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Figure 1.12: Memory management.
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LDT, task 2

. . . task 3, etc.

program segment
data, code, or stack

A s s o c i a t i o n The next step in this saga is that the CPU can use the selector in
b e t w e e n the CS register to index into the current LDT and get the actual
d e s c r i p t o r address, or more correctly the descriptor, of the code segment.
ands/radow The IP register (or EIP) will have the offset into that segment from
r e g i s t e r which the CPU wiII fetch the instruction.

Having read the descriptor from the LDT, the CPU then has the
base address of the code segment. To avoid having to look in the
LDT every time it wants to fetch the next instruction, the CPU
makes use of shadow registers again. Every segment register has
an associated shadow register.
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The CPU will only have to look in the shadow register to find out
the starting address of the segment (plus some other information)
and can then go ahead and put together the full 32-bit address for
fetching the instruction.
The CPU will add the base address to the offset IP and get a 32-bit
address that can be put onto the address bus.

Descriptors
I have introduced the descriptor as being an entry in the GDT or
LDT. There are various types of descriptors, but the most
common is the normal addressing type that we have been
discussing so far.
Each descriptor is 8 bytes in size, and Figure 1.13 shows what a
normal descriptor looks like.

Figure 1.13: Descriptor format.

64 55 47 39 15 0
base+ # access base limit

I
Size of

Normally set “Base” is the address segment.
to zero on the of the segment.
286.
“Base+” extends the base segment addressing beyond
24 bits. “#“extends the limit beyond 64K.

AC&?SS field The access byte in Figure 1.13 has various flags and codes. It has
a two-bit DPL field (Descriptor Privilege Level) that determines
the privilege level of the segment. It has P (Present) and A
(Accessed) bits that are used for moving the segments in and out
of memory. There are R (Read) and W (Write) bits that set
constraints on reading and writing the segment. There is also the
C (Conforming) bit and ED. The latter is set if the segment is a
stack.
I go into the description of the descriptor in far greater detail in
Chapter 12.

386 Paging

There are two paging modes in the 386. One is built on top of the
descriptor tables, and the other, called virtual-86, does away with
the descriptor tables altogether.
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I’ll look first at the one built on top of the desriptor tables. From
our program point of view it Iooks just like the segmentation
mechanism with the GDT and LDTs.  The only difference is that
the CPU secretly stores the segments in actual memory not in one
contiguous chunk, but all over the place as 4Kpage.s.

Why go to this trouble? The operating system has trouble bringing
segments in and out of memory because they are all different sizes
- if a new segment is to be brought in, space must be found for it,
but space released by a segment that has vacated its spot may not
be the right size. This is a real problem for the operating system,
and it ends up with lots of little unused gaps everywhere.
Inefficiency.
By transparently parcelling the segment up into lots of little pages
all the same size and storing them wherever there is a space, the
mismatch of segment sizes is no longer a problem. We know that
a space vacated by a departing page will be exactly the right size
to take a new page. No problem.

Well, there is one. To achieve this, more translation tables are
required, called  page tables. The CR registers are used to address
these, and the page tables are kept in memory just like the
descriptor tables.
The CPU has various extra registers for maintaining the paging
mechanisms, most importantly, CR3, which contains the base
address of the Page Table Directory.
Just for the record . . .

The address computed from the descriptor table, now renamed the
linear address (as it is no longer the final physical address), is
divided into fields, with bits 22 to 31 being an index into a
page-table directory that gives the address of a particular page
table. Bits 12 to 21 are the index into this second table, which
contains the final address. Bits 0 to 11 are unchanged and become
part of the final address.
You will come across the words linear address later in the book.
Note that sometimes the words virtual address are used in various
books to mean the same thing, though there is a distinction. The
linear address is that 32-bit address that would be the physical
address if page tables didn’t get in the way.

Virtual-86
This is another paging mechanism that does away with descriptor
tables. It was intended to provide the 386 with better Protected
mode emulation of the 86 CPU than the 286 can manage, which it
does very well.
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Paragraph
addresses
are back!

Vhtual

This mode is fascinating. It also does away with selectors and
brings physical segment (paragraph) addresses back into the
segment registers! Thus we come full circle, but with a vital
difference.

Although the 16-bit segment address is back, and once more
programs designed to directly manipulate segment registers can do
so. The CPU does compute a 20-bit address consisting of
paragraph address plus offset, but this is not put on the external
address bus. Instead, it is processed via page tables, that is,
translated to some other 32-bit address then put onto the address
bus.
Once again, this paging is transparent to the programmer, but it
does mean that the program, data, etc. are not where you think
them to be judging from the segment registers.

Virtual-86 mode is useful not just for emulating the old XT
computer, but is the very foundation of Windows Enhanced mode.
True, each virtual machine will have an addressing limit of lM,
but Windows can create many of these (Figure 1.14).

Figure 1.14: Virtual Real mode.

Appar-
ent 1M
address

i

space.

1 Virtual XT PC

I Virtual XT PC

386 PC

Jbe upper8 Instead of putting the 20-bit linear address onto the address bus, as
bits of the for Real mode, virtual-86 mode uses the upper 8 bits of this
linear address as a lookup in the current page table - note that the table
address are entry contains the base address of the page, which is combined

remapped with the lower 12 bits of the linear address to form the actual
32-bit address. It is this final 32-bit address that the CPU puts out
for a memory access. Refer also to page 274, Figure 11.2.
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So what happens if your program writes directly to video RAM at
segment B800?  This is up to the operating system, which most
likely will create virtua1  screens for each task, setting them up
anywhere it wants to in RAM.

Contention Issues
There are various things to think about under this heading, but I
have at this stage just addressed the issues of privileges, I/O, and
task switching.
The topics are brought up at various points through the book, so
look in the Index for other page references.

Privileges

The dpl field in the descriptor defines the privilege level of that
segment. Also you will see back on page 27, Figure 1.12, that the
selector has a requested privilege level (rpl).

Because it is a 2-bit code, there are four possible levels, zero being
the most privileged. The kernel of the operating system will
operate up here (zero), while your lowly program will reside at a
lower privilege level.’
Your program’s level is basically reflected in what the rpl is set to,
and this must be numerically equal to or less than the segment’s
dpl to allow access to that segment - otherwise the CPU exits to
an error routine and the dreaded UAE (Unrecoverable Application
Error) dialog box appears, and that’s the end of your program!

I/O Privilege

Privilege levels do have some impact on I/O. If you look at the
FLAGS register (see page 244),  you’ll find 2 bits that hold the
Input/Output Privilege Level (IOPL). Your application must have
a privilege level numerically equal to or less than this to be able to
perform I/O. With Windows, the IOPL field is set to zero, most
privileged.

However, it is possible for the operating system to give permission
for certain I/O to occur, even though the application doesn’t have
the right privilege. I/O access involves use of the IN and OUT
instructions and control of the interrupt flag by CL1 and ST1

’ Windows 3.0 runs WinApps  at level 1, DOSApps  at level 3, and DLLs at level 1. Windows 3. I
and later run all three at level 3.
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PUSHF,
POP/

Changing
Lors

lask  State
Segment

instructions. The interrupt flag is in the FLAGS register and when
cleared, prevents hardware interrupts from occurring.

If the application has sufficient privilege to perform direct I/O, it
can also set and clear the interrupt flag. Although a Windows
program does not have the privilege of direct I/O, Windows does
allow it, to an extent. If I/O is attempted, the CPU goes to a
Windows error (exception) routine, which does have the privilege
to do what it wants - the routine allows CL1 and ST1 (clear or set
interrupt flag instructions) but does not let PUSHF or POPF
instructions affect the interrupt flag. This is something to be
aware of and a possible source of incompatibility with old DOS
code. It also means that an IRET from an interrupt routine may
not set the flag as it was prior to the interrupt.
For more information on I/O, refer to page 244.

Task Switching

Considering the complications of multitasking, I sometimes
wonder if it is all worth it. Perhaps a more effective solution
would have been multiple CPU-boards, each single-tasking.
Anyway, we are stuck with the current situation.
Changing from one task (program) to another is a matter of
changing to a new LDT,’ which involves the CPU looking into the
GDT and getting the new LDT’s  address.
However, the “state” of the task about to be suspended must be
saved, and the “state” of the incoming task must be restored. This
state consists of the CPU and coprocessor registers plus various
memory pointers and values, and an incredible time overhead is
involved to save and restore this lot.

The CPU has to maintain a special segment for each task, called
the Task State Segment (TSS), into which all of this goes. Then, of
course, the CPU must keep track of where these TSSs are, so it
maintains descriptors for the TSSs in the GDT. Thus the GDT
contains more than just descriptors for the LDTs.

’ Windows 3.x and 95 have only one LDT for all applications, whether in Standard or Enhanced
modes, which is a compromise in its design that can potentially cause trouble. This limitation
tallies with DPMI version 0.9, which in Windows maintains one LDT per virtual machine, not
per task. Windows is seen as a single client to DPMI. Windows 95 32-bit applications have
individual LDTs.
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Interrupts

Real mode
interrupts

Like everything else, Protected mode interrupts are a whole new
ball game. First, let’s review the mechanism in Real mode.
The standard method of doing I/O and file and memory
management, plus a heap of other operations, was by the BIOS
and DOS interrupt services. These are accessed from an
application program by means of the INT instruction, with this
syntax:

INT n :software interruDt

MT-2 lb, fbe
main DOS
service

Windows
functions

Interrupt
Vector
Table (/VT)

where “n” is an integer (whole number) from zero to FF (hex).
The usual procedure is that certain registers have to be loaded
prior to the INT, depending upon the particular service, and many
of the services have subfunctions, usually selected by a value in
the AH register.

The most important of these is INT-2lh (h = hexadecimal), which
is the main DOS service, with dozens of subfunctions.
A comprehensive list is to be found in my previous book. In this
one you’ll find extra INT services especially relevant to Windows.
It is not that we do away with INT services entirely with
Windows, it’s just that many of the BIOS and DOS services are
designed for DOS and the Real mode and are no longer
appropriate.

We access the Windows services by CALL instructions, not INTs,
and from the CPUs point of view there is a difference. Windows’
services, or functions, do all that many programmers would want,
though we dig a little deeper in this book and also show how
useful the INT services can be.

Real Mode Interrupts

Interrupts, whether from an external source (hardware) or
generated internally by the program (software), cause the same
reaction in the CPU:

1. The CPU pushes the current Instruction Pointer (IP), Code
Segment (CS), and FLAGS register onto the stack.

2. Then the CPU uses the value ‘9-i”  as an index into the
Interrupt Vector Table (IVT), where it finds the FAR address
of the service routine.
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3. The CPU then loads the FAR address into its CS:IP registers
and commences execution of the service routine.

4. Interrupt routines always terminate with an IRET instruction,
which has the effect of popping the three values saved on the
stack back off, into CS, IP, and FLAGS. Thus the CPU
carries on as before, as though nothing had happened.

IRET Note that when a CALL instruction executes, it works in a similar
instruction way, but a FAR CALL only saves CS and IP on the stack, not the

FLAGS. Also, if it is a NEAR CALL, only IP is saved on the
stack. In addition, the routine called must terminate with RET, not
IRET, as the latter pops three values off the stack (expecting
FLAGS to be on there as well).

CALL to an Incidentally, a useful point arises from what I have written above.
ISR You can use the CALL instruction to call the BIOS and DOS

services, despite the fact that they terminate with an RET:

PUSHF
CALL rou tinename

;push flags on stack.

Structure of
the /VT

Interrupt
Descriptor
Table (ILIT)

That is, you push the FLAGS on beforehand, using a special
instruction, PUSHF (there is also a POPF). You do need to know
the address of the routine that you are calling, however, since it
doesn’t make use of the IVT, as INT does.

Protected Mode Interrupts

Just as segment registers no longer represent real addresses, so too
the interrupt mechanism no longer uses the Interrupt Vector Table
(IVT). Interestingly, when Windows is running, the IVT is still
there, but our applications don’t use it. It is still used by Windows,
but that’s another story.

So, just where is this IVT? Have a look back at page 11. The IVT
sits in RAM right down at OOOO:OOOO, occupying the first 1024
bytes. It is set up by the BIOS startup routine and filled in by DOS
also.

The fundamental problem is that it contains real segment
addresses, which is a no-no in Protected mode (though is ok in
virtual-86 mode). Therefore a special table has to be created by
the Windows operating system, called the Interrupt Descriptor
Table (IDT), which contains the linear addresses of the services.
Linear addresses are real, but they are actual 24- or 32-bit
addresses, without the segment:offset structure.
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There is a fascinating outcome of this. From within a Windows
application, you can have an INT instruction - let’s say that you
want to call the BIOS INT-1Oh service, which controls the video
adaptor. INT-1Oh is not a service that Microsoft would want you
to call from your application, since all control of the video should
be done by the Windows functions - but you can do it.
A warning here: some services will crash if called while in
Protected mode, and others will behave strangely.
Microsoft has in some cases provided alternative BIOS and DOS
services, written especially to run in Protected mode, and when
your program executes, say, INT-2lh/AH  = 35h, the CPU will
look up that entry in the IDT (not the IVT) and get the address.
Thus it is very easy for Microsoft to substitute its own services
into the IDT.

In many cases (probably most) Microsoft services have not been
substituted, and execution goes to the original BIOS or DOS
service. Although the Real mode services may in some cases
manipulate addresses in the form segment:offset,  which will cause
the code to crash if the CPU is running in Protected mode,
Windows gets around the problem by switching the CPU into Real
mode, or into virtual-86 mode, then calling the service.
For such cases, the entry in the IDT points to a special handler,
which, apart from changing the CPU to Real mode, must also
convert any pointers from selector to segment value. Then the
handler will have to look in the IVT to get the address of the Real
mode service.
Thus, even the services in the BIOS-ROM will work. At least they
will return without crashing the system (in most cases), though
whether they do what you want is another matter.
Note however, that there is a difference in accessing interrupts
from a 32-bit compared with a 16-bit Windows application. This
is a complicated issue and is developed in Chapter 16.

Another fascinating thought occurs about virtual-86 mode, which
uses the IVT, but in plural. Although there is an IVT at actual
physical address OOOO:OOOO, each virtual-86 task will have its own
copy of the IVT, which appears to be at OOOO:OOOO but is paged
anywhere. You need to be aware of this proliferation of IVTs if
you want to hook a vector.

Refer to Chapters 10, 11, and 12 for more information, particularly
page 282 and thereabout.
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Postamble
This chapter mapped out the overall architecture of the x86
processor, and you may have found some of it heavy going.
Subsequent chapters are a step back, and topics are revisited in
depth. Chapter 2 is an in-depth treatment of the basics of
assembly language.



2
Basic Assembly

Language

Preamble

Content
of this
chapter

This chapter contains an introduction to assembly language for the
x86 family of processors. The focus is on 16-bit  programming.
Later chapters will expand this to 32-bit programming.
Real mode 16-bit programming can be considered an essential step
up the ladder of understanding, climbing through 16-bit Protected
mode, toward 32-bit Protected mode programming.
Chapter 4 puts this knowledge to use in a first 16-bit Windows
application.
Discussion relates to the Microsoft and Borland assemblers,
though of course there are other compatibles.
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fnitiafisation
of the stack

P u r p o s e  o f
the stack

*.. t e m p o r a r y
s t o r a g e

,,a C A L L /  R E T

*.* i n t e r r u p t
m e c h a n i s m

Stack Instructions
The computer maintains a stack somewhere in memory. DOS will
set the Stack Segment register SS when your program is loaded,
and the Stack Pointer SP will be initialised to FFFEh, or some
value that means the stack is empty. The stack is used by the
computer and by your program. For example, whenever an
interrupt occurs the CPU pushes the IP, CS, and FLAGS onto the
stack, so that when the interrupt routine is finished (terminated by
an IRET instruction) the CPU will pop these values back into the
respective registers and continue from where it left off.

Thus the stack is used to hold register values to enable the CPU to
return from an interrupt and also from a procedure CALL.
However you can make use of the stack in your program, by
means of the PUSH instruction, which pushes a 16-bit value onto
the stack, and POP, which pops the top value off the stack into a
register or memory location. Also PUSHF and POPF can be used
to push the FLAGS onto the stack and pop them off.
Whoa! This is a lot to think about! I’ve just stated above that
there is a memory area called a stack, that it is used by the CPU to
store register values for interrupt and CALL-instruction execution,
and it is used by the PUSH and POP instructions. You may find it
extremely helpful at this point to visualise what is happening.
Look at Figure 2.1 and examine the effect of the PUSH and POP
instructions.

In Figure 2.1 you see two instructions, PUSH and POP, that you
can use in your program. You can push values onto the stack, and
take them off again - why? - one reason is that it serves as a
convenient temporary storage.

I also mentioned that the stack is used by the CALL instruction -
this is one of the “transfer of control” instructions and is described
in the next section.

I mentioned that interrupts also use the stack - again, explanation
is deferred.
Do not worry about these deferred explanations - one thing at a
time. Examination of Figure 2.1 will give you an idea about what
the stack is, which is satisfactory for now.
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Figure 2.1: Concept of the stack.

From a “logical” user’s point of view, the stack is like a bucket: pushing a
value on adds to the top of the bucket, while popping takes off the top
entry in the bucket . . .

PUSH _% SS = start of stack
segment.

If there is nothing in the bucket, SP=
FFFFEh (or whatever the stack size
is: FFFFEh is correct for .COM tiles).

SP = top of
stack (stack
grows down
in memory).

Now put a couple of values in:

This is the program:

The stack always tr
(word), so each entry actually occupies two
memory locations (not shown here).
Note that the last instruction popped the top off
the stack, into BX.

value from CX I

The stack is a temporary storage area, whose actual address we don’t
need to know. It does have a limitation: when SP=O the stack is full.

Transfer of Control
The idea of a computer program is that it is a sequence of
instructions: in this book we are looking at machine instructions
that the CPU directly understands. Assembly language is just a
symbolic (more meaningful) way of writing the machine
instructions.
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The CPU executes the instructions sequentially - that is, one after
the other in order of increasing addresses - but can also jump out
of sequence.

LOOP, JMP, The topic of this section is those instructions that cause execution
CALL. /NT. to go to some other place in the program. The main ones are:
JX

. .
LOaP,  Jh4P,  CALL, I&T, and Jx. in this section we will examine
CALL, JMP, and Jx. LOOP and INT are examined a little bit
later:

Figure 2.2: Stack handling for CALL and RET.

Involvement of the stack for CALL
and RET. These two must always
occur in pairs.

cs : Code segment
. . . . .

InthecaseofaNEARCALL,onlythe CALL RYTINEXIPm 3 . . . . . .
CPU’s offset IP is altered: a FAR CALL Note that the CALL

instruction has the
will also alter CS. value IPx as its
The CALL pushes IPm onto the stack,
and loads its operand (IPx) into IP.

CPU

IPI, .,.;,; ‘_::
Stack segment

When IP has the new value, IPx, the
subroutine ROUTIAEX is executed,
and the RET instruction causes a
return to the caller, by popping IPm
off the stack, back into IP.

SP+ IPm
. . . . . .
. . . . . .

Figure 2.2 illustrates how the CALL and its companion RET use
the stack. The basic idea is that the value in the Instruction
Pointer, IP, is always the next instruction to be executed, so when
“CALL ROUTINEX” is executing, IP will have IPm in it. Since
the value in IP has to be changed to the subroutine, IPx, the return
value has to be saved somewhere: hence the stack is used to save
IPm. The RET instruction must always be placed at the end of a
procedure, as it pops the top off the stack, back into IP.
If you have programmed in C or Pascal, you know that you don’t
put a RET, or anything special, at the end of a procedure or
function. CALL and RET do go into the code, though, because the



FAR and
NEAR
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Code /abeIs
with MASM,
TASM,
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compiler translates the high-level source code to machine
instructions.

This topic does need some careful thought. Any CALL, RET, or
JMP instruction can be a FAR or NEAR jump. What this means is
that if the jump is NEAR, the jump is only within the current code
segment; that is, only the IP is altered, as per Figure 2.2.
A FAR jump or call, however, can be to anywhere in the entire 1M
address range, as both CS and IP are altered. In Figure 2.2, the
procedure ROUTINEX is shown as being in the same code
segment as the CALL instruction, but it could be somewhere
entirely different. Obviously, if ROUTINEX is in a different code
segment, then both CS and IP in the CPU would have to be
changed to the new values.
Note that it also logically follows that the original values of CS:IP,
immediately after the CALL, would both have to be saved on the
stack, and RET would have to restore both of them at the end of
the procedure.
Note that with what is called 32-bit programming, the distinction
between NEAR and FAR just about disappears.

One thing that you will notice from Figure 2.2, is that I used a
code label, ROUTINEX, to name the start of the procedure. This
is basically what you expect to be able to do in any high-level
language, and you can also do this in assembly language. A code
label marks, or identities, that point in the code, hence a CALL
was able to be made to that place.

With a professional assembler, such as the Borland TASM, or
Microsoft MASM, these labels are a normal part of writing a
program, but DEBUG is a different story.
DEBUG CANNOT HAVE LABELS!
With DEBUG any instruction that transfers control to another
address must contain the actual offset.

What is DEBUG? It is a program that comes with DOS, and from
the DOS prompt you will only have to type the name of the
program to execute it. DEBUG.EXE is a way of becoming
familiar with the instruction set - it allows you to try out the
instructions and put together simple programs.
These examples show that DEBUG must have an actual address,
not labels:

MOV CX,9
PLACEl: *this is at 113 (say)I
MOV AX,0
LOOP 113

-arbitrary instrI
;absolute  offset (no label)
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ibbP PLACE1 ;using a  l a b e l .

JMP
instructiofl

SHORT,
NEAR, and
FAR

However, by writing the code in “proper” assembly language, we
do not need to know actual addresses. The second example here
shows how a proper assembler can have a symbolic address
marker, in this case PLACE1 .

In Figure 2.2, we looked at a CALL instruction, but there is also a
JMP (jump) instruction that transfers execution to the address
specified in its operand in the same manner as the CALL
instruction, but with a major difference: no return address is saved
on the stack. This is because JMP is used when you do not want
execution to come back.

It was also explained above that the CALL can be NEAR or FAR,
but the JMP can be SHORT, NEAR, or FAR.
The example code below shows a JMP to a label. Usually, an
assembler defaults to a NEAR jump, as the destination is usually
in the same segment.

jmp PLACE1

PLiCEl: ;code l a b e l .
mov ax,0 ;arbitrary i n s t r u c t i o n .

At this point, it is instructive to consider how the assembler will
assemble this .lMP instruction into memory. Obviously, it has to
be converted to “machine language”, or binary bits. That is what
any compiler or assembler does.

Figure 2.3: Generation of machine code, NEAR jump.

Increasing
addresses
downward

In Figure 2.3 you can see the basic scenario. The first one (or
sometimes two) memory location(s) contain the instruction-code,
or operation-code, often referred to as the op-code, that identifies
this as a JMP instruction (or whatever), while the following zero
or more bytes are the operand.

NEARJMP In the case of the NEAR jump instruction, the operand contains a
16-bit  offset, which is the place to jump to. But, and this is most
important, the addressing structure of all the Intel x86 CPUs uses
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FAR JMP

SHORT JMP

Range of a
SHORTjump

byte addressing, meaning that each address addresses a one-byte
(8 bit) memory location.
Therefore, the operand requires two memory locations, as shown
in Figure 2.3 as operand-low and operand-high. The Intel x86
convention is that the low-half of the value is stored at the lower
address.

It is also useful to note that if the IMP is a FAR jump, that is, to
another code segment, the operand of the instruction will have to
contain the destination CS:IP, which is two 16-bit  values. Hence it
would be 32 bits.
The FAR jump would assemble as the one-byte (or two) op-code,
followed by a one-word IP then one-word CS value. Note that the
FAR jump can also jump within the current code segment but is
slightly inefficient because it is a longer instruction, taking a little
longer to execute and using more memory.

The IMP instruction has one interesting difference from the
CALL: it is able to perform a SHORT jump. This is shown in
Figure 2.4:

Figure 2.4: SHORT jump machine code.

Iancrcesiey  Operation-code

. Fl

downward
Operand

\1

This reduces the instruction down to the one-byte (g-bit) op-code
followed by a one-byte 2%complement displacement. This
displacement allows jumps to be only +127  to -128 about the
current IP position.
In some circumstances, the assembler will automatically make the
jump SHORT, but it can also be forced to, by means of the
SHORT directive.

Conditional Jump

The conditional-jump instructions test various flags before
deciding whether to jump or not. These instructions are always of
the SHORT type. This is very important - they can only jump
128 locations away from the current code location.lhe conditional
jump instructions are sometimes confusing for the student,
however the concept becomes quite clear with a little practise.
Most CPU instructions affect the flags after they have executed,
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and the conditional jump instructions can be used to test the flags
and jump accordingly.
Below is a summary of the conditional jump instructions:

JZ ,.jump  if previous result was 0
JNZ ;jump  if previous result not 0
JGrea ter ;this  means "if the SIGNED difference is positive"
JAbove ;this  means "if the UNSIGNED difference is positive"
JLess ;this means "if the SIGNED difference is negative"
JBelow ;this  means "if the UNSIGNED difference is negative"
JCarry ;assembles  the same as JB.

When using these instructions, you do not enter the part in italics.

Signed and Note that when comparing two values, we need to distinguish
unsigned between whether the values are unsigned or 2’s complement.
compare Here are simple examples:

ADD AX,VALl
JZ ZERORESULT ;jumps if previous result=O(zero-flag

; set)
&1;, AX,56 *compare  instr.
JA ABOVE56 ljumps  if AX>56

ivariations . . .
JNC place1 *jump if Carry flag=0
JE place1 isame as JZ ("Equal")
JAE place1 ;unsigned jump, if above or equal.
JBE place1 I*unsigned jump, if below or equal.

The ADD instruction, given as an example above, is explained a
little further on. Ditto for the CMP instruction.
Note that "ZERORESULT",  "ABOVES~",  and "placel"  are code
labels, chosen to have meaningful names.

Addressing Modes
Obviously, the instructions of your program will be accessing
registers and memory, and the mechanisms by which this is done
are called the addressing modes.
The best way to show this is by example:

VALl DW 0

'P&7 AX,BX I*register addressing mode.
MOV AX,567 *immediate addressing mode.
MOV AX,[567] ldirect addressing mode
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MOV Ax,VALl I*direct addressing mode.

MOc/ The humble MOVe instruction is the equivalent of the LoaD-Act
insfrucfio~ and STore-Ace instructions of the 6800 CPU, for those who have

had exposure to that beastie. It simply moves a value from one
place to another, in this case copying the value of BX to AX.

Register & Because only registers are involved in the first instruction of the
immediate above example, this is called register addressing.
addressing The same MOV instruction appears again on the second line, but

note that a value is specified this time. This value is NOT an
address; it is an immediate value that is loaded into AX. This is
called immediate mode addressing

Direct Now this is different. The square brackets of the third instruction
addressing signify “the contents of’ and it is the contents of address 567 that

is loaded into AX (there is a qualification to the above comment,
as the example loads the AX register, which is 16 bits, from a
memory location, which is 8 bits).
Note too that with an assembler (not primitive DEBUG though)
any address can be replaced by a label, so if you had defined
address 567 as being represented by label VALl (for example),
then this would do the same thing:
Both of these are called direct addressing.

[Jsyntax Do note one point about syntax. The last instruction could have
square brackets around VAL 1, and it would be interpreted exactly
the same by the assembler (TASM or MASM).

Indirectand Indirect addressing is somewhat more abstract. It means that the
indexed contents of the operand are used as the address. So, the content of
addressing BX is the address from which the value is fetched into AX:

mov ax, [bxl -indexed addressing mode.
mov ax, [bx+51 j$mov ax, [bx+si+51

That just about covers it, except that indirect addressing does have
some options, as shown in the last two instructions above.
The first one adds the contents of BX to 5, and the result is the
address, while the second example adds the contents of BX, SI,
and 5 to form the address. This modified form of indirect
addressing is called indirect plus displacement if a constant is
specified, or indexed indirect if two registers are specifed.

Restrictions Note that we often just label these various indirect modes under
on indexed the title of indexed addressing.
addressing
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Note also, that there are restrictions on the combinations of
registers allowed within the brackets: you can have SI or DI, but
not both, and you can have BX or BP, but not both. No other
registers are allowed.

Segment Registers
Another thought: how do you access data in DS, the data segment?
This is the place to keep data, so obviously your program must be
able to get to it. Simple: most instructions automatically reference
the DS.
For example, the listing below shows how VALl is defined and
referenced:

.DATA
VALl DB 0 -in data segment.I

.&E
mov ax,VALl *in code segment.I

Later, you will see more details on how to use the assembler, so
don’t worry about that side of things. Suffice to say that you can
define a label in the data segment and reference it from the code
segment.
When the program is assembled, the address of VALI will be put
into the operand of the MOV instruction: note however that this is
an offset relative to the DS.
Most importantly, when your program is executed, it must have
DS set to the beginning of the data area, as the MOV instruction
will automatically use DS to compute the physical address.
Sometimes, especially with pop-up and interrupt routines, the
program may be entered with DS not set correctly, so you have to
take care of that at the beginning of the program.

Segment
override

Although the MOV instruction in the above example automatically
referenced the DS register, it is possible to override this. For
example you could have data in the code segment, so your
program would have this:

.DATA

.&DE
jmp place1

VALl DB 0 ;data defined in  code segment .
placel:
mov ax,cs:VALl
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Some notes on this:

. COM format l

ES  reg ister

C o n c e p t  o f
the string
iflstructions

W/B pos ffix

.

In the case of .COM programs CS = DS = SS, so the question
of override doesn’t arise normally. With a .EXE program,
data could be kept in the code segment, as long as execution
jumps around it: but note also that OS/2 and other operating
systems that operate the 286 and 386 CPUs  in Protected mode,
may be very unhappy with data kept in the code segment/s.

Sometimes data is kept in a segment pointed to by ES (or FS
and GS in the 386),  so ES override might be useful in this
situation. The BP register, although a general-purpose
register, is treated by the assembler as an offset into the stack
segment, SS, by default. Thus, if you want to use BP to access
data in segments pointed to by DS or ES, an override is
required.

String Instructions
This group of instructions are designed for moving blocks of data
from one place in memory to another, and some of them are for
searching through and comparing blocks of data. The word
“string” does not necessarily imply text, but any block of data.
Mostly you will use the string instructions responsible for moving
data around, such as MOVS, LODS, and STOS. Basically, you
have the source block in one part of memory and the destination
somewhere else, and you have to set certain registers to point to
these source and destination areas before using the string
instruction.

The string instructions have an “implied” addressing mode, in that
they use certain predetined registers, as shown in Figure 2.5.
Figure 2.5 is a picture of memory. DS:SI is where the data is, and
ES:DI is where it’s sent.
MOVSB, for example, would read a single byte from DS:SI, copy
it to ES:DI, and automatically increment both SI and DI, so that
the next time the instruction is executed the next byte will be
copied.

All the string instructions can be postfixed  with a “B”  or a “W”.
MOVSW would move two bytes of data (one word) and SI and DI
would automatically increment by two.
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Figure 2.5: Concept of the string instructions.

Auto-
increment

Directiofl
flag, DF

REP prefix

String operations make use of SI and DI to point to the source and
destination strings respectively, and they are automatically
updated each time the string instruction is executed.

There is a direction flag, DF, that is cleared by instruction CLD,
and set by instruction STD. If DF is clear, the string instruction
will automatically increment SI and/or DI to point to the next byte
or word, and if DF is set they will be decremented. It is normal to
operate on a string starting from the lowest address in memory, so
use CLD before a string operation (this is the default for the 80x86
family anyway).
DF is one bit of the FLAGS register, shown on page 244.
CLD and STD are described in the Appendices.

REP is a prefix, placed on the same line and before a string
instruction. It means “check if CX = 0, if not perform the string
instruction, decrement CX, then start again”. Example:

mov cx,str_length
rep movsb ;repeat with cx = count.

A variation on this is REPNE, which is basically the same but will
also terminate if the zero-flag is set.
REP variations are summarised in the Appendices.

LOOP Note that the LOOP instruction can do much the same as REP.
instruction Again, CX is decremented before CX is compared with zero, so

MOVSB will be executed exactly the number of times originally
loaded into CX. The loop will terminate with CX = 0. There are
some variations on the basic LOOP instruction: have a look in
Appendix A.

mov c x , s t r _ l e n g t h
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again: I*code loop does same as above.
movsb
loop again I*loop i s  a n  a c t u a l  i n s t r u c t i o n .

One warning with LOOP is don’t initialise CX to zero before
entering the loop, as it will then loop around 65,000 times!
When to use LOOP rather than REP? LOOP is not restricted to
the string instructions because it is an instruction in its own right,
whereas REP is only an instruction prefix designed to work with
the string instructions. LOOP can be used wherever a program
loop is required, and more than one instruction can go inside the
loop: though note that LOOP can only do a SHORT jump.

MOVSB, Transfer contents (byte or word) of source-pointer DS:SI to
MOVSW location specified by destination-pointer ES:DI (hence the name

Source-Index and Destination-Index).

CMPSB, These instructions compare bytes or words pointed to by ES:DI
CMPSW and DS:SI and set flags for use by J-condition instructions. For

example, to use CMPSB with REP:

mov cx,str_length
rep cmpsb
jnz difference fnd-

This example will compare the two strings until the end of the
string (set by value in CX) OR until a non-equal comparison is
reached (in which case CX will point to the position in the string at
which the difference was found, and the zero-flag will be clear).

SCASB, Use these instructions to compare AL or AX with the value
SCASW pointed to by ES:DI. Note: they are most often used with REPNE.

A typical use is:

.setup DS to beginning of PSP (will be for COM files & at
lstart of EXE prog). else use ES override....

mov al,lt/U'
mov di,080h ;length of tail in PSP
mov cx, [dil ;(could use override)
mov di,08lh ;command-tail in PSP.

;we will assume that ES is set to the start of the PSP--
;should be for EXE & COM files.
REPNE SCASB
jcxz no-slash ;yes, slash was found...
mov al, [di] ;could  use override.
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Command- The code searches the DOS command-tail in the PSP (see Figure
tine tail 1.8) to see if there is a “switch” (“/” followed by a letter).

If the loop terminates without finding a slash, CX will equal zero,
so the special conditional jump instruction, JCXZ, which tests if
CX = 0, can be used to detect that no slash was in the string.
Because the string-instruction automatically increments DI each
time, at termination DI will point to the next character past the last
one tested. If the slash was found, this next character will be the
switch.

LODSL?,
LODSW

STOSB,
STOSW

Note that Windows 3.x and 95 applications still have a PSP.

The value in the location pointed to by DS:SI is loaded into AL or
AX. SI is automatically incremented (+/-1 if LODSB, or +/-2 if
LODSW).

The value in AL or AX is stored at the location pointed to by
ES:DI. DI is automatically incremented (+/-1 if STOSB, or +/-2 if
STOSW).
STOS and LODS are most useful for video access, as the format of
video-RAM in text-mode requires every odd byte to be an attribute
character:

; . . . setup ES:DI....
. . . setup DS:SI....

r&v  c x , s t r i n g  l e n g t h
mov ah,attribiite
. . .

n e x t  c h a r :
lodEb ;char-->AL
stosw ;AX-->destination.
loop next  char

; . . . t h i s  c o d e  w i l l  s e n d  c h a r a c t e r s  t o  t h e  s c r e e n

Arithmetic Instructions

PREREQUISITES
These include addition, subtraction, multiplication, and division. I expect you to have
a working knowledge of the principles of binary arithmetic: unsigned binary numbers,

2's complement binary numbers, radix conversion among hex/binary/decimal.
For example, suppose I ask you to express -2 as a 32-bit binary number, and also as a
32-bit hexadecimal number. Can you do it? If the answer is yes, then you do have a
few clues, so read on. Otherwise look back at Chapter 1, and consolidate with further

study if required.
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CW The CMP instruction has already been introduced but involves
i nstruct ion arithmetic comparisons, so it will be considered again here.

The example below subtracts 127 from AL, and the result sets the
appropriate flags. Decimal is the default with an assembler, unless
an “h” is appended to designate hex. DEBUG can only have hex.
We will treat 127 as being decimal in this case.

=mP al, 127 ;hypothetical  s u b t r a c t .

The CMP instruction can be followed by a conditional jump that
jumps or doesn’t jump depending upon the flags.
Although CMP subtracts the two values, it is only done
hypothetically, and the two operands are left unchanged. CMP
doesn’t care whether the number is unsigned or 2’s complement -
it just subtracts them. It is the same for all the addition/subtraction
arithmetic instructions - it is up to the programmer to decide how
to treat the operands and the result.

z’s This point can be clarified. Since the above example is dealing
c o m p l e m e n t with S-bit operands, the range of values depends upon whether we
versus are treating them as 2’s complement or unsigned number:
u n s i g n e d

Unsigned : 0 <-> 255 o r 00 C--> FF in Hex.
2's compl: -128 <--> +127 o r 80 c--5 7F in Hex.

So if AL = 128, the example CMP instruction will give a
hypothetical result of:
128 - 127 = 1, i.e., the result is +l, or in binary 00000001.
Obviously AL is greater than 127, but that is only if you treat the
numbers as unsigned. As a 2’s complement number, 128 is
actually -128!

Unsigned : O-C->127, 128c-->255  or OO-7F,80-FF in Hex.
2's compl: O<->127,-128<-~-1 or OO-7F,80-FF in Hex.

So from a 2’s_complement  point of view, AL is less than the
operand 127. That is why there are different conditional jump
instructions for signed and unsigned numbers.
Following the “CMP  AL, 127”, we could have any one of the
following, depending upon how we want to treat the number:

J A  l a b e l *jump if AL above 127, unsigned.
JB label ijump ii AL below 127, unsigned.
JG label ; jump if AL greater than 127, signed.
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JL label ; jump if AL less than 127, signed.

This can be a point of confusion for novice programmers, so be
careful. It is a good policy to stick with unsigned compares, unless
you have particular reason to do otherwise.

N E G This is strictly for 2’s complement numbers - it changes the sign
instfuctiofl of an operand. For this example, the result will be -127 in AL:

mov al,127
neg al
mov al,-127

A useful point to note about the assembler is that you don’t ever
have to calculate the binary or hex negative 2’s complement
number; just put a minus sign in front and the assembler will do
the conversion. The last line shows this.

/NC,  D E C (INCrement,  DECrement). These two do what their names
i n s t r u c t i o n s suggest; add 1 to an operand or subtract 1 from it.

Since we have specified an 8-bit operand in the examples below, if
INC goes beyond 255 (FF hex), then it will simply roll around and
start from zero. Ditto, but the opposite, for DEC.

inc al
dec al

A D D ,  S U B Recall from the above notes that ADD/SUB arithmetic instructions
hstmctions don’t know whether your operands are 2’s complement or unsigned

numbers - that interpretation is up to you. The size of the
operands are important in these calculations, and the instruction
determines that from the operands themselves.
SUB works just like CMP, setting the same flags (and so can be
followed by a conditional jump), but the subtraction is not
hypothetical - the result of the subtraction is left in AX.

add al,127
sub al,127

These instructions can handle numbers bigger than 16 bits. Of
course so can the 386, since it has 32-bit registers, but for now 1’11
assume I only have 16-bit registers and I want to add numbers that
could possibly have a 32-bit result.

add ax,cx ;add cx to ax, result in ax.
adc bx,dx ;add dx to bx, with carry.
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ADC, SBB
instructions

DAA, DAS

For this example we have two 32-bit values in BX:AX and
DX:CX. The two lower halves are added, leaving the result in
AX. The ADD instruction will set the carry flag if the unsigned
result is greater than the limit (FFFF hex).

ADC means ADd-with-Carry, and adds the carry flag bit plus DX,
to BX, with the result in BX. Thus the total result is in BXAX.
For subtraction of 32-bit numbers, the principle is the same, and
there is an appropriate instruction: SBB (SuBtract with Borrow).

For addition and subtraction of BCD numbers, you need to use
DAA and DAS.
The operation of DAA (Decimal Adjust for Addition) is shown
pictorially in Figure 2.6. It corrects the result of adding two BCD
(packed decimal) values. Operates on the AL register. If the
rightmost four bits of AL have a value greater than 9 or the half
(auxiliary) carry flag is 1, DAA adds 6 to AL and sets the
half-carry flag. If AL contains a value greater than 9Fh or the
carry flag is 1,DAA adds 60h to AL and sets the carry flag.

Figure 2.6: Decimal arithmetic.

8 5  h e x (these numbers are 50 hex
+20 hex packed BCD)

(these numbers are
-21 hex packed BCD)

DAS (Decimal Adjust for Subtraction) is the opposite of DAA.
After subtracting two numbers, perform DAS operation on AL. If
the rightmost 4 bits have a value greater than 9 or the half-can-y
flag is set, DAS subtracts 6 from AL and sets the Carry Flag.

Ml/L, D/v, There are two groups of multiply and divide; MUL and DIV for
MJL, /D/V unsigned numbers and IMUL and IDIV for signed numbers.

One problem we have with multiply is that two 16-bit operands
can produce a result up to 32 bits long. Thus in the case of CPUs
with only 16-bit registers, the result may have to reside in two
registers. The MUL instruction uses AL and AX, or AX and DX,
by default.

mu1 bl
mu1 bx

;al*bl --> ax
;ax*bx --> dx:ax
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The first example makes the assumption that the other operand is
in AL, so the result will appear in AX. The second example
makes the assumption that the other operand is in AX, and the
result will be in DX:AX.
Division has problems of its own. The dividend (the operand to be
divided) is in either AX or DX:AX, and the divisor is in any other
register or variable (8 or 16 bits).

d i v  bl ;ax/bl  --> a h  a n d  a l .
d i v  b x ; d x : a x / b x  --> dx and ax.

The first example assumes the dividend to be in AX and puts the
result in AX in this format: AH = remainder (left over), AL =
quotient (result).
The second example specifies a 16-bit divisor, which assumes that
the dividend is in DX:AX and the result in DX:AX as follows:
DX = remainder, AX = quotient.
A feature built into the CPU is that if there is an error in the
calculation, a certain interrupt is generated, and DOS displays an
appropriate error message. In the case of DIV, it is possible for
the quotient to be too big for AL or AX - DOS will abort your
program with a “division overflow” message.

Logical Instructions
Logical instructions basically work on individual bits rather than
complete numbers. They relate back to boolean algebra, and as
with the arithmetic instructions, I assume a certain background
knowledge. You should have a basic understanding of the boolean
AND, OR, EXCLUSIVE-OR, and NOT functions.

AN.., TEST AND performs a logical AND on corresponding bits in two
operands, leaving the results in one operand.

mov a1,01001000b
and al, OOOOlOOOb ;answer  a l  =  OOOOlOOOb

TEST is just like AND but only does the operation hypothetically
and doesn’t change the operands (this is very similar in concept to
the relationship between SUB and CMP).

OR OR performs a logical OR operation on two operands.

mov al, OlOOlOOOb

I
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O K a1.00001000b :result  a l = OlOOlOOOb

XOR XOR performs a logical EXCLUSIVE-OR on two operands.

mov a1,01001OOOb
xor a1.00001000b :result  al = OlOOOOOOb

NOT NOT complements all bits in an operand (this is not a 2’s
complement conversion - see NEG).

mov a1,01001000b
not al ;result  al = 1OllOlllb

SHL,  SHR SHL (SHift Left) and SHR (SHift Right) do what they suggest, but
it is clearer if their operation is viewed diagrammatically (Figure
2.7):

Figure 2.7: Shift instructions.

Examples of shift and rotate
instructions . . .

SHR AL,1

SAR AL, 1

ROR AL, 1

RCR AL, 1

The example of SHR moves all bits in AL one place to the right,
and a 0 into the most significant bit (MSB). Note that the least
significant bit (LSB) goes into the carry flag, CF.
This instruction is sometimes used to test individual bits, since it
can be followed by JC (Jump on Carry set) or JNC (Jump on Carry
not set).
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A limit with the 8088/8086  is that the “count” operand can only be
a value of 1 if in immediate mode, as shown in Figure 2.7. If the
shift is to be more than 1 bit, a count value must first be moved
into CL:

mov cl,3
Sk-X al,cl *shift, 3 bits right.

SAR

ROL, ROR

RCR, RCL

Note that the shift operations can also be on 16-bit (and 32-bit)
registers.
SHL does exactly the opposite of SHR, moving zeros into the LSB
and the MSB out to the carry flag.

SAR (Shift Arithmetic Right) works like SHR, except it maintains
the sign. This is most useful for signed numbers. Refer to Figure
2.7.

ROL (Rotate Left) and ROR (Rotate Right) work similarly to the
shift instructions, except what falls out is rotated around back in
the other end. Refer to Figure 2.7.
Thus the contents are never lost, but circulate around the register.
ROL is the mirror-image of ROR, sending the MSB to the carry
flag and back around to the LSB.

RCR (Rotate through Carry Right) and RCL work as per ROR and
ROL, except the path of the bits goes through the carry flag. See
Figure 2.7.

Code and Data Labels
Labels are potentially an area of enormous confusion, so I review
them here very carefully. Labels can be used to mark a “place” in
the code or to name some data. They are introduced back on page
41.

Code Labels
In the case of a code label, the syntax is that it should start in
column 1 and be suffixed with a colon ” : “, as in this example:

. . . .
jmp place1
. . . .

placel:
. . . . .

*jumping to somewhere in the program.I

;a code label.
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When the assembler assembles the source code, it replaces "jmp
placeI"  with the operation code for a IMP (jump) instruction,
followed by the address place1 as the operand to the instruction.

Thus the assembler equates place2 to the offiet  it is marking. This
is a vital point: the assembler simply replaces all occurrences of
place1  in the code with the offset address it equates to.
Normally we would be jumping within the current code segment,
so place1 equates to an “offset” from the start of the segment; that
is, the IP value of that point in the code. A jump within the
segment is called a NEAR jump.

Note that it is also possible to jump between segments, which
would be a FAR jump, and I have elaborated on this later in the
book.
Another very important point is that any transfer-of-control
instruction, such as a IMP or CALL, can have various addressing
modes. These modes are encoded by the assembler as part of the
instruction operation code. The above IMP example would be
what we call immediate addressing, as the operand itself is used as
the target address to jump to. Addressing modes have been
introduced on page 44.

Another kind of label is the procedure name, as shown here:

. . . .
call routine1
. . . .

routine1 PROC
. . . . .
r e t

r o u t i n e 1 ENDP

*callingI a procedure .

*the  procedure .
Ibody goes in  here .
*must h a v e  e x p l i c i t  r e t .I

PROC and Procedures allow you to organize code into structured modules,
ENDP that can be called from a main procedure. In some languages they

are called subroutines. A function is a special case of a procedure
that returns a value via a register. For example, C functions return
a value in the AX register or DX:AX register pair (though when
writing C programs you don’t know this underlying mechanism of
the registers).
The point I want to make here is that procedure names are treated
by the assembler just like code labels. In the above example,
“routine1 PRO?  could have been replaced by “routine1  : ” (in
which case the “routine1 ENDP"  would not be needed, since it is
a syntactical requirement to match the PROC directive).
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Data Labels

Data labels define constant or variable data, including numerical
values, strings, arrays, and pointers.

strl DB V'messagelV,O ;defining an ascii string.
varl DW56 ;define  word, 16 bits.
ptrl DW789
var2 DDO ;define  doubleword, 32 bits.
aryl DB64 DUP(0) *array  of 64 bytes.I

Normally we would think of data as belonging in the data segment,
where the code normally expects to access it, but it could just as
easily be defined in the code segment, amongst the code, or in the
stack. Chapter 4 explores the use of the stack for holding data.
Segment override is introduced on page 46.

DB, Define Byte, DW, Define Word, and DD, Define
Doubleword, define 8-, 16-  and 32-bit data respectively. For
example, vad is a 32-bit value of 0. "aryl" shows the use of the
DUPlicate  directive, which causes the assembler to assemble 64-
byte-size values initialized to 0.
Now for the key points: the assembler equates a data label to its
address, just as for code labels. However, depending on the
instruction, it assembles a non-immediate (i.e., direct, see page 45)
addressing mode into the instruction operation code (op-code).
This difference is vital.

mov AX,varl *referencing a data label.I
mov AX,placel ; referencing a code label.

Major The above examples show the difference. At execution time the
distinction second MOV instruction will move the actual address of place1
between code into a, while the other MOV instruction will use a
and data non-immediate mode, moving not the address varl, but its content.
labels Thus, although "MOV ~~,varl" assembled with the address of

varl as the operand to the instruction, at execution-time the
instruction looks at the content of that address. Make sure you
have grasped this distinction before continuing.

Accessing Data
Sometimes, when writing a program, you want to know the
address of something, say a point in the program, or the starting
address of an ASCII string. I gave an example of how to define a
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text string (above), and labelled  it “strl”.  The assembler equates
strl to the starting address of the string.

mov AX, strl ;loads contents.
mov AX, OFFSET strl ;loads address.

OFFSET Unfortunately, because the assembler has assembled the first
override MOV instruction as non-immediate-addressing, the first MOV

here would only load the first two ASCII characters (“me”) into
AX (two characters are fetched because the destination is AX,
which is a 16-bit register).
This is not what we want. We want to load the starting address of
the string into AX. What we have to use is an override directive
that forces the instruction into an immediate addressing mode.
Thus the second example will load the actual operand into AX,
which is the required address.

SEG Note too that you can get the segment value where that string is
override stored (which would normally be the data segment), by this

override:

mov AX, SEG strl ; load segment address.

OFFSET and SEG only work for static data; that is, data that is
defined in the data or code segments. It is possible to have
dynamic or automatic data that is created during execution on the
stack or heap: getting the addresses of this data involves other
techniques, discussed on page 60 (and in Chapters 4 and 5).

Pointers

Data labels can also be pointers. This means that the data content
is itself an address. Earlier, I defined “ptrl DW 789”, but the
treatment of the content “789” is up to the program. Consider
these examples:

c a l l  p t r l I-calls address pointed to.
c a l l  p l a c e 1  ;calls placel.

Immediate “call ptrl” at execution-time will not jump to the ptrl data in
versus non- the data segment - obviously that wouldn’t make sense. No,
immediate since the CALL instruction has assembled as a non-immediate
mode CALL addressing mode, even though the operand of the instruction is the

address ptrl, the instruction looks at the content of ptrl and uses
that. Thus execution will transfer to offset 789 in the code
(wherever that is!).
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“call placel”  is here for comparison. Again the operand will
have the address of placel, but the immediate addressing mode
will cause execution to go to place1  .
Now I’m going to be a little tricky. I will redefine ptrl:

.DATA
ptrl DW place1 ;defining a  p o i n t e r .
.CODE

c a l l  p t r l

place1  :
. . ,

Always remember that as the assembler goes through the source
code, it simply replaces any data or code labels with the addresses
they represent. So where will the CALL instruction transfer
execution to?

NEAR & The above examples of pointers are jumps within the current code
FAR segment, so they are NEAR; however, pointers can also be FAR.
pohders This is discussed in Chapter 4; I have also made some references

to FAR pointers over the next four pages. Always keep in the
back of your mind that for the 386+ the distinction between NEAR
and FAR becomes blurred - you will see why.

LES, LDS, and LEA Instructions

As my example code further on in the book makes use of these
instructions, some clarification is in order here.

.CODE
mov DI, OFFSET place2
mov ES,SEG place2
l e s DI , place2 ;!!!!!! Example of what NOT to do!
. . . .

place2:
. . .

Although I have implied that place2 is a code label in the current
code segment, let’s assume that it is in some other code segment,
maybe in a large .EXE program with multiple code (and/or data)
segments.
The first two MOV instructions will load the FAR address of
place2 into the two registers ES:DI.

LES wit.4 However, the LES instruction will not work. I have put it here to
code-label emphasize this point. LES and LDS (also LGS and LFS) are
operand constrained to non-immediate addressing mode only: they are

designed to load pointers. What will happen here is a “type
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mismatch” error, because “place2”  is a code label. The operand
of these instructions must be a data label, as it is the content of the
label that is loaded. Read ahead to see code in which it does work.

Whenever you want to load a segment and/or offset, use the MOV
instruction, as shown above, or LEA. However, in some
circumstances you cannot use the MOV with OFFSET override
and must instead use LEA (Load Effective Address). LEA is
clarified below, but first, why can’t OFFSET always be used?

The answer is that you would only use OFFSET if place2 is
defined in the data (or code) segment, and not if defined as
LOCAL (see page 62).
The fundamental reason is a built-in limitation to the addressing
modes of the MOV instruction. Automatic data, or any data of a
temporary nature (created and destroyed during run-time) as
opposed to permanent data assembled into the data (or code)
segment, is usually addressed using indexed mode or
register-relative mode.
Look at this example:

r o u t i n e 2 PROC
LOCAL ptr4 : DWORD ;local data created on s t a c k .

i&’ DI,ptr4
. . . .
r e t

routine2 ENDP

LEA
compared
with OFFSET

The assembler will equate ptr4 to [BP-v&e], whereas if ptr4 had
been defined in the data segment by something like “ptr4  DW o”,
the assembler would equate ptr4 to an offset relative to DS.

BP is something that varies at run-time, so in the first case, ptr4
can only be equated in this way. The problem arises if you
compare the above LEA instruction with something like "IIIOV
di, OFFSET ptr4”  - the latter will not work - it will load the
content of ptr4 rather than its offset.
This MOV instruction is translated by the assembler to “mov di ,
[bp-value]  “, and this indexed mode cannot be immediate. It

must be non-immediate. So, the golden rule is:
Only use

MOV reg, OFFSET  label
if label is defined in the data (or code) segment.
For temporary data always use

LEA reg, label
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Some further clarification: the local data label ptr4 only exists
within routine2. LEA will load the offset ptr4 into DI.

LES with “ LES ~1,ptr4” will load the content of ptr4 into ES:DI
data-label (non-immediate mode, since ptr4 is a data label - which is the
operand only mode LES can handle).

Note that LDS works like LES, but loads DS instead of ES.
The LEA instruction differs from the other two in that it loads the
offset of the label regardless of whether it is a data or code label.
“LEA DI, placel”, for example, would just load the offset
(NEAR address) of place1 into DI, not the segment value.

Local Data

An example is given above, and there is more explanation in
Chapter 5.
So far I have been treating labels (code and data) as being equated
by the assembler to their addresses. But what of the case of local
or automatic data labels that only come into existence when
execution enters the procedure in which they are defined?

How the The assembler equates local labels to [BP-value], where value is
assembJer known at assembly-time, but the BP register will have a certain
equates value at execution-time. If you want to know more about the
automatic special role of the BP register, study Chapter 4. Basically, when
data JabeJs execution enters a procedure, BP has an offset pointing to a region

in the stack segment (see page 99). Addresses going down from
BP can be reserved by the assembler for local data. In the above
example, if ptr4 was the only local data, of DoubleWord  size (32
bits, or four memory locations), then the assembler would equate
ptr4 to [BP-4].
Thus an instruction like “lea DI, ptrl” would actually assemble
with the instruction operation code specially encoded to refer to
BP for calculation of the address, immediate mode, and with the
value of 4 as the operand.
(Again, I remind you that the MOV instruction with BP-relative or
index-register-relative addressing cannot be immediate-mode
addressing - see the golden rule above).
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Type Override
Looking back to that example of a local data label, ptr4 (see page
61), what if I wanted to see what it contains, from within my
program?

mov BX, ptr4 ; wrong !
mov BX,WORD PTR ptr4
mov ES,WORD PTR ptr4+2

BYTE,
WORD,
DWORD,
QWORD,
JWORD,
SHORT,
NEAR, FAR

rvPe
mismatch

Size
override

Accessing
32-bit data in
halves

The assembler will be rather rude to you if you give it the first
instruction. The reason is that source and destination operands
must always have the same type.
Type has two aspects to it: size and address.

Size can be of type BYTE (8 bits), WORD (16 bits), DWORD (32
bits), QWORD (64 bits), or TWORD (80 bits).
Address can be SHORT (within 128 bytes either way of the
current IP; 8-bit  signed offset), NEAR (within the current
segment; 16-bit offset), or FAR (in another segment; 32-bit
segment:offset).
In light of this, take a closer look at that example M O V
instruction. BX is a 16-bit register, while the content of ptr4 is
DWORD (32-bit).  In other words a type mismatch.

The assembler will pick this up as a possible error and will tell you
so.
Any data values you define must have a size that matches the
register. “mov  AX, va16” would not work if va16 was defined as
‘%a16  DB 0”. Get the idea?

The above code shows a solution: overrides. We have already
looked at the overrides OFFSET and SEG, now you are seeing
“WORD PTR”.  This is a size override. A syntactical note here: in
front of “PTR”  we can place BYTE, WORD, DWORD, NEAR, or
FAR, as appropriate.

The example, using “WORD PTR”, tells the instruction to ignore the
size-type of the operand and instead treat it as being of size
WORD. This override is encoded by the assembler into the
instruction op-code, and at execution-time the override only
applies to that instruction.
But . . . if ptr4 contains a 32-bit value, and by means of the override
we are going to stuff it into a 16-bit  register, what will actually
happen? In the code above I show two MOV instructions with
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WORD PTR override. The first will grab the lower 16 bits of ptr4,
while the second will grab the higher 16 bits.

Order of Make a note of this. All values are stored in memory with the
storage of lowest byte at the lowest address and the highest byte at the
data in highest address. That is why I added “+2” to the second MOV
memory instruction.

It may be that in my program I want to see what is contained in
ptr4. Any data label defined as having a 32-bit value has a
problem with the 8088, 8086, and 80286, because there are no
32-bit registers. So if I wanted to get that value into a register, I
would actually have to use two registers. That is why I am forced
to use those two MOV instructions with "WORD PTR" overrides,
even for the 386 (for compatibility with the other CPUs). In
Chapter 4 you will see plenty of examples of this.
If we write code for the 386 and upwards exclusively, then a
simple “mov EAX, ptr4”  would do the trick.

Storing32-bit  There is another way to approach the problem of handling 32-bit
data under data: split it in half.
two 16-bit
label..

If you have to store a FAR address, say in a pointer, you can split
it into two data labels:

.DATA
ptroffset DW 789h
ptrsegment DW 1234h
.CODE
mov BX,ptroffset
mov ES,ptrsegment

-far pointer stored inI
-two pieces.I

n.. more on
order of
storage of
data in
memory

This may not be practical for data values, but for FAR addresses in
the form of 16-bit segment:offset it works fine. It means that
source and destination types will match, so no override is required.

Another little note: just as with the x86 family we always store
values with the lowest byte at the lowest address. The same goes
for FAR addresses; the offset always comes first, that is at the
lowest address.
In the above code I suffixed the values with “h” to indicate that
they are hexadecimal values, not decimal. The memory would
look like Figure 2.8 after assembly.
Always remember: the lowest byte at the lowest address.
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Figure 2.8: Order of storage.

Offset in data
segment of / 89h
“ptroffset”

07h
Offset in data
segment  o f  f 34h
“p&segment”

Increasing
addresses 4

Structures
Whatever language you have experience with, you have probably
encountered the concept of data structures.  These are in fact the
foundation of object oriented programming (OOP).
Windows programming makes extensive use of data structures, so
it is appropriate to introduce the topic here.

.DATA
WINDOW STRUC ;Definition  of structure...
field1 DB "ABCDEFGHIJ"
field2 DW 0
field3 DD 0

WINDOW ENDS
. . . . . ;Assembling instances...

win1 WINDOW <"KLJMNO",35,0>
win2 WINDOW <"PQRSTUVWX" ,55,234>

. CO'D'E .
. . . . ;Accessing the instances...
mov ax,winl.field2
, . . .
mov si,OFFSET win1
mov ax, [si.field2]
. . . .
mov ax, [si+lOl
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Object
oriented
programming

Instances

Dot:”
operator

This listing shows how a structure is declared and used. In OOP
terminology the definition is the class. The instances are
objects “.I A structure is just a convenient way of getting at data.
In this case we have data labels fieldl, tield2, and Iield3. By
putting the STRUC and ENDS directives around them, we have a
convenient mechanism for creating mutiple copies of those same
data declarations.

The declarations between STRUC and ENDS don’t actually get
assembled: it is a template, and wherever we create instances, they
are what actually assembles. In this case there are two instances:
win1 and win2. These are identical blocks of data, able to have
their own values, but with identical variable (field) names. In
OOP we would call each field a member.
The example code shows how we can get at these two instances.
The most common method would be the first example. If I had
want to access the “f ield2” field of win2, the instruction would
simply be “mov ax, wina. f ield2”.
You can have as many instances as you wish, and as you will see
in Chapter 5, structures can be automatic or local to a procedure.

Label Equates
It is extremely useful to understand how the assembler assembles
structures. Normally the assembler equates data labels to their
offset from the start of the data segment, but fields of a structure
are equated to offsets relative to the start of the structure. In the
example, tieldl equates to 0 and field2 equates to 10. When the
instances are created, the names win1 and win2 are treated as
normal data labels and thus are equated to offsets from the
segment start.

In assembly language the “.” (period) means exactly the same as
“+“, so the first code example is really:

mov ax, winl+lO ;same as  mov ax,winl.field2

The assembler will add the offset of win1 to 10 and assemble the
result as the operand, with non-immediate addressing encoded into
the operation code. Thus, at execution-time, the content of field2
will get loaded into AX.

Field You will see from the listing that the structure declaration
initia/isation  initialises the values. These initialisations will be put into the

instances, unless overridden.
/

’ In some languages the structure-definition is called the object, and an instance is called an
instance-object.
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Overriding by the instances is done by placing values between the
“< >‘I, as shown in the code on page 65. Nothing between “< >I’
means leave original values as they are. In the examples of win1
and win2, I have overridden the original values, but should I have
decided to override some but not all values, I would have put
something like this: "cllasdfghlv  , , 55s”.  This will leave
field2 alone.

Postamble
There are a host of other considerations for assembly language
programming for Windows, but hey, why should I throw it all at
you at once? Enough is enough.
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Opening Windows

Preamble

7iiple You’ll find this book a nice way for beginners to learn Windows
purpose of programming, as well as a look “under the hood” for those with
fbi’s  book Windows programming experience but with an urge to know

more. You can also use it to learn assembly language.
By the very nature of tackling a topic from a fundamental point of
view, the “nut and bolts” if you like, the beginner can develop very
concrete concepts on which to build. When you have a grasp of
what is going on underneath, a lot of what happens “on top” makes
more sense. Therefore, a beginner can progress to being
“advanced” in the same book, with a solid foundation of
understanding.

Content of This chapter is an introduction to the basic principles of Windows,
this cbapfer, followed by a complete assembly language program in Chapter 4
and beyond - don’t worry if the “skeleton” program looks intimidatingly

long; this is done to show the nitty-gritty of how an assembly
language program works. Chapter 5 shows you how to write an
assembly language program that is almost as short as the same
thing written in a high-level language such as C.
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DOS versus Windows Programming

Other So, just how different is Windows from DOS? Below, I have
r e f e r e n c e s summarized some new concepts you’ll need to come to terms with.

If you come across a reference to a DOS concept or programming
method that you don’t understand, refer to a good DOS assembly
language book.
There are a dozen or so introductory Windows programming
books that could be used to compliment this book, not the least
being Microsoft’s own Microsoft Windows Software Development
Kit: Reference Vol. 2, available separately from the SDK.
You do need a book with in-depth coverage of the Windows
functions, and again Microsoft’s own Microsoft Windows Sofmare
Development Kit: Programmer’s Reference Vol. 2 is excellent.

S k e l e t o n
p r o g r a m

The next chapter puts together a simple skeleton program, but
before we launch into that, let’s consider some of the conceptual
differences involved. The output on the screen will look different
for Windows 3.x and 95. Figure 3.1 is what the skeleton will
produce on the screen when running Windows 3.1.

Figure 3.1: Output of skeleton program.

This is a window, amongst other windows, with its own title,
system controls, menu-bar, and demo message.
So, a major conceptual difference from DOS is that our program
doesn’t output to just anywhere on the screen; normally we are
constrained to output only within our application’s window (or
windows).
Interestingly. another major difference is the role of the operating
system. -Windows does- a lot
much of the usual upkeep of
around, iconizing,  and resizing.

of housekeeping and looks after
the window, such as moving it

Event -dr iv
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structure

Applicatiic
q u e u e

Multitasi
operatin!
s y s t e m
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In fact, Windows does even more than that, allowing us to
program at a more abstract level. Instead of being concerned
about the precise hardware details of the I/O device that our
program is dealing with, we can use the Device Independent
Graphics (graphics device interface (GDI)) tools. Translation
from our program to the particular device is taken care of by
device drivers, and our program can have code that will work on a
wide range of different devices, such as various video standards
(for example, Hercules, CGA, EGA, and VGA).

Internal  Differences

Of course, the results appear on the screen, but the fundamental
structure of our Windows program is different from a DOS
application. The rest of the chapter is devoted to exploring those
differences and the design methodology required to implement
them (such as handles and messages).

A Windows program is what we call event driven. The entire
structure revolves around this concept. Those of you who have
done any programming at all under DOS will know how to read a
character from the keyboard. In assembly language, you could use
INT 16h, AH = 0. However with Windows we don’t do that. In
fact INT 16h won’t even work - Windows will hang.
The essence of being event driven is that for mouse, keyboard, and
much other input, we don’t write code to explicitly ask for input.
Instead we perform a call to Windows, requesting a message, and
Windows will send any message that it thinks is relevant to our
program.
Thus our program plays a very passive role, taking whatever
Windows dishes out.

With Windows there is a system queue and an application queue
for each application. Our program calls Windows and asks for the
message at the head of our application’s queue or waits until a
message is put into the queue. Returning from the call, our
program then deciphers the message and acts upon it.
There are some little wrinkles in this basic explanation, but that’s
the gist of it. Technically, Windows 3.x has one application queue
for all applications, while Windows 95 32-bit applications have
separate queues. This does not affect the programmer. It is an
issue for Windows itself, with regard to scheduling of applications.

Another major conceptual change is due to the multitasking nature
of Windows. Unlike DOS, where everything usually stays put after
it is loaded, code and data can move around. Even video-RAM
cannot be treated as being at a particular address - although it
actually is, an application may have to output to a “logical” video
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buffer located somewhere else. Consider another example: the
heap. You can request local or global heap space (this is just
memory that you can use for storing data), but unlike
single-tasking DOS, you cannot just get its address and then write
to it. The heap could be moved around by Windows (though you
can freeze things also).
These shifting sands impose constraints, such as requiring handles
to access all screen I/O and of course using selectors instead of
segments for data and code manipulation.
Perhaps the newness of this is making you feel uneasy. However,
the hands-on examples a bit later should alleviate that.

Building a Windows Application

Library Functions

The Windows routines operate like C functions (though stack
handling follows the Pascal convention’). The library of functions
can be split into three types:

l KERNEL
l GDI
l USER

Whenever you want to do any kind of I/O operation, including
everything else involving the operating system, such as various
memory management operations, you can call these functions.
They are just like the BIOS and DOS INT services, except they are
called by the assembly language CALL instruction.

LOCatiOnS  Of So, where are these functions actually located? If you look in the
the DLLs C:\WINDOWS\SYSTEM subdirectory (assuming that you

installed Windows in the default directory), you will see the three
files KRNL386.EXE,  GDI.EXE, and USER.EXE. You will also
see KRNL286.EXE,  which is the version of KERNEL for
Windows 3.x running in Standard mode. Windows 95 only has
KRNL386.EXE,  not KRNL286.EXE.  These files provide the API
for 16-bit  WinApps. For 32-bit WinApps, Windows 95 also has
KERNEL32.DLL,  GDI32.DLL, and USER32.DLL.

~._- __.-.
’ Actually, Windows 3.x follows the Pascal calling convention and Windows 95 and NT follow a

mix of Pascal and C convention; that is, parameters are pushed from right to left (C) and stack
cleanup is done by the called function (Pascal).

.ASM, .DE/,

.RC, .MAK

Source files
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. /CO icon
file

.IHC, .H
Include
B/es
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Other functions are available in other .DLL and .DRV files, many
of them undocumented, and I’ll take you a little bit of the way into
this uncharted, but very exciting, territory.

The Mechanics of Assembling and Linking

It is instructive at this point to consider the path we need to
traverse to get from our modest little first  program, written using a
text editor, to the final .EXE program - that hopefully won’t
crash.
The steps shown here look pretty awful, but in practise you’ll find
it’s a cinch.
The main problem is that we need to produce many more files than
the program source file:

l .ASM Your source program(s).
l .DEF Module definition file.
l .RC Resource script(s).
l .MAK Make file.

You can produce all of these using a text editor, though there are
some special programs that help generate them automatically.
In practise, more file types may be required than I list above, but
for now we are working toward a simple skeleton program only.
An example of another tile is the icon for your program - the
graphic image of this would be in an .ICO file.
Figure 3.2 shows a picture of the steps involved.
I mention the C compiler and .C source file here, but it could be
any language, or none if you are writing the entire program in
assembly language. In this book we stick entirely with assembly.
Notice also the .H and/or .INC Include tiles. Strictly speaking,
these are optional, which is why I didn’t list them above. The
introductory program in this chapter only requires the .ASM,
.DEF,  .RC, and .MAK files, but in later chapters I have shown the
use of WINDOWSJNC.
.H files are used with C programs and .INC with assembly
programs. Borland and Microsoft supply utilities to translate .H
files to .INC. Functionally, both types are the same; just with
different syntax to suit the C compiler or the assembler.
Include tiles contain equates and definitions that make the
program more convenient to write.



74 Windows Assembly Language & Systems Programming

Figure 3.2: Steps to generate an executable file.
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Notice how overloaded the LINK program is! The job of a linker
is to combine the various program modules to produce the final
.EXE, but in this case there are extra complications.
The .DEF Module Definition tile defines various program
parameters that the linker needs to generate the .EXE tile.
What we call static library functions can be linked into the .EXE,
and become a permanent part of it, which is the way things work
in the DOS world.
However, the Windows library functions get linked in without
actually adding to the size of the .EXE. That is, they stay where
they are, and are only loaded into R4M memory when the
program executes. This keeps .EXEs small. This kind of library is
called a dynamic link library.

Two Steps for Resources
The .RC resource file defines parameters connected with the
windows, icons, menus, dialog boxes, and segments. The resource
compiler is run twice, first to compile the .RC file(s) and second to
combine the *EXE  from the linker with the compiled resources to
produce a final .EXE.
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After the first compilation, it becomes a .RES file, which has the
information in binary form.
With recent LINK programs, there is support to perform the final
step by the linker. That is, the .RES file is fed to the linker.

Windows Programming Mechanics
There are some major philosophical differences between Windows
programming and conventional DOS-based programming. It is
useful to start off with some appreciation of some new terms
intrinsic to Windows: objects, handles, instances, messages, and
callback functions. These give us the mechanics of programming
in this environment, that is, they are tools that we need to use.
Have a look at each one first, then we’ll go ahead and put it
together into a working program.

Objects

Borland’s latest assembler is described as object oriented, and
there are various C++ compilers around. There is also Turbo
Pascal with Objects. So, what are they?
You’ll find a chapter on object oriented assembly language later
(see page 137), but for now consider just a basic idea. Whatever
you can lump together as a whole, as a distinct entity, think of as
being an object. Your application’s window is an entity on its
own, separate from other windows - it is an object. In fact, so
too are the distinct elements of that window, such as the various
controls, the menu-bar, and the client area (where you output text
and/or graphics to).
You can consider these latter objects as being children of, or
related to, the parent window and subject to its dictates, though
there are limits as Windows is not a true object oriented
environment.
Furthermore, you access any object by getting its handle. As
you’ll see in the skeleton, even writing text to the screen requires
you to get a handle for the client area.

Handles

A handle is just an ID, a unique number, that our program can use
to access the object. Actually, you probably already have some
exposure to the concept. Various PC programming books discuss
handles in relation to file access under DOS.
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All that has been done in Windows is generalise the concept, so
that a handle can be obtained for any object. I am generalising the
word object here, as Windows literature uses other terms that are
still objects but used in a particular context. One that comes to
mind is the device context - this is also a handle to an object.

DOS file Just to elaborate: with DOS, you do a call to open a file or device,
“handle n and DOS returns a handle. This handle is just a 16-bit  number that

you can use within the program to read or write the file. Since it is
possible to simultaneously open many files, it is convenient to
have these handles, a unique one for each file, to read/write the
one you want. So, a handle is an ID, an identifier, for that file,
device, object, or control.
In Windows programming, just about every resource is referenced
by a handle. Even your program has a handle, and indeed so too
has each instance (see below) of your program.

Instances

Mu/f/jr/e A fascinating aspect of Windows is that there can be multiple
program copies of an application running, or at least residing in memory,
instances concurrently.

After all, why not, since this is a multitasking environment? You
can, for example, have two copies of your word processor
executing simultaneously, and you can jump between them. In
such a situation, each copy would be an instance of the program.
The current instance refers to the one you are dealing with at this
moment.
There are some interesting considerations from this ability to have
multiple copies or instances. Windows is not wasteful and only
loads one copy of the code into RAM. Windows will, upon entry
to each instance, give it a unique handle, but the reality is that
there is just the one copy of the code. For this to work, each
instance needs to have its own copy of the data segment or
segments.
The downside is that your program needs to have some extra
statements to handle multiple instances. In practise  this is fairly
standardized, and you can use the supplied skeleton program as the
basis for much more complicated projects, without having to
worry about multiple instances.
With 32-bit applications running in Windows 95, multiple
instances are treated as totally separate programs, so special
instance-handling code is not required.



Messages

Event driven I introduced the basic concept of event driven back on page 7 1;
intertwined with this is messages. I also said that Windows sends
messages to an application, and the latter has to decipher them and
act accordingly. Let us consider this in more detail, since it affects
the very soul of our program.
Our program has to call Windows and wait for a message - while
waiting, it is in an idle state and other tasks can be executing.
Windows does an incredible amount of housekeeping, including
receiving all of the incoming messages and parcelling them to
individual queues. Any mouse activity on your application’s
window, for example, that Windows determines will affect your
program will result in the generation of an appropriate message.
Windows is always working, seeing everything that happens.

Structure Of Below is the application’s main function, entered from Windows
WinMain() when the program starts executing. It is called WinMain - and

I’ve used C syntax - straight from the textbooks:

int PASCAL FAR WinMain(hInstance,hPrevInstance,lpCmdLine,nCmdShow)
HANDLE hInstance; //current instance
HANDLE hPrevInstance; //previous inst.
LPSTR 1pCmdLine; //command line ptr
int nCmdShow //show-type

. . .

;t:::
initialization...
instance handling...

. . . create and display a window...

while (GetMessage(&msg,NULL,NULL,NULL))
1 TranslateMessage(&msg);
. DispatchMessage(&msg);

3Z-bit The above code is ok for a 32-bit application as well as a 16-bit
di.fferences application. One difference is the size of the parameters passed to

WinMain() - see Table 3.1. A 32-bit application does not have to
worry about hPrevInstance. Also, a 32-bit application does not
have to name its first entry point WinMain(),  but we can continue
to do this as a convention. Also, as explained below, and on page
3 14, the Pascal calling convention is only applicable to 16-bit
applications.
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Pascal
caMng
convention

STDCALL
calling
convention

Data label
prefixes

Get/
Translate/
Dispatch
Message0

c syntax

The code sample should be readable, even if you don’t know C.
Note that some of the Windows textbooks give the basic program
structure in “classical” C, not ANSI C, and I have stuck with that.
You will notice “&msg”  specified as a parameter, and this may
need some clarification to those unfamiliar with C. It should
become clear later on when you see it in assembly language. This
function requires that an address, to which the returned message
can be placed, be provided as a parameter. The “&‘I means
“address of’, in this case the address of a data area labelled  as
“msg” (not defined in listing).

You will also notice the PASCAL qualifier in the declaration of
WinMain().  This is because Windows 3.x uses Pascal calling
conventions, not C conventions. So the override is needed. This
is explained in more detail later (see page 112, if the fancy takes
you), and a note was made earlier, on page 72.

You might like to glance ahead to Chapter 13 to see a complete
32-bit application written in assembly language. There, you will
see the procedures default to the STDCALL convention (as
specified in the .MODEL directive: see page 111). This is a
mixture of C and Pascal, in which parameters are pushed onto the
stack from right to left, and stack cleanup is performed by the
called procedure.

I suppose this is as good a place as any in which to introduce the
Windows labelling conventions. You have had a first exposure to
them in the above listing. What I’m talking about are the prefixes
to the parameters. These are put there to clarify the type of data
the parameter represents. It would be breaking the flow of the
explanation to describe this in detail, but the prefixes used above
are “h” to signify type of “handle” and “lp” to signify “long
pointer”. A more complete list of prefixes and data types is given
on page 82.

Message Loop
The WinMain() function contains what we refer to as the “message
loop”.

Looking at the above listing, it commences with declarations of
the passed parameters and their data types. A little further down
you’ll see GetMessage().  This is the one I’ve been talking about -
it goes back to Windows and waits for a message.
Whenever a message is available on the queue, and also whenever
Windows decides the time is appropriate, control will return to
your program with the message.

Callback
function

WndProc()

long FAR
HWND
unsi.91
WORD
LONG

;;:. .(

;;:  . .1

;;:. .(

DefWil
. . .

1
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TranslateMessage()  is specifically for converting keyboard
messages into a more usable form.
It is possible for more processing to be done, but usually nothing
much more happens, and strange though it may seem, the next
function, DispatchMessageO,  sends the message straight back to
Windows.

Windows then calls another part of your program, named
WndProc(),  that we know as the callback function (see below). It
is this function that finally does something with the message.
There is a callback function for each window that your program
creates.

Callback Functions

I said above that, having got the message via GetMessage(),  your
program must then give it back by calling DispatchMessage().
Windows then sends the message to another part of your program,
known as a callback function. In fact, each window (including
windows called diuZog  boxes) has its own unique callback
functions.
The name I gave above, WndProc(), is only a suggestion. Unlike
the main function, which must always be called WinMain
(though this has become more of a convention only), your
callbacks can be called whatever you want. There is a simple
mechanism for informing Windows of the names of the callbacks,
so it can call them.
This is a C skeleton of a callback:

long FAR PASCAL WndProc(hWnd,message,wParam,lParam)
HWND hwnd; //window handle
unsigned message; //type of message
WORD wParam; //more information
LONG 1Param; //more information

{
;j:.. case-logic to analyse message,..

;;:. .user-written message-handling...

;;:. .default  message-handling........
DefWindowProc(hWnd,message,wParam,lParam)
. . .

>

There is yet another twist. The message, getting a bit ragged
around the edges by now with all that travel, goes to the callback
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function, which can then process it. But the twist is that most
messages are of no interest to your program, and your callback just
sends them back to Windows again, for final default processing.

D e f a u l t DefWindowProc() is a kind of rubbish bin for messages that you
m e s s a g e don’t know what to do with. And believe me, there are a lot of
h a n d l i n g them.

After sending the message to its final resting place, or handling it
in some way within the callback, execution returns to the next
statement after DefWindowProc(), which is usually a return from
the callback function (designated by “}” above, or by a RET
instruction in assembly). However, this will take execution back
to Windows again . . . .

Figure 3.3: Event-driven structure.

APPLICATION WINDOWS
WinMain  function V Start. Windows

calls WinMain.

an event occurs
related to your
application

//unless exit condition
*

t//case structure
//for processing

Windows calls the
application’s
callback function.
This processes
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(WndProc will
return back here
and hence to the
message-loop).

.
/ Default processing

of messages
(then return to
WinMain via
WndProc and
Windows).

Follow this tangled path right through . . . .
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Windows will r e t u r n  t o the statement just after
DispatchMessage(),  so we are back in the main loop.
The main loop is an endless loop, executing GetMessage(),  then
TranslateMessage(),  then DispatchMessage(),  though there is a test
for exiting. Figure 3.3 puts the whole lot together pictorially.

A word of advice: don’t let this confuse you. See the simplicity
behind all of the detail. Windows sends messages to a window,
and your program can have as many windows as it wants. The
message goes (via WinMain  to the callback function for that
window, where you can respond to it. If you don’t know what to
do with the message, just call DefWindowProc(). End of story.

Data Types

H u n g a r i a n Tabulated in Table 3.1 are prefixes to data and pointer labels. It is
c o n v e n t i o n known as the Hungarian convention and is the voluntary prefixing

of data labels with a character or characters to indicate the type of
content.

Table 3.1: Data types.

PREFIX MEANING SIZE COMMENTS
1 Boolean value 1 WORD* IO = false, non-zero = true
I

1 Character
I

1 Extended ANSI character code

1 dw 1 inteRerLong unsigned / DWORD* IUnsigned value

1 Bit flag value (WORD* I 16 individual flags

Ih 1 Handle 1 WORD* 1 Handle of a resource

1

1P
n

P

Pt

rgb
W

Long integer value DWORD Signed value

Long pointer DWORD* FAR pointer

Short integer value WORD Signed value

Short pointer woRD* NEAR pointer

x,y coordinate point DWORD* Unsigned, 2-word value

RGB color value DWORD* Unsigned

Short unsigned woRD* Unsigned value
integer
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The asterisk means that these sizes only apply to 16-bit
applications. For 32-bit applications, they are all 32 bits.
We should make use of this notation wherever possible while
writing programs, as it improves readability.

Reference The source of Table 3.1 is Thorn Hogan’s superb book, The
source Programmer’s PC Sourcebook, by Microsoft Press, second edition,

1991. Of course BYTE is 8 bits, WORD is 16 bits, and DWORD
is 32 bits. Unfortunately, Thorn’s book is out of print.

Other
prefixes

It is common practise also to use “s” for string, and “sz” for
zero-terminated string.
Combinations are allowed, for example “lpsz”  means “long pointer
to zero-terminated string”. For 32-bit applications, the distinction
between a long pointer and a pointer is blurred, so the prefixes “p”
and “lp” can mean the same.

Types of
handle

However, it is a case of “do as I say, not as I do!” For old habits
die hard. I do tend to lapse back into non-Hungarian naming of
data labels, and where you encounter such lapses, forgive me.
Mostly I have not followed the Hungarian notation when writing
Windows-aware DOS code, examples of which you’ll see in
Chapters 10, 11, 12, and 14.

I have described the handle as being used to access almost all
resources. However, it is useful to formalize this. Again, the
original source of this tabular information is Thorn Hogan’s book.
Refer to Table 3.2 below.

Table 3.2: Types of handle.

NAME %-UNCTION
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r
HRGN

HSTR

Physical region handle

String resource handle

(LOCALHANDLE ILocal  memory handle
IHWND I Handle of a window I

One thing that you will notice throughout much of this book is my
disregard for upper- or lowercase. For example, I have usually
used uppercase for function names. This stems from the dynamic
link libraries themselves, in which the functions are recorded
(exported) in upper case. Mixed case, in the case of Windows
functions, is for readability only. Another factor is that the
assembler treats upper- and lowercase alike - well, that can
usually be controlled by a switch.
I did have a change of heart in the matter of case sensitivity, and
you will find the 32-bit application in Chapter 13 has correct case
on everything.
The link step also can be made case sensitive or not, by the use of
switches. Note that the command line switches for the linker are
themselves case-sensitive (not all linkers, and not earlier Microsoft
and Borland linkers), which is not something that you associate
with the DOS command line.
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Assembly for
and against

The Bare Bones

Preamble

The earlier theory will only really make sense when actual code is
shown, so in this chapter I have done a complete application: a
skeleton program that just puts “Hi there!” on the screen. Nothing
too ambitious, but the skeleton can be built upon for much more
ambitious projects.

It’s quite feasible to write entire applications for Windows just in
assembly language, though it is more usual to restrict assembly to
critical sections of the program. Although there’s no concrete
argument against writing the whole thing in assembler, it’s a
matter of preference and personal requirements. I will show that
the argument that assembly programming is more tedious and
time-consuming than C is not true.
From the professional’s point of view, assembly gives very precise
control over what is going on, is more appropriate for low-level
and getting-behind-the-scenes development, and is potentially
extremely compact and fast.
From the beginner’s point of view, looking at how to write the
entire program at the assembly level is most useful for learning
purposes and gives us useful insights into how Windows works.
The argument in assembly language’s favour is developed further
in the last chapter (see page 367).

85
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Orgaflisatiofl
of this
c h a p t e r

32-bit
s k e l e t o n
a p p l i c a t i o n

Microsot?
SDK

I have organised this section by example with a simple “Hi there!”
introductory program, as shown on page 94. We go through it
here step by step and put together the complete application. This
program is on the Companion Disk, in directory SKELETNI.
Note that I have written the program at the most fundamental level
for instructional purposes. However, the next chapter introduces
the same skeleton program, but makes use of advanced assembler
features, so it is more practical. The program of this chapter has
the advantage that it represents the lowest common denominator
and should work with just about any assembler.
I recommend that you use this chapter as a theoretical learning
tool and focus hands-on experimentation in the next chapter.
Chapter 13 describes a 32-bit skeleton program; however, I
recommend that you follow the steps of the “ladder of learning”.
The 16-bit  applications of this and the following chapter will work
fine under Windows 95. By all means refer to Chapter 13 as you
study this chapter and the next, as you wish, to see the contrast -
you will find the 32-bit code is structurally the same, and very few
changes are required to convert a 16-bit application.

Getting Started

Tools Required

So what do you need? Many people will have access to the
Microsoft Software Development Kit (SDK) and Microsoft
assembler (MASM), so this is a good starting point. In my
previous book I showed how the SDK and MASM ~5.1 could be
used to write a complete assembly language program, but I now
consider ~5.1 to be behind the times. However, I constrained the
program in this chapter to work with ~5.1, in which case the
earliest tools that I can guarantee the program to successfully
assemble and link with are in Table 4.1.
Note that SLIBCEW and CWINS are C run-time libraries, and are
not required for the skeleton. However, in a situation where you
would need them to call C run-time functions, investigate using
startup code supplied by the vendors, for correct initialisation (the
next chapter shows how to link the Borland startup tile,
COWS.OBJ; Microsft’s MASM ~6.1 supplies APPENTRY.OBJ).
Whenever you see the letter “S”  in a library filename, it usually
means “Small model”, while the letter “W”  designates “Windows”.

lnstal.latio4
of the
devefopmn
f o o l s
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Table 4.1: Earliest versions that will generate an executable.

MASM.EXE v5.10
LINKEXE ~5.10 (C ~6.00)
NMAKE.EXE  ~1.11 ( C  ~6.00)
RC.EXE ~3.00 (SDK v3 .O)
RCPP.EXE (SDK v3 .O)
RCPP.ERR (SDK ~3.0)
LIB W.LIB (SDK ~3.0)
SLIBCEW.LIB (SDK ~3.0)
WINSTUB.EXE (from the SDK)

TASM.EXE
TLINK.EXE
ditto
ditto
ditto
ditto
IMPORT.LIB
CWINS.LIB
ditto

Borland & The second column of Table 4.1 contains the earliest Borland
other tools versions that will work. Other LINK versions should be ok, as

long as they are Windows-compatible. MASM prior to 5.10
should also be ok.

/nsta//atiofl The normal situation is to have the SDK installed with everything
of the in the appropriate directories. The manuals with the SDK, C
&ve/opmenf ~6.00,  and MASM explain how the environment variables need to
too/s be set so that MASM and LINK can find the appropriate files. Or,

you could have one of the other development systems installed,
such as Borland C++, that do not need the SDK as a separate
entity. Note also the Microsoft C/C++ ~7.0 and later is bundled
with elements of the SDK.
Actually, the main reason that you require the SDK is for the
programs RC.EXE,  the  impor t  f i le  LIBW.LIB,  and
Windows-compatible LINK. The SDK does have some other
tools, such as a debug version of Windows, but most of these tools
are available with recent compilers. There are also a lot of useful
manuals with the SDK. Microsoft has gone away from supplying
printed manuals, and wherever I refer to a Microsoft manual in
this book, it will be on-line; although, in most cases it should also
be available for purchase separately. I personally prefer printed
manuals.

If such housekeeping (i.e., the correct installation of all the
software tools) is too much trouble, get together all the above files,
or suitable equivalents, and put them all into the same directory.
Problem solved.
Look ahead through this book and you’ll see examples of Make
files for both Microsoft and Borland.
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Segacy
cbapteF

h4icroso~
and
Borland
version
notes

TASM
vz. 5

Microsoff
Quick
assembler

I must emphasize again that this chapter is a “legacy chapter”.
I am using the oldest tools and the most primitive assembly
language skeleton. This is not what I recommend for actual
development, but the very basic skeleton is excellent for
learning. I have included all of the meandering through
version numbers below, partly to record what I remember,
before I completely forget! Should you wish to learn this
skeleton and you only have old development tools, or you
need to modify or maintain legacy code, you will find this
information useful.

MASM prior to version 6.00 can’t handle the high-level language
used in subsequent chapters, so I recommend upgrading if you
don’t have it. The alternative is the long-winded program given in
this chapter. In fact, at the time of writing, the latest version is
6.11, and I recommend that you use it in preference to all earlier
versions, including version 6.10. Microsoft made some important
changes in the upgrade from 6.10 to 6.11!
Other older assemblers may be able to handle the code in this
chapter.
Borland TASM prior to ~2.5 should be ok for this chapter, but
~2.5 has enhanced features and is the basis, along with TASM
~3.00,  of the program in the next chapter. At the time of writing,
the latest is version 5.0 (see Chapter 13).
Microsoft Quick assembler should be ok for this chapter. I think
that Quick assembler version 2.01 can be considered equivalent to
MASM version 5.2.
All of this upgrading is difficult to keep up with, but the above
notes should prove helpful.
Of course, as mentioned above, with some language products, such
as those from Borland, you don’t need to have the SDK installed,
though I certainly recommend the SDK documentation.
Note that even if you are only interested in writing in-line
assembly within your high-level code, consider this chapter to
have important buiding-block educational information. Many
modern compilers allow in-line assembly, and this is developed
further in Chapter 6.

I have gone through the above outline of products and versions
and based this chapter on early tools, as not everyone has access to
the latest tools. Also, it is actually quite educational to analyse a
Windows assembly language program written with an earlier
assembler minus the high-level features. Having understood

.RCfi.e

.DEFfie

# SKELETC
#define
#define
skeleton

BEGIb
PO1

E
Ml
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exactly what is happening, high-level features can be introduced
later, for much more streamlined programs.

Source Files
The next step is to w-rite the application, for which, of course, you
use a text editor. However, it is no longer a case of producing a
single .ASM source file - let’s call it SKELETON.ASM.  The
absolute minimum files required are:

l SKELETON.ASM (program source)
l SKELETON.RC (resource script)
l SKELETON.MAK (Make file)
l SKELETON.DEF (definition file)

Resource and Definition Files

. RC fife

.DEFtXfe

Resource (.RC) and definition (.DEF) files are produced by a text
editor, though you can get some help with special paint programs
to generate the resource scripts.
Resource scripts describe the appearance of what is seen on the
screen - dialog boxes, menus, etc. It can also store other
information. I wrote SKELETON.RC directly using a text editor,
since it is a simple example.
The definition file defines the name, segments, memory
requirements, and exported (including callback) functions of the
application, and is straightforward enough to write with a text
editor. All functions in your program that are to be called by
another program must be declared as exported - in the case of the
callback function, it is called by Windows. The only function that
doesn’t need to be declared as exported is your WinMain().
Here is the .RC file:

# SKELETON.RC
#define IDM QUIT 200
#define IDM-MESSAGE 201
skeleton MEm

BEGIN
POPUP "File"

BEGIN
MENUITEM IrQuitl', IDM_QUIT

MENUITEM l'Message...'l,  _IDM MESSAGE
END

lmrl
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Menu-bar

WM-
COMMAND
message

message,
wParam,
/Param

You will be able to figure out what this .RC file does by observing
the execution of the program. A menu-bar with only one
selection, “File”, drops down two menu-items: “Quit” and
“Message...“. The next chapter has the same “Hi there” program,
but written using high-level assembly constructs.
IDM_QUIT and IDM_MESSAGE  are arbitrary labels, assigned
(almost) arbitrary values. One of these values is passed within a
message as an identifier to Windows, if a menu-item is selected.

Message Format
Selecting a menu-item generates a WM_COMMAND  message,
which is one of many possible messages that can be sent to the
callback. It is a 16-bit  value, and
notably  “wparam”  and “lparam”,
attached to the message.
So, this is what constitutes a message:

ilso has other parameters,
that constitute extra data

l message
l wParam
l 1Param

(16-bit number)
(16-bit number)
(32-bit number)

(32-bit WinApp: 32 bits)
( ” )

II( )

wParam is 16 bits also, hence the “w”  (word) prefix. Every
message has two parameters attached to it, wParam and lParam,
the latter being 32 bits (hence the “1” prefix, meaning “long”).
What these parameters contain depends upon the message. The
prefixes are just a convenient notation for labels, so that we know
what they represent (see page 82). Note that for 32-bit
applications, these parameters are all 32 bits (making the “w”  and
“1” rather confusing, as these prefixes are still used).
Before we delve further in this direction, here is the .DEF file:

SXELBTON.  DBF. . .
NAME
DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE
STACKSIZE
EXPORTS

SKELETON
'Hi there!  program’
WINDOWS
'WINSTUB.EXE'
PRELOAD MOVEABLE
PRELOAD MOVEABLE MULTIPLE
1024
8192
SKELETONPROC

Skeletonproc() is the callback function, referred to as WndProc()
in earlier notes. This is where Windows sends messages to be
processed. An application can have a separate callback function
for each window, dialog box, or control.

DOS stub

# SKBl
fn = sl
all:$(:
$ (fn) .I

masrr
$ (fn) .’

rc -
$ (fn) .

link
rc S

Borland
Microso
Make
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DOS stub I have explained various aspects of the .DEF tile throughout this
book, so investigate via the index. Some of the lines are
self-explanatory. “WINSTUB.EXE” is a program supplied by the
software vendor, that is incorporated into the overall .EXE tile,
and is executed if you try to run the program from the DOS
command line. It just displays a short message and quits.
I have put the DOS stub to very interesting use in Chapter 14.

Make File

Before we go ahead with the application itself, let’s consider the
Make file. This determines the assemble, compile, and link steps.
With reference to Figure 3.2 on page 74, the first step is to
assemble SKELETON.ASM to produce SKELETON.OBJ (any
Include files are also assembled). MASM and TASM have
various directives to aid with creating Windows applications;
however, by writing the program at the most fundamental level I
have avoided these, which means that just about any assembler
should work. You can see in the listing below how RC.EXE is
used to compile SKELETON.RC and how to incorporate
SKELETONRES  into SKELETON.EXE. LINK converts the
.OBJ to .EXE, and LIBW.LIB provides connection to the
Windows functions. LIBW.LIB is not itself a library. Note also
that LINK refers to the .DEF tile.

# SKELBTON.MAK...
fn = skele ton
all:$(fn) .exe

$  (fn) .res : $ (fn) . r c
-r $ (fn).rc

$(f'n',  .exe : $(fn) .obj $(fn) .def $(fn) .res
link $(fn) /NOD, , , libw , $(fn).def
rc $(fn).res

You create this on a text editor. It requires a certain syntax, and
Make programs from different vendors have their own
peculiarities. The above will work with Microsoft’s NMAKE.EXE
and is for MASM versions prior to 6.00. The latest MASM
requires modifications to the Make file (refer page 129, though it
can be made command line compatible with ~5.1.

B o r l a n d  v s Borland’s TASM is different again (refer to page 124) because
Microsot? TASM and TLINK have their own command line syntax.
M a k e Borland’s MAKE.EXE also has its own peculiar syntax

requirements, but note that the version supplied with C++ version
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3.00 (and later) is supposed to be more compatible with NMAKE
(this is doubtful - see my comments in Chapter 14).

Why use a The Make file saves you the trouble of typing in all the assemble,
Make fife? compile, and link steps at the command line. Some integrated

environments generate the Make file automatically, so you don’t
even have to do that much, but there are some sound reasons for
learning about and using Make files, not the least of which is
flexibility. Some integrated environments generate what is called
a project file, which is saved with a special extension, and with
some products it is possible to convert a project tile into a Make
file. The fundamental difference in usage is that in the integrated
environment you do everything via pull-down menus, while you
run the Make file from the command line.

Programmer’s Microsoft’s Programmer’s Workbench (PWB) is an example of an
Workbench
lPWs)

El-p fanation
of above
Make file

Wifhin
Windows

integrated environment that works with Make files in its native
mode, though the Make files are highly stylised. PWE3 can,
however, read ordinary Make tiles, and you can open a “project”
by opening many of the Make files given in this book.

You can figure out what the above Make fiIe does: it assembles
SKELETON.ASM using MASM.EXE, t h e n  i t  c o m p i l e s
SKELETON.RC using RC.EXE, then LINK.EXE  links everything
together, and finally RC.EXE is executed again to combine
SKELETON.EXE and SKELETONRES  (the compiled output
from the first RC execution) to produce the final
SKELETON.EXE.

Development Cycle

You can run the Make file from the DOS prompt, but you can aIso
do it from within Windows. What you should do is open the File
Manager and go to the directory containing the application. Then
iconize the File Manager and open the Notepad. Use the Notepad
to view and edit SKELETON.ASM,  and iconize when finished. It
is a simple matter to flip between the Notepad and the File
Manager.
When in the File Manager, and the directory containing the
application is open (and the directory must contain all software
tools if the SDK is not installed properly on the PC), select
“Run...” from the “File” menu.
In the box, type “NMAKE SKELETON.MAK”,  just as you would
on the DOS command line. After running the Make file, all you
need to do to test your program is double-click on
SKELETON.EXE in the File Manager.

Other ways

Programmel
Workbench

When can I
7jet
started”?
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Other ways The above is not the only way to do it. There are various reasons
why you may want to do everything from DOS and load Windows
to test the program, or, have a “DOS-box” open and use <ctrl-esc>
to flip between it and Windows. Or, you may be working within
an integrated environment, which may have something called a
projectfile rather than a Make file. Many integrated environments
can generate a Make tile from a project file, and can also execute a
Make file from within the environment. I have never been entirely
satisfied with integrated environments and prefer to be outside
one, using the traditional Make file from the command line: but I
don’t want to prejudice you. If your product has an integrated
environment, give it a go. One problem you may have is getting it
to handle stand-alone assembly programs.

Programmer3 However, I have rather grudgingly come to like Microsoft’s
Workbench Programmer’s Workbench (PWB). If you install PWB, you can

open almost any of the Make files supplied on the Companion
Disk, and thus you will have opened a project. You will however,
have to click the “non-PWB Makefile” button. Then you can
select “Rebuild All” from the “Run” menu, and see the result in a
“Build” window.
PWB can be started from within Windows, and after running the
Make tile, you can use <aIt-tab> to flip over to Windows and try
the program.

When can 1 This is, of course, just theory if you are reading through the book
“set linearly - don’t worry though, as the hands-on exercises begin
started”? soon. If you feel the overwhelming desire to try the program, why

not? (flick ahead to the next chapter if you want to assemble the
simplified skeleton). Copy the appropriate tiles off the
Companion Disk. Then, assuming that you have all the
development tools installed, follow the above instructions to
assemble, link and test your program. Later on you can learn how
it works internally.
Alternatively, you may feel that you don’t want to get “bogged
down” in a skeleton that is very primitive and would prefer to
jump directly into a skeleton that uses the higher level assembler
features. In that case, study this chapter theoretically only, and do
your hands-on work in Chapter 5. Or, if you really insist on
short-circuiting my “ladder of learning”, you can get hands-on
experience with the 32-bit application in Chapter 13.
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Application Structure
It doesn’t do much more than put “Hi there” on the screen, but
wow, so much red tape.1 A far cry from the few lines a DOS
program would need.
Try to understand as much as possible and identify the major
structural elements.

Preliminary Code

;SKELETON.ASM Windows assembly language program
.286 ;286 i n s t r u c t i o n  s e t .
; . . . . . . . .

WINDOWS. - The identifiers (equates) shown below would normally be in the
/NC WINDOWS.INC Include file (refer page 109). With this skeleton

I have minimized the number of files involved.

ID1 APPLICATION EQU 32512 ;default icon type.
IDC-ARROW EQU 32512 ;default cursor type.
OEM-FIXED FONT EQU 10 *font type.I
COLGR BACFGROUND EQU 1 ;background color
WM CREATE EQU 1 ;Windows message
WM-DESTROY EQU 2
WM-PAINT EQU 15 j ;
WM-COMMAND EQU 273 ; /
WM-LBUTTONDOWN EQU 513 ;
WM-CHAR EQU 258 ; $
IDM QUIT EQU 100 ;menu-identifiers from
IDM-ABOUT EQU 101 ; .RC file.
MB_BK EQU 0 *messagebox  identifier.I

Program h%fhig The Windows startup code would normally be in a
conllnuesuttf/fpage separate .OBJ module supplied by the compiler vendor;
r07 however, in this fundamental skeleton, I have put the

startup code into this module. This code is taken from

Generic program  for
APPENTRY.ASM, which is the source file for

any assembler
APPENTRY.OBJ, supplied by Microsoft. These are a
couple of equates used by the startup code:

;This is the equates for the startup code...
STACKSLOP EQU 256 ; amount of stack slop space required
maxRsrvPtrs  EQU 5 ; number of Windows reserved pointers

High-level
CALL

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

IN
IN
WA
DO
UP
BE
EN
DE
PO
RE
GE
CR
SH
GE
LO
TR
DI
LO
TE
ME
SE

.DATA
;This mus

DWORD
r s r v p t r s

WORD
hPrev
hInst
lpszcmd
cmdShow
; . . . . . . . .
. DATA
szwintitl
s z s k e l e t c
hOemFont
sout
s zabout
s z t i t l e
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Below are the Windows functions that the program calls. In
assembly language we must declare all external functions, which
is not an essential requirement in C.

High-level MASM version 6.00+  is an interesting exception to this, as its
CALL INVOKE (high-level CALL) is C-like and doesn’t need an explicit

EXTRN declaration. MASM v6.00+ is also C-like in that it
accepts the C spelling of EXTERN. See Chapter 5 for an
explanation of INVOKE. TASM version 5 has PROCDESC, that
does the same job as INVOKE (see Chapter 13).

EXTRN 1NITAPP:FAR
EXTRN 1NITTASK:FAR
EXTRN WAITEVENT:FAR
EXTRN DOS3CALL:FAR
EXTRN UPDATEWINDOW:FAR
EXTRN BEGINPAINT:FAR
EXTRN ENDPAINT:FAR
EXTRN DEFWINDOWPROC:FAR
EXTRN POSTQUITMESSAGE:FAR
EXTRN REGISTERCLASS:FAR
EXTRN GETSTOCKOBJECT:FAR
EXTRN CREATEWINDOW:FAR
EXTRN SHOWWINDOW:FAR
EXTRN GETMESSAGE:FAR
EXTRN LOADCURSOR:FAR
EXTRN TRANSLATEMESSAGE:FAR
EXTRN DISPATCHMESSAGE:FAR
EXTRN LOADICON:FAR
EXTRN TEXTOUT:FAR
EXTRN MESSAGEBOX:FAR
EXTRN SELECTOBJECT:FAR

Below is the data segment. Here we define all of the variables,
strings, and arrays that the program will use.

.DATA
I-This must be at beginning of data segment...

DWORD 0 ; Windows reserved data space.
rsrvptrs WORD maxRsrvPtrs  ; 16 bytes at top of DATA seg.

WORD maxRsrvPtrs  DUP (0) - Do not alter
hPrev WORD 0 - space to‘save WinMain parameters
hInst WORD 0

’ ;$1pszCmd DWORD 0
cmdShow WORD 0 ;/
;........................................................
.DATA
szwintitle DB 'SKELETON PROGRAM',0
szskeletonname DB 'SKELETON',0
hOemFont DW 0 ;handle to OEM font.
sout DB I Hi there! I
szabout DB 'Assembly Language Skeleton',0 ;messagebox
sztitle DB 'Barry Kauler',O ; /
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Startup Code

The startup code is fascinating, because it is something you
normally don’t see in a Windows program. It is the code that is
first entered when the application is loaded, and it performs
various initialisations before calling the entry point of your
program, WINMAINO.

DOS3CALL() Tn’is code is also the exit point, performing the standard
INT-2lh/function 4Ch to exit back to the calling program. Look
below, but don’t be mislead by the DOS3CALL(): this simply does
the same as INT-2lh, except by a FAR CALL rather than by
software interrupt. As far as I’m aware, there is no other
difference, except that the CALL is faster.

Registef
initialisati~

.CODE
;Here is the startup code...
s t a r t :

xor
push
c a l l
o r
jz
add
jo
mov
mov
mov
mov
mov
x o r
push
c a l l

bp,bp
bp
INITTASK ; I n i t i a l i s e  t h e  s t a c k
ax, ax
n o i n i t
cx,STACKSLOP ; Add in stack slop space.
noinit ; If overflow, return error.
hPrev,si
hInst,di
word ptr lpszCmd,bx
word ptr lpszCmd+2,es
cmdShow,dx
ax,ax - 0-->ax
ax ;parameter for WAITEVENT
WAITEVENT ;Clear initial event that started this

push
c a l l
o r
jz
push
push
push
push
push
c a l l

i x :

; zero bp

hInst
INITAPP

; task.
;parameter for INITAPP

; Initialise the queue.
ax,ax
noinit

hInst ;params for WINMAIN
hPrev /
WORD PTR lpszCmd+2 ; 7 (seg. first)
WORD PTR 1pszCmd ;
cmdShow

/ (of/fset second)
;

WINMAIN

hW7TASKfl

mov ah,4Ch
call DOS3CALL ; Exit with return code from app.

noinit:
mov al,OFFh ; Exit with error code.
imp short ix
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What does the above startup code do? There is an explanation in
Programmer’s Reference, Volume 1: Overview, supplied with the
SDK ~3.1 (or on the on-line documentation supplied with the
SDK). This reference has definitions for each of the above
functions, plus explanation of the startup sequence.
It is instructive to consider what the status is when Windows calls
'start:" - incidentally, scan ahead to the very end of the
program, and you’ll see that termination is with “END start”,
which is standard practise  for DOS programs and defines the
starting point of the program.

Register "start : ” is entered with the CPU registers set as per Table 4.2.
inita//isatition However, INITASK() returns its own information in the registers,

as per Table 4.3, which are passed as parameters on the stack to
WINMAINO.

Table 4.2: Registers at entry to application.

Register Value
Ax zero
BX size, in bytes, of stack
c x size, in bytes, of heap
DI handle of application instance
SI handle of previous application instance
BP zero
ES segment address of PSP
DS segment address of automatic data segment
s s same as DS register
SP offset to first byte of application stack

/N/nASKfl Table 4.3: Register values returned by INITTASKO.

Register Value
1 = ok, zero = error

ES:BX FAR address of the DOS command line
c x stack limit, in bytes
DI instance handle of new task
SI handle of previous instance of program
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DX nCmdShow  parameter

ES segment address of PSP

INIITASK() also fills the first 16 bytes reserved in the data
segment with information about the stack.

WAITEVENT(), The parameter zero when supplied to WAITEVENT  clears the
lNITAPP() event that started the current task.

INITAPP()  initialises the queue and support routines for the
application.

WINMAINQ

Below is the rest of the code segment, which has WINMAIN and
the callback function SKELETONPROC(). Functions that are to
be called by Windows must be declared as PUBLIC.

.CODE
PUBLIC WINMAIN

WINMAIN PROC NEAR ;entry point from Windows.

Parameters passed on the stack will be as per the listing on page 77
and will have been pushed on from left to right, with the return
address pushed on last (Figure 4.1). You can check this against
the startup code above.

push bp
m o v  bp,sp
sub sp,46

;save BP so can use to access params.
;BP will now point to top-of-stack.
;mov s tack to  f ree  region.

Figure 4.1: Stack at entry to WinMain@

Stack Pointer SP 

Base Pointer BP
register points here

c old BP
return address

This is what BP+4 d_ nCmdShow
the stack looks BP+6 4 1pCmdLine
like at this
point in the ~p+10 +, hPrevInstance
program BP+12 +, hbstance
J (see next page)

cmp WC

j n e  cl

Prolog
code

First-
instance
handling

ALL

c
HOI;
QW

mov W
mov W

mov W

sub a
mov W
mov W
mov a
mov 1
sub a
push a
mov c
sub c
push i

% :
mov !
sub i
push i
mov i



cmp WORD PTR [bp+lO] ,0 ; h P r e v I n s t a n c e .
; (~0 if no previous i n s t a n c e ) .

j n e c rea t ewin

Prolog
c o d e

One important thing to notice from Figure 4.1 is that after the
prolog  code, BP points to the parameters (so that the program has
ready access to them), while SP has been moved away (so that the
stack can grow downward in memory without interfering with the
parameters or the intermediate area that is to be used for
temporary data).
In Figure 4.1, increasing addresses are downward. Note that the
return address is not FAR, but NEAR, as WI
the startup code within the same segment, not directly fi-om
Windows.
Note that the old value of BP is saved on the stack. Note that
“IpCmdLine”  is a 32-bit value and so occupies four memory
locations (for explanation of label prefixes, refer to page 82).

First-
i n s t a n c e
h a n d l i n g

The first instance of the program has to create a window-class data
structure and call RegisterClass().  It determined this by testing
“hPrevInstance”,  which is zero if this is the first instance. Note
that the handle for this particular instance is “hInstance”.

ALL OF THIS STUFF DOWN TO CREATEWIN IS PRETTY
HORRIBLE, SO LET YOUR EYES GLAZE OVER AND READ
QUICKLY ONWARD TO CREATEWIN:

mov WORD PTR [bp-461,3 ;wndclass
mov WORD PTR [bp-441,OFFSET  SKELETONPROC

;addr of callback
mov WORD PTR [bp-421,SEG SKELETONPROC

; function for window.
sub ax,ax
mov WORD PTR [bp-401  ,ax
mov WORD PTR [bp-381  ,ax
mov ax,WORD PTR [bp+121
mov WORD PTR [bp-361  , ax
sub ax,ax ;null

;hInstance
-- use Windows default icons.

/
;Default application icon.

;
i ;
; /

ax
cx,IDI_APPLICATION'
dx,dx

push
mov
sub
push

%
mov
sub
push
mov

dx

&ICON
WORD PTR [bp-341  ,ax
ax, ax ;null
ax
ax,IDC_ARROW

__ use Windows default cursor.
/

;Standard arrow cursor.
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cwd
push

::s:
mov
mov
mov
mov
mov
mov
mov
mov
lea
push
push

I

dx ; :

ZmJRSOR ; /

WORD PTR [bp-321,ax
ax,COLOR_BACKGROUND
WORD PTR [bp-301,ax
ax,OFFSET szskeletonname
WORD PTR [bp-281,ax
WORD PTR [bp-261,ds
WORD PTR [bp-241,ax
WORD PTR [bp-221,ds
ax,WORD PTR [bp-461 ;wndclass
ss ;this is address of above data
ax ;structure.

Register-
Classfl

Note that we only have to call RegisterClass  for the first instance
of the program. If you double-click on the program icon a second
time, the second instance of the program created in memory will
not have to register the window with Windows.

call REGISTERCLASS;registers  this class of window.
or ax,ax ;error test.
je quitwinmain

Displaying The above block of code registered the “specifications” of our
a window program’s window with Windows. Now to display it:

Create- Parameters that have to be pushed on the stack prior to calling

Window(-) CreateWindow are a long-pointer to window class-name, lp to
the window title-name, type of window, x and y coordinates, width
and height, parent-handle, menu-handle, instance-handle, and an lp
to parameters to link with the window.

createwin:
mov ax,OFFSET szskeletonname
push ds ;long-pointer (far address) of
push ax ;class-name.
mov ax,OFFSET szwintitle
push ds ;far address of window-title.
push ax /
sub ax,ax *typi of window (32-bit value).I
mov dx,207
push dx
push ax
mov ax,150
push ax
sub ax,ax
push ax
mov ax,250
push ax
mov ax,200
push ax

;
;

!ix-coord (16-bit).
; /
;y-co/ord (16-bit).

iwidth (16-bit).
/

iheight (16-bit).
; /

sub ax,
push ax
push ax
mov ax,
push ax
sub ax,
push ax
push ax
call CRE
mov WOE:

push ax
push WOI
call SHC
push WOI
call UPI
jmp SH(

Message
loop

mainloop:
lea ax,
push ss
push ax
call TFU

; . . . . . . .
lea ax,
push ss
push ax
call DI!

; . . . . . . . .
messageloc

lea ax,
push ss
push ax
sub ax,
push ax
push ax
push ax
call GE!
or ax,
jne ma:

;GetMessa:
;so here u

mov ax,
quitwinmaj

mov sp
POP bp
ret 10
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sub
push
push
mov

zh
push

%F
mov

push
push
call

::z:
jmp

ax,ax
ax -O=no parent for this window.I

:;,WORD PTR
+O=use

[bp+l2;
the class menu.
;hInstance

ax ;
ax,ax
ax .O=no params to pass-on.

&iTEWINDOW
1(32-bit long-pointer).

WORD PTR [bp-21,ax ;returns hWnd in AX
;(handle to the window).

;Here we save it temporarily.

~:RD PTR [bp+41
.ShowWindow()
’

requires hWnd
;and nCmdShow on the stack.

SHOWWINDOW *Tells Windows to display window.
WORD PTR [bp-21 ;hWnd
UPDATEWINDOW ;tells Windows to redraw now.
SHORT messageloop ;go to the main message loop.

Message
loop

Refer back to page 77 for an explanation of the message loop. The
event-driven nature of a Windows application means that
GETMESSAGE goes to Windows and waits for a message from
the queue. After return, key presses are preprocessed by
TRANSLATEMESSAGEO,  then control is passed to the callback
function via DISPATCHMESSAGE  and Windows.

mainloop:
lea ax,WORD PTR [bp-201 ;far-addr of message
push ss
push ax
call TRANSLATEMESSAGE

; . . . . . . .
lea ax,WORD PTR [bp-201
push ss
push ax
call DISPATCHMESSAGE

; . . . . . . . .
messageloop:

lea ax,WORD PTR [bp-201
push ss
push ax
sub ax,ax
push ax
push ax
push ax
call GEYIYMESSAGB
or ax,ax
jne mainloop

;GetMessage() returns FALSE
;so here we are quiting....

mov ax,WORD PTR [bp-161
quitwinmain:

*far-addr of message.I

*long-pointerI (far addr) of
;message. (we use the stack
*regionI for convenience).

;null
;null
;null

-only exit if returns AX=0I

(AX=O) if a IlquitU message...

;return wParam to Windows.

mov sp,bp
POP bp ; restore SP to point to the return address.
ret 10 -CausesI RET to add 10 to SP after popping
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; r e t - a d d r e s s , e f f ec t i ve ly  dumping  a l l  params
; (as for PASCAL convention) .

WINMAIN ENDP

Figure 4.2: Stack at entry to GetMessage@

The above section of
code, starting at
“messageloop:” and

SP 1
looping-back to
“mainloop:” is the
message loop.
Notice that the value
[BP-201 was pushed

BP-20
BP-18
BP-16

onto the stack.
This an offset (address) BP-12 * Time
in the stack segment BP-10 * PT
where GETMESSAGE
will place the message
upon return.
The stack Segment iS a
convenient temporary

BP --old BP
storage place. BP+2 - ret. addr, etc...

Callback Function

Thus ends WINMAIN(). For the callback function, refer to the
listing on page 79. The parameters are passed on to the stack in
the order of left to right, with a FAR return address on top.
If this program looks similar to the example in my last book, it’s
not surprising, since both were originally created from a C
skeleton with the compiler set to generate assembly output (see
page 151). This listing is, however, substantially different from
before.

PUBLIC SKELETONPROC
SKELETONPROC PROC FAR
;The function is entered with far-return-addr (4 bytes),
;lParam (41, wParam (21, message-type (2),  and
;window-handle (2 bytes) on the stack (ret-addr on top).
;.....

push ds -ThisI is some Standard preliminary
POP ax *shuffling of the registers.I
nop I /
inc bp ;
push bp ;

$ (it is called the prolog code)

mov bp,sP
push ds
mov ds,a
sub sp,I4

; (so as

P r o l o g
c o d e

T
Ci

a

n
e

jlltermtlre  SM
prolog code

push bp
mov bp,E
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m o v  bp,sp ;
push ds ;
mov ds, ax 1
sub sp,146 *move ;he stack to a free region

; (so as no; to mess-up the params).

Prolog The above proZog code may seem strange. It is at the start of all
code callbacks. However, the above code can be simplified if the

application is never to run in Real mode. A Windows application
running in Real mode is only possible with Windows ~3.0 and
earlier and is an unlikely requirement these days.

Alternatke simphffied If the application will always be run in Protected mode,
pro/OS  code the prolog  can be simplified as follows:

push bp ; prolog
mov bp,sp ; / (set up stack frame)
push ds * / (save cal l ing funct ion’s  ds )
push ss I / (move ss to ds -- local data segment)
POP ds ;/ ( l” )
sub sp,146 ; / (reserve local data area)

An appropriate modification of the epilog code will also be
required. The simplified prolog is more suitable for explanation.
You can see that BP and DS are saved. The main task of the
prolog  is to set DS to the current application’s data segment, but
this is easy, as SS always points to it, even while execution goes
back to Windows. That is, after the application is first entered, SS
remains always unchanged and always pointing to the data
segment.
After the prolog, the stack looks like Figure 4.3.

Figure 4.3: Stack after executing prolog.

Stack Pointer SP 1
Base Pointer BP
register points here .  D Sc old BP+1

return address
This is what , (FAR)
the stack looks B P + 6  - 1Param
like at this
point in the BP+10 *. wParam
program BP+12 -m message
d(see  next page) BP+143 hWnd
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mov ax,WORD PTR [bp+12] ;get message-number.
cmp ax,WM_CREATE ;message received after
je create ;CreateWindow() is called.
cmp ax,WM_DESTROY ;message received if a window is

; closed.
je quitmessage
cmp ax,WM_PAINT ;message received if Windows has

-(already)
paint ’

redrawn any part of the window.
je
cmp ax,WM COMMAND ; any selection of the menu will
jne notcommand ;the WM_COMMAND
jmp menu ;message.

notcommand:
cmp ax,WM_LBUTTONDOWN ;one of many mouse
jne notlbutton *messages.,
jmp break

notlbutton:
cmp ax, WM_CHAR ;message  tha t  a  key  pressed .
je c h a r

; . . . . . . .
;Default handling of messages....

push WORD PTR [bp+141 ;hWnd
push WORD PTR [bp+121 ;Message-type
Dush WORD PTR [bp+lOl : wParam
push WORD PTR Lb@+81
push WORD PTR [bp+61
call DEFWINDOWPROC
jmp return

)hi-half of 1Param
;low-half of 1Param

;Back to Windows.

“Case”
statemeflt

W&f_ CREATE
message

The above code determines the type of message and jumps to an
appropriate routine. If the message is not to be handled explicitly
by the callback, it falls through to DEFWINDOWPROC()  for
default handling.

Follow through the case of WM_CREATE. The earlier case logic
will bring execution to “create : ‘I,  where I have obtained the
handle to a font. WM_CREATE is sent by Windows when the
window is created, in response to CREATEWINDOW(),  and for a
simple skeleton you do not really need to do anything with this
message -just send it on to DEFWINDOWPROC().
Note that even fonts have handles, and to use the OEM font in the
program, this is a convenient time to get its handle.

create :
mov ax,OEM_FIXED_FONT

% ZTSTOCICOBJECT
mov hOemFont,  ax
jmp SHORT break
;................
quitmessage:

sub ax,ax

;handle  to font.

push i
c a l l  E
jmp E

WM_ CHAR
message

char:
;I haven
;in this

jmp !

WM_PAM
message

p a i n t :
push 1
lea i

push i

% I
push ;
mov i

push i
mov i
push i
mov i
push I
push i
mov (

::s,: :
push ’
lea (
push

% I
jmp

;......
menu :
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push ax
call POSTQUITMESSAGE
jmp SHORT break

WM_CHAR I implemented the WM_CHAR case to show how to respond to a
message keyboard character. See the keyboard tables in Appendix B.

Refer to a Windows programming book on the difference between
ANSI and ASCII.

char:
; I haven't bothered to respond to key-presses in any way
.in, this simple skeleton . . .

jmp SHORT break

WM_PA/NT Even the most basic skeleton will need the following code in
message response to WM_PAINT. You will need to put in BeginPaint()

and EndPaint(),  even if you don’t output anything. WM_PAINT  is
sent if anything has happened to the window that-will require its
dent urea to be redrawn. I need a handle @DC) to the client area
before I can output to it.

paint:
push
lea

push
push
call
mov

push
push
call
push
mov
push
mov
push
mov
push
push
mov
push
call TEXTOUT
push WORD PTR [bp+14] ;hWnd
lea ax,WORD PTR [bp-421 ;far-addr of paint-structure
push ss
push ax

; (was filled y BeginPaint(
;

call ENDPAINT
jmp SHORT break

;........................
menu:

WORD PTR [bp+14] ;hWnd is handle of window.
ax,WORD PTR [bp-421 ;ps -- far-addr of

; paint-structure.
ss ; (BeginPaint  will fill,, the structure).

EGINPAI~ *BeginPaint 'returns handle hDC.
WORD PTR [bp-;46],ax ;hDC -- display-context,

; required before can output to screen.

ZEemFont
;hDC

SELECTOBJECT ;attaches  hOemFont to hDC.
WORD PTR [bp-1461 ;hDC
ax,8 ;16-bit x-coord
ax , /
ax,15 *16-bit y-coordI
ax /
ax,OFFSET  sout ;
ds

far-address of string to o/p
;

ax ; $ (note lo-half pushed 2nd)
ax,9 -number of chars in string.I
ax
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~~_co~~~~~Selection  of. a_ menu-item  .will_result  in. a “M,C~M~@~
message message, wtth the identitier in wl’aram,  and zero in tne low-nal1 or

1Param.

cmp WORD PTR Ibp+6] ,0 ; l o w - h a l f  o f  1Param
j n e  b r e a k *testI if a menu-message.

Menu-item If our program determines that the message is a
selection? WM COMMAND, we find out more about it by looking at

wPar;m and 1Param.
The low-half of 1Param  = 0 if the message is a menu-selection, in
which case wParam contains the identifier, and the high-half of
1Param  = 1 if an accelerator key has been pressed.
If the low-half of 1Param is not zero, then the message is from a
control (such as a scrollbar), and the low-half of 1Param = the
handle of the control, and the high-half of IParam = the
notification code.
So wParam can contain the menu-item identifier, the control
identifier, or the accelerator-key identifier.

cmp WORD PTR [bp+lOl,IDM_QUIT ;wParam.
jne noquit
jmp quitmessage

noquit:
cmp WORD PTR [bp+lOl,IDM_AEKXJT
jne break ;no other menu items.

;.............
;displaying  a message about this program...

push WORD PTR [bp+14] ;hWnd is handle of parent
; window.

mov ax,OFFSET szabout ; far-addr of string to display.
push ds ;
push ax :
mov ax,OFFSET sztitle ;farladdr of title of

; dialog-box.
push ds ; / (see data segment)
push ax ; /
mov ax,MB_OK *type of message box.
push ax ; / ’ (displays single lUokU' button)
call MESSAGEBOX

@i/g
code

Finally we have the epilog code, which compliments the prolog
code on page 102. At this stage, BP is pointing to the saved “old
BP+l” which we decrement twice so it points to the saved DS,

I

which we make the top of stack and then pop to restore the
original DS, followed by the “old BP+l”,  which we decrement to
restore to its original value.

break :
sub a x , a
cwd

return :
dec bp
dec bp
mov sp,b
POP ds
POP bp
dec bp
ret 10

SKELETONPRO
;..........

END sta3

Simplfied
epilog code



RET 10 causes RET to add 10 to SP after
address, effectively dumping all parameters,
Pascal convention.
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popping the return
as required for the

break:
sub ax,ax ;returns 0 in DX:AX. (callback functions
cwd *return a 32-bit (long) value).I

return:
dec bp *finalI Standard manipulation of regs.
dec bp /
mov sp,bp
POP ds

1 / (tt is called the epilog code).
;

POP bp ;
dec bp i ;
ret 10 *removes  parameters.

SKELETONPROC ENDP ’
;.......................................................

END start ; execution entry point of program.

SimpMed I showed earlier that there is a simplified alternative for the prolog
ep&g cafe code. The matching epilog is similarly simple:

POP ds
POP bp
retf 10

eepilogI
; /

So, here again refer to Figure 3.1 to see what it looks like.
Clicking on the “File” menu-item pops down two selections:
“Quit” and “Message...“. Selecting the latter results in a message
box looking very much like that shown on page 172.



Preamble

What’s  in What I have for vou in this chanter is the same nromam from the
this cbapfer previous chapter (page 94), but-wow is it smaller! bne thing you

will have noticed from that first program is that it does an
incredible amount of stack manipulation: this makes the program
both long and very tedious to write.
The Borland and Microsoft (plus other vendors’) assemblers have
some high-level features that ease the coding burden considerably,
even to the point of the program being as short as the equivalent
written in C or some other high-level language. That’s saying
something!
What follows is a breakdown of each section of the previous
program, showing how it can be improved . . .

Equates Refer back to page 94. You will see a whole pile of equates, for
example, "WM_PAINT  EQU 15". WM_PAINT  is simply a
meaningful label, a constant, that equates to value 15. This means
that wherever the assembler finds the label WM_PAINT,  it will be,

109
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./NC files

Structures
defined in
./NC file

A s s e m b l e r
versiofl
n o t e s

These semi-English labels are more meaningful to us and therefore
make programming easier. Windows has hundreds of these
predefined equates, though the example program only uses some
of them.
Those people familiar with writing Windows programs in C will
recognize this: "#INCLUDE  ~wmDows.H>".  It is a statement
placed right near the beginning of the program, and has the effect
of inserting the file named between the “<  9’ into the program at
that point.
WIND0WS.H contains all of the equates, plus other definitions
such as structure definitions. Windows programming also makes
extensive use of structures (look back to page 65 for an
introduction to structures).

Microsoft versus Borland

Instead of explicitly naming all the equates and structures in my
program, as I did for the first example program, an assembly
language program can also include WIND0WS.H. Or rather, it
can’t. There is a problem with syntax. WIND0WS.H has a syntax
designed to be understood by the C compiler, and this is mostly
gibberish to the assembler - however Microsoft introduced with
version 6.0 of their Macro assembler (MASM) and Borland with
C++ ~3.0, a .H-to-.INC translator. Note the convention that all
C-syntax Include files have the extension “.H”.
Instead of WINDOWS.H,  in assembly we use WINDOWS.INC,
which is supplied by Borland and Microsoft. Note the convention
that Include files for assembly language have the extension .INC,
though I can’t vouch for this for all software vendors.
The listing starts on the next page, and as you look through it, you
will see how I have included WINDOWSJNC, and how I have
accessed the structures. There are some example extracts from
WINDOWSINC to clarifjl the explanation.
The first listing is designed around Borland TASM version 2.5, so
once again I am aiming for the earliest possible version. If you
only have MASM version 5.1 or earlier, or TASM prior to version
2.5, which do not have the necessary high-level constructs, you
can only assemble the Windows program from the previous
chapter. For further discussion of version numbers, see page 88.
If you want to make use of the latest features for writing
streamlined code, especially if writing for Win32, then the later
the version the better.

C o m p l e t e
MAW&
TASM

I s k e l e t o n
l i s t i n g s
for all
vers ions

;wINHuLLo
.MODEL S

P r o g r a m  lis
contifiues u
u9.

731s  progm
TASM KM

. MODEL
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Complete
MASM &
TASM
skeleton
listings
for a//
versions

It is fascinating to watch the game Microsoft and Borland are
playing with each other. One tries to leapfrog the other, and
Microsoft’s version 6.0 was released in response to Borland’s
version 2.5. MASM version 6.0 has some very nice features, and
the releases of 6.10 and 6.11 added enhancements to further
streamline coding for Windows. I’ve put some special notes on
compatibility issues for v6.0+ at the end of this chapter (see page
125),  and to be completely fair to both vendors and to those
readers who have MASM v6.x, I’ve placed a complete listing of a
MASM skeleton program at the end of this chapter.
You will also find the MASM skeleton program on the Companion
Disk, in directories \ASMDEMOl  and \ASMDEM02. The first is
a skeleton program that has the startup code inside the program, as
is done in the skeleton program of the previous chapter. In the
second directory is the same program, but it has the startup code as
a separate linkable module. It is the latter case that is listed at the
end of this chapter.
You will find the TASM skeleton program on the Companion Disk
in directory \SKELETN2. This is the same program listed
immediately below. Note that it has a separate linked startup
module, COWS.OBJ. (You may have already noticed that there is
nothing apparently logical about the naming of directories or files
on the Compnaion Disk. The justification is historical; I have kept
the same names as used in the first edition.)
A skeleton written for TASM version 5 is in Chapter 13.

Skeleton Analysis

;WINHULLO.ASM-->WINHULLO.EXE  Windows demo
.MODEL SMALL

Program fisfing
conthwes  mtil page
ff$.
ii?& program works with
7i4SM ~2% __

The " .MODEL"  directive is an instruction to the
assembler. If you leave it off, the program will still
assemble ok. It tells the assembler how many data
and code segments this program will need and gives
Standard names and qualifiers to the segments.

.MODEL I have specified "SMALL", which means that the program will have
one code segment and one segment with combined data and stack.
You have a choice of TINY, SMALL, MEDIUM, COMPACT, and
HUGE: your assembler manual will have details on each of these.
See page 119 for more information.
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If your assembly program has to be linked with a high-level
program, you would normally choose the same model that was
used for compiling the high-level code. This ensures smooth
linking.

INCLUDEWINDOWS.INC
IDM QUIT EQU 200 ; m e n u - i d e n t i f i e r s : must be
IDMIABOUT EQU 201 ;same as defined .RC file.

W/NDUWS.- Here is where WINDOWSJNC  is inserted. If you look back to
/NC page 94 you will see that I have still left in the above two equates.

These come from the .RC file (see page 89). If there were enough
of these, I would have put them into their own .INC file and
included it in both WINASMl .ASM and WINASMl .RC
Unlike C, external functions must be explicitly declared in
assembly language, MASM version 6 is a bit different (see page
125),  as is TASM version 5 (see Chapter 13).

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

UPDATEWINDOW:FAR
BEGINPAINT:FAR,ENDPAINT:FAR
DEFWINDOWPROC:FAR
POSTQUITMESSAGE:FAR
REGISTERCLASS:FAR
GETSTOCKOBJECT:FAR
CREATEWINDOW:FAR
SHOWWINDOW:FAR
GETMESSAGE:FAR
LOADCURSOR:FAR
TRANSLATEMESSAGE:FAR
DISPATCHMESSAGE:FAR
LOADICON:FAR
TEXTOUT:FAR
MESSAGEBOX:FAR
SELECT0BJECT:FA.R

Data segment, no major change from before . . .

.DATA
s z w i n t i t l e DB 'HULL0 DEMO PROGRAM',0
szwinasmlname DB 'WINASMl',O
hOemFont DW 0 ;handle to OEM font.
sout DB 'Hull0 World'
szabout DB 'Assembly Language Windows Demo',0
sztitle DB 'Karda Prints',0 ; /
;.................._._,.....,..,.........................
.CODE

PUBLIC WINMAIN
WINMAINPROC PASCAL NEAR hInstance:WORD,\

hPrevInstance:WORD,lpCmdLine:DWORD,nCmdShow:WORD

High-/eve!
PROC

PASCAL
epilog/
prolog

push bp
mov bp,
sub sp,

mov
pop $?
ret 10

;Define all
LOCAL hh'

;window cla
LOCAL sl

*message st
’ LOCAL s2

LOCAL ’
directive I
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High-/eve/
PROC

PASCAL
epilog/
prolog

Now for the first major enhancement. If you refer back to page 98
you will see this same section of code and a picture of the stack.
The parameters passed on the stack have to be accessed by direct
addressing of the stack segment. "cmp WORD PTR [bp+lO]  , 0”
for example, to get at "hPrevInstance". However, by declaring
all passed parameters as above, they can be accessed within the
procedure by name. The example would become "cmp
hPrevInstance,O" - simple hey! The assembler equates
hPrevInstance  to [bp+lO],  so it does the dirty work.

There’s another important aspect to the above high-level PROC -
the PASCAL qualifier. This eliminates the need to explicitly code
the prolog and epilog code. Again, look back at page 98.
The standard prolog code, which is not part of the program listing,
is:

push bp -saveI old bp value.
mov bp,sp *set bp pointing to return address.
sub sp,46 Ioperand varies (see notes below).

The standard epilog code, which is not part ofprogramlisting, is:

mov sp,bp *setI sp pointing to return address.

::: %
*restore old bp value.

+operanh depends on # of parameters to dump.I

Now back to the program listing:

;Define all 'automatic' data...
LOCAL hWnd:WORD

;window class structure for REGISTERCLASS()....
LOCAL sl:WNDCLASS

;message structure for GETMESSAGE . . .
LOCAL s2:MSGSTRUCT

LOCAL
directive

The original prolog  code contained "sub sp, 46" to move the
stack further down in the stack segment, allowing a free area in
which to store local data. Once again, we can eliminate the need
to explicitly code this. Declare all local data using the LOCAL
directive, with a syntax as shown above. Incidentally the default
type is WORD, so if the data is of type WORD you don’t have to
declare it.
Note that you cannot initialise this data, since it is only created at
execution entry to the procedure, not at assemble time.
For an introduction to local data, refer back to page 62.
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Note also a particular problem due to the temporary nature of local
data, with regard to getting its address within the program - see
page 60.
This local data can be referred to by name, and the assembler will
do the job of equating the labels to [bp-value]. A most useful
side-effect of local labels is that the names are only recognized
within the current procedure, not even inside nested procedures.
This means that you can use labels elsewhere with the same names
(this is a highly qualified statement: refer to page 120).
The syntax is (not part of program listing):

LOCAL label : type [,label  : type I 1, . ..I

STRUC
directive

Notice the data types WNDCLASS and MSGSTRUCT above.
Structures are introduced back on page 65. Structures used by
Windows are defined in WINDOWSINC, the Include file.
WNDCLASS and MSGSTRUCT are the names of structures, and
they can also be used in data declarations as the data-type, as has
been done with our LOCAL declarations sl and s2. sl is merely
an instance of structure WNDCLASS, while s2 is an instance of
MSGSTRUCT.
For your reference, extracting the definition of WNDCLASS from
Borland’s WINDOWSJNC (not part of program listing):

MSGSTRUCT STRUC
msHWND DW ?
msMESSAGE  DW ?
msWPARAM DW ?
msLPARAM DD ?
msTIME DD ?
msPT DD ?

MSGSTRUCT ENDS
. And here is the other:
~DCLASS STRUC

clsstyle DW ?
clsLpfnWndProc DD ?
clsCbClsExtra DW ?
clsCbWndExtra DW ?
clsHInstance DW ?
clsHIcon DW ?
ClsHCursor ?
clsHbrBackground  "Di ?
ClsLpszMenuName  DD ?
clsLpszClassName  DD ?

WNDCLASS ENDS

cmp hPr
je yes:
jmp cre

;.........
yeslst:
-Setup theI
mov sl.
mov sl.
mov sl.
mov sl.
mov sl.
mov ax,
mov sl.
call LOE
mov sl.
call LOI
mov sl.
mov sl.
mov ax,
mov sl.
mov sl.
mov sl.
mov sl.

Registering
a window

NOTE:
For 32-bit programming, all of
these fields become 32 bits.
The Companion Disk has
different Include files. For 16-bit
Windows applications there is
WINDOWSINC and
WINASM60JNC,  and for 32-bit
applications there is W32.INC.

High-level
CALL

There is also an extended window
class, with a structure called
WNDCLASSEX, that has an extra
field. It is used with
REGISTERCLASSEX(). lea ax,

call RE(
or ax,
jne cr(Now back to the program listing: jw w
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cmp hPrevInstance,O ;=O if no previous instance.
je yeslst
jmp createwin

;..................................
yeslst:
I-Setup the window class structure for REGISTERCLASS . . .

mov sl.clsStyle,3
mov sl.WO~PTRclsLpfnWndProc,OFFSET  WinasmlProc
mov sl.WORDPTRclsLpfnWndProc+2,SEG WinasmlProc
mov sl.clsCbClsExtra,O
mov sl.clsCbWndExtra,O
mov ax,hInstance
mov sl.clsHInstance,ax
call LOADICON PASCAL,null, O,IDI_APPLICATION
mov sl.clsHIcon,ax
call LOADCURSOR PASCAL,null,  O,IDC_ARROW
mov sl.clsHCursor,ax
mov s 1. clsHbrBackground, COLOR_BACKGROUND
mov ax,OFFSET szwinasmlname
mov sl.WORD PTR clsLpszMenuname,ax
mov sl.WORD PTR clsLpszMenuName+2,ds
mov sl.WORD PTR clsLpszClassName,ax
mov sl.WORD PTR clsLpszClassName+2,ds

f?f?@tt@r.@ The above block of code is setting up the data structure prior to
a window calling REGISTERCLASSO. Compare that with the previous

program, page 99. You will see there that we had to explicitly
access the stack segment between [bp] and [bp-461,  in which the
instance of the structure was kept. (Locations greater than [bp]
contain the return address and passed parameters, while addresses
below [bp-461  is the new working area for the stack.)
WORD PTR override is introduced on page 63.

High-level Now we have another high-level feature, the high-level CALL.
CALL REGISTERCLASS  only requires one parameter, the FAR

address of the sl data structure.
Refer back to how it was done before: after everything was loaded
into the structure in the stack segment, ss:[bp-461 was passed as
the FAR address required by REGISTERCLASSO. See page 99
onwards.
Below, we do the same thing but use the name of the structure
instead:

l e a  ax,sl
call REGISTERCLASS PASCAL,ss,ax
or ax,ax
jne createwin
jmp quitwinmain



116 Windows Assembly Language & Systems Programming

The time has come to create the window on-screen. The
high-level CALL has various qualifiers and can take multiple
parameters.
Note that if the parameters have no defined size, they default to
WORD.
Notice the qualifier PASCAL:

createwin:
call CREATEWINDOW PASCAL,ds,OFFSET szwinasmlname,\

ds,OFFSET szwintitle, 207,O
300, 0: ~?"liInktanc&, 0,O

0 400 \
mov hWnd,ax
call SHOWWINDOW PASCAL,ax,nCmdShow
call UPDATEWINDOW PASCAL,hWnd
jmp SHORT messageloop ;go to main message loop.

You may have noticed that I have not used the FAR PTR override
for the call instructions: the assembler is smart enough to know
from the “EXTRNfunctionname  : FAR” declarations that the call
should be FAR. The override could be put in, but for the
programmer’s information only.

P A S C A L , So, what about the PASCAL qualifier? The choices here are
C, B A S I C , nothing, PASCAL, C, BASIC, FORTRAN STDCALL, or
FORTirzAN, PROLOG. The qualifiers available vary with different assemblers.
STDCALL,
P R O L O G

Normally, a CALL instruction just pushes the return address on to
the stack, and the RET at the end of the called procedure pops it

qualifiers off.
The PASCAL qualifer  will cause the parameters to push on in the
correct order and will also remove them, assembling a “RET
number ” at the end of the procedure, as discussed above and on
page 107. We require the PASCAL qualifier to call Windows
functions.
We would use the C qualifier to call C functions, perhaps some
third-party C library we want to use. The effect is the same, but
the parameters are pushed on in the reverse order and not removed
by the called routine: they are removed from the stack after
execution returns from the procedure.
Whatever language we are calling, the result is that the high-level
CALL instruction assembles with all of the pushes, pops, and other
stack manipulations generated automatically - unassemble such
code and you will see something like the program of the previous
chapter.

*This is the main message loop . . .
rkainloop:

lea ax,s2

call 'I
lea a
call I:

message1
lea a
call G
or a.
jne n

;GetMess
;so here
mov a

quitwinm
ret

WINMAINE
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call TRANSLATEMESSAGE PASCAL,ss,ax
lea ax,s2
call DISPATCHMESSAGE PASCAL,ss,ax

messageloop:
lea ax,s2
call GETMESSAGE PASCAL, ss,ax, null, null, null
Or ax,ax
jne mainloop

;GetMessage() returns FALSE @X=0) if a "quit" message...
-so here we are quiting....I

mov ax,s2.msWPARAM  ; return wparam to windows OS.
quitwinmain:

ret
WINMAINENDP

Figure 5.1: Stack upon entry to callback.

Stack Pointer SP

An instance s3 of
PAINTSTRUCT
is here. s3 actually PSrcPaint.rcT

are defined in
WINDOWS.INC

Note: hDC equates

Base Pointer BP
register points here

I’his  is what
the stack looks
like at entry
to the callback
function (after
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;................................*.......................
PUBLIC WINASMlPROC

WINASMlPROC PROC WINDOWS PASCAL FAR \
hWnd:WORD,msgtype:WORD,wParam:WORD,lParam:DWORD

LOCAL dummy:WORD:5
LOCAL hDC:WORD
LOCAL s3:PAINTSTRUCT

WINDOWS Notice two things here: the WINDOWS qualifier, and the
qualifier "dummy" local variable. Local declarations can take a

repeat-count, which in this case declares five words, the first
pointed to by label "dummy".
The WINDOWS qualifier takes care of generation of the special
prolog  and epilog required for a callback function. Refer back to
page 103 for the prolog code, and page 107 for the epilog code.
MASM v6 achieves the same thing with a different syntax, while
32-bit programming uses the STDCALL language qualifier and
doesn’t need further qualification.
Figure 5.1 shows the stack upon entry to the callback function.
Now for the case-logic that processes the messages . . . .

mov ax, msgtype ;get message-type.
=mp ax,WM CREATE ;msg received after
je xcrea& ;CreateWindow() func is called.
cmp ax,WM DESTROY ;message if a window is closed.
je xquitrii&ssage
cmp ax,WM_PAINT ;msg if Windows has (already)

-redrawn any part of the window
- (due' to size-change for example).I

je xpaint
cmp ax,WM COMMAND;any selection of the menu will
jne notwmEommand ; produce this message.
jmp xmenu

notwmcommand:
cmp ax,WM LBUTTONDOWN ;one of many mouse
jne notwm1button ; messages.
jmp xbreak

notwmlbutton:
=mp ax,WM_CHAR ;message that a key pressed.
je xchar

;Default handling of messages....
call DEFWINDOWPROC PASCAL,hWnd,msgtype,wParam, 1Param
jmp xreturn ;Back to Windows, which will in turn

; return to after DispatchMessage  .

Now to process the messages . . .

xcreate:
call GETSTOCKOBJECT PASCAL,OEM_FIXED_FONT

mov hc
jmp d

; . . . .
xquitmesE

call P(
jmp d

;.....
xchar:

jmp d
; . . . . . . . *
xpaint:

lea a:
call B:
mov hl
call 5:
call T:
lea a:
call E
jmp S1

; . . . . . . .
xmenu:

cmp WI
jne x'
cmp w.
jne nl
jmp XI

notquit:
cmp w:
jne xl
call M

;.......,
xbreak:

sub a:
cwd

xreturn:
ret

WinasmlPl
END

.MODEL :
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mov hOemFont,ax ;handle to font.
jmp xbreak

;....
xquitmessage:

call POSTQUITMBSSAGE PASCAL,0
jmp xbreak

;.....
xchar:

jmp xbreak
; . . . . . . . .
xpaint:

lea ax,s3 ;ps -- far-addr of paint-structure.
call BEGINPAINT PASCAL,hWnd,ss,ax
mov hDC,ax ;hDC -- display-contex.
call SELECTOBJECT PASCAL,ax,hOemFont
call TEXTOUT PASCAL,hDC,10,20,  ds,OFFSET sout,ll
lea ax,s3 ; -- far-addr of paint-structure.
call ENDPAINT PASCAL,hWnd, ss,ax
jmp SHORT xbreak

;....._..................
xmenu:

cmp WORD PTR lParam,O ;low-half of 1Param
jne xbreak *testI if a menu-message.
cmp
jne

wParam,IDM_QUIT ;wParam.
notquit

jmp xquitmessage
notquit:

cmp
jne
call

;......
xbreak:

sub
cwd

wParam,IDM ABOUT
xbreak - ;no other menu items.
MgSSAGEBOX PASCAL, hWnd, SEG szabout, \

OFFSET szabout, SEG sztitle, \
OFFSET sztitle, MB OK-. . . . . . . . . . . . ..I....

ax,ax

xreturn:
ret

WinasmlProc ENDP
END

;returns 0 in DX:AX.
-return  a 32-bit (long) value).I

.MODEL Directive
I already introduced the .MODEL  directive on page 111 and made
reference to the TINY, SMALL, MEDIUM, COMPACT, and
HUGE memory qualifiers. The .MODEL directive can also take
other qualifiers, for example:

.MODEL SMALL, PASCAL
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This sets the defaults for the program, and “PASCAL" means that
all procedures are to be of Pascal-type, which also means that the
PASCAL qualifier is not needed in the PROC declarations.
However, high-level CALL instructions still need language
qualifiers to pass parameters automatically, so leave the PASCAL
qualifier in.
The choices of language qualifier are PASCAL, C, BASIC,
FORTRAN, PROLOG, STDCALL, or NOLANGUAGE.
The formal syntax for .MODEL is:

.MODEL m e m o r y m o d e l  [ , [language-modifier I language 1

The language modifier is WINDOWS, ODDNEAR, FARNEAR,
or NORMAL. The exact syntax may vary with some assemblers.
I got this information from the Borland TASM version 2.5 manual.
Special notes on Microsoft MASM compatibility are on page 125.
We would not normally put the WINDOWS language modifier in,
because WINMAIN doesn’t need it. However, if you were
writing callback functions only in assembly language, and perhaps
the WINMAIN in a high-level language, then yes, put it in. This
note only applies to 16-bit TASM applications.

Private and Global Data
Traditional assembly language people are accustomed to all labels
being global, but with the high-level procedures this is not
necessarily the case. Any procedure that uses a language qualifier,
such as PASCAL, automatically has private labels - at least that
is the case with recent versions of MASM - let us treat MASM as
the reference standard. All data and code labels declared inside
the procedure are private to that procedure and are unrecognized
outside it, which means of course that you can use the same labels
elsewhere.
High-level procedures are declared either explicitly, by putting a
language qualifier into the PROC declaration, or implicitly in the
.MODEL declaration.

G l o b a l
l a b e l s

Do note that the defaults set by .MODEL can be overriden in
individual PROCs and CALLS, as required.

So what labels are global? Those declared in the data segment or
in WINDOWSINC. This means that the structures declared in
WINDOWSINC are also global, so instances of them can be made
and accessed anywhere. So be careful not to use names that
conflict with any of those in WINDOWSINC.

Global
override

globalpli
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It is a good move to print out WINDOWSINC for reference. In
some cases you need to know the names of the fields in a structure
or an equate, so a printout can be extremely handy.

WNDCfASS If you look back at pages 113 and 114, you’ll see how
WNDCLASS is used and how it is defined in WINDOWSINC.
Notice the names of the tields: these are different than field names
in WIND0WS.H. In the message structure, also shown on the
same pages, you can see the fields - msWPARAM,  instead of
just wParam. Don’t worry about upper or lower case, as traditional
assemblers don’t care. However the “ms”  prefix is there to
distinguish this global label. I have used WPARAM as a local
label within a program, although an assembler would complain
bitterly if it found a global with the same name.

Global Although code labels are local to the procedure, you can declare
override them as global if necessary:

alobalDlace:: .a qlobalI l a b e l (MASM) .

That’s all you need: double colons.

MASM versus TASM Scope

Be careful about differences in the scope of labels between MASM
and TASM and the various versions of each. It is wise to check
your particular manual to clarify this. The above notes are based
on reading the MASM manuals, particularly Quick-assembler
version 2.01. This version supports high-level PROCs and the
LOCAL directive, as discussed in this book. Quick-C with
Quick-assembler supports Windows development.
MASM introduced local scoping of labels by default, and looking
back through my manuals I see that ~5.1 defined all labels as
global, so the concept came in after that. Version 5.1 has global
code labels only, but local to the module (a module being a source
tile that will be linked with others). TASM ~3.0’~  VERSION
directive claims to be able to emulate MASM versions 4.0, 5.0,
5.1, and 5.2.
Incidentally, MASM version 5.2 appears to be equivalent to
Quick-assembler version 2.0 1.

TASM’s @@
TASM’s  native mode is a bit different - if you want a label to
have scope only within the current procedure, prefix it with “@@”
and put the LOCALS directive right at the beginning of the file.
This holds true for code labels and all labels defined by high-level
PROCs and LOCAL directives.
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“All argument names specified in the procedure header,
whether ARGs (passed arguments), RETURNS (return
arguments) or LOCALS (local variables), are global in
scope unless you give them names prepended with the
local symbol prefix.”

You could have the habit of putting “@@”  in front of every label
that is to be local to a procedure. This seems ok in principle,
except that I encountered assembly errors that do not make sense
to me. Apart from my negative personal experience, you can take
it as good policy to use “@@”  prefixing as much as possible when
using TASM. Don’t forget to put the LOCALS directive at the
start of the file.
Look ahead to Chapter 6 for examples of using “@@“. I have had
a lot of trouble using “@@”  in WINASMOOINC (Chapter 6) -
you can see in the listing on page 168 that I defined “now” as a
parameter passed to procedures, which according to Borland’s
statement above, is global. Yet I have reused it in many
procedures, and in each case it assembles correctly. This
indicates, though I can’t find it mentioned anywhere in the manual,
that the local definition of “now” overrides any other local
definitions.
So “now” is not really global. It only exists on the stack anyway,
so sensibly it is only valid for the life of the procedure in which it
is declared. Borland, would you kindly be a little more precise.
The only difficulty with “now” would be if you had a statically
declared “now” as well, say in the data segment - then you have a
clash. Then it is essential to use “@@”  or another name.
Borland has tidied up label scope by using the C-like approach
found in MASM version 6 in their TASM version 5.0. See
Chapter 13.

Life of Automatic Data

LOCAL
directive

I have mentioned TASM’s  apparently anomalous handling of local
symbols. LOCAL data of course exists on the stack and is created
on entry to a procedure and destroyed on exit.
However, it will still be in existence at lower level nested
procedures. That is, LOCAL data declared at the beginning of

Prc
nef
Wl
see
Ml
Th
co1
do
Shl
da
cd

E

Fi
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procedure A will be “accessable”  by procedure B if procedure B is
nested within (called from within) procedure A.
What I’m talking about here is the availability of the data, not the
scope of the symbols. Scope is discussed above, and varies with
MASM and TASM.
There is no problem with the availability of procedure A’s data
conceptually, because procedure B will be using the stack further
down in memory. The stack grows with a procedure call and
shrinks upon exit. What is not so apparent is that any LOCAL
data declared in WinMain  is also available in a callback. A
callback is not what you immediately think of as being nested
within WinMain(), but it is, even though the call to it has gone via
DispatchMessage  and Windows. See Figure 5.2:

Figure 5.2: Accessing WinMain  local data.
1

After prolo Stack ”
grows

P
Entry point Callback LOCAL
to callback y. data.

After prolog Stack
grows.

c
Entry point WinMain LOCAL
to WinMain y. data*

Assembling and Linking
That’s it - a complete assembly language program! Of course,
you do need those other files to assemble and link. Itve listed them
here for your convenience. Note that the Make file is designed for
Microsoft’s NMAKE.EXE,  but you should be able to get it going
with other Make programs. I prefer NMAKE, even for “making”
Borland code. What follows is particular to TASM. Look at the
previous chapter for specifics on .RC, .DEF, and .MAK files for
Microsoft.

. RC file This is the WlNHULLO.RC  file (in \SKELETN2).  Nothing new
here . . .

i:k”;Ee (arbi t rary)  equates  could  have been in  an  Include

#deki.ne* ’ IDM_QUIT 200
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#define IDM ABOUT 201
winhullo MEm

BEGIN
POPUP l'Filell
BEGIN MENUITEM "Quit", IDM_QUIT

MENUITEM "About '. . . , IDM_ABOUT
END

END

.DEFtXle Now for the definition file . . .

NAME WINHULLO
DESCRIPTION 'Demo ASM hullo program'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE PRELOAD MOVEABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 8192
EXPORTS WINHULLOPROC

Note that some LINK programs are case sensitive and some are
not. Borland’s TLINKEXE prior to version 2.0 is not, while
version 2.0 onwards is. This did create some problems for me,
when upgrading. One problem I found was that the line "NAME =
WINHULLO"  in the .DEF file had to be in capitals.

Borland
Make fife

I have designed the WINHULLO.MAK file for Borland’s TASM
and TLINK to be comprehensive and well documented.

# NOTE this Make file has been modified for Borland C++,
# to be used with TASM and TLINK, however I'm still using
# Microsoft's NMAKE.

# To run this file: NMAKE WINHULLO.MAK

fn = winhullo
all:$(fn).exe

lpath = \borlandc\lib #path for libraries
ipath = \borlandc\include #path for Include files.
epath = \borlandc\bin #path for EXEs.
SW = /c /n /v /Tw /L$(lpath) #switches for tlink.
# /n =ignore-default-libs, /Tw =generate Windows exe,
# /L$(lpath) = lib path, /v =debug-on.
# Note that these paths all assume you are in the same
# drive.

# -r =dont a
# environmer
# path inste
$(fn).res  :

rc -r

# cOws=Windc
# Standard I
# import=acc
$(fn)  .exe :
tlink $(sw)

rc 130

# Note that
# CWINS.LIB
# run-time
## i;rne;i;E;

# io:e that
# RC.EXE, a
# Windows 3
# RC, as sl?
#"WINVER =
# using a F
# with SDK
# (my WINDC
# SDK 3.0,
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-r =dont append to exe, -x =dont look in INCLUDE
environment-variable for incl-files, -i = look in this
path instead....
fn).res  : $(fn).rc

rc -r -x -i$(ipath) $(fn).rc

cOws=Windows small start-up-lib, cwins=Windows small
Standard run-time-library, cs= Standard-run-time lib,
import=access to Windows built-in library functions.

$(fn).exe : $(fn) .obj $(fn).def $(fn).res
tlink $(sw) COWS $(fn),$(fn),$(fn),import  twins cs,$(fn).def

rc /30 -x -i$(ipath) $(fn).res

# Note that Borland C++ ~2.5 names the Windows library
# CWINS.LIB, while ~3.0 names it CWS.LIB. The BorlandC
# run-time library is CS.LIB, which could be placed
# immediately after CWS, if you need it. Note that the
# 'IS" postfix designates the small model.
# Note that if you use the tools from the SDK3.1, such as
# RC.EXE, and you want your program to work with both
# Windows 3.0 and 3.1, put "/30" in second execution of
# RC, as shown. Also your source program should have
#"WINVER = 0x0300" before the WINDOWS.INC is included, if
# using a WINDOWS.INC derived from WIND0WS.H supplied
# with SDK 3.1.
i $(m; yIyOWS:INC on,the Companion Disk is derived from

. I which avoids certain problems.

When you type this in, there is no need to put in all the comments,
but be careful about unnecessary blank lines, and leave a blank
line where I have put one. There are certain syntax requirements
that can be messed up otherwise. Note that it’s on the Companion
Disk (\SKELETN%), to save you all that trouble.
The .MAK tile shows where it expects all of the files to be located,
but you can make changes as necessary. You could even put
everything in the one directory, as I suggested, as a quick and dirty
option for Microsoft, if the SDK isn’t installed (see page 86).
Ditto, you could do this with the Borland tiles, but if you have the
complete distribution disks, then why not install properly, in which
case the files will load into the above directories by default.

MASM6 versus TASM
MASM version 6.00 is a curious beastie. It was in some respects a
disappointment, especially as I acquired it soon after obtaining
TASM ~3.0 and had been spoilt by the wonderful new features
Borland had incorporated into their assembler.
However, while MASM may not be OOP-aware, it does make
ground in other ways. Hmmm - MASM ~6.0 isn’t even
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MACROS
hclude file

TAMS
WINDOWS

Windows-aware - but its C-like features did (in time) endear
themselves to me. Note however, that Microsoft did make MASM
much more Windows-aware with the release of version 6.1.
MASM ~6.00 is a stand-alone product and as such cannot be used
for Windows development (again, corrected by 6.1). The user’s
manual has barely a line or two on Windows (the documentation
for 6.1 is also a disappointment in this regard). The product (6.0)
is for DOS and OS/2 development, and those interested in
Windows programming are referred to the SDK.
Obviously, if you have ~6.0, upgrade it! Note however that you
still need the SDK with MASM ~6.1. To quote from the Microsoft
Programmer’s Guide, supplied with MASM ~6.1 (page 258):

“MASM 6.1 does not provide all the tools required to
create a standalone program for Windows, To create
such a program, called an “application,” you must use
tools in the Windows SDK.”

The required tools, such as resource compiler and libraries, aren’t
there, so you need the SDK or one of Microsoft’s recent
Windows-aware higher level languages. The 6.x package does
have CMACROSJNC, which is required for Windows
development, but it is not described in the manual. Once again,
the SDK is the place to look.

WINDOWS Qualifier

TASM v3.x (TASM3) has extended the syntax of the language in a
very systematic manner, notably with the extended PROC and
CALL, and most especially the WINDOWS qualifier. Curiously,
Microsoft has only gone partway along that road, with an extended
PROC, very much like TASM’s,  but no WINDOWS qualifier.
Microsoft doesn’t have an extended CALL either but has opted for
something else called INVOKE, which is really an extended call.
MASM ~6.~5  (MASM6’s)  lack of a WINDOWS qualifier for
PROC means that declaring a callback PROC becomes an absolute
pain. Ra ther  than  resor t  to  CMACROSINC a n d
PROLOGUEINC to insert the required prolog and epilog code,
how much simpler it would have been if Microsoft had thought
ahead just that little bit further.
There is a mechanism, using “OPTION PROLOGUE” and
“OPTION EPILOGUE” directives, to overrride the default prolog
and epilog, and there is a method for suppressing default prolog
and epilog, as well as a method for restoring the default.

Th
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The issue of prolog  and epilog have become more streamlined
with 32-bit applications, requiring only the STDCALL qualifier -
see page 78.

MASMG Anyway, I guess we have to “go with the flow”, so the 16-bit
skeleton skeleton program on the Companion Disk, in directory
program \ASMDEM02, and listed at the end of this chapter, uses

CMACROSINC.  Note that you can’t see it explicitly included in
the listing, as that is done indirectly by the WINDOWSINC tile.
The Companion Disk also has a similar program in \ASMDEMOl  ,
which has the startup code in the program, rather than as a separate
module.

Prototypes

The program at the end of this chapter can be assembled under
MASMG, or more correctly, ML. As the product is not terribly
compatible with earlier MASMs, Microsoft has renamed it, though
you do have the option of switching on compatibility with version
5.1.
MASMG has developed features that make it look more like C,
most notably the use of prototypes. These are skeleton
declarations of a procedure, which you place at the beginning of
the file, and are used by the assembler for syntax and type
checking. These are best illustrated by an example, and an
excellent example presents itself in the use of INVOKE.
Borland introduced the equivalent with TASMS,  though they have
given it a different name: PROCDESC. See Chapter 13, page 308.

INVOKE MASM6 CALL is definitely low level, so to call Windows
nigh-level functions in the convenient manner that we have become
call accustomed to in this chapter, we need to use INVOKE instead.

In fact, TASM3’s  high-level CALL is quite primitive alongside the
sophisticated INVOKE, as you’ll see.
The first line shows the call to MESSAGEBOX as we would do
it with TASM:

,.TASM 3.00 high-level  cal l . . .
call MESSAGEBOX PASCAL, hwnd, ds,OFFSET szabout, ds, \

OFFSET sztitle, MB-OK
;MASM 6.00 high-level call...
INVOKE MESSAGEBOX, hwnd, ADDR szabout, ADDR sztitle,\

MB-OK

PROTO INVOKE does the same job! However if you put it in as shown, it
declaration won’t work, because something else is required - the prototype.
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You can only use INVOKE to call a procedure that has a PROTO
declaration, even if the procedure is external, as in the case of
Windows functions.
Previously I used EXTRN to declare MESSAGEBOX as
external, and that is still recognized by MASM, but PROTO can
be used to replace EXTRN. So, for each and every Windows
EXTRN declaration, replace with PROTO,  as shown:

;TASM (and MASM) ex ternal  declara t ion. . .
EXTRNMESSAGEBOX:FAR

;MASM 6.00 prototype for INVOKE...
MESSAGEBOX PROTO FAR PASCAL, :HWND, :LPSTR, :LPSTR, :WORD

You should find the syntax of PROTO to be self-explanatory. The
parameters have to be declared, with their types, and can have
arbitrary (or no) names. You can also get away with declaring all
types as WORD (16 bits) rather than more specific 16-bit  types
such as HWND or .BOOLEAN.
Actually, it’s not PROTO  itself that replaces EXTRN, rather
INVOKE defaults to external, in line with C’s default behaviour.

Passing
3Zbit
values

ADDR, ::

Notice how I passed the FAR address (long pointer) in TASM
compared with ML. In the PROTO declaration above, you can see
the data type HWND, which is 16 bits, but LPSTR is a 32-bit
value (Long Pointer to STRing). With TASM, I passed the
segment:offset  as two separate items (though it is possible to
declare a 32-bit pointer), but this will cause an assembly error with
ML, due to a clash with the PROTO declaration.
The idea behind this is the extra safety checking that high-level
programmers are accustomed to. ML has two very convenient
mechanisms for defining a 32-bit parameter. ADDR is a directive
that will pass the NEAR or FAR address as appropriate. The other
mechanism is where we pass a FAR address in two registers. In
the skeleton program you see this done often: in ML we combine
them with double-colons, for example: “ss::bx”.  You can see this
in action on the Companion Disk and the listing at end of this
chapter.

.H to ./NC
convertor

Microsoft has put a lot of thought into making MASM6 behave
like C, despite a very different syntax. There is a utility called
H2INC.EXE,  that will convert a C Include file (.H) into an
assembler Include file (INC). Most importantly, if used on
WINDOWS.H, it will produce the prototypes for the Windows
functions, so we don’t have to type them in. This WINDOWSINC
is peculiar to MASM6 and don’t expect it to be usable by TASM.
The reverse is ok however - MASM6 happily reads the

CMACROS-
INC

push dt
POP al
nop
inc b1
push bI
mov bI
push dt
mov dt

dec bl
dec b]
mov sl
POP df

"d:: 2
ret 11

hwnd 1
msgtype :
wparam T
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WINDOW.INC  that Borland supplies with TASM (and licenced
from Microsoft actually).
I used H2IIVC to generate a WINDOWSINC for the example
program, though note that I had to edit it somewhat (the .INC file)
to get it to work with my assembly program.

Callback Design

So, you can very happily go through the earlier TASM program of
this chapter replacing CALLS with INVOKES and EXTRNs with
PROTOs (or delete the EXTRNs entirely). However, a major
problem still exists: the lack of a WINDOWS qualifer  for PROC.

CMACROS.- This means that you cannot have a high-level PROC declaration
/NC for the callback function, and you have to resort to a macro or

insert the prolog  and epilog code manually. The demo program
uses CMACROSINC to achieve this.
Without the high-level PROC you can’t have the LOCAL
directive, for convenient creation of data on the stack
(CMACROSINC gets us around this problem).
Because a program isn’t going to have too many callbacks, it’s not
a total disaster, just a nuisance, if you don’t want to use
CMACROSINC. The manual approach is to insert the code as
follows:

push ds ;Prolog code for callback function.
POP ax ; /
nap
inc bp
push bp

; j

mov bp,sp
push ds j ;
mov ds,ax ; /
d& bp -Epilog code
dec bp : /
mov sp,bp
POP ds
POP bp

; f

dec bp
ret 10 j $

You can have local data on the stack, but you will have to
manipulate the stack directly. To get at all of the data on the stack
segment, you could do something like this:

hwnd TEXTEQU <WORD PTR [bp+14]>
msgtype TEXTEQU <WORD PTR [bp+12]>
wparam TEXTEQU <WORD PTR [bp+lO]>
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lparam TEXTEQU cDWORD PTR [bp+6]>
dummy TEXTEQU <WORD PTR [bp-lO]>
hdc TEXTEQU <WORD PTR [bp - 12 ] >
s3 TEXTEQU < lbp- (12 + SIZE PAINTSTRUCT) ] >

LEA sp, s3 -moveI s t a c k  t o  f r e e  r e g i o n .

Labelscope
differences

TEXTEQU,
EOU

PROC syntax
differences

STRUC
assembler
differences

Something along these lines will give you access to the labels
within the callback. Note that I used TEXTEQU, because EQU
cannot be used for text aliasing with ML, a major divergence from
earlier MASMs and from TASM. Notice that the text to be aliased
must be inside ‘I<  >‘I.
Anyway, this is academic.

Other Incompatibiiities

So what else needs changing . . .
There is a slight difference in the syntax of the high-level PROC
directive. If you look back to the declaration for WINMAIN,  you
will see that it started like this: "WINMAIN PROC PASCAL NEAR
hinstance:WORD . . . . ‘. With MASM6 it has to be rearranged
like this: "WINMAIN PROC NEAR PASCAL, hinstance:WORDII. . . . ,
With TASMS,  Borland has allowed MASM high-level PROC
syntax.

I also came across an interesting problem with fields of a structure.
Incidentally, MASM6 allows nested structures, which previous
versions didn’t. Nesting is vital for OOP, though MASM6 is still
nothing like OOP-aware.
The problem is that the program of this chapter has a couple of
lines like this:

Which one?

*where clslpszmenuname is a 32-bit field of,
;structure-instance sl..

mov WORD PTR sl.clslpszmenuname,ax
mov WORD PTR sl.clslpszmenuname+2,ds

I loaded each half of the field with separate instructions. MASM
objects to a field being accessed in halves, so I had to resort to:

;MASM6's solution . . .
lea di, sl.clslpszmenuname
mov [dil,ax
mov [di+2],ds

Oh, and make sure that your callback procedure name is all capital
letters.

ML /c $ (:

H2INC /C ,
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Another major difference is in the scope of labels. I have covered
that topic beginning on page 120. This is one aspect of MASM6’s
move toward the code integrity we expect from a high-level
compiler. Prototyping is another. I think that many serious
programmers will choose MASM on this basis, and it is an area
where Borland had to play catch up, with TASMS.

All of these comments are, of course, my personal opinion, not the
final truth engraved in stone, and I suggest that potential buyers
consider most carefully what features are most important. Have a
look at reviews in magazines. If OOP is your thing, then look
closely at TASM. Do bear in mind that my comments are based
upon particular versions, and even “maintenance releases” of the
same version number can have significant improvements.
Therefore, take all of the above comments with a pinch of salt, and
check out the features for yourself before buying.
One interesting point is that MASM6 comes with Programmer’s
Workbench (PWB), an editor and IDE, as well as CodeView
debugger. Borland does not provide an editor or IDE, but the
Turbo Debugger is very nice.
I have made some further comments on this on page 309.

MASM Assembling and Linking

Resource compiling and linking are as per Chapter 4, though you
can use the Borland TLINK and COWS.OBJ, CWS.LIB and
IMPORT.LIB library files, instead of the Microsoft equivalents(if
you wish).
You only need to change one line in the Make tile, that of the
assembly process:

ML /c $(fn) .ASM

where /c suppresses linking (ML normally automatically invokes
the linker), and $(fn) is the macro for the filename.
If you want debugging information so the source file can be traced
by the Codeview debugger, then you will need the /Zi switch and
you will need to use Microsoft’s LINK, with the /CO switch- the
example Make tile on the Companion Disk to show this is named
MASM6O.MA.R.
This is the command line I used to generate WINDOWSINC  from
WIND0WS.H:

HZINC /C /Gc WIND0WS.H . . .
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MASM6 Program Listing

;ASMDEM02.ASM --> ASMDEM02.EXE Windows demo program.
-This skeleton assembly language program has been written
ifor Microsoft MASM (ML.EXE)  ~6.1. (Do NOT use
;Borland's  TASM!).
;It uses PROLOGUE.INC to force the correct Windows
;prolog/epilog on all FAR PROCs.
*ThisI program does NOT have the startup code built-in.
;Note that Borland provide startup object module as
;COWS.OBJ (small model) and Microsoft provide
;APPENTRY.OBJ with ~6.1. One of these must be linked.
;Note that APPENTRY.OBJ should be for the small model, to
;suit this program -- if not assemble APPENTRY.ASM, with
iswitches as described in APPENTRY.ASM comments.

.MODEL SMALL

WINVER EQU 0300h
?WINPROLOGUE EQU 1 -forces win prolog/epil on far procs.
INCLUDEwinasm60.INC ithis is not the same WINDOWS.INC

.used by the TASM programs. It is
:generated by HZINC.EXE, and contains
;prototypes. Generated by...
* HZINC /C /Gc WIND0WS.H  . . .
’IDM_QUIT EQU 100 ;menu-identifiers -- must be

IDM_ABOUT EQU 101 ;same as defined in .RC file.

EXTRN astart:FAR- *startup code, in APPENTRY.OBJ
i (referenced at END)

;........................................................
.DATA
szwintitle DB 'HULL0 DEMO PROGRAM',0
szASMDEMOname  DB 'ASMDEM02',0
hOemFont DW 0 ;handle to OEM font.
soutstring DB 'Hull0 World'
szaboutstr DB 'Assembly Language Windows Demo',0

;messagebox
sztitlestr DB 'Karda Prints',0 ; /

;........................................................
.CODE

PUBLIC WINMAIN
WINMAIN PROC NEAR PASCAL, hInstance:WORD, \

hPrevInstance:WORD, lpCmdLine:LPSTR, nCmdShow:SWORD
LOCAL @hWnd:HWND
LOCAL sl:WNDCLASS
LOCAL s2:MSG

cmp hPrevInstance,O
je yeslst
jmp createwin

yeslst:

;=O if no previous instance.

;Setup the window class structure for REGISTERCLASSO...

mov I
lea c
mov
mov 
mov s
mov E
mov i
mov E

invoke
mov E

invoke
mov f

mov f
mov i
lea (
mov
mov
lea (
mov
mov

lea i
invoke
or i
jne c
jmp  c

createwi
invoke

mov 6
invoke
invoke
jmp 6

;This is
;for mes
mainloop

lea i
invokt
lea 2
invokt

message1
lea i
invokt
or i
jne n

;GetMess
;so here
mov z

quitwinm
ret
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mov sl.Style,3
lea di,sl.lpfnwndproc
mov [dil,OFFSET ASMDEMOPROC
mov [di+al,SEG  ASMDEMOPROC
mov sl.CbClsExtra,O
mov sl.CbWndExtra,O
mov ax,hInstance
mov sl.HInstance,ax

invoke LOADICON, null, ID1 APPLICATION
mov sl.@HIcon,ax

invoke LOADCURSOR, null, IDC ARROW-mov sl.@HCursor,ax

mov sl.hbrBackground,COLOR BACKGROUND
mov ax,OFFSET szASMDEMOname
lea di,sI.lpszmenuname
mov [dil ,ax
mov [di+2],ds
lea di,sI.lpszclassname
mov [dil,ax
mov [di+2l,ds

lea ax,sl
invoke REGISTERCLASS, ss::ax
or ax,ax
jne createwin
jmp quitwinmain

createwin:
invoke CREATEWINDOW, ADDR szASMDEMOname, \

ADDR szwintitle, OOCFOOOOh, 150, O,\
400, 300, 0, 0, hInstance, 0

mov @hWnd,ax
invoke SHOWWINDOW, ax,nCmdShow
invoke UPDATEWINDOW, @hWnd
jmp SHORT messageloop ;go to the main message loop.

;This is the main message loop, in which Windows waits
-for messages
mainloop:

lea ax,s2
invoke TRANSLATEMESSAGE, ss::ax
lea ax,s2
invoke DISPATCHMESSAGE, ss::ax

messageloop:
lea ax,s2
invoke GETMESSAGE, ss::ax, null, null, null
or ax,ax
jne mainloop

;GetMessage() returns FALSE (AX=01 if a "quit" message...
-so here we are quiting....,

mov ax,sZ.WPARAM
quitwinmain:

;return wparam to windows OS.

ret
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WINMAINENDP
;.............................................._........
ASMDEMOPROC PROTO FAR PASCAL, :HWND, :WORD, :SWORD, \

:SDWORD
ASMDEMOPROC PROC FAR PASCAL, ihWnd:HWND, \

iMessage:WORD, iwParam:SWORD, ilParam:SDWORD
LOCAL dummy [5] :WORD
LOCAL @hDC:HDC
LOCAL s3:PAINTSTRUCT

mov ax,imessage ;get message-type.
cmp ax,WM CREATE ;message received after CreateWindow
je xcreZte ;function is called.
cmp ax,WM_DESTROY ;message received if a window is

; closed.
jexquitmessage
cmp ax,WM_PAINT ;message received if Windows has

*(already)I redrawn any part of the window (due to

je xpaint
cmp ax,WM COMMAND;any
jne notwmcommand
jmp xmenu

notwmcommand:
cmp ax,WM LBUTTONDOWN
jne notwmibutton
jmp xbreak

notwmlbutton:
cmp ax,WM_CHAR
jexchar

defhandler:

;a size-change for example).

selection of the menu will
;produce
-this message.I

*oneI of many mouse messages.

;message that a key pressed.

;Default handling of messages....
invoke DEFWINDOWPROC,ihWnd,imessage,iwParam, ilParam
jmp xreturn

;.................................
xcreate:

invoke GETSTOCKOBJECT,OEM FIXED-FONT
mov hOemFont,ax ;h2ndle to font.
jw xbreak

xquitmessage:
invoke POSTQUITMESSAGE,O
jmp xbreak

xchar:
jmp xbreak

xpaint:
lea ax,s3 *ss:ax -- far-addr of paint-structure.
invoke BEGINPAINT,ihWnd,ss: :ax
mov @hDC,ax ;hDC -- display-context, required

;before  can output to screen.

-For this simple demo,I any redraw of the Window will
*cause output of ourI "hull0 world" string....

invoke SEL
invoke TEX
lea ax,s3
invoke END
jmp SHORT

;...........
xmenu:

cmp WORD
jne xbre:
cmp iwPa1
jne notqI
jmp xquil

notquit:
cmp iwPa

xbre
;ldtnles put 1
invoke MES

;..........
xbreak:

sub ax, a
cwd

xreturn:
ret

ASMDEMOPROC
;.....*....

END asta-

R u n - t i m e
./F/
. ELSElf/
. E L S E

.IF ax==1

.EL'SEIF t

.EI&IF
. . .

.EL'SE

.EI%F
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invoke SELECTOBJECT,ax,hOemFont
invoke TEXTOUT,@hDC,10,20, ADDR soutstring,ll
lea ax,s3 * -- far-addr of paint-structure.
invoke ENDPAINT,ihWnd,ss: :ax
jmp SHORT xbreak

;........_...............
xmenu:

cmp WORD PTR ilParam,O ;low-half of 1Param
jne xbreak *testI if a menu-message.
=mp iwParam,IDM_QUIT ;wParam.
jne notquit
jmp xquitmessage

notquit:
=w iwParam,IDM ABOUT
jne xbreak - ;no other menu items.

*let's put up a message about this program...I
invoke MESSAGEBOX, ihWnd, ADDR szaboutstr, \

ADDR sztitlestr, MB-OK

;.........................
xbreak:

sub ax,ax ;returns 0 in DX:AX. (callback functions
cwd *return a 32-bit (long) value).I

xreturn:
ret

ASMDEMOPROC ENDP
;........................................................

END astart *name of startup code.I

R u n - t i m e
.I//
. ELSE///
* E L S E

Here is an exercise. Locate the above program in \ASMDEM02
on the Companion Disk, and assemble and link it. When you have
succeeded, have a go at modifying the code with something
wonderful available in MASM6. Borland did not catch up with
this capability until TASMS.

.IF ax==WM CREATE ;*Runtime* IF/ELSEIF/ELSE-

.EL'SEIF ax==WM_PAINT
- (note that nesting is allowed).
’

.EL'SEIF ax==WM_DESTROY
. . .

. ELSE

.END;F

If you can’t quite see how to use this, look at the skeleton in
Chapter 13.
Run-time high-level IF/ELSEIF/ELSE  constructs tidy up your
assembly code enormously, and I’m hooked on it. Note that it
assumes nothing and does not change any register values. This
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means that you can jump out from anywhere and jump around
inside, like this:

. IF ax==0
jmp place1

.ELSEIF ax==1
place1 :

.ELSEIF ax==2
jmp place2

. ENDIF
place2:

;goto anywhere, quite legal.

Your mission, should you decide to accept it, is to introduce the
high-level decision constructs to the above example program.

You will also find other high-level constructs in the MASM6 and
TASMS manuals, such as DO/WHILE.

A rationaie
for OOP



6
Program Design

Preamble
This chapter is about interfacing assembly language with C and
C++ and about one aspect of program design that is an outcome of
the interface with C++ - objects. I have not gone into any
general methodology of software design.

Histo/y of Programmers are migrating from C to C++. Ditto with other
OOP and languages, and of course the new kid on the block is Java. You
assembly have got to think in terms of objects. Early in 1991 I put a lot of

thought into object oriented assembly language, including the
presentation of a paper.
I developed techniques for OOP, but found the assemblers of that
time to be somewhat inadequate. So about mid-1991, I wrote to
Borland in the USA explaining in detail what was wrong with their
assembler and what it needed to be able to handle objects. Then,
in February 1992, I was fascinated to learn that Borland had
released a new assembler that they advertized as “object oriented”.
I like to think that I was one of their inspirations.

A rationale
for OOP

Why should you even bother with objects when programming at
the assembly level? The answer is very simple:

1. To interface with 00 languages such as C++.

2. To “improve” the development and maintenance of the
assembly language code.

137
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What is
OOP?

Windows
assembly,
generic
Windows,
386/486
architecture,
OOP,  C*+!

Class

Object =
instance

The much-touted advantages of OOP also apply to assembly
language. Do you want reusable and maintainable code? Do you
want to program faster and debug faster? Then go for objects.
In a nutshell, OOP is just the use of structures. In C++ the
STRUCT declaration is almost exactly the same as CLASS. The
reason is very simple: a class is only a structure (with some bells
and whistles!). Look back to page 65 to clarify what structures are
and how they are used, and you’ve already grasped the principle of
objects. Objects are just instances of a structure, or the actual
copies of the structure that are created. In Chapter 5, I used
structures in a skeleton program.
OOP terminology is what confuses everything.
In the second half of this chapter I have shown the impressive
power of OOP when applied to assembly language, but for now
you need to know a few basics . . .

Object Addressing

C++ has a lot of terminology that can be very intimidating. Yet
the underlying concepts are quite simple.
It is also quite true that you can read an explanation from a C++
manual or textbook a dozen times, and not fully grasp it. But if
you were to see how that concept is implemented at the assembly
level, it would become clear.
This is one reason why I am in favour of this book being used as a
prerequisite, not just to Windows, but also to C++ programming.

The way we write a program using 00 techniques is by grouping
data and code that naturally belongs together into a class (structure
definition). A structure need not contain just data; it can also have
pointers as fields in the structure (or a pointer to another structure
of pointers), and this is one of the key features of the 00
technique.

Calling a Function

With C++ there are objects, and a procedure or function (now
called a function-member or method) is part of a class. The objects
are instances of a class. Data is also part of the class. An instance
is a complete copy of the class, with possible unique
initialisations,  created in memory.
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CALLing a
ffmction
member
(method)

For now we will focus on just one implication of this: how
functions are called.

After all, that’s something we want to do all the time while writing
a program. A simple CALL instruction is what we are familiar
with, and of course, as you saw in Chapter 5, there are high-level
qualifiers for calling Pascal or C procedures/functions and for
passing parameters. This simplifies the stack manipulation, but
now, with procedures that are part of a class, we have something
more to consider.
Say that you have a procedure in a program, and for argument’s
sake give it a name: TEXTOUTO. Also say that it uses the Pascal
stack-handling convention, for no other reason than consistency,
since the external windows functions do.
Our problem is that we want to call this function from somewhere
else in the program. No problem, you think: just do this:

call TEXTOUT PASCAL,paraml,param2

(Assume also that it requires two parameters.)
Yes, this will work, or at least will get execution to the TEXTOUT
routine, but there are other factors to consider . . .

l THIS
l Polymorphism

Object
pointer

“THIS” is a keyword in Borland assembly language and C++. It is
just an equate:

THIS = address of current object.

32-bit
coding

Borland C++ often uses the SI register to hold THIS. Generally,
an “object pointer” points to the current object or whatever object
we wish to deal with.
A little note on the side that will help as you study this chapter.
The use of SI to hold THIS applies to 16-bit  code. For 32-bit
code, it becomes ESI. Quite simple. In general, convert any
examples in this chapter to 32-bit code by prefixing the registers
with “E”. Any reference to FAR pointers may not be relevant
because the 32-bit addressing can address the whole 4.3G with just
the offset.
Also, when writing 32-bit Windows applications, use the
STDCALL language qualifier (see .MODEL on page ill), not
PASCAL. STDCALL convention is that parameters are pushed
right to left, with stack cleanup in the called function.
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“Polymorphism” means that TEXTOUT  can in fact be many
different routines, all with the same name.
At this point some code will help:

.DATA
WINDOW STRUC

active DB 0 -example data-member.I
TExTOuT DW t e x t o u t m a i n  ;example  f u n c t i o n - m e m b e r .
. . .

WINDOW ENDS

W;&LASSA STRUC ;sub-class of WINDOW.
WINDOW

WINCLASSA &I&
-Inherits everything
lfrom WINDOW.

W;kLASSB STRUC ;Ditto, but a function override.
WINDOW

WINCLASSB E-&k
textoutdlg >

. . .
.creating instances . . .
hindowl WINCLASSA c >
window2 WINCLASSB c >
window3 WINCLASSA c 5 ; etc . . . .

.&E
lea si,windowl
call textoutmain PASCAL,parl,par2,si
call [si].TEXTOUT  PASCAL,parl,par2,si

'ika si,window2
call textoutdlg PASCAL,parl,par2,si
call [si].TEXTOUT  PASCAL,parl,par2,si

. . .
textoutmain PROC PASCAL pl,p2,THIS

. . . ;this is the textoutmain procedure . . . etc...

An object
combines
code and
data

Further down in the code you would have to have the two
procedures: textoutmaino and textoutdlgo.
Look very carefully at the above listing. First I defined a class
(structure) called "WINDOW", with a data-member “active” and a
function-member "TEXTOUT". The latter is a pointer to a
procedure' called "textoutmain".'

’ The purists are probably very unhappy with my interspersion of the words "procedure" and
"function" asthoughtheymean the same thing. For ourpurposesthey do. So there!

* Most assemblers do not let you put a forward-reference into a structure field. It must be done
when the instances are created. In this example, “textoutmain” would have to be placed in the
“< >” portion of each instance-declaration. This is messy. TASM ~3.0 is the first truly object
oriented assembler, and has a mechanism for allowing forward-references, as shown in the
second half of this chapter.
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TEXTOUT could be a routine that sends text to a window, but
there could be many such routines designed for different output
mediums. In this case I have arbitrarily created a class,
WINCLASSB, that overrides the pointer with textoutdlgo, while
WINCLASSA does not.

The The key point here is that I can call TEXTOUT, but because it is a
polymorphic pointer, the actual routine that gets called depends upon what is
principle stored in that field. In the case of instance window1 it is

textoutmain(), and in the case of window2 it is textoutdlgo.
You could imagine two windows of different types on the screen,
requiring different textout routines. C++ uses THIS to specify
which instance (object) is currently being referenced.
Each sub-class (and indeed each instance of a class) can have its
own TEXTOUT function, so our code must be able to distinguish.
Look again at the above listing to see how I have done it.
I have disassembled a lot of C++ code to find out what makes it
tick. Borland usually put the value of THIS into SI, which may be
worth noting if you have to interface with C++ code. When
coding at the assembly level, we need to think carefully where we
want to store THIS, if anywhere at all.
Notice that I also used SI’ to hold THIS (see the code examples in
previous listing).

Object Whenever Borland C++ calls a function-member, it always passes
poinfef THIS on the stack (last parameter), so that the called function
passed on knows which object it is dealing with.
the stack Notice that in the PROC declaration, I gave the passed THIS

parameter the same name - in practise you would have to use a
different name, because the assembler will object to one of its
keywords being used as a label.

Early Binding
The first call in the above listing is an example of early binding.
Why? Because I have hard-coded the address of the function I
want to call into the CALL instruction, in this case textoutmain().

’ A warning here, though, is that if your instances are LOCAL and if you use a memory model in
which data and stack segments are different, then there are potential problems with using SI. A
memory access to the stack segment requires BP-relative addressing or an SS: override if using
SI.
It is possible for the object to be located in some other segment entirely, and in that case THIS
would have to equate to a FAR address, such as ES:[SI].  This comment does not apply to
32-bit programming, which uses a FLAT memory model in which there is only one segment.
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This will be an immediate-mode instruction and is fast, but it is a
deviation from “pure” 00 principles.
C-t+ will normally compile a C++ program into calls having early
binding, except for the case where the call is to take polymorphism
into account.
Look at the rest of the line. I passed two parameters, arbitrarily
named “par1  ” and “par2”. At the end I passed the address of the
object that is to be acted upon. Further down in the actual code for
textoutmaino, see how I used a variable THIS to receive that
address. This is important: we must always pass the address of the
object to the function.

Late Binding

The second call in the above listing (page 140) is an example of
late binding. The meaning of this is “call the TEXTOUT function
in the instance windowl”. Another way of writing it is:

c a l l  [OFFSET_windowl  + TEXTOUT]

This is non-immediate and will call the function pointed to at
offset_windowl  + TEXTOUT, which in this case is textoutmaino.
The end result is the same as for early binding, except that this one
call instruction will call whatever TEXTOUT function we want,
simply by setting SI appropriately beforehand.

lea si, window2
c a l l  window2.TEXTOUT  PASCAL,parl,par2,si
call [si] .TEXTOUT PASCAL,parl,par2,si

This code calls textoutdlgo.  The last two lines are actually the
same, due to the way in which the assembler treats the window2
label in this context, but I recommend that you stick with the latter
to avoid confusion. THIS passed on the stack must always be the
register, not the label, so be consistent and use SI in both places.
This implements polymorphism.

C++ Binding

Examine this C++ code . . .

class WINDOW
I

//Everything here does exactly the same
//as the assembly language on page 140.

public :
int active;
v i r tua l  vo id  TEXTOUT  ( int, int ) ;
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>
// Define any other members here . . .

void WINDOW :: TEXTOUT( int paraml, int param  )
{ // actual code for function here. This function is

{$ :hetez;ivalent of textoutmain0 in the assembly
is1 .

1
. . .

class WINCLASSA : WINDOW // subclass of WINDOW.

f
//(inherits active and TEXTOUT members).

class WINCLASSB : WINDOW // override TEXTOUT

f
void TEXTOUT (int paraml, int param )

void WINCLASSB :: TEXTOUT(int  paraml, int param2)
{ //actual code for function here. This function is

// the equivalent of textoutdlgo  in the assembly

1
// listing.

. . .
//create instances . . .
WINCLASSA windowl, window3;
WINCLASSB window2;

main ()

I /code example of early binding . . .
. . .
windowl.TEXTOUT(  value1  , value2 );
. . .

//code example of late binding . . .
WINDOW *ptr;
ptr = &windowl;
ptr -> TEXTOUT  ( value1  , value2 1;

1.. ”
. .

operator

Subclassing
with override

The program starts by declaring a class called WINDOW and the
data and function members it has. I only put in two members:
active and TEXTOUT. After that I put in the actual code for
TEXTOUT. Notice the syntax for doing this - the I’::”  means that
this function belongs to the class named to its left, which is
WINDOW.

Because I wanted this code to do exactly what the assembly listing
does (page 140),  I created two subclasses - WINCLASSA and
WINCLASSB. WINCLASSA is identical in every way to
WINDOW, but in WINCLASSB I have overridden TEXTOUT.
Notice that I didn’t have to give the new procedure a different
name.
Then I declared three static instances (permanently in the data
segment). I could have made them automatic simply by moving
them down into main().
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“_>  ”

object
pointer

The code within main0 shows how easy it is to call the function
associated with a particular object. A call to this function means
that TEXTOUT  will execute but will automatically work on the
data and functions that are part of the referenced object. This is
because the THIS pointer is passed on the stack (see page 140).
The example of late binding may look rather complicated. “ptr”
is a label that is a pointer to data of type WINDOW. The “*”
simply declares that it is a pointer. The data type tells C++ that ptr
can only be used to address objects (instances) of WINDOW.
The next line sets ptr to point to windowl.
The following line uses ptr to call windowl.TEXTOUT(). This
line corresponds exactly with the assembly language code:

call lsil .TEXTOUT PASCAL.valuel.value2.si

Compiler
optimisation

(I have used the PASCAL qualifier here, rather than C, for
consistency with later examples. It does cause some differences,
such as reversed order of stack pushing and stack clean-up. For
more specific details see ahead to the section “Interfacing With
C++” on page 147.)

It is interesting to analyse how the compiler decides whether to
compile early or late binding. When the compiler sees that the call
is fixed (that is, to a particular routine) and will not change at
run-time, it optimises and compiles early binding. Note that any
function that is to be called by late binding must be declared as
“virtual” in the C++ source code, but such a declaration does not
mean that the compiler will do so.
The compiler will compile a call using late binding if the function
is virtual, and if the call involves THIS as a pointer. The call
immediately above is an example in which THIS is contained in
SI, so its value is not actually known at assembly-time. Therefore
late binding is required.
In my assembly language example I gave window1 and window2
different routines for TEXTOUT . . .
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Assembly Language Binding

M a n u a l Binding has been discussed over the previous few pages; however,
opfimisafioon further clarification is in order.

In assembly language, we have full control over whether to use
early or late binding, since we don’t have a compiler to make such
a decision for us. Look back once more to the listing on page 140.
The example of a call to textoutmain() by early binding (the call
immediately after the LEA instruction) is ok, because SI will
always be the same when execution reaches the CALL instruction.
However, what if the code has multiple entry points to the CALL?

i.& si,windowl
jmp redraw

iii si,window2
jmp redraw
. . .

redraw:
call [si].TEXTOUT  PASCAL,x,y,si
. . .

In this case you must do a late-binding call, because the SI value
can have different values at execution-time. The CALL will
automatically call the correct routine.

Use of THIS
THIS is a pointer to the current object and is already introduced
and discussed at length earlier in this chapter. However, this
section will consider the rules of usage of THIS,
I have explained how SI is passed on the stack to the function.
Why pass it on the stack, since SI will be the same value upon
entry to the function anyway and can thus be accessed from the
register?

A c c e s s i n g
t h e  r i g h t
d a t a

C++ does it that way, but your assembly program doesn’t
necessarily have to. However, it may be wise to stick with C++
conventions to enable smooth linking with C++ code.

You can see back in the class definition for WINDOW (page 140)
that I put an example data field labelled “active”. Perhaps this is
a flag indicating whether this is the active window or not -
whatever.
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Obviously the instances "windowl"  and "window2" will have
their own copies of “active”, so the TEXTOUT function must
access the “active” field in its own instance.
Thus if you have:

lea si,windowl
call [si].TEXTOUT  PASCAL,x,y,si

SI would be passed to the function to let it know which object to
communicate with. For there is a general rule with OOP:

Encapsutation  A function should only write to (and even only read from)
ofdata within data-members of the current instance, as pointed to by THIS.
an object In OOP terminology, this is the principle of encapsulation. The

data belonging to a particular object should only be accessed by
functions belonging to that object, and only if THIS is set to that
object. C++ does allow you to get around this, but think of it as
the ideal to be aimed for.
In assembly language you can break all the rules, but you should
try not to write 00 code that accesses data belonging to other
objects. If your function wants to access some data elsewhere, the
proper way to do it is to change THIS to that object and then call a
function that is part of that object. If no such function exists, then
you will have to write one.

Stfucture 0fa Referring back to our earlier call to TEXTOUT, with THIS set to
function window 1, the actual procedure called will be textoutmaino, which
-member could have the following structure:

textoutmain PROC PASCAL,x,y,now
mov si,now
. . .
mov al, [sil .active

i& bx,window3
call [bx].TEXTOUT PASCAL,x,y,bx
. . .
ret

textoutmain ENDP

This skeleton shows how data-member "active" is accessed.
Since the data ofany other object should not normally be accessed
directly, I have put in some code to show how to change to another
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object and then call a function belonging to that object. Upon
return, SI is still set to this function’s current object.
Examine this code and you may be surprised. What function is
actually being called by the CALL, and why is it ok? That’s for
you to think about.

Interfacing with C++

Although I have standardized on the Pascal calling convention for
most of this book, for compatibility with Windows functions,
standard C handles the stack somewhat differently. It is not
something that will cause much trouble, since you can take care of
everything by use of the high-level CALL instruction and PROC
directive.
However, in the case of passing THIS to the called routine, you
will need to know whether it is pushed on first or last.
With Pascal, the high-level CALL pushes the parameters on in the
order in which they are listed; that is, the leftmost one first. The
high-level procedure that is being called will automatically remove
the parameters from the stack before returning to the calling level.
With C, the high-level CALL pushes the parameters onto the stack
in the reverse order, so the leftmost one gets pushed on last. The
called procedure does not clean up the stack before returning, and
the parameters must be removed from the stack after return to the
calling level. Code for the latter operation is generated
automatically by the high-level CALL by the “C”  qualifier.
C++ also pushes THIS onto the stack last in the case of calls to
function members. Thus your PROC declaration will need to
show THIS as the leftmost parameter if it is called as a
function-member from C++ code.
Fortunately, there is an easy way to figure out the interfacing
requirements between C++ (or C, or any other language) and
assembly language, and that is to utilize the compiler’s ability to
generate assembly language output.

Compiling to ASM O/P

Most high-level compilers will do this by means of a switch on the
command line. The compiler will produce an assembly language
listing of the C program, showing the exact correspondence of
lines of C to the equivalent assembly code. This is highly
educational, but it is particularly useful for linking between C and
assembly.
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Compile a The trick is to write the assembly language module into the C
.ASMstub program in the form of a stub or skeleton. That is, it won’t do

anything except have the data transfer C instructions. Compile it,
and look at the assembly listing for that routine. Extract that
routine into a separate assembly language tile, and delete the
original stub.

Name This works fine and is surprisingly easy to do. The method
-mangling overcomes some serious hurdles, especially that of

name-mangling. It is a C++ feature that the source code can have
the same name for different functions, and other labels can also
have identical names. The compiler gets around this problem by
“mangling” the labels - applying an algorithm so that even labels
of the same name will have new unique names. The problem is
that, if you are writing an assembly language module that must
access labels in C++ modules, you can’t reference them by name
- you can only reference them by their mangled names.
The only way to know the mangled names is by the stub method
described above, because the assembly language output will show
all labels in their mangled form.

In-Line Assembly
A completely different approach is not to write the assembly
language module as a separate tile, but to write it in-line with the
C code. You have to have a compiler that supports this, and of
those that do, the in-line assembler is not quite so fully-featured as
the stand-alone assembler. You lose in one way, but gain in
another. What you gain is seamless integration with the C
program. You can write the assembly code with full access to the
C labels, and the registers that you use are automatically saved and
restored by the compiler upon entry to and exit from your
assembly module.
Here is a simple example:

c l a s s WINDOW
{

public:
int active;
virtual void TEXTOUT (int) ;

1;
void WINDOW :: TEXTOUT tint x)
1

asm mov si,this
asm mov dx,[si].active //addr relative to DS.
asm mov ah,2
asm int 21h

1;
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// WINDOW windowl; //static object, in data segment.
main 0
I

WINDOW windowl; //automatic object, in stack seg.
windowl.active  = 07;
windowl.TEXTOUT (0) ;

1

“_asm  ” I have shown here how the function-member TEXTOUTO,
kepord belonging to class WINDOW, can be written in in-line assembly

code with data members fully accessable. THIS is also available
to the assembly code, and I have put it into SI for convenient
usage.
Note that I preceded each line with the “asm”  keyword; however,
it is also allowed to have a single “asm”  keyword followed by an
opening ” { ” brace and then multiple lines of assembly code not
requiring the asm keyword, terminating with a closing “}  ‘I.

Static versus I have shown two ways of creating the instance windowl. The
automatic commented-out example is static, because it is outside main(),
instances while the other is automatic, because it is created on the stack, for

the duration of execution within the function.
See how I have addressed the data-member “active” from
assembly code. Actually, this is dependent upon memory model
and whether the object is static or automatic. For the SMALL
(and FLAT) model the SS and DS registers are the same, so there
is no problem. For those models in which SS and DS may be
different, the code given here would be ok for a static object, but
SS override will be required for automatic data. This can be taken
care of by using BP instead of SI, since BP by default references
the stack segment.

What the By the way, the above program passes the value 07 to
above TEXTOUTO,  which sends it to the screen. 07 is the “bell”
program character, so you get a beep to indicate success.
“does” Although a parameter is passed to TEXTOUTO, I haven’t used it

within the assembly routine. I put it in to show that it is an option.
Note that the compiler will give a warning (at least Borland’s BCC
compiler does) that the passed parameter is unused.

In-Line DOS and Don%
While we are on the topic of in-line assembly, I might as well
cover the major do’s and don’ts.
I’ve grouped these below for easy reference:
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l The “asm”  keyword differs for different compilers. Borland
C++ will accept “asm”  and the latest version accepts “_asm”
for compatibility with Microsoft’s C/C++.

l Notice in the example that I chose to use the “asm”  keyword
at the start of every line, rather than use the ” { } ” opening
and closing braces. I prefer doing it this way because the
in-line assembler cannot define code labels (at least Borland’s
C/C++ can’t). By using the keyword on every line, at the
termination of each line the compiler regains control and a
label is allowed. For example:

a s m  j e p l a c e 1
asm nop

place1 :
asm mov ax,vall

l You have complete access to all data and code labels in the C
program, barring the usual C constraints.

l Note that the compiler saves and restores some CPU registers
upon entry and exit from an in-line assembly section.
Compilers differ in what they save and restore.

l You cannot use the ” ; ” (semicolon) to start a comment.
Instead you have to use the standard C delimiters. For
example:

mov ax,vall //moves vail into AX.

l But also note that you do not use the “;”  to separate in-line
statements, not even the last one.

The ASM Stub

Object
pointer

If you refer back to the program listing in the section “C++
Binding”, on page 142, you will see the creation of an instance
"windowl" and the use of a pointer “ptr”  to implement late
binding.
Recapitulating:

WINDOW *ptr;
ptr = &windowl;
ptr -> TEXTOUT (vail, Va12);

So that you are absolutely clear on what this compiles down to,
here is the actual assembly language generated:
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mov si,OFFSET window1
mov ax,val2 ;notice the order of pushing.
push ax
mov ax,vall
push ax
push si *notice that THIS pushed last.
mov bx,[si+4] i 4 is the offset of the pointer to
call [bxl ;TEXTOUT()  , in object windowl.

Looking back again at the code from "C++ Binding" on page 142,
you will see the definition of TEXTOUTO.  But if TEXTOUT  is
to be the assembly language module, you would leave it in the C
program for now, as a stub. You would put in the skeleton code,
as follows:

void WINDOW :: TEXTOUT (int vail, int va12)
{

int x;
box1 . draw ( 1,2 ); //member of another object.
this -> dosomething (1 ; //hypothetical function.
x = active;

1
//data of current object.

Calling a This code shows various ways of getting at data. Dosomething is
member, an example of calling a function-member belonging to the current
curreflt object, though I haven’t actually defined such a function.
object "active" is a data-member of"window1"  and I have accessed it

in the stack. Notice also how I can access functions of other
objects.

.#. anda "boxl"  is some other object belonging to a different class, say
different "BOX". The choice here is arbitrary. It has an arbitrary function
object called draw().

Compile and Assemble Steps
If we use Borland’s BCC compiler, the command line to compile
to assembly is as follows:

BCC -c -S filename. CPP

Where "-c" suppresses linking and "-S" generates .ASM output.
Note that case is important with the switches.

Mangled ThefiZename.ASM  file that you get will not have any high-level
names assembly language features in it, so you have to look through it

and extract the useful information. Then you can put together
your own assembly module. It will look something like this:
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.MODEL SMALL ;must match C++ module.
PUBLIC @WINDOW@TEXTOUT$qii
EXTRN @WINDOW@dosomething$qv:NEAR
EXTRN OBOXOdrawSqii
EXTRN _boxl

.DATA
x DWO ;local data.

.CODE
@WINDOW@TEXTOUT$qii PROC C now,vall,  va12

ihow to get at the passed parameters . . .
mov si,now ;actually  at [bp+41. Addr of windowl.
mov ax,vall ;actually at [bp+6]
mov bx,valZ ;actually at [bp+81

;
;to access another function, another object . . .
. boxl.draw (1,2) . . .
’ lea ax,_boxl
call @BOX@draw$qii C ax,l,Z ; early binding.

;
;to access a function, current object . . .
; this -> dosomething 0 . . .
call [si].@WINDOW@dosomething$qv  C si

elate binding., no other params to pass.

Igetting at data-member of current object . . .
; x = active . . .

mov ax, [sil  . O ioffset  is 0, since field is first in
mov x,ax ; object.

I

ret
BWINDOW@TEXTOUT$qii ENDP

END

The skeleton program gives you the mangled names and how to
access the dataandfunctionmembers. Thenyoucango aheadand
flesh out the assembly module.
Your next step would be to remove the stub from the C++ module
and compile as follows:

BCC filenamel. CPP filename2. ASM

Or, if the fancy takes you, it can be done in steps:

BCC -c filenamel. CPP
TASM /ml filename2 (.ASM file)
TLINK filename1 filename2

Note that Borland C++ does have a mechanism to suppress
name-mangling for linking with Standard C modules, but I found
it too limited for assembly work. It doesn’t work for data and
function members.
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Coding
development
over previous
chapters

A g-line
skeleton

Note also that C++ does have an EXTERN declaration, so that any
function that is referenced in the C++ module but is defined in the
assembly module can be declared as EXTERN. However, this
also has limitations and is optional anyway.

The Amazing 9-Line Program
So you think assembly language programming for Windows is
difficult - think again!

The “high-level” assembly language program of Chapter 5 is not
much longer than one written in C or any other conventional
high-level language. In the first half of this chapter, I introduced
objects and some details about the inner working of C++ and how
to interface to it - now, applying 00 techniques brings an
assembly language skeleton program down to just nine lines!

OOP and assembly language go together in a most natural way,
with the result that coding becomes a breeze. Here is an 00
skeleton program:

;WINASMOO.ASM --> WINASMOO.EXE
INCLUDEWINDOWS.INC
INCLUDEWINASMOO.INC
.DATA
windowlWINDOW { }
.CODE
kickstart:

lea si,windowl *addr of window object.I
call [sil .make PASCAL,si ;make the window.
ret

END

There are eleven lines there, but take off the comment line and put
the code-label on the same line as the following instruction, and it
becomes nine lines.

Kickstat:

This program is the most basic skeleton, putting only a window on
the screen and nothing else. In a moment I’11  show you how
simple it is to add the menu-bar and message box, as per skeletons
from previous chapters. But first have a look at the above.

In the data segment I created an instance of a WINDOW structure
called "windowl". In the code routine called "kickstart :'I I set
THIS to window1 and then called make( ), which, as its name
suggests, creates the window and puts it on the screen.
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You may have noticed that the syntax for creating the instance of
WINDOW doesn’t look much like that for structures (see page 65),
but don’t worry about that for now.

Hiding the There is a tick here: I have taken all the “red tape”, the
“red tape” complexity, of the Windows program and hidden it away in the

Include file WINASMOOINC. This hiding of the unnecessary
complexity and exposing only what is needed can only be done by
using 00 techniques.
My object oriented Include file is a world’s first. Nobody has done
this before. No Microsoft or Borland documentation will tell you
how to do this. The Microsoft documentation is appalling from
the assembly language programmer’s viewpoint. The Borland
manuals keep getting thinner too. Mind you, the simple program
you see above didn’t just materialize in my mind. I just about tore
my hair out at times.

Siinpfe C++ I came across a very interesting article by John Dimm titled “A
classes for Tiny Windows Class Library” in Programmer’s Journal, USA,
Windows Dec. 1991. I also studied Norton and Yao’s Borland C++

Programming for Windows, Borland/Bantam, USA, 1992. A few
ideas come from these and other sources, but I ended up doing my
own thing, and what is presented in this chapter is quite simple and
elegant.
It is written in Borland TASM version 3.0, for the simple reason
that this assembler is specifically designed for OOP. However, I
must emphasize that the code is very general and with some
modification will work with earlier versions of TASM and with
MASM. I have pointed out the divergence from non-OOP
assemblers within this chapter. The disadvantage of the non-OOP
version is that it is awkward, cumbersome, and verbose. The OOP
version is easier to use, conceptually simpler, and requires fewer
lines of code.
Look on the Companion Disk for various example 00 programs.

A Skeleton Program
You might like to recall how complicated and enormous was the
skeleton from Chapter 5. Now, here is the same thing . . .

;WINASMOO.ASM --> WINASMOO.EXE

INCLUDEWINDOWS.INC
INCLUDEWINASMOO.INC
;.......
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.DATA
window1 WINDOW { szclassname= t"WINASMOO", sztitlename= \

"Main Window", paint= wlpaint, create= wlcreate,\
command= wlcommand }

; . . . . . . . .
.CODE
kickstart:

lea si,windowl eaddr of window object.I
call [sil .make PASCAL,si ;make the window.
ret

; . . . .
wlpaint PROC PASCAL

LOCAL hdc:WORD
LOCAL paintstructa:PAINTSTRUCT
lea di,paintstructa
call BEGINPAINT PASCAL, [sil.hwnd, ss,di
mov hdc,ax
call SELECTOBJECT PASCAL,ax, [si].hfont
call TEXTOUT PASCAL,hdc,10,20, cs,OFFSET sout,l6
call ENDPAINT PASCAL, [si].hwnd,  ss,di
ret

sout DB "Demo 00 Program!"
wlpaintENDP
; . . . .
wlcreate:

call GETSTOCKOBJECT PASCAL,OEM FIXED FONT- -
rnn; [si] .hfont,ax

; . . . .
wlconmtand:

cmp WORD PTR [si] .lparam,O;lo half

Is llQuitlt selected?
jne notmenu
cmp [si].wparam,200 ;IDM QUIT.-
jne notquit
call [si].destroy
ret

notquit:
cmp [si].wparam,201 ;IDM ABOUT.-
jne notabout
call MESSAGEBOX PASCAL, [si].hwnd,

selected?

cs,OFFSET szmsg, \
cs,OFFSET  szhdg, MB-OK

notabout: ret
notmenu: ret
szmsg DB "Created by Barry Kauler, 1992",0
szhdg DB "Message Box",0

ret
END

What you will recognize from this is all of the essent ia l
functionality from the skeleton of Chapter 5 without the red tape.

Overriding In the data segment, I have created an instance window1 of the
class structure WINDOW. Now, if I had just ended that line with ” { } “,
defaults the window would have the defaults as defined in

WINASMOOINC. However, any of the defaults can be
overridden to create any kind of window. You need to know
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Overriding
PAINT
message

COMMAND
message
override
PROC...
ENDP
syntax
notes

precisely how to do this, of course, but for now just look at the
overrides in the above example.
I have given the window a class-name of “WINASMOO” and I
have given it a title to appear in the title-bar at the top of the
window. If you remember back to Chapter 3, and in particular
page 77, you’ll know that whenever anything happens over your
application’s window while the window is active, such as a
menu-item being selected or key being pressed, then Windows
will send a message via the message loop in WinMain() to the
window’s callback function. It is then up to the callback function
to process the message.

Overrides

WINASMOOINC handles all the messages in a default manner,
but should you want to process any message, just put in an
override when creating the instance of the window. All Windows
messages are prefixed with “WM_“,  such as “WM_PAINT”,  or
“WM  COMMAND”. In my skeleton program I wanted to
override  default handling of WM_PAINT,  so I put "paint =
wlpaint",  where “wlpaint”  is my routine (see above). You will
find the code for WM_PAINT  handling is just about identical to
that of Chapter 5.

Ditto for WM_COMMAND. I put in my own routine called
"wlcommand", because I wanted to respond to menu-bar
selections. I also overrode WM_CREATE. It’s that simple.

One thing you will notice with my routines "wlcommand"  and
"wlcreate" is that I didn’t put in PROC - ENDP directives.
These are not essential, and the routines work perfectly well
without them. Putting them in would make no difference. In fact,
putting the PASCAL qualifier on would also make no difference,
since no parameters are being passed.
However, notice that I did put PROC PASCAL - ENDP around
the “wlpaint”  routine. The reason for this is that I wanted to
have LOCAL data, and only TASM’s  “high-level” PROC
automatically takes care of LOCAL declarations. The simple act
of putting the PASCAL qualifier onto the PROC directive
transforms it into a “high-level” PROC.
Leave off PROC [PASCAL] - ENDP if you wish, but put it on if
your routine has LOCAL data. The only effect of the high-level
PROC will be to correctly handle LOCAL data within the
procedure.
This is a syntactical deviation from the main discussion, so I will
weave my way back to the next step.
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Kickstart

“kickstart :‘I  is where the ball starts rolling. Of course the entry
point to your program is at WinMain(),  but this function is inside
WINASMOOJNC. WinMain()  takes care of all the red tape and
ends up calling “kickstart :‘I.  “kickstart :” must always be
in your object oriented program. Again, I’ve left off the PROC
[PASCAL] - ENDP, for the sake of brevity and simplicity.
A static instance of the WINDOW structure already exists in the
data segment, so the first thing that kickstart does is get the
object’s address. The next thing it does is actually create the
window and display it on the screen. You will remember from
previous chapters that this was a particularly long-winded process.
Look back to page 116 and you will see that the application calls
Windows CREATEWINDOW()  function to create the window,
then SHOWWINDOW() and UPDATEWINDOW()  to actually
show it on the screen. All of this is red tape and is hidden away.

Message Handling

After creating the window, Windows sends a WM_CREATE
message to the window’s callback function. I used this message to
get the handle to a particular font that I used in the program (yes,
even fonts have handles!). Hence I put in the wlcreate()  routine.

Whenever Windows redraws any portion of the client area of the
window, it lets the callback know by sending WM_PAINT.  This
is so the callback can redraw the client area or the portion that
requires redrawing. The UPDATEWINDOW()  function also
generates a WM_PAINT  message.
I wanted to put out a simple text message, in this case “Demo 00
Program!“. It also uses the font that I previously got a handle for,
rather than the default font. There is a bit of red tape involved to
output the message, and some temporary data storage is required.
“hDC”  is the handle to the window’s client area, that is, the area of
the window that we can output to, and this handle must be
obtained before we can gain access to the window client area. It is
normal practise to release this handle immediately after use, which
has been done by ENDPAINTO.

The other thing I did in my skeleton was respond to the “File”
menu-item, with its “Quit” and “About . ..‘I  sub-items. The normal
way to define these is by the resource file .RC, and I have used
exactly the same one as before. The WM_COMMAND  message
needs to have its lparam and wparam analysed to determine what
kind of command has been sent to the callback, and this example



158 Windows Assembly Language & Systems Programming

shows that if lparam = 0 then the command has come from the
window’s menu-bar. In such a case, wparam is analysed to see
which item has been selected from the menu-bar.

Handling Notice that selection of “Quit” results in calling destroy().  Notice
QUIT also that it is prefixed with ” [ si] . ‘I,  as are all the other
menu-item parameters of the window. You can understand this from the

principle of structures. The SI register contains the address of the
object or the instance of the structure. “Destroy” is a field in this
structure. Fields can, in OOP terminology, be data-members or
function-members (methods in Pascal terminology). The field
‘Ides  t ray” does not contain data, but a pointer to a routine.
To effectively use this object oriented approach, you need to know
the fields of the WINDOW structure and the purpose of each . . .

The WINDOW Object

TABLE
directive

Here is the structure definition of WINDOW. It is actually located
inside WINASMOOJNC  . . . .

.DATA
WINDOW TABLE {

VIRTUAL definewndclass:WORD = WINDOWdefinewndclass
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL

create:WORD =
paint:WORD =
command:WORD  =
timer:WORD =
resize:WORD =
mousemove:WORD =
1buttondown:WORD  =
1buttonup:WORD =
char:WORD =
defaultproc:WORD  =
destroy:WORD =
make:WORD =
wndproc:WORD =
hwnd:WORD =
wmessage:WORD =
wparam:WORD =
1param:DWORD =

WINDOWwndproc
0
0
0
0

;;;J;E classst,yle : WORD = CS VKEDR$W+ CS_HREDRAW
szlconname:BYTE:32 =

VIRTUAL szcursorname:BYTE:32  = 0
VIRTUAL hbrbackground:WORD = COLOR_BACKGROUND
VIRTUAL szclassname:BYTE:32  =  0
VIRTUAL sztitIename:BYTE:32  =  0
VIRTUAL hmenu:WORD = 0
VIRTUAL hwndparent:WORD  = 0
VIRTUAL wheight:WORD = 200
VIRTUAL wwidth:WORD = 250

WINDOWcreate
WINDOWpaint
WINDOWcommand
WINDOWtimer
WINDOWresize
WINDOWmousemove
WINDOWlbuttondown
WINDOWlbuttonup
WINDOWchar
WINDOWdefaultproc
WINDOWdestroy-
WINDOWmake
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VIRTUAL y_coord:WORD = 0
VIRTUAL x coord:WORD = 150
VIRTUAL createstvlelo:WORD 0
;;;J;E creat$f;t&le..RbW”p”RD  = WS_OVE$CAPPEDWINDOW

00
/imitations
o f  S T R U C

TASM User 3
m a n u a l :
limtations  &
T A B L E
descr ipt ion

This doesn’t look like any structure definition you’ve seen before!
Instead of using STRUC, I have used TASM’s  TABLE directive,
which has some advantages but a different syntax.

The Borland programmers will probably gag when they see how I
have used their TABLE directive, but I found it useful to define
both data and procedures. I wanted to retain a program that would
work with other non-00 assemblers with only minimal change.
The above TABLE can be replaced with the conventional STRUC,
but the latter has disadvantages, the two most glaring being:

l it cannot initialise fields with forward references; and
l initializing fields of instances is rigid and awkward.

However, it can be done - check out “Object Oriented
Programming in Assembly Language” by R. L. Hyde, Dr. Dobb’s
Journal, March 1990, p. 66-73, 110-I 11.
The TABLE directive only exists with TASM version 3.0, not
before. I have only bitten off a little bit of the new TASM’s  00
capability; however, my end result is quite simple and elegant.

Despite a wonderful new assembler, Borland’s manual has only
about two and a half pages devoted to Windows programming and
only two demo programs on disk. The OOP neophyte will find the
TASM manual to be quite daunting, with all of the 00
terminology. The manual supplied with TASM version 5 has even
less documentation. This book addresses all of these problems.
Not only do I demystify  OOP, but I show how to write windows
programs effortlessly.
The Borland manual describes the use of TABLE to define
function-members (methods) for an object, with the data-members
defined separately. There are certain reasons for this, but I wanted
a system that is conceptually simple.

Notice the VIRTUAL qualifier in front of every field declaration.
Don’t worry about this -just pretend it isn’t there.’

’ Readers with some knowledge of OOP will know that VIRTUAL is a qualifier used with
functions, but I’ve also put it in front of data-members, because I have used TABLE in a way
that Borland never intended (or thought of!).
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Analysis of Look at the first field. “def inewndclass” is a NEAR pointer to
the table a procedure "WINDOWdefinewndclass". What this actually

means is that when an instance of the structure is created, the field
will be as per Figure 6.1.
Window1 equates to the offset in the segment at which the
structure-instance starts.
Detinewndclass equates to 0, being the first field, while create
equates to 2. This is exactly as in any normal structure. The
contents of the fields are addresses of the procedures; in this case
they are default procedures defined within WINASMOOINC.

Figure 6.1: definewndclass pointer.

window1
definewndclass  WINDOWdefinewndclass
create WINDOWcreate
paint WINDOWpaint
. . . etc . . . . . . etc . . .

These addresses are forward references, which is why STRUC
won’t accept them, and why I have used TABLE. With STRUC
you have to put them in when creating the instance, which I used
to do by means of a macro.
Further down in the WINDOW structure you’ll see plain old data,
which should be easy enough to understand.

TABLE
overrides

Apart from being able to declare forward references, the beauty of
the TABLE directive (and TASM’s  new extended STRUC) is the
declaration of overrides when creating instances.
A TABLE or STRUC declaration is only for the assembler’s use,
and is not actually assembled. It is the instances that get
assembled. A static instance is one that you declare in the data
segment. You could declare automatic instances on the stack or
dynamic instances on the heap. Dynamic instances involve an
extra level of complexity, so let me shelve that one for now.
The skeleton program on page 154 declared a static instance as
follows:

.DATA
window1 WINDOW { szclassname= "WINASMOO", sztitlename= \

"Main Window", paint= wlpaint,create= wlcreate, \
command= wlcommand )
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Overriding The instance-declaration of a conventional structure would require
the message a very rigid syntax of comma delimiters. Here, all you have to do
handlers is override only those fields you want, and you can put them in

between the ” { }”  in any order. No commas are required for
unchanged fields.
You need to have an understanding of each field of the WINDOW
structure to make use of them in the program.
Create(), painto, timer(),  etc., down to destroy(),  are the main
WM_ messages that Windows sends to the callback function. I
have only implemented the WINDOW structure with these,
although there are many more. The others all go directly to
Window’s default handling.
You are quite welcome to expand the structure with more
messages.

Overriding Delinewndclass(),  defaultproc(),  destroy(),  make(),  and wndproc()
the major are major routines within WINASMOOINC. By putting them in
Wdden ” the structure, you can override them for any sub-class or instance.
f,nctions  of For example, wndproc()  is a pointer to the callback function for
the Include that window - it basically performs a case-switch, calling the
file appropriate message-handler create(), painto, timer(),  etc. But,

there is nothing to stop you from overriding it and defining your
own special calllback,  say for example, to handle a dialog box.
These pointers are probably ones that it would be wise to leave
alone until you’ve become familiar with this software.

Data members of The rest of the structure comprises various data associated
the WINDOWclass with the window. Here are explanations:

hwnd handle of this window
wmessage the message sent to this window
wparam,lparam data associated with the message
classstyle parameter used by REGISTERCLASS~
sziconname
szcursorname
hbrbackground
szclassname
sztitlename

hmenu
hwndparent
wheight
wwidth

2::::::

ditto.
ditto.
ditto.
ditto.
param.
ASCIIZ
ditto.
ditto.
ditto.
ditto.
ditto.
ditto.

What will-look like when iconized
What cursor like over window
Color of client area
ASCIIZ name this class of window
used by CREATEWINDOWO
title appear at top of window
Menu or child identifier
Handle of parent window
Height of the window
Width of the window
Top-left y-coordinate
Top-left x-coordinate

createstylelo appearance features of window
createstylehi ditto.
hfont application-specific
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So override any of these parameters to
and behave exactly as you want.

make your window look

Creating
mu/tip/e

You are not limited to just one window.
have multiple instances of your program

As well as being able to
quite happily sharing the

same screen, any one instance can have multiple windows. It is
simply a matter of declaring another instance and calling make().
Make0 doesn’t have to be called in the kickstart routine, though
that’s where you would create the main window. No, you can make
windows from anywhere in the message-handling routines.
Nor are you limited to the one WINDOW structure. You can
declare sub-classes; which inherit the fields from WINDOW, but
with their own extra fields. These sub-classes can also override
any of the parent-classes’ fields.
It is time to peek further inside WINASMOOINC . . .

WINMAIN( )

WimUain() WINASMOOINC has the job of hiding the “red tape” of a
is hi#den Windows program. It must handle multiple instances of a
inside the program; that is, if you double-click on the program’s icon more
JncJude fie than once. It must handle multiple windows within the one

instance.
Any one window would have its own instance of the window
structure or object, as I did by creating “window1 “. For a second
window, I could create an instance of WINDOW called
“window2”.

Program Jisting WinMain looks similar to code that you would find in a
continues fmtiJ conventional WinMain()  function, with some curious
p a g e  IfI differences. Well, look at the whole lot ..,

;WINASMOO.INC + WINASMOO.ASM --> ;
WINASMOO.EXE Windows 00 program.
*remember that Windows funcs only preserve SI,DI,BP & DS.
:MODEL SMALL
LOCALS ;turns on ll@@v' prefix for auto local

;name-mangling (Borland only).
;......
;These are Windows functions . . .
EXTRN UPDATEWINDOW:FAR, BEGINPAINT:FAR
EXTRN ENDPAINT:FAR, DEFWINDOWPROC:FAR
EXTRN POSTQUITMESSAGE:FAR,
EXTRN REGISTERCLASS:FAR, GETSTOCKOBJECT:FAR
EXTRN CREATEWINDOW:FAR, SHOWWINDOW:FAR
EXTRN GETMESSAGE:FAR
EXTRN LOADCURSOR:FAR, TRANSLATEMESSAGE:FAR
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EXTRN DISPATCBMESSAGE:FAR,  LOADICON:FAR
EXTRN TEXTOUT:FAR
EXTRN MESSAGEBOX:FAR, GETDC:FAR
EXTRN RELEASEDC:FAR
EXTRN SELECTOBJECT:FAR, GETWINDOWWORD:FAR
EXTRN SETWINDOWWORD:FAR, SENDMESSAGE:FAR
EXTRN DESTROYWINDOW:FAR
:........................................................
:DATA
MAIN

VIRTUAL
VIRTUAL

TABLE {
initinstance:WORD = kickstart
hinstance:WORD = 0
hprevinstance:WORD = 0
ncmdshow:WORD = 0

VIRTUAL
VIRTUAL
1; . . .

WINDOW TABLE
VIRTUAL def
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL

{
inewndclass:WORD = WINDOWdefinewndclass
create:WORD = WINDOWcreate
paint:WORD = WINDOWpaint
command:WORD = WINDOWcommand
timer:WORD = WINDOWtimer
resize:WORD = WINDOWresize
mousemove:WORD = WINDOWmousemove
1buttondown:WORD  = WINDOWlbuttondown
1buttonup:WORD = WINDOWlbuttonup

VIRTUAL char:WORD = WINDOWchar
VIRTUAL defaultproc:WORD = WINDOWdefaultproc
VIRTUAL destroy:WORD = WINDOWdestroy
VIRTUAL make:WORD = WINDOWmake
VIRTUAL wndproc:WORD = WINDOWwndproc
VIRTUAL hwnd:WORD = 0
VIRTUAL wmessage:WORD = 0
VIRTUAL wparam:WORD = 0
VIRTUAL 1param:DWORD =

V$;T&ALLclassstyle  : WORD = CS V&DRAoW + CS_HREDRAW
sziconname:BYTE732 =

VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL

szcursorname:BYTE:32  =
hbrbackground:WORD =
szclassname:BYTE:32  =
sztitlename:BYTE:32  =
hmenu:WORD =
hwndparent:WORD =
wheight:WORD =
wwidth:WORD =
y_coord:WORD =
x coord:WORD =
createstvlelo:WORD  =

0
COLOR_BACKGROUND
0
0
0
0
200
250
0
150
0

;I:;;, creaFfsoty&l;pRDW"p"RD = WSrOVERL,APPEDWINDOW

1
main1 MAIN { 1 ;create  static instance.
pwindowDW 0 ;ptr to current window object.
pwindowflag DB 0 ;=O pwindow not valid.
;........................................................
.CODE
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;......................................................_.
PUBLIC WINMAIN

WINMAINPROC PASCAL NEAR O@hInstance:WORD,  \
@~hPrevInstance:WORD,44lpCmdLine:DWORD,@~nCmdShow:WORD

LOCAL msg:MSGSTRUCT ;see WINDOWS.INC

Notice the use of the “@@”  prefix. This keeps these labels unique
to this procedure. Refer back to page 12 1.

l e a s i , m a i n l
mov ax, @ahinstance -save  params  in  main1  ob jec t .
m o v  [si] . hinstance,  ax : /

It should make sense so far. In the data segment I defined two
structures, MAIN and WINDOW. There will only be one instance
of MAIN in the application, called “mainI”  (see above). The
application is entered from Windows at WinMain(),  and I have
used main1 to save the parameters.
This is what is happening now . . .

mov ax, @@hprevinstance
mov [si] . hprevinstance, ax 1 //
mov ax, @@ncmdshow /
mov [sil .ncmdshow, ax ’ ; /

; . . .
call [si].initinstance ;call kickstart **no Pascal**
or ax,ax
jne messageloop
ret

You should be able to recognize the message loop below. Usually
WinMain  will have instance initialisation and window creation
code in here, but I have shifted it out to make(),  via kickstarto.
This enables me to make as many windows as I want and also
enables me to bring out only the essential part of the program to
the “front end”. This diversion is implemented via the above
CALL.

loopback  :
call TRANSLATEMESSAGE PASCAL, ss,di
call DISPATCHMESSAGE PASCAL, ss,di

messageloop:
l e a  d i , m s g
call GETMESSAGE PASCAL, ss,di, null, null, null
o r ax, ax
j  ne  loopback
mov ax, [dil .msWPARAM ; return wparam to windows.
r e t

WINMAIN  ENDP
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One callback
for all
w i n d o w s

O n e  c a l l b a c k ,
b u t  e a c h
window is a
s e p a r a t e
o b j e c t

There is nothing new about the message loop. Remember how
Windows calls GETMESSAGE to get a message from the
application’s queue, then calls DISPATCHMESSAGE() to send it
on to the callback function. Because each window has its own
callback function, we have to design the program so that the
message will end up at the correct callback - except that in this
program there is a trick. There is only one callback function,
called exportwndproc().
It is a common practise with Windows programming to reuse one
set of code with different data for each window.
Most Windows programs can have multiple instances, that is,
multiple copies running simultaneously without conflict, even
though they use the same code. Each time you double-click on the
application’s icon, a new data/stack/heap segment is loaded, but
the original code segment is used. This practical functionality is
enabled in the .DEF file by specifying the data as MULTIPLE (see
page 177).
The same principle can be applied to multiple windows within the
one instance.

Callback

Now this is interesting. Despite the fact that a program can create
as many simultaneous windows as it wants, there is only one
callback function, exportwndproc(). Exportwndproc() determines
which window has sent the message, which is easy enough,
because its handle, hwnd, is passed to the callback, then it gets the
address of the corresponding window object, which it loads into
SI.
This is conceptually quite simple. Any activity related to the
active window on the screen will result in Windows sending a
message. The callback can use the same code for all windows,
except for overrides - all it needs to know is the address of the
object (the data and pointers) for that window . . .

PUBLIC exportwndproc
exportwndproc PROC WINDOWS PASCAL FAR \

@@hwnd:WORD,@@message:WORD,\
@@wparam:WORD,@@lparam:DWORD

LOCAL dummy:WOR6:5
; . . . .

cmp pwindowflag,O
jne normalwndproc
call DEFWINDOWPROC

;Make() controls this flag.

PASCAL, @@hwnd,@@message, \
@@wparam, O@lparam
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r e t
; . . . .
normalwndproc:

push si ;
push di

callback must preserve si.
;and di

call GETWINDOW'WORD PASCAL,@@hwnd,O
;O=offset in Windows internal data.

mov pwindow,ax ;get addr of current window object.
mov si,ax ;don't use LEA

Saving & Don’t worry about pwindowflag for now.
restoring a GETWINDOWWORD() is a Windows function that returns
pointer to a information about the window that Windows has stored internally.
window The intention here is that I have the handle to the window, hwnd,
object and I want to know the address of the object for that window.

In the case of my simple skeleton program, there was only one
window anyway, and I created the window1 object for it (refer to
page 153). There is a bit of a trick here, because when I used
make0 to create the window, I also gave the address of the object
to Windows for Windows to store as part of its own record about
that window. GETWINDOWWORDO  enables me to retrieve any
information that Windows has about that window, plus the extra
information I gave it.
This is a mechanism for associating a particular set of data, in this
case object windowl, with a particular window.
I stored my special data at an offset of 0 in Windows internal data
structure, so here I get it back, returned in AX. I then put the
address into the global pointer “pwindow”,  and into SI.

mov ax,@@message
mov [si].wmessage,ax

-save params in window object.I

mov ax,@@wparam
mov [si].wparam,ax
mov ax,WORD PTR @@lparam
mov WORD PTR [si] .lparam,ax
mov ax,WORD PTR @Olparam+Z
mov WORD PTR [si].lparam+2,ax

call [si].wndproc  PASCAL,si

pop di
yo si

exportwndproc ENDP

Having got the address of the object, I then save the parameters
that Windows passed to the callback into the object.
I then called wndproc(),  whose address is actually in
By default it is WINDOWwndproc(), shown below.

the object.
You can
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override this to provide your own wndproc()  for a particular
window, such as a dialog box, but in most cases you will leave
well enough alone. wndproc()  works fine for normal windows,
and has a very simple task - it just implements a CASE statement
to call the appropriate message handler. These message handlers
(paint, create, timer, etc.) are all pointed to via the object, and can
be overridden for any particular window. Any TM_” message
not catered to in the CASE statement results in a call to the default
routine, and I’ve even provided for overriding this.

WINDOWwndproc  PROC PASCAL now
mov si,now *current  window object.
mov dx,O ;hi return flag. set default 0.
mov ax, [sil.wmessage ;get message
cmp ax,WM CREATE ;msg rec'd after CreateWindow
jne case2-
call [si].create -**noteI no Pascal**
jmp SHORT endx

case2:
cw ax,WM DESTROY
jne case3-

;msg if a window closed.

call [si].destroy
jmp SHORT endx

case3:
cmp ax,WM PAINT I-msg if Window redrawn.
jne case4-
call [si] .paint
jmp SHORT endx

case4:
cmp ax,WM COMMAND ;any selection of the menu.
jne caseli-
call [si].command
jmp SHORT endx

case5:
cv ;a mouse msg.
jne

ax,WM_LBUTTONDOWN
case6

call [si]. lbuttondown
jw SHORT endx

case6:
cmp ax,WM CHAR ;msg that a key pressed.
jne case7-
call [si].char
jmp SHORT endx

case7:
call [sil.defaultproc

endx: ret ;return dx:ax flag (maybe).
WINDOWwndproc ENDP

I could have been a bit more impressive and emulated the case
statement with a dual-column table and a program loop to find a
message that matches, which would be better if a lot of messages
are to be handled. The above code is ok though.
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Now for the part that actually creates the window; herein are some
secrets that make the program work. By referring back to
Chapters 4 and 5 you will see the code that remains from before,
such REGISTERCLASSO, CREATEWINDOW(),
SHOWW&OW()  and UPDATEWINDOW().
The data structure WhDCLASS is there, or rather an instance of
it. It needs to have data put into it, and rather than do it in-line I
have called the function definewndclasso to do it. Compare this
with the listing starting on page 112 - look back there also to see
how WNDCLASS is defined in WINDOWSINC. The data for
this structure is from the window object (pointed to by SI).

WINDOWmake PROC PASCAL now
LOCAL wndclassa:WNDCLASS
mov si,now
xor ax,ax ;clear ax (default return value)

; . . . .
;does this window already exist? . . . check hwnd . . .

cmp [sil .hwnd,O

::p
nexist
endhere

; . . .
;is it a child? . . . this make0 can't handle a child . . .
- (needs slight mod to handle normal child window)
nexist:

cmp [sil .hwndparent,O
je nochild
jmp endhere

nochild:
lea di, [si].wndclassa
call [si].definewndclass  PASCAL, di, si
call REGISTERCLASS PASCAL, ss,di

;.....
mov pwindowflag,O ;disable wndproco processing.
lea bx, [sil.szclassname
lea ax, [sil.sztitlename
call CREATEWINDOW PASCAL, ds,bx, ds,ax, \
[si] .createstylehi, [sil.createstylelo, [sil .x_coord,\
[si].y coord, [sil.wwidth, [sil.wheight, \
[sil.hwndparent, [si].hmenu, mainl.hinstance, 0,O

pwindowflag STOP! Go no further. Look at what I have done above. Just
before CREATEWINDOW(), I cleared "pwindowf lag". You
must remember that this program is capable of handling multiple
windows, but with only one callback function.
Therefore the callback must be able to determine which object is
associated with the window, to access all the data and pointers for
that window. However, at the moment, the cart is before the
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horse. CREATEWINDOW() will send some messages to the
callback, but I do not put the address of the object into Windows
internal record until after CREATEWINDOW().
Exportwndproc() used GETWINDOWWORDO  to retrieve the
object address, but I put it in below by using
SETWINDOWWORD(). This latter function can only be called
after CREATEWINDOW(), because it requires the handle that
CREATEWINDOW()  returns.
Since CREATEWINDOW() itself sends messages to
exportwndproc(), the latter has to test pwindowflag and disable
normal processing until it is set.

mov
mov
or
js
call

[sil .hwnd,ax
di,ax
ax,ax
endhere

; save handle in window object.

;exit if handle is 0.

mov
;...

SETWINDOWWORD PASCAL,di,O,si
-store addr of window object in Windows
Iinternal data (at offs.01

pwindowflag,l  ; enable callback normal processing.

;Callback  disabled above, but my callback needs
;WM CREATE. So send it now...

One deviation leads to another - a problem arises because
CREATEWINDOW() sends the WM_CREATE  message to the
callback, which my exportwndproc() has ignored due to
pwindowflag being cleared.
However, now that SETWINDOWWORD() has done its job,
pwindowflag has been set. I have used SENDMESSAGE to
resend the WM_CREATE message. Now it goes to the callback
(via all the usual rigmarole - the application queue and the
message loop) and is processed in the normal way, calling the
create0 routine.

call SENDMEXSAGE  PASCAL, di, WM_CREATE, 0, \
O,O ;last 2 are incorrect!

; . . . .
call SHOWWINDOW PASCAL, di ,mainl.ncmdshow
call UPDATEWINDOW PASCAL, di
mov ax,1

; . . . .
endhere: ret
WINDOWmake ENDP

If you have done much Windows programming, you may have
noticed something missing - a test for h.PrevInstance followed by
a conditional jump. Actually it isn’t really needed!
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Window class
data s~rucfure Continuing the program listing . . .

WINDOWdefinewndclass PROC PASCAL pwndclass,now
push di
push si
mov si,now
mov di,pwndclass ;pointer to wndclassa (see make())

;....
-SetupI the window class structure for REGISTERCLASSO . . .

mov
mov

; . . .
mov
mov

; . . . .
mov
mov

; . . . .
mov
mov

; . . . .
cv

!:a
call
jmp

noicon:
call

ax, [si].classstyle ;get specs from object and load
[dil.clsStyle,ax ;into wndclassa structure....

[di].WORD PTR clsLpfnWndProc,OFFSET exportwndproc
[di].WORD PTR clsLpfnWndProc+2,SEG exportwndproc

[di] .clsCbClsExtra,O
[di].clsCbWndExtra,2

ax,mainl.hInstance
[di] .clsHInstance,ax

[si].sziconname,O
noicon
ax, [si] .sziconname
LOADICON PASCAL, mainl.hinstance, ds,ax
SHORT yesicon

LOADICON PASCAL,null, O,IDI_APPLICATION
yesicon:

mov [dil.clsHIcon,ax
; . . . .

cmp [sil .szcursorname,O
je nocursor
lea ax, [si].szcursorname
call LOADCURSOR PASCAL, mainl.hinstance, ds,ax
jmp SHORT yescursor

nocursor:
call LOADCURSOR PASCAL,null, O,IDC_ARROW

yescursor:
mov [di] .clsHCursor,ax

; . . .
mov ax, [si].hbrbackground
mov [di] .clsHbrBackground,ax

; . . . .
lea ax, [si] .szclassname
mov [di] .WORD PTR clsLpszMenuname,ax
mov [di].WORD PTR clsLpszMenuName+2,ds
mov [di].WORD PTR clsLpszClassName,ax
mov [di].WORD PTR clsLpszClassName+2,ds
pop si
pop di
ret

WINDOWdefinewndclass  ENDP
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The above routine simply copies data from the object into
wndclassa.

Default
message
handling

What follows are the default routines (function-members, or
methods) that the WINDOW structure is initialized to. As you can
see, they don’t do much, and if not overridden, all you will get on
the screen is a blank window. It will have a system menu, so you
can quit the program, and it can be minimized, etc. - all of this
functionality was set by REGISTERCLASS and
CREATEWINDOWO.

WINDOWdestroy:
call POSTQUITMESSAGE PASCAL,0
ret

;......
WINDOWcreate:
WINDOWpaint:
WINDOwcommand:
WINDOWlbuttondown:
WINDOWlbuttonup:
WINDOWchar:
WINDOWtimer:
WINDOWresize:
wr~owmousemove:
WINDOWdefaultproc:

call DEFWINDOWPROC PASCAL, [si] .hwnd, [sil.wmessage,\
[si]  .wparam, Isil .lparam

ret

Example 00
program with
a control

Inheritance

The next example shows how to create a control. You will need to
refer to a Windows programming book to learn all about controls;
however, this example will give you some idea.
A control is a child window, that is, a window that resides within
the client area of the parent window and normally sends its
messages to the callback function of the parent.
The example creates a simple “button”, with the title “OK” inside
it. When the mouse is clicked over the button, it disappears.
Pressing any key brings it back. Not much, but it does illustrate
some useful principles. Figure 6.2 shows what it looks like.
The button that is added by this program is the one on the main
window. The message box is also a type of child window, created
by MESSAGEBOXO. Controls can be all sorts of things,
including edit boxes, check boxes, buttons, and scrollbars.
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Figure 6.2: Simple 00 demonstration program.

Main Window I

Created by Barry Kauler, 1992 1

Control
Ci&%S

Comp/eie 00
program with
a corltro/

Since a control is just a window, why not use the WINDOW
structure and make()? Well, yes, it can be done, except that
controls do have some special requirements.
If you think in terms of conventional programming, you would
probably delve into make0 and see how to patch in the handling of
such a special case. Unfortunately, this is one of the major
problems with such programming; the continual patching of code
to handle special cases. If your code works, the process of
patching is liable to make it less stable and predictable.
Better to leave well enough alone. We have a functional make0
for normal windows, so let’s think like 00 programmers. We
could simply create another instance of WINDOW, say
“window2”,  and override the make0 with a new routine.
That is ok if all we ever want to do is create one control, but it is
nicer if we think in the long term. Why not create another class,
call it CONTROL, and let it inherit everything from WINDOW,
but with any necessary overrides?

This is what has been done with my program, and the new make0
routine can become part of WINASMOOINC, along with the new
class. First, here is the final program:

;WINASMOO.ASM --> WINASMOO.EXE
INCLUDE WINDOWS.INC
INCLUDE WINASMOO.INC
IDM QUIT EQU 200
IDMIABOUT EQU 201

.DATA
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window1 WINDOW { szclassname="WINASMOO",  \
sztitlename="OO Demo", paint=wlpaint, \
create=wlcreate, command=wlcommand, createstylehi=\
WS OVERLAPPEDWINDOW + WS CLIPCHILDREN, \
chZr=wlchar,

control1 CONTROL {
sziconname = "icon 1" }
szclassname= "BUTTON",  sztitlename=\

"OK" , x coord=20,y  coord=40,wwidth=30,wheight=20,\
\ hmenu=IoOK,  createstylehi=WS_CHILD+  \

WS_VISIBLE, createstylelo=BS_PUSHBUTTON }
-CODE
kickstart:

lea si,windowl eaddrI of window object.
call [si] .make PASCAL,si ;make the window.
lea si,controll
call [si] .make PASCAL,si ;make child window
ret

wlpaintPROC PASCAL
LOCAL hdc:WORD
LOCAL paintstructa:PAINTSTRUCT
lea di,paintstructa
call BEGINPAINT PASCAL, [sil.hwnd, ss,di
mov hdc,ax
call SELECTOBJECT PASCAL,ax, [sil.hfont
call TEXTOUT PASCAL,hdc,10,20, cs,OFFSET outstring,
call ENDPAINT PASCAL, [si].hwnd, ss,di
ret

outstring DB "Demo 00 Program!"
wlpaintENDP

Axeate:
call GETSTOCKOBJECT PASCAL,OEM_FIXED_FONT
mov [si] .hfont,ax
ret

wlconnnand:
cmp WORD PTR [si].lparam,O;lo  half=0 if a menu select.
jne notmenu
cmp ~~~~u~aram,IDM_QUIT ;Is "Quit" selected?
jne
call [si].destroy
ret

notquit:
cmp [si] .wparam,IDM_ABOUT ;Is "About.." selected?
jne notabout
call MESSAGEBOX PASCAL, [si].hwnd, cs,OFFSET szmsg, \

cs,OFFSET szhdg, MB-OK
notabout: ret
notmenu:

cmp [si] .wparam,IDOK ;button child window selected?
;note that lo-word of lparam has handle of control
;window, hi-word of lparam has notification code.
jne notbutton
lea si,controll -since si points to windowl.
call DESTROYWINDOW PASCAL, [sil .hwnd ;kill button

mov [si] .hwnd,O ;must clr hwnd, if want to make0 later.
notbutton:
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ret
szmsg DB "Created by Barry Kauler, 1992",0
szhdg DB "Message Box",0

hIchar:
-let's bring back the
’ lea si,controll

button if any key pressed...
-sinceI si points to windowl.

call [si] .make PASCAL,si
ret

;......................
END

"IDOK" equates to 1 and is defined in WINDOWSJNC. It is a
convenient identifier to pass to the parent callback in the wparam
of the WM_COMMAND  message.
Pressing the button results in this message.

Make(,) for
CONTROL C/ass Now forthenewmake()routine:

;Here are extensions for handling controls . . .
;......
.DATA
CONTROLTABLE {

WINDOW,
VIRTUAL make:WORD = CONTROLmake
1;.........

.CODE
CONTROLmake PROC PASCAL now

mov si,now
xor ax,ax ;clear ax (default return value).

; . . . .
;does this window already exist? check hwnd...

cmp [si] .hwnd,O
jnz ending

;Is it a child? . . . all controls are child windows . . .
cmp [si] .hwndparent ,O
jne nending

;so, we have to give it one . . . (this involves an
-assumption) . . .
ipwindow still points to the parent window object, so...

mov bx,pwindow
mov ax, [bx] .hwnd
mov [si] .hwndparent,ax

; . . . .
nending:

lea bx, [sil.szclassname
lea ax, [sil .sztitlename
call CREATEWINDOW PASCAL, ds,bx, ds,ax, \
[si] .createstylehi, [si] .createstylelo,
[si] .y coord, [si] .wwidth, [sil .wheight,\

[sil.x_coord,\

[si] .hhdparent, [si] .hmenu,mainl.hinstance,O,O
mov [sil .hwnd,ax ;save handle in window object.
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;...
ending : ret
CONTROLmake ENDP

comparison You can treat the control object just as you would a window
befween object, using all the same data and function members. To make
CONTROL and this statement almost completely true does actually require a little
WINDOW more refinement - message, wparam and lparam data members
classes of the control object are not actually used, so it would be wise to

put in some testing to avoid them being accidentally accessed -
though this is unlikely. Ditto for most of the functions.
The problem with inheritance is that I can’t throw away the
previous structure’s fields. All I can do is redefine them.
Actually, although there is redundancy here, it is possible for a
control to have its own callback, which means that all of the fields
would be of use.
One immediate refinement could be to override all of the message
handlers for the CONTROL class, so that they just return without
doing anything.
Anyway, I’ve kept this code as simple and as elegant as possible.

Getting it Together

OOP
overhead

Make file

One thing you may be starting to appreciate is that Windows adds
an incredible processing overhead - even a simple key press has
to go through so many steps before it reaches the destination.
Then we go and make things even worse by using 00 techniques,
that add yet another layer of processing. If you want code that
rockets along, for a video game for example, you will want to
know mechanisms for speeding things up. OOP may make the
coding easier, but it may be going against a fundamental reason
why we are using assembly language. Let me post this as a
thought for now.

Oh yes, the WlNASMOO.MAK  file has a couple of minor
changes from before, so here is the listing:

# NOTE this Make file has been modified for Borland C++,
# to be used with TASM and TLINK, however I’m still using
# Microsoft’s NMAKE, as Borland’s MAKE has some strange
# quirks . . . though the version supplied with TASM ~3.0
# claims to have improved compatibility with NMAKE . . .
# this  I haven ’t  y e t  t r i e d .
# To run th is  f i le : NMAKE WINASMOO.MAK
fn = winasmoo
all:$ (fn) .exe
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lpath = \borlandc\lib #path for libraries
ipath =\borlandc\include #path for Include files.
epath =\borlandc\bin #path for EXEs.
SW = /c /n /v /Tw /L$(lpath) #switches for tlink.
# /n =ignore-default-libs, /Tw =generate Windows exe,
# /Lc:$(lpath)  =lib path, /v =debug-on.

$(fn).obj : $(fn).asm $(fn).inc
tasm /zi /p /w+ $(fn);

# -r =dont append to exe, -x =dont look in INCLUDE
# envir-variable for incl-files, -i =look in this path
# instead....
$(fn).res : $(fn).rc

rc -r -x -i$(ipath) $(fn) .rc

# cOws=start-up-lib, cws=Windows-runtime-lib,
# cs=Standard-runtime, import=access-builtin-libs
$(fn).exe : $(fn).obj $(fn).def $(fn).res $(fn).inc
tlink $(sw) COWS $(fn),$(fn),$(fn),import  cws,$(fn).def

rc -x -i$(ipath) $(fn).res

# Note that Borland C++ ~2.5 names the Windows library
# CWINS.LIB, while ~3.0 names it CWS.LIB. I used the
# latter above. The C runtime library is CS.LIB, which
# could be placed immediately after CWS, if you need it.
# Note that the I'S" postfix designates the small model.

Program So, that’s WINASMOO.MAK - much the same as before. The
custom icon .RC and .DEF tiles can be the same as for previous skeletons,

though of course if you want to try experimenting with OOP you
might like to try adding on to the .RC tile.
Most Windows programs will want to have their own icon, rather
than one of the defaults, and I have done this with the extended
program example (the one with the child control button). Icon
images have to be created with a special paint program - I used
Borland’s Resource Workshop - a lovely product - to design my
icon, which I then saved as WINASMOO.ICO.

Resource Resource Workshop then automatically added an extra line into
script my WINASMOO.RC tile:

:::hyze (arbi t rary)  equates  could  have been in  an  include

#de;ine.&M QUIT 200
#define IDMIABOUT 201

winasmoo MENU
BEGIN

POPUP "File"
BEGIN

MENUITEM ltQuitll I IDM_QUIT
MENUITEM "About VI. . . , IDM ABOUT-
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END
END

ICON 1 ICON winasmoo.ico-

The icon resource is arbitrarily named “icon I”,  so when I
created “windowl” in my program, I put m the override
sziconname = ‘1  icon-l”.

Definition There is a useful note that I can make about the .DEF tile, so here
file it is:

NAME WINASMOO
DESCRIPTION 'Demo 00 asm program'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE PRELOAD MOVEABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 8192
EXPORTS exportwndproc

Multiple What I would like to point out in particular here are the
instances specifications for the data segment. PRELOAD means that it

loads when the program is first loaded. MOVEABLE  means that
it can be moved by WINDOWS. MULTIPLE means that every
instance will have its own copy of the data segment. The latter
point is important if you want the program to support multiple
instances. I have designed the code to support multiple instances
with the same ease that it supports multiple windows within the
same instance, but this only works if each instance has its own
complete copy of the data/stack/heap. Note that all instances will
use the same code segment, which is no problem at all.
This works because code cannot be changed. Even though you
can keep data in the code segment, and I have done so in the
skeleton program, you cannot change it. Windows sets the
attribute of code segments such that they cannot be written to, and
your program will crash if you try. Most interestingly, though,
there is a way around this, because Windows has a function that
gives you a DS selector for a code segment (see Chapters 10, 11
and 12).

SMALL Note that my OOP code is designed for the SMALL model. The
model major limiting factor is the pervasive use of NEAR pointers. It

would probably be easier to design a completely different Include
file for other memory models. It should be easy to upgrade to
32-bit code though.

V.ftual
MeHod TASM ~3.0 encourages the classical implementation of objects, in

Table
which the pointers to procedures (Virtual Method Table, VMT) are
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not stored physically with the data of each object instance, but
somewhere else (which is why they invented the TABLE that I
have misused). There are arguments for and against this. Any one
class can have one VMT, and instances could all access a single
instance of the VMT. This would be efficient in terms of memory
but would not allow individual overrides by each object instance.
As mentioned earlier, I decided on an approach that allows easy
conversion to non-OOP assemblers, is conceptually simple, and
offers some flexibility advantages that the VMT doesn’t.

Improving Make0 has been presented in this chapter in a simple, uncluttered
Make0 form, as has the rest of the code. The .INC tile can be massaged in

various ways to do more. For example, make0 can be made to
handle normal child windows with only minor modifications.
Thus the same WINDOW class could be used for parent and child
windows. The alternative would be to create another class, called,
say, CHILD, just like I did for CONTROL. The product is
evolving all the time, and you may find some interesting new stuff
on the Companion Disk or my Web site.

Postamble
You can have a lot of fun playing with these tools. You may think
of improvements - let me know.
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PC Hardware

Preamble
This could be an enormous chapter. I’m an electronic engineer, so
the hardware is my forte, and I could keep writing for some time.
However, the publisher only agreed to a book of around 400 pages,
and I’m already pushing it!
Very few assembly language books delve deeply into the
hardware, and certainly no Windows books do. Well, many
Windows programming books do cover, more or less, the CPU
architecture and memory management, as I have done in Chapter
1. For systems programming, it is very helpful if you understand
something about the hardware beyond the CPU, i.e., the other
chips on the motherboard and plug-in cards, how they work
together, and how to utilise them.

CPU Bus
Look at any block-diagram of a computer system, and you are
likely to see more than one distinct bus shown. In a nutshell, the
bus carries the address and data, and the bus that is directly
connected to the CPU, or processor, is called the CPU, system, or
processor bus.
The other possible buses perform the same basic task, i.e., carry
address and data, but they are optimised for some specific purpose,

179
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Address,
data, and
control
buses

Difference
between
memory
and l/O
access

Machine
cycle

such as for connection to I/O (input/output) plug-in adaptor cards.
Anybody who has been around PCs for awhile will have heard of
the ISA bus - this is an example of such a special-purpose bus.
The best starting-point is to consider the structure of the bus that is
directly connected to the CPU.

First, we can analyse the CPU bus by breaking it into three logical
groups of lines. Really, the bus is a big bunch of wires, with
certain wires carrying the address, some carrying data, and some
performing control functions - this is shown in Figure 1.5 on
page 13.
In fact, each of these groups is sometimes referred to as a bus in its
own right.

Intuitively, you can imagine that if the CPU is to access memory,
it would have to send the correct address to memory on the
address bus, and the data transfer would take place over the data
bus. But what about I/O? If the CPU wants to send data to an
output device, for example a printer, there is the same scenario of
these three buses.
The CPU has to put the appropriate address of the printer output
port onto the address bus, and then the CPU will have to put the
data onto the data bus.
The essential point here is that the address and data buses are
being used for two different purposes. So how do the various
chips that are connected to the bus know whether the current
operation is an I/O-port access or a memory access? After all,
they are all wired onto the same bus, as Figure 1.3 shows.

Control Bus

To understand the problem introduced above of how the bus
performs access to two different kinds of chips - memory and I/O
- it is necessary to have a closer look at the control bus. First,
look at Figure 7.1. Also look at Figure 7.2.

For a memory access, say, to read the next instruction, the CPU
goes through what is called a machine cycle, which simply means
it reads or writes memory. There is also such a thing as a “null
cycle”, in which the CPU is doing something within itself for that
clock-period.
When the CPU wants to access the memory, it puts an address
onto the address bus at the beginning of the cycle, then it puts ALE
low to let the rest of the system know there is a valid address.
Depending upon whether the CPU wants to do a read or write
operation, it pulses MEMR* or MEMW* low. In the case of a
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memory read it would send MEMR* low, which tells the memory
chips that they are supposed to send data to the CPU.
The memory responds by putting the data on the data bus, and the
CPU reads what is on the data bus near the end of the cycle - the
exact moment when the CPU reads the data bus is when MEMR*
goes high.

Figure 7.1: CPU bus showing some of the control signals.
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associated
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There is still a loose end to the above description. How does
memory determine which data to put on the data bus? The CPU is
sending out an address asking for the data at a particular memory
location. Figure 7.3 shows what the circuitry looks like at the
memory end.

Figure 7.3: Interface, CPU to memory.
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Basically, a memory chip has a data bus, an address bus, chip
select input(s), and read/write control input(s). This example
RAM (Random Access Memory) chip has an active-low chip
select line coming from an address decoder.
This decoder detects the presence on the address bus of the
appropriate addresses for this particular memory chip - this chip
is being addressed, it “selects” the memory chip.
Note that the address decoder itself has a CS* (chip select) input
- ALE is connected to this. It ensures that the address decoder
only operates when there is a valid address on the address bus.
Assuming that the RAM is addressed correctly, the CPU tells it via
MEMR* and MEMW* which way the data is to go.
Notice that only Al7 to A19 go to the address decoder - this is an
example circuit only, and specific circuits may differ from this, but
generally it is only necessary for some of the address lines to go to
the decoder. This is because the memory chip resides at a range of
addresses - the lower order address bits go directly to the chip to
select a particular memory byte.
Get the idea? The higher address lines select the chip, while the
lower lines select a particular location on that chip.
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BIT:

There are three address lines into the decoder in this example, Al 7
to A19.  Say that the decoder is designed to detect an input of 101
binary:
19 18 17 16 15 14 13 12 11 10 9 8 7 . . . 0
1 010 0 0 0 0 0 0 0 0 0 . ..o
1011111111111...1

This means that the RAM chip occupies address range AOOOOh  to
BFFFFh, and the size of the RAM would have to be 2”17  = 128K
bytes.

I/O Ports
If you peek back at the diagram of the control bus for the CPU
(Figure 7.1), you will see that there are a couple of lines called
IOR* and IOW*. These are for reading and writing I/O ports.
Unlike some CPUs,  such as the 6800 family, that do not
distinguish between memory and I/O operations, the Intel 86
family have special instructions and special control lines for I/O.
Figure 7.4 is a typical I/O circuit. Notice its similarity to the
memory interface shown in Figure 7.3. A major difference is that
IOR* and IOW* go to it, instead of MEMR* and MEMW*.

Figure 7.4: Interface, CPU to I/O port.
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Whenever the CPU executes a read-port instruction (IN), it
performs an I/O read machine cycle that looks just like the timing
diagram for memory access, except IOR* gets pulsed low. Now
we have fully answered the question regarding the dual purposes
of the bus.
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ProgrammableMore  special chips are used for the interface between the buses
Peripheral and the external world. By external I also mean the keyboard, disk
InterAace drive, etc. Notice that the I/O chip in Figure 7.4 is labelled  “PPI”.

This is the name given to a chip used in early-model PCs. PPI
means Programmable Peripheral Interface, and it is a simple
general purpose I/O chip, with three external &bit ports, as shown.
The functionality of the original PPI is still in the latest PCs - it
is just contained within a larger chip. We refer to big chips as
VLSI technology (Very Large Scale Integration).
Notice that the PPI in Figure 7.4 has only two address lines going
directly to it. That is because it only has four ports, or registers.
Three of them are ports A, B, and C, and the fourth is a
configuration port.

I/O Instructions

Although the address bus is used to select I/O ports, only A0 to
Al5 are used, so the address range is only 64K. With the I/O
instructions, data is always via the AX register. The I/O port
address must be placed in DX before executing the I/O instruction
if the address is over 256.
Examples:

IN AL,2Fh ;A byte from port-address 2Fh loaded into AL.
IN AX,2Fh -Input a word from 2Fh to AX.
OUT 5,AL iContents of AL written to port 5.

Hardware
description

Keyboard Interface
This section talks a little bit about interrupts in general, since
interrupts are tied in with how the keyboard interfaces to the
computer. I have introduced interrupts on page 33, and in further
depth on page 250.

Refer to the circuit of Figure 7.5. The keyboard scancode  is routed
to port A on the PPI chip, when PB7 = 0. The address of port A is
60h, port B is 61h, port C is 62h, etc. The keyboard also generates
an interrupt to the 8259 Interrupt Controller chip, causing INT-9.
With AT-class PCs, including most 386, 486, and Pentium PCs,
we can still visualise the operation as following this pattern. There
are two microcontrollers, an 8031 on the actual keyboard, and an
8042 on the motherboard. The latter implements the functionality
of the original PPI with some changes. For example, port C (62h)
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has completely fallen by the wayside. The 8042 has itself been
consumed into larger VLSI chips.

Figure 7.5: Keyboard interface.
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Scancodes Each key generates a unique scancode. The keyboard outputs a
scancode when a key is pressed and again when it is released (and
of course generates an interrupt each time). The difference is
determined by PA7 = 0 when pressed, and PA7 = 1 when released.

IN19 Note that it is the job of the BIOS routine INT-9 to convert the
keyboard scancode to ASCII and place it in the input buffer.
A small detail to keep in mind is that the keyboard interrupt goes
into the IRQl input of the Interrupt Controller chip, hence to the
CPUs interrupt input, IRQ.

IRQ to /VT Question - how does the CPU know that a keyboard interrupt is
mapping “INT-9” (i.e., to look at the ninth entry of the interrupt table for the

address of the keyboard-handler routine)?
Answer - The CPU and the Interrupt Controller communicate
automatically over the data bus, and take care of this detail. INT-8
to INT-F correspond to IRQO to IRQ7.
With the AT-class PC though, a view under the hood shows that
the 803 1 sends a Z&an  byte for each key press/release, which the
8042 converts to the normal scancode. Thus, it may be that we
never have to encounter I&can codes, unless our work involves
directly programming the 803 1.
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Keyboard This is the basic structure of INT,-9  in the BIOS, as pointed to by
housekeeping entry 9 in the IVT:

. . . disable keyboard... (AT)
a1,60h

iish ax
;read scancode from PA.
;save it.

in a1,61h ;read  PB.
Or al,EOh ;set PB7=1
out 61h,al  ; /
and al,7Fh ;clear  PB7.
out 61h,al  ; /
POP ax
. . . INT-15h...  (AT only)
. . . Check for keyboard commands Resend,Ack,Overrun.. (AT only)
. . . Update LEDs...  (AT only)

.process key...
: :.issue End Of Interrupt (EOI)...

Controlling
the 803f
and 8042

Status of
the 8042

How to read
and write
port-m &
-64h

AT-Class Keyboard Port Enhancements

Port-60h has been expanded beyond that of merely reading the
scancode from the keyboard, as was its sole role in the earlier
XT-model PC. Now, there are two groups of functions it can
perform.

Port-60h is now capable of sending commands, mostly directed to
the 803 1 controller on the actual keyboard.
Port-60h can also be used to receive other data, which works in
conjunction with port-64h. Basically, port-64h is for sending
commands to the motherboard 8042 controller, and if any of those
return data, it is read at port-60h. Therefore, you use these two
ports in a particular sequence - an OUT to port-64h, followed by
an IN from port-60h.

Port-64h can also be read, and it provides status information about
the 8042, or whatever chip is being used as the AT-class
motherboard keyboard controller, as shown in Table 7.1.

A most important point that you should note from Table 7.1 is that
you must test bit-l before performing any OUT to ports 60h or
64h, and you must test bit-0 before doing an IN from port-60h.
In fact, a curious piece of information is that on a “Type 1” MCA
PC, you must wait seven microseconds after bit-0 becomes
logic-l, before reading port-60h. MCA is IBM’s own proprietary
expansion bus system. Fortunately, it implements ports 60h and
64h much the same as in AT machines. MCA is just about history.
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rable 7.1: Port-64h input.
BIT MEANING
7 =I:  Parity error on serial link from keyboard
6 = 1: Receive timeout error from keyboard
5 =l : Transmit timeout error to keyboard
4 =0: Inhibit keyboard, from keyboard lock switch
3 =0: Data was just sent to 8042 via port-60h

=l: Data was last sent to 8042 via port-64h
2 =0: Power-on caused reset

=l : 8042 self-test completed successfully
1 =0: A write can be made to port-60h or 64h

= 1: No writes allowed to port-60h or -64h
0 =0: A read from port-60h will not be valid

=l: Data available, use port-60h to read them.

Testing for There are a whole lot of commands that you can send to port-64h.
the XT Of course, this presumes that you are not using an IBM-XT PC. If
model your software is to run on AT-class machines only (including

MCA, EISA, PCI), then you may have to state that fact with the
documentation, and/or your software could perform a simple test.
For example, the AAh command to port-64h is a self-test, and if
the keyboard controller passes the self-test, it will return the value
55h in port-60h. The XT would not respond to this at all. Of
course, what you read from port-60h in an XT could accidentally
(though very unlikely) be scancode  55h.
Some of these commands result in data returned via port-60h, but,
as noted above, you must read port-64h, in a loop, testing bit-O.

Further Further details, such as the commands that port-60h can send to
references the 803 1, are to be found in The Undocumented PC by Frank Van

Gilluwe, Addison-Wesley, 1994.
For further details on keyboard interrupt handling, refer to Chapter
10.

PC Expansion Buses
If you look under the lid of a PC, the plug-in cards are most
obvious. These may include video, printer, serial communication,
and disk adaptor.
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Some PCs will have some of these on the motherboard rather than
as plug-in cards.
The socket into which these boards plug is basically an extention
of the CPU bus, with address, data, and control lines, but usually it
is in a somewhat modified form.
Some expansion bus standards have become history, such as
MCA, VESA local bus, and EISA, so I won’t mention them
further. The ancient ISA (Industry Standard Architecture) standard
is remaining popular and is on just about all new PCs. New PCs
usually have another bus for high speed known as the PCI
(Peripheral Connect Interface) local bus.

Industry Standard Architecture (ISA)

Early PCs use an 8088 CPU, which, despite advertisements, is
only an g-bit CPU, since it is based on the size of the data bus.
Hence the ISA bus also has only an 8-bit data bus.
Some early PC compatibles have an 8086 CPU, which internally is
identical to an 8088 but has an external 16-bit data bus. As far as I
am aware, these machines still have only an 8-bit ISA bus.

The advent of the AT-model PC, with an 80286 CPU having a
16-bit data bus, saw the introduction of the ISA bus with a 16-bit
data bus.
So that 8-bit cards would still work, the older connector was
retained, but a second connector, that the 16-bit cards used, was
placed end-on to it.
Although 8-bit  cards will work ok in a 16-bit  ISA system, they
will not run quite so fast as 16-bit cards. This is something to be
aware of when shopping around - a display adaptor card, for
example, could be 8 or 16 bits.

There are other books with a stronger hardware focus that will
give you further details, such as the functions of the pins on an
ISA bus connector and timing diagrams. One such book is
Interfacing to the IBM Personal Computer by Lewis Eggebrecht,
Sams, USA, 1990.

A plug-in card gets an opportunity to execute configuration code
stored on ROM on the card during the power-on sequence. One of
the typical things that this code does is “hook” interrupt vectors.
For example, a video card may hook the BIOS INT- 1 Oh interrupt.
In such a case, the address in the IVT will point to the new code
that replaces it. This “redirection” is done by DOS itself, by
device drivers and TSRs,  and by plug-in expansion cards (that may
have their own ROM with startup code and new BIOS routines).
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Video is a very good example of this. Most PCs have plug-in
video adaptor cards that are the interface between motherboard
and monitor. This card plugs into an expansion bus connector.
The original video services provided by the BIOS-ROM are at
entry 10h in the IVT, however, it is normal for the video card to
execute some code during start-up, that replaces the address in the
the IVT with a new address that points to code in ROM on the
video board.
Figure 7.6 shows the effect of an adaptor card. During the
power-on sequence, the BIOS startup code sets up the IVT at the
beginning of RAM and puts ISR pointers into entries zero to 1Fh.
Entry 10h is the video-handling ISR, and this entry points to an
ISR in the BIOS-ROM.

Figure 7.6: BIOS extensions during power-up.

MEMORY MAP Entry-1Oh in the IVT points to an ISR in the
BIOS ROM, however, start-up code in the

‘rp anewISRinthevideoROM.
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640K
JO000
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;oooo
1M

expansion bus.

A little bit later in the start-up sequence, the memory address
range COOOOh to C8000h is scanned, in 2K increments, looking for
any code that may be present on plug-in cards. Usually, an
adaptor card has switches that set the address range of the
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on-board ROM to a vacant place in the PCs memory map. Note
though, that Plug and Play is replacing switches with
programmable configuration.
It is normally expected that a video adaptor will have video-ROM
in the COOOOh to C8000h region, in which case it executes. When
the start-up code of the video-ROM executes, it changes the
contents of entry-10h in the IVT to point to its own video-ISR,
contained in its own ROM.
Note also that a little later, the start-up sequence scans the address
range C8000h to F4000h looking for more ROMs, which will also
be executed. Incidentally, valid code is identified by 55AAh at the
first two memory locations, with offset-2 holding the size of the
ROM module, expressed in 5 12-byte blocks. Execution will
commence at offset-3 of the ROM.
In the case of video, there is a very practical outcome of the above
mechanism: when writing a program, use INT-1Oh to access the
video, i.e., to send characters to the screen, etc., and you know that
it will work, regardless of what video adaptor card you have
plugged in. The original INT-1Oh ISR in BIOS-ROM is fairly
basic and may not work properly with your video adaptor card,
especially if the PC is old. The redirection of INT-1Oh to a new
ISR avoids the problem of obsolesence.
It is interesting to note that all of the above is done by the BIOS
start-up code before the system disk is accessed. Later, the
bootstrap program from the Boot Record on the system disk is
loaded, followed by IO.SYS and MSDOS.SYS, in the case of
loading the DOS operating system. When IO.SYS is loaded, and
executed, it sets up interrupt vectors 20h to 3Fh, in the IVT.

BIOS-ROM (or the extensions) provides services with addresses in
the IVT. So does DOS, and the DOS services are loaded into
RAM during power-on.
Actually, you may recall from Chapter 1 that the hidden system
tile, MSDOS.SYS, has these DOS routines (except in the case of
Windows 95).

So what is the major difference between the services provided by
BIOS and those provided by DOS?
The answer is that the BIOS services are low-level, that is, they
are for more basic access to, and control of, the hardware of the
PC. The DOS routines provide mostly higher level access to, and
control of, the hardware and resources of the the PC. Note also
that some of the DOS routines are not actually for accessing
hardware: rather they are operating system management functions.
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Peripheral Connect Interface (PCI)
Figure 7.7 shows a typical configuration, though do note that there
can be variations on this. For example, RAM memory could be
interfaced to the PC1 bus, rather than directly onto the CPU bus (or
both).

Figure 7.7: PC&-CPU--ISA bridges.
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The PC1 bridge is a chip, and although it is not obvious from the
figure, there are different kinds of chips for different bridges, such
as between CPU-PC1  and PCI-ISA. Also, the PC1 plug-in cards
themselves will have a PC1 chip. One great advantage of having a
special bridge chip between buses is that they allow address
translation, so that a memory or I/O address on the CPU bus will
be a different address on the PC1 bus. In fact, the.bridge chip is
highly programmable and has its own configuration memory that,
most importantly, is independent of the main memory and I/O
map.

With PC systems, the standardized method of accessing the
configuration memory of a PC1 chip is by two reserved 32-bit I/O
ports, OCF8h  and OCFCh. The former is used for addressing a
location in configuration memory and the latter for reading/writing
it.
The former, OCF8h,  is called CONFIG_ADDRESS,  and the latter,
OCFCh, is called CONFIG_DATA.
It is important to know that these two ports can allow you to
access the configuration memory on any of the PC1 interface chips
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(on any adaptor card). The 32-bit  data that you write to
CONFIG_ADDRESS,  is formatted as in Figure 7.8.

Figure 7.8: CONFIG_ADDRESS write format.

31 24 23 16 15 11 10 8 7 2 0

0
& I

Bus# Device Function Register

\ Enable CONFIG_DATA Translation Type 1

Bit-3 1 has to be set, otherwise the OUT instruction is treated like a
normal I/O operation (not accessing the PC1 bridge chip).
Bus# is for use in systems with multiple PC1 buses, Device selects
a particular adaptor card, Function selects a function that the card
understands, and Register selects a register in the configuration
memory. An OUT to CONFIG_ADDRESS  would be followed by
an IN or OUT to CONFIG_DATA.

PC/ BIOS
extensiofl

Fortunately, a BIOS extension has been defined to give
programmers a slightly less hardware-dependent mechanism for
accessing the PC1 chips. One point to be careful about, however,
is that not all BIOSs implement the new specification fully, or,
maybe, they may not have implemented the latest version of the
specification (2.1 at time of writing).
Of particular interest is that version 2.1 specifies entry points for
Real mode, 16-bit Protected mode, and 32-bit Protected mode.
The 386 and later CPUs can operate in 16-bit Protected mode,
which is what Windows 3.x applications run in, and they can also
operate in 32-bit Protected mode, which is what “native” Windows
NT and Windows 95 applications run in.

Reference A further source of information about this is PCI Sys tem
source Architecture (third edition) by Tom Shanley and Don Anderson,

Addison-Wesley, USA, 1995.

Protected
mode PC/
BIOS

The normal BIOS that we have considered so far in this book is
designed, at least originally, for an 8088 CPU, which only runs in
Real mode. In a nutshell, Real mode uses the now-familiar
segment:offset  form of addressing, which has a 1M upper limit.
The 286 and 386 CPUs are able to operate in Protected mode,
which uses a different addressing mechanism and is able to
address extended memory beyond 1M (as explained in Chapter 1).
One of the greatest criticisms of Windows 3.x, is its reliance on
DOS and BIOS - to call any of these software interrupts, the
CPU must switch back into Real mode (which takes time).
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It is possible to write code that can execute in either Real or 16-bit
Protected mode, and PC1 BIOS has done this - via INT-1 Ah,
function Blh (Table 7.2). Great - you can call this from a
Windows 3.x application, and the CPU will not have to switch
back to Real mode.
The PC1 BIOS requires an entirely different set of routines for
32-bit Protected mode.

Table 7.2: PC1 BIOS access.

Real mode. Use MT-1 Ah, AH = B lh, like any other software interrupt
16-bit Protected mode . . . ditto . . .
Virtual-86 mode . . . ditto . . .
32-bit Protected mode BIOS is scanned, for a signature, indicating presence of

32-bit BIOS, and an entry point is located. The services
are accessed by a FAR CALL.

Note that, technically, it is possible, if you are writing a 32-bit
application, to get it to call the Real mode/l6-bit  Protected mode
PC1 BIOS services, but this is starting to get too involved at this
stage.

Here are some of the highlights of the PC1 architecture:

.

.

.

.

Multiple independent PC1  buses in the one PC.
32-bit data bus at up to 132M/sec  (megabytes/set), and 64-bit
at up to 264Mlsec.
Fully synchronous with CPU bus up to 33MHz.
PC1 connector can be mounted alongside an ISA/EISA
connector, so either type can occupy that physical space on the
motherboard/chassis.
Processor independent
Support for 64-bit addressing
Support for SV and/or 3.3V supply
Full multi-master capability, allowing any PC1 master
peer-to-peer access to any other PC1 master/target.
Full auto-configuration (no dip switches on cards).
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Postamble
I have introduced PC hardware, but so much remains to be
explained. I covered the keyboard interface and expansion bus,
but these are only “samplers”. What about parallel and serial, disk
drive, timer, real-time clock, and other interfaces? Some of these I
do touch on in later chapters, however this book will grow into
something enormous if I try to cover everything.
I could cover these in the next edition though. Let me know if you
really like the idea.
Choice of keyboard interface and expansion bus serve as case
studies, so that you can see how the principles earlier in the
chapter are applied.
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BIOS, DOS, &

Windows Low-Level
Services

What’s
in t h i s

Preamble

This chapter introduces the services available to the Windows
programmer, but from a viewpoint that you would expect of a
book on assembly language. I have covered two major aspects:
the DOS services and the Windows low-level services.
This chapter gives an overview, and the next chapter provides
practical code.
We haven’t been so far away from the operating system in earlier
chapters, but now is the time to delve in further.

DOS/BiOS
INTs

In this chapter I have particularly been concerned about the
relationship between DOS and Windows. We have a new
operating system running on top of DOS, with the CPU in
Protected mode - how much of the old DOS can we still use?
Then there is the related issue of how DOS itself has been changed
to handle the new CPUs and operating conditions. What are these

195
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changes? For example, INT-16h, the keyboard handler under
DOS, doesn’t work under Windows.
I have already mentioned the problem of calling the old DOS
interrupt services with the CPU running in Protected mode (page
33).
I introduced some of the first DOS services to utilize Protected
mode (page 18).

Why use Old habits die hard, and DOS programmers are going to be loath
DOS/BIOS to give up their familiar DOS and BIOS services in favour of
services? Windows functions, especially if some of the old services seem

better suited to certain tasks or if the Windows functions don’t
seem to do anything equivalent, or do it poorly.
In many cases, the Windows solutions are painfully slow. If you
are after performance, for certain kinds of applications it may be
optimal to use certain DOS services.
An interesting example comes to mind - that of printing.
Windows printing is designed for dumping a complete page at a
time to the printer, but if all you want to do is output a line at a
time to your faithful old dot matrix, perhaps to log some systems
events, it is darned awkward. It is, of course, a pushover for DOS
- you can use INT-2 1 h to output a single character at a time, and
when you send a carriage-return character, the line prints.
Since Windows uses its own special printer drivers for output, the
question naturally arises about whether you can use the old DOS
service. Will it work? Will there be a clash?
The answer is that it works fine, but yes clashes are possible.
However for every problem there is a solution, including that of
contention over resources.
Another qualification that needs to be made is that Microsoft has
taken the opportunity with 32-bit applications to restrict
BIOS/DOS and other low-level access. This will be explained as
you read ahead.

DOS in The advent of Windows 95 does not mean that DOS is dead. Even
fbe future though Windows 95 does not identify DOS as a separate product,

still, it is there. You can start the PC with the DOS prompt, or
launch a DOS box from Windows, just as before. It’s really more
of the same thing, despite the Windows 95 publicity hype.
There are a number of issues with regard to how DOS lives
alongside Windows, some of which I have gone into in Chapters
11 and 14.
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BIOS and DOS Services

This is a mysterious gray area, very poorly documented by
Microsoft. Although Windows runs in Standard or Enhanced
Protected mode, most BIOS and DOS services still work, with
various caveats.

Apart from the standard services, Windows also supports a special
group of DOS services, called the DOS Protected Mode Interface
(DPMI). These consist of some INT-2Fh services and INT-31h
services.
INT-2Fh has a range of sub-functions available under DOS, but
Windows adds some extra functions. If you look in any DOS
programming book you won’t find anything on these extra
functions, nor on INT-3 lh. Even Microsoft’s own reference bible,
The Programmer’s PC Sourcebook (second edition) by Thorn
Hogan, USA, 1991, has nothing on these services.

Reference You have to scratch around in strange places to find the
sources information. This book brings much of it together, and where it

does not, I give the appropriate reference. Microsoft’s Device
Development Kit (DDK) has reference material on DPMI, and I
think their Archive Library CD-ROM has also. Obtaining these
requires that you join the Microsoft Developer’s Network (MSDN),
and this is where Microsoft has us “over a barrel” - they want
quite a lot of money for membership.
You can find a lot of information on the Internet. For example, a
site with lots of links for developers is:
http://www.r2m_com/windev/

Another site with DPMI reference information is:
http://www.delorie.com/djgpp/doc/

DPMI
overview

First, I will fit DPMI into its place in the overall scheme of things
(the meaning of life and all that), before getting into a look at the
standard BIOS and DOS services:

“DPMI enables DOS applications to access the extended
memory of PC architecture computers while maintaining
system protection. It also defines a new interface, via
software interrupt 31h, that Protected mode applications
use to do such things as allocate memory, modify
descriptors, and call Real mode software (using
segment:offset  addressing and running within the 1M
limit).”
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This is a direct quote from some loose-leaf pages sold by
Microsoft under the title Windows Developer’s Notes (part number
050-030-313). It is extra material not found in the SDK’ and has a
couple of pages on DOS and DPMI - hardly anything, though, as
it appears that Microsoft has the attitude that the less we know
about how Windows works “under the hood”, the better.

DPM 0 . 9 Despite documentation to the contrary (see quote below),
a n d  1 . 0 Windows 3.0, 3.1, and 95 only support DPMI version 0.9. The

Windows Developer’s Notes have the following warning:

“Windows 3.0 running in 386 Enhanced mode supports
DPMI version 0.9. Windows 3.0 running in Standard
mode supports a subset of DPMI that enables
applications to call TSR programs and device drivers
running in real (or virtual-86) mode.”

“Windows applications should call onZy the following AX
values for DPMI version 0.9 functions: 0200h,  0201h,
0300h,  0302h,  0303h,  0304h,  0 3 0 5 h . Windows
applications should not use DPMI’s  MS-DOS memory
management functions. The Windows 3.0 Kernel has
two functions, GlobalDOSAlloc()  and GlobalDOSFree(),
that should be used by Windows applications and DLL’s
for allocating and freeing MS-DOS addressable memory.
Other than those listed above, no DPMI functions are
required for Windows applications since the Kernel
provides functions for allocating memory, manipulating
descriptors, and locking memory.
Non-Windows applications running in 386 Enhanced
mode can use all the DPMI version 0.9 functions, since
they are not restricted by the Kernel.”

However, to throw a spanner into the works, Microsoft has stated
this in documentation supplied with the SDK ~3.1:

“Windows 3.0 and later in 386 Enhanced mode supports
DPMI version 1.0. Windows 3.0 and later in Standard
mode supports a subset of DPMI that enables
applications to call terminate and stay resident (TSR)
programs and device drivers running in Real (or
virtual-86) mode.”

’ Much of the material from the Developer’s Nofes  has found its way into the latest SDK for
Windows version 3.1. This consists of about 12 books. DOS and DPMI notes are to be found
in Microsoft Windows Programmer’s Reference, Volume I: Overview, the first of four volumes.
This is now on CD-ROM supplied with the SDK, though in many cases Microsoft will sell
printed versions.
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If you think that the above two quotations are contradictory, join
the club. What’s it to be: 0.9 or l.O? I received a clarification
from Microsoft that Windows 3.0 and 3.1 (and now 95) only
support DPMI 0.9. Their reply to me also had another interesting
comment:

‘I...  Standard mode understands how to allocate memory
from a DPMI provider . . . Enhanced mode does not.”

There are Windows functions that overlap DPMI services, but
most of the latter are undocumented, and in the light of the above
comments from Microsoft, we are left between a “rock and a hard
place”. Andrew Schulman, PC Magazine, Jan. 28, 1992, page 323,
puts it this way:

“You’re stuck with using either DPMI INT 31h functions
. . . which Intel documents but Microsoft doesn’t sanction
. . . or Windows KERNEL functions, which Microsoft
doesn’t document. What a choice!”

Windows 3.1 does make some of the previously undocumented
functions “official”, by documenting them in the SDK, and also
introduces some new low-level functions, many of which cannot
be used with Windows 3.0. Since there are going to be a some (?)
users out there still using 3.0, I have been careful in this chapter to
clarify which functions are not backwards compatible.
Microsoft has put some functions into a library, TOOLHELP.DLL,
that you can bundle with your application for backwards
compatibility with Windows 3 .O.

A final note is that other programmers have commented in the
press (and it is my own empirical experience) that the DPMI
services work under Windows. I’ve tried most of them, but not all.
The main thing to be careful about is using those DPMI services
that might conflict with Windows’ management of the memory,
such as allocation of memory blocks (see quotation on page 198).
In a virtual machine other than the system virtual machine (see
page 274),  there should not be any conflict with Windows’
memory management, and you can use all the DPMI services
(Microsoft sanction this statement).
I’ve done the right thing and printed Microsoft’s discouragement
for extensive use of DPMI. Code that you will see in subsequent
chapters has been tested in both Standard and Enhanced modes,
but with a book of this nature I do have to insist on a total
disclaimer of any liability. You use the code with this
understanding.
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Windows95 Most of my code has also been tested under Windows 95 and
works. However, this statement is true of 16-bit  applications
running in Windows 95 - native 32-bit applications are
somewhat more restricted. There are work-arounds. For example,
many of the low-level API functions are available as 32-bit
versions, but are not supported by the import library (during
linking), nor are they documented. However, we can still use them
(refer page 235).
One problem is that you can’t just call 16-bit  functions such as the
16-bit API functions from 32-bit code. Most of the interrupt
routines also assume that the caller is 16-bit  code.

Standard DOS Interrupts

Microsoft implies from their Developer’s Notes that most of the
DOS services will work ok when called from a Windows program
running in (16-bit)  Protected mode.
Those specifically not supported in Protected mode, and which
will fail, are:

l INT-ZOh  Terminate program
l INT-25h Absolute disk read
l INT-26h Absolute disk write
l INT-27h Terminate and stay resident
l INT-2lh/AH =

OOh
OFh
10h
14h
15h
16h
21h
22h
23h
24h
27h
28h

Terminate process
Open file with FCB
Close file with FCB
Sequential read
Sequential write
Create tile with FCB
Random read
Random write
Get file size
Set relative record
Random block read
Random block write

The following DOS INT-21h functions will work, but will behave
differently from Real mode DOS versions:

H o o k i n g l AH = 25h and 35h Set/Get interrupt vector.
P r o t e c t e d  o r “These functions set and get the Protected mode interrupt
R e a l  m o d e vector. They can be used to hook hardware interrupts,
interrupts such as the timer or keyboard interrupt, as well as to
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hook software interrupts. Except for INT-23h, INT-24h
and INT-lCh, software interrupts that are issued in Real
mode’ are not reflected to Protected mode interrupt
handlers. However all hardware interrupts are reflected
to Protected mode interrupt handlers before being
reflected to Real mode.”

l AH = 38h Get country data.
“This function returns a 34-byte buffer containing a
doubleword (DWORD) call address at offset 12h that is
used for case mapping. The DWORD contains a Real
mode address. If you want to call the case-mapping
function, you need to use the DPMI translation function
to simulate a Real mode FAR call.”

l AH = 44h, subfunctions 02h, 03h, 04h, and 05h.
“These I/O  control (IOCTL) subfunctions are used to
receive data from a device or send data to a device.
Since it  is not possible to break the transfers
automatically into small pieces, the caller should assume
that a transfer of greater than 4K will fail unless the
address of the buffer is in the low 1 megabyte.”

l AH = 44h, subfunction OCh.
“Only the minor function codes 45h (Get Iteration Count)
and 65h (Set Iteration Count) are supported from
Protected mode. The extensions of this IOCTL
subfunction that are used for code page switching (minor
function codes 4Ah, 4Ch, 4Dh, 6Ah and 6Bh) are not
supported for Protected mode programs. You must use
the DPMI translation functions if you need to use this
IOCTL subfunction to switch code pages.”

l AH = 65h, Get extended country information.
“This function is supported for Protected mode programs.
However, all the DWORD parameters returned will
contain Real mode addresses. This means that the
case-conversion procedure address and all the pointers to
tables will contain Real mode segment:offset addresses.
You must use the DPMI translation functions to call the
case-conversion procedure in Real mode.”

This is a direct quotation from the Developer’s Notes. The term “Real mode” in this publication
is also taken to cover virtual-86 mode.
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N e t B I O S
interrupts
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BIOS/DOS
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m o d e

M o r e
v a g u e n e s s

Windows also supports the DOS NetBIOS interrupts. The
Developer’s Notes advise that all of the network control blocks
(NCBs) and buffers must reside in fixed memory that is page
locked. Also, all code that calls NetBIOS directly should reside in
a DLL to ease the porting of the application to other operating
environments. I haven’t written anything more about NetBIOS
support in this book. If you want more information, go to the
Device Driver Developer Kit (DDK).

Earlier in the book (pages 33+)  I explained about the Interrupt
Vector Table (IVT) used by Real mode interrupts and the Interrupt
Descriptor Table (IDT) used in Protected mode. I explained that
Windows has in some cases provided alternative services via the
IDT where necessary, but in many cases the vector in the IDT
points to a handler that changes the CPU to Real mode (virtual-86
actually) and calls the Real mode service as pointed to by the IVT.
This mechanism is shown diagrammatically on page 268.

The Developer’s Notes say that Windows provides support for “all
MS-DOS interrupts” other than those specifically blacklisted
above.
Despite the above comment, heed the warning from Guide to
Programming (SDK 3 .O manual):

‘I...  you should use interrupts with extreme caution and
only when necessary”.

The SDK documentation leaves you hanging on the cliff at that
point - there is virtually no further clarification about what you
can and cannot use and under what conditions and circumstances.
Furthermore, the SDK 3.1 documentation does not have this
warning! The Windows 95 SDK just about ignores BIOS and
DOS interrupts entirely.
I have already mentioned that INT-16h, the keyboard handler,
works tine - except that you need to be aware that Windows
hooks the INT-9 hardware vector that puts characters from the
keyboard into the keyboard buffer. Windows has its own
128-character buffer and its own keyboard handler.
Leaving the standard BIOS and DOS services for now, I will focus
on DPMI.
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Reference
sources

I

DPM
elsewhere in
this book

Host and
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IN%37,
/NT-Z//r

INT-ZFb
extensions
provided by
a DPM host

DOS Protected Mode Interface
(DPMI)

The main sources of information for DPMI are the specification
itself: DPMI  Specification, version 1 .O, DPMI Committee, 1991.
This committee is hosted by Intel Corporation, and members
include Microsoft, IBM, and Borland. Further information is in
Microsoft’s DDK and in Writing Windows Device Drivers by D. A.
Norton, Addison Wesley, USA, 199 1, and on-line at:
http://www.delorie.com/djgpp/doc/
I have summarized the major DPMI services in Appendix C, and
you will find practical code with further explanation in subsequent
chapters.

What follows are some of the underlying principles of DPMI. If
any of it doesn’t make sense, don’t worry, as it should be much
clearer when actual code is shown in the next chapter. I have also
provided more underlying detail in Chapters 11 and 14.
You can get a good overall idea of what the DPMI services do by
examining Appendix C. They provide the kind of services that the
old Real mode DOS services don’t, that is, services connected with
the descriptor tables, managing extended memory, going between
Real and Protected modes, getting at real memory from Protected
mode, and getting at the CPU control registers.
I introduced some DOS services back on page 18, but they are
primitive. DPMI does a much more thorough job and is specially
designed for the multitasking environment.

Windows provides the DPMI services for our program to use, so
the correct terminology is that Windows is the DPMI host, while
our program is the client.

The DPMI services are available through INT-3 lh, which is only
available in Protected mode. DPMI provides INT-2Fh services to
obtain information about DPMI - these run in Protected or Real
mode (see Appendix C and Chapter 9). A DPMI host must be
running to provide INT-3 lh services, though note that Windows is
not the only DPMI host. Other DOS extenders and memory
managers are also DPMI hosts. For example, 386Max is a superb
memory manager and DPMI 0.9 host from Qualitas Corp. that
enables you to write DOS applications that can run in Protected
mode.

The basic INT-2Fh services are:
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l AX=1680h Release current virtual machine’s
time slice.

l AX=1686h Get CPU mode.
l AX= 1687h Return Real-to-Protected mode

switch entry point.
. AX= 168Ah Get vendor-specific API entry point.

Apart from these functions, DOS has a lot of other functions under
INT-2Fh. Other software products provide enhancements to
INT-2Fh. Windows provides extra services for device driver
development (discussed a bit further on), and the new specification
for FAX and modem communication adds further functions.
INT-2Fh is a mixture of all sorts of stuff.

/l4%31b
logical
groups

NT-3 lh has these major groups of services:
. Extended memory management services.

Works with blocks of linear memory above 1M and deals with
linear addresses (refer back to pages 28+). These services
allocate and release memory, but you still have the problem of
accessing it, for which you need a descriptor - for that you
need the descriptor management services.
LDT descriptor management services.
These allocate, modify, inspect, and deallocate descriptors in
the application’s Local Descriptor Table (LDT).
Page management services.

.

l

These will only work on a system with paging. They are used
for locking and unlocking pages in memory.
Interrupt management services.
These allow Protected mode applications to intercept Real
mode interrupts and hook processor exceptions. Some also
enable cooperation with the DPMI host in maintaining a
virtual interruptflag  for the application.
Translation services.
These enable Protected mode programs to call Real mode
software directly. They also provide the reverse.
DOS memory management services.
These work like the DOS INT-21h functions 48h, 49h, and
4Ah, but work from Protected mode. They automatically
create and destroy descriptors, so that memory blocks can be
accessed easily from Protected mode.
Debug support services.
These set and clear watchpoints; used by debuggers.
Miscellaneous services.
These provide information about DPMI, support for the
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creation of TSRs,  direct access to memory mapped peripheral
devices, interrogation of the numeric coprocessor status, and
emulation of the coprocessor.

INT-2Fh Extensions

D i s p l a y
d r i v e r
s e r v i c e s

Apart from the DPMI extensions to INT-2Fh provided as part of
the DPMI, Windows also provides other extensions.
Functions 4000h to 4007h are for use with the display driver.
Note that conceptually there are two different display drivers: the
virtual driver (VDD) at the Windows end and the actual driver that
does the dirty work:

AX = 4000h
A program calls this function to determine how much work
the Windows Virtual Display Driver (VDD) must do when it
switches Windows between the foreground and the
background. It also tells the VDD to allow the program to
have direct access to the video hardware registers.
AX = 4001h
Tells the display driver to save the current video state.
AX = 4002h
Tells the display driver to restore the video hardware state
saved by 400 1 h.
AX = 4003h
Tells Windows Virtual Display Driver (VDD) that execution
is currently in a critical section. This function appears to
make the VDD pause until 4004h releases it.
AX = 4004h
Tells VDD that critical section is finished.
AX = 4005h
Similar to function 400 1 h
AX = 4006h
Similar to function 4002h.
AX = 4007h
A program tells the VDD that it has finished accessing the
hardware registers. This is the complement of 4000h.

I think it unlikely that you will need to call 4000h and 4007h,
unless you are designing your own display driver. 4000h is
designed for use by a display driver to communicate with the VDD
prior to the VDD calling 4005h. This sequence terminates when
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Real and
vi&al driver
interaction

the VDD calls 4006h to let the display driver restore its state and
continue functioning. After this the display driver calls 4007h to
tell the VDD that it’s all over. Chapter 9 has an example of usage,
and Appendix D is an INT-2Fh reference.

Another group of INT-2Fh functions has to do with
communication between DOS Real mode drivers and virtual mode
drivers (VxDs).
I have noted below that some of the functions have been used in
example programs, along with more detail on their usage. Also
Chapter 11 discusses these functions in more depth.
Note that only functions 1605h and 1606h are available in
Windows Standard mode.
Note also that these services, although designed for
communication between device drivers, are quite general and can
be used by any program. Chapters 11 and 14 develop a TSR that
uses them.
.

.

.

.

.

.

.

.

.

.

AX = 1600h
Obtains the version number of 386 Enhanced mode Windows.
Ax = 1605h
Windows calls this to tell DOS drivers that it is loading
(example of usage Chapter 14).
AX = 1606h
Windows calls this to tell DOS drivers that it is quitting
(example of usage Chapter 14).
AX = 1607h
A virtual driver calls a DOS driver.
AX = 1608h
Windows calls this to tell DOS drivers that it has completed
initialisation.
AX = 1609h
Windows calls this to tell DOS drivers it is exiting Enhanced
mode.
AX = 1680h
Yields the current virtual machine’s time slice.
AX = 1681h
A driver calls this to tell Windows not to switch virtual
machines.
AX = 1682h
This is the complement of 1681h
AX = 1683h
Returns the ID of the currently executing virtual machine.
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AX = 1684h
Allows a DOS mode driver to request services from a virtual
driver.
AX = 1685h
Allows a driver to switch virtual machines (examples of
usage, Chapters 11 and 12).

IN%4Bh:
DMA
services

Windows drivers also make use of INT-4Bh for virtual Dire&
Memory Access (DMA), and I refer you to page 264.
Again, these are extensions that are not part of DOS but are
provided by Windows. They are designed especially for the
difficulty of using DMA controllers with a CPU running in
Protected mode.

Windows Functions

O v e r v i e w

There are some Windows functions that perform in a similar
manner to DPMI services, so there is overlap.
What I have done in this section is not give exhaustive definitions
of the functions, as that would require a complete book on its own.
You need a lot of reference material for Windows development,
and where appropriate I have given the reference.
There are two broad groups of functions: those available in USER,
KERNEL, or GDI DLLs and those available within device drivers
and other DLLs.
In the latter case, you will find functions of the same name. For
example, enable0 and disable0 exist in all drivers. Obviously
your program must be able to select which one it is to call, and that
I have shown in the next chapter.
The Windows functions are all in files known as Dynamic Link
Libraries (DLLs), and are loaded at run-time.

Low-/eve/ What follows is a collection of Windows functions that you may
f u n c t i o n find useful for low-level work. The list immediately below all
s u m m a r y belong in either USER, KERNEL, or GDI DLLs.

Note that although many of the memory management functions
could be considered low-level, I have only included those directly
concerned with descriptors and selectors, with one exception:
GLOBALPAGELOCK.
Functions are in Windows 3.0 and 3.1, unless stated otherwise,
even if documented in one version and not the other. References
to the “SDK” without specifically naming 3.0 or 3.1 apply to both.
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1 ow-/eve/
lISE..GDJ/
KERMEL
function
summary

I have used an asterisk if a function is not directly supported by
32-bit applications in Windows 95, optionally followed by a
recommended 32-bit alternative. I have used a “$”  if a function is
unofficially available in the 32-bit Windows 95 API.

.

.

l

.

.

.

.

.

.

.

.

.

ALLOCCSTODSALIAS
Not described in the SDK. Allocates a new data selector that
aliases an existing code selector. *
ALLOCDSTOCSALIAS
Accepts a data segment selector and returns a code segment
selector that can be used to execute code in a data segment. *
ALLOCSELECTOR
Allocates a new selector. *
ALLOCSELECTORARRAY
Not described in the SDK. Allocates an evenly spaced array
of selectors. *
CALLMSGEILTER
Passes a message and other data to the current message filter
function.
CATCH
Copies the current execution environment to a buffer.
Complement is THROW. *
CHANGESELECTOR
Generates a temporary code selector that corresponds to a
given data selector, or a temporary data selector that
corresponds to a given code selector. Note that SDK 3.1 has
renamed this PRESTOCHANGOSELECTOR! (both names
will work). *
DEATH
Not documented in the SDK. Turns off the Windows display
driver and changes screen to text mode. Used in Chapter 9.
Complement is RESURRECTION. *
DEBUGBREAK
Not documented in the SDK. Forces a break to the debugger.
DEBUGOUTPUT
Available with Windows 3.1 only. Sends formatted messages
to a debugging terminal.
DEFHOOKPROC
Calls the next filter function in a tilter function chain.
*CallnextHookEx()
DIRECTEDYIELD
Not documented in SDK 3.0. Forces execution to continue at
a specified task. *
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l DISABLEOEMLAYER
Not documented in the SDK. Turns off Windows display,
keyboard, and mouse and changes to text mode; restores DOS
I/O. Complement is ENABLEOEMLAYER.  *

l DOS3CALL
Issues a DOS INT-2 1 h interrupt (but doesn’t use INT). *

l ENABLEHABDWABEINFUT
Enables or disables keyboard and mouse input throughout the
application. *

l ENABLEOEMLAYER
Not documented in the SDK. See Chapter 9. Complement of
DISABLEOEMLAYER. *

l ENABLEWINDOW
Enables or disables keyboard and mouse input to a specified
window or control.

l FATALEXIT
Displays current state of Windows on debugger monitor and
prompts on how to proceed.

l FBEESELECTOR
Frees a selector originally allocated by ALLOCSELECTOR(),
ALLOCCSTODSALIAS(), o r  ALLOCDSTOCSALIAS()
functions. *

l GETASYNCKEYSTATE
Returns interrupt-level information about the key state.

.  GETCUBBENTPDB
Returns the current DOS Program Segment Prefix (PSP).
*GetCommandLine(),GetEnvironmentStrings()

l GETCUBBENTTIME
Returns the time elapsed since the system was booted.

. GETDOSENVIRONMENT
Retrieves the environment string of the currently running task.
*GetEnvironmentStrings()

l GETFBEESYSTEMBESOUBCES
Only available in Windows 3.1. Returns the percentage of
free system resource space. *

l GETINPUTSTATE
Returns TRUE if there is mouse or keyboard input.

. GETINSTANCEDATA
Copies data from a previous instance of the application to the
data area of the current instance. *

l GETKBCODEPAGE
Determines which OEM/ANSI code pages are loaded.
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.

.

.

.

.

.

.

.

0

.

.

.

l

GETKEYBOABDSTATE
Copies an array that contains the state of keyboard keys.
GETKEYNAMETEXT
Retrieves a sting containing the name of a key from a list
maintained by the keyboard driver.
GETKEYSTATE
Retrieves the state of a virtual key.
GETNUMTASKS
Returns the number of tasks currently executing in the system.
*
GETSELECTOBBASE
Not described in SDK 3.0. Gets the linear base address of the
specified selector from the descriptor table. *
GETSELECTORLIMIT
Not described in SDK 3.0. Gets the limit of the specified
selector from the descriptor table. *
GETSYSTEMDEBUGSTATE
Only available in Windows 3.1. Returns system status
information to a debugger. *
GETWINDEBUGINFO
Available in Windows 3.1 only. Queries current system
debugging information. *
GLOBALDOSALLOC
Recommended by Microsoft instead of equivalent DPMI
service. Allocates a block below IM linear address space.
Returns both a selector and segment. Complement is
GLOBALDOSFREE. *
GLOBALFIX
Prevents the memory block from moving in linear memory.
You would use this in Standard mode to lock a block in place.
Complement is GLOBALFREE. $ *WOWGetVDMPointerFix
GLOBALHANDLE
Supplies a selector and returns a handle to the memory block.
GLOBALPAGELOCK
Prevents a segment from being paged out or moved. You can
use this in Enhanced mode to guarantee a segment will be
present at all times. Locks the segment at a physical address.
Complement is GLOBALPAGEUNLOCK. *VirtualLock()
GLOBALWIBE
I’m not sure what this one does - it seems to be similar to
GLOBALFIX. $ *
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l HARDWARE EVENT
Available in Windows 3.1 only. Places a hardware-related
message into the system queue. *

l HMEMCOPY
Available with Windows 3.1 only. Copies a block of data
from one address to another. *

l LOADMODULE
Executes a separate application. *Supported but recommend
CreateProcess().

l LOCKINPUT
Available in Windows 3.1 only. Locks (and unlocks) input to
all tasks except the current one. *

l LOCKSEGMENT
Locks a segment in memory.
UNLOCKSEGMENT  . *

l NETBIOSCALL

Its complement is

Issues a NetBIOS INT-5Ch interrupt. *
l OUTPUTDEBUGSTIUNG

Sends a debugging message to the debugger if present, or to
the AUX device if the debugger not present.

l PEEKMESSAGE
Checks the application message queue without waiting.

l PBESTOCHANGOSELECTOR
Described in the SDK 3.1. Same as CHANGESELECTOR
documented in SDK 3.0. Obtains an alias to a code or data
selector. *

l REPAINTSCREEN
Not described in SDK. Tells the GDI to repaint the entire
display. *

l BESUBIZECTION
Not documented in SDK. Turns on Windows display driver.
See the example, Chapter 9. Complement is DEATH. *

l SELECTORACCESSIUGHTS
Not described in the SDK. Sets the attributes of the specified
selector in the descriptor table. *

l SETSELECTORBASE
Not described in SDK 3.0. Sets the linear base address of the
specified selector in the descriptor table. *

l SETSELECTOIUIMIT
Not described in SDK 3.0. Sets the limit of the specified
selector in the descriptor table. *
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SETWINDOWSHOOK
Installs a system and/or application filter function.
Applications specific to Windows 3.1 should use
SETWINDOWSHOOKEX. *
THROW
Restores the execution environment to the specified values.
Complement is CATCH. *
UNHOOKWINDOWSHOOK
Removes a Windows filter function from a filter function
chain. Complement is SETWINDOWSHOOK. Applications
specific Windows 3.1
UNHOOKW~OWSHOOKEX.

should use
*Supported but

recommend UnHookWindowsHookEx().
SETWINDEBUGINFO
Only available with Windows 3.1. Sets current system
debugging information. *
WINEXEC
Executes a separate application. *Supported but recommend
CreateProcess()
YIELD
Halts the current task and starts any waiting task. *

f ow-level
GDI
f u n c t i o n s

There is a group of low-level GDI functions apart from
REPAlNTSCREEN()  listed above and apart from those inside the
display and printer drivers. They are:
ADVANCEDSETUPDIALOG, BITBLT, CHECKCURSOR,
COLORINFO, CONTROL, DEVICEBITMAP,
DEVICEBITMAPBITS, DEVICEMODE, DISABLE,
ENABLE, ENUMDFONTS, ENUMOBJ, EXTDEVICEMODE,
EXTTEXTOUT, FASTBORDER, GETCHARWIDTH,
GETDRIVERRESOURCEID, GETPALETTE,
GETPALTRANS, INQUIRE, MOVECURSOR, OUTPUT,
PIXEL, QUERYDEVICENAMES, REALIZEOBJECT,
SAVESCREENBITMAP, SCANLR, SELECTBITMAP,
SETATTRIBUTE, SETCURSOR, SETDIBITSTODEVICE,
SETPALETTE, SETPALTRANS, STRETCHBLT,
STRETCHDIBITS, UPDATECOLORS,
USERREPAINTDISABLE, WEP.

Low-level There is also a group of low-level communication functions:
C0m/?l
f u n c t i o n s

BUILDCOMMDCB, CLEARCOMMBREAK,
CLOSECOMM, ESCAPECOMMFUNCTION,
FLUSHCOMM, GETCOMMERROR,
GETCOMMEVENTMASK, GETCOMMSTATE,
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OPENCOMM, READCOMM, SETCOMMBBEAK,

E
SETCOMMEVENTMASK, SETCOMMSTATE,
TBANSMITCOMMCHAR,  WBITECOMM.

In addition, there is a group of sound functions, utility macros and
functions, file I/O functions, and debugging functions. For lists of
these groups refer to Microsoft SDK Reference Volume I.

TOOLHELP A special group of low-level functions have been provided with
low-level Windows 3.1 and documented in the SDK 3.1. They are supplied
functions in TOOLHELP.DLL, and are backwards compatible with

Windows 3.0, but you must bundle TOOLHELP.DLL with your
program. The equivalent Win95 functions follow this list. The
TOOLHELP functions are:

.

.

.

.

.

.

.

.

.

.

CLASSFIRST
Retrieves information about the first class in the class list.
CLASSNEXT
Retrieves information about the next class in the class list.
GLOBALENTRYHANDLE
Retrieves information about a global memory object.
GLOBALENTRYMODULE
Retrieves information about a specific memory object.
GLOBALFIRST
Retrieves information about the first global memory object.
GLOBALHANDLETOSEL
Converts a global handle to a selector.
GLOBALINFO
Retrieves information about the global heap.
GLOBALNEXT
Retrieves information about the next global memory object.
INTERRUPTREGISTER
Installs a function to handle system interrupts.
INTEBBUPTUNBEGISTER
Removes the function that processes system interrupts.
LOCALFIRST
Retrieves information about the first local memory object.
LOCALINFO
Fills a structure with information about the local heap.
LOCALNEXT
Retrieves information about the next local memory object.
MEMMANINFO
Retrieves information about the memory manager.
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MEMORYREAD
Reads memory from an arbitrary global heap object.
MEMORYWRITE
Writes memory to an arbitrary global heap object.
MODULEFINDHANDLE
Retrieves information about a module.
MODULEFINDNAME
Retrieves information about a module.
MODULEFIRST
Retrieves information about the first module.
MODULENEXT
Retrieves information about the next module.
NOTIFYREGISTER
Installs a notification callback function.
NOTIFYUNREGISTER
Removes a notification callback function.
STACKTRACECSIPFIRST
Retrieves information about a stack frame.
STACKTRACEFIRST
Retrieves information about the first stack frame.
STACKTRACENEXT
Retrieves information about the next stack frame.
SYSTEMHEAPINFO
Retrieves information about the USER heap.
TASKFINDHANDLE
Retrieves information about a task.
TASKFIRST
Retrieves information about the first task in the task queue.
TASKGETCSIP
Returns the next CS:IP value of a task.
TASKNEXT
Retrieves information about the next task in the task queue.
TASKSETCSIP
Sets the CS:IP of a sleeping task.
TASKSWITCH
Switches to a specific address within a new task.
TERMINATEAPP
Terminates an application.
TIMERCOUNT
Retrieves execution times.

Windows 95 replaces all of the above with the following:
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.

.

.

.

.

.

.

.

.

CreateToolhelp32Snapshot
Takes a snapshot of the Win32 processes, heaps, modules, and
threads used by the Win32 processes.
Heap32First
Retrieves information about the first block of a heap that has
been allocated by a Win32 process.
Heap32ListFirst
Retrieves information about the first heap that has been
allocated by a specified Win32 process.
Heap32ListNext
Retrieves information about the next heap that has been
allocated by a Win32 process.
Heap32Next
Retrieves information about the next block of a heap that has
been allocated by a Win32 process.
Module32First
Retrieves information about the first module associated with a
Win32 process.
Module32Next
Retrieves information about the next module associated with a
Win32 process or thread.
Process32First
Retrieves information about the first Win32 process
encountered in a system snapshot.
Process32Next
Retrieves information about the next Win32 process recorded
in a system snapshot.
Thread32First
Retrieves information about the first thread of any Win32
process encountered in a system snapshot.
Thread32Next
Retrieves information about the next thread of any Win32
process encountered in the system memory snapshot.
Toolhelp32ReadProcessMemory
Copies memory allocated to another process into an
application-supplied buffer.

D r i v e r
f u n c t i o n s

What follows are functions available inside the drivers. They
cannot be called directly as you would a normal Windows
function, but require an extra step. See the practical code in the
Chapter 9. Also, they are not documented in the SDK.
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Mouse .
d r i v e r
f u n c t i o n s .

.

.

.

.

COMM .

d r i v e r
f u n c t i o n s .

.

.

.

.

.

.

.

.

.

.

.

INITIALIZATION
Initialises the mouse device driver.
DISABLE
Suspends interrupt callbacks from the mouse device.
ENABLE
Enables calls to the Windows mouse event procedure.
INQUIRE
Gets information about the mouse characteristics.
MOUSEGETINTVECT
Gets the interrupt level used by the mouse hardware.
WEP
Performs cleanup when the Windows session ends.

CCLBBBK
Clears the Comm line break state.
CEVT
Returns the address of the Comm event word.
CEVTGET
Clears and gets specified events in the Comm event word.
CEXTFCN
Performs an extended driver function.
CFLUSH
Discards the contents of a receive or transmit buffer.
COMMWIUTESTIUNG
Transmits a block of data over the serial port.
CSETBBK
Initiates a Comm line break state.
CTX
Transmits a single byte before all others in the transmit queue.
GETDCB
Returns the address of the DCB structure for the specified
port.
INICOM
Initializes the specified Comm port.
BEACTIVATEOPENCOMMPORTS
Re-enables Comm ports disabled by
SUSPENDOPENCOMMPORTS().
READCOMMSTIUNG
Reads bytes from the Comm receive buffer.
BECCOM
Reads a byte from the Comm receive buffer.



S y s t e m .

driver
f u n c t i o n s .

.
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SETCOM
Sets the device configuration and state.
SETQUE
Specifies the memory input/output buffers.
SNDCOM
Places a character in the transmit queue.
STACOM
Gets the hardware and buffer status of the specified port.
SUSPENDOPENCOMMPORTS
Temporarily disables all Comm port activity.
TRMCOM
Closes the specified port.

DISABLE
Suspends interrupt callbacks and removes hooks.
ENABLE
Enables calls to the Windows keyboard event procedure.
ENABLEKBSYSREQ
Enables or disables SysRq key processing.
GETBIOSKEYPROC
Gets the address of the BIOS interrupt service routine.
INQUIRE
Returns the keyboard configuration structure that contains the
DBCS ranges.
NEWTABLE
Loads the keyboard translation tables.

CREATESYSTEMTIMER
Allocates a system timer to be used by a device driver.
GETSYSTEMMSECCOUNT
Gets the amount of elapsed time.
INQUIRESYSTEM
Gets various system configuration parameters.
KILLSYSTEMTIMER
Frees a timer to be used by a device driver.

G r a b b e r
f u n c t i o n s

Earlier I described mechanisms for Windows to save and restore
its video hardware state, if an application wants to do something
with the video. From the application’s point of view, after getting
control of the video, it can call some functions to manipulate the
display driver. Calling these functions is not straight forward;
refer to Writing Windows Device Drivers by D. A. Norton,
Addison Wesley, 1991, page 79. This reference also has more
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detail on these functions in its appendix D, page 247. They are
summarised here:
.

.

.

0

.

.

.

.

.

.

.

DISABLESAVE
Disables switching between Windows and DOS sessions.
ENABLESAVE
Enables switching between Windows and DOS sessions.
GETBLOCK
Copies the specified rectangular portion of the screen to a
buffer.
GETINFO
Gets the grabber’s GRABlNPO structure.
GETVERSION
Returns the grabber version number.
INITSCBEEN
Initializes the screen to text mode.
INQUIBEGRAB
Gets the size of the text or graphics grab buffer.
INQUIRESAVE
Gets the size of the text or graphics save buffer.
BESTOBESCBEEN
Restores the state and contents of the display.
SAVESCBEEN
Saves the state and contents of the display.
SETSWAPDBIVE
Specifies the drive and path of the grabber swap file.

The above group only work in Real and Standard modes. The 386
Enhanced mode has a different set of functions.

Undocumented Many functions available in Windows 3.0, 3.1, and 95 are not
functions described in the SDKs, nor anywhere for that matter. These are

“undocumented” functions, which means that Microsoft doesn’t
want us to know about them (see also page 235).

Reference There are various chaps who have dug up the dirt, and written
books books.

Undocumented Windows: A Programmer’s Guide to the Reserved
Microsoft Windows API Functions by A. Schulman, D. Maxey,
and M. Pietrek, Addison Wesley, USA, 1992.
Unauthorized Windows 95 by Andrew Schulman, IDG Books,
USA, 1994.
Windows 95 Systems Programming Secrets by Matt Pietrek, IDG
Books, USA, 1995.
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Thunking

thunking

Flat
tbunking

Universal
thunking
Reference
soufces

Function
prototypes

The mismatch between 16- and 32-bit code is a major headache.
Windows internally is also a mixture, including Windows 95
(especially Windows 95!). I have shown in this chapter that some
functions available to 16-bit  applications are not available to
32-bit applications and vice versa. This is because each has its
own set of API DLLs (see page 235).
However, we can “mix and match” - with caution of course.
The process of translating between 32- and 16-bit code is known
as thnking,  and Windows 95 provides two mechanisms: Generic
thunking and Flat thunking.
Flat thunking is specific to Windows 95 - it is not portable to
Windows NT. It allows 16- to 32-bit and 32- to 16-bit function
calls, so it is most flexible.
Generic thunking works on both Windows 95 and NT but only
allows a 16-bit  application to call 32-bit functions, not the other
way around.
Universal thunking is for Windows 3.1 applications to access the
win32s  API.
A good explanation of Flat thunking is to found in Inside Windows
95 by Adrian King, Microsoft Press, USA, 1994. Also look at the
Win95 SDK CD-ROM.
Generic thunking is also explained in the Win95 SDK CD-ROM,
in file DOC\MISC\GENTHUNK.TXT.  The following information
is based on this and other documents on the SDK CD-ROM.
Another excellent document that covers both Generic and Flat
thunking and has detailed descriptions of all the Generic API
functions is Programmer’s Guide to Microsoft Windows 9.5 by the
Microsoft Windows Development Team, Microsoft Press, USA,
1995.

Generic Thunking
Windows on Win32 (WOW) presents 16-bit APIs that allow you
to load the Win32 DLL, get the address of the DLL routine, call
the routine (passing it up to thirty-two 32-bit arguments), convert
16:16 (WOW) addresses to 0:32 addresses (useful if you need to
build a 32-bit structure that contains pointers and pass a pointer to
it), and free the Win32 DLL.
I hope you can read C code. I have taken these examples straight
from the SDK documentation.
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The following prototypes should be used:

DWORD FAR PASCAL LoadLibraryEx32Wl  LPCSTR, DWORD, DWORD );
DWORD FAR PASCAL GetProcAddress32W(  DWORD, LPCSTR 1;
DWORD FAR PASCAL CallProc32W(DWORD,...,LPVOID,DWORD,DWORD  1;
DWORD FAR PASCAL GetWMPointer32Wt LPVOID, UINT );
BOOL FAR PASCAL FreeLibrary32W( DWORD );

Note that although these functions are called in 16-bit  code, they
need to be provided with 32-bit handles, and they return 32-bit
handles. Do not forget that the 32-bit functions must be called
with the STDCALL convention.

Ca//PrOC3’wflCallProc32W()  follows the PASCAL calling convention. It is
designed to take a variable number of arguments, a Proc address, a
mask, and the number of parameters. The mask is used to specific
which arguments should be treated as being passed by value and
which parameters should be translated from 16: 16 pointers to Flat
pointers. Note that the low-order bit of the mask represents the last
parameter, the next lowest bit represents the next to the last
parameter, and so forth.

Code I didn’t really want to put actual code into this chapter, but a little
examples sample of Generic thunking is useful while I’m on the topic.

Assume that the Win32 DLL is named DLL32. First you need to
load the 32-bit library:

ghLib = LoadLibraryEx32W  ( I’d1132  .dll”,  NULL,  0  )

Then you need to get the address of the 32-bit function, in this
case MyPrint():

hProc =  GetProcAddress32W( ghlib, “MyPrint”  )

Then call MyPrint(),  passing it the required parameters TestString
and hWnd:

CallProc32W((DWORD)TestString,(DWORD)  hWndlOxffffOOOO,hProc,2,2);

The hWnd is OR’d  with OxffffoOOO,  because this is the way to
convert a 16-bit window handle to a 32-bit window handle in
Windows NT and 95. If you want to convert a 32-bit window
handle to a 16-bit window handle, simply truncate the upper word.
Note that this only works for window handles, not for other types
of handles. You should use the following functions exported by
WOW32.DLL: WOWHandle and WOWHandle160, in all
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cases, rather than relying on this relationship. These functions are
discussed in the SDK.
A mask of 2 (0x10) is given because we want to pass TestString
by reference (WOW translates the pointer), and we want to pass
the handle by value.
Finally, we must free the 32-bit library:

FreeLibrary32Wl ghLib );

NOTE: When linking the Windows-based application, you need to
put the following statements in the .DEF file, indicating that the
functions will be imported from the WOW kernel:

IMPORTS
kernel.LoadLibraryEx32W
kernel.FreeLibrary32W
kernel.GetProcAddress32W
kernel.CallProc32W

WOW

T h e  use  of  the  16-bit  v e r s i o n s  LOADLIBRARY a n d
GETPROCADDRESSO is described in Chapter 9. The principles
apply to the 32-bit versions also.

Very briefly, here they are:
funcfions .
called from
f6-bit  c o d e

.

.

.

.

CallProQZW, CallProcEx32W
Used by 16-bit code to call an entry point function in a 32-bit
DLL.
FreeLibrary32W
Allows 16-bit  code to free a 32-bit thunk DLL that it had
previously loaded by using the LoadLibraryEx32WO  function.
GetProcAddress32W
Allows 16-bit code to retrieve a value that corresponds to a
32-bit routine.
GetVDMPointer32W
Allows 16-bit code to translate a 16-bit FAR pointer into a
32-bit FLAT pointer for use by a 32-bit DLL.
LoadLibraryEx32W
Allows 16-bit  code to load a 32-bit DLL.

WOW These are a different group of WOW functions:
f u n c t i o n s
ca l led  from l WOWCallbackl6, WOWCaIlbackl6Ex

32-bit c o d e Used in 32-bit code called from 16-bit code to call back to the
16-bit side.

l WOWGetVDMPointer
Converts a 16:16  address to the equivalent FLAT address.
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WOWGetVDMPointerFix
Converts a 16: 16 address to the equivalent FLAT address.
Unlike the WOWGetVDMPointer() function, this calls the
GlobalFix  function before returning.
WOWGetVDMPointerUnfix
Uses the GlobalUntix()  function to unfix the pointer returned
by WOWGetVDMPointerFix().
WOWGlobaIAllocl6
Thunks to the 16-bit version, GLOBALALLOCO.
WOWGlobaIAllocLockl6
Combines the functionality of WOWGlobalAllocl6() and
WOWGlobalLockl6().
WOWGlobalFreel6
Thunks to the 16-bit  version of GlobalFree().
WOWGlobalLockl6
Thunks to the 16-bit  GlobalLock()
WOWGlobalLockSizel6
Combines the functionality of WOWGlobalLock16() and
GlobalSize().
WOWGlobalUnlockl6
Thunks to 16-bit  GlobalUnlock().
WOWGlobaIUnlockPreel6
Combines the functionality of WOWGlobalUnlockl6() and
WOWGlobalFree16().
WOWHandlel6
Maps a 32-bit handle to a 16-bit  handle.
WOWHandle
Maps a 16-bit  handle to a 32-bit handle.

More Win95 “Improvements”

Device I/O Control

Windows 95 introduced DeviceIoControl() as a standardized
channel for performing I/O, that is, to communicate directly with
virtual device drivers. This is also the preferred way to access
INT-21h services, though very few are supported.
Software interrupts will crash a 32-bit application, so Microsoft is
trying to force you to do most low-level and direct access to the
hardware through device drivers.
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Much wider usage of the tile I/O functions is found in Windows
95. DOS programmers will know that the INT-2 lh file handling
functions can also operate on device drivers. That is, a device
driver can be opened, a handle obtained, the “tile” read from and
written to, and then closed. The concept is alive and well in
Windows 95. CreateFile is used to open a virtual device driver
prior to using DeviceIoControl(), and CloseHandle()  is used to
close the driver.

Dynamically Loadable Drivers

The ability to open a virtual device driver at any time is related to
the new capability of Windows 95 to support dynamic loading.
CreateFile loads a driver and CloseHandle() unloads it.

Threads

A Windows process is an application, be it a Windows application
or a DOS Virtual Machine (VM). However, 32-bit Windows 95
applications can also have multiple threads of execution, and the
thread becomes the basic unit that can be scheduled by the
operating system.
With Windows 3.x, the System VM (running all the Windows
applications) and the DOS VMs (each running a DOS application)
are preemptively scheduled, while the Windows applications
themselves are cooperatively scheduled (i.e., amongst themselves).
Windows 95 adds to this picture with 32-bit applications that have
one or more threads that can be preemptively scheduled. Because
scheduling is thread-based, the term process is awkward - the
16-bit applications become one thread and each DOS VM is one
thread.
Here are all the Windows 95 thread- and process-related functions:

AttachThreadInput,  CommandLineToArgvW,  CreateProcess,
CreateRemoteThread,  CreateThread, ExitProcess,
ExitThread, FreeEnvironmentStrings,  GetCommandLine,
GetCurrentProcess,  GetCurrentProcessId,
GetCurrentThread,  GetCurrentThreadId,
GetEnvironmentStrings,  GetEnvironmentVariable,
GetExitCodeProcess,  GetExitCodeThread,  GetPriorityClass,
GetProcessAfiinityMask,  GetProcessShutdownParameters,
GetProcessTimes,  GetProcessVersion,
GetProcessWorkingSetSize,  GetStartupInfo,
GetThreadPriority,  GetThreadTimes,  OpenProcess,
ResumeThread,  SetEnvironmentVariable,  SetPriorityClass,
SetProcessShutdownParameters,  SetThreadAffmityMask,
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SetThreadPriority,  Sleep, SleepEx, SetProcessWorkingSetSize,
SuspendThread, TerminateProcess,  TerminateThread,
TlsAlloc, TlsFree, TlsGetValue,  TlsSetValue,
WaitForInputIdle,  WinExec.

Memory Mapped Files
Windows 95 introduces memory mapped tile functions for sharing
data between applications. CreateFileMappingO  creates such a
tile, while MapViewofFileO  maps it. OpenFileMappingO  and
DuplicateHandle  can be used by processes to access the tile.
Despite the name “file”, it does not have to be on a disk - the file
can reside entirely in memory. Such a global file is visible to all
applications.

Postamble
This chapter is notable more for what it doesn’t say than what it
does! Various functions, interrupts, and concepts introduced here
are developed in the chapters ahead.
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This chapter contains practical code to “get behind the scenes”.
The first part of the chapter focuses on the issues of direct reading
from and writing to memory, particularly video-RAM, and the
second part focuses on I/O.
I have shown the use of DPMI NT-3 lh services and of the
TNT-2Fh extensions, plus the use of low-level Windows functions.
I have pointed out overlap between the two where it occurs.
You will be amazed to learn that it is possible to have an
application running in a window, yet the application can write
directly to the video hardware, at breathtaking speed, without all
of the Windows rigmarole. This is the kind of practical code
developed in this chapter.
You will also learn about I/O aspects, such as use of the IN and
OUT instructions.
Mostly I view the material of this chapter as educational. It pokes
around doing fun things that may be viewed as “hacking”. It may
be that you will never use some of the less orthodox material in
professional applications, but what will be formed now is a good
solid foundation of understanding of the fundamentals.

225
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Initialisation

Is DPMI First 1’11 address the question of initialisation. Since your program
available? is running in Protected mode, alongside other programs, you can’t

simply go reading and writing all over memory and I/O. There
have to be rules to prevent contention. Initialisation is code that
clears the way for you to get directly at the hardware.
The code below is a good way to start. For the moment, don’t
worry about the red tape of PROC - ENDP; etc. You’ll put it
together later.
Before you can use DPMI services, you need to check out a few
things:

;=l dpmi running ok
*ah=major,  al=minor.I
;=l 386 dpmi type.
;=l Real mode interr.
;=l virt. mem support.
;=2,3,4 286,386,486

*testI if dpmi running.

.DATA
dpmiflag DB 0
dpmiversion DW 0
386modeflag DB 0
realmodeintsflag DB 0
virtualmemflag DB 0
cputype DB 0
; . . .
.CODE
mov ax,1686h
int 2Fh
or ax,ax
jnz nodpmi
mov dpmiflag,l
mov ax,0400h
int 31h
mov dpmiversion,ax
mov al,bl
and al,01
mov 386modeflag,al
mov al,bl
shr al,1
and al,01 ;bit-1 =l

;set flag, dpmi ok.
;get dpmi version.

;bit-0 =l if 386 dpmi

if not virtual86 int handling
mov realmodeintsflag,al
shr b1,2
and b1,Ol ;bit-2 =l if virtual mem. supported.
mov virtualmemflag,bl
mov cputype,cl ;c1=2,3,4 if 286, 386, or 486.

Refer to Appendix C for a full description of all DPMI services.
INT-2FWAX  = 1686h is used to check if the CPU is running
DPMI and is in Protected mode. This service returns a false flag if
Windows is loaded in Real mode or DPMI is not running.
You would only need to perform this check if you were running
Windows in Real mode, but version 3.1 of Windows won’t even
run in Real mode, so these days this test isn’t required.
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Note that most of the INT-2Fh services work in Real and Protected
mode, with or without DPMI, but INT-31h will only work with
DPMI and in Protected mode.

The next service is INT-3 lb/AX = 0400h,  which returns the DPMI
version number, plus other status information. Since version 1.0
of DPMI has more features than version 0.9, this test is necessary
if you want to use the extra features of ~1.0. Note that Windows
3.x and 95 only support DPMI ~0.9 (refer to page 198). I have
written the code in this chapter for ~0.9. So, again, this test is not
really required.
I have stored all of the flags as static data, to be used as needed by
the rest of the program.

Addressing Segments

Assuming that DPMI is up and running, which it should be under
Windows, you are ready to start doing interesting things. One of
your objectives is to access real memory directly. That is, you
hunger for the good old days when you could write directly to the
video-RAM, not via some tortuous method using GETDC(),
TEXTOUTO,  and RELEASEDCO, with a hundred messages to
worry about. You want control (slobber, slobber), and you want
speed!
You may even be totally retrograde and want to run your Windows
program with the screen in text mode (horror!). Remember good
old text mode? It was good enough for most things, and even did
quite a good job at graphics, using the IBM graphics character set.
The MDA (Monochrome Display Adaptor) only has a 4K
video-RAM, with the result that screen redrawing is instantaneous.
Forget about delays with text mode.

This text mode topic raises an interesting side issue. There are a
lot of other “retros”  like me out there, and there is even a special
product available for those who want to write Windows programs
but don’t want to give up the advantages of Real mode and of
text-mode video. The product is called Mewel,’ and it is a
complete library for writing Windows applications that run
without Windows, under DOS, in Real mode (or Protected mode),
with the screen in text mode (or graphics mode). It’s a lovely
product and works well. The only major deficiency is that there is
no multitasking. Mewel even allows source code to specify
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standard Windows screen coordinates, so a stock-standard
Windows program will compile and run under Mewel. Mewel
applications are stand-alone, as the library files are linked
statically. But it does mean that a simple “Hull0  world” program is
about 100K. Mewel even manages to represent icons in text
mode!

Addressing
memo!Ybeiow
IM in Protected

Back to the main topic. Let your first challenge be to directly
access memory. No problem. DPMI has INT-3 1WAX = 0002h:

mode
.DATA
OOOOselector  D W  0 ;selector, addr-0.
BOOOselector  DW 0 ;selector video-RAM
.CODE

mov ax,0002l ; supply a segment, returns a selector.
mov bx,BOOOh ;segment addr of video RAM.
int 31h
mov BOOOselector,ax ;save selector.
mov ax,2 ;get selector for segment addr 0000.
mov bx,OOOOh *startI of physical memory.
i n t 31h

mov OOOOselector,ax ;save. (label cannot start with O-9).

LDT What this service does is create an entry in your application’s
Local Descriptor Tablet and returns the index to that entry, that is,
the selector. The way selectors work is that you can treat them
just like the old segment values. Something like:

mov ax,BOOOselector
mov es,ax
mov bx,O
mov es: [bx] ,‘lxff

Linear This code will write the ASCII character “x”  directly to the
address video-RAM at address BOOO:OOOO.  From the theory in Chapter 1,

that will be a physical and/or linear address of OOOBOOOOh.  I made
the complete lineati/physical  address up to 32 bits, since that’s

’ Intel’s DPMI specification places a few caveats upon the 0002 function.
The descriptor’s limit will be set to 64K.
Multiple calls to this function with the same segment address will return the same selector.
Descriptors created by this function can never be modified or freed. For this reason, the
function should be used sparingly. Clients which need to examine various Real mode addresses
using the same selector should allocate a descriptor with INT-3 Ih/AX = OOOOh  and change the
base address in the descriptor as necessary, using function 0007h.

* Note that all WinApps  share a single LDT. The system VM maintains one each LDT, GDT,
and IDT.

’ Notice above that I used the word “linear” address. This is explained in Chapter 1. Basically, in
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what the 386 actually puts out. In the case of the 286 it will only
be 24 bits.
Look carefully at that above code fragment. See that I treated the
selector as the exact equivalent of the segment (paragraph) address
it represents. Behind the scenes, the CPU will use the selector
value in ES to lookup the LDT and get the physical address.
This service is wonderful, because it gives you direct access to all
memory below 1M. It also gives you enormous potential to “stuff
up” the system.

Pardon the crudeness, but “there’s more than one way to skin a
cat”. Ditto with DPMI services and low-level Windows functions.
If the two overlap, which ones do you use? Interestingly, some of
the Windows functions internally call the DPMI services!
In the above case, the Windows function equivalent is - well,
there are choices here, just as there are some different avenues
with DPMI. SETSELECTORBASE()’ is appropriate: it creates a
new entry in the LDT and will set the “base address” (linear
address) field in the descriptor. You provide a selector value as a
parameter to this function, the descriptor of which is used as the
model for the new descriptor. So, if you want to treat the new
memory block as data, use DS as the model. The SDK 3.1
documentation does not explain any of these vital details.
Note that SETSELECTORBASE() is available in Windows 3.0 but
was undocumented until Windows 3.1 made it official.

Direct Video
You don’t want to “stuff up” the system, of course, so you need to
take whatever precautions are necessary. If your Windows
application is going to do something drastic, like change the screen
to text mode, then obviously it will not be outputting to a pretty
little Windows box. The Windows screen will no longer be there.
This may be ok for what we want, but if our program is to work
with other Windows programs, and with Windows itself, then our
program must be able to restore the original screen.

Microsoft does have a very suitable service: INT-2Fh/AX  =
4001h. It is summarised in Appendix D, described in Microsoft’s
__ __ ~-.-

Windows Standard mode (286 mode), the linear and physical addresses are one and the same.
In Enhanced (386) mode, an address goes through an extra paging step, so the physical address
is renamed as the linear address, and is no longer the actual physical address.

’ SETSELECTORBASE()  is passed two parameters: the selector (16  bits), and the starting linear
address (32 bits). It returns a new selector value in AX, or AX = 0 if an error.
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Device Development Kit (DDK), and rather briefly touched on in
Writing Windows Device Drivers by D. A. Norton, Addison
Wesley, USA, 1992. Windows Virtual Display Driver (VDD)
uses it to control the actual (non-virtual) display driver. Basically,
it saves the adaptor registers: it works and is dam useful, so I have
used it in this example code.
The complement of the above is available also; INT-2Fh/AX  =
4002h,  which tells the display driver to take back control.’
Mighty handy. So far you know how to w-rite directly to the
video-RAM and you have a selector to do it with. It may be that
you don’t want to save the screen at all - you just want to scribble
all over what is already there. Perhaps if you want some little
message to appear on the screen, independently of everything else
that Windows is doing on the screen, then yes, go ahead (see page
239).
At the moment, I’m thinking more along the lines of taking over
the screen directly for very fast video output, such as games or
where text-mode is good enough or preferred.
To save the current video state:

mov ax,4001h  ;Note t h a t  u n d o c u m e n t e d  DEATH0  d o e s  t h i s
i n t 2Fh ;also, p l u s  s w i t c h e s  s c r e e n  t o  t e x t  m o d e .

The next obvious step is to change the video mode. There are
some interesting thoughts here. Won’t Windows and other
applications expect to be able to output to the screen also?
Yes they will, but always remember that Windows’ 16-bit task
management is non-preemptive. This means that once Windows
has passed control to your program, you can keep control for as
long as you like. You can lock out other applications and do
whatever you want.’
Normally, when Windows sends a message to the callback
function, your callback processes it, then has nothing more to do
so returns to Windows. If control stays in the callback, for

’ There are two other services, AX = 4005h and 4006h,  that are similar to 4000h and 4001h,
respectively. The description of 4005h is “The Windows VDD calls this function to tell the
display driver to save the video hardware state.” And for 4006h “The Windows VDD calls this
function to tell the display driver to restore the video hardware state that was saved by the last
call to function 4005h”  (Ririting  Windows Device Drivers, page 78). The 4000h and 4007h
services are used in conjunction with 4005h and 4006h. 4000h gives the display driver direct
access to the video hardware registers, while 4007h disables register access and tells the VDD
that the display driver has finished accessing the video hardware.

2 Though the DPMI host does perform preemptive time slicing between VMs  (see Chapter 11).
Even this can be disabled by a DPMI service.
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whatever reason, then no more messages are sent to it; therefore,
your callback is not receiving anything from Windows. At least
not in the normal way -just register that as an interesting point
for now.

Restore Video

For now, I’ll just say that you can save the screen upon entry to the
callback, and you can write directly to the screen. But before going
back to Windows, you must restore things to how they were. This
means that whatever you displayed in text mode (or whatever) will
be lost, unless you save it in a buffer.
This is some video cleanup code prior to returning to Windows:

m o v  ax,4002h ;Note undocumented RESURRECTION()
int 2Fh ;is similar.
call REPAINTSCREEN PASCAL

REPAINT-
SCREEN0
function

32-bit
applications

REPAINTSCREEN  is a Windows function, but you won’t find it
mentioned in Microsoft’s Software Development Kit (SDK), nor in
most other places. It is described in the Device Driver
Development Kit (DDK) (3.x versions), from Microsoft, and is
another one that Microsoft seems to want to maintain a low profile
on. In the latest set of MSDN CD-ROMs (January 1997)
REPAINTSCREEN is mentioned only in the Library Archive
CD-ROM.
Although it is in the Windows library file USER.EXE (the other
two are GDI.EXE and KERNEL.EXE,  located in \WINDOWS\
SYSTEM directory), you may not be able to simply call it as I’ve
shown above.’ Later on, when you see the whole program
together, you’ll see what I did to call it.

I am referring through most of this chapter to the 16-bit  API
DLLs. Thirty-two-bit applications can, by indirect means such as
thunking (see Chapter S), or some kind of separate 16- and 32-bit
programs that cooperate (see Chapters 12 and 14) access the 16-bit
API. However, many of the low-level functions have been ported
to the 32-bit DLLs, except that linkage information is not provided
in the IMPORT library (see footnote below and page 235).

’ The Windows library file supplied by your software vendor, such as LIBW.LIB  (Microsoft) or
IMPORT.LIB  (Borland), provide your program with access to the DLL functions. Whether or
not you can access REPAINTSCREEN  directly from your program is determined by the
inclusion of the linkage information in these link files. You will find that later versions may
provide the linkage, even to undocumented functions; however, I have shown how to do it the
hard way here, in case you have to do it for any functions, including those in other DLLs.
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REPAINTSCREEN redraws the screen, and is redundant here
actually. INT-2Fh/AX  = 4002h restores VDD (Windows) access
to the display driver and also causes the screen to be redrawn.
REPAINTSCREEN is required after RESURRECTION()  .

Change Video Mode

B I O S So in between having saved the screen and cleaning up prior to
/NT- IOh going back to Windows, how do you change the video mode?

If you are familiar with DOS and BIOS INTs, you’ll know it is
INT-1Oh - well, it still is!
Since an INT causes the CPU to look in the IDT (Interrupt
Descriptor Table) for the location of the routine and not in the old
IVT (Interrupt Vector Table) (see pages 33+),  any of the routines
can be replaced as required or the CPU redirected to the Real
mode routine with appropriate translations. Thus INT-1Oh stills
works, even though it is called from a Protected mode Windows
program.
Here is how to go to text mode 7:

mov ax,OO07h ;Note that DEATH0 will have got us to
int 1oh ; the text mode prior to Windows loading.

A Direct-Video Text-Mode Routine

I’11  put it all together. I have named this routine directvideoo.
You can call it from wherever in your program you want and
modify it as required - some suggestions and possibilities follow
after the listing. If you want to test it, you could take one of the
earlier programs and perhaps call it from the WM_CHAR  case, so
whenever a key is pushed the routine will execute. There is code
for this section on the Companion Disk.

T e x t - m o d e Here is the listing:
d i r e c t - v i d e o
l i s t i n g

EXTRN GETMODULEHANDLE:FAR
EXTRN GETPROCADDRESS:FAR
;...................
.DATA
dpmiflag DB 0 ;=l dpmi running ok
dpmiversion DW 0 ;ah=major, al=minor.
mode386flag DB 0 ;=l 386 dpmi type.
realmodeintsflag DB 0 ;=l Real mode interr.
virtualmemflag DB 0 ;=I virt. mem support.
cputype DB 0 ;=2,3,4 286,386,486
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BOOOselector DW 0 ;selector video-RAM
szmodulename DB "USER.EXE",O
lprepaintscreen DD 0
;........................................................
.CODE
directvideo PROC PASCAL NEAR

LOCAL winvideomode:BYTE
USES ax,bx,cx,dx,si,di

;...
call GETMODULEHANDLE  PASCAL, ds,OFFSET szmodulename
mov si,ax ;gets a handle for user.exe
or si,si ;Returns handle in AX.
jne userexists ;user.exe doesn't exist.
jmp nomodule

userexists:
;...
call

mov
mov

;.....
mov
int
or
jz
jmp.

FAR PTR GETPROCADDRESS PASCAL,si, 0,275
;275=ordinal  value of REPAINTSCREENO,  in

WORD PTR lprepaintscreen,ax ;USER.EXE.
WORD PTR lprepaintscreen+2,dx ;Returns far addr

;DX:AX.

ax,1686h
2Fh
ax,ax
yesitis
nodpmi

*testI if dpmi running.

yeslcls:
mov dpmiflag,l *set flag, dpmi ok.I
mov ax,0400h ;get dpmi version.
int 3Ih
mov dpmiversion,ax
mov al,bl
and al,01 ;bit-0 =1 if 386 dpmi
mov mode386flag,al
mov al,bl
shr al,1
and al,01 ;bit-1 =l if not virtual86 int handling
mov realmodeintsflag,al
shr b1,2
and bl,Ol ;bit-2 =1 if virtual mem. supported.
mov virtualmemflag,bl
mov cputype,cl ;c1=2,3,4 if 286, 386, or 486.

; . . .
mov
mov
int
mov
mov

; . . .
mov
int

; . . .
mov
int
mov

ax,0002
bx,OBOOOh
3Ih
BOOOselector,ax
ax,2

ax,4001h
2Fh

ah,OFh
10h
winvideomode,al
ax,0007h ;mode 7

*segment addr of video RAM.
;Ndte that although DEATH0 is
;undocumented, I figured out
;how to use it . . .
call GETDC PASCAL,hwnd
mov hdc,ax
call DEATH PASCAL,hdc

; . . . Windows display driver is
;now turned off and scrn in
;text mode.
;Note that DEATH0 leaves the
;CPU in Protected mode.
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int 10h
; . . .

mov ax,BOOOselector
mov es,ax
mov bx,O

mm:
mov cx,OFFFFh

mmm: nop
loop mmm ;delay
mov BYTE PTR es: [bxl,"XW
mov BYTE PTR es: [bx+11,10001111b ;attribute
inc bx
inc bx
cmp bx,1998 ;put 1000 X's on screen.
jbe mm

; . . .
mov ah,00
mov al,winvideomode
int 10h
mov ax,4002h
int 2Fh

;Undocumented  RESURRECTION0
;will change back to graphics
;mode and restore Windows
;display driver...
call RESURRECTION PASCAL\

,hdc,O,O,O,O,O,O
call RELEASEDC PASCAL,hwnd\
,hdc

; . . .
call lprepaintscreen \

PASCAL
;...
nodpmi:
nomodule:

ret
directvideo ENDP

; (Thanks to Undocumented Windows
* for showing me how many params
i to feed RESURRECTION0 !I

There are a host of things I can say about this routine. I have
itemized major points below.

Call REPAINTSCREEN

Calling a I mentioned earlier that I have used REPAINTSCREEN() as an
f u n c t i o n  in example to show how to get at a DLL function at run-time, which
a  D L L is one option if linkage information is not provided in the library

file. The standard technique is to call GETMODULEHANDLEO
to get a handle for USER.EXE (a file is a module in Windows
parlance, but the file name can be different from the module
name), then call GETPROCADDRESSO to get the FAR address
of the function within that module. If you would like to see
another example of accessing a function in this way, Microsoft’s
Programmerk  Reference, Volume 2: Functions, provided with the
SDK 3.1 (and available separately), gives an example of
LOADLIBRARY ( i n s t e a d  o f  GETMODULEHANDLEO),
GETPROCADDRESSO, and FREELIBRARYO to access a
function in TOOLHELP.DLL.
Thity-two-bit applications are somewhat more constrained - see
notes on page 235.
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Ordinal Coordinates

USER.EXE is a Dynamic Link Library and is a standard feature of
Windows. It has a heap of useful functions, and the question
naturally arises: what are the other functions in USER.EXE?
Furthermore, where did I get that ordinal coordinate of 275?
Each function in USER.EXE, or any DLL for that matter, can be
referenced by a unique ordinal coordinate. You can find out all of
the functions in a DLL and their ordinal coordinates, by use of a
utility program supplied with Microsoft C/C++, called
EXEHDR.EXE (or TDUMP.EXE from Borland C++). Since you
may not have access to this utility, I have listed the output of
EXEHDR.EXE for many of the Windows DLLs and drivers (see
the Companion Disk). The file on the disk has a comprehensive
alphabetical list of functions, with a short description, where it is
documented, what DLL it belongs to, and its ordinal coordinate.
Each device driver has built-in functions that can be called also.

Thirty-two-bit applications are a problem. Apart from crashing if
you try to use a software interrupt, the low-level undocumented
(and many previously documented) functions are not readily
available. Matt Pietrek, arguably the Windows systems
programming guru of gurus, covers this problem in Dirty Little
Secrets about Windows 95, on-line at:

http://ftp.uni-mannheim.de/info/OReilly/windows/win95.update
/ d i r t y . h t m l

R e f e r e n c e
b o o k

In this Web page, Matt is actually quoting from his book Windows
95 Systems Programming Secrets, IDG Books, USA, 1995:

“In Unauthorized Windows 9.5,’ Andrew Schulman made
extensive use of undocumented functions in
KERNEL32.DLL.  Although there obviously weren’t
header files for these functions, the functions appeared in
the import library for KERNEL32.DLL.  Calling these
functions was as simple as providing a prototype and
linking with KERNEL32.LIB.
In subsequent builds of Windows 95 after Andrew’s book
came out, these functions disappeared from the import
library for KERNEL32.DLL.  (Surprise! Surprise!) At the
same time, these function names disappeared from the
exported n a m e s  o f KERNEL32.DLL. These
undocumented functions were still exported, however.
The difference is that they were exported by ordinal only.

I IDG Books, USA, 1994.
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R E S U R R E C -
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Now, normally this would have been only a small
nuisance to work around. You should be able to simply
call GetProcAddress and pass in the desired function
ordinal as the function name (0 in the HIWORD, the
ordinal in the LOWORD) and get back the address. In a
normal, sane world, this would work. However, at some
point during the beta, Microsoft added code to
GetProcAddress to see if it’s being called with the ordinal
form of the function. If so, and if the HMODULE passed
to  GetProcAddress  i s  tha t  of  KERNEL32.DLL,
GetProcAddress fails the call. In the debugging version
of KERNEL32.DLL,  the code emits a trace diagnostic:
“GetProcAddress:  kernel32 by id not supported.”
Now, let’s think about this. Since the undocumented
functions aren’t exported by name, you can’t pass the
name of a KERNEL32 function to GetProcAddress to get
its entry point. And GetProcAddress specifically refuses
to let you pass it an ordinal value. The Microsoft coder
responsible for this abomination really didn’t want people
(Andrew Schulman?, myself?) from calling these
undocumented KERNEL32 functions. Apparently, the
only way you can call these functions is if you have the
magic KERNEL32 import library that Microsoft isn’t
supplying with the Win32 SDK.
Never fear. As you’ll see later in the book, I make
extensive use of the KERNEL32 undocumented
functions (for good, not evil). With a little bit of work, I
was able to coerce the Visual C++ tools to create a
KERNEL32 import l ibrary that contains these
“documentation-challenged” functions.
Appendix A contains information about these functions
and an import library for them.”

Page 208 lists some of these functions

To and From Text Mode
If you choose to use RESURRECTION()  to come back from text
mode, the screen will stay black, and bits will be redrawn as you
use Windows. If you do want the entire Windows screen to be
redrawn, then REPAINTSCREEN  is necessary.
There are various options for going to and fro between text and
graphics modes, apart from INT-1Oh. You could try the C
run-time library, or DEATH/RESURRECTION. The latter,
although undocumented, is probably the best supported and
cleanest method.
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Notice from the above listing that I used INT-lOh!AH = OFh to
obtain the current video mode before changing to mode 7. After
doing my thing, I used INT- 1 Oh/AL = 00 to change the mode back
to what it was. Mode 7 is the original text mode for the MDA
card, giving monochrome 80 columns by 25 rows. It works on
EGA and VGA adaptors, but not on CGA. The reason for this is
that CGA does not have high enough resolution. CGA text mode
is mode 2 or 3, and is only 640 x 200 pixels, while mode 7 is 720 x
350 pixels. The old mono MDA screen gives a nice sharp image.
This problem is a point in favour of DEATH().

Video Output Issues

You do not necessarily have to change the video mode. A typical
application might be to leave the Windows screen as-is and
overwrite it. Think about this - there are Windows functions to
obtain coordinates of your application’s window, or you could call
functions to set your window to certain coordinates. Then you will
know exactly where it is, so when you go into direct-video-access
mode, you will be able to write to the portion of the screen that is
within your window.
This means that you can have your program running as a window,
but you are still employing super-fast direct access to the
video-RAM. Yes, you can have your cake and eat it too!

By getting a selector to the video-RAM, you can write directly to
it. But what about “virtual” video-RAM? Since we are running in
virtual machines, shouldn’t output to the video-RAM be to a
virtual video-RAM, that does not necessarily correspond with the
physical video-RAM? This is potentially true, but all WinApps
run in the system VM, and the virtual video-RAM does correspond
to the physical.
I am perhaps getting a bit ahead here. Even though the concept of
a VM was introduced in Chapter 1, I haven’t fully developed it
until Chapters 10, 11, and 12. A DOSApp running in another VM
does write to a virtual video-RAM, which Windows can map
directly to full screen or into a window (depending upon the
settings of the .PIF file).

The problem with the above (overwriting the current Windows
screen) is that when you exit your callback and return control to
Windows, the screen will be redrawn. Of course you may not want
to return to Windows until you have finished running your game
or whatever, but suppose you do. A return to Windows without
redrawing the screen can be done by not executing INT-3 1hlAX =
4002h,  or REPAINTSCREENO.
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These can be executed later, when the time is right, or not at all.

Message Input

Dumping One thing to bear in mind is that although Windows 3.x is
the queue non-preemptive, the device drivers are still working

asynchronously, as indeed is the case in Windows 95. Key presses
and mouse activity can still generate messages, which will be
placed into your application’s queue.
So, your program may have saved the Windows video state and
gone to mode 7, or whatever, and done its thing. When finished,
and after the clean-up of restoring the video state and maybe
calling REPAINTSCREEN(), your program would normally
continue on in the normal fashion - if execution is within a
callback, control will continue on and return to Windows, and a
message waiting in the queue will then be sent to the message loop
in WinMain  .

PEEK-
MESSAGE

If, perchance, you don’t want to respond to messages received
during the direct-video period, you can use PEEKMESSAGE to
see what is there, and discard it.
Note that PEEKMESSAGE can be used at any time within your
callback to interrogate the queue. It gives you the options of
checking the queue with or without removing messages, checking
for a range of messages only, and of not yielding to Windows.
The main advantage of PEEKMESSAGE is that it doesn’t wait if
there are no messages on the queue; it returns immediately -
great for getting keyboard or mouse input in a non-event-driven
manner (a bit like old times!). The next advantage is that if you
are doing some kind of direct access and don’t want any other
application to run, you can call PEEKMESSAGE with the “no
yield” option.

DOS Windows undocumented functions can be a bonanza, if we can
keyboard/ figure out what they do. DEATH(), RESURRECTION(),
mouse DISABLEOEMLAYERO, a n d  ENABLEOEMLAYERO  a r e
input extremely interesting. The latter two go the whole way, turning

off Windows screen, mouse, and keyboard and restoring all
normal DOS I/O, with the vital exception that we are still in
Protected mode.
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Experimenting

One thing that you might like to do as an exercise is modify my
code so that the mode is not changed. Leave it as it was, and
change the segment address from BOOOh  to AOOOh,  then you will
have a selector to the graphics video buffer. The EGA and VGA
physical video buffers are at segment address AOOOh.  If the
program sends ASCII “X9  to the screen, you won’t see “X”s,
because the screen is in graphics mode.
ASCII codes are only appropriate when the screen is in text mode.
In graphics mode you write pixels to the buffer, and to know how
to do that you need a good EGA/VGA programming book. In this
simple example, the “X5  will produce an interesting pattern on
the screen. You might like to experiment with commenting out
the INT-3 lh/4002h  and the REPAINTSCREENO.

A Direct-Video Window Program

I introduced the idea of overwriting the existing Windows screen
back on page 237, and above I suggested the relatively
complicated approach of writing directly to the video RAM (which
will also involve manipulation of I/O registers on the adaptor
card). However there is another way: the BIOS and DOS services.
These services will do whatever you want.
What I have listed below is a complete program that is an
extension of the 00 program with a control button, developed in
Chapter 6. Clicking on the button causes another window to
appear - but this window is different! It is a pseudo-text-mode
window, that uses the IBM graphics character set (not ANSI
characters. See Appendix B). Furthermore, this window always
remains visible - no matter what you do, this window will always
appear, until the application is terminated.
The most fascinating aspect of this program is that it uses the
plain-vanilla BIOS and DOS video services to generate this
window, without the least complaint from Windows. This window
is your own personal possession: as far as Windows is concerned it
doesn’t exist. Yet I have arranged the program so that Windows
can never overwrite it (unless you want it to).
I have listed this program here (and it is also on the Companion
Disk in directory V>PMIO) as a source of ideas - possible
building blocks for other more wondrous programs.
Ok, here it is:

*ThisI demo program is written in TASM ~3.0.
;It uses the WINASMOO.INC OO-file developed in Chapter 7.
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-This program makes use of BIOS/DOS & low-level Windows
ifunctions.
;remember that Windows funcs only preserve SI,DI,BP & DS.

INCLUDE WINDOWS.INC
INCLUDE WINASMOO.INC
IDM QUIT EQU 100
IDM-ABOUT EQU 1 0 1-

. DATA
window1 WINDOW ( szclassname="DPMI",sztitlename=  \

"DPMI DEMO" paint=wlpaint, create=wlcreate, command= \
wlcommand, 'createstylehi= WS OVERLAPPEDWINDOW+ \
WS CLIPCHILDREN, char=wlchar,-sziconname="icon  l", \
y_Eoord= lO,timer= wltimer,destroy=wldestroy }-

control1 CONTROL { \
szclassname=l~BUTTON1~,sztitlename="OK",\
x_coord=20,y_coord=4O,wwidth=3O,wheight=20,  \
hmenu=IDOK,createstylehi=WS CHILD+WS_VISIBLE,\
createstylelo=BS_PUSHBUTTON-}

CODE
kickstart:

lea si,windowl ;addr of window object.
call [si] .make PASCAL,si ;make the window.
lea si,controll
call [sil .make PASCAL,si ;make child window
ret

;............................
wlpaint PROC PASCAL

LOCAL hdc:WORD
LOCAL paintstructa:PAINTSTRUCT
lea di,paintstructa
call BEGINPAINT PASCAL,[si].hwnd, ss,di
mov hdc,ax
call SELECTOBJECT PASCAL,ax, [si] .hfont
call TEXTOUT PASCAL,hdc,10,20, cs,OFFSET outstring,
call ENDPAINT PASCAL,[si].hwnd,  ss,di
ret

outstring DB I'Click button for direct video It
wlpaintENDP
;....................._.......................
wlcreate:

call GETSTOCKOBJECT PASCAL,OEM FIXED FONT
mov [si].hfont,ax - -
ret

;.............................................
wlcommand:

cmp WORD PTR [si] .lparam,O
;lo half=0 if a menu selection.

jne notmenu
ret

notmenu:
cmp [si] .wparam,IDOK ;button child window selected?
;note that lo-word of lparam has handle of control
;window, hi-word of lparam has notification code.
jne notbutton



si,controll
DESTROYWINDOW
[sil .hwnd,O
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*since si points to windowl.
PASCAL, [si].hwnd ;kill the button

;must clear hwnd, if want to
;makeO later.

;what we will do now is make the new window always stay
;visible....
lea si,windowl
call SETTIMER PASCAL,[si].hwnd,1,200,  0,O ;l=timer id.

;post WM_TIMER to window every 200mS.
notbutton:

ret
szmsg DB "Created by Barry Kauler, 1992",0
szhdg DB "Message Box",0
;...................................................
wlchar:
*let's bring back the button if any key pressed...
’ lea si,controll *sinceI si points to windowl.

call [si] .make PASCAL,si
ret

;...................................................
wldestroy:

call KILLTIMER PASCAL, [sil.hwnd,l ;kill the timer.
call POSTQUITMESSAGE PASCAL,0 ;normal exit.
ret

;....................................................
wltimer:
*comesI this way if a WM_TIMER message....
;this WinApp keeps on posting a WM_TIMER message to
;itself, thus this section is in a continuous loop...

call dpmidemo
ret

;........................................................
dpmidemo:
;comes here if button selected. now we will do some direct
video...

mov ah,OFh
;get current video state Note that this only works for

int lob standard VGA. Modification is
;-->al=mode,ah=width,bh=page required for SVGA - see

mov mode,al ;save V>PMIOWADME.TXT  on
mov c o l u m n s ,  a h  ;
mov vpage,bh * :

the Companion Disk.
mov ah,3 ;get &rent cursor position
mov bh, vpage ;video page
int loh ;-->dh=row,dl=col,cx=cur.size
mov curpos,dx ;save.

;a11 of this below, writes the pseudo text mode window on
;to the scrn...

mov ah,2 -setI cursor position
mov dh,5 ;row=S
mov dl,columns
shr dl,l ;centre cursor on screen
mov bh,vpage ;video page
push dx ; save
int 10h
mov dx,OFFSET sdirect



242 Windows Assembly Language & Systems Programming

IllOV ah, 9 I-write a  s t r i n g  t o  scrn
i n t 21h

PZ %
; restore
inext  row

mov bh, vpage
mov ah,2
push dx ; save
int 10h ;set cursor
mov ah, 9 I*write  str ing
m o v  dx,OFFSET  sdir2
int 21h
POP dx ; restore
inc  dh ;next  row on scrn
mov bh, vpage
mov ah, 2
int lob ;set cursor
mov ah, 9 ,*write  str ing
mov dx,OFFSET sdir3
int 21h
mov ah, 2 I*restore cursor pos.
mov dx,curpos
mov bh ,vpage
int 10h
ret

. DATA
mode DBO
columns DB 0
vpage D B 0
curpos  DW
sdirect
sdir2
sdir3

;; 31BIOS/DOSO/P/ilj

;........................................................
END

Reference Refer to a good DOS/BIOS programming book for details on the
sources video services. A person by the name of Ralph Brown has

compiled a detailed document on all of the interrupts and this can
be located at various places on the Internet, such as:

http://www.cs.cmu.edu/afs/cs/user/ralf/pub/WWW/files.html

The above code for drawing the box isn’t particularly elegant
(there are a hundred possible ways) but shows the idea.

VGA and One lovely feature of the BIOS/DOS services is that the cursor and
S V G A text I/O services treat row and column just like text-mode, even if

the screen is in graphics mode. The number of rows and columns
for each graphics mode can be found from a table, such as in
Thorn Hogan’s PC Sourcebook (see page 82). I used INT-1Oh to
obtain the current mode and number of columns, but do read
\DPMIOWADME.TXT for special information on Super-VGA.
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Before you run this program, change Windows to standard VGA,
640 x 480 x 16, that is, 16 colors, and restart Windows. Yes, it
works on Windows 95!
The not-entirely-appropriately-named dpmidemo()  is called every
200ms, which is how the window always manages to stay on top.
You can see that I called SETTIMER() to create a Windows
software timer, and note also that I killed it before exiting the
program. The reason for this is that Windows timers are a limited
resource.
Figure 9.1 shows the result of this program on-screen.

Figure 9.1: BIOS/DOS O/P to screen.

Print Manager

It’s a bit like trying to mix water and oil!

G h o s t i n g If you try the program, one “feature” that you will observe is that
“ghosting” can occur in windows moved underneath, so an
improvement would be to hook all WM_MOVE messages and
append a WM_PAINT  message. The problem is that whenever
you move (drag) a window on the screen, Windows simply
performs a shift of the window image, and does not tell the
window callback to repaint the window. Thus, shifting a window
under our “special” window can result in the underlying window
picking up a ghost of our special window. I have toyed with
various ideas for telling the window to repaint its client area, but
did not put any code into this example, for the sake of simplicity.
Anyway, I see this more as a learning exercise, and I don’t think
you should put these techniques into that professional office
business suite you’re working on! On the other hand, you never
know when low-level knowledge like this will come in handy.
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I/O Ports
DOS assembly language programmers will be accustomed to using
the IN and OUT instructions to talk with I/O ports.
Of course, with DOS it was very straightforward. Execute “OUT
28h,AL”  to send a byte of data from the AL register to port
(address) 28h, and it happens immediately, without question.

E/LAGS
registef

However, with the CPU running in Protected mode, there is some
extra rigmarole. Since more than one task can be executing, there
has to be a mechanism to prevent contention. First, look at the
flags register inside the CPU (Figure 9.2):

Figure 9.2: EFLAGS register.

FLAGS REGISTER

1 VM RF # NT IOPL OF DF IF TF SF ZF # AF # PF # CF

17 16 14 13/2 11 10 9 8 7 6 4 2 0

# = reserved
CF = carry flag FLAGS = 16-bit
PF = parity flag
AF = aux. carry flag register,
ZF = zero flag 86/286
SF = sign flag EFLAGS = 32-bit,
TF = trap flag 386
IF = interrupt enable
DF = direction flaa
OF = overflow
IOPL = I/ O privilege level72861386  only
NT = nested tank flag
RF = resume flag -7386 only
VM = virtual-86 mode

IOPL field The field of immediate interest to us is IOPL, which means
Input/Output Privilege Level. Referring back to page 3 1, privilege
level varies from 0 to 3, with 0 being most privileged. IOPL is set
by the operating system, and an application must have a privilege
level at least as privileged as IOPL for it to be allowed to perform
I/O.
With Windows, the IOPL is set to 0, while applications and DLLs
run down at 3, so it appears that they can’t do I/O. But this is only
how it appears, for the protection mechanism is only used by
Windows as a control mechanism, and in some cases I/O is
allowed - clarification is needed here!
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First however, we should be clear about what we mean by
“allowing I/O”. Hardware interrupts are, of course, part of I/O, as
is control of the interrupt flag, IF.
IF is a mask that determines whether external interrupts are
allowed to occur. It is 0 if interrupts are disabled and 1 if enabled.
There are two instructions that control this flag: CLI, meaning
CLear Interrupt, and STI, meaning SeT Interrupt.
There is another means of controlling this flag: PUSYF  and
POPF, which push and pop the flags register respectively. If
POPF is executed, whatever value is on top of the stack will be
popped into the flags register, thus affecting IF.

IN, OUT, CLI, STI, PUSHF, and POPF all work without question
under DOS in Real mode. However, in Protected mode, since the
application doesn’t have permission to do I/O, execution of any of
the above causes an exception, which is a special reserved
interrupt that causes a Windows exception-handler to execute. It
is the hardware in the CPU that does this detection.
The Windows exception handler may allow the IN, OUT, CLI,
STI, and PUSHF to go ahead, with due regard for contention with
other applications, but it modifies the POPF instruction so that it
does not change the interrupt flag IF. The moral of this story is
never use POPF to change the interrupt flag.

There are many caveats to I/O under Windows. Yes, it’s fine in
Real mode. It may also be tine in virtual-86 mode, i.e., running in
a DOS box inside Windows. Note that some references call
virtual-86 mode Real mode, though it is really a Protected mode
simulating the “real” Real mode! Interrupts and IN/OUT to most
of the ports is allowed for WinApps in Windows 3 .O and 3.1.
It works for 16-bit WinApps in Windows 95 also.
The problem is 32-bit WinApps. I recently read this nice
submission t o  t h e  comp.os.ms-windows.programmer.win32
newsgroup from Eugine Nechamkin:

> I require to be able to
> intercept an interrupt (that being int 0x78) performed by
> a dos application, and respond to it from my windows 95
5 application.

if((don't care about interrupt latency time) && ! (must write VxD) 1
1
// Make Win16 DLL controlling your interupt vector and
// processsing interrupts in usual DOS - like manner
// (setintvecto,  getintvector0) !!!
if (you are happy with Win16 app. under Windows 95)

I
//Make some front end Win16 app communicating with your Win16
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// lxJ.J i
1

else
{
// Make Flat-Thunk Win32 DLL to communicate with Win16 DLL;
// Make some front end Win32 app using Flat-Thunk Win32 DLL ;

1
1

else
{
// Spend $$$$$ on Win95 MSDN, DDK, Nu-Mega's  llSoft-IceU';
// Write a VxD for Win95;
// Write your Win32 (or Winl6) front end;

Example
program;
Joudspeaker
control

There is a cheap option for developing VxDs, known as VxD-Lite
(see Chapter 14). Chapters 12 and 14 explore transitions between
DOS, 16-bit and 32-bit WinApps, and VxDs.  There are many
options for getting at the low-level (hardware and underlying OS
management) from 32-bits,  though it’s all awkward.

Now for some example code. What I have here is a simple routine
to emit a tone from the loudspeaker. Nothing startling, but it is
significant because it is done by programming the I/O circuitry
directly. The PC has three hardware timers, the first dedicated to
producing an interrupt every 55 milliseconds (ms): the INT-8
hardware interrupt. The second generates continuous pulses that
are used by the dynamic RAM refresh circuitry. The third is
general purpose, and is most often used to produce tones on the
loudspeaker, since its output is connected physically to the
loudspeaker.’

;to initialise and start hardware timer . . .
mov al,OB6h ;setu

/p
the mode of  t imer-2 .

o u t 43h, al ;
mov bx,0700h ;load t h e  c o u n t e r .
mov al,bl ;
out 42h,al ; :
mov a l , b h ;
out 42h,  a l S
i n a1,61h iset b i t - 0  a n d  1  o f  p o r t  6 1 h .
o r a l , 3 ;
out 61h, al ; $ __

’ The hardware timers used in the PC are 16-bit  down-counters that can be loaded with a value
and then started. Once started, they count to zero and then either stop or automatically reload
and count down again. They can be programmed to produce a pulse at the output pin upon
reaching zero or simply flip state (which gives a square wave output). In continuous mode,
their frequency obviously depends upon the value first loaded; this has to be programmed to
port 42h in two steps. Bit-O of port 61h starts and stops the timer. It is important to note that
once started, the timer is completely independent of the CPU and will keep on going until an
OUT to port 6 1 h stops it.
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61h.

You could arrange this code in your Windows application in
whatever way is appropriate. It illustrates the use of both IN and
OUT instructions and shows that they work tine from Protected
mode (subject to the above-mentioned caveats).

While we are on the subject of timers, another issue arises; that of
synchronisation,  or response, with or to real-time events. An
interrupt from a hardware timer is a real-time event. Any
hardware interrupt is a real-time event. “Real time” need not
necessarily imply external hardware: if one application wants to
signal another and if the other is to respond immediately, it will be
a real-time response.
It may be that an external device has to signal a Windows
application, and it may be important that the application respond
in a very predictable way, within a predictable time frame.
Unfortunately Windows’ response is anything but real time. This
is a very important issue, and worthy of a new chapter.

A little note before I launch into the real-time section - Windows
does have “software” timers that can be programmed to time out at
regular periods, just like the hardware timers discussed above. See
the usage of SETTIMER on pages 239+.  However, upon time
out they send a message to the application over the standard
message queue, so its arrival time at the application is highly
unpredictable. It is even possible for the timer to time out a few
times, and queue the messages, before the application gets them -
suddenly the application will get three or more timer timeout
messages at once! Hardly useful if you want your application to
be triggered at precise intervals.
As a final thought, Windows has an undocumented function,
CREATESVSTEMTIMER(),  that is documented in the DDK,
Daniel Norton’s book (see page 203)  and in Undocumented
II5ndow.s (see page 218). It bypasses the message queue and calls
the callback directly. Thus, it is possible to make code execute at
precise intervals (though the callback has the major restriction that
it can only call certain Windows functions, just like an ISR).

Windows 95 has made timers less important, with the introduction
of threads. These introduce an execution overhead though.
Threads are only supported in 32-bit applications, with the Win32
API. Even though a 16-bit application can call 32-bit API
functions (see thunking section in Chapter 8), it can’t use the
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thread functions. Threads can synchronise  their execution also
(see Chapter 8 page 223).



10
Real-Time Events

Preamble

Windows So you think 16-bit Windows applications are non-preemptive?
preemptive Think again!
aspects Just about everything you read will tell you that a disadvantage of

Windows 3.x is non-preemption. That is, once control is passed to
an application, Windows cannot regain control until the
application has passed control back, by a RET. One of the touted
advantages of 32-bit applications under Windows 95 is
preemption.
Actually, whether it be Windows 1 .O or 95, interrupt-driven device
drivers, including keyboard input, must always be working in the
background. When a key is pressed, a hardware interrupt is
generated, which invokes the keyboard device driver.
The immediate response to a key press is preemption, nothing else,
and contrary to common knowledge, Windows 3.x applications
can make use of similar mechanisms.
Also, the DPMI host maintains preemptive time-sliced switching
between VMs  on Windows 3.x and 95.

Application A Windows application can respond immediately to an external
preemption hardware event, or a timer interrupt for that matter (refer back to

page 246 for a brief introduction to the PCs hardware timers, and
to pages 239+  for an introduction to the Windows “software”
timers).

249
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Preemption
by interrupts

Hooking an
interrupt

Hardware
vs
software
interrupts

You can also signal between Windows applications, immediately,
without going through the messaging mechanism.

Just as device drivers can be interrupt driven, so too can your own
application to provide predictable real-time response.
It is not all peaches and cream however.
The chapter starts with code for software interrupts, because it is
the easier case. The interrupt mechanism is particularly useful for
signalling and passing data between Windows programs.
The chapter then progresses to hardware interrupts, with example
code.

TSRs
What originally started me thinking about this topic was a problem
some colleagues of mine at Edith Cowan University were having.
They wanted a Windows 3.0 application to sit in memory, like a
TSR (Terminate and Stay Resident) program, logging external
real-time events, while Windows was running other applications.
In other words, they were asking for preemption. Windows, they
concluded, was not suitable, so they chose OS/2.

After some experimentation, I discovered that it is very simple to
create a Windows application that behaves just like a DOS TSR
and hook an interrupt vector, yet be operating in Protected mode
and be in every respect a normal Windows application.
“Hooking an interrupt vector” means to change the entry in the
interrupt table (refer back to page 33) to point to the new TSR. In
DOS it was very common for a TSR to hook INT-I6h  - the code
that follows also hooks this vector, but note that Windows doesn’t
use INT-16h for keyboard input, so it doesn’t matter what damage
we do to this vector!

An interrupt can be either a hardware or a software interrupt - a
good DOS programming book will clarify the distinction, but
basically a hardware interrupt occurs as the result of an external
event, via the Interrupt Controller chip, and maps to various
reserved entries in the interrupt table.
Software interrupts are invoked from a program by the instruction
“INT n”, where “n” is any number from 0 to 255. Note that some
of those numbers will also correspond to hardware interrupts,
which means that such interrupts can be called either by a
hardware event or from a program.
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E x c e p t i o n s

T S R
i n s t a l l a t i o n
r o u t i n e

Yet another class of interrupts is exceptions, generated by the
CPU.
Invocation of the hooked interrupt, either software or hardware,
will result in transfer of execution to the TSR. This happens
“immediately”. The TSR terminates with an IRET instruction,
which sends control back to whatever was running before the
interrupt.

Hooking a Vector

What I have done in the first part of this chapter is put together a
program that hooks INT-16h. The new INT-16h service routine
uses the music code from page 246, so there is audible feedback of
it executing.
Once the service routine is installed, INT-16h can then be
executed from anywhere, including another program, and the
service routine will be invoked.

The program can be any basic skeleton to which you patch the
following code. The “install” portion could be wherever you want
it; in WinMain(),  in kickstart: (00 program), or in the callback.
You could start the program up as an icon (or invisible) and
immediately execute the install code.
This is what the install code would have to be:

.DATA
o f f s e t i n t DW 0
s e l e c t o r i n t DW 0
.CODE
i n s t a l l PROC PASCAL NEAR

USES ax,bx,cx,dx,si,di,es
mov a1,16h
mov ah,35h
int 21h
mov offsetint,bx
mov selectorint,es
mov dx,OFFSET runtime
push ds
push cs
POP ds
mov a1,16h
mov ah,25h
int 21h
$z': ds

install ENDP

;old int-vector
I /

I*no params

; g e t  v e c t o r  i n  i d t

;returns vector in es:bx
;save old vector.
I /
;new vector.
;save ds.

;new vector in ds:dx
;int to be hooked.
;set vector

;restore ds.
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INT-Zlb/AH
= 35.25h

/DT vs /VT

The rest
of the
WinApp

fixed vs
moveable
segments

Some interesting points arise from this code. INT-21h/AH  = 35h
or 25h are functions for getting the interrupt vector and for setting
it. Look back to the special note on how these work with
Windows on page 200.
It is most important to know that they work on the IDT, not the
IVT. When the CPU is running in Protected mode, an interrupt
will cause the CPU to look in the IDT to find the selector:offset of
the interrupt routine.
In the code above, I have not hooked the old INT-16h routine in
the IVT. I have only hooked INT-16h in the IDT, which for
normal Windows programs isn’t used.

Notice in the above code that I saved the old vector. This is in
case I want to call it or jump to it, possibly from within the new
interrupt service routine.
Having done that, all that remains is to go into the usual message
loop, as per a normal program, which returns control to Windows.
There is one little complication with this - since the vector has
been hooked, don’t close the application, because executing that
interrupt from some other application will cause the CPU to try to
execute a service routine that is no longer there. In fact, it will
crash rather rudely. It is possible to create a window for the
program but keep it invisible,’ to prevent accidental closure, or
unhook it before closing. See an example of unhooking on page
260.

Is that all there is to it? Yes. Even the old .DEF file can be used,
and you can have MOVEABLE and DISCARDABLE segments.
It is not necessary for the CODE and DATA segment statements in
the .DEF tile to have FIXED qualifiers. FIXED forces Windows
to leave the segments at a fixed place in memory, rather than
moving them around as it normally does. You would think, from
the way TSRs are designed under DOS, that a resident interrupt
handler should be FIXED, but not with Windows.
If the operating system determines that the segment referenced via
the IDT is not actually in memory, then it will get it back, and
update the descriptor. If you want, modify the .DEF file as
follows:

DATA PRELOAD FIXED
CODE PRELOAD FIXED

’ Note that it possible to have an application without any window at all. Since all messages
usually are posted to a window, this requires special consideration. For example,
POSTAPPMESSAGE()  will post a message to an application without a window and leave the
message’s hWnd parameter NULL.
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Related Specifying FIXED is not a bottleneck itself, from the point of view
issues of memory management, as some books will have you believe: I

discuss this issue on page 324.
Perhaps I am getting ahead of myself, since I haven’t even
discussed the service routine itself. The above points do tie-in
with the service routine however. We may want to store writable
data in the code segment of the ISR, which will cause problems.
Also, hardware interrupts are a special case. In practise  you may
have to do more than just specify FIXED: I have gone into this in
more detail on page 323. Also some relevant Windows functions
(GLOBALHANDLE, GLOBALFIX, and GLOBALPAGELOCK)
were introduced on page 2 10.
While I’m referring you all over the place for extra information, I
might as well do it some more. The above install routine works
for hardware or software interrupts, that is, any entries in the IDT
(or IVT if the CPU is running in Real mode). There are DPMI
equivalents: see the Appendices. What about exceptions? These
have to be treated as a special case: see page 258.

Service Routine (ISR)

Accessing No, an ISR doesn’t have to be a DLL’ or some other separate
data in the program. It can simply be a procedure in the same program that
ISR has the install code. It will not be called from the program

however.
There is a problem with addressing data upon entry to the service
routine, because DS will be an unknown value.’ Look back to
page 33 for a review of the steps that the CPU goes through upon
an interrupt occurring. It pushes CS, IP, and flags on to the stack,
and gets the new CS:IP from the IDT. The other registers are as
they were before the interrupt.
Thus, upon entry to the service routine, only CS is set to the code
segment of the service routine. How do you access data in the
service routine? One solution is to put data into the code segment.
Normally this is not allowed, or rather it is but you can’t write to it,
because code descriptors have their access-field set to read-only -
however DPMI has a service that gets around this very nicely.
What you can do is obtain an “alias”; that is, a data selector that

’ Implementation as a DLL does have some advantages, however. If a DLL segment is declared
FIXED in the .DEF tile, it loads below I M, and is also guaranteed to be in contiguous memory.
These features allow the DLL to have Real mode code as well as Protected mode code. The
DLL runs at privilege level 3 (level I in Windows 3.0),  so I/O still causes an exception.

* MAKEPROCINSTANCEO can be used to attach prolog code that binds data to code, though I
have not used it here, for certain reasons. See further notes in the Companion Disk.
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points to the same code segment. This will allow you to write to
the code segment.
Windows has various functions for segment manipulation, though
many of them were unofficial until 3.1 was released. Of most
interest is CHANGESELECTORO, which is official for both 3.0
and 3.1 (see page 208). ALLOCCSTODSALIAS() is an unofficial
alternative. With Win95 they all go back to being unofficial.
There is another interesting, related function introduced with
TOOLHELP.DLL, and so is backwards compatible with 3.0:
MEMORYWRITEO.  This will copy a block of memory from one
segment to another, regardless of their attributes. Thus it will
write to a code segment.
Actually, it is quite easy to get data segment addressability from
within an ISR, but I’ll leave that one for now.

Data alias Before I show you the actual ISR, I’ll provide a little bit of extra
to code setup code using the abovementioned DPMI service:

;will create alias in LDT of CS . . .
mov ax,OOOAh
push cs
POP bx ;selector to be aliased
int 31h ;returns  alias selector in ax
push ax
POP es
mov es:dsselector,ax ; save the alias in the code seg.

Normally I would perform the above aliasing in the install code
and save the alias selector in the code segment. The ISR can then
read it and use it. This works, as long as the ISR doesn’t move in
memory. The same principle can be used to obtain addressability
to the WinApp’s  data segment.
Having got into the service routine and established data
addressability, all that remains is to do something. I have used the
code from page 246 to produce a tone on the loudspeaker. Here it
is:

.CODE
-I've put this data in the code segment . . .
&selector DW 0 ;data  alias to code seg
musicflag DB 0 ;turn  music on/off

kltime:
pusha I-save all regs.
push ds
push es
mov es,cs:dsselector ;get alias
push es ;can also set ds to alias.
POP ds ;(so seg.override isn't needed to access data).



-(ST1 and reentrancy  issues

t
cm; musicflag, -musicflag i
jb jumpout iturninq the

musicflag,O

*enable interrupts.
discussed on page 323).
s used as a counter, for
tone on or off on each

j jmp turnoff -
jumpout3:

inc musicflag
cmp musicflag,lO
jne jumpout

*lcth entry to the routine.I

timeron
mov
out
mov
mov
out
mov
out
in
or
out
jmp

turnoff

al, Ob6h
43h,al
bx,07cSh
al,bl
42h,al
al,bh
42h,al
a1,61h
al,03
61h,al
SHORT jumpout

in a1,61h
and al,Ofch
out 61h,al

jumpout2:
POP es
POP ds
popa
iret

Real- Time Events

;turn  on the hardware timer.

-frequency 600Hz.I

;turn  off the hardware timer

*restore all regs.I

2.55

Testing

Stick this service routine somewhere in your program, then
assemble and link as per normal. To test it, you will have to
modify some other program, by inserting an “INT 16h” instruction
into it. Perhaps you could put this instruction into the other
program’s WM_CHAR  case, so whenever you press a key and the
other program’s window is active, the program will execute “INT
16h”,  which will call the service routine.
Don’t be confused here. A key press has nothing to do with
INT-16h under Windows, at least as far as normal code is
concerned. I have just arbitrarily suggested that you use the
WM_CHAR  message as a convenient means of invoking the
service routine.
Having modified another program, start both it and the “TSR”
program. With the “other” program active, try key presses, at least
ten, and you should be able to toggle the tone on and off.
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What you are doing here is accessing a global variable! Other
applications can also access that same variable, which raises
interesting possibilities for inter-process communication.

On/u one
LDTand
IDT

If you know much about LDTs and GDTs,  you might be puzzled
as to how the above code can work. The classical theory states
that each application has its own LDT (see Chapter 1), so
modifying the TSR’s LDT has nothing to do with any other
application’s LDT. Not so with Windows! As is explained in
more detail in the next chapter, all WinApps share the same LDT.
Ditto for the IDT.
The IDT is a very grey area. It is another case of Microsoft hiding
the truth. The classical model for the IDT would be that there is
only one, but Windows does maintain copies, as far as I know, for
each VM. So maybe there is just one “main” IDT that interrupts
“go to” but the interrupt handler references the copy in the current
VM. This is a very very grey area, but you can get by with just
thinking that there is only one IDT. Certainly, as all WinApps are
in the same VM, this assumption is safe.

Hardware Interrupts
You will notice that my example code earlier in this chapter dealt
only with software interrupts. Hardware interrupts can work, but
there are some complications. The problems are associated with
how interrupts are mapped and the difference in treatment of
interrupts in Protected and Real modes.
The issue is very complicated and it behooves us to start with the
handling of hardware interrupts from the point of view of the XT;
that is, with an 8088 or 8086 CPU.

XT Hardware Interrupts

IRQ O-7 The PC model XTs are based upon the 8086 CPU and have a
hardware interrupt controller chip that allows eight devices to
interrupt the CPU. That is, the chip has eight inputs, labelled
IRQO to IRQ7 and one output labelled  IRQ (Interrupt ReQuest)
that feeds into the maskable  interrupt pin of the CPU.
A flag named IF (Interrupt Flag) enables this IRQ input with the
ST1 instruction or disables it with the CL1 instruction (see page
33).
The interrupt controller chip can be, and is, programmed to map
IRQO to IRQ7 to any group of eight entries in the IVT or IDT
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(look ahead to page 268 for the relationship between the IVT and
IDT) (see page 185 for an introduction to the interrupt controller
chip).
The XT maps IRQO through 7 to entries 8 to OFh  in the IVT. Thus
if you were to access these by software interrupt, you would
execute “INT 8” to “INT OFh”.

AT Hardware Interrupts

The IBM model AT, based upon the 80286 CPU, introduced more
hardware interrupts, by cascading a second interrupt controller
chip, as shown in Figure 10.1.

Figure 10.1: AT hardware interrupts.
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Exception
handling
conflict

Windows
remapping
of vectors

At power-on, the interrupt controller chips are programmed to map
to certain entries in the IVT. When an interrupt arrives, IRQ is
forwarded to the CPU, and the CPU then interrogates the
controller chip, which passes the interrupt number “n”  to the CPU
over the data bus. The CPU then looks up that entry in the IVT
and goes to the interrupt service routine.
When the CPU is operating in Real mode, NT-0 is what is called
a processor exception; that is, an interrupt generated by the CPU
itself, not by the program or by external hardware. Ditto for
INT-1.
I have shown NT-6 and -7 as reserved, which is the case for the
XT. However on the AT, the 286 CPU uses these for “invalid
op-code” and “device not available”, respectively. Again, these
are exceptions.
There is a very serious problem with this arrangement. With the
286 and 386, Intel uses the first 16 entries of the interrupt table -
and now we must refer to the IDT - as exceptions when the CPU
is operating in Protected mode.
However, the hardware interrupts IRQO  through 7 are mapped into
NT-8 to -Fh. Quandary - how is this conflict resolved?

Windows (and OS/2) map IRQO through Fh elsewhere in the IDT,
at INT-5Oh  to -5Fh. Obviously, these entries would point to the
same routines as before, but even so, there is room here for
trouble.
You might deduce from this that if you wanted to hook the
original INT-8, you should instead hook INT-5Oh.  This is valid,
but only to a certain extent. Windows can be in Protected or V86
mode at the time of interrupt, and in the latter case we have to go
back to the IVT in the V86 virtual machine currently active.’
Therefore, we (may) actually have to hook two (or more) vectors.
Headache!

Windows’ Standard Mode Hardware Interrupts

Somewhere earlier in the book I promised not to mention Standard
mode again, as it’s history - almost. Maybe in some third world

’ I don’t want to be misleading here. In Windows Standard mode when a DOS program is
running, the CPU will be in the one-and-only Real mode and interrupts vector via the
one-and-only IVT. However, in Enhanced mode with a DOS VM active, it is still a Protected
mode, and hence, hardware interrupts still go to the IDT in the current VM (note the emphasis
on current). Because the DOS VM is supposed to behave in all respects like an XT-model PC,
the interrupt will eventually come down to the IVT.
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countries it's all the rage. However, the following is extremely
interesting, and I’ve put it in for the education it gives us about the
warp and weave of interrupt handling.

INTWb What I have for you here is a useful program that hooks INT-9, the
keyboard hardware interrupt - except to illustrate how Standard
mode works, I have hooked INT-5 lh!
This keyboard hook can be very useful for filtering whatever
comes from the keyboard before Windows has a chance to see it.
Note that INT-5lh is invoked every time a key is pressed or
released, with bit-7 of the scancode distinguishing which.

POSTMES- Hardware interrupts are somewhat more delicate than their
SAGE0 software cousins - for example you can’t call Windows functions

from them - with one exception: POSTMESSAGEO.  Microsoft
especially made sure that this would work from the hardware
interrupt level, so that a hardware interrupt service routine can
signal a Windows application.
There is a particular problem with these hardware interrupts, due
to the way they are mapped. With Windows in Standard mode’ I
have shown on the previous pages that the keyboard interrupt
maps to INT-5 Ih in the IDT, with certain qualifications, and this
example code hooks that vector. This point is elaborated on a little
later.
Incidentally, if you need to know which mode Windows is running

there is a
ZETWINFLAG~~~.

function that will do that for you;
I haven’t shown the call to

GETWINPLAGSO in the example below, but in a practical
program you could include it.

A skeleton What follows is just an extraction of the bare essentials to get a
hardware hardware interrupt working - the flesh can go on later.
interrupt Ok, now for some code:
handler
;add this extra function to the external declarations...
EXTRN POSTMESSAGE:FAR

:CODE
;put in the usual WINMAIN() function . . .

*followed by a callback . . .
’ PUBLIC DPMICALLBACK
DPMICALLBACK PROC WINDOWS PASCAL FAR \

hWnd:WORD,msgtype:WORD,wParam:WORD, 1Param:DWORD
;put in the usual CASE structure to process messages,
;but with some additions . . .

’ Put Windows in Standard mode by typing “WIN /S” when loading it. That is what it will be
anyway if the CPU is a 286, or a 386 with insufficient RAM (usually less than 2M).



mov ax,msgtype
cmp
je

ax,WM_CREATE
xcreate

=mp
je

ax,WM_DESTROY
xdestroy

cmp
je

ax,WM_USER
xuser

. . . etc . . .

;h&e' is the handling of the
xcreate:

call installint
jmp xexit

;here  is the handling of the
xuser:

push ax
push dx
mov ah,2
mov dl,Oi'
int 21h
POP dx
POP ax
jmp xexit

xdestroy:
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WM CREATE case . . .
-*atever you want, plus . . .
ihooks  the vector.

WM USER case . . .-

;write char to scrn
;beep

call POSTQUITMESSAGE PASCAL,0
;unhook the int-5lh...

push dx
push ds
mov dx,offsetint ;this  is the old INT-51 vector

mov ds,selectorint
mov ax,2551h ;before quitting,

/
we are restoring it.

int 21h
POP ds
POP dx
jmp xexit

ewha tever else you want here . . .I
. . 1

xexit:
sub ax,ax ;returns 0 in DX:AX.
cwd ;return a 32-bit (long) value).
ret

DPMICALLBACK ENDP

Hooking/ A WM_CREATE  message is sent when the window is first
m/looking created, so this is a convenient time to hook the vector. Therefore
the vector a call to INSTALLINTO is included.

Similarly, upon exit it is necessary to unhook the vector, otherwise
Windows will crash. Unhooking on receipt  of  the
WM_DESTROY message is most appropriate. This code simply
uses INT-2lh/AH  = 25h to restore the old vector, which has
previously been saved in “offsetint”  and “selectorint”  by
the installinto  procedure.
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Interrupt Handler Code

The interrupt service routine will be entered every time a key is
pressed or released, and all that I have done inside it is call
POSTMESSAGE  to send a WM_USER  message to the
window’s callback function DPMICALLBACQ).
WM_USER  equates to a message number that is not used by
Windows as a message, so it is free for an application to use. A
range of such numbers is available for an application to use: look
in WINDOWSJNC.
Ok, now for the installinto  function:

POSTMES-
SAGE0

WM_USER

.DATA
descrbuffer DB 8 DUP(0)
offsetint DW 0 ;old int. vector
selectorint DW 0 , /
.CODE
dsselector DW 0 ;data  alias to code seg
hwndcs DW 0 ;save  window handle for use in isr

installint PROC -no paramsI
pusha
push es
push ds

;will create alias in ldt of current task...
mov ax,OOOAh ;create alias data descr.  for code seg.
push cs

::': ::h
;selector to be aliased
;returns ax

push ax
POP es
mov ax,hwnd
mov es:hwndcs,ax ;handle of window
mov ax,es
mov es:dsselector,ax ;alias

-now to get the old INT-5lh  vector, and save it . . .I
mov a1,51h ;get vector in idt
mov ah,35h ;-->ES:BX
int 2Ih
push es
POP ax
mov offsetint,bx ;save the old vector.
mov selectorint,ax ; /
mov dx,OFFSET runtime ;get the new vector
push cs ; /

‘Op :: 51h
;new vector in ds:dx

mov
mov ah:25h ;set vector
int 21h

’ pop ds ;restore ds.
push ds *save it again

;let's  hook int60, to use as 'old vector...
mov dx,offsetint
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mov ax,selectorint
mov ds,ax
mov ax,2560h
int 2Ih

;installation  now finished . . . .
POP ds
POP es
popa
ret

I can put the interrupt service routine in the same procedure as the
install code, if I wish, but before listing it, I want to comment on
the above code.
To be able to get at data in the service routine (I’ll call it an ISR
from now on), I had to create a data alias; that is, a data selector
that points to the code segment. This enables me to write to the
code segment.
Into the code segment I saved the handle (hwnd) of the
application’s window. The reason for this is that within the ISR I
called POSTMESSAGEO, which needs the handle as a parameter.

Caliiflg  the You can see that I hooked the vector and saved the old vector, but
o/dhand/er I also put the old vector into INT-60h. That is, I hooked INT-60h

so that it now points to the Windows keyboard handler. This is
convenient, because from within the ISR I wanted to be able to
call the old ISR, for proper handling of the keyboard input.
Note that there are other ways of doing this, such as by use of a
CALL instruction.
Now for the ISR:

runtime :
i n t 60h ;call the old INT-5lh
pusha 'save all registers.I
push ds
push es
push ss
mov ax,cs:hwndcs ;get window handle

; call POSTMESSAGE PASCAL,ax,WM_USER,O, 0,O
;no, will do it this way, as PASCAL qualifier very
iinefficient . . .

push
push ;; USER
push 0-
push 0
push 0
call POSTMESSAGE ;put message on queue.
POP ss *now restore and get out.I
POP es
POP ds
popa
iret
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installint ENDP
END

MT-9
keyboard
handler

Real mode
keyboard
handler

See how simple the ISR is! I was able to call the original
keyboard handler for proper handling of the key press/release,
though note that I could have put the "INT 60h"  at the end of the
ISR if required.
I accessed "hwndcs",  the handle of the window passed as data in
the code segment, and then called POSTMESSAGE().
Note that I did not make use of aliasing in this simple skeleton.
I chose to explicitly push the parameters onto the stack prior to the
CALL, rather than use the PASCAL qualifier - TASM’s
generation of code with the PASCAL qualifier is horribly
inefficient, so I felt better about doing it this way.

Enhanced Mode Hardware Interrupts

So what about Windows in Enhanced mode? Remember that
Windows 95 can only run in Enhanced mode.
I mentioned earlier that Windows gets up to some tricky business,
and for both Standard and Enhanced modes reflects the INT-5 1 h to
INT-9.
However, this mechanism is different in each case, as Enhanced
mode is able to make use of virtual machines, with the result that
hooking either INT-5 lh or INT-9 will work in Standard mode, but
in Enhanced mode only INT-9 will work.

So the earlier example code that I wrote to hook INT-5 lh for
illustration purposes simply needs to be modified to hook INT-9,
and it will work in both Standard and Enhanced modes.
Unfortunately there is is still one complication - DOS.
I keep hoping it will go away - but it won’t. The hardware
interrupt handler developed in this chapter will work with any
number of Windows applications multitasking, but not when a
DOS program is running. In the former case, it doesn’t matter if
the program containing the ISR is iconized and another WinApp
has the active window - still, all key presses will in real time be
routed to the ISR and be posted to the iconized program - and
Windows will call the iconized program’s callback function,
giving it the message, even though it is iconized.
So you’ll always get the beeps when pressing and releasing a key.
However, if you run the “DOS Prompt” program, the beeps will
stop. Upon exiting back to Windows, the beeps will start once
again.
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If you really must have the ISR continuing to function when the
CPU is running a V86 or Real mode program, refer to Chapter 11,
as I decided to make the handling of Real mode a special chapter
all on its own. See also the footnote on page 258.

What the
program
“does”

I suppose you do realise by now what the example program does
-! it beeps the loudspeaker every time you press or release a key.
Because the ISR only posts a message to the main Windows
program, it is what I would class as pseudo-real-time response.
Don’t forget, however, that the ISR shares the same code segment
as the main program, and by way of a data alias, data can be
passed to and fro. Or the actual WinApp  data segment can be
readily accessed.
For example, harking back to the problem that my colleagues had
- they wanted to measure an external parameter at precise
intervals and log it for internal analysis. The interrupt mechanism
provided the precise intervals, and the ISR could have read the
parameter from the input port and recorded it, then exited. Simple
enough.
You will find the program on the Companion Disk in USRl .

Direct Memory Access
In this and the previous chapters I have covered the basic elements
of hardware access, namely direct memory access, I/O port access,
and interrupts, but there is another aspect that is worth
introducing: DMA.

Reference
sources

DMA is perhaps somewhat too esoteric for a book of this general
nature; however, a few notes are in order and I can point you in the
right direction.
The best reference would be Microsoft’s Virtual DMA Services
Specification, part number 098-10869.
Another introductory reference is “DMA Revealed” by Karen
Hazzah, Windows/DOS Developer’s Journal, April 1992, pages
5-20.

What  is
DMA ?

Basically, DMA takes the job of data transfer away from the CPU
for the sake of speedy transfer of blocks of data, usually between a
hardware device and memory. It requires a DMA controller chip.
Initialization involves telling the controller the address of the
memory buffer and how many bytes to transfer.
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With Windows, there are complications, because the CPU can be
s e g m e n t in Real or Protected mode. In Protected mode the buffer should be
d o w n constrained to be below IM and should also be contiguous.

Paging normally will split a segment up all over the place, but
there are mechanisms in Windows for keeping a segment together.
The DMA controller is given the selector:offset and simply
increments the offset without regard to paging - remember that
the CPU is turned off at this time, and the DMA chip has complete
control of the bus.
Another implication of this is that it is wise to keep memory
buffers to no more than 64K.
I did note earlier that by declaring the DLL data segment FIXED,
it will load below 1M and be contiguous. However there appears
to be some doubt about the latter, as the recommendation is that to
ensure that pages are contiguous, another service must be called:
the INT-4Bh/Lock-DMA  function.

INT-4Bb INT4Bh provides the extensions to DOS for DMA handling, and
you will find these documented in the above Microsoft reference
- not anywhere else, that I’m aware of.
The services, available from both Windows Standard and
Enhanced modes, are:

l INT-4Bh/AX  = 8 103h VDS_LOCK
l INT-4Bh/AX  = 8 104h VDS_UNLOCK
l INT4Bh/AX  = 8 1 OBh VDS_ENABLE_TRANSLAT.
l INT4Bh/AX  = 8 1 OCh VDS_DISABLE_TRANSL.

Some of the discussion in this and earlier chapters has referred to
Real mode. Although Windows normally runs in Protected mode,
Real mode is still encountered, as is virtual-86 mode, and more
specific treatment is provided on this topic in the next chapter.
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Preamble

Why hot/re/
with Real
mode?

The topic of Real mode has already been encountered at various
earlier stages in the book. There is, however, a lot more to the
issue of Real mode.
Windows 3.1 won’t run in Real mode, only Standard or Enhanced,
version 3.0 loads in any of the three, while 95 only loads in
Enhanced mode. “Real mode” in this context means that the
WinApps themselves run in Real mode, which just isn’t practical.
So, we load Windows in Standard or Enhanced mode - why
bother with Real mode?
One need is to run a DOSApp. In the case of Standard mode, the
CPU has to switch back to Real mode, effectively freezing
Windows. However, Enhanced mode will create another VM
(virtual machine) in which to run the DOSApp, and we still say
that the DOSApp is running in Real mode (though it would be
more correct to say virtual-86 mode).
Then there are DOS device drivers and TSRs.  Most likely these
will be running in Real mode. And there are the BIOS and DOS
services that we may still want to use.
A lot of code is still being developed to run in a DOS box, maybe
in Protected mode, but still involving transitions between
virtual-86 (“Real mode”) and Protected mode in the DOS VM.

267
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A fypicat
problem
with porting
code from
DOS to
Windows

hterrupts
reflected
from IDT to
/VT

Code in Protected and Real mode must be able to communicate,
and interrupts occurring in both modes must be handled correctly.
The former is the major topic of this chapter, with hardware
interrupts focused on in Chapter 12.
This chapter is split into two major portions: getting at Real mode
code from Protected mode in the first half, and vice versa in the
second half.

Accessing Real Mode from Protected
Mode

Recently someone came to me with a problem. They had ported a
Pascal program from DOS to Windows, which was quite easy
using the excellent Borland tools, but the program didn’t work.
The problem was traced to a section of code that looked at a
certain interrupt vector, which was a pointer to an interrupt
routine. But at a certain offset in this routine is some data that the
program accessed. The code used INT2 lb/AH = 35h to get the
vector - but of course you and I know that the vector will come
from the IDT not the IVT (running in Protected mode) (Figure
11.1):

Figure 11.1: Interrupt deflection to Real mode.

Windows application:
. . .
INT n

I I I

4
Windows

Original Real
mode routine
(below 1M):

. . .
IRET

handler

J

The INT-2lh/AH  = 35h retrieves the vector from the IDT. When
an interrupt occurs, the IDT points to a special handler that passes
control to the Real mode DOS routine pointed to by the IVT (and
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remember that the IVT is located at Real mode address
segment:offset of OOOO:OOOO).
The routine terminates with IRET, which will bring it back to the
Windows handler, which will change the CPU back to Protected
mode and then return to your program.

Accessing Real Mode via the IVT

So my advice to this person was: you have to look in the IVT, and
for that you need DPMI service 0200h: Get Real Mode Interrupt
Vector. The vector obtained is in the form of segment:offset,
which cannot be used while your program is in Protected mode. So
then you need DPMI service 0002h,  Segment to Descriptor, which
will create a descriptor for the segment:offset  address and will
return a selector (0002h was introduced on page 228).
Problem solved.

Figure 11.1 relied upon a Windows handler to transfer control to
the original Real mode routine, but this only works for the
recognized BIOS and DOS services. Any other interrupt will most
likely crash.
The question of an interrupt being reflected down to Real mode or
not is a different question from the “typical problem” above, in
which it was necessary to look at a certain offset inside the Real
mode code.
I will not worry too much about the various scenarios that will
require you to access Real mode software; just think for now what
the solution is. I outlined above how to locate a Real mode routine
for data access, but what if you want to call it?
DPMI to the rescue again!

There’s an invaluable service, 0300h,  that does everything. Some
code will illustrate:

.DATA
regstruc STRUC ;Real mode register data structure
edil DD 0
esil DD 0
ebpl DD 0
resl DD 0
ebxl DD 0
edxl DD 0
ecxl DD 0
eaxl DD 0
flags1 DW 0
es1 DW 0
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dsl DW 0
fsl DW 0
gsl DW 0
ipl DW 0
CSl DW 0
spl DW 0
ssl DW 0

regstruc ENDS
ICODE............................

callreal PROC PASCAL NEAR
LOCAL regl:regstruc
USES ax,bx,cx,dx,si,di
push ss
POP es *setup  ES:DII
lea di,regl /
mov WORD PTR [di].eaxl:OSOOh
mov WORD PTR [di].ecx1,0007h
mov bx,0016h
mov cx,o

. . . . . . . . . . . . . . . . . . .

point to data strut

;5 into ah.
-07=beepI
;int to call

mov ax,0300h ;simulate Real mode int
int 31h ; /
jc error
mov ah,0 ;get char from key buffer
int 16h ;returns  in ax . . .will hang if no char in buff!
mov dl,al ;char  in dl
mov ah,2 ;display a char
int 21h

ret

/NT-3fb/
AX= 03001

Intel’s DPMI s,pecification  does place some caveats upon the
0300h function.

The CS:IP in the Real mode register data structure is ignored by this function. The appropriate
interrupt handler based upon the value passed in BL will be called.
If the SS:SP fields in the Real mode register data structure are zero, a Real mode stack will be
provided by the DPMI host. Otherwise, the Real mode SS:SP will be set to the specified values
before the interrupt handler is called.
The flags specified in the Real mode register data structure will be pushed on the Real mode
stack’s IRET frame. The interrupt handler will be called with the interrupt and trace flags clear.
Values placed in the segment register positions of the data structure must be valid for Real
mode; i.e., the values must be paragraph addresses and not selectors.
All general register fields in the data structure are DWORDs, so that 32-bit registers can be
passed to Real mode. Note, however, that l6-bit hosts are not required to pass the high word or
32-bit general registers or the FS and GS registers to Real mode.
The target Real mode handler must return with the stack in the same state as when it was called.
When this function returns, the Real mode register data structure will contain the values that
were returned by the Real mode interrupt handler.
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Real
mode

What I have done here is called INT-16h/AH = 5, which puts a
character into the old DOS keyboard buffer. The character has to
be provided in CX (as scancode:ascii).
All of the register values to be passed to Real mode have to be
placed into an array pointed to by ES:DI.
That’s it. The Real mode routine executes, then returns. To find
out if the character really was placed in the buffer, I then called
INT-16h/AH = 0, which gets a character from the buffer (and will
hang if nothing is in the buffer!). Notice that I called this in the
normal fashion - this will go via the IDT and IVT as per normal.
The previous INT-16hAI-I  = 5 would have worked in this way
also, but I have used the DPMI service to show how to call code
that is not necessarily a Standard BIOS or DOS service.
By this DPMI mechanism, you can call any code below 1M with
the CPU running in Real mode - actually, this opens up some
possibilities.
Staying on track for now, I used INT-16h/AH = 0 to get the
character back off the buffer - and the character I chose was 07,
the “beep” character. I sent it to the display, using INT-2lh/AH  =
2, supplying the ASCII code in DL.
The “beep” character doesn’t go to the screen, however; it is
treated as a control character (all characters below 32 decimal are)
and in this case causes a beep on the loudspeaker.
Hence, there is immediate feedback that the code has worked.

The above code works fine, at least for calling a BIOS or DOS
service, but if you want to call code or access data in a DOSApp,
there are more complications.
A DOS program (DOSApp) running under Windows would be
running in Real mode in what is sometimes called a “DOS
compatibility box”. Windows in Standard mode can only have one
of these running at any one time, as Standard mode is based upon
the capabilities of the 286 CPU (which cannot just flip between
Real and Protected modes on a per-task basis). Windows in
Enhanced mode is based upon the virtual-86 capability of the 386,
which allows multiple “DOS boxes” or virtual machines.

Virtual Machines

There is a section back on page 29 that introduces the concept of
virtual 8086 machines. The 386 can happily multitask just about
any number of these virtual machines, although Windows has a
limit of 16. However, it does place a caveat on everything I’ve
written so far about the so-called “Real mode”.
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You think of Real mode as using the segment:offset addressing
method, without any of the memory management features and
restriction to the first 1M. That is quite true for Windows
Standard mode, because to run a DOS program, Windows switches
the CPU back to Real mode.
But in Windows Enhanced mode, to run a DOS program the CPU
is not switched back to “real” Real mode. Instead it is switched to
virtual-86 mode.

This can have unfortunate repercussions for those of us wanting
direct access to hardware. I wrote in Chapter 9 about obtaining a
selector to video-RAM and writing directly to it - you will have
gained the impression that that is what really happens, and I didn’t
want you to think otherwise. However, with Windows in
Enhanced mode, what you are really doing is writing to a virtual
video-RAM.’
In practise  it worked, because Windows mapped the virtual
video-RAM directly to the actual video-RAM, which is the normal
situation for WinApps running in the system VM. However, the
potential is there to cause trouble for you. Note however that it is
possible to directly address the actual physical memory from
within a VM - see page 344.
The idea of a virtual video-RAM and a virtual machine, in fact
many of them, is awkward for many people to grasp, which is why
I tended to delay this little detail until later in the book.

So whenever we communicate with Real mode from a Windows
program running in Enhanced mode, we are only communicating
with a simulated Real mode, that is, a virtual-86 machine. The 1M
address space of this machine will in reality be mapped, via
paging, to anywhere in RAM that the operating system decides.
The virtual addresses may map to the same physical addresses -
see page 343 for more detail on this.

When Windows is running in Enhanced mode, and you load a
DOS program, Windows will create a virtual machine just for it.
You could in fact load any DOS program, including a TSR.
Another way to do this is to go to the DOS prompt from within
Windows and load the program from there.
A TSR loaded in this way will sit inside the virtual machine and
will only be usable from within that virtual machine. This is a
vital point.

’ It is this feature that enables Windows Enhanced mode to multitask DOS applications in
Windows, not only full-screen as required by Standard mode.
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Earlier, I described how to call a Real mode ISR directly by a
DPMI service. I also explained that any BIOS or DOS service can
be called by a software interrupt, “INT  n”, which is reached via the
IDT and IVT.
Accessing a TSR via the IVT is a very convenient avenue for
getting at Real mode code and data. Later on in the chapter I look
at going the other way, and again the IVT is an excellent avenue.
However, I have been describing (above) the concept of multiple
virtual machines, each with its own IVT, TSRs  and DOSApps.
The big question now is, how do we know which IVT and DOS
program we are accessing from our WinApp? To answer this
question, read on . . .

DOS TSRs

DOS TSR (Terminate and Stay Resident) programs, which also
include device drivers, are covered in many DOS programming
books. They load like any other program, but only have a short
“install” procedure then exit back to DOS. The exit is via a special
DOS service that leaves the program resident in memory, rather
than freeing up that memory space, as with normal programs.
TSRs  usually hook a vector, such as INT-8, -9, or -16h.
For example, by hooking INT-16h or -9 all DOS keyboard input
can be filtered. Usually the TSR passes control to the old vector
after doing whatever it wants.
Once a TSR is loaded and control returns to DOS, you can then
load another program, so even under “single-user” and
“single-tasking” DOS you have two (or more) programs sitting
together in memory. The TSR will be executed, or rather its
“run-time” portion will be executed, whenever the particular
interrupt is called.
The Companion Disk has a useful TSR skeleton that hooks
INT-16h with many of the tricks of the trade incorporated into it,
fully commented for your convenience. Look in DOSTSR.

If you load the TSR from within Windows or at a DOS prompt
within Windows, the TSR will be inside a virtual machine. If the
TSR hooks an interrupt vector in the IVT, it will only be hooking
the vector in the virtual machine.
Whenever a DOS virtual machine is created, Windows copies
everything from the actual 1M region into it, or rather, “maps” it
in. The IVT is not the same IVT as the original IVT.
This is the crux of the problem. Perhaps Figure 11.2 will help:
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Figure 11.2: A TSR is in a VM.

IVT 0
The “System VM”
(Virtual Machine)
includes a V86
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TSR V86
O-1M “real” address mode
space, and a protected
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and Protected

All WinADDs

A TSRloaded  By loading the TSR before loading Windows, for every virtual
before machine that Windows creates, it will also “copy” the hooked
Windows vector and the TSR. Thus by this method you ensure that the TSR
appears in is available to all applications.
every VM Note that I put the word “copy” in quotes, as this is not always to

be taken literally. See ahead for clarification (page 343).

Each VMbas  Note also something most important: the descriptor tables. The
iis own L D T system VM will have just one of each LDT and IVT. Despite the

fact that one of the fundamental concepts behind the LDT is that
there should be one per task, Windows maintains just one for the
entire VM. This is why obtaining a selector when installing a TSR
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will work within the TSR’s run-time code, no matter which
WinApp is running at the time of the interrupt. However, an
interrupt when in another VM will access a different LDT and
IVT. This idea of one LDT per VM is in keeping with DPMI
version 0.9. Version 1 .O has an LDT per client (task). Windows is
one client only.

The conclusion here is that accessing Real mode code (via the
IVT) from a Protected mode WinApp accesses it in the system
VM. If you want to get at code or data of a DOSApp or TSR in
another VM you have to look into mechanisms for going between
VMs - or, if you load a DOS TSR before Windows, it will be
automatically in all VMs and thus its code and data will be global.
Even its hooking of the IVT will be in every IVT.
Thus the DOS TSR is one convenient mechanism for
communication between Protected and Real modes across all VMs
and is developed further in this chapter. Also, a method for
switching VMs is developed.

Accessing Protected Mode from Real
Mode
Actually, using the global DOS TSR method by passing data
between Real and Protected modes is very easy.
All that the DOS application has to do is execute a software
interrupt to invoke the TSR or use the vector as a pointer to global
data. Any data passed to the TSR’s own data area will also be
available to a Windows application that calls that same TSR. End
of story.
This method works quite happily for Enhanced or Standard modes,
but is awkward in that the TSR must be loaded before Windows.
Also it takes up “valuable” space in that first 1M.
This simple technique for sharing data works across all VMs,
because the same TSR is present in all. I develop this point as I go
along. This idea of using a global DOS TSR is not the only
approach but is quite powerful, and it is the basis for discussion in
this chapter.

The problem of different IVTs in each virtual machine is discussed
by Thomas Olsen in “Making Windows & DOS Programs Talk”,
Windows/DOS Developer’s Journal, May 1992, p 21.
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He does not see any way around this problem except by loading
the DOS TSR before loading Windows. Actually, if you only
want the DOS TSR to load into the system VM, and not
subsequent VMs, you can force this by naming it in a file called
WINSTART.BAT, which Windows looks at to see what has to be
done before loading itself (but after creating the system VM).
Simply put the name of the TSR in it, as per a normal batch file.

4@@?g f.4e When I say “there’s nothing to it”, I’m being a bit flippant. A DOS
IVTand TSR TSR loaded before Windows can have a data area that a Windows
across  v~’ program can get at, but there are certain extra considerations.

If the TSR is being copied to each V86 machine as it is created,
won’t each have its own code and data? Therefore, if a Windows
program looks in the IVT to access the DOS TSR, which one will
it see? Will it just see the copy in the system VM?
Yes, the WinApp will only see the IVT in the system VM and
hence the TSR in the system VM, but Microsoft arranged things so
that the subsequent copies of the TSR are not really “copies” as
such - they all map back to the one physical TSR. So there only
appear to be multiple copies of the TSR.’ Thus the TSR is truly
global.
I have elaborated upon this point with a supporting figure on page
343.
There is still another major problem. Yes, the WinApp can get at
the DOS TSR, but what if a DOSApp in a VM, via the TSR (or
whatever method), wants to asynchronously send a message to a
WinApp in the system VM? I talked about signalling between
applications back in Chapter 10, but that was between WinApps.
Getting a DOSApp to signal a WinApp across VMs is a new ball
game.

Signalling a WinApp from a DOSApp

A DOS TSR can be made to appear in all virtual machines or only
in the system VM, so it is a ready means of providing the
signalling.

’ You can verify this by running COMMAND.COM in two different windows. Run the DOS
“MEM” program to see where the DOS TSR is located, then go into DEBUG.COM and dump
the start of the TSR (use the Dump command), then enter a new value somewhere (Enter
command) .,. and you will find the same new value showing up in the other DOS window.
Note that DEBUG is a standard DOS program, and DRDOS also has a program (almost)
equivalent to DEBUG. I do have a modified DEBUG that will run on any version of DOS, but
at this stage I don’t have permission from Microsoft to put it on the Companion Disk. You may
be able to locate a similar modified DEBUG on the Internet. Usage of DEBUG is described in
many DOS programming books.
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A DOS application can call the DOS TSR by a software interrupt,
but since the DOS TSR is running in Real mode, how does it
communicate with a Protected mode WinApp?

Walter Oney has solved this particular problem in “Using DPMI to
Hook Interrupts in Windows 3”, Dr Dobb’s  Journal, February
1992, page 16. He does not tackle hardware interrupts; his focus is
purely on the issue of passing a message from a DOSApp to a
WinApp across VMs.

A DOS TSR can be made to load into the system VM only, by
specifying it in WINSTART.BAT; however, what we want is to
hook an IVT vector that will appear in all VMs.  The reason for
this is that we want a mechanism for a DOSApp in any VM to be
able to find out the address of a “forwarding” routine (in the DOS
TSR) in the system VM.
Did I just say that we want the TSR to be in every VM? It will be,
but the IVT hook’s appearance in every VM is what matters: we
want a DOSApp in another VM to pass control over to the “copy”
of the TSR in the system VM, which can in turn pass control up to
a WinApp. This may seem complicated, but hopefully I can
explain it clearly.
First consider the DOS TSR. It will have to be loaded before
Windows and will have to hook a vector in the IVT:

;DOSTSR.COM Resident program to pass control up to a
;WinApp.
286

DOSTSR SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:DOSTSR,ds:DOSTSR,es:DOSTSR
ORG 1OOh

begin:
jmp start

; Put any local data in here.

;......
;This is the forwarder. It passes control up to Protected
;mode...
forwarder:

push es *save working registersI
push ds ; /
pusha /
sti *enable  interrupts,
push cs

unless you want a crash!
;routine entered with DS unknown.

POP ds ; / want to addr. local data.
;
;To pass control up to a WinApp, the WinApp has to
;provide its address (selector:offset) in the IVT.
;We must test if that has been done...

xor ax,ax ;get current int-6Oh vector.
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mov es,ax i $ (don't use @t-21/35, as under
mov si,60h*4 certarn circumstances DOS
mov bx,es: [sil ’ ; / may not be stable)
mov ax,es:[si+2] /
or ax,bx ; i it will be 0:O if not hooked.
js done60 ;if not, don't forward to it!
int 60h I*issue int-60h to call WinApp.

done60:
popa I*restore registers.
POP ds ; /
POP es I
iret I-ret&n to DOSApp (in another VM).

;....._.............................
endprog: ; transient portion below dumped after install.
start:

mov ax,2561h ;hook int-6lh in ivt.
lea dx,forwarder ; / addr. of forwarder in TSR.
int 21h ; /

’ lea dx,endprog+lrl ;point  past all code in this module.
shr dx,4 I*compute # paragraphs to keep.
mov ax,3100h I-terminate and stay resident.
int 21h ; /

;......
DOSTSR ENDS

END begin

So there you are, a complete DOS TSR! Note that this particular
one has been written without the “simplitied” directives, which is
no big deal. Actually my own experience has been that it is
difficult to write .COM programs using the simplified directives,
and you are better off sticking with the “long hand” notation
shown above. You can write a TSR using .EXE format and the
simplified segment directives, which I have done for one of the
examples of Chapter 14 (see also directory \TSR2WIN  on the
Companion Disk).

hstall Have a close look at what the “install” portion does. It hooks
portion INT-61h in the IVT then exits.

Because this TSR is loaded before Windows, it will be in the
system VM and will hook the vector in the system VM. But it will
also be copied to every VM.
Thus, every time a DOS program is run within Windows Enhanced
mode, the new VM will have that hooked vector.
But what you should note in particular is that INT-61h contains the
address segment:offset of the “forwarder” code for the TSR.

Passing Control to the WinApp
A major problem is created if our code must work for both
Standard and Enhanced modes. With Standard mode, the question
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of VMs doesn’t arise.’ This means that all access to the IVT from
a WinApp is to the actual, original, real, physical, bona fide IVT!
That’s not the problem: in fact that’s good, because there’s no need
to jump VMs. However, Windows itself is in a strange state while
a DOSApp is running. I have elaborated more upon this in
Chapter 12.
Both Enhanced and Standard modes, however, can use the same
mechanism for transferring up to Protected mode.

There is a DPMI service that allows us to hook (from a WinApp) a
vector in the IVT (function 0201h:’ Set Real Mode Interrupt
Vector) and another that will redirect it up to Protected mode
(function 0303h:3  Allocate Real Mode Callback Address).
Actually, 0303h is called first, followed by 0201h.
Get the picture here - an interrupt occurs while the CPU is in
Real mode, but the vector is to a DPMI routine that switches the
CPU to Protected mode and passes control up to a WinApp.

The above may seem like a suitable method for a DOSApp to
communicate with a WinApp, but executing 0303h and 0201h
from the WinApp will only hook the vector in the IVT of the
system VM in the case of Enhanced mode. However, in Standard
mode, there’s only one IVT anyway, so (in theory) this method
works !
The obvious point here is that if Windows is loaded in Enhanced
mode, then as well as installing the handler as outlined above, we
will also have to perform a jump from the VM running the
DOSApp into the system VM.

’ Actually, this is a qualified statement. It is better to say that Standard mode cannot have V86
VMs, or DOS VMs, since it can, by the DPMI host, have multiple Protected mode VMs.
Windows, however, only runs the one VM, in which all WinApps  reside.

* Intel’s DPMI specification places some caveats upon function 0201h:
The address placed in CX must be a Real mode segment address, not a selector. Consequently
the interrupt handler must reside in DOS memory (below 1 M) or the client must allocate a Real
mode callback address. See functions OlOOh  and 0303h in Appendix C.
If the interrupt is a hardware interrupt, the memory that the interrupt handler uses must be
locked.

3 The Intel DPMI specification places these caveats upon function 0303h:
A descriptor may be allocated for each callback to hold the Real mode SS descriptor. Real
mode callbacks are a limited resource. A client should use the Free Real Mode Callback
Address function (0304h) to release a callback that is no longer required.
The contents of the Real mode register data structure are not valid after the function call, only at
the time of the actual callback.
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Handling
hardware
interrupts

A line of thought - If the CPU happens to be in Protected mode
when a hardware or software interrupt occurs and if the interrupt is
one of the BIOS/DOS services, Windows will redirect control
down to Real mode and the routine pointed to in the IVT in the
system VM.
Therefore, if you want your interrupt routine to work for the CPU
in both Real or Protected mode, especially in the case of hardware
interrupts, why not use functions 0303h and 0201h to hook only
the IVT and have just one ISR?
This will work for all normal DOS interrupt services, which do get
redirected from the IDT to the IVT. Unfortunately, the particular
case of INT-9, which we have been using as a case study, does not
get redirected in this way.
This deviates somewhat from my current line of thought. For
more on handling hardware interrupts, refer to Chapter 12.

The DOSApp “Signaller”

Whenever a V86 machine is created, it will be in response to
loading a DOSApp. This DOSApp may want to send a message to
a WinApp, so it will need some code inside it to call the
“forwarder” routine in the DOS TSR.
This is how the section of code would look:

;DOSAPP.ASM DOS signaller program.
;
; what follows is only a fragment of the whole DOSApp...
;
,DATA
ivt6loff DW
ivt6lseg DW
tsrloaded DW

:CODE
;
; Test if Windows
; mode.
; (the method for
; . . . here I have

0 ;address of "forwarderl'  in DOS TSR.
0 ; /
0 ;set if TSR has hooked int-61h.

was loaded in Enhanced or Standard

doing this is shown in Chapter 12...
just qupplied a flag, "winmode",

; already set or cleared)

; . . . it is only necessary to switch VM's if Enhanced
; mode.

mov al,winmode
and al,1 ;set if Enhanced.
jz Enhanced

btandard:
; (see Companion Disk)
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j m p  doneit

;Snhanced :
*see, i f  forwarder TSR is present by checking interrupt
ivector  61h...

m o v  ax,3561h ;get  int -6 lh  vector  address
i n t 21h ; / -- >es:bx
mov ivt6loff,bx ;save i t .
mov ivt6lseg,es /
mov ax, es :be sure there is one.
o r ax, bx
mov tsrloaded, ax ; set if

/
TSR loaded.

js cantcall ;if n o t , complain  and qui t .
I

;use 2F/1685h  to switch to system virtual machine and
;call forwarder program in the DOS TSR.

cmp tsrloaded,O
jz dontswitch
mov ax, 1685h1 ;switch VM’s and execute.
m o v  d i , b x ;es :d i  =  ca l lback  addr .  ( int  61  hndlr ) .
m o v  bx,l ;bx = VM to switch to (system VM) .
mov cx, 3 ;cx = 3 wait until  interrupts enabled

;and cr i t i ca l  sect ion  unowned.
x o r  d x , d x ;dx:si

/
= p r i o r i t y  b o o s t  (0).

x o r si,si ;
i n t 2Fh *switchI to system VM and do INT-60.

dontswitch:
doneit:
;
; DOSApp continues...

This program, or any DOS application with this code in it, looks at
the INT-6lh vector to see if there is anything in it (there will be 0
if not hooked). If so, the program goes ahead and calls the
“forwarder” portion of DOSTSR.COM, the DOS TSR.
However, this is where you need to think. If you loaded the TSR
from the DOS prompt before loading Windows (in contrast to
loading it from WINSTART.BAT), there will be a copy of the
DOS TSR in the current VM where the DOSApp is running, but
the TSR is useless. The reason is that its purpose is to call the
WinApp, but it will try to call the Protected mode WinApp in the
current VM, where it isn’t.
I’ll look at this diagrammatically in Figure 11.3 :

I MT-2Fb/AX  = 1685h is described in Appendix D. It is for switching VMs.
CX = bit-0 is set to indicate that Windows must wait until intemtpts  are enabled before calling
the callback in the VM; bit-l is set to indicate that Windows must wait until the critical section
is unowned before calling the callback in the specified VM; the remaining bits must be zero.
DX:SI = the 32-bit amount by which to boost the target VM’s priority before changing contexts.
ES:DI  = the segment:offset  of the routine to call in the target VM.
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Figure 11.3: Execution in System VM from another VM.
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If you have a look at the DOSApp, you will see that it looks at
vector 61h in the IVT to get the address of the “forwarder” routine
in the TSR, and then it uses INT-2FWAX = 1685h to switch over
to the system VM and also to execute the forwarder code in the
copy of the TSR located in the system VM.
These little programs are two pieces of the puzzle, but there is a
third. The WinApp has to hook INT-60h in the IVT of the system
VM.
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Hooking a Real Mode Interrupt from a WinApp

I have already written a little about this, back on page 279 and
introduced two DPMI functions that will allow a WinApp to hook
a vector in the IVT in the system VM and pass control up to a
Protected mode ISR.

WhApp
ISR
i n s t a l l
r o u t i n e

What your WinApp needs to do is call DPMI function 0201h (Set
Real Mode Interrupt Vector), and 0303h (Allocate Real Mode
Callback Address).
Here is an “install” portion of a WinApp:

.CODE
offsetrealint DW 0 ;old ivt vector
segmentrealint DW 0 /
&selector DW 0 idata a l i a s  t o  c o d e  s e g
hwndcs DW 0 ;save  window handle for use in isr
callbackbuffer REGSTRUC c > ;Real mode register structure

Lstallint PROC ;no params
install:

pusha
push es
push ds

;will create alias in ldt of current task...

;

mov ax,OOOAh ;create alias data descriptor for code.
push cs
POP bx ;selector to be aliased
int 31h ;returns ax

push ax
POP es
mov ax,hwnd
mov es:hwndcs,ax ; save handle of window in code seg.
mov ax,es
mov es:dsselector,ax ;save  data alias in code

. . .
*could put some code for hooking the IDT . . .I
. . .

hookreal:
POP ds *restore it again.

;Ok, now to hook Real mode in;.... hook 60....
mov ax, 02OOh ;get Real mode vector
mov b1,60h
int 31h ;-->cx:dx (seg:off)
mov es,cs:dsselector
mov es:offsetrealint,dx ;save old vect
mov es:segmentrealint,cx  ; /

;
;now must reflect the Real mode int up to prot mode
;code....

push ds ;save
mov es,cs:dsselector  ;get alias. Addr of buffer in es:di
mov di,OFFSET callbackbuffer ; /
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mov ax,0303h ;alloc  Real mode callback
push cs
POP da eaddr of  prot  code
mov si,OFFSET runtime I /
int 31h ;-->cx:dx (seg:off)
POP ds ;restore

;now hook the ivt....
mov ax,0201h ;set Real mode vector
mov b1,60h ;hook  int in ivt
int 31h

ietout:
POP es
popa
ret

Real mode
register
structure

WinApp
ISR

Entry to
the ISR

The data structure referred to as "callbackbuf f er" is the same
callback structure used to pass register values between Real and
Protected modes, as discussed on page 269, where function 0300h
is introduced (this is for calling a Real mode interrupt from
Protected mode, which is going the other way).

Actually, the piece of the puzzle, consisting of the WinApp code,
is in two parts: the “install” portion above, and a “run-time”
portion. The latter is the ISR (Interrupt Service Routine) that is
the end result. Wherever the interrupt originated, control should
end up there. I want this ISR to behave much like the ISR
introduced in the previous chapter; that is, to post a message to the
main window.
A Protected mode ISR is shown back on page 262, illustrating how
to post a message.
Because the WinApp has hooked INT-60h in the system VM, any
software interrupt within the system VM while the CPU is in Real
mode will cause execution of the Protected mode ISR “run-time”
portion of the WinApp. You can see in the DOS TSR that this was
very simply done by an “INT 60h”  instruction.

When control is “passed up” from Real to Protected mode, the ISR
is entered with certain registers loaded:

DS:SI = Real mode SS:SP
ES:DI = Real mode call structure

The “call structure” is that same data structure containing the Real
mode register values. Return from the ISR is by an IRET, but the
data structure is modified as appropriate. At exit, the registers
ES:DI must be pointing to the data structure, because the DPMI
handler will put whatever is contained in the structure into the
Real mode CPU registers.
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Exit f r o m
the ISR

For example, if we want the ISR to chain to the old ISR, we need
to get the old vector and put it into CS:IP in the data structure:

. . .
;end of ISR . . .

mov a x , c s : s e g m e n t r e a l
mov e s :  [dil .csl,ax
mov ax,cs:offsetreal
mov e s :  [di] .ipl,ax
iret

On the other hand, if the ISR is not to chain to the old vector but
instead is to return from whence it came, the return address on the
stack must be put in CS:IP in the data structure:

cld
lodsw ;get Real mode IP off stack.
mov es: [di] .ipl,ax  ;put it into IP in data structure.
lodsw ;get Real mode CS off stack.
mov es: [di] .csl,ax ;put it into CS in data structure.
lodsw ;get Real mode flags.

mov es: [di] .flagsl,ax  ;put into flags1 in data structure
add es:[di].spl,6 ; adjust SP on data structure.
iret

The above mechanism is elaborated upon in Chapter 12.

DPIW 1.0
global
memory

This is all quite involved, just to post a message from a DOSApp
to a WinApp, but while I think of it, if your need is not to signal or
execute but just to share data, DPMI version 1.0 does have a neat
solution. Ok, this is academic, as no versions of Windows run
DPMI vl .O - but maybe one day.
DPMI version 1.0 (not ~0.9) has a function, ODOOh  (Allocate
Shared Memory), that creates and allocates a memory block that is
accessible across all VMs.  Thus all Windows and DOSApps have
access to it.
There are also ODOlh  (Free Shared Memory), OD02h  (Serialize on
Shared Memory), and OD03h  (Free Serialization on Shared
Memory).
The latter two allow synchronization of access to the shared block.
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32-Bit Ring 0

Preamble
Privilege
levels

As explained in Chapter 1, the 286 and 386 have four privilege
levels, numbered from 3 to 0. With Windows 3.0, the operating
system kernel and device drivers run at the most privileged level,
0, while Windows applications and DLLs run at level 1. DOS
applications, being the least trusted, run at level 3.
However, Microsoft changed its mind with Windows 3.1, and
moved Windows applications and DLLs down to level 3 also.
This includes all the DLLs of the Windows API.
When I upgraded from Windows 3 .O, to 3.1, I had the distinct but
subjective feeling that the new version was a tad slower. The
changes in privilege could be the reason. Of course, Microsoft
claimed just the opposite - that the new version was faster, which
could have been true, taking into account the new 32-bit file and
disk access (which I originally had turned off).
Then, when I upgraded to Windows for Workgroups 3.11, I again
had the subjective feeling that everything had slowed down. I
have never tried to quantify this. Version 3.11 seemed to take
longer to load, which may have had something to do with the fact
that when going from 3.1 to 3.11, I decided to network two PCs.
Then, when I upgraded to Windows 95 . . .

Anyway, the current situation with Windows is that applications
run at level 3, least privileged. Unfortunately, this seriously

287
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hampers my style, if I want to do my own I/O. If my requirement
is direct access to memory and I/O ports or interrupt handling,
invariably, the problem with Windows comes down to lack of
speed and unpredictability of response times. A hardware
interrupt will quite literally propogate through hundreds of
instructions before it reaches your application.
Then there is the general issue of the protected environment: you
may want to access a particular I/O port or memory location, but
the operating system may prevent access. You may want to tweak
the system hardware or operating system in some way but not be
allowed to.

D e v i c e
d r i v e r

The traditional way to obtain unrestricted access to everything is
to write a device driver. Development of a device driver requires
the Device Development Kit (DDK), and once developed, its name
must be entered into the SYSTEMINI file in the \WINDOWS
directory. Device drivers are difficult to write, and it is a nuisance
that the SYSTEMINI  tile has to be altered. Though with
Windows 95 you have the possibility of dynamically loading and
unloading device drivers, on the fly.
This chapter, however, explores an alternative approach. It is a
technique in which your application can switch up and down
between rings 3 and 0 at will, without requiring a device driver.
With this technique, you can get nearly all of the benefits of device
drivers, with fewer hassles.

16- and 32-Bit Programming
Reference
source

As far as I am aware, the first person to publish this technique was
Matt Pietrek  in an article titled “Run Privileged Code from Your
Windows-based Program Using Call Gates”, Microsoft Systems
Journal, May 1993, pages 29-37.
Early in 1993, I was trying to figure out how to do this, but Matt
had an advantage over me: “inside” information. His technique
makes use of two undocumented features, which he thinks are
likely to stay in future versions of Windows.
Basically, Matt was writing from the point of view of a Windows
3.1 application, which would normally be running in 16-bit  mode.
Now, let me clarify one point: this entire chapter assumes
Enhanced mode Windows only, using a 386 or above. Windows
3.1 can run in Standard mode, but the 286 CPU has gone the same
way as the 8088.
This confuses everybody, but Windows running in Enhanced mode
can be running in 16-bit or 32-bit mode. Windows NT runs
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normal native applications in 32-bit mode, and Windows 95
encourages this. In Matt’s article, his application was running in
16-bit mode, and when he switched up (or down!) to ring 0, he
stayed in 16-bit  mode.
Obviously, this is a point of great potential confusion, so this
chapter commences by explaining the difference between 16-bit
and 32-bit programming.
Chapter 1 shows the structure of a descriptor, however it is now
time to examine it in more detail. Figure 12.1 shows the full
detail:

Figure 12.1: Detail of the code descriptor.

CODE DESCRIPTOR
OFFSET

0

1

2

3

4

5

6

7

/

7

Limit 0 7- -

Limit_8-15

Base 0 7- - Accessed
Base 8 15 Readable- -

Conforming
Base-1 6-23 Code-data

Access-byte
App_system

5-6  D P L
7 Present

f-
Base_24_3-

’ BIT
Limit_16-19:
Bits O-3 in offset-6 of a

4 Unused descriptor, is the upper part

High part of the linear
starting address (bits 24-3 1).

Low part of the size of the segment (bits 0- 15).

Linear starting address of the segment

5 Always-0 of the size of the segment.

! Seg_16-32
Granularity

The vital bit in this descriptor is bit-6 in offset-6, labelled
Seg 16-32. If this is set, the CPU is in 32-bit mode. When the
Gr&hrity  bit is cleared, the limit value is the size of the segment
expressed as number of 4K pages, or if set, the limit value
expresses size in bytes. DPL, meaning descriptor privilege level,
is the level of this segment. Present is set if the segment is
physically present in memory. You likely will not need to modify
the other fields of the Access byte.
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The current mode of the CPU, whether 16-bit or 32-bit, is
determined by Seg_16-32. If it is set, the 32-bit registers are
enabled, and just about all operations become 32 bits. This
includes PUSH and POP operations on the stack. However, this
does not preclude you from using parts of the 32-bit registers, such
as AL, AH, and AX in EAX.

Instruction Just to keep confusing you: even if the the segment is in 16-bit
size-prefix mode, you can still use the 32-bit registers!

For starters, I’ll take the case of an “old fashioned” Windows
application, running in 16-bit segments, and consider a very
ordinary instruction that may appear in that program:

0907:0200 58 POP Ax
0907:0201 6658 POP EAX

This example is a typical unassembly, showing address, machine
code (in hex), and assembly language mnemonic. The first line
contains no surprises: the code “58h”  is the machine code for "POP
AX"; a simple one-byte instruction.
You would logically expect “POP EAX” to have a different
machine code, but note that the “58” is still there. All the
assembler does is insert an instruction prefix of value 66h.

The 66h prefix is an operand sizeprefrx, which tells the CPU to
execute the following instruction in the opposite mode than it is
currently in.

So the same “58h”  is used for both pops, but the prefix determines
the size of the pop. There is also another type of size prefix, the
address size pref.x,  of value 67h, that overrides the current
address-size mode. Therefore, even though you are programming
in a 16-bit segment, you can use the 32-bit registers: the assembler
will insert the prefix in front of any such instructions. Note
though, that the prefix overrides the default segment size, but
only for the current instruction.

32-bit When I first had to tackle this problem, I was using Microsoft’s
default Codeview debugger, version 4.01. In my program, I had the

instruction “POP EAX”, but when the debugger unassembled my
program, it showed “POP AX”. This caused me enormous
confusion, until I realised that Microsoft’s own debugger can’t
even recognize what mode it is in.
The situation was, I was writing code in a 32-bit segment, i.e.,
with the Seg 16-32 field in the descriptor set, as introduced in the
previous Figure. In this situation, the default size is 32 bits.
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Therefore, all instructions will reference 32-bit registers, operand
size, and address size, without requiring an instruction prefix.
Thus:

58
6658

POP EAX
POP Ax

32-bit Real
mode

Reference

The situation is now reversed: the “58h” means "POP EAX", but if
we write an instruction that only accesses a 16-bit  register, it will
have the prefix appended. It doesn’t say much for Microsoft, but
Codeview  version 4.01, despite being fully operational in 32-bit
mode, able to display the 32-bit  registers, and able to trace, did not
unassemble correctly. At the time of writing, 4.01 is my latest
version - it came with MASM version 6.1 - and I’m sure that by
the time you read this book, the bug will have disappeared.

So what of Real mode and virtual-86 mode? In both of these
modes, the default is 16 bits, but you may be very surprised to
learn that in both modes, you can use the 32-bit registers. Of
course, the prefix (or prefixes) will be in front of every 32-bit
instruction.
This may come as a complete surprise, but use of 32-bit registers
allows you to have segments greater than 64K - up to 4.3G -
and thus break the 1M conventional memory limit for Real mode.
Of course, Real and virtual-86 modes have paragraph addresses in
the segment registers, so these can only reference the first 1M:
however, you are quite at liberty to use offsets to access code and
data beyond 1M.
A bit of setting-up is required to use Real and virtual-86 modes in
this way, and I recommend a good book: Al Williams has worked
it all out, and has an entire chapter dedicated to this, in his book
DOSS: A Dmeloper’s  Guide; Advanced Programming Guide to
DOS, M&T Publishing Inc., USA, 1991. There is probably a more
recent version of the book (probably with a new title!), but the
chapter on 32-bit programming is still quite relevant, even in the
1991 book.

Ring Transition Mechanism
Say that for whatever reason, you want your program to have the
unrestricted access, and the total control, of ring zero.
Unfortunately, your program will be executing in ring 3 segments,
which means that if you try to do an I/O operation, such as use the
IN and OUT instructions, there will be a CPU exception. And if
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we want to hook an interrupt, we will be doing so at the “asse  end”
of the animal. What if we want to call some of the powerful
functions in the Windows kernel and in virtual device drivers?
Sorry, but even if you knew how to address them, you’d get a CPU
exception, because they are ring-0 segments.
The 386 does provide a mechanism for going to a more privileged
ring, called a gate, of which there are call gates, interrupt gates,
task gates, and trap gates. However, only code in ring 0 is
supposed to be able to create such gates.

Interrupt
gate

I kind of glossed over this little detail in an earlier discussion (look
back at Figure 11. l), but the interrupt services are at ring 0, so the
entries in the interrupt descriptor table (IDT) of the form
seZector:offset  reference an interrupt gate, not a descriptor.
An interrupt gate, or any gate for that matter, sits in the LDT or
GDT as an 8-byte entry, just like any other descriptor (see Figure
12.1),  but it has a different format. In the case of interrupt
handling, if there is to be a ring transition, i.e., if the ISR is at a
more privileged level than 3, then the entry in the IDT is not a
descriptor: it is an interrupt gate. However, the code descriptor for
the ISR is still there at another entry (also in the IDT, I presume).

Call gate A call gate is the mechanism for a CALL instruction to call code at
a more privileged level. It works just like the interrupt gate, in
which the descriptor in the LDT or GDT, of the code to be called,
is not called directly. Instead, you call a call gate, which in turn
calls the more privileged code via its descriptor.

Call Gate Structure
I’ll postulate that you want to call some ring-0 code at some
address, say 0907:OOOO.  How you would get the selector of some
ring-0 code is another question, but I’ll say you’ve got it. You try
to perform a CALL to that address, but the CPU intervenes, since
you are at lowly ring 3, and passes control to Windows, which
informs you that there has been a general protection error.
The way around this problem is to create a call gate. Normally,
only the operating system (ring 0) is supposed to be able to create
a call gate, but we can do it from ring 3, using undocumented
features. I wonder whether this loophole will be closed: the
technique has been published in Microsoft’s own Microsoft
Systems Journal, which would tend to give it some authority (I
suppose?), and the loophole remains in Windows 95.
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A call gate is 8 bytes and can be an entry in the LDT or GDT, just
like a descriptor. However, it has a different structure to a
descriptor, as Figure 12.2 shows:

Fieure 12.2: Detail of the call gate.

CALL GATE
Low part of the offset to be called (bits O-l 5).

Linear starting address of the segment

Selector 8 15- -
O - 3  Param_count
4-7 These bits must be zero.

BIT
/ O-3 Type (4=286  call gate, C=386)

4 App_system
O f f s e t _  16-23  fi 5-6 DPL

Offset_24-3  1
7 Present

High part of the offset
I

to be called (bits 16-31).

Actually, what distinguishes this as a call gate, and not some other
kind of gate, is the Type field. The value Type = 4 means that it is
a call gate to a 16-bit (286) segment, while a value of C (hex)
means that it is a call gate to a 32-bit (386) segment. For the
record, the other possible values are 5 = task gate, 6 = 286
interrupt gate, 7 = 286 trap gate, E = 386 interrupt gate, and F =
386 trap gate.
The Selector field is the ring-0 segment that we want to call, and
Offset is where in the segment. Note that the code descriptor for
the ring-0 selector still has to exist, and it will be elsewhere in the
LDT or GDT.
App_system  would normally be zero and Present set to 1. The
DPL field is important: it specifies the least privileged code that is
permitted to use this call gate. Therefore, we set it to 3.

Puffing  Ca// If we create a call gate, we can then put it in the LDT or GDT, and
gate & thus we will have a selector for it. Then, all we need to do in our
descriptor program is call the selector: the CPU will recognize it to be a call
together gate, look inside it, and get out the selector:offset. The CPU will
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then use that selector to get the code descriptor and will call the
code.
Note, however, one peculiar thing: if you perform a FAR call from
your application to the call gate selector at some offset, any offset
that you specify is ignored. Instead, the offset in the call gate is
used.
At this point, I think it best to show some code.

Ring Transition Example Code

This first code extract shows just one example of how we could set
up addressing of the ring-0 code and then call it.
The program is written as a 16-bit, small model program, hence
the “. 286" and ’ .MODEL SMALL" at the very start. The ring-0
code is a function, called RINGOFUNCO,  and is in its own 32-bit
segment in a separate file called HEAVEN.ASM. This file is
assembled separately and linked with ASMRINGO.

;ASMRINGO.ASM --> ASMRINGO.EXE Windows demo program.
*This skeleton assembly language program has been written
Ifor Microsoft
;MASM ~6.1.
.286 Or, you could put this:

.MODEL SMALL.MODEL SMALL .386
1 It is still a 16-bit seg., but allows use of 32-bit regs!

EXTERN RINGOFUNC:hAR ;this is in HEAVEN.ASM.
*ItI is the ring0 code.

. . . . . . . stuff removed . . . . . . . . .

;........................................................
;callback  starta . . . . . . .
ASMDEMOPROC PROTO  FAR PASCAL, :HWND, :WORD,  :SWORD,  \

:SDWORD
ASMDEMOPROC PROC FAR PASCAL, ihWnd:HWND,\

iMessage:WORD, iwParam:SWORD, ilParam:SDWORD
LOCAL dummy 151 :WORD
LOCAL @hDC:HDC
LOCAL s3:PAINTSTRUCT

mov ax,imessage ;get message-type.
.IF ax==WM CREATE *message received after

call xc5aate ;Crea;eWindow()  function is called.
.ELSEIF ax==WM_DESTROY ;message  if window is closed.

call xquitmessage ;posts WM_QUIT & does cleanup.
.ELSEIF ax==WM PAINT

call xpainc
.ELSEIF ax==WM_COMMAND ;any selection of the menu will

call xmenu ;produce this message.
.ELSEIF ax==WM_LBUTTONDOWN ;one of many mouse messages.



ret
ASMDEMOPROC ENDP
;..._................................................._..
xcreate  PROC

call makeringoselector
invoke GETSTOCKOBJECT,OEM FIXED FONT
mov hOemFont,ax ;hZndle Eo font.
ret

xcreateENDP
;..................................
xmenu PROC

cmp WORD PTR ilParam,O ;low-half of 1Param
jne zxcv *testI if a menu-message.
cmp iwParam,IDM_QUIT ;wParam.
jne notquit
call xquitmessage
jmp zxcv

notquit:
cv iwParam,IDM_ABOUT
jne zxcv ;no other menu items.
invoke MESSAGEBOX, ihWnd, ADDR szaboutstr, ADDR \

sztitlestr,  MB-OK

cli
call RINGOCALLGATE ;will call ring 0 code
sti

zxcv: ret
xmenu ENDP
;.............._.........................................
xquitmessage PROC

invoke POSTQUITMESSAGE,O
call freeourselectors
ret

xquitmessage ENDP
;......__................................................
errormsgproc PROC
-entered with ds:si pointing to message....I

invoke MESSAGEBOX,handlemain, ds::si,  ADDR szerror,\
MB_OK+MB_ICONEXCLAMATION

ret
errormsgproc ENDP
;..................._....................................

. . . . The rest of the message-handling code removed . . . .
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.ELSEIF ax==WM_CBAR ;message that a key pressed.

invoke DEFWINDOWPROC,ihWnd,imessage,iwParam, ilParam

;returns 0 in DX:AX. (callback functions
;return a 32-bit (long) value).
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Creation
of a call
gate

For this demo program, I chose to use the WM_CREATE  message
to call makeringOselector0,  which sets up the addressing to the
ring-0 code.
Then, I arbitrarily chose to use a press of the “ok” button on the
messagebox, which occurred in response to IDM_ABOUT,  to call
RINGOCALLGATE, which is a pointer to the call gate, which takes
execution to the ring-0 code.
Finally, before exiting from the program, it calls
freeourselectors(),  which removes the descriptor and call gate that
we had created in the LDT.
Now for the part that does the real work:

.DATA
dpmiproc DD 0 ;dpmi  extens ions  ent ry  point .
RINGOCALLGATE LABEL DWORD *use  t h i s  t o  c a l l  r i n g  0  c o d e .
ringO_of  f DW 0 ; callgate selector for RINGOFUNC
ring0 cs DW 0 *
ms dos str "MS-D&"

/ (offset is ignored)
DB ,O

1dF selector DW 0
des?riptor_selector DW 0

*for direct writing to ldt.
jring0,  cannot be accessed
;directly.

ringoerrormsg  DB "Error creating ring 0 access... \
aborting program.",0

.CODE
makeringOselector PROC

invoke GLOBALPAGELOCK,cs
cmp ax,0
je lockfailed

;find out where the LDT is . . .
lea
mov
int

; ***
; ***

mov
mov
mov
call
jc
mov
mov

si,ms dos str
ax,l6?%h - ;get dpmi extensions entry point.
2Fh ;-->es: di (undocumented)

cmp al,0 ?????
jne extensionsnotfnd

WORD PTR[dpmiprocl,di ;save e n t r y  point
W O R D  PTR[dpmiproc+2l,es  ; /
ax,lOOh ;undocumented
dpmiproc ;-->ax=selector  to ldt.
extensionsnotfnd
ldt selector,ax
es,;?x

*createI a ring 0 32-bit descriptor...
push es
invoke ALLOCSELECTOR,cs ;-->ax=alias to cs.
POP es
cmp ax, 0
je s e l e c t o r e r r o r
and ax, OFFF8h ;get offset of descriptor in ldt.
mov bx,ax
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mov al,es:[bx+51
and a1,10011111b

;get access-rights byte.

mov es:[bx+5],al
*clear dpl field.#I

mov al,es:[bx+6] ;get granularity & seg-size bits.
or a1,01000000b ;set bit7, for 32-bit.
mov es: [bx+61,  al
o r bx,OlOOb ;set bit-2,
mov di,bx

selects ldt.leave  dpl=O.#

mov descriptor_selector,bx
;temp save.
;save.

*create callgate,I to above descriptor.....
push es
invoke ALLOCSELECTOR,O ; create a descriptor in ldt.
pop es
cmp ax,0
je selectorerror
mov ring0 cs,ax ;save final selector.
and ax,OFPFBh ;get offset of descriptor in ldt.
mov bx,ax
mov es: [bx] ,ringOfunc ;my ring0 code (declared EXTRN)
mov es:[bx+2],di ;ringO alias.
mov BYTE PTR es:[bx+4] ,O ;dwords copied to stack.***
mov BYTE PTR es:[bx+5],11101100b

;present=l,dpl=3,app=OO,type
mov WORD PTR es:[bx+61,0  ; =C (386 callgate)

qwert:
jmp SHORT qwerty

lockfailed:
extensionsnotfnd:
selectorerror:

lea si,ringOerrormsg
call errormsgproc
call xquitmessage ;quit program.

qwerty:
ret

makeringOselector ENDP
;....................................
freeourselectors PROC

invoke
invoke

FREESELECTOR,descriptor_selector

invoke
FREESELECTOR,ringO_cs
GLOBALPAGELJNLOCK,cs

ret
freeourselectors ENDP

/NT-2fh,
funct ion
f68Ab

The first thing that makeringOselector()  does is lock the segment in
memory, as the ring-0 descriptor and call gate that are about to be
created will have their present bit set, indicating that they are in
physical memory.
The next problem is, where is the LDT? The exact location of the
LDT is not something that a ring-3 program is supposed to know,
but an undocumented feature of INT-2Fh, function 168Ah with
address of string “MS-DOS” in the SI register, returns a selector to
the start of the LDT.
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Creation of a
r i n g - 0  c o d e
d e s c r i p t o r

16- & 3Z-bit
c o d e  i n  s a m e
s e g m e n t

Ca//gate
f i e l d s

R i n g - O
s t a c k

The next job is to create a descriptor for the ring-0 code. This is a
SMALL model program, which means that all code is in the same
segment. ALLOCSELECTOR() creates a new descriptor in the
LDT that is an alias to, in this case, CS. The code immediately
after uses the selector to the LDT to directly access the LDT and
modify the privilege level of the segment. Also, since the newly
created descriptor is an alias to CS, it is a 16-bit segment: this
example code requires the ring-0 code to be 32 bits by default.
Therefore, the seg_16-32  bit is altered also.

Normally, an application cannot directly modify an entry in the
LDT, for the simple reason that you don’t know where it is. Now,
having modifed it, you can’t call it because it is a ring-0 descriptor
whereas your code is running at ring 3.
Note that there is a trick being performed here, as there is only the
one segment. I defined ASMRINGO  as SMALL, and when the
ring-0 file, HEAVEN, is linked, there will only be one code
segment. CS is a ring-3, 16-bit  descriptor, so that is how the code
is treated when executed using CS. However, the newly created
alias, descriptor_selector, is ring 0, 32 bits, but is referencing the
same segment.

The final step is to create the call gate. Again, an entry is made in
the LDT, and it is directly written to, to make it into a call gate.
The selector for this call gate is saved as ring0_cs.  The call gate
must contain the offset of the code to be called, which in this case
is ringOfinc, defined as external, at the beginning of the code
listing. You will see that descriptor_selector is also put into the
call gate.
Offset-4 in the call gate, which I have marked in the listing with
three asterisks, is where you can specify how many doublewords
you have passed on the stack: the CPU will copy these from your
ring-3 stack to the ring-0 stack. In this case, no parameters are
copied.

Now that the stack has been mentioned, this is an important issue
that must be addressed. Windows maintains a separate stack for
ring 0, and the call gate will automatically transfer to it. The CPU
will copy the number of parameters specified from the ring-3 stack
and will put the return address on top of the new stack.
Note that the ring-0 segment has also been defined (in this case) as
a 32-bit segment, which means that the return address is two 32-bit
values for selector:offset.
The default ring-0 stack is very small, which is why this program
executes CL1 (clear interrupt) before calling the ring-0 code. Have
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a look at the listing, and you will see RINGOCALLGATE, which is
the pointer that is called to get to the ring-0 code. Actually,
RINGOCALLGATE is an alias to ringO_cs:ringO_off.
So the instruction "call RINGOCALLGATE" will call the ring-0
code. What does the ring-0 code look like? Here is the listing for
HEAVEN.ASM:

is named HEAVEN.ASM, as it's as hish as we can
;go...
.386P ;masm is stupid... this proc has to be a separate

;file, to generate 32-bit code without the 66 prefix.
PUBLIC RINGOFUNC
TEXT2 SEGMENT DWORD PUBLIC USE32 'CODE'
-ASSUME CS:_TEXT2
RINGOFUNC PROC FAR

retf ;NOTE must remove any params passed by callgate.
RINGOFUNC ENDP
-TEXT2 ENDS

END

Structure
of ring-0
s e g m e n t

C o m b i n i n g
?6- &
32-bit
Fegments

This example is doing absolutely nothing, just returning. You will
know that it works if you don’t get a “general protection error”
message!

Note that I did not use ” .MODEL" in this file, because it would
create a code segment with the name “-TEXT”,  and the “. 386~"
at the very beginning of the file, ifpreceeding ".MODEL SMALL",
would cause a 32-bit code segment. The linker would give the
error message that two segments with the same name (-TEXT)
cannot be combined if one is 16-bit  and the other 32-bit.
It’s pretty stupid, but we are able to combine 16-b& and 32-bit
segments, by giving them different names and placing them in the
same “class”. The TEXT segment in ASMRINGO.ASM has class
“CODE”, so put&g "CODE" at the end of the SEGMENT
declaration above will cause them to be combined. What I think is
stupid is that I have to resort to the “old fashioned” SEGMENT
directives to achieve this.
Anyway, note that I gave the ring-0 segment a different name,
_TEXT2,  but the choice is arbitrary. The qualifier "USE32"
defines the segment as 32-b& which means that the assembler will
assemble 32-bit instructions without the prefix (and 16-bit
instructions with the prefix).
The “P” on the end of .386P permits use of the ring-0 restricted
instruction set; that is, the assembler will assemble them.
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What  you
can do in
ring 0

Fixing code
& data at
known
linear
addresses

Finally, you can put a number after RETF to indicate the number
of bytes to pop off the stack. Use this to remove parameters passed
by the call gate, if calling in conformance with the Pascal
convention.

So what can we do in this 32-bit ring-0 procedure?

FLAT Memory
You will find the program discussed so far on the Companion Disk
in directory \ASMRINGO. This chapter also describes an
enhancement to this program that is contained in \FLATASMO.

ASMRINGO.EXE, as described so far, demonstrates how a 16-bit
ring-3 program can make the transition to a 32-bit ring-0 code
segment and come back. Once in ring 0, you can execute OUT,
IN, CLI, STI, etc., without intervention by the CPU. You can also
use the privileged instructions of the 386 that allow direct
manipulation of LDT, GDT, and page tables.
However, one other thing you might want to do is call the
functions in the Virtual Machine Manager (VMM), which you can
think of as the “core” of Windows, and the functions in the Virtual
Device Drivers (VxDs). Conceptually, you can view Windows as
having two APIs - the ones you know abut and that are
described in all the Windows programming books (and in the
SDK) and another set that can only be called by VxDs.
The latter functions are inside the VMM and the VxDs and are
ring-0 code. The conventional wisdom is that you must write a
VxD to be able to call them, but in fact our RINGOFUNC can do
so. The requirement simply is that you must be in ring 0 and you
must be in the FLAT memory model. The program developed so
far falls down on the latter point.

One little note while I think of it - I used
GLOBALPAGELOCKO,  a Windows API function, to lock the
entire code segment of ASMRINGO, which means that it cannot be
paged out and remains at the same linear and physical address.
There are advantages to locking a segment, but one disadvantage
is that Windows 3.1 tends to shift the segment down below 1M
(physical) before locking it, which ties up some of that “valuable”
conventional memory.
Fortunately, Windows 95 does not move it down below 1M.
If you write code that computes a certain linear address, you want
to be sure that it stays at that linear address. Normally, when you
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use a selector, the linear address contained in the descriptor can
change, and it is of no concern to you. GLOBALPAGELOCKO
keeps it fixed and also ensures that the pages remain in memory -
which would be optimal for interrupt handlers.
There is another API function that you might like to consider if
your requirement is only that the linear address remains unchanged
and paging is ok. If paging is left on, as per normal, the only
repercussion is a possible access delay - unless you are doing
coding that involves talking to specific physical locations.
Consider another alternative, GLOBALFIXO, which fixes a
segment at a fixed linear address but allows paging-out.

Getting Back to the central argument. The objective now is for our ring-O,
addressability 32-bit procedure to be able to call VMM and VxD functions, The
to fLATring-  following code is a re-do of MAKERINGOSELECTOR, which
code sets up addressability to ring 0:

makeringOselector  PROC
;get addressability of ring0, ringofunc.....

invoke GLOBALPAGELOCK,cs
cmp ax,0
je lockfailed

lea si,ms dos str
mov ax,l6FAh - ;get dpmi extensions entry point.
int 2Fh ;-->es:di (undocumented)

; *** cm al,0 ?????
; *** jne extensionsnotfnd

mov WORD PTR[dpmiproc],di ;save entry point
mov W O R D  PTR[dpmiproc+2l,es  ; /
mov ax,lOOh ;undocumented
call dpmiproc ;--sax=selector to ldt.

jc extensionsnotfnd
mov ldt selector,ax
mov es,Zx

;find the linear address of CS...
mov bx,cs
and bx,OFFFSh ;get offset in ldt
mov ax,es: [bx] ;get size of segment.

mov cssize,ax
mov ax,es:[bx+2] ;get lo-half of lin.addr.
mov WORD PTR flatlin,ax
mov al,es: [bx+41 ;get hi-half of lin. addr.

mov ah,es:[bx+7] ; /
mov WORD PTR flatlin+a,ax

I*calculate FLAT linear address of ringofunc...
mov ax,WORD PTR flatlin
add ax,ringOfunc inote: lwOFFSET1l is optional
jnc moppi

mov bx,WORD PTR flatlin+2
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inc bx
mov WORD PTR flatlin+a,bx

moppi:
mov WORD PTR flatlin,ax

*create, callgate to ringofunc.....
push es
invoke ALLOCSELECTOR,O ; create a descriptor in ldt.

POP es
cmp ax,0
je selectorerror
mov ringO_cs,  ax ;save final selector.
and ax,OFFFEh ;get offset of descriptor in ldt.

mov bx,ax
mov ax,WORD PTR flatlin ; my ring0 linear address
mov es: [bxl,ax ; /

mov ax,WORD PTR flatlin+2 I
mov es: [bx+6l,ax ;

mov WORD PTR es:[bx+2],28h;FLAT  cod& selectorcin  gdt).
mov BYTE PTR es:[bx+41,0 ;04;****?dwords copied to stack
mov BYTE PTR es: [bx+51,11101100b

;present=l,dpl=3,app=OO,type=C  (type=C: 386 callgate)

;find the FLAT linear address of this program's data
*segment...,
mov bx,ds
and bx,OFFFEh ;get offset in ldt
mov ax,es: [bx+21 ;get lo-half of lin.addr.
mov WORD PTR flatdatalin,ax
mov al,es:[bx+41 ;get hi-half of lin. addr.
mov ah,es:[bx+71
mov WORD PTR flatdatalin+2,ax

/

qwert:
jmp SHORT qwerty

lockfailed:
extensionsnotfnd:
selectorerror:
qwerty:

ret
makerinqOselector  ENDP

; . . . p u t  i n  h a n d l e r s  . . . .

What you will notice in the above code is that I have not created
code or data descriptors. What you do see above is the use of
selector 28h. I have obtained the base addresses from
ASMRINGO’s  DS and CS descriptors, and to obtain the code
FLAT linear address, I have added the offset of RINGOFUNC to
the base address ofCS and savedtheresultinflatlin.
To obtain a FLAT linear address to the data segment, I extracted
the base address from DS and saved it asjhztdutalin.

Caiiing VMM Now,
a n d  VxD

going up to ring 0 HEAVEN, by exactly the same method of
"call RINGOCALLGATE~',~~~~~~~~~  entry to RINGOFUNC with

s e r v i c e s CS = 28h, the FLAT selector.



TEXT2 SEGMENT DWORD PUBLIC USE32 'CODE'
-ASSUME CS:_TEXTZ

RING0 FUNC PROC FAR
;assuming  that no parameters are passed, the ring 0 stack
;contains:
;return-EIP,  return-CS, old-ESP, old-SS.
;the last two, deepest in the stack, reference the ring-3
;application  stack.
*I think DS still points to old data segment, so canI
;still use....

cli
pushfd
pushad
push ds
push es
push fs
push qs

;make sure actual flag is clear.

mov
mov

-setupI
mov
mov
lea
add
sti

defaultOesp,esp ;save default ring 0 stack.
defaultOss,ss ; /

a new stack...
ax,30h
ss,ax
esp,ringOstack+l996
esp,flatdatalin ;calc Flat linear addr.

*ring-3-ds works here, but let's replace it with
JFLAT-ds...

mov ax,ds ;use fs to access data in our prog.
mov fs,ax /
mov ax,30h iFlat ds.
mov ds,ax ; /
mov es,ax
mov gs,ax

*exampleI of calling a VMM service.
int 20h
DW GET CUR VM HANDLE ; = 1
DW VMM-DEV~CE~ID ;= 1-

*exampleI of using a '386 privileged instruction...
str cx ;get task (tss) register (selector)
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Here is some 32-bit ring-0 code for RINGOFUNC that calls a
VMM function:

INCLUDE vmm-tiny.inc ;enables us to call vmm and vxd
;functions (derived from VMM.INC, in the DDK).

ringOstack:DWORD
EXTERN defaultOesp:DWORD
EXTERN defaultOss:WORD

PUBLIC RINGOFUNC



;make sure.
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*example of another call to the VMM...I
; . . . parameters are passed by stack, so push them on...

pushd 0 ;get its descriptor out of gdt.
pushd 0 i
pushd ecx ; $int 20h I
DW GETDESCRIPTOR ; :
DW VblM DEVICE-ID ;
add espTl2 ;
mov ecx,eax ;zero in 'eax and edx if error.
or ecx,edx ;
jz error1 ; ;
jmp bypass1

errorl: ; . . . . do something here . . . .

bypassl:
*restore default ring0 stack...I

cli
mov ss,fs:defaultOss
mov esp,fs:defaultOesp
POP gs
POP fs
pop es
POP ds
popad
popfd
retf

RINGOFUNC ENDP
-TEXT2 ENDS

END

Because the default stack is very small, I have replaced it with
another that physically exists in the data segment of ASMRINGO.
Execution enters RINGOFUNC with DS still set to the data
segment of ASMRINGO, but I have moved it into FS and have put
DS = 30h, the GDT FLAT data selector. There is no problem with
accessing all the data in ASMRINGO, using FS (ring-3 selector) or
DS. In the latter case, we would also have to add “flatdatalin”.

/NT-20/r Notice the peculiar method for calling a VMM or VxD service by
means of an "INT 20h" instruction, followed by a couple of
parameters. Inserting data directly into the code may seem odd,
but on the first execution-pass, Windows modifies these three lines
and replaces them with a CALL. The first parameter specifies
which service to call, and the second parameter specifies which
VxD. These are simple equates defined in VMMINC  or in my
cut-down version VMM-TINYJNC on the disk.
Note also that GETDESCRIPTOR()  uses the standard C calling
convention, which means that parameters are pushed right-to-left,
and the stack must be cleaned up after return.
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Moving On
To be able to go up to ring 0 from inside a ring-3 application is
“real neat”. This chapter also showed how to go from a 16-bit
segment to a 32-bit segment, and actually have them overlap, that
is, be the same segment, fitting the SMALL memory model.
The work done in this chapter can also be applied to Windows 95
native 32-bit applications, in which case the segment is already 32
bits, but the ring transition is still required.

It may be perverse, but I really like the idea of writing 16-bit
applications that have 32-bit and/or ring 0 functions in them.
These will run fine in both Windows 3.1 and 95.
A 32-bit application will run in Windows if it has the Win32s
library installed, and it will run natively in Windows 95. So, I
guess we need to move ahead into the pure 32-bit world. A lot of
the material earlier in this book has focused on 16-bit code,
although the principles are in most cases applicable to 32-bit code
also.
We need a chapter that elaborates on the differences in coding for
32-bit segments and Win32, the 32-bit Windows API library. We
also need to see a pure 32-bit application. The next chapter does
this.
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Preamble

Other
chapters

This book has been structured in a quasi-historical sequence,
starting with 16-bit  programming in the early chapters, gradually
introducing 32-bit issues in latter chapters. I didn’t want to dump
16-bit, as it is still relevant and will remain an issue for a long
time. Even if a systems programmer wants to program entirely in
32-bit mode, Windows 95 internally is surprisingly 16-bit
oriented. This means that a thorough knowledge of the 16-bit
issues and the interaction between 16-  and 32-bit modes is
required. Therefore, the gradual progression of the chapters from
a 16-bit  foundation is most relevant.

Of course, many developers are still programming for Windows
3.x, and 16-bit applications run fine on Windows 95 and even have
some advantages with regard to system privileges, compared with
32-bit applications. As described in the last chapter, putting 32-bit
instructions into a 16-bit segment incurs only a small instruction
prefix penalty. Putting 32-bit segments into a 16-bit application
can also be done. Considering these points, many developers do
not feel any urgency to go totally 32-bit.

However, if you want to move ahead and write a true native 32-bit
application, this is the chapter.

307
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TASM 32-bit
SUppOrt

Porting code
from MASM
to TASM

ltemisiig the
differences
between
MASMG and
TASM5

TASMS versus MASM6
Back in Chapter 5, I compared the features of the various versions
of TASM and MASM, targeting 16-bit applications.
The two products have tended to leap-frog each other, but MASM
has remained stuck on version 6.11 for some time now. Borland
has recently released version 5.0, which does not leap-frog
MASM: it only brings it to about even.

QUESTION: How many Microsoft Officials does it take to
change a light bulb?

ANSWER: None. They will just declare darkness to be the
new standard.

Not so far from the truth! Microsoft has put MASM “on the back
burner” for some time, because it is a very “small fish” for them.
At the time of writing, rumour  is that they are selling it to another
company.
Borland, to their credit, does not consider itself to be too big to
ignore the lower-end of the market. That is, the relatively
small-volume sellers like assemblers.

Both companies have moved toward less printed and more on-line
documentation. My personal viewpoint is that you can’t beat a
good printed manual, which is why the supplementary printed
books business is booming.
TASMS supports 32-bit programming for Windows 95 and NT,
but the documentation, both printed and on-line, is pitiful. The
one example program is also pitiful, as it is written for TASM 4.

So, I had to figure it out from scratch. I had a 32-bit program
written for MASM, which I converted. Now, this is an interesting
story, and there were nights spent working to 3:00 AM trying to
figure it out.
TASMS almost supports all of the features of MASM version 6.1.
Therefore, the example program given in this chapter, though
written for TASMS, should also be very easy to convert for
MASM.

l TASMS has prototypes for procedures, except they are
designated by the “PROCDESC” keyword, not “PROTO”.
Otherwise, the syntax is the same, and I was able to create an
Include file, W32INC, on the Companion Disk in directory
\TASM32 that is very easy to convert for MASM.
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A// the
7.wlw  too/s
are DOS
programs

TASMS does not use “INVOKE” for high-level procedures,
just the plain old “CALL” keyword.
TASMS allows parameters passed to a procedure to be
declared on the same line as the “PROC”  declaration, but it is
not quite so sophisticated as MASM. You cannot use
MASM’s  “ADDR”  prefix, or the “::”  for composing two l&bit
registers into one 32-bit value. However, you can achieve the
same results with different syntax.
I’m not so sure about passing dynamic data parameters to
high-level PROC declarations. If you specify a parameter
“OFFSET Sl”,  it means “pass the address of Sl”.  However,
that works if the data is declared statically, in the data
segment. For data declared by the “LOCAL” directive, that is,
dynamic, stack-based data, it seems to be necessary to load the
data into a register first and pass the register as a parameter.
MASM doesn’t have this limitation with its “ADDR”
directive.

Installing TASM5

TASMS is designed to work from the command line in a DOS box.
There is no editor or IDE. There is, though, the wonderful Turbo
Debugger. I prefer to use the command line, though an IDE does
have advantages, such as seeing where assemble errors occur in
the source code. With the command line approach, the assembler
spews out a list of errors and the developer must then find those
lines in the source code, which is easy enough.

C:\> make -B -DDEBUG 1 more

TASM32,
TLlNK3j
BRC32  32-bit
too/s

If the assembler generates a huge error listing, this is what you do
to make output fill the screen and pause. Simple enough. The
“make” program will execute “makef  ile” if it existes, otherwise
a filename needs to be entered on the above command line, after
the switches. ” -B" means to rebuild everything, ” -DDEBUG" is
interpreted inside the Make file to include debug information. The
“more” postfix is what pauses the screen.

For 32-bit development, you will be using TASM32.EXE,
TLINK32.EXE,  and BRC32.EXE. The latter is the resource
compiler. There is also BRCC32.EXE, but the documentation
does not mention anything about it. In fact, the documentation
barely says anything about the resource compilers at all, and there
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is no demonstration 32-bit program that utilises them. Never
mind, Uncle Barry figured it all out.

Fine-tuning After installation, when I first ran TASM32, it crashed. I fiddled
the around, and suddenly it started working. Later that night, for no
installatiofl apparent reason it crashed again. That is, it aborted on loading. I
forsfabj/j~ had no idea why. I made some changes, and everything has been

ok since then.
I found a reference in the documentation that the WINJNI file
should have this entry:

;in WIN.INI file
[Windows]
spooler=yes

So, I put that in. Then I read that the install process puts these two
lines into the SYSTEMJNI  file:

;SYSTEM.INI file
[386Enhl
device=c:\tasm\bin\windpmi.386
device=c:\tasm\bin\tddebug.386

What is the purpose, I asked myself, of WINDPMI.386, when
Windows already provides DPMI for DOS boxes? So, I erased
that line.

Example Skeleton Program
Ok here it is. Thirty-two-bit coding has certain refinements, one
of which is the prolog/epilog code: the simple use of the
STDCALL language qualifier takes care of everything.

*By Barry Kauler 1997
ICompanion Disk, lVWindows Assembly Language & Systems
I- Programming II .
;W32DEMO.ASM  --> W32DEMO.EXE  Windows 95 demo program.
;This skeleton assembly language program has been written
;for TASM5.0.
I*It has the startup code built-in, rather than as a
I*separate object file.

.386

.MODEL FLAT,STDCALL
UNICODE = 0 *this equate used by W32.INC.
INCLUDE W32.INC iequates, structures, prototypes.
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IDM_QUIT EQU 100
IDM_ABOUT EQU 101

;menu-identifiers -- must be
;same as defined in .RC file.

.DAl'A

._____----______-_______________________--~-~~~---~~~~~--I
hInst
mainhwnd
Sl
s2
s3
szTitleName  DB
szClassName
sziconname

DD 0
DD 0
WNDCLASS c?>
MSG <?>
PAINTSTRUCT <?>
"Win32 Assembly Language Demo Program",0
DB "W32DEMO" 0
DB "ICON 1" ,b ;name of icon in .RC file.-

g_hmd DWORD 0
g-message DWORD 0
g_wparam DWORD 0
g_lparam DWORD 0

szaboutstr DB "This is an about-box",0  ;messagebox
sztitlestr DB "Barry Kauler 1997",0 ;/
.CODE;---____----_______-________-_______-___--~------~-------
start:

call GetModuleHandle,  NULL
mov hInst,eax

; initialise the WndClass structure
mov sl.w_style, CS HREDRAW + CS VREDRAW + CS_DBLCLKS
mov s1.w IpfnWndProc, offset ASMWNDPROC
mov sl.w-cbClsExtra, 0
mov sl.w-cbWndExtra, 0-
mov eax, hInst
mov s1.w hInstance,  eax-

;call LoadIcon,  NULL,IDI_APPLICATION ;loads default icon.
;No, let's load a custom icon....

call LoadIcon, hInst, OFFSET sziconname
mov s1.w hIcon, eax-
call LoadCursor,NULL, IDC_ARROW
mov s1.w hcursor, eax-
mov sl.w_hbrBackground, COLOR_WINDOW + 1
mov sl.w_lpszMenuName, OFFSET szClassName
mov sl.w_lpszClassName, OFFSET szClassName

call RegisterClass, OFFSET sl

call CreateWindowEx, 0,OFFSET szClassName, \
OFFSET szTitleName,WS_OVERLAPPEDWINDOW, \

CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,\
0, 0, hInst, 0
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mov mainhwnd, eax

call ShowWindow,  mainhwnd,SW_SHOWNORMAL
call UpdateWindow, mainhwnd

msg_loop:
call GetMessage, OFFSET ~2, O,O,O
cmp ax, 0

je end-loop
call TranslateMessage, OFFSET 92
call DispatchMessage,  OFFSET s2

jmp msg_loop

end loop:
call ExitProcess, s2.ms_wParam

;_-_--__-_-__-__-____--_--__-__-_______--~--~~-~-~~--~---
PUBLIC ASMWNDPROC

ASMWNDPROC proc STDCALL, hwnd:DWORD, wmsg:DWORD, \
wparam:DWORD, 1param:DWORD

USES ebx, edi, esi
LOCAL hDC:DWORD

mov eax,hwnd ;useful to make these static.
mov g_hwnd,eax ; . . . be cautious though, as
mov eax,wmsg ;sometimes  Windows reenters
mov g_message,eax ;ASMWNDPROC. For example, it is
mov eax,wparam ;possible  for Windows to call
mov g_wparam,eax ;ASMWNDPROC with a WM_PAINT
mov eax,lparam I*message even though execution
mov g_lparam,eax *is currently inside ASMWNDPROC.

; . . . alternative is'pass these via stack to functions.

xor eax,eax
mov ax,WORD PTR g-message
.IF ax==WM DESTROY
call

.ELSEIF
call

.ELSEIF
call

.ELSEIF
call

.ELSEIF
call

.ELSEIF
call

.ELSEIF
call

.ELSE

wmaestroy
ax==WM RBUTTONDOWN
wmrbutEondown
ax==WM SIZE
wmsize-
ax==WM CREATE
wmcreaFe
ax==WM LBUTTONDOWN
wmlbutFondown
ax==WM PAINT
wmpainE
ax==WM COMMAND
wmcommgnd

call DefWindowProc, hwnd,wmsg,wparam,lparam
ret

.ENDIF
xor eax,eax
ret

ASMWNDPROC ENDP;_-_-____-_________-____-__-_____--_____-~----~--~-------
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wmcommand PROC
mov ax,WORD PTR g_lparam
.IF ax==0

1 mov ax,WORD PTR g_wparam
.IF ax==IDM_QUIT
call PostQuitMessage,O

.ELSEIF ax==IDM_ABOUT
call MessageBox, g_hwnd, OFFSET szaboutstr, OFFSET

sztitlestr, MB-OK
.ENDIF

.ENDIF
ret

wmcommand ENDP;_____________________-_----_--_________~~~~~~~~~--------
wmpaint PROC
call BeginPaint, hwnd,OFFSET s3
mov hDC, eax

call EndPaint, hwnd,OFFSET s3
ret

wmpaint ENDP

wmcreate PROC
ret

wmcreate ENDP

wmdestroy PROC
call PostQuitMessage,O
ret

wmdestroy ENDP

wmlbuttondown PROC
ret

wmlbuttondown ENDP

wmrbuttondown PROC
call MessageBeep,O
ret

wmrbuttondown ENDP

wmsize PROC
ret

wmsize ENDP
;--____------___-_---_________-_----____~~-_--------~~~~-
ENDS
END start

Elegant&&it?  You can refer to earlier chapters for explanations
of how each part works. You might like to compare it with the
16-bit MASM6 program in Chapter 5.
The differences are small. Most importantly, you do everything in
32 bits.
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The
d i f f e r e n c e s
b e t w e e n  16-
a n d  32-bit
c o d i n g  o f
W i n d o w s

apPs

C o d e
c o n v e r s i o n
from MAW
to JASM

R e s o u r c e
fies

The fields of the structures mostly become 32 bits.
FAR addresses become the same as NEAR addresses and are
32 bits. The OFFSET prefix in an instruction will load the
32-bit address of a static data item, and you do not need to
worry about the segments.
All stack pushes and pops are 32-bit.
Values returned from functions are in EAX.
Note that the Win32 API is a blend of C and Pascal calling
convention. That is, stack cleanup is performed by the
function, but parameters are pushed right-to-left. Please note
that the 16-bit API pushes parameters left-to-right. However,
using the high-level procedures, you do not need to worry
about this. When using Turbo Debugger, you will need to be
aware of this fact, though. For example, in GetMessage(),
"OFFSET 52" gets pushed last.

When I first converted a MASM6 program for TASMS, it
assembled and linked but crashed when execution got to
CreateWindowEx(). I paid closer attention to the skeleton
example supplied with TASMS, even though it is written for
TASM4. I made a couple of changes, and it now works and is
rock solid, though I’m not sure which change was the culprit.
Notice that there is an ENDS directive at the very end of the
program. You could experiment and see what happens if that is
left off. I never needed it for MASM programs.
The rest of the program looks very much like a MASM6 program,
and TASMS also accepts the same syntax for the high-level
procedures, though it does not support ADDR and “::“.  “::” isn’t
needed in 32-bit programming, and ADDR can be replaced by
OFFSET for static data.

You will notice that I have used correct case in all symbols. I used
the “/ml” switch to turn on case sensitivity, which is a break from
my past. I decided to invoke case sensitivity for all true 32-bit
code, which is why I have shown correct case for all the 32-bit
API functions.

Support Files

There is nothing much to say about resource tiles. They work the
same as before.
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//W32DEMO.RC,resource  file.
$;;hyee (arbitrary) equates could have been in an include

#dekine*IDM QUIT 100
#define IDMIABOUT 101

ICON-1 ICON GOOFEE.ico

W32DEMO MENU
BEGIN

POPUP "File"
BEGIN

MENUITEM  "Quit", IDM_QUIT
MENUITEM  "About '. . . , IDM_ABOUT

END

The program BRC32.EXE is required to compile a .RC file to
.RES.

Make file Now may be the best place to show the Make file:

#MAKEFILE.
#W32DEMO Win32 demo application.
#TASM32.EXE,  TLINK32.EXE, BRC32.EXE,  MAKE.EXE
#are from TASM ~5.0. Make sure the path points to them.
#Path only needs to point to \bin subdirectory, TLINK32
#finds IMPORT32.LIB in the \lib subdirectory ok.

#You should be in a DOS box, by executing the PIF file
#B32TOOLS.PIF (make a shortcut on your desktop).

#TLINK32 switches: /Tpa = build 32-bit EXE, /aa = target
#Windows 32-bit application, /v = include debug info.
#TASM32 switches: /Zi = include debug info.
#the last parameter is the resource file to be bound to
#the executable.
#the 2nd last param. is the definition file.

# make -B Will build .EXE
# make -B -DDEBUG Will build the debug version.

FN = W32DEMO
OBJS = $(FN) .obj
DEF = $(~~).def

!if $d(DEBUG)
TASMDEBUG=/zi
LNKDBG=/v
!else
TASMDEBUG=
LNKDBG=
!endif
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!if $d(MAKEDIR)
IMP=$(MAKEDIR)\..\lib\import32
!else
IMP=import32
!endif

$(FN) .EXE: $(OBJS) $(DEF)
tlink32 /Tpe /aa /c $(LNKDBG) $(oBJs),$(FN),,$(IMP),S(DEF),S(FN)

.asm.obj:
tasm32 $(TASMDEBUG) /ml $&.asm
brc32 -r $(FN).rc

In the above Make file, you can see the invocation of
BRC32.EXE. It is used with a “-I+’  switch to mean compile only,
which is probably optional.

Binding In earlier examples, I have run RC.EXE again after LINK, to bind
resources the RES file to the .EXE tile. However, TLINK32 does this
to the automatically if the name of the RES file is appended onto the end
executable of the command line. The last $(FN) achieves this.

Compatibility I have a lot of trouble with Borland Make tiles. Although there is
of Bar/and & a switch for setting compatibility with Microsoft’s NMAKE.EXE,
MicrosotY it is still not compatible. I have never been able to get a Make file
Make files I have created for NMAKE to work with Borland’s MARE.

I have to resort to taking an example Make file provided by
Borland, which is what I have done above. It is not quite
optimum, as the resource compiler executes every time, but at
least it works. I recommend that you use the ” -B" switch to force
everything to build:

C:\> make -B -DDEBUG

B3ZTOOLS.-
PIE to
fine-tune the
DOS box

. DEF fife

There is something weird about Borland’s MAKE.EXE and I
personally use NMAKE.EXE mostly.

Note also that Borland supplies B32TOOLS.PIF. I recommend
that you put a shortcut to it from your Windows 95 desktop. It has
the correct settings for the DOS box. You will find it in
C:\TASMBIN.
Also, place C:\TASMBIN into the path statement of your
AUTOEXEC.BAT file, so DOS can find the executables.
TLINK32 finds the library tile IMPORT32 without any help.

Finally, the definition tile, W32DEMO.DEF:

NAME W32DEMO
DESCRIPTION 'ASM program'
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EXETYPE
STUB
CODE

.TA
E HEAPSIZE

ACKSIZE
t EXPORTS

WINDOWS
'WINSTUB.EXE'
PRELOAD MOVEABLE
PRELOAD MOVEABLE MULTIPLE
8192
8192
ASMWNDPROC

Turbo
D e b u g g e r

W32DEMO.DEF  is referenced by the second-last parameter in the
TLINK32 command line.

If after assembling and linking, it doesn’t work, it is time to use the
debugger. Stay in the DOS box to use it, and type this:

C:\> TD32 W32DEMO.EXE

A text
editor/IDE for
use with
TASM

WAL  K32,
d e v e l o p m e n t
suite for
MASM

Turbo Debugger has been an old favourite of mine. It’s really
nice, and very easy to use.
One thing to bear in mind is that you are in a multitasking
environment, so feel free to run Windows programs alongside the
DOS box.
You can have File Manager (I mean, Windows Explorer) running
for the purposes of testing the program.

You can use a Windows-hosted text editor or a DOS-based text
editor. Everybody has a favourite. I use Microsoft’s Programmer’s
Workbench ~4.01, which is DOS based.
There are a zillion editors on the Internet that can be downloaded.
Arguably the best for assembly language development is
ASM_EDIT, a complete IDE with extensive help files. It is quite
interesting to see color-coded assembly code. ASM_EDIT  is
shareware, but the warning window comes up so frequently it is
almost unusable - that is, if you have a low tolerance level!
The price in February 1997 was US$20. The main Internet page
is:
http://www.skysurf.de/-asmedit/ae_whats.htm

Various people have experimented with stand-alone Windows
applications written entirely in assembly language. Sven
Schreiber has developed WALK32, a complete package for
MASM, even with its own linker. It is public domain and can be
found at the site:
h t t p : / / w w w . t h e p o i n t . n e t / - j k r a c h t / p d n a s m . h t m
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S K E L E T O N . - A 32-bit  skeleton program written by Wayne Radburn for MASM
Z I P ,  a ~6.11 uses the latest features of MASM, much like the example
ske/eion  for given in this chapter. If you have MASM v6.1x, have a look at
MASMG this package. It is on the Companion Disk in

\RADBURN\SKELETON.ZIP.
Wayne has produced an very nice help file that explains how the
program works. His Include file is very cut-down, without all the
equates, structures, etc. I took his file, Sven’s Include file, plus
some extra stuff and put it together into one file, did a lot of
editing, and ended up with W32.INC.
He has a bit more code in the startup than my above skeleton, and
I suggest you examine it and maybe include the same code if you
want to use my skeleton for actual projects.

Postamble
Chapter 12 showed how a 16-bit application can move into 32-bit
ring-0 code. What about the 32-bit application of this chapter?
Another question: what if the 32-bit application wanted to call a
function in a 16-bit  DLL? Or an interrupt? Or perform an IN or
OUT instruction?

It is a strange fact of the historical evolution of Windows that
16-bit applications have greater freedom getting into the insides of
Windows than 32-bit applications. DOS TSRs also have great
advantages. Because support for legacy applications is going to
continue for the forseeable future, it is sensible to use whatever
easy paths are available.

A 32-bit application cannot use the technique of Chapter 12. The
reason is that the interrupt handlers provided by Windows for
certain interrupts assume that it is 16-bit code executing the
interrupt. The most fundamental problem is that it is only a 16-bit
stack, so the interrupt handler will crash. Nor can a 32-bit
application call a 16-bit function.

The next chapter backtracks somewhat and looks at the transition
between DOS and Windows as Windows loads. Understanding
this can be very useful and will help with the above questions.
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Preamble

Integratiflg
the code
from
p r e v i o u s
Chapters

This chapter further develops many of the concepts introduced in
the previous chapters and also discusses some overall and related
issues.
In this chapter, I have built upon the issues of moving between
various modes, such as between VMs and between Real and
Protected modes. What happens to registers? What about the
stack? What are the address mappings?
I have further developed the discussion of interrupt handling for
Real and Protected modes.
I have also considered the issue of synchronizing between DOS
and Windows. For example, how does a DOS driver know when
Windows is loading? How do you get a virtual device driver to
cooperate with a DOS device driver? Or to cooperate with a
WinApp?
When writing the first edition of this book, I paid a lot of attention
to Standard mode. In this edition, I have considered it to be
“almost” history, so just about all of the code and description in
this chapter is geared toward Enhanced mode, i.e., requiring at



c

320 Windows Assembly Language & Systems Programming

A P I ,
W i n A p p s ,
at ring 3

16-bit
W i n A p p s
inferior to
32-bit
W i n A p p s ?

S y s t e m - l e v e l
a c c e s s  i n
W i n d o w s  9 5

Structure of
th is  chapter

Sometimes I feel quite disgusted with Miscrosoft,  because the
“playing field” keeps changing. For example, Windows 3.0 had
WinApps and the API DLLs running at ring 1, while DOSApps
ran down at ring 3. Then, in Windows 3.1, everything went down
to ring 3, including the DLLs. Windows 95 also has everything at
ring 3, except of course the “insides” of Windows, such as much of
the VMM (Virtual Machine Manager) and the VxDs (virtual
device drivers).

Actually, 16-bit Windows applications should not be viewed as
inferior, as it may turn out that they will give better performance
than equivalent 32-bit applications. As explained in Chapter 12,
all that is meant by 32-bit is that instructions in a 32-bit segment
default to address and size of 32-bits, and they no longer have the
64K segment-size limitation.

Sixteen-bit WinApps actually have some advantages when it
comes to global addressing and general messing around inside
Windows and with the hardware. Microsoft has tried to “close the
door” to low-level access for 32-bit WinApps, so there is no direct
access to the interrupts or the low-level API functions. All the
low-level facilities are still there, however, and will continue to be
there - it is a matter of knowing how to get at them. Sixteen-bit
WinApps running in Windows 95 have easy access to them, for
backwards compatibility reasons.
Most of the development that ended up in the first edition of this
book was on Windows 3.0, while for this edition I worked mostly
on 3.1 and 95. Some descriptions in this book will be more
appropriate to 3.x than 95 - I have tried to be clear on what target
environment I’m writing about.
You will find that the 16-bit code in this chapter works fine in
Windows 95.

The structure of this chapter is in two halves: the first focuses on
interrupt handlers for DOS and Windows, and the second focuses
on the transition between DOS and Windows, the smooth transfer
of control, and communication between TSRs, WinApps, and
VxDs.

Interrupt Handlers
Chapters 10 and 11 give the elements required for interrupt
handlers, and I have put various example programs on the
Companion Disk. This section develops the topic further.
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An interrupt handler that must work regardless of whether the
computer is running a DOSApp or a WinApp requires a number of
special considerations.
Rather than list complete example programs that go on for many
pages, I have given only partial listings here and focused on
discussion of the various issues.
Chapter 10 shows a Protected mode ISR invoked from a WinApp
running in Protected mode. That is, the software or hardware
interrupt occurred while the CPU was in Protected mode. This is
the easiest case.
If the CPU is in Real mode at the time of the hardware or software
interrupt, and you want to pass control up to a Protected mode
handler, beware of various constraints. Chapter 11 introduced this
topic.

Example Protected Mode ISR Code
The structure of the Protected mode ISR in each case is somewhat
different:

; This is the same example ISR from Chapter 10 . . .
runtime:

int 60h
*isr for prot mode interrupts, via idt.I
;call old vector
; (it was saved in int-60 for convenience)

pusha
push ds
push es
mov ax,cs:hwndcs
push ax

;post message to window
,

push WM_USER ; ;
push 0 i
push 0 ; :
push 0 ;
call POSTMESSAGE :
mov es,cs:dsselector  ; for writing to data in code seq.
. . .
POP es
POP ds
popa
iret

; The ISR for interrupts reflected up from Real mode has
- a different structure . . .
kuntime2:

(refer Chapter 11) . . .

;isr for Real mode ints via ivt, reflected up to
;prot-mode. entered with ds:si = Real mode ss:ip,
;es:di = Real mode call structure,
.and interrupts disabled...
Ishould exit with es:di still pointing to Real mode call
;structure...

pusha
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push ds
push

;get addressabi?ty of data in code seg...
mov ax,cs:hwndcs ;post message to window
push ax ;
push WM_USER ; $
push 0 ;
push 0 I t
push 0 ;
call POSTMESSAGE ;
mov es,cs:dsselector ; for &iting to data in code seg.

pop es
POP ds
popa

-forI returning to Real mode prog prior to interrupt...
cld ;
lodsw ;

(de/scribed in Chapter 11)

mov es:[di].ipl,ax ;
lodsw ;
mov es:[di].csl,ax ;
lodsw I
mov es:[di].flagsl,ax ;
add es:[di].spl,6 ;

ican chain to original vector by putting it into callback
;data structure...
; mov ax,cs:segmentrealint
; mov es:[di].csl,ax
; mov ax,cs:offsetrealint
; mov es:[di].ipl,ax
;
iret

installint ENDP
;........................................................

END

Separate
/SRs for/VT

Note that there are two ISRs, one each for interrupts that come via
the IDT and those that get reflected up from Real mode via the

and JDJ IVT. With regard to the installation of these ISRs, note that I did
not hook the vectors as soon as the WinApp received the
WMTCREATE message, as this can, under certain circumstances,
impair the display of the window. Instead, I posted a message,
WM_USER+l, which at a later stage calls the install code (see the
complete program on the Companion Disk, in \WIN2REAL  and
further development in REAL2WIN).
With regard to exiting from the program, I did of course unhook
the vectors upon receipt of a WM_DESTROY  message.
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Problems/Issues with the Protected Mode ISRs

POSTMESSAGE() will work for both ISRs when Windows is
loaded in Enhanced mode. Even when running a DOS application,
PQS~SSAGE() will send the WM_USER message to the

immediately. In this example code, the
DPMICALLBACKO  function acknowledges receipt of the
WM_USER  by beeping the loudspeaker. Note that this beep
occurs as soon as you press a key - how can this be, since you’re
in a DOSApp? The answer is that the DPMI host, as the real
Windows kernel, switches VMs on a time-sliced basis and so flips
over to the system VM periodically to do housekeeping, including
sending the waiting WM_USER message to the callback function
for the window.

Another issue with the Protected mode ISRs is reentrancy. This is
especially a problem with hardware interrupts that can come in at
any time. Upon entry to the ISR, hardware interrupts are disabled,
but once you put in the ST1 instruction, they can occur. Note that
you would also send an End Of Interrupt (EOI) signal to the
interrupt controller chip to tell it that it is now allowed to send
more interrupts (this is done by the default handler, if you chain to
it). You could argue to avoid the problem by leaving the interrupt
flag clear - but this should not be done for too long. The same
point applies to the EOI signal - I did it by calling the original
handler (via INT-60 in the ISR reached via the IDT).
If you put in an ST1 (and an EOI has been sent in the case of
hardware interrupts), think about reentrancy. You may have to
organize the data used by the ISR to be dynamic (on the stack): I’m
thinking in particular of the data register structure, in which DPMI
passes the Real mode registers to and from the Protected mode
ISR.

The “DPMI Toolkit”, available f rom Qual i tas  ( see
http : //www. qualitas  . corn/),  has mechanisms for this.

In your .DEF file, FIX the code segment in place, and do not mark
it as DISCARDABLE. This will not stop Windows from
removing the segment from memory, but whenever your program
needs to access the segment it will be reloaded into the same place
- well nearly always!
If you get a selector alias to store data into the code segment, such
as a window handle to be used by the ISR, or even the alias itself,
for writing data to the code segment within the ISR, it will work.
The alias will not require updating, because the code segment
marked as FIXED in the .DEF file will remain at the same place in



Baiting  the If you look at the above listing on the Companion Disk, you’ll see
segments that I used GLOBALHANDLE  and GLOBALFIXO. The first
down returns a handle for a selector or segment address, while the

second Windows function locks the segment into that linear
address. This is the only sure way to stop Windows from moving
the segment, and it works in both Standard and Enhanced modes.
However, in Enhanced mode you can use GLOBALPAGELOCKO
to prevent paging, and guarantee that the segment is locked into
physical memory. What these functions will do for you is speed
up operation as the ISR’s  will be kept in memory (and you won’t
lose what you write to the code segment). They are not essential,
however.

B-n and the What about getting at data in the data segment from inside the
wayward ISR? No problem, because you can store the value of DS in the
data code segment. The data segment doesn’t even have to be FIXED,
segment because its descriptor will be automatically updated, unlike an

alias.

Some Ok, now for the DOS TSR interrupt handler. Actually, this is the
phi/osophic most fascinating part of the exercise. There is a bit of a myth that
points about you shouldn’t develop Windows-aware DOS TSRs and device
DOS drivers drivers, but should instead be going for virtual device drivers. The

DOS driver has a lot going for it.

“Using up” The fact that it takes up “valuable RAM real estate” in the tirst 1M
the first M is always brought up as a negative factor. However, this is not
ofpbysical such a big issue as it was in the DOS-only days. The same thing
memory goes for locking segments in place: the Windows textbooks make

a noise about how this is undesirable, yet in reality it isn’t if you
don’t lock too many bytes - this is assembly language, remember
(super compact). Lock as many segments as you want, and even
lock them in the first IM if you want. Note that Windows has
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memory (even though Windows may temporarily remove it). The
potential problem here is that Windows does not think that you
should be writing to the code segment, so will never “swap it out”.
Instead, it is just dumped, and when needed again it is copied from
the original on disk- so you lose your data.

None of this will work under Standard mode. Why am I even
bothering to discuss Standard mode - it’s dead, dead, dead.
Maybe in some remote parts of the world there are still people
running Windows in Standard mode. I promise not to mention it
again.

The Real Mode Handler
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functions for this (see above) and so does DPMI, apart from the
specifications in the .DEF file.
Put those TSRs  in that first 1M and don’t worry about it!
My little DOS TSR hardly impinges on the “valuable” 1M
anyway: it’s under 300 bytes. It hooks INT-9, which is a special
case hardware interrupt. Here it is, somewhat abridged:

;DOSTSR.ASM Hardware interrupt keyboard handler for
iWindows.
.286
int9 SEGMENT BYTE PUBLIC 'CODE'

ASSUME cs:intg,ds:intg
ORG lOOh

ins ta l l  :
jw s t a r t

oldoffivt2F
oldsegivt2F
winloaded
winmode
oldoffivt9
oldsegivt9
oldss
oldsp
tsrpspseg
isrbusy

DW 0 ;save old int-2F vector here.
DW 0 * /
DB 0 ;set when Windows is loaded, & viceversa.
DB 0 ;bit-O=l if Standard, =0 if Enhanced.
DW 0 ;save old vector here.
DW 0 * /
DW 0 ihost stack
DW 0 ;/
DW 0 ;seg. addr. of psp
DB 0 ; set to prevent reentrance.

i........................................................
s t a r t :

mov tsrpspseg,es ;save psp  seg .  addr .

; Test if this TSR already installed. If so, get out.

; Code for synchronizing and co-existing with DOS (save
* segment address of this PSP, get address of t'inDOS'J

1. flag, hook IVT vectors 28h, and maybe lCh)

;hook int-2Fh vector in ivt. Windows calls this with
;AX=1605h when it loads, with regs telling useful info,
*such as if loading in Standard or Enhanced mode....I
mov ax,352Fh ;get int-2F vector in ivt.
int 21h ; /
mov oldoffivt2F,bx ;save it
mov oldsegivt2F,es ; /
mov ax,252Fh ;hook int-2F
lea dx,runtimeaF ;set ivt vector.
int 21h I /

doit:
mov ax, 2561h ;hook INT 61h so signaller  can find
lea dx, callback ; forwarder in system VM, from
int 21h ; another VM.

I

;hook keypresses/releases  . . .
mov ax,3509h ;get int-9 vector in ivt.
int 21h ; /
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mov oldoffivt9,bx isave it
mov oldsegivt9,es /
mov ax,2509h ihook int-9
lea dx,runtime9 ;set ivt vector.
int 21h ; /

;
;initialise int-6Oh in ivt, as used to test if WinApp has
;hooked it...

push ds ;actually, this will be 0:O anyway,
; but make sure. (tough luck if some

mov ax,0 ; other App has hooked it!)
mov ds,ax
mov dx,O
mov ax,2560h ;put 0 into int-60.
int 21h ;(this hook will be in all Vmls) .
POP ds

’ lea dx,endprog+l7 ;point past all code in this
;module  (Note that an optimum program would relocate
;the install portion of code at the end, so it can
;be discarded).

shr dx,4 *compute # paragraphs to keep.
mov ax,3100h i terminate and stay resident.
int 21h ; /

;......_.................................................
runtime9:
;this is now the U8signaller'U.
;press/release...

it is entered at every key

;but only when in Real mode...
;First, I only want this ISR to work when Windows is
;loaded, so test winloaded flag...

cmp cs:winloacled,O  ;note cs override, since ds not set.
jne firsthurdle

chain:
jw DWORD PTR cs:oldoffivt9 ;chain to old int-9.

firsthurdle:
cmp cs:isrbusy,O
jne chain
mov cs:isrbusy,l ;prevent reentrance.

secondhurdle:
;we're in, but call old int-9 first, which will take care
;of EOI...

pushf
call DWORD PTR cs:oldoffivt9

*now setup registers....
’ push es 'saveI working registers

push ds ;
pusha I :
push cs ;set ds == cs
POP ds ; /

- Code to co-exist and synchronise  with DOS, if you want
1. to call DOS INT-2lh functions (only allowed above ODh)
; . . . test the "inDOS"  flag, wise to switch to a local
; stack, change to PSP of TSR, save "break"  setting and
; turn off, redirect INT's lBh, 23h and 24h, save
; extended error checking (whew!).
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sti ; EOI already achieved by call to old vector.
;
;next hurdle is to find out if Windows is in Standard or
;Enhanced mode.
;One way is to test INT-60 to see if it is hooked -- if
;not then we must be in Enhanced mode, as WinApp only
;hooks IVT in system VM. However all we will do is test
;winmode flag...

mov al, winmode
and al,1
jz Enhanced ;bit-0 =0 if Enhanced.

itandard:
jmp SHORT exit4

Enhanced:
*I will be a little bit fussy here. In theory, this ISR
icould be entered when the CPU is in the system VM, hence
;we will not want to do the transfer from another VM, as
;performed  by 2F/1685... though it appears that this will
;still function. Instead I have used 2F/1683 to query
;the current VM...'

mov ax,1683h
int 2Fh ;returns VM id in BX
cmp bx,l *l=system VMI
je Standard

i
*switch to the system virtual machine and call the forwarder
irogram...

mov ax, 3561h ; get int 61 vector address
int 21h ;
mov ax, 1685h - f&1685:

-->ES:BX
switch VM's and callback

mov di, bx ; ES:D; = callback address tint 61 hdlr)
mov bx,l ; BX = VM to switch to (system VM)
mov cx, 3
xor dx, dx ; DX:SI = priority boost (zero)
xor si, si
int 2Fh *switLh

. .
I to system VM and do INT 60

,
exit4:

; Restore host PSP, restore old break setting and IVT
; vectors lBh, 23h and 24h. Restore host stack.

popa *restore registers.I
POP ds ;
pop es ; :
POPf ; /

' Windows provides various extensions to INT-2Fh,  as introduced in Chapter 9. Int-2FIAX  =
1683h queries the current VM. No parameters are supplied to it, and it returns only one value:
the Vh4 ID number in BX. We expect the system VM to be number 1; however, it is possible to
confirm  this: after Windows has initialized all virtual device drivers, it then calls
INT-2F/1608h,  to inform the DOS device drivers (or TSRs).  Windows supplies the system VM
ID number with this call.
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mov cs:isrbusy,O ;allow reentrance.
iret *returnI from interrupt.

;........................................................

callback:
;this is the forwarder, entered from the signaller in
;another VM, via the int-2F/1685h mechanism...

push es ; save working registers
pushds ; . .
pusha ; . .
sti ;essential.
mov ax, cs ; set DS == CS
m o v  d s ,  a x
m o v  a x ,  356011. I gei'current  INT 60 vector address
int 21h ; . .
m o v  a x ,  e s ; is there a WinApp handler?
or ax, bx ;
jz done60 ; if'not, don't call it!
int 60h ; call WinApp

done60:
popa ; restore registers
POP ds
POP es ; . .
iret ; return to other VM.

;........................................................
runtime2F:
;entered when Windows loads, with AX=1605h,  and when
;Windows unloads, with AX=1606h....
;detect  when Windows loads, and set a flag so that
;runtime9 will be activated...

sti ;documentation  says this req'd.
cmp ax,1605h ;test if Win is loading.'
jne notload
cmp cx,o *this must always be 0, else error.I
jne notunload
mov cs:winloaded  ,l
mov cs:winmode,dl

notload:  c m p ax,1606h  ; t e s t  i f  W i n  i s  u n l o a d i n g . ’
j n e n o t u n l o a d
mov cs:winloaded,O

n o t u n l o a d :
jmp DWORD PTR cs:oldoffivt2F ; o l d  int-2F.

;......_.........................,.......................

’ This is a very interesting extension to INT-2Fh.  Function 1605h  is called by Windows when it
first loads. This enables DOS device drivers and TSRs to perform any necessary initialization.
It is important to follow the rules here, by first enabling interrupts and then calling the old
INT-2Fh vector. The latter is because other drivers/TSRs  may have hooked the vector. CX
must have zero. If you for any reason decide that Windows should not go ahead and load, then
put a non-zero value into CX and IRET:  other drivers have the option of doing this also, which
is why we called the old vector. Windows also supplies ES:BX = 0:O in Standard mode, DS:SI
= 0:O; DX bit-0 = 1 if Windows in Standard mode, =0 if Enhanced mode; and DI contains the
version number = 030Ah for version 3.1.

2 This is the opposite of 1605h,  called by Windows when it unloads. Windows supplies DX bit-0
= 1 for Standard mode and = 0 for Enhanced mode.
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DA9
c o n t e n t i o n

The entire program was too much to print, hence the sections in
italics. The complete program is on the Companion Disk;
however, if you know much about TSRs there is sufficient
information in this listing for you to construct it.

One interesting little point about this code is that we obviously
don’t want to try jumping VMs if Windows isn’t even loaded, and
indeed the INT-2Fh extensions are not even available until
Windows is loaded. At one stage in the program’s development, I
did call INT-2F/1685h to switch VMs before Windows had
loaded, and before I had put in the “winloaded” checking - and it
worked! Or rather the switch didn’t take place, so nothing
happened. However, on another computer it crashed. The only
difference I can see is that the one that worked was running
DRDOS version 6, and the one that failed was running MS-DOS
version 5.

At this stage of the game you should be able to follow through the
logic of DOSTSR.ASM. Note that INT-60h in the IVT is hooked
by the WinApp and is where the Protected mode ISR is located.
INT-61h is hooked by DOSTSR itself, merely to pass its own
forwarder address to the same DOSTSR in another VM.
Paradoxically, there is only the one TSR, and they only appear to
be in different VMs - all virtual addresses map back to the same
physical addresses. However, the DOSTSR, while executing in
another VM, does not necessarily know the segment:offset address
of the forwarder in the system VM.

Something else you should pay some attention to when developing
robust code is the possible contention if more than one VM wants
a piece of the action at the same time. That is, programs in two
different VMs enter the TSR and work on the same data. Crash!
Anticipate this and either design the data to be reentrant or force
instantiation by an entry in SYSTEMINI, or use INT-2Fh/l605h
to create instantiation of specific data areas (see Writing Windows
Device Drivers by Daniel Norton, Addison Wesley, 1992, page
170). Or prevent reentrancy, as I did with my demo program. See
earlier notes on the problem of reentrancy on page 323.



330 Windows Assembly Language & Systems Programming

Device
drivers for
DOS and
Windows

DOS TSRS
and
Windows

7m2w//
example
code

DOS-to-Win Device Driver/TSR
This book, so far, has dealt with various issues of how a DOS
program (and TSR) can communicate with Windows and
Windows programs. Now the picture is to be tilled in a little more.

One thing that you may have noticed with some hardware
products, such as network cards, is that they come with hyo sets of
device drivers: one for DOS and one for Windows. Actually, in
most cases, the DOS driver will work under Windows, but less
efficiently than one written specifically for Windows. The reason
for this is that Windows has to pass control down to V86 mode, to
access the DOS driver, which means time overhead.
To be more correct, there are three different types of device
drivers, because the old Standard mode (sorry I’m mentioning it
again!) cannot use virtual device drivers. However, I won‘t worry
about Standard mode drivers.
Therefore, a logical question arises: if you install a DOS device
driver via the CONFIG.SYS tile, that will be tine for DOS, but if
you then load Windows, which will load device drivers specified
in the SYSTEMJNI file, how do you avoid the two drivers
clashing?
Now apply this line of thinking to TSRs. You have a DOS TSR,
which, as described earlier, you can make Windows-aware.
However, the same problem exists - a TSR is written for Real
mode. Therefore, maybe you would like an automatic transition to
take place from the TSR to a Windows application.
For both the device driver case and the TSR case, you want a
smooth and transparent mechanism for transferring to an
equivalent Windows program. Microsoft has catered to this need.

Automatic Loading of Windows Programs/Drivers

The example code for this section is on the Companion Disk in
directory \TSR2WIN.  It contains a TSR, called TSR2WlN.ASM,
that assembles and links to TSR2WIN.EXE.
What this TSR does is detect when Windows is loading,
automatically loads a virtual device driver (VxD), and also loads a
Windows application. Note that you could just as easily have
loaded the virtual device driver from a DOS device driver: the
principle is the same.
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Another bonus of this TSR is that it establishes a global data area
and provides a FLAT 32-bit linear address for it that the Windows
application and the device driver can access.

An interesting aspect to how this TSR works is that neither the
VxD nor the WinApp need to be specified in a IN1 file.
It is usual to put a “DEVICE= ” line inside SYSTEMIN,  to cause
a VxD to load, but the TSR will load the VxD without such a line.
Furthermore, although Microsoft recommends that all VxDs
“should” be in  \WINDOWS\SYSTEM  d i r e c t o r y , the
documentation does not say that they “have” to be. Thus, you can
put your VxD anywhere.

TSR Installation

Essential portions of TSR2WIN are reproduced here, and this is
sufficient for you, without having the original source files from the
Companion Disk, ifyou are familiar with basic TSRs.
Reproduced below is the portion of the installation code that sets
up the data structures required for auto-loading of the VxD and
WinApp.

A vital point must be brought out now. I chose to put the TSR,
TSR2WINEXE, “inside” the VxD as a DOS stub.
All Windows programs have a DOS stub, which is a DOS program
that resides inside the Windows program. Should the user execute
the Windows program from the DOS prompt, only the stub will
execute. It is usual for the DOS stub to display a simple message
that you need Windows to run this program, then it terminates.
Putting the TSR inside a VxD is easy. I have placed a typical
.DEF file, used for linking a VxD, in directory \TSR2WIN,  and
this file is called VDEMOD.DEF. It shows how easy it is to
specify the TSR as a stub to the VxD.
It is not essential to do this, but it offers a simplification: for the
TSR to automatically load the VxD, the TSR needs to know the
path of the VxD. If the path is fixed, then you can specify it in the
TSR, or maybe you could pass it to the TSR on the DOS command
line-tail (when loading the TSR). Or, by having the TSR inside
the VxD, the TSR need only look at its own path to determine
where the VxD is!
It was an arbitrary choice, but I chose to put the WinApp in
another directory and have specified the path in the TSR, but I
could have also put the WinApp in the same path as the VxD.
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Stmt of TSR2WfN TSR

;TSR2WIN.ASM --> TSR2WIN.EXE
;this is a windows-aware tsr, that is loaded before
iwindows.
;When windows loads, this tsr will automatically cause a
*windows application to start,
Iload a virtual device driver.

*and* will automatically

;This tsr must *not* be a separate file --
*it is specified as the "dos stub" for the virtual device
idriver (VxD) that is to be automatically loaded.
; -- if your only requirement is to auto-load a windows
;app, then you can have this tsr stand-alone (or as stub
-for the WinApp).I

.the windows application is called WINAPP.EXE
Ithe virtual device driver is called VDEMOD.EXE
. -- WINAPP must be in the root directory (or path spec'd
ibelow) -- VDEMOD.EXE can be anywhere.
;An interesting aspect of this tsr, is that it creates a
;global data structure, and passes a FLAT 32-bit pointer
;via the IVT -- WINAPP and VDEMOD can access this
; pointer.

;Note that this is a .EXE file, but data is in the code
;segment -- makes it easier to make into a tsr.

286
:M~DEL SMALL
.STACK
.DATA
;........................................................
.CODE
start: jw installhooks

winloaded
dpmiloaded
winmode
oldoffivt2F
oldsegivt2F
oldoffivtlC
oldsegivtlc
oldoffivt9
oldsegivt9
oldoffivt28
oldsegivt28
bypasslC
bypass28
dosbusyoff
dosbusyseg

DB
DB
DB
Dw
DW
DW
DW
DW
Dw
DW
DW
DB
DB
DW
Dw

0
0
0
0 ;2F saved vector.
0 ; /
0 ;lC! saved vector.
0 ; /
0
0
0
0
0 ;fix reentrancy problems.
0 ; /
0
0

WIN386 STARTUP_INFO_STRUC STRUC
SIS~ERSI~N DB 3,O ;3,OAh for Win3.1.
SIS-NEXT PTR DD 0
SISIVIRTIDEV_FILE_PTR DD 0
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SIS REFERENCE DATA DD 0
SIS-INSTANCE DATA PTR DD 0
SIS~Opt_InstZnce_~ata_Ptr DD 0 ;extra field Win95 only.

? ;i.e., if put 4,0 into first field.
WIN386_STARTUP_INFO_STRUC ENDS

InetData Win386_Startup_Info_Struc  c>

TSR Info StrUC STRUC
-TSR Next dd ?
TSR-PSP Segment dw ?
TSR-API-Ver ID dw lOoh
TSR-Exec Flags dw 0
TSR-Exec-Cmd Show dw 0
TSR-Exec-Cmd- dd 0
TSR-Reserved db 4 dup (0)
TSR-ID Block dd 0
TSR-Data Block dd 0

TSR_Inf%_Struc  ENDS

tsr info TSR INFO STRUC <>- - -
Exec_Path_Name  db "C:\WINAPP.EXE",O,O

;path & filename of windows app.

psp_size DW 0

My-ID-Block dw ?
My-Name db 'TSR autoload WinApp & VxD',O
My-Name-End LABEL BYTE

;this ptr must get put into INT-60h....
INCLUDE GLOBL.INC ;global data, accessed by

- WINAPP/VDEMOD.
globaldata GLOBALSTRUC&E  <> -instanced here only, but

; include file muit be in other programs.

D a t a Notice the two data structures above: TSR_INFO_STRUC,  and
structures WIN386_STARTUP_INFO_STRUC.

GLOBLJNC  is not part of loading the VxD and WinApp: it has to
do with global data between all programs.
I have left out most of the “ho hum” installed portion of this TSR
and reproduced only the interesting bits; however, you first need to
examine the installation code. Therefore, I have turned this listing
around and shown the install code immediately below:

DB 17 DUP(0) ; Resident part is above here!
dumpme:
.********************************************************
installhooks:
-is this tsr already installed?... i have given it a
isignature  of CCh...

push es ;just in case
mov ax,OCCOOh ;AL=O is install-test code for
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* my 2F handler.
int 2Fh ;multiplex'interrupt  (that we will hook)
POP es
o r al,al ;AL=non-0 means abort.
jz abba
jmp abort load

abba :
;********************************************************

push cs
POP ds ;note cs: overrides thus not really reqd.

;get a pointer to the name of the load file in the
-environment seg.I entered with es=psp...

mov ax,es
mov bx,cs
mov WORD PTR cs:[TSR_info.TSR PSP Segment], ax
sub bx, ax - size Tin paras) of PSP
mov WORD PTR cs:[PSP_Size]: bx
mov bx,2ch *environment segmentI
mov es,es:[bxl
xor di,di
mov cx,-1 ;big number
xor al,al ;search for a null
cld

qq:
repne scasb ;get past one null and stop
cmp byte ptr es:[dil,O ;another null
jnz qq ;no.
add di,3 *skipI the word before the name.

Setting UP the Continuing from above, look now at setting up the data structure
VxD data for the VxD.
structure

. prepare part of the instance data list. Stuff in
1 pointer to the file name
; and reference data
mov word ptr CS:[instdata.SIS_Version],OAO3h
mov word ptr CS: [instdata.SIS_Virt_Dev_File_Ptrl  ,di
mov word ptr CS:[instdata.SIS_Virt_Dev_File_Ptr]  [2],es
mov word ptr cs: [instdata.SIS_Instance_Data_Ptr],O
mov word ptr cs:[instdata.SIS_Instance_Data_Ptr] [2],0

;notes: above code searches the environment-block,
;looking for fully-specified path/filename of this file,
;then, inserts this address (es:di) into instdata.

Path of
the VxD

A point of clarification about the above code is needed. A data
structure has been filled in that Windows requires for loading the
device driver. We need to provide its path, so the code looks into
this TSRs  PSP, where the path/filename is kept (we can reuse the
filename for the VxD, since the TSR is embedded in the VxD).
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Segmeflt This code should be easy to read, but do note that this TSR is
structure .EXE format, which means that the PSP is a separate segment
of TSR from the code segment. I haven’t used the data segment. For the

SMALL model, the code segment and PSP get loaded into
memory contiguously; that is, the code immediately follows the
PSP.
That is why, to get the size of the PSP, I merely subtracted ES
from CS (as ES initially points to the PSP segment).

;next problem, is we need to force WINAPP, our windows
I* a p p l i c a t i o n , t o  l o a d . . .

; In i t ia l i se  length  of ID s t r i n g . . .
mov WORD PTR cs:[My_ID_Blockl,OFFSET  My-Name-End - \

OFFSET My-Name

Setting UP tbe The following code, which is another data structure required for
WinApp data launching the Windows application, continues from above
structure -

mov WORD PTR cs: [TSR_Info.TSR_Exec_Cmdl, \
OFFSET Exec Path-Name

mov WORD PTR cs:[TSR Info.TSR Exec Cmd+21 ,cs
mov WORD PTR cs:[TSR~Info.TSR~Exec~Flagsl,  1

;=TSR_WINEXEC
mov WORD PTR cs:[TSR_Info.TSR_Exec_Cmd_Showl,  4

;=SW_SHOWNOACTIVATE
mov WORD PTR cs: [TSR_Info.TSR_ID_Blockl, \

OFFSET My ID-Block
mov WORD PTR cs:[TSR Info.TSR ID Block+27,  cs
mov WORD PTR cs:[TSR-Info.TSR-DaFa  Block], 0
mov WORD PTR cs:[TSR~Info.TSR~Data~Block+21,  0

Path of the As mentioned earlier, my choice to put WINAPP.EXE into a
WinApp different directory is done here purely to illustrate something

different. In practise,  you would most likely have it in the same
directory as the VxD. However, that option would introduce
another small complication: you would need to extract the path
from the environment segment and append the filename
WINAPP.EXE (or whatever).
To see more detail on a couple of those fields, refer to Appendix
D.
Hooking the vectors follows:

;get th;ha;yh of the dos-busy flag...
mov
int 21A ;-->es:bx
mov dosbusyoff,bx
mov dosbusyseg,es
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mov ax,352Fh ;get int-2F vector in ivt.
int 2Ih /
mov oldoffivt2F,bx ;save it
mov oldsegivt2F,es /
mov ax,252Fh ihook int-2F
lea dx,runtime2F ;set ivt vector. ds:dx
int 2Ih I /

; . . . hook any other vectors required . . .

FLATpoinfef This is the nice final touch.
to global data

*finally, pass the address of our global data...
’ lea dx,globaldata

mov ax,ds
shl ax,4 I*convert para. to offset.
jc over64k
add dx,ax ;get FLAT linear 32-bit address
xor ax,ax ;
mov ds,ax ; f -->ds:dx

bb2:
mov ax,2560h ;hook int-60h
int 2Ih
push cs
POP ds ; restore ds
jmp SHORT bb3

;i.e., real address is segment=O,  offset=dx  (works only
;if in 1st 64K).
;WINAPP can check the hi 2 bytes of int-60h ivt, to
I*confirm that they
tare zero, and that no other program has overwritten.
;no, be careful... take care of over 64K...
over64k:

add dx,ax ; as above (not likely to produce carry)
mov ax,1 I*this is the carry.
mov ds,ax
jmp bb2

bb3:

;terminate, leave resident....
lea dx,dumpme ;point past all code in this module.
shr dx,4 ,*compute # paragraphs to keep.
add dx,psp_size ; /
mov ax,3100h I.terminate and stay resident.
int 21h ; /

abortload:
call longbeep
mov ax,4COOh ;don't make resident.
int 21h
END start
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U n i v e r s a l
g l o b a l
p o i n t e r

The hooking of IVT vectors in the above code is very ordinary, but
you will find the creation of the global data and FLAT linear
address to be interesting.
A slightly negative point about this global data is that it is in the
first lM, i.e., conventional memory.
The FLAT address is simple to calculate, because it is just an
addition:

DS* 16 + OFFSET globaldata
It is actually only 16 or 17 bits in size, as this TSR is close to the
start of linear memory, so the higher bits are zero. I stuck this
pointer into the IVT, at entry-60h, which is a convenient place
from which the VxD and WinApp can retrieve it. IVTdOh is thus
not in conventional segment:offset form!

How a WinAppThis  FLAT pointer is immediately usable by the VxD. All that the
& VxD can VxD needs to do is get it out of the IVT.
accessglobal 0 d’
d a t a

r mary 16-bit  or 32-bit Windows applications can also use the
FLAT pointer, but they do need to obtain a ring-3 FLAT data
selector. The global data can then be accessed in this manner:

mov es,flatr3selector ;FLAT d a t a  s e l e c t o r ,  r i n g - 3 .
m o v  ebx,lpglobaldata ;FLAT  l i n e a r  p o i n t e r ,  f r o m  i v t - 6 0 h .
mov es : [ebxl .GLOBAL, 1 ; a c c e s s i n g  a  f i e l d  o f  g l o b a l  strut

The above code sample is not from the TSR - it shows how a
WinApp can access the global data, where GLOBAL is a field of
the global structure.
There are various ways to obtain a FLAT data selector. One thing
that you could do is make an alias of DS and then modify the base
address in the descriptor (if you can locate the LDT! - see
Chapter 12).
Another way is for the WinApp to go to ring 0 and call a VMM
service to create a FLAT ring-3 data selector - the service to call
is GETAPPFLATDSALIASO,  described in the DDK. If you have
a VXD as part of your system, you can get it to call this function
and pass the slector back to the WinApp.
A great advantage to using GETAPPFLATDSALIASO  is that the
returned selector is in the GDT and will thus continue to work
across VMs. This is not such an issue with Windows 3.x and 95,
because all WinApps run under the same LDT, but beware
Windows NT.
The word of warning here is that if you want your selectors to be
global across 32-bit  Windows NT applications, which will run
with private LDTs, then put your selector into the GDT
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Now for the part that actually loads the VxD and WinApp.

TSR Resident Code

/NT-2fh The resident code monitors IVT-2Fh and detects when Windows is
h a n d l e r loading, as follows:

runtime2F :
;entered when Windows loads, with AX=1605h, and when
;Windows unloads, with AX=1606h....
;detect when Windows loads, and set a flag . . .

sti ;documentation  says this reqld.

cmp ax,1608h ;Enhanced mode loaded.
jne nexttry
mov cs:winloaded,l
jmp SHORT go2F

nexttry:
cmp ax,1605h I-test if Win is loading
jne notload
cmp cx,o *this must always be 0, else error.
jne goerror2F ’
mov cs:winmode,dl ;bit-0=0 if Enhanced mode.
test dl,l ;test bit-0
jnz standardload

;..................................................
;inserts our vxd into vxd chain (see my book, Appendix D)

mov word ptr cs:[instdata.SIS  Next Ptr],bx
mov word ptr cs: [instdata.SISINextIPtrl  [21,es
push cs
POP es ;chain, with es:bx ptg to our instdata
lea bx,InstData ;structure (our VxD data structure).

;...............
standardload:

jmp SHORT go2F
;..........
notload:

cmp ax,1606h I*test if Win is unloading.
jne notunload
mov cs:winloaded,O
mov cs:dpmiloaded,O
jmp SHORT go2F

;.....*....
notunload:

cmp ax,lCOBh ;used for tsr registration with windows.
jne giveitanothergo
jmp dorego

;.....
giveitanothergo:

cmp ax,1687h
je go2F *otherwise will get in endless loop!
cmp cs:dpmiloaded:O
jne go2F ;for all other cases, exit.

; . . . .
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;after Windows has loaded, if we want to hook the IDT,
;need to test if ok...

cw cs:winloaded,O
je go2F

;a problem exits... what if come here before the idt
;properly setup?...

pusha
mov ax,1687h *testI for dpmi host
int 2Fh
cmp ax,0 *ax=0I if dpmi host present.
jne exit5
mov cs:dpmiloaded,l

exit5: rma

jmp DWORD PTR cs:oldoffivt2F
;........................................................
dorego:
; return a pointer to the TSR structure...
mov WORD PTR cs:[TSR Info.TSR Next], di
mov WORD PTR cs: [TSR~Info.TSR~Next+21, es
push cs
POP es
mov di, OFFSET TSR-Info ;this chains the tsr data
jmp go2f ;structures.

;........................................................

R e f e r e n c e
sources

The TSR data structure is particularly interesting, because it
allows you to pass various information about your TSR to
Windows (see Appendix D). Also, for Microsoft Developer
Network (MSDN) members, the January 1997 set of CD-ROMs
has further information on this topic in the Archive Library
CD-ROM.
You can control whether your TSR is instantiated in each VM or
not. The default is not, which means that every VM maps back to
the same TSR. In most cases, this is highly desirable, including
our case of a global data area in the TSR.

Getting it Together

Testing the \TSR2WIN  directory on your version of the Companion Disk may
programs contain the executables,  in which case you can run them

immediately. You will need to place WINAPP.EXE  into C:\, i.e.,
the root directory of the C: drive. VDEMOD.EXE can be
anywhere. From the DOS prompt, not a DOS box inside
Windows, go to the directory that has VDEMOD.EXE and run it
by typing “VDEMOD”. Then type “WIN” to load Windows.
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The loudspeaker should start a continuous tone, letting you know
that the VxD has loaded. Then, the WinApp will load. When I
first did this on Windows 3.1, up came the Program manager, but
not my WinApp - where was it? This is interesting -
WINAPP.EXE loads before Program Manager, so it is hidden
underneath.
This is not a problem with Windows 95, and you should see the
WinApp appear on the desktop. Mind you, it’s a stupid WinApp,
as you’ll see.

Assembling To assemble and link everything, type this:
and linking

C:> nmake /A winapp.mak
C:> copy winapp.exe c:\
C:> nmake /A tsr2win.mak
C:> nmake /A vdemod.mak

You must assemble and link TSR2WIN before VDEMOD.

V!D-Lite To assemble and link VDEMOD, the VxD, you need special tools
and Include files from the Device Development Kit (DDK), which
normally means that you have to join the MSDN (which means
considerable expenditure!). There is, however, VxD-Lite, which
Microsoft did provide free a couple of years ago. It is now
withdrawn and I was unable to obtain permission to place it on the
Companion Disk. Although VxD-Lite targeted Windows 3.1
systems, the VxDs will run fine in Windows 95 - a VxD is a
VxD.
You can find VxD-Lite bundled with Writing Windows Virtual
Device Drivers by David Thielen and Bryan Woodruff,
Addison-Wesley, 1994. Although this book is still in print, the
publicity does not mention VxD-Lite - as one of the authors
works for Microsoft, I fear the worst. Locate an older copy
somewhere!
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Preamble
Chapter 12 shows how a 16-bit  Windows application (WinApp)
can access 32-bit ring-0 code. Chapter 13 shows how to construct
a “pure” 32-bit ring-3 WinApp. Chapter 14 shows how DOS
applications (DOSApps), Winapps, and Virtual Device Drivers
(VxDs) can communicate. In Chapter 14, the communication is
established by the DOSApp while Windows loads.
Much of this book has described how BIOS and DOS interrupts,
plus the interrupt extensions (31h and 2Fh in particular) provided
by Windows, can be used. However, this is all from the viewpoint
of a 16-bit  DOSApp or WinApp.
Execution of an interrupt causes a processor exception, and the
Windows handler is in most cases in a 16-bit segment. Therefore,
a 32-bit WinApp cannot use the interrupt services, even though
they are there and likely to stay there for future versions of
Windows.
Just as Chapter 12 shows an application going from a 16-bit
segment to a 32-bit segment (called ~hunking), it is necessary for a
native 32-bit WinApp to thunk down to 16-bits to use the
interrupts! Thunking is introduced in Chapter 8.
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Actually, Chapter 12 describes how a 16-bit application can go to
32-bit ring 0. It is interesting that Matt Pietrek,  in l%dows 95
Systems Programming Secrets (IDG Books, 1995),  describes a
32-bit WinApp that goes to 32-bit ring 0, but he does it by
thunking down to 16 bits and using the same techniques as
Chapter 12. It is amusing to see that Matt often has to resort to
assembler, due to the awkwardness of C

Chapter 14 showed how a DOSApp can get its hooks into a 16-bit
WinApp and a VxD, but this could also apply to a 32-bit WinApp.
It is quite feasible for a 16-bit WinApp to load, do all the low-level
dirty work, such as getting selectors to forbidden areas, then call
WINEXEC() to load a 32-bit WinApp. It is possible to pass
parameters to a 32-bit WinApp via the command line and really
easy to insert them into the argument passed to WINEXEC().
You could have a 16-bit  WinApp and a 32-bit WinApp, there is no
need for a DOS TSR, and run the 16-bit  WinApp first.

Demo code for I don’t have the room to put a detailed description into this
76- and 32-b/7 chapter, but there is demonstration code on the Companion Disk,
WinApp in directory \SHAREALL, that shows how a 16-bit  WinApp and
communicator a 32-bit WinApp can communicate and share data.

This chapter This chapter is a mixed bag. I have likened the learning process to
climbing a ladder, as illustrated in Figure 15.1.
This book is intended to satisfy all the alternative needs of the
pondering man, sitting with hand to mouth. It is the nuts and
bolts, not the latest high-level techniques such as programming
using visual 00 components in Borland’s C++Builder. Move onto
those tools if you want, and you may well do, to produce major
applications. You may also move deep into VxDs, and again, I’ve
led you to the point where you can jump in - to the “brink” so to
speak.
I also make no apologies for focusing strongly on 16-bit
programming and the software interrupt services, as the needs of
our pensive man in Figure 15.1 will remain valid for many years to
come.
What I do need to do in this last chapter is fill in a few gaps and
make some suggestions. After that, go where you will . . .
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Figure 15.1: The ladder of learning.

I’ve got this DOS application . . .
I

c++
it’s overdue for porting to Windows Object orientation

I’m a student and I want to learn the
nuts and bolts, before progressing

DOS Protected mode extensions

Assembly language

PC architecture

_ CPU architecture

Mapping Across VMs
The question arises: when a new VM is created, just what is
copied and what is mapped back to the original? Figure 15.2
clarifies this.
You will observe some interesting features of this mapping.
For a start, consider the TSR loaded before Windows. Because it
is a one and only instance, any data in it is global across all VMs.
Think about this - it may be good from the point of sharing data,
but there are no safeguards. If one program accesses the TSR and
causes its data to be modified, perhaps that will clash with another
program’s use of the TSR.
Commercial TSRs may not be designed with this in mind, so it
seems wise to minimize TSR requirements prior to loading
Windows.

G l o b a l
mapping

Notice something else: according to my experiments, it appears
that the entire high memory, that is the segment starting at
FFFF:OlOh, is mapped back to the original and thus shared across
all VMs.
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This experimenting was done on a particular system configuration,
and I cannot guarantee it to be the same on other systems.
Do not take Figure 12.1 as the gospel truth for all situations, but as
a starting point for your own investigations. Note that there may
be some “upper memory blocks” that are global also.

If you want to investigate this topic further, note that instantiation
can be forced. For example, a device driver can be actually copied
to all VMs, rather than all VMs mapping back to the original.
Thus the memory illustrated in Figure 15.2 is configurable, which
is why you should take it as a guide only. Instantiation can be
forced by an entry in the SYSTEM.INI file. This works at the
level of files, and you can find how to do it from Microsoft’s
documentation on the SYSTEMJNI  file. However, it is also
possible to force instantiation at a lower level, for example, certain
data areas. Refer to Writing Windows Device Drivers by D.
Norton, Addison Wesley, page 170.

Mapping the 4.3G Linear Address Space of a VM to
Physical Memory

I have introduced the question of how the VMs map between each
other and physical memory from the point of view of the first 1M
region, but what of the entire 4.3G of linear memory?
Figure 15.2 shows the mapping below lM, that is common
between VMs. However, each VM, including the system VM, can
have its own Protected mode so each can address a linear address
space of 4.3G. To give a complete picture, I have elaborated
below on the question of common mapping of physical memory.

In each VM, if the CPU is in Protected mode (not V86 mode), the
selector:offset address is translated via descriptor tables to a linear
address. This is described in Chapter 1.
In the case of 286-based Windows Standard mode, the linear
address is also the physical address, and there are no virtual
machines (though there can be). The linear address in this case is
24 bits and can address 2”24  physical locations.
Windows Enhanced 386-based mode uses the extra step of paging,
thus the linear address no longer corresponds with the physical
address. However, this 32-bit linear address gives the 4.3G linear
address space we are talking about. Paging will map it into a
much smaller physical memory space.
First, a note on the first 1M of a VM. The system VM’s  V86
portion, being the first created, is mostly below the physical 1M.
The mappings of Figure 15.2 on page 343 apply, but the virtual
addresses, such as the “free” RAM within the 640K, map directly
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to the actual nhvsical  conventional memorv. The “free” virtuala * .

conventional RAM of other VMs will be physically in extender
memory.

Figure 15.2: Global memory below 1M.
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Considering the Protected mode of the system VM, Windows runs
the WinApps at the linear address ranges:

0000 0000 to OOOF FFFF
8050 0000 to 80FF FFFF

The first region is below lM, wherever Windows can find some
free RAM. The second region may seem like an amazingly high
memory range, but remember that these are linear addresses, and
paging will map them into the available physical memory.
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Reference You may well wonder where I got these addresses from - the
sources source is the Soft-ICE/W User’s Manual. The address ranges

quoted here are what Windows 3.x currently uses, or so I’m led to
believe, but they are not guaranteed. Incidentally, Soft-ICE/W is a
specialised  Windows debugger, for Enhanced mode only, that is a
resident program and can be popped up at any time. It is about the
only tool available for debugging virtual device drivers and similar
tricky code. It is sold by NuMega  Corporation.
Specific information on Windows 95 addressing should be in the
latest Soft-ICE/W manual, and another reference is Inside
Windows 95 by Adrian King, Microsoft Press, USA, 1994.

32-bit The system VM has just one LDT, and all the 16-bit WinApps
WinApps have one set of pages tables. Each 32-bit WinApp has its own set

of page tables. Therefore, each 32-bit WinApp can be mapped to
physical memory totally independently of any other application.
They sit in linear address range 2G to 4G, but of course big chunks
of the linear address range map back to the same physical memory
as other WinApps, DOSApps, and Windows.

Reference The best places to look for extreme detail on this mapping is
books Unauthorized Windows 95 by Andrew Schulman, IDG Books,

USA, 1994, and Windows 95 Systems Programming Secrets by
Matt Pietrek, IDG Books, 1995.

Accessing DPMI allows us to obtain a selector for a particular linear address
physica/ (see functions OOOOh and 0007h),  but what use is that to us if we
memory don’t know what the linear address represents?
from a VM One extremely interesting aspect of Windows 3.x mapping of the

4.3G virtual space is the linear address starting from 0040 0000.
This range maps directly to physical memory. Again, I cannot
guarantee this for all versions of Windows. Thus, if you wanted to
access the physical video buffer at segment:offset AOOO:OOOO,  you
would convert it to a full 32-bit linear address, OOOA 0000, and
add it to 0040 0000. That is, 0040 0000 maps directly to physical
address 0, and 004A 0000 maps to the physical video-RAM.

32-bit Chapter 12 shows that the VxDs use 32-bit ring-0 selectors 28h
WinApp and 30h that are in the GDT. These are FLAT selectors, having a
selectors base address in the descriptors of zero. Thus the linear address

range from 0 to 4.3G is addressable.
Ring-3 32-bit WinApps use a code segment selector of 13Fh and
data segment selector of - well, I don’t want to gurantee that it
will always be the same. You can look at the segments using a
debugger.
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The same selector value is loaded into DS, ES, FS, and GS, and it
is extremely interesting that the type of selector has the expand
down limit of lM, that is, must be greater than 1M. This prevents
data accesses into the first 1M of linear memory, that maps in the
DOS VM.

The above description of linear addresses that map to physical are
not the only method for getting at physical memory from Protected
mode.
There is a DPMI function that performs mapping between a linear
address and a physical address: function 0800h’ (Physical Address
Mapping). You supply it with a (32-bit) physical address and it
will give you a (32-bit) linear address. You could then use
function 0007h (Set Segment Base Address) to put the linear
address into a descriptor. Of course, the descriptor would have to
have been previously created, for example, by function OOOOh.
Curiously, function 0800h is not recommended for addressing
below physical lM, I presume because there are other DPMI
functions for that purpose.

Windows does set aside other parts of the linear address space for
special purposes. For example, the DOS VMs are located at linear
address range:

8100 0000 to FFFF FFFF

If you’ve been following this with an attentive mind, you may see
a problem here - won’t each DOS VM be in its own completely
isolated virtual address space? Yes, but this is an example of
where Windows maps different virtual addresses to the same
physical place. Thus, from the system VM you can use the above
address range to access the DOS VMs, just as though they exist
within the system VM.
Another reserved area in the VM is the range:

8000 0000 to 803F FFFF

where the virtual device drivers are kept.
We lump a DOS V86 VM and its Protected mode together as one
VM, so each VM has its own attached Protected mode and hence

’ Intel’s DPMI specification has various warnings about function 0800h:
This function should only be used by clients that absolutely require direct access to a memory
mapped device at physical addresses above 1 M. Clients should not use this function to access
memory below the 1 M boundary.
Programs and device drivers that need to perform DMA I/O to physical addresses in a
virtualised hardware environment should use the Virtual DMA Services.
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its own 4.3G space. However, there needs to be a further
clarification - what about overlapping of the addressing while in
Protected mode or in V86 mode? Yes, the two do overlap. V86
addresses linear address range:

0000 0000 to OOOF FFFF

But Protected mode in the same VM, when addressing this same
range of linear addresses, also maps to the same physical
addresses.
This may be a somewhat esoteric point and so may not be
something to be concerned about. However, I have thrown in this
clarification in case the conceptual conflict has arisen in your
mind. In fact, you can also access that same physical address
range at Protected mode linear addresses “somewhere” above 8100
0000 (mentioned above).

The Windows/DOS/DPMI
Relationship
This section develops further the relationship between DOS and
windows. What are the extensions to DOS provided by Windows?
Just what is the relationship between the Windows kernel and the
DPMI host?

Windows Extensions to INT-2Fh

I would like to complete the coverage of the Windows extensions
to INT-2Fh, by discussing some more that can be very useful for
DOS drivers and TSRs.  The others are covered at various points
through the book, namely Chapters 9, 10, and 11, and can be
located via the index. I introduced INT-2Fh in Chapter 8 and have
provided a detailed summary of all INT-2Fh functions in
Appendix D.

l INT-ZF,  AX = 1600h
This function queries the version number of Enhanced mode
Windows. It returns AL, and if the value is less than 3 or
greater than 127 then Enhanced mode isn’t running.
Otherwise AL = 3 and AH = OAh for version 3.10.

. INT-2F, AX = 1680h
Function 1680h yields the current VM’s  time slice. You
would call this if your current VM isn’t doing anything and
you want to try and improve efficiency by releasing it.
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INT-2F, AX = 1681h,  168231
Function 168 Ih tells Windows not to switch VMs, whereas
1682h says go ahead. If your code is going into a critical
section and must not be interrupted, then use these two. Note
however that hardware interrupts still do happen.
INT-2F, AX = 1684h
Function 1684h gets an address for calling a VDD and getting
information from it. The VDD ID is passed via BX and the
function returns the Real mode address in ES:DI. If it returns
NULL, the VDD does not provide Real mode services.

The Windows/INT-2Fh Relationship

To get a deeper feel for INT-2Fh and its relationship with
Windows, I have placed a program on the Companion Disk that
monitors all INT-2Fh Real mode calls via the IVT and logs them
to either the printer or screen. The traffic over this interface is
fascinating. INT-2Fh is Windows’ main method for letting DOS
device drivers know what is going on, and vice versa.
Windows can let drivers know when and how it is loading and
unloading, and DOS drivers can tell Windows the address of their
Protected mode code. Also, virtual drivers communicate with
DOS drivers over this highway.
What I suggest is, rather than me printing out the results of my
INT-2Fh monitor program, try it for yourself. It is a TSR that you
load from the DOS prompt, and you will be able to see exactly the
traffic on INT-2Fh at all times.
What I found most fascinating is that once Windows has loaded,
the traffic is continuous. The implication here is that you have a
mechanism for Windows to continuously “wake up” a TSR.

Writing Windows-Aware DOSApps

Issues
involved

If you are writing a DOS application that is going to make use of
extended memory, there are plenty of tools available, and some
compilers automatically take care of this for you. Thus the old IM
limit is history. The extended memory that your program will use
is still within the same VM as the V86 VM. Switching into
Protected mode from Real mode, to run code in Protected mode
and hence above lM, in no way conflicts with the WinApps, since
they are in the system VM. Also, your VM has its own LDT and
IVT, so you can hook vectors to your heart’s content.
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There is a lot to be said for writing DOS programs that are
designed to run under Windows, and quite likely this area of
development will remain alive.

You should remember that the DPMI INT-3 1 h functions are only
available when the CPU is in Protected mode, not while it is in
V86 mode. However, the INT-2Fh extensions are available in
V86 (Enhanced) Real mode and Standard Real mode. Also don’t
forget that V86 and Protected mode overlap, so you can readily
address all of the first 1M of the VM from Protected mode (though
to execute Real mode code you must perform the necessary DPMI
function to transfer the CPU to Real mode, and vice versa).

Sharing memory between 16- and
32-bit WinApps
All 16-  and 32-bit Winapps reside in the System VM and use the
same LDT. Also, the pages tables map the linear addresses below
1M to the same physical memory. These two facts hold for
Windows 3.x and 95, which means that a memory block below 1M
is global.
Windows 95 32-bit  applications have mechanisms for sharing
memory, such as memory-mapped tiles (see Chapter S), but
memory global to all 16-  and 32-bit WinApps requires a less
unofficial solution.
A solution based upon the above two facts is on the Companion
Disk in directory \SHAREALL.
A 16-bit  WinApp establishes the global area, which can be freely
accessed by other WinApps and can also be shared between 32-bit
WinApps. Note however, that the WinApps must supply their
own protocols for mutual exclusion.

I have used this technique to export a data selector to the data
segment of GOOFEE.EXE, my CASE tool bundled with another
book written by me (see page 359). This allows other WinApps to
directly control GOOFEE.EXE. There are protocols to govern the
communication.
A description of GOOFEE.EXE and the mechanism for external
control is to be found at:
http://www.goofee.com/
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Anatomy of a VxD
Changing the subject somewhat, VxDs are Microsoft’s preferred
direction for access to the hardware. Chapter 14 introduces the
VxD, and gives references. I recommend that if you want to delve
deeply into VxDs,  you purchase a specialised  book. However, it is
appropriate for me to explain a little more about how the example
VxD in directory \TSR2WIN  on the Companion Disk works.
The VxD is VDEMOD.ASM,  and it assembles and links to
VDEMOD.EXE. Note the extension .EXE, rather than .386 (that
most VxDs use). This relates back to how the VxD is used in
Chapter 14; that is, it is invoked from the DOS prompt prior to
Windows loading, which executes the stub TSR2WIN.EXE.  Note
that TSR2WIN.EXE  was inserted into VDEMOD.EXE by the
linker, so it is not a separate program. Note that I have created a
Make tile to rebuild everything, called BUILDALL.MAK. This is
designed for NMAKE.EXE and uses the /A switch.
For now, however, I am interested only in the VxD.

To assemble and link the example VxD requires the DDK or
VxD-Lite. More specifically, the following files are required:
DEBUGJNC, SHELLJNC, VMM.INC, LINK386.EXE,
LINK4.EXE,  MAPSYM32.EXE,  MASMS.EXE, ADDHDR.EXE
These are not the standard LINK and MASM version 5 - they are
special versions.

I’ll start by looking at the Make file:

VDEMOD.MAK
This Make file build VDEMOD.ASM into VDEMOD.EXE, and puts
in the dos stub TSR2WIN.EXE....
Note that VDEMOD.EXE does not have to be in the windows
SYSTEM directory.
The dos stub is to be executed from the autoexec.bat file.

Note that the Include files are in the path shown below...
change if necessary. masm5.exe, link386.exe, addhdr.exe,
mapsym32.exe must
all be in the search path . . .
to run: NMAKE /A VDEMOD.MAK

or put in current directory.

(there is also a BUILDALL.MAK)

I have put a path of c:\vxd for the .INC files, but
replace as necessary.

comment this definition out with a "#", if building a
non-debugging version
Debug=-DDEBUG
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all : VDEMOD.exe

.asm.obj:
masm5 -p -w2 -Mx $(Debug) -Ic:\vxd $*;

.asm.lst:
masm5 -1 -p -w2 -Mx $(Debug)  -Ic:\vxd $*;

VDEMOD.obj : VDEMOD.asm c:\vxd\debug.inc c:\vxd\vmm.inc

OBJS = VDEMOD.obj

VDEMOD.exe: VDEMOD.def $(OBJS)
link386 @VDEMOD.lnk
addhdr VDEMOD.exe
mapsym32 VDEMOD

VxD tools Ok, now for the .DEF file:

LIBRARY VDEMOD
DESCRIPTION 'Barry Kauler VxD for Microsoft Windows'
STUB 'TSR2WIN.EXE'
EXETYPE DEV386

SEGMENTS
LTEXT PRELOAD NONDISCARDABLE

-LDATA PRELOAD NONDISCARDABLE
-1TEXT CLASS 'ICODE' DISCARDABLE
-1DATA CLASS 'ICODE' DISCARDABLE
-TEXT CLASS 'PCODE' NONDISCARDABLE
IDATA CLASS 'PCODE' NONDISCARDABLE

EXPORTS
VDEMOD DDB 631-

The above two files are the standard red tape, adaptable to other
VxDs.  However, one special difference is the TSR2WIN.EXE
stub. For other VxDs you can replace this with a dummy
do-nothing stub, and also you may prefer to generate a VxD with a
.386 extension.

The listing of VDEMOD.ASM follows, broken up with comments:

TITLE VDEMOD -
*example skeleton VxD,
IMicrosoft's DDK.

adapted from a skeleton in

; It is possible to monitor any I/O port, and allow or
;disallow it's use. Install_IO_Handler  achieves this.

.386p

.XLIST
INCLUDE VMM. Inc ; supplied with DDK (or VxD-Lite)
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Debug
Shell

.Inc ;/

.inc ;I

;...........................................................
Declare Virtual Device VDEMOD, 3, 0, VDEMOD Control, \

Bndefinea Device ID, VMM INIT ORDER,,- - - -;..,........................................................

&ram&?r~ Declare_Virtual_Device is a macro that generates a data structure
o f  D e v i c e with parameters as listed in the code above. The first parameter is
D e s c r i p t o r the name of the VxD and the macro creates VDEMOD_DDB,
B l o c k which marks the beginning of the data structure - note that it is

exported in the .DEF tile.
The next two parameters are major and minor version numbers.
VDEMOD_Control is a routine called by Windows to notify the
VxD of system events. This skeleton only handles initialisation
and destruction - look below to see how VDEMOD Control-
handles these cases.
A VxD developer is supposed to obtain a unique ID number from
Microsoft. I don’t know why Microsoft doesn’t assign a number
with each DDK, but I guess that’s too simple.
Undetined_Device_ID  is an equate to a special number for VxDs
that don’t have an ID.
I could have put Undefined_Init_Order  equate for the last
parameter, but I wanted to make sure the printer ports got hooked
by my VxD before any other. The lower the number, the earlier
the initialisation, and VMM_Init_Order  equates to zero, so it gets
in first.

DOSApp Notice that there are two commas after the last parameter. This is
a n d  WinApp because there can be two more parameters. These can specify
a c c e s s  to routines for V86 and Protected mode access.
t h e  VxD Sixteen-bit applications can call INT-2Fh, function 1684h to get

access to these routines.
However, INT-2Fh assumes a 16-bit program is running, so 32-bit
applications cannot access these functions. It’s awful, I know, but
such is the legacy of backwards compatibility. Therefore
Microsoft was forced to provide a different mechanism for calling
services in a VxD from a 32-bit WinApp - see the
DeviceIoControl() function introduced in Chapter 8.
The alternative is that a 32-bit application can thunk down to 16
bits. Also look at the technique described on page 350.

;local d a t a . . .

VxD LOCKED DATA_SEG
Device-Name D B “VDEMOD ” , 0
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VDEMOD Owner DD ?
VxD LO&ZD_DATA_ENDS-
;...........................................,..........
iinitilisation code...

VxD ICODE_SEG-
BeginProc VDEMOD_Device_Init

beep:
push eax
mov al,OB6h I*turn on loudspeaker
out 43h,al
mov bx,OSCSh
mov al,bl
out 42h,al
mov al,bh
out 42h,al
in a1,61h
or al,3
out 61h,al
POP eax

I-firstly, let's hook anything (port 200h) and show a
;generalised handler...

mov edx, 2oOh
mov esi, OFFSET32 My_VDEMOD_Hook
VMMCall Install_IO_Handler

;now, let's prevent printing...
mov edx, 3BDh *lpt status
mov esi, OFFSET32 My_VDEMOD_lpt_Hook'
VMMCall Install_IO_Handler

mov edx, 379h elpt status
mov esi, OFFSET32 My_VDEMOD_lpt_Hook ’
VMMCall Install_IO_Handler

mov edx, 27911 I*lpt status
mov esi, OFFSET32 My_VDEMOD_lpt_Hook
VMMCall Install_IO_Handler

, . . . . .
mov edx, 3BEh -1pt control
mov esi, OFFSET32 ctrl_VDEMOD_lpt_Hook ’
VMMCall Install_IO_Handler

mov edx, 37Ah ,elpt control
mov esi, OFFSET32 ctrl_VDEMOD_lpt_Hook
VMMCall Install_IO_Handler

mov edx, 27Ah Imlpt control
mov esi, OFFSET32 ctrl VDEMOD_lpt_Hook
VMMCall Install_IO_HandTer

xor eax, eax
mov VDEMOD_Owner, eax ; no current owner



EndProc VDEMOD_Device_Init

VxD_ICODE_ENDS

In the above code I’ve used a VMMCALL macro rather than
inserting INT-20h directly. Install_IO_Handler is one of those
low-level VMM services. This hooks the actual physical port, so
if the requirement is to block printing, this will do it.
VDEMOD_Device_Init  is the initialisation routine, and
VDEMOD_Control  tells Windows where it is (see below).
I have started the beeper (above), and there is no restriction to
performing direct I/O - we are in ring 0 and IOPL = 0,
remember!

;main code segment...

VxD_CODE_SEG

BeginProc VDEMOD_Destroy_VM

cmp ebx, VDEMOD Owner
jnz short VDM Edit-
xor eax, eax
mov VDEMOD_Owner, eax

VDM Exit:
c1c
ret

EndProc VDEMOD_Destroy_VM

; Destroying device owner?

; no current owner

VxD_CODE_ENDS

;........................................*..................
;locked code... the callbacks...

VxD_LOCKED_CODE_SEG

BeginProc VDEMOD_Control

Control_Dispatch Device_Init, VDEMOD_Device_Init
Control_Dispatch Destroy_VM, VDEMOD_Destroy_VM
clc
ret

EndProc VDEMOD_Control
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VxD_LOCKED_CODE_ENDS

;........................~..................................
;the hooked ports get redirected here...

VxD_CODE_SEG

BeginProc My_VDEMOD_Hook

*firstly,
’ pushad

resolve contention...

mov eax, VDEMOD_Owner ;
cw eax, ebx ;
jz short process_io ;
or eax, eax ;
jz short new-owner ;

mov esi, OFFSET32 DeviceName_ .

; save regs
get previous owner
same as current owner?
yes, just handle it
was there an old owner?
no

VxDCall Shell_Resolve_Contentlon
jc short dont_process ; hmmm, couldn't resolve

cmp ebx, VDEMOD_Owner - if contention winner is
I the current owner,

je short dont_process ; then we shouldn't process

new owner:-
IFDEF DEBUG

Trace Out "VDEMOD: New Owner #EBX"
ENDIF -

mov edx, 2oOh * our arbitrary port address
VMMCall Disable Local Trapping ; give winner free access
xchg ebx, VDEMGD_Owner ; save new owner, get old
or ebx, ebx ; no old owner?
js short process io * no, just process
VMMCall Enable_LocaT_Trapping ; old owner now locked out

process_io:
popad

-secondly, handle I/O...
’ DispatchzTyg_IO Fall-Through, <SHORT VDEMOD_Out>

in I ; do real in
ret

VDEMOD Out:
out - dx,al
ret

; do real out

dontgrocess:
popad . restore regs
mov al, OEh ; indicaie error to sample

; apps
IFDEF DEBUG

Trace-Out "VDEMOD: I/O inhibited for VM #EBX"
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ENDIF

ret
EndProc My_VDEMOD_Hook
;.........................................................

BeginProc My_VDEMOD_lpt Hook
;we come here if the printer status ports are trapped...
;set bit-3,7, clear bit-4...

pushad

popad
Dispatch Byte IO Fall-Through, <SHORT VDEMOD lpt Out>
in &,dx- * do-rear in
mov a1,10101000b *this should stuif-up printing!
ret 1 (busy,out-Of-paper,offline,error)

VDEMOD_lpt_Out:
out dx,al ; do real out
ret

EndProc My_VDEMOD_lpt_Hook
;...........................................................
BeginProc ctrl VDEMOD_lpt_Hook
;we come here if the printer control ports are trapped...

pushad

popad
Dispatch-Byte-10 Fall-Through, <SHORT ctrl lpt Out>
in al,dx ; 30 real in

; mov al,0 ;
ret

ctrl lpt_Out:
out dx,al

’ mov a1,00001000b
out dx,al
ret

* do real out
;bit-3=l,printer  nbt selected.

EndProc ctrl_VDEMOD_lpt_Hook
;...........................................................
VxD CODE ENDS

E-JD -

To take this further, you need a good book with all the details on
the VMM services. Install_IO_Handler for example, hooks a port
and redirects to a callback routine. The routine is entered with
EBX = current VM, ECX = type of I/O, EDX = port number, and
EAX = output data (if type of I/O is output). When the callback
exits, if the type of I/O is input, the value placed in EAX is the
input value.
The book should also explain the VMM.INC macros and data
structures, such as the Dispatch-Byte-10 macro used above.
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The
philosophy of
extremes

True visual
programming

Maximum Productivity
Now for something completely different . . .

What I would like to do is present you with an idea, and an
implementation of the idea. Basically, the idea is that you should
“do” only two extremes of programming - very low-level, or very
high-level, and nothing in between.
The rationale for this is very simple - for programming, you
want, above all else, productivity, that is, the most program for
your money. Now, productivity also includes maintainability,
because that is part of the cost equation. To maximize
productivity, you want the most powerful programming tools.
On the other hand, if you need to do low-level work, you should
use the tool best suited to the job - assembly language - rather
than try to torture a high-level language into performing low-level
tasks. Sure, you can use something like C to perform low-level
work, but it is really just a very awkward mimicking of assembly
language and is definitely hardware dependent; therefore, you
should really be doing it in assembly, in-line or as separate
modules.
I have included a justification for assembly language, at the end of
this chapter, taken directly from the first edition of this book.

The main point is that the most productive programming language
is not C or C++, nor is it some augmentation using class libraries
and front-end code generators. Nor is it Pascal, Basic, Fortran,
Cobol, etc.
The way to go is visual programming, and that does not mean
Visual Basic or Visual C++. These two products are not visual
programming languages (VPLs), as they are still text-based
languages. Borland’s Delphi and C++Builder move slightly further
toward true visual programming, but it is still mostly the user
interface only that is developed visually.
If you want a definition of VPLs, and you have Internet access,
look a t  the  f requent ly-asked-ques t ions  (FAQ) file on
COMP.LANG.VISUAL, a newsgroup. Much to the dismay of the
people who started this newsgroup, very few programmers know
what a VPL is, and COMP.LANG.VISUAL is bombarded with
mail about Visual C++ and Visual Basic.
VPLs potentially can increase your programming productivity ten
times or more, and probably the best of all is LabView,  developed
by National Instruments Corp.
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I am a realist. Obviously, writing entire applications, or
programming substantial portions, in assembly language is not everyones’ cup of

tea. It may be justified for developing device drivers and other
low-level work, and, yes, weird people like me do put large
applications together entirely in assembly. Most of my work
involves close interaction with hardware and/or operating systems,
so I suppose I would be classified as a systems programmer.
However, even systems programmers tend to use C, depending on
what operating system they are using and on just what kind of
systems-level work they are doing.
Really, this chapter presents a certain philosophy and is not to be
taken as the “truth engraved in stone”. Use these ideas as “food
for thought”.

The new kid on the block is GOOFEE diagrams, which I
developed. GOOFEE is a visual analysis, design, and
implementation methodology that is unique. It is a truly unified,
wholistic,  approach, targeting embedded systems.

Checkout my book Flow Design for Embedded Systems, R&D
Books / Miller Freeman, USA, 1997.
The R&D Books site on the Internet is:
http://www.rdbooks.com/

My research site is:

http://www.goofee.com/

One, out of many, on-line bookstores is:
http://www.amazon.com/

GOOFEE is not (yet) a 100% visual development tool, but I
wanted to mention it, in case anyone is interested! True 100%
VPLs are rare indeed. What is there?

LabView Programming
LabView is at least as powerful as any text-based language and
has evolved, since 1986, into a very mature and sophisticated
product. In a nutshell, LabView  is an environment in which you
can very rapidly develop applications with a single line of coding.
LabView  applications can be recompiled, unchanged, to run on
Macintosh, PC with Windows, Windows NT, and Sun
workstations, with more to come.
The speed with which you can put programs together has to be
seen to be believed, and phenomenal productivity improvements
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Dataflow
visual
programming

Speed & size

are well documented. But, enough of that; I am not a salesperson
for National Instruments, nor is this book about LabView
programming. So, I’ll give you all sides of the picture and get onto
how I see assembly language fitting in.

LabView is based upon a datafow  model, but there are enough
control-flow mechanisms built-in to get around the limitations of
the pure dataflow concept. Dataflow means that you construct
programs by drawing data paths between icons on the screen, and
execution follows the data paths.
Figure 15.3 shows this. Look at the diagram at the bottom of the
figure, and you will see how “icons” have been interconnected, to
form the program, or “diagram”. Control structures are also
shown, such as a while-loop and a case-structure. Note that the
case-structure is very efficient in its use of screen real-estate; cases
are superimposed, like a deck of cards, with a simple selection-box
on top, for flicking through them.
This leads to an interesting consideration - a classical problem
with visual programming environments is that they tend to very
rapidly run out of screen, but LabView is the most compact and
“screen efficient” of any VPL that I have encountered.
Just imagine being able to rapidly wire-up a program, without
having to remember any text-based syntax, or even how to use
pointers.

Disadvantages of LabView
Ok, ok, the negative points. The power comes at a price, which is
inefficiency of the generated code. LabView programs are HUGE,
and they don’t “run at the speed of compiled C”, as National
Instruments publicity would have you believe. Maybe you can
contrive such a situation, but practical programs would be lucky to
achieve half the speed of an equivalent C program.
However, “equivalent” is a difficult issue, because LabView
applications have so much extra stuff built-in. Compared with one
of LabView’s  main competitors, HP-VEE developed by Hewlett
Packard, the former is much faster and, in my personal opinion, far
more sophisticated and mature.
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Figure 15.3: LabView icon, front panel, and diagram.
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Narrow target The next negative noint is that LabView is optimised for use by
market

1

engineers and scientists, and this is reflected throughout its design.
It is absolutely superb for data acquisition, control, mathematic
processing, and image work. It was never really intended to be a
commercial high-volume product, so you don’t use it to develop
high-volume applications.

Front panel
& top-icon

ICOIl
hierarchy

You use LabView for custom, one-off, or low-quantity jobs.
However, since people have discovered that LabView  is good for
just about everything and is very easy to use (once you get used to
the dataflow concept), the original market domain has tended to
diversify. People are now selling stand-alone applications, to a
larger market - in particular, this has happened since LabView
was released on the PC in 1993.

Integration with Assembly
Since LabView  is optimised for engineering and scientific
applications, its strengths are on the I/O side, which ties in
strongly with the kind of things you normally use assembly for.
So if you use LabView to control all the machinery in your
factory, and you also want to do some low-level optimisation, how
can you integrate assembly into the picture?

Have another look at Figure 15.3. Each diagram, or code-module,
has a front panel, which is a window through which all inputs and
outputs travel. Note, however, that this front panel may or may
not appear at execution-time. Think of it as a handy development
aid, since it gives you total control over the diagram for testing
purposes and interactive monitoring while executing.
Look higher, and you will see that there is an icon, that has input
and output terminals, which all go to and from the diagram, via the
front panel. This icon makes the diagram into the equivalent of a
subroutine or procedure and is a software object that can be reused
with the greatest of ease.
An important point to note about Figure 15.3 is that you are seeing
it in black and white, when in fact, it is in full color, and all wires
clearly show the data types they carry. Furthermore, LabView  will
not allow a connection if the data types are incompatible - also
note that most built-in LabView icons are polymorphic, meaning
that they will accept almost any data type.

A LabView program can be composed of a hierarchy of icons.
That is, the top-icon in Figure 15.3 is itself composed of icons
wired into a diagram, which may in turn be composed of
underlying diagrams, and so on.



Advanced Systems Programming 363

Code
interface
nodes

Dynamic
link
libraries

Reference
source

Flowchart
programming

Any one of these icons could be a program that has been written in
another language.
Note also, that a small help window automatically shows you the
meaning of each input and output terminal on an icon as you wire
it up.

An icon that has been written in another language is known as a
code interface node (GIN),  and because LabView (I’ll call it LV
from now on!) was originally developed for the Macintosh, that
platform has the best language support. For the PC, only Watcom
C and Microsoft C/C++ are supported.

What if you want use your own brand of assembler, or any
assembler for that matter? There is a way. LabView can call any
dynamic link library (DLL) function - Sun workstations and
Macintoshes also have the equivalent to the DLL mechanism.
This is great, as you can put all your hardware-dependent
low-level code into a DLL and write a version for each platform
- the rest of LabView  will automatically work on any of the
platforms.
A standard skeleton DLL, written in assembly language, is on the
Companion disk in directory \LV-DLL.

To find out more about LabView, National Instruments has a Web
page at:
http://www.natinst.com/

Layout Programming
There is another, easy, way to generate a DLL - its name is
Layout.
Layout is another VPL. Comparing Layout with LabView  is like
comparing chalk and cheese, but there is a method in my madness.
Layout had its origins on DOS, and Layout for DOS still exists.
Layout for Windows made its appearance in the world in
November 1994.

Layout uses a JZowchart  model of programming, in which the
programmer interconnects modules representing flow of control,
as shown in Figure 15.4. The representation is different from
conventional flowcharts, as you can see in the way the repeat-loop
is constructed. The little arrows going off to the left point to
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subroutines or procedures, and clicking on one of those little boxes
brings up the subroutine flowchart.
The flowchart concept is ancient, and its popularity comes and
goes. Modem flowcharts do need constraints, unlike the old
representations that we oldies used with Fortran, that allowed
spaghetti-code. Layout also forces some concurrency
mechanisms, such as being able to send a message to a procedure,
and have the procedure execute concurrently. Layout also allows
flowcharts to be attached to specific objects on a window, so, for
example, if you press a button on the screen, the attached code will
execute, asynchronously to the rest of the application.
However, the way in which the flowchart paradigm has been
forced into these avenues is, to me, very odd.

Comparison with LahView

V i s u a l Layout’s on-screen graphical program construction representation
e f f i c i e n c y is very crude and cumbersome, compared with LabView. The

flowchart just about immediately fills the screen, and you have to
scroll a long way down to see everything. Of course, a tight
hierarchy helps a little bit.
Also, I think that some of the linkages need to be shown. For
example, it has to be clearer what variables belong to what code,
and if a code module is attached to an on-screen object, the
relationship should be clearly shown. That is, the structure of
everything in the program, links, and relationships, should all be
clearly and visually viewable.
It has some rough edges, but it is a VPL, and quite a good one. It
belongs to the very exclusive club of VPLs that completely avoid
the necessity of having to write lines of code.
However, like LabView, you can drop down to code, if required.

T a r g e t Layout is marketed as a mass-market full-cycle CASE tool for
m a r k e t Windows and DOS program development. This is in contrast to

LabView. Layout is not just a front-end or back-end CASE tool
- it is full cycle, and directly generates very efficient .EXE files
or C or C++ output. I suppose LabView can be used as a
full-cycle CASE tool, but it is not a mass-market tool.
Layout is what you would use to develop a product that is
optimised to work with Windows, utilises Windows features to the
full extent (such as OLE, DDE, and networking, though note that
LabView also supports DDE and TCP/IP), and generates very fast
and small code. Even though Layout was developed first for DOS,
it followed the Windows event-driven style. In fact, it mimicked
Windows in just about every way, so it was a natural contender for
conversion to Windows.



Advanced Systems Programming 365

I began to wonder when the developers became very quiet for a
couple of years, but they were working frantically on the Windows
version.

Figure 15.4: Layout.
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In many respects, Layout gives you the best programming
environment. My philosophy of the two extremes is applicable
here - you can merrily construct a flowchart, then at any point in
the flowchart, you can stick in in-line C, C++, or assembly code.
It is a super-high-level language that allows in-line assembly!
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Figure 15.5: Integration with assembly.
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Each of the boxes in Figure 15.4 is called a blackbox, and, as with
LabView, they can be developed in another language. In fact,
Layout blackboxes are simply DLLs!
That’s it: write a DLL, register it with Layout, and it becomes a
blackbox that you can put into your flowchart, just like any other
blackbox.
Figure 15.5 gives an overall picture. Look at the figure, and you
can see how assembly language fits in with both Layout and
LabView.
One very interesting possibility that you can see in Figure 15.5 is
that Layout can generate DLL output. That is, any program that
you construct inside Layout can, simply by selecting “Make
blackbox” from the menu, generate a DLL.
DLLs are mighty handy, because they can readily be used by
various development environments, including LabView. Because
Layout is a totally open environment (with no run-time
distribution licencing  required, unlike LabView),  you might find it
useful as an adjunct for use with LabView.

Reference Layout was developed in the USA by VTools Inc. (formerly
source Objects Inc.), and their Web page is:

http://www.vtools.com/
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Assembly versus High-Level Languages
My vision of the viability of programming at two extremes is an
interesting diversion, but for many people the argument is more
focused. The current fight, that has been going on for some years,
is between languages such as C and assembly. C (and C++) is
winning, but I would like to put in my two-cents worth.

Gloves
Off..

Always the debate rages about the applicability of assembly
language in our modern programming world. An excellent and
balanced argument is to be found in the article “Assembly
Language Lives !‘I  by Michael Abrash, Dr D&b’s  Journal, March
1990. It is several years old but still relevant!

FasteG
Smalley
etc.

The simple bottom-line truth is that assembly language produces
far faster and smaller code than coi;lpilers can produce. This is
true to the present day, no matter how optimised compilers have
become. For example, Quantasm Corp. sell a floating point
emulation library to replace the standard ones. It’s written in
assembly language and is typically 4% to 10% of the size and 5 to
10 times as fast as most C floating-point libraries!
Apart from size and speed, there are other major issues. The
contention that assembly language is harder to write in than a
high-level language is, I hesitate to say, “nonsense”. I’ll just say
“maybe in some cases”. I can throw assembly code together as
fast as with C. My assembler does not perform the kind of
checking that a compiler will, but Microsoft MASM version 6.x
and Borland TASM version 5 have significant C-like checking.

PoHabiMy Transportability is a major consideration. If code is to be
transported to other platforms, that is, other CPUs running
Windows, shouldn’t I avoid assembly language? Yes and no. For
a start, the issue only applies to Windows NT. If you examine any
high-level program such as a C program, you will find that it is
riddled with hardware dependency. Hardware-dependent
statements are written in a high-level language throughout typical
programs. Whenever I see low-level functionality being coded in
a high-level language, I find it to be cumbersome, inefficient, and
in many cases unreadable. Why force a square peg into a round
hole? Why not just bite the bullet and code those portions directly
in assembly? Why not use your compiler’s in-line assembly
capability? What you gain is code that does what it was developed
for and is efficient, compact, and highly readable. Assembly
language code is far more readable than some C code I’ve seen! In
fact, what you end up with is code that is more portable than if
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reason for this is that the boundary between strictly
non-hardware-dependent code and hardware-dependent code is
clarifed.
In fact, you can bet that some programs written exclusively for
Windows NT will have assembly code. To transport the program
to another platform, the developers will simply recode the easily
distinguishable hardware-dependent portions.
Binary compatibility is a fascinating aspect of Windows NT. This
means that assembly language code will work on all hardware
platforms. The x86 instruction set, and hardware dependency, will
be emulated, to the extent that most Windows programs will run
without recompiling, but it remains to be seen how far we can
push this. This is another exciting area to research!

The  bottom There will always be a demand for assembly language
l i n e programmers, due mostly to competition. If word processor A

runs twice as fast as word processor B, which one has the edge?
And if word processor A runs in half the memory, again the choice
is obvious. We have not by any means reached the point where we
can ignore these issues, despite faster CPUs and more memory. In
fact, our programs run slower than ever before and 16M is no
longer enough!
Let me finish this argument by quoting Karl Wright and Rick
Schell, from “Mixed-Language Programming with ASM”, D r
Dobb’s  Journal, March 1990:

“It is not only practical but advisable to mix languages and
models in order to achieve the best results. Modern
assembly language is a vital part of this mix, and will
continue to be important in the future, because space and
performance are always important for competitive
software, no matter how powerful the hardware
becomes.”

As a final note, I wrote the GOOFEE Diagrammer, bundled with
my book Flow Design for Embedded Systems (R&D Books, 1997),
entirely in assembly language. It is a 16-bit WinApp, a very
sophisticated graphics drawing program, that is ridiculously small
at only lOOK. By using the high-level features of modern
assemblers, my assessment is that coding time would not have
been any faster if done in C, nor would it have been any more
readable (maybe less readable). I did use Layout for some of the
dialog boxes and mathematics, but I found the automatic code
generation was doing things I didn’t want. Hence, I rewrote those
portions in assembly language also!
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cnt =
Reg =
Mem =
A c c u m  =
Imm =
D e s t s t r  =
Source& =
Segreg =

flags affected by
instruction
ignore
count
register
memory
AL, AX, EAX
immediate
destination string
source string
segment register

Number preceding item
indicates number of bits

Abbr. NAME
CF Carry flag
PF Parity flag
AF Auxiliary carry flag
ZF Zero flag
SF Sign flag
TF Trap flag
IF Interrupt enable
DF Direction flag
OF Overflow
IOPL I/O privilege level
NT Nested tank flag
RF Resume flag

Virtual 8086 mode

Note that some coprocessor flags are
also indicated in the tables.
The legend is:
IE Invalid
UE Underflow
PE Precision
DE Denormalised
ZE Divide by zero
OE Overflow
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ASCII adjust AL after add
AF, CF . . .

AAD
ASCII adjust before divide
SF, ZF, PF . . .

AAM
ASCII adjust after multiply
SF, ZF, PF

AAS
ASCII adjust after subtract
AF, CF - . . .

ADC accum,imm
ADC mem,imm
ADC mem,reg
ADC reg,imm
ADC reg,mem
ADC reg, reg
Add with CF
OF,SF,ZF,AF,PF,CF

ADD accum, imm
ADD mem,imm
ADD mem, reg
ADD reg, imm
ADD reg,mem
ADD reg,reg
Add
OF,SF,ZF,AF,PF,CF

. .

. *

AND accum, imm
AND mem, imm
AND mem, reg
AND reg, imm
AND reg, reg
AND reg, mem
Logical AND
OF=O,SF,ZF,PF,CF=O , . .

ARPL
Adjust requested privilege
level
ZF . .

BOUND reg, source

Detect array index out of range
None . .

BSF reg,mem or reg, reg
Bit scan forward
ZF

BSR reg,mem or reg,reg
Bit scan reverse
ZF

BT
Test bit
CF

BTC
Test bit and complement
CF

BTR
Test bit and reset
CF

BTS
Test bit and scan
CF

CALL 16 memptr
CALL 16 regptr
CALL 32 memptr
CALL farproc
CALL nearproc
Call (control transfer)
None except if task SW. ...

CBW/CWDE
Convert byte to word/word to
double word
None

CLC
Clear CF
CF = 0

CLD
Clear DF
DF = 0

CL1
Clear IF
IF = 0

CLTS
Clear task switched flag
TS = 0 in CR0 reg.

CWC
Complement CF
CF

CWP accum, imm
CMP mem, imm
CMP  mem, reg



. . .

CMP reg, imm
C!MP reg, mem
C!MP reg, reg
Compare
OF,SF,ZF,AF,PF,CF

CMPS (rep)deststr,sourc
C!MPS  deststr,sourcestr
Compare byte, word or double
word string
OF,SF,ZF,AF,PF,CF . . .

Convert word to doubleword /dw
to w
None

DAA/DAS
Decimal adjust after
add/subtract
SF, ZF, AF, PF, CF

DEC mem
Decrement
OF, SF, ZF, AF, PF

DEC reg
Decrement
OF, SF, ZF, AF, PF

DIV 16 mem
DIV 16 reg
DIV 8 mem
DIV 8 reg
Divide
None

ENTER  16 imm, 0
ENTER 16 imm, 1
ENTER 16 imm, level
Enter procedure
None

ESC imm, mem
ESC imm, reg
Escape to external device
None

HLT
Halt
None

IDIV 16 mem
IDIV 16 reg
IDIV 8 mem
IDIV 0 reg
Signed integer divide
None

IMUL 16 mem
IMUL 16 reg
IMUL 8 mem
IMTJL  8 reg

. . .

. . .

. . .

. . .

aI
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Signed integer multiply
OF, CF . . .

IMUL destreg,l6,reg,imm
IMUL destreg, mem, imm
Signed integer multiply
OF, CF . .

IN accum, 8 imm
IN Accum, DX
Input from port/DX-port
None . . .

INC mem
INC reg
Increment
OF, SF, ZF, AF, PF . . .

INS (rep) deststr, DX
INS deststr, DX
Input string
None . .

INT 8 imm
Interrupt
IF = 0, trap = 0 . . .

INTO
Interrupt on overflow
IF = 0, trap = 0 . . .

IRET
Interrupt return
All

JMP 16 memptr
JMP 16 regptr
JMP 32 memptr
JMP far
JUP near
JMP short
Unconditional jump
None

Jxxx short
Conditional jump
None

. . .

LAHF
Load AH with flags(L0  byte
flags)
None

LAR
Load access rights byte
ZF . .

LDS 16 reg, 32 mem
Load pointer to DS:reg
None
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LEA 16 reg, 16 mem
Load effective address to
register
None

LEAVE
Leave procedure
None

LES 16 reg, 32 mem
Load pointer to ES:reg
None

LFS
Load pointer to FS:reg
None

. .

. .

. .

LGDT
Load global descriptor table
None . .

LGS
Load pointer to GS
None

LIDT
Load IF descriptor table
None . .

LLDT
Load local descriptor table
None . .

LMSW
Load machine status word
None . .

LOCK
Bus lock prefix
None . . .

LODS (rep) sourcestr
Repeat load byte/word/dword
None . . .

LODS sourcestr
Load byte/word/dword
None . . .

LOOP short

LOOP
None . . .

LOOPE/LOOPZ  short
Loop equal/zoom
None . .

LOOPNE/LOOPNZ short
Loop while not equal/not zero
None . . .

LSL
Load segment limit
ZF . .

LSS
Load pointer to SS
None

LTR
Load task register
None

MOV 16 reg, segreg
MOV accum,mem
MOV mem,accum
MOV mem, imm
MOV mem, reg
MOV mem, segreg
MOV reg, imm
MOV reg, mem
MOV reg, reg
MOV segreg, 16 mem
MOV segreg, 16 reg
Move
None . . .

MOVS (repeat)deststr,sourcstr
MOVS deststr,sourcestr
Move string
None . . .

MOVSX
Move with sign extension
None

MOVZX
Move with zero extension
None

MUL 16 mem
MUL 16 reg
MDL 8 mem
MUL 8 reg
Multiply
OF, CF

NEG mem
NED reg
Change sign
OF,SF,ZF,AF,PF,CF

NOP

. . .
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No operation
None

NOT mem
NOT reg
Invert
None

OR accum, imm
OR mem, imm
OR mem, reg
OR reg, imm
OR reg, mem
OR reg, reg
Logical OR
OF=O,SF,ZF,PF,CF=O

OUT 8 immed, accum
OUT DX, accum
Output to port/DX-port
None

OUTS (rep) DX,sourcestr
Output string
None

OUTS DX, sourcestr
Output string
None

POP mem
POP reg
Restore from stack
None

POPA
Restore general reg's
fromstack
All

PUSH imm
Save to stack
None

PUSH mem
PUSH reg
Save to stack
None

PUSHA
Save all to stack
None

PUSHF
Save flags to stack
None

RCL/RCR/ROL/ROR  mem,l
RCL/RCR/ROL/ROR  reg, 1
rotate thru CF left/CF
right/rot. left/right
OF, CF

RCL/RCR/ROL/ROR  mem,CL
RCL/RCR/ROL/ROR  reg,CL
rotate thru CF left/CF  right/
rot. left/right
CF . . .

. . . RCL/RCR/ROL/ROR  mem,cnt
RCL/RCR/ROL/ROR  reg,cnt
rotate thru CF left/CF  right/
rot. left/right
CF . .

REP
Repeat
None

REPR/REPZ
Repeat equal/zero
None

. . .

. . .

REPNE/REPNZ
Repeat not equal/not zero
None . . .

RET immed (far with pop)
RET (far, no pop)
RET immed (near-with pop)
RET (near, no pop)
Return
None . . .

SAHF
Store AH into flags
SF, ZF, AF, PF, CF . . .

SAL/SHL/SAR/SHR mem,l
SAL/SHL/SAR/SHR reg,l
Shft arith'tic-left/left/shift
arith.-right/right
OF=O,SF,ZF,PF,CF . . .

SAL/SHL/SAR/SHR mem.CL
. . SAL)SHL/SAR/SHR mem;cnt

Shft arith'tic-left/left/shift
arith.-right/right
SF,(SHR=O)ZF,PF,CF . . .

. . . SAL/SHL/SAR/SHR  reg,CL
Shft arith'tic-left/left/shift
arith.-right/right
SF, ZF, PF, CF . . .

. . .

SAL/SHL/SAR/SHR  reg,cnt
Shft arith'tic-left/left/shift
arith.-right/right
SF,(SHR=O)ZF,PF,CF . .
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SEE accum, imm
SBB mem, imm
SBB mem, reg
SBB reg, imm
SBB reg, mem
SBB reg, reg
Subtract with borrow
OF,SF,ZF,AF,PF,CF

SCAS (repeat) deststr
SCAS deststr
Scan byte/word
OF,SF,ZF,AF,PF,CF

SETxxx
Conditional byte set
None

. . .

. . .

SGDT
Store global descriptor table
None . .

SIDT
Store Int. descriptor table
None . .

SLDT
Store local descriptor table
None . .

SMSW
Store machine status word
None . .

STC/STD/STI
Set'CF/DF/IF
CF = I/DF  = I/IF  = I . . .

STOS (repeat) deststr
STOS deststr
Store byte/word
None . . .

STR
Store task register
None

SUB accum, imm
SUB mem, imm
SUB mem, reg

SUB reg, imm
SW reg, mem
SUB reg, reg
Subtract
OF,SF,ZF,AF,PF.CF

TEST accum,imm
TEST mem, imm
TEST reg, imm
TEST reg, mem
TEST reg, reg
AND function to flags
OF=O,SF,ZF,PF,CF=O

VBRR
Verify read access
ZF

VERW
Verify write access
ZF

WAIT
Wait for 80X87
None

XCHG accum, 16 reg
XCHG mem, reg
XCHG reg, reg
Exchange
None

XLAT sourcetable
Translate byte
None

XOR accum, imm
XOR mem, imm
XOR mem, reg
XOR mem, reg
XOR reg, imm
XOR reg, mem
XOR reg, reg
Exclusive OR
OF=O,SF,ZF,PF,CF=O

. .

. . .
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Instruction Set of the 80x87
Mathematics Coprocessor

Refer beginning of Appendix A
for legend.

F2xMl
2^ST(O) -1
UE,PE

FABS
Absolute value
IE

FADD dest,source
Add real
IE,DE,OE,UE,PE

FADDP  dest,source
Add real & pop
IE,DE,OE,UE,PE

FBLD source
Packed decimal (BCD)  load
IE

FBSTP
Packed dec. (BCD)  store &
IE

FCHS
Change sign
IE

FCLEX/FNCLEX
Clear exceptions
None

FCOM source
compare real
IE,DE

FCOMP source
compare real & pop
IE,DE

FCOMPP
compare real t pop twice
IE,DE

FCOS
Cosine

. . .

. . .

POP. . .

. . .

. .

. .

FDECSTP
Decrement stack pointer
None . . .

FDISI/FNDISI
Disable interrupts
None .$$

FDIV dest,source
Divide real
IE,DE,ZE,OE,UE,PE . . .

FDIVP dest,source
Divide real & pop
IE,DE,ZE,OE,UE,PE . . .

FDIVB dest,source
Divide real reversed
IE,DE,ZE,OE,UE,PE . . .

FDIVRP dest,source
Divide real reversed & pop
IE,DE,ZE,OE,UE,PE . .

FENI/FNBNI
Enable interrupts
None

FFREE dest
Free register
None

FIADD source
Integer add
IE,DE,OE,PE

FICOM source
Integer compare
IE,DE

FICOMP source
Integer compare & pop
IE,DE

FIDIV source
Integer divide
IE,DE,ZE,OE,UE,PE

FIDIVR  source
Integer divide reversed
IE,DE,ZE,OE,UE,PE

FILD source
Integer load
IE

FIMUL source
Integer multiply
IE,DE,OE,PE

.$$

. . .

. . .

. . .
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Format
Instruction
Description
Flags affected 8712871387

FINCSTP
Increment stack pointer
None

FINIT/FNINIT
Initialise processor
None

FIST dest
Integer store
IE,PE

FISTP dest
Integer store & pop
IE,PE

FISDB  source
Integer subtract
IE,DE,OE,PE

. . .

. . .

FISUBR source
Integer subtract reversed
IE,DE,OE,PE . . .

FLD source
Load real
IE,DE . . .

FLDl
Load +l.O
IE

FLDCW source
Load control word
None

FLDENV source
Load environment
None

FLDL2E
Load log (2*e)
IE

FLDLZT
Load log (2^10)
IE

FLDLG2
Load loq  (lOA

. . .

. . .

. . .

. . .

. . .

FLDLN2
Load log (e^2)
IE

FLDPI
Load pi
IE

FLDZ
Load +O.O
IE

FMUL dest,source
Multiply real
IE,DE,ZE,OE,UE,PE

FMULP dest,source
Multiply real & pop
IE,DE,ZE,OE,UE,PE

FNOP
No operation
None

FPATAN
Partial arctangent
UE,PE

. . .

. . .

FPREM
Partial remainder
IE,DE,UE . . .

FPREMl
Partial remainder (IEEE)

FPTAN
Partial tangent
IE,PE

FRNDINT
Round to integer
IE,PE . . .

FRSTOR source
Restore saved state
None . . .

FSAVE/FNSAVE  dest
Save state
None . . .

FSCALE
Scale
IE,OE,UE

FSETPM
Enter Protected mode
None

FSIN
Sine

. . .

IE -



FSINCOS
Sine & cosine

FSQRT
Square root
IE,DE,PE

FST dest
Store real
IE,OE,UE,PE

FSTCW/FNSTCW dest
Store control word
None

FSTENV/FNSTENV dest
Store environment
None

FSTP dest
Store real & pop
IE,OE,UE,PE

FSTSW/FNSTSW dest
Store status word
None

FSUB dest,source
Subtract real
IE,DE,OE,UE,PE

. . .

.

FSUBP dest,source
Subtract real & pop
IE,DE,OE,UE,PE . . .

FSUBR dest,source
Subtract real reversed
IE,DE,OE,UE,PE . . .

FSUBRP dest,source
Subtract real reversed & pop
IE,DE,OE,UE,PE . . .

FTST
Test stack top against +O.O
IE,DE . .

FUCOM
Unordered compare

FUCOMP
Unordered compare & pop

FUCOMPP
Unordered camp. & pop twice
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FWAIT
Wait while 8087 is busy
None . . .

FXAM
Examine stack top
None . . .

FXCH dest
Exchange registers
IE . . .

FXTRACT
Extract exponent & Significand
IE . . .

FYL2X
ST(l)*log,(ST(O))
PE . . .

FYL2XPl
ST(l)*log,(ST(O)+l)
PE . . .
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Virtual Keys

VK_RBUTTON
VK_CANCEL
VK_MBU’ITON

VK_BACK
VK_TAB

VK_CLEAR
VK_RETURN

VK_SHIFT
VK_CONTROL
W-MENU
W-PAUSE
VK_CAPITAL

12
13
14
G-07
18
19
3A-OB
DC
DD
DE-OF
10
11
12
13
14
15-19

Right mouse button
Cancel key
Middle mouse button
Unassigned
BACKSPACE key
TAB key
Unassigned
CLEAR key
ENTER key
Unassigned
SHIFT key
CONTROL key
ALT key
PAUSE key
CAPS LOCK key
Reserved for Kanji

379
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(K-ESCAPE

VK_SPACE
VK_PRXOR
VK_NEXT
a-END
VK_HOME
VK_LEFT
VK_UP
VK_RIGHT
VK_DOWN
VK_SELECT
VK_PRTNT
VK_EXECUTE
VK_SNAPSHOT
VK_INSERT
m-DELETE
VK_HELP
VK_o to w-9

VK_A to VK_Z

VK_NUMPADO
to VKJUMPAD9
VK_MULTIPLY
VI-ADD
VK_SEPARATER
VK_SUBTRACT
VK_DECIMAL
VK_DIVIDE
VK_Fl to VK_16

VK_NUMLOCK

:::::::::::::::::::::::::::::::::::::::
,_, ,,

:,:,:,:,:,:,:,:,:.:,:,:::::::: :::::::::: y:::::::::::::: :: :.:.: .,.,.,.,.,.....,...,..... _,
::: ::::::::::::. . . . . . . . . . . . . . . . . . . . . . . . . .,.  ,A.. ..:.:.:.:.:.:.:.:.:.:.,.:.

~~~

1A
LB
lC-1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2 c
2D
2E
2F
30-39
3A-40
41-5A
SB-5F
60-69

6A
6B
6C
6D
6E
6F
70-7F
80-87
88-8F
90

Unassigned
ESCAPE key
Reserved for Kanji
SPACEBAR
PAGE UP key
PAGE DOWN key
END key
HOME key
LEFT ARROW key
UP ARROW key
RIGHT ARROW key
DOWN ARROW key
SELECT key
OEM specific
EXECUTE key
PRINTSCREEN key
INSERT key
DELETE key
HELP key
O-9 (same as ASCII)
Unassigned
A-Z (same as ASCII)
Unassigned
Numeric keypad

Multiply key
Add key
Separater key
Subtract key
Decimal point key (.)
Divide key
Function keys O-16
OEM specific
Unassigned
NUM LOCK key



~~~~
. . . . . . . . .
VK_OEM_SCROLL

VK_OEM_l
W-OEM-PLUS
VK_OEM_COMMA
VK_OEM_MINUS
VK_OEM_PERIOD
VK_OEM-2
VK_OEM-3

W-OEM-4
to VK_OEM-8

VK_OEM_I  02
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92-B9 Unassigned
BA Keyboard specific
BB Plus key
BC Comma key
BD Minus key
BE Period key
BF Keyboard specific
c o Keyboard specific
C 1 -DA Unassigned
DB-DF Keyboard specific

EO-El OEM specific
E2 <> or \ (non-USA kbrd)
E3-E4 OEM specific
E5 Unassigned
E6 OEM specific
E7-E8 Unassigned
E9-F5 OEM specific
F6-FE Unassigned
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Extended ANSI

0 1 2 3 4 5 6 7 8 9

301

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

2501

( >
2 3
< =

F G

p Q

z 1
d e

n 0

X Y

- -

ae c

6 ii

il ii

SP
*

4
>

H

R

\

f

P
Z

#

--I

1

A

B

6

P

2.

b

ii

!
+

5

?

I

S

1
g
9
{

TM
E

A
E
8
I3
c
6
9

,,

6’

@
J

T
/\

h

r

I

#

7

A

K

U

‘

)

Y
-

I

A

i

6

6

c

6

Y

$

per
8

B

L

V
.

j

t

%

!

9

C
M

w
a

k

U

“

9

f

L
. .
I

0

?i

i
A

&

0

D

N

X

b

1

V

3,

. .

2

‘/4

AZ

D

ti

ii

i

0

1

1

9

E

0

Y

C

m

W

Cctdes  itTe  in decimal.  Example: 162 = f, sp = space. per = period.
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IBM ASCII

Dec.' 0 1 2 3 4 5 6 7 8 !
30 SP ! II # $ % & '

40 ( 1 * +, - per / 0 1
50 2 3 4 5 6 7 8 9 : .

60 < = > ? @ A B C D ;

70 F G H I J K L M N C

80 P Q R S T U V W X E
90 z r \ 1 A \- a b c
100 d e f g h i j k 1 n
110 n 0 p q r s t u v u
120 x y z { 1 ) -

130
140 a 1E 6 ij cj
150 Q lj y ij 0 f$! f f

160 sp. i 6 ti fi R 2 Q L r

170 7 $ 1/4 i << >> IIll 1111111 I I
I80 i $ il u 9 !I II
190 4, I- 1 1-j- - y “: ;
200 II: r L ir I1 = i’l Jl
210 T T u L r IT 1;' :
220 ml I m a L3 r n Z u
230 l.ltt 8 n 6 co @ E l-l
240 = f 2 5 /-J + - * -

250 J q 2 n Ll

' Codes are in decimal. Example: 162 = 6. sp = space. per = period.
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Windows documentation refers to IBM ASCII as the OEM, or
Terminal, font. It is the standard g-bit  ASCII character set
supported by DOS. Some other fonts also support this character
set, such as LotusLineDraw.



C
DPMI Services
This material is extracted with permission from the DOS Protected
Mode Interjbce  (DPMI) Specljkation,  Version 1.0, by the DPMI
Committee, hosted by Intel Corporation.
Detailed information is provided here for version 0.9 because
Windows 3.x and 95 only support ~0.9. For further information,
refer to the above source, the body of this book, and the
Companion Disk. The complete specification is also on-line at:
http://www.delorie.com/djgpp/doc/

This Appendix is in two portions: first a listing of all services
grouped functionally, and second a detail description of all ~0.9
functions.

DPMI INT-31h Functions Listed by
Functional Group

Function
Number

Function
Name

DPMI
0.9 1.0

LDT MANAGEMENT SERVICES
OOOOh  Allocate LDT Descriptor
000 1 h Free LDT Descriptor
0002h Map Real mode Segment to Descriptor
0003h Get Selector Increment Value
0006h Get Segment Base Address

385

* *
* *
* *
* *
* *
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Function
Number

Function
Name

DPMI
0.9 1.0

0007h Set Segment Base Address
0008h Set Segment Limit
0009h Set Descriptor Access Rights
OOOAh  Create Alias Descriptor
OOOBh  Get Descriptor
OOOCh  Set Descriptor
OOODh  Allocate Specific LDT Descriptor
OOOEh  Get Multiple Descriptors
OOOFh  Set Multiple Descriptors

EXTENDED MEMORY MANAGEMENT SERVICES
0500h
0501h
0502h
0503h
0504h
0505h
0506h
0507h
0508h
0509h
050Ah
050Bh
0800h
OSOlh
ODOOh
ODOlh
OD02h
OD03h

Get Free Memory Information
Allocate Memory Block
Free Memory Block
Resize Memory Block
Allocate Linear Memory Block
Resize Linear Memory Block
Get Page Attributes
Set Page Attributes
Map Device in Memory Block
Map Conventional Memory in Memory Block
Get Memory Block Size and Base
Get Memory Information
Physical Address Mapping
Free Physical Address Mapping
Allocate Shared Memory
Free Shared Memory
Serialize on Shared Memory
Free Serialization on Shared Memory

* *
* *
* *
* *

*
*
*
*
*
*
*
*

* *
*
*
*
*
*

DOS MEMORY MANAGEMENT SERVICES
0 1OOh Allocate DOS Memory Block
OlOlh Free DOS Memory Block
0 102h Resize DOS Memory Block

* *
* *
* *

INTERRUPT MANAGEMENT SERVICES
0200h Get Real Mode Interrupt Vector
0201h Set Real Mode Interrupt Vector
0202h Get Processor Exception Handler Vector
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FUIkCtiWl
Number

Function
NililE

DPMI
0.9 1.0

0203h
0204h
0205h
0210h

021 lh
0212h

0213h
0900h
0901h
0902h

Set Processor Exception Handler Vector
Get Protected Mode Interrupt Vector
Set Protected Mode Interrupt Vector
Get Extended Processor Exception Handler Vector in Protected
Mode
Get Extended Processor Exception Handler Vector in Real Mode
Set Extended Processor Exception Handler Vector in Protected
Mode
Set Extended Process Exception Handler Vector in Real Mode
Get and Disable Virtual Interrupt State
Get and Enable Virtual Interrupt State
Get Virtual Interrupt State

TRANSLATION SERVICES
0300h
0301h
0302h
0303h
0304h
0305h
0306h

PAGZ
0600h
0601h
0602h
0603h
0604h
0702h
0703h

1

Simulate Real Mode Interrupt
Call Real Mode Procedure with Far Return Frame
Call Real Mode Procedure with Int. Return Frame
Allocate Real Mode Callback Address
Free Real Mode Callback Address
Get State Save/Restore Addresses
Get Raw CPU Mode Switch Addresses

MANAGEMENT SERVICES
Lock Linear Region
Unlock Linear Region
Mark Real Mode Region as Pageable
Relock Real Mode Region
Get Page Size
Mark Page as Demand Paging Candidate
Discard Page Contents

* *
* *
* *

*

*
*

*
* *
* *
* *

* *
* *
* *
* *
* *
* *
* *

* *
* *
* *
* *
* *
* *
* *

DEBUG SUPPORT SERVICES
OBOOh  Set Debug Watchpoint
OBO 1 h Clear Debug Watchpoint
OB02h Get State of Debug Watchpoint
OB03h  Reset Debug Watchpoint

* *
* *
* *
* *
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Function
Number

FWCfiOIl
Name

DPMI
0.9 1.0

MISCELLANEOUS SERVICES
0400h
0401h
OAOOh
OCOOh
OCOlh
OEOOh
OEOlh

Get DPMI Version
Get DPMI Capabilities
Get Vendor-Specific API Entry Point
Install Resident Service Provider Callback
Terminate and Stay Resident
Get Coprocessor Status
Set Coprocessor Emulation



DPMI Services
Detail

Int 2Fh Function 1686h
Get CPU Mode
Returns information about the current CPU
mode. Programs which only execute in
Protected mode do not need to call this
function.
Call with:
AX =  1686h
Returns:
if executing in Protected mode
AX =0
if executing in Real mode or Virtual 86 mode
AX =- nonzero

Int 2Fh Function 1687h
Obtain Real-to-Protected Mode Switch Entry
Point.
This function can be called in Real mode only
to test for the presence of a DPMI host, and to
obtain an address of a mode switch routine that
can be called to begin execution in Protected
mode.
Call  with:
A x =  168731
Returns:
if function successful
AX =
BX =

0

CL =

DH =

DL =

SI =

ES:DI =

flags
Bit Significance
0 0 =’ 32 bit programs are

not supported
1 = 32 bit programs are

supported
1-15  not used
processor type
02h = 80286
03h = 80386
04h = 80486
OSh-FFh Preserved for future
Intel processors
DPMI major version as a
decimal number (represented
in binary)
DPMI minor version as a
decimal number (represented
in binary)
number of paragraphs
required for DPMI host
private data (may be 0)
segment:offset of procedure to
call to enter Protected mode
if function unsuccessful
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FORMAT:

Headcitg

r

Description
Call with
Returns

(no DPMI host present)
9X = nonzero

[nt 31h Function OOOOh
llllocate  LDT Descriptors
4llocates  one or more descriptors in the task’s
Local Descriptor Table (LDT). The
descriptor(s) allocated must be initialized by the
application with other function calls.
Call with:

@
= OOOOh
= number of descriptors to

allocate
Returns:
if function successful

Z
= clear
= base selector

if function unsuccessful

Z
= set
= error code

8011 h descriptor unavailable

Int 31h Function OOOlh
Free LDT Descriptor
Frees an LDT descriptor.
Call with:
AX = OOOlh
BX = selector for the descriptor to

free
Returns:
if function successful
ZF = clear
4 x = error code

8022h invalid selector

[nt 31h Function 0002h
Segment to Descriptor
Maps a Real mode segment (paragraph) address
onto an LDT descriptor that can be used by a
Protected mode program to access the same
memory.
Call with:

&
= 0002h
= Real mode segment address

Returns:
if function successful
CF = clear
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AX = selector for Real mode
segment

if function unsucessful
CF = set
AX = error code

801 Ih descriptor unavailable

Int 31h Function 0003h
Get Selector Increment Value
The DPMI functions Allocate LDT Descriptors
(Int 3 Ih Function OOOOh) and Allocate DOS
Memory Block (Int 3 lh Function OlOOh)  can
allocate an array of contiguous descriptors, but
only return a selector for the first descriptor.
The value returned by this function can be used
to calculate the selectors for subsequent
descriptors in the array.
Call with:
A x = 0003h
Returns:
CF = clear (this function always

succeeds)
AX = selector increment value

Int 31h Function 0006h
Get Segment Base Address
Returns the 32-bit linear base address from the
LDT descriptor for the specified segment.
Call with:
AX = 0006h
BX = selector
Returns.
if function successful
CF = clear
CX:DX = 32-bit linear base

address of segment
if function unsuccessful
CF = set
AX = error code

8022h invalid selector

Int 31h Function 0007h
Set Segment Base Address
Sets the 32-bit linear base address field in the
LDT descriptor for the specified segment.
Call with:
AX = 0007h
BX = selector

CX:DX  = 32-bit linear base
address of segment

Returns:
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

8022h invalid selector
8025h invalid linear address

(changing the base would cause the descriptor
to reference a linear address range outside that
allowed for DPMI clients)

Int 31h Function 0008h
Set Segment Limit
Sets the limit field in the LDT descriptor for the
specified segment.
Call with:

= 0008h
;; = selector
CX:DX  = 32-bit segment limit
Returns:
if function seccessful
CF = clear
if function unsuccessful
CF = set
AX = error code

8021 h invalid value (CXoOon
a 16-bit DPMI host; or the
limit is greater than 1 MB, but
the low 12 bits are not set)
802231  invalid selector
8025h invalid linear address

(changing the limit would cause the descriptor
to reference a linear address range outside
that allowed for DPMI clients.)

Int 31 h Function 0009h
Set Descriptor Access Rights
Modifies the access rights and type fields in the
LDT descriptor for the specified segment.
Call with:

= 0009h
6: = selector

%
= access rights/type byte
= 80386 extended access

rights/type byte
Returns:
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

802 1 h invalid value (access
rights/type bytes invalid)
802231  invalid selector
8025h invalid linear address

(changing the access rights/type bytes would
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cause the descriptor to reference a linear address
range outside that allowed for DPMI clients.)

Int 31h  Function OOOAh
Create Alias Descriptor
Creates a new LDT data descriptor that has the
same base and limit as the specified descriptor.
Call  with:

g
= OOOAh
= selector

Returns:
if function successul
CF = clear
AX = date selector (alias)
if function unsuccessful
CF = set
AX = error code

801 I h descriptor unavailable
8022h invalid selector

Int 31h Function OOOBh
Get Descriptor
Copies the local descriptor table (LDT) entry
for the specified selector into an S-byte buffer.
Call  with:

::
= OOOBh
= selector

ES:(E)DI = selector:offset of 8 byte buffer
Returns:
if function successful
CF = clear
and buffer pointed to by ES:(E)DI contains
descriotor  if function unsuccessful

s

zz set
= error code

802231  invalid selector

Int 31h Function OOOCh
Set Descriptor
Copies the contents of an 8-byte buffer into the
LDT descriptor for the specified selector.
Call with:

=  OOOCh
;; = selector
EX:(E)DI = selector:offset of

8-byte buffer containing
descriptor

Returns:
if function successful
CF = clear
if function unsucessful

g
= set
= error code

8021 h invalid value (access
rights/types byte invalid)
8022h invalid selector
802511 invalid linear address
(descriptor references a linear

address range outside that
allowed for DPMI clients)

Int 31h Function OOODh
Allocate specific LDT Descriptor
Allocates a specific LDT descriptor.
Call with.
AX = OOODh
BX = selector
Returns:
if function successful
CF = clear

and descriptor has been allocated
if function unsuccessful
CF =
AX =

set
error code
8011 h descriptor unavailable
(descriptor is in use)
8012h invalid selector
(references GDT or beyond the
LDT limit)

Int 31h Function OlOOh
Allocate DOS Memory Block
Allocates a block of memory from the DOS
memory pool, i.e. memory below the 1 MB
boundary that is controlled by DOS. Such
memory blocks are typically used to exchange
data with Real mode programs, TSRs,  or device
drivers. The function returns both the Real
mode segement base address of the block and
one or more descriptors that can be used by
Protected mode applications to access the block.
Call with:

E
=  OlOOh
= number of (16-byte)

paragraphs desired
Returns:
if function successful
CF = clear
AX = Real mode segment base

address of allocated block
D X = selector for allocated block
if function unsuccessul
CF = set
AX = error code

0007h memory control blocks
damaged (also returned by
DPMI 0.9 hosts)
0008h insufficient memory
(also returned by DPMI 0.9
hosts).

BX = size of largest available block
in paragraphs
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Int3lh  Function OlOlh
Free DOS Memory  Block
Frees a memory block that was previously
allocated with the Allocate DOS Memory Block
function ( Int 3 1 h Function 01 OOh).
Call with:

%
= OlOlh
= selector of block to be freed

Returns.
if function successful
CF = clear
if function unsuccessful
CF =
AX =

set
error code
0007h memory control blocks
damaged (also returned by
DPMI 0.9 hosts).
0009h incorrect memory
segment specified (also
returned by DPMI 0.9 hosts).
802231 invalid selector

Int 31h Function 010th
Resize DOS Memory Block
Changes the size of a memory block that was
previously allocated with the Allocate DOS
Memory Block function (int 31h Function
OlOOh).
Call with.
AX =  0102h
BX = new block size in (I 6-byte)

paragraphs
DX = selector of block to modify
Returns:
if functions successful
CF = clear
if function unsuccessful

=
E =

set
error code
0007h memory control blocks
damaged (also returned by
DPMI 0.9 hosts).
0008h  insufficient memory
(also returned by DPMI 0.9
hosts).

BX

0009h incorrect memory
segment specified (also
returned by DPMI 0.9 hosts).
8011 h descriptor unavailable
802211 invalid selector

= maximum possible block size
(paragraphs)

tnt  31h Function 0200h
Get Real Mode Interrupt Vector
Returns the contents of the current virtual
machine’s Real mode interrupt vector for the
specified interrupt.
Call with:

iZ
= 0200h
= interrupt number

Returns:
CF = clear (this function always

succeeds)
CX:DX = segment:offset of real

mode interrupt handler

Int 31h  Function 0201h
Set Real Mode Interrupt Vector
Sets the current virtual machine’s Real mode
interrupt vector for the specified interrupt.
Call with:

K
= 0201h
= interrupt number

CX:DX  = segment:offset of real
mode interrupt handler

Returns:
ZF = clear (this function always

succeeds)

Int 31h Function 0202h
fet Processor Exception Handler Vector
ietums  the address of the current client’s
‘rotected mode exception handler for the
;peciIied exception number. This function
;hould  be avoided by DPMI I .O clients.
Tall with.
AX = 0202h
BL = exception number

(OOh-1  Fh)
Returns:
if function successful
CF = clear
CX:(E)DX = selector:offset  of

exception handler
if function unsuccessful
CF = set
AX = error code

802 I h invalid value (BL not in
range O-I Fh)



Id31 h Function 0203h
Set Processor Exception Handler Vector
Sets the address of a handler for a CPU
exception or fault, allowing a Protected mode
application to intercept processor exceptions
(such as segment not present faults) that are not
handled by the DPMI host and would otherwise
generate a fatal error. This function should be
avoided by DPMI 1 .O clients.
Call  with:
Ax = 0203h
BL = exceotiotifault number

(00h:lFh)
CX:(E)DX = selector:offset of

exception handler
Returns:
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

8022h invalid value (BL not in
range 0- 1 Fh)
8022h invalid selector

Int 31h Function 0204h
Get Protected Mode Interrupt Vector
Returns the address of the current Protected
mode interrupt handler for the specified
interrupt.
Call with:
A x = 0204h
BL = interrupt number
Returns:
CF = clear (this function always

succeeds)
CX:(E)DX = selector:offset  of

exception handler

Int 31h Function 0205h
Set Protected Mode Interrupt Vector
Sets the address of Protected mode handler for
the specified interrupt into the interrupt vector.
Call with.

i?
= 0205h
= interrupt number

CX:(E)DX = selector:offset  of
exception handler

Returns.
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

802211 invalid selector
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Int 31h Function 0300h
Simulate Real Mode Interrupt
Simulates an intemuot in Real mode. The
function transfers cbntrol to the address
specified by the Real mode interrupt vector.
The Real mode handler must return by
executing an IRET.
Call with:
AX =

=
;b =

0300h
interrupt number
flags

cx =

ES:(E)DI =

Returns:

Bz Significance
0 reserved for historical

reason, must be zero
1-7 reserved, must be zero
number of words to copy
from Protected mode to real
mode stack
selector:offset  of real
mode register data structure in
the following format:
Offset Length Contents

4 DI or ED1
4 SI of ES1

OOh
04h
08h
OCh
10h
14h
18h
1Ch
20h
22h

;:h
28h
2Ah
2Ch
2Eh
30h

BP or EBP
reserved, should be 0

BX or EBX
DX or EDX
CX or ECX
AX or EAX
CPU status flags

K
FS
GS

IP (reserved, ignored)
CS (reserved,ignored)

SP
ss

if function successful
CF = clear
ES:(E)DI = selector:offset  of

modified Real mode register
data structure

if function unsuccessful
CF = set
AX = error code

80 12h linear memorv
unavailable (stack) d
80 13h physical memory
unavailable (stack)
8014h  backing store
unavailable (stack)
8021 h invalid value (CX too
large)
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Int 31h Function 0301h
Call Real Mode Procedure With Far Return
Frame
Simulates a FAR CALL to a real Mode
nrocedure. The called nrocedure must return byr-----~

executing a RETF (far ;etum) instruction.
Call wit&

=
;; =

cx =

ES:(E)DI =

Returns:

0301h
flags
Bit Significance
0 reserved for historical

reason, must be zero
1-7 reserved, must be zero

number of words to copy
from Protected mode to real
mode stack
seIector:offset  of real
mode register data structure in
the following format:
Offset Length Contents
OOh 4 DI or EDI
04h 4 SI or ES1
08h 4 BP or EBP
OCh 4 reserved, ignored
10h 4 BX or EBX
14h 4 DX or EDX
18h 4 CX or ECX
1Ch 4 AX or EAX
20h 2 CPU status flags
22h 2 ES
24h 2 DS
26h 2
28h 2 g
2Ah 2
2Ch 2 &
2Eh 2
30h 2 ::

if function successful
CF = clear
ES:(E)DI= selector:offset of

modified Real mode register
data structure

if function unsucessful
CF = set
AX = error

8012h  linear memory
unavailable (stack)
8013h  physical memory
unavailable (stack)
8014h backing store
unavailable (stack)
8021 h invalid value (CX too
large)

Int 31 h Function 0302h
Call Real Mode Procedure With IRET  Frame
Simulates a FAR CALL with flags pushed on
the stack to a Real mode procedure. The Real
mode routine must return by executing an IRET
instruction.
Call with:
AX =
BH =

cx =

ES:(E)DI=

0302h
flags
Bit Signifiance
0 reserved for historical

reason, must be zero
l-7 reserved, must be zero
number of words to copy
from Protected mode to real
mode stack
selector:offset of real
mode register data structure in
the following format:
Offset Length Contents
OOh 4 DI or ED1
04h 4 SI or ES1
08h 4 BP or EBP
OCh 4 reserved, ignored
10h  4 BX or EBX
14h 4 DX or EDX
18h 4 CX or ECX
1Ch 4 AX or EAX
20h 2 CPU status flags
22h 2 ES
24h 2 DS
26h 2
28h 2 ::
2Ah 2
2Ch 2 :S
2Eh 2
30h 2 ::

Returns:
if function successful
CF = clear
ES:(E)DI= selector:offset of

modified Real mode register
data structure

if function unsuccessful
CF = set
AX = error code

8012h  linear memory
unavailable (stack)
8013h  physical memory
unavailable (stack)
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80 14h backing store
unavailable (stack)
8021 h invalid value (CX too
large)

Int 31h Function 0303h
Allocate Real Mode Callback Address
Returns a unique Real mode segment:offset,
known as a “Real mode callback,” that will
transfer control from Real mode to a Protected
mode procedure. Callback addresses obtained
with this function can be passed by a Protected
mode program to a Real mode-  application,
interrunt handler. device driver. or TSR. so that
the Real mode <program can ‘call procedures
within the Protected mode program or notify the
Protected mode program of an event.
Call  with:
AX = 0303h
DS:(E)SI= selector:offset of

Protected mode procedure to
call

ES:(E)DI= selector:offset of
32h-bvte buffer for Real mode
register data structure to be
used when calling callback
routine.

Returns:
if function successful
CF = clear
CX:DX = segment:offset of real

mode callback
if function unsuccessful

=
2; =

set
error code
8015h callback unavailable

Int 31h Function 0304h
Free Real Mode Callback Address
Releases a Real mode callback address that was
previously allocated with the Allocate Real
Mode Callback Address function (Int 3 lh
Function 0303h).
Call with.
AX = 0304h
CX:DX = Real mode callback

address to be freed
Returns:
if function successful
CF = clear
if function unsuccessful

Z
= set
= error code

8024h invalid callback address

Int 31h Function 0305h
Get State Save/Restore Addresses
Returns the addresses of two procedures used to
save and restore the state of the current task’s

registers in
executing.
Call with:
AX =
Returns:
CF =

AX =

BX:CX =

SI:(E)DI =

the mode which is not currently

0305h

clear (this function always
succeeds)
size of buffer in bytes
required to save state
Real mode address of
routine used to save/restore
state
Protected mode
address of routine used to
save/restore state

Int 31h Function 0306h
Get Raw Mode Switch Addresses
Returns addresses that can be called for
low-level mode switching
Call with:
AX = 0306h
Returns:
CF = clear (this function

always succeeds)
BX:CX = real to Protected mode switch

address
SI:(E)DI = protected to-Real mode

switch address

Int 31h Function 0400h
Get Version
Returns the version number of the DPMI
Specification implemented by the DPMI host.
Clients can use this information to determine
which function calls are supported in the current
environment.
Call with.
AX =
Returns:
CF

AH

AL

BX

0400h

clear (this function always
succeeds)
DPMI major version as a
binary number
DPMI minor version as a
binary number
flags
Bits Significance
0 O=host is 16-bit DPMI

implementation
l=host is 32-bit (80386)
DPMI implementation
O=CPU returned to
Virtual 86 mode for
reflected interrupts
1 =CPU returned to real
mode for reflected
interrupts



396 Windows Assembly Language & Systems Programming

CL =

DH =

DL =

2 O=virtual memory not
supported
1 =virtual memory
supported

3 reserved, for historical
reasons

4-l 5 reserved for later use
processor type
02h = 80286
03h = 80386
04h = 80486
OSh-FFh reserved for future
Intel processors
current value of virtual
master PIC2 base interrupt
current value of virtual slave
PIC base interrupt

Int 31I1  Function 0500h
Get Free Memory Information
Returns information about the amount of
available physical memory, linear address
space, and disk space for page swapping. Since
DPMI clients will often run in multitasking
environments, the information returned by this
function should only be considered as advisory.
DPMI 1.0 clients should avoid use of this
function.
Call with:
AX = 0500h
ES:(E)DI= selector:offset of

48-byte  buffer
Returns:
CF = clear (this function always

succeeds)
and the buffer is filled with the following
information:

Offset Length Contents
OOh 4 Largest available

free block in bytes
04h 4 Maximum

unlocked page
allocation in pages

08h 4 Maximum locked
page allocation in
pages

OCh 4 Linear address
space size in pages

10h  4 Total number of
unlocked pages

14h 4 Total number of
free pages

18h  4 Total number of
physical pages

1Ch 4 Free linear
address space in
pages

20h 4 Size of paging
tile/partition in pages

24h OCh  Reserved, all
bytes set to OFFh

Int 31h Function 0501h
Allocate Memory Block
Allocates and commits a block of linear
memory.
Call with:
AX = 0501h
BX:CX = size of block (bytes,

must be nonzero)
Returns:
if function successful
CF = clear
BX:CX = linear address of

allocated memory block
SI:DI = memory block handle (used

to resize and free block)
if function unsuccessful
CF = set
AX = error code

8012h linear mem. unavailable
8013h physical mem. unavailable
8014h backing store
unavailable
80 16h handle unavailable
8021 h invalid value (BX:CX =
0)

Int 31h Function 0502h
Free Memory Block
Frees a memory block that was previously
allocated with either the Allocate Memory
Block function (Int 31 h Function OSOlh)  or the
Allocate Linear Memory Block function (Int
3 1 h Function 0504h).
Call with:
AX = 0502h
SI:DI = memory block handle
Returns:
if function successful
CF = clear
if function unsuccessful

Z
= set
= error code

802331  invalid handle
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Int 31h Function 0503h
Resize Memory Block
Changes the size of a memory block that was
previously allocated with either the Allocate
Memory Block function (Int 31h Function
OSOlh)  or the Allocate Linear Memory Block
function (Int 3 1 h Function 0504h).
Call with:
AX = 0503h
BX:CX = new size of block

(bytes, must be nonzero)
SI:DI = memory block handle
Returns:
if function successful
CF = clear
BX:CX = new linear address of

memory block
SI:DI = new handle for memory

block
if function unsuccessful
CF = set
AX = error code

8012h  linear memory
unavailable
8013h  physical memory
unavailable
80 14h backing store
unavailable -
8016h  handle unavailable
8021h  invalid value (BX:CX  =
0)
802311 invalid handle (In
SI:DI)

Int 31h Function 0600h
Lock Linear Region
Locks the specified linear address range.
Call with:
AX = 0600h
BX:CX  = starting linear address

of memory to lock
SI:DI = size of region to lock (bytes)
Returns:
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

8013h  nhvsical memory
unavaiiabie
8017h  lock count exceeded
8025h  invalid linear address
(unallocated pages)

Int 31h Function 0601h
Unlock Linear Region
Unlocks a linear address range that was
previously locked using the Lock Linear Region
function (Int 3 1 h Function 0600h).

Call with.
AX = 0601h
BX:CX  = starting linear address

of memory to unlock
SI:DI = size of region to unlock

(bytes)
Returns: _
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

8002h invalid state (page not
locked)
802531 invalid linear address
(unallocated pages)

Int 31h Function 0602h
Mark Real Mode Region as Pageable
Advises the DPMI host that the specified
memory below the I MB boundary may be
paged to disk.
Call  with:
AX = 0602h
BX:CX  = starting linear address

SI:DI

of memory to mark as
pageable

= size of region to be marked
(bytes)

Returns:
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

8002h invalid state (region
already marked as paggable)
8025h  invalid linear address
(region is above 1MB
boundary)

Int 31 h Function 0603h
Relock Real Mode Region
Relocks a memory region that was previously
declared as pageable  with the Mark Real Mode
Region as Pageable function (Int 31 h Function
0602h).
Call with:
AX = 0603h
BX:CX  = starting linear address

SI:DI
of memory to relock

= size of region to relock
(bytes)

Returns:
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code
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8002h invalid state (region not
marked as pageable)
8013h  physical memory
unavailable
8025h invalid linear address
(region is above 1 MB
boundary)

Int 31h Function 0604h
Get Page Size
Returns the size of a single memory page in
bytes.
Call with:
AX = 0604h
Returns:
if function successful
CF = clear
BX:CX = page size in bytes
if function unsuccessful
CF = set
AX = error code

8001 h unsupported function
(16-bit  host)

Int 31h Function 0702h
Mark Page as Demand Paging Candidate
Notifies the DPMI host that a range of pages
may be placed at the head of the page-out
candidate list, forcing these pages to be replaced
ahead of other pages even if the memory has
been accessed recently. The contents of the
pages will be preserved.
Call with:
AX = 0702h
BX:CX = starting linear address

of pages to mark as paging
candidates

SI:DI = size of region to mark (bytes)
Returns.
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

8025h invalid linear addreses
(range unallocated)

Int 31h Function 0703h
Discard Page Contents
Discards the entire contents of a given linear
memory range. This function is used when a
memory object (such as a data structure) that
occupies a given area of memory is no longer
needed, so that the area will not be paged to
disk unnecessarily.
The contents of the discarded region will be
undefined.
Call with:
AX = 0703h
BX:CX = starting linear address

of pages to discard
SI:DI = size of region to discard

(bytes)
Returns:
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

8025h invalid linear address
(range unallocated)

Int 31h Function 0800h
Physical Address Mapping
Converts a physical address into a linear
address. This function allows device drivers
running under DPMI hosts which use paging to
reach physical memory that is associated with
their devices above the 1 MB boundary
Examples of such devices are the Weitek
numeric coprocessor (usually mapped at 3 GB),
buffers that hold scanner bit maps, and high-end
displays that can be configured to make display
memory appear in extended memory.
Call with:
AX = 0800h
BX:CX = physical address of memory
SI:DI = size of region to map (bytes)
Returns:
if function successful
CF = clear
BX:CX = linear address that can

be used to access the physical
memory

if function unsuccessful
CF = set
AX = error code

8003h system integrity (DPMI
host memory region)
8021h invalid value (address is
below 1 MB boundry)

Int 31h Function 0900h
Get and Disable Virtual Interrupt State
Disables the virtual interrupt flag and returns
the previous state of the virtual interrupt flag.



Call with:
A x = 0900h
Returns.
Virtual interrupts disabled
CF = clear (this function always

succeeds)
AL = 0 if virtual interrupts were

previously disabled
= 1 if virtual interrupts were

previously enabled

Int 31h Function 0901h
Get and Enable Virtual Interrupt State
Enables the virtual interrupt flag and returns the
previous state of the virtual interrupt flag.
Call with.
AX = 0901h
Returns:
Virtual interrupts enabled
CF = clear (this function always

AL
succeeds)

= 0 if virtual interrupts were
previously disabled

= 1 if virtual interrupts were
previously enabled

Int 31h Function 0902h
Get Virtual Interrupt State
Returns the current state of the virtual interrupt
flag.
Call with:
AX =
Returns.
CF =

0902h

clear (this function always
succeeds)

AL =

=

0 if virtual interrupts are
disabled
I if virtual interrupts are
enabled

Int 31h Function OAOOh
Get Vendor-Specific API Entry Point
Returns an address which can be called to use
host-specific extensions to the standard set of
DPMI functions. DPMI 1 .O clients should avoid
use of this function.
Call with.
AX
DS:(E)SII

Returns:

OAOOh
selector:offset of
ASCl  1Z (null-terminated
string which identifies the
DPMI host vendor

if function successful
CF clear
ES:(E)DI:  selector:offset o f

extended API entry point, and
DX, GS,EAX,ECX,EDX,ESI,
and EBP may be modified.
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if function unsuccessful
CF = set
AX = error code

8001 h unsupported function
(extension not found)

Int 31h Function OBOOOh
Set Debug Watchpoint
Sets a debug watchpoint at the specified linear
address.
Call  with:
AX = OBOOh
BX:CX = linear address of

watchpoint
DL = size of watchpoint

(1,2,  or 4 bytes)
DH = type of watchpoint

0 = execute
1 = write
2 = read/write

Returns.
if function successful
CF = clear
BX = watchpoint handle
if function unsuccessful
CF = set
AX = error code

8016h  to many breakpoints
8021h invalid value (in DL or
DH)
8035h invalid linear address
(linear address not mapped or
alignment error)

[nt 31h Function OBOlh
Clear Debug Watchpoint
Clears a debug watchpoint that was previously
set using the Set Debug Watchpoint function
[Int 31 h Function OBOOh), and releases the
watchpoint handle.
Call with:

ix”
=  OBOlh
= watchpoint handle

Returns:
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

8023h invalid handle

Int 31h Function OB02h
Get State ofDebug Watchpoint
Returns the state of a debug watchpoint that was
previously set using the Set Debug Watchpoint
function (Int 3 1 h Function OBOOh).
Call with:

;:
=  OB02h
= watchpoint handle
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Heading
DescriptionL-!Call with
RetWiZS

Returns:
if function successful
CF = clear
AX = watchpoint status

Bit Significance
0 0 = watchpoint has not

been encountered
I = watchpoint has been
encountered

1 - 15 reserved
if function unsuccessful
CF = set
AX = error code

8023h invalid handle

Int 31h Function OB03h
Reset Debug Watchpoint
Resets the state of a previously defined debug
watchpoint; i.e. a subsequent call to Int 3 1 h
Function OB02h  will indicate that the debug
watchpoint has not been encountered.
Call with:
AX =  OB03h
BX = watchpoint handle
Returns:
if function successful
CF = clear
if function unsuccessful
CF = set
AX = error code

802311 invalid handle



INT-2F Extensions
These extensions to INT-2Fh are provided by Windows. Two
others, functions 1686h and 1687h, are part of the DPMI and are
described in Appendix C.
The source of this reference information is Microsoft’s Device
Development Kit, and more material is to be found there, with
many example programs.’

Function Description

1600h
1602h
1605h
1606h
1607h
1608h

Get Enhanced-Mode Windows Installed State
Get Enhanced-Mode Windows Entry-Point Address
Windows Initialization Notification
Windows Termination Notification
Device Call Out
Windows Initialization Complete Notification

609h
680h
681h
68211
683h

Windows Begin Exit
Release Current VM Time-Slice
Begin Critical Section
End Critical Section
Get Current Virtual Machine ID

The specific reference for Appendix D is the Device Driver Adaptation Guide, Microsoft
Device Development Kit, version 3.1, 0 1992 Microsoft Corporation. All rights reserved.
Reprinted with permission from Microsoft Corporation.
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Function Description

4000h
4001h
4002h
4003h
4004h
4005h
4006h
4007h

Enable VM-Assisted Save/Restore
Notify Background Switch
Notify Foreground Switch
Enter Critical Section
Exit Critical Section
Save Video Register State
Restore Video Register State
Disable VM-Assisted Save/Restore
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INT-2F Extensions
Detail

Interrupt 2Fh Function 1600h
Get Enhanced-Mode Windows Installed State
Determines whether 386 Enhanced-mode
Windows is running. If a program intends to use
a 386 Enhanced-mode Windows function. it
must first use this function to make sure that
386 Enhanced-mode Windows is running.
This function is valid under all versions of 386
Enhanced-mode Windows.
Call with:
A x = 1600h
Return value:
The return value is OOh or 80h in the AL
register if 386 Enhanced-mode Windows is not
runnina. If 386 Enhanced-mode Windows is
runnini, the return value depends on the version
of Windows. Windows/386 version 2.x returns
Olh or OFFh. Windows version 3.x returns the
major version number in the AL register, and
the minor version number in the AH register.

Interrupt 2Fh Function 160th
Get Enhanced-Mode Windows Entry Point
Returns the address of the 386 Enhanced-mode
Windows entry-point procedure. Applications
can call this procedure to direct Windows/386
version 2.x to carry out specific actions.
This function applies to Windows/386 version
2.x only. It is provided under Windows version
3.x for compatibility reasons.
Call with:
A x =  1602h
Return value:
The return value contains the Windows
entry-point address in the ES:DI registers.
Comments
Although the Windows entry-point address is
the same for every virtual machine, an
application can call this function any number of
times.
To direct Windows to carry out a specific
action, the application sets the AX register to
OOOOh.  This function retrieves the current VM
identifier and copies the identifier to the BX
register.
Additionally, the application must place a return
address in the ES:DI register pair and use the
jmp instruction to transfer control to the
Windows entry point.

/FORIMAT:
Heading

Interrupt 2Fh Function 1605h
Windows Initialization Notljkation
Notifies MS-DOS device drivers and TSRs that
standard- or 386 Enhanced-mode Windows is
starting. Windows calls this function as it starts
allowine  MS-DOS device drivers and TSRs that
monitor-  Interrupt 2Fh the opportunity to
prepare for running in the Windows
environment.
Call with.
AX =  1605h
E S : B X  =  0:O
DS:SI = 0:o
c x =  0  (normallv)
DX = Specifies whether standard- or

386 Enhanced-mode Windows is

DI

initializing. 386 Enhanced-mode
Windows sets bit 0 to 0;
standard-mode Windows sets
bit 0 to I. Only bit 0 is used; all
other bits reserved and
undefined.

= Specifies the version number
of Windows. The major version
number is in the high-order
byte, the minor version number
in low-order bvte.

Return value:
The return value is 0 in the CX register if all
MS-DOS device drivers and TSRs monitoring
Interrupt 2Fh can run in the Windows
environment, and Windows can proceed with
initialization. Otherwise, the CX register is
nonzero and Windows must terminate.
Comments
Anv MS-DOS device driver or TSR that either
cannot run in the Windows environment or
must adapt its operation when in the Windows
environment should add itself to the Interrupt
2Fh chain and watch for this function.
If the device driver or TSR cannot run in the
Windows environment, it should set the CX
register to a nonzero value, display a message
informing the user of its incompatibility with
Windows, and return. Windows does not print a
message of its own. Instead, it calls Windows
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Heading
Descriptionrcall with
ReCurns
[Cornmen  fsl

Termination Notification (Interrupt 2Fh
Function 1606h) and returns to MS-DOS.
If the device driver or TSR can run in the
Windows environment, it should do
following:
1 Call the next device driver or TSR in

the

the Interrupt 2Fh chain to allow all
device drivers and TSRs  in the chain

2

an opportunity to respond to this
function.
Upon return from the interrupt chain,
carry out the following actions:
a Free any extended memory. The

device driver or TSR takes this
action only if it has previously
allocated extended memory
using the Extended Memory
Soecitication (XMSI  interface.

b Switch the processor to real
mode, or set the DS:SI  register
pair to the address of an
Enable/Disable Virtual 8086
Mode callback function. The
device driver or TSR takes this
action only if it has previously
switched the processor to virtual
8086 mode. If standard-mode
Windows is starting, the device
driver or TSR must switch the
processor to real mode. The
callback function is permitted
for 386 Enhanced-mode
Windows only.

c Initialise a Win386_Startup_
Info Strut structure, and copy
the address of the structure to
the ES:BX register pair. The
device driver or TSR carries out
this action only if 386
Enhanced-mode Windows is
starting.

3 Return (using the iret instruction) but
without changing the CX register.

For more information about these procedures,
see the following comments:

The device driver or TSR must preserve all
registers and restore the original values before
returning. The only exceptions to this rule are
changes made to the BX, CX, DS, ES, and SI
registers as a result of following the previous
procedure.

Enable/Disable Virtual 8086 Mode Callback
Function
Some device drivers and TSRs, such as
expanded memory emulators, switch the
processor to virtual 8086 mode. Because 386
Enhanced-mode Windows cannot start
successfully while the processor is in this mode,
any device driver or TSR that switches to
virtual 8086 mode must either switch back to
Real mode or supply the address of a callback
function that can switch between real and
virtual 8086 modes.
Windows uses the callback function to disable
virtual 8086 mode before Windows itself enters
Protected mode. Windows calls the callback
function again to enable virtual 8086 mode after
Windows exits Protected mode. Windows calls
the callback function using a far call instruction,
and it specifies which action to take by setting
the AX register to 0 or I.
To disable virtual 8086 mode. Windows sets the
AX register to 0, disables interrupts, and calls
the callback function. The function should
switch the processor to Real mode, clear the
carry flag to indicate success, and return. If an
error occurs, the function sets the carry flag and
returns. Windows checks the carry flag and
terminates if it is set.
To enable virtual 8086 mode, Windows set the
AX register to I, disables interrupts, and calls
the callback function. The function should
switch the processor to virtual 8086 mode, clear
the carry flag, and return. If an error occurs, the
function sets the carry flag and returns.
However, Windows ignores the carry flag, so if
an error occurs no action is taken and the
nrocessor is left in Real mode.
Whether an error occurs when enabling or
disabling virtual 8086 mode. it is UD to the
callback”function  to display any error ‘message
to the user. Also, the callback function must not
enable interrupts unless an error occurs, and the
function sets the carry flag.
A device driver or TSR supplies a callback
function by copying the address of the function
to the DS:SI register nair when it orocesses  the
Windows Initi&zati& Notification (Interrupt
2Fh Function 1605h).  Windows permits only
one callback function, so the device driver or
TSR should first check to make sure that the DS
and SI registers are both zero. If they are
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nonzero,  the device driver or TSR should set the
CX register to a nonzero  value and return,
directing Windows to terminate without
starting.

Initializing a Win386_Startup_Info_Struc
Structure
An MS-DOS device driver or TSR initializes a
Win3 86_Startup_Info_Struc  structure to direct
386 Enhanced-mode Windows to load the
virtual device and to reserve the instance data
the device driver or TSR needs to operate in the
Windows environment. The device driver or
TSR is also responsible for establishing a chain
of startup structures by copying the contents of
the ES:BX register pair to the Next_Dev  Ptr
member. It is assumed that any other device
driver or TSR in the Interrupt 2Fh chain will
have set the ES:BX register pair to the address
of its own startup structure prior to returning.
Any device driver or TSR can use a Windows
virt-ual  device to help support its operation in
the 386 Enhanced-mode Windows environment.
To specify a virtual device, the device driver or
TSR-sets  ihe SIS Virt De; File Ptr member to
the address of th<vi&al device’;  filename. The
device file is assumed to be in the Windows
SYSTEM directory. The device driver or TSR
can also set the SIS_Reference_Data member to
specify additional data to be passed to the
virtual device when loaded.
Any device driver or TSR can reserve instance
data for itself. Instance data is one or more
blocks of memory used by the device or TSR,
and managed by-windows  For device drivers
or TSRs  loaded before 386 Enhanced-mode
Windows starts, reserving instance data allows
the device drivdr  or TSfto keep separate data
for each virtual machine. Whenever Windows
switches virtual machines, it saves the previous
VM’s instance data and loads the current VM’s
instance data. If a device driver or TSR does not
specify instance data, the same data is used for
all virtual machines.
A device driver or TSR reserves instance data
by appending an array of Instance_Item_Struc
structures to the Win386 Startup_Info_Struc
structure. The last structure% the array must be
set to zero. Each Instance_Item_Struc  structure
specifies the starting address and size (in bytes)
of an instance data block.
The device driver or TSR must copy the address
of its startup structure to the ES:BX register pair
before returning.

See also at end of this appendix:
Win386_Startup_Info_Struc,
Instance_Item_Struc

Interrupt 2Fh Function 1606h
Windows Termination Notification
Notifies MS-DOS device drivers and TSRs  that
standard- or 386 Enhanced-mode Windows is
terminating. Windows calls this function as it
terminates- allowing MS-DOS device drivers
and TSRs  that monitor Interruot  2Fh the
opportunity to prepare for leaving ihe Windows
environment.
Call with:
AX = 1606h
D X = Specifies whether standard- or

386 Enhanced-mode Windows is
terminating. 386 Enhanced-
mode Windows sets bit 0 to 0:
standard-mode Windows sets.
bit 0 to 1. Onlv bit 0 is used: all
other bits resehed and
undefined.

Return value:
This function has no return value.
Comments
Windows calls this function when the processor
is in Real mode.

Interrupt 2Fh Function 1607h
Device Call OUI
Directs an MS-DOS device driver or TSR to
provide information to the calling virtual
device. Although the BX register  soecifies  a
device identifie;,  other registe;s  may be used to
specify the action to take.
Called with:

i%
= 1607h
= device identifier for a virtual

device
Return value:
The return value depends on the specific action
requested.
Comments
this function typically is used by a virtual
device to communicate with the driver or TSR
that explicitly loaded the virtual device. It is up
to the virtual device to supply a correct device
identifier and any other parameters that specify
what action to take. It is UD to the driver or TSR
to monitor Interrupt 2Fh’ and respond to the
function appropriately.
A virtual device can call this function at anv
time, either in Real mode or after 386
Enhanced-mode Windows has started.

tnterrupt 2Fh Function 1608h
Windows Initialization Complete Notification
Notifies MS-DOS device drivers and TSRs  that
386 Enhanced-mode Windows has completed
its initialization. Windows calls this function
after  it has installed and initialized all virtual
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FORMAT:

devices allowing MS-DOS device drivers and
TSRs that monitor Interrupt 2Fh the opportunity
to identify instance data and perform other
functions that are restricted to 386
Enhanced-mode Windows initialization.
Call with.
AX =  1608h
Return value.
This function has no return value.
Comments
When Windows calls this function, all
virtual-device initialization is complete, so a
device driver or TSR can call virtual-device
entry points.
Windows does not necessarily call this function
immediately after calling Windows
Initialization Notification (Interrupt 2Fh
Function 1605h). In particular, virtual devices
may call Device Call Out (Interrupt 2Fh
Function 1607h) or other functions prior to
Windows calling this function. In such cases,
any MS-DOS device driver or TSR responding
to these calls is responsible for detecting and
properly handling these calls.

Interrupt 2Fh Function 1609h
Windows Begin Exit
Notifies MS-DOS device drivers and TSRs that
Windows is about to terminate. Windows calls
this function when it first begins termination to
allow a device driver or TSR to prepare for a
return to a non-Windows environment.
Call with.
AX =1609h
Return value:
This function has no return value.
Comments
Windows calls this function at the start of the
Sys VM Terminate device control call. All
virtual devices still exist, so a device driver or
TSR can call a virtual device’s entry point if
necessary.
Windows does not call this function in the event
of a fatal system crash.
Windows may execute Real mode code after
this function has been called and before 386

Enhanced-mode
mode. It is the

Windows returns to Real
responsibility of the device

driver or TSR to detect and properly handle
these situations.

Interrupt 2Fh Function 160Bh
Windows TSR Identify
(This information is missing from the DDK.)
When Windows and Windows Setup start, they
broadcast Interrupt 2Fh Function l60Bh  to
notify TSRs and MS-DOS device drivers. A
Windows-aware TSR must identify itself by
responding to the notification and adding itself
to a linked list of Windows-aware TSRs.  A
Windows-aware TSR can also direct Windows
to load a Windows-based application or a DLL
(such as an installable driver) to allow the TSR’s
services to continue running properly inside the
Windows environment.
Each TSR must monitor Interrupt 2Fh and
respond to the startup broadcast by attaching
itself to a linked list. A TSR that interceots  this

’broadcast must do the following:
1 Allocate space for a TSR_Info_Struc

structure.
2 At the minimum, fill in the

TSR_PSP_Segment,  TSR_API_Ver_ID,
and TSR ID Block fields.

3 Save the&%&t content of the ES:DI
register pair in the TSR-Next field.

4 Set the ES:DI register to point to its own
TSR Info Strut structure.

5 Passexec&on  control to the next handler
in the Interrupt 2Fh chain.

A TSR should never assume that the ES:DI
register pair is 0:O because it may not be the
first TSR on the Interrupt 2Fh chain. A TSR
must always chain to the next Interrupt 2Fh
handler so that TSRs following it in the chain
can add themselves to the Windows-aware
linked list.
The TSR_Info_Struc  structure (defined in the
D D K  i n c l u d e  f i l e  INT2FAPIINC)  is a
Microsoft Macro assembler structure - see end
of this Appendix.

Interrupt 2Fh Function 1680h
Release-Current VA4  Time-Slice
Directs Windows to susvend the time slice of
the current VM and start a new time slice for
another VM. MS-DOS programs use this
function when they are idle, such as when
waiting for user input, to allow 386
Enhanced-mode Windows to run other
programs that are not idle.
Call with:
A x =1680h
Return value:
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The return value is OOh  in the AL register if the
function is supported. Otherwise, AL is
unchanged (contains 80h).
Comments
Only non-Windows programs should use
Release Current VM Time-Slice; Windows
applications should yield by calling the
WaitMessage  function. A program can call this
function at any time, even when running in
environments other than 386 Enhanced-mode
Windows environment. If the current
environment does not support the function, the
function returns and the program continues
execution.
Windows suspends the current VM only if there
is another VM scheduled to run. If no other VM
is ready, the function returns to the program and
execution continues. A program should call the
function frequently (for example, once during
each pass of the program’s idle loop) to give
Windows ample opportunity to check for other
VMs  that are ready for execution.
Before calling this function, a program should
check that the Interrupt 2Fh address is not zero.

Interrupt 2Fh Function 1681h
Begin Critical Section
Prevents Windows from switching execution
from the current VM to some other. MS-DOS
device drivers and TSRs  use this function to
prevent a task-switch from occurring.
Call with:
AX =  1680h
Return value.
This function has no return value.
Comments
When a virtual machine is in a critical section,
no other task will be allowed to run except to
service hardware interrupts. For this reason, the
critical section should be released using End
Critical Section (Interrupt 2Fh Function 1682h)
as soon as possible.

Interrupt 2Fh Function 168211
End Critical Section
Releases the critical section previously started
using Begin Critical Section (Interrupt 2Fh
Function 168 lh). Every call to Begin Critical
Section must be followed by a matching call to
End Critical Section.
Call with.
AX = 1682h
Return value.
This function has no return value.

Interrupt 2Fh Function 1683h
Get Current Virtual Machine ID
Returns the identifier for the current virtual
machine. MS-DOS device drivers, TSRs,  and

other programs use this function to determine
which virtual machine is running. This is
especially important for programs that
independently manage separate data or
execution contexts for separate virtual
machines.
Call with:
AX =  1683h
Return value:
The return value is the current virtual-machine
identifier in the BX register.
Comments
Each virtual machine has a unique, nonzero
identifier. Although Windows currently runs in
virtual machine 1, programs should not rely on
this. Windows assigns the identifier when it
creates the virtual machine, and releases the
identifier when it destroys the virtual machine.
Since Windows may reuse identifiers from
previous, destroyed virtual machines, programs
should monitor changes to virtual machines to
ensure no mismatches.

interrupt 2Fh Function 1684h
Get Device Entrv Point Address
Retrieves the entry point address for a virtual
device’s service functions. MS-DOS device
drivers or TSRs  typically use this function to
communicate with virtual devices they have
explicitly loaded.
Call with.
AX =  1684h
BX = device identifier (ID).
Return value:
Ihe return value is the entry-point address
:ontained  in the ES:DI  register pair if the
Function is supported. Otherwise, ES:DI contain
rero.
Zomments
4ny virtual device can provide service
‘unctions to be used by MS-DOS programs. For
:xample,  the virtual-display device provides
retvices  that the Windows old application
)rogram  uses to display MS-DOS programs in a
Nindow.
:t is the responsibility of the MS-DOS program
o provide the appropriate virtual-device
dentifier. The function returns a valid address if
he virtual device supports the entry point.
MS-DOS programs call the entry point using a
‘ar call instruction. The services provided by the
virtual device depend on the device. It is the
.esponsibility  of the MS-DOS program to set
.egisters  to values that are appropriate to the
;pecrtic  virtual device.
:or versions of Windows prior to version 3.0,
he program must set the ES:DI register pair to
rero  before calling this function.
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Call with.
Ax =
BX =
cx =

DX:Sl =

FORMAT:

Heading
Description
Cull with
Returns
(Comments]

Interrupt 2Fh Function 168511
Switch VMs  and CallBack
Directs Windows to switch to a specific virtual
machine and begin execution. After Windows
switches, it calls the specified callback function
allowing a device driver or TSR to access the
data associated with the specified virtual
machine. This function is typically used by
MS-DOS device drivers and TSRs that support
networks, and that need to perform functions in
a soecific  virtual machine.

1685h
Virtual machine ID
Flags. Specifies when to
switch. This parameter is a
combination of the following bit
values.
Bit Meaning
0 Set to 1 to wait until

interrupts are enabled.
1 Set to 1 to wait until

critical section is released.
All other bits are reserved and
must be 0.
Priority. Specifies the priority
boost for the virtual machine. It
can be one of the following
values.
Value: Meaning
Critical Section Boost: VM
priority% boost&d by this value
when Begin_Critical_Section is
called.
Cur Run VM Boost:
Time-slice sch;duler boosts
each VM in turn by this value to
force them to run for their
allotted time slice.
High_Pri_Device_Boost: Time
critical operations that should
not circumvent the critical
section boost should use this
boost.
Low Pri Device-Boost: Used
by &uaTdevices that need an

event to be processed in a timely
fashion but that are not
extremely time critical.
Reserved-High-Boost:
Reserved; do not use.
Reserved Low Boost:
Reserved’do  not use.
Time Cr;tical Boost: Events
that must be processed even
when another VM is in a critical
section should use this boost.
For example, VPICD uses this
when simulating hardware
interrupts.

ES:Dl = CallBack. Points to the
callback function.

Return value:
The return value is a cleared carry flag if
successful. Otherwise, the function sets the
carry flag and sets the AX register to one of the
following error values.

-Value  Meaning
000 1 h Invalid VM ID
0002h Invalid priority boost
0003h Invalid flags

Comments
Windows calls the callback function as soon as
the conditions specified by the Flags parameter
are met. This may be before or after Switch
VMs  and Callback returns.
The callback function can carry out any action,
but must save and restore all registers it
modifies. The function must execute an iret
instruction to return to Windows. The priority
for the virtual machine remains at the level
specified by Priority until the callback function
executes the iret instruction.

Interrupt 2Fh Function 168611
See Appendix C

Interrupt 2Fh Function 168711
See Appendix C

Interrupt 2Fh Function 168Bh
Set Focus
(This information is missing from the DDK.)
A TSR uses this function to force the input
focus to a given VM. This service has some
inherent risks. The function has the following
syntax:

mov ax, 168Bh ; set focus.
mov bx, VMld ; 0 to set focus to current VM,

; or VM ID to set focus to a
; given VM.

int 2Fh
cmp al,0 ; 0 if focus is set.
.ie success
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The VMId parameter must either specify a valid
virtual machine ID or must be 0 to specify the
current virtual machine. (In Windows 3.1, the
VMId of the system virtual machine is 1.) The
function returns 0 if it changes the focus
successfully.

Interrupt 2Fh Function 4000h
Enable Vhf-Assisted Save/Restore
Directs the virtual-display device (VDD) to
notify the virtual machine (VM) application
whenever the VDD needs to access the video
hardware registers. The VDD returns a value
specifying the number and type of video modes
the VDD supports when the VM application is
in the background.
A VM application calls this function during its
initialization.
Call with:
A x = 4000h
Return value:
The return value is one of the following values,
if successful.

Value Meaning
Olh No modes virtualized in

background.
02h Only text modes

virtualized in background.
03h Only text and single-plane

graphics modes
virtualized.

04h Only text, single-plane,
and VGA multiplane
graphics modes’
virtualized.

OFFh All supported video
modes virtualized.

Otherwise, the function returns zero in the AL
register if virtualization is not supported.
Comments
When a VM application calls this function, the
VDD disables I/O trapping of unreadable
registers. Thereafter, the VDD calls Save Video
Register State and Restore Video Register State
(Interrupt 2Fh Functions 4005h and 4006h) if it
needs to access the video registers. The VM
application must provide an appropriate
interrupt handler to process these functions.
When an VM application calls this function, the
VDD saves the current state of the video
registers. The VDD uses this saved state later to
restore video registers before it calls Notify
Foreground Switih and Restore Video Register
State (Interrupt 2Fh Functions 4002h and
4006h).
After a VM application calls Enable
VM-Assisted Save/Restore, the VDD no longer.

becomes the application’s responsibility to
completely reinitialize video memory after a
Notify Foreground Switch request.

Interrupt 2Fh Function 4001h
Not@  Background Switch
Notifies a VM application that it is being
switched to  the  background.  The VM
application can carry out any actions, but
should do so within 1 OOOms.  This is the amount
of time the system waits before switching the
application.
Call with:
AX = 4001h
Return value:
This function has no return value.
Comments
After switching to the background, the
application continues to run unless it attempts to
access video memory. If the video adapter is in
a video mode that the virtual display device
(VDD) does not support in the background, the
VDD freezes the application until the
application can be switched back to the
foreground.
VM applications that have called Enable
VM-Assisted Save/Restore (Interrupt 2Fh
Function 4000h) should avoid accessing video
memory and registers to avoid being-frozen.
ADDhCatiOnS  that have not called Enable
L&-Assisted Save/Restore call access video
memory and registers since the VDD saves
these after this function returns.

Interrupt 2Fh Function 4002h
NotijL  Foreground Switch
Notifies a VM application that it has been
switched to the foreground and can now access
the video memory and registers without being
frozen.
The virtual-display device (VDD) calls this
function.
Call with:
AX = 4002h
Return value:
This function has no return value.
Comments
If the VM application has called Enable
VM-Assisted Save/Restore (Interrupt 2Fh
Function 4000h), VDD restores the video
registers to their state prior to the call to Enable
VM-Assisted Save/Restore; the application is
responsible for restoring video memory. If the
VM application has not called Enable
VM-Assisted Save/Restore (Interrupt 2Fh
Function 4000h),  the VDD automatically
restores both video memory and registers.
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Under certain error conditions, the VDD may
call this function without calling a
corresponding Notify Background Switch
(Interrupt 2Fh Function 4001h).

Interrupt 2Fh Function 4003h
Enter Critical Section
Notifies the virtual-display device that the VM
application has entered a critical section and
cannot respond to Save Video Register State
(Interrupt 2Fh Function 4005h).
A VM application calls this function when it
has started critical section processing.
Call with.
A x = 4003h
Return value:
This function has no return value.
Comments
After the VM application enters the critical
section, the virtual display device postpones
calling Save Video Register State for up to
IOOOms or until the VM application calls Exit
Critical Section (Interrupt 2Fh Function 4004h),
whichever comes first.
If time elapses without the VM application
calling Exit Critical Section, the virtual-display
device reprograms the video hardware anyway
and, when its operation is complete, calls Notify
Foreground Switch (Interrupt 2Fh Function
4002h) in an attempt to reinitialize the
application properly.

Interrupt 2Fh Function 4004h
Exit Critical Section
Notifies the virtual-display device that a VM
application has completed a critical section and
can now respond to Save Video Register State
(Interrupt 2Fh Function 4005h).
A VM application calls this function when it
has completed critical section processing.
Call with.
AX = 4004h
Return value.
This function has no return value.
Comments

Calls to Exit Critical Section not preceded by a
corresponding call to Enter Critical Section
(Interrupt 2Fh Function 4003h) are ignored.

Interrupt 2Fh Function 4005h
The Save Video Register State
Notifies VM applications that the
virtual-display device (VDD) requires access to
the video hardware registers. The VDD calls
this function, for example, when preparing to
copy the entire screen to the clipboard.
Call with:
AX = 4005h
Return value:
This function has no return value.
Comments
The VDD calls this function only if the VM
application has called Enable VM-Assisted
Save/Restore (Interrupt 2Fh Function 4000h).
VM applications that receive Save Video
Register State must save any data necessary to
restore the current video state and must return
within 1000ms.  If the aoolication fails to return
in time, the virtual-display  device accesses the
video hardware anyway. After accessing the
video hardware registers, the VDD calls Restore
Video Register State (Interrupt 2Fh Function
4006h) to notify the application that it can
restore its video state.
The VDD calls Save Video Register State only
at times when the hardware must be
reprogrammed for what are essentially brief and
nonvisible operations. For example, the VDD
does not call this function prior to calling
Notify Background Switch (Interrupt 2Fh
Function 4001 h).

Interrupt 2Fh Function 4006h
Restore Video Register State
Votifies a VM application that the
virtual-display device (VDD) has relinquished
ts access to the video registers. The VM
application should restore the video registers to
my state necessary to continue uninterrupted
‘oreground  operation.
?a11 with:
4 x = 4006h
Peturn  value:
This function has no return value.
=bmments
fie VDD calls this function only if the VM
ipphcation  has called Enable VM-Assisted
save/Restore fInterruot  2Fh Function 4000h).
3efore calling‘this function, the VDD restores
my registers it modified to the values they had
vhen the VM aoolication orieinallv called
Enable VM-Assistkh  SaveRestoye. in other
words, every register is guaranteed to be either
unchanged or reset to a previous state; precisely



INT-2F  Extensions 41 I

which registers may be reset is undefined, but
the set is restricted to those Sequencer and
Graphics Controller registers that do not affect
the display.

Interrupt 2Fh  Function 4007h
Disable VM-Assisted Save/Restore
Directs the virtual-display device (VDD) to
discontinue notifying the VM application when
it needs access to video registers.
VM applications call this function when they
terminate.
Call with:
A x = 4007h
Return value:
This function has no return value.
Comments
This function directs the VDD to restore I/O
trapping of unreadable registers and to
discontinue calling Save Video Register State
and Restore Video Register State (Interrupt 2Fh
Functions 4005h and 4006h) when it needs
access to the registers. Furthermore, the VDD
ignores any subsequent calls to Enter Critical
Section and Exit Critical Section (Interrupt 2Fh
Functions 4003h and 4004h).
This function does not disable Notify
Background Switch and Notify Foreground
Switch (Interrupt 2Fh Functions 400lh and
4002h).

DATA STRUCTURES

Win386_Startup_Info_Struc

Win386 Startup_Info_Struc  STRUC
SIS Version d b  3 , 0
SK-Next  Dev Ptr
SIS-Virt bev File Ptr :: a
SIS-Reference  Data
SIS-Instance Data Ptr :: a
SIS-Opt_Instance_Data_Ptr dd 0
Win!386_Startup_Info_Struc ENDS

The Win386 Startup_Info_Struc structure
contains information that Windows uses to
prepare an MS-DOS device driver or TSR
program for operation with Windows.

Member: Description
SIS Version: Soecifies  the version number of
the -structure. 386  Enhanced-mode Windows
uses this member to determine the size of the
structure. This member should contain 3 in the
low-order byte and IO in the high-order byte to
indicate that it is version 3.1.
SIS Next Dev Ptr: Points to the next structure
in the list. Th; address of the next structure
must be supplied by the next handler in the

Interrupt 2Fh chain. A driver or TSR calls the
next handler, then sets this member to the
address returned by the handler in the ES:BX
register pair. _
SIS Virt Dev File Ptr: Points to a
nulkerm%ated  stri& that contains the name of
a 386 Enhanced-mode Windows virtual device
file. MS-DOS devices such as networks use this
to force a special 386 Enhanced-mode Windows
virtual device to be loaded. If this member is
zero, no device is loaded.
SIS Reference-Data: Specifies reference data
for ihe virtual device. This member, used only
when SIS Virt Dev File Ptr is nonzero, is
passed to the v&al-devke  when it is
initialized. The member can contain any value
and often contains a pointer to some
device-specific structure.
SIS Instance Data Ptr: Points to a list of data
to I% instanced, th% is, allocated uniquely for
each new virtual machine. If the member is
zero, then no data is instanced. Each entry in the
list is an Instance Item Strut structure. The list
is terminated with-a 32&t zero.
SIS_Opt_Instance_Data_Ptr: Points to a list of
data to be optionally instanced. Available only
if SIS_Version is 4.0.

Instance_Item_Struc

Instance Item_Struc STRUC
11s Ptr dd ?
IIS-Size dw ?

Instan~e_Item_Struc ENDS

The Instance_Item_Struc  structure specifies the
starting address and size of a block of instance
data.

Member: Description
IIS Ptr: Points to the starting address of a block
of txstance data.
IIS_Size: Specifies the size (in bytes) of the
z;;f,“f instance data pointed to by the IIS_Ptr

TSR_Info_Struc

TSR Info Strut STRUC
TSR N&t dd ?
TSR-PSP Segment dw ?
TSdAPIVer  ID d w  IOOh
TSR-Exe;  Flags dw 0
TSR-Exec-Cmd  Show dw 0
TSR-Exec-Cmd- dd 0
TSR-Reserved
TSR-ID Block

;1; ;dup(O)

TSR-Data Block dd 0
TSR_Info_S%uc  ENDS
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The TSR_Info_Struc  structure has the following
fields:

TSR-Next: Contains the 32-bit address
(segment:offset) of the next TSR_Info_Struc
structure in the TSR chain.
TSR_PSP_Segment: Specifies the segment
address of the TSR’s program segment prefix
(PSP).
TSR API Ver ID:
number ofthe &ucture.

Specifies the version

TSR_Exec_Flags:  Specifies the execution flag.
Elhesield  must have one of the following

. .
TSR_WINEXEC: Execute a
Windows-based application..
TSR LOADLIBRARY: Load a DLL:
TSR-OPENDRIVER: Load a driver.This
field% ignored if TSR Exec Cmd is 0:O.

TSR_Exec_Cmd Show: Sp&ies>he  flags (for
example, SW_SnOWNOACTIVE)  to be passed
to the WinExec function. This field is ignored if
TSR Exec Cmd is 0:O.
TSR-Exec-Cmd: Contains a 32-bit address
(segment:oTfset)  of a command line string
specifying the name and command line
parameters of a Windows-based application or a
DLL. This field should be 0:O if automatic
loading of a Windows-based application or a
DLL is not required.
TSR-Reserved: Contains 4 bytes of reserved
space. Do not use this field.
TSR-ID Block: Contains a 32-bit address
(SegmenEoffset)  of the TSR’s ID block. The
first word in the block specifies the number of
bytes in the block and is followed by the
zero-terminated ID string. Windows uses the ID
string to identify the TSR in error messages.
TSR Data Block: Contains a 32-bit address
(segment:oTfset)  of application-specific data.
This pointer is not used by Windows; it is
included in the structure so that the TSR can
communicate  wi th  other  TSRs or with
Windows-based applications.
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ASM O/P, compiling from C
ASM stub, from C
Assembling & linking
Assembly, faster, smaller, etc
Assembly, in-line
Assembly language binding
Assembly versus high-level
AUTOEXECBAT
Automatic data
Automatic loading of WinAppNxD

B
Base of a number
BEGINPAINT
Binary coded decimal
Binary numbers
Binding, assembly language
Binding, early
Binding, late
BIOS & DOS services
BIOS extensions
BIOS-ROM
Boot Record
Bootstrap program
Bus, CPU
Byte addressing

C
C++ binding
C++. interfacing with
CALL/RET ”
Call gate
Call gate, creation of
Callback function
CALLMSGFILTERO
CallProce32W()  .’
CATCH0
CHANGESELECTOR

1:;’
208
208
208
208

54
94

81, ;:
50
-8

147
150
123
367
148
I45
367

4

336;

8
105

8
7

145
141
142

4, I95
189

11
3
2

179
6

142
147

38,40
292
296

79, 102
208
220
208
208
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Class
CLASSFIRST
CLASSNEXT
CL1 instruction
Client area
CMACROSINC
CMP instruction
CMPSx  instructions
Code & data labels
Code descriptor
Code labels
COMM driver functions
COMMAND.COM
Command Line tail
Compiling C to ASM O/P
CONFIG.SYS
Control bus
Control class
Conventional & extended memorv

56
289

41
216

2

115
4

13,180
172

14
CPU architecture
CPU registers
CPU, 8rbit
CREATESYSTEMTIMERO
CreateTooIhelp32Snapshot()
CREATEWINDOW()

* 12,24, 1 7 9
22
12

217,247
215
100

D
DAA instruction
DAS instruction
Data bus
Data encapsulation
Data labels
Data types
DB (Define Byte)
DD (Define Doubleword)
DEATH0
DEBUG.EXE
DEBUGBREAK
DEBUGOUTPUT()
DEC instruction
Default message handling
DEFHOOKPROC()
Definition file
DEFWINDOWPROC()
Descriptor
DESTROY message
Development cycle
DeviceIoControl()
Direct addressing mode
DIRECTEDYIELD
Direct memory access
Direct video
Direct video text-mode
Direction flae. DF
DISABLEO&ILAYER()
DISPATCHMESSAGE()
FLlinstructton

DLL, assembly language

:z
13

146
56,120

82

::
208,232,236

41
208
208

52
80

208

::
26,28,289

104
92

222
45

208
264
239
232

48
209,238

79

:3
366

138
213
213

31,245
75

126,129
4451

49

DMA
DOS & BIOS services
DOS stub
DOS vs WINDOWS programming
DOS3CALL()
Dot operator
DPMI 0.9 and 1 .O
DPMI, is it available?
DPMI overview
DPMI services, when to use
DPMI, which version is running?
DUP directive
DW (Define Word)
DWORD (32-bit)
Dynamic Link Libraries (DLL’s)
Dynamically loadable drivers

E
Early binding
EFLAGS register
EIP
ENABLEHARDWAREINPUTO
ENABLEOEMLAYERO
ENABLEWINDOW

264
4,195

91
70

96,209
66

198
226
197
199
226

58

23”

21:

141
244

21
209

209,238
209

Encansulation  of data within an object
Epildg code
EQU
Equates
Event driven
Event-driven program structure
Exception handling conflict
Exception-handler
EXEHDR.EXE

146

Expansion bus
Extended & conventional memory
EXTRN

106
130
66

;:
258
245
235
187

;z

F
FAR CALL
FATALEXIT
Fixing segments in place
FLAGS register
FLAT memory
FLAT pointer
FREELIBRARY
FreeLibrary32WO
FREESELECTOR
Function-member, calling

G
GDI functions
GDT
GETASYNCKEYSTATEO
GETCURRENTPDBO
GETCURRENTTIMEO
GETDOSENVIRONMENT()
GETFREESYSTEMRESOURC
GETINPUTSTATEO
GETINSTANCEDATAO

41,42
209
300
244
300
336
234
220
209
138

71
19,21,26

209
209
209
209
209
209
209
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GETKBCODEPAGEO
GETKEYBOARDSTATEO
GETKEYNAMETEXTO
GETKEYSTATEO
GETMESSAGE
GETMODULEHANDLEO
GETNUMTASKSO
GETPROCADDRESSO
GetProcAddress32WO
GETSELECTORBASE()
GETSELECTORLIMITO
GETSTOCKOBJECT() ”
GETSYSTEMDEBUGSTATEO
GETSYSTEMMSECCOUNTO
GETWINDEBUGINFOO
Global data via a DOS TSR
Global Descriptor Table
Global labels
GLOBALDOSALLOC()
GLOBALENTRYHANDLEO
GLOBALENTRYMODULEO
GLOBALFIRST
GLOBALFIX
GLOBALHANDLE
GLOBALHANDLETOSELO
GLOBALINFOO
GLOBALNEXT
GLOBALPAGELOCKO
GLOBALWIRE
GOOFEE diagrams
Grabber functions

H
Handle
HARDWARE-EVENT0
Heap32FirstO
Heap32ListFirstO
Heap32Next()
Hexadecimal
High memory segment
HMEMCOPYO
hPrevInstance
Hungarian convention
hWnd

I
I/O address space
I/O ports
I/O privilege
IOPL field
IO.SYS
Icon, custom
IDIV instruction
IDT
IDT, redirection to IVT
Immediate addressing mode
IMUL instruction
IN and OUT instructions
In-line assembly

209
210
210
210

79
234
210
234
220
210
210
210
210
217
210

275,337
19

120
210
213
213
213
211
211
213
213
213
211
211
359
218

7683
211
215
215
215

14,1!:
211

77,99
82
79

1::

31,2::

1726

34,2Z
268

45

31,lZ
148

INC instruction
Include files
Indexed addressing mode
Inheritance
INITAPP()
Initialisation
INITTASKO
INQUIRESYSTEM
Instances
Instruction size prefix
Instructions
INT instruction
INT-9
INT- 1 Oh
INT-1Sh
INT-15h/AH=88h, AH=87h
INT-15h/AH=89h
INT- 1 Ch
INT-20h
INT-2 1 h
INT-21h/AH=25h/35h

52
109
45

171

8;
97

217
66,76

290
23
33

185
232

19
19
20

201
304

33,200
200.252

INT-2 1 h/AH=38h ‘201
INT-2 1 h/AH=44h 201
INT-2 1 hlAH=65h 201
INT-25h 200
INT-26h 200
INT-27h 200
INT-28h 200

The INT-2Fh extensions provided by DPMI
are described in Appendix C. Other
extensions are described in Appendix D.
Where further described in the book, see
below.

[NT-2Fh extensions
[NT-2Fh/AX=l600h
[NT-2Fh/AX=l605h
[NT-2Fh/AX=l606h
!NT-2Fh/AX=  1607h

205
206,348

206,328,338
206,328,338

206
[NT-ZFh/AX=l608h
[NT-2Fh/AX=  1609h

206,338
206

[NT-2Fh/AX=  160Bh 338
:NT_2Fh/AX=l680h
‘NT-2Fh/AX=l68  1 h

204,206,349
206.349

:NT-2Fh/AX=l682h 206; 349
[NT-2Fh/AX=I683h 206,327
NT-2Fh/AX=l684h 206,349
:NT_2FhlAX=l685h 206,327
:NT_2Fh/AX=l686h 204
:NT-2Fh/AX=  1687h 204,338
[NT-2Fh/AX=l68Ah 204,297
‘NT-2Fh/AX=4000h 205
‘NT-2Fh/AX=400  1 h 205,229
NT-2Fh/AX=4002h 205,229
NT-2Fh/AX=4003h 205
.NT-2Fh/AX=4004h 205
:NT_2Fh/AX=4005h 205,230
:NT-2Fh/AX=4006h 205,230
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INT-2Fh/AX=4007h 205,230

The INT-31h functions provided by the
DPMI host are described in Appendix C.
Where further described in the book, see
below.

INT-3 1 h functions
TNT-3 1 h/AX=0002h
INT-3 1 h/AX=0200h
INT-3 1 h/AX=0300h
INT-3 lh/AX=0303h

MT-4Bh,  DMA services
INT-5Oh to 57h
Interfacing with C++
Interrupt Controller chip
Mterruot  deflection to Real mode
Interrupt Descriptor Table (IDT)
Interrupt gate
Interrupt handlers
Interrupt Vector Table (IVT)
INTERRUPTREGISTER
Interrupts, hardware
Interrupts, hardware versus software
Interrupts, hooking
Interrupts, protected-mode
Interrnpts, Real mode
Interrupts, software
INTERRUPTUNREGISTER()
INVOKE high-level call
IRET instruction
IRQ (Interrupt ReQuest)
IRQO to IRQ7
IROO to IRO 15
ISAbus  _
ISR, accessing data in
ISR, Protected mode
ISR, Real mode, routine to call
ISR reentrancy
IVT

J
JMP instruction
Jump instructions
Jx (conditional) instructions

K
KERNEL.EXE
Keyboard driver functions
Keyboard interface
KICKSTARTO,  00 program
KILLSYSTEMTIMERO
KILLTIMER

L
Labels, code
Labels, code & data
LabView

203
228,269

269
269
279

265
258
147
185
268

34
292
320

33
213
256
250

200,250
34

:I
213
127

138:
185,256

256
188
253
321
324
323

33, 185,268

40,42

40, :s

72,207
217
184
153
217
241

41

3:;

Late binding
Layout
LDT, in a VM
LDT; purpose of
LEA compared with OFFSET
LES. LDS & LEA instructions
LES’with  data-label operand
Library functions
Linear address
Linking
LOADCURSOR()
LOADICON
LOADLIBRARY
LOADMODULE
LOCAL data
Local Descriptor Table (LDT)
LOCAL directive
LOCALFIRST
LOCALINFOO
LOCALNEXT
LOCALS directive
LOCKINPUT
LOCKSEGMENT
LODSx  instructions
Logical instructions
LOOP instruction
Loudspeaker control
1Param

M
Machine cycle
Machine Status Word
MAKE(  ), 00 program
Make, Borland vs Microsoft
MAKE.EXE
Make file
Make file, why use it?
Mangled names
MASM assembling & linking
MASM version 5.1
MASM version 5.2
MASM version 6.00
MASM vs TASM label scope
MASM6 versus TASM3
MASM6 versus TASMS
MEMMANINFOO
Memory management
Memory map of the PC
Memory mapped tiles
MEMORYREAD
MEMORY WRITE0
MEMRiW  signals
Menu-item selection?
Message format
Message loop
MESSAGEBOX
Methods, objects
Modeule32First()
MODULEFINDHANDLEO

142
363
274

2:

2;

29,2;:
73

100
95

234
211

62,113

113,z
213
213
213
121
211
211

50
54

40,48
246

90

180

1::

;:

z:.
151

87, 131
87
88

125, 132
121
125
308
213

25
11

224
213
213
181
106
90

78, 101
106
138
215
213



Index 417

MODULEFINDNAMEO
MODULEFIRST
MODULENEXT
Mouse driver functions
MOV instruction
MOVSx  instruction
MSDOS.SYS
MSGSTRUCT structure
MUL instruction

N
Name-mangling
NEAR & FAR
NEAR CALL
NEG instruction
NetBIOS interrupts
NETBIOSCALLO
NOT instruction
NOTIFYREGISTER
NOTIFYUNREGISTERO
Number systems

0
Object = instance
Object oriented programming
Object pointer
Object, window, 00 program
OFFSET override
OOP overhead
OOP, rationale for
OOP, what is it?
OR instruction
Order of storage of data in memory
Ordinal coordinates
OUT instruction
OUTPUTDEBUGSTRING()

P
Page tables & Control registers
Paging
Paraeraoh addresses
Pas& calling convention
PASCAL qualifier
PC1 bus
PEEKMESSAGE
Pointers
Polymorphism
POP instruction
POPF instruction
Ports, I/O
POSTMESSAGEO
PGSTQUITMESSAGE()
Power-on address
Power-on steps
PRESTOCHANGOSELECTOR()
Private & global data
Privileges
PROC, high-level
PROCDESC modifier

213
213
213
216

44;
2

65, 114
53

151
41,42

41

2;:
211

55
214
214

6

66,138
66,137,153

139
153

1::
137

66, 138
54

24:
184
211

;:

78, 1::
113
191

211,238
59,139

141

31,2::
183
259
105

10

21:
120

1::
308

Process32FirstO
Process32NextO
Programmer’s WorkBench
Prolog code
Protected & Real modes
Protected mode interrupts
PROTO  declaration
Prototvoes
PTR modifier
PUSH instruction
PUSHF instruction

8.kutc -assembler version 2.01
QWORD (64-bit)

R
Radix
Real mode, 32-bit
Real mode register structure
Register addressing mode
Register initialisation
REGISTERCLASS
Registering a window
Registers, CPU
Registers, 32-bit
REP prefix
REPAINTSCREEN
Resource file
RESTORESCREEN
RESURRECTION0
RET [number] instruction
Ring transition
Ring-O 32-bit code
Ring-O stack
Rings
Rotate instructions

ZAVESCREEN()
SBB instruction
SCASx  instructions
Scooe. label differences
SEG override
Segment, bolting it down
Segment override
Segment registers, initialisation_ . .

215
215

92
99, 103

::
127
127
63

31,2:;

29;
18
45

100.1::
100

9,22, 24
22

211,231,2;:
74,89

218
211,236

2;:
299
298

::

218
53
49

121
59

300,324
46

segmenr registers, using
Segments, fixed versus moveable 252
Segments, how started 14
SELECTOBJECT 105, 119
SELECTORACCESSRIGHTS() 211
Selectors 18,23,25,228
SENDMESSAGE 169
SETSELECTORBASEO 211,229
SETSELECTORLIMITO 211
SETTIMER 239,247
SETWINDEBUGINFO() 211
SETWMDOWSHOOK() 212
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SETWINDOWWORD()
Shadow registers
Shift instructions
SHORT addressing mode
SHOWWINDOW()

169
26
55
42

101,157
Signed number
Signed number compare
Size override
SMALL model
Software interrupts
Source files needed, Windows program
Stack, concept of
Stack instructions
STACKTRACECSIPFIRSTO

44,5:
290
111

3 3

38;

2::
STACKTRACEFIRST()  .’ 214
STACKTRACENEXTO 214
STDCALL calling convention
ST1 instruction 31,2::
STOSx  instructions
String instructions :(:
STRUC & ENDS directives 65, 114
STRUC assembler differences 130
STRUC, 00 limitations of 159
Structures 65
SUB instruction 52
Subclassing with override, 00 program 143

242Super-VGA
Svstem driver functions 217

5,288
214

SYSTEMINI
SYSTEMHEAPINFOO

T
TABLE directive
Task State Segment (TSS)
TASKFINDHANDLEO
TASKFIRST
TASKGETCSIPO
TASKNEXT
TASKSETCSIPO
TASKSWITCH
TASM version 2.x
TASM vesion 3.0
TASM3 versus MASM6
TASMS.  installine
TASMS’skeleton  brogram
TASMS  versus MASM6
TDUMP.EXE
TERMINATEAPPO
TEST instruction
Text-mode, direct video
Text-mode, running the screen in
Text-mode Windows applications
TEXTEQU
;;;~OUT()

Thread32FirstO
Th;fh;;;2Next()

THROW0

158
32

214
214
214
214
214
214

87
125
125
309
310
308
235
214

54
233
230
227
130

105,119
145
215
215
223
212

Thunking
;;;eE;COIJ’JT()

TLINK.EXE
TOOLHELP.DLL
Toolhelp32readProcessMemoryO
Transfer of control
TRANSLATEMESSAGEO
TSR
TSR, DOS
TSR, DOS, loads WinAppNxD
TSR_INFO_STRUC
Turbo Debugger
TWORD (80-bit)
Type mismatch
Type override
Types of data

215

219

;;
250

251,273

214
247

332
333
317

124

z:

199,213,254

63, :;

~HOOKWIND~WSH~OK()
Unsigned number compare
Unsigned numbers
UPDATEWINDOW()
USER.EXE

V
Video mode, changing of
Video-RAM, writing pixels to
VGA
Virtual machine (VM)
Virtual Method Table, VMT
VIRTUAL aualifier
Virtual to physical address mapping
Virtual Real mode
Virtual-86 (V86) mode
Visual programming
EitA;;D services,  calling

VMs,  mapping across
VxD, anatomy of
VxD;  assembiing & linking
VxD.  automatic loading of
VxD;  device descriptoyblock
VxD,  DOS stub

WAITEVENT
WIN32 STARTUP_INFO_STRUC
WINCOM
WINDOWS qualifier
WIND0WS.H
WINDOWSINC
WINEXEC()
WINMAIN
WINSTUB.EXE
WM_CHAR  message
WM_COMMAND  message
WM_CREATE  message
WM_DESTROY  message

212
51

7
101,157
72,23 1

232
239
242

30,271
177
158
271
271

29,271
358
302
354
342
350
350
330
352
331

3::
2

118, 126
110, 128
94, 112

212
77,98

91
105

90, 106
104

104,260
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WM_LBUTTONDOWN message
WM_PAINT  message
WM_USER message
WNDCLASS structure
WndProc()
WORD (16-bit)
WORD PTR
WOW functions
wParam

104
105
261
121

58,;;

2;;
90

x
XOR instruction 55

Y
YIELD0 212
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REFERENCES

Archive Library (CD-ROM)
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WALK32, MASM development suite 317
Windows 95 Systems Programming Secrets 346
Windows Developer’s Notes 198
Windows Programmer’s Reference 198
Writing Windows Device Drivers 203
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NOTES

The DPMI Specification is available from Intel,
order number 240977-001. Enauire with vour
local Intel office or the Intel Literature
Distribution Center, P.O. Box 7641, Mt
Prospect, IL 60056-7641, USA.

the  specific reference for Appendix D is the
Device Driver Adantation  Guide. Microsoft
Device Developmen{ Kit, version 3.1, 0 1992
Microsoft Corporation. All rights reserved.
Reprinted with permission from Microsoft
Corporation.


