VM you can use the above
address range to access the DOS VMs, just as though they exist
within the system VM.

Another reserved area in the VM is the range:
8000 0000 to 803F FFFF

where the virtual device drivers are kept.

We lump a DOS V86 VM and its Protected mode together as one
VM, so each VM has its own attached Protected mode and hence

' Intel's DPMI specification has various warnings about function 0800h:
This function should only be used by clients that absolutely require direct access to a memory
mapped device at physical addresses above 1 M. Clients should not use this function to access
memory below the 1 M boundary.

Programs and device drivers that need to perform DMA I/O to physica addresses in a
virtualised hardware environment should use the Virtual DMA Services.

348 Windows Assembly Language & Systems Programming

its own 4.3G space. However, there needs to be a further
clarification — what about overlapping of the addressing while in
Protected mode or in V86 mode? Yes, the two do overlap. V86
addresses linear address range:

0000 0000 to OOOF FFFF

But Protected mode in the same VM, when addressing this same
range of linear addresses, also maps to the same physical
addresses.

This may be a somewhat esoteric point and so may not be
something to be concerned about. However, | have thrown in this
clarification in case the conceptual conflict has arisen in your
mind. In fact, you can aso access that same physical address
range at Protected mode linear addresses “somewhere’ above 8100
0000 (mentioned above).

The Windows/DOS/DPMI
Relationship

This section develops further the relationship between DOS and
windows. What are the extensions to DOS provided by Windows?
Just what is the relationship between the Windows kernel and the
DPMI host?

Windows Extensions to INT-2Fh

I would like to complete the coverage of the Windows extensions
to INT-2Fh, by discussing some more that can be very useful for |
DOS drivers and TSRs. The others are covered at various points
through the book, namely Chapters 9, 10, and 11, and can be]
located via the index. | introduced INT-2Fh in Chapter 8 and have
provided a detailed summary of all INT-2Fh functions in
Appendix D.

« INT-2F, AX = 1600h »
This function queries the version number of Enhanced mode |
Windows. It returns AL, and if the value is less than 3 or
greater than 127 then Enhanced mode isn't running. |
Otherwise AL = 3 and AH = 0Ah for version 3.10.

.INT-2F, AX = 1680h
Function 1680h yields the current VM's time slice. You |
would cal this if your current VM isnt doing anything and |
you want to try and improve efficiency by releasing it.

| ssues
involved

Advanced Systems Programming 349

¢ INT-2F, AX =1681h,1682h
Function 168 1h tells Windows not to switch VMs, whereas
1682h says go ahead. If your code is going into a critical
section and must not be interrupted, then use these two. Note
however that hardware interrupts still do happen.

e INT-2F, AX = 1684h
Function 1684h gets an address for calling a VDD and getting
information from it. The VDD ID is passed via BX and the
function returns the Real mode address in ES:DI. If it returns
NULL, the VDD does not provide Real mode services.

The Windows/INT-2Fh Relationship

To get a deeper feel for INT-2Fh and its relationship with
Windows, | have placed a program on the Companion Disk that
monitors al INT-2Fh Real mode calls via the IVT and logs them
to either the printer or screen. The traffic over this interface is
fascinating. INT-2Fh is Windows main method for letting DOS
device drivers know what is going on, and vice versa.

Windows can let drivers know when and how it is loading and
unloading, and DOS drivers can tell Windows the address of their
Protected mode code. Also, virtual drivers communicate with
DOS drivers over this highway.

What | suggest is, rather than me printing out the results of my
INT-2Fh monitor program, try it for yourself. It is a TSR that you
load from the DOS prompt, and you will be able to see exactly the
traffic on INT-2Fh at all times.

What | found most fascinating is that once Windows has loaded,
the traffic is continuous. The implication here is that you have a
mechanism for Windows to continuously “wake up” a TSR.

Writing Windows-Awar e DOSApps

If you are writing a DOS application that is going to make use of
extended memory, there are plenty of tools available, and some
compilers automatically take care of this for you. Thus the old 1M
limit is history. The extended memory that your program will use
is still within the same VM as the V86 VM. Switching into
Protected mode from Real mode, to run code in Protected mode
and hence above 1M, in no way conflicts with the WinApps, since
they are in the system VM. Also, your VM has its own LDT and
IVT, so you can hook vectors to your heart's content.

350 Windows Assembly Language & Systems Programming

INT-2Fh
versus
INT-31h

GOOFEE. EXE

There is a lot to be said for writing DOS programs that are
designed to run under Windows, and quite likely this area of
development will remain alive.

You should remember that the DPMI INT-3 1 h functions are only
available when the CPU is in Protected mode, not while it is in
V86 mode. However, the INT-2Fh extensions are available in
V86 (Enhanced) Real mode and Standard Real mode. Also dont
forget that V86 and Protected mode overlap, so you can readily
address al of the first 1M of the VM from Protected mode (though
to execute Rea mode code you must perform the necessary DPMI
function to transfer the CPU to Real mode, and vice versa).

Sharing memory between 16- and
32-bit WinApps

All 16- and 32-bit Winapps reside in the System VM and use the
same LDT. Also, the pages tables map the linear addresses below
IM to the same physical memory. These two facts hold for
Windows 3.x and 95, which means that a memory block below 1M
is global.

Windows 95 32-bit applications have mechanisms for sharing
memory, such as memory-mapped tiles (see Chapter §), but
memory globa to al 16- and 32-bit WinApps requires a less
unofficial solution.

A solution based upon the above two facts is on the Companion
Disk in directory \SHAREALL.

A 16-bit WinApp establishes the global area, which can be freely
accessed by other WinApps and can also be shared between 32-hit
WinApps. Note however, that the WinApps must supply their
own protocols for mutual exclusion.

| have used this technique to export a data selector to the data
segment of GOOFEE.EXE, my CASE tool bundled with another
book written by me (see page 359). This alows other WinApps to
directly control GOOFEE.EXE. There are protocols to govern the
communication.

A description of GOOFEE.EXE and the mechanism for externa
control is to be found at:

http://www.goofee.com/

Advanced Systems Programming 35/

Anatomy of a VxD

Changing the subject somewhat, VxDs are Microsoft's preferred
direction for access to the hardware. Chapter 14 introduces the
VxD, and gives references. | recommend that if you want to delve
deeply into VxDs, you purchase a specialised book. However, it is
appropriate for me to explain a little more about how the example
VxD in directory \TSR2WIN on the Companion Disk works.

The VxD is VDEMOD.ASM, and it assembles and links to
VDEMOD.EXE. Note the extension .EXE, rather than .386 (that
most VxDs use). This relates back to how the VxD is used in
Chapter 14; that is, it is invoked from the DOS prompt prior to
Windows loading, which executes the stub TSR2ZWIN.EXE. Note
that TSR2ZWIN.EXE was inserted into VDEMOD.EXE by the
linker, so it is not a separate program. Note that | have created a
Make tile to rebuild everything, called BUILDALL.MAK. This is
designed for NMAKE.EXE and uses the /A switch.

For now, however, | am interested only in the VxD.

WxD tools To assemble and link the example VxD requires the DDK or
VxD-Lite. More specifically, the following files are required:
DEBUG.INC, SHELL.INC, VMM.INC, LINK386.EXE,
LINK4.EXE, MAPSYM32.EXE, MASMS.EXE, ADDHDR.EXE
These are not the standard LINK and MASM version 5 — they are
special versions.

Makefile 11 sart by looking at the Make file:

VDEMOD. MAK

This Make file build VDEMOD. ASM into VDEMOD. EXE, and puts
in the dos stub TSR2WIN.EXE.

Note that VDEMOD.EXE does not have to be in the windows
SYSTEM directory.)
The dos stub is to be executed from the autoexec.bat file.

Note that the Include files are in the path shown below. ..
change if necessary. masmS.exe, 1ink386.exe, addhdr. exe,
imapsym32.exe NUSt)

al e in the search ath . . . or put in current directory.
to run: NMAKE /A VDEMOD. MAK

(there is also a BUILDALL.MAK)

| have put a path of c:\vxd for the .INC files, but
repl ace as necessary.

comrent this definition out with a "#", if building a
non- debuggi ng version
Debug=-

FHIIH HHE R

352 Windows Assembly Language & Systems Programming

all : VDEMOD. exe

.asm.obj:
masnb -p -w2 -Mx $(Debug) -lc:\vxd $*;

.asm.lst:
masm5 -1 -p -w2 -M $(Debug) -lc:\vxd $*;

VDEMOD. obj : VDEMOD.asm C:\vxd\debug.inc c:\vxd\vmm.inc
0BJS = VDEMDD. obj
VDEMOD. exe: VDEMOD. def $(OBJS)

i nk386 @VDEMOD.1nk

addhdr VDEMOD. exe
mapsym32 VDEMOD

VxD tools Ok, now f or the .DEF file

LI BRARY VDEMOD .
DESCRI PTION 'Barry Kaul er vxp for Mcrosoft Wndows'
STUB 'TSR2WIN.EXE'

EXETYPE DEV386

SEGVENTS
LTEXT PRELOAD NONDI SCARDABLE
“LDATA PRELOAD NONDI SCARDABLE
“ITEXT CLASS '1copE' DI SCARDABLE
TIDATA CLASS 'ICcODE' DI SCARDABLE
- TEXT CLASS ' PCCODE' NONDI SCARDABLE
"DATA CLASS 'PCODE' NONDI SCARDABLE

EXPORTS
VDEMOD_DDB @1

The above two files are the standard red tape, adaptable to other
VxDs. However, one specia difference is the TSR2ZWIN.EXE
stub. For other VxDs you can replace this with a dummy
do-nothing stub, and also you may prefer to generate a VxD with a
386 extension.

The listing of VDEMOD.ASM follows, broken up with comments:

TI TLE VDEMOD -)
;example skel eton vxp, adapted from a skeleton in
;Microsoft's

;It is possible to monitor any |/ O port, and allow or
;disallow it's use. 1Install IO_Handler achieves this.

.386p

. XLI ST
I NCLUDE VMM | nc ;supplied with DDK (or vxD-Lite)

Advanced Systems Programming 353

INCLUDE Debug .Inc ;/
INCLUDE Shell .inc ;/
.LIST

Declare Virtual Device VDEMOD, 3, 0, VDEMOD Control, \
Undefined_Device ID, VMM INIT ORDER,,

Parameters Declare Virtua_Device is a macro that generates a data structure

of Device with parameters as listed in the code above. The first parameter is
Descriptor the name of the VxD and the macro crestes VDEMOD_DDB,
Block which marks the beginning of the data structure — note that it is

exported in the .DEF tile.
The next two parameters are major and minor version numbers.

VDEMOD_Control is a routine called by Windows to notify the
VxD of system events. This skeleton only handles initialisation
and destruction — look below to see how VDEMOD_Control
handles these cases.

A VxD developer is supposed to obtain a unique ID number from
Microsoft. | dont know why Microsoft doesnt assign a number

with each DDK, but | guess that's too simple

Undefined_Device_ID is an equate to a specia number for VxDs
that dont have an ID.

| could have put Undefined Init_ Order equate for the last
parameter, but | wanted to make sure the printer ports got hooked
by my VxD before any other. The lower the number, the earlier
the initidlisation, and VMM _Init_Order equates to zero, so it gets

in first.
DOSApp Notice that there are two commas after the last parameter. This is
and WinApp because there can be two more parameters. These can specify
access f0 routines for V86 and Protected mode access.
the VxD Sixteen-bit applications can call INT-2Fh, function 1684h to get

access to these routines.

However, INT-2Fh assumes a 16-bit program is running, so 32-hit
applications cannot access these functions. It's awful, | know, but
such is the legacy of backwards compatibility. Therefore
Microsoft was forced to provide a different mechanism for calling
services in a VxD from a 32-bit WinApp — see the
DeviceloControl() function introduced in Chapter 8.

The dternative is that a 32-bit application can thunk down to 16
bits. Also look at the technique described on page 350.

;local data...

vVxD LOCKED DATA SEG
Device Name D B “YDEMOD ",0

354 Windows Assembly Language & Systems Programming

VDEMOD Owner DD ?
vxD_LOCKED DATA_ENDS

...

,1n1t111sat10n code. .
VXD_ICODE_SEG

BeginProc VDEMOD_Device_Init

beep:
push eax
mov al,0B6h Fturn on |oudspeaker
out 43h,al
mov bx, 05C5h
nmov al,bl
out 42h,al
nov al , bh
out 42h,al
In al,é1h
or al,3
out 61h,al
pop eax

;firstly, let's hook anythlng (port 200h) and show a
,generallsed handl e

mov edx, 200h

mov _esi, OFFSET32 My VDEMOD_Hook

VM\Cal | Install IO Handler

;now, let's prevent printing..
mv edx, 3BDh ;1pt status
nmov esi, OFFSET32 My VDEMOD 1lpt_ Hook

VIVMCal | Install IO _Handler

mov edx, 379h ;1pt status
mov esi, OFFSET32 M/_VDEMOD | pt Hook
VMVCal | 1Install_IO Handler

mov edx, 27%h ;1pt status
mov esi, OFFSET32 M/_VDEMOD | pt_ Hook
VM\Cal | 1Install IO_Handler

nmov ~edx, 3BEh ;1pt contro
nov esi, OFFSET32 ctrl VDEMOD 1lpt_Hook
VMVCal | 1Install IO HandIer

nmov edx, 37Ah ;1pt contro
mv esi, OFFSET32 ctrl VDEMOD | pt_Hook
VM\Cal | Install IO Handler

mov edx, 27Ah ;lpt contro
mv esi, OFFSET32 ctrl VDEMOD _1pt_Hook
VMVCal | 1Install IO_Handler

Xor eax, eax
nNDV VDEMOD_Owner, eax ; ho current owner

Advanced Systems Programming 355

' IFDEF DEBUG
' Trace_Out "VDEMOD installed"
| ENDIF

clc
ret

' EndProc VDEMOD Device_Init

VxD_ICODE_ENDS

In the above code Ive used a VMMCALL macro rather than
inserting INT-20h directly. Instal IO _Handler is one of those
low-level VMM services. This hooks the actual physical port, so
if the requirement is to block printing, this will do it.

VDEMOD Device Init is the initialisation routine, and
VDEMOD_Control tells Windows where it is (see below).
| have started the beeper (above), and there is no restriction to

performing direct I/O — we are in ring 0 and 1I0OPL = 0,
remember!

;main code segnent...
VxD_CODE_SEG

Begi nProc VDEMOD Destroy VM

c ebx, VDEMOD_Owner ; Destroying device owner?
jrq? short VDM Exit
Xor eax, eax
noOV VDEMOD_Owner, eax ; No current owner
VDM Exi t:
clc

ret
EndProc VDEMOD Destroy VM

VxD_CODE_ENDS

e
i

locked code... the call backs...

vxD_LOCKED_CODE_SEG

Begi nProc VDEMOD _Contr ol
Control _Dispatch Device Init, VDEMOD Device Init
Control _Di spatch Destroy VM, VDEMOD Destroy VM
ot

EndProc VDEMOD_Cont r ol

356 Windows Assembly Language & Systems Programming

VxD_LOCKED_CODE_ENDS

the ‘hooked ports get redi'rected here..
VxD_CODE_SEG
BeginProc My_VDEMOD Hook

irstly, resolve contention..
pushad ; save regs
MoV eax, VDEMOD Owner ; get previous owner
cmp eax, ebx . sane as current owner?
jz short process_io es, just handle it
or eax, eax s there an old owner?
jz short new owner no

R A T

mov esi, OFFSET32 Device Name
vxDCall Shell Resolve Contention

jic short dont_process ; hmmm couldn't resolve
cmp ebx, VDEMOD_Owner ; if contention winner is
; the current owner,
je short dont_process ; then we shouldn't process
new_owner
| FDEF DEBUG
Trace _Qut "vDEMOD: New Omner #EBX"
ENDIF
mov edx, 200h -our arbitrary port address
vMMCall Di sabl e Local _Trapping ; give winner free access
xchg ebx, VDEMOD_Owner ; save new owner, get old
or ebx, ebx ; no ol d owner?
jz short process_io - no, just process
VMMCall Enable Local Trapping ; old owner now | ocked out

process_io:
popad

;secondly, handle I/0Q.
Dispatch Byte IO FaII-Through <SHORT VDEMOD_Out>
in al,dx ; doTeal in
ret

VDEMOD_Qut :
out dx,al . do real out
ret

dont gr ocess:

popad ;s restore regs
nmv al, OEh ; indicate error to sanple
; apps
| FDEF DEBUG

Trace-Qut "vDEMOD: |/O inhibited for VM #EBX"

Advanced Systems Programming 357

ENDIF

ret
EndProc My VDEMOD_Hook

Begi nProc My VDEMOD 1pt Hook
;we COITE here if the prlnter status ports are trapped..

;set bit-3,7, clear bit-4.

pushad

popad

D| spatch_Byte | O Fal | - Through, <sHORT VDEMCOD | pt Cut>

in al,dx ; do-rear in

mv al,10101000b Fthis should stuff-up printing!

ret ; (busy,out-0f-paper,offline,error)
VDEMOD_| pt _Qut :

ou% dx, al ; do real out

re

EndPr oc My _VDEMOD | pt _Hook

Beg| nProc ctrl VDEMOD | pt_Hook
;we come here if the printer control ports are trapped...
pushad

popad
Dlspatch Byte-10 Fal | -Through, <SHORT ctrl |pt CQut>
In al,dx ; do real in
;v al 0 H
ret

ctrl lpt Out:

, out dx,al ,».do real out
noV al,00001000b ;bit-3=1,printer not sel ected.
out dx, al

ret
EndProc ctrl_VDEMOD | pt _Hook

Totake this further, you need a goodbook with all the details on
the VMM services. Install_|O_Handler for example, hooks a port
and redirects to a callback routine. The routine is entered with
EBX = current VM, ECX = type of I/O, EDX = port number, and
EAX = output data (if type of I/O is output). When the callback
exits, if the type of 1/O is input, the value placed in EAX is the
input value.

The book should aso explain the VMM.INC macros and data
structures, such as the Dispatch-Byte-10 macro used above.

358 Windows Assembly Language & Systems Programming

The

Maximum Productivity

Now for something completely different . . .

What | would like to do is present you with an idea, and an

philosophy of implementation of the idea. Basicaly, the idea is that you should

extremes

True visual
programming

“do” only two extremes of programming — very low-level, or very
high-level, and nothing in between.

The rationale for this is very simple — for programming, you
want, above al dse, productivity, that is, the most program for
your money. Now, productivity aso includes maintainability,
because that is part of the cost equation. To maximize
productivity, you want the most powerful programming tools.

On the other hand, if you need to do low-level work, you should
use the tool best suited to the job — assembly language — rather
than try to torture a high-level language into performing low-level
tasks. Sure, you can use something like C to perform low-leve
work, but it is redly just a very awkward mimicking of assembly
language and is definitely hardware dependent; therefore, you
should really be doing it in assembly, in-line or as separate
modules.

| have included a justification for assembly language, at the end of
this chapter, taken directly from the first edition of this book.

The main point is that the most productive programming language
isnot C or C++, nor is it some augmentation using class libraries
and front-end code generators. Nor is it Pascal, Basic, Fortran,
Coboal, etc.

The way to go is visual programming, and that does not mean
Visual Basic or Visua C++. These two products are not visual
programming languages (VPLs), as they are still text-based
languages. Borland's Delphi and C++Builder move dightly further
toward true visual programming, but it is still mostly the user
interface only that is developed visualy.

If you want a definition of VPLs, and you have Internet access,
look at the frequently-asked-questions (FAQ) file on
COMP.LANG.VISUAL, a newsgroup. Much to the dismay of the
people who started this newsgroup, very few programmers know
what a VPL is, and COMP.LANG.VISUAL is bombarded with
mail about Visual C++ and Visua Basic.

VPLs potentialy can increase your programming productivity ten
times or more, and probably the best of al is LabView, developed
by National Instruments Corp.

Pragmatic

GOOFEE
diagrams

Reference
sources

Advanced Systems Programming 359

| am a redist. Obviously, writing entire applications, or

programming substantia portions, in assembly language is not everyones' cup of

tea. It may be judtified for developing device drivers and other
low-level work, and, yes, weird people like me do put large
applications together entirely in assembly. Most of my work
involves close interaction with hardware and/or operating systems,
s0 | suppose | would be classified as a Systems programmer .

However, even systems programmers tend to use C, depending on
what operating system they are using and on just what kind of
systems-level work they are doing.

Redlly, this chapter presents a certain philosophy and is not to be

taken as the “truth engraved in stone’. Use these ideas as “food
for thought”.

The new kid on the block is GOOFEE diagrams, which |
developed. GOOFEE is a visual analysis, design, and
implementation methodology that is unique. It is a truly unified,
wholistic, approach, targeting embedded systems.

Checkout my book Flow Design for Embedded Systems, R&D
Books / Miller Freeman, USA, 1997.

The R& D Books site on the Internet is:
http://www.rdbooks.com/

My research site is:

http://www.goofee.com/

One, out of many, on-line bookstores is:
http://www.amazon.com/

GOOFEE is not (yet) a 100% visua development tool, but |
wanted to mention it, in case anyone is interested! True 100%
VPLs are rare indeed. What is there?

LabView Programming

LabView is at least as powerful as any text-based language and
has evolved, since 1986, into a very mature and sophisticated
product. In a nutshell, LabView is an environment in which you
can very rapidly develop applications with a single line of coding.
LabView applications can be recompiled, unchanged, to run on
Macintosh, PC with Windows, Windows NT, and Sun
workstations, with more to come.

The speed with which you can put programs together has to be
seen to be believed, and phenomena productivity improvements

360 Windows Assembly Language & Systems Programming

Dataflow
visual
programming

Speed & size

are well documented. But, enough of that; | am not a salesperson
for National Instruments, nor is this book about LabView
programming. So, Il give you all sides of the picture and get onto
how | see assembly language fitting in.

LabView is based upon a dataflow moded, but there are enough
control-flow mechanisms built-in to get around the limitations of
the pure dataflow concept. Dataflow means that you construct
programs by drawing data paths between icons on the screen, and
execution follows the data paths.

Figure 15.3 shows this. Look at the diagram at the bottom of the
figure, and you will see how “icons’ have been interconnected, to
form the program, or “diagram”. Control structures are also
shown, such as a while-loop and a case-structure. Note that the
case-structure is very efficient in its use of screen read-estate; cases
are superimposed, like a deck of cards, with a simple selection-box
on top, for flicking through them.

This leads to an interesting consideration — a classical problem
with visua programming environments is that they tend to very
rapidly run out of screen, but LabView is the most compact and
“screen efficient” of any VPL that | have encountered.

Just imagine being able to rapidly wire-up a program, without
having to remember any text-based syntax, or even how to use
pointers.

Disadvantages of LabView

Ok, ok, the negative points. The power comes at a price, which is
inefficiency of the generated code. LabView programs are HUGE,
and they dont “run at the speed of compiled C", as Nationa
Instruments publicity would have you believe. Maybe you can
contrive such a situation, but practical programs would be lucky to
achieve half the speed of an equivalent C program.

However, “equivaent” is a difficult issue, because LabView
applications have so much extra stuff built-in. Compared with one
of LabView's main competitors, HP-VEE developed by Hewlett
Packard, the former is much faster and, in my personal opinion, far
more sophisticated and mature.

Advanced Systems Programming 361

Figure 15.3: LabView icon, front panel, and diagram.

Valve Deadband
Lag (min] ———
Update PY [T] Process Variable [
Manipulated Variable [Qutpu... - ‘ %

Process Gain f
Process Load
Process Deadtime
Noise (%]

Update PV [T Plant Characteristics |
~
% ompute /[Piocess Gain] [Process LoadL
T Y

Read 5- 50-
- 4 40-
Manipulated
atiable [Dutput, 3- 30-
G E I - 20_
: 12—_?1 10-
-5 0
- Eag(min] [Valve Daadband]|]
Hw 1 o
% cycle time]
A i
5- 100-
‘- 80-
3- 60-
2- 40~

,'!ast PV ,'

M anipulated Variable
[Output, %)

{ dbnd|

362 Windows Assembly Language & Systems Programming

Narrow target The next negative point is that LabView is optimised for use by

market

Front panel
& top-icon

leon
hierarchy

engineers and scientists, and this is reflected throughout its design.
It is absolutely superb for data acquisition, control, mathematic
processing, and image work. It was never redlly intended to be a
commercia high-volume product, so you dont use it to develop
high-volume applications.

You use LabView for custom, one-off, or low-quantity jobs.

However, since people have discovered that LabView is good for
just about everything and is very easy to use (once you get used to
the dataflow concept), the original market domain has tended to
diversify. People are now sdlling stand-alone applications, to a
larger market — in particular, this has happened since LabView
was released on the PC in 1993.

Integration with Assembly

Since LabView is optimised for engineering and scientific
applications, its strengths are on the I/O side, which ties in
strongly with the kind of things you normally use assembly for.

So if you use LabView to control all the machinery in your
factory, and you aso want to do some low-level optimisation, how
can you integrate assembly into the picture?

Have another look at Figure 15.3. Each diagram, or code-module,
has a front panel, which is a window through which all inputs and
outputs travel. Note, however, that this front panel may or may
not appear at execution-time. Think of it as a handy development
aid, since it gives you total control over the diagram for testing
purposes and interactive monitoring while executing.

Look higher, and you will see that there is an icon, that has input
and output terminals, which all go to and from the diagram, via the
front panel. This icon makes the diagram into the equivaent of a
subroutine or procedure and is a software object that can be reused
with the greatest of ease.

An important point to note about Figure 15.3 is that you are seeing
it in black and white, when in fact, it is in full color, and al wires
clearly show the data types they carry. Furthermore, LabView will
not alow a connection if the data types are incompatible — aso
note that most built-in LabView icons are polymorphic, meaning
that they will accept almost any data type.

A LabView program can be composed of a hierarchy of icons.
That is, the top-icon in Figure 15.3 is itself composed of icons
wired into a diagram, which may in turn be composed of
underlying diagrams, and so on.

Code
interface
nodes

Dynamic
link
libraries

Reference
source

Flowchart
programming’

Advanced Systems Programming 363

Any one of these icons could be a program that has been written in
another language.

Note also, that a small help window automatically shows you the
meaning of each input and output termina on an icon as you wire
it up.

An icon that has been written in another language is known as a
code interface node (CIN), and because LabView (11l cal it LV
from now on!) was originaly developed for the Macintosh, that
platform has the best language support. For the PC, only Watcom
C and Microsoft C/C++ are supported.

What if you want use your own brand of assembler, or any
assembler for that matter? There is a way. LabView can cal any
dynamic link library (DLL) function — Sun workstations and
Macintoshes aso have the equivaent to the DLL mechanism.

This is great, as you can put al your hardware-dependent
low-level code into a DLL and write a version for each platform
— the rest of LabView will automatically work on any of the
platforms.

A standard skeleton DLL, written in assembly language, is on the
Companion disk in directory \LV-DLL.

To find out more about LabView, Nationa Instruments has a Web
page at:

http://www.natinst.com/

Layout Programming

There is another, easy, way to generate a DLL — its name is

Layout.
Layout is another VPL. Comparing Layout with LabView is like

comparing chalk and cheese, but there is a method in my madness.

Layout had its origins on DOS, and Layout for DOS till exists.
Layout for Windows made its appearance in the world in
November 1994.

Layout uses a flowchart model of programming, in which the
programmer interconnects modules representing flow of contral,
as shown in Figure 15.4. The representation is different from
conventional flowcharts, as you can see in the way the repeat-loop
is constructed. The little arrows going off to the left point to

364 Windows Assembly Language & Systems Programming

Visual
efficiency

Target
market

subroutines or procedures, and clicking on one of those little boxes
brings up the subroutine flowchart.

The flowchart concept is ancient, and its popularity comes and
goes. Modem flowcharts do need constraints, unlike the old
representations that we oldies used with Fortran, that allowed
spaghetti-code. Layout also forces some concurrency
mechanisms, such as being able to send a message to a procedure,
and have the procedure execute concurrently. Layout also alows
flowcharts to be attached to specific objects on a window, so, for
example, if you press a button on the screen, the attached code will
execute, asynchronously to the rest of the application.

However, the way in which the flowchart paradigm has been
forced into these avenues is, to me, very odd.

Comparison with LabView

Layout's on-screen graphical program construction representation
is very crude and cumbersome, compared with LabView. The
flowchart just about immediately fills the screen, and you have to
scroll a long way down to see everything. Of course, a tight
hierarchy helps a little bit.

Also, | think that some of the linkages need to be shown. For
example, it has to be clearer what variables belong to what code,
and if a code module is attached to an on-screen object, the
relationship should be clearly shown. That is, the structure of
everything in the program, links, and relationships, should al be
clearly and visualy viewable.

It has some rough edges, but it is a VPL, and quite a good one. It
belongs to the very exclusive club of VPLs that completely avoid
the necessity of having to write lines of code.

However, like LabView, you can drop down to code, if required.

Layout is marketed as a mass-market full-cycle CASE tool for
Windows and DOS program development. This is in contrast to
LabView. Layout is not just a front-end or back-end CASE tool
— it is full cycle, and directly generates very efficient .EXE files
or C or C++ output. | suppose LabView can be used as a
full-cycle CASE tool, but it is not a mass-market tool.

Layout is what you would use to develop a product that is
optimised to work with Windows, utilises Windows features to the
full extent (such as OLE, DDE, and networking, though note that
LabView also supports DDE and TCP/IP), and generates very fast
and small code. Even though Layout was developed first for DOS,
it followed the Windows event-driven style. In fact, it mimicked
Windows in just about every way, so it was a natural contender for
conversion to Windows.

Advanced Systems Programming 365

| began to wonder when the developers became very quiet for a
couple of years, but they were working frantically on the Windows

version.

Figure 15.4: Layout.

459 |
mc || |7]|s]|a] | ¢ | [ot]
MR || |a]|s]|8] | x
M- 1 21| 3 -

M+ U-I- . t
Start Of Program
I i Calculator -
T UseAPrucedur:
| Perform Basic Housekeeping
1 is lay Card

htd

Repeat Until...
B[selected button = Action was Cancelled
<
| Use A Procedure
Update Display
x>

re=ercdl Let User Fill Out a Card
calculator
RRD

hd

| Use A Procedure
Process Keystroke

h'd

End of Repeat
=B selected button = Action was Cancelled
A4

W Deactivate a Message

Integrating with Assembly

In-line In many respects, Layout gives you the best programming

assembly environment. My philosophy of the two extremes is applicable
here — you can merrily construct a flowchart, then at any point in
the flowchart, you can stick in in-line C, C++, or assembly code.
It is a super-high-level language that alows in-line assembly!

AHULLLL

366 Windows Assembly Language & Systems Programming

Figure 15.5: Integration with assembly.

Assembly, in-line Assembly In-line
and modules DLL assembly
v
C
program
LabView Layout
program program
Execute Application DLL EXE Ex_eé:ute
inside Builder InSae
IFabView Layout
| EXE

Assembly
DLL

Reference
source

Each of the boxes in Figure 15.4 is called a blackbox, and, as with
LabView, they can be developed in another language. In fact,
Layout blackboxes are simply DLLs!

That's it: write a DLL, register it with Layout, and it becomes a
blackbox that you can put into your flowchart, just like any other
blackbox.

Figure 15.5 gives an overal picture. Look at the figure, and you
can see how assembly language fits in with both Layout and
LabView.

One very interesting possibility that you can see in Figure 155 is
that Layout can generate DLL output. That is, any program that
you construct inside Layout can, simply by selecting “Make
blackbox” from the menu, generate a DLL.

DLLs are mighty handy, because they can readily be used by
various development environments, including LabView. Because
Layout is a totally open environment (with no run-time
distribution licencing required, unlike LabView), you might find it
useful as an adjunct for use with LabView.

Layout was developed in the USA by VTools Inc. (formerly
Objects Inc.), and their Web page is:

http://www.vtools.com/

Advanced Systems Programming 367

Assembly versus High-Level Languages

My vision of the viability of programming at two extremes is an
interesting diversion, but for many people the argument is more
focused. The current fight, that has been going on for some years,
is between languages such as C and assembly. C (and C++) is
winning, but | would like to put in my two-cents worth.

Gloves Always the debate rages about the applicability of assembly
off... language in our modern programming world. An excellent and
balanced argument is to be found in the article “Assembly
Language Lives!" by Michael Abrash, Dr Dobb's Journal, March
1990. It is several years old but till relevant!

- Faster, The smple bottom-line truth is that assembly language produces
smaller, far faster and smaller code than cowwpilers can produce. This is
- etc, true to the present day, no matter how optimised compilers have

become. For example, Quantasm Corp. sell a floating point
emulation library to replace the standard ones. It's written in
assembly language and is typicaly 4% to 10% of the size and 5 to
10 times as fast as most C floating-point libraries!

Apart from size and speed, there are other mgor issues. The
contention that assembly language is harder to write in than a
high-levdl language is, | hesitate to say, “nonsense’. |1l just say
“maybe in some cases’. | can throw assembly code together as
fast as with C. My assembler does not perform the kind of
checking that a compiler will, but Microsoft MASM version 6.x
and Borland TASM version 5 have significant C-like checking.

[
Portability ~ Transportability is a major consideration. If code is to be
transported to other platforms, that is, other CPUs running
Windows, shouldnt | avoid assembly language? Yes and no. For
a start, the issue only applies to Windows NT. If you examine any
high-level program such as a C program, you will find that it is
riddled with hardware dependency. Hardware-dependent
statements are written in a high-level language throughout typical
programs. Whenever | see low-level functionality being coded in
a high-level language, | find it to be cumbersome, inefficient, and
in many cases unreadable. Why force a square peg into a round
hole? Why not just bite the bullet and code those portions directly
in assembly? Why not use your compiler’s in-line assembly
capability? What you gain is code that does what it was developed
for and is efficient, compact, and highly readable. Assembly
language code is far more readable than some C code Ive seen! In
fact, what you end up with is code that is more portable than if
the whole thing had been done in the high-level language. The

368 Windows Assembly Language & Systems Programming

The bottom
[ine

reason for this is that the boundary between drictly
non-hardware-dependent code and hardware-dependent code is
clarifed.

In fact, you can bet that some programs written exclusively for
Windows NT will have assembly code. To transport the program
to another platform, the developers will simply recode the easly
distinguishable hardware-dependent portions.

Binary compatibility is a fascinating aspect of Windows NT. This
means that assembly language code will work on all hardware
platforms. The x86 instruction set, and hardware dependency, will
be emulated, to the extent that most Windows programs will run
without recompiling, but it remains to be seen how far we can
push this. This is another exciting area to research!

There will always be a demand for assembly language
programmers, due mostly to competition. If word processor A
runs twice as fast as word processor B, which one has the edge?
And if word processor A runs in haf the memory, again the choice
is obvious. We have not by any means reached the point where we
can ignore these issues, despite faster CPUs and more memory. In
fact, our programs run slower than ever before and 16M is no
longer enough!

Let me finish this argument by quoting Karl Wright and Rick
Schell, from “Mixed-Language Programming with ASM”, Dr
Dobb's Journal, March 1990:

“It is not only practical but advisable to mix languages and

models in order to achieve the best results. Modern
assembly language is a vita part of this mix, and will
continue to be important in the future, because space and
performance are always important for competitive
software, no matter how powerful the hardware
becomes.”

As a fina note, 1 wrote the GOOFEE Diagrammer, bundled with
my book Flow Design for Embedded Systems (R&D Books, 1997),
entirely in assem