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Preface

HE APPRENTICE CARPENTER may want only a hammer and a saw, but a master

builder employs many precision tools. Computer programming likewise

requires sophisticated tools to cope with the complexity of real applications,

and only practice with these tools will build skill in their use. Thisbook treats
structured problem solving, object-oriented programming, data abstraction, and
the comparative analysis of algorithms as fundamental tools of program design.
Several case studies of substantial size are worked out in detail, to show how all
the tools are used together to build complete programs.

Many of the algorithms and data structures we study possess an intrinsic el-
egance, a simplicity that cloaks the range and power of their applicability. Before
long the student discovers that vast improvements can be made over the naive
methods usually used in introductory courses. Yet this elegance of method is tem-
pered with uncertainty. The studentsoon finds that it can be far from obvious which
of several approaches will prove best in particular applications. Hence comes an
early opportunity to introduce truly difficult problems of both intrinsic interest and
practical importance and to exhibit the applicability of mathematical methods to
algorithm verification and analysis.

Many students find difficulty in translating abstract ideas into practice. This
book, therefore, takes special care in the formulation of ideas into algorithms and in
the refinement of algorithms into concrete programs that can be applied to practical
problems. The process of data specification and abstraction, similarly, comes before
the selection of data structures and their implementations.

We believe in progressing from the concrete to the abstract, in the careful de-
velopment of motivating examples, followed by the presentation of ideas in a more
general form. At an early stage of their careers most students need reinforcement
from seeing the immediate application of the ideas that they study, and they require
the practice of writing and running programs to illustrate each important concept
that they learn. This book therefore contains many sample programs, both short

Xi
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functions and complete programs of substantial length. The exercises and pro-
gramming projects, moreover, constitute an indispensable part of the book. Many
of these are immediate applications of the topic under study, often requesting that
programs be written and run, so that algorithms may be tested and compared.
Some are larger projects, and a few are suitable for use by a small group of students
working together.

Our programs are written in the popular object-oriented language C++. We
take the view that many object-oriented techniques provide natural implemen-
tations for basic principles of data-structure design. In this way, C++ allows us
to construct safe, efficient, and simple implementations of data-structures. We
recognize that C++ is sufficiently complex that students will need to use the ex-
perience of a data structures courses to develop and refine their understanding
of the language. We strive to support this development by carefully introducing
and explaining various object-oriented features of C++ as we progress through the
book. Thus, we begin Chapter 1 assuming that the reader is comfortable with the
elementary parts of C++ (essentially, with the C subset), and gradually we add
in such object-oriented elements of C++ as classes, methods, constructors, inheri-
tance, dynamic memory management, destructors, copy constructors, overloaded
functions and operations, templates, virtual functions, and the STL. Of course, our
primary focus is on the data structures themselves, and therefore students with
relatively little familiarity with C++ will need to supplement this text with a C++
programming text.

By working through the first large project (Conway’s game of Life), Chapter 1
expounds principles of object-oriented program design, top-down refinement, re-
view, and testing, principles that the student will see demonstrated and is expected
to follow throughout the sequel. At the same time, this project provides an oppor-
tunity for the student to review the syntax of elementary features of C++, the
programming language used throughout the book.

Chapter 2 introduces the first data structure we study, the stack. The chapter
applies stacks to the development of programs for reversing input, for modelling
a desk calculator, and for checking the nesting of brackets. We begin by utilizing
the STL stack implementation, and later develop and use our own stack imple-
mentation. A major goal of Chapter 2 is to bring the student to appreciate the
ideas behind information hiding, encapsulation and data abstraction and to apply
methods of top-down design to data as well as to algorithms. The chapter closes
with an introduction to abstract data types.

Queues are the central topic of Chapter 3. The chapter expounds several dif-
ferent implementations of the abstract data type and develops a large application
program showing the relative advantages of different implementations. In this
chapter we introduce the important object-oriented technique of inheritance.

Chapter 4 presents linked implementations of stacks and queues. The chapter
begins with a thorough introduction to pointers and dynamic memory manage-
ment in C++. After exhibiting a simple linked stack implementation, we discuss
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destructors, copy constructors, and overloaded assignment operators, all of which
are needed in the safe C++ implementation of linked structures.

Chapter 5 continues to elucidate stacks by studying their relationship to prob-
lem solving and programming with recursion. These ideas are reinforced by ex-
ploring several substantial applications of recursion, including backtracking and
tree-structured programs. This chapter can, if desired, be studied earlier in a course
than its placement in the book, at any time after the completion of Chapter 2.

More general lists with their linked and contiguous implementations provide
the theme for Chapter 6. The chapter also includes an encapsulated string im-
plementation, an introduction to C++ templates, and an introduction to algorithm
analysis in a very informal way.

Chapter 7, Chapter 8, and Chapter 9 present algorithms for searching, sorting,
and table access (including hashing), respectively. These chapters illustrate the
interplay between algorithms and the associated abstract data types, data struc-
tures, and implementations. The text introduces the “big-O” and related notations
for elementary algorithm analysis and highlights the crucial choices to be made
regarding best use of space, time, and programming effort. These choices require
that we find analytical methods to assess algorithms, and producing such analyses
is a battle for which combinatorial mathematics must provide the arsenal. At an
elementary level we can expect students neither to be well armed nor to possess the
mathematical maturity needed to hone their skills to perfection. Our goal, there-
fore, is to help students recognize the importance of such skills in anticipation of
later chances to study mathematics.

Binary trees are surely among the most elegant and useful of data structures.
Their study, which occupies Chapter 10, ties together concepts from lists, searching,
and sorting. As recursively defined data structures, binary trees afford an excellent
opportunity for the student to become comfortable with recursion applied both to
data structures and algorithms. The chapter begins with elementary topics and
progresses as far as such advanced topics as splay trees and amortized algorithm
analysis.

Chapter 11 continues the study of more sophisticated data structures, including
tries, B-trees, and red-black trees.

Chapter 12 introduces graphs as more general structures useful for problem
solving, and introduces some of the classical algorithms for shortest paths and
minimal spanning trees in graphs.

The case study in Chapter 13 examines the Polish notation in considerable
detail, exploring the interplay of recursion, trees, and stacks as vehicles for problem
solving and algorithm development. Some of the questions addressed can serve
as an informal introduction to compiler design. As usual, the algorithms are fully
developed within a functioning C++ program. This program accepts as input an
expression in ordinary (infix) form, translates the expression into postfix form, and
evaluates the expression for specified values of the variable(s). Chapter 13 may be
studied anytime after the completion of Section 10.1.

The appendices discuss several topics that are not properly part of the book’s
subject but that are often missing from the student’s preparation.

Appendix A presents several topics from discrete mathematics. Its final two
sections, Fibonacci numbers amd Catalan numbers, are more advanced and not
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needed for any vital purpose in the text, but are included to encourage combina-
torial interest in the more mathematically inclined.

Appendix B discusses pseudorandom numbers, generators, and applications,
a topic that many students find interesting, but which often does not fit anywhere
in the curriculum.

Appendix C catalogues the various utility and data-structure packages that are
developed and used many times throughout this book. Appendix C discusses dec-
laration and definition files, translation units, the utility package used throughout
the book, and a package for calculating CPU times.

Appendix D, finally, collects all the Programming Precepts and all the Pointers
and Pitfalls scattered through the book and organizes them by subject for conve-
nience of reference.

prerequisite

content

The prerequisite for this book is a first course in programming, with experience
using the elementary features of C++. However, since we are careful to introduce
sophisticated C++ techniques only gradually, we believe that, used in conjunction
with a supplementary C++ textbook and extra instruction and emphasis on C++
language issues, this text provides a data structures course in C++ that remains
suitable even for students whose programming background is in another language
such as C, Pascal, or Java.

A good knowledge of high school mathematics will suffice for almost all the
algorithm analyses, but further (perhaps concurrent) preparation in discrete math-
ematics will prove valuable. Appendix A reviews all required mathematics.

This book is intended for courses such as the ACM Course CS2 (Program Design
and Implementation), ACM Course CS7 (Data Structures and Algorithm Analysis), or
a course combining these. Thorough coverage is given to most of the ACM/IEEE
knowledge units! on data structures and algorithms. These include:

AL1 Basic data structures, such as arrays, tables, stacks, queues, trees, and graphs;
AL2 Abstract data types;

AL3 Recursion and recursive algorithms;

AL4 Complexity analysis using the big Oh notation;

AL6 Sorting and searching; and

ALS8 Practical problem-solving strategies, with large case studies.

The three most advanced knowledge units, AL5 (complexity classes, NP-complete

problems), AL7 (computability and undecidability), and AL9 (parallel and dis-
tributed algorithms) are not treated in this book.

1 see Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force, ACM
Press, New York, 1990.
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Most chapters of this book are structured so that the core topics are presented
first, followed by examples, applications, and larger case studies. Hence, if time
allows only a brief study of a topic, it is possible, with no loss of continuity, to move
rapidly from chapter to chapter covering only the core topics. When time permits,
however, both students and instructor will enjoy the occasional excursion into the
supplementary topics and worked-out projects.

two-term course A two-term course can cover nearly the entire book, thereby attaining a satis-
fying integration of many topics from the areas of problem solving, data structures,
program development, and algorithm analysis. Students need time and practice to
understand general methods. By combining the studies of data abstraction, data
structures, and algorithms with their implementations in projects of realistic size,
an integrated course can build a solid foundation on which, later, more theoretical
courses can be built. Even if it is not covered in its entirety, this book will provide
enough depth to enable interested students to continue using it as a reference in
later work. It is important in any case to assign major programming projects and
to allow adequate time for their completion.

SUPPLEMENTARY MATERIALS

A CD-ROM version of this book is anticipated that, in addition to the entire contents
of the book, will include:

L] All packages, programs, and other C++ code segments from the text, in a form
ready to incorporate as needed into other programs;

[] Executable versions (for DOS or Windows) of several demonstration programs
and nearly all programming projects from the text;

[ Brief outlines or summaries of each section of the text, suitable for use as a
study guide.

These materials will also be available from the publisher’s internet site. To reach
these files with ftp, log in as user anonymous to the site ftp.prenhall.comand
change to the directory

pub/esm/computer_science.s-041/kruse/cpp

Instructors teaching from this book may obtain, at no charge, an instructor’s
version on CD-ROM which, in addition to all the foregoing materials, includes:
[ Brief teaching notes on each chapter;
Full solutions to nearly all exercises in the textbook;

Full source code to nearly all programming projects in the textbook;

O O O

Transparency masters.
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1.1 INTRODUCTION
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problems of large
programs

problem specification

program design

The greatest difficulties of writing large computer programs are not in deciding
what the goals of the program should be, nor even in finding methods that can
be used to reach these goals. The president of a business might say, “Let’s get a
computer to keep track of all our inventory information, accounting records, and
personnel files, and let it tell us when inventories need to be reordered and budget
lines are overspent, and let it handle the payroll.” With enough time and effort, a
staff of systems analysts and programmers might be able to determine how various
staff members are now doing these tasks and write programs to do the work in the
same way.

This approach, however, is almost certain to be a disastrous failure. While
interviewing employees, the systems analysts will find some tasks that can be put
on the computer easily and will proceed to do so. Then, as they move other work
to the computer, they will find that it depends on the first tasks. The output from
these, unfortunately, will not be quite in the proper form. Hence they need more
programming to convert the data from the form given for one task to the form
needed for another. The programming project begins to resemble a patchwork
quilt. Some of the pieces are stronger, some weaker. Some of the pieces are carefully
sewn onto the adjacent ones, some are barely tacked together. If the programmers
are lucky, their creation may hold together well enough to do most of the routine
work most of the time. But if any change must be made, it will have unpredictable
consequences throughout the system. Later, a new request will come along, or an
unexpected problem, perhaps even an emergency, and the programmers’ efforts
will prove as effective as using a patchwork quilt as a safety net for people jumping
from a tall building.

The main purpose of this book is to describe programming methods and tools
that will prove effective for projects of realistic size, programs much larger than
those ordinarily used to illustrate features of elementary programming. Since a
piecemeal approach to large problems is doomed to fail, we must first of all adopt
a consistent, unified, and logical approach, and we must also be careful to observe
important principles of program design, principles that are sometimes ignored in
writing small programs, but whose neglect will prove disastrous for large projects.

The first major hurdle in attacking a large problem is deciding exactly what
the problem is. It is necessary to translate vague goals, contradictory requests,
and perhaps unstated desires into a precisely formulated project that can be pro-
grammed. And the methods or divisions of work that people have previously used
are not necessarily the best for use in a machine. Hence our approach must be to
determine overall goals, but precise ones, and then slowly divide the work into
smaller problems until they become of manageable size.

The maxim that many programmers observe, “First make your program work,
then make it pretty,” may be effective for small programs, but not for large ones.
Each part of a large program must be well organized, clearly written, and thor-
oughly understood, or else its structure will have been forgotten, and it can no
longer be tied to the other parts of the project at some much later time, perhaps by
another programmer. Hence we do not separate style from other parts of program
design, but from the beginning we must be careful to form good habits.



choice of
data structures

analysis of algorithms

testing and
verification

program correctness

maintenance

C++

Section 1.1 e Introduction 3

Even with very large projects, difficulties usually arise not from the inability to
find a solution but, rather, from the fact that there can be so many different methods
and algorithms that might work that it can be hard to decide which is best, which
may lead to programming difficulties, or which may be hopelessly inefficient. The
greatest room for variability in algorithm design is generally in the way in which
the data of the program are stored:

[1 How they are arranged in relation to each other.

'] Which data are kept in memory.

'] Which are calculated when needed.

[ Which are kept in files, and how the files are arranged.

A second goal of this book, therefore, is to present several elegant, yet fundamen-
tally simple ideas for the organization and manipulation of data. Lists, stacks, and
queues are the first three such organizations that we study. Later, we shall develop
several powerful algorithms for important tasks within data processing, such as
sorting and searching.

When there are several different ways to organize data and devise algorithms,
it becomes important to develop criteria to recommend a choice. Hence we devote
attention to analyzing the behavior of algorithms under various conditions.

The difficulty of debugging a program increases much faster than its size. That
is, if one program is twice the size of another, then it will likely not take twice as
long to debug, but perhaps four times as long. Many very large programs (such
as operating systems) are put into use still containing errors that the programmers
have despaired of finding, because the difficulties seem insurmountable. Some-
times projects that have consumed years of effort must be discarded because it is
impossible to discover why they will not work. If we do not wish such a fate for
our own projects, then we must use methods that will

[1 Reduce the number of errors, making it easier to spot those that remain.
[1 Enable us to verify in advance that our algorithms are correct.

[1 Provide us with ways to test our programs so that we can be reasonably con-
fident that they will not misbehave.

Development of such methods is another of our goals, but one that cannot yet be
fully within our grasp.

Even after a program is completed, fully debugged, and put into service, a
great deal of work may be required to maintain the usefulness of the program. In
time there will be new demands on the program, its operating environment will
change, new requests must be accommodated. For this reason, it is essential that a
large project be written to make it as easy to understand and modify as possible.

The programming language C++ is a particularly convenient choice to express
the algorithms we shall encounter. The language was developed in the early 1980s,
by Bjarne Stroustrup, as an extension of the popular C language. Most of the new
features that Stroustrup incorporated into C++ facilitate the understanding and
implementation of data structures. Among the most important features of C++ for
our study of data structures are:
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[] C++ allows data abstraction: This means that programmers can create new
types to represent whatever collections of data are convenient for their appli-
cations.

[] C++ supports object-oriented design, in which the programmer-defined types
play a central role in the implementation of algorithms.

L] Importantly, as well as allowing for object-oriented approaches, C++ allows
for the use of the top-down approach, which is familiar to C programmers.

[] C++ facilitates code reuse, and the construction of general purpose libraries.
The language includes an extensive, efficient, and convenient standard library.

[] C++improves on several of the inconvenient and dangerous aspects of C.
[] C++ maintains the efficiency that is the hallmark of the C language.

It is the combination of flexibility, generality and efficiency that has made C++ one
of the most popular choices for programmers at the present time.

We shall discover that the general principles that underlie the design of all
data structures are naturally implemented by the data abstraction and the object-
oriented features of C++. Therefore, we shall carefully explain how these aspects
of C++ are used and briefly summarize their syntax (grammar) wherever they first
arise in our book. In this way, we shall illustrate and describe many of the features
of C++ that do not belong to its small overlap with C. For the precise details of C++
syntax, consult a textbook on C++ programming—we recommend several such
books in the references at the end of this chapter.

If we may take the liberty to abuse an old proverb,

One concrete problem is worth a thousand unapplied abstractions.

Throughout this chapter we shall concentrate on one case study that, while not
large by realistic standards, illustrates both the principles of program design and
the pitfalls that we should learn to avoid. Sometimes the example motivates general
principles; sometimes the general discussion comes first; always it is with the view
of discovering general principles that will prove their value in a range of practical
applications. In later chapters we shall employ similar methods for larger projects.

The example we shall use is the game called Life, which was introduced by the
British mathematician J. H. Conway in 1970.

1.2.1 Rules for the Game of Life

definitions

Life is really a simulation, not a game with players. It takes place on an unbounded
rectangular grid in which each cell can either be occupied by an organism or not.
Occupied cells are called alive; unoccupied cells are called dead. Which cells are
alive changes from generation to generation according to the number of neighbor-
ing cells that are alive, as follows:
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. The neighbors of a given cell are the eight cells that touch it vertically, horizon-

tally, or diagonally.

. Ifacellis alive but either has no neighboring cells alive or only one alive, then

in the next generation the cell dies of loneliness.

. If a cell is alive and has four or more neighboring cells also alive, then in the

next generation the cell dies of overcrowding.

. Alliving cell with either two or three living neighbors remains alive in the next

generation.

. Ifacellis dead, then in the next generation it will become alive if it has exactly

three neighboring cells, no more or fewer, that are already alive. All other dead
cells remain dead in the next generation.

. All births and deaths take place at exactly the same time, so that dying cells

can help to give birth to another, but cannot prevent the death of others by
reducing overcrowding; nor can cells being born either preserve or Kill cells
living in the previous generation.

A particular arrangement of living and dead cells in a grid is called a configuration.
The preceding rules explain how one configuration changes to another at each
generation.

As a first example, consider the configuration

The counts of living neighbors for the cells are as follows:
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alternation

variety

popularity

By rule 2 both the living cells will die in the coming generation, and rule 5 shows
that no cells will become alive, so the configuration dies out.
On the other hand, the configuration

has the neighbor counts as shown. Each of the living cells has a neighbor count of
three, and hence remains alive, but the dead cells all have neighbor counts of two
or less, and hence none of them becomes alive.

The two configurations

o|lolo]olfo ofl1]1]1]0
[ ]

1| 2|13]2]1 ol21]1]2]0
[ ] [ ] [ ] [ ]

1012111 and 03] 2]3]0
[ ]

112321 ol2|1]21]0

o|lolo]olo o|l1|1]1]o0

continue to alternate from generation to generation, as indicated by the neighbor
counts shown.

Itisasurprising fact that, from very simple initial configurations, quite compli-
cated progressions of Life configurations can develop, lasting many generations,
and it is usually not obvious what changes will happen as generations progress.
Some very small initial configurations will grow into large configurations; others
will slowly die out; many will reach a state where they do not change, or where
they go through a repeating pattern every few generations.

Not long after its invention, MarTIN GARDNER discussed the Life game in his
column in Scientific American, and, from that time on, it has fascinated many people,
so that for several years there was even a quarterly newsletter devoted to related
topics. It makes an ideal display for home microcomputers.

Our first goal, of course, is to write a program that will show how an initial
configuration will change from generation to generation.
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1.2.3 The Solution: Classes, Objects, and Methods
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-
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clients

member selection
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I 6 specifications

information hiding

private and public

In outline, a program to run the Life game takes the form:

Set up a Life configuration as an initial arrangement of living and dead cells.
Print the Life configuration.

While the user wants to see further generations:

Update the configuration by applying the rules of the Life game.
Print the current configuration.

The important thing for us to study in this algorithm is the Life configuration. In
C++, we use a class to collect data and the methods used to access or change the
data. Such a collection of data and methods is called an object belonging to the
given class. For the Life game, we shall call the class Life, so that configuration
becomes a Life object. We shall then use three methods for this object: initialize()
will set up the initial configuration of living and dead cells; print() will print out
the current configuration; and update() will make all the changes that occur in
moving from one generation to the next.

Every C++ class, in fact, consists of members that represent either variables or
functions. The members that represent variables are called the data members; these
are used to store data values. The members that represent functions belonging to
a class are called the methods or member functions. The methods of a class are
normally used to access or alter the data members.

Clients, that is, user programs with access to a particular class, can declare and
manipulate objects of that class. Thus, in the Life game, we shall declare a Life
object by:

Life configuration;

We can now apply methods to work with configuration, using the C++ operator
(the member selection operator). For example, we can print out the data in
configuration by writing:

configuration.print();

It is important to realize that, while writing a client program, we can use a
C++ class so long as we know the specifications of each of its methods, that is,
statements of precisely what each method does. We do not need to know how
the data are actually stored or how the methods are actually programmed. For
example, to use a Life object, we do not need to know exactly how the object is
stored, or how the methods of the class Life are doing their work. This is our first
example of an important programming strategy known as information hiding.

When the time comes to implement the class Life, we shall find that more
goes on behind the scenes: We shall need to decide how to store the data, and
we shall need variables and functions to manipulate this data. All these variables
and functions, however, are private to the class; the client program does not need
to know what they are, how they are programmed, or have any access to them.
Instead, the client program only needs the public methods that are specified and
declared for the class.
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In this book, we shall always distinguish between methods and functions as
follows, even though their actual syntax (programming grammar) is the same;

Convention

Methods of a class are public.
Functions in a class are private.

1.2.4 Life: The Main Program

2

utility package

The preceding outline of an algorithm for the game of Life translates into the fol-
lowing C++ program.

#include "utility.h"
#include "life.h"

int main() // Program to play Conway’s game of Life.
/*Pre: The user supplies an initial configuration of living cells.
Post: The program prints a sequence of pictures showing the changes in the
configuration of living cells according to the rules for the game of Life.
Uses: The class Life and its methods initialize(), print(), and update().
The functions instructions(), user_says_yes(). */

Life configuration;
instructions();
configuration.initialize();
configuration.print();
cout <« "Continue viewing new generations? " « endl;
while (user_says_yes()) {
configuration.update();
configuration.print();
cout <« "Continue viewing new generations? " « endl;
}
}

The program begins by including files that allow it to use the class Life and the
standard C++ input and output libraries. The utility function user_says_yes() is
declared in utility.h, which we shall discuss presently. For our Life program,
the only other information that we need about the file utiTlity.h is that it begins
with the instructions

#include <iostream>

using namespace std;

which allow us to use standard C++ input and output streams such as cin and cout.
(On older compilers an alternative directive #include <iostream.h> has the same
effect.)
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The documentation for our Life program begins with its specifications; that is,
precise statements of the conditions required to hold when the program begins and
the conditions that will hold after it finishes. These are called, respectively, the pre-
conditions and postconditions for the program. Including precise preconditions
and postconditions for each function not only explains clearly the purpose of the
function but helps us avoid errors in the interface between functions. Including
specifications is so helpful that we single it out as our first programming precept:

Programming Precept

Include precise preconditions and postconditions
with every program, function, and method that you write.

A third part of the specifications for our program is a list of the classes and functions
that it uses. A similar list should be included with every program, function, or
method.

The action of our main program is entirely straightforward. First, we read in
the initial situation to establish the first configuration of occupied cells. Then we
commence a loop that makes one pass for each generation. Within this loop we
simply update the Life configuration, print the configuration, and ask the user
whether we should continue. Note that the Life methods, initialize, update, and
print are simply called with the member selection operator.

In the Life program we still must write code to implement:

The class Life.
The method initialize() to initialize a Life configuration.

The method print() to output a Life configuration.

(N N B

The method update() to change a Life object so that it stores the configuration
at the next generation.

[1 The function user_says_yes() to ask the user whether or not to go on to the next
generation.

[1 The function instructions() to print instructions for using the program.

The implementation of the class Life is contained in the two files 1ife.h and
Tife.c. There are a number of good reasons for us to use a pair of files for the
implementation of any class or data structure: According to the principle of infor-
mation hiding, we should separate the definition of a class from the coding of its
methods. The user of the class only needs to look at the specification part and its
list of methods. In our example, the file 11 fe.h will give the specification of the
class Life.

Moreover, by dividing a class implementation between two files, we can adhere
to the standard practice of leaving function and variable definitions out of files with
a suffix .h. This practice allows us to compile the files, or compilation units, that
make up a program separately and then link them together.
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utility package

Each compilation unit ought to be able to include any particular .h file (for
example to use the associated data structure), but unless we omit function and
variable definitions from the .h file, this will not be legal. In our project, the
second file 11 fe.c must therefore contain the implementations of the methods of
the class Life and the function instructions().1

Another code file, utility.c, contains the definition of the function

user_says_yes().

We shall, in fact, soon develop several more functions, declarations, definitions,
and other instructions that will be useful in various applications. We shall put all
of these together as a package. This package can be incorporated into any program
with the directive:

#include "utility.h"

whenever it is needed.

Just as we divided the Life class implementation between two files, we should
divide the utility package between the filesutility.hand utility.ctoallow for
its use in the various translation units of a large program. In particular, we should
place function and variable definitions into the file uti1ity. c, and we place other
sorts of utility instructions, such as the inclusion of standard C++ library files, into
utiTlity.h. Aswe develop programs in future chapters, we shall add to the utility
package. Appendix C lists all the code for the whole utility package.

Exercises 1.2 Determine by hand calculation what will happen to each of the configurations

1.3 PROGRAMMING STYLE

1.3.1 Names

shown in Figure 1.1 over the course of five generations. [Suggestion: Set up the
Life configuration on a checkerboard. Use one color of checkers for living cells
in the current generation and a second color to mark those that will be born or
die in the next generation.]

Before we turn to implementing classes and functions for the Life game, let us pause
to consider several principles that we should be careful to employ in programming.

In the story of creation (Genesis 2:19), the Lorp brought all the animals to Abam
to see what names he would give them. According to an old Jewish tradition, it
was only when Abam had named an animal that it sprang to life. This story brings

1 onsome compilers the file suffix . c has to be replaced by an alternative such as .C, .cpp, .cxx,
or .cc.
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Figure 1.1. Simple Life configurations

an important moral to computer programming: Even if data and algorithms exist
before, it is only when they are given meaningful names that their places in the
program can be properly recognized and appreciated, that they first acquire a life
of their own.

For a program to work properly it is of the utmost importance to know exactly
what each class and variable represents and to know exactly what each function
does. Documentation explaining the classes, variables, and functions should there-
fore always be included. The names of classes, variables, and functions should be
chosen with care so as to identify their meanings clearly and succinctly. Finding
good names is not always an easy task, but is important enough to be singled out
as our second programming precept:

Programming Precept

Always name your classes, variables and functions
with the greatest care, and explain them thoroughly.

C++ goes some distance toward enforcing this precept by requiring the declaration
of variables and allows us almost unlimited freedom in the choice of identifying
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guidelines

names. Constants used in different places should be given names, and so should
different data types, so that the compiler can catch errors that might otherwise be
difficult to spot.

We shall see that types and classes play a fundamental role in C++ programs,
and it is particularly important that they should stand out to a reader of our pro-
grams. We shall therefore adopt a capitalization convention, which we have already
used in the Life program: We use an initial capital letter in the identifier of any class
or programmer defined type. In contrast, we shall use only lowercase letters for
the identifiers of functions, variables, and constants.

The careful choice of names can go a long way in clarifying a program and in
helping to avoid misprints and common errors. Some guidelines are

1. Give special care to the choice of names for classes, functions, constants, and
all global variables used in different parts of the program. These names should
be meaningful and should suggest clearly the purpose of the class, function,
variable, and the like.

2. Keep the names simple for variables used only briefly and locally. Mathemati-
cians usually use a single letter to stand for a variable, and sometimes, when
writing mathematical programs, it may be permissible to use a single-letter
name for a mathematical variable. However, even for the variable controlling
a for loop, it is often possible to find a short but meaningful word that better
describes the use of the variable.

3. Use common prefixes or suffixes to associate names of the same general cate-
gory. The files used in a program, for example, might be called

input_file transaction_file total_file out_file reject_file

4. Avoid deliberate misspellings and meaningless suffixes to obtain different
names. Of all the names

index indx ndex indexx index2 index3

only one (the first) should normally be used. When you are tempted to intro-
duce multiple names of this sort, take it as a sign that you should think harder
and devise hames that better describe the intended use.

5. Avoid choosing cute names whose meaning has little or nothing to do with the
problem. The statements

do {

study();
} while (TV.in_hock());
if (!sleepy) play();
else nap();

may be funny but they are bad programming!
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6. Avoid choosing names that are close to each other in spelling or otherwise easy
to confuse.

7. Be careful in the use of the letter “I” (small ell), “O” (capital oh), and “0” (zero).
Within words or numbers these usually can be recognized from the context
and cause no problem, but “I” and “O” should never be used alone as hames.
Consider the examples

1.3.2 Documentation and Format

%:

the purpose of
documentation

guidelines

Most students initially regard documentation as a chore that must be endured
after a program is finished, to ensure that the marker and instructor can read it,
so that no credit will be lost for obscurity. The author of a small program indeed
can keep all the details in mind, and so needs documentation only to explain the
program to someone else. With large programs (and with small ones after some
months have elapsed), it becomes impossible to remember how every detail relates
to every other, and therefore to write large programs, it is essential that appropriate
documentation be prepared along with each small part of the program. A good
habit is to prepare documentation as the program is being written, and an even
better one, as we shall see later, is to prepare part of the documentation before
starting to write the program.

Not all documentation is appropriate. Almost as common as programs with
little documentation or only cryptic comments are programs with verbose docu-
mentation that adds little to understanding the program. Hence our third pro-
gramming precept:

Programming Precept
Keep your documentation concise but descriptive.

The style of documentation, as with all writing styles, is highly personal, and
many different styles can prove effective. There are, nonetheless, some commonly
accepted guidelines that should be respected:

1. Place a prologue at the beginning of each function including

(a) Identification (programmer’s name, date, version number).2

(b) Statement of the purpose of the function and algorithm used.
(c) The changes the function makes and what data it uses.

(d) Reference to further documentation external to the program.

2. When each variable, constant, or class is declared, explain what it is and how
it is used. Better still, make this information evident from the name.

2 To save space, programs printed in this book do not include identification lines or some other
parts of the prologue, since the surrounding text gives the necessary information.
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3. Introduce each significant section (paragraph or function) of the program with
a comment stating briefly its purpose or action.

4. Indicate the end of each significant section if it is not otherwise obvious.

5. Avoid comments that parrot what the code does, such as
count++; // Increase counter by 1.
or that are meaningless jargon, such as
// Horse string length into correctitude.

(This example was taken directly from a systems program.)

6. Explain any statement that employs a trick or whose meaning is unclear. Better
still, avoid such statements.

7. The code itself should explain how the program works. The documentation
should explain why it works and what it does.

8. Whenever a program is modified, be sure that the documentation is corre-
spondingly modified.

Spaces, blank lines, and indentation in a program are an important form of doc-
umentation. They make the program easy to read, allow you to tell at a glance
which parts of the program relate to each other, where the major breaks occur,
and precisely which statements are contained in each loop or each alternative of a
conditional statement. There are many systems (some automated) for indentation
and spacing, all with the goal of making it easier to determine the structure of the
program.

A prettyprinter is a system utility that reads a C++ program, moving the text
between lines and adjusting the indentation so as to improve the appearance of
the program and make its structure more obvious. If a prettyprinter is available
on your system, you might experiment with it to see if it helps the appearance of
your programs.

Because of the importance of good format for programs, you should settle on
some reasonable rules for spacing and indentation and use your rules consistently
in all the programs you write. Consistency is essential if the system is to be useful in
reading programs. Many professional programming groups decide on a uniform
system and insist that all the programs they write conform. Some classes or student
programming teams do likewise. In this way, it becomes much easier for one
programmer to read and understand the work of another.

Programming Precept

The reading time for programs is much more than the writing time.
Make reading easy to do.
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1.3.3 Refinement and Modularity

problem solving

subdivision

%:

top-down refinement
W

specifications

Computers do not solve problems; people do. Usually the most important part of
the process is dividing the problem into smaller problems that can be understood in
more detail. If these are still too difficult, then they are subdivided again, and so on.
In any large organization the top management cannot worry about every detail of
every activity; the top managers must concentrate on general goals and problems
and delegate specific responsibilities to their subordinates. Again, middle-level
managers cannot do everything: They must subdivide the work and send it to
other people. So it is with computer programming. Even when a project is small
enough that one person can take it from start to finish, it is most important to
divide the work, starting with an overall understanding of the problem, dividing
it into subproblems, and attacking each of these in turn without worrying about
the others.
Let us restate this principle with a classic proverb:

Programming Precept
Don’t lose sight of the forest for its trees.

This principle, called top-down refinement, is the real key to writing large programs
that work. The principle implies the postponement of detailed consideration, but
not the postponement of precision and rigor. It does not mean that the main pro-
gram becomes some vague entity whose task can hardly be described. On the
contrary, the main program will send almost all the work out to various classes,
data structures and functions, and as we write the main program (which we should
do first), we decide exactly how the work will be divided among them. Then, as we
later work on a particular class or function, we shall know before starting exactly
what it is expected to do.

It is often difficult to decide exactly how to divide the work into classes and
functions, and sometimes a decision once made must later be modified. Even so,
some guidelines can help in deciding how to divide the work:

Programming Precept
Use classes to model the fundamental concepts of the program.

For example, our Life program must certainly deal with the Life game and we
therefore create a class Life to model the game. We can often pick out the important
classes for an application by describing our task in words and assigning classes
for the different nouns that are used. The verbs that we use will often signify the
important functions.

Programming Precept
Each function should do only one task, but do it well.
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That is, we should be able to describe the purpose of a function succinctly. If you
find yourself writing a long paragraph to specify the preconditions or postcondi-
tions for a function, then either you are giving too much detail (that is, you are
writing the function before it is time to do so) or you should rethink the division of
work. The function itself will undoubtedly contain many details, but they should
not appear until the next stage of refinement.

Programming Precept
Each class or function should hide something.

Middle-level managers in a large company do not pass on everything they receive
from their departments to their superior; they summarize, collate, and weed out the
information, handle many requests themselves, and send on only what is needed
atthe upper levels. Similarly, managers do not transmit everything they learn from
higher management to their subordinates. They transmit to their employees only
what they need to do their jobs. The classes and functions we write should do
likewise. In other words, we should practice information hiding.

One of the most important parts of the refinement process is deciding exactly
what the task of each function is, specifying precisely what its preconditions and
postconditions will be; that is, what its input will be and what result it will produce.
Errors in these specifications are among the most frequent program bugs and are
among the hardest to find. First, the parameters used in the function must be
precisely specified. These data are of three basic kinds:

[] Input parameters are used by the function but are not changed by the function.
In C++, input parameters are often passed by value. (Exception: Large objects
should be passed by reference.? This avoids the time and space needed to make
alocal copy. However, when we pass an input parameter by reference, we shall
prefix its declaration with the keyword const. This use of the type modifier
const is important, because it allows a reader to see that we are using an input
parameter, it allows the compiler to detect accidental changes to the parameter,
and occasionally it allows the compiler to optimize our code.)

[] Output parameters contain the results of the calculations from the function. In
this book, we shall use reference variables for output parameters. In contrast,
C programmers need to simulate reference variables by passing addresses of
variables to utilize output parameters. Of course, the C approach is still avail-
able to us in C++, but we shall avoid using it.

[l Inout parameters are used for both input and output; the initial value of the
parameter is used and then modified by the function. We shall pass inout
parameters by reference.

Consult a C++ textbook for discussion of call by reference and reference variables.
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In addition to its parameters, a function uses other data objects that generally
fall into one of the following categories.

Local variables are defined in the function and exist only while the function
is being executed. They are not initialized before the function begins and are
discarded when the function ends.

Global variables are used in the function but not defined in the function. Itcan
be quite dangerous to use global variables in a function, since after the function
is written its author may forget exactly what global variables were used and
how. If the main program is later changed, then the function may mysteriously
begin to misbehave. If a function alters the value of a global variable, it is said
to cause a side effect. Side effects are even more dangerous than using global
variables as input to the function because side effects may alter the performance
of other functions, thereby misdirecting the programmer’s debugging efforts
to a part of the program that is already correct.

Programming Precept
Keep your connections simple. Avoid global variables whenever possible.

Programming Precept

Never cause side effects if you can avoid it.
If you must use global variables as input, document them thoroughly.

While these principles of top-down design may seem almost self-evident, the only
way to learn them thoroughly is by practice. Hence throughout this book we shall
be careful to apply them to the large programs that we write, and in a moment it
will be appropriate to return to our first example project.

Exercises 1.3

ElL

E2.

What classes would you define in implementing the following projects? What

methods would your classes possess?

(a) A program to store telephone numbers.

(b) A program to play Monopoly.

(c) A program to play tic-tac-toe.

(d) A program to model the build up of queues of cars waiting at a busy
intersection with a traffic light.

Rewrite the following class definition, which is supposed to model a deck of
playing cards, so that it conforms to our principles of style.

class a { // adeck of cards
int X; thing Y1[52]; /* X is the location of the top card in the deck. Y1 lists
the cards. */ public: a();
void Shuffle(); /1 Shuffle randomly arranges the cards.
thing d(); //  deals the top card off the deck

}
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E3.

E4.

ES.

Given the declarations
intaln][n], i, j;

where nisaconstant, determine what the following statement does, and rewrite
the statement to accomplish the same effect in a less tricky way.

for(i=0; i<n;i++)
for(j=0; j<n;j++)
alil(jl =@ +1)/G+ 1) =+ 1)/0 + 1));
Rewrite the following function so that it accomplishes the same result in a less
tricky way.

void does_something(int &first, int &econd)
{

first = second — first;

second = second — first;

first = second + first;

}

Determine what each of the following functions does. Rewrite each function
with meaningful variable names, with better format, and without unnecessary
variables and statements.
(a) int calculate(int apple, int orange)

{ int peach, lemon;

peach = 0; lemon = 0; if (apple < orange)

peach = orange; else if (orange <= apple)

peach = apple; else { peach =17,

lemon =19; }

return(peach);

3
(b) For this part assume the declaration typedef float vector [max];

float figure (vector vectorl)

{ intloopl, loop4; float loop2, loop3;

loopl = 0; loop2 = vectorl[loopl]; loop3 = 0.0;
loop4 = loopl; for (loop4 = 0;

loop4 < max; loop4++) { loopl =loopl + 1;
loop2 = vectorl[loopl — 1];

loop3 = loop2 + loop3; } loopl = loopl — 1;
loop2 = loopl + 1;

return(loop2 = loop3/loop2); }

(c) int question(int &al7, int &stuff)
{ int another, yetanother, stillonemore;
another = yetanother; stillonemore = al7,
yetanother = stuff; another = stillonemore;
al7 = yetanother; stillonemore = yetanother;
stuff = another; another = yetanother;
yetanother = stuff; }
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(d) int mystery(int apple, int orange, int peach)
{ if (apple > orange) if (apple > peach) if
(peach > orange) return(peach); else if (apple < orange)
return(apple); else return(orange); else return(apple); else
if (peach > apple) if (peach > orange) return(orange); else
return(peach); else return(apple); }

The following statement is designed to check the relative sizes of three integers,
which you may assume to be different from each other:

if(x<z)if(x<y)if(y<z)c=1; elsec=2; else
if(y<z)c=3; elsec=4; elseif (x<vy)
if(x<z)c=05; elsec=6; elseif(y<z)c=7; else
if(z<x)if(z<y)c=28; elsec=29; elsec=10;

(a) Rewrite this statement in a form that is easier to read.

(b) Since there are only six possible orderings for the three integers, only six
of the ten cases can actually occur. Find those that can never occur, and
eliminate the redundant checks.

(c) Write a simpler, shorter statement that accomplishes the same result.

The following C++ function calculates the cube root of a floating-point number
(by the Newton approximation), using the fact that, if -y is one approximation
to the cube root of x, then

2y + x/y?
B 3

is a closer approximation.

float function fcn(float stuff)

{ float april, tim, tiny, shadow, tom, tam, square; int flag;

tim = stuff; tam = stuff; tiny = 0.00001;

if (stuff !=0) do {shadow = tim + tim; square = tim = tim;

tom = (shadow + stuff/square); april = tom/3.0;

if (april=april * april — tam > —tiny) if (april+april=april — tam
< tiny) flag = 1; else flag = 0; else flag = 0;

if (flag == 0) tim = april; else tim = tam; } while (flag !=1);

if (stuff == 0) return(stuff); else return(april); }

(a) Rewrite this function with meaningful variable names, without the extra
variables that contribute nothing to the understanding, with a better layout,
and without the redundant and useless statements.

(b) Write a function for calculating the cube root of x directly from the mathe-
matical formula, by starting with the assignment y = x and then repeating

y=@=*y+ (x/(y*y)/3

until abs(y *y =y — x) < 0.00001.
(c) Which of these tasks is easier?
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statistics

plotting

1.4 CODING, TESTING, AND FURTHER REFINEMENT

1.4.1 Stubs

early debugging and
testing

E8. The mean of a sequence of numbers is their sum divided by the count of num-
bers in the sequence. The (population) variance of the sequence is the mean
of the squares of all numbers in the sequence, minus the square of the mean
of the numbers in the sequence. The standard deviation is the square root of
the variance. Write a well-structured C++ function to calculate the standard
deviation of a sequence of n floating-point numbers, where » is a constant and
the numbers are in an array indexed from 0 to n — 1, which is a parameter to
the function. Use, then write, subsidiary functions to calculate the mean and
variance.

E9. Design a program that will plot a given set of points on a graph. The input
to the program will be a text file, each line of which contains two numbers
that are the x and y coordinates of a point to be plotted. The program will
use a function to plot one such pair of coordinates. The details of the function
involve the specific method of plotting and cannot be written since they depend
on the requirements of the plotting equipment, which we do not know. Before
plotting the points the program needs to know the maximum and minimum
values of x and y that appear in its input file. The program should therefore
use another function bounds that will read the whole file and determine these
four maxima and minima. Afterward, another function is used to draw and
label the axes; then the file can be reset and the individual points plotted.

(a) Write the main program, not including the functions.

(b) Write the function bounds.

(c) Write the preconditions and postconditions for the remaining functions to-
gether with appropriate documentation showing their purposes and their
requirements.

The three processes in the section title go hand-in-hand and must be done together.
Yet it is important to keep them separate in our thinking, since each requires its own
approach and method. Coding, of course, is the process of writing an algorithm
in the correct syntax (grammar) of a computer language like C++, and testing is
the process of running the program on sample data chosen to find errors if they
are present. For further refinement, we turn to the functions not yet written and
repeat these steps.

After coding the main program, most programmers will wish to complete the
writing and coding of the required classes and functions as soon as possible, to
see if the whole project will work. For a project as small as the Life game, this
approach may work, but for larger projects, the writing and coding will be such a
large job that, by the time it is complete, many of the details of the main program
and the classes and functions that were written early will have been forgotten. In
fact, different people may be writing different functions, and some of those who
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started the project may have left it before all functions are written. It is much easier
to understand and debug a program when it is fresh in your mind. Hence, for
larger projects, it is much more efficient to debug and test each class and function
as soon as it is written than it is to wait until the project has been completely coded.

Even for smaller projects, there are good reasons for debugging classes and
functions one at a time. We might, for example, be unsure of some point of C++
syntax that will appear in several places through the program. If we can compile
each function separately, then we shall quickly learn to avoid errors in syntax in
later functions. As a second example, suppose that we have decided that the major
steps of the program should be done in a certain order. If we test the main program
as soon as it is written, then we may find that sometimes the major steps are done
in the wrong order, and we can quickly correct the problem, doing so more easily
than if we waited until the major steps were perhaps obscured by the many details
contained in each of them.

To compile the main program correctly, there must be something in the place
of each function that is used, and hence we must put in short, dummy functions,
called stubs. The simplest stubs are those that do little or nothing at all:

void instructions() { }
bool user_says_yes() { return(true); }

Note that in writing the stub functions we must at least pin down their associated
parameters and return types. For example, in designing a stub for user_says_yes(),
we make the decision that it should return a natural answer of true or false. This
means that we should give the function a return type bool. The type bool has only
recently been added to C++ and some older compilers do not recognize it, but we
can always simulate it with the following statements—which can conveniently be
placed in the utility package, if they are needed:

typedef int bool;
const bool false = 0;
const bool true = 1;

In addition to the stub functions, our program also needs a stub definition for
the class Life. For example, in the file Tife.h, we could define this class without
data members as follows:

class Life {
public:
void initialize();
void print();
void update();
IR

We must also supply the following stubs for its methods in Tife.c:
void Life ::initialize() {}

void Life :: print() {}
void Life::update() {3}
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Note that these method definitions have to use the C++ scope resolution opera-
tor:: 4 to indicate that they belong to the scope of the class Life.

Even with these minimal stubs we can at least compile the program and make
sure that the definitions of types and variables are syntactically correct. Normally,
however, each stub function should print a message stating that the function was
invoked. When we execute the program, we find that it runs into an infinite loop,
because the function user_says yes() always returns a value of true. However,
the main program compiles and runs, so we can go on to refine our stubs. For a
small project like the Life game, we can simply write each class or function in turn,
substitute it for its stub, and observe the effect on program execution.

1.4.2 Definition of the Class Life

1: living cell
0: dead cell

%:

%:

Each Life object needs to include a rectangular array,® which we shall call grid, to
store a Life configuration. We use an integer entry of 1 in the array grid to denote a
living cell, and 0 to denote a dead cell. Thus to count the number of neighbors of a
particular cell, we just add the values of the neighboring cells. In fact, in updating
a Life configuration, we shall repeatedly need to count the number of living neigh-
bors of individual cells in the configuration. Hence, the class Life should include a
member function neighbor_count that does this task. Moreover, since the member
neighbor_count is not needed by client code, we shall give it private visibility. In
contrast, the earlier Life methods all need to have public visibility. Finally, we must
settle on dimensions for the rectangular array carried in a Life configuration. We
code these dimensions as global constants, so that a single simple change is all that
we need to reset grid sizes in our program. Note that constant definitions can be
safely placed in . h files.

const int maxrow = 20, maxcol = 60; // grid dimensions

class Life {
public:
void initialize();
void print();
void update();
private:
int grid [maxrow + 2] [maxcol + 2];
//  allows for two extra rows and columns
int neighbor_count(int row, int col);

%

We can test the definition, without writing the member functions, by using our
earlier stub methods together with a similar stub for the private function neigh-
bor_count.

Consult a C++ textbook for discussion of the scope resolution operator and the syntax for class
methods.

An array with two indices is called rectangular. The first index determines the row in the array
and the second the column.
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1.4.3 Counting Neighbors

function
neighbor_count

hedge

sentinel

Let us now refine our program further. The function that counts neighbors of the
cell with coordinates row, col requires that we look in the eight adjoining cells. We
shall use a pair of for loops to do this, one running from row—-1 to row + 1 and
the other from col—-1 to col + 1. We need only be careful, when row, col is on a
boundary of the grid, that we look only at legitimate cells in the grid. Rather than
using several if statements to make sure that we do not go outside the grid, we
introduce a hedge around the grid: We shall enlarge the grid by adding two extra
rows, one before the first real row of the grid and one after the last, and two extra
columns, one before the first column and one after the last. In our definition of
the class Life, we anticipated the hedge by defining the member grid as an array
with maxrow + 2 rows and maxcol + 2 columns. The cells in the hedge rows and
columns will always be dead, so they will not affect the counts of living neighbors
at all. Their presence, however, means that the for loops counting neighbors need
make no distinction between rows or columns on the boundary of the grid and any
other rows or columns. See the examples in Figure 1.2.

maxcol
01 2 ... hedge //maxcol+1

hedge

§| Color tint
shows
hedge neighbors of
N o black cells.
maxrow edge |i
<

maxrow + 1

Figure 1.2. Life grid with a hedge

Another term often used instead of hedge is sentinel: A sentinel is an extra
entry put into a data structure so that boundary conditions need not be treated as
a special case.

int Life :: neighbor_count(int row, int col)
/= Pre: The Life object contains a configuration, and the coordinates row and col
define a cell inside its hedge.
Post: The number of living neighbors of the specified cell is returned. */
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{

inti, j;
int count = 0;
for(i=row —1; i<=row + 1; i++)

for(j=col—1; j<=col +1; j++)

count +=grid[i] [j1; // Increase the count if neighbor is alive.
count —= grid[row] [col];
// Reduce count, since cell is not its own neighbor.

return count;

1.4.4 Updating the Grid

method update

W

‘S&"“S;/"/,‘
& }
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The action of the method to update a Life configuration is straightforward. We first
use the data stored in the configuration to calculate entries of a rectangular array
called new_grid that records the updated configuration. We then copy new_grid,
entry by entry, back to the grid member of our Life object.

To set up new_grid we use a nested pair of loops on row and col that run
over all non-hedge entries in the rectangular array grid. The body of these nested
loops consists of the multiway selection statement switch. The function neigh-
bor_count(row, col) returns one of the values 0, 1, ..., 8, and for each of these cases
we can take a separate action, or, as in our application, some of the cases may
lead to the same action. You should check that the action prescribed in each case
corresponds correctly to the rules 2, 3, 4, and 5 of Section 1.2.1.

void Life :: update()
/*Pre: The Life object contains a configuration.
Post: The Life object contains the next generation of configuration. */
{
int row, col;
int new_grid[maxrow + 2] [maxcol + 2];
for (row = 1; row <= maxrow; row++)
for (col = 1; col <= maxcol; col++)
switch (neighbor_count(row, col)) {
case 2:
new_grid[row] [col] = grid[row] [col]; // Status stays the same.
break;
case 3:
new_grid[row] [col] =1; // Cellis now alive.
break;
default:
new_grid[row] [col] =0; // Cellis now dead.
3
for (row = 1; row <= maxrow; row++)
for (col = 1; col <= maxcol; col++)
grid[row] [col] = new_grid[row] [col];
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1.4.5 Input and Output

careful input and

%:

output

AN

stream output
operators

input method

It now remains only to write the Life methods initialize() and print(), with the
functions user_says_yes() and instructions() that do the input and output for our
program. Incomputer programs designed to be used by many people, the functions
performing input and output are often the longest. Input to the program must be
fully checked to be certain that it is valid and consistent, and errors in input must be
processed in ways to avoid catastrophic failure or production of ridiculous results.
The output must be carefully organized and formatted, with considerable thought
to what should or should not be printed, and with provision of various alternatives
to suit differing circumstances.

Programming Precept

Keep your input and output as separate functions,
so they can be changed easily
and can be custom tailored to your computing system.

1. Instructions

The instructions() function is a simple exercise in use of the put to operator « and
the standard output stream called cout. Observe that we use the manipulator endl
to end a line and flush the output buffer. The manipulator flush can be used instead
in situations where we just wish to flush the output buffer, without ending a line.
For the precise details of stream input and output in C++, consult a textbook on
C++,

void instructions()
/*Pre: None.
Post: Instructions for using the Life program have been printed. */
{
cout <« "Welcome to Conway’s game of Life." « endl;
cout <« "This game uses a grid of size "
< maxrow < " by " « maxcol « " in which" « endl,
cout <« "each cell can either be occupied by an organism or not." « endl;
cout <« "The occupied cells change from generation to generation" « endl;
cout « "according to the number of neighboring cells which are alive."
< endl;

}

2. Initialization

The task that the Life method initialize() must accomplish is to set up an initial
configuration. Toinitialize a Life object, we could consider each possible coordinate
pair separately and request the user to indicate whether the cell is to be occupied
or not. This method would require the user to type in

maxrow * maxrow = 20 * 60 = 1200
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entries, which is prohibitive. Hence, instead, we input only those coordinate pairs
! 18 corresponding to initially occupied cells.

void Life :: initialize()
/*Pre: None.
Post: The Life object contains a configuration specified by the user. */

{
int row, col,
for (row = 0; row <= maxrow + 1; row++)
for (col = 0; col <= maxcol + 1; col++)
grid[row] [col] = 0;
cout « "List the coordinates for living cells." « endl;
cout < "Terminate the list with the the special pair -1 —1" « endl;
cin > row > col;
while (row != -1 || col '=-1) {
if (row >= 1 && row <= maxrow)
if (col >= 1 && col <= maxcol)
grid[row] [col] = 1;
else
cout «< "Column " <« col < " is out of range." « endl;
else
cout < "Row " « row « " is out of range." « endl;
cin > row > col;
}
}

output  For the output method print() we adopt the simple method of writing out the entire
rectangular array at each generation, with occupied cells denoted by * and empty
cells by blanks.

void Life :: print()
/*Pre: The Life object contains a configuration.
Post: The configuration is written for the user. =/

{
int row, col;
cout < "\nThe current Life configuration is:" « endl;
for (row = 1; row <= maxrow; row++) {
for (col = 1; col <= maxcol; col++)
if (grid[row] [col] == 1) cout «< "*’;
else cout < ' /;
cout < endl;
}

cout < endl;

}
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Finally comes the function user_says_yes(), which determines whether the user
wishes to go on to calculate the next generation. The task of user_says _yes() is to
ask the user to respond yes or no. To make the program more tolerant of mistakes
in input, this request is placed in a loop that repeats until the user’s response is
acceptable. In our function, we use the standard input function get() to process
input characters one atatime. In C++, the function get() is actually just a method of
the class istream: In our application, we apply the method, cin.get(), that belongs
to the istream object cin.

bool user_says_yes()
{
intc;
bool initial_response = true;
do { // Loop until an appropriate input is received.
if (initial_response)
cout < " (y,n)? " <« flush;

else
cout «< "Respond with either y or n: " « flush;
do { /! lgnore white space.
¢ = cin.get();
}while(c=="\n"||c=="" | c== "\t');

initial_response = false;
}while (c '="y" &&c !='Y' &&c !'='n"&&c = 'N’);
return(c=="y' || c== "Y');

}

At this point, we have all the functions for the Life simulation. It is time to pause
and check that it works.

For small projects, each function is usually inserted in its proper place as soon
as it is written, and the resulting program can then be debugged and tested as
far as possible. For large projects, however, compilation of the entire project can
overwhelm that of a new function being debugged, and it can be difficult to tell,
looking only at the way the whole program runs, whether a particular function is
working correctly or not. Even in small projects the output of one function may be
used by another in ways that do not immediately reveal whether the information
transmitted is correct.

One way to debug and test a single function is to write a short auxiliary pro-
gram whose purpose is to provide the necessary input for the function, call it, and
evaluate the result. Such an auxiliary program is called a driver for the function.
By using drivers, each function can be isolated and studied by itself, and thereby
errors can often be spotted quickly.

Asan example, let us write drivers for the functions of the Life project. First, we
consider the method neighbor_count(). In our program, its output is used but has
not been directly displayed for our inspection, so we should have little confidence
that it is correct. To test neighbor_count() we shall supply a Life object configura-
tion, call neighbor_count for every cell of configuration, and write out the results.
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The resulting driver uses configuration.initialize() to set up the object and bears
some resemblance to the original main program. In order to call neighbor_count(),
from the driver, we need to adjust its visibility temporarily to become public in the
class Life.

int main () /! driver for neighbor_count()
/*Pre: None.
Post: Verifies that the method neighbor_count() returns the correct values.
Uses: The class Life and its method initialize(). */
{
Life configuration;
configuration.initialize();
for (row = 1; row <= maxrow; row++){
for (col = 1; col <= maxrow; col++)
cout <« configuration.neighbor_count(row, col) « " ";
cout « endl;
}
}

Sometimes two functions can be used to check each other. The easiest way, for
example, to check the Life methods initialize() and print() is to use a driver whose
action part is

configuration.initialize();

configuration.print();

Both methods can be tested by running this driver and making sure that the con-
figuration printed is the same as that given as input.

1.4.7 Program Tracing

group discussion

print statements for
debugging

After the functions have been assembled into acomplete program, it is time to check
out the completed whole. One of the most effective ways to uncover hidden defects
is called a structured walkthrough. In this the programmer shows the completed
program to another programmer or a small group of programmers and explains
exactly what happens, beginning with an explanation of the main program fol-
lowed by the functions, one by one. Structured walkthroughs are helpful for three
reasons. First, programmers who are not familiar with the actual code can often
spot bugs or conceptual errors that the original programmer overlooked. Second,
the questions that other people ask can help you to clarify your own thinking and
discover your own mistakes. Third, the structured walkthrough often suggests
tests that prove useful in later stages of software production.

It is unusual for a large program to run correctly the first time it is executed
as a whole, and if it does not, it may not be easy to determine exactly where the
errors are. On many systems sophisticated trace tools are available to keep track of
function calls, changes of variables, and so on. A simple and effective debugging
tool, however, is to take snapshots of program execution by inserting printing
statements at key points in the main program; this strategy is often available as an
option in a debugger when one is available. A message can be printed each time a
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function is called, and the values of important variables can be printed before and
after each function is called. Such snapshots can help the programmer converge
quickly on the particular location where an error is occurring.

Scaffolding is another term frequently used to describe code inserted into a
program to help with debugging. Never hesitate to put scaffolding into your pro-
grams as you write them; it will be easy to delete once it is no longer needed, and
it may save you much grief during debugging.

When your program has a mysterious error that you cannot localize at all, then
it is very useful to put scaffolding into the main program to print the values of
important variables. This scaffolding should be put at one or two of the major
dividing points in the main program. (If you have written a program of any sig-
nificant size that does not subdivide its work into several major sections, then you
have already made serious errors in the design and structure of your program that
you should correct.) With printouts at the major dividing points, you should be
able to determine which section of the program is misbehaving, and then you can
concentrate on that section, introducing scaffolding into its subdivisions.

Another important method for detecting errors is to practice defensive pro-
gramming. Put if statements at the beginning of functions to check that the pre-
conditions do in fact hold. If not, print an error message. In this way, you will
be alerted as soon as a supposedly impossible situation arises, and if it does not
arise, the error checking will be completely invisible to the user. It is, of course,
particularly important to check that the preconditions hold when the input to a
function comes from the user, or from a file, or from some other source outside the
program itself. It is, however, surprising how often checking preconditions will
reveal errors even in places where you are sure everything is correct.

For very large programs yet another tool is sometimes used. This is a static
analyzer, a program that examines the source program (as written in C++, for
example) looking for uninitialized or unused variables, sections of the code that
can never be reached, and other occurrences that are probably incorrect.

1.4.8 Principles of Program Testing

choosing test data

%:

So far we have said nothing about the choice of data to be used to test programs
and functions. This choice, of course, depends intimately on the project under
development, so we can make only some general remarks. First we should note
the following:

Programming Precept
The quality of test data is more important than its quantity.

Many sample runs that do the same calculations in the same cases provide no more
effective a test than one run.

Programming Precept

Program testing can be used to show the presence of bugs,
but never their absence.
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It is possible that other cases remain that have never been tested even after many
sample runs. For any program of substantial complexity, it is impossible to per-
form exhaustive tests, yet the careful choice of test data can provide substantial
confidence in the program. Everyone, for example, has great confidence that the
typical computer can add two floating-point numbers correctly, but this confidence
is certainly not based on testing the computer by having it add all possible floating-
point numbers and checking the results. If a double-precision floating-point num-
ber takes 64 bits, then there are 2128 distinct pairs of numbers that could be added.
This number is astronomically large: All computers manufactured to date have
performed altogether but a tiny fraction of this number of additions. Our confi-
dence that computers add correctly is based on tests of each component separately;
that is, by checking that each of the 64 digits is added correctly and that carrying
from one place to another is done correctly.

There are at least three general philosophies that are used in the choice of test
data.

1. The Black-Box Method

Most users of a large program are not interested in the details of its functioning;
they only wish to obtain answers. That is, they wish to treat the program as a black
box; hence the name of this method. Similarly, test data should be chosen according
to the specifications of the problem, without regard to the internal details of the
program, to check that the program operates correctly. Ata minimum the test data
should be selected in the following ways:

1. Easy values. The program should be debugged with data that are easy to
check. More than one student who tried a program only for complicated data,
and thought it worked properly, has been embarrassed when the instructor
tried a trivial example.

2. Typical, realistic values. Always try a program on data chosen to represent
how the program will be used. These data should be sufficiently simple so that
the results can be checked by hand.

3. Extreme values. Many programs err at the limits of their range of applications.
It is very easy for counters or array bounds to be off by one.

4. lllegal values. “Garbage in, garbage out” is an old saying in computer circles
that should not be respected. When a good program has garbage coming in,
then its output should at least be a sensible error message. Indeed, the program
should provide some indication of the likely errors in input and perform any
calculations that remain possible after disregarding the erroneous input.

2. The Glass-Box Method

The second approach to choosing test data begins with the observation that a pro-
gram can hardly be regarded as thoroughly tested if there are some parts of its
code that, in fact, have never been executed. In the glass-box method of testing,
the logical structure of the program is examined, and for each alternative that may
occur, test data are devised that will lead to that alternative. Thus care is taken
to choose data to check each possibility in every switch statement, each clause of



modular testing

comparison

interface errors

Section 1.4 e Coding, Testing, and Further Refinement 31

every if statement, and the termination condition of each loop. If the program has
several selection or iteration statements, then it will require different combinations
of test data to check all the paths that are possible. Figure 1.3 shows a short program
segment with its possible execution paths.

a==1 a==

switch a { Vs
case 1: x=3;
break;
case 2:if (b ==0)
X=2;
else
X =4;
break;
case 3: while (c >0)
process (c);
break ; \

a==2
b!=0
X=4; while (c >0)
process (c);
Path 1 Path 2 Path 3 Path 4

Figure 1.3. The execution paths through a program segment

For a large program the glass-box approach is clearly not practicable, but for
a single small module, it is an excellent debugging and testing method. In a well-
designed program, each module will involve few loops and alternatives. Hence
only a few well-chosen test cases will suffice to test each module on its own.

In glass-box testing, the advantages of modular program design become evi-
dent. Let us consider a typical example of a project involving 50 functions, each
of which can involve 5 different cases or alternatives. If we were to test the whole
program as one, we would need 5% test cases to be sure that each alternative was
tested. Each module separately requires only 5 (easier) test cases, for a total of
5x 50 = 250. Hence a problem of impossible size has been reduced to one that, for
a large program, is of quite modest size.

Before you conclude that glass-box testing is always the preferable method,
we should comment that, in practice, black-box testing is usually more effective
in uncovering errors. Perhaps one reason is that the most subtle programming
errors often occur not within a function but in the interface between functions, in
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misunderstanding of the exact conditions and standards of information interchange
between functions. It would therefore appear that a reasonable testing philosophy
for a large project would be to apply glass-box methods to each small module as it
is written and use black-box test data to test larger sections of the program when
they are complete.

3. The Ticking-Box Method

To conclude this section, let us mention one further philosophy of program testing,
a philosophy that is, unfortunately, quite widely used. This might be called the
ticking-box method. It consists of doing no testing at all after the project is fairly
well debugged, but instead turning it over to the customer for trial and acceptance.
The result, of course, is a time bomb.

Exercises 1.4

Programming
Projects 1.4

<

Wi§

El. If you suspected that the Life program contained errors, where would be a
good place to insert scaffolding into the main program? What information
should be printed out?

E2. Take your solution to Section 1.3, Exercise E9 (designing a program to plot a
set of points), and indicate good places to insert scaffolding if needed.

E3. Find suitable black-box test data for each of the following:

(a) A function that returns the largest of its three parameters, which are float-
ing-point numbers.

(b) A function that returns the square root of a floating-point number.

(c) A function that returns the least common multiple of its two parameters,
which must be positive integers. (The least common multiple is the small-
est integer that is a multiple of both parameters. Examples: The least
common multiple of 4 and 6 is 12, of 3 and 9 is 9, and of 5 and 7 is 35.)

(d) Afunction that sorts three integers, given as its parameters, into ascending
order.

(e) A function that sorts an array a containing n integers indexed from 0 to
n — 1 into ascending order, where a and n are both parameters.

E4. Find suitable glass-box test data for each of the following:
(a) The statement
if(a<b)if(c>d)x=1; elseif (c== d)x=2;
elsex=3; elseif (a== b)x=4; elseif (c == d)x=5;
else x = 6;
(b) The Life method neighbor_count(row, col).

P1. Enter the Life program of this chapter on your computer and make sure that it
works correctly.

P2. Test the Life program with the examples shown in Figure 1.1.

P3. Run the Life program with the initial configurations shown in Figure 1.4, Sev-
eral of these go through many changes before reaching a configuration that
remains the same or has predictable behavior.
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R Pentomino

Cheshire Cat

Virus

Tumbler

Harvester

Barber Pole

The Glider Gun

Figure 1.4. Life configurations
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Small programs written as exercises or demonstrations are usually run a few times
and thendiscarded, but the disposition of large practical programs is quite different.
A program of practical value will be run many times, usually by many different
people, and its writing and debugging mark only the beginning of its use. They
also mark only the beginning of the work required to make and keep the program
useful. It is necessary to review and analyze the program to ensure that it meets the
requirements specified for it, adapt it to changing environments, and modify it to
make it better meet the needs of its users.

Maintenance of a computer program encompasses all this work done to a
program after it has been fully debugged, tested, and put into use. With time and
experience, the expectations for a computer program will generally change. The
operating and hardware environment will change; the needs and expectations of
users will change; the interface with other parts of the software system will change.
Hence, if a program is to have continued usefulness, continuing attention must be
given to keep it up to date. In fact, surveys show the following:

Programming Precept

For a large and important program, more than half the work
comes in the maintenance phase,
after it has been completely debugged, tested, and put into use.

1.5.1 Program Evaluation

The first step of program maintenance is to begin the continuing process of review,

analysis, and evaluation. There are several useful questions we may ask about any
rmroRr, program. The first group of questions concerns the use and output of the program
(thus continuing what is started with black-box testing).

1. Does the program solve the problem that is requested, following the problem
specifications exactly?

2. Does the program work correctly under all conditions?

3. Does the program have a good user interface? Can it receive input in forms
convenient and easy for the user? Is its output clear, useful, and attractively
presented? Does the program provide alternatives and optional features to
facilitate its use? Does it include clear and sufficient instructions and other
information for the user?

The remaining questions concern the structure of the program (continuing the
process begun in glass-box testing).
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4. Isthe program logically and clearly written, with convenient classes and short
functions as appropriate to do logical tasks? Are the datastructured into classes
that accurately reflect the needs of the program?

5. Is the program well documented? Do the names accurately reflect the use
and meaning of variables, functions, types, and methods? Are precise pre-
and postconditions given as appropriate? Are explanations given for major
sections of code or for any unusual or difficult code?

6. Does the program make efficient use of time and of space? By changing the
underlying algorithm, could the program’s performance be improved?

Some of these criteria will be closely studied for the programs we write. Others
will not be mentioned explicitly, but not because of any lack of importance. These
criteria, rather, can be met automatically if sufficient thought and effort are invested
in every stage of program design. We hope that the examples we study will reveal
such care.

1.5.2 Review of the Life Program

FROM

Toy

problem:
the boundary

GUCH!
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Let us illustrate these program-evaluation criteria by reconsidering the program
for the Life game. Doing so, in one sense, is really overkill, since a toy project like
the Life game is not, in itself, worth the effort. In the process, however, we shall
consider programming methods important for many other applications. Let us
consider each of the preceding questions in turn.

1. Problem Specification

If we go back to review the rules for the Life game in Section 1.2.1, we will find that
we have not, in fact, been solving the Life game as it was originally described. The
rules make no mention of the boundaries of the grid containing the cells. In our
program, when a moving colony gets sufficiently close to a boundary, then room
for neighbors disappears, and the colony will be distorted by the very presence of
the boundary. That is not supposed to be. Hence our program violates the rules.

Itis of course true that in any computer simulation there are absolute bounds on
the values that may appear, but certainly the use of a 20 by 60 grid in our program
is highly restrictive and arbitrary. It is possible to write a Life program without
restricting the size of the grid, but before we can do so, we must develop several
sophisticated data structures. Only after we have done so can we, in Section 9.9,
write a general Life program without restrictions on the size of the grid.

Onafirsttry, however, itis quite reasonable to restrict the problem being solved,
and hence, for now, let us continue studying Life on a grid of limited size. It is,
nevertheless, very important to say exactly what we are doing:

Programming Precept

Be sure you understand your problem completely.
If you must change its terms, explain exactly what you have done.
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2. Program Correctness

Since program testing can show the presence of errors but not their absence, we
need other methods to prove beyond doubt that a program is correct. Constructing
formal proofs that a program is correct is often difficult but sometimes it can be
done, as we shall do for some of the sophisticated algorithms developed in later
chapters. For the Life game, let us be content with more informal reasons why our
program is correct.

First, we ask which parts of the program need verification. The Life configura-
tion is changed only by the method update, and only update and neighbor_count
involve any calculation that might turn out to be wrong. Hence we should concen-
trate on the correctness of these two methods.

The method neighbor_count looks only at the cell given as its parameters and
at the neighbors of that cell. There are only a limited humber of possibilities for
the status of the cell and its neighbors, so glass-box testing of these possibilities is
feasible, using a driver program for neighbor_count. Such testing would quickly
convince us of the correctness of neighbor_count.

For update, we should first examine the cases in the switch statement to make
sure that their actions correspond exactly to the rules in Section 1.2.1. Next, we
can note that the action for each cell depends only on the status of the cell and
it neighbor count. Hence, as for neighbor_count, we can construct a limited set
of glass-box test data that verify that update performs the correct action in each
possible case.

3. User Interface

In running the Life program, you will have likely found that the poor method for
input of the initial configuration is a major inconvenience. It is unnatural for a
person to calculate and type in the numerical coordinates of each living cell. The
form of input should instead reflect the same visual imagery that we use to printa
configuration. Ata minimum, the program should allow the user to type each row
of the configuration as a line of blanks (for dead cells) and non-blank characters
(for living cells).

Life configurations can be quite complicated. For easier input, the program
should be able to read its initial configuration from a file. To allow stopping the
program to be resumed later, the program should also be able to store the final
configuration in a file that can be read again later.

Another option would be to allow the user to edit a configuration at any gen-
eration.

The output from the program can also be improved. Rather than rewriting the
entire configuration at each generation, direct cursor addressing should be used
to change only the cells whose status has changed. Color or other features can be
used to make the output both much more attractive and more useful. For example,
cells that have newly become alive might be one color and those continuing alive
other colors depending on how long they have been alive.

To make the program more self-contained, it would also be useful to have an
optional display of a short description of the Life game and its rules, perhaps as a
pop-up screen.
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In general, designing a program to have an attractive appearance and feel to
the user is very important, and in large programs a great deal of importance is given
to the user interface, often more than to all other parts of the program combined.

Programming Precept

Design the user interface with the greatest care possible.
A program’s success depends greatly on its attractiveness and ease of use.

4. Modularity and Structure

We have already addressed these issues in the original design. The decisions al-
ready made will continue to serve us well.

5. Documentation

Again, we have previously addressed issues of documentation, which need not be
repeated here.

6. Efficiency

Where does the Life program spend most of its time? Surely it is not in the input
phase, since that is done only once. The output too is generally quite efficient.
The bulk of the calculation is in method update and in neighbor_count, which it
invokes.

At every generation, update recalculates the neighbor counts of every possible
cell. In a typical configuration, perhaps only five percent of the cells are living,
often localized in one area of the grid. Hence update spends a great deal of time
laboriously establishing that many dead cells, with no living neighbors, indeed
have neighbor counts of 0 and will remain dead in the next generation. If 95
percent of the cells are dead, this constitutes a substantial inefficiency in the use of
computer time.

But is this inefficiency of any importance? Generally, it is not, since the cal-
culations are done so quickly that, to the user, each generation seems to appear
instantaneously. On the other hand, if you run the Life program on a very slow
machine or on a busy time-sharing system, you may find the program’s speed
somewhat disappointing, with a noticeable pause between printing one genera-
tion and starting to print the next. In this case, it might be worthwhile to try saving
computer time, but, generally speaking, optimization of the Life program is not
needed even though it is very inefficient.

Programming Precept

Do not optimize your code unless it is necessary to do so.
Do not start to optimize code until it is complete and correct.

Most programs spend 90 percent of their time
doing 10 percent of their instructions.
Find this 10 percent, and concentrate your efforts for efficiency there.
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Another reason to think carefully before commencing optimization of a program
is that optimizations often produce more complicated code. This code will then be
harder to debug and to modify when necessary.

Programming Precept

Keep your algorithms as simple as you can.
When in doubt, choose the simple way.

1.5.3 Program Revision and Redevelopment

FROM
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As we continue to evaluate a program, asking whether it meets its objectives and
the needs of its users, we are likely to continue discovering both deficiencies in its
current design and new features that could make it more useful. Hence program
review leads naturally to program revision and redevelopment.

As we review the Life program, for example, we find that it meets some of the
criteria quite well, but it has several deficiencies in regard to other criteria. The most
serious of these is that, by limiting the grid size, it fails to satisfy its specifications.
Its user interface leaves much to be desired. Finally, its computations are inefficient,
but this is probably not important.

With some thought, we can easily improve the user interface for the Life pro-
gram, and several of the projects propose such improvements. To revise the pro-
gram to remove the limits on grid size, however, will require that we use data
structures and algorithms that we have not yet developed, and hence we shall re-
visit the Life program in Section 9.9. At that time, we shall find that the algorithm
we develop also addresses the question of efficiency. Hence the new program will
both meet more general requirements and be more efficient in its calculations.

Programming Precept
Sometimes postponing problems simplifies their solution.

Exercises 1.5

E1l. Sometimes the user might wish to run the Life game on a grid smaller than
20x60. Determine how itis possible to make maxrow and maxcol into variables
that the user can set when the program is run. Try to make as few changes in
the program as possible.

E2. One idea for speeding up the function Life:: neighbor_count(row, col) is to
delete the hedge (the extra rows and columns that are always dead) from the ar-
rays grid and new_grid. Then, when a cell is on the boundary, neighbor_count
will look at fewer than the eight neighboring cells, since some of these are out-
side the bounds of the grid. To do this, the function will need to determine
whether or not the cell (row, col) is on the boundary, but this can be done out-
side the nested loops, by determining, before the loops commence, the lower
and upper bounds for the loops. If, for example, row is as small as allowed,
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then the lower bound for the row loop is row; otherwise, it is row — 1. Deter-
mine, in terms of the size of the grid, approximately how many statements are
executed by the original version of neighbor_count and by the new version.
Are the changes proposed in this exercise worth making?

Modify the Life function initialize so that it sets up the initial Life:: grid con-
figuration by accepting occupied positions as a sequence of blanks and x’s in
appropriate rows, rather than requiring the occupied positions to be entered
as numerical coordinate pairs.

Add a feature to the function initialize so that it can, at the user’s option, either
read its initial configuration from the keyboard or from afile. The firstline ofthe
file will be a comment giving the name of the configuration. Each remaining
line of the file will correspond to a row of the configuration. Each line will
contain x in each living position and a blank in each dead position.

Add a feature to the Life program so that, at termination, it can write the final
configuration to a file in a format that can be edited by the user and that can
be read in to restart the program (using the feature of Project P2).

Add a feature to the Life program so, at any generation, the user can edit the
current configuration by inserting new living cells or by deleting living cells.

Add a feature to the Life program so, if the user wishes at any generation, it
will display a help screen giving the rules for the Life game and explaining
how to use the program.

Add a step mode to the Life program, so it will explain every change it makes
while going from one generation to the next.

Use direct cursor addressing (a system-dependent feature) to make the Life
method print update the configuration instead of completely rewriting it at
each generation.

Use different colors in the Life output to show which cells have changed in the
current generation and which have not.

This chapter has surveyed a great deal of ground, but mainly from abird’s-eye view.
Some themes we shall treat in much greater depth in later chapters; others must be
postponed to more advanced courses; still others are best learned by practice.

This section recapitulates and expands some of the principles we have been

studying.

1.6.1 Software Engineering

Software engineering is the study and practice of methods helpful for the con-
struction and maintenance of large software systems. Although small by realistic
standards, the program we have studied in this chapter illustrates many aspects of
software engineering.
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phases of life cycle

Software engineering begins with the realization that it is a very long process
to obtain good software. It begins before any programs are coded and continues as
maintenance for years after the programs are put into use. This continuing process
is known as the life cycle of software. This life cycle can be divided into phases as
follows:

1. Analyze the problem precisely and completely. Be sure to specify all necessary
user interface with care.

2. Build a prototype and experiment with it until all specifications can be finalized.

3. Design the algorithm, using the tools of data structures and of other algorithms
whose function is already known.

4. Verify that the algorithm is correct, or make it so simple that its correctness is
self-evident.

5. Analyze the algorithm to determine its requirements and make sure that it meets
the specifications.

6. Code the algorithm into the appropriate programming language.
7. Test and evaluate the program on carefully chosen test data.

8. Refine and repeat the foregoing steps as needed for additional classes and func-
tions until the software is complete and fully functional.

9. Optimize the code to improve performance, but only if necessary.
10. Maintain the program so that it will meet the changing needs of its users.
Most of these topics have been discussed and illustrated in various sections of this

and the preceding chapter, but a few further remarks on the first phase, problem
analysis and specification, are in order.

1.6.2 Problem Analysis

%:

specifications

Analysis of the problem is often the most difficult phase of the software life cycle.
This is not because practical problems are conceptually more difficult than are
computing science exercises—the reverse is often the case—but because users and
programmers tend to speak different languages. Here are some questions on which
the analyst and user must reach an understanding:

1. What form will the input and output data take? How much data will there be?

2. Are there any special requirements for the processing? What special occur-
rences will require separate treatment?

3. Will these requirements change? How? How fast will the demands on the
system grow?

4. What parts of the system are the most important? Which must run most effi-
ciently?

5. How should erroneous data be treated? What other error processing is needed?

6. What kinds of people will use the software? What kind of training will they
have? What kind of user interface will be best?
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7. How portable must the software be, so that it can move to new kinds of equip-
ment? With what other software and hardware systems must the project be
compatible?

8. What extensions or other maintenance are anticipated? What is the history of
previous changes to software and hardware?

1.6.3 Requirements Specification

&

1.6.4 Coding

specifications complete

&

For alarge project, the phase of problem analysis and experimentation should even-
tually lead to a formal statement of the requirements for the project. This statement
becomes the primary way in which the user and the software engineer attempt to
understand each other and establishes the standard by which the final project will
be judged. Among the contents of this specification will be the following:

1. Functional requirements for the system: what it will do and what commands
will be available to the user.

2. Assumptions and limitations on the system: what hardware will be used for the
system, what form must the input take, what is the maximum size of input,
what is the largest number of users, and so on.

3. Maintenance requirements: anticipated extensions of the system, changes in
hardware, changes in user interface.

4. Documentation requirements: what kind of explanatory material is required for
what kinds of users.

The requirements specifications state what the software will do, not how it will be
done. These specifications should be understandable both to the user and to the
programmer. If carefully prepared, they will form the basis for the subsequent
phases of design, coding, testing, and maintenance.

In a large software project it is necessary to do the coding at the right time, not
too soon and not too late. Most programmers err by starting to code too soon.
If coding is begun before the specifications are made precise, then unwarranted
assumptions about the specifications will inevitably be made while coding, and
these assumptions may render different classes and functions incompatible with
each other or make the programming task much more difficult than it need be.

Programming Precept
Never code until the specifications are precise and complete.

Programming Precept

Act in haste and repent at leisure.
Program in haste and debug forever.
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software prototypes

It is possible but unlikely, on the other hand, to delay coding too long. Just as
we design from the top down, we should code from the top down. Once the
specifications at the top levels are complete and precise, we should code the classes
and functions at these levels and test them by including appropriate stubs. If we
then find that our design is flawed, we can modify it without paying an exorbitant
price in low-level functions that have been rendered useless.

The same thought can be expressed somewhat more positively:

Programming Precept
Starting afresh is often easier than patching an old program.

A good rule of thumb is that, if more than ten percent of a program must be
modified, then it is time to rewrite the program completely. With repeated patches
to a large program, the number of bugs tends to remain constant. That is, the
patches become so complicated that each new patch tends to introduce as many
new errors as it corrects.

An excellent way to avoid having to rewrite a large project from scratch is
to plan from the beginning to write two versions. Before a program is running,
it is often impossible to know what parts of the design will cause difficulty or
what features need to be changed to meet the needs of the users. Engineers have
known for many years that it is not possible to build a large project directly from
the drawing board. For large projects engineers always build prototypes; that
is, scaled-down models that can be studied, tested, and sometimes even used for
limited purposes. Models of bridges are built and tested in wind tunnels; pilot
plants are constructed before attempting to use new technology on the assembly
line.

Prototyping is especially helpful for computer software, since it can ease the
communication between users and designers early in a project, thereby reducing
misunderstandings and helping to settle the design to everyone’s satisfaction. In
building a software prototype the designer can use programs that are already writ-
ten for input-output, for sorting, or for other common requirements. The building
blocks can be assembled with as little new programming as possible to make a
working model that can do some of the intended tasks. Even though the prototype
may not function efficiently or do everything that the final system will, it provides
an excellent laboratory for the user and designer to experiment with alternative
ideas for the final design.

Programming Precept

Always plan to build a prototype and throw it away.
You’ll do so whether you plan to or not.
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Programming P1. A magic square is a square array of integers such that the sum of every row,
Projects 1.6 the sum of every column, and sum of each of the two diagonals are all equal.
Two magic squares are shown in Figure 1.5.%
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Figure 1.5. Two magic squares

(a) Write a program that reads a square array of integers and determines
whether or not it is a magic square.

(b) Write a program that generates a magic square by the following method.
This method works only when the size of the square isan odd number. Start
by placing 1 in the middle of the top row. Write down successive integers
2, 3, ...along a diagonal going upward and to the right. When you reach
the top row (as you do immediately since 1 is in the top row), continue
to the bottom row as though the bottom row were immediately above the
top row. When you reach the rightmost column, continue to the leftmost
column as though it were immediately to the right of the rightmost one.
When you reach a position that is already occupied, instead drop straight
down one position from the previous number to insert the new one. The
5 x 5 magic square constructed by this method is shown in Figure 1.5.

P2. One-Dimensional Life takes place on a straight line instead of a rectangular
grid. Each cell has four neighboring positions: those at distance one or two
Wﬁs" from it on each side. The rules are similar to those of two-dimensional Life
except (1) a dead cell with either two or three living neighbors will become
alive in the next generation, and (2) a living cell dies if it has zero, one, or three
living neighbors. (Hence a dead cell with zero, one, or four living neighbors
stays dead; a living cell with two or four living neighbors stays alive.) The
progress of sample communities is shown in Figure 1.6. Design, write, and test
a program for one-dimensional Life.

6 The magic square on the left appears as shown here in the etching Melancolia by ALBRECHT DURER.
Note the inclusion of the date of the etching, 1514.
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Figure 1.6. One-dimensional Life configurations

P3. (a) Write a program that will print the calendar of the current year.

(b) Modify the program so that it will read a year number and print the calen-
dar for that year. A year is a leap year (that is, February has 29 instead of

28 days) if it is a multiple of 4, except that century years (multiples of 100)

are leap years only when the year is divisible by 400. Hence the year 1900

is not a leap year, but the year 2000 is a leap year.

(c) Modify the program so that it will accept any date (day, month, year) and

print the day of the week for that date.

(d) Modify the program so that it will read two dates and print the number of

days from one to the other.

(e) Using the rules on leap years, show that the sequence of calendars repeats

exactly every 400 years.
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(f) What is the probability (over a 400-year period) that the 13th of a month is
a Friday? Why is the 13th of the month more likely to be a Friday than any
other day of the week? Write a program to calculate how many Friday the
13ths occur in this century.

POINTERS AND PITFALLS

30 1. To improve your program, review the logic. Don’t optimize code based on a
poor algorithm.

2. Never optimize a program until it is correct and working.
3. Don’t optimize code unless it is absolutely necessary.

>

Keep your functions short; rarely should any function be more than a page
long.

Be sure your algorithm is correct before starting to code.

Verify the intricate parts of your algorithm.

Keep your logic simple.

Be sure you understand your problem before you decide how to solve it.

© ® N o o

Be sure you understand the algorithmic method before you start to program.

10. In case of difficulty, divide a problem into pieces and think of each part sepa-
rately.

11. The nouns that arise in describing a problem suggest useful classes for its
solution; the verbs suggest useful functions.

12. Include careful documentation (as presented in Section 1.3.2) with each func-
tion as you write it.

13. Be careful to write down precise preconditions and postconditions for every
function.

14. Include error checking at the beginning of functions to check that the precon-
ditions actually hold.

15. Everytimeafunction is used, ask yourself why you know that its preconditions
will be satisfied.

16. Use stubs and drivers, black-box and glass-box testing to simplify debugging.

17. Use plenty of scaffolding to help localize errors.

18. In programming with arrays, be wary of index values that are off by 1. Always
use extreme-value testing to check programs that use arrays.

19. Keep your programs well formatted as you write them—it will make debug-
ging much easier.



46 Chapter 1 e Programming Principles

REVIEW QUESTIONS

1.3

1.4

1.6

20.

21.

Keep your documentation consistent with your code, and when reading a
program make sure that you debug the code and not just the comments.

Explain your program to somebody else: Doing so will help you understand
it better yourself.

Most chapters of this book conclude with a set of questions designed to help
you review the main ideas of the chapter. These questions can all be answered
directly from the discussion in the book; if you are unsure of any answer, refer
to the appropriate section.

When is it appropriate to use one-letter variable names?

2. Name four kinds of information that should be included in program documen-

© N o g kb ®

10.
11.
12.

13.

14.
15.
16.
17.
18.
19.
20.
21.

tation.
What is the difference between external and internal documentation?

What are pre- and postconditions?

Name three kinds of parameters. How are they processed in C++?
Why should side effects of functions be avoided?

What is a program stub?

What is the difference between stubs and drivers, and when should each be
used?

What is a structured walkthrough?
What is scaffolding in a program, and when is it used?
Name a way to practice defensive programming.

Give two methods for testing a program, and discuss when each should be
used.

If you cannot immediately picture all details needed for solving a problem,
what should you do with the problem?

What are preconditions and postconditions of a subprogram?

When should allocation of tasks among functions be made?

How long should coding be delayed?

What is program maintenance?

What is a prototype?

Name at least six phases of the software life cycle and state what each is.
Define software engineering.

What are requirements specifications for a program?
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REFERENCES FOR FURTHER STUDY

C++

The programming language C++ was devised by BiARNE STRousTRuUP, Who first
published its description in 1984. The standard reference manual is
B. StroustruP, The C++ Programming Language, third edition, Addison-Wesley,
Reading, Mass., 1997.
Many good textbooks provide a more leisurely description of C++, too many books
to list here. These textbooks also provide many examples and applications.

For programmers who already know the language, an interesting book about
how to use C++ effectively is

Scott MEvYeRs, Effective C++, second edition, Addison-Wesley, Reading, Mass., 1997.

Programming Principles

Two books that contain many helpful hints on programming style and correctness,
as well as examples of good and bad practices, are

BriaN KErNIGHAN and P. J. PLAuGER, The Elements of Programming Style, second edi-
tion, McGraw-Hill, New York, 1978, 168 pages.

Dennie VAN TasseL, Program Style, Design, Efficiency, Debugging, and Testing, second

edition, Prentice Hall, Englewood Cliffs, N.J., 1978, 323 pages.
Epscer W. DuksTRA pioneered the movement known as structured programming,
which insists on taking a carefully organized top-down approach to the design
and writing of programs, when in March 1968 he caused some consternation by
publishing a letter entitled “Go To Statement Considered Harmful”” in the Commu-
nications of the ACM (vol. 11, pages 147-148). DuksTRA has since published several
papers and books that are most instructive in programming method. One book of
special interest is

Epscer W. DuksTrA, A Discipline of Programming, Prentice Hall, Englewood Cliffs,
N.J., 1976, 217 pages.

A full treatment of object oriented design is provided by

GrADY BoocH, Object-Oriented Analysis and Design with Applications, Benjamin/
Cummings, Redwood City, Calif., 1994.

The Game of Life

The prominent British mathematician J. H. Conway has made many original con-
tributions to subjects as diverse as the theory of finite simple groups, logic, and
combinatorics. He devised the game of Life by starting with previous technical
studies of cellular automata and devising reproduction rules that would make it
difficult for a configuration to grow without bound, but for which many config-
urations would go through interesting progressions. Conway, however, did not
publish his observations, but communicated them to MARTIN GARDNER. The popu-
larity of the game skyrocketed when it was discussed in
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MARTIN GARDNER, “Mathematical Games” (regular column), Scientific American 223,

no. 4 (October 1970), 120-123; 224, no. 2 (February 1971), 112-117.
The examples at the end of Sections 1.2 and 1.4 are taken from these columns. These
columns have been reprinted with further results in

MARTIN GARDNER, Wheels, Life and Other Mathematical Amusements, W. H. Freeman,

New York and San Francisco, 1983, pp. 214-257.
This book also contains a bibliography of articles on Life. A quarterly newsletter,
entitled Lifeline, was even published for a few years to keep the real devotees up
to date on current developments in Life and related topics.

Software Engineering

algorithm verification

problem solving

A thorough discussion of many aspects of structured programming is found in

Epbwarp Yourbon, Techniques of Program Structure and Design, Prentice-Hall, Engle-
wood Cliffs, N. J., 1975, 364 pages.
A perceptive discussion (in a book that is also enjoyable reading) of the many
problems that arise in the construction of large software systems is provided in

FrReperick P. Brooks, JrR., The Mythical Man—Month: Essays on Software Engineering,
Addison-Wesley, Reading, Mass., 1975, 195 pages.

A good textbook on software engineering is

IaN SomMmERvILLE, Software Engineering, Addison-Wesley, Wokingham, England,
1985, 334 pages.
Two books concerned with proving programs and with using assertions and in-
variants to develop algorithms are

Davip Gries, The Science of Programming, Springer-Verlag, New York, 1981, 366
pages.

Suap ALAci¢ and MicHAEL A. Areis, The Design of Well-Structured and Correct Pro-

grams, Springer-Verlag, New York, 1978, 292 pages.
Keeping programs so simple in design that they can be proved to be correct is not
easy, but is very important. C. A. R. Hoare (who invented the quicksort algorithm
that we shall study in Chapter 8) writes: “There are two ways of constructing
a software design: One way is to make it so simple that there are obviously no
deficiencies, and the other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.” This quotation is from the 1980
Turing Award Lecture: “The emperor’s old clothes,” Communications of the ACM
24 (1981), 75-83.

Two books concerned with methods of problem solving are

GeorcE PoLya, How to Solve It, second edition, Doubleday, Garden City, N.Y., 1957,
253 pages.

WavNE A. WickeLcren, How to Solve Problems, W. H. Freeman, San Francisco, 1974,
262 pages.

The programming project on one-dimensional Life is taken from
JoNATHAN K. MILLER, “One-dimensional Life,” Byte 3 (December, 1978), 68—74.
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HIS CHAPTER introduces the study of stacks, one of the simplest but most

important of all data structures. The application of stacks to the reversal of

data is illustrated with a program that calls on the standard-library stack

implementation. A contiguous implementation of a stack data structure is
then developed and used to implement a reverse Polish calculator and a bracket-
checking program. The chapter closes with a discussion of the general principles
of abstract data types and data structures.
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Soon after the introduction of loops and arrays, every elementary programming
class attempts some programming exercise like the following:

Read an integer n, which will be at most 25, then read a list of 2 numbers, and print
the list in reverse order.

This simple exercise will probably cause difficulty for some students. Most will
realize that they need to use an array, but some will attempt to set up the array to
have n entries and will be confused by the error message resulting from attempting
to use a variable rather than a constant to declare the size of the array. Other
students will say, “I could solve the problem if | knew that there were 25 numbers,
but I don’t see how to handle fewer.” Or “Tell me before | write the program how
large n is, and then | can do it.”

The difficulties of these students come not from stupidity, but from thinking
logically. A beginning course sometimes does not draw enough distinction be-
tween two quite different concepts. First is the concept of a list of n numbers,
a list whose size is variable; that is, a list for which numbers can be inserted or
deleted, so that, if n = 3, then the list contains only 3 numbers, and if n = 19, then
it contains 19 numbers. Second is the programming feature called an array or a
vector, which contains a constant number of positions, that is, whose size is fixed
when the program is compiled. A list is a dynamic data structure because its size
can change, while an array is a static data structure because it has a fixed size.

The concepts of a listand an array are, of course, related in that a list of variable
size can be implemented in a computer as occupying part of an array of fixed
size, with some of the entries in the array remaining unused. We shall later find,
however, that there are several different ways to implement lists, and therefore we
should not confuse implementation decisions with more fundamental decisions on
choosing and specifying data structures.

A stack is a version of a list that is particularly useful in applications involving
reversing, such as the problem of Section 2.1.1. In a stack data structure, all inser-
tions and deletions of entries are made at one end, called the top of the stack. A
helpful analogy (see Figure 2.1) is to think of a stack of trays or of plates sitting on
the counter in a busy cafeteria. Throughout the lunch hour, customers take trays
off the top of the stack, and employees place returned trays back on top of the stack.
The tray most recently put on the stack is the first one taken off. The bottom tray
is the first one put on, and the last one to be used.
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Figure 2.1. Stacks

Sometimes this picture is described with plates or trays on a spring-loaded
device so that the top of the stack stays near the same height. This imagery is poor
and should be avoided. If we were to implement a computer stack in this way;,
it would mean moving every item in the stack whenever one item was inserted
or deleted. It is far better to think of the stack as resting on a firm counter or
floor, so that only the top item is moved when it is added or deleted. The spring-
loaded imagery, however, has contributed a pair of colorful words that are firmly
embedded in computer jargon and that we shall use to name the fundamental
operations on a stack. When we add an item to a stack, we say that we push it
onto the stack, and when we remove an item, we say that we pop it from the stack.
See Figure 2.2. Note that the last item pushed onto a stack is always the first that
will be popped from the stack. This property is called last in, first out, or LIFO for
short.

2.1.3 First Example: Reversing a List

Asasimple example of the use of stacks, let us write a program to solve the problem
of Section 2.1.1. Our program must read an integer n, followed by n floating-point
numbers. It then writes them out in reverse order. We can accomplish this task by
pushing each number onto a stack as it is read. When the input is finished, we pop
numbers off the stack, and they will come off in the reverse order.
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Figure 2.2. Pushing and popping a stack

In our program we shall rely on the standard template library of C++ (usually
called the STL) to provide a class that implements stacks.! The STL is part of
the standard library of C++. This standard library contains all kinds of useful
information, functions, and classes. The STL is the part of the standard library that

L If the STL stack implementation is not available, the stack class that we implement in the next
section can be used in its place.
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provides convenientimplementations for many common data structures, including
almost all the data structures we shall study in this book.

We can include the STL stack implementation into our programs with the direc-
tive #include <stack> (or, on some older, pre-ANSI compilers, the directive #include
<stack.h>). Once the library is included, we can define initially empty stack ob-
jects, and apply methods called push, pop, top, and empty. We will discuss these
methods and the STL itself in more detail later, but its application in the following
program is quite straightforward.

#include <stack>

int main()

/*Pre: The user supplies an integer n and n decimal numbers.
Post: The numbers are printed in reverse order.
Uses: The STL class stack and its methods */

int n;
double item;
stack<double> numbers; // declares and initializes a stack of numbers
cout « " Type in an integer n followed by n decimal numbers." « endl
<« " The numbers will be printed in reverse order." « endl;
cin > n;
for(inti=0; i<n; i++){
cin > item;
numbers.push(item);

}

cout «< endl « endl;

while (! numbers.empty()) {
cout < numbers.top() < " ";
numbers.pop();

}

cout < endl;

In this number-reversing program, we have used not only the methods push(),
top(), and pop() of the stack called numbers, but we have made crucial use of
the implicit initialization of numbers as an empty stack. That is, when the stack
called numbers is created, it is automatically initialized to be empty. Just as with
the standard-library classes, whenever we construct a class we shall be careful to
ensure that it is automatically initialized, in contrast to variables and arrays, whose
initialization must be given explicitly.

We remark that, like the atomic classes int, float, and so on, the C++ library
class stack has an identifier that begins with a lowercase letter. As we decided in
Section 1.3, however, the classes that we shall create will have identifiers with an
initial capital letter.
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template

One important feature of the STL stack implementation is that the user can
specify the type of entries to be held in a particular stack. For example, in the
reversing program, we create a stack of elements of type double with the definition
stack<double> numbers, whereas, if we had required a stack of integers, we would
have declared stack<int> numbers. The standard library uses a C++ construction
known as a template to achieve this flexibility. Once we are familiar with more basic
implementations of data structures, we shall practice the construction and use of
our own templates, starting in Chapter 6.

2.1.4 Information Hiding

built-in structures

alternative
implementations

MNTSIGHT

change of
implementation

clarity of program

We have been able to write our program for reversing a line of input without
any consideration of how a stack is actually implemented. In this way, we have an
example of information hiding: The methods for handling stacks are implemented
in the C++ standard library, and we can use them without needing to know the
details of how stacks are kept in memory or of how the stack operations are actually
done.

As a matter of fact, we have already been practicing information hiding in the
programs we have previously written, without thinking about it. Whenever we
have written a program using an array or a structure, we have been content to
use the operations on these structures without considering how the C++ compiler
actually represents them in terms of bits or bytes in the computer memory or the
machine-language steps it follows to look up an index or select a member.

Oneimportant difference between practicing information hiding with regard to
arrays and practicing information hiding with regard to stacks is that C++ provides
justone built-in implementation of arrays, but the STL has several implementations
of stacks. Although the code in a client program that uses stacks should not de-
pend on a particular choice of stack implementation, the performance of the final
program may very much depend on the choice of implementation. In order to
make an informed decision about which stack implementation should be used in
a given application, we need to appreciate the different features and behaviors of
the different implementations. In the coming chapters, we shall see that for stacks
(as for almost all the data types we shall study) there are several different ways to
represent the data in the computer memory, and there are several different ways
to do the operations. In some applications, one implementation is better, while in
other applications another implementation proves superior.

Eveninasingle large program, we may first decide to represent stacks one way
and then, as we gain experience with the program, we may decide that another way
is better. If the instructions for manipulating a stack have been written out every
time a stack is used, then every occurrence of these instructions will need to be
changed. If we have practiced information hiding by using separate functions for
manipulating stacks, then only the declarations will need to be changed.

Another advantage of information hiding shows up in programs that use stacks
where the very appearance of the words push and pop immediately alert a person
reading the program to what is being done, whereas the instructions themselves
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might be more obscure. We shall find that separating the use of data structures
from their implementation will help us improve the top-down design of both our
data structures and our programs.

2.1.5 The Standard Template Library

library of data
structures

/
%j

template parameter

alternative
implementations

algorithm performance
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LINE

The standard C++ library is available in implementations of ANSI C++. This li-
brary provides all kinds of system-dependent information, such as the maximum
exponent that can be stored in a floating-point type, input and output facilities,
and other functions whose optimal implementation depends on the system. In
addition, the standard library provides an extensive set of data structures and their
methods for use in writing programs. In fact, the standard library contains imple-
mentations of almost all the data structures that we consider in this text, including
stacks, queues, deques, lists, strings, and sets, among others.

To be able to use these library implementations appropriately and efficiently, it
is essential that we learn the principles and the alternative implementations of the
data structures represented in the standard library. We shall therefore give only
a very brief introduction to the standard library, and then we return to our main
goal, the study of the data structures themselves. In one sense, however, most of
this book can be regarded as an introduction to the STL of C++, since our goal
is to learn the basic principles and methods of data structures, knowledge that is
essential to the discerning use of the STL.

As we have already noted, the STL stack implementation is a class template,
and therefore a programmer can choose exactly what sort of items will be placed
in a stack, by specifying its template parameters between < > symbols. In fact,
a programmer can also utilize a second template parameter to control what sort of
stack implementation will be used. This second parameter has a default value, so
that a programmer who is unsure of which implementation to use will get a stack
constructed from a default implementation; in fact, it will come from a deque—
a data structure that we will introduce in Chapter 3. A programmer can choose
instead to use a vector-based or a list-based implementation of a stack. In order to
choose among these implementations wisely, a programmer needs to understand
their relative advantages, and this understanding can only come from the sort of
general study of data structures that we undertake in this book.

Regardless of the chosen implementation, however, the STL does guarantee
that stack methods will be performed efficiently, operating in constant time, inde-
pendent of the size of the stack. In Chapter 7, we shall begin a systematic study
of the time used by various algorithms, and we shall continue this study in later
chapters. As it happens, the constant-time operation of standard stack methods is
guaranteed only in an averaged sense known as amortized performance. We shall
study the amortized analysis of programs in Section 10.5.

The STL provides implementations of many other standard data structures,
and, as we progress through this book, we shall note those implementations that
correspond to topics under discussion. In general, these library implementations
are highly efficient, convenient, and designed with enough default options to allow
programmers to use them easily.
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Exercises 2.1

stack permutations
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Draw a sequence of stack frames like Figure 2.2 showing the progress of each of
the following segments of code, each beginning with an empty stack s. Assume
the declarations

#include <stack>

stack<char>s;

char x, vy, z;

(@) s.push(’a’); (c) s.push(’a’);

s.push(’'b’); s.push(’'b’);
s.push(’c’); s.push(’c’);
s.pop(); while (I's.empty())
s.pop(); s.pop();
s.pop();

(d) s.push(’a’);

(b) s.push(‘a’); s.push(’b’);
s.push(’b’); while (!s.empty()) {
s.push(’c’); X = s.top();

x = s.top(); s.pop();
s.pop(); }
y = s.top(); s.push(’c’);
s.pop(); s.pop();
s.push(x); s.push(’a’);
s.push(y); s.pop();
s.pop(); s.push(’'b’);
s.pop();

Write a program that makes use of a stack to read in a single line of text and
write out the characters in the line in reverse order.

Write a program that reads a sequence of integers of increasing size and prints
the integers in decreasing order of size. Input terminates as soon as an integer
that does not exceed its predecessor is read. The integers are then printed in
decreasing order.

A stack may be regarded as a railway switching network like the one in
Figure 2.3. Cars numbered 1, 2, ..., n are on the line at the left, and it is
desired to rearrange (permute) the cars as they leave on the right-hand track.
A car that is on the spur (stack) can be left there or sent on its way down the
right track, but it can never be sent back to the incoming track. For example,
if n = 3, and we have the cars 1, 2, 3 on the left track, then 3 first goes to the
spur. We could then send 2 to the spur, then on its way to the right, then send
3 on the way, then 1, obtaining the new order 1, 3, 2.

(a) For n = 3, find all possible permutations that can be obtained.
(b) For n =4, find all possible permutations that can be obtained.

(c) [Challenging] For general n, find how many permutations can be obtained
by using this stack.
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Figure 2.3. Switching network for stack permutations

We now turn to the problem of the construction of a stack implementation in C++.
We will produce a contiguous Stack implementation, meaning that the entries are
stored next to each other in an array. In Chapter 4, we shall study a linked imple-
mentation using pointers in dynamic memory.

In these and all the other implementations we construct, we shall be careful
always to use classes to implement the data structures. Thus, we shall now develop
a class Stack whose data members represent the entries of a stack. Before we
implement any class, we should decide on specifications for its methods.

2.2.1 Specification of Methods for Stacks

=5

stack methods

A

The methods of our class Stack must certainly include the fundamental operations
called empty(), top(), push(), and pop(). Only one other operation will be essen-
tial: This is an initialization operation to set up an empty stack. Without such an
initialization operation, client code would have to deal with stacks made up of ran-
dom and probably illegal data, whatever happened beforehand to be in the storage
area occupied by the stack.

1. Constructors

The C++ language allows us to define special initialization methods for any class.
These methods are called constructors for the class. Each constructor is a function
with the same name as the corresponding class. A constructor has no return type.
Constructors are applied automatically whenever we declare an object of the class.
For example, the standard library implementation of a stack includes a construc-
tor that initializes each newly created stack as empty: In our earlier program for
reversing a line of input, such an initialization was crucial. Naturally, we shall
create a similar Stack constructor for the class that we develop. Thus, whenever
one of our clients declares a Stack object, that object is automatically initialized as
empty. The specification of our Stack constructor follows.
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Stack :: Stack();
precondition: None.
postcondition: The Stack exists and is initialized to be empty.

2. Entry Types, Generics

The declarations for the fundamental methods of a stack depend on the type of en-
tries that we intend to store in the stack. To keep as much generality as we can, let us
use Stack_entry for the type of entries in our Stack. For one application, Stack_entry
might be int, for another it might be char. A client can select an appropriate entry
type with a definition such as

typedef char Stack_entry;

By keeping the type Stack_entry general, we can use the same stack implementation
for many different applications.

The ability to use the same underlying data structure and operations for dif-
ferent entry types is called generics. Our use of a typedef statement to choose the
type of entry in our Stack is a simple way to achieve generic data structures in
C++. For complex applications, ones that need stacks with different entry types in
a single program, the more sophisticated template treatment, which is used in the
standard library class stack, is more appropriate. After we have gained some ex-
perience with simple data structures, we shall also choose to work with templates,
beginning with the programs in Chapter 6.

3. Error Processing

In deciding on the parameters and return types of the fundamental Stack methods,
we must recognize thata method might be applied illegally by a client. For example,
aclientmighttry to pop anempty stack. Our methodswill signal any such problems
with diagnostic error codes. In this book, we shall use a single enumerated type
called Error_code to report errors from all of our programs and functions.

The enumerated type Error_code will be part of our utility package, described
in Appendix C. In implementing the Stack methods, we shall make use of three
values of an Error_code, namely:

success, overflow, underflow

If a method is able to complete its work normally, it will return success as its Er-
ror_code; otherwise, it will return a code to indicate what went wrong. Thus, a
client that tries to pop from an empty Stack will get back an Error_code of under-
flow. However, any other application of the pop method is legitimate, and it will
result in an Error_code of success.

This provides us with a first example of error handling, an important safeguard
that we should build into our data structures whenever possible. There are several
different ways that we could decide to handle error conditions that are detected in a
method of a data structure. We could decide to handle the error directly, by printing
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outanerror message or by halting the execution of the program. Alternatively, since
methods are always called from a client program, we can decide to return an error
code back to the client and let it decide how to handle the error. We take the view
that the client is in the best position to judge what to do when errors are detected;
we therefore adopt the second course of action. In some cases, the client code might
react to an error code by ceasing operation immediately, but in other cases it might
be important to ignore the error condition.

Programming Precept

After a client uses a class method,
it should decide whether to check the resulting error status.
Classes should be designed to allow clients to decide
how to respond to errors.

We remark that C++ does provide a more sophisticated technique known as ex-
ception handling: When an error is detected an exception can be thrown. This
exception can then be caught by client code. In this way, exception handling con-
forms to our philosophy that the client should decide how to respond to errors
detected in a data structure. The standard library implementations of stacks and
other classes use exception handling to deal with error conditions. However, we
shall opt instead for the simplicity of returning error codes in all our implementa-
tions in this text.

4. Specification for Methods
Our specifications for the fundamental methods of a Stack come next.

Error_code Stack:: pop();
precondition: None.

postcondition: If the Stack is not empty, the top of the Stack is removed. If the
Stack is empty, an Error_code of underflow is returned and the
Stack is left unchanged.

Error_code Stack :: push(const Stack_entry &item);
precondition: None.

postcondition: If the Stack is not full, item is added to the top of the Stack. If
the Stack is full, an Error_code of overflow is returned and the
Stack is left unchanged.

The parameter item that is passed to push isan input parameter, and this is indicated
by its declaration as a const reference. In contrast, the parameter for the next
method, top, is an output parameter, which we implement with call by reference.
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Error_code Stack :: top(Stack_entry &item) const;
precondition: None.

postcondition: The top of a nonempty Stack is copied to item. A code of fail is
returned if the Stack is empty.

The modifier const that we have appended to the declaration of this method indi-
cates that the corresponding Stack object is not altered by, or during, the method.
Just as it is important to specify input parameters as constant, as information for
the reader and the compiler, itis important for us to indicate constant methods with
this modifier. The last Stack method, empty, should also be declared as a constant
method.

bool Stack :: empty() const;
precondition: None.

postcondition: A result of true is returned if the Stack is empty, otherwise false
is returned.

2.2.2 The Class Specification

(‘40
=

stack type

For a contiguous Stack implementation, we shall set up an array that will hold the
entries in the stack and a counter that will indicate how many entries there are. We
collect these data members together with the methods in the following definition
for a class Stack containing items of type Stack_entry. This definition constitutes
the file stack.h.

const int maxstack = 10; // small value for testing

class Stack {
public:
Stack();
bool empty() const;
Error_code pop();
Error_code top(Stack_entry &item) const;
Error_code push(const Stack_entry &item);
private:
int count;
Stack_entry entry [maxstack];

};

As we explained in Section 1.2.4, we shall place this class definition in a header file
with extension . h, in this case the file stack.h. The corresponding code file, with
the method implementations that we shall next develop, will be called stack.c.
The code file can then be compiled separately and linked to client code as needed.
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2.2.3 Pushing, Popping, and Other Methods

é:

=

The stack methods are implemented as follows. We must be careful of the extreme
cases: We might attempt to pop an entry from an empty stack or to push an entry
onto afull stack. These conditions must be recognized and reported with the return
of an error code.

Error_code Stack:: push(const Stack_entry &item)
/* Pre: None.

Post: If the Stack is not full, item is added to the top of the Stack. If the Stack
is full, an Error_code of overflow is returned and the Stack is left un-
changed. */

{

Error_code outcome = success;

if (count >= maxstack)
outcome = overflow;

else

entry[count++] = item;
return outcome;

}

Error_code Stack:: pop()
/*Pre: None.
Post: If the Stack is not empty, the top of the Stack is removed. If the Stack is
empty, an Error_code of underflow is returned. */
{
Error_code outcome = success;
if (count == 0)
outcome = underflow;
else ——count;
return outcome;

}

We note that the data member count represents the number of items in a Stack.
Therefore, the top of a Stack occupies entry[count — 1], as shown in Figure 2.4,

Error_code Stack :: top(Stack_entry &item) const
/*Pre: None.
Post: If the Stack is not empty, the top of the Stack is returned in item. If the
Stack is empty an Error_code of underflow is returned. */

{
Error_code outcome = success;
if (count == 0)
outcome = underflow;
else

item = entry[count — 1];
return outcome;
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Figure 2.4. Representation of data in a contiguous stack

bool Stack :: empty() const
/*Pre: None.

Post: If the Stack is empty, true is returned. Otherwise false is returned. */
{

bool outcome = true;

if (count > 0) outcome = false;

return outcome;

}

The other method of our Stack is the constructor. The purpose of the constructor
is to initialize any new Stack object as empty.

Stack :: Stack()
/*Pre: None.

Post: The stack is initialized to be empty. */
{

count = 0;

}
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2.2.4 Encapsulation

data integrity

encapsulation
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Notice that our stack implementation forces client code to make use of information
hiding. Our declaration of private visibility for the data makes it is impossible for
a client to access the data stored in a Stack except by using the official methods
push(), pop(), and top(). One important result of this data privacy is that a Stack
can never contain illegal or corrupted data. Every Stack object will be initialized
to represent a legitimate empty stack and can only be modified by the official
Stack methods. So long as our methods are correctly implemented, we have a
guarantee that correctly initialized objects must continue to stay free of any data
corruption.

We summarize this protection that we have given our Stack objects by saying
that they are encapsulated. In general, data is said to be encapsulated if it can only
be accessed by a controlled set of functions.

The small extra effort that we make to encapsulate the data members of a C++
class pays big dividends. The first advantage of using an encapsulated class shows
up when we specify and program the methods: For an encapsulated class, we need
never worry about illegal data values. Without encapsulation, the operations on
a data structure almost always depend on a precondition that the data members
have been correctly initialized and have not been corrupted. We can and should
use encapsulation to avoid such preconditions. For our encapsulated class Stack,
all of the methods have precondition specifications of None. This means that a
client does not need to check for any special situations, such as an uninitialized
stack, before applying a public Stack method. Since we think of data structures
as services that will be written once and used in many different applications, it is
particularly appropriate that the clients should be spared extra work where possi-
ble.

Programming Precept

The public methods for a data structure
should be implemented without preconditions.
The data members should be kept private.

We shall omit the precondition section from public method specifications in all our
encapsulated C++ classes.

The private member functions of a data structure cannot be used by clients,
so there is no longer a strong case for writing these functions without precondi-
tions. We shall emphasize the distinction between public and private member
functions of a data structure, by reserving the term method for the former cate-

gory.
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Assume the following definition file for a contiguous implementation of an
extended stack data structure.

class Extended_stack {

public:
Extended_stack();
Error_code pop();
Error_code push(const Stack_entry &item);
Error_code top(Stack_entry &item) const;
bool empty() const;

void clear(); /' Reset the stack to be empty.

bool full() const ; //  If the stack is full, return true; else return false.

int size() const; // Return the number of entries in the stack.
private:

int count;

Stack_entry entry [maxstack];

5
Write code for the following methods. [Use the private data members in your
code.]

(a) clear (b) full (c) size

Start with the stack methods, and write a function copy_stack with the follow-
ing specifications:

Error_code copy_stack(Stack &dest, Stack &source);
precondition: None.
postcondition: Stack dest has become an exact copy of Stack source; source

is unchanged. If an error is detected, an appropriate code is
returned; otherwise, a code of success is returned.

Write three versions of your function:

(a) Simply use an assignment statement: dest = source;

(b) Use the Stack methods and a temporary Stack to retrieve entries from the
Stack source and add each entry to the Stack dest and restore the Stack
source.

(c) Write the function as a friend? to the class Stack. Use the private data
members of the Stack and write a loop that copies entries from source to
dest.

2 Friend functions have access to all members of a C++ class, even private ones.
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Which of these is easiest to write? Which will run most quickly if the stack is
nearly full? Which will run most quickly if the stack is nearly empty? Which
would be the best method if the implementation might be changed? In which
could we pass the parameter source as a constant reference?

Write code for the following functions. [Your code must use Stack methods,
but you should not make any assumptions about how stacks or their methods
are actually implemented. For some functions, you may wish to declare and
use a second, temporary Stack object.]

(a) Function bool full(Stack &s) leaves the Stack s unchanged and returns a
value of true or false according to whether the Stack s is or is not full.

(b) FunctionError_code pop_top(Stack &s, Stack_entry &t) removes the top en-
try from the Stack s and returns its value as the output parameter t.

(c) Function void clear(Stack &s) deletes all entries and returns s as an empty
Stack.

(d) Functionintsize(Stack &s) leaves the Stack s unchanged and returns a count
of the number of entries in the Stack.

(e) Function void delete_all(Stack &s, Stack_entry x) deletes all occurrences (if
any) of x from s and leaves the remaining entries in s in the same relative
order.

Sometimes a program requires two stacks containing the same type of entries.
If the two stacks are stored in separate arrays, then one stack might overflow
while there was considerable unused space in the other. A neat way to avoid
this problem is to put all the space in one array and let one stack grow from
one end of the array and the other stack start at the other end and grow in the
opposite direction, toward the first stack. In this way, if one stack turns out to
be large and the other small, then they will still both fit, and there will be no
overflow until all the space is actually used. Define a new class Double_stack
that includes (as private data members) the array and the two indices top_a
and top_b, and write code for the methods Double_stack(), push_a(), push_b(),
pop_a(), and pop_b() to handle the two stacks within one Double_stack.

top_a top_b

Assemble the appropriate declarations from the text into the files stack.h and
stack.cand verify that stack. c compiles correctly, so that the class Stack can
be used by future client programs.

Write a program that uses a Stack to read an integer and print all its prime
divisors in descending order. For example, with the integer 2100 the output
should be

755 3 2 2

[Hint: The smallest divisor greater than 1 of any integer is guaranteed to be a
prime.]
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2.3 APPLICATION: A DESK CALCULATOR
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This section outlines a program to imitate the behavior of a simple calculator that
does addition, subtraction, multiplication, division, and perhaps some other op-
erations. There are many kinds of calculators available, and we could model our
program after any of them. To provide a further illustration of the use of stacks,
however, let us choose to model what is often called a reverse Polish calculator.
In such a calculator, the operands (numbers, usually) are entered before an oper-
ation is specified. The operands are pushed onto a stack. When an operation is
performed, it pops its operands from the stack and pushes its result back onto the
stack.

We shall write ? to denote an instruction to read an operand and push it onto
the stack; + , —, *, and / represent arithmetic operations; and = is an instruction
to print the top of the stack (but not pop it off). Further, we write a, b, ¢, and
d to denote numerical values such as 3.14 or —7. The instructions ?a?b + =
mean read and store the numbers a and b, calculate and store their sum, and
then print the sum. The instructions?a?b + ?c¢?d + * = request four numer-
ical operands, and the result printed is the value of (a + b) = (c + d). Similarly,
the instructions?a?b?c — = * 2d + = mean push the numbers a, b, ¢ onto the
stack, replace the pair b, ¢ by b — ¢ and print its value, calculate a = (b — c), push
d onto the stack, and finally calculate and print (a = (b — c)) + d. The advantage of
a reverse Polish calculator is that any expression, no matter how complicated, can
be specified without the use of parentheses.

If you have access to a UNix system, you can experiment with a reverse Polish
calculator with the command dc.

Polish notation is useful for compilers as well as for calculators, and its study
forms the major topic of Chapter 13. For the present, however, a few minutes’
practice with a reverse Polish calculator will make you quite comfortable with its
use.

It is clear that we should use a stack in an implementation of a reverse Polish
calculator. After this decision, the task of the calculator program becomes sim-
ple. The main program declares a stack of entries of type double, accepts new
commands, and performs them as long as desired.

In the program, we shall apply our generic Stack implementation. We begin
with a typedef statement to set the type of Stack_entry. We then include the Stack
definition file stack.h.

typedef double Stack_entry;
#include "stack.h"

int main()
/* Post: The program has executed simple arithmetic commands entered by the
user.

Uses: The class Stack and the functions introduction, instructions, do_command,
and get_command. */
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Stack stored_numbers;

introduction();

instructions();

while (do_command(get_command(), stored_numbers));

The auxiliary function get_command obtains a command from the user, checking
that it is valid and converting it to lowercase by using the string function tolower()
that is declared in the standard header file cctype. (The file cctype, or its older in-
carnation ctype. h, can be automatically included via our standard utility package;
see Appendix C.)

In order to implement get_command, let us make the decision to represent
the commands that a user can type by the characters?, =, +, —, *, /, where
? requests input of a numerical value from the user, = prints the result of an
operation, and the remaining symbols denote addition, subtraction, multiplication,
and division, respectively.

char get_command()
{
char command,;
bool waiting = true;
cout <« "Select command and press < Enter > :";
while (waiting) {
cin > command,;
command = tolower(command);

if (command == '?" || command == '=’ || command == '+’ ||
command == '—’ || command == ’*’ || command == /" ||
command == 'q’) waiting = false;

else {

cout <« "Please enter a valid command:" <« endl
<« "[?]push to stack [=]print top" <« endl
< "[+]1[-11[*11/] are arithmetic operations" « endl
<« "[Q]uit." < endl;
}
}
return command;

}

The work of selecting and performing the commands, finally, is the task of the
function do_command. We present here an abbreviated form of the function
do_command, in which we have coded only a few of the possible commands in its
main switch statement.
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bool do_command(char command, Stack &humbers)
/*Pre: The first parameter specifies a valid calculator command.

Post: The command specified by the first parameter has been applied to the
Stack of numbers given by the second parameter. A result of true is re-

turned unless command == 'q’.
Uses: The class Stack. */

double p, q;
switch (command) {
case '?":
cout «< "Enter a real number: " « flush;
cin > p;
if (numbers.push(p) == overflow)
cout « "Warning: Stack full, lost number" « endl;
break;
case '=":
if (numbers.top(p) == underflow)
cout <« "Stack empty" « endl;
else
cout <« p < endl;
break;
case '+
if (numbers.top(p) == underflow)
cout « "Stack empty" « endl;
else {
numbers.pop();
if (numbers.top(q) == underflow) {
cout « "Stack has just one entry" « endl;
numbers.push(p);
}
else {
numbers.pop();
if (numbers.push(q + p) == overflow)
cout < "Warning: Stack full, lost result" « endl,

}

}
break;

//  Add options for further user commands.

case 'q’:
cout «< "Calculation finished.\n";
return false;

}

return true,

}
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In calling this function, we must pass the Stack parameter by reference, because
its value might need to be modified. For example, if the command parameter is +,
then we normally pop two values off the Stack numbers and push their sum back
onto it: This should certainly change the Stack.

The function do_command allows for an additional user command, g, that

quits the program.
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2.4 APPLICATION: BRACKET MATCHING

If we use the standard library class stack in our calculator, the method top()
returns the top entry off the stack as its result. Then the function do_command
can then be shortened considerably by writing such statements as

case '—': numbers.push(numbers.pop() — numbers.pop());

(a) Assuming that this statement works correctly, explain why it would still
be bad programming style.
(b) It is possible that two different C++ compilers, both adhering strictly to

standard C++, would translate this statement in ways that would give
different answers when the program runs. Explain how this could happen.

Discuss the steps that would be needed to make the calculator process complex
numbers.

Assemble the functions developed in this section and make the necessary
changes in the code so as to produce a working calculator program.

Write a function that will interchange the top two numbers on the stack, and
include this capability as a new command.

Write a function that will add all the numbers on the stack together, and include
this capability as a new command.

Write a function that will compute the average of all numbers on the stack, and
include this capability as a new command.

brackets are used to enclose expressions, function arguments, array indices, and

StCLIAS;I Programs written in C++ contain several different types of brackets. For example,
A
/«

blocks of code. As we know, the brackets used within a program must pair off.
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For example, the following string
{a=(1 +v(b[3 + c[4]]));

cannot possibly have matched brackets, because it has five opening brackets and
only four closing brackets: Like the first drafts of many C++ programs, it is missing
a final brace. The string

{a=(b[0)+1];}

has equal numbers of opening and closing brackets, but we can see that it has
unmatched brackets, because its first closing bracket ) does not correspond to the
most recent opening bracket [. On the other hand, the bracket sequence

{0001}

is matched, although it is not a legitimate part of any C++ program.

In this section we shall implement a program to check that brackets are correctly
matched in an input text file. For simplicity, we will limit our attention to the
brackets {, }, (,), [, and ]. Moreover, we shall just read a single line of characters,
and ignore all input other than bracket characters. In checking the bracketing of
an actual C++ program, we would need to apply special rules for brackets within
comments and strings, and we would have to recognize that the symbols <, > can
also denote brackets (for example, in the declaration stack<double> numbers; that
we used in the program of Section 2.1.3).

If we formalize the rules for pairing brackets, we quickly obtain the following
algorithm: Read the program file character by character. Each opening bracket (, [,
or { that is encountered is considered as unmatched and is stored until a matching
bracket can be found. Any closing bracket ), ], or } must correspond, in bracket
style, to the last unmatched opening bracket, which should now be retrieved and
removed from storage. Finally, at the end of the program, we must check that no
unmatched opening brackets are left over.

We see that a program to test the matching of brackets needs to process an
input file character by character, and, as it works its way through the input, it
needs some way to remember any currently unmatched brackets. These brackets
must be retrieved in the exact reverse of their input order, and therefore a Stack
provides an attractive option for their storage.

Once we have made this decision, our program need only loop over the input
characters, until either a bracketing error is detected or the input file ends. When-
ever a bracket is found, an appropriate Stack operation is applied. We thus obtain
the following program.

int main()
/* Post: The program has notified the user of any bracket mismatch in the standard
input file.

Uses: The class Stack. */
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Stack openings;
char symbol;
bool is_matched = true;
while (is_matched && (symbol = cin.get()) = "\n’) {
if (symbol == "{’ || symbol == (' || symbol == [’)
openings.push(symbol);
if (symbol == "}’ || symbol == ')’ || symbol == ]’) {
if (openings.empty()) {
cout < "Unmatched closing bracket " « symbol
<« " detected." « endl;
is_matched = false;
3
else {
char match;
openings.top(match);
openings.pop();
is_matched = (symbol == '}’ && match == "{’)
[| (symbol == ")’ & match == (')
[| (symbol == ']’ & match == '[’)
if (!is_matched)
cout < "Bad match " « match « symbol « endl;

3
}
}
if (! openings.empty())
cout < "Unmatched opening bracket(s) detected." « endl;

Programming P1. Modify the bracket checking program so that it reads the whole of an input

Projects 2.4 file. _ .
P2. Modify the bracket checking program so that input characters are echoed to

output, and individual unmatched closing brackets are identified in the output

file.
P3. Incorporate C++ comments and character strings into the bracket checking
w1‘§~ program, so that any bracket within a comment or character string is ignored.

2.5 ABSTRACT DATA TYPES AND THEIR IMPLEMENTATIONS

2.5.1 Introduction

In any of our applications of stacks, we could have used an array and counter in
place of the stack. This would entail replacing each stack operation by a group
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analogies

implementation

of array and counter manipulations. For example, the bracket checking program
might use statements such as:

if (counter < max) {
openings[counter] = symbol;
counter++;

}

In some ways, this may seem like an easy approach, since the code is straightfor-
ward, simpler in many ways than setting up a class and declaring all its methods.

A major drawback to thisapproach, however, is that the writer (and any reader)
of the program must spend considerable effort verifying the details of array index
manipulations every time the stack is used, rather than being able to concentrate
on the ways in which the stack is actually being used. This unnecessary effort is a
direct result of the programmer’s failure to recognize the general concept of a stack
and to distinguish between this general concept and the particular implementation
needed for a given application.

Another application might include the following instructions instead of a sim-
ple stack operation:

if (xxt == mxx) || (xxt > mxx))

try_again();
else {

XX [xxt] = wi;

xxt++;

}

In isolation, it may not even be clear that this section of code has essentially the
same function as the earlier one. Both segments are intended to push an item onto
the top of a stack.

Researchers working in different subjects frequently have ideas that are funda-
mentally similar but are developed for different purposes and expressed in different
language. Often years will pass before anyone realizes the similarity of the work,
but when the observation is made, insight from one subject can help with the other.
In computer science, even so, the same basic idea often appears in quite different
disguises that obscure the similarity. But if we can discover and emphasize the
similarities, then we may be able to generalize the ideas and obtain easier ways to
meet the requirements of many applications.

The way in which an underlying structure is implemented can have substantial
effects on program development and on the capabilities and usefulness of the re-
sult. Sometimes these effects can be subtle. The underlying mathematical concept
of a real number, for example, is usually (but not always) implemented by com-
puter as a floating-point number with a certain degree of precision, and the inherent
limitations in this implementation often produce difficulties with round-off error.
Drawing a clear separation between the logical structure of our data and its im-
plementation in computer memory will help us in designing programs. Our first
step is to recognize the logical connections among the data and embody these con-
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nections in a logical data structure. Later we can consider our data structures and
decide what is the best way to implement them for efficiency of programming and
execution. By separating these decisions they both become easier, and we avoid
pitfalls that attend premature commitment.

To help us clarify this distinction and achieve greater generality, let us now
consider data structures from as general a perspective as we can.

2.5.2 General Definitions

%ﬁ

Definition

building types

Definition

1. Mathematical Concepts

Mathematics is the quintessence of generalization and therefore provides the lan-
guage we need for our definitions. We start with the definition of a type:

A type is a set, and the elements of the set are called the values of the type.

We may therefore speak of the type integer, meaning the set of all integers, the type
real, meaning the set of all real numbers, or the type character, meaning the set of
symbols that we wish to manipulate with our algorithms.

Notice that we can already draw a distinction between an abstract type and
its implementation: The C++ type int, for example, is not the set of all integers; it
consists only of the set of those integers directly represented in a particular com-
puter, the largest of which depends on the word size of the computer. Similarly, the
C++ types float and double generally mean certain sets of floating-point numbers
(separate mantissa and exponent) that are only small subsets of the set of all real
numbers.

2. Atomic and Structured Types

Types such as int, float, and char are called atomic types because we think of their
values as single entities only, not something we wish to subdivide. Computer
languages like C++, however, provide tools such as arrays, classes, and pointers
with which we can build new types, called structured types. A single value of a
structured type (that is, a single element of its set) is a structured object such as
a contiguous stack. A value of a structured type has two ingredients: It is made
up of component elements, and there is a structure, a set of rules for putting the
components together.

For our general point of view we shall use mathematical tools to provide the
rules for building up structured types. Among these tools are sets, sequences, and
functions. For the study of lists of various kinds the one that we need is the finite
sequence, and for its definition we use mathematical induction.® A definition by
induction (like a proof by induction) has two parts: First is an initial case, and
second is the definition of the general case in terms of preceding cases.

A sequence of length 0 is empty. A sequence of length n > 1 of elements from
aset T is an ordered pair (S,-1,t) where S,,_1 is a sequence of length n — 1 of
elements from T, and t is an element of T.

3 See Appendix A for samples of proof by induction.
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From this definition we can build up longer and longer sequences, starting with
the empty sequence and adding on new elements from T, one at a time.

From now on we shall draw a careful distinction between the word sequential,
meaning that the elements form a sequence, and the word contiguous, which we
take to mean that the elements have adjacent addresses in memory. Hence we shall
be able to speak of a sequential list in a contiguous implementation.

3. Abstract Data Types

The definition of a finite sequence immediately makes it possible for us to attempt a
definition of a list: a list of items of a type T is simply a finite sequence of elements
oftheset T.

Next we would like to define a stack, but if you consider the definitions, you
will realize that there will be nothing regarding the sequence of items to distin-
guish these structures from a list. The primary characteristic of a stack is the set
of operations or methods by which changes or accesses can be made. Including a
statement of these operations with the structural rules defining a finite sequence,
we obtain

A stack of elements of type T is a finite sequence of elements of T, together
with the following operations:

Create the stack, leaving it empty.
Test whether the stack is Empty.

Push a new entry onto the top of the stack, provided the stack is not full.
Pop the entry off the top of the stack, provided the stack is not empty.

g > w D PE

Retrieve the Top entry from the stack, provided the stack is not empty.

Note that this definition makes no mention of the way in which the abstract data
type stack is to be implemented. In the coming chapters we will study several
different implementations of stacks, and this new definition fits any of these im-
plementations equally well. This definition produces what is called an abstract
data type, often abbreviated as ADT. The important principle is that the definition
of any abstract data type involves two parts: First is a description of the way in
which the components are related to each other, and second is a statement of the
operations that can be performed on elements of the abstract data type.

2.5.3 Refinement of Data Specification

top-down specification

Now that we have obtained such a general definition of an abstract data type, it
is time to begin specifying more detail, since the objective of all this work is to
find general principles that will help with designing programs, and we need more
detail to accomplish this objective.

There is, in fact, a close analogy between the process of top-down refinement
of algorithms and the process of top-down specification of data structures that we
have now begun. Inalgorithm design we begin with a general but precise statement
of the problem and slowly specify more detail until we have developed a complete
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program. In data specification we begin with the selection of the mathematical
concepts and abstract data types required for our problem and slowly specify more
detail until finally we can implement our data structures as classes.

The number of stages required in this specification process depends on the
application. The design of a large software system will require many more decisions
than will the design of a single small program, and these decisions should be
taken in several stages of refinement. Although different problems will require
different numbers of stages of refinement, and the boundaries between these stages
sometimes blur, we can pick out four levels of the refinement process.

1. On the abstract level we decide how the data are related to each other and what
operations are needed, but we decide nothing concerning how the data will
actually be stored or how the operations will actually be done.

2. On the data structures level we specify enough detail so that we can analyze
the behavior of the methods and make appropriate choices as dictated by our
problem. This is the level, for example, at which we might choose a contiguous
structure where data is stored in an array.

3. On the implementation level we decide the details of how the data structures
will be represented in computer memory.

4. On the application level we settle all details required for our particular appli-
cation, such as names for variables or special requirements for the operations
imposed by the application.

The first two levels are often called conceptual because at these levels we are more
concerned with problem solving than with programming. The middle two levels
can be called algorithmic because they concern precise methods for representing
data and operating with it. The last two levels are specifically concerned with
programming.

Our task in implementing a data structure in C++ is to begin with conceptual
information, often the definition of an ADT, and refine it to obtain an implemen-
tation as a C++ class. The methods of the C++ class correspond naturally to the
operations of the ADT, while the data members of the C++ class correspond to
the physical data structure that we choose to represent our ADT. In this way, the
process of moving from an abstract ADT, to a data structure, and then on to an
implementation leads directly to a C++ class definition.

Let us conclude this section by restating its most important principles as pro-
gramming precepts:

Programming Precept

Let your data structure your program.
Refine your algorithms and data structures at the same time.

Programming Precept

Once your data are fully structured,
your algorithms should almost write themselves.
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Exercises 2.5

EL

E2.

Give a formal definition of the term extended stack as used in Exercise E1 of
Section 2.2.

In mathematics the Cartesian product of sets Ty, To, ... , T, is defined as the set

of all n-tuples (t1,t2,...,t,), where t; is a member of T; forall i,1 <i < n.
Use the Cartesian product to give a precise definition of a class.

POINTERS AND PITFALLS

éiz

1. Use data structures to clarify the logic of your programs.

I

Practice information hiding and encapsulation in implementing data struc-
tures: Use functions to access your data structures, and keep these in classes
separate from your application program.

Postpone decisions on the details of implementing your data structures as long
as you can.

Stacks are among the simplest kind of data structures; use stacks when possible.
In any problem that requires a reversal of data, consider using a stack to store
the data.

Avoid tricky ways of storing your data; tricks usually will not generalize to
new situations.

Be sure to initialize your data structures.
In designing algorithms, always be careful about the extreme cases and handle

them gracefully. Trace through your algorithm to determine what happens in
extreme cases, particularly when a data structure is empty or full.

Before choosing implementations, be sure that all the data structures and their
associated operations are fully specified on the abstract level.

REVIEW QUESTIONS

2.1

What is the standard library?
What are the methods of a stack?

What are the advantages of writing the operations on a data structure as meth-
ods?

What are the differences between information hiding and encapsulation?
Describe three different approaches to error handling that could be adopted by
a C++ class.

Give two different ways of implementing a generic data structure in C++.
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2.3 7. What is the reason for using the reverse Polish convention for calculators?
2.5 8. What two parts must be in the definition of any abstract data type?
9. In an abstract data type, how much is specified about implementation?

10. Name (in order from abstract to concrete) four levels of refinement of data
specification.

REFERENCES FOR FURTHER STUDY

For many topics concerning data structures, such as stacks, the best source for

stacks  additional information, historical notes, and mathematical analysis is the following
series of books, which can be regarded almost like an encyclopadia for the aspects
of computing science that they discuss:

encyclopadic DonNALD E. KNuTH, The Art of Computer Programming, published by Addison-Wesley;,
reference: KNUTH Reading, Mass.

Three volumes have appeared to date:

% 53 1. Fundamental Algorithms, second edition, 1973, 634 pages.
2. Seminumerical Algorithms, second edition, 1980, 700 pages.

3. Sorting and Searching, 1973, 722 pages.

In future chapters we shall often give references to this series of books, and for
convenience we shall do so by specifying only the name KnuTH together with the
volume and page numbers. The algorithms are written both in English and in
an assembler language, where KnuTH calculates detailed counts of operations to
compare various algorithms.

A detailed description of the standard library in C++ occupies a large part of
the following important reference:

BiARNE STrRoUsTRUP, The C++ Programming Language, third edition, Addison-Wesley,
Reading, Mass., 1997.

The Polish notation is so natural and useful that one might expect its discovery to
be hundreds of years ago. It may be surprising to note that it is a discovery of the
twentieth century:

JAN Lukasiewicz, Elementy Logiki Matematyczny, Warsaw, 1929; English translation:
Elements of Mathematical Logic, Pergamon Press, 1963.
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QUEUE is a data structure modeled after a line of people waiting to
be served. Along with stacks, queues are one of the simplest kinds of
data structures. This chapter develops properties of queues, studies
how they are applied, and examines different implementations. The
implementations illustrate the use of derived classes in C++ and the important
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3.1 DEFINITIONS

&

applications

front and rear

In ordinary English, a queue is defined as a waiting line, like a line of people
waiting to purchase tickets, where the first person in line is the first person served.
For computer applications, we similarly define a queue to be a list in which all
additions to the list are made at one end, and all deletions from the list are made
at the other end. Queues are also called first-in, first-out lists, or FIFO for short.
See Figure 3.1.

Figure 3.1. A queue

Applications of queues are, if anything, even more common than are appli-
cations of stacks, since in performing tasks by computer, as in all parts of life, it
is often necessary to wait one’s turn before having access to something. Within a
computer system there may be queues of tasks waiting for the printer, for access
to disk storage, or even, with multitasking, for use of the CPU. Within a single
program, there may be multiple requests to be kept in a queue, or one task may
create other tasks, which must be done in turn by keeping them in a queue.

The entry in a queue ready to be served, that is, the first entry that will be
removed from the queue, is called the front of the queue (or, sometimes, the head
of the queue). Similarly, the last entry in the queue, that is, the one most recently
added, is called the rear (or the tail) of the queue.

3.1.1 Queue Operations

operations

To complete the definition of our queue ADT, we specify all the operations that it
permits. We shall do so by giving the method name for each operation, together
with the postconditions that complete its specification. As you read these speci-

79
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alternative names:
insert, delete,
enqueue, dequeue

fications, you should note the similarity with the corresponding operations for a
stack. As in our treatment of stacks, we shall implement queues whose entries
have a generic type, which we call Queue_entry.

The firststep we must perform in working with any queue is to use a constructor
to initialize it for further use:

Queue:: Queue();
postcondition: The Queue has been created and is initialized to be empty.

The declarations for the fundamental operations on a queue come next.

Error_code Queue :: append(const Queue_entry &x);

postcondition: If there is space, x is added to the Queue as its rear. Otherwise
an Error_code of overflow is returned.

Error_code Queue::serve();

postcondition: If the Queue is not empty, the front of the Queue has been re-
moved. Otherwise an Error_code of underflow is returned.

Error_code Queue :: retrieve(Queue_entry &x) const;

postcondition: If the Queue is not empty, the front of the Queue has been
recorded as x. Otherwise an Error_code of underflow is re-
turned.

bool Queue :: empty() const;

postcondition: Return true if the Queue is empty, otherwise return false.

The names append and serve are used for the fundamental operations on a queue to
indicate clearly what actions are performed and to avoid confusion with the terms
we shall use for other data types. Other names, however, are also often used for

these operations, terms such as insert and delete or the coined words enqueue and
dequeue.
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Note that error codes are generated by any attempt to append an entry onto a
full Queue or to serve an entry from an empty Queue. Thus our queues will use
the same enumerated Error_code declaration as stacks, including the codes

success, underflow, overflow.

The Queue method specifications show that our C++ class definition is based on
the following skeleton.

class Queue {
public:
Queue();
bool empty() const;
Error_code append(const Queue_entry &x);
Error_code serve();
Error_code retrieve(Queue_entry &x) const;
// Additional members will represent queue data.

%

The standard template library provides a template for a class queue. The oper-
ations that we have called empty, append, serve, and retrieve are known in the
standard library as empty, push, pop, and front. However, since the operations
behave very differently from those of a stack, we prefer to use operation names
that highlight these differences. The standard library queue implementation also
provides operations called back and size that examine the last entry (that is, the one
most recently appended) and the total number of entries in a queue, respectively.

3.1.2 Extended Queue Operations

reinitialization

queue size

In addition to the fundamental methods append, serve, retrieve, and empty there
are other queue operations that are sometimes helpful. For example, it can be
convenient to have aqueue method full that checks whether the queue iscompletely
full.

There are three more operations that are very useful for queues. The first
is clear, which takes a queue that has already been created and makes it empty.
Second is the function size, which returns the number of entries in the queue. The
third is the function serve_and_retrieve, which combines the effects of serve and
retrieve.

We could choose to add these functions as additional methods for our basic class
Queue. However, in object-oriented languages like C++, we can create new classes
that reuse the methods and implementations of old classes. In this case, we shall
create a new class called an Extended_queue that allows new methods in addition
to the basic methods of a Queue. We shall say that the class Extended_queue is
derived from the class Queue.
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derived classes Derived classes provide a simple way of defining classes by adding methods
to an existing class. The ability of a derived class to reuse the members of a base
inheritance  class is known as inheritance. Inheritance is one of the features that is fundamental
to object-oriented programming.
We illustrate the relationship between the class Queue and the derived class
Extended_queue with a hierarchy diagram, as shown in part (a) of Figure 3.2. An
! o8 arrow in a hierarchy diagram points up from a derived class to the base class from
which itis derived. Part (b) of Figure 3.2 illustrates how the methods of a base class
are inherited by a derived class, which then may also include additional methods.

class Queue class Extended_queue
methods: methods:
Queue (constructor) Extended_queue (constructor)
class Queue append append
serve inheritance serve ) )
A ) _— ) —~— inherited
retrieve retrieve
empty empty
data members size
clear
class Extended_queue Base class full

serve_and_retrieve

— data members —— inherited
additional data members

Derived class

(a) Hierarchy diagram (b) Derived class Extended_queue from base class Queue

Figure 3.2. Inheritance and derived classes

In C++ we use the : operator (colon) to define a derived class. The definition

Extended_queue  of the class Extended_queue is as follows.
class

class Extended_queue: public Queue {
public:
bool full() const;
int size() const;
void clear();
Error_code serve_and_retrieve(Queue_entry &item);

}

57
é The keyword public in the first line of the class definition indicates that each inher-
ited member of an Extended_queue has exactly the same visibility (to clients) as it
would have as a member of a Queue.
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The new operations for our class Extended_queue have the following specifi-
cations.

bool Extended_queue :: full() const;
postcondition: Return true if the Extended_queue is full; return false otherwise.

void Extended_queue ::clear();

postcondition: All entries in the Extended_queue have been removed; it is now
empty.

int Extended_queue ::size() const;
postcondition: Return the number of entries in the Extended_queue.

Error_code Extended_queue ::serve_and_retrieve(Queue_entry &item);

postcondition: Return underflow if the Extended_queue is empty. Otherwise
remove and copy the item at the front of the Extended_queue to
item and return success.

The relationship between the class Extended_queue and the class Queue is often
called an is-a relationship. This is because every Extended_queue object “is a”
Queue object with other features—namely, the methods serve_and_retrieve, full,
size, and clear. Whenever a verbal description of the relationship between two
ADTs A and B includes the phrase “Every A is a B ’, we should consider imple-
menting a class to represent A as derived from a class representing B.

As another illustration of the is-a relationship between classes, consider C++
classes that might be used in a program to manage a university budget. Some
of these classes are University, Student, University_president, and Person. Every
student is a person, and therefore we might create the class Student as derived
from the class Person to reflect the is-a relationship between the corresponding
concepts. The class University_president could also be implemented as a derived
class of Person to reflect another obvious is-a relationship. The classes University
and University _president do not reflect an is-a relationship, however the classes are
related, because every university does have a president. We shall say that these
classes reflect a has-a relationship, and in an implementation we would make this
relationship clear by layering the classes, that is, by including a data member of
type University_president in the definition of the class University.
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Exercises 3.1

accounting

3.2 IMPLEMENTATIONS OF QUEUES

ElL

E2.

E3.

Suppose that g is a Queue that holds characters and that x and y are character

variables. Show the contents of q at each step of the following code segments.

(@) Queue q; (b) Queue q; (¢) Queue q;
g.append(‘a’); g.append(‘a’); g.append(‘a’);
qg.serve(); g.append('b’); x="b’;
g.append('b’); qg.retrieve(x); q.append('x’);
q.serve(); q.serve(); g.retrieve(y);
qg.append('c’); g.append(’c’); qg.serve();
g.append('d’); g.append(Xx); g.append(x);
q.serve(); q.serve(); q.serve();

q.serve(); g.append(y);

Suppose that you are a financier and purchase 100 shares of stock in Company
X in each of January, April, and September and sell 100 shares in each of June
and November. The prices per share in these months were

Jan Apr Jun Sep Nov
$10 $30 $20 $50 $30

Determine the total amount of your capital gain or loss using (a) FIFO (first-
in, first-out) accounting and (b) LIFO (last-in, first-out) accounting [that is,
assuming that you keep your stock certificates in (a) a queue or (b) a stack].
The 100 shares you still own at the end of the year do not enter the calculation.

Use the methods for stacks and queues developed in the text to write functions
that will do each of the following tasks. In writing each function, be sure to
check for empty and full structures as appropriate. Your functions may declare
other, local structures as needed.

(a) Move all the entries from a Stack into a Queue.

(b) Move all the entries from a Queue onto a Stack.

(c) Empty one Stack onto the top of another Stack in such away that the entries
that were in the first Stack keep the same relative order.

(d) Empty one Stack onto the top of another Stack in such a way that the entries
that were in the first Stack are in the reverse of their original order.

(e) Use a local Stack to reverse the order of all the entries in a Queue.
(f) Use a local Queue to reverse the order of all the entries in a Stack.

Now that we have considered definitions of queues and their methods, let us change
our point of view and consider how queues can be implemented with computer
storage and as a C++ class.
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1. The Physical Model

As we did for stacks, we can easily create a queue in computer storage by setting up
an ordinary array to hold the entries. Now, however, we must keep track of both
the front and the rear of the queue. One strategy would be to keep the front of the
queue always in the first location of the array. Then an entry could be appended
to the queue simply by increasing the counter showing the rear, in exactly the
same way as we added an entry to a stack. To remove an entry from the queue,
however, would be very expensive indeed, since after the first entry was served,
all the remaining entries would need to be moved one position up the queue to
fill in the vacancy. With a long queue, this process would be prohibitively slow.
Although this method of storage closely models a queue of people waiting to be
served, it is a poor choice for use in computers.

2. Linear Implementation

For efficient processing of queues, we shall therefore need two indices so that we
can keep track of both the front and the rear of the queue without moving any
entries. To append an entry to the queue, we simply increase the rear by one and
put the entry in that position. To serve an entry, we take it from the position at the
front and then increase the front by one. This method, however, still has a major
defect: Both the front and rear indices are increased but never decreased. Even
if there are never more than two entries in the queue, an unbounded amount of
storage will be needed for the queue if the sequence of operations is

append, append, serve, append, serve, append, serve, append, ....

The problem, of course, is that, as the queue moves down the array, the storage
space at the beginning of the array is discarded and never used again. Perhaps the
queue can be likened to a stretchable snake crawling through storage. Sometimes
the snake is longer, sometimes shorter, but if it always keeps crawling in a straight
line, then it will soon reach the end of the storage space.

Note, however, that for applications where the queue is regularly emptied
(such as when a series of requests is allowed to build up to a certain point, and
then a task is initiated that clears all the requests before returning), then at a time
when the queue is empty, the front and rear can both be reset to the beginning
of the array, and the simple scheme of using two indices and straight-line storage
becomes a very efficient implementation.

3. Circular Arrays

In concept, we can overcome the inefficient use of space simply by thinking of the
array as a circle rather than a straight line. See Figure 3.3. In this way, as entries are
added and removed from the queue, the head will continually chase the tail around
the array, so that the snake can keep crawling indefinitely but stay in a confined
circuit. At different times, the queue will occupy different parts of the array, but
we never need worry about running out of space unless the array is fully occupied,
in which case we truly have overflow.
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Figure 3.3. Queue in acircular array

4. Implementation of Circular Arrays

Our next problem is to implement a circular array as an ordinary linear (that is,
straight-line) array. To do so, we think of the positions around the circle as num-
bered from 0 to max — 1, where max is the total number of entries in the circular
array, and to implement the circular array, we use the same-numbered entries of a
linear array. Then moving the indices is just the same as doing modular arithmetic:
When we increase an index past max — 1, we start over again at 0. Thisis like doing
arithmetic on a circular clock face; the hours are numbered from 1 to 12, and if we
add four hours to ten o’clock, we obtain two o’clock.

A very rough analogy of this linear representation is that of a priest serving
communion to people kneeling at the front of a church. The communicants do not
move until the priest comes by and serves them. When the priest reaches the end
of the row, he returns to the beginning and starts again, since by this time a new
row of people have come forward.
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5. Circular Arrays in C++

In C++, we canincrement an indexiof acircular array by using the ternary operator
? : and writing
i=((+1)==max)?0: (i + 1);

This use of the rarely seen ternary operator ? : of C++ has the same meaning as
if(i+1)==max)i=0; elsei=i+ 1;
Or we can use the modulus operator and write
i=(+ 1) % max

(You should check to verify that the result of the latter expression is always between
0 and max—1.)

6. Boundary Conditions

Before writing formal algorithms to add to and remove from a queue, let us consider
the boundary conditions, that is, the indicators that a queue is empty or full. If
there is exactly one entry in the queue, then the front index will equal the rear
index. When this one entry is removed, then the front will be increased by 1, so
that an empty queue is indicated when the rear is one position before the front.
Now suppose that the queue is nearly full. Then the rear will have moved well
away from the front, all the way around the circle, and when the array is full the
rear will be exactly one position before the front. Thus we have another difficulty:
The front and rear indices are in exactly the same relative positions for an empty
gueue and for a full queue! There is no way, by looking at the indices alone, to tell
a full queue from an empty one. This situation is illustrated in Figure 3.4.
Queue
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Figure 3.4. Empty and full queues
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7. Possible Solutions

There are at least three essentially different ways to resolve this problem. One is to
insist on leaving one empty position in the array, so that the queue is considered
full when the rear index has moved within two positions of the front. A second
method is to introduce a new variable. This can be a Boolean flag that is set as
true when the rear comes just before the front to indicate that the queue is full (a
flag to indicate emptiness would be just as good) or an integer variable that counts
the number of entries in the queue. The third method is to set one or both of the
indices to some value(s) that would otherwise never occur in order to indicate an
empty (or full) queue. For example, an empty queue could be indicated by setting
the rear index to —1.

8. Summary of Implementations
To summarize the discussion of queues, let us list all the methods we have discussed
for implementing queues.

[] The physical model: a linear array with the front always in the first position and
all entries moved up the array whenever the front is removed. Thisis generally
a poor method for use in computers.

[l Alinear array with two indices always increasing. This is a good method if the
gueue can be emptied all at once.

[l Acircular array with front and rear indices and one position left vacant.

L] A circular array with front and rear indices and a flag to indicate fullness (or

emptiness).

[l A circular array with front and rear indices and an integer variable counting
entries.

L] A circular array with front and rear indices taking special values to indicate
emptiness.

In the next chapter, we shall consider yet one more way to implement queues, by
using a linked structure. The most important thing to remember from this list of
implementations is that, with so many variations in implementation, we should
always keep questions concerning the use of data structures like queues separate
from questions concerning their implementation; and, in programming we should
always consider only one of these categories of questions at a time. After we have
considered how queues will be used in our application, and after we have written
the client code employing queues, we will have more information to help us choose
the best implementation of queues suited to our application.

Programming Precept

Practice information hiding:
Separate the application of data structures from their implementation.
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Next, let us write formal methods to implement queues and extended queues. It
is clear from the last section that a great many implementations are possible, some
of which are but slight variations on others. Let us therefore concentrate on only
one implementation, leaving the others as exercises.

The implementation in a circular array which uses a counter to keep track of
the number of entries in the queue both illustrates techniques for handling circular
arrays and simplifies the programming of some of the extended-queue operations.
Let us therefore work only with this implementation.

We shall take the queue as stored in an array indexed with the range

0 to (maxqueue — 1)

and containing entries of a type called Queue_entry. The Queue data members
front and rear will record appropriate indices of the array. The data member count
is used to keep track of the number of entries in the Queue. The class definition for
a Queue thus takes the form

const int maxqueue = 10; // small value for testing

class Queue {
public:
Queue();
bool empty() const;
Error_code serve();
Error_code append(const Queue_entry &item);
Error_code retrieve(Queue_entry &item) const;
protected:
int count;
int front, rear;
Queue_entry entry[maxqueuel];

¥

Notice that we have given the data members of a Queue protected rather than
private visibility. For client code, protected visibility has the same meaning as pri-
vate visibility, so that our class Queue is still encapsulated. However, the member
functions of derived classes are allowed to access protected members of a base
class. Thus, when we write methods for the derived class Extended_queue, our
code will be able to make use of the data members of the class Queue. Without this
access, the implementations of some of the methods of an Extended_queue would
be very inefficient. The class specification for extended queues is already given in
Section 3.1.2.

We begin coding the methods of a Queue with initialization.
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Queue :: Queue()
/* Post: The Queue is initialized to be empty. */

{
count = 0;
rear = maxqueue — 1;
front = 0;

}

bool Queue:: empty() const
/* Post: Return true if the Queue is empty, otherwise return false. */
{

return count == 0;

}

The methods for adding to and removing from a Queue follow our preceding
discussion closely. Notice that we return an Error_code whenever necessary.

Error_code Queue :: append(const Queue_entry &item)
/* Post: item is added to the rear of the Queue. If the Queue is full return an
Error_code of overflow and leave the Queue unchanged. */
{
if (count >= maxqueue) return overflow;
count++;
rear = ((rear + 1) == maxqueue) ?0 : (rear + 1);
entry[rear] = item;
return success;

Error_code Queue ::serve()
/* Post: The front of the Queue is removed. If the Queue is empty return an
Error_code of underflow. */
{
if (count <= 0) return underflow;
count——;
front = ((front + 1) == maxqueue) ? 0 : (front + 1);
return success;

}

Error_code Queue :: retrieve(Queue_entry &item) const
/% Post: The front of the Queue retrieved to the output parameter item. If the
Queue is empty return an Error_code of underflow. */
{
if (count <= 0) return underflow;
item = entry[front];
return success;

}
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We leave the methods empty and retrieve as exercises and consider one of the
methods for extended queues. The method giving the size of the extended queue
is particularly easy to write in our implementation.

int Extended_queue ::size() const
/* Post: Return the number of entries in the Extended_queue. */

{

return count;

}

Note that in writing the method size, we have used the protected Queue member
count. If the data members in the class Queue had had private visibility, then
they would have been unavailable to this function, and our code for the method
size would have required a complicated set of calls to the public Queue methods
serve, retrieve and append. The other Extended_queue methods, full, clear, and
serve_and_retrieve, have similar implementations and are left as exercises.

Exercises 3.3

EL

E2.

E3.

E4.

ES.

E6.

Write the remaining methods for queues as implemented in this section:

(@) empty (b) retrieve

Write the remaining methods for extended queues as implemented in this sec-
tion:

(a) full (b) clear (c) serve_and_retrieve

Write the methods needed for the implementation of a queue in a linear array
when it can be assumed that the queue can be emptied when necessary.

Write the methods to implement queues by the simple but slow technique of
keeping the front of the queue always in the first position of a linear array.

Write the methods to implement queues in a linear array with two indices front
and rear, such that, when rear reaches the end of the array, all the entries are
moved to the front of the array.

Write the methods to implement queues, where the implementation does not
keep a count of the entries in the queue but instead uses the special conditions

rear = -1 and front=0

to indicate an empty queue.
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deque

Programming
Project 3.3

Wi

E7.

E8.

EQ.

E10.

E1l

E12.

E13.

P1.

Rewrite the methods for queue processing from the text, using a flag to indicate
a full queue instead of keeping a count of the entries in the queue.

Write methods to implement queues in a circular array with one unused entry
in the array. That is, we consider that the array is full when the rear is two
positions before the front; when the rear is one position before, it will always
indicate an empty queue.

The word deque (pronounced either “deck” or “DQ”) is a shortened form of
double-ended queue and denotes a list in which entries can be added or re-
moved from either the first or the last position of the list, but no changes can
be made elsewhere in the list. Thus a deque is a generalization of both a stack
and a queue. The fundamental operations on a deque are append_front, ap-
pend_rear, serve_front, serve_rear, retrieve_front, and retrieve_rear.

Write the class definition and the method implementations needed to imple-
ment a deque in a linear array.

Write the methods needed to implement a deque in a circular array. Consider
the class Deque as derived from the class Queue. (Can you hide the Queue
methods from a client?)

Is it more appropriate to implement a deque in a linear array or in a circular
array? Why?

Note from Figure 2.3 that a stack can be represented pictorially as a spur track
on a straight railway line. A queue can, of course, be represented simply as a
straighttrack. Devise and draw a railway switching network that will represent
a deque. The network should have only one entrance and one exit.

Suppose that data items numbered 1, 2, 3, 4, 5, 6 come in the input stream in
this order. That s, 1 comes first, then 2, and so on. By using (1) a queue and (2)
a deque, which of the following rearrangements can be obtained in the output
order? The entries also leave the deque in left-to-right order.

(2123456 (b)243651 (C)152436
(d)421356 ()126453 (526341

Write a function that will read one line of input from the terminal. The input
is supposed to consist of two parts separated by a colon ":". As its result, your
function should produce a single character as follows:

No colon on the line.

The left part (before the colon) is longer than the right.

The right part (after the colon) is longer than the left.

The left and right parts have the same length but are different.
The left and right parts are exactly the same.

»woaour z
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Examples: Input Output
Sample Sample N
Left:Right R
Sample:Sample S

Use either a queue or an extended queue to keep track of the left part of the
line while reading the right part.

After we have written a collection of methods and functions for processing a data
structure, we should immediately test the implementation to make sure that every
part of it works correctly. One of the simplest ways to do this is to write a menu-
drivendemonstration program that will set up the data structure and allow a user to
perform all possible operations on the data structure in any desired order, printing
out the results whenever the user wishes. Let us now develop such a program
for our extended queues. This program will then serve as the basis for similar
programs for further data structures throughout the book.

We can make the entries in the extended queue have any type we wish, so for
simplicity let us use a queue of characters. Hence the entries will be single letters,
digits, punctuation marks, and such.

At each iteration of its main loop, the demonstration program will ask the user
to choose an operation. It will then (if possible) perform that operation on the data
structure and print the results.

Hence the main program is:

int main()
/* Post: Accepts commands from user as a menu-driven demonstration program
for the class Extended_queue.
Uses: The class Extended_queue and the functions introduction, get_command,
and do_command. */

{
Extended_queue test_queue;
introduction();
while (do_command(get_command(), test_queue));

}
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In this demonstration program, the user will enter a single character to selecta com-
mand. The meanings of the commands together with the corresponding characters
are explained by the help function, which can itself be activated by the appropriate
command:

void help()
/% Post: A help screen for the program is printed, giving the meaning of each
command that the user may enter. */

{

cout < endl
<« "This program allows the user to enter one command" « endl
<« "(but only one) on each input line." « endl
<« "For example, if the command S is entered, then" « endl
« "the program will serve the front of the queue." « endl
<« endl

<« " The valid commands are:" <« endl

<« "A — Append the next input character to the extended queue" « endl
« "S — Serve the front of the extended queue" « endl

« "R — Retrieve and print the front entry." « endl

<« "# — The current size of the extended queue" « endl

<« "C — Clear the extended queue (same as delete)" « endl

<« "P — Print the extended queue" « endl

<« "H — This help screen" « endl

«< "Q — Quit" < endl

« "Press < Enter > to continue." « flush;

char c;
do {
cin.get(c);
} while (c '="\n");
}

There is also an introduction function, which is activated only once at the start of
the program. The purpose of this function is to explain briefly what the program
does and to show the user how to begin. Further instructions that the user may
need will come either from help or from get_command.

The function get_command prints the menu and obtains a command from the
user. It is but a slight variation on the corresponding function from Section 2.3, so
we leave its implementation as a project.

The work of selecting and performing commands, finally, is the task of the
function do_command. This function just runs the appropriate case of a switch
statement. We give a partial version of the function that has an abbreviated form
of this switch statement.
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bool do_command(char ¢, Extended_queue &test_queue)
/*Pre: crepresents a valid command.
Post: Performs the given command c on the Extended_queue test_queue. Re-
turns false if c == 'q’, otherwise returns true.
Uses: The class Extended_queue. */

bool continue_input = true;
Queue_entry x;
switch (c) {
case 'r’:
if (test_queue.retrieve(x) == underflow)
cout «< "Queue is empty." « endl;
else
cout < endl
<« "The first entry is: " < X
< endl;
break;
case 'q’:
cout « "Extended queue demonstration finished." « endl;
continue_input = false;
break;

//  Additional cases will cover other commands.

}

return continue_input;

}

You should note that, in all our testing functions, we have been careful to maintain
the principles of data abstraction. The Extended_queue specification and methods
are in files, so, if we wish, we can replace our particular Extended_queue imple-
mentation with another, and the program will work with no further change.

We have also written the testing functions so we can use the program to test
other data structures later, changing almost nothing other than the valid operations
and the introduction and help screens.

Programming
Projects 3.4

Wi

P1. Complete the menu-driven demonstration program for manipulating an Ex-
tended_queue of characters, by implementing the function get_ command and
completing the function do_command.

P2. Write a menu-driven demonstration program for manipulating a deque of
characters, similar to the Extended_queue demonstration program.
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3.5 APPLICATION OF QUEUES: SIMULATION

3.5.1 Introduction

simulation

computer simulation

Simulation is the use of one system to imitate the behavior of another system.
Simulations are often used when it would be too expensive or dangerous to exper-
iment with the real system. There are physical simulations, such as wind tunnels
used to experiment with designs for car bodies and flight simulators used to train
airline pilots. Mathematical simulations are systems of equations used to describe
some system, and computer simulations use the steps of a program to imitate the
behavior of the system under study.

In a computer simulation, the objects being studied are usually represented
as data, often as data structures given by classes whose members describe the
properties of the objects. Actions being studied are represented as methods of
the classes, and the rules describing these actions are translated into computer
algorithms. By changing the values of the data or by modifying these algorithms,
we can observe the changes in the computer simulation, and then we can draw
worthwhile inferences concerning the behavior of the actual system.

While one object in a system is involved in some action, other objects and
actions will often need to be kept waiting. Hence queues are important data struc-
tures for use in computer simulations. We shall study one of the most common
and useful kinds of computer simulations, one that concentrates on queues as its
basic data structure. These simulations imitate the behavior of systems (often, in
fact, called queueing systems) in which there are queues of objects waiting to be
served by various processes.

3.5.2 Simulation of an Airport

Study
/«

class Plane

class Random

Asaspecific example, let us consider a small but busy airport with only one runway
(see Figure 3.5). In each unit of time, one plane can land or one plane can take off,
but not both. Planes arrive ready to land or to take off at random times, so at any
given moment of time, the runway may be idle or a plane may be landing or taking
off, and there may be several planes waiting either to land or take off.

In simulating the airport, it will be useful to create a class Plane whose objects
represent individual planes. This class will definitely need an initialization method
and methods to represent takeoff and landing. Moreover, when we write the main
program for the simulation, the need for other Plane methods will become apparent.
We will also use a class Runway to hold information about the state and operation
of the runway. This class will maintain members representing queues of planes
waiting to land and take off.

We shall need one other class in our simulation, a class Random to encapsulate
the random nature of plane arrivals and departures from the runway. We shall
discuss this class in more detail in Section 3.5.3. In our main program, we use a
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Landing queue

Takeoff queue

Figure 3.5. An airport

single method, called poisson, from the class Random. This method uses a floating-
point parameter (representing an average outcome) and it returns an integer value.
Although the returned value is random, it has the property that over the course
of many repeated method calls, the average of the returned values will match our
specified parameter.

In our simulation, we shall be especially concerned with the amounts of time
that planes need to wait in queues before taking off or landing. Therefore, the
measurement of time will be of utmost importance to our program. We shall divide
the time period of our simulation into units in such a way that just one plane can
use the runway, either to land or take off, in any given unit of time.

The precise details of how we handle the landing and takeoff queues will be
dealt with when we program the Runway class. Similarly, the precise methods
describing the operation of a Plane are not needed by our main program.

int main() // Airport simulation program

/*Pre: The user must supply the number of time intervals the simulation is to run,
the expected number of planes arriving, the expected number of planes
departing per time interval, and the maximum allowed size for runway
queues.

Post: The program performs a random simulation of the airport, showing the
status of the runway at each time interval, and prints out a summary of
airport operation at the conclusion.

Uses: Classes Runway, Plane, Random and functions run_idle, initialize. */
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{

int end_time; //  time to run simulation
int queue_limit; /' size of Runway queues
int flight_number = 0;
double arrival_rate, departure_rate;
initialize(end_time, queue_limit, arrival_rate, departure_rate);
Random variable;
Runway small_airport(queue_limit);
for (int current_time = 0; current_time < end_time; current_time++) {
//  loop over time intervals
int number_arrivals = variable.poisson(arrival_rate);
//  current arrival requests
for (inti =0; i < number_arrivals; i++) {
Plane current_plane(flight_number++, current_time, arriving);
if (small_airport.can_land(current_plane) != success)
current_plane.refuse();
}
int number_departures = variable.poisson(departure_rate);
//  current departure requests
for (intj = 0; j < number_departures; j++) {
Plane current_plane(flight_number++, current_time, departing);
if (small_airport.can_depart(current_plane) != success)
current_plane.refuse();

}

Plane moving_plane;
switch (small_airport.activity(current_time, moving_plane)) {
//  Let at most one Plane onto the Runway at current_time.
case land:
moving_plane.land(current_time);
break;
case takeoff:
moving_plane.fly(current_time);
break;
case idle:
run_idle(current_time);
}
}

small_airport.shut_down(end_time);

}

In this program, we begin with a call to the function initialize that prints instructions
to the user and gathers information about how long the user wishes the simulation
to run and how busy the airport is to be. We then enter a for loop, in which
current_time ranges from 0 to the user specified value end_time. In each time unit,
we process random numbers of arriving and departing planes; these planes are
declared and initialized as the objects called current_plane. In each cycle, we also
allow one moving plane to use the runway. If there is no plane to use the runway,
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we apply the function run_idle. Note that if our class Runway is unable to add an
incoming flight to the landing Queue (presumably because the Queue is full), we
apply a method called refuse to direct the Plane to another airport. Similarly, we
sometimes have to refuse a Plane permission to take off.

3.5.3 Random Numbers

pseudorandom
number

expected value,
Poisson distribution

A key step in our simulation is to decide, at each time unit, how many new planes
become ready to land or take off. Although there are many ways in which these
decisions can be made, one of the most interesting and useful is to make a random
decision. When the program is run repeatedly with random decisions, the results
will differ from run to run, and with sufficient experimentation, the simulation may
display a range of behavior not unlike that of the actual system being studied. The
Random method poisson in the preceding main program returns a random number
of planes arriving ready to land or ready to take off in a particular time unit.

Appendix B studies numbers, called pseudorandom, for use in computer pro-
grams. Several different kinds of pseudorandom numbers are useful for different
applications. For the airport simulation, we need one of the more sophisticated
kinds, called Poisson random numbers.

To introduce the idea, let us note that saying that an average family has 2.6
children does not mean that each family has 2 children and 0.6 of a third. Instead,
it means that, averaged over many families, the mean number of children is 2.6.
Hence, for five families with 4, 1, 0, 3, 5 children the mean number is 2.6. Similarly,
if the number of planes arriving to land in ten time unitsis 2,0,0,1,4,1,0,0,0, 1,
then the mean number of planes arriving in one unit is 0.9.

Let us now start with a fixed number called the expected value v of the random
numbers. Then to say that a sequence of nonnegative integers satisfies a Poisson
distribution with expected value v implies that, over long subsequences, the mean
value of the integers in the sequence approaches v. Appendix B describes a C++
class that generates random integers according to a Poisson distribution with a
given expected value, and this is just what we need for the airport simulation.

3.5.4 The Runway Class Specification

=5

rules

The Runway class needs to maintain two queues of planes, which we shall call
landing and takeoff, to hold waiting planes. It is better to keep a plane waiting on
the ground than in the air, so a small airport allows a plane to take off only if there
are no planes waiting to land. Hence, our Runway method activity, which controls
access to the Runway, will first service the head of the Queue of planes waiting to
land, and only if the landing Queue is empty will it allow a Plane to take off.

One aim of our simulation is to gather data about likely airport use. Itis natural
to use the class Runway itself to keep statistics such the number of planes processed,
the average time spent waiting, and the number of planes (if any) refused service.
These details are reflected in the various data members of the following Runway
class definition.
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enum Runway_activity {idle, land, takeoff};

Runway definition  class Runway {
public:
Runway(int limit);
Error_code can_land(const Plane &current);
Error_code can_depart(const Plane &current);
Runway_activity activity(int time, Plane &moving);
void shut_down(int time) const;

private:
Extended_queue landing;
Extended_queue takeoff;
int queue_limit;

int num_land_requests; /!l number of planes asking to land

int num_takeoff_requests; // number of planes asking to take off
int num_landings; // number of planes that have landed
int num_takeoffs; // number of planes that have taken off
int num_land_accepted; // number of planes queued to land

int num_takeoff_accepted; // number of planes queued to take off
int num_land_refused; // number of landing planes refused

int num_takeoff refused; /l number of departing planes refused
int land_wait; //  total time of planes waiting to land
int takeoff_wait; //  total time of planes waiting to take off
int idle_time; //  total time runway is idle

%

Note that the class Runway has two queues among its members. The implemen-
tation reflects the has-a relationships in the statement that a runway has a landing
gueue and has a takeoff queue.

3.5.5 The Plane Class Specification

The class Plane needs to maintain data about particular Plane objects. This data
must include a flight number, a time of arrival at the airport system, and a Plane
status as either arriving or departing. Since we do not wish a client to be able to
change thisinformation, we shall keep itin private data members. When we declare
a Plane object in the main program, we shall wish to initialize these three pieces of
information as the object is constructed. Hence we need a Plane class constructor
that has three parameters. Other times, however, we shall wish to construct a Plane
object without initializing this information, because either its values are irrelevant
or will otherwise be determined. Hence we really need two constructors for the
Plane class, one with three parameters and one with none.
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The C++ language provides exactly the feature we need; it allows us to use
the same identifier to name as many different functions as we like, even within a
single block of code, so long as no two of these functions have identically typed
parameter lists. When the function is invoked, the C++ compiler can figure out
which version of the function to use, by looking at the number of actual parameters
and their types. It simply determines which set of formal parameters match the
actual parameters in number and types.

When we use a single name for several different functions, we say that the
name is overloaded. Inside the scope of the class Plane, we are able to overload the
two plane constructors, because the first uses an empty parameter list, whereas the
second uses a parameter list of three integer variables.

From now on, class specifications will often contain two constructors, one with
parameters for initializing data members, and one without parameters.

Finally, the Plane class must contain the methods refuse, land, and fly that
are explicitly used by the main program. We will also need each Plane to be able
to communicate its time of arrival at the airport to the class Runway, so a final
method called started is included with this purpose in mind. We can now give the
specification for the class Plane.

enum Plane_status {null, arriving, departing};

class Plane {
public:
Plane();
Plane(int flt, int time, Plane_status status);
void refuse() const;
void land(int time) const;
void fly(int time) const;
int started() const;

private:
int flt_num;
int clock_start;
Plane_status state;

};

3.5.6 Functions and Methods of the Simulation

The actions of the functions and methods for doing the steps of the simulation are
generally straightforward, so we proceed to write each in turn, with comments
only as needed for clarity.



102

C

Chapter 3 » Queues
1. Simulation Initialization

void initialize(int &end_time, int &queue_limit,

double &arrival_rate, double &departure_rate)

/*Pre: The user specifies the number of time units in the simulation, the maximal

queue sizes permitted, and the expected arrival and departure rates for
the airport.

Post: The program prints instructions and initializes the parameters end_time,

queue_limit, arrival_rate, and departure_rate to the specified values.

Uses: utility function user_says_yes */

cout <« "This program simulates an airport with only one runway." « endl

<« "One plane can land or depart in each unit of time." « endl;

cout « "Up to what number of planes can be waiting to land "

<« "or take off at any time? " « flush;

cin > queue_limit;

cout « "How many units of time will the simulation run?" « flush;
cin > end_time;

bool acceptable;

do {

cout « "Expected number of arrivals per unit time?" « flush;
cin > arrival_rate;
cout « "Expected number of departures per unit time?" « flush;
cin > departure_rate;
if (arrival_rate < 0.0 || departure_rate < 0.0)
cerr « "These rates must be nonnegative." « endl;
else
acceptable = true;
if (acceptable && arrival_rate + departure_rate > 1.0)
cerr «< "Safety Warning: This airport will become saturated. " « endl;

} while (!acceptable);

2. Runway Initialization

Runway :: Runway(int limit)
/* Post: The Runway data members are initialized to record no prior Runway use

and to record the limit on queue sizes. */

queue_limit = limit;

num_land_requests = num_takeoff_requests = 0;
num_landings = num_takeoffs = 0;
num_land_refused = num_takeoff refused = 0;
num_land_accepted = num_takeoff_accepted = 0;
land_wait = takeoff wait = idle_time = 0;
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3. Accepting a New Plane into a Runway Queue

Error_code Runway :: can_land(const Plane &current)
/* Post: If possible, the Plane current is added to the landing Queue; otherwise,
an Error_code of overflow is returned. The Runway statistics are updated.
Uses: class Extended_queue. */

Error_code result;
if (landing.size() < queue_limit)
result = landing.append(current);
else
result = fail;
num_land_requests++;
if (result != success)
num_land_refused++;
else
num_land_accepted ++;
return result;

Error_code Runway :: can_depart(const Plane &current)
/= Post: If possible, the Plane current is added to the takeoff Queue; otherwise, an
Error_code of overflow is returned. The Runway statistics are updated.
Uses: class Extended_queue. */

Error_code result;
if (takeoff.size() < queue_limit)
result = takeoff.append(current);
else
result = fail;
num_takeoff_requests++;
if (result != success)
num_takeoff_refused++;
else
num_takeoff_accepted++;
return result;

}

% 73 4. Handling Runway Access

Runway_activity Runway :: activity(int time, Plane &moving)

/* Post: If the landing Queue has entries, its front Plane is copied to the parameter
moving and a result land is returned. Otherwise, if the takeoff Queue has
entries, its front Plane is copied to the parameter moving and a result
takeoff is returned. Otherwise, idle is returned. Runway statistics are
updated.

Uses: class Extended_queue. */
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{

Runway_activity in_progress;

if (!landing.empty()) {
landing.retrieve(moving);
land_wait += time — moving.started();
num_landings++;
in_progress = land;
landing.serve();

}

else if (! takeoff.empty()) {
takeoff.retrieve(moving);
takeoff_wait += time — moving.started();
num_takeoffs++;
in_progress = takeoff;
takeoff.serve();

}
else {
idle_time++;
in_progress = idle;
}
return in_progress;

}

g 74 5. Plane Initialization

Plane :: Plane(int flt, int time, Plane_status status)
/% Post: The Plane data members flt_num, clock_start, and state are set to the
values of the parameters flt, time and status, respectively. */

flt_num = flt;
clock_start = time;
state = status;
cout «< "Plane number " « flt « " ready to ";
if (status == arriving)
cout «< "land." « endl;
else
cout <« "take off." « endl;

}

Plane :: Plane()
/*Post: The Plane data members flt_num, clock_start, state are set to illegal de-
fault values. */
{
flt_num = -1;
clock start = —1;
state = null;

}
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The second of these constructors performs a null initialization. In many programs
it is not necessary to provide such a constructor for a class. However, in C++, if
we ever declare an array of objects that do have a constructor, then the objects
must have an explicit default constructor. A default constructor is a constructor
without parameters (or with specified defaults for all parameters). Each Runway
object contains queues of planes, and each of these queues is implemented using an
array of planes. Hence, in our simulation, we really do need the null initialization
operation.

6. Refusing a Plane

void Plane:: refuse() const
/* Post: Processes a Plane wanting to use Runway, when the Queue is full. */
{
cout «< "Plane number " « flt_num;
if (state == arriving)
cout <« " directed to another airport"” « endl;
else
cout < " told to try to takeoff again later" « endl;

7. Processing an Arriving Plane

void Plane:: land(int time) const
/* Post: Processes a Plane that is landing at the specified time. */
{
int wait = time — clock_start;
cout < time « ": Plane number " « flt_num « " landed after "
<« wait < " time unit" < ((wait== 1)?"" :"s")
<« " in the takeoff queue." « endl;

}

In this function we have used the ternary operator ? : to append an “s” where
needed to achieve output such as “1 time unit” or “2 time units”.

8. Processing a Departing Plane

void Plane:: fly(int time) const
/* Post: Process a Plane that is taking off at the specified time. */
{
int wait = time — clock_start;
cout « time <« ": Plane number " « flt_num « " took off after "
<« wait « " time unit" « ((wait== 1)?"" : "s")
<« " in the takeoff queue." « endl;
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9. Communicating a Plane’s Arrival Data

int Plane :: started() const
/* Post: Return the time that the Plane entered the airport system. */
{

return clock_start;

}
10. Marking an Idle Time Unit

void run_idle(int time)
/* Post: The specified time is printed with a message that the runway is idle. */
{

cout < time « ": Runway is idle." « endl,

}

11. Finishing the Simulation

void Runway :: shut_down(int time) const
/* Post: Runway usage statistics are summarized and printed. */
{
cout « "Simulation has concluded after " « time « " time units." « endl
« "Total number of planes processed "
<« (num_land_requests + num_takeoff_requests) « endl
<« "Total number of planes asking to land "
< num_land_requests < end|
<« "Total number of planes asking to take off "
<« num_takeoff_requests « endl
« "Total number of planes accepted for landing "
<« num_land_accepted « endl
« "Total number of planes accepted for takeoff "
< hum_takeoff_accepted « endl
<« "Total number of planes refused for landing "
<« num_land_refused « endl
<« "Total number of planes refused for takeoff "
<« num_takeoff_refused « endl
« "Total number of planes that landed "
<« num_landings « endl
<« "Total number of planes that took off "
< num_takeoffs « endl
<« "Total number of planes left in landing queue "
« landing.size() <« endl
« "Total number of planes left in takeoff queue "
« takeoff.size() < endl;
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cout « "Percentage of time runway idle "

<« 100.0 * ((float) idle_time)/((float) time) «< "%" « endl,
cout « "Average wait in landing queue "

<« ((float) land_wait)/((float) num_landings) < " time units";
cout « endl «< "Average wait in takeoff queue "

<« ((float) takeoff_wait)/((float) num_takeoffs)

< " time units" <« endl;
cout <« "Average observed rate of planes wanting to land "

<« ((float) num_land_requests)/((float) time)

<« " per time unit" « endl;

cout « "Average observed rate of planes wanting to take off "
<« ((float) num_takeoff_requests)/((float) time)
<« " per time unit" <« endl;

3.5.7 Sample Results

We conclude this section with part of the output from a sample run of the airport
simulation. You should note that there are some periods when the runway is idle
and others when one of the queues is completely full and in which planes must
be turned away. If you run this simulation again, you will obtain different results
from those given here, but, if the expected values given to the program are the
same, then there will be some correspondence between the numbers given in the
summaries of the two runs.

This program simulates an airport with only one runway.
One plane can land or depart in each unit of time.

Up to what number of planes can be waiting to land or take off at any time ? 5
How many units of time will the simulation run ? 1000
Expected number of arrivals per unit time ? .48
Expected number of departures per unit time ? .48
Plane number O ready to take off.
0: Plane 1 landed; in queue 0 units.
Plane number 0 took off after O time units in the takeoff queue.
Plane number 1 ready to take off.
1: Plane number 1 took off after 0 time units in the takeoff queue.
Plane number 2 ready to take off.
Plane number 3 ready to take off.
2: Plane number 2 took off after O time units in the takeoff queue.
Plane number 4 ready to land.
Plane number 5 ready to take off.
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3:

Plane number 4 landed after O time units in the takeoff queue.
Plane number 6 ready to land.

Plane number 7 ready to land.

Plane number 8 ready to take off.

Plane number 9 ready to take off.

: Plane number 6 landed after O time units in the takeoff queue.

Plane number 10 ready to land.
Plane number 11 ready to take off.

: Plane number 7 landed after 1 time unit in the takeoff queue.

Plane number 12 ready to land.

6: Plane number 10 landed after 1 time unit in the takeoff queue.

7: Plane number 12 landed after 1 time unit in the takeoff queue.

takeoff queue is full

Plane number 13 ready to land.
Plane number 14 ready to take off.

Plane number 14 told to try to takeoff again later.

8: Plane number 13 landed after 0 time units in the takeoff queue.

9: Plane number 3 took off after 7 time units in the takeoff queue.

10:
11:

12

13:

14.
15:

16:
17:
18:
19:
both queues are empty  20:

Plane number 5 took off after 7 time units in the takeoff queue.
Plane number 8 took off after 7 time units in the takeoff queue.

Plane number 15 ready to take off.

: Plane number 9 took off after 8 time units in the takeoff queue.

Plane number 16 ready to land.

Plane number 17 ready to land.

Plane number 16 landed after O time units in the takeoff queue.
Plane number 18 ready to land.

Plane number 17 landed after 1 time unit in the takeoff queue.
Plane number 18 landed after 1 time unit in the takeoff queue.
Plane number 19 ready to land.

Plane number 20 ready to take off.

Plane number 19 landed after O time units in the takeoff queue.
Plane number 11 took off after 12 time units in the takeoff queue.
Plane number 15 took off after 6 time units in the takeoff queue.
Plane number 20 took off after 3 time units in the takeoff queue.
Runway is idle.
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Eventually, after many more steps of the simulation, we get a statistical summary.

Simulation has concluded after 1000 time units.

Total number of planes processed 970

Total number of planes asking to land 484

Total number of planes asking to take off 486

Total number of planes accepted for landing 484

Total number of planes accepted for takeoff 423

Total number of planes refused for landing 0

Total number of planes refused for takeoff 63

Total number of planes that landed 483

Total number of planes that took off 422

Total number of planes left in landing queue 1

Total number of planes left in takeoff queue 1

Percentage of time runway idle 9.5%

Average wait in landing queue 0.36646 time units
Average wait in takeoff queue 4.63744 time units
Average observed rate of planes wanting to land 0.484 time units
Average observed rate of planes wanting to take off 0.486 time units

Notice that the last two statistics, giving the observed rates of planes asking for
landing and departure permission, do match the expected values put in at the
beginning of the run (within a reasonable range): This outcome should give us
some confidence that the pseudo-random number algorithm of Appendix B really
does simulate an appropriate Poisson distribution.

Programming
Projects 3.5

Wi

Wi

Wi

P1.

P2.

P3.

Combine all the functions and methods for the airport simulation into a com-
plete program. Experiment with several sample runs of the airport simulation,
adjusting the values for the expected numbers of planes ready to land and take
off. Find approximate values for these expected numbers that are as large as
possible subject to the condition that it is very unlikely that a plane must be
refused service. What happens to these values if the maximum size of the
gueues is increased or decreased?

Modify the simulation to give the airport two runways, one always used for
landings and one always used for takeoffs. Compare the total number of planes
that can be served with the number for the one-runway airport. Does it more
than double?

Modify the simulation to give the airport two runways, one usually used for
landings and one usually used for takeoffs. If one of the queues is empty, then
both runways can be used for the other queue. Also, if the landing queue is
full and another plane arrives to land, then takeoffs will be stopped and both
runways used to clear the backlog of landing planes.
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P4. Modify the simulation to have three runways, one always reserved for each of
landing and takeoff and the third used for landings unless the landing queue
w 17;- is empty, in which case it can be used for takeoffs.

P5. Modify the original (one-runway) simulation so that when each plane arrives
to land, it will have (as one of its data members) a (randomly generated) fuel
level, measured in units of time remaining. If the plane does not have enough
fuel to wait in the queue, itis allowed to land immediately. Hence the planesin
the landing queue may be kept waiting additional units, and so may run out of

= fuel themselves. Check this out as part of the landing function, and find about
W& i .
how busy the airport can become before planes start to crash from running out
of fuel.

P6. Write a stub to take the place of the random-number function. The stub can
be used both to debug the program and to allow the user to control exactly the
number of planes arriving for each queue at each time unit.

<

Wi

POINTERS AND PITFALLS

1. Before choosing implementations, be sure that all the data structures and their
% 78

associated operations are fully specified on the abstract level.
2. In choosing between implementations, consider the necessary operations on
the data structure.

3. If every object of class A has all the properties of an object of class B, implement
class A as a derived class of B.

4. Consider the requirements of derived classes when declaring the members of
a base class.

5. Implement is-a relationships between classes by using public inheritance.
6. Implement has-a relationships between classes by layering.

7. Use Poisson random variables to model random event occurrences.

REVIEW QUESTIONS

3.1 1. Define the term queue. What operations can be done on a queue?

2. How is a circular array implemented in a linear array?

3. List three different implementations of queues.

4. Explain the difference between has-a and is-a relationships between classes.
34 5. Define the term simulation.
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REFERENCES FOR FURTHER STUDY

Queues are a standard topic covered by all data structures books. Most modern
texts take the viewpoint of separating properties of data structures and their opera-
tions from the implementation of the data structures. Two examples of such books
are:

Jim WELSH, JoHN ELDER, and DAvip BusTArD, Sequential Program Structures, Prentice-
Hall International, London, 1984, 385 pages.

DanieL F. Stuess and NEei. W. WEgre, Data Structures with Abstract Data Types and
Pascal, Brooks/Cole Publishing Company, Monterey, Calif., 1985, 459 pages.

For many topics concerning queues, the best source for additional information,
historical notes, and mathematical analysis is KnutH, volume 1 (reference in
Chapter 2).

An elementary survey of computer simulations appears in Byte 10 (October
1985), 149-251. A simulation of the National Airport in Washington, D.C., appears
on pp. 186-190.

A useful discussion of the possible relationships between classes and appro-
priate C++ implementations of these relationships is given in

ScotT MEYERs, Effective C++, second edition, Addison-Wesley, Reading, Mass., 1997.
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4.1 POINTERS AND LINKED STRUCTURES m———

4.1.1 Introduction and Survey

%:

misallocation of space

A

pointers referring
nowhere

1. The Problem of Overflow

If we implement a data structure by storing all the data within arrays, then the
arrays must be declared to have some size that is fixed when the program is written,
and that therefore cannot be changed while the program is running. When writing
a program, we must decide on the maximum amount of memory that will be
needed for our arrays and set this aside in the declarations. If we run the program
on a small sample, then much of this space will never be used. If we decide to
run the program on a large set of data, then we may exhaust the space set aside
and encounter overflow, even when the computer memory itself is not fully used,
simply because our original bounds on the array were too small.

Even if we are careful to declare our arrays large enough to use up all the
available memory, we can still encounter overflow, since one array may reach its
limit while a great deal of unused space remains in others. Since different runs
of the same program may cause different structures to grow or shrink, it may
be impossible to tell before the program actually executes which structures will
overflow.

Modern languages, including C++, provide constructions that allow us to keep
data structures in memory without using arrays, whereby we can avoid these dif-
ficulties.

2. Pointers

The C++ construction that we use is a pointer. A pointer, also called a link or a
reference, is defined to be an object, often a variable, that stores the location (that is
the machine address) of some other object, typically of a structure containing data
that we wish to manipulate. If we use pointers to locate all the data in which we
are interested, then we need not be concerned about where the data themselves
are actually stored, since by using a pointer, we can let the computer system itself
locate the data when required.

3. Diagram Conventions

Figure 4.1 shows pointers to several objects. Pointers are generally depicted as
arrows and the referenced objects as rectangular boxes. In the figures throughout
this book, variables containing pointers are generally shown as emanating from
colored boxes or circles. Colored circles generally denote ordinary variables that
contain pointers; colored boxes contain pointers that are parts of larger objects.

Hence, in the diagram, r is a pointer to the object “Lynn” and v is a pointer to
the object “Jack.” Asyou can see, the use of pointers is quite flexible: Two pointers
can refer to the same object, as t and u do in Figure 4.1, or a pointer can refer to
no object at all. We denote this latter situation within diagrams by the electrical
ground symbol, as shown for pointer s.

113
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garbage
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Lynn ’

Jack ’

Dave ’

Marsha ’

1731

Figure 4.1. Pointers to objects

Care must be exercised when using pointers, moreover, to be sure that, when
they are moved, no object is lost. In the diagram, the object “Dave” is lost, with no
pointer referring to it, and therefore there is noway to find it. In such asituation, we
shall say that the object has become garbage. Although a small amount of garbage
does little harm, if we allow garbage to mount up, it can eventually occupy all of
our available memory in the computer and smother our program. Therefore, in
our work, we shall always strive to avoid the creation of garbage.

4. Linked Structures

In Chapter 2and Chapter 3, we implemented stacks and queues by storing elements
of the associated structure in an array. In this chapter, we illustrate how to use
pointers to obtain a different implementation, where elements of the structure are
linked together. The idea of a linked list is to augment every element of a list
structure with a pointer giving the location of the next element in the list. This idea
is illustrated in Figure 4.2.

Fred Jackie
®—> 367-2205 295-0603
Jan. 28 Feb. 18

Figure 4.2. A linked list

L Carol Tom René
628-5100 286-2139 342-5153 1
Feb. 23 Feb. 28 Mar. 15 =
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Asyou can see from the illustration, a linked list is simple in concept. It uses the
same idea as a children’s treasure hunt, where each clue that is found tells where to
find the next one. Or consider friends passing a popular cassette around. Fred has
it, and has promised to give it to Jackie. Carol asks Jackie if she can borrow it, and
then will next share it with Tom. And so it goes. A linked list may be considered
analogous to following instructions where each instruction is given out only upon
completion of the previous task. There is then no inherent limit on the number of
tasks to be done, since each task may specify a new instruction, and there is no
way to tell in advance how many instructions there are. The stack implementation
studied in Section 2.2, on the other hand, isanalogous to a list of instructions written
on a single sheet of paper. It is then possible to see all the instructions in advance,
but there is a limit to the number of instructions that can be written on the single
sheet of paper.

With some practice in their use, you will find that linked structures are as
easy to work with as structures implemented within arrays. The methods differ
substantially, however, so we must spend some time developing new programming
skills. Before we turn to this work, let us consider a few more general observations.

5. Contiguous and Linked Lists

The word contiguous means in contact, touching, adjoining. The entries in an array
are contiguous, and we speak of a list kept in an array as a contiguous list. We
can then distinguish as desired between contiguous lists and linked lists, and we
use the unqualified word list only to include both. The same convention applies to
stacks, queues, and other data structures.

6. Dynamic Memory Allocation

As well as preventing unnecessary overflow problems caused by running out of
space in arrays, the use of pointers has advantages in a multitasking or time-sharing
environment. If we use arrays to reserve in advance the maximum amount of
memory that our task might need, then this memory is assigned to it and will be
unavailable for other tasks. If it is necessary to page our task out of memory, then
there may be time lost as unused memory is copied to and from a disk. Instead
of using arrays to hold all our data, we can begin very small, with space only for
the program instructions and simple variables, and whenever we need space for
more data, we can request the system for the needed memory. Similarly, when an
item is no longer needed, its space can be returned to the system, which can then
assign it to another task. In this way, a program can start small and grow only as
necessary, so that when it is small, it can run more efficiently, and, when necessary;,
it can grow to the limits of the computer system.

Even with only one task executing at a time, this dynamic control of memory
can prove useful. During one part of a task, a large amount of memory may be
needed for some purpose, which can later be released and then allocated again for
another purpose, perhaps now containing data of a completely different type than
before.
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4.1.2 Pointers and Dynamic Memory in C++

automatic objects

dynamic objects

aliases

pointer type

Most modern programming languages, including C++, provide powerful facilities
for processing pointers, as well as standard functions for requesting additional
memory and for releasing memory during program execution.

1. Automatic and Dynamic Objects

Objects that can be used during execution of a C++ program come in two varieties.
Automatic objects are those that are declared and named, as usual, while writing
the program. Space for them isexplicitly allocated by the compiler and existsas long
as the block of the program in which they are declared is running. The programmer
need not worry about whether storage space will exist for an automatic object, or
whether the storage used for such an object will be cleaned up after it is used.
Dynamic objects are created (and perhaps destroyed) during program execution.
Since dynamic objects do not exist while the program is compiled, but only when it
is run, they are not assigned names while it is being written. Moreover, the storage
occupied by dynamic objects must be managed entirely by the programmer.

The only way to access a dynamic object is by using pointers. Once it is created,
however, a dynamic object does contain data and must have a type like any other
object. Thus we can talk about creating a new dynamic object of type x and setting
a pointer to point to it, or of moving a pointer from one dynamic object of type x
to another, or of returning a dynamic object of type x to the system.

Automatic objects, on the other hand, cannot be explicitly created or destroyed
during execution of the block in which they are declared. They come into exis-
tence automatically when the block begins execution and disappear when execu-
tion ends.

Pointer variables can be used to point to automatic objects: This creates a
second name, or alias, for the object. The object can then be changed using one
name and later used with the other name, perhaps without the realization that it
had been changed. Aliases are therefore dangerous and should be avoided as much
as possible.

2. C++ Notation

C++ uses an asterisk (star) * to denote a pointer. If Item denotes the type of data in
which we are interested, then a pointer to such an object has the type Item . For
example, we can make a declaration:

Iltem =item_ptr;

The verbal translation of any C++ declaration is most easily formed by reading
the tokens of the declaration from right to left. In this case, the tokens, read from
the right, are item_ptr, *, and Item. Hence, we see that the declaration says that
item_ptr is a pointer to an Item object.

Normally, we should only use a pointer of type Item = to store the address of
an object of type Item. However, as we shall see later, it is also reasonable to store
the address of an object from a derived class of Item in a pointer of type Item .
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3. Creating and Destroying Dynamic Objects

We can create dynamic objects with the C++ operator new. The operator new is
invoked with an object type as its argument, and it returns the address of a newly
created dynamic object of the appropriate type. If we are ever to use this dynamic
object, we should immediately record its address in an appropriate pointer variable:
Thus the new operator is most often applied on the right-hand side of a pointer
assignment. For example, suppose that p has been declared as a pointer to type
Item. Then the statement

p = new ltem;

creates a new dynamic object of type Item and assigns its location to the pointer p.

The dynamic objects that we create are actually kept in an area of computer
memory called the free store (or the heap). Like all other resources, the free store
is finite, and if we create enough dynamic objects, it can be exhausted. If the free
store is full, then calls to the new operator will fail. In early implementations of
C++ this failure was signaled by the return from new of a value of 0 rather than a
legitimate machine address. In ANSI C++, an exception is generated to signal the
failure of the new operator. However, the modified statement

p = new(nothrow) Item;

restores the traditional behavior of the new operator. In this text, we will assume the
older behavior of the new operator. Our code should be modified using nothrow
to run in an ANSI C++ environment. It follows that we should always check that
the result of a call to new is nonzero to make sure that the call has succeeded.

To help us conserve the free store, C++ provides a second operator called delete
that disposes of dynamically allocated objects. The storage formerly occupied by
such objects is returned to the free store for reuse. The operator delete is applied
to a pointer that references a dynamic object, and it returns the space used by the
referenced object to the system. For example, if p is a pointer to a dynamic object
of type Item, the statement

delete p;

disposes of the object. After this delete statement is executed, the pointer variable
p is undefined and so should not be used until it is assigned a new value.

The effects of the new and delete operators are illustrated in Figure 4.3.

4. Following the Pointers

We use a star * to denote a pointer not only in the declarations of a C++ program, but
also to access the object referenced by a pointer. In this context, the star appears not
to the right of a type, but to the left of a pointer. Thus *p denotes the object to which
p points. Again, the words link and reference are often used in this connection. The
action of taking *p is sometimes called “dereferencing the pointer p.”
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G—JF p = NULL;
@—» ??? p = new ltem;
®—> 1378 «p = 1378;
@—» ?? }Xé delete p;

Figure 4.3. Creating and disposing of dynamic objects
Note that a dereferenced pointer, such as #p, really is just the name of an object.
In particular, we can use the expression *p on the left of an assignment. (Techni-
cally, we say that a dereferenced pointer is a modifiable Ivalue.) For example, the

assignment expression *p = 0 resets the value of the object referenced by p to 0.
This assignment is illustrated in Figure 4.4.

JC, |

important_data
random_pointer O 196884
1c o ) e

important_data

random_pointer ®—> 0

Figure 4.4. Modifying dereferenced pointers

«srandom_pointer = 0;

This figure also shows that if a pointer random_pointer stores an illegal or
uninitialized memory address, an assignment to the object *random_pointer can
cause a particularly insidious type of error. For example, an uninitialized pointer
random_pointer might happen to record the address of another variable, impor-
tant_data, say. Any assignment such as *random_pointer = 0, would (acciden-
tally) alter the value of important_data. If we are lucky, this error will merely result
in our program crashing at some later time. However, because this crash will prob-
ably not occur immediately, its origin will be rather hard to explain. Worse still,
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our program might run to completion and silently produce unreliable results. Or
it might destroy some other part of memory, producing effects that do not become
apparent until we start some completely unrelated application later.

We shall now consider a useful safeguard against errors of this sort.

5. NULL Pointers

Sometimes a pointer variable p has no dynamic object to which it currently refers.
This situation can be established by the assignment

p = NULL;
and subsequently checked by a condition such as
if (p !=NULL) ....

In diagrams we reserve the electrical ground symbol

L

for NULL pointers. The value NULL is used in the same way as a constant for all
pointer types and is generic in that the same value can be assigned to a variable of
any pointer type. Actually, the value NULL is not part of the C++ language, but it
is defined, as 0, in standard header files such as <cstddef> that we include in our
utility header file.

Note carefully the distinction between a pointer variable whose value is unde-
fined and a pointer variable whose value is NULL. The assertion p == NULL means
that p currently points to no dynamic object. If the value of p is undefined, then p
might point to any random location in memory.

If p is set as NULL, then any attempt to form the expression #p should cause our
program to crash immediately. Although it is unpleasant to have to deal with any
error, this crash is much easier to understand and correct than the problems that,
as we have seen, are likely to result from an assignment through a random pointer.

Programming Precept

Uninitialized or random pointer objects should always be reset to NULL.
After deletion, a pointer object should be reset to NULL.

6. Dynamically allocated arrays

The new and delete keywords can be used to assign and delete contiguous blocks of
dynamic storage for use as arrays. For example, if array_size represents an integer
value, the declaration

item_array = new Item[array_size];

creates a dynamic array of Item objects. The entries of this array are indexed
from O up to array_size — 1. We access a typical entry with an expression such as
item_array[i].
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For example, we can read in an array size from a user and create and use an
appropriate array with the following statements. The resulting assignments are
illustrated in Figure 4.5.

int size, *dynamic_array, i;

cout < "Enter an array size: " « flush;

cin > size;

dynamic_array = new int[size];

for (i = 0; i < size; i++) dynamic_array[i] =i;

dynamic_array = new int [size];

dynamic_array ®—>| | | | | | | | | | | g

for (i=0; i<size; i++) dynamic_array[i] = i;

dynamic_array®—>|O|1|2|3|4|5|6|7|8|9|1OO

Figure 4.5. Dynamic arrays and pointers

Dynamically allocated array storage is returned with the operator delete [ ].
For example, we return the storage in dynamic_array by the statement

delete [ Jdynamic_array;

7. Pointer Arithmetic

A pointer object p of type Item * can participate in assignment statements, can be
checked for equality, and (as an argument) can appear in calls to functions. The
programmer can also add and subtract integers from pointer values and obtain
pointer values as results. For example, if i is an integer value, then p + i is an
expression of type Item *. The value of p + i gives the memory address offset from
p by i Item objects. That is, the expression p + iactually yields the address p + n xi,
where n is the number of bytes of storage occupied by a simple object of type Item.

Itisalso possible to print out the values of pointers, but since they are addresses
assigned while the program is running, they may differ from one run of the pro-
gram to the next. Moreover, their values (as addresses in the computer memory)
are implementation features with which the programmer should not be directly
concerned. (During debugging, it is, however, sometimes useful to print pointer
values so that a programmer can check that appropriate equalities hold and that
appropriate pointer assignments have been made.)
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Note that rules and restrictions on using pointers do not apply to the dynamic
variables to which the pointers refer. If p is a pointer, then *p is not usually a
pointer (although it is legal for pointers to point to pointers) but a variable of some
other type Item, and therefore *p can be used in any legitimate way for type Item.

8. Pointer assignment

With regard to assignment statements, it is important to remember the difference
between p = g and *p = *q, both of which are legal (provided that p and g point to
objects of the same type), but which have quite different effects. The first statement
makes p point to the same object to which q points, but it does not change the value
of either that object or of the other object that was formerly =p. The latter object will
become garbage unless there is some other pointer variable that still refersto it. The
second statement, =p = =g, on the contrary, copies the value of the object =q into
the object *p, so that we now have two objects with the same value, with p and g
pointing to the two separate copies. Finally, the two assignment statements p = *q
and =p = q have mixed types and are illegal (except in the rare case that both p and
g point to pointers of their same type!). Figure 4.6 illustrates these assignments.

Calculus *0

P( 9—> Music *P

Calculus *(

p Music p ®—> Calculus *P

q ®—> Calculus *0 = %P q

Figure 4.6. Assignment of pointer variables

9. Addresses of Automatic Objects

In C++, automatic objects are usually accessed simply by using their names—just as
we have always done. However, at run time, we can recover and use the machine
addresses at which automatic objects are stored. For example, if x is a variable of
type Item, then &xis a value of type Item * that gives the address of x. In this case,
adeclaration and assignment such as Item *ptr = & would establish a pointer, ptr,
to the object x.
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stored. This address is found by using the array’s name without any attached [ ]

% - We can also look up the address at which the initial element of an array is
operators. For example, given a declaration Item x[20] the assignment

Item *ptr = x

sets up a pointer ptr to the initial element of the array x. Observe that an assignment
expression ptr = &(x[0]) could also be used to find this address. In exactly the
same way, an assignment expression, p = &(x[i]), locates the address where x[i]
is stored. However, since the location of x[i] is offset from that of x[0] by the
storage required for i items, the expression x + i uses pointer arithmetic to give a
simpler way of finding the address of x[i].

10. Pointers to Structures

Many programs make use of pointers to structures, and the C++ language includes
an extra operator to help us access members of such structures. For example,
if p is a pointer to an object that has a data member called the_data, then we
could access this data member with the expression (xp).the_data. The rules of
operator precedence prevent us from omitting the parentheses in this expression,
and thus the common operation of following a link and then looking up a member
dereferencing operator ~ becomes cumbersome. Happily, C++ provides the operator — as a shorthand, and
- we canreplace the expression (+p).the_data by an equivalent, but more convenient,

expression p—>the_data.

For example, given the definitions

class Fraction{
public:
int numerator;
int denominator;
b

Fraction *p;

we can access the members of the Fraction object referenced by p with an expression
such as p—>numerator = 0 or with a somewhat less convenient, but equivalent,
expression (*p).numerator = 0.

4.1.3 The Basics of Linked Structures

With the tools of pointers and pointer types, we can now begin to consider the
implementation of linked structures in C++. The place to start is with the definitions
we shall need to set up the entries of a linked structure.
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1. Nodes and Type Declarations

Recall from Figure 4.2 that a linked structure is made up of nodes, each containing
both the information that is to be stored as an entry of the structure and a pointer
telling where to find the next node in the structure. We shall refer to these nodes
making up a linked structure as the nodes of the structure, and the pointers we
often call links. Since the link in each node tells where to find the next node of the
structure, we shall use the name next to designate this link.

We shall use a struct rather than a class to implement nodes. The only difference
between a struct and a class is that, unless modified by the keywords private and
public, members of a struct are public whereas members of a class are private.
Thus, by using modifiers public and private to adjust the visibility of members,
we can implement any structure as either a struct or a class. We shall adopt the
convention of using a struct to implement structures that are not encapsulated, all
of whose members can be accessed by clients. For example, our node structure
is not encapsulated. However, although we can use nodes in their own right,
we shall usually consider them as either private or protected members of other,
encapsulated, data structures. In this context it is both safe and convenient to
implement nodes without encapsulation. Translating these decisions into C++
yields:

struct Node {

//  data members
Node_entry entry;
Node *next;

//  constructors

Node();

Node(Node_entry item, Node *add_on = NULL);
b

Note that we have an apparent problem of circularity in this definition. The member
next of type Node =* is part of the structure Node. On the other hand, it would
appear that type Node should be defined before Node *. To avoid this problem
of circular definitions, for pointer types (and only for pointer types) C++ relaxes
the fundamental rule that every type identifier must be defined before being used.
Instead, the type

Some_type *

is valid in type definitions, even if Some_type has not yet been defined. (Before the
program ends, however, Some_type must be defined or it is an error.)

The reason why C++ can relax its rule in this way and still compile efficiently is
that all pointers take the same amount of space in memory, often the same amount
as an integer requires, no matter to what type they refer. We shall call the amount of



124 Chapter 4 o Linked Stacks and Queues

overloading

multiple constructors

Storage area
reserved
Node NOde_entry by machine
entry — L
| usedtocontain |
Node_entry entry Node *next | Node_entry entry |
information
Node Node «next Pointer
(a) Structure of a Node (b) Machine storage representation of a Node

Figure 4.7. Structures containing pointers

space taken by a pointer one word.! Hence when encountering the declaration of a
pointer type, the compiler can set aside the right amount of storage and postpone
the problems of checking that all declarations and use of variables are consistent
with the rules. Forexample, Figure 4.7 illustrates the structure and machine storage
required to implement our struct Node definition.

2. Node Constructors

In addition to storage for the data, our node specification includes two constructors.
These constructors are implemented as two overloaded versions of the function
Node :: Node. In C++, we say that a function is overloaded if two or more different
instances of the function are included within the same scope of a program. When
a function is overloaded, the different implementations must have different sets or
types of parameters, so that the compiler can use the arguments passed by a client
to see which version of the function should be used. For example, our overloaded
constructor has a first version with an empty parameter list, but the second version
requires parameters.

The first constructor does nothing except to set next to NULL as a safeguard for
error checking. The second constructor is used to set the data members of a Node
to the values specified as parameters. Note that in our prototype for the second
constructor we have specified a default value of NULL for the second parameter.
This allows us to call the second constructor with either its usual two arguments
or with just a first argument. In the latter situation the second argument is given
the default value NULL.

1 More precisely, most computers store an integer as 32 bits, although 16-bit integers and 64-bit
integers are also common, and some machines use other sizes, like 24 or 48 bits. Pointers also
usually occupy 32 bits, but some compilers use other sizes, like 16, 24, or 64 bits. Some compilers
even use two different sizes of pointers, called short and long pointers. Hence a pointer may take
space usually called a half word, a word, or a double word, but we shall adopt the convention of
always calling the space for a pointer one word.
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Node :: Node()

{
next = NULL;

}

The second form accepts two parameters for initializing the data members.

Node :: Node(Node_entry item, Node *add_on)
{

entry = item;

next = add_on;

}

These constructors make it easy for us to attach nodes together into linked configu-
rations. For example, the following code will produce the linked nodes illustrated
in Figure 4.8.

Node first_node('a’); // Node first_node stores data 'a’.

Node *p0 = &first_node; // pO points to first_Node.

Node *pl = new Node('b"); // A second node storing ‘b’ is created.
pO—>next = p1; // The second Node is linked after first_node.

Node *p2 = new Node('c’, p0); // A third Node storing ‘c’ is created.
// The third Node links back to the first node, *p0.
pl->next = p2; // The third Node is linked after the second Node.

pl p2

first_node

Figure 4.8. Linking nodes

Note that, in Figure 4.8 and in the code, we have given the first Node the name
first_node, and it can be accessed either by this name or as *p0, since p0 points
to it. The second and third nodes, however, are not given explicit names, and
therefore these nodes can most easily be accessed by using the pointers p1 and p2,
respectively.



126 Chapter 4 e Linked Stacks and Queues

Exercises 4.1  El. Draw a diagram to illustrate the configuration of linked nodes that is created
by the following statements.

Node *p0 = new Node('0’);
Node *pl = pO—>next = new Node('1");
Node *p2 = pl->next = new Node('2’, pl);

E2. Write the C++ statements that are needed to create the linked configuration of
nodes shown in each of the following diagrams. For each part, embed these
statements as part of a program that prints the contents of each node (both data
and next), thereby demonstrating that the nodes have been correctly linked.

@

pl

po ( 9—> ‘0 1

.||_

(b)
pl

p2

(©)

@ .

Yy f
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In Section 2.2, we used an array of entries to create a contiguous implementation

of a stack. It is equally easy to implement stacks as linked structures in dynamic

memory.
We would like clients to see our new implementation as interchangeable with

our former contiguous implementation. Therefore, our stacks must still contain

entries of type Stack_entry. Moreover, we intend to build up stacks out of nodes,
so we will need a declaration

typedef Stack_entry Node_entry;

to equate the types of the entries stored in stacks and nodes. Moreover, we must
provide methods to push and pop entries of type Stack_entry to and from our stacks.
Before we can write the operations push and pop, we must consider some more
details of exactly how such a linked stack will be implemented.

The first question to settle is to determine whether the beginning or the end
of the linked structure will be the top of the stack. At first glance, it may appear
that (as for contiguous stacks) it might be easier to add a node at the end, but this
choice makes popping the stack difficult: There is no quick way to find the node
immediately before a given one in a linked structure, since the pointers stored in
the structure give only one-way directions. Thus, after we remove the last element,
finding the new element at the end might require tracing all the way from the head.
To pop a linked stack, it is much better to make all additions and deletions at the
beginning of the structure. Hence the top of the stack will always be the first node
of the linked structure, as illustrated in Figure 4.9.

.||_

Figure 4.9. The linked form of a stack

Each linked structure needs to have a header member that points to its first
node; for a linked stack this header member will always point to the top of the
stack. Since each node of a linked structure points to the next one, we can reach all
the nodes of a linked stack by following links from its first node. Thus, the only
information needed to keep track of the data in a linked stack is the location of its
top. The bottom of a Stack can always be identified as the Node that contains a
NULL link.
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We can therefore declare a linked stack by setting up a class having the top of
the stack as its only data member:

class Stack {
public:
Stack();
bool empty() const;
Error_code push(const Stack_entry &item);
Error_code pop();
Error_code top(Stack_entry &item) const;
protected:
Node *top_node;

¥

Since this class contains only one data member, we might think of dispensing with
the class and referring to the top by the same name that we assign to the stack itself.
There are four reasons, however, for using the class we have introduced.

[1 The most important reason is to maintain encapsulation: If we do not use a
class to contain our stack, we lose the ability to set up methods for the stack.

[1 The second reason is to maintain the logical distinction between the stack itself,
which is made up of all of its entries (each in a node), and the top of the stack,
which is a pointer to a single node. The fact that we need only keep track of
the top of the stack to find all its entries is irrelevant to this logical structure.

[] The third reason is to maintain consistency with other data structures and other
implementations, where structures are needed to collect several methods and
pieces of information.

1 Finally, keeping a stack and a pointer to its top as incompatible data types helps
with debugging by allowing the compiler to perform better type checking.

Let us start with an empty stack, which now means top_node == NULL, and con-
sider how to add Stack_entry item as the first entry. We must create a new Node
storing a copy of item, in dynamic memory. We shall access this Node with a
pointer variable new_top. We must then copy the address stored in new_top to
the Stack member top_node. Hence, pushing item onto the Stack consists of the
instructions

Node *new_top = new Node(item); top_node = new_top;

Notice that the constructor that creates the Node *new_top sets its next pointer to
the default value NULL.

As we continue, let us suppose that we already have a nonempty Stack. In
order to push a new entry onto the Stack, we need to add a Stack_entry item to
it. The required adjustments of pointers are shown in Figure 4.10. First, we must
create a new Node, referenced by a pointer new_top, that stores the value of item
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Figure 4.10. Pushing a node onto a linked stack

and points to the old top of the Stack. Then we must change top_node to point to
the new node. The order of these two assignments is important: If we attempted to
do them in the reverse order, the change of the top from its previous value would
mean that we would lose track of the old part of the Stack. We thus obtain the
following function:

Error_code Stack :: push(const Stack_entry &item)
/* Post: Stack_entry item is added to the top of the Stack; returns success or returns
a code of overflow if dynamic memory is exhausted. */

{
Node *new_top = new Node(item, top_node);
if (new_top == NULL) return overflow;
top_node = new_top;
return success;

}

Of course, our fundamental operations must conform to the earlier specifications,
and so it is important to include error checking and to consider extreme cases.
In particular, we must return an Error_code in the unlikely event that dynamic
memory cannot be found for new_top.

One extreme case for the function is that of an empty Stack, which means
top_node == NULL. Note that, in this case, the function works just as well to push
the first entry onto an empty Stack as to push an additional entry onto a nonempty
Stack.

It is equally simple to pop an entry from a linked Stack. This process is illus-
trated in Figure 4.11, whose steps translate to the following C++ code.
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Figure 4.11. Popping a node from a linked stack

Error_code Stack:: pop()
/* Post: The top of the Stack is removed. If the Stack is empty the method returns
underflow; otherwise it returns success. */
{
Node *old_top = top_node;
if (top_node == NULL) return underflow;
top_node = old_top—->next;
delete old_top;
return success;

}

When we reset the value of top_node in the method pop, the pointer old_top is the
only link to the node that used to occupy the top position of the Stack. Therefore,
once the function ends, and old_top goes out of scope, there will be no way for us to
access that Node. We therefore delete old_top; otherwise garbage would be created.
Of course, in small applications, the method would work equally well without
the use of delete. However, if a client repeatedly used such an implementation,
the garbage would eventually mount up to occupy all available memory and our
client’s program would suffocate.

Our linked stack implementation actually suffers from a number of subtle de-
fects that we shall identify and rectify in the next section. We hasten to add that
we know of no bugs in the methods that we have presented; however, it is possible
for a client to make a Stack object malfunction. We must either document the limi-
tations on the use of our Stack class, or we must correct the problems by adding in
a number of extra features to the class.

Exercises 4.2

E1l. Explain why we cannot use the following implementation for the method push
in our linked Stack.

Error_code Stack:: push(Stack_entry item)
{
Node new_top(item, top_node);
top_node = new_top;
return success;

}
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E2. Consideralinked stack thatincludes a method size. This method size requires a
loop that moves through the entire stack to count the entries, since the number
of entries in the stack is not kept as a separate member in the stack record.

(a) Write amethod size for a linked stack by using a loop that moves a pointer
variable from node to node through the stack.

(b) Consider modifying the declaration of a linked stack to make a stack into
a structure with two members, the top of the stack and a counter giving its
size. What changes will need to be made to the other methods for linked
stacks? Discuss the advantages and disadvantages of this modification
compared to the original implementation of linked stacks.

P1. Write a demonstration program that can be used to check the methods written
in this section for manipulating stacks. Model your program on the one de-
veloped in Section 3.4 and use as much of that code as possible. The entries in
your stack should be characters. Your program should write a one-line menu
from which the user can select any of the stack operations. After your program
does the requested operation, it should inform the user of the result and ask
for the next request. When the user wishes to push a character onto the stack,
your program will need to ask what character to push.

Use the linked implementation of stacks, and be careful to maintain the
principles of information hiding.

Client code can apply the methods of the linked stack that we developed in the
last section in ways that lead to the accumulation of garbage or that break the
encapsulation of Stack objects. In this section, we shall examine in detail how these
insecurities arise, and we shall look at three particular devices that are provided
by the C++ language to alleviate these problems. The devices take the form of
additional class methods, known as destructors, copy constructors, and overloaded
assignment operators. These new methods replace compiler generated default
behavior and are often called silently (that is, without explicit action by a client).
Thus, the addition of these safety features to our Stack class does not change its
appearance to a client.

4.3.1 The Destructor

%:

Suppose that a client runs a simple loop that declares a Stack object and pushes
some data onto it. Consider, for example, the following code:

for (inti =0; i <1000000; i++) {
Stack small;
small.push(some_data);

}
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In each iteration of the loop, a Stack object is created, data is inserted into dynam-
ically allocated memory, and then the object goes out of scope. Suppose now that
the client is using the linked Stack implementation of Section 4.2. As soon as the
object small goes out of scope, the data stored in small becomes garbage. Over the
course of a million iterations of the loop, a lot of garbage will accumulate. This
problem should not be blamed on the (admittedly peculiar) behavior of our client:
The loop would have executed without any problem with a contiguous Stack im-
plementation, where all allocated space for member data is released every time a
Stack object goes out of scope.

It is surely the job of a linked stack implementation either to include documen-
tation to warn the client not to let nonempty Stack objects go out of scope, or to
clean up Stack objects before they go out of scope.

The C++ language provides class methods known as destructors that solve
our problem. For every class, a destructor is a special method that is executed on
objects of the class immediately before they go out of scope. Moreover, a client
does not need to call a destructor explicitly and does not even need to know it is
present. Thus, from the client’s perspective, a class with a destructor can simply
be substituted for a corresponding class without one.

Destructors are often used to delete dynamically allocated objects that would
otherwise become garbage. In our case, we should simply add such a destructor
to the linked Stack class. After this modification, clients of our class will be unable
to generate garbage by letting nonempty Stack objects go out of scope.

The destructor must be declared as a class method without return type and
without parameters. Its name is given by adding a ~ prefix to the corresponding
class name. Hence, the prototype for a Stack destructor is:

Stack :: ~Stack();

Since the method pop is already programmed to delete single nodes, we can im-
plement a Stack destructor by repeatedly popping Stack entries.

Stack:: ~Stack() //  Destructor
/* Post: The Stack is cleared. */
{
while (Tempty())
pop();
}

We shall adopt the policy that every linked structure should be equipped with a
destructor to clear its objects before they go out of scope.

4.3.2 Overloading the Assignment Operator

Even after we add a destructor to our linked stack implementation, a suitably
perverse client can still create a tremendous buildup of garbage with a simple
loop. For example, the following client code first creates an outer Stack object and
then runs a loop with instructions to set up and immediately reset an inner Stack.
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Stack outer_stack;

for (inti =0; i <1000000; i++) {
Stack inner_stack;
inner_stack.push(some_data);
inner_stack = outer_stack;

}

The statement inner_stack = outer_stack causes a serious problem for our Stack im-
plementation. C++ carries out the resulting assignment by copying the data mem-
ber outer_stack.top_node. This copying overwrites pointer inner_stack.top_node,
so the contents of inner_stack are lost. As we illustrate in Figure 4.12, in every
iteration of the loop, the previous inner stack data becomes garbage. The blame for
the resulting buildup of garbage rests firmly with our Stack implementation. As
before, no problem occurs when the client uses a contiguous stack implementation.

outer_stack. top_node @—» 1

inner_stack. top_node some_data | & 1

Lost data
Figure 4.12. The application of bitwise copy to a Stack

This figure also shows that the assignment operator has another undesired
consequence. After the use of the operator, the two stack objects share their nodes.
Hence, at the end of each iteration of the loop, any application of a Stack destructor
on inner_stack will result in the deletion of the outer stack. Worse still, such a dele-
tion would leave the pointer outer_stack.top_node addressing what has become a
random memory location.

The problems caused by using the assignment operator on a linked stack arise
because it copies references rather than values: We summarize this situation by
saying that Stack assignment has reference semantics. In contrast, when the as-
signment operator copies the data in a structure, we shall say that it has value
semantics. In our linked Stack implementation, either we must attach documen-
tation to warn clients that assignment has reference semantics, or we must make
the C++ compiler treat assignment differently.

In C++, we implement special methods, known as overloaded assignment op-
erators to redefine the effect of assignment. Whenever the C++ compiler translates
an assignment expression of the form x =y, it first checks whether the class of x
has an overloaded assignment operator. Only if such a method is absent will the
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compiler translate the assignment as a bitwise copy of data members. Thus, to
provide value semantics for Stack assignment, we should overload assignment for
our Stack class.

There are several options for the declaration and implementation of this over-
loaded operator. A simple approach is to supply a prototype with void return type:

void Stack :: operator = (const Stack &original);

This declares a Stack method called operator =, the overloaded assignment oper-
ator, that can be invoked with the member selection operator in the usual way.

x.operator = (y);

Alternatively, the method can be invoked with the much more natural and conve-
nient operator syntax:

X=y;

By looking at the type(s) of its operands, the C++ compiler can tell that it should
use the overloaded operator rather than the usual assignment. We obtain operator
syntax by omitting the period denoting member selection, the keyword operator,
and the parentheses from the ordinary method invocation.

The implementation of the overloaded assignment operator for our Stack class
proves to be quite tricky.

L] First, we must make a copy of the data stacked in the calling parameter.
[] Next, we must clear out any data already in the Stack object being assigned to.

[] Finally, we must move the newly copied data to the Stack object.

void Stack :: operator = (const Stack &original) // Overload assignment
/* Post: The Stack is reset as a copy of Stack original. */
{
Node *new_top, *new_copy, *original_node = original.top_node;
if (original_node == NULL) new_top = NULL;
else { //  Duplicate the linked nodes
new_copy = new_top = new Node(original_node—->entry);
while (original_node->next !=NULL) {
original_node = original_node->next;
new_copy->next = new Node(original_node->entry);
new_copy = new_copy->next;

}
}
while (Tempty()) //  Clean out old Stack entries
pop();
top_node = new_top; //  and replace them with new entries.

}
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Note that, in the implementation, we do need to pop all of the existing entries out
of the Stack object whose value we are assigning. As a precaution, we first make
a copy of the Stack parameter and then repeatedly apply the method pop. In this
way, we ensure that our assignment operator does not lose objects in assignments
such as x = x.

Although our overloaded assignment operator does succeed in giving Stack
assignment value semantics, it still has one defect: A client cannot use the result of
an assignment in an expression such as fist_stack = second_stack = third_stack. A
very thorough implementation would return a reference of type Stack & to allow
clients to write such an expression.

4.3.3 The Copy Constructor

%:

copy constructor

One final insecurity that can arise with linked structures occurs when the C++
compiler calls for a copy of an object. For example, objects need to be copied when
an argument is passed to a function by value. In C++, the default copy operation
copies each data member of a class. Just as illustrated in Figure 4.12, the default
copy operation on a linked Stack leads to a sharing of data between objects. In
other words, the default copy operation on a linked Stack has reference semantics.
This allows a malicious client to declare and run a function whose sole purpose is
to destroy linked Stack objects:

void destroy_the_stack (Stack copy)

{

}

int main()

{
Stack vital_data;
destroy_the_stack(vital_data);

}

In this code, a copy of the Stack vital_data is passed to the function. The Stack copy
shares its nodes with the Stack vital_data, and therefore when a Stack destructor is
applied to copy, at the end of the function, vital_data is also destroyed.

Again, C++ provides a tool to fix this particular problem. Indeed, if we include
a copy constructor as a member of our Stack class, our copy constructor will be
invoked whenever the compiler needs to copy Stack objects. We can thus ensure
that Stack objects are copied using value semantics.

For any class, a standard way to declare a copy constructor is as a constructor
with one argument that is declared as a constant reference to an object of the class.
Hence, a Stack copy constructor would normally have the following prototype:

Stack :: Stack(const Stack &original);
In our implementation of this constructor, we first deal with the case of copying an

empty Stack. We then copy the first node, after which we run a loop to copy all of
the other nodes.
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99 Stack :: Stack(const Stack &original) // copy constructor
/* Post: The Stack is initialized as a copy of Stack original. */
{

Node *new_copy, *original_node = original.top_node;
if (original_node == NULL) top_node = NULL;
else { // Duplicate the linked nodes.
top_node = new_copy = new Node(original_node->entry);
while (original_node->next != NULL) {
original_node = original_node->next;
new_copy->next = new Node(original_node->entry);
new_copy = new_copy->next;
}
}
}

This code is similar to our implementation of the overloaded assignment operator.
However, in this case, since we are creating a new Stack object, we do not need to
remove any existing stack entries.

In general, for every linked class, either we should include a copy constructor,
or we should provide documentation to warn clients that objects are copied with
reference semantics.

4.3.4 The Modified Linked-Stack Specification

We close this section by giving an updated specification for a linked stack. In this

specification we include all of our proposed safety features.
100
%E class Stack {
public:
//  Standard Stack methods
Stack();

bool empty() const;

Error_code push(const Stack_entry &item);

Error_code pop();

Error_code top(Stack_entry &item) const;
/!l Safety features for linked structures

~ Stack();

Stack(const Stack &original);

void operator = (const Stack &original);
protected:

Node *top_node;

¥

Exercises 4.3 EL Suppose that x, y, and z are Stack objects. Explain why the overloaded assign-
ment operator of Section 4.3.2 cannot be used in an expressionsuchasx =y = z.
Modify the prototype and implementation of the overloaded assignment op-
erator so that this expression becomes valid.
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E2. What is wrong with the following attempt to use the copy constructor to im-
plement the overloaded assignment operator for a linked Stack?

void Stack :: operator = (const Stack &original)

{
Stack new_copy(original);
top_node = new_copy.top_node;

}

How can we modify this code to give a correct implementation?

In contiguous storage, queues were significantly harder to manipulate than were
stacks, because it was necessary to treat straight-line storage as though it were
arranged in acircle, and the extreme cases of full queues and empty queues caused
difficulties. It is for queues that linked storage really comes into its own. Linked
queues are just as easy to handle as are linked stacks. We need only keep two
pointers, front and rear, that will point, respectively, to the beginning and the end
of the queue. The operations of insertion and deletion are both illustrated in Figure
4.13.

Re ed
from{front > .
of queue
front r

L Added to
rear of
J” queue J_-

Figure 4.13. Operations on a linked queue
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4.4.1 Basic Declarations

type Queue

For all queues, we denote by Queue_entry the type designating the items in the
queue. For linked implementations, we declare nodes as we did for linked struc-
tures in Section 4.1.3 and use a typedef statement to identify the types Queue_entry
and Node_entry. In close analogy to what we have already done for stacks, we ob-
tain the following specification:
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class Queue {
public:
//  standard Queue methods
Queue();
bool empty() const;
Error_code append(const Queue_entry &item);
Error_code serve();
Error_code retrieve(Queue_entry &item) const;
//  safety features for linked structures
~Queue();
Queue(const Queue &original);
void operator = (const Queue &original);
protected:
Node =*front, *rear;

h

The first constructor initializes a queue as empty;, as follows:

Queue :: Queue()
/*Post: The Queue is initialized to be empty. */
{

front = rear = NULL;

}

Let us now turn to the method to append entries. To add an entry item to the rear
of a queue, we write:

Error_code Queue :: append(const Queue_entry &item)
/* Post: Add item to the rear of the Queue and return a code of success or return
a code of overflow if dynamic memory is exhausted. */
{
Node *new_rear = new Node(item);
if (new_rear == NULL) return overflow;
if (rear == NULL) front = rear = new_rear;
else {
rear->next = new_rear;
rear = new_rear;
}

return success;

The cases when the Queue is empty or not must be treated separately, since the
addition of a Node to an empty Queue requires setting both front and rear to point
to the new Node, whereas addition to a nonempty Queue requires changing only
rear.
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To serve an entry from the front of a Queue, we use the following function:

Error_code Queue::serve()
/*Post: The front of the Queue is removed. If the Queue is empty, return an
Error_code of underflow. */
{
if (front == NULL) return underflow;
Node *old_front = front;
front = old_front->next;
if (front == NULL) rear = NULL;
delete old_front;
return success;

}

Again the possibility of an empty Queue must be considered separately. Any at-
tempt to delete from an empty Queue should generate an Error_code of underflow.
It is, however, not an error for the Queue to become empty after a deletion, but
then rear and front should both become NULL to indicate that the Queue has become
empty. We leave the other methods of linked queues as exercises.

If you compare these algorithms for linked queues with those needed for con-
tiguous queues, you will see that the linked versions are both conceptually easier
and easier to program. We leave overloading the assignment operator and writing
the destructor and copy constructor for a Queue as exercises.

4.4.2 Extended Linked Queues

g 104

default method
implementation

Our linked implementation of a Queue provides the base class for other sorts of
queue classes. For example, extended queues are defined as in Chapter 3. The
following C++ code defining a derived class Extended_queue is identical to the
corresponding code of Chapter 3.

class Extended_queue: public Queue {
public:
bool full() const;
int size() const;
void clear();
Error_code serve_and_retrieve(Queue_entry &item);

}

Although this class Extended_queue has a linked implementation, there is no need
to supply explicit methods for the copy constructor, the overloaded assignment
operator, or the destructor. For each of these methods, the compiler generates a
default implementation. The default method calls the corresponding method of
the base Queue object. For example, the default destructor for an Extended_queue
merely calls the linked Queue destructor: This will delete all dynamically allocated
Extended_queue nodes. Because our class Extended_queue stores no linked data
that is not already part of the class Queue, the compiler generated-defaults are
exactly what we need.
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The declared methods for the linked class Extended_queue need to be repro-

grammed to make use of the linked data members in the base class. For example,
the new method size must use a temporary pointer called window that traverses
the Queue (in other words, it moves along the Queue and points at each Node in
sequence).

int Extended_queue ::size() const
/* Post: Return the number of entries in the Extended_queue. */

{

Node *window = front;
int count = 0;

while (window !'=NULL) {

}

window = window->next;
count++;

return count;

The other methods for the linked implementation of an extended queue are left as
exercises.

Exercises 4.4

EL

E2.

E3.

E4.

ES.

Write the following methods for linked queues:

(a) the method empty, (d) the copy constructor,
(b) the method retrieve, (e) the overloaded assignment opera-
(c) the destructor, tor.

Write an implementation of the Extended_queue method full. In light of the
simplicity of this method in the linked implementation, why is it still important
to include it in the linked class Extended_queue?

Write the following methods for the linked class Extended_queue:

(a) clear; (b) serve_and_retrieve;

For a linked Extended_queue, the function size requires a loop that moves
through the entire queue to count the entries, since the number of entries in
the queue is not kept as a separate member in the class. Consider modifying
the declaration of a linked Extended_queue to add a count data member to the
class. What changes will need to be made to all the other methods of the class?
Discuss the advantages and disadvantages of this modification compared to
the original implementation.

A circularly linked list, illustrated in Figure 4.14, is a linked list in which the
node at the tail of the list, instead of having a NULL pointer, points back to the
node at the head of the list. We then need only one pointer tail to access both
ends of the list, since we know that tail->next points back to the head of the
list.

(a) If we implement a queue as a circularly linked list, then we need only one
pointer tail (or rear) to locate both the front and the rear. Write the methods
needed to process a queue stored in this way.

(b) What are the disadvantages of implementing this structure, as opposed to
using the version requiring two pointers?
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tail

C )

Figure 4.14. A circularly linked list with tail pointer

P1. Assemble specification and method files, called queue.h and queue.c, for
linked queues, suitable for use by an application program.

P2. Take the menu-driven demonstration program for an Extended_queue of char-
actersin Section 3.4 and substitute the linked Extended_queue implementation
files for the files implementing contiguous queues. If you have designed the
program and the classes carefully, then the program should work correctly
with no further change.

P3. Intheairport simulation developed in Section 3.5, replace the implementations
of contiguous queues with linked versions. If you have designed the classes
carefully, the program should run in exactly the same way with no further
change required.

4.5.1 Purpose of the Project

Study
—_— 7

reverse Polish
calculator for
polynomials

SEe

K

In Section 2.3 we developed a program that imitates the behavior of a simple calcu-
lator doing addition, subtraction, multiplication, division, and perhaps some other
operations. The goal of this section is to develop a similar calculator, but now one
that performs these operations for polynomials rather than numbers.

Asin Section 2.3, we shall model a reverse Polish calculator where the operands
(polynomials for us) are entered before the operation is specified. The operands are
pushed onto a stack. When an operation is performed, it pops its operands from
the stack and pushes its result back onto the stack. We reuse the conventions of
Section 2.3 (which you may wish to review), so that ? denotes pushing an operand
onto the stack, +, —, *, / represent arithmetic operations, and = means printing
the top of the stack (but not popping it off). Forexample, theinstructions?a?b + =
mean to read two operands a and b, then calculate and print their sum.

4.5.2 The Main Program

main program

It is clear that we ought to implement a Polynomial class for use in our calculator.
After this decision, the task of the calculator program becomes simple. We need to
customize a generic stack implementation to make use of polynomial entries. Then
the main program can declare a stack of polynomials, accept new commands, and
perform them as long as desired.
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int main()
/* Post: The program has executed simple polynomial arithmetic commands en-
tered by the user.
Uses: The classes Stack and Polynomial and the functions introduction, instruc-
tions, do_command, and get_command. */

Stack stored_polynomials;

introduction();

instructions();

while (do_command(get_command(), stored_polynomials));

This program isalmost identical to the main program of Section 2.3, and its auxiliary
function get_command is identical to the earlier version.

1. Polynomial Methods

As in Section 2.3, we represent the commands that a user can type by the char-
acters?, =, +, —, *, /, where ? requests input of a polynomial from the user,
= prints the result of an operation, and the remaining symbols denote addition,
subtraction, multiplication, and division, respectively.

Most of these commands will need to invoke Polynomial class methods; hence
we must now decide on the form of some of these methods.

We will need a method to add a pair of polynomials. One convenient way
to implement this method is as a method, equals_sum, of the Polynomial class.
Thus, if p, g, r are Polynomial objects, the expression p.equals_sum(q, r) replaces
p by the sum of the polynomials g and r. We shall implement similar methods
called equals_difference, equals_product, and equals_quotient to perform other
arithmetic operations on polynomials.

The user commands = and ? will lead us to call on Polynomial methods to print
out and read in polynomials. Thus we shall suppose that Polynomial objects have
methods without parameters called print and read to accomplish these tasks.

2. Performing Commands

Given our earlier decisions, we can immediately write the function do_command.
We present an abbreviated form of the function, where we have coded only a few
of the possibilities in its main switch statement.

bool do_command(char command, Stack &stored_polynomials)
/*Pre: The first parameter specifies a valid calculator command.
Post: The command specified by the first parameter has been applied to the
Stack of Polynomial objects given by the second parameter. A result of

true is returned unless command == 'q’.
Uses: The classes Stack and Polynomial. */
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{
Polynomial p, q, r;
switch (command) {
case '?":
read Polynomial p.read();
if (stored_polynomials.push(p) == overflow)
cout < "Warning: Stack full, lost polynomial" « endl;
break;
case '=";
print Polynomial if (stored_polynomials.empty())
cout « "Stack empty" « endl;
else {
stored_polynomials.top(p);
p.print();
}
break;
case '+
add polynomials if (stored_polynomials.empty())
cout « "Stack empty" « endl;
else {
stored_polynomials.top(p);
stored_polynomials.pop();
if (stored_polynomials.empty()) {
cout « "Stack has just one polynomial"” « endl;
stored_polynomials. push(p);
}
else {
stored_polynomials.top(q);
stored_polynomials.pop();
r.equals_sum(q, p);
if (stored_polynomials.push(r) == overflow)
cout « "Warning: Stack full, lost polynomial" « endl;
}

3
break;

//  Add options for further user commands.
case 'q’:
quit cout «< "Calculation finished." « endl;
return false;
}

return true;

}

In this function, we need to pass the Stack parameter by reference, because its value
might need to be modified. For example, if the command parameter is +, then we
normally pop two polynomials off the stack and push their sum back onto it. The
function do_command also allows for an additional user command, g, that quits
the program.
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3. Stubs and Testing

We have now designed enough of our program that we should pause to compile
it, debug it, and test it to make sure that what has been done so far is correct.

For the task of compiling the program, we must, of course, supply stubs for all
the missing elements. Since we can use any of our earlier stack implementations,
the only missing part is the class Polynomial. At present, however, we have not
even decided how to store polynomial objects.

For testing, let us run our program as an ordinary reverse Polish calculator
operating on real numbers. Thus we need a stub class declaration that uses real
numbers in place of polynomials.

class Polynomial {
public:
void read();
void print();
void equals_sum(Polynomial p, Polynomial q);
void equals_difference(Polynomial p, Polynomial q);
void equals_product(Polynomial p, Polynomial q);
Error_code equals_quotient(Polynomial p, Polynomial q);
private:
double value;

%

Since the method equals_quotient must detect attempted division by 0, it has an
Error_code return type, whereas the other methods do not detect errors and so
have void return type. The following function is typical of the stub methods that
are needed.

void Polynomial :: equals_sum(Polynomial p, Polynomial q)
{
value = p.value + g.value;

}

Producing a skeleton program at this time also ensures that the stack and utility
packages are properly integrated into the program. The program, together with
its stubs, should operate correctly whether we use a contiguous or a linked Stack
implementation.

4.5.3 The Polynomial Data Structure

essence of a
polynomial

Let us now turn to our principal task by deciding how to represent polynomials
and writing methods to manipulate them. If we carefully consider a polynomial
such as

x> —2x% + x% + 4

we see that the important information about the polynomial is contained in the
coefficients and exponents of x; the variable x itself is really just a place holder (a
dummy variable). Hence, for purposes of calculation, we may think of a polyno-
mial as made up of terms, each of which consists of a coefficient and an exponent. Ina
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computer, we could similarly represent a polynomial as a list of pairs of coefficients
and exponents. Each of these pairs constitutes a structure that we shall call a Term.
We implement a Term as a struct with a constructor:

struct Term {

int degree;

double coefficient;

Term (int exponent = 0, double scalar = 0);
IR
Term :: Term(int exponent, double scalar)

/*Post: The Term is initialized with the given coefficient and exponent, or with
default parameter values of 0. */

{

degree = exponent;
coefficient = scalar;

}

A polynomial is represented as a list of terms. We must then build into our meth-
ods rules for performing arithmetic on two such lists. When we do this work,
however, we find that we continually need to remove the first entry from the list,
and we find that we need to insert new entries only at the end of the list. In other
words, we find that the arithmetic operations treat the list as a queue, or, more
precisely, as an extended queue, since we frequently need methods such as clear and
serve_and_retrieve, as well as deletion from the front and insertion at the rear.

Should we use a contiguous or a linked queue? If, in advance, we know a
bound on the degree of the polynomials that can occur and if the polynomials that
occur have nonzero coefficients in almost all their possible terms, then we should
probably do better with contiguous queues. But if we do not know a bound on
the degree, or if polynomials with only a few nonzero terms are likely to appear,
then we shall find linked storage preferable. Let us in fact decide to represent a
polynomial as an extended linked queue of terms. This representation is illustrated
in Figure 4.15.

1.0 5.0

3.0 -2.0 1.0 4.0

®—> 5 3 2 0

3IxS-2x3+x2+4

Figure 4.15. Polynomials as linked queues of terms
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Each node contains one term of a polynomial, and we shall keep only nonzero
terms in the queue. The polynomial that is always 0 (that is, it consists of only a 0
term) will be represented by an empty queue. We call this the zero polynomial or
say that it is identically 0.

Our decisions about the Polynomial data structure suggest that we might im-
plement it as a class derived from an extended queue. This will allow us to reuse
methods for Extended_queue operations, and we can concentrate on coding just
those additional methods that are special to polynomials.

As a final check before going ahead with such a derived class implementation,
we should ask: Is a Polynomial an Extended_queue?

An Extended_queue allows methods such as serve that do not apply directly to
polynomials, so we must admit that a Polynomial is not really an Extended_queue.
(In coding an implementation this drawback would become clear if we tried to
prevent clients from serving entries from Polynomial objects.) Thus, although it
would be useful to reuse the data members and function code from the class Ex-
tended_queue in implementing our class Polynomial, we should reject a simple
inheritance implementation because the two classes do not exhibit an is-a relation-
ship (see page 83).

The C++ language provides a second form of inheritance, called private inher-
itance, which is exactly what we need. Private inheritance models an “is imple-
mented in terms of” relationship between classes. We shall therefore define the class
Polynomial to be privately inherited from the class Extended_queue. This means
that Extended_queue members and methods are available in the implementation
of the class Polynomial, but they are not available to clients using a Polynomial.

class Polynomial: private Extended_queue { // Use private inheritance.
public:
void read();
void print() const;
void equals_sum(Polynomial p, Polynomial q);
void equals_difference(Polynomial p, Polynomial q);
void equals_product(Polynomial p, Polynomial q);
Error_code equals_quotient(Polynomial p, Polynomial q);
int degree() const;
private:
void mult_term(Polynomial p, Term t);

}

We have incorporated a useful method, Polynomial :: degree(), that returns the
degree of the leading term in a Polynomial, together with an auxiliary function that
multiplies a Polynomial by a single Term.

We have not yet considered the order of storing the terms of the polynomial. If
we allow them to be stored in any order, then it might be difficult to recognize that

x5+x2-3 and -3+ x°+x2 and x2-3+x°
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all represent the same polynomial. Hence we adopt the usual convention that the
terms of every polynomial are stored in the order of decreasing exponent within the
linked queue. We further assume that no two terms have the same exponent and
that no term has a zero coefficient. (Recall that the polynomial that is identically 0
is represented as an empty queue.)

4.5.4 Reading and Writing Polynomials

standard conventions
g 110

print Polynomial

With polynomials implemented as linked queues, writing out a polynomial is a
simple matter of looping through the nodes of the queue and printing out data for
each node. The intricate nature of the following print method is a reflection of the
customary but quite special conventions for writing polynomials, rather than any
conceptual difficulty in working with our data structure. In particular, our method
suppresses any initial + sign, any coefficients and exponents with value 1, and
any reference to x°. Thus, for example, we are careful to print 3x2 + x + 5 and
—3x2 + 1 rather than +3x2 + 1x! + 5x% and —3x2 + 1x°.

void Polynomial :: print() const
/* Post: The Polynomial is printed to cout. */
{
Node *print_node = front;
bool first_term = true;
while (print_node != NULL) {
Term &print_term = print_node->entry;
if (first_term) { /1 In this case, suppress printing an initial '+".
first_term = false;
if (print_term.coefficient < 0) cout « "— ";
}
else if (print_term.coefficient < 0) cout <« " — ";
elsecout <" +';
double r = (print_term.coefficient >= 0)
? print_term.coefficient : —(print_term.coefficient);
if(r '=1)cout <r;
if (print_term.degree > 1) cout < " X™ « print_term.degree;
if (print_term.degree == 1) cout <« " X";
if (r == 1&& print_term.degree == 0) cout <« " 1";
print_node = print_node->next;
}
if (first_term)
cout < "0"; // Print 0 for an empty Polynomial.
cout < endl;

}

As we read in a new polynomial, we shall construct a new Polynomial object and
then append an entry to the object for each term (coefficient-exponent pair) that we
read from the input.



148 Chapter 4 o Linked Stacks and Queues

Like all functions that accept input directly from the user, our function for
reading a new polynomial must carefully check its input to make sure that it meets
the requirements of the problem. Making sure that the exponents in the polynomial
appear in descending order is one of the larger tasks for our function. To do this,
we continually compare the exponent of the current term with that of the previous

term.
(‘ — We shall use the special values of either a coefficient of 0.0 or an exponent of
= 0 to stop the reading process: Recall that a term with 0.0 as a coefficient is never
stored in the polynomial, and, since the exponents are in descending order, any
term with an exponent of 0 must always be last. The resulting function follows.

void Polynomial :: read()
/* Post: The Polynomial is read from cin. */
read Polynomial  {
clear();
double coefficient;
int last_exponent, exponent;
bool first_term = true;
cout « "Enter the coefficients and exponents for the polynomial, "
<« "one pair per line. Exponents must be in descending order." « endl
<« "Enter a coefficient of 0 or an exponent of 0 to terminate." « endl;
do {
cout « "coefficient? " « flush;
cin > coefficient;
if (coefficient '=0.0) {
cout <« "exponent? " « flush;
cin > exponent;
if (! first_term && exponent >= last_exponent) || exponent < 0) {
exponent = 0;
cout « "Bad exponent: Polynomial terminates without its last term."
< endl;
}
else {
Term new_term(exponent, coefficient);
append(new_term);
first_term = false;
}
last_exponent = exponent;
}
} while (coefficient != 0.0 & exponent != 0);

}

4.5.5 Addition of Polynomials

We now study one of the fundamental operations on polynomials, addition of two
polynomials.
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The requirement that the terms of a Polynomial appear with descending expo-
nents in the corresponding Extended_queue greatly simplifies their addition. To
add two polynomials, we need only scan through them once each. If we find terms
with the same exponent in the two polynomials, then we add the coefficients; oth-
erwise, we copy the term with larger exponent into the sum and move on to the
next term of that polynomial. We must also be careful not to include terms with
zero coefficient in the sum. Our method destroys the data in both parameters, and
therefore we pass them both by value.

void Polynomial :: equals_sum(Polynomial p, Polynomial q)
/* Post: The Polynomial object is reset as the sum of the two parameters. */

{
clear();
while (!p.empty() || !g.empty()) {
Term p_term, g_term;
if (p.degree() > g.degree()) {
p.serve_and_retrieve(p_term);
append(p_term);
}

else if (q.degree() > p.degree()) {
g.serve_and_retrieve(q_term);
append(qg_term);

}

else {
p.serve_and_retrieve(p_term);
g.serve_and_retrieve(q_term);
if (p_term.coefficient + q_term.coefficient != 0) {
Term answer_term(p_term.degree,
p_term.coefficient + q_term.coefficient);
append(answer_term);
}
3
}
}

The method begins by clearing any terms currently stored in the Polynomial object
that records the answer. We complete the implementation with a loop that peels
off a leading term from one or both of the polynomial parameters and adds these
terms onto our answer. We first decide which parameter or parameters should
provide the next term according to their respective degrees.

Polynomial degrees are calculated by the method degree(), which has to re-
trieve() the leading term and return its degree. We follow one of the standard
mathematical conventions and assign a degree of —1 to the zero polynomial.
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determine degree

int Polynomial :: degree() const
/* Post: If the Polynomial is identically 0, a result of —1 is returned. Otherwise the
degree of the Polynomial is returned. */

{
if (empty()) return —1;
Term lead;
retrieve(lead);
return lead.degree;

4.5.6 Completing the Project
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templates
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1. The Missing Procedures

Atthis point, the remaining methods for the class Polynomial are sufficiently similar
to those already written that they can be left as projects. Methods for the remaining
arithmetical operations have the same general form as equals_sum. Some of these
are easy: Subtraction is almost identical to addition. For multiplication, we can
first write a function that multiplies a Polynomial by a Term. Then we combine use
of this function with the addition function to do a general multiplication. Division
is more complicated.

2. The Choice of Stack Implementation

Our implementation of the class Polynomial makes use of a linked Extended_queue
of terms. Therefore, we must declare that a Node contains a Term as its entry. This
prevents us from using our linked Stack class to contain Polynomial entries (since
that would require nodes that contain Polynomial entries). We must therefore
compile our calculator program with our contiguous Stack implementation.

This is the first case where we have been handicapped by our simple treatment
of generics. As we have previously observed, however, C++ does provide a more
sophisticated approach to generics that makes use of templates. If we had used
templates systematically throughout this chapter, our calculator program could
have been compiled with either a linked or a contiguous Stack implementation.
In the next chapter, we shall begin using templates to achieve truly generic data
structures.

3. Group Project

Production of a coherent package of functions for manipulating polynomials makes
an interesting group project. Different members of the group can write auxiliary
functions or methods for different operations. Some of these are indicated as
projects at the end of this section, but you may wish to include additional fea-
tures as well. Any additional features should be planned carefully to be sure that
they can be completed in a reasonable time, without disrupting other parts of the
program.
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After deciding on the division of work among its members, the most important
decisions of the group relate to the exact ways in which the functions and methods
should communicate with each other, and especially with the calling program. If
you wish to make any changes in the organization of the program, be certain that
the precise details are spelled out clearly and completely for all members of the
group.

Next, you will find that it is too much to hope that all members of the group
will complete their work at the same time, or that all parts of the project can be
combined and debugged together. You will therefore need to use program stubs
and drivers (see Section 1.4) to debug and test the various parts of the project. One
member of the group might take special responsibility for this testing. In any case,
you will find it very effective for different members to read, help debug, and test
each other’s functions.

Finally, there are the responsibilities of making sure that all members of the
group complete their work on time, of keeping track of the progress of various
aspects of the project, of making sure that no functions are integrated into the
project before they are thoroughly debugged and tested, and then of combining all
the work into the finished product.

Exercise 4.5

Programming
Projects 4.5

Wi§

Wi§

E1l. Discuss the steps that would be needed to extend the polynomial calculator so
that it would process polynomials in several variables.

P1. Assemble the functions developed in this section and make the necessary
changes in the code so as to produce a working skeleton for the calculator
program, one that will read, write, and add polynomials. You will need to
supply the functions get_command(), introduction(), and instructions().

P2. Write the Polynomial method equals_difference and integrate it into the calcu-
lator.
P3. Write an auxiliary function

void Polynomial :: mult_term(Polynomial p, Term t)

that calculates a Polynomial object by multiplying p by the single Term t.

P4. Use the function developed in the preceding problem, together with the Poly-
nomial method equals_sum, to write the Polynomial method equals_product,
and integrate the resulting method into the calculator.

P5. Write the Polynomial method equals_quotient and integrate it into the calcu-
lator.

P6. Many reverse Polish calculators use not only a stack but also provide memory
locations where operands can be stored. Extend the project to provide an array
to store polynomials. Provide additional commands to store the top of the
stack into an array entry and to push the polynomial in an array entry onto
the stack. The array should have 100 entries, and all 100 positions should be
initialized to the zero polynomial when the program begins. The functions
that access the array should ask the user which entry to use.
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P7. Write a function that will discard the top polynomial on the stack, and include
this capability as a new command.

< P8. Write a function that will interchange the top two polynomials on the stack,
Wi and include this capability as a new command.

P9. Write a function that will add all the polynomials on the stack together, and
include this capability as a new command.

P10. Write a function that will compute the derivative of a polynomial, and include
this capability as a new command.

P11. Write a function that, given a polynomial and a real number, evaluates the
polynomial at that number, and include this capability as a new command.

P12. Write a new method equals_remainder that obtains the remainder when a first
Polynomial argument is divided by a second Polynomial argument. Add a new
user command % to the calculator program to call this method.

4.6 ABSTRACT DATA TYPES AND THEIR IMPLEMENTATIONS

When we first introduced stacks and queues, we considered them only as they are
implemented in contiguous storage, and yet upon introduction of linked stacks
and queues, we had no difficulty in recognizing the same underlying abstract data
types. To clarify the general process of passing from an abstract data type definition
to a C++ implementation, let us reflect on these data types and the implementations
that we have seen.

We begin by recalling the definition of the stack ADT from Section 2.5.

Definition A stack of elements of type T is a finite sequence of elements of T together
with the following operations:

Create the stack, leaving it empty.

Test whether the stack is Empty.

Push a new entry onto the top of the stack, provided the stack is not full.

Pop the entry off the top of the stack, provided the stack is not empty.

@ = @ N =

Retrieve the Top the entry off the stack, provided the stack is not empty.

To obtain the definition of a queue ADT, we replace stack methods by queue meth-
ods as follows.
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A queue of elements of type T is a finite sequence of elements of T together
with the following operations:

1. Create the queue, leaving it empty.
2. Test whether the queue is Empty.

3. Append a new entry onto the rear of the queue, provided the queue is not
full.

4. Serve (and remove) the entry from the front of the queue, provided the
queue is not empty.

5. Retrieve the front entry off the queue, provided the queue is not empty.

We can also give a precise definition of extended queues as follows.

An extended queue of elements of type T is a queue of elements of T together
with the following additional operations:

4. Determine whether the queue is full or not.
5. Find the size of the queue.

6. Serve and retrieve the front entry in the queue, provided the queue is not
empty.

7. Clear the queue to make it empty.

Note that these definitions make no mention of the way in which the abstract data
type (stack, queue, or extended queue) is to be implemented. In the past several
chapters we have studied different implementations of each of these types, and
these new definitions fit any of these implementations equally well.

As we recall from Section 2.5, in the process of implementing an abstract data
type we must pass from the abstract level of a type definition, through a data
structures level, where we decide on a structure to model our data type, to an
implementation level, where we decide on the details of how our data structure will
be stored in computer memory. Figure 4.16 illustrates these stages of refinement
in the case of a queue. We begin with the mathematical concept of a sequence and
then the queue considered as an abstract data type. At the next level, we choose
from the various data structures shown in the diagram, ranging from the physical
model (in which all items move forward as each one leaves the head of the queue)
to the linear model (in which the queue is emptied all at once) to circular arrays
and finally linked lists. Some of these data structures allow further variation in
their implementation, as shown on the next level. At the final stage, the queue is
coded for a specific application.
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Figure 4.16. Refinement of a queue

Exercises 4.6

POINTERS AND PITFALLS

1.

%'116

El. Draw adiagram similar to that of Figure 4.16 showing levels of refinement for

a stack.

E2. Give aformal definition of the term deque, using the definitions given for stack

and queue as models. Recall that entries may be added to or deleted from
either end of a deque, but nowhere except at its ends.

Before choosing implementations, be sure that all the data structures and their
associated operations are fully specified on the abstract level.

In choosing between linked and contiguous implementations, consider the
necessary operations on the data structure. Linked structures are more flexible
in regard to insertions, deletions, and rearrangement; contiguous structures
are sometimes faster.

Contiguous structures usually require less computer memory, computer time,
and programming effort when the items in the structure are small and the al-
gorithms are simple. When the structure holds large records, linked structures
usually save space, time, and often programming effort.

Dynamic memory and pointers allow a program to adapt automatically to
a wide range of application sizes and provide flexibility in space allocation
among different data structures. Automatic memory is sometimes more effi-
cient for applications whose size can be completely specified in advance.
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5. Before reassigning a pointer, make sure that the object that it references will
not become garbage.

6. Set uninitialized pointers to NULL.

7. Linked data structures should be implemented with destructors, copy con-
structors, and overloaded assignment operators.

8. Use private inheritance to model an “is implemented with” relationship be-
tween classes.

9. Draw “before” and “after” diagrams of the appropriate part of a linked struc-
ture, showing the relevant pointers and the way in which they should be
changed. If they might help, also draw diagrams showing intermediate stages

% 117 of the process.

10. To determine in what order values should be placed in the pointer fields to
carry out the various changes, it is usually better first to assign the values to
previously undefined pointers, then to those with value NULL, and finally to
the remaining pointers. After one pointer variable has been copied to another,
the first is free to be reassigned to its new location.

undefined links 11, Be sure that no links are left undefined at the conclusion of a method of a linked
structure, either as links in new nodes that have never been assigned or links
in old nodes that have become dangling, that is, that point to nodes that no
longer are used. Such links should either be reassigned to nodes still in use or
set to the value NULL.

extreme cases  12. Always verify that your algorithm works correctly for an empty structure and
for a structure with only one node.

13. Avoid the use of constructions such as (p—>next)—>next, even though they are
multiple dereferencing syntactically correct. A single object should involve only asingle pointer deref-
erencing. Constructions with repeated dereferencing usually indicate that the
algorithms can be improved by rethinking what pointer variables should be
declared in the algorithm, introducing new ones if necessary.

REVIEW QUESTIONS

41 1. Give two reasons why dynamic memory allocation is valuable.
2. What is garbage?
3. Why should uninitialized pointers be set to NULL?
4. What is an alias and why is it dangerous?
42 5. Why is it important to return an Error_code from the push method of a linked

Stack?
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4.3

45

4.6

6.

Why should we always add a destructor to a linked data structure?

7. How isacopy constructor used and why should a copy constructor be included

10.
11.

in a linked data structure?

. Why should a linked data structure be implemented with an overloaded as-

signment operator?

Discuss some problems that occur in group programming projects that do not
occur in individual programming projects. What advantages does a group
project have over individual projects?

In an abstract data type, how much is specified about implementation?

Name (in order from abstract to concrete) four levels of refinement of data
specification.
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HIS CHAPTER introduces the study of recursion, the method in which a
problem is solved by reducing it to smaller cases of the same problem.
To illustrate recursion we shall study some applications and sample pro-
grams, thereby demonstrating some of the variety of problems to which
recursion may fruitfully be applied. Some of these examples are simple; others
are quite sophisticated. We also analyze how recursion is usually implemented
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5.1 INTRODUCTION TO RECURSION

5.1.1 Stack Frames for Subprograms

invocation record

nested function calls

% 119

stack frames

definition: recursion

158

Asone importantapplication of stacks, consider what happens within the computer
system when functions are called. The system (or the program) must remember
the place where the call was made, so that it can return there after the function is
complete. It must also remember all the local variables, processor registers, and
the like, so that information will not be lost while the function is working. We can
think of all this information as one large data structure, a temporary storage area
for each function. This structure is sometimes called the invocation record or the
activation record for the function call.

Suppose now that we have three functions called A, B, and C, and suppose
that A invokes B and B invokes C. Then B will not have finished its work until
C has finished and returned. Similarly, A is the first to start work, but it is the
last to be finished, not until sometime after B has finished and returned. Thus
the sequence by which function activity proceeds is summed up as the property
last in, first out. If we consider the machine’s task of assigning temporary storage
areas for use by functions, then these areas would be allocated in a list with this
same property; that is, in a stack (see Figure 5.1, where M represents an invocation
record for the main program, and A, B, and C represent invocation records for the
corresponding functions). Hence a stack plays a key role in invoking functions in
a computer system.

D D A Stack
B cfc|c D space
for
A A|lA[A|A|A DID|(D|D|D data
MIM[M|M[M|M|M|[M|M M M
Time —>

Figure 5.1. Stack frames for function calls

Figure 5.1 shows a sequence of stack frames, where each vertical column shows
the contents of the stack at a given time, and changes to the stack are portrayed by
reading through the frames from left to right. Notice from Figure 5.1 that it makes
no difference whether the temporary storage areas pushed on the stack come from
different functions or from repeated occurrences of the same function. Recursion
is the name for the case when a function invokes itself or invokes a sequence of
other functions, one of which eventually invokes the first function again. In regard
to stack frames for function calls, recursion is no different from any other function
call.
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5.1.2 Tree of Subprogram Calls

root, vertex, node

i 120

children, parent

branch, sibling, leaf

height, depth, level

One more picture elucidates the connection between stacks and function calls. This
is a tree diagram showing the order in which the functions are invoked. Such a tree
diagram appears in Figure 5.2, corresponding to the stack frames shown in Figure
5.1.

Figure 5.2. Tree of function calls

We start at the top of the tree, which is called its root and corresponds to the
main program. Each circle (called a vertex or a node) corresponds to a call to a
function. All the calls that the main program makes directly are shown as the
vertices directly below the root. Each of these functions may, of course, call other
functions, which are shown as further vertices on lower levels. In this way, the
tree grows into a form like the one in Figure 5.2. We shall call such a tree a tree of
function calls.

We shall frequently use several other terms in reference to trees, recklessly
mixing the metaphors of botanical trees and family trees. The vertices immediately
below a given vertex are called the children of that vertex, and the (unique) vertex
immediately above is called its parent. The line connecting a vertex with one
immediately above or below is called a branch. Siblings are vertices with the same
parent. The root is the only vertex in the tree that has no parent. A vertex with no
children is called a leaf or, sometimes, an external vertex. For example, in Figure
5.2, M is the root; A and D are its children; B and C are children of A; B and the
two bottom occurrences of D are leaves. (The other two occurrences of D are not
leaves.) We say that two branches of a tree are adjacent if the lower vertex of the
first branch is the upper vertex of the second. A sequence of branches in which
eachis adjacent to its successor is called a path. The height of atree is the number of
vertices on a longest-possible path from the root to a leaf. Hence the tree in Figure
5.2 has height 4, and a tree containing only one vertex has height 1. Sometimes
(but not for function calls) we allow empty trees (no vertices); an empty tree has
height 0. The depth or level of a vertex is the number of branches on a path from
the root to the vertex. Hence the root has depth 0; in Figure 5.2, A has depth 1, B
and C have depth 2.
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Theorem 5.1

5.1.3 Factorials:

informal definition

To trace the function calls made in a program, we start at the root and move
around the tree, as shown by the colored path in Figure 5.2. This colored path is
called a traversal of the tree. When we come to a vertex while moving downward,
we invoke the function. After we traverse the part of the tree below the vertex, we
reach it again on the way up, and this represents termination and return from the
function. The leaves represent functions that do not invoke any other functions.

We are especially interested in recursion, so that often we draw only the part
of the tree showing the recursive calls, and we call it a recursion tree. You should
first notice from the diagram that there is no difference in the way a recursive
call appears and the way any other function call occurs. Different recursive calls
appear simply as different vertices that happen to have the same name of function
attached. Second, note carefully that the tree shows the calls to functions. Hence
a function called from only one place, but within a loop executed more than once,
will appear several times in the tree, once for each execution of the loop. Similarly,
if a function is called from a conditional statement that is not executed, then the
call will not appear in the tree.

The stack frames like Figure 5.1 show the nesting of recursive calls and also
illustrate the storage requirements for recursion. Ifafunction calls itself recursively
several times, then separate copies of the variables declared in the function are
created for each recursive call. In the usual implementation of recursion, these are
kept on a stack. Note that the amount of space needed for this stack is proportional
to the height of the recursion tree, not to the total number of nodes in the tree. That
is, the amount of space needed to implement a recursive function depends on the
depth of recursion, not on the number of times the function is invoked.

The last two figures can, in fact, be interpreted in a broader context than as
the process of invoking functions. They thereby elucidate an easy but important
observation, providing an intimate connection between arbitrary trees and stacks:

During the traversal of any tree, vertices are added to or deleted from the path back to
the root in the fashion of a stack. Given any stack, conversely, a tree can be drawn to
portray the life history of the stack, as items are pushed onto and popped from it.

We now turn to the study of several simple examples of recursion. We next analyze
how recursion is usually implemented on a computer. In the process, we shall
obtain guidelines regarding good and bad uses of recursion, when it is appropriate,
and when it should best be avoided. The rest of this chapter includes several more
sophisticated applications of recursion.

A Recursive Definition

In mathematics, the factorial function of a positive integer is usually defined by
the formula

nl=nxm-1lx---x1
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The ellipsis (three dots) in this formula means “continue in the same way.” This
notation is not precise, since there can be more than one sensible way to fill in
the ellipsis. To calculate factorials, we need a more precise definition, such as the
following:
nl = {l !f n =20
nxmn-1 ifn > 0.

This definition tells us exactly how to calculate a factorial, provided we follow the
rules carefully and use a piece of paper to help us remember where we are.

Suppose that we wish to calculate 4!. Since 4 > 0, the definition tells us that
41 = 4 x 31. This may be some help, but not enough, since we do not know what 3!
is. Since 3 > 0, the definition again gives us 3! = 3 x 2!. Again, we do not know the
value of 2!, but the definition gives us 2! = 2 x 1!. We still do not know 1!, but, since
1> 0, we have 1! = 1 x 0!. The definition, finally, treats the case n = 0 separately,
so we know that 0! = 1. We can substitute this answer into the expression for 1!
and obtain 1! = 1 x 0! = 1 x 1 = 1. Now comes the reason for using a piece of
paper to keep track of partial results. Unless we write the computation down in
an organized fashion, by the time we work our way through a definition several
times we will have forgotten the early steps of the process before we reach the
lowest level and begin to use the results to complete the earlier calculations. For
the factorial calculation, it is of course easy to write out all the steps in an organized
way:

41 = 4 x 3|

4 x (3x2)

4 x (3x (2x1))

4 X (3x(2x(1x0h)
4x (3x(2x(1x1))
4 x (
4 % (

I x (2x1))
3x2)
=4x6
= 24.

This calculation illustrates the essence of the way recursion works. To obtain
the answer to a large problem, a general method is used that reduces the large
problem to one or more problems of a similar nature but a smaller size. The same
general method is then used for these subproblems, and so recursion continues

until the size of the subproblems is reduced to some smallest, base case, where the
solution is given directly without using further recursion. In other words:

Every recursive process consists of two parts:

1. A smallest, base case that is processed without recursion; and

2. A general method that reduces a particular case to one or more of the smaller
cases, thereby making progress toward eventually reducing the problem all the
way to the base case.
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C++ (like most other modern computer languages) provides easy access to recursion.
The factorial calculation in C++ becomes the following function.

int factorial(int n)
/*Pre: nisanonnegative integer.
Post: Return the value of the factorial of n. */
{
if (n== 0)
return 1;
else
return n = factorial(n — 1);

}

As you can see from this example of factorials, the recursive definition and recur-
sive solution of a problem can be both concise and elegant, but the computational
details can require keeping track of many partial computations before the process
is complete.

Computers can easily keep track of such partial computations with a stack; the
human mind is not at all good for such tasks. It is exceedingly difficult for a person
to remember a long chain of partial results and then go back through it to complete
the work. Consider, for example, the following nursery rhyme:

As | was going to St. lves,
I met a man with seven wives.
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven Kits:
Kits, cats, sacks and wives,
How many were there going to St. Ives?

Because of the human difficulty in keeping track of many partial computations
simultaneously, when we use recursion, it becomes necessary for us to think in
somewhat different terms than with other programming methods. Programmers
must look at the big picture and leave the detailed computations to the computer.

We must specify in our algorithm the precise form of the general step in re-
ducing a large problem to smaller cases; we must determine the stopping rule (the
smallest case) and how it is processed. On the other hand, except for a few simple
and small examples, we should generally not try to understand a recursive algo-
rithm by working the general case all the way down to the stopping rule or by
tracing the action the computer will take on a good-sized case. We would quickly
become so confused by all the postponed tasks that we would lose track of the
complete problem and the overall method used for its solution.

There are good general methods and tools that allow us to concentrate on the
general methods and key steps while at the same time analyzing the amount of
work that the computer will do in carrying out all the details. We now turn to an
example that illustrates some of these methods and tools.
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5.1.4 Divide and Conquer: The Towers of Hanoi
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1. The Problem

In the nineteenth century, a game called the Towers of Hanoi appeared in Europe,
together with promotional material (undoubtedly apocryphal) explaining that the
game represented a task underway in the Temple of Brahma. At the creation of the
world, the priests were given a brass platform on which were 3 diamond needles.
On the first needle were stacked 64 golden disks, each one slightly smaller than the
one under it. (The less exotic version sold in Europe had 8 cardboard disks and 3
wooden posts.) The priests were assigned the task of moving all the golden disks
from the first needle to the third, subject to the conditions that only one disk can be
moved at a time and that no disk is ever allowed to be placed on top of a smaller
disk. The priests were told that when they had finished moving the 64 disks, it
would signify the end of the world. See Figure 5.3.

~
o
_/

Figure 5.3. The Towers of Hanoi

Our task, of course, is to write a computer program that will type out a list of
instructions for the priests. We can summarize our task by the instruction

move(64, 1, 3, 2)
which means

Move 64 disks from tower 1 to tower 3 using tower 2 as temporary storage.

2. The Solution

The idea that gives a solution is to concentrate our attention not on the first step
(which must be to move the top disk somewhere), but rather on the hardest step:
moving the bottom disk. There is no way to reach the bottom disk until the top 63
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disks have been moved, and, furthermore, they must all be on tower 2 so that we
can move the bottom disk from tower 1 to tower 3. This is because only one disk
can be moved at a time and the bottom (largest) one can never be on top of any
other, so that when we move the bottom one, there can be no other disks on towers
1 or 3. Thus we can summarize the steps of our algorithm for the Towers of Hanoi
problem as

move(63, 1, 2, 3); // Move 63 disks from tower 1 to 2 (tower 3 temporary).
cout < "Move disk 64 from tower 1 to tower 3." <« endl;
move(63, 2, 3, 1); // Move 63 disks from tower 2 to 3 (tower 1 temporary).

We now have a small step toward the solution, only a very small one since we
must still describe how to move the 63 disks two times. It is a significant step
nonetheless, since there is no reason why we cannot move the 63 remaining disks
in the same way. (As a matter of fact, we must indeed do so in the same way, since
there is again a largest disk that must be moved last.)

This is exactly the idea of recursion. We have described how to do the key
step and asserted that the rest of the problem is done in essentially the same way.
This is also the idea of divide and conquer: To solve a problem, we split the work
into smaller and smaller parts, each of which is easier to solve than the original
problem.

3. Refinement

To write the algorithm formally, we shall need to know at each step which tower
may be used for temporary storage, and thus we will invoke the function with
specifications as follows:

void move(int count, int start, int finish, int temp);

precondition: There are at least count disks on the tower start. The top disk (if
any) on each of towers temp and finish is larger than any of the
top count disks on tower start.

postcondition: The top count disks on start have been moved to finish; temp
(used for temporary storage) has been returned to its starting
position.

Supposedly our task is to be finished in a finite number of steps (even if it does
mark the end of the world!), and thus there must be some way that the recursion
stops. The obvious stopping rule is that, when there are no disks to be moved,
there is nothing to do. We can now write the complete program to embody these
rules. The main program is:
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const int disks = 64; // Make this constant much smaller to run program.
void move(int count, int start, int finish, int temp);

/* Pre: None.
Post: The simulation of the Towers of Hanoi has terminated. */
main()
{
move(disks, 1, 3, 2);
}

The recursive function that does the work is:

void move(int count, int start, int finish, int temp)

{
if (count > 0) {
move(count — 1, start, temp, finish);
cout « "Move disk " « count « " from " « start
< "to" « finish <« "." «< endl;
move(count — 1, temp, finish, start);
}
}

4. Program Tracing

One useful tool in studying a recursive function when applied to a very small
example isto construct atrace of its action. Such atrace is shown in Figure 5.4 for the
Towers of Hanoi in the case when the number of disks is 2. Each box in the diagram
shows what happens in one of the calls. The outermost call move(2, 1, 3, 2) (the
call made by the main program) results essentially in the execution of the following
three statements, shown as the statements in the outer box (colored gray) of the
diagram.

move(l, 1, 2, 3); // Move 1 disk from tower 1 to 2 (using tower 3).
cout « "Move disk 2 from tower 1 to tower 3." « endl;
move(l, 2, 3, 1); // Move 1 disk from tower 2 to 3 (using tower 1).

The first and third of these statements make recursive calls. The statement
move(l, 1, 2, 3)

starts the function move over again from the top, but now with the new parameters.
Hence this statement results essentially in the execution of the following three
statements, shown as the statements in the first inner box (shown in color):
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F move (2, 1, 3, 2)
~
;move (1,1,2,3) ~—— Outer call.
Lmove 0,1, 3,2) —~—1— Firstrecursive call.
]477 Trivial recursive call.
"Move disk 1 from 1to 2." ———— Firstinstruction printed.
| move (0, 3,2, 1)
]<—7 Trivial recursive call.
——1— End of first recursive call.
"Move disk 2 from 1 t0 3." <————— Second instruction printed.,
; move (1, 2, 3, 1)
Lmove 0,2,1,3) —~—— Second recursive call.
]477 Trivial recursive call.

"Move disk 1 from 2 to 3." —<

——— Third instruction printed.

| move 0,3,1,2)

[ ]<—7 Trivial recursive call.
End of second recursive call.

—~—— End of outer call.
\ J

Figure 5.4. Trace of Hanoi for disks ==

124
%g move(, 1, 3, 2); /I Move O disks.

cout < "Move disk 1 from tower 1 to tower 2." « end];
move(0, 3, 2, 1); /l Move 0 disks.

If you wish, you may think of these three statements as written out in place of
the call move(1, 1, 2, 3), but think of them as having a different color from the
statements of the outer call, since they constitute a new and different call to the
function. These statements are shown as colored print in the figure.

After the box corresponding to this call comes the output statement and then a
second box corresponding to the call move(1, 2, 3, 1). But before these statements
are reached, there are two more recursive calls coming from the first inner box.
That is, we must next expand the call move(0, 1, 3, 2). But the function move does
nothing when its parameter count is 0; hence this call move(0, 1, 3, 2) executes no
further function calls or other statements. We show it as corresponding to the first
empty box in the diagram.

After this empty call comes the output statement shown in the first inner box,
and then comes another call that does nothing. This then completes the work for
the call move(1, 1, 2, 3), so it returns to the place from which it was called. The
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following statement is then the output statement in the outer box, and finally the
statement move(1, 2, 3, 1) is done. This call produces the statements shown in the
second inner box, which are then, in turn, expanded as the further empty boxes
shown.

With all the recursive calls through which we worked our way, the example
we have studied may lead you to liken recursion to the fable of the Sorcerer’s
Apprentice, who, when he had enchanted a broom to fetch water for him, did not
know how to stop it and so chopped it in two, whereupon it started duplicating
itself until there were so many brooms fetching water that disaster would have
ensued had the master not returned.

We now turn to another tool to visualize recursive calls, a tool that manages
the multiplicity of calls more effectively than a program trace can. This tool is the
recursion tree.

5. Analysis

The recursion tree for the Towers of Hanoi with three disks appears as Figure 5.5,
and the progress of execution follows the path shown in color.

move (2, 1, 2, 3) move (2, 2, 3, 1)

move (0, 1, 2, 3)

move (1, 3, 2, 1)

move (1, 2, 1, 3)

move (0, 3, 1, 2) move (0, 2, 3, 1) move (0, 1, 2, 3)
move (0, 2, 3, 1) move (0, 1, 2, 3) move (0, 3,1, 2) move (0, 2, 3, 1)

Figure 5.5. Recursion tree for three disks

Note that our program for the Towers of Hanoi not only produces a complete
solution to the task, but it produces the best possible solution, and, in fact, the
only solution that can be found except for the possible inclusion of redundant and
useless sequences of instructions such as

Move disk 1 from tower 1 to tower 2.
Move disk 1 from tower 2 to tower 3.
Move disk 1 from tower 3 to tower 1.
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To show the uniqueness of the irreducible solution, note that, at every stage,
the task to be done can be summarized as moving a certain number of disks from
one tower to another. There is no way of doing this task other than moving all the
disks except the bottom one first, then perhaps making some redundant moves,
then moving the bottom one, possibly making more redundant moves, and finally
moving the upper disks again.

Next, let us find out how many times the recursion will proceed before starting
to return and back out. The first time function move is called, it is with count ==
64, and each recursive call reduces the value of count by 1. Thus, if we exclude the
calls with count == 0, which do nothing, we have a total depth of recursion of 64.
That s, if we were to draw the tree of recursive calls for the program, it would have
64 levels above its leaves. Except for the leaves, each vertex results in two recursive
calls (as well as in writing out one instruction), and so the number of vertices on
each level is exactly double that of the level above.

From thinking about its recursion tree (even if it is much too large to draw),
we can easily calculate how many instructions are needed to move 64 disks. One
instruction is printed for each vertex in the tree, except for the leaves (which are
calls with count == 0). The number of non-leaves is

1+2+4+ - 4258 =20 191 4224 ... 288 = 264 7

Hence the number of moves required altogether for 64 disks is 284 — 1. We can
estimate how large this number is by using the approximation

10% = 1000 ~ 1024 = 210,

(This easy fact is well worth remembering and is frequently used in discussing
computers: The abbreviation K, as in 512K, means 1024.) Thus the number of
moves is approximately

264 = 24 x 280 &~ 2% x 10 = 1.6 x 10'°.

There are about 3.2 x 107 seconds in one year. Suppose that the instructions could
be carried out at the rather frenetic rate of one every second. (The priests have
plenty of practice.) The total task will then take about 5 x 10! years. Astronomers
estimate the age of the universe at less than 20 billion (2 x 101°) years, so, according
to this story, the world will indeed endure a long time—25 times as long as it already
has!

You should note carefully that, although no computer could ever carry out the
full Towers of Hanoi program, it would fail for lack of time, but certainly not for
lack of space. The space needed is only that to keep track of 64 recursive calls, but
the time needed is that required for 254 calculations.
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Consider the function f(n) defined as follows, where n is a nonnegative in-
teger:

0 ifn =0;
f= 1 fGGn) if niseven,n > 0;
1+ f(n—-1) ifnisodd,n > 0.

Calculate the value of f(n) for the following values of n.

(@ n=1. (c) n=3. (e) n =100.
(b) n=2. (d) n=099. (f) n=128.

Consider the function f(n) defined as follows, where n is a nonnegative in-
teger:

n ifn < 1
f(n)= <|n + f(3n) if niseven,n > 1;
fGm+1)+ fEim-1) ifnisodd,n > 1.

For each of the following values of n, draw the recursion tree and calculate the
value of f(n).

(@ n=1. (c) n=3. (e) n=5.
(b) n=2. (d) n =4. (f) n=6.

Compare the running times?! for the recursive factorial function written in this
section with a nonrecursive function obtained by initializing a local variable
to 1 and using a loop to calculate the product n! = 1x 2 x - - - x n. To obtain
meaningful comparisons of the CPU time required, you will probably need to
write a loop in your driver program that will repeat the same calculation of a
factorial several hundred times. Integer overflow will occur if you attempt to
calculate the factorial of a large number. To prevent this from happening, you
may declare n and the function value to have type double instead of int.

Confirm that the running time! for the program hanoi increases approximately
like a constant multiple of 2", where n is the number of disks moved. To do
this, make disks a variable, comment out the line that writes a message to the
user, and run the program for several successive values of disks, such as 10, 11,
..., 15. How does the CPU time change from one value of disks to the next?

You will need one of the standard header files ctime or time. h that accesses a package of functions
for calculating the CPU time used by a C or C++ program; see Appendix C for more details of
this package.
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Recursion is a tool to allow the programmer to concentrate on the key step of an
algorithm, without having initially to worry about coupling that step with all the
others. As usual with problem solving, the first approach should usually be to
consider several simple examples, and as these become better understood, to at-
tempt to formulate a method that will work more generally. Some of the important
aspects of designing algorithms with recursion are as follows:

[l Findthe key step. Begin by asking yourself, “How can this problem be divided
into parts?” or “How will the key step in the middle be done?” Be sure to keep
your answer simple but generally applicable. Do not come up with a multitude
of special cases that work only for small problems or at the beginning and end
of large ones. Once you have a simple, small step toward the solution, ask
whether the remainder of the problem can be done in the same or a similar way,
and modify your method, if necessary, so that it will be sufficiently general.

[l Findastoppingrule. The stopping rule indicates that the problem or a suitable
part of it is done. This stopping rule is usually the small, special case that is
trivial or easy to handle without recursion.

L] Outline your algorithm. Combine the stopping rule and the key step, using
an if statement to select between them. You should now be able to write the
main program and a recursive function that will describe how to carry the key
step through until the stopping rule applies.

[l Check termination. Next, and of great importance, is a verification that the
recursion will always terminate. Start with a general situation and check that,
in a finite number of steps, the stopping rule will be satisfied and the recursion
terminate. Be sure also that your algorithm correctly handles extreme cases.
When called on to do nothing, any algorithm should be able to return gracefully,
but it is especially important that recursive algorithms do so, since a call to do
nothing is often the stopping rule. Notice, as well, that a call to do nothing
is usually not an error for a recursive function. It is therefore usually not
appropriate for a recursive function to generate a message when it performs
an empty call; it should instead simply return silently.

[ Draw a recursion tree. The key tool for the analysis of recursive algorithms
is the recursion tree. As we have seen for the Towers of Hanoi, the height
of the tree is closely related to the amount of memory that the program will
require, and the total size of the tree reflects the number of times the key step
will be done, and hence the total time the program will use. It is usually
highly instructive to draw the recursion tree for one or two simple examples
appropriate to your problem.
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5.2.2 How Recursion Works
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The question of how recursion is actually done in a computer should be carefully
separated in our minds from the question of using recursion in designing algo-
rithms.

[1 Inthe design phase, we should use all problem-solving methods that prove to
be appropriate, and recursion is one of the most flexible and powerful of these
tools.

[1 Inthe implementation phase, we may need to ask which of several methods is
the best under the circumstances.

There are at least two ways to accomplish recursion in computer systems. The first
of these, at present, is only available in some large systems, but with changing costs
and capabilities of computer equipment, it may soon be more common. Our major
point in considering two different implementations is that, although restrictions
in space and time do need to be considered, they should be considered separately
from the process of algorithm design, since different kinds of computer equipment
in the future may lead to different capabilities and restrictions.

1. Multiple Processors: Concurrency

Perhaps the most natural way to think of implementing recursion is to think of
each function not as occupying a different part of the same computer, but to think
of each function as running on a separate machine. In that way, when one function
invokes another, it starts the corresponding machine going, and when the other
machine completes its work, then it sends the answer back to the first machine,
which can then continue its task. If a function makes two recursive calls to itself,
then it will simply start two other machines working with the same instructions
that it is using. When these machines complete their work, they will send the
answers back to the one that started them going. If they, in turn, make recursive
calls, then they will simply start still more machines working.

It used to be that the central processor was the most expensive component of a
computer system, and any thought of a system including more than one processor
would have been considered extravagant. The price of processing power compared
to other computing costs has now dropped radically, and in all likelihood we shall,
before long, see large computer systems that will include hundreds, if not thou-
sands, of identical microprocessors among their components. When this occurs,
implementation of recursion via multiple processors will become commonplace if
not inevitable.

With multiple processors, programmers should no longer consider algorithms
solely as a linear sequence of actions, but should instead realize that some parts
of the algorithm can often be done in parallel (at the same time) as other parts.
Processes that take place simultaneously are called concurrent. The study of con-
current processes and the methods for communication between them is, at present,
an active subject for research in computing science, one in which important devel-
opments will undoubtedly improve the ways in which algorithms will be described
and implemented in coming years.
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2. Single-Processor Implementation: Storage Areas

In order to determine how recursion can be efficiently implemented in a system
with only one processor, let us first for the moment leave recursion to consider
the question of what steps are needed to call a function, on the primitive level of
machine-language instructions in a simple computer.

The hardware of any computer has a limited range of instructions that includes
(amongst other instructions) doing arithmetic on specified words of storage or on
special locations within the CPU called registers, moving data to and from the
memory and registers, and branching (jumping) to a specified address. When a
calling program branches to the beginning of a function, the address of the place
whence the call was made must be stored in memory;, or else the function could not
remember where to return. The addresses or values of the calling parameters must
also be stored where the function can find them, and where the answers can in
turn be found by the calling program after the function returns. When the function
starts, it will do various calculations on its local variables and storage areas. Once
the function finishes, however, these local variables are lost, since they are not
available outside the function. The function will, of course, have used the registers
within the CPU for its calculations, so normally these would have different values
after the function finishes than before itis called. Itistraditional, however, to expect
that a function will change nothing except its calling parameters or global variables
(side effects). Thus it is customary that the function will save all the registers it will
use and restore their values before it returns.

In summary, when a function is called, it must have a storage area (perhaps
scattered as several areas); it must save the registers or whatever else it will change,
using the storage area also for its return address, calling parameters, and local
variables. As it returns, it will restore the registers and the other storage that it was
expected to restore. After the return, it no longer needs anything in its local storage
area.

In this way, we implement function calls by changing storage areas, an action
that takes the place of changing processors that we considered before. In these con-
siderations, it really makes no difference whether the function is called recursively
or not, providing that, in the recursive case, we are careful to regard two recursive
calls as being different, so that we do not mix the storage areas for one call with
those of another, any more than we would mix storage areas for different functions,
one called from within the other. For a nonrecursive function, the storage area can
be one fixed area, permanently reserved, since we know that one call to the func-
tion will have returned before another one is made, and after the first one returns,
the information stored is no longer needed. For recursive functions, however, the
information stored must be preserved until the outer call returns, so an inner call
must use a different area for its temporary storage.

Note that the once-common practice of reserving a permanent storage area for
a nonrecursive function can in fact be quite wasteful, since a considerable amount
of memory may be consumed in this way, memory that might be useful for other
purposes while the function is not active. Thisis, nevertheless, the way that storage
was allocated for functions in older versions of languages like ForTrRAN and CosoL,
and this is the reason why these older languages did not allow recursion.
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3. Re-Entrant Programs

Essentially the same problem of multiple storage areas arises in a quite different
context, that of re-entrant programs. In a large time-sharing system, there may
be many users simultaneously using the C++ compiler, the text-editing system, or
database software. Such systems programs are quite large, and it would be very
wasteful of high-speed memory to keep thirty or forty copies of exactly the same
large set of instructions in memory at once, one for each user. What is often done
instead is to write large systems programs like the text editor with the instructions
in one area, but the addresses of all variables or other data kept in a separate area.
Then, in the memory of the time-sharing system, there will be only one copy of the
instructions, but a separate data area for each user.

This situation is somewhat analogous to students writing a test in aroom where
the questions are written on the blackboard. There is then only one set of questions
that all students can read, but each student separately writes answers on different
pieces of paper. There is no difficulty for different students to be reading the same
or different questions at the same time, and with different pieces of paper, their
answers will not be mixed with each other. See Figure 5.6.

Instructions

LYINRRV Ve VR VI 2oy
MU W ak A AL

4 AN watl NG

Figure 5.6. Example of concurrent, re-entrant processes

4. Data Structures: Stacks and Trees

We have yet to specify the data structure that will keep track of all these storage
areas for functions; to do so, let us look at the tree of function calls. So that an inner
function can access variables declared in an outer block, and so that we can return
properly to the calling program, we must, at every point in the tree, remember all
vertices on the path from the given point back to the root. As we move through
the tree, vertices are added to and deleted from one end of this path; the other end
(at the root) remains fixed. Hence the vertices on the path form a stack; the storage
areas for functions likewise are to be kept as a stack. This process is illustrated in
Figure 5.7.
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Figure 5.7. A tree of function calls and the associated stack frames

From Figure 5.7 and our discussion, we can immediately conclude that the
amount of space needed to implement recursion (which, of course, is related to the
time and space  number of storage areas in current use) is directly proportional to the height of the
requirements  recursion tree. Programmers who have not carefully studied recursion sometimes
mistakenly think that the space requirement relates to the total number of vertices
in the tree. The time requirement of the program is related to the number of times
functions are done, and therefore to the total number of vertices in the tree, but the
space requirement is only that of the storage areas on the path from a single vertex
back to the root. Thus the space requirement is reflected in the height of the tree. A
well-balanced, bushy recursion tree signifies a recursive process that can do much
work with little need for extra space.

5.2.3 Tail Recursion

Suppose that the very last action of a function is to make a recursive call to itself.
In the stack implementation of recursion, as we have seen, the local variables of the
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function will be pushed onto the stack as the recursive call is initiated. When the
recursive call terminates, these local variables will be popped from the stack and
thereby restored to their former values. But doing this step is pointless, because the
recursive call was the last action of the function, so that the function now terminates
and the just-restored local variables are immediately discarded.

When the very last action of a function is a recursive call to itself, it is thus
unnecessary to use the stack, as we have seen, since no local variables need to be
preserved. All that we need to do is to set the dummy calling parameters to their
new values (as specified for the inner recursive call) and branch to the beginning
of the function. We summarize this principle for future reference.

If the last-executed statement of a function is a recursive call to the function itself,
then this call can be eliminated by reassigning the calling parameters to the values
specified in the recursive call, and then repeating the whole function.

The process of this transformation is shown in Figure 5.8. Part (a) shows the storage
areas used by the calling program M and several copies of the recursive function
P, each invoked by the previous one. The colored arrows show the flow of control
from one function call to the next and the blocks show the storage areas maintained
by the system. Since each call by P to itself is its last action, there is no need to
maintain the storage areas after returning from the call. The reduced storage areas
are shown in part (b). Part (c), finally, shows the calls to P as repeated in iterative
fashion on the same level of the diagram.

I
A
Tail
recursion

[ )

y ]
Iteration | P H>>| P G>>| P U

©
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Figure 5.8. Tail recursion
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This special case when a recursive call is the last-executed statement of the
function is especially important because it frequently occurs. It is called tail re-
cursion. You should carefully note that tail recursion means that the last-executed
statement is a recursive call, not necessarily that the recursive call is the last state-
ment appearing in the function. Tail recursion may appeatr, for example, within one
clause of a switch statement or an if statement where other program lines appear
later.

With most compilers, there will be little difference in execution time whether
tail recursion is left in a program or is removed. If space considerations are impor-
tant, however, then tail recursion should often be removed. By rearranging the
termination condition, if needed, it is usually possible to repeat the function using
a do while or a while statement.

Consider, for example, a divide-and-conquer algorithm like the Towers of
Hanoi. The second recursive call inside function move is tail recursion; the first
call is not. By removing the tail recursion, function move of the original recursive
program can be expressed as

void move(int count, int start, int finish, int temp)
/* move: iterative version
Pre: Disk count is a valid disk to be moved.
Post: Moves count disks from start to finish using temp for temporary storage. */

{
int swap; //  temporary storage to swap towers
while (count > 0) { //  Replace the if statement with a loop.
move(count — 1, start, temp, finish); // first recursive call
cout <« "Move disk " < count < " from " « start
< "to" « finish <« "." «< endl;
count——; // Change parameters to mimic the second recursive call.
swap = start;
start = temp;
temp = swap;
}
}

We would have been quite clever had we thought of this version of the function
when we first looked at the problem, but now that we have discovered it via other
considerations, we can give it a natural interpretation. Think of the two towers
start and temp as in the same class: We wish to use them for intermediate storage
as we slowly move all the disks onto finish. To move a pile of count disks onto
finish, then, we must move all except the bottom to the other one of start and temp.
Then move the bottom one to finish, and repeat after interchanging start and temp,
continuing to shuffle all except the bottom one between start and temp, and, at
each pass, getting a new bottom one onto finish.

5.2.4 When Not to Use Recursion

1. Factorials

Consider the following two functions for calculating factorials. We have already
seen the recursive one:
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int factorial(int n)
é: /* factorial: recursive version
Pre: nisa nonnegative integer.
Post: Return the value of the factorial of n. */
{
if (n == 0) return 1;
else return n * factorial(n — 1);
}

There is an almost equally simple iterative version:

int factorial(int n)
/* factorial: iterative version

Pre: nisanonnegative integer.

Post: Return the value of the factorial of n. */
{

int count, product = 1;

for (count = 1; count <= n; count++)

product *= count;
return product;

}
Which of these programs uses less storage space? At first glance, it might appear
n! that the recursive one does, since it has no local variables, and the iterative program
(n— 1) has two. But actually (see Figure 5.9), the recursive program will set up a stack and
fill it with the n numbers
n-2)!
nn-1n-2,...,2,1
2! that are its calling parameters before each recursion and will then, as it works its
1 way out of the recursion, multiply these numbers in the same order as does the
second program. The progress of execution for the recursive function applied with
o! n =5 is as follows:
Figure 5.9. factorial(5) =5 * factorial(4)
Recursion tree for =5 * (4 * factorial(3))
calculating =5 * (4 * (3 = factorial(2)))
factorials =5 % (4 % (3 * (2 * factorial(1))))

= 5% (4% (3% (2 (1~ factorial(0)))))
=5 (4% (3% (2% (1 1))

=55 (45 (3% (2+1)

= 5% (4% (3%6))

=5 (4 +*6)

=5%24

=120.

Thus the recursive program keeps more storage than the iterative version, and it
will take more time as well, since it must store and retrieve all the numbers as well
as multiply them.
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% 131 2. Fibonacci Numbers
A far more wasteful example than factorials (one that also appears as an apparently
recommended program in some textbooks) is the computation of the Fibonacci
numbers, which are defined by the recurrence relation

Fp=0 F =1 F, = Fy.1+ Fy,_ forn = 2.
The recursive program closely follows the definition:

int fibonacci(int n)
/* fibonacci: recursive version
Pre: The parameter n is a nonnegative integer.
Post: The function returns the nth Fibonacci number. */

{

if (n <=0) return O;
else if (n == 1) return1;
else return fibonacci(n — 1) + fibonacci(n — 2);
% 133 }
F7
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Figure 5.10. Recursion tree for the calculation of F7
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In fact, this program is quite attractive, since it is of the divide-and-conquer form:
The answer is obtained by calculating two smaller cases. As we shall see, however,
in this example it is not “divide and conquer,” but “divide and complicate.”

To assess this algorithm, let us consider, as an example, the calculation of F7,
whose recursion tree is shown in Figure 5.10. The function will first have to obtain
Fs and Fs. To get Fs requires Fs and F4, and so on. But after Fs is calculated on
the way to Fg, then it will be lost and unavailable when it is later needed to get F7.
Hence, as the recursion tree shows, the recursive program needlessly repeats the
same calculations over and over. Further analysis appears as an exercise. It turns
out that the amount of time used by the recursive function to calculate F,, grows
exponentially with n.

As with factorials, we can produce a simple iterative program by noting that
we can start at 0 and keep only three variables, the current Fibonacci number and
its two predecessors.

int fibonacci(int n)

/* fibonacci: iterative version
Pre: The parameter n is a nonnegative integer.
Post: The function returns the nth Fibonacci number. */

{
int last_but_one; //  second previous Fibonacci number, F;_»
int last_value; //  previous Fibonacci number, F;_1
int current; //  current Fibonacci number F;

if (n <= 0) return O;
else if (n == 1) return 1,
else {
last_but_one = 0;
last_value = 1;
for(inti=2; i<=n; i++) {
current = last_but_one + last_value;
last_but_one = last_value;
last_value = current;
}
return current;
}
}

The iterative function obviously uses time that increases linearly in (that is, in
direct proportion with) n, so that the time difference between this function and the
exponential time of the recursive function will be vast.

3. Comparisons between Recursion and Iteration

What is fundamentally different between this last example and the proper uses
of recursion? To answer this question, we shall again turn to the examination
of recursion trees. It should already be clear that a study of the recursion tree
will provide much useful information to help us decide when recursion should or
should not be used.



180 Chapter 5 o Recursion

chain
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change data structures

recursion removal

If a function makes only one recursive call to itself, then its recursion tree has
a very simple form: It is a chain; that is, each vertex has only one child. This child
corresponds to the single recursive call that occurs. Such a simple tree is easy to
comprehend. For the factorial function, it is simply the list of requests to calculate
the factorials from (n — 1)! down to 1!. By reading the recursion tree from bottom
to top instead of top to bottom, we immediately obtain the iterative program from
the recursive one. When the tree does reduce to a chain, then transformation from
recursion to iteration is often easy, and it will likely save both space and time.

Note that a function’s making only one recursive call to itself is not at all the
same as having the recursive call made only one place in the function, since this
place might be inside a loop. It is also possible to have two places that issue a
recursive call (such as both the clauses of an if statement) where only one call can
actually occur.

The recursion tree for calculating Fibonacci numbers is not a chain; instead,
it contains a great many vertices signifying duplicate tasks. When a recursive
program is run, it sets up a stack to use while traversing the tree, but if the results
stored on the stack are discarded rather than kept in some other data structure for
future use, then a great deal of duplication of work may occur, as in the recursive
calculation of Fibonacci numbers.

In such cases, it is preferable to substitute another data structure for the stack,
one that allows references to locations other than the top. For the Fibonacci num-
bers, we needed only two additional temporary variables to hold the information
required for calculating the current number.

Finally, by setting up an explicit stack, it is possible to take any recursive pro-
gram and rearrange it into nonrecursive form. The resulting program, however, is
almost always more complicated and harder to understand than is the recursive
version. The only reason for translating a program to remove recursion is if you
are forced to program in a language that does not support recursion, and fewer
and fewer programs are written in such languages.

4. Comparison of Fibonacci and Hanoi: Size of Output

The recursive function for Fibonacci numbers and the recursive procedure for the
Towers of Hanoi have a very similar divide-and-conquer form. Each consists es-
sentially of two recursive calls to itself for cases slightly smaller than the original.
Why, then, is the Hanoi program as efficient as possible while the Fibonacci pro-
gram is very inefficient? The answer comes from considering the size of the output.
In Fibonacci we are calculating only one number, and we wish to complete this cal-
culation in only a few steps, as the iterative function does but the recursive one
does not. For Hanoi, on the other hand, the size of the output is the number of
instructions to be printed, which increases exponentially with the number of disks.
Hence any procedure for the Towers of Hanoi will necessarily require time that
increases exponentially in the number of disks.

5.2.5 Guidelines and Conclusions

In making a decision, then, about whether to write a particular algorithm in recur-
sive or nonrecursive form, a good starting point is to consider the recursion tree.
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If it has a simple form, the iterative version may be better. If it involves dupli-
cate tasks, then data structures other than stacks will be appropriate, and the need
for recursion may disappear. If the recursion tree appears quite bushy, with little
duplication of tasks, then recursion is likely the natural method.

The stack used to resolve recursion can be regarded as a list of postponed
obligations for the program. If this list can be easily constructed in advance, then
iteration is probably better; if not, recursion may be. Recursion is something of
a top-down approach to problem solving; it divides the problem into pieces or
selects out one key step, postponing the rest. Iteration is more of a bottom-up
approach; it begins with what is known and from this constructs the solution step
by step.

Itis always true that recursion can be replaced by iteration and stacks. Itis also
true, conversely (see the references for the proof), that any (iterative) program that
manipulates a stack can be replaced by a recursive program with no stack. Thus
the careful programmer should not only ask whether recursion should be removed,
but should also ask, when a program involves stacks, whether the introduction of
recursion might produce a more natural and understandable program that could
lead to improvements in the approach and in the results.

Exercises 5.2

E1l. In the recursive calculation of F,, determine exactly how many times each
smaller Fibonacci number will be calculated. From this, determine the order-
of-magnitude time and space requirements of the recursive function. [You may
find out either by setting up and solving a recurrence relation (top-down ap-
proach), or by finding the answer in simple cases and proving it more generally
by mathematical induction (bottom-up approach).]

E2. Thegreatestcommon divisor (gcd) of two positive integersis the largest integer
that divides both of them. Thus, for example, the gcd of 8 and 12 is 4, the gcd
of 9 and 18 is 9, and the gcd of 16 and 25 is 1.

(a) Writeanonrecursive functionintged(intx, inty), wherexandy are required
to be positive integers, that searches through the positive integers until it
finds the largest integer dividing both x and y.

(b) Write a recursive function int gecd(int x, int y) that implements Euclid’s
algorithm: If y = 0, then the gcd of x and y is x; otherwise the gcd of x and
y is the same as the gcd of y and x % y.2

(c) Rewrite the function of part (b) into iterative form.

(d) Discuss the advantages and disadvantages of each of these methods.

Recall that % is the modulus operator: The result of x %y is the remainder after the integer
division of integer x by nonzero integery.
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E3. The binomial coefficients may be defined by the following recurrence relation,
which is the idea of Pascal’s triangle. The top of Pascal’s triangle is shown in

Figure 5.11.
C(n,0)=1 and Cin,n)=1 for n > 0.
f 134 Cnk)=Cn-1,k)+Cn-1,k—1) forn>k>D0.
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Figure 5.11. The top of Pascal’s triangle of binomial coefficients

(a) Write a recursive function to generate C(n, k) by the foregoing formula.

(b) Draw the recursion tree for calculating C(6,4).

(c) Use asquare array with n indicating the row and k the column, and write
a nonrecursive program to generate Pascal’s triangle in the lower left half
of the array, that is, in the entries for which k < n.

(d) Write a nonrecursive program that uses neither an array nor a stack to
calculate C(n, k) for arbitrary n > k > 0.

(e) Determine the approximate space and time requirements for each of the
algorithms devised in parts (a), (c), and (d).

E4. Ackermann’s function, defined as follows, is a standard device to determine
how well recursion is implemented on a computer.

AO,n)=n+1 for n > 0.
A(m,0)=A(m -1,1) for m > 0.
Am,n)=Am-1,Am,n-1)) form>0and n > 0.

(a) Write a recursive function to calculate Ackermann’s function.

(b) Calculate the following values. If it is impossible to obtain any of these
values, explain why.

A(0,0) A(0,9) A(1,8) A(2,2) A(2,0)
A(2,3) A3,2) A(4,2) A(4,3) A(4,0)
(c) Write a nonrecursive function to calculate Ackermann’s function.
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As a more complex application of recursion, let us consider the well-known puzzle
of how to place eight queens on a chessboard so that no queen can take another.
Recall that in the rules for chess a queen can take another piece that lies on the same
row, the same column, or the same diagonal (either direction) as the queen. The
chessboard has eight rows and eight columns.

It is by no means obvious how to solve this puzzle, and even the great C. F.
GAuss did not obtain a complete solution when he considered it in 1850. Itis typical
of puzzles that do not seem suitable for completely analytical solutions, but require
either luck coupled with trial and error, or else much exhaustive (and exhausting)
computation. To convince you that solutions to this problem really do exist, two
of them are shown in Figure 5.12.

&y )
&y &

ey ]
=y &

Figure 5.12. Two configurations showing eight nonattacking queens

In this section, we shall develop two programs to solve the eight-queens prob-
lem that will illustrate how the choice of data structures can affect a recursive
program.

5.3.1 Solving the Eight-Queens Puzzle

A person attempting to solve the eight-queens problem will usually soon abandon
attempts to find all (or even one) of the solutions by being clever and will start to
put queens on the board, perhaps randomly or perhaps in some logical order, but
always making sure that no queen placed can take another already on the board.
If the person is lucky enough to place eight queens on the board by proceeding
in this way, then this is a solution; if not, then one or more of the queens must
be removed and placed elsewhere to continue the search for a solution. To start
formulating a program, let us sketch this technique, which we think of as a recursive
function that locates all solutions that begin from a given configuration of queens
on a chessboard. We call the function solve_from. We imagine using a class called
Queens to represent a partial configuration of queens. Thus, we can pass a Queens
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configuration as the parameter for our recursive function, solve_from. In the initial
call to solve_from, from a main program, the parameter Queens configuration is
empty.

solve_from (Queens configuration)
if Queens configuration already contains eight queens
print configuration
else
for every chessboard square p that is unguarded by configuration {
add a queen on square p to configuration;
solve_from(configuration);
remove the queen from square p of configuration;

}

This sketch illustrates the use of recursion to mean “Continue to the next stage and
repeat the task.” Placing a queen in square p is only tentative; we leave it there
only if we can continue adding queens until we have eight. Whether we reach
eight or not, the procedure will return when it finds that it has finished or there are
no further possibilities to investigate. After the inner call has returned, then, our
program goes back to investigate the addition of other possible unguarded squares
to the Queens configuration.

5.3.2 Example: Four Queens
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Let us see how this algorithm works for a simpler problem, that of placing four
queens on a 4 x 4 board, as illustrated in Figure 5.13.

Mo |2 |2 M 2| 2|2 x [t 2 | 2 iy
x [ x | » x| x| x|t x [ x| x [ |
x| x| x|x x [t x | x ol x| x| x Ny
x [ x| x|x x | x |@| x Ay

Dead end Dead end Solution Solution

(@ (b) (c) (d)

Figure 5.13. Solution to the four-queens problem

We shall need to put one queen in each row of the board. Let us first try to
place the queen as far to the left in the row as we can. Such a choice is shown in
the first row of part (a) of Figure 5.13. The question marks indicate other legitimate
choices that we have not yet tried. Before we investigate these choices, we move
on to the second row and try to insert a queen. The first two columns are guarded
by the queen in row 1, as shown by the crossed-off squares. Columns 3 and 4 are
free, so we first place the queen in column 3 and mark column 4 with a question
mark. Next we move on to row 3, but we find that all four squares are guarded by
one of the queens in the first two rows. We have now reached a dead end.
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When we reach a dead end, we must backtrack by going back to the most recent
choice we have made and trying another possibility. This situation is shown in part
(b) of Figure 5.13, which shows the queen in row 1 unchanged, but the queen in
row 2 moved to the second possible position (and the previously occupied position
crossed off as no longer possible). Now we find that column 2 is the only possible
position for a queen in row 3, but all four positions in row 4 are guarded. Hence
we have again reached a point where no other queens can be added, and we must
backtrack.

At this point, we no longer have another choice for row 2, so we must move all
the way back to row 1 and move the queen to the next possible position, column
2. This situation is shown in part (c) of Figure 5.13. Now we find that, in row 2,
only column 4 is unguarded, so a queen must go there. In row 3, then, column
1 is the only possibility, and, in row 4, only column 3 is possible. This placement
of queens, however, does lead to a solution to the problem of four nonattacking
queens on the same 4 x 4 board.

If we wish to find all the solutions, we can continue in the same way, back-
tracking to the last choice we made and changing the queen to the next possible
move. In part (c) we had no choice in rows 4, 3, or 2, so we now back up to row 1
and move the queen to column 3. This choice leads to the unique solution shown
in part (d).

Finally, we should investigate the possibilities with a queen in column 4 of row
1, but, as in part (a), there will be no solution in this case. In fact, the configurations
with a queen in either column 3 or column 4 of row 1 are just the mirror images
of those with a queen in column 2 or column 1, respectively. If you do a left-right
reflection of the board shown in part (c), you will obtain the board shown in (d),
and the boards with a queen in column 4, row 1, are just the reflections of those
shown in parts (a) and (b).

5.3.3 Backtracking

This method is typical of a broad class called backtracking algorithms, which
attempt to complete a search for a solution to a problem by constructing partial
solutions, always ensuring that the partial solutions remain consistent with the
requirements of the problem. The algorithm then attempts to extend a partial
solution toward completion, but when an inconsistency with the requirements of
the problem occurs, the algorithm backs up (backtracks) by removing the most
recently constructed part of the solution and trying another possibility.

Backtracking proves useful in situations where many possibilities may first
appear, but few survive further tests. In scheduling problems (like arranging a
sports tournament), for example, it will likely be easy to assign the first few matches,
but as further matches are made, the constraints drastically reduce the number of
possibilities. Or take the problem of designing a compiler. In some languages, it is
impossible to determine the meaning of a statement until almost all of it has been
read. Consider, for example, the pair of FORTRAN statements

DO17K=1,6
DO17K=1.6
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Both of these are legal: The first starts a loop, and the second assigns the number
1.6 to a variable called DO17K. (ForTRAN ignores all spaces, even spaces inside
identifiers.) In such cases where the meaning cannot be deduced immediately,
backtracking is a useful method in parsing (that is, splitting apart to decipher) the
text of a program.

5.3.4 Overall Outline
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1. The Main Program

Although we still need to fill in a great many details about the data structure that
we will need to represent positions of queens on the chessboard, we can provide a
main program to drive the recursive method already outlined.

We first print information about what the program does. Since it will be useful
to test the program by solving smaller problems such as the four-queens problem,
we allow the user to specify the number (called board_size) of queens to use. We
use a global constant max_board (declared in the header file queens. h) to limit the
maximum number of queens that the program can try to place.

int main()

/*Pre: The user enters a valid board size.
Post: Allsolutions to the n-queens puzzle for the selected board size are printed.
Uses: The class Queens and the recursive function solve_from. #/

int board_size;
print_information();
cout « "What is the size of the board? " « flush;
cin > board_size;
if (board_size < 0 || board_size > max_board)
cout < "The number must be between 0 and " « max_board « endl,
else {
Queens configuration(board_size); // Initialize empty configuration.
solve_from(configuration); // Find all solutions extending configuration.
}
}

2. The Queens Class
The variable definition

Queens configuration(board_size)

uses a constructor, with a parameter, for the class Queens to set the user-selected
board size and to initialize the empty Queens object called configuration. This
empty configuration is passed as a parameter to our recursive function that will
place queens on the board.

The outline of Section 5.3.1 shows that our class Queens will need methods to
print a configuration, to add a queen at a particular square of the chessboard to
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a configuration, to remove this queen, and to test whether a particular square is
unguarded by a configuration. Moreover, any attempt to program our function
solve_from quickly shows the need for Queens data members board_size (to keep
track of the size of the board) and count (to keep track of the number of queens
already inserted).

After we have started building a configuration, how do we find the next square
to try? Once a queen has been put into a given row, no person would waste time
searching to find a place to put another queen in the same row, since the row is
fully guarded by the first queen. There can never be more than one queen in each
row. But our goal is to put board_size queens on the board, and there are only
board_size rows. It follows that there must be a queen, exactly one queen, in every
one of the rows. (This is called the pigeonhole principle: If you have n pigeons
and n pigeonholes, and no more than one pigeon ever goes in the same hole, then
there must be a pigeon in every hole.) Thus, we can proceed by placing the queens
on the board one row at a time, starting with row 0, and we can keep track of where
they are with the single data member count, which therefore not only gives the
total number of queens in the configuration so far but also gives the index of the
first unoccupied row. Hence we shall always attempt to insert the next queen into
the row count of a Queens configuration.

The specifications for the major methods of the class Queens are as follows:

bool Queens:: unguarded(int col) const;

postcondition: Returns true or false according as the square in the first unoc-
cupied row (row count) and column col is not guarded by any
queen.

void Queens::insert(int col);
precondition: The square in the first unoccupied row (row count) and column
col is not guarded by any queen.

postcondition: A queen has been inserted into the square at row count and
column col; count has been incremented by 1.

void Queens::remove(int col);
precondition: There is a queen in the square in row count — 1 and column col.

postcondition: The above queen has been removed; count has been decre-
mented by 1.

bool Queens::is_solved() const;

postcondition: The function returns true if the number of queens already placed
equals board_size; otherwise, it returns false.
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3. The Backtracking Function solve_from

With these decisions, we can now write C++ code for the first version of a recursive

function that places the queens on the board. Note that we pass the function’s pa-

rameter by reference to save the time used to copy a Queens object. Unfortunately,

' although this parameter is just an input parameter, we do make and undo changes
éﬁ to it in the function, and therefore we cannot pass it as a constant reference.

void solve_from(Queens &configuration)
/*Pre: The Queens configuration represents a partially completed arrangement
of nonattacking queens on a chessboard.
Post: All n-queens solutions that extend the given configuration are printed.
The configuration is restored to its initial state.
Uses: The class Queens and the function solve_from, recursively. =/

{
if (configuration.is_solved()) configuration.print();
else
for (int col = 0; col < configuration.board_size; col++)
if (configuration.unguarded(col)) {

configuration.insert(col);
solve_from(configuration); // Recursively continue to add queens.
configuration.remove(col);

}

5.3.5 Refinement: The First Data Structure and Its Methods

An obvious way to represent a Queens configuration is to store the chessboard as

a square array with entries indicating where the queens have been placed. Such

an array will be our first choice for the data structure. The header file for this
! 139 representation is thus:

const int max_board = 30;

class Queens {
public:
Queens(int size);
bool is_solved() const;
void print() const;
bool unguarded(int col) const;
void insert(int col);
void remove(int col);

int board_size; // dimension of board = maximum number of queens
private:
int count; /1 current number of queens = first unoccupied row

bool queen_square [max_board] [max_board];

¥



g 140

Section 5.3 e Backtracking: Postponing the Work 189

With this data structure, the method for adding a new queen is trivial:

void Queens::insert(int col)
/*Pre: The square in the first unoccupied row (row count) and column col is not
guarded by any queen.
Post: A queen has been inserted into the square at row count and column col;
count has been incremented by 1. */
{
queen_square[count++] [col] = true;

}

The methods is_solved, remove, and print are also very easy; these are left as exer-
cises.

To initialize a Queens configuration, we have a constructor that uses its param-
eter to set the size of the board:

Queens:: Queens(int size)
/* Post: The Queens object is set up as an empty configuration on a chessboard
with size squares in each row and column. */

{

board_size = size;

count = 0;

for (int row = 0; row < board_size; row++)

for (int col = 0; col < board_size; col++)
queen_square [row] [col] = false;

We have set the count of placed queens to 0. This constructor is executed whenever
we declare a Queens object and at the same time specify one integer parameter, as
in our main program.

Finally, we must write the method that checks whether or not the square,
located at a particular column in the first unoccupied row of the chessboard, is
guarded by one (or more) of the queens already in a configuration. To do this
we must search the column and both of the diagonals on which the square lies.
Searching the column is straightforward, but finding the diagonals requires more
delicate index calculations. See Figure 5.14 for the case of a 4 x 4 chessboard.

We can identify up to four diagonal directions emerging from a square of a
chessboard. We shall call these the lower-left diagonal (which points downwards
and to the left from the original square), the lower-right diagonal, the upper-left
diagonal, and the upper-right diagonal.

First consider the upper-left diagonal, as shown in part (c) of Figure 5.14. If
we start at a square of the chessboard with position [row] [col], then the squares
belonging to the upper-left diagonal have positions of the form [row — i] [col — i],
where i is a positive integer. This upper-left diagonal must end on either the upper
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Figure 5.14. Chessboard separated into components

edge of the board, where row — i == 0, or the left-hand edge of the board, where
col —i== 0. Therefore, we can list the squares on the upper-left diagonal by
using a for loop to increment i from 1 until one of the conditions row — i >= 0 and
col — i >= 0 fails.

Similar loops delineate the other three diagonals that emerge from a given
square of the board. However, when we come to check whether a particular square
in the first unoccupied row of the chessboard is unguarded, we need never check
the two lower diagonals, since lower squares are automatically unoccupied. There-
fore, only the cases of upper diagonals are reflected in the code for the method
unguarded, which follows.
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bool Queens:: unguarded(int col) const
/* Post: Returns true or false according as the square in the first unoccupied row
(row count) and column col is not guarded by any queen. */
{
inti;
bool ok = true; // turns false if we find a queen in column or diagonal
for (i=0; ok&&i < count; i++)
ok = !'queen_squarel[i] [col]; // Check upper part of column
for (i = 1; ok&&count —i>=0&&col —i>=0; i++)
ok = 'queen_square[count — i][col — i]; // Check upper-left diagonal
for (i = 1; ok&&count — i >=0&&col + i < board_size; i++)
ok = !'queen_square[count — i] [col +i]; // Check upper-right diagonal
return ok;

5.3.6 Review and Refinement
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rapidly increasing
time

first refinement

The program we have just finished is quite adequate for the problem of 8 queens;
it turns out that there are 92 solutions for placing 8 queens on an 8 x 8 chessboard.
If, however, you try running the program on larger sizes of chessboards, you will
find that it quickly starts to consume huge amounts of time. For example, one run
produced the following numbers:

Size 8 9 10 11 12 13
Number of solutions 92 352 724 2680 14200 73712
Time (seconds) 0.05 0.21 1.17 6.62 39.11 243.05
Time per solution (ms.) 0.54 0.60 1.62 2.47 2.75 3.30

Asyou can see, the number of solutions increases rapidly with the size of the board,
and the time increases even more rapidly, since even the time per solution increases
with the size. If we wish to obtain results for larger-sized chessboards, we must
either find a more efficient program or use large amounts of computer time.

Let us therefore ask where our program spends most of its time. Making the
recursive calls and backtracking takes a great deal of time, but this time reflects
the basic method by which we are solving the problem and the existence of a large
number of solutions. The several loops in the method unguarded() will also require
considerable time. Let us see if these loops can be eliminated, that is, whether it
is possible to determine whether or not a square is guarded without searching its
row, column, and diagonals.

Oneway to do thisistochange the datawe keep in the square array representing
the chessboard. Rather than keeping track only of which squares are occupied by
queens, we can use the array to keep track of all the squares that are guarded by
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queens. It is then easy to check if a square is unguarded. A small change helps
with the backtracking, since a square may be guarded by more than one queen.
For each square, we can keep a count of the number of queens guarding the square.
Then, when a queen is inserted, we increase the counts by 1 for all squares on the
same row, column, and diagonals. When a queen is deleted, we simply decrease
all these counts by 1.

Programming this method is left as a project. Let us note that this method,
while faster than the previous one, still requires loops to update the guard counts
for each square. Instead, with a little more thought, we can eliminate all these
loops.

The key idea is to notice that each row, column, and diagonal on the chessboard
can contain at most one queen. (The pigeonhole principle shows that, in a solution,
all the rows and all the columns are occupied, but not all the diagonals will be
occupied, since there are more diagonals than rows or columns.)

We can thus keep track of unguarded squares by using three bool arrays:
col_free, upward_free, and downward_free, where diagonals from the lower left
to the upper right are considered upward and those from the upper left to lower
right are considered downward. (See parts (d) and (e) of Figure 5.14.) Since we
place queens on the board one row at a time, starting at row 0, we do not need an
explicit array to find which rows are free.

Finally, for the sake of printing the configuration, we need to know the column
number for the queen in each row, and this we can do with an integer-valued array
indexed by the rows.

Note that we can now solve the entire problem without even keeping a square
array representing the chessboard, and without any loops at all except for initial-
izing the “free” arrays. Hence the time that our revised program will need will
closely reflect the number of steps investigated in backtracking.

How do we identify the squares along a single diagonal? Along the longest
upward diagonal, the entry indices are

[board_size — 1][0], [board_size — 2][1], ..., [0][board size — 1].

These have the property that the row and column indices always sum to the value
board_size — 1. It turns out that (as shown in part (e) of Figure 5.14) along any
upward diagonal, the row and column indices will have a constant sum. This sum
ranges from 0 for the upward diagonal of length 1 in the upper left corner, to
2 x board_size — 2, for the upward diagonal of length 1 in the lower right corner.
Thus we can number the upward diagonals from 0 to 2 x board_size — 2, so that
the square in row i and column j is in upward diagonal number i + j.

Similarly, along downward diagonals (as shown in part(d) of Figure 5.14), the
difference of the row and column indices is constant, ranging from —board_size + 1
to board_size — 1. Hence, we can number the downward diagonals from 0 to
2 X board_size — 1, so that the square in row i and column j is in downward
diagonal number i — j + board_size — 1.

After making all these decisions, we can now specify our revised Queens data
structure formally.
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class Queens {
public:
Queens(int size);
bool is_solved() const;
void print() const;
bool unguarded(int col) const;
void insert(int col);
void remove(int col);
int board_size;
private:
int count;
bool col_free[max_board];
bool upward_free[2 = max_board — 1];
bool downward_free[2 * max_board — 1];
int queen_in_row[max_board]; // column number of queen in each row

}

We complete our program by supplying the methods for the revised class Queens.
We begin with the constructor:

Queens:: Queens(int size)
/% Post: The Queens object is set up as an empty configuration on a chessboard
with size squares in each row and column. */
{
board_size = size;
count = 0;
for (inti =0; i < board_size; i++) col_free[i] = true;
for (intj = 0; j < (2 = board_size — 1); j++) upward_free[j] = true;
for (intk = 0; k < (2 * board_size — 1); k++) downward_free[k] = true;

}

This is similar to the constructor for the first version, except that now we have
marked all columns and diagonals as unguarded, rather than initializing a square
array.

The method insert() encodes our conventions about the numbering of diago-
nals.

void Queens::insert(int col)
/*Pre: The square in the first unoccupied row (row count) and column col is not
guarded by any queen.
Post: A queen has been inserted into the square at row count and column col;
count has been incremented by 1. */

queen_in_row[count] = col;

col_free[col] = false;

upward_free[count + col] = false;
downward_free[count — col + board_size — 1] = false;
count++;
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Finally, the method unguarded() needs only to test whether the column and two
diagonals that contain a particular square are unguarded.

bool Queens:: unguarded(int col) const
/* Post: Returns true or false according as the square in the first unoccupied row
(row count) and column col is not guarded by any queen. */

{

return col_free[col]
&& upward_free[count + col]
&& downward_free[count — col + board_size — 1];

}

Note how much simpler unguarded() is than it was in the first version. Indeed you
will note that there are no loops in any of the methods, only in the initialization
code in the constructor.

The remaining methods is_solved(), remove(), and print() can safely be left as
exercises.

The following table gives information about the performance of our new pro-
gram for the n-queens problem. For comparison purposes, we produced the data
on the same machine under the same conditions as in the testing of our earlier
program. The timing data shows that for the 8-queens problem the new program
runs about 5 times as fast as the older program. As the board size increases, we
would expect the new program to gain even more on the old program. Indeed for
the 13-queens problem, our new program is faster by a factor of about 7.

Size 8 9 10 1 12 13
Number of solutions 92 352 724 2680 14200 73712
Time (seconds) 0.01 0.05 0.22 1.06 5.94 34.44
Time per solution (ms.) 0.11 0.14 0.30 0.39 0.42 0.47

5.3.7 Analysis of Backtracking

Let us conclude this section by estimating the amount of work that our program
will do.

1. Effectiveness of Backtracking

We begin by looking at how much work backtracking saves when compared with
enumerating all possibilities. To obtain numerical results, we look only at the 8 x 8
case. If we had taken the naive approach by writing a program that first placed all
eight queens on the board and then rejected the illegal configurations, we would
be investigating as many configurations as choosing 8 places out of 64, which is

(684> = 4,426,165,368.
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The observation that there can be only one queen in each row immediately cuts
this number to

8% = 16,777,216.

This number is still large, but our program will not investigate nearly this many
squares. Instead, it rejects squares whose column or diagonals are guarded. The
requirement that there be only one queen in each column reduces the number to

8! = 40,320,

which is quite manageable by computer, and the actual number of cases the pro-
gram considers will be much less than this, since squares with guarded diagonals
in the early rows will be rejected immediately, with no need to make the fruitless
attempt to fill the later rows.

This behavior summarizes the effectiveness of backtracking: positions that are
discovered to be impossible prevent the later investigation of fruitless paths.

Another way to express this behavior of backtracking is to consider the tree
of recursive calls to the recursive function solve_from, part of which is shown in
Figure 5.15. The two solutions shown in this tree are the same as the solutions
shown in Figure 5.12. It appears formally that each node in the tree might have
up to eight children corresponding to the recursive calls to solve_from for the eight
possible values of new _col. Even at levels near the root, however, most of these
branches are found to be impossible, and the removal of one node on an upper
level removes a multitude of its descendents. Backtracking is a most effective tool
to prune a recursion tree to manageable size.

0O
2 L2 30) 40) A5 ()6 7 8
6Q) Q7 8 10 20 30 O7 08
O 8 1 60 oX:]
406

Solution —~—— Solution

Figure 5.15. Part of the recursion tree, eight-queens problem
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2. Lower Bounds

On the other hand, for the n-queens problem, the amount of work done by back-
tracking still grows very rapidly with n. Let us obtain a very rough idea of how
fast. When we place a queen in one row of the chessboard, notice that it excludes
at most 3 positions (its column, upper diagonal, and lower diagonal) from each
following row of the board. For the first row, backtracking will investigate n posi-
tions for the queen. For the second row it must investigate at least n — 3 positions,
for the third row n — 6, and so on. Hence, to place a queen in each of the first n/4
rows, backtracking investigates a minimum of

nn-3)(n —6)...(n — 3n/4)

positions. The last of these factors is n/4; the others are all larger, and there are
n/4 factors. Hence, just to fill the first n/4 rows, backtracking must investigate
more than (n/4)"™/* positions.

To obtain an idea how rapidly this number grows with n, recall that the Tow-
ers of Hanoi requires 2" steps for n disks, and notice that (n/4)™/* grows even
more rapidly than 2" as n increases. To see this, we need only observe that
log((n/4)"%)/log(2")= log(n/4)/4log(2). This ratio clearly increases without
bound as n increases. We say that 2" increases exponentially, and (n/4)*/* in-
creases even more rapidly. Hence backtracking for the n-queens problem becomes
impossibly slow as n increases.

3. Number of Solutions

Notice that we have not proved that it is impossible to print out all solutions to
the n-queens problem by computer for large n, but only that backtracking will
not do so. Perhaps there might exist some other, very clever, algorithm that would
display the solutions much more quickly than backtracking does. This s, however,
not the case. Itis possible (see the references) to prove that the number of solutions
of the n-queens problem cannot be bounded by any polynomial in n. In fact, it
appears that the number of solutions cannot even be bounded by any expression
of the exponential form k™, where k is a constant, but to prove this is an unsolved
problem.

Exercises 5.3

E1l. What is the maximum depth of recursion in the function solve_from?

E2. Starting with the following partial configuration of five queens on the board,
construct the recursion tree of all situations that the function solve_from will
consider in trying to add the remaining three queens. Stop drawing the tree
at the point where the function will backtrack and remove one of the original
five queens.
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By performing backtracking by hand, find all solutions to the problem of plac-
ing five queens on a 5 x 5 board. You may use the left-right symmetry of the
first row by considering only the possibilities when the queen in row 1 is in
one of columns 1, 2, or 3.

Run the eight-queens program on your computer:

(a) Write the missing Queens methods.

(b) Find out exactly how many board positions are investigated by including
a counter that is incremented every time function solve_from is started.
[Note that a method that placed all eight queens before it started checking
for guarded squares would be equivalent to eight calls to solve_from.]

(c) Run the program for the number of queens ranging from 4 to 15. Try to
find a mathematical function that approximates the number of positions
investigated as a function of the number of queens.

A superqueen can make not only all of a queen’s moves, but it can also make
a knight’s move. (See Project P4.) Modify Project P1 so it uses superqueens
instead of ordinary queens.

Describe a rectangular maze by indicating its paths and walls within an array.
Write a backtracking program to find a way through the maze.

Another chessboard puzzle (this one reputedly solved by Gauss at the age of
four) isto find a sequence of moves by a knight that will visit every square of the
board exactly once. Recall that a knight’s move is to jump two positions either
vertically or horizontally and one position in the perpendicular direction. Such
a move can be accomplished by setting x to either 1 or 2, setting y to 3 — x,
and then changing the first coordinate by +x and the second by +y (provided
that the resulting position is still on the board). Write a backtracking program
that will input an initial position and search for a knight’s tour starting at the
given position and going to every square once and no square more than once.
If you find that the program runs too slowly, a good method is to order the list
of squares to which it can move from a given position so that it will first try to
go to the squares with the least accessibility, that is, to the squares from which
there are the fewest knight’s moves to squares not yet visited.



198 Chapter 5 o Recursion

Wi

5.4 TREE-STRUCTURED PROGRAMS: LOOK-AHEAD IN GAMES

P5. Modify the program from Project P4 so that it numbers the squares of the
chessboard in the order they are visited by the knight, starting with 1 in the
square where the knight starts. Modify the program so that it finds a magic
knight’s tour, that is, a tour in which the resulting numbering of the squares
produces a magic square. [See Section 1.6, Project P1(a) for the definition of a
magic square.]

In games of mental skill the person who can anticipate what will happen several
moves in advance has an advantage over a competitor who looks only for immedi-
ate gain. In this section we develop a computer algorithm to play games by looking
at moves several steps in advance. This algorithm can be described in terms of a
tree; afterward we show how recursion can be used to program this structure.

5.4.1 Game Trees

Eight

g 147

evaluation function

We can picture the sequences of possible moves by means of a game tree, in which
the root denotes the initial situation and the branches from the root denote the
legal moves that the first player could make. At the next level down, the branches
correspond to the legal moves by the second player in each situation, and so on,
with branches from vertices at even levels denoting moves by the first player, and
from vertices at odd levels denoting moves by the second player.

The complete game tree for the trivial game of Eight is shown in Figure 5.16.
In this game the first player chooses one of the numbers 1, 2, or 3. At each later
turn the appropriate player chooses one of 1, 2, or 3, but the number chosen by
the previous player is not allowed. The branches of the tree are labeled with the
number chosen. A running sum of the numbers chosen is kept, and if a player
brings this sum to exactly eight, then the player wins. If the player takes the sum
over eight, then the other player wins. No draws are possible. In the diagram, F
denotes a win by the first player, and S a win by the second player.

Even atrivial game like Eight produces agood-sized tree. Games of real interest
like Chess or Go have trees so huge that there is no hope of investigating all the
branches, and a program that runs in reasonable time can examine only a few levels
below the current vertex in the tree. People playing such games are also unable to
see every possibility to the end of the game, but they can make intelligent choices,
because, with experience, a person comes to recognize that some situations in a
game are much better than others, even if they do not guarantee a win.

For any interesting game that we propose to play by computer, therefore, we
shall need some kind of evaluation function that will examine the current situation
and return an integer assessing its benefits. To be definite, we shall assume that
large numbers reflect favorable situations for the first player, and therefore small
(or more negative) numbers show an advantage for the second player.
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Figure 5.16. Tree for the game of Eight

5.4.2 The Minimax Method

Part of the tree for a fictitious game appears in Figure 5.17. Since we are looking

ahead, we need the evaluation function only at the leaves of the tree (that is, the

positions from which we shall not look further ahead in the game), and, from this

information, we wish to select a move. We shall draw the leaves of the game tree

as squares and the remaining nodes as circles. Hence Figure 5.16 provides values
i 146 only for the nodes drawn as squares.

10 0 10 3 8

Figure 5.17. A game tree with values assigned at the leaves
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The move we eventually select is one of the branches coming directly from the
root, atthe top level of the tree. We take the evaluation function from the perspective
of the player who must make the first move, which means that this player selects
the maximum value possible. At the next level down, the other player will select
the smallest value possible, and so on.

By working up from the bottom of the tree, we can assign values to all the
vertices. Let us trace this process part of the way through Figure 5.17, starting at
the lower left side of the tree. The first unlabeled node is the circle above the square
labeled 10. Since there is no choice for the move made at this node, it must also
have the value 10. Its parent node has two children now labeled 5 and 10. This
parent node is on the third level of the tree. That is, it represents a move by the
first player, who wishes to maximize the value. Hence, this player will choose the
move with value 10, and so the value for the parent node is also 10.

Next let us move up one level in the tree to the node with three children. We
now know that the leftmost child has value 10, and the second child has value 7.
The value for the rightmost child will be the maximum of the values of its two
children, 3 and 8. Hence its value is 8. The node with three children is on the
second level; that is, it represents a move by the player who wishes to minimize
the value. Thus this player will choose the center move of the three possibilities,
and the value at this node is therefore 7.

And thus the process continues. You should take a moment to complete the
evaluation of all the nodes in Figure 5.17. The result is shown in Figure 5.18. The
value of the current situation turns out to be 7, and the current (first) player will
choose the leftmost branch as the best move.

Best move

o TTTTTeTh T

Figure 5.18. Minimax evaluation of a game tree
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The dotted lines shown in color will be explained later, in one of the Projects.
It turns out that, by keeping track of the minimum and maximum found so far, it is
not necessary to evaluate every node in a game tree, and, in Figure 5.18, the nodes
enclosed in the dotted lines need not be evaluated. Since in evaluating a game tree
we alternately take minima and maxima, this process is called a minimax method.

5.4.3 Algorithm Development

g 148
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Next let us see how the minimax method can be embodied in a formal algorithm
for looking ahead in a game-playing program. We wish to write a general-purpose
algorithm that can be used with any two-player game.

Our program will need access to information about the particular game that
we want it to play. We shall assume that this information is collected in the imple-
mentation of classes called Move and Board. An object of type Move will represent
a single game move, and an object of type Board will represent a single game posi-
tion. Later we will implement versions of these classes for the game of tic-tac-toe
(noughts and crosses).

For the class Move, we shall only require constructor methods. We shall need
one constructor to create Move objects that might be specified by a client and a
second, default constructor to create empty Move objects. We shall also assume
that Move objects (as well as Board objects) can be passed as value parameters
to functions and can be copied safely with the assignment operator (that is, the
operator =).

For the class Board, we shall clearly require methods to initialize the Board, to
detect whether the game is over, to play a move that is passed as a parameter, to
evaluate a position, and to supply a list of all current legal moves.

The method legal_moves that gives current move options will need a list param-
eter to communicate its results. We have our choice of several list data structures
to hold these moves. The order in which they are investigated in later stages of
look-ahead is unimportant, so they could be kept as any form of list. For simplicity
of programming, let us use a stack. The entries in the stack are moves; so that, in
order to use our earlier Stack implementation, we require the definition:

typedef Move Stack_entry;

We shall also need two other methods, which are useful in our selection of
the most favorable move for the mover, defined to be the player who must make
the next move. The first of these is the method called better: It uses two integer
parameters and returns a nonzero result if the mover would prefer a game value
given by the first rather than the second parameter.

The other method, worst_case, returns a predetermined constant value that
the mover would definitely like less than the value of any possible game position.
Although we will be able to analyze the game without communicating with a user,
any program that uses our analysis to play the game will need Board methods to
print a stored position and to print game instructions.
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Just as a chess player may not touch the pieces on a chessboard except to make
a move, we shall require that the Board methods (other than the one to play a
move) leave Board data members unchanged. The touch-move rule in chess helps
to reassure an arbiter or observer that the game is proceeding fairly, and, in asimilar
way, the protection that we give our class Board reassures a programmer who uses
the class. As we have already seen, in C++, we attach the modifier const after the
parameter list of a method or member function to guarantee that the function will
not change data members of the corresponding object. Thus our definition for the
class Board will take the form:

class Board {

public:
Board(); /! constructor for initialization
int done() const; // Test whether the game is over.

void play(Move try _it);
int evaluate() const;
int legal_moves(Stack &moves) const;
int worst_case() const;
int better(int value, int old_value) const;
// Which parameter does the mover prefer?
void print() const;
void instructions() const;
/* Additional methods, functions, and data will depend on the game under con-
sideration. */

};

Observe that the data members of the class Board will need to keep track of both
the board position and which player is the mover.

Before we write a function that looks ahead to evaluate a game tree, we should
decide when our look-ahead algorithm is to stop looking further. For a game of
reasonable complexity, we must establish a number of levels depth beyond which
the search will not go. The other condition for termination is that the game is over:
this is detected by a return of true from Board :: done(). The basic task of looking
ahead in the tree can now be described with the following recursive algorithm.

look_ahead at game (a Board object);
if the recursion terminates (i.e. depth == 0 or game.done())
return an evaluation of the position
else
for each legal Move
create a new Board by making the Move
and recursively look_ahead for the game value corresponding
to the best follow-up Move for the other player;
select the best option for the mover among values found in the loop;
return the corresponding Move and value as the result;
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! 149 The outline of Section 5.4.3 leads to the following recursive function.

int look_ahead(const Board &game, int depth, Move & ecommended)
/*Pre: Board game represents a legal game position.
Post: An evaluation of the game, based on looking ahead depth moves, is re-
turned. The best move that can be found for the mover is recorded as
Move recommended.
Uses: The classes Stack, Board, and Move, together with function look_ahead
recursively. */
{
if (game.done() || depth == 0)
return game.evaluate();
else {
Stack moves;
game.legal_moves(moves);
int value, best_value = game.worst_case();

while (! moves.empty()) {
Move try_it, reply;
moves.top(try_it);
Board new_game = game;
new_game.play(try_it);
value = look_ahead(new_game, depth — 1, reply);
if (game.better(value, best_value)) {
/l  try_itis the best move yet found
best_value = value;
recommended = try_it;
}
moves.pop();
}
return best_value;
}
}

The reference parameter Move recommended is used to return a recommended
move (unless the game is over or the depth of search is 0). The reference parame-
ter Board game could be specified as a value parameter, since we do not want to
change the Board in the function. However, to avoid a possibly expensive copy-
ing operation, we pass game as a constant reference parameter. Observe that the
compiler can guarantee that the object Board game is unchanged by the function
look_ahead, because the only Board methods that are applied have been declared
with the modifier const. Without this earlier care in our definition of the class
Board, it would have been illegal to pass the parameter Board game as a constant.
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5.4.5 Tic-Tac-Toe

Study
—_— 7

main program

We shall finish this section by giving implementations of the classes Board and
Move for use in the game of tic-tac-toe (houghts and crosses). Here, the classes
consist of little more than a formal implementation of the rules of the game.

We leave the writing of a main program that harnesses these classes with the
function look_ahead to play a game of tic-tac-toe as a project. A number of options
could be followed in such a program: the computer could play against a human
opponent, give a complete analysis of a position, or give its assessments of the
moves of two human players.

We shall represent the grid for a tic-tac-toe game as a 3 x 3 array of integers,
and we shall use the value 0 to denote an empty square and the values 1 and 2 to
denote squares occupied by the first and second players, respectively.

In a Move object, we shall just store the coordinates of a square on the grid.
For legal moves, these coordinates will be between 0 and 2. We shall not try
to encapsulate Move objects, because they act as little more than holders for a
collection of data values. We thus arrive at the following implementation of the
class Move.

//  class for a tic-tac-toe move
class Move {
public:

Move();

Move(int r, int c);

int row;

int col;

%

Move :: Move()
/*Post: The Move is initialized to an illegal, default value. */
{
row = 3;
col =3;
}
Move :: Move(int r, int c)
/*Post: The Move is initialized to the given coordinates. */
{
row =r;
col =¢;

}

We have seen that the class Board needs a constructor (to initialize agame), methods
print and instructions (which print out information for a user), methods done, play,
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and legal_moves (which implement rules of the game), and methods evaluate,
better, and worst_case (which make judgments about the values of various moves).
We shall find it useful to have an auxiliary function the_winner, which returns a
result to indicate whether the game has been won and, if it has, by which player.

The Board class must also store data members to record the current game state
in a 3 x 3 array and to record how many moves have been played. We thus arrive
at the following class definition.

class Board {
public:
Board();
bool done() const;
void print() const;
void instructions() const;
bool better(int value, int old_value) const;
void play(Move try_it);
int worst_case() const;
int evaluate() const;
int legal_moves(Stack &moves) const;
private:
int squares[3] [3];
int moves_done;
int the_winner() const;

%

The constructor simply fills the array squares with the value 0 to indicate that
neither player has made any moves.

Board :: Board()
/* Post: The Board is initialized as empty. */
{
for(inti=0; i<3; i++)
for(intj=0; j<3; j++)
squares[i][j] =0;
moves_done = 0;

}

We shall leave the methods that print information for the user as exercises; instead
we concentrate next on methods that apply the rules of the game. To make a
move, we need only reset the value of one of the squares and update the counter
moves_done to record that another move has been played. The value of the counter
moves_done is used to calculate whether player 1 or player 2 should be credited
with the move.
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void Board:: play(Move try_it)
é: /*Post: The Move try it is played on the Board. */
' {
squares[try_it.row] [try_it.col] = moves_done % 2 + 1,
moves_done++;

}

The auxiliary function the_winner returns a nonzero result if either player has won.
determine a winner It tests all eight possible lines of the Board in turn.

int Board :: the_winner() const
/* Post: Return either a value of O for a position where neither player has won, a
value of 1 if the first player has won, or a value of 2 if the second player
has won. =/
{
inti;
for(i=0; i<3; i++)
if (squares[i] [0] &&squares[i][0] == squares[i][1]
&& squares[i] [0] == squares[i][2])
return squares[i] [0];
for(i=0; i<3; i++)
if (squares[0] [i] &&squares[0][i] == squares[1] [i]
&& squares[0] [i] == squares[2] [i])
return squares[0] [i];
if (squares[0] [0] &&squares[0] [0] == squares[1][1]
&& squares[0] [0] == squares[2][2])
return squares[0] [0];
if (squares[0] [2] &&squares[0] [2] == squares[1][1]
&& squares[2] [0] == squares[0] [2])
return squares[0] [2];
return O;

}

The game is finished either after nine moves have been played or when one or the

other player has won. (Our program will not recognize that the game is guaranteed
! 154 to be a draw until all nine squares are filled.)

bool Board:: done() const
/* Post: Return true if the game is over; either because a player has already won
or because all nine squares have been filled. */
{
return moves_done == 9 || the_winner() > 0;

}
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The legal moves available for a player are just the squares with a value of 0.

int Board :: legal_moves(Stack &moves) const
/*Post: The parameter Stack moves is set up to contain all possible legal moves
on the Board. */
{
int count = 0;
while (!moves.empty()) moves.pop();
for(inti=0; i<3; i++)
for(intj=0; j<3; j++)
if (squares[i][j] == 0) {
Move can_play(i, j);
moves. push(can_play);
count++;
}
return count;

}

We now come to the methods that must make a judgment about the value of a
Board position or of a potential Move. We shall initially evaluate a Board position
as 0 if neither player has yet won; however, if one or other player has won, we
shall evaluate the position according to the rule that quick wins are considered
very good, and quick losses are considered very bad. Of course, this evaluation
will only ever be applied at the end of a look_ahead and, so long as we look far
enough ahead, its crude nature will not be a drawback.

int Board :: evaluate() const
/* Post: Return either a value of 0 for a position where neither player has won, a
positive value between 1 and 9 if the first player has won, or a negative
value between —1 and —9 if the second player has won, */
{
int winner = the_winner();
if (winner == 1) return 10 — moves_done;
else if (winner == 2) return moves_done — 10;
else return O;

}

The method worst_case can simply return a value of either 10 or — 10, since evaluate
always produces a value between —9 and 9. Hence, the comparison method better
needs only to compare a pair of integers with values between —10 and 10. We leave
these methods as exercises.

We have now sketched out most of a program to play tic-tac-toe. A program
that sets the depth of look-ahead to a value of 9 will play a perfect game, since it
will always be able to look ahead to a situation where its evaluation of the position
is exact. A program with shallower depth can make mistakes, because it might
finish its look-ahead with a collection of positions that misleadingly evaluate as
zero.
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Exercises 5.4

Programming
Projects 5.4

Wi

Wi

alpha-beta pruning

EL

E2.

E3.

P1.

P2.

Assign values of +1 for a win by the first player and —1 for a win by the second
player in the game of Eight, and evaluate its game tree by the minimax method,
as shown in Figure 5.16.

A variation of the game of Nim begins with a pile of sticks, from which a player
can remove 1, 2, or 3 sticks at each turn. The player must remove at least 1 (but
no more than remain on the pile). The player who takes the last stick loses.
Draw the complete game tree that begins with

(a) 5 sticks (b) 6 sticks.

Assign appropriate values for the leaves of the tree, and evaluate the other
nodes by the minimax method.

Draw the top three levels (showing the first two moves) of the game tree for the
game of tic-tac-toe (noughts and crosses), and calculate the number of vertices
that will appear on the fourth level. You may reduce the size of the tree by
taking advantage of symmetries: At the first move, for example, show only
three possibilities (the center square, a corner, or a side square) rather than
all nine. Further symmetries near the root will reduce the size of the game
tree.

Write a main program and the Move and Board class implementations to play
Eight against a human opponent.

If you have worked your way through the tree in Figure 5.17 in enough detail,
you may have noticed that it is not necessary to obtain the values for all the
vertices while doing the minimax process, for there are some parts of the tree
in which the best move certainly cannot appear.

Let us suppose that we work our way through the tree starting at the lower
left and filling in the value for a parent vertex as soon as we have the values for
all its children. After we have done all the vertices in the two main branches
on the left, we find values of 7 and 5, and therefore the maximum value will
be at least 7. When we go to the next vertex on level 1 and its left child, we
find that the value of this child is 3. At this stage, we are taking minima, so
the value to be assigned to the parent on level 1 cannot possibly be more than
3 (it is actually 1). Since 3 is less than 7, the first player will take the leftmost
branch instead, and we can exclude the other branch. The vertices that, in
this way, need never be evaluated are shown within dotted lines in color in
Figure 5.18.

The process of eliminating vertices in this way is called alpha-beta pruning.
The Greek letters « (alpha) and B (beta) are generally used to denote the cutoff
points found.

Modify the function look_ahead so that it uses alpha-beta pruning to re-
duce the number of branches investigated. Compare the performance of the
two versions in playing several games.
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POINTERS AND PITFALLS

1. Recursion should be used freely in the initial design of algorithms. It is espe-
! 155 cially appropriate where the main step toward solution consists of reducing a
problem to one or more smaller cases.

2. Study several simple examples to see whether recursion should be used and
how it will work.

3. Attempt to formulate a method that will work more generally. Ask, “How can
this problem be divided into parts?” or “How will the key step in the middle
be done?”

4. Ask whether the remainder of the problem can be done in the same or a similar
way, and modify your method if necessary so that it will be sufficiently general.

5. Find a stopping rule that will indicate that the problem or a suitable part of it
is done.

6. Be very careful that your algorithm always terminates and handles trivial cases
correctly.

7. The key tool for the analysis of recursive algorithms is the recursion tree. Draw
the recursion tree for one or two simple examples appropriate to your problem.

8. The recursion tree should be studied to see whether the recursion is needlessly
repeating work, or if the tree represents an efficient division of the work into
pieces.

9. A recursive function can accomplish exactly the same tasks as an iterative
function using a stack. Consider carefully whether recursion or iteration with
g 156 a stack will lead to a clearer program and give more insight into the problem.

10. Tail recursion may be removed if space considerations are important.

11. Recursion can always be translated into iteration, but the general rules will
often produce a result that greatly obscures the structure of the program. Such
obscurity should be tolerated only when the programming language makes it
unavoidable, and even then it should be well documented.

12. Study your problem to see if it fits one of the standard paradigms for recur-
sive algorithms, such as divide and conquer, backtracking, or tree-structured
algorithms.

13. Letthe use of recursion fit the structure of the problem. When the conditions of
the problem are thoroughly understood, the structure of the required algorithm
will be easier to see.

14. Always be careful of the extreme cases. Be sure that your algorithm terminates
gracefully when it reaches the end of its task.

15. Do as thorough error checking as possible. Be sure that every condition that
a function requires is stated in its preconditions, and, even so, defend your
function from as many violations of its preconditions as conveniently possible.
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REVIEW QUESTIONS

5.1 1. Define the term divide and conquer.

5.2 2. Name two different ways to implement recursion.
3. What is a re-entrant program?

4. How does the time requirement for a recursive function relate to its recursion
tree?

5. How does the space requirement for a recursive function relate to its recursion
tree?

6. What is tail recursion?

7. Describe the relationship between the shape of the recursion tree and the effi-
ciency of the corresponding recursive algorithm.

8. What are the major phases of designing recursive algorithms?
9. What is concurrency?

10. What important kinds of information does the computer system need to keep
while implementing a recursive function call?

11. Is the removal of tail recursion more important for saving time or for saving
space?

5.3 12. Describe backtracking as a problem-solving method.
13. State the pigeonhole principle.
5.4 14. Explain the minimax method for finding the value of a game.

15. Determine the value of the following game tree by the minimax method.
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REFERENCES FOR FURTHER STUDY

Two books giving thorough introductions to recursion, with many examples, and
serving as excellent supplements to this book are:

Eric S. RogerTs, Thinking Recursively, John Wiley & Sons, New York, 1986, 179 pages.
The Towers of Hanoi is quite well known and appears in many textbooks. A survey
of related papers is

D. Woob, “The Towers of Brahma and Hanoi revisited,” Journal of Recreational Math

14 (1981-82), 17-24.
The proof that stacks may be eliminated by the introduction of recursion appears
in

S. BRown, D. Gries and T. Szymanski, “Program schemes with pushdown stores,”

SIAM Journal on Computing 1 (1972), 242-268.
Consult the references at the end of the previous chapter for several good sources
for examples and applications of recursion. One of the earlier books containing
algorithms for both the knight’s tour and eight-queens problems is

N. WirtH, Algorithms + Data Structures = Programs, Prentice Hall, Englewood Cliffs,

N.J., 1976.
For a general discussion of the n-queens problem, including a proof that the number
of solutions cannot be bounded by any polynomial in n, see

Icor RivIN, ILAN VARDI, and PAuL ZIMMERMANN, “The n-Queens Problem,” The Amer-
ican Mathematical Monthly 101(7) (1994), 629-639.

Many other applications of recursion appear in books such as

E. HorowiTz and S. SaHni, Fundamentals of Computer Algorithms, Computer Science
Press, 1978, 626 pages.

This book (pp. 290-302) contains more extensive discussion and analysis of game
trees and look-ahead programs. The general theory of recursion forms a research
topic. A readable presentation from a theoretical approach is

R. S. Birp, Programs and Machines, John Wiley, New York, 1976.
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HIS CHAPTER turns from restricted lists, like stacks and queues, in which
changes occur only at the ends of the list, to more general lists in which
insertions, deletions, and retrievals may occur at any point of the list. After
examining the specification and implementation of such lists, we study
lists of characters, called strings, develop a simple text editor as an application,
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standard template
library

Let us begin with our definition of an abstract data type that we call a list. Like
a stack or a queue, a list has a sequence of entries as its data value. However,
unlike a stack or a queue, a list permits operations that alter arbitrary entries of the
sequence.

A list of elements of type T is a finite sequence of elements of T together with
the following operations:

Construct the list, leaving it empty.

Determine whether the list is empty or not.
Determine whether the list is full or not.

Find the size of the list.

Clear the list to make it empty.

Insert an entry at a specified position of the list.
Remove an entry from a specified position in the list.
Retrieve the entry from a specified position in the list.

© © N o ok wDd P

Replace the entry at a specified position in the list.

[N
=

Traverse the list, performing a given operation on each entry.

There are many other operations that are also useful to apply to sequences of el-
ements. Thus we can form a wide variety of similar ADTs by utilizing different
packages of operations. Any one of these related ADTs could reasonably go by
the name of list. However, we fix our attention on one particular list ADT whose
operations give a representative sampling of the ideas and problems that arise in
working with lists.

The standard template library provides a rather different data structure called a
list. The STL list provides only those operations that can be implemented efficiently
in a List implementation known as doubly linked, which we shall study shortly. In
particular, the STL list does not allow random access to an arbitrary list position, as
provided by our List operations for insertion, removal, retrieval, and replacement.
Another STL template class, called a vector, does provide some random access to
a sequence of data values. An STL vector bears some similarity to our List ADT,
in particular, it provides the operations that can be implemented efficiently in the
List implementation that we shall call contiguous. In this way, our study of the List
ADT provides an introduction to the STL classes list and vector.

213
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6.1.1 Method Specifications

operations, When we first studied stacks, we applied information hiding by separating our uses
information hiding,  for stacks from the actual programming of these operations. In studying queues,
and implementations e continued this practice and soon saw that many variations in implementation
are possible. With general lists, we have much more flexibility and freedom in
accessing and changing entries in any part of the list. The principles of information
hiding are hence even more important for general lists than for stacks or queues.
Let us therefore begin by enumerating postconditions for all the methods that we
! 159 wish to have available for lists.
A constructor is required before a list can be used:

constructor List:: List();
postcondition: The List has been created and is initialized to be empty.

The next operation takes a list that already exists and empties it:

reinitialization void List:: clear();
postcondition: All List entries have been removed,; the List is empty.

Next come the operations for checking the status of a list:

status operations bool List::empty() const;

postcondition: The function returns true or false according to whether the List
is empty or not.

bool List:: full() const;

postcondition: The function returns true or false according to whether the List
is full or not.

int List ::size() const;
postcondition: The function returns the number of entries in the List.

We now consider operations that access entries of a list. Asin our earlier treatment
of stacks and queues, we shall suppose that, whenever necessary, our methods will
report problems by returning an Error_code. We shall use a generic type called
List_entry to stand for entries of our list.
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To find an entry in a list, we use an integer that gives its position within the list.
We shall number the positions in a list so that the first entry in the list has position
0, the second position 1, and so on. Hence, locating an entry of a list by its position
is superficially like indexing an array, but there are important differences. First, if
we insert an entry at a particular position, then the position numbers of all later
entries increase by 1. If we remove an entry, then the positions of all following
entries decrease by 1. Moreover, the position number for a list is defined without
regard to the implementation. For a contiguous list, implemented in an array, the
position will indeed be the index of the entry within the array. But we will also
use the position to find an entry within linked implementations of a list, where no
indices or arrays are used at all.

We can now give precise specifications for the methods of a list that access a
single entry.

Error_code List::insert(int position, const List_entry &x);

postcondition: Ifthe Listis not fulland 0 < position < n, where n is the number
of entries in the List, the function succeeds: Any entry formerly
at position and all later entries have their position numbers in-
creased by 1, and x is inserted at position in the List.
Else: The function fails with a diagnostic error code.

Note that insert allows position ==n, since it is permissible to insert an entry after
the last entry of the list. The following methods, however, require position < n,
since they refer to a position that must already be in the list.

Error_code List:: remove(int position, List_entry &x);

postcondition: If 0 < position < n, where n is the number of entries in the List,
the function succeeds: The entry at position is removed from the
List, and all later entries have their position numbers decreased
by 1. The parameter x records a copy of the entry formerly at
position.
Else: The function fails with a diagnostic error code.

Error_code List:: retrieve(int position, List_entry &x) const;

postcondition: If 0 < position < n, where n is the number of entries in the List,
the function succeeds: The entry at position is copied to x; all
List entries remain unchanged.
Else: The function fails with a diagnostic error code.
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Error_code List:: replace(int position, const List_entry &x);

postcondition: If 0 < position < n, where n is the number of entries in the List,
the function succeeds: The entry at position is replaced by x; all
other entries remain unchanged.
Else: The function fails with a diagnostic error code.

A method to traverse a list, performing a task on entries, often proves useful: It is
especially useful for testing purposes. A client using this traverse method specifies
the action to be carried out on individual entries of the list; the action is applied in
turn to each entry of the list. For example, a client that has two functions,

void update(List_entry &x) and void modify(List_entry &x),
and an object List the_list, could use a command
the_list.traverse(update) or the_list.traverse(modify)

to perform one or the other of the operations on every entry of the list. If, as
scaffolding, the client desires to print out all the entries of a list, then all that is
needed is a statement

the_list.traverse(print);

where void print(List_entry &x) is a function that prints a single List_entry.

In these calls to the method traverse, the client merely supplies the name of
the function to be performed as a parameter. In C++, a function’s name, without
any parentheses, is evaluated as a pointer to the function. The formal parameter,
visit, for the method traverse must therefore be declared as a pointer to a function.
Moreover, this pointer declaration must include the information that the function
*Vvisit has void return type and a List_entry reference parameter. Hence, we obtain
the following specification for the method traverse:

void List:: traverse(void (*visit)(List_entry &));

postcondition: The action specified by function =visit has been performed on
every entry of the List, beginning at position 0 and doing each
in turn.

As with all parameters, visit is only a formal name that is initialized with a pointer
value when the traverse method is used. The expression =visit stands for the func-
tion that will be used during traversal to process each entry in the list.

In the next section, we shall turn to implementation questions.
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6.2 IMPLEMENTATION OF LISTS

ElL

Given the methods for lists described in this section, write functions to do each
of the following tasks. Be sure to specify the preconditions and postconditions
for each function. You may use local variables of types List and List_entry, but
do not write any code that depends on the choice of implementation. Include
code to detect and report an error if a function cannot complete normally.

Error_code insert_first(const List_entry &x, List &a_list) inserts entry x into po-
sition 0 of the List a_list.

Error_code remove_first(List_entry &x, List &a_list) removes the first entry of
the List a_list, copying it to x.

Error_code insert_last(const List_entry &x, List &a_list) inserts x as the last entry
of the List a_list.

Error_code remove_last(List_entry &x, List &a_list) removes the last entry of
a_list, copying it to x.

Error_code median_list(List_entry &x, List &a_list) copies the central entry of the
List a_list to x if a_list has an odd number of entries; otherwise, it copies the
left-central entry of a_list to x.

Error_code interchange(int posl, int pos2, List &a_list) interchanges the entries
at positions posl and pos2 of the List a_list.

void reverse_traverse_list(List &a_list, void (*visit)(List_entry &)) traverses the
List a_list in reverse order (from its last entry to its first).

Error_code copy(List &dest, List &source) copiesall entries from source into dest;
source remains unchanged. You may assume that dest already exists, but any
entries already in dest are to be discarded.

Error_code join(List &list1, List &list2) copies all entries from list1 onto the end
of list2; listl remains unchanged, as do all the entries previously in list2.

void reverse(List &a_list) reverses the order of all entries in a_list.

Error_code split(List &source, List &oddlist, List &evenlist) copiesall entriesfrom
source so that those in odd-numbered positions make up oddlist and those in

even-numbered positions make up evenlist. You may assume that oddlist and
evenlist already exist, but any entries they may contain are to be discarded.

At this point, we have specified how we wish the operations of our list ADT to
behave. It is now time to turn to the details of implementing lists in C++. In our
previous study of stacks and queues, we programmed two kinds of implemen-
tations: contiguous implementations using arrays, and linked implementations
using pointers. For lists we have the same division, but we shall find several vari-
ations of further interest.

We shall implement our lists as generic template classes rather than as classes;

we therefore begin with a brief review of templates.
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6.2.1 Class Templates
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Suppose that a client program needs three lists: alist of integers, a list of characters,
and a list of real numbers. The implementation tools we have developed so far are
inadequate, since, if we use a typedef to set the type List_entry to one of int, char,
or double, then we cannot use the same List class to set up lists with the other two
types of entries. We need to set up a generic list, one whose entry type is not yet
specified, but one that the client program can specialize in order to declare lists
with the three different entry types.

In C++, we accomplish this aim with a template construction, which allows
us to write code, often code to implement a class, that uses objects of a generic
type. In template code we utilize a parameter to denote the generic type, and
later, when a client uses our code, the client can substitute an actual type for the
template parameter. The client can thus obtain several actual pieces of code from
our template, using different actual types in place of the template parameter.

For example, we shall implement a template class List that depends on one
generic type parameter. A client can then use our template to declare a list of
integers with a declaration of the following form:

List<int> first_list;

Moreover, in the same program, the client could also set up a list of characters with
a declaration:
List<char> second_list;

In these declaration statements, our client customizes the class template by speci-
fying the value of the template’s parameter between angled brackets.

We see that templates provide a new mechanism for creating generic data struc-
tures. One advantage of using templates rather than our prior, simple treatment
of generics is that a client can make many different specializations of a given data
structure template in a single application. For example, the lists first_list and sec-
ond_list that we declared earlier have different entry types but can coexist in the
same client program. The lack of precisely this flexibility, in our earlier treatment
of generics, restricted our choice of Stack implementation in the polynomial project
of Section 4.5.

The added generality that we get by using templates comes at the price of
slightly more complicated class specifications and implementations. For the most
part, we just need to prefix templated code with the keyword template and a
declaration of template parameters. Thus our later template class List, which uses
agenericentry type called List_entry, is defined by adding members to the following
specification:

template <class List_entry>
class List{
//  Add in member information for the class.

h&
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6.2.2 Contiguous Implementation
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In a contiguous list implementation, we store list data in an array with max_list
entries of type List_entry. Just as we did for contiguous stacks, we must keep
a count of how much of the array is actually taken up with list data. Thus, we
must define a class with all of the methods of our list ADT together with two data
members.

template <class List_entry>
class List {
public:
// methods of the List ADT
List();
int size() const;
bool full() const;
bool empty() const;
void clear();
void traverse(void (*visit)(List_entry &));
Error_code retrieve(int position, List_entry &x) const;
Error_code replace(int position, const List_entry &x);
Error_code remove(int position, List_entry &x);
Error_code insert(int position, const List_entry &x);

protected:

// data members for a contiguous list implementation
int count;
List_entry entry[max_list];

¥

Many of the methods (List, clear, empty, full, size, retrieve) have very simple im-
plementations. However, these methods all depend on the template parameter
List_entry, and so must be implemented as templates too. For example, the method
size can be written with the following function template:

template <class List_entry>
int List<List_entry>::size() const
/* Post: The function returns the number of entries in the List. =/

{

return count;

}

We leave the other simple methods as exercises and concentrate on those methods
that access data in the list. To add entries to the list, we must move entries within
the array to make space to insert the new one. The resulting function template is:
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template <class List_entry>

Error_code List<List_entry>::insert(int position, const List_entry &x)

/= Post: If the List is not full and 0 < position < n, where n is the number of
entries in the List, the function succeeds: Any entry formerly at position
and all later entries have their position numbers increased by 1 and x is
inserted at position of the List.

Else: The function fails with a diagnostic error code. */

if (full())
return overflow;

if (position < 0 || position > count)
return range_error;

for (inti = count — 1; i >= position; i——)
entry[i + 1] = entry[i];

entry[position] = x;

count++;

return success;

}

How much work does this function do? If we insert an entry at the end of the list,
then the function executes only a small, constant number of commands. If, at the
other extreme, we insert an entry at the beginning of the list, then the function must
move every entry in the list to make room, so, if the list is long, it will do much
more work. In the average case, where we assume that all possible insertions are
equally likely, the function will move about half the entries of the list. Thus we say
that the amount of work the function does is approximately proportional to n, the
length of the list.

Deletion, similarly, must move entries in the list to fill the hole left by the
removed entry. Hence deletion also requires time approximately proportional to
n, the number of entries. Most of the remaining operations, on the other hand, do
not use any loops and do their work in constant time. In summary;,

In processing a contiguous list with n entries:

[l insert and remove require time approximately proportional to 7.

[l List, clear, empty, full, size, replace, and retrieve operate in constant time.

We have not included traverse in this discussion, since its time depends on the
time used by its parameter visit, something we do not know in general. The imple-
mentation of traverse must include a loop through all n elements of the list, so we
cannot hope that its time requirement is ever less than proportional to n. However,
for traversal with a fixed parameter visit, the time requirement is approximately
proportional to n.
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template <class List_entry>
void List<List_entry>::traverse(void (*visit)(List_entry &))
/= Post: The action specified by function (*visit) has been performed on every entry
of the List, beginning at position 0 and doing each in turn. =/
{
for (inti=0; i <count; i++)
(>visit)(entry[i]);

6.2.3 Simply Linked Implementation
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1. Declarations

For a linked implementation of a list, we can begin with declarations of nodes. Our
nodes are similar to those we used for linked stacks and queues, but we now make
them depend on a template parameter.

template <class Node_entry>
struct Node {
//  data members

Node_entry entry;

Node<Node_entry> *next;
// constructors

Node();

Node(Node_entry, Node<Node_entry> *link = NULL);
+
We have included two constructors, the choice of which depends on whether or
not the contents of the Node are to be initialized. The implementations of these
constructors are almost identical to those for the linked nodes that we used in
Section 4.1.3. Once we have defined the struct Node, we can give the definition for
a linked list by filling in the following skeleton:

template <class List_entry>

class List {

public:

// Specifications for the methods of the list ADT go here.

// The following methods replace compiler-generated defaults.
~List();
List(const List<List_entry> &copy);
void operator = (const List<List_entry> &copy);

protected:

// Data members for the linked list implementation now follow.
int count;
Node<List_entry> *head;

// The following auxiliary function is used to locate list positions
Node<List_entry> *set_position(int position) const;

h &
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In the definition we have omitted the method prototypes, because these are iden-
tical to those used in the contiguous implementation. As well as protected data
members, we have included a protected member function set_position that will
prove useful in our implementations of the methods.

2. Examples

To illustrate some of the kinds of actions we need to perform with linked lists, let
us consider for a moment the problem of editing text, and suppose that each node
holds one word as well as the link to the next node. The sentence “Stacks are Lists”
appearsasin (a) of Figure 6.1. If we insert the word “simple” before the word “Lists”
we obtain the list in (b). Next we decide to replace “Lists” by “structures” and insert
the three nodes “but important data” to obtain (c). Afterward, we decide to remove
“simple but” and so arrive at list (d). Finally, we traverse the list to print its contents.

(a) | Stacks are lists. 1

(b) | Stacks | ® > are . lists. J_L simple J

(c) | Stacks > are ( structures. 1 simple

( but important data L

(d) | Stacks > are ( structures. 1 simple

( but 5 important >| data

Figure 6.1. Actions on a linked list
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3. Finding a List Position

Several of the methods for lists make use of a function called set_position that takes
as its parameter a position (that is, an integer index into the list) and returns a pointer
to the corresponding node of the list.

We should declare the visibility of set_position as protected. This is because
set_position returns a pointer to, and therefore gives access to, a Node in the List.
Any client with access to set_position would have access to all of the data in the
corresponding List. Therefore, to maintain an encapsulated data structure, we must
restrict the visibility of set_position. By giving it a protected visibility we ensure
that it is only available as a tool for constructing other methods of the List.

The easiest way, conceptually, to construct set_position is to start at the begin-
ning of the List and traverse it until we reach the desired node:

template <class List_entry>
Node<List_entry> *List<List_entry>::set_position(int position) const
/> Pre: position is a valid position in the List; 0 < position < count.
Post: Returns a pointer to the Node in position. */
{
Node<List_entry> *q = head,;
for (inti = 0; i < position; i++) q = g->next;
return q;

}

Since we control exactly which functions can use set_position, there is no need to
include error checking: Instead, we impose preconditions. Indeed the functions
that call set_position will include their own error checking so it would be inefficient
to repeat the process in set_position.

If all nodes are equally likely, then, on average, the set_position function must
move halfway through the List to find a given position. Hence, on average, its time
requirement is approximately proportional to n, the size of the List.

4. Insertion

Next let us consider the problem of inserting a new entry into a linked List. If we
have a new entry that we wish to insert into the middle of a linked List, then, as
shown in Figure 6.2, we set up pointers to the nodes preceding and following the
place where the new entry is to be inserted. If we let new_node point to the new
node to be inserted, previous point to the preceding node, and following point to
the following node, then this action consists of the two statements

new_node->next = following;
previous—>next = new_node;

We can now build this code into a function for inserting a new entry into a
linked List. Observe that the assignment new_node->next = following is carried
out by the constructor that initializes new_node. Insertion at the beginning of the
List must be treated as a special case, since the new entry then does not follow any
other.
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previous following
previous Node following Node
> \\ AV 4
previous —> next new_node —> next
new Node
N
new_node O

Figure 6.2. Insertion into a linked list

template <class List_entry>
Error_code List<List_entry>::insert(int position, const List_entry &x)
/> Post: If the List is not full and 0 < position < n, where n is the number of

{

}

entries in the List, the function succeeds: Any entry formerly at position
and all later entries have their position numbers increased by 1, and x is
inserted at position of the List.

Else: The function fails with a diagnostic error code. */

if (position < 0 || position > count)
return range_error;
Node<List_entry> xnew_node, *previous, *following;
if (position > 0) {
previous = set_position(position — 1);
following = previous->next;
}
else following = head;
new_node = new Node<List_entry>(x, following);
if (new_node == NULL)
return overflow;
if (position == 0)
head = new_node;
else
previous—>next = new_node;
count++;
return success;

Apart from the call to set_position the steps performed by insert do not depend on
the length of the List. Therefore, itoperates, like set_position, in time approximately
proportional to n, the size of the List.
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5. Other Operations

The remaining operations for linked lists will all be left as exercises. Those that
access a particular position in the List all need to use the function set_position,
sometimes for the current position and sometimes, as in insert, for the previous
position. All these functions turn out to perform at most a constant number of
steps other than those in set_position, except for clear (and traverse), which go
through all entries of the List. We therefore have the conclusion:

In processing a linked List with n entries:

[l clear, insert, remove, retrieve, and replace require time approximately propor-
tional to n.

[l List, empty, full, and size operate in constant time.

Again, we have not included traverse in this discussion, since its time depends
on the time used by its parameter visit, something we do not know in general.
However, as before, for a fixed parameter visit, the time required by traverse is
approximately proportional to n.

Keeping the Current Position

Many applications process the entries of a list in order, moving from one entry to the
next. Many other applications refer to the same entry several times, doing retrieve
or replace operations before moving to another entry. For all these applications,
our current implementation of linked lists is very inefficient, since every operation
that accesses an entry of the list begins by tracing through the list from its start
until the desired position is reached. It would be much more efficient if, instead,
we were able to remember the last-used position in the list and, if the next operation
refers to the same or a later position, start tracing through the list from this last-used
position.

Note, however, that remembering the last-used position will not speed up
every application using lists. If, for example, some program accesses the entries
of a linked list in reverse order, starting at its end, then every access will require
tracing from the start of the list, since the links give only one-way directions and
so remembering the last-used position gives no help in finding the one preceding
it.

One problem arises with the method retrieve. This method is defined as a
constant method, but its implementation will need to alter the last-used position of
a List. We recognize that although this operation does change some data members
of a List object, it does not change the sequence of entries that represents the actual
value of the object. In order to make sure that the C++ compiler agrees, we must
define the data members that record the last-used position of a List with a storage
modifier of mutable. The keyword mutable is a relatively recent addition to C++,
and it is not yet available in all implementations of the language. Mutable data
members of a class can be changed, even by constant methods.
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The enlarged definition for a list is obtained by adding method specifications
to the following skeleton:

template <class List_entry>
class List {

public:
// Add specifications for the methods of the list ADT.

//  Add methods to replace the compiler-generated defaults.

protected:
//  Data members for the linked-list implementation with
//  current position follow:
int count;
mutable int current_position;
Node<List_entry> *head;
mutable Node<List_entry> *current;
// Auxiliary function to locate list positions follows:
void set_position(int position) const;

h &

Observe that although we have added extra members to our earlier class defini-
tion, all of the new members have protected visibility. This means that, from the
perspective of a client, the class looks exactly like our earlier implementation.

We can rewrite set_position to use and change the new data members of this
class. The current position is now a member of the class List, so there is no longer a
need for set_position to return a pointer; instead, the function can simply reset the
pointer current directly within the List.

template <class List_entry>

void List<List_entry>::set_position(int position) const

/= Pre: position is a valid position in the List: 0 < position < count.
Post: The current Node pointer references the Node at position. */

{
if (position < current_position) { // must start over at head of list
current_position = 0;
current = head;
}

for (; current_position = position; current_position++)
current = current->next;

}

Note that, for repeated references to the same position, neither the body of the if
statement nor the body of the for statement will be executed, and hence the function
will take almost no time. If we move forward only one position, the body of the
for statement will be executed only once, so again the function will be very fast.
On the other hand, when it is necessary to move backwards through the List, then
the function operates in almost the same way as the version of set_position used
in the previous implementation.
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With this revised version of set_position we can now revise the linked-list im-
plementation to improve its efficiency. The changes needed to the various methods
are minor, and they will all be left as exercises.

6.2.5 Doubly Linked Lists
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doubly linked list

Some applications of linked lists require that we frequently move both forward and
backward through the list. In the last section we solved the problem of moving
backwards by traversing the list from its beginning until the desired node was
found, but this solution is generally unsatisfactory. Its programming is difficult,
and the running time of the program will depend on the length of the list, which
may be quite long.

There are several strategies that can be used to overcome this problem of finding
the node preceding the given one. In this section, we shall study the simplest and,
in many ways, the most flexible and satisfying strategy.

o : : Il
L =

Figure 6.3. A doubly linked list

1. Declarations for a Doubly Linked List

The idea, as shown in Figure 6.3, is to keep two links in each node, pointing in
opposite directions. Hence, by following the appropriate link, we can move in
either direction through the linked list with equal ease. We call such a list a doubly
linked list.

In a doubly linked list, the definition of a Node becomes

template <class Node_entry>
struct Node {
// data members
Node_entry entry;
Node<Node_entry> *next;
Node<Node_entry> *back;
// constructors
Node();
Node(Node_entry, Node<Node_entry> *link_back = NULL,
Node<Node_entry> *link_next = NULL);

b3

The Node constructor implementations are just minor modifications of the con-
structors for the singly linked nodes of Section 4.1.3. We therefore proceed straight
to a skeleton definition of a doubly-linked list class.



228

%

g 175

g 176

Chapter 6 o Lists and Strings

template <class List_entry>
class List {
public:

// Add specifications for methods of the list ADT.
// Add methods to replace compiler generated defaults.
protected:
// Data members for the doubly-linked list implementation follow:
int count;
mutable int current_position;
mutable Node<List_entry> xcurrent;
// The auxiliary function to locate list positions follows:
void set_position(int position) const;

b

In this implementation, it is possible to move in either direction through the List
while keeping only one pointer into the List. Therefore, in the declaration, we keep
only a pointer to the current node of the List. We do not even need to keep pointers
to the head or the tail of the List, since they, like any other nodes, can be found by
tracing back or forth from any given node.

2. Methods for Doubly Linked Lists

With a doubly linked list, retrievals in either direction, finding a particular position,
insertions, and deletions from arbitrary positions in the list can be accomplished
without difficulty. Some of the methods that make changes in the list are longer
than those for simply linked lists because it is necessary to update both forward
and backward links when a node is inserted or removed from the list.

First, to find a particular location within the list, we need only decide whether to
move forward or backward from the initial position. Then we do a partial traversal
of the list until we reach the desired position. The resulting function is:

template <class List_entry>

void List<List_entry>::set_position(int position) const

/> Pre: position is a valid position in the List: 0 < position < count.
Post: The current Node pointer references the Node at position. */

{
if (current_position <= position)
for (; current_position = position; current_position++)
current = current->next;
else
for (; current_position != position; current_position——)
current = current->back;
}

Given this function, we can now write the insertion method, which is made some-
what longer by the need to adjust multiple links. The action of this function is
shown in Figure 6.4.

Special care must be taken when the insertion is at one end of the List or into a
previously empty List.



previous

Section 6.2 e Implementation of Lists 229

following

XK

current
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new_node

Tﬂ——”

Figure 6.4. Insertion into a doubly linked list

template <class List_entry>
Error_code List<List_entry>::insert(int position, const List_entry &x)
/> Post: If the List is not full and 0 < position < n, where n is the number of

{

entries in the List, the function succeeds: Any entry formerly at position
and all later entries have their position numbers increased by 1 and x is
inserted at position of the List.

Else: the function fails with a diagnostic error code. */

Node<List_entry> *new_node, =following, *preceding;
if (position < 0 || position > count) return range_error;

if (position == 0) {
if (count == 0) following = NULL;
else {
set_position(0);
following = current;
3
preceding = NULL;
}
else {
set_position(position — 1);
preceding = current;
following = preceding—>next;

}

new_node = new Node<List_entry>(x, preceding, following);

if (new_node == NULL) return overflow;

if (preceding = NULL) preceding->next = new_node;
if (following = NULL) following—>back = new_node;
current = new_node;

current_position = position;

count++;

return success;
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The cost of a doubly linked list, of course, is the extra space required in each Node
for a second link. For most applications, however, the amount of space needed for
the information member, entry, in each Node is much larger than the space needed
for a link, so the second link member in each Node does not significantly increase
the total amount of storage space required for the List.

6.2.6 Comparison of Implementations

advantages

overflow

changes

disadvantages

space use

random access

programming

Now that we have seen several algorithms for manipulating linked lists and several
variations in their structure and implementation, let us pause to assess some relative
advantages of linked and of contiguous implementation of lists.

The foremost advantage of linked lists in dynamic storage is flexibility. Over-
flow is no problem until the computer memory is actually exhausted. Especially
when the individual entries are quite large, it may be difficult to determine the
amount of contiguous static storage that might be needed for the required arrays
while keeping enough free for other needs. With dynamic allocation, there is no
need to attempt to make such decisions in advance.

Changes, especially insertions and deletions, can be made in the middle of a
linked list more quickly than in the middle of a contiguous list. If the structures are
large, then it is much quicker to change the values of a few pointers than to copy
the structures themselves from one location to another.

The first drawback of linked lists is that the links themselves take space—space
that might otherwise be needed for additional data. In most systems, a pointer
requires the same amount of storage (one word) as does an integer. Thus a list of
integers will require double the space in linked storage that it would require in
contiguous storage.

On the other hand, in many practical applications, the nodes in the list are
quite large, with data members taking hundreds of words altogether. If each node
contains 100 words of data, then using linked storage will increase the memory
requirement by only one percent, an insignificant amount. In fact, if extra space is
allocated to arrays holding contiguous lists to allow for additional insertions, then
linked storage will probably require less space altogether. If each entry takes 100
words, then contiguous storage will save space only if all the arrays can be filled
to more than 99 percent of capacity.

The major drawback of linked lists is that they are not suited to random access.
With contiguous storage, a client can refer to any position within a list as quickly
as to any other position. With a linked list, it may be necessary to traverse a long
path to reach the desired node. Access to a single node in linked storage may
even take slightly more computer time, since it is necessary, first, to obtain the
pointer and then go to the address. This last consideration, however, is usually of
no importance. Similarly, you may find at first that writing methods to manipulate
linked lists takes a bit more programming effort, but, with practice, this discrepancy
will decrease.
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In summary, therefore, we can conclude as follows:

Contiguous storage is generally preferable

when the entries are individually very small;
when the size of the list is known when the program is written;
when few insertions or deletions need to be made except at the end of the list; and

OO0Oodd

when random access is important.

Linked storage proves superior

1 when the entries are large;
L1 when the size of the list is not known in advance; and
L1 when flexibility is needed in inserting, deleting, and rearranging the entries.

Finally, to help choose one of the many possible variations in structure and imple-
mentation, the programmer should consider which of the operations will actually
be performed on the list and which of these are the most important. Is there locality
of reference? That s, if one entry is accessed, is it likely that it will next be accessed
again? Are the entries processed in order or not? If so, then it may be worthwhile
to maintain the last-used position as part of the list structure. Is it necessary to
move both directions through the list? If so, then doubly linked lists may prove
advantageous.

Exercises 6.2

E1l. Write C++ functions to implement the remaining operations for the contiguous
implementation of a List, as follows:

(a) The constructor List (e) replace
(b) clear () retrieve
(c) empty (g) remove
(d) full

E2. Write C++ functions to implement the constructors (both forms) for singly
linked and doubly linked Node objects.
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E3. Write C++functionstoimplementthe following operations for the (first) simply
linked implementation of a list:

(a) The constructor List (g) empty

(b) The copy constructor (h) full

(c) The overloaded assignment (i) replace
operator (j) retrieve

(d) The destructor ~List (k) remove

(e) clear () traverse

(f) size

E4. Write remove for the (second) implementation of simply linked lists that re-
members the last-used position.

E5. Indicate which of the following functions are the same for doubly linked lists
(as implemented in this section) and for simply linked lists. For those that are
different, write new versions for doubly linked lists. Be sure that each function
conforms to the specifications given in Section 6.1.

(a) The constructor List (g) empty
(b) The copy constructor (h) full
(c) The overloaded assignment (i) replace
operator () insert
(d) The destructor ~List (k) retrieve
Programming (e) clear (I) remove
(f) size (m) traverse

Projects 6.2

P1. Prepare acollection of files containing the declarations for a contiguous listand
all the functions for list processing.

P2. Write a menu-driven demonstration program for general lists, based on the
Wi one in Section 3.4. The list entries should be characters. Use the declarations
and the functions for contiguous lists developed in Project P1.

P3. Create a collection of files containing declarations and functions for processing
Wi linked lists.
(a) Use the simply linked lists as first implemented.
(b) Use the simply linked lists that maintain a pointer to the last-used position.
W% (c) Use doubly linked lists as implemented in this section.

P4. In the menu-driven demonstration program of Project P2, substitute the col-
lection of files with declarations and functions that support linked lists (from
W1¢€" Project P3) for the files that support contiguous lists (Project P1). If you have
designed the declarations and the functions carefully, the program should op-
erate correctly with no further change required.

w{v;" P5. (a) Modify the implementation of doubly linked lists so that, along with the
pointer to the last-used position, it will maintain pointers to the first node
and to the last node of the list.

(b) Use this implementation with the menu-driven demonstration program of
Project P2 and thereby test that it is correct.
(c) Discuss the advantages and disadvantages of this variation of doubly

Wf"s‘ linked lists in comparison with the doubly linked lists of the text.
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P6. (a) Write a program that will do addition, subtraction, multiplication, and
division for arbitrarily large integers. Each integer should be represented
as a list of its digits. Since the integers are allowed to be as large as you
like, linked lists will be needed to prevent the possibility of overflow. For
some operations, it is useful to move backwards through the list; hence,
doubly linked lists are appropriate. Multiplication and division can be
done simply as repeated addition and subtraction.

(b) Rewrite multiply so that itis not based on repeated addition but on standard
multiplication where the first multiplicand is multiplied with each digit of
the second multiplicand and then added.

(c) Rewrite the divide operation so that it is not based on repeated subtraction
but on long division. It may be necessary to write an additional function
that determines if the dividend is larger than the divisor in absolute value.

In this section, we shall implementaclass to represent strings of characters. Astring
is defined as a sequence of characters. Examples of strings are "'This is a string"
or ""Name?", where the double quotes (" ) are not part of the string. There is
an empty string, denoted ""**. Since strings store sequences of data (characters), a
string ADT is a kind of list. However, because the operations that are normally
applied to a string differ considerably from the operations of our list ADT, we will
not base our strings on any of our earlier list structures.

We begin with a review of the string processing capabilities supplied by the
C++ language.

6.3.1 Strings in C++

C-strings
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conventions

The C++ language provides a pair of implementations of strings. The more primi-
tive of these is just a C implementation of strings. Like other parts of the C language,
it is available in all implementations of C++. We shall refer to the string objects
provided by this implementation as C-strings. C-strings reflect the strengths and
weaknesses of the C language: They are widely available, they are very efficient,
but they are easy to misuse with disastrous consequences. C-strings must conform
to a collection of conventions that we now review.

Every C-string has type char =. Hence, a C-string references an address in
memory; the referenced address is the first of a contiguous set of bytes that store
the characters making up the string. The storage occupied by the string must
terminate with the special character value "\0’. The compiler cannot enforce any
of these conventions, but any deviation from the rules is likely to resultin a run-time
crash. In other words, C-string objects are not encapsulated.

The standard header file <cstring> contains a library of functions that ma-
nipulate C-strings. In older C++ compilers, this header file is sometimes called
<string.h>. These library functions are convenient, efficient, and represent al-
most every string operation that we could ever wish to use. For example, suppose
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that s and t are C-strings. Then the operation strlen(s) returns the length of s, str-
cmp(s, t) reveals the lexicographic order of s and t, and strstr(s, t) returns a pointer
to the first occurrence of the string t in s. Moreover, in C++ the output operator <
is overloaded to apply to C-strings, so that a simple instruction cout < s prints the
string s.

Although the implementation of C-strings has many excellent features, it has
some serious drawbacks too. In fact, it suffers from exactly the problems that we
identified in studying linked data structures in Section 4.3. It is easy for a client
to create either garbage or aliases for string data. For example, in Figure 6.5, we
illustrate how the C-string assignment s = t leads to both of these problems.

"important string" "acquires an alias"

Lost data Alias data

Figure 6.5. Insecurities of C-string objects

Another problem often arises in applications that use C-strings. Uninitialized
C-strings should store the value NULL. However, many of the string library functions
fail (with a run-time crash) when presented with a NULL string object. For example,
the statements

char *x = NULL;
cout < strlen(x);

are accepted by the compiler, but, for many implementations of the C-string library,
they generate a fatal run-time error. Thus, client code needs to test preconditions
for C-string functions very carefully.

In C++, it is easy to use encapsulation to embed C-strings into safer class-based
implementations of strings. Indeed, the standard template library includes a safe
string implementation in the header file <string>. This library implements a class
called std::string that is convenient, safe, and efficient. Since this library is not
included with older C++ compilers, we shall develop our own safe String ADT
that uses encapsulation and object-oriented techniques to overcome the problems
that we have identified in C-strings.

6.3.2 Implementation of Strings

class String

In order to create a safer string implementation, we embed the C-string representa-
tion as a member of a class String. It is very convenient to add the string length as a
second data member in our class. Moreover, our class String can avoid the problems
of aliases, garbage creation, and uninitialized objects by including an overloaded
assignment operator, a copy constructor, a destructor, and a constructor.
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For later applications, it will be extremely convenient to be able to apply the
comparison operators <, >, <=, >=, == , I= to determine the lexicographic re-
lationship between a pair of strings. Therefore, our class String will include over-
loaded comparison operators.

We shall also equip the class String with a constructor that uses a parameter of
type char =. This constructor provides a convenient translator from C-string objects
to String objects. The translator can be called explicitly with code such as:

String s(*'some_string");
In this statement, the String s is constructed by translating the C-string
“'some_string"".

Our constructor is also called implicitly, by the compiler, whenever client code
requires a type cast from type char = to String. For instance, the constructor is
invoked in running the following statements:

String s;
s = "'some_string"’;

To translate the second statement, the C++ compiler first calls our new construc-
tor to cast "'some_string'* to a temporary String object. It then calls the overloaded
String assignment operator to copy the temporary String to s. Finally, it calls the
destructor for the temporary String.

Itis very useful to have a similar constructor to convert from a List of characters
to a String. For example, when we read a String from a user, it is most convenient to
read characters into a linked list. Once the list is read, we can apply our translator
to turn the linked list into a String.

Finally, itis useful to be able to convert String objects to corresponding C-string
objects. For example, such a conversion allows us to apply many of the C-string
library functions to String data. We shall follo