Visual C++ .NET Developer’s Guide

John Paul Mueller

McGraw-Hill/Osborne
2600 Tenth Street
Berkeley, California 94710
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please
contact McGraw-Hill/Osborne at the above address. For information on translations or book
distributors outside the U.S.A., please see the International Contact Information page
immediately following the index of this book.

Copyright © 2002 by The McGraw-Hill Companies. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 CUS CUS 01987654321

Book p/n 0-07-213262-0 and CD p/n 0-07-213282-5
parts of
ISBN 0-07-213281-7

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Acquisitions Editor
Ann Sellers

Project Editor
Katie Conley

Acquisitions Coordinator
Tim Madrid

Technical Editor
Bill Burris

Copy Editor
Carl Wikander

Proofreader
Carol Burbo

Indexer
Irv Hershman

Computer Designers
Tara A. Davis, Lauren McCarthy

Illustrators
Michael Mueller, Greg Scott, Lyssa Wald

Cover lllustration
Eliot Bergman

Cover Series Design
Greg Scott

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources,
McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from use of such information.

This book is dedicated to Micah Schlobohm.
| appreciate her kindness, thoughtfulness, and desire to help.
She’s the kind of friend that more people should have, but unfortunately don't.

About the Author

John Mueller is a freelance author and technical editor. He has writing in his blood, having
produced 53 books and over 200 articles to date. The topics range from networking to
artificial intelligence, and from database management to heads down programming. Some of
his current books include a SOAP developer guide, a small business and home office
networking guide, and a Windows 2000 Performance, Tuning, and Optimization book. His
technical editing skills have helped over 25 authors refine the content of their manuscripts.
John has provided technical editing services to both Data Based Advisor and Coast
Compute magazines. He's also contributed articles to magazines like SQL Server
Professional, Visual C++ Developer, and Visual Basic Developer. He is currently the editor
of the .NET electronic newsletter for Pinnacle Publishing.

When John isn’t working at the computer, you can find him in his workshop. He’s an avid
woodworker and candle maker. On any given afternoon, you can find him working at a lathe
or putting the finishing touches on a bookcase. One of his newest craft projects is making
glycerin soap, which comes in handy for gift baskets. You can reach John on the Internet at
JMueller@mwt.net. John is also setting up a Web site at: http://www.mwt.net/~jmueller/; feel
free to look and make suggestions on how he can improve it. One of his current projects is
creating book FAQ sheets that should help you find the book information you need much
faster.

Acknowledgments

Thanks to my wife, Rebecca, for working with me to get this book completed. | really don'’t
know what | would have done without her help in researching and compiling some of the
information that appears in this book (especially the Glossary). She also did a fine job of
proofreading my rough draft and page proofing the final result.

Bill Burris deserves thanks for his technical edit of this book. He greatly added to the
accuracy and depth of the material you see here. | really appreciate the time he devoted to
checking my code for accuracy. Bill also supplied some of the URLSs you see in the book and
other helpful tips and hints.

http://www.mwt.net/~jmueller/

Matt Wagner, my agent, deserves credit for helping me get the contract in the first place and
taking care of all the details that most authors don't really consider. | always appreciate his
help. It's good to know that someone wants to help.

Finally, I would like to thank Ann Sellers, Timothy Madrid, Katie Conley, Carl Wikander, and
the rest of the production staff at McGraw-Hill/Osborne for their assistance in bringing this
book to print. | especially appreciate Ann’s patience when things didn’t go exceptionally well.
Tim provided me with many thought-provoking messages and was always willing to talk with
me when | needed help.

Introduction

Unless you've been hiding in a cave in a remote part of the earth, Microsoft has inundated
you with news of .NET by now. Microsoft's marketing machine is working overtime, as usual,
to ensure you don’t miss their latest and greatest product. If you listen to the Microsoft hype,
it seems that they expect everyone to drop billions (trillions?) of lines of code and adopt
.NET tomorrow. What the hype doesn’t mention is that adopting .NET completely means
starting from scratch.

The real world is a different place than the fantasyland of Microsoft hype. In the real world,
developers have to maintain existing code at the lowest possible cost and still produce new
applications in record time. The task seems impossible when you have two completely
different technologies to develop these applications. On the one hand, you have the realm of
MFC and the Win32 API. On the other hand, you have the new .NET Framework. Which do
you choose for a given task?

Answering the question of which technology to use is one of the biggest problems this book
will tackle. We'll discuss how to use the old, the new, and, most importantly, the mixed
environments of Visual C++ .NET. Knowing when .NET can actually help you create an
application faster is the key to managing application development in an environment where
you have two different architectures to consider.

Microsoft's .NET Framework is an exciting new technology for a developer looking for every
productivity enhancement available. My purpose in writing this book is to help you balance
the usefulness of this new technology against the need to maintain existing code. By the
time you complete this book, you'll not only know how to work with .NET to create some
relatively complex applications, but you'll better understand when .NET is a good choice for
application development.

What’s in This Book

Visual C++ .NET Developer’'s Guide contains a mix of theory and programming examples,
with a heavy emphasis on the programming examples. You'll find a mix of Win32, MFC,
ATL, and .NET code within the book. In some cases, I'll show you how to mix an existing
technology with a new one—Visual C++ .NET is definitely a transitional language, one that
will help you move from Win32 application development to .NET. Here’s a brief overview of
the six parts of this book.

Part —Visual C++ in General

This part of the book introduces you to some of the new features in Visual C++ .NET. We'll
also discuss some basic programming principles. You'll learn how to create various types of
applications. Most of the code in this part is unmanaged. However, this part includes some
managed code examples that show how you'd create the same result as an unmanaged
counterpart using the .NET Framework.

You'll also learn some advanced coding processes in this part of the book. We'll discuss
threads in Chapter 3, and I'll show you how to create two types of threads. The graphics
programming examples in Chapter 4 include both static graphics and animated graphics
using GIFs. Chapter 5 will help you understand the intricacies of Active Directory, while
Chapter 6 shows how to create components using both ATL and MFC.

Part II—Visual C++ .NET and Database Management

Database management is an essential part of every business today. Chapter 7 of this part
tells you about the various technologies and indicates when you can best use them to your
advantage. We also look at how to create and use DSNs.

Chapter 8 is the unmanaged coding example for this part. You'll learn how to use OLE-DB to
create a basic database application that includes a form view, printing, and search routines.
This section of the book also tells you how to get around certain problems with the Visual
C++ .NET environment. For example, Visual C++ .NET doesn't ship with all of the controls
found in Visual Studio 6. Some of your applications might require these controls, so | show
how to install them. Unfortunately, some controls won't work even if you do install them, and
I show you how to get around some of these problem areas.

Chapter 9 is the managed coding example for this part. We discuss ODBC .NET in this
chapter. Unfortunately, ODBC .NET wasn'’t ready in time for the book, so you won’t see a
coding example. We’'ll create a managed example using ADO .NET that includes use of the
new DataGrid control (among others). This section also shows how to create a print routine
and other database application basics.

Part Ill—Visual C++ and Online Computing

Distributed applications are becoming more prominent as businesses move to the Internet in
an effort to remain connected with partners, employees, and customers. This part of the
book shows you how to work with SOAP and discusses Web Services in general. You'll also
learn how to work with alternative devices such as PDAs. Chapter 10 contains a simple
ASP.NET example that helps you understand the benefits of this technology. Chapter 11
shows you how to create both ISAPI Filters and ISAPI Extensions as well as a SOAP
application that relies on the Microsoft SOAP Toolkit. Most of the examples in this part of the
book rely on unmanaged programming techniques.

Part [V—Visual C++ .NET and Microsoft.NET

Most of the examples in this part of the book rely on managed programming techniques.
You'll learn how to create various types of managed applications that rely exclusively on the
.NET Framework. Chapter 12 is unique because it compares Visual C++ .NET to C# and
even provides an example in both languages for comparison purposes. This is also the
chapter to read if you want to learn how to move your applications to .NET. Chapter 13 is
your key for learning about the new attributed programming techniques provided with Visual
C++ .NET. Attributes greatly reduce the coding burden for the developer. Examples in this
chapter use both managed and unmanaged coding techniques. Chapter 14 shows you how
to work with managed components. You'll also create a custom attribute and use reflection
to read its contents from the compiled application.

Part V—The Developer View of Visual C++ .NET

This part of the book contains a mix of topics that didn’t fit well anywhere else, but are
extremely important for the developer. Chapter 15 discusses the inner workings of Security
within Windows 2000 and Windows XP. Security is an important topic in a world where
crackers make it their business to test your applications for holes in every way possible.
Chapter 16 shows how to create administration tools for your applications. Most complex
applications require some type of configuration and “tweaking” as part of the installation and
maintenance cycle. Using the Microsoft Management Console (MMC) to maintain your
application makes sense because it reduces the user interface design burden for the
developer and reduces the amount of code required to create the management program.
Chapter 17 shows you how to create various types of help files. Microsoft is always moving

on to some new form of help, but sometimes you need to use the older forms of the help file
as well. This chapter shows how to create both. Finally, Chapter 18 shows how to package
your application once you finish building it.

Part VI—Appendixes and Glossary

This last part of the book contains two appendixes and a glossary. Appendix A tells you how
to get the best deal for your next component purchase. It also helps you find some “must
have” components for your next application. Appendix B is an online resource guide that
helps you locate additional information about Visual C++ .NET. Sometimes it's good to know
where to find additional help. Finally, the Glossary contains a complete list of every esoteric
term and acronym used in the book.

What You’'ll Need

There are some assumptions that I've made while writing the application programming
examples in this book. You need at least two machines: a workstation and a server. This
two-machine setup is the only way that you’ll see Visual C++ .NET in action and truly know it
works as anticipated. In addition, your development workstation and server must meet the
minimum .NET requirements (and hopefully provide more than the minimum). You might
experience problems with the database and other large examples when running a minimal
machine configuration.

During the writing of this book, | used a Windows 2000 and Windows XP workstation.

There’s no guarantee that any of the code in the book will work with Windows 9x; although,

most of it will. The server was loaded with Windows 2000 Server with the latest patches and

service packs installed. You'll need a Pocket PC compatible PDA to work with the SOAP

example in Chapter 10. You must install the latest service packs for all products before the

examples will work properly. .NET is a new technology and relies on the latest versions of

many DLLs and the .NET Framework.

Note

Many of the concepts you'll learn in this book won't appear in your online
documentation. Some of it is so new that it appears only on selected Web
sites. You'll find either a tip or a note alerting you to the location of such
information throughout the book. In addition, Microsoft made some material
available only through selected channels, like an MSDN subscription. Other
pieces of information are simply undocumented, and you won't find them
anywhere except within a newsgroup when someone finds the feature
accidentally.

| tested all of the examples in this book with Visual C++ .NET Enterprise Architect Edition.
Microsoft made a considerable number of changes to Visual C++ .NET, so none of the
examples will load in previous versions of the product, even if the code will compile. None of
these examples are guaranteed to work with any other programming language products, and
none of them will work with the educational versions Visual Studio.

Some of the example programs rely on a database manager. | used Microsoft Access for all
of the examples in this book for the sake of simplicity. The source code CD contains copies
of all of the databases used in this book.

Conventions Used in This Book

In this section we'll cover usage conventions. This book uses the following conventions:

[<Filename>]

<Filename>

ALL CAPS

File | Open

italic

nonospace

URLs

Icons

When you see square brackets around a value, switch, or
command, it means that this is an optional component. You
don't have to include it as part of the command line or dialog
field unless you want the additional functionality that the
value, switch, or command provides.

A variable name between angle brackets is a value that you
need to replace with something else. The variable name
you'll see usually provides a clue as to what kind of
information you need to supply. In this case, you'll need to
provide a filename. Never type the angle brackets when you
type the value.

There are three places you'll see ALL CAPS: commands,
filenames, and case-sensitive registry entries. Normally,
you'll type a command at the DOS prompt, within a PIF file
field, or within the Run dialog field. If you see ALL CAPS
somewhere else, it's safe to assume that the item is a case-
sensitive registry entry or some other value like a filename.

Menus and the selections on them appear with a vertical
bar. “File | Open” means “Access the File menu and choose
Open.”

There are three places you see italic text: new words, multi-
value entries, and undefined values. You'll always see a
value in italic whenever the actual value of something is
unknown. The book also uses italic where more than one
value might be correct. For example, you might see
FILExxxxO in text. This means that the value could be
anywhere between FILEOOOO and FILE9999.

It's important to differentiate the text that you’'ll use in a
macro or type at the command line from the text that
explains it. This book uses monospace type to make this
differentiation. Every time you see monospace text, you'l
know that the information you see will appear in a macro,
within a system file like CONFIG.SYS or AUTOEXEC.BAT,
or as something you’ll type at the command line. You'll even
see the switches used with Windows commands in this text.
There is another time you’'ll see monospace text. Every code
listing uses monospaced code to make the text easier to
read. Using monospaced text also makes it easier to add
things like indentation to the coding example.

URLs will normally appear highlighted so that you can see
them with greater ease. The URLSs in this book provide
sources of additional information designed to make your
development experience better. URLSs often provide sources
of interesting information as well.

This book contains many icons that help you identify certain types of information. The
following paragraphs describe the purpose of each icon.
Note
Notes tell you about interesting facts that don’t necessarily affect your ability
to use the other information in the book. | use note boxes to give you bits of
information that I've picked up while using Visual C++, Windows 9x,
Windows 2000, or Windows XP.
Tip
Everyone likes tips, because they tell you new ways of doing things that you
might not have thought about before. Tip boxes also provide an alternative
way of doing something that you might like better than the conventional (first)
approach | provided.
Caution
This means watch out! Cautions almost always tell you about some kind
of system or data damage that'll occur if you perform certain actions (or
fail to perform others). Make sure you understand a caution thoroughly
before you follow any instructions that come after it.
Browser
Alert The Internet contains a wealth of information, but finding it can be
difficult, to say the least. Web Links help you find new sources of
information on the Internet that you can use to improve your
programming or learn new techniques. You'll also find newsgroup
Web Links that tell where you can find other people to talk with
about Visual C++. Finally, Web Links will help you find utility
programs that'll make programming faster and easier than before.

What Happened to Hungarian Notation?

At one time, Hungarian notation was an essential for developers because the IDEs provided
with early compilers didn’t tell you much about the variables, methods, and other
programming constructs in your application. Today, IDEs commonly provide detailed
information about the constructs in your application and even help you to make good
decisions about formatting your code. Hungarian notation has become a verbose method of
writing code that addresses a problem that doesn't exist anymore.

For the most part, this book doesn’t use Hungarian notation. The variable names you see
describe the purpose of the variable, rather than the variable type. You might see a bit of
Hungarian notation floating around in places where | felt it would help, but these uses are
minimal.

Part I: Visual C++ In General

Objectives

= Learn about the new features of Visual C++ .NET

- Obtain an overview of the development tools

. Create a workstation and server setup

" Learn to build various types of desktop applications

" Discover how threads can help you create more efficient applications
. Build applications that use standard graphic files

. Build applications that use animation techniques

. Learn how to work with Active Directory

. Create ActiveX controls using two different techniques

Chapter List

Chapter 1: Getting Started

Chapter 2: Building Desktop Applications
Chapter 3: Working with Threads
Chapter 4: Working with Graphics
Chapter 5: Working with Active Directory

Chapter 6: Creating Components

Chapter 1. Getting Started

Overview

Many developers see Visual C++ as the old shoe of the programming trade— it feels
comfortable and they know it well. This language represents time- tested programming
technology. In addition, it's a robust language capable of creating any type of application. It
does excel at certain types of development, as we'll see as the chapter progresses. Of
course, even good technology has to keep pace with current development needs, and it has
to provide an environment that developers continue to feel comfortable using. In this chapter,
we’ll talk about how Visual C++ .NET (Version 7.0) meets those objectives. If you already
know the capabilities of Visual C++ .NET by heart, you can skip to the workstation and
server requirements at the end of the chapter.

This first chapter is an introduction to the product and to the development platform that I'll
use for the examples in the book. The first section—"What's New in this Version?"—uwiill tell
you about the exciting new features that Visual C++ .NET has to offer. It's important to
remember that Microsoft designed Visual C++ to work in a LAN environment. Visual C++
was never designed to work in the distributed environment of the Internet, so many of the
changes you'll see in this version address that issue. You'll also find there are changes that
affect group productivity. For example, this version uses a common IDE with the rest of

Visual Studio .NET.

The second section of the chapter, “Downloads You Should Know About,” will tell you about
the various add-ons that you may need while working with the examples in this book. It also
talks about important service packs and other pieces of software that you may want to
consider installing before you install Visual C++ .NET. Finally, a few of these downloads
provide required technical information. You won't necessarily need them to use this book,
but you'll want to have them when you start developing projects of you own.

Tip

Make sure you check out the resources in Appendix A and Appendix B.
These appendices will provide you with a list of products to look at and places
to go for additional information. I'll also sprinkle Web site and newsgroup
information throughout the rest of the book as appropriate.

The third section of the chapter, “Tools You Should Know About,” will discuss the set of tools
provided with Visual C++. These tools provide useful additions to the development
environment that help you test your application. We'll use many of these tools as we look at
the output of sample applications in the book, so it's important to know how the tools are
used. Even if you decide not to test the sample applications in the book, you'll need to know
about these tools to test your own applications.

The final two sections of the chapter, “Creating a Workstation Setup” and “Creating a Server
Setup,” will tell you how | set my system up before working on the examples for this book.
Knowing how to set up a good test environment is essential. Using a two-machine setup is
also critical in today’s distributed development environment. | also want you to know what
I'm using for development purposes, so that you'll better understand how the examples in
this book related to the hardware used for testing.

What’s New in this Version?

Visual C++ has been a staple of the Windows programmer’s toolkit for quite some time now.
Yes, other languages allow developers to prototype and develop applications faster, but
nothing can replace Visual C++ for such low-level development tasks as creating

components. In addition, applications where execution speed is important always benefit
from the use of Visual C++ as a development language. For most programmers, Visual C++
is the language of choice where development speed isn’'t as much of a concern as are
access to low-level operating system features and application execution speed.

As Windows has matured, so have the capabilities of Visual C++. In fact, Microsoft
marketing claims aside, Visual C++ is Microsoft's language of choice for many tasks
including operating system and application development. One of the reasons that Microsoft
uses Visual C++ so heavily is the flexibility it provides. For example, developers have a
choice between the Microsoft Foundation Classes (MFC) and Active Template Library (ATL)
when creating components. You'll also find that attributed programming (described in the
sections that follow) removes many of the barriers a programmer once experienced when
creating components. The .NET Framework-managed environment provides yet another
component development option. It's the ability to perform any given task in more than one
way that makes Visual C++ such a flexible solution, but this flexibility also results in a higher
learning curve and longer development times.

Some of the flexibility in Visual C++ is the result of compromise. For example, Microsoft
originally developed two methods to create components because some developers view
MFC as an error-prone method of creating them. MFC does allow relatively quick component
development. ATL arrived on the scene to provide developers with an alternative method to
create components that execute quickly and have a small memory footprint. The tradeoff
with ATL is the complex development environment and longer development times.

Because of the compromises Microsoft has had to make with Visual C++ along the way,
some developers question the role of Visual C++ in future development efforts, while others
cling to outdated methodologies in an effort to reduce development time. For all of the faults
that people find in Visual C++, however, developers still use it to create new products
because they know all of the ins and outs of this development language. Few developers
deny the power of Visual C++ as a programming tool, and so most know they need it in their
toolkits. In short, Visual C++ has become the old shoe of the programming world. It's a little
ragged around the edges, but that's ignored because it's a comfortable product to use.

The following sections provide an overview of important new features for Visual C++ .NET.
We'll discuss many of these features in more detail as the book progresses. The main
purpose for these sections is to acquaint you with what | consider the big changes for Visual
C++ .NET. These are the reasons that you’d want to upgrade to Visual C++ .NET, at least
for specific types of projects.

New Development Environment

One of the problems with previous versions of Visual C++ concerned the integrated
development environment (IDE) it provided. People argue about the viability of the old IDE;
but in my opinion, the old IDE worked just fine. The real problem is that it's completely
different from the IDE used by other Visual Studio products. This makes life difficult for
developers who use more than one language on a regular basis and for development teams
where coordination between members is important. A consistent IDE isn't necessarily better,
but it is more efficient from a productivity standpoint.

Visual Studio.NET IDE Layout

Visual C++ .NET will use the same IDE as the rest of Visual Studio.NET. While the use of a
new IDE is going to add to the learning curve of Visual C++ in the short term, it should
enhance productivity in the end. Figure 1-1 shows the standard Visual Studio.NET IDE with

a Visual C++ application loaded. Note that I've identified the various functional areas of the
IDE—we’ll use these names as the book progresses.

The default setup contains five functional window areas. This includes the four standard
panes shown in Figure 1-1, plus two additional hidden windows. The hidden windows appear
when you place the mouse cursor over the Toolbox or Solution Server Explorer tabs on the
left side of the display. Each of the four visible window areas uses tabs to allow access to
individual pieces of information. For example, every file you open in the editor area will open
one of several editors. Likewise, there are tabs that allow you to choose between the
Properties window or the Dynamic Help window in the lower-right corner of the display.
Using tabs keeps the display relatively clear, while providing full access to all of the IDE
features.

n i
Sle Edi Yew Dropet fold Dooay Tooke Windes Help |

l@-T-F S| %l - - J-R| Doty]]
(=S S o - % %N A
é_' Simnl Do epn |
£+ A=
¥ Lt £
¥
¥ 3 ude Fabdafx b 15 SmglDor cap
= W ia fEngl oas. ne LB Payl Cocod
4 4t Bag Lot |
mim 1= "HainFrs.h” £ S Coclocsee =l
Py R LSS An f e |
IpFrano.h |
. e T .
fincluds "Engl DocView.h” Fropaias o Lil
. __:'u WL e 1|
B — 3 &
[Tasbbii-timb L}y I_‘ S A
1|) Cesoangs Pl R CEmg_Dncan e
g LA
TOCHY, o e waacio codde b e, Cve d 4
il — | 2l
R] g £ Pugenies, © [
Sty Loy Lo [%} e I

Flgure 1-1: The standard Visual Studio.NET IDE

Visual C++ users are already familiar with the editor windows—they haven’'t changed much
in appearance since the last version of Visual C++. Likewise, the Resource View and Class
View tabs should look familiar. The Solution Explorer tab is simply an updated form of the
FileView tab of previous versions of Visual C++. While these views are all familiar, they do
include added functionality that helps a developer increase productivity. We'll explore these
productivity enhancements throughout this chapter and the rest of the book as we work on
examples together.

The Toolbox window is both familiar and new. Here’s what it looks like:

Dhesbag E ditar -
B Froinby
2 Buncs
B Chepch Biaee
abl Eda Contral
E! v Bioad
B Lig B
[Greup Box
= Rt Bussn
Aa Giate Tind
B Festan Canstial
BB Heangarinl Send Ba
B Vemcsl SencH Bar
i S Conkml
& SpnCootml
I Frogreis Conbal
B2 Hotkar
] List Contel
[Tiwa Consal
™1 Trh Cnednl
Clpkoesrd Fung -
Gersral

As you can see, the Toolbox window looks much like the Toolbox provided for the previous
version of Visual Studio. You can use this new Toolbox to keep various tools separated by
use. For example, the illustration shows the Dialog Editor tools. There are also General and
Clipboard Ring separators in this illustration.

Another window is the Server Explorer, which is new to Visual Studio as a whole. The
following shows what it looks like.

| 1 e

The Server Explorer allows you to locate and manage services on local or remote machines.
One of the main purposes of this feature is to allow developers to locate databases with
greater ease and use them within applications. You can even perform tasks like checking the
contents of the Event Viewer (a feature | find works even better than the Event Viewer
provided with Windows 2000, because the events are categorized by type within the logs).
You'll also find support for Visual Studio-specific items such as Crystal Reports. We'll use
this feature often within the book, so | won't describe it in detail now.

Starting the IDE from the Command Line

You may find that you don't like the standard setup for the Visual Studio.NET IDE. Of
course, the IDE does provide all of the usual customizations that you've come to expect from
Microsoft products. For example, you can modify the toolbars or the colors used to display
program elements. However, you can make changes that are even more drastic to the IDE
using command line switches. Here’s the Visual Studio.NET command line:

DevEnv [<Solution File> | <Project File> | <Code File>] [<Swi tches>]

Microsoft designed DevEnv to work with large enterprise applications. As a result, you'll find
a new term called the solution file. A solution file has a .SLN extension and contains all of
the information required to construct an enterprise-level application environment. A solution
consists of one or more projects. Each project defines the requirements for a single
application element, such as a component. As with previous versions of Visual C++, a
solution can contain just one project that may execute by itself outside of the normal
enterprise environment. Finally, you can also work with individual code files. As usual, if you
type DevEnv /? at the command line, you'll see a list of available switches. Table 1-1 shows
the command line switches and their meanings.

Table 1-1: DevEnv Command Line Switches
Switch Description

1? Displays help for the DevEnv program. This includes usage
instructions and a list of command line switches. It doesn't include full
information on how to use the switch. For example, it doesn't say
which switches you need to use together or the arguments you must
supply with the switch.

/build Builds a solution; has the same effect as using the Build | Build
command within the IDE. You must provide a solution filename and a
configuration name. The valid configuration names depend on the
type of project. For example, you might use “Debug” as the
configuration name. You may optionally use the /project and
/projconfig switches with this switch.

/clean Removes the intermediary and output directories. You must provide a
solution filename and a configuration name. The valid configuration
names depend on the type of project. For example, you might use
“Debug” as the configuration name. You may optionally use the
/project and /projconfig switches with this switch.

/command Executes a command after the Visual Studio IDE starts. These
commands must fall within the range of predefined IDE commands or
custom macros you've created.

/debugexe Launches the debugger, loads an executable, and applies optional
switches to modify executable behavior. You must provide the name
of an executable to debug. The Visual Studio IDE ignores any
switches provided after this switch and applies them to the
executable you want to debug.

/deploy Deploys an application after a rebuild. You must provide a solution
filename and a configuration name. The valid configuration names
depend on the type of project. For example, you might use “Debug”
as the configuration name. You may optionally use the /project and
/projconfig switches with this switch.

/fn Use the specified font within the Visual Studio IDE.

ffs Use the specified font size within the Visual Studio IDE. The font size
is specified in points.

/LCID or /| Loads resource strings in the specified locale within the Visual Studio
IDE. You must provide a valid locale identifier number. For example,
specifying 1033 would load the English language resource strings.

Table 1-1: DevEnv Command Line Switches

Switch
/mdi

/mditabs

/nologo

/noVSIP

lout

/project

/projectconfig

/rebuild

Iresetskippkgs

[run or /r

/runexit

Description

Use the multiple document interface (MDI). This is similar to the
interface used by Visual C++ 6 (with obvious differences). For
example, the layout of the display still reflects the new Visual
Studio.NET view of the world. You'll also get all of the enhancements
that Visual Studio.NET provides.

Use tabbed MDI. This is the default interface used by Visual Studio
when you set it up.

Starts the Visual Studio IDE without displaying the copyright splash
screen.

Disables the Visual Studio Integration Program (VSIP) developer’s
license key for VSIP testing. VSIP allows developers to add new
capabilities to Visual Studio like new project types, a customized
editor, or advanced debugging capabilities.

Specifies an output file for errors during a command line compile.
You must provide the name of an output file. Visual Studio will
automatically clear the file if it exists, so that you see only the errors
from the current build.

Builds a project instead of a solution. You must provide a solution
filename, project name, and a configuration name. The valid
configuration names depend on the type of project. For example, you
might use “Debug” as the configuration name. You may optionally
use the /build, /rebuild, /deploy, and /clean switches with this switch,
but must select one of them to perform a task. This switch also works
with the /projectconfig switch.

Specifies the project configuration for the project specified by the
/project switch. You must provide a solution filename, project name,
project configuration, and a configuration name. The valid

configuration and project configuration names depend on the type of
project. For example, you might use “Debug” as the configuration or
project configuration name. You may optionally use the /build,
Irebuild, /deploy, and /clean switches with this switch, but must select
one of them to perform atask.

Performs a combination of the /clean and /build switch tasks. You
must provide a solution filename and a configuration name. The valid
configuration names depend on the type of project. For example, you
might use “Debug” as the configuration name. You may optionally
use the /project and /projconfig switches with this switch.

Allows the IDE to load VsPackages that were previously marked as
having failures.

Compiles and runs the specified solution or project configuration. You
must specify a solution or project name. The IDE will display any
error or change message boxes before it terminates the application.

Compiles and runs the specified solution or project configuration. You
must specify a solution or project name. The IDE terminates the
application without displaying any messaae boxes or allowing vou to

Table 1-1: DevEnv Command Line Switches

Switch Description

| save changes.

/safemode Loads only the default environment and services. This allows you to
maximize the stability of the development environment.

/sdi Use the single document interface (SDI). This is similar to the
interface used by Visual Basic 6 (with obvious differences).

One of the popular alternative IDE displays is the Single Document Interface (SDI) display.
Normally, Visual Studio .NET assumes you want to use the Multiple Document Interface with
tabs (/mditabs) display. You can access the SDI display by adding the /sdi switch. Figure 1-2
shows the same application shown before (Eigure 1-1), this time loaded into the SDI IDE
display. Notice that you can enlarge any of the windows to consume the entire display area.
While this makes it easier to concentrate on a particular area (such as when you're coding),
some developers feel it makes the IDE less accessible during the design process. Of course,
the choice of display is a personal matter, and you'll need to decide which you like best.

| B¢ po www Dois Qo Doy Imos Wrooe Hep
[FERCE 2 - 1 JE ™ JERREE - A e - - 3
I R PR %% R,

e iLn3 =l | Pis

A Smre-Fiee
5 Crbfarcpp
H lpForee cpa
1) MdarT= v

o Tl P]
1| I

#inclade "chdafx.h" s]

Wit & "=npl pas b .
-

finciade "MainPIm.h” @ gl

Firelede "Iprrans.h” |

PlRolade "Eagl Doobos kT I'u":""

fioclode "2ngl DocYWisw.h™ YT

i _hEmins
Fdod il ney DEROS HER
s |

Figure 1-2: The SDI style IDE is popular with many developers because it presents a
simple appearance.

Enhanced Debugging

Previous versions of Visual C++ relied on an entirely different IDE than the one used for
Visual Studio.NET. Therefore, one obvious debugging change is the environment you'll use
to trace through your applications. Visual C++ .NET combines the flavor of both Visual C++
6.0 and Visual Basic 6.0. It allows you to use a single debugging environment for all of the
languages within your application. Of course, this debugging environment includes support
for all new features of Visual C++, including managed extensions. The use of an integrated
debugging environment means that debugging is less time-consuming and more convenient.

You'll find that the debugger is also more robust. One of the more interesting features is the
ability to attach the debugger to a running application on a local or a remote machine. This

feature allows you to perform tasks like checking a user’s application while it’s still in an error
state. Instead of trying to re-create an error condition, you can attach the debugger to the
existing application and see the problem in a real world situation. Figure 1-3 shows the
Processes dialog box you use to attach it to another process. You access it using the Debug
| Processes command. Notice that the dialog displays all of the current processes for the
workstation listed in the Machine field. You can choose a new machine and even select the
protocol used to communicate with it.

I Sk i (e

I Skt ooreased i i e

J

2

Figure 1-3: The Processes dialog box allows you to attach the debugger to an
application that's already running on a local or remote machine.

The ability to attach to a running application also comes into play with multiple- application
debugging. You can set this feature up by starting multiple applications within the IDE or by
attaching to existing applications. This feature is going to be very useful in a distributed
application environment, because it allows you to see how an application reacts when
multiple versions are running. For example, you could use this feature to verify that the
database locking mechanism for an application works before you even place the application
components on a test server.

The new version of the debugger also allows you to perform more checks on your

application. For example, you can perform runtime error checks. These checks help you look
for problems such as stack pointer errors, local array overruns, stack corruption, uninitialized
local variables, and data loss due to type casts. You'll also find that the new checks help you
find buffer overrun problems—a difficult error to locate when it occurs during a call to another
DLL.

HTML Editing Environment

Visual Studio 6 included a language element called Visual InterDev. This product was
supposed to make it easier to create Web sites. However, many developers complained that
the tool relied too heavily on FrontPage and that it didn’t provide enough in the way of
generic editing features. One of the first things that many developers will notice about Visual
Studio.NET is that Visual InterDev is missing—at least as a separate language.

Visual InterDev is part of Visual Studio, and you can access the full power it provides from
within Visual C++. (You won't see Visual InterDev mentioned because Microsoft has fully
integrated it with the rest of Visual Studio as part of their Web-based application
development emphasis.) What this means is that you, as a Visual C++ developer, will be
able to include Web elements within your application with greater ease than ever before. In
fact, Microsoft provides the following items for you to use within your applications.

" HTML Page

. ASP Page

. ATL Web Service

" MC++ Web Service

. HTML Frameset Page
" XML File

" Stylesheet

Many of these items will convert to other items that you may need for a particular application.
For example, the XML File item is useful for various other file types, such as those used by
the Simple Object Access Protocol (SOAP). | used it to create a Web Service Description
Language (WSDL) file recently as well as an XML Data Reduced (XDR) file. Both of these

file types have uses within SOAP applications.

Task List

One of the new additions for Visual C++ .NET is the Task List. No longer will you have to
scout around for the little reminders left by wizards when you create an application. In
addition, you'll be able to leave yourself “to do” notes and find them later. This is also an
excellent addition for team projects—project members can leave notes for each other, and
the team leader can make assignments directly in the source code.

Dynamic Help

Developers are under ever-increasing pressure to deliver applications quickly. Meanwhile,
development environments become more complex, forcing the developer to spend more

time learning new techniques. In short, a developer today has to know where to find specific
information in the shortest time possible. That's one of the reasons that Dynamic Help is so
exciting. It automatically displays help information based on the current cursor position. Click
a method within your application and you’ll automatically see the appropriate help displayed
in the Dynamic Help window.

How good is Dynamic Help? Dynamic Help is better than anything else that I've seen in a
development environment so far. An experienced developer will find that help automatically
becomes available about 90 percent of the time. So, although you can'’t throw out your
Microsoft Developer Network (MSDN) subscription, you'll spend a lot less time looking for
the information you need. Obviously, this feature will help novice programmers more than
those with a lot of experience, but | think that everyone will benefit from this new feature.

Command Window

Some people really hate using the mouse. They want to use the keyboard—end of
discussion. Until now, most of us have had to put up with the mouse because it provides
functionality that you can’t otherwise obtain within the IDE. The Command Window feature
changes all of this. Now you can type in a command, press ENTER, and watch its execution
just as if you had used mouse clicks to perform the task. For example, typing Open
MyProg.CPP in the Command Windows and pressing ENTER will open that file—just as if
you had used the File | Open command with the mouse.

After trying this feature for a while, | can honestly say that it increases productivity. The
caveat is that using commands won't replace the mouse in all situations. Sure, you can type
commands to perform every task, but the mouse is more efficient in some situations. On the
other hand, the Command Window is definitely more efficient in other situations. Even
though I'll use the standard menu commands throughout the book, you can be sure that I'm
using the Command Window to perform certain tasks, such as opening files, while writing
this book. The Command Window fills a gap in IDE functionality.

Programmable IDE

There’s little doubt that the new Visual Studio IDE is flexible. You can do everything from
customizing the toolbars to changing the entire look of the IDE using command line

switches. It's hard to imagine that you could make the IDE any better than it is right now.
Every developer can have an IDE that matches their programming style and usage needs.

Visual C++ has supported the use of macros for several versions now. However, in this
version you'll find that macro support has increased. You have full control over every aspect
of the programming environment and can even create extensions to that environment using
a simple macro command. This added functionality makes it possible to create an IDE that
Microsoft didn't envision—one that includes tools that you or your company develops.

However, the true programmability of the Visual Studio.NET IDE becomes apparent when
you look in the Extensibility Projects folder of the New Projects dialog box. There you'll find
two new entries. The first allows you to create shared add-ins, while the second allows you
to create Visual Studio.NET Add-Ins. | can foresee a brisk business in third party add-ons for
Visual Studio.NET developing. Eventually, you may find that the IDE you get from Microsoft
doesn’t resemble the one you use for creating applications at all.

Attributed Programming

Visual C++ .NET is going to be an entirely new programming environment in a lot of ways.
Everyone is going to get some new features to play with and find new ways to create
applications faster. One of the more exciting changes for ATL programmers is the addition of
attributed programming. Attributes tell the compiler what you'd like to do with your code in a
given circumstance, which greatly reduces the amount of descriptive code you have to
create. For example, you may want to create an event source, so you'd use the
event_source attribute to do it. The compiler automatically generates all of the required
“boiler plate” code for you based on the event source description you provide in your code as
part of the normal development process. In some cases, you'll be able to get rid of those IDL
files that you've had to maintain all of these years.
Note
Attributed programming is a complex topic that will require substantial
coverage to understand. I'm giving you the 50,000-foot level view of
attributed programming in this chapter. We’'ll talk more about attributed

programming in Chapter 13.

So, why is this feature so important? Imagine writing the components you always have in the
past, but with as little as 25 percent of the code you use today. Less code means fewer
potential errors and a shorter development time. Programmers from all walks are finding

they have a hard time meeting delivery dates, given shortened deadlines and increasing
application complexity. Any technology that promises to reduce development time using a
tool that you're already familiar with is a welcome relief. Attributed programming promises to
reduce development time by an order of magnitude.

Managed Environment

Visual C++ .NET will actually support two completely different application execution
environments: managed and unmanaged. A managed environment is one where a
framework, in this case the .NET Framework, manages the application. The framework
controls everything from how the application creates objects to the way it allocates memory.
An application talks to the framework, which determines if it can fulfill the request, and then
the framework talks to the Windows API to complete the request. The addition of the .NET

Framework allows better interoperability between languages, reduces errors due to common
programming problems like memory management, and provides the means for creating
better distributed applications.

Visual C++ .NET will default to using an unmanaged environment, but a developer can
choose to use the managed environment in order to gain access to features of the .NET
Framework. The developer needs to make a choice between functionality (the .NET
Framework) and flexibility (direct Windows API access). A developer also has the option of
mixing managed and unmanaged modules in a single application, so your investment in
older code remains intact.

Unlike the unmanaged environment, which produces a machine language file, the compiler
creates something known as an Intermediate Language (IL) file when it creates a managed
application. The IL file still has an EXE or DLL extension, just as it did in the past. However,
the contents of this file will differ because it contains tokens instead of the more familiar
machine code. You can’t run a managed application on just any machine—the machine
must have the .NET Framework installed in order to read the IL file. The Common Language
Runtime (CLR) compiles the tokenized file specifically for the machine you want to run it on,
which has certain advantages and still allows the application to execute quickly.

The whole topic of managed code is relatively complex. You'll see your first example of
managed code in Chapter 2, when we create a simple component using this technique.
Chapter 12 will discuss the relative merits of using managed code for your next project, while
Chapter 13 will tell you how to implement managed code using a variety of attributes. The
issue of managed versus unmanaged code is already creating a lot of controversy. With the
amount of change that managed code brings on the one hand and the increased productivity
and potential performance benefits it provides on the other, the controversy promises to
continue for many years to come.

.NET Framework

As Visual C++ .NET developers working in the managed environment, you also gain access
to the .NET Framework, which relies on namespaces that encapsulate (contain) functionality
normally found in libraries. The use of dot syntax to access specific types of functions means
you no longer have to memorize the Win32 API guide to remain productive as a developer.
The IDE can help you locate the function you need because Microsoft has organized those
functions in a hierarchical fashion according to type.

The .NET Framework is also a philosophy—a view on the world of distributed application
development. People often compare Java to Microsoft products like Visual C++ and C#.
When viewed from a .NET Framework perspective, Java is an answer to development
problems that says the operating system is unimportant as long as you use Java. In other
words, you're restricted to a single language that can operate across platforms. The .NET
Framework is a development answer that says the language is unimportant as long as you
use the .NET Framework. In other words, the .NET Framework makes it possible for a
developer to accomplish the same goals using any supported language (and there are plans
to support a wealth of languages). Of course, the ability to achieve programming goals
doesn’t necessarily mean that accomplishing those goals will be easy. | still believe that
every developer should have several tools in his or her programming toolbox.

Currently, the .NET Framework is an answer to Windows-specific development problems.
However, there are also plans to make the .NET Framework platform independent, which
means applications you write today may someday execute on other platforms without

change. The secret is in the IL that we discussed in the “Managed Environment” section.

While this book is about Visual C++ .NET, it's important to see the bigger picture when

considering the .NET Framework. Besides Visual C++, Visual Basic, C#, and potentially

other Microsoft languages, you'll find that the .NET Framework will support some of the other

language favorites in your developer toolbox. The following list provides URLs for just some

of the language offerings | was able to find. Of course, the list is incomplete as of this writing,

but still impressive.

. COBOL: http://www.adtools.com/info/whitepaper/net.html

" Eiffel:
http://www.eiffel.com/doc/manuals/technology/eiffelsharp/white_paper.html

. Mondrian: http://www.mondrian-script.org/

. Haskell: http://haskell.cs.yale.edu/ghc/

. Mercury: http://haskell.cs.yale.edu/ghc/

. ML and SML: http://research.microsoft.com/Projects/SML.NET/index.htm

" Oberon (Lightning Oberon): http://www.oberon.ethz.ch/lightning/

" Perl and Python: http://www.activestate.com/Products/NET/

" SmallTalk: http://www.gks.com/ or
http://www.cs.mu.oz.au/research/mercury/information/dotnet/mercury_and_dotne
t.html

This represents the tip of the iceberg. If the developer community accepts the .NET
Framework as readily as Microsoft expects, other language vendors will get into the act. For
example, there are rumors that Rational Software will eventually introduce a version of Java
for the .NET Framework (http://www.rational.com/index.jsp). Companies like Rational
may wait until they see the level of commitment to the .NET Framework before they actually
create a product. The point is that learning about the .NET Framework will yield productivity
benefits well beyond Visual C++ .NET. Greater productivity and a reduced learning curve are
the two reasons that the .NET Framework is such an important addition to Visual C++ .NET.

We'll talk a lot more about the .NET Framework as the book progresses. Every managed
code Visual C++ .NET programming example in the book will show you something about the
.NET Framework. The first of these examples is a simple console application in Chapter 2,
and the book will contain many such examples. In addition, Chapters 12 through 14 will
provide you with an in-depth look at this technology.

ADO.NET

Microsoft named this technology incorrectly and it's going to cause an untold number of
developers problems. Active Data Objects (ADO) is a database technology that rides on top
of Object Linking and Embedding for Databases (OLE-DB). It allows you to create a
connection between the client and server with a minimum of fuss and with fewer
configuration requirements on the client. Overall, ADO is a great technology that makes
database development a lot easier.

You may think that ADO.NET is going to be a superset of ADO, but it isn’t. ADO.NET
provides functionality in addition to ADO. In other words, you'll continue using ADO for some
applications and add ADO.NET to others. When you think about ADO.NET, think about
distributed applications. ADO.NET will do for distributed applications what ADO did for LAN-
and WAN-based applications.

One of the most promising features of ADO.NET is the idea of a disconnected recordset.
You can work with this recordset just as you would any other. The only difference is that it
doesn’t require a connection to the server. Given the fact that many users now need to
access a database in disconnected mode, the use of ADO.NET should help many
developers jump remote access application hurdles they never could in the past. We'll talk
more about this technology in Chapters 7 through 9.

http://www.adtools.com/info/whitepaper/net.html
http://www.eiffel.com/doc/manuals/technology/eiffelsharp/white_paper.html
http://www.mondrian-script.org/
http://haskell.cs.yale.edu/ghc/
http://haskell.cs.yale.edu/ghc/
http://research.microsoft.com/Projects/SML.NET/index.htm
http://www.oberon.ethz.ch/lightning/
http://www.activestate.com/Products/NET/
http://www.qks.com/
http://www.cs.mu.oz.au/research/mercury/information/dotnet/mercury_and_dotne
http://www.rational.com/index.jsp

C# Language

There’s a new language in town named C# and it ships as part of Visual Studio.NET. You've
probably heard a lot about this language from the trade press already. Some say that C# is
merely Microsoft's attempt to create a better Java. In some respects, C# does have Java
qualities, but I wouldn’t consider it a direct replacement, because the intended uses for the
two languages are so different. Needless to say, C# has generated controversy. Since this is
a Visual C++ book, I'm not going to try to convince you one way or the other about the merits
of using C# as your development language of choice. However, given the amount of hype
surrounding this language, we’'ll take a detailed look at it in Chapter 12 as part of the .NET
architecture discussion.

Researching C# on the various Internet newsgroups did bring some interesting facts to light.
Many of the developers who've tried C# are favorably impressed. In capability and
complexity, it occupies a middle ground between Visual C++ and Visual Basic. C# supports
only managed code, so you won't be able to replace Visual C++ with C# in the near future.
However, C# does provide valuable features and makes a valuable asset for the Visual C++
developer. Given the new level of integration between languages in Visual Studio.NET, you
may find that C# is the tool of choice for at least some of your new application development
needs.

ATL Server

This is a new set of libraries for Visual C++ .NET that are designed to allow developers to
create server side applications such as Web services with relative ease. The ATL Server
library is associated with the new ATL Server, ATL Server Web Service, and Managed C++
Web Service projects. You can use these projects to create a variety of Web clients,
services, and applications. These applications will support cryptography, Simple Malil
Transfer Protocol (SMTP), and message queuing, so that you can create both synchronous
and asynchronous applications with data security. We'll talk more about the ATL Server and
Web Services in general in Chapter 12.

Web Services

Distributed application development is a major concern for many developers today. It's no

longer good enough if an application runs fine on a local server—it also has to perform

across the Internet with customers and partners as well. With this in mind, Microsoft has

added Web Services to Visual Studio.NET. This is essentially a set of programming libraries,

templates, and projects that help you expose component functionality across and Internet or

intranet connection using a combination of HTTP and SOAP. We'll talk more about Web

Services in Chapter 12.

Note

It's important to remember that SOAP is associated with a lot of other
standard-supported technologies, such as WSDL, and that SOAP can
transfer data across more than just one protocol. While Visual Studio.NET
currently relies on HTTP for a transport protocol, you'll probably see support
for other transport protocols such as SMTP in the future. In fact, some
SOAP toolkits already provide “other protocol” support right out of the box.
For the purposes of this book, however, we’ll concentrate on using SOAP
with the HTTP protocol.

Web Forms and Win Forms

Web Forms and Win Forms are two sides of the same coin. Both allow you to create a user
interface in less time than you may have required in the past. The use of forms technology
isn't new, but it is new to Visual Studio.NET.

You'll normally use Web Forms with Internet or Web-based applications. They provide a
Web page-like interface that the user can use from within a browser (assuming that the
browser provides the required support). On the other hand, you’'ll normally use Win Forms
with desktop applications. They provide the same interface that users have come to accept
with most desktop applications such as word processors.

More important than the user interface technology is the power base for each of these
interfaces. When using Web Forms, you'll rely on ASP.NET and a server side connection for
most of the processing power. Win Forms rely on the local workstation for most interface
processing needs. In short, you need to consider where data gets processed as part of your
choice between Win Forms and Web Forms. We’ll talk about these issues and more as the
book progresses.

Enterprise Templates and Policy Definitions

Team development is always difficult because we’re all human and think differently from

each other. A method for accomplishing a task that seems intuitive and easy to one person
may seem difficult and even dangerous to someone else. It doesn’t help that there’s always
more than one way to correctly program any application and get the same results. If you look
at input and results alone, then you may find later that the code in between is a nest of
shakes ready to strike at anyone in your organization foolish enough to attempt modification.
In short, you need to ensure that everyone is using approximately the same coding
techniques and adheres to certain policies when creating code.

Technology is changing so fast that no one can keep up with everything. As a result,
organizations usually assign developers to focus on one or two technologies within their area
of expertise. These developers then publish what they have found out in the form of a white
paper or other documentation. The problem is that no one has time to read all of those white
papers because they’re busy researching other technologies in their area of expertise.

Enterprise templates can help a great deal by packaging the methods that you want
programmers on your team to use. Once your organization decides to use a new technology,
placing it in an enterprise template ensures that every developer will have access to the
technology and begin to use it in new projects. Using enterprise templates greatly reduces
the learning curve for other developers who need to use a new technology but haven't
necessarily had time to read everything about it. Not only that, the enterprise template will
provide guidance to these other developers on the usage of the new technology within
applications.

While enterprise templates provide guidance and reduce application development

complexity, policy definition files ensure that team members actually use the new techniques
in their code. A policy definition file provides a means of validating code automatically to
ensure that it meets certain programming criteria. In addition, you can use policies to limit
team member access to certain types of IDE features. For example, if you don’t want team
members to use a particular control within applications, you can turn off access to that
control in the toolbox. A policy can also automatically set properties. For example, you may
want to set the name of a dialog box the same every time a developer uses it. A policy would
automatically set this property for you and ensure consistency between application modules.

As you can see, templates and policies can make team development easier and more
consistent. We’'ll talk more about this issue in Chapter 12.

Downloads You Should Know About

You may be reading this right after you've installed Visual Studio.NET on your machine for
the first time. The thought that you'd need anything else, at this point, seems ludicrous. Of
course, programming is never as easy as it should be. You'll find that you need to download
additional products even for a new Visual Studio.NET installation. Microsoft usually offers
these products separately, so that it can update them faster to meet industry trends. In
addition, some of these products work with more than one version of Visual Studio—keeping
them in separate packages allows all Visual Studio developers to use them, no matter which
version of Visual Studio they use.

Throughout the book, you'll find that we spend a lot of time talking about the Windows
Platform software development kit (SDK). The Platform SDK is a collection of add-ons that
address general programming needs like the Windows 32 API, various services (base,
component, data access, graphics and multimedia, management, and so on), and security.
The most current version of the Platform SDK at the time of this writing is the October 2000
version, which is what I'll use. However, Microsoft updates the Platform SDK on a regular
basis, so you'll need to check for new versions regularly. You'll find current Platform SDK
information at
http://msdn.microsoft.com/downloads/default.asp?URL=/code/topic.asp?URL=/msdn-
files/028/000/123/topic.xml. Incidentally, you'll get a copy of the Platform SDK with a
Microsoft Developer Network (MSDN) subscription, which saves you the time of
downloading it online. You can find out more about getting an MSDN subscription at
http://msdn.microsoft.com/subscriptions/prodinfo/overview.asp.

Note

I'll refer to the October 2000 version of the Platform SDK as simply the
Platform SDK throughout this book. Make sure that you get the newest
possible version of the Platform SDK before you begin working with the
examples in this book. Some of the Platform SDK features that | talk about
in the book are subject to change, so you may not see every feature that |
mention, and some of the features may have changed from the time of this
writing.

Visual Studio.NET will likely provide full support for SOAP when it arrives on your desktop.
However, SOAP is a moving target for a number of reasons. For one thing, many of the
technologies it relies on are still in the hands of committees who are trying to create a
specification before standardization. With this in mind, you'll probably want to install a copy
of the Microsoft SOAP Toolkit on your workstation if you intend to work with any of the SOAP
examples in the book. You can find this toolkit at
http:/msdn.microsoft.com/webservices/. Note that this Web site also includes a wealth of
other links that you'll want to check out when it comes to distributed application
development.

I’'m going to be using two special tools as the book progresses. These tools work well for me,
but you may find that you like something else. The first tool, tcpTrace, allows you to see the
HTTP message that contains the SOAP message for a distributed application. You can find
this tool at http://www.pocketsoap.com/tcptrace/. The second tool, XML Spy, allows you
to view the content of XML formatted files, including the Web Service Description Language
(WSDL) files required by Microsoft's SOAP implementation. I'll use this tool to help you
understand how SOAP uses various files to reduce the complexity of distributed application
development. You can find XML Spy at http://www.xmlspy.com/.

Tools You Should Know About

http://msdn.microsoft.com/downloads/default.asp?URL=/code/topic.asp?URL=/msdnfiles/028/000/123/topic.xml
http://msdn.microsoft.com/subscriptions/prodinfo/overview.asp
http://msdn.microsoft.com/webservices/
http://www.pocketsoap.com/tcptrace/
http://www.xmlspy.com/

Visual Studio and the Platform SDK both provide a wealth of tools that make development
easier (or at least doable). This section will provide a brief overview of the tools that you'll
likely need for most of the book. I'll also include sections in other chapters that provide
information about tools for specific types of projects. For example, the database tools appear
in the database section of the book.

Visual Studio versus Platform SDK Tools

Developers often find they have more tools than they need after installing both the Platform
SDK and Visual Studio. It doesn’t help that Microsoft has a habit of renaming utilities as they
release new versions. Sometimes the utilities have changed, sometimes they haven't. In
some cases, even a small change in marketing orientation will cause a change in the name
of a utility. For example, OLE View has gone through more than a few name changes in the
past few years. It seems that it has a different name with every release of Visual Studio or
the Platform SDK. In short, you may think a tool is gone, only to find it under a different
name later. For this reason, it's a good idea to check out every tool in both Visual Studio and
the Platform SDK, just to make sure you know which tools are present.

The Platform SDK ships with a full toolbox of utilities that you can use to craft applications. In
most cases, you should use the Platform SDK tools instead of the tools provided with Visual
Studio, because the Platform SDK tools could have features that make development under
Windows 2000 easier. In addition, the Platform SDK often ships with development tools that
you won't find at all within Visual Studio. Finally, since Microsoft updates the Platform SDK
on a regular basis, using the tools in the most current Platform SDK version ensures that
you'll avoid at least some of the bugs that developers found in previous versions.

CPU Stress

The CPU Stress utility does just what its name implies—it places a load on a CPU to see just
how well it works in a given situation. The program creates from one to four threads and
specific priority levels. You can also choose how busy that thread should be during the

testing process. Here's the initial CPU Stress display.

= CPU Stress
Frocess Priorty Class Marmal -
I Accoss Shaned Mamory K-Bhyles

Thread 1

F Actia Thraad Fnomy: |MNarmal o
Ay Lo L

Thiead 2

I Acha Thrend Priority. Marmal -
Actraby L =

Thiead 3

I A Thread Fronty Mamal o
Actrahy: Law

Thiead 4

= Thead Pronty. Mormal b

ATty Loww 5

Other than setting the number of threads, the thread and process priority, and the level of
activity, you don’'t have to do anything with the CPU Stress utility. This program is already
doing the work you need it to do as soon as you start it. You can use this utility to measure
the ability of your application to work with other applications on a single system. It also
comes in handy for placing a load on your system so that you can simulate the performance
characteristics of a less capable system.

Depends

Have you ever sent out an application and found out later that the person using it didn’t have
all the files needed to install it? Most of us have done that at one time or another. In at least
some cases, the problem is accidental because the application relies on some unknown
DLL. It seems as if every file in Windows relies on every other file in some way—trying to
untie this knot is something even Houdini would have a problem doing.

Depends will show you the dependencies of your application. It tells you which files your
application needs to run. Not only that, but it traces out the dependency hierarchy of all the
support files in the dependency tree. Using this utility makes it easier for you to put
application packages together that contain everything the user will need the first time.

There are several versions of Depends. The version that you get with Visual Studio.NET
should match the current Platform SDK version. However, it's important to use the latest
version because Microsoft keeps adding features to this product. I've divided Depends
coverage into two parts: 1.x features and 2.x features. This will allow those of you who are
already familiar with older versions of Depends to skip right to the new features.

Depends 1.x Features

Dependency Walker (or Depends, as it’s listed on the Microsoft Visual Studio 6.0 Tools
menu) helps you prevent the problem of the missing file. It lists every file that an application,
DLL, or other executable files depends on to execute. You can use the output of this
application to create a list of required files for your application. Loading a file for examination
is as easy as using the File | Open command to open the executable file that you want to
examine. Figure 1-4 shows an example of the output generated for the SayHello.EXE file.
This is a typical example of a minimal MFC-based Visual C++ application. In fact, you can’t
get much more minimal than the example program in this case. The point, of course, is that
even a very small and simple application may require more support files than you think.

B Ny Ecl Vew Oglicn Profls Wiodow Help |§_ ui|
FW AR aEdF 8L uERED W |
Bl - -

& Crdaal JllrI Fansion I:'\"H.'rD'T I

Cirdiad = [Hirt [Funzion [EctrgPor |

3 T8
9 Sa] GLEAUTIE DLL

Fooooot

Byt gy peE-s F

Figure 1-4: Dependency Walker can help you determine what external files your
component needs to operate.

Ti
P It's interesting to note that Dependency Walker doesn't include any kind of
print functionality. Fortunately, you can highlight a list of items you want to
print, click Copy (or press CTRL-C) to copy them to the clipboard. Use the
Paste function in your favorite word processor to create a document you can
print for future reference.

As you can see, this application provides you with a lot of information about the
dependencies of your file. In the upper-left corner is a hierarchical view of dependencies,
starting with the executable file that you want to check. The hierarchy shows the files that
each preceding file requires to run. So, while the application itself relies on MFC70.DLL
(along with other files), the support DLL relies on input from a host of other files.

To the right of the hierarchical view are two lists. The upper list tells you which functions the
parent executable imports from the current file. The lower list tells you which functions the
highlighted executable exports for other executables to use. The sample application doesn’t
export any functions because it's an end-product. You'll typically see a blank export list for
applications. Figure 1-5 shows a typical list of imported and exported functions for a DLL.

Dhaanid ooy Widkas - [GayHolks. sue]

B Ny Ecit vew Oplivn Profile Wiedow Help |
Fd Ak o s dff 8w uERET ¢ |
O 5AVHELLG.EXE 2 Ol * Cniry Pant_| E|
- L] I (aDidEn S Facd Bcurg
A MEVCATDLL B a8 (QDIBER N e Eure
F - 8l KPS A OLL W S (=0T ot B
O GOMIE CAL B ted (a2 ot Buund
Al USERAT CLL Wl ReE WICEE] WA Pl i B
2.0 f.:;u-.\"--'.n_- B BB DIBE WA A ot Eguen E |
5 5 OUEPRORE DLL [T ol = [Het JFurciasn [EniroPani | |
41 300 ADRORFTIZ DLL [ol (DIDD] WEA Piok TO00% BT
R gn IOl N R KA EH T
WE 258 (ODiDE] A Pk O3y 5P EFE
B 208 ODil) N R D305 | ADD
T T T T] |
= Wiochle ik Tra Barp Flg Suw | A% Limk. Shiism. | Real Oheukaur —'i:
1 | sDeakiPaaz DL LT Y DxUN0EFSAF CreOO0& T5AF
d G 70t o DxODDZETHE | Oue T4E
£ 1% TMI04 a0 | BeCODBEADG |0 C
| 3795 B | AL OxDDOEEZRC | Om =
a 4Im 105 | AL Mhefibnd= % Tl '
A f
o paay, et F

Figure 1-5: DLLs normally import and always export functions that applications and
other DLLs use.

At the very bottom, you’ll see an alphabetical list of all of the files along with pertinent
information like the executable file’s version number and whether you used a debug version
of that file while creating and testing your application. This list comes in handy when
debugging an application. It allows you to check for problems that might occur when using
an older version of DLL or to detect potential corruption in a support file. You'll also find it
handy when you want to check that final release build before you release it for public use.
Many applications have tested poorly because they still had “hidden” debug code in them.

Depends 2.x Features

It's time to look at some of the new features that Depends 2.x provides. One of the more
interesting features is the ability to profile your application. In this case, profiling doesn’t have
anything to do with performance; we're talking about tracing every call that your application
makes. To start the profiling process, choose the Profile | Start Profiling command. You'll
see a Profile Module dialog box like the one shown in Figure 1-6.

Flogiamarainens o I
| el |
whnrir g drachony

[1omy Source Codehapiee 1 e Fe e Eremna !
I Cleor the ko windaw Dwice. i

F Do SosBadiiid by arba i Ly i Tt s dveioe @4 o el FATI 8ovaar rigad v dresie
T LoDt ooy A0 a0+ BR0cn o pioonan B me i ogds
I LagCMaincals boroll ofer mezeges. noudeg hreed afachard freed doioen
BP0k e (e W (PG e ORNBI 0 e e ki b O el
P Lo Loaci by hanction ol
B i) CapaAnrg i LDl ol
™ Logieeyd miywestar
[2]
r LW Dl Al R
™ Lagdokasy cubpat reessagos
™ Lo fel [elshan gy geig i pames
F &urcreeicelly opon erd prcde ot dd procerses

Figure 1-6: The Profile Module dialog box allows you to add a command line argument
and adjust the kinds of information that Depends will track.

There are actually two sections to this dialog box. The first section allows you to provide a
command line argument for the application and change the application’s starting path. In

most cases, you won't need to change either entry. You can also choose whether Depends
clears the Log window before it begins the profiling process. The Simulate ShellExecute
option determines how the application is started. Normally, you'll keep this checked to
ensure that the application path information is provided to the application when it starts. The
only exception is when you're troubleshooting problems related to the application path. If you
uncheck this option, then Depends will start the application using the CreateProcess() API
call rather than using ShellExecute().

The second section contains a list of items that you want to monitor. For example, you might
be interested only in profiling the libraries that your application loads and when it loads them.
In this case, you'd select the Log LoadLibrary function calls option. The number of entries in
the Log window can build very quickly, so it helps to decide what you really need to monitor
at the outset, rather than wading through a lot of useless information that you don’t really
want. Figure 1-6 shows the default information that Depends will collect about your
application. This setup is useful in determining how an application uses the various libraries
that it requires to operate. It's interesting to note that you can even use Depends to monitor
Debug output messages that you've placed within an application, making it a handy tool for
monitoring application activity outside of a programming language’s IDE.

Once you've decided how to start the application and what you want to monitor, click OK.
Depends will load the application and start displaying profile information. Figure 1-7 shows
the Log window entries for the SayHello.EXE application we looked at earlier. As you can

see, there’s a lot of activity that occurs even starting an application.

B Ne Ect Vew Oploen Profle Wicdow el I
FA ARG EST AL iHRED W {
[&] 2 Crdared | et |Furction | EntryPaint | =
- - Wi paDIEn A Paoh it Esure |
e i Exure |
- Pt Boune
- v B
L] L T
wE
]
e
L)
L)
o

Aociule Fim Tivw Sovw | Lirk. Trw Sare I Sicw I Aot
& [eayHELLOENUL | Emar sosnrg e The eywism canal Erd T8 s apacibed [
I | BavsELLOLOE

i:_ig re 1-7; Depends will help you monitor the startup acti\}iﬂ/ for any application you
create.

Even though you can’t see it in the screen shot, Depends has noted two problem calls made
by the application during startup. These calls are highlighted in red in the Log window. In
addition, the affected modules are highlighted in red in both the module list and the
hierarchical display. What this means to you, as a developer, is that Depends has gone from
being a simple analysis aid to an application that can help you diagnose application
problems. In this case, the two errant calls aren’t part of the application code; they're caused
by the Visual Basic runtime. Microsoft will likely fix these problems when it updates Visual
Studio for Windows 2000.

Depends returns control of the application to you as soon as the application finishes loading.
You can work with the application just as you normally would and monitor the results in the

Log window. When you finish working with an application, you can stop the logging process
using the Depends Profile | Stop Profiling command.

There are quite a few other new features provided with Depends, but the ability to profile

your application is probably the highlight of the list. One of the new capabilities allows you to
save a Dependency Walker Image (DWI) file. This option creates a file on disk that allows
you to restore your setup as needed. Microsoft didn’t include the DWI file feature in previous
versions of Depends because the application environment provided fewer options. However,
the latest version of Depends would prove time consuming to configure without this feature.

The View menu contains three options that you really need to know about. The first is a
System Information command that displays a dialog similar to the one shown in Figure 1-8.
This short summary provides a quick view of your current system configuration, which could
be important if you want to stress the application under a set of specific conditions like low
memory. There are also options to display the full paths for all files and to undecorate those
really weird function names that you’'ll normally find within C++-generated DLLs.

Syatam Inlormmi o

Deprndancy Walkar
Campubar Mamn:

Ulsor Mami

Lol Diate:

Local Temea:

Ciprrating Sysiem:

05 Version

05 Varsion Stoeg:
Frocasror Aschibaciure;
Frocassor Typm:
Mumber i Procossors
tuctive Processor Mask:
Frocasror Laval

Admiristalor

0 8ans Clogs
kAazh]
Fafash
Thurddmy Maich 15 2000

1444 Ak Conbal Staedand Time [GAAT-08 00
WicrosaftWindows T

502195

Senipe Pack |

gl

nigl Pandum

Select Al

ddil

00000003
el [F]

Frocnsaor FRevision:
Page Sire:

\Adlpcation Granulority: 15}

Man, App. Addeass: 000010000 (55536}

Ma App, Addross: IIFFEFFFF (2147 418,111
Momony Load b

Physical Memory Tolal
Finraacal Mamany Uead:
Fhiysical Memaony Frae:
Fage File Momony Totnl:
Fage File Memory Lsoed
Faga File Mamnny Frio
Wertuml Memory Tolal:
(Wirbuml Memory Used:
Wil Memory Fres:

Figure 1-8: The System Information dialog box gives you a quick overview of your
system.

One final feature that improves the usability of Depends is the ability to search for specific
information. For example, you can highlight a module of interest and use View menu options
to search for other occurrences of the same module within the hierarchical view. This allows
you to better see where specific modules are used and by whom. Another search feature,
this one found on the Edit menu, allows you to search the Log window for words, just as you
would with a text editor. You could use this feature to help find errors (the logs do get very
long very fast) or to find instances where a specific module is used for tasks like application
initialization.

Process Viewer

The Process Viewer utility (shown as PView on the Platform SDK Tools menu) allows you to
see what processes are currently running on your machine, what threads they’'ve spawned,
and the priority of those threads. You can also use this utility to kill a process that isn’t
working as intended using the Kill Process button. Figure 1-9 shows what the Process

Viewer utility looks like in action. Notice that I've started a copy of the SayHello test
application that we used earlier in the chapter for demonstration purposes.

-5 Process Viewar

Esit Compar fl.'.]."un
Frocess Frocessod Tame Fraleged Liser
Mamoey Detail 1:00.00.062 Z6%
Fill Process

434} 000400 380 L b 16%
) 0:00:08 968 T BES

SHSS [=34) laaoman S i

SPOOLEY (xlel) 00002 366 Tk Fi! =l

Frocess Memary Lised Prieuity
Retath
Werking Sel 1454 KB ™ Vany High
= Moemal
Heep Usage 176 KB
s o r~ da
Thraadi) Processo Tame Pralaged Ulsar
Uiyl il 00000 ze ras 21 %
" Highest o e o
1 Abve Mormes
& Namel
" Below Normsl
 idle

Thiaad lndaimaion

Lizar PC\Vohsg D77l dbiic Conted Swichas 531
Sian Addnags (2 TeB264 Crmarnic Fricetys 10

Figure 1-9: The Process Viewer allows you to see what processes are currently
executing on your machine.

Tip
The Process Viewer automatically updates its display at a given interval
(depending on current processor load). You can force an update of the
display by pressing F5 or by using the Process | Refresh command.

The upper window contains a list of all of the processes currently running on the machine. It
includes information about each process, like the process ID number, the number of threads
that it owns, the base priority of the process (used for multitasking), whether it is a 16-bit or
32-bit process, and the full path to the process.

Highlighting a process displays thread information for it in the lower window. In this case, we
see the one thread owned by SayHello.EXE. Thread information includes the thread ID, the
ID of the process that owns the thread (useful when you have threads starting other
threads), and the priority of the thread (normally the same or lower than the base priority for
the process as a whole).

There’s one additional Process Viewer feature that you may want to look at. Click Memory
Detail and you'll see the Memory Details dialog box, shown in Figure 1-10. As you can see,
this dialog box contains very detailed information about precisely how a process is using
memory. This dialog will tell you how much memory the application uses privately, how the
memory is mapped into various functional areas, and how much virtual memory the process
is using.

Process: SAYHELLO [(ed34) [ok
User Address Space Tor m

Totak 4876 KB Writeable: 104 KB
Inaccessile: 0 KB Writeable (Mot Written): 12 EB
Fead Ondye 1072 KB Executalbla: JhbHE KB
Mapped Commit Private Commit
Totak 1T EE | Tolak 176 KB
Inaccessible: OKB Inaccessible: 0EB
Fead Onby: 912 KE | Read Onhy 4 KB
Wiritaealali: 4 KRB Writealla: 164 KE
‘Writeable (Mot Written): OKB | Writeable (Mot Written) nEB
Executable: T48 KB Executable: BEB

Virtual Memory Counts

Working Set 1464 KB Virlual Size: 14540 KB
Peak Working Set: 1464 KB Peak Virlual Size: 14540 KB
Private Pages: I EE Fault Count OKB

Figure 1-10: The Memory Details dialog box provides extremely detailed information
about how a particular process is using memory.

The User Address Space field of the Memory Details dialog box contains the name of the
address space that you're view7ing. The Total Commit value means that you're looking at
the memory used by the entire process. If you click the arrow next to the combo box, you'll
see a list of all of the DLLs and EXEs used by this application. Select one of these entries
and you’ll see the memory used just by that piece of the application. For example, the
executable portion of the file uses a mere 4-KB in this case. Since most of these DLLs are

shared, the application is most likely using only the 4-KB for the executable and the 32-KB
for the runtime file.

You can use the Memory Details dialog box to troubleshoot applications with subtle memory
problems by looking at the values in two of the fields. First, look for a number in the
Inaccessible field. Any value other than 0 in this field tells you that the process has some
type of memory problem. The second item is the Total memory field. Compare this entry for
the Total Commit entry to the Total memory field value for other address spaces. If you see
that one DLL is using a substantial amount of memory and the others some small amount of
memory, you need to ask why this one DLL is acting in that way. In many cases, you'll find
nothing wrong, but there are a few situations when a buggy DLL will keep grabbing memory
until it begins to impinge on the resources available to other applications.

ROT Viewer

The IROTView utility (it appears as ROT Viewer in both the Platform SDK and the Visual
Studio Tools menus) allows you to view OLE’s running object table (ROT). So, what does
this buy you? Well, if you're testing the OLE capabilities of your application, you can use this
ability to see how well your application interfaces with other objects. For example, what
happens if you open a compound document object? Does your application actually make the
connection? Figure 1-11 shows what the IROTView utility looks like with several objects
loaded.

EE bt Vadiems - RO TEW Wnidies A

Fiw Upsiclal Hai

0 e by s W MW RCADIETY - Vistad Cod Developer®s Quids Dad Edition8 100 doe
{0 OIS F - el - DDl (el ke WM 04 b |

CAfrogram FllesiMiorosott OtficelTem platesioanh.dod

PO el sy O | s YOI GO -1 0, TOF

HOOOBUFE Q000-0000- COO0-000 00000051

nime d[luﬂwﬂ'ﬂrﬁﬁ'-ﬂ}iﬁﬂli:m:lijﬂ vinuel Go s Devolopers Guids (ed Editionfi28 10026
il EEi | A e AN WINW DR CANDAT - Visied Crs Dewelopers Guide nd Edionea 100 o)
VErEET L |

e aleil LT

s Yol (eAlE MUTEH

e TRLI

ast Chareges DE:ZETS o U3AMR2001
P e Moniker

o r

Figure 1-11: The main purpose of the IROTView utility is to keep track of the OLE
running object table.

The upper window gives you a complete list of the currently running objects. The GUIDs are
running applications that can act as containers for other objects. Figure 1-11 shows two
applications: Word and Paintshop Pro. Above each GUID is a list of the documents that the
application is running. Every time an application receives focus, this list gets updated. You
can also perform a manual update using the Update! menu option.

The lower window gives you more information about the highlighted object. The following list
tells you what each field contains.
Note
A moniker is a name for some kind of a resource. For example,
C:\MyStufiMyDoc.Doc is a moniker for a document file that appears in the
MyStuff folder on the C drive of your machine. Monikers can include all
kinds of resource types. For example: http://www.microsoft.com/ is the
moniker for Microsoft's Web site. You can even reference objects by their
moniker by using the class ID (Clsld). For example, a moniker for Microsoft
Word 97 is {000209FF-0000-0000- C000-000000000046}.
. Name: The display name of the moniker. For example, in the case of a file, you'd see
the complete path for the file. Applications normally use their class ID.
. Reduced: The reduced name of the moniker. Normally, this is the same value as the
Name field.
. Inverse: The anti-moniker for this object. You add this value to the end of the moniker
to destroy it. In most cases, this value is set to: “\..".
" Enumerated: A list of the items in this moniker. If this isn’t a composite moniker (as is
the case in most situations), then the field displays “N/A.”
- Hash Value: The 32-bit hash value associated with the moniker.
. Running: Displays TRUE to show that the application is running or FALSE so show
that it's halted. The entry for the application will always disappear when the application
is terminated, so FALSE always indicates a halted, but active, application.
. Last Change: This is the last time that the moniker’s data was updated.
. Type: The type of moniker displayed. Standard values include Generic Composite
Moniker, File Moniker, Anti-Moniker, Item Moniker, Pointer Moniker, and Not a System
Moniker.

ShellWalk

http://www.microsoft.com/

ShellWalk is a handy utility for finding bugs in namespace implementations. You can use it to
walk through the namespace hierarchy and look for problems in applications that you create.
The testing includes checks related to folder, item, PIDL (identifier list pointer), and COM,
which means that ShellWalk will find most namespace- related problems. All data logging
occurs through the LOR logging utility.

There are two ways to use Shellwalk. You can use the command line method or directly
interact with the application interface. The command line parameters include \tp, which
makes a single pass through the namespace hierarchy, and \stress, which allows the utility
to pass through the namespace hierarchy infinitely. In most cases, you’ll want to use the \tp
command line switch to make a single pass through the namespace hierarchy and log and
problems that the Shellwalk utility finds.

Figure 1-12 shows what the ShellWalk utility looks like. As you can see, the left pane
contains a hierarchical view of the namespace. The right pane contains the results for any
tests that you run. Unlike the command line, the user interface allows you to select
multithreaded as well as single-threaded testing. There are also settings for the breadth and
depth of testing. The testing depth affects just how deep in the hierarchy that Shellwalk will
look for errors. There are several test types. The Walk menu options allow you to walk the
namespace starting at a specific point in the hierarchy, while the Test Pass menu options will
test the entire hierarchy. Note that you can’t perform a leak test without a checked build of
Windows 2000.

Fie Ede View Fulp Towl Pass ‘diok Oovipns

a7 e an
Thra o o
= vy Horeih Feoe e,
@ Frovee D D | |"|"h'|.-'| tern 3 | Sumep 4| G B | Groep 8 | Grap | G L0
o) Sl i
Thread | -
Thread OF Thman sof metakrec
T Thean st seakes
drec Thecd sotmisakind
o Frew ot kv
Toruan Bid B
Aven Thamee 0 Aoes Grosps 0
|

i I) S
Figure 1-12: ShellWalk provides a method for looking for namespace errors in
applications you create.

Before you can use ShellWalk for the first time, you need to make some configuration
changes. There are two INI files in the ShellWalk directory. The first is MTShellWalk.INI. This
file contains the location of the LOR logging DLLs. You need to change the two entries in

this file to point to the ShellWalk directory on your hard drive, which is going to be

C:\Program Files\Microsoft Platform SDK\ Bin\ShellWalk for the Platform SDK in most cases.
The second is LorLogging.INI, which contains the logging settings. You'll need to set the log
filename and logging path entries at a minimum. The other entries control which logs the

LOR logging utility will generate.

Spy++

Spy++ is a complex utility that can give you more information about your application than
you might have thought possible. This section is going to give you a very brief overview of
this utility. What I'll do is point out some of the more interesting features that will make

working with the applications in this book easier. Make sure you take time to work with this
utility further once you've learned the basics. We’ll also spend more time with it as the book
progresses.

The first thing you'll see when you start Spy++ is a list of windows. A window can be any

number of object types, but the most familiar is the application window. Figure 1-13 shows
an example of what you might see when you start Spy++ with the SayHello sample
application running.

il st
= Gy Tew Smorch Ve Menages Wedos Hels I
Slele| =W Slelx] Mals

i MG P B P+ PR 1 8 T o 1 | e C |

4|

o ity prs |

Figure“i-13: Spy++ allows you to take your applic"étién'épart and see it from the
Windows perspective.

Notice Spy++ shows three windows that belong to the main application window— all of
which are components on the dialog box. In this case, the OK, Cancel, and the Say Hello
test buttons are all considered windows. The buttons are all objects derived from the

CWindow class, which means that Spy++ is right on track displaying the information as it
has.

Working With Window Properties

Windows are a central part of working with Spy++. They represent the method you'll
normally use to begin deciphering how an application works and how well it runs. It makes
sense, then, that you can access every aspect of an application, its child windows,
processes, and threads through the Window Properties dialog box shown here:

General | Shyles I ‘Windiows | Class I Frocass I

Window Caglion iSuyHl.*I':_'

Windcrw Handle oZa04g2

Window Froc D1 EF3IAA (Bubclassad)

Factangle (748, 261)-(1154, 487 406226

Fastarad Rect (748, 2611154, 407 $06x226

Chart Ract (3, 2F{403, 223), 400200

Irsdamce Handlg [00000

Manu Handle nooaonog

Uzer Diaea (00a0000

WWindiow Bytos [0 ooooocan |
Cloze I Fetresh | Help |

Accessing this dialog box is easy: All you need to do is right-click the window you want to
view, then choose Properties from the context menu. You can also access this dialog box
using the View | Properties command.

The General tab of the Window Properties dialog box tells you about the window as a whole.
It includes the window’s display name, the window’s handle, the virtual address of the
window’s procedure, the size of the rectangle used to display the window (both present and
restored sizes), and various other pieces of general application information.

The Styles tab contains a list of the window style constants used to create the window. For
example, you’'ll commonly find WS_VISIBLE as one of the items in the list, unless you're
dealing with an invisible window. This same tab contains extended styles for the window, like
WS_EX_APPWINDOW. These constants should be familiar to someone with C/C++
programming experience, since you need them to display windows in most cases.

The Windows tab contains five entries. You can move between windows at the same level
by clicking the links in the Next Window and Previous Window fields. The Parent Window
field will contain a link if this is a child window or (None) if this is a main window. If the
window contains child windows (like the components for the SayHello.EXE program), you'll
see an entry in the First Child field. Clicking this link will take you down one level in the
hierarchy so that you can examine any child windows that belong to the current window.
Finally, the Owner Window field will contain a link if another window owns the current
window—except for the Desktop, in which case the field displays a value of (None).

The Class tab tells you about the class used to create the window. For example, the main
window for the SayHello.EXE program uses the #32770 (Dialog) class, while the
components are all listed as being part of component-specific classes like the Button class
used for the Say Hello test button. You'll also find class-specific information, such as class
style codes, number of data bytes used by this class instance, a window instance handle,
number of bytes used by the window, and window details like the name of any associated
menus.

The Process tab provides a list of process IDs and thread IDs associated with the current
window. Clicking the links associated with each field will display the properties dialog
associated with the process or thread ID. We'll look at this properties dialog in more detail in
the Viewing Processes section that follows.

Viewing Messages

Windows runs on messages. Every activity that the user engages in generates a message of
some sort. It's important to monitor those messages and see how your application reacts.

For example, if you expect a certain message to get generated when the user clicks a
button, you can monitor the message stream to see if it really does get sent.

There are a number of ways to display the Messages window for a window that you're
debugging. You could right-click on the window and choose Messages from the context
menu. However, in this particular case, the best way to start the message monitoring
process is to use the Spy | Messages command. Using this command will display the
Message Options dialog box shown here:

Message Dplions

Windiows | Messnges | Output |

Yindow Finder Tool Selocted Objoct

Dirag the Fiedar Tool over a ‘Window: (000482

window o seloct, then rofeaso Tead "Senddpllc™

the rouse biton Class #32770 (Dealog)
Endo SACHDOCA

Findr Toal | &= Fiact (748, 261141154, 487) 406226
Thraad [0 000a04cs

I Hide Spyss Process IDr (0000434

Addibonal Windows

™ Pagen © Windows of Same Theead ™ All'Windows m Syeiem

™ Chilcken ™ Windows of Same Process

[Sevie Softings as Detauh

ok | Cancel] Help |

Note
You don't get the Message Options dialog box when you use the context
menu method of displaying the Messages window.

Notice the Selected Object frame on the right side of the dialog box. This frame provides you
with information about the object that you've selected. This additional information enables
you to determine if this is the window that you want to monitor. The Finder Tool on the left
side of the dialog box is interesting as well. Drag this tool to any displayed window, then
release the mouse button, and the information on the right side will change to match the data
for that window. (The windows will get highlighted as you drag the mouse cursor over them
so that you can see which one is being selected.) The Windows tab also allows you to
choose additional windows. For example, you may want to monitor the child windows as well
as the parent window for a specific kind of message.

There are 849 different messages that Spy++ can track for the average window. The

Messages tab shown here gives you some idea of just how extensive the message coverage
is.

Wirdows | Mesiages I':'ulp:-rll

Massages o Yigw Miuszage Groups

F DDE W Cipboard F Genesl
J“?M-gf\? o F WD P ManChenl | Regtbarad
AT STOR F sE F Eeyboard = Unkmowe
B _CLICK, F Mouse F Dislog F WH_USER
BM_GETCHECE F Pen 7 AFHMFC
Btd_GETIMAGE
BM GETSTATE F Stafic P Listhon F Combabox
EM-éETE“HEIHi. =] | F¥ Bution F Soolbar F Edil Figld

F Hoader F Anemsio F Treckhar

F Toolbar F TieeView F Swlusber

F81 messages selacted F TooiTp F Latvies 7 CombaEx

Salec Al I Clear AJ | P Hotkey P UpDown = Tab Col
F Prograss F MonkCal F DadaTime
I Senr Softings as Detauh F FaBor F Poger F IF Addrass

QK I Cancal I Heip |

Needless to say, you could end up with a lot of useless tracking information if you don’t trim
this number down to a more reasonable number. That's why the Messages tab is so
important. This tab allows you to choose which messages Spy++ tracks in the Messages
window. You can choose messages singularly or in groups. A Select All button allows you to
choose all of the messages, while a Clear All button allows you to clear the current
selections. Make sure you tune these settings before you display the Messages window, or
your chances of getting the input you need will be very small indeed.

It's also important to determine how you want information displayed in the Messages
window. In most cases, the default options on the Output tab will work just fine. Spy++
assumes that you want to display only decoded information and only on screen. However,
there are options for displaying raw message information. You can also choose to send the
output to a file as well as to the screen.

Once you have the options set for your Messages window, you can click OK and Spy++ will
display it for you. Figure 1-14 shows an example of what a Messages window would look like
if you choose to monitor a subset of button and mouse events. As you can see, just selecting
these two message groups generates a lot of message traffic.

wn Ilr|1-uu|:. Widcw Hela

Olele| ol W o= s5ls

U111'|l.- 'H'I'-i" I-'r\-'l-l (1] 1|‘TM- -\.f ot iy, I-| I'I"n‘:'r iy 'FI:\.I 1 C |

I"'I'I'-I1 B LCH TSR RATAT et s S0 e 30 P | 18
Lhe l,\" IS WM .\;[T L I'-\.\;.l'ﬁh-‘r LT rl'm-l II'T“_ ST wiioumting YWl W OLSEMINVE

'l_-_l’-l:ldlr\-nr ||-T|'J_Ir T wiiiRaig Wil HOLSERMONVE
uorRIag e
RN, Peebis B P w1 M
=T J\\n;n;-l;la i k-.u 'rn CHT Wil Y HOUS TN
MFroceitien S
N v i 2w 1
I 3 RENEADE T M. SETCLIRS0 w] WA ik TOLICHT whvismat s VWil HILSTMINT
HII1T s TRGTCTD B AW ST TOURGOR =i v £
N1 AT WM “LCUSEMCNE s 00
43 TR 5 WH_BE TR b AT
PECATE R A SETCLRG0N HalFrode
MR P AL HCUSERCNE Mt
o g

INEE]

<3 ""C"L'ﬂ"?‘-"ll

033! >“"xl.'$‘n-’-‘!‘1"- C o

092> MCECATE FWH_WOUEERACKE bl 0000 208 oo 1

D47 5 WH_BE ToLIREOR bewed ST RTHTELENT widousaig Whi_HOUSEMOVE
2 R A 52 TEURS R i rooe sits

3 WH_MCUSERACNE Skt 08 ook | 7

DT 5 WA SE TR0 b DG vt TOLIENT waapas o parVobd_WCETE MTVE
G AT TEUREOR HalF e g Fade
3 W _LICLFSERACVE hbians 00T s T8 P |

oy peda F

Figure 1-14: The Messages window will display the messages that you choose to
monitor for an application.

In this case, | clicked the Say Hello button several times and moved the mouse around on
screen. Notice that the log entries contain the handle of the window where the action
occurred, the action performed (mouse button up or down, mouse move, or set cursor), and
the position where the action occurred. Obviously, this is a simple test case, but it's also
easy to see that monitoring messages can provide you with very important debugging clues
for your application.

Viewing Processes and Threads

Every application you create will have at least one process and one thread. Consider a
process as the overall application identifier, while a thread consists of a particular set of
actions taking place within that process. In a multithreaded application, each thread of
execution is performing a single task that affects the application (the process) as a whole.

Spy++ allows you to monitor both processes and threads. All you need to do is use the Spy |
Processes or Spy | Threads command to display the appropriate window. Figure 1-15 shows
an example of the Processes window.

B Sey Trew Secch Yaw naagn Widos Help =i

Slele| =] ® gl sl f
3|

< e

g

299029900029

9990

=l
Bt el pHEAE F |

Figure 1-15: Spy++ will allow you to monitor both threads and processes.

It's interesting to note that the Processes window also contains a list of any threads owned
by the process in a hierarchical format. For this reason, you’ll normally want to use the
Processes window over the Thread window. You get more information in an easier-to-use
format with the Processes window.

Creating a Workstation Setup

To get anywhere with this book you need a development workstation on which you install
Windows 2000 (or Windows XP if it's available when you read this), write your code, and
perform any desktop-level testing. Avoid using your regular workstation for development for
two reasons. First, there’s no guarantee that an application is going to work the first time,
and you don’t want to crash the machine that contains all your data. Second, you want to
create the cleanest possible environment so that you know for sure that any bugs are the
result of application errors, not compatibility problems.

The version of Windows 2000 you install depends on personal taste and the number of
machines that you plan to use. You definitely want to install one of the server versions of

Windows 2000 if you plan to use only one machine as both a development workstation and a

server. However, the programming examples work better and demonstrate more if you use

two machines. (I'll always assume that you have two machines: one with Windows 2000

Professional installed for development purposes and one with Windows 2000 Server

installed for the server.) If you're using two machines, you can set up the development

workstation using Windows 2000 Professional. You may want to use this operating system

rather than the server version so that you can get a better idea of how things will actually

look from the user’s perspective. The server versions include many features that the user

won'’t see, and these features might taint the results of any tests you perform.

Caution

Developing applications for production purposes on a single-machine
setup will result in applications that are unreliable and not fully tested.
Most applications today run in a distributed environment, so a multiple-
machine setup for developers is a requirement. For example, there isn’t
any way to develop COM+ applications and completely test them without
a two-machine setup. In addition, you want to ensure that you have
some flexibility in the methods used to connect the two machines. At the
very least, you want a private network setup where you can disconnect
the development workstation from the server without disturbing other
people working on the network. A telephone connection (or a simulation)
is also valuable for testing disconnected applications fully. Make
absolutely certain you set up a good development environment before
you begin your first production application or you'll definitely get
unreliable results.

For a development workstation that you're going to use exclusively for development and not
for testing purposes, make sure you get a fast processor, a lot of RAM, and even more hard
drive space. My test workstation includes 512MB of RAM, dual 450MHz Pentium II
processors, and a 9GB hard drive. This setup worked well for my needs in creating code for
this book—you’ll obviously need to increase your hard drive space as you add more features
and create complex applications. | initially tested every application on my development
machine, then on the server, and finally on a test workstation. The test workstation is a
166MHz Pentium machine with 64MB of RAM and a 4GB hard drive. The test workstation
you use should reflect the standard- issue machine for the environment in which the
application will perform. In all cases, I'm using Windows 2000 as my operating system. |
used the server version of the product where appropriate.

| installed the minimum number of user-level features on my machine. You’'ll need to install
all of the features required for your application. For example, if you want to work with
Queued Components, then you'll need to install Microsoft Message Queue (MSMQ) support
on your workstation. The example sections in this book will note any special user-level
features you may have to install to make the examples work. It's important to consider this
requirement when setting up your test workstation for your own projects.

Install Visual C++ next. | performed a full install of all features. This book will concentrate on
Visual C++ 7 (.NET). However, at least some of the examples will work with older versions of
Visual C++ as well. In some cases, you'll need to make modifications to the example code in
order for the example to work with older versions of Visual C++. You must install Visual
Studio Service Pack 3 (as a minimum) to get Visual C++ 6 to work with Windows 2000.
Service Pack 5 (or the most current service pack as you read this) is available at
http:/msdn.microsoft.com/vstudio/sp/vs6sp5/default.asp.

Creating a Server Setup

http://msdn.microsoft.com/vstudio/sp/vs6sp5/default.asp

You must have a Windows 2000 Server setup in order to work with many of the examples in
this book. | wrote the examples using the standard server product on a dual-processor
450MHz Pentium processor machine with 512MB of RAM, although you could probably get
by with a single 450MHz processor machine with 256MB of RAM installed. | recommend a
minimum of 9GB of hard drive space, although more is certainly better considering how
much space you'll need for the various programming language additions.

The test server will require access to a number of Windows-specific components if you want
the examples in the book to work. The following list summarizes the components that |
installed while writing this book:

. Internet Information Server (11S) (complete)

. Management and Monitoring Tools (all)

= Message Queuing Services

" Microsoft Indexing Service

. Networking Services (all)

. Terminal Services (optional, but good to have)

After your test server is up and running, you'll need some additional programs in order to
work with some of the examples in the book. The number of features that you install
depends on which examples you want to work with. Obviously, you need a database
manager to work with the database examples. | based the following application list on the
assumption that you want to work with all of the examples.

" Microsoft Front Page Server Extensions

" Microsoft Posting Acceptor 2.0

" Microsoft Visual Studio Enterprise Edition (Server Components)

. Microsoft Visual Studio Analyzer Server (part of Visual Studio)

. Remote Machine Debugging (only if you want to debug your server from a remote

location)

. SQL Server Debugging (part of Visual Studio)

. Visual SourceSafe Server (part of Visual Studio)
VSEE APE Server (part of Visual Studio)

Chapter 2: Building Desktop Applications

Overview

With all of the current emphasis on Internet and distributed development, some people might

think that desktop development is outdated. After all, according to current theory there isn't

anywhere else to go on the desktop. Unfortunately, such shortsighted viewpoints miss the

realities of business application development; not every application requires the capabilities

provided by the distributed application environment. For example, you need a desktop

application, not a distributed application, to monitor the status of your hardware. While there

may be a need to provide an agent on the local machine so a network administrator can

monitor the system from a remote location, local monitoring occurs using a standard desktop

application.

Browser
Alert Any serious Visual C++ programmer will spend some time on the

Internet learning about new programming techniques. Microsoft
hosts a variety of Visual C++ newsgroups, some of which are quite
specific. The most general newsgroup is
microsoft.public.vc.language. If you want to learn what's going
on with ActiveX technology, you might want to look at
microsoft.public.vc. activextemplatelib. A good place to look for
database specifics is microsoft.public.vc.database . One of the
most active newsgroups is microsoft.public.vc.mfc, which is
devoted to working with the Microsoft Foundation Classes (MFC).
However, there are two other MFC-related newsgroups:
microsoft.public.vc.mfc.docview and
microsoft.public.vc.mfc.macintosh. Finally, don't forget to check
out the general windows programming groups located under the
microsoft. public.win32.programmer folder (there’s a whole list
of programmer-related newsgroups, so you'll need to choose the
ones that best suit your needs). For those of you looking for
managed code-specific newsgroups, try
microsoft.public.dotnet.languages.vc and
microsoft.public.framework.interop. The first helps you discuss
important Visual C++ language change topics, while the second
enables you to discuss interoperability questions.

It's easy to imagine that you’ll always work on new projects, but the reality is that companies
have a wealth of applications right now and have invested heavily in them. Many developers
will need to update existing applications. In some cases, it's a lot less expensive to tweak an
existing application than start over from scratch with the latest technology. Updates will
always be a part of developer activity, so it's important to know how to work with desktop
applications. In short, no matter what type of development you're doing today, eventually
you'll need to work with the desktop.

Desktop applications can take a variety of sizes and shapes. Each of these desktop
application versions fulfills a specific task within the grand scheme of application
development within your organization. Visual C++.NET is quite capable of creating any
application you can imagine. However, there are five application types that exemplify
applications as a whole, and they’re what we’ll concentrate on first.

. Console applications represent those situations where you really need to maintain
some type of compatibility with legacy systems or where you don’t need a full-fledged
interface for the user to work with. We’'ll look at two console applications. The first
provides a simple information display that requires no user interaction. The second will

perform simple script processing, similar to the processing you might perform during an
installation or update.

= Dialog-based applications normally act as utilities or an application that's too small to
require a complete menuing system. This is also the most popular application type for
testing small routines before you incorporate them into a larger application.
Consequently, dialog-based applications represent the desktop application class you'll
get to know best. We'll look at two types of dialog-based applications: utility and
configuration.

. Single-document applications are representative of simple applications that work with
their own data, like note takers or small database front ends. These applications also
require a menuing system of some type. Even large applications can use the Single
Document Interface (SDI) model. The important consideration is that a SDI application
displays just one document at a time. We’'ll look at two SDI applications in this chapter.
The first allows you to work with a single document type, while the second will work with
more than one document type using more than one view.

" Multiple-document applications normally include larger applications like word
processors and spreadsheets. When you think about it, they represent that fringe area
of C++ programming where you need to weigh the flexibility of C++ against the
development speed offered by RAD programming environments like Visual Basic. A
Multiple Document Interface (MDI) application can display more than one document at a
time. This means that application development is much harder. We'll look at one
example of an MDI application in this chapter.

. HTML-based applications work with data of some type (like single-document or
multiple-document applications) but with an Internet twist. Instead of a standard editor,
your user will see what amounts to a Web browser front end. We’'ll look at one example
of an HTML-based application that uses an SDI format. You can also create MDI
versions of HTML-based applications.

Note
Remember that we're talking about applications in this chapter. Visual C++
is capable of creating all kinds of different code. You can use it to create
DLLs, ActiveX controls, ISAPI extensions, device drivers, background-
executing programs like screen savers, and even extensions to Visual C++
itself. We're only talking about general applications in this chapter, but we’ll
cover many of these other possibilities as the book progresses.

Visual C++ also creates two flavors of applications in this release: managed and

unmanaged. An unmanaged application is one that uses the same processes and

techniques that you've always used. It's the one that you'll spend the least amount of time

learning. The managed application relies on the .NET Framework to perform certain tasks

such as memory management. This new technology will compile to an intermediate

language (IL) module instead of a native EXE, which means you’ll need to have the .NET

Framework installed on all client machines as well. We'll begin a discussion of managed

code in this chapter, with more to follow as the book progresses.

Browser
Alert You may not think about the font you use to work on your machine,

but using monospaced fonts all day can lead to eyestrain, bugs (as
when, for example, you confuse an | and a 1), and other problems.
Microsoft's choice of Courier New as its monospaced font hasn't
been well received by many users. Fortunately, there are
alternatives, some of which are free. Paul Neubauer's Web site at:
http://home.bsu.edu/prn/monofont/ discusses how to use
monospaced fonts on a typical Windows system and what
replacement fonts are available should you decide you really don’t
like Courier. This Web site even includes reviews of the various
fonts so that you can make a good choice the first time around.

http://home.bsu.edu/prn/monofont/

Writing an Informational Console Application

A console application, as previously stated, enables you to move the business logic of your
application from DOS to Windows. You also may be able to move some (or even most) of

the display logic, but you'll likely want to dress it up with features that MFC can provide. In
essence, a console application can look just like your old DOS application with a few added
features. You need to completely test the application once you get it coded to make sure any
features you move from DOS to Windows still work as anticipated.

Let's look at a simple example of what you can do with a console application. In this case,
we're not looking at functionality as much as at what you can do overall. The first step, of
course, is to create the program shell. The following procedure will take you through the
steps required to get that part of the job done.
1. Open Visual C++ if you haven't done so already.
2. Use the File | New command to display a New Project dialog, like the one shown here.
Notice that I've already chosen the Visual C++ Projects tab and highlighted the
project type that we’ll use in this example.

Eromset Types Tergiaies m__:::_]
o Wisasl Basat Propcis ; =]
(7] Vieusi L Progscis Wy ‘ﬁ
3 Wisaal C++ Progacts FIC j‘f
] Setug el Chapdoyrrnt Frogets WFL DL MFC 58P Estensaon D1

w1 Oithest Pyogacis

] Vil Shudks S phations

AMWIRI2 console apphoabon o other 'Winl2 progect

Hoere <Enbe names

Location [FA0053 - Sounce Code -] frowee

Fromec! wll b crabed of FHADOAS - Sosace Codehv:Einbi rame:
Fhlens ok,] Cacd | Heo |

3. Once you choose Win32 Project, type a name for your program in the Project Name
field. The sample program uses the name Console. You may need to change the
contents of the Location field as well. Just click the browse button next to the field and
you'll see a Choose Directory dialog, where you can choose a destination directory
for your application.

4. Click on OK. You'll see the Win32 Console Application Wizard dialog. Select
Application Settings and you'll see the display shown next. Notice that you have a
choice of several application types to get you started. Microsoft originally introduced
this feature in Visual C++ 6.0. Before that time, Visual C++ would have created an
empty project for you. Visual C++ .NET enhances the appearance of the wizard and
adds a few new options. For example, you can add either ATL or MFC support to
your console application.

Wind? Applcation 'Wizard - Contole

Application Settings

Fank pppnrted

Specly tha taped ol apapheataos yin wall Buld wath; this prosect and the optioes o b s you j |
Aok b Ly B st [
™ Corecks applcstion | B
& Wmcows appie stich M=
L
o Pabic ey
Akt aptors:
I™ Emety project
"
F:
prih | cwed | e |

5. Select the Console Application option. Note that you can select other application types,
such as a Windows application.

6. Check the Empty Project option. Notice that when you select the Empty Project option,
the wizard automatically disables the MFC and ATL options. Click Finish. The Win32
Console Application Wizard will create the example for you.

Note

For those of you who are used to the Visual C++ 6.0 way of doing things,
you'll notice that you don't see a summary dialog anymore. The new
interface makes this feature unnecessary because you can see the entire
project at a glance. However, as we progress through the chapter, you'll see
that the summary dialog would still be a welcome feature.

You need to perform one more step before this project will be ready to go. It needs to use
MFC classes. While you could have added this support as part of the wizard setup,
converting DOS applications to Windows use requires less code rewriting if you go this
route. Highlight Console in Solution Explorer. The object you select in this window
determines the results you obtain when using certain commands. Use the View | Property
Pages command to display the Console Property Pages dialog shown here:

Canaole Propesty Page

[oriepran |.\.-||..-r.-.-¢..;| ;] iz, |a.;n..-mn'.-'| ﬂ Cprigushon Mg
i o e Prieintay B Garweasl

& Genmal Chatpat [reptony Doty

Detugers trémmeckate Ciescorg Diobarg

L} LT Esrarupang 13 [hleng oo Ui oy " kW T " e g T s

o ke [Paogec Qe wiy

L) Resmurtes Conbepaaton [e Appicabon | ses|

] Bk Bawwvine infiasaben Mo

1 Erpwmie Irdoosrastec Une Starced windown Livanen L |

L} Bulid E veriz Upe o ATL

ol ity Bl Shae:
3 't Pestgrercins
1 Yetets Deiopmani

bwwmza CAT LimnATL
Chasactes Sl

Lizm Marepged Edforzin:
Wtk Prorams Dpimashon

Ul o HET

Bopobet howr MFC 1 wnnd by e confapasion

Mol L ATL

Mo

U Bl ins Dhaaois St
L]

Mo

ok] cosa | | w |

Notice that Visual C++ .NET centralizes the settings for your application into a series of
hierarchical folders in the same dialog box. Choose the General folder of the dialog. Choose
the Use MFC in a Shared DLL option in the Use of MFC field. Click OK to complete the

action.

Now it's time to add some code to our example. The first thing you'll need to do is add a file
to the project. Let’s look at the process for doing that.

1. Use the File | New | File command to open the New File dialog. Choose the Visual C++
folder. You'll see a whole list of file types, including Resource Template File and
various graphics files like Icon File.

2. Highlight the C++ File option, and then click Open. You'll see a blank C++ source file.
We need a C++ source file because we’ll be adding classes to the sample code.

3. Click Save. Select the correct directory for your source code files. Type Console in the
File Name field. (Visual C++ will automatically add the correct extension for you.)

4, Click Save. This will add the file to our project directory. If you were using Visual C++
6, this is where you'd stop. However, when working with Visual C++ .NET, you need
to go one step further.

5. Right-click Source Files in Solution Explorer and choose Add | Existing Item from the
context menu. You'll see an Add Existing Item dialog box.

6. Highlight Console.CPP, and then click Open. The file is how part of your project.

Now that you have an empty file to use, it's time to add the code. Listing 2-1 contains the
C++ source for our example. Notice that it includes straight C code mixed with the C++ code.
| did that on purpose so that you could better see how things work in this environment.

Listing 2-1
#i ncl ude <af xcoll.h> /'l Provides access to MFC functions.

class CDrawBox : public CObject

{
publi c:

/1 Draws the box.

voi d DoDraw(char* string);
b

voi d CDr awBox: : DoDr awm(char * cVal ue)

{

size_t i Count ; /1 Loop counter.

size_t i Spaces; /1 Anpbunt of spaces to add for
string.

/1 Draw the top of the box.
fprintf(stdout, "\311");
for (iCount = 1; iCount <= 78; i Count++)
{

fprintf(stdout, "\315");

}
fprintf(stdout, "\273");

/1 Figure out the center of the string, then display it
/1 with the box sides.
i Spaces = (80 - strlen(cvalue)) / 2;
fprintf(stdout, "\272");
for (iCount = 1; iCount <= i Spaces; i Count++)
{
fprintf(stdout, " ");

}
fprintf(stdout, "%", cValue);

/| Conpensate for odd sized strings, then conplete the side.
if ((strlen(cvValue) %2) == 1)

{
i Spaces--;
}
for (iCount = 1; iCount <= i Spaces; i Count++)
{
fprintf(stdout, " ");
}

fprintf(stdout, "\272");

/1 Draw the bottom of the box.
fprintf(stdout, "\310");
for (iCount = 1; iCount <= 78; iCount++)
{

fprintf(stdout, "\315");

}
fprintf(stdout, "\274\n");

int main(int argc, char** argv)

Iine.

char* cNane; /'l Name of person typed at conmand
char* cLocal e; /1 Program execution |ocation.

CTi ne oWTi ne; /1 A time object.

CString cDat e; /'l String used to hold tinme and

dat e.

CDr awBox oMy Dr aw, /1 Special text display.

/1l See if we have enough conmand |ine argunments.
if (argc !'= 2)
{

fprintf(stderr, "Type the program nane followed by your
name.\n");

return 1;

/'l Get the command |ine argunents.
cLocale = argv[O0];
cNanme = argv[1];

/1l Get the current tine and put it in a string.
oMyTime = CTine:: CGetCurrentTine();
cbhate = oMyTine. Format ("%\, %8B %, %");

/1 Display everything we've collected.

fprintf(stdout, "Hello %\n\n", cNane);

fprintf(stdout, "Programis executing from\n¥%s\n\n", clLocale);
fprintf(stdout, "The date is: %\n", cDate);

/] Use our class to draw a box around sone text.
oMyDraw. DoDraw("It's a box!");

return O;
—
Tip

Some people are confused about how Visual C++ interprets the ““ and <>
symbols for the #include and #using directives. If you use the quotes form,
Visual C++ searches, in order, the current directory, the paths included with
the /I compiler switch, and finally the paths included with the INCLUDE
environment variable. If you use the angle bracket form, then Visual C++
searches only the paths included with the /I compiler switch and the paths
included with the INCLUDE environment variable. Use the angle bracket form
when you know the file is part of the Visual C++ library to speed compilation.
The quotes form slows compilation slightly because Visual C++ has to search
the local directory first.

As you can see, I'm showing you four essential techniques in this example. The first thing
you'll notice is that the code checks for the proper number of command line arguments. If
they aren’t there, it displays an error message to the stderr device and then exits with an
error code. You can detect this error code from a DOS batch command, but it doesn’t affect
Windows at all. Once the code establishes that there are enough command line arguments,
it places them in a couple of variables for display later.

Until this point, you could have been looking at any DOS application. Notice that the second
thing the code does is get the current time. It uses an MFC call to get the job done. So how
do you gain access to MFC functions from within a console application? As you'll see, |
included AFXCOLL.H at the beginning of the code. This file contains all of the defines and
class definitions that you’ll need to implement a limited number of MFC calls within your
console application.

Don't get the idea that you can use MFC calls indiscriminately, though. For example, you

can't create a CDialog object and then actually expect to use it. Even if you do manage to

get the code to compile, you'll end up with a runtime error or the application will ignore the

dialog code altogether.

Tip

A good rule of thumb when deciding which MFC classes to use is to see if the
class works with graphical elements. If it does, there’s no chance of you using
it within a console application. In addition, you'll find that certain system calls
are out of reach and that you’ll have to exercise care when it comes to
security and disk access. If in doubt, stick with the calls listed in AFXCOLL.H
(and any associated header files like AFX.H) to the exclusion of everything
else. You can safely use all of the calls within AFXCOLL.H in any console
application.

Now that we have some data to display, the code sends it to the stdout device. That's the
third technique | wanted to show you. In most cases, stdout will be the display, but you can
easily send it elsewhere if so desired. The point is that you use the same formatting as
before. For that matter, you could simply use an fprint() function call in place of the more
elaborate fprintf() function call shown in the code.

There’s one remaining call in our main() function. We send data to a class called CDrawBoXx,
the fourth technique | wanted to show you. All that this class does is center the text within a
text box (using the upper ASCII character set). | designed the box for an 80-character
screen, but you can easily change it to accommodate other screen sizes. You've probably
seen many DOS applications that do the same thing. The idea here is that we've derived a
new class from the MFC CObiject class, then used that class within a console application.
Likewise, nothing stops you from performing similar tricks with the programs you've created.
As | said before, the temptation to add bells and whistles to a DOS application as you move
it to Windows certainly is strong. Whether or not an update makes sense depends on how
much time you've got for the move and the relative value of the update when viewed within
the context of the total application.

Our console application is all ready to go. However, like many of the DOS applications
you've written, this one requires a batch file for testing purposes. Listing 2-2 shows the
source for the batch file we’ll use in this case. All it does is call the program, test for an error
value, and then echo a message if the application registered an error.

Listing 2-2

@CHO OFF

CONSOLE

| F ERRORLEVEL==1 ECHO I T' S BAD
CONSOLE JOHN

| F ERRORLEVEL==1 ECHO I T' S BAD
@CHO ON

| gave my batch file a name of TestConsole.BAT, but any filename will do. Figure 2-1 shows
the output from this example.

[WK et e HGEE

P - =L EHATTF=1 “Conze lns Bebug Feantconza le
'“ﬂrrg g-rn pregran name Followsd by i mamns.

Hallo SOHHW

Progran 5 swteweing Fraa

CoEME L

The date isi Friday. Soptenber B7. 2081

|I It's & Baw? |I

PiBER B CHAPTE™ “Conss Lo Debug k.

-
Figure 2-1: A simple example of a console application in action

OK, so this example doesn’t do enough to impress anyone. The point is that it's a simple
example you can use for experimentation. For instance, you might try rewriting the example
to accept a screen size as input, or use a different coding technique. The following sections
explore this same example using a few other coding techniques you might want to try.

Using Straight Code

Our previous example is a little complex for the job it has to perform. You could write it as
straight code without using a class. You could convert the DoDraw() method into a function
with relative ease. The \Chapter 02\Console2 directory of the CD-ROM has an example of
this form of the application. You might expect a reduction of size in the final application, but
the reduction is small in this case. However, in a larger application, you'd likely see a
relatively larger reduction in size when using straight code.

The use of classes also presents a small performance penalty. Again, the difference is so
small that you'd never notice it in this case. Larger applications require classes for
organizational purposes, code reuse, and all of the other reasons we use classes. In short,
there’s little reason to use straight code to enhance performance unless you're writing a real-
time application.

One of the bhiggest reasons to use straight code in this situation is readability. Even if you
present the DoDraw() method as a function, the code requires less space. The presentation
is easier to see. Of course, the reason that classes have become popular is that using
straight code tends to lead to situations where the code becomes incomprehensible. The
point is that you can use straight code for simple examples and actually gain some amount
of readability in the bargain.

Using Structs in Place of Classes

Visual C++ .NET can also handle this example using a struct. You'll find this version of the
code in the \Chapter 02\Console3 directory of the CD-ROM. Some developers forget that
you can use structs to hold code in addition to data. If you look at the example, DoDraw() is
a member of the CDrawBox struct. The advantage of using a struct, in this case, is that it
provides all of the organizational benefits of a class, but without many of the size and
performance penalties.

Structs also provide advantages you won't easily find in a class. For one thing, you can pass
them around as you would any variable. You can allocate them singly or place them in an
array. In short, there are ways you can use structs that classes can’'t match. Of course,
classes still provide the ultimate in code handling.

Using Managed Code

So far, we've looked at a series of methods for creating this simple example using traditional
unmanaged Visual C++. However, you might want to try creating this application using
managed code. This is a perfect way to see if there really are any differences from a
development perspective. Of course, this means using a different project type. You’ll want to
select a Managed C++ Empty Project in this case. | gave the example project a name of
Console4, but you could give it any name you want. One of the first things you’ll notice about
this project is that you won't see a wizard of any kind. Visual C++ .NET simply creates an
empty project for you.

You'll perform the same tasks as you would for the other projects. Begin by right- clicking
Source Files in the Solution Explorer, then choosing Add | Add New Item from the context
menu. You'll see an Add New Item dialog box where you can choose the C++ File entry. |
also gave the C++ file a name of Console4. Right click the Console4 project in Solution
Explorer, then choose Properties. Select the Use MFC in a Shared DLL option in the Use of
MFC field, then click OK. You're ready to add some code. This example still uses the code in
Listing 2-1; you don’t have to change it at all. When you build the project and run it, you'll
notice a little delay as the .NET Framework compiles the IL code within the application.
However, you won't notice any difference during subsequent runs. Except for a significant
decrease in application size, you won’t notice anything else about the managed application.

The first time you'll see a real difference between the managed and unmanaged versions is
when you open the ILDASM.EXE program found in the \Program Files\

Microsoft. NET\FrameworkSDK\Bin directory on your hard drive. You'll use the Intermediate
Language Disassembler from time to time to learn more about your code. Figure 2-2 shows
what the Console4 example looks like when you load it. Note that if you try to load any of the
other examples, ILDASM will tell you that it can’t read them. Only the managed example will
load.

F§UEE - §vs Code Mgt [0 Coniobe fU abe s’ Casiked. s - L DAL H

Tie dem Frip 1

B HAHFERT
oA

5 Tl DA R

FETET LR TS 5)

Wy Tl 1 T

3 Ry Tl T s

= Bt 1 el TR

S R PR S R Y

ol VSRR RS R

= Ry T el bind s S

= iy T PR

= L. T o e

= Ay | L S R

= ki |l T A

L B A

S Leathies

= [Lvebin,

= [Lamolarres

= o

=i TanCE

EHRERC

i e R

L 7

™
S T W LepdlomE RIS puide vt oot e or” o BadleFOLT moon el S sl a8 el 1S il o B0 0T

& NN el O LG S TN P BIRET pd At o] 108 o 0BT
S T LG A RIR RS A pdd At eplerbor By e (B8 o 0_(TN
" -l B L BV S vy By B SR A S oty SRR PR S P P L s | L
& 3
oo |
I

w5 3]

R WA T AT T TT R RRT D TDENOTTE R W

=
0] = |
Figure 2-2: Use ILDASM to learn more about managed code in Visual C++ .NET.

You may have read about how a managed application is put together, but this utility shows
you graphically how things work. Notice that the entire assembly begins with a manifest.
Double-click the manifest and you'll see the contents of the assembly, as shown in Figure 2-
3. As you can see, the manifest contains a complete list of all of the assemblies for the
example application and the contents of each assembly—at least, the contents as they
pertain to the application.

annertily wabers mmeorlib =

i puslic en = (B PRS0 G619 O OB EP) It
oMagh = {00 BR GG MF EF &3 M0 OFWF2 OC 10 S5 T AT |2 M1 A saea oPua oo B
¥ MR BF FFO) P A)
SRR IR

t
anerlily rabers Hloresed b 8 lialt
N

pusli sien = (B9 3F 4F FF 11 0% O 38) R

omagh = M D5 1A 11 B IF BRET 8D &P 68 B0 BF O B0 BF S Joaca oMl
W W kA DH) LEe B

Bl B et RS)

.anenbly Consolek
H
poradsuionsot roguin =

FESEIESR

inEEYY

Ch LG bbb
2

P

SESIIEEEEREEEZEEREREER
fF R E R 4
EESEIEESESEEEEEEEEESE
B3R 44

EEfIIEEEEEEEEEEEEEESEE
FERE RS R FE R]
EESIEEEREIEEESIEREEESR
PEYFIYHIEE BT HERE
EESEIEEEESEEEEEEREESE
RREINENFIAENZYREREONES
EENIIEEEEEEOEEEBEREEEE
EHELEERITHE YRR EY
EESIIEEEEEZOEEEIREEESR
PEERR DB IR EREY
EEfESEZEEEEOEZSEEEESSE

HAE

L. #ihu.j...ug

Figure 2-3: The manifest tells you about the content of your application.

The File | Dump command sends the data you see on screen to a file on disk for further
analysis. The IL file contains everything that Visual Studio .NET (no this isn't C++ code
anymore) needs to re-create the application. In fact, you can theoretically modify the IL and
assemble it into an application again.

The application tokens shown in Figure 2-2 are messy because we've used native calls. The
ILDASM utility can interpret the manifest and assembly information of any managed code
application. However, when using Visual C++, you can mix managed and unmanaged code
in the same module. By placing the code from Listing 2-1 into the managed application, all
we did was move unmanaged code into a new container. Listing 2-3 shows the Console
application in a somewhat managed form. Note that you can also find this application in the
Chapter 02\Console5 directory of the CD.

Listing 2-3
#i ncl ude <af xcoll.h> /'l Provides access to MFC functions.

#using <nscorlib.dl|> /'l Provides access to the .NET FraneworKk.

usi ng nanespace System // Uses the System nanespace.

class CDrawBox : public CObject

{
public:

/1 Draws the box.

voi d DoDraw(char* string);
b

voi d CDr awBox: : DoDraw(char* cVal ue)

size_t i Count; // Loop counter.
size_t i Spaces; // Ampbunt of spaces to add for string.
CString myString;

/!l Draw the top of the box.
Consol e: : Wite(S"\x2554");
for (iCount = 1; iCount <= 78; i Count++)
{
Consol e: : Wite(S"\x2550");

}
Consol e:: Wite(S"\x2557");

/1l Figure out the center of the string, then display it
/1 with the box sides.

i Spaces = (80 - strlen(cvalue)) / 2;

Consol e: : Wite(S"\x2551");

for (iCount = 1; iCount <= i Spaces; i Count++)
{
Consol e:: Wite(" ");

}
Consol e: : Wite(cVal ue);

/'l Conpensate for odd sized strings, then conplete the side.
if ((strlen(cValue) %2) == 1)

{
i Spaces--;
}
for (iCount = 1; iCount <= i Spaces; i Count++)
{
Console:: Wite(" ");
}

Consol e: : Wite(S"\x2551");

/] Draw the bottom of the box.
Consol e: : Wite(S"\x255A");
for (iCount = 1; iCount <= 78; i Count++)
{
Consol e: : Wite(S"\x2550");

}
Consol e: : Wite(S"\x255D\n");

int main(int argc, char** argv)

{

CString cNane; /1 Name of person typed at conmand |ine.
CString clocale; /'l Program execution | ocation.

CTi ne oWTi ne; /1 A tinme object.

CString cDate; /[l String used to hold tine and date.
CDr awBox oMyDr aw; /'l Special text display.

/1l See if we have enough conmand |ine argunents.
if (argc I'= 2)
{

Consol e: : WiteLine("Type the program name foll owed by your

name.\n");

return 1;

/1l Get the command |ine arguments.
cLocale = argv[O0];
cNanme = argv[1];

/]l Get the current tinme and put it in a string.
oMyTime = CTine:: CGetCurrentTine();
cDate = oWyTinme. Format ("%A, 9B %, %");

/1 Display everything we've coll ected.

Consol e:: WiteLine("Hello " + cNane);

Consol e: : WiteLine("\nProgramis executing from\n" + clLocal e);
Consol e:: WiteLine("\nThe Date is: " + cDate);

// Use our class to draw a box around sone text.
oMyDr aw. DoDraw("1t's a box!");

return O;

}
T

As mentioned, Listing 2.3 is a start on a managed example. In this case, we've brought in
the .NET Framework core library and used it to write the output with the
System::Console::WriteLine() method. Because the WriteLine() method uses Unicode
characters, we have to perform special formatting when using certain characters, such as

the box drawing characters. In this case, you must also declare the entry as a string, and not
a character, by using the “S” in front of the string, like this: Console::Write(S'\x2554"). Visual
C++ doesn’t support the \u escape sequence for Unicode characters, so you must use a
hexadecimal Unicode character number instead. Note the “using namespace System” entry
at the beginning of the code. This enables you to write the code without entering System at
every line.

Understanding Which Method Is Best

Developers often look for the “best” method to accomplish a task. The problem is that the
definition of best is often elusive. A method that works well for one person may be
completely incomprehensible to someone else. The definition of best varies by person.

Is there a best method for this example? My personal preference is the straight coding
method because the example is small and simple. However, experimenting with the other
techniques proved educational. For example, the struct method brings with it an elegance
that | might not be able to achieve using other techniques. It's a good choice in situations
where you want the organization of a class without the work.

Obviously, the managed method is the new kid on the block, and most developers are
anxious to use it with something. Managed code has a place in my toolkit, as it should in
yours. For the most part, | see myself using managed code for new projects or projects that
require complete overhauls. Managed code requires the .NET Framework, so it's necessarily
limited to the corporate environment until .NET becomes as well established as Microsoft's
other libraries.

Writing a Utility Dialog-Based Application

You'll most commonly use dialog-based applications for smaller tasks, such as utility
programs, system monitors, or even a wizard. In most cases, you'll design these utilities to
keep complexity at a minimum. In fact, it's safe to assume that a dialog- based application
should always use a minimum of controls.

We're going to look at another simple example. However, in this case, our application is
going to use a combination of ActiveX controls and built-in functionality to keep the amount
of coding you actually have to do to a minimum. The following procedure will help you get an
empty structure together, which we’ll fill with code later.

1. Open Visual C++ (if you haven’t done so already).

2. Click New Project on the Start page (or use the File | New | Project command) to
display the New Project dialog box.

3. Highlight the MFC Application icon in the Visual C++ Projects folder.

4. Type a name for your application in the Project Name field. The sample application
uses the name “Dialog,” but you could easily use any name you like. Make sure you
change the Location field if necessary (click the browse button next to the Location
field).

5. Click on OK. You'll see an MFC Application Wizard dialog box. Click the Application
Type entry and you'll see a dialog box similar to the one shown here. This dialog box
enables you to select an application type, project style, and the use of MFC. Notice
that the dialog example now sports an HTML interface option, which means your
dialog examples can use Web pages as a means of displaying data and controls.

VL Sipliiiticn, el = D il

Applcation Type ST
Sppeaily Deaduifiai [Vide af chilidliod g, itpuabde, ol Fiterd a8 il opliaid lir viis [—
spokostion

Ayl adao Lo Eraject el
& e donmenk 1 Wirddoess Explorer
& Mubpls decurments = HPC sbgndand
" R bened Wse o HEC:
r = s MPC i & shared DLL
™ Putipls bop-ivel doouments 1~ Usg MFC in & stabic lvary

W Deecumentyess srchiechue supgarl
Ut Inbeilace Feabures Priase laregaage:
[Engleh fribad Sates) |

Febvaried Foatinred

it el Cliviimnil

O e I |

Tip Statically linking MFC to your application has the benefit of reducing
the number of files you have to distribute with your application. In fact,
you'll only need to give someone the executable if you want to. It may
also improve the chances that your application will run on every
machine it's installed on, since your application will always have
access to the same version of MFC that you used to design it. The

downside to static linking is that your application will be a lot bigger
and waste a lot more memory when loaded. In addition, you'll need to
relink your application any time you want to add a new feature to it,
which can become quite a nuisance after a while.

6. Choose the Dialog Based option. Select User Interface Features. You'll see a dialog
box similar to the one shown next. This dialog box helps you choose features for your
application, such as an About dialog box and a system menu. You can also use the
Dialog Title field to change the title bar entry for the dialog- based application. Notice
that you must now choose the Thick Frame option to obtain a dialog-based
application with resizing capability.

MFC Agplcation Wizard - Dialog

ser Inferface Fealures e
Speely oplmr Lhak comlnsl the ook v [eel of ywour apgl aton. ==

e Fristnm @yli:
I [k Frame =3
T Mg b [~
I Mgpiviss b r
T Hepraed r
I Magvared
F st were
F abeis o
User Inberdace Fealures F

|

Acdvanied Foatines r
Dialesy bk
Jpasiag

st el Cliviiand

7. Type Sample Dialog Application in the Dialog Title field.

Tip It's helpful to look at the other entries on the other tabs. For example,
the Advanced Features tab contains options such as ActiveX controls
and automation. This is also the place you select context sensitive help
for the application. You'll also find a new feature called Common
Control Manifest. You must check this option if you want to use the
new common controls provided with Windows XP. However, you can
save memory, increase performance, and reduce application
complexity by clearing this option when not needed. The Generated
Classes tab tells you the names of the files that Visual C++ creates
when you finish the application. Older versions of the dialog-based
application always used the same base class. However, now that
Visual C++ .NET supports HTML dialogs, you'll find that you can
choose between two base classes for your dialog-based applications
(one standard and the other HTML-based).

8. Click Finish. Visual C++ will generate the required code for you. Notice that Visual C++
automatically displays the dialog resource for you. In addition, you'll see the Toolbox
open so all you need to do is begin adding controls to the dialog box. Microsoft is
trying to emphasize the “design first, code later” approach in its products by using this
technique.

Now it's time to get your dialog box designed. Figure 2-4 shows how | put my dialog
together. | used the new Month Calendar Control entry found in the Toolbox. The current
dialog box size is 200" 300. | made the Calendar control itself 140” 230 in size so that the
numbers would be easy to see. Notice that the Calendar control immediately displays the
current date, even though the application isn't active right now. That's because the ActiveX

control has to activate itself when you place it on the dialog. Although the application isn’t
active, the ActiveX control is. This is an important troubleshooting tip when working with
ActiveX controls. If you place a control on the dialog and it just sits there, you may not have
it installed correctly. Obviously, you'll want to check any documentation to make sure the
control is acting as expected.

 Woaking - M vt Vil Dot [- D it s P00 _BARDNG_TAALDIEG - Dishagd

im L Yew Boac fuc [ewg fpe [l gindos | pen |
jat-in-ck @ L B e s BT e - |lHFe :i
I8|sar o HE - = feh s |
EN s PPN WY] G i
w

E_'
:

=
ol e (ki L

b dein
B Diesbey

= |
=]
= —
B Bor Syh Wi Ty B el
i
1 Lo Em o i
T R T —— |
2 LS L L EEENCTN S s)
BusmD s —— =
[0 _Dlaees 0 O e 10] |
(FHE IR E - |
Ertasl B
----- B M el D |
i R Tt St B T e
=4
L | i |
i . L
iT:T] [
R = o N | - AT

Figure 2-4: The sample dialog-bésed ap'ﬁl'iéétion_t-)-e"g:jih-s to take shape once you add the
controls.

The dialog box also contains a simple Edit Control. The Edit Control is 36" 230 in size. You'll
also want to set the Multiline property to True, the Read Only property to True, and the ID to
IDC_RESULT. These property changes will make the control easier to work with later.
Ti
P You'll always see the current control size in the second box of the status bar
on the right side of the screen. Directly to the left of this box is another box
containing the selected control’s position in relation to the upper-right corner
of the display area. You can use the contents of these two status bar boxes to
accurately size and position the control on your dialog box.

If you compiled and ran the application, at this point you'd find that it was only
semifunctional. The calendar would allow you to choose new dates, and you could click on
the OK button and see the dialog disappear. Other than that, the program wouldn’t do much.

Before we can attach any code to the Month Calendar Control, we have to create a member
variable for it. Doing so is relatively easy. CTRL-double-click on the Calendar control and
you'll see an Add Member Variable Wizard like this one:

Add Membar Vanable Wieand - Dislog

Whelcome Lo Uhe Adkd Member Variable Wizard
Thes wizard adchi & marber variabla b6 v Clad, ilna, or ufkeh @

heoain:
T, -| ¥ kol vt

Yoriakie Lyga: Cortra [l Cakagory:

| Cran e I B [T T 8]
Viriakin pave: Contred Lgba: H

| Brettonthcaliz |

[|
| o |]

Cooprart (1 mokstion not regured

Note that you can also right-click the Month Calendar Control and choose Add Variable from
the context menu to display the Add Member Variable Wizard. As you can see, the Add
Member Variable Wizard enables you to control a lot more than just the variable name and
type. This dialog box also contains settings for controlling the variable scope and some data
entry options, such as the minimum and maximum values the variable can hold. Visual C++
will only enable the entries that apply to this control, so you'll notice that Visual C++ disabled
many of them in this case. The one field that Visual C++ will never disable is Comment,
which allows you to document your new memory variable. Since this is our first Month
Calendar Control, type m_Calendarl in the Variable Name field. Type A month selection
calendar control variable. in the Comment field. Click Finish to create the variable. Visual
C++ will open the DialogDIg.H and DialogDIg.CPP files so you can see the results of the
changes.

We also need to add a member variable for the Edit Control. Select the Dialog.RC tab, right-
click the Edit Control, and choose Add Variable from the context menu. Type m_Resultin
the Variable Name field and Contains the results of the user selection. in the Comment
field. Click Finish to create the variable. You now have the input and the output required for
the application to run.

Detecting a user change to the control is the next thing we need to do. Select the Dialog.RC
tab so you can see the dialog design area again. Right-click on the Calendar control and
you'll see a context menu. Choose Add Event Handler from that menu and you'll see an
Event Handler Wizard dialog like this one:

Event Handier Wizard - Disleg

Whelcoms o Uhe Event Harnfler Wicard
Ths wizard addhi & raru of & 0ok ahor cominand hands o thakog canirol evtrd Fardier Lo e

e of your choics _.J:“".
|
g Lapl: i st Thi diale chasses red
MCH_GETDAYSTATE ClisopApng
PACH_SELECTE = omialaghiy
]

Furction burcler para:
Jorraorseichangertonthosendarz

ik e Pt | | oo | e |

As you can see, the wizard uses a Class List field to control the content of the Message
Type field. A choice in the Message Type field will change the entries in the Function
Handler Name and Handler Description fields. In fact, you can’t modify the content of the
Handler Description field in this case. The Command Name field always contains the name
of the control that you originally selected from the design area.

The Event Handler Wizard dialog contains a complete list of all the events that your control
can monitor. The programmer set these events up during the design phase of the control. In
this case, we'll want to monitor the MCN_SELCHANGE event. This event monitors user
selections in the calendar. If you wanted to wait until the user actually made a choice, you'd
use the MCN_SELECT event instead. You'll find that other calendar events monitor features
such as a change in system theme.

Highlight the MCN_SELCHANGE event entry, then click on the Add and Edit button. Visual
C++ will create a blank function. Now all you need to do is add some code to make it work.
Listing 2-4 shows the code you'll need to make this control functional.

Listing 2-4

voi d CDi al ogDl g: : OnMcnSel changeMont hcal endar 2(NVHDR * pNVHDR, LRESULT
*pResul t)

{
CString cSelectedDate; // Date sel ected by user.
CString cDay; /'l Sel ected day.
CString cYear; /'l Selected year.
CTi me cSel Dat e; /1l The selected date fromthe cal endar.

LPNMSELCHANGE pSel Change =
rei nterpret_cast <LPNVMSELCHANGE>(pNVHDR) ;

/1 Get the date fromthe cal endar control.
m_Cal endar 1. Get Cur Sel (cSel Dat e) ;

[/l Get day from cal endar control.

i t oa(cSel Dat e. Get Day(),

cDay. Rel easeBuffer(-1);

cSel ectedDate =

/!l Get nbnth from cal endar control.

cDay;

switch (cSel Date. Get Mont h())

{

case 1:
cSel ect edDat e
br eak;

case 2:
cSel ect edDat e
br eak;

case 3:
cSel ect edDat e
br eak;

case 4:
cSel ect edDat e
br eak;

case b5:
cSel ect edDat e
br eak;

case 6:
cSel ect edDat e
br eak;

case 7:
cSel ect edDat e
br eak;

case 8:
cSel ect edDat e
br eak;

case 9:
cSel ect edDat e
br eak;

case 10:
cSel ect edDat e
br eak;

case 11:
cSel ect edDat e
br eak;

cSel ect edDat e

cSel ect edDat e

cSel ect edDat e

cSel ect edDat e

cSel ect edDat e

cSel ect edDat e

cSel ect edDat e

cSel ect edDat e

cSel ect edDat e

cSel ect edDat e

cSel ect edDat e

cDay. Get Buf fer (2),

January

February

March ";

April ";

May ";

June ";

July *;

August

Sept enber ";

Cct ober

Novenber

10);

1

case 12:
cSel ectedDate = cSel ectedDate + " Decenber ";

—

/1l Cet the year.
itoa(cSel Date. Get Year (), cYear.GetBuffer(4), 10);

cYear . Rel easeBuffer(-1);
cSel ectedDate = cSel ect edDate + cYear;

/1 Display the date.
m Resul t. Set W ndowText ("You clicked on: " + cSel ectedDate);

*pResult = 0;

}
e ——————

At this point, you can run the application and it'll actually do something. Try building and
running the application. Double-click on any date and you'll see a message in the
IDC_RESULT similar to the one shown in Figure 2-5. Essentially, it displays the date you
selected from the Calendar control in an easy-to-read format. While this may not seem very
useful now, you could easily expand this utility program in several ways. For example, you
could have a little notepad pop up every time you double-clicked on a date. That way you
could enter notes for each day as needed. Needless to say, you won't replace your contact
manager with this utility anytime soon, but it does work very well for short notes. Utilities
such as this are especially helpful on a laptop where space is limited and you don’'t want a
large application using up your battery.

Cangsl

B septerber,zonl
S B

on Tue Wed Thas Fri Sat

1
Z2 A 4 5 &6 7 &N
& 18 I 12 12 M4 IS
6 17 M@ 19 20 I 2
B M B B T HE D

Youp clichnd o 18 Septmenbenr 20001

Figure 2-5: The Sample Dialog Application displays a dialog telling you the date you
selected.

The Calendar control does provide quite a bit of added functionality—most of which we won't
look at in this chapter. One thing that would be handy to have is a button for resetting the
date back to today’s date after you've wandered about during a telephone conversation.
Adding such a button is easy. Just place it under the Cancel button that already appears on
the dialog box. The Reset Date button has an ID of IDC_RESET_DATE and a caption of

Reset Date. The dialog will look best if you position the control at 243, 39 and make it 50" 14
in size.

Now that we have a button, let's add some code to it. Right-click on the button and choose
Add Event Handler from the context menu. You'll see an Event Handler Wizard dialog box.
Select the BN_CLICKED event, then click on Add and Edit. You'll see a blank procedure.
Listing 2-5 provides the code you’'ll need to make the procedure work.

Listing 2-5

voi d CDi al ogDl g: : OnBnCl i ckedReset Dat e()
{

CTi ne oCurrent; /] Current date and tine.

/'l Reset selected cal endar date to today.
m_Cal endar 1. Set Cur Sel (oCurrent. GetCurrentTime());

}
T

Now, whenever you click on the Reset Date button, the Calendar control will return you to
the current month and year. While this code isn’t very complicated, it shows you one way
that you can add functionality to a dialog-based application without making it too unwieldy to
use. Of course, even a few of these buttons could get quite cumbersome after a while.

Writing a Text-Editing, Single-Document Application

Every version of Microsoft's Wizards for Visual C++ has gotten a little better, so it shouldn’t
surprise you that you can get very close to producing a working application using one.
However, there are a few things that a less-than-watchful eye might miss when setting up an
application in the first place.

This section will look at a single-documentation application—which you could probably use
for a small text editor or other lightweight, general-purpose document editor. In this case,
we’ll create a rich text editor that really doesn’t do much more right now than allow you to
edit text. Later in the book we’ll add functionality to this program and make it something a
little more worthwhile.

Creating the Basic Application

Begin this project by selecting New Project on the Start page to display the New Project
dialog. Choose the MFC Application project type. Type a hame in the Project Name field.
The sample application uses Sngl_Doc as an application name, but you can use anything
you like. Click OK and you’ll see the MFC Application Wizard dialog. Select Application
Type. Choose the Single Document option.

Some applications need to act as containers for data generated by other applications. For
example, your word processor might need to hold the graphics created by your CAD
application. Visual C++ .NET handles this in the same way as previous versions— by using
a container selection option. Click Compound Document Support. You'll see a dialog box
similar to the one shown here:

MFC Agploation Wizard - Sngl Do

Compound Document Support BT
Speily OLE contiirey o Serwer Opdiof anhd acihe datument uppail. Hmrver |

= Comtainar |

T Cormgrnnd dotumerd segir! PETE——
""" 1 forn I fyotive domument server
i Corbares I Actres gonuesnt contares
i gerver I Sigppeadt: fiod commpanned s
i Pl sorger

e Sk e (Pl e

Lt Irbeiface Fashures

Padvariind Foatines

el tbied Cliiind

prch | e | e |

This dialog determines the level of OLE support you'll add to your application. The more
support you add, the larger your application will be. The basic level of support is to act as a
container. A container can act as a client and store linked and embedded objects. The next
level of support, mini-server, enables you to create compound documents. A mini server
can't work as a stand-alone. In addition, it can work only with embedded documents. A full
server does have the full OLE capability to work as a server, but it can’t act as a container.
An application that provides server capabilities would work much like Microsoft Paint. You
can embed or link a Microsoft Paint document into your application, but Microsoft Paint can'’t
hold objects created by other applications. Finally, the Both Container and Server option
gives your application a full array of local OLE support. You can use it as both a server and a
client. However, this kind of application won't work with an Internet browser— it's not
designed as an ActiveX Document server.
Ti
P This is a good time to point out that choosing a single-document application
type has enabled more of the tabs for the MFC Application Wizard. For
example, you can add database support to your application. We'll spend quite
a bit of time looking at this topic in Part 2 of the book, so | won’t cover it here.

Notice that there are three check boxes to the right of the Compound Document Support
options. If you check the first box, Visual C++ will add support to make your application an
ActiveX Document Server. An Active Document Server has the ability to create and manage
ActiveX documents. The second check box, Active Document Container, allows your
application to contain ActiveX documents within its frame. In essence, you'll be able to host
documents from applications like Microsoft Word or Excel. Visual C++ enables the Support
for Compound Files option by default. Selecting this option forces your application to load all
of the objects within a compound document. This means your application will run faster, but
it will also use more memory. Select the Container/Full Server, the Active Document Server,
and the Active Document Container options.
Note
Visual C++ 6.0 had this problem: if you selected any of the compound
document support options, it would remove certain base classes from view.
For example, you couldn’t select the CRichEditView class. Visual Studio
.NET appears to have fixed this problem, at least as of the time of writing. If
you find that you can’t select the base class you need in the Generated
Classes tab, then deselect the container options and try again.

When you select the Active Document Server option, the MFC Application Wizard will tell
you that you need to create a file extension for your application. You'll do this by creating

template strings that define your application document. Click the Document Template String
tab and you'll see a dialog box like the one shown here:

MFC -'q-cﬁ-:-'ull-g-n W'izard - Sngl_Doo
Documenit Template Strings —
Speclly wibotd Tor yias ppbcatans doturdnl Lamplalbe Lo ukd whah o ealing & fiw dooument,
sanlocalized stricsgs
Fia mbarmiore Fila Eypas [
bz Ty —
..... Local

JgE Psin frame cagbion!
] IS"Jr Derurrert Ecarmpls
Dax Eype rame; Fiter naee;
Fral_pec Erl Do Rl 1 v
Fila rusws phort fubrser il Eypa long fiame:
Ford e povz Segie Document

Pirizh I Canoal I Vsl |

Set up your Advanced Options dialog as shown in the illustration. What you’ll end up with is
an application that uses the XYZ file extension. The title bar for your application will read
“Single Document Example.” Every time you see a File Open or File Save dialog, the filter
field will read “XYZ Single Document Files (*.xyz).” Finally, when you display the properties
dialog for a document you create with this application, it'll inform you that this is an “XYZ
Single Document” type of document.

There’s a final step in creating this application. We need to decide what type of display to
create. You'll do that by adjusting the application classes. Click Generated Classes and
you'll see a dialog box that looks similar to this one:

MFC Agplioation Wirand - Snol_Doc

et Clasops
P irvuny ey sl il el e gt by Buiri dliisid Pir wing ayshel al5ew .

SRl | ongl DocCrivitem =l

& Sirres 1l Ml -h Ties
» Chae Wi - Cxssumee. b
Crstaboas Suppeit It By PrdlJ
Bgse diws: Jpp Fles
bt Inbeil s Fasburss |,.“h‘ _'J IS"'dJ-':'-m pres

radvariind Faatired

preh | cocs | e |

This is another tricky application development area. If you didn’t take a good look at what
was going on, you'd miss the fact that you could use any base class you like for the

document view class. Why is that such an important consideration? If you were to keep the
default setting, you'd have to write code for just about every action your application
performed on the document. That's probably fine if you're creating an entirely new kind of
document, but most programs just don’t do that. What you really want to do is make an
application that acts sort of like another application but offers features that application lacks.
In our case, we're creating a text editor, so it doesn’t make sense to use CView (the default
base class). Using the CEditView or CRichEditView class as a base class will save us a lot
of work, because the application will already know how to act as a simple word processor
right out of the package. You won't even have to add any code to get this functionality.

To show you just how this works, choose the CRichEditView base class for the
CSngl_DocView class in our application. Click on Finish to complete your setup. Visual C++
will create the application for you.

Now build the application and start it. You'll find that you can type text and save it in an XYZ
document. This application will read other text and RTF documents with the proper code
additions. You can easily expand the application in other ways as well. For example, since it
relies on the rich edit control, you can add text formatting and colors. The OLE capabilities
that we've added mean that you'll be able to insert graphics as needed. In fact, what you've
really ended up with is something that has a lot of potential after very little work.

In case you haven't noticed by now, this particular sample didn’t require one ounce of coding
on your part. The result was good and quite unexpected for a C programmer. Figure 2-6
shows the results for this application so far, but count on seeing this application again as the
chapter progresses.

ﬁ Sgle Document Cxsmple - Sampls?. sy
Fie Edt Vow Halp

D B2

Our sample spplication handles et just fine,

Wou can add graphics il you wanl by embedding or linking them.

Even sounds aren’t any problem.

Aoy g
Figure 2-6: Our sample application works well considering we haven’t added any code
to it.

Working with Resources

Resources are a central part of working with applications. What's a resource? It's easiest to
think of a resource as anything you can “bolt onto” the application to make it work better,
look nice, or perform some additional task. For example, icons, cursors, and bitmaps are all
examples of resources. The application consumes these resources in order to improve the
appearance of the application as a whole.

Of course, graphics are the resource that everyone can see as a resource. However, your
application can consume other types of resources. For example, menus, string tables, and

applications themselves are all forms of consumable resources. Your application uses all of
these resources to add functionality that the user will see as a feature.

Now that you have a better idea of what resources are, let's spend some time talking about
them. The following sections provide a brief overview of resources. Because we’ll use
resources throughout the book, this brief overview only acquaints you with the resources and
shows how you'd use them. You'll find detailed information as the book progresses.

Where Did OpenAs Go?

The Visual Studio IDE normally makes good decisions on how to open the files we want to
edit. For example, when you open a RC file, the IDE knows that you'll probably want to use a
GUI environment to modify the objects the file contains. However, there are times when you
need to open RC files in a text editor to see the code the IDE automatically generates for
you (and, in some cases, tweak it). Some of you may have noticed that the Open dialog box
no longer contains the Open as field shown in this Visual C++ 6.0 IDE here.

Ot EH
Lok in; | 2 Rasoucg j = 0§ B
|10k (njManFrmh] Sngl_Docview.h
| IRebease hresource b # Sneritem.cpp
dres g Doccpp] Srwrlvemb
e Cririteen pp BiSrgl_Doch ol seddafs. cpp
] Critrlkem o0 Sl Do e] sedafich
(6] lFrame.cpo = =ngl_DocDoc.opp
[h] ipFrameh] sngl_Dochoch
o] MlarFr m.cpp &5 Sl _Dociiew.cpp
Fia narrsa ISngI_Dn: n©
Filas ol iype |-."" Files | o cppooos Hi ke Hhe nd rg) :J Caneel
I Opan a5 raad-anky
Clpon o I-D..r.: ﬂ
A
Tt
Binany
Fiasouas

Visual Studio .NET still allows you to open a file using any of a number of editors. It actually
gives you more options from which to choose. The difference is in the way you access the
editors. Look for the small down arrow next to the Open button when you display the Open
Files dialog box. Click this arrow and you'll see a drop-down list box with two options.
Choose Open With... and you'll see an Open With dialog box, like the one shown here:

(s Wit - ADDL g X |

Select & peogeam bo opesn

Soiesee Dol [Tesd] Egbod with Encideg

HTMLAML Edbon
HTMLAML Edboy wath Encodrg

ML Schoms Edeo
P £ e |
Hasfusid Edtoi I

| St an Delmd I

e | Hee |

Notice that you get several new entries with Visual Studio .NET, including two HTML/XML
editor options. This new method of opening a file using an alternative editor gives you
greater flexibility than ever before. The only problem is that the feature is somewhat hidden
from view. Just remember to look for the down arrow next to the Open button. In fact, you
may want to start observing all of the buttons within the Visual Studio .NET IDE more
closely.

Application Icons

Every MFC application program you create with Visual C++ will have a default application
icon. In fact, the icon will always have the same name: IDR_MAINFRAME. You'll find that
this icon not only defines how the program icon looks within Explorer (or any other
application that displays program icons), but it also affects the internal representation of your
program as well. For example, the About box normally displays this icon as part of its
presentation of application information to the user. All of the MFC applications you create will
also have the same icon to start with.

A second default icon appears when you decide to create a document with your application,

as we did in the Sngl_Doc example earlier in the chapter. In that case, you'll see an IDR for

each of the document types you've created. In our example, it's IDR_Sngl_DocTYPE. They

all use the same icon to start with, though. Unlike the application icon, it's almost mandatory

to customize your document icons if your application supports more than one document

type.

Note

Visual C++ .NET has added a lot of capacity to the icons you use for
presenting your application to other people. The default icon you see when
you open an icon resource is only the tip of the iceberg. Right-click within
the icon area and choose Current Icon Types. You'll see a list of the icons
that Visual C++ defined for the application. The main icon sizes are 16" 16,
32" 32, and 48" 48. Windows 2000 won't use the 48" 48 size, but this size
does appear in Windows XP. Color depths include 16, 256, and 16-bit color.
In short, you need to modify nine icons to make the typical application ready
for use under any Windows operating system. Fortunately, you can always
remove icons you don’'t want to define from the file by right-clicking in the
icon window and choosing Delete Image Type from the context menu. This
will remove the currently displayed icon.

Besides the ability to draw, you need to know a little about the tools at your disposal if you
want to create effective icons. All the tools you'll require appear at the top of the IDE window
on the Image Editor toolbar. They include a set of standard drawing tools.

You'll also find a Color toolbar on the left side of the display. Double-click any color and
you'll see an Adjust Colors dialog box that enables you to change the color palette used for
your icon. The Color toolbar also contains two special colors you need to know about.
They’re easy to find since they use a monitor symbol in place of a color square.

The upper monitor creates a clear area. In other words, you'll see whatever appears below
the area on the desktop or wherever else you place the program icon. The lower monitor
creates an area that uses the same color as the user’'s window foreground color selection. In
other words, as you change the window color, the color of this area in your icon will change
as well. You'll see the current foreground and background color to the left of the two
monitors. The foreground color appears in the upper square, while the background color
appears in the lower square.

Let's look at a sample of what you can do with these two icons. Figure 2-7 shows sample
icons | drew for my version of the program. They may not be very artistic compared to other

icons you've seen—a definite argument for having an artist on your staff—but they’re better
than the default icons you get with Visual C++. Obviously, you can customize your icons any
way you want. Try using a variety of colors. Make sure you experiment with the two custom
colors that | mentioned, since they're especially important when creating icons. (Many
programmers create strange looking icons that don’t really fit in with the rest of the icons on
your desktop because they don’'t know how to use the two special colors effectively.)

I o«
] :

vl e s O AJREHAME - i

2 |

Figure 2-7: These icons identify your application and associated data files to anyone
who uses them.

Caution
Never assume that you can use any icon (or other graphic for that

matter) you find on the Internet in a program you plan to sell or give to
other people. Always assume that these resources are good for
inspiration and not much else until you've gotten permission in writing
from the originator to use them in any other way. Copyright infringement
is a serious offense and somewhat easy to commit given the open
environment that the Internet provides. The best rule of thumb is to either
create your own icons or license them for commercial use from a reliable

source.

Notice that | used the clear color on both icons and that I've given them a 3-D look. Again,
it's not that they’re very artistic, but they do give the user a specific feel for my program.
Obviously, the clear coloring shows up differently inside the editor than when the user sees
(or actually fails to see) it. Make sure you compile your program again after you've changed
the icon, or it won't show up in Explorer. Running the program is a good idea too, since
Visual C++ does make registry entries for you when you run the program the first time.
Finally, make sure you use the View | Refresh command within Explorer. Otherwise, you'll
see the old icons that Explorer stored previously.

Browser

Alert If you need some inspiration for creating icons, the Internet has
many useful sites you should check out. One of the better sites is
http://crab.rutgers.edu/icons_new/icons.html. Although this site
contains mostly GIF icons, the 3,000 examples it provides should
give you more than a few ideas. Most of these icons deal with
popular topics like The Simpsons. Fortunately, the designer

http://crab.rutgers.edu/icons_new/icons.html

indexed the icons so you don't have to dig through all 3,000 at one
time. You can also find a good number of topic-specific sites. For
example, http://www.geocities.com/Area51/8604/xfiles.htm
contains a set of X-Files-specific icons (in ICO format).

Version Information

You might skip the version information resource automatically provided by Visual C++
without really thinking about it. At one time, this information was pretty much hidden from
everyone but programmers who knew how to retrieve it. The problem is that, with the
Explorer interface provided by Windows 9X and Windows NT/2000/XP, you can't afford to
skip the version information anymore. All you need to do now to display the version
information provided by an application is right-click the program icon in Explorer and then
choose Properties from the context menu. Select the Version tab of the Properties dialog
and here’s what you'll see:

Sogl_Dee e Properies [7]=]
Greneral Verson | Sacurity | Sammany | Mefufme Verson |
Fio wirier. [EDE]
Descrption: TODD: «File descnption:
Cogrright TOCD (6] SCompany name:, Al ighis segerms

Cltheey vt sioe inboamation

As you can see, the default version information is a lot less than informative. If you leave it in
place, users won't know even what company they’re dealing with. Since more and more
users are becoming aware of what the Properties dialog has to offer, it's becoming more
important for programmers to put the right kind of information in here.
Tip
Filling out the version information for your application doesn’'t have to be a
one-way street. You can use this information to fill out other areas of your
application as well, which means that you'll only have to change the
information in one place to keep it current. We'll look at how you can use this
technique for the About box in this section of the chapter, but you'll likely want
to use it in other places as well.

Let’s take a look at the version information for our sample application. You'll always find the
default information under the Version folder in Resource View. The default resource name is
VS_VERSION_INFO. Figure 2-8 shows what the default version information looks like. The
entries above the heavy line normally reflect your application settings. You usually won't
need to modify them. It's the entries below the heavy line that begin with Block Header that
are of interest.

http://www.geocities.com/Area51/8604/xfiles.htm

WETS RTwd

Bk Hpha e Prsbeed § Loty | 0y
[

Corparghm U £ arpre rarmms
Fiplzusiplor T0CA): 4" demcapsior

Mo s e oo

Vi gwud e Longl_ DM dost

[1000 Codi ity fawed M a0 riietind
1 gl i e
LIl e Sl Lo
Povgirum)

Figure 2-8: Modify the default version information to match the actual information for
your company and product.

You can modify any of the text entries by double-clicking them. Visual C++ will open an edit
box that you can use to change the information. At a minimum, you’ll want to update the
CompanyName, LegalCopyright, and ProductName fields. | normally add some information
to the Comments field as well. For example, it's handy to know whom to contact regarding
an application or other executable, so | usually add my name and e-mail address. Exactly
what you add to this area depends on company policy, legal needs, and personal

preference. Here’'s what my modified version information looks like when viewed in the
Properties dialog:

Sngl_Dec.exe Propedies [7]=]
Grenersl Vitemn I‘E-ﬂﬂﬂ Gurievary | Metwaes Viison |
Fia virper: [ERED
Descrption: Simghe Diocument Edho

Copnght Capght 2001 - Datalion Servces and.Jobn M

Proghuct Visisen

Working with Accelerators and Menus

Menus and accelerators go hand in hand. The two resource types are designed to work
together to make it easy for the user to get tasks done. You all know what a menu is— it's
the physical representation of a hierarchical command structure. An accelerator provides the
shortcuts in that structure to speed up certain operations. For example, to create a new file,
you can normally use the File | New command or the accelerator CTRL-N. Either method
produces the same results.

Visual C++ stores menus and accelerators as two different resources. Figure 2-9 shows the
main menu and associated accelerator for our sample application. It's interesting to note that

both resources use the same name, IDR_MAINFRAME. You'll want to remember this fact
because the resource name links the two resources (menu and accelerator) together.

. f Srpn e A0 ARG Dt | a4 &5 JEESSY R T PRSI
[

s EL ELA]_TH E Bt

e e AL L ‘-:::o T
He F L] ¥

Ooen. (el

- ke

LTCET T
Flecori Fin

(]

Figure 2-9: The default menu provides the standard functions that you'd expect. An
accelerator resource is linked to its associated menu through the name you assign it.

Let's look at how menus and accelerators work together. Adding a new entry to an existing
accelerator resource is easy.

1. Right-click in the Accelerator window, then select New Accelerator from the context
menu. Visual C++ will create a new accelerator entry for you.

2. Double-click the ID field. Choose an ID from the drop-down list box. Menu IDs normally
use a combination of the menu levels you need to pass in order to get to the desired
menu entry prefaced by ID. For example, if you want to create an accelerator for the
View | Toolbar command (as | did for the example), you'd choose
ID_VIEW_TOOLBAR in the ID field. You'll want to associate a speed key with the
accelerator entry.

3. Double-click the Modifier field and choose a modifier for your control key. Double-click
the Key field and type or select a speed key for the accelerator. You can also choose
between an ASCII and a virtual keystroke (Virtkey). For the purposes of this example,
| used CTRL-T, so | selected CTRL in the Modifier field and “T” in the Key field.

If you compiled and ran the program right now, the accelerator you just added would work
without a hitch. In fact, you may want to do just that. However, the user wouldn’t have any
idea there there’s an accelerator available for executing a menu command quickly. To add
the accelerator keystroke to a menu, you need to modify the current menu.

Adding new text to a menu command is easy. Open the View menu, then click on the
Toolbar entry. The Properties pane will automatically fill with the properties for this menu
entry. What we need to do is change the Caption field to consider the new accelerator. You
can use all of the C and Windows formatting characters that you could normally use for text.
Changing the Caption field to read “&Toolbar\tCtrl-T” tells Windows that you want to see the
word “Toolbar,” with the “T” underlined, then a space, and finally CTRL-T to tell the user
what accelerator key to use for this menu command.

So, what do you do if you want to add new menu entries? Just select a blank spot on either
the menu bar or an existing menu and start typing. For this example, we’ll add a Format
entry to the menu bar with one option, Font. (Remember to type &Format and &Font so that
the first letter of each entry will be underlined.) Once you have the new menu items added,
grab the Format entry and move it to the left of the Help menu. Your menu should look like
this:

[T

Yoo RN B
Ford

Now we need to add some code to make this new menu entry functional. Make sure your
Font menu ID is set to ID_FORMAT_FONT or it might not work. Right-click the Font entry,
and then choose Add Event Handler. You'll see an Event Handler Wizard dialog box. Select
COMMAND from the Message Type list. Click Add an Edit. Listing 2-6 shows the code
required to add font characteristics to our program. Only a rich text editing screen (CRichEdit

control) will have this ability in native form, although you could add it to a CEdit control as
well.

Listing 2-6
voi d CMai nFrane: : OnFor mat Font ()
{

CFont Di al og oDi al og; /'l Create a font dialog.

/1 Display the Font common di al og box.
oDi al og. DoMvbdal () ;

}
T

As you can see, adding the ability to work with fonts in our example is almost too easy. If you
compile the example now, you'll be able to change the default font or select text and change
the font that way. Here’s an example of the ways in which you can change fonts now that
we've added this capability to the sample program:

5 vgle Coammnd ©dmagle - 5 amgle] 5y [IT]w]
Tl [& Yew Fawl Helg
0@ LIER
Thiz a0 ssangplc.
Lh i) e Faivmal [i 0w i,y oa i elvaiege Bl 00 0100 dd HI?F BEARY il W Peldeal Befer 0 e
i wpd il mga i ke TYTIIDANT aad SVFEE Yow cam pvem URDDRLBNE &) BEFREETHIRDHAR. W al islag Bile
o i
ey
Tip

You don't have to work all that hard to display most of the menus you need for
an application. All you really need to do is use the right IDs for the various
menu options and associated buttons on the toolbars. Unfortunately, many of
these special IDs aren’t documented right now. For example, if you want to
implement a font dialog without doing any programming, make sure that the
ID for the menu item is ID_FORMAT_FONT. Likewise, use the same ID for
any toolbar button you add to the application. You can find all of the special
IDs, documented or not, in the AFXRES.H file located in the MFC\INCLUDE
folder.

Working with Toolbars

If accelerators are the keyboard method for speeding up program access, then toolbars are
the mouse counterpart. You'll find that toolbars have become less of an accessory and more
of an essential part of the user interface. However, toolbars can quickly become too
cumbersome to use if you crowd them with a host of buttons that may or may not fit the
user’s needs. One of the ways around this problem is to create multiple toolbars and then
allow the user to decide which ones they need.

Working with toolbars is just about as easy as working with menus and accelerators. In this
case, though, you have to create some linkage between the toolbar and its associated menu
command. The default toolbar, IDR_MAINFRAME, includes some of the more common
buttons, like the ones needed to open files or create new ones.

Let’s begin this example by creating a new toolbar—one designed to allow the user to format
text. Right-click on the Toolbar folder in Resource View, then select Insert Toolbar from the
context menu. Visual C++ will automatically create a new toolbar for you. However, the
name it gives (IDR_TOOLBAR1) isn't very descriptive. Click the IDR_TOOLBARL1 entry so
you can change the properties in the Properties pane.

Type IDR_FORMAT in the ID field. (Don’t worry about changing the File Name field; it
changes automatically when you change the ID field.) Press ENTER to make the change
permanent.

Now we need to add some buttons to this toolbar. The buttons will allow the user to perform
a variety of tasks without resorting to using the keyboard or moving through the menu
system. Here's the sample toolbar we’ll use for this example (the buttons represent
underline, strikethrough, bold, italic, and font dialog):

TN Sngl_Doc.sc (DR, ORMAT - Bimapr Lo

A

Adding the buttons to the toolbar won't do very much. All you really have is a bitmap of what
you want to do in the future. Click the Underline button so you can see its properties in the
Properties pane. Modify the ID field to read ID_UNDERLINE and the Prompt field to read
“Underline.” Change all of the other buttons in a similar way—ID_STRIKETHROUGH
(Strikethrough), ID_BOLD (Bold), ID_ITALIC (ltalic), and ID_FORMAT_FONT (Font Dialog).
Make sure you type all of the IDs carefully or you'll have problems making the buttons work
later. The reason I'm using ID_ FORMAT_FONT for the last button is to reduce the amount
of coding you’ll need to create. Using this ID means that you don’t have to add one line of
code to make this button functional. Visual C++ will automatically take care of this button for
you through MFC.

It's time to associate the toolbar with the rest of the application. You need to create a

message map as a starting point. Listing 2-7 shows the entries you'll need to make in
MainFrm.CPP.

Listing 2-7

BEG N_MESSAGE_MAP(CMmi nFranme, CFranmeWhd)

ON_WM CREATE()

ON_COMMVAND(| D_BOLD, OnBol d)

ON_COMVAND(I D_I TALIC, Onltalic)

ON_COMMVAND(| D_STRI KETHROUGH, OnStri ket hr ough)

ON_COVMAND(| D_UNDERLI NE, OnUnderl i ne)

ON_COVMAND(| D_VI EW FORVMATTOOLBAR, OnVi ewfor mat t ool bar)
END_MESSAGE_MAP()

As you can see, every entry associates a button with a function that we’ll eventually add to
the application. Also, notice the ID_VIEW_FORMATTOOLBAR entry. We’'ll use this entry
near the end of this section to allow the user to hide the toolbar.

You'll also need to declare all of the functions we’ll use in the MainFrm.H file. Listing 2-8
shows these entries.

Listing 2-8

voi d OnBol d(voi d);

void Onltalic(void);

void OnStri ket hrough(voi d);

voi d OnUnderline(void);

voi d OnVi ewFor mat t ool bar (voi d);

We can add code to the program now to make the buttons functional. Click on any of the
member function names (like OnUnderline), then click the Edit Code button. Visual C++ will
display the code editing area. You'll see the function shells that we’ve just created. Listing 2-
9 shows the code you'll need to add.

Listing 2-9

voi d CMai nFrane: : OnBol d()

{

CRi chEdi t Vi ew* poVi ew; [/l Create a variable to hold
our vi ew.

/'l Get the active view fromthe current wi ndow. Typecast it as a
/1 CRichEditView rather than a CView, the standard return val ue.
poView = (CRi chEditView) GetActiveView);

/1 Change the font settings as needed.
poVi ew- >OnChar Ef f ect (CFM_BOLD, CFE_BOLD);

—

voi d CMai nFrane::Onltalic()

{

CRi chEdi t Vi ew* poVi ew, /1l Create a variable to hold
our Vi ew.

CHARFORNVAT cf Font ; /|l Create a structure for the
font data.

[/l Get the active view fromthe current wi ndow. Typecast it as a

/1l CRichEditView rather than a CView, the standard return val ue.

poView = (CRi chEditView) GetActiveView);

/'l Get the current font settings, then change themto Italic.

cf Font = poVi ew >Get Char For mat Sel ecti on();

cf Font. dwivask | = CFM. I TALI G;

cf Font . dwEffects | = CFE_I TALIC,

/1l Change the font settings as needed.

poVi ew- >Set Char For mat (cf Font) ;
}

voi d CMai nFrame: : OnStri ket hr ough()

{
CRi chEdi t Vi ew* poVi ew; [/l Create a variable to hold
our vi ew.
[/l Get the active view fromthe current wi ndow. Typecast it as a
/1l CRichEditView rather than a CView, the standard return val ue.
poView = (CRi chEditView) GetActiveView);
/1 Change the font settings as needed.
poVi ew- >OnChar Ef f ect (CFM_STRI KEOUT, CFE_STRI KEQUT) ;
}

voi d CMai nFrane: : OnUnder |l i ne()

{

CRi chEdi t Vi ew* poVi ew; [/l Create a variable to hold
our Vi ew.

/'l Get the active view fromthe current w ndow. Typecast it as a
/1 CRichEditView rather than a CView, the standard return val ue.

poView = (CRi chEditView) GetActiveView);

/1 Change the font settings as needed.
poVi ew- >OnChar Ef f ect (CFM_UNDERLI NE, CFE_UNDERLI NE) ;

}
e —

As you can see from the source code, there are two distinct methods for changing the font
attributes you see for a selected group of characters. The first is the easier of the two. All
you need to do is get the active view—the part of the window that contains the text that the
user is editing. Once you have the view, you can use a special function named
OnCharEffect() to change the font attributes. To make this function actually work, you'll
need to provide the same font attributes for both arguments. (The CHARFORMAT
documentation contains a complete list of attributes and associated defines.)

The second method requires a little more work, but it's also more flexible. In this case, you
still have to get a copy of the active view. However, this time you use it to fill a
CHARFORMAT structure with the current font characteristics. This structure includes
everything you need to know, like the font name and color, along with font attributes like bold
and italic. Once you get the CHARFORMAT structure filled, just change the members you
want to change on-screen and then use the SetCharFormat() function to make the actual
change.

In most cases, you'll want to use the first method | showed you for changing font attributes
like bold and italic. It's a lot less code and you don't have to fiddle with a structure to get the
job done. However, it's nice to know that the CHARFORMAT structure is available in case
you need it to make more extensive changes on-screen.

We have a toolbar and some code to make it work. Our sample program is still lacking one
important feature. If you run it right now, you won't even see the toolbar. The final step is to
add a menu item and some code to make using the toolbar easy. Let's begin with the menu
item. All | did was add a new menu item to the View menu using the same procedure we
talked about for the Format menu. In the Menu Item Properties dialog, | used
ID_VIEW_FORMATTOOLBAR as an ID, &Format Toolbar as a caption, and “Show or hide
the format toolbar\nToggle Format ToolBar” as a prompt. You'll also want to check the
Checked check box since we'll display the toolbar as a default.

There are three places you need to add code for the toolbar. The first bit of code appears in
the MAINFRM.H file. You need to add a new variable in the Protected section, right under
the initial toolbar variable. The new variable code looks like this:

CTool Bar m wndTool Bar 2;

The next bit of code appears in the MAINFRAME.CPP file (see Listing 2-10). This is the
code that sets the toolbar characteristics and makes it visible when you start the program.
Notice that there are some special coding considerations for making the toolbar dockable (so
that you can move it from place to place within the application).

Listing 2-10

i nt CMai nFrane: : OnCr eat e(LPCREATESTRUCT | pCreat eStruct)

{
if (CFrameWhd:: OnCreate(l pCreateStruct) == -1)

return -1;

if (!mwndTool Bar. Creat eEx(thi s,
TBSTYLE_FLAT,
WS_CHI LD | WS_VI SIBLE | CBRS_TOP
| CBRS_CRIPPER | CBRS_TOOLTI PS |
CBRS_FLYBY | CBRS_SI ZE_DYNAM C) ||
! m wndTool Bar . LoadTool Bar (| DR_MAI NFRANE))

TRACEO("Failed to create tool bar\n");
return -1; /1 fail to create

if (!mwndTool Bar 2. Creat eEx(this,
TBSTYLE_FLAT,
W5 _CHI LD | WS_VI SIBLE | CBRS_TOP
| CBRS_GRIPPER | CBRS _TOOLTIPS |
CBRS_FLYBY | CBRS_SI ZE_DYNAM C) ||
' m wndTool Bar 2. LoadTool Bar (| DR_FORMAT))

TRACEO("Failed to create tool bar\n");
return -1; [/l fail to create

if (ImwndStatusBar.Create(this) ||
I'm wndSt at usBar . Set | ndi cat or s(i ndi cators,
si zeof (i ndi cators)/sizeof (UNT)))

TRACEO("Failed to create status bar\n");
return -1; /1 fail to create

[l TODO Delete these three lines if you don't want the
tool bar to be dockabl e m wndTool Bar.

Enabl eDocki ng(CBRS_ALI GN_ANY) ;

m wndTool Bar 2. Enabl eDocki ng(CBRS_ALI GN_ANY) ;

Enabl eDocki ng(CBRS_ALI GN_ANY) ;

DockCont r ol Bar (&m wndTool Bar) ;

DockCont r ol Bar (&m wndTool Bar 2) ;

return O;

}
e ———————

There are three main areas where you need to work with the toolbar code. The first creates
the toolbar and then loads the IDR_FORMAT toolbar into it. If this procedure fails, you'll get
a “fail to create” message before the application even starts. The second area defines the
toolbar style. | used the default settings, which allow the user to resize and move the toolbar
around. Tool tips will also appear when the mouse is rested over a button. The final section
of code enables toolbar docking, defines where the user can dock the toolbar, and actually
docks the toolbar we've created. At this point, your toolbar is visible; the user can move it
around and can remove it from sight using the Close box.

Getting the menu command (View | Format Toolbar) to work is easy. Listing 2-11 shows the
code you'll need to get this part of the program to work.

Listing 2-11

voi d CMai nFrane: : OnVi ewFor nat t ool bar ()
{

CMenu* poMenu; /|l Create a pointer to the current
menu.

poMenu = Get Menu(); [/ Get the nenu.

/1l Deternmine if the View | Format Tool bar option is checked. If
it

/1 is, then hide the format tool bar and uncheck the option.
O herw se,

/1 display the tool bar and check the nmenu item

i f (poMenu->Get MenuSt ate(l D VI EW FORVATTOOLBAR, M-_CHECKED))
{
ShowCont r ol Bar (&m wndTool Bar 2, FALSE, FALSE);
poMenu- >CheckMenul t en{ | D_VI EW FORMATTOOLBAR, M-_UNCHECKED) ;

}
el se
{
ShowCont r ol Bar (&m wndTool Bar 2, TRUE, FALSE);
poMenu- >CheckMenul t em(| D_VI EW FORVATTOOLBAR, M-_CHECKED) ;
}

}
e

As you can see, we begin by getting a copy of the CWnd class menu object. Once we have
the menu object, it's easy to figure out if the Format Toolbar option is currently checked. If
the option is checked, the toolbar is visible. You'll use the ShowControlBar() function with
the second and third parameters set to false to make the toolbar invisible. The
CheckMenultem() function allows you to remove the check mark from the View | Format

Toolbar menu option. Conversely, you use the opposite procedure to make the toolbar
visible and check the menu option again.

Go ahead and compile the application one more time so you can check out the various
features we've just added. Make sure you try out all of the formatting options and the ability
to dock and hide toolbars. Obviously, this application isn’t as complex as some of the
programs you'll see out there right now, but it does make good use of resources.

Chapter 3. Working with Threads

Overview

Developers are constantly looking for ways of using machine resources more efficiently
without spending more time developing applications. One way to do this is to write an
application to perform more than one task as a time. Windows provides this ability using
threads. A thread is essentially a single subject of execution within an application (also
known as a single path of execution). In other words, a single application can do more than
one task at a time. For example, it could print and spell check a document in the background
while the user is typing in the foreground.

Note
You actually need to be aware of two entities when talking about threads.

The term thread describes one set of contiguous instructions for performing
a single task. A process, on the other hand, describes the application as a
whole. Every executing application has at least one thread and one process.
There’s never more than one process for an application, but Win32
applications can always produce more than one thread. The distinction
between processes and threads will become more clear as the chapter
progresses.

Threads don't perform any kind of magic. They won’'t make the user's machine any faster,
and the processor still can’'t perform more than one task at a time. In other words, threads
don’t allow a machine to perform more than one task simultaneously unless that machine
has the resources (that is, multiple processors) to perform multiple tasks simultaneously.

What threads do allow is an application to use machine resources more efficiently. They also
provide better response times for the user by performing some application housekeeping
tasks in the background. For example, a document can print in the background while the
user works in the foreground because the user isn't likely to require full use of the processor
all of the time. Making use of idle time while the user thinks allows the machine to work more
efficiently. Since the processor only services a particular task during idle time, the user
regains use of the machine immediately after requesting that the application perform the
task.

This chapter provides you with a wealth of information about how threads work and how you
can use them in your applications to make things run more efficiently. It's important to
understand how threads get used in various types of project types as well as to be aware of
the kinds of threads you have at your disposal when using Visual C++ and MFC. (There isn't
any actual distinction between threads from a pure Win32 perspective.)

We'll also explore safety considerations when using threads. For example, critical sections
ensure that two calling processes don't try to use the same portion of code at the same time.
However, even if you have your code properly written to ensure thread safety, the developer

of the libraries that you use may not have had the same considerations in mind. This chapter
also explores the things you need to consider to ensure thread safety when working with
local libraries.

Finally, we'll spend time working through two example programs. The first program shows
you how to use threads within an application. The second program will deal with using
threads within libraries. Obviously, part of this example is to show the library in action, so
that you can actually see the effect of using threads in this environment.

Thread Uses

Theoretically, you can use threads in any Visual C++ application, including something as
small as an ActiveX component. Using threads in the managed environment is similar to the
unmanaged environment in that you have the same thread types to consider and the
underlying process is the same. In short, threads are a nearly universal solution to some
types of problems.

Threads don’t necessarily need to be large or complex to make an application more efficient
and responsive to user needs. In fact, you can use threads to perform small maintenance
tasks in the background at regular intervals—tasks that you may not want to interrupt your
main application to do. A thread can also replace timer-related tasks in some cases. In other
words, threads aren’t limited to performing any particular task.

However, you do need to consider some issues before you start using threads for every
small task that your application may need to perform. It's important to use threads correctly
in order to avoid some common problems that developers seem to face with them. The
following list provides you with some guidelines on what you should think about before using
threads.

. Debugging The biggest consideration from a developer perspective is that threads
greatly increase the difficulty of debugging an application. A thread can actually hide
bugs or, at least, make them more difficult to find, since you have to watch more than
one thread of execution at a time.

. Development Most developers are used to thinking about application programming in
a linear fashion. In other words, given a specific event, the application will perform a
series of steps to handle it. Using a multiple- thread approach forces the programmer to
think about application processes in parallel, rather than in a linear fashion.

. True efficiency While it's true that placing some tasks into background threads can
make use of idle time in the application, there are situations when there isn’t any idle
time to exploit. In this situation, you'll find that the application is actually less efficient
than before because there’s a certain amount of overhead and housekeeping
associated with using multiple threads. In other words, use threads only in situations
when you anticipate there will be some amount of idle time to exploit.

. Reliability Multiple threads of execution don’t necessarily make an application failure
prone, but there are more failure points to consider. Any time you add more failure
points to anything, it becomes less reliable. There’s a greater probability that the
application will break simply because there are more things that can go wrong with it.

" Unexpected side effects No matter how carefully you craft a multithreaded
application, there are going to be side effects that you have to deal with, especially if the
threads in the application interact. Even if you make your application thread safe and
use critical sections, there’s a chance that two threads will try to access the same
variable at the same time in an unanticipated way. Not only do these unexpected side
effects increase development and debugging time, they make it more likely that a user
will come across a problem that you can’t duplicate with your setup. In other words,
multithreaded applications will more than likely increase application support costs.

Now that you have a good oveniew of the way in which you can use threads in general, let's

look at some specific multithreaded usage types. The following sections will explore the

three most common ways that you'll see multiple threads in use: applications, DLLs, and

system services. Each of these areas represents a major application type. We'll explore two

of these multithreaded usage examples, applications and DLLs, later in the chapter.

Note

Of the three major uses for threading, you can use the managed techniques
only for applications. While you can create managed DLLs using Visual
C++, they lack the global perspective of native executable files—you can
use them only with managed applications. If you plan to put effort into a DLL
that requires a thread, it's best to use unmanaged programming techniques
so you can use the DLL with a wider variety of applications. One of the

strengths of Visual C++ is that it enables you to create both native
(unmanaged) and managed DLLs. Under no circumstances, should you
attempt to create a service using managed code.

Applications

We've already explored this topic to some extent. Applications can benefit from multiple
threads of execution in a number of ways. In fact, some of those ways will seem quite
natural from a programming perspective because the tasks in question can be broken away
from the main thread of execution quite easily. The following list will give you some ideas on
how you can use multiple threads with applications:

" Printing This major task can always benefit from multiple threads in any application.
Queuing a print job takes time, which means that the user is sitting and staring at the
screen, doing nothing at all. In fact, some print jobs take enough time that the user
would give up trying to use the computer at all and do something else while waiting.
Printing in the background in a separate thread is always an efficient way to handle this
task.

Tip
There are probably a few things you should consider not adding to
background threads, simply because it's not feasible to do so. The one rule of
thumb you should use is whether the user will need to interact directly with the
thread. In many cases, you should handle anything that requires direct
interaction on a constant basis as part of the main thread. On the other hand,
anything the user can set once, then allow the computer to complete is a
good candidate for a separate thread. Make sure the application will realize
an efficiency gain and the user increased responsiveness any time you create
a thread. A thread that causes the entire machine to slow is somewhat
counterproductive, and you should consider running the task as quickly as
possible to reduce system down time.

" As the user types There are many tasks that fall into the “as the user types” category,
but the two most common are spelling and grammar checks. Many applications offer the
ability to check the user’s spelling and grammar as they type, which reduces the need to
check the whole document later. Of course, there are a lot of less common tasks that
fall into this category as well. For example, you could check the validity of an equation
as the user types it or make sure that a database entry is correct. For that matter, you
could even suggest (as some applications do) a completed entry for the user based on
past input.

- Repetition Repagination and other repetitive tasks can always occur as background
threads. There isn’'t any need to take up the foreground task’s time with things like
updating the application clock. Most repetitive, continuous tasks can be relegated to a
background thread.

" Data saves Most applications now include an automatic save feature simply because
many users are very poor at saving data themselves. It's not hard to figure out why—the
user is engrossed in getting their document completed and simply forget to perform the
data save. An automatic data saving feature can allow the user to complete a document
without worrying about power failures or other computer glitches that can cause data to
disappear.

. Updates As users rely more and more on remote computing, their ability to get
updates in the field gets more important. Updates, in this case, aren’t necessarily limited
to data. For example, a user might check in with the company each morning for updated
pricing schedules. A system administrator could make use of this habit by also including
a background thread that downloads any system updates the user may require. In other
words, the user would receive both a data update and an application update at the
same time. Of course, automatic data updates are a nice feature as well. The
application could update pricing tables or other forms of application-specific information

in the background at regular intervals, provided the machine has the capability of
creating a remote connection to the company.
Tip
You can combine multiple threads and system updates in other ways. For
example, you might want to include a virus checking thread that runs in the
background and checks all of the incoming data before it actually is placed on
the client machine. Another use of background threads is to run diagnostics in
the background as the user works to ensure their machine is fully functional.
An alarm would tell the user that their machine requires service and that they
should save any data before it's too late. As you can see, there are a lot of
ways that you can use threads to protect users, their data, and the client
machine from damage.
. Calculations Math operations are notorious for consuming vast amounts of processor

cycles. In some cases, you have to accept the heavy penalty of a calculation because

the user requires an answer immediately. However, there are other situations when the

application could complete the calculation just as easily in the background as a

separate thread. In fact, many spreadsheet and graphics applications use this technique

now to make foreground features more responsive to user input.

DLLs

Dynamic link libraries (DLLs) have been around since Microsoft first introduced Windows. In
fact, DLLs are actually the successors of the libraries used by DOS applications. For the
most part, DLLs allow for the same uses of threads as applications do. The main difference
is that you'd want to place common thread types in DLLs— threads that perform work that
you may need to do in more than one application. However, developers do place some
thread categories in DLLs, simply because they’re major components of an application that
the developer may not want to recompile every time the application is updated.

. Spelling and grammar checkers

" Print routines

. Non-automated data formatting

. Data processing routines

. Report builders

You could potentially add other items, but this list should provide you with enough ideas to
get started. The reason that these items could appear in a DLL is that the developer
normally creates and debugs them separately from the main part of the application. It pays
to keep these elements in a DLL to reduce debugging time for the main application and to
reduce application compile time.

System Services

For the most part, users never interact with system services. System services sit in the
background and perform tasks such as enabling the hardware to operate or creating network
connections. Consequently, there are some specialized uses for threads within a system
service. The following list will provide you with a few ideas.

. Service priority upgrade Some system services execute as low-priority background
tasks. You normally don’t want them to consume valuable processor cycles unless the
machine is idle or there’s some type of priority task to perform. When you use a service
in the second capacity, high-priority threads come into play. Rather than change the
priority of the entire service, you can simply launch a single thread to perform the high-
priority task.

. Discovery Most system services are low-level applications that need to discover a
great deal about the system to ensure that it's working properly. This discovery phase

can occur once during service initialization in some cases, but, in other cases it's an
ongoing process. Consider the network driver that has to keep track of the current
system configuration, including the status of remote resources. A good use of threads,
in this case, would be to allow the service to perform multiple levels of discovery at the
same time, without reducing its availability to the system as a whole.

. Multiple copies of the same task Some services, such as the Indexing Service,
perform a single task. However, they might need to perform this single task on multiple
data streams or objects. In the case of the Indexing Service, each thread handles a
separate catalog, ensuring each catalog receives the same amount of processing
power. It's important to handle some tasks like this to ensure that each data stream is
handled in a timely manner.

Thread Types

From a Windows perspective, you have threads and the processes that contain them and
nothing else. However, from an MFC perspective, there are actually two kinds of threads: Ul
and worker. Both are threads that can perform a single sequence of execution within the
application. The difference comes in the way that you implement and use these two kinds of
threads. The following sections talk about these two thread types and show how they're
used.
Tip
You can use the Win32 CreateThread() function to create a thread that
doesn’t rely on MFC. The advantage of doing so is that you eliminate some
overhead normally encountered using the MFC libraries. In addition, this
method conserves memory. The downside, of course, is that you can’t use
any of the capabilities that MFC provides. In most cases, you'll find that
CreateThread() works best for worker threads that perform simple repetitive
tasks.

Worker Threads

Worker threads are normally used for background tasks that require no or minimal user
interaction. They’re implemented as a function that returns a UINT result and accepts one
argument of the LPVOID data type, as shown here:

UNI NT MyThread (LPVO D pParam
{

return O;

}

A worker thread normally returns a value of 0, which indicates that it successfully completed
whatever task it was designed to perform. You can return other values to indicate either
errors or usage counts. However, the calling application has to be designed to retrieve the
exit value using the GetExitCodeThread() function.

Another way to end a worker thread and generate an exit code is to use the
AfxEndThread() function. Using this function will stop thread execution and perform any
required cleanup before exiting to the calling application. The calling application would still
need to use the GetExitCodeThread() function to retrieve the exit value provided to the
AfxEndThread() function. The exact meaning of any exit codes is up to you, so the calling
application will need to be designed to work with a specific thread function before it will know
what an exit code means.

The pParam argument can contain any number of 32-bit values. However, passing a pointer
to a data structure has several benefits that you may want to consider. For one thing, using a
structure allows you to pass more than one argument to the thread. In many cases, a single
argument won't be enough to provide the thread with everything needed to perform useful
work, so a structure is the only way to get around the single input argument requirement. In
addition, using a structure allows the worker thread to pass information back to the caller. All
that the worker thread would need to do is modify the contents of a structure member during
the course of execution. Note that some developers also pass the “this” pointer because it
provides full access to the calling object. This has the advantage of providing full object
access, so you don't have to create a complex structure. However, using this technique also
means you can’t hide data members as easily.

Ul Threads

As the name suggests, Ul threads are usually created to provide some type of user interface

functionality within an application. You'll derive the Ul thread from the CWinThread class

instead of using a function, as with the worker thread. Obviously, this means that

implementing a Ul thread is more complex than using a worker thread, but you also get more

flexibility.

Note

Terminating a Ul thread is much the same as terminating a worker thread.
However, a Ul thread requires a little special handling if you want the caller
to retrieve the exit code for the thread. First, you need to set the
m_bAutoDelete data member to FALSE, which prevents the CWinThread
object from deleting itself. Second, you’'ll need to manually delete the thread
and release any memory that it uses. As an alternative, you can always
duplicate the CWinThread handle that you receive during thread creation
using the DuplicateHandle() method. In this case, you'll want to create the
thread in the suspended state, duplicate the handle, then start the thread
using the ResumeThread() method.

MFC provides only one CWinThread class method that you must override when creating a
new Ul thread, although there are several others that developers commonly override as well.
The Initinstance() method is the one method that you must override because it's the first
one called after the thread is created. The Initinstance() method should contain all of the
code required to initialize your thread. Obviously, this means displaying a main dialog for the
thread, if necessary.

The Exitinstance() method will normally get overridden only if you need to perform some
thread cleanup or post processing. The only place that you can call this method is from the
Run() method (should you decide to override it as well). Exitinstance() performs the default
tasks of deleting the CWinThread object, if m_bAutoDelete is TRUE. It's always the last
method called before the thread terminates.

Of the other methods available to you, the only ones that you may need to override are
Onldle(), Run(), PreTranslateMessage(), and ProcessWndProcException(). The Onldle()
method handles any idle time processing for the thread. For example, Onldle() would get
called if the application displayed a dialog box and the user wasn’t doing anything with it.
Run() controls the flow of activity within the thread— this includes the message pump.
PreTranslateMessage() filters messages before they're sent to either TranslateMessage()
or DispatchMessage(). Finally, the ProcessWndProcException() method handles any
unhandled exceptions thrown by the thread’s message and command handlers. However,
you'd normally want to handle these exceptions within the handler, rather than wait until it
reaches this point of the thread.

Understanding Critical Sections

A critical section is a piece of code that application threads can access only one thread at
one time. If two applications require access to the same critical section, the first to make the
request will obtain access. The second application will wait until the first application
completes its task. In short, critical sections create bottlenecks in your code and can affect
performance if you're not careful.

Some forms of critical sections ensure that the thread completes a code sequence without
interruption. For example, you wouldn’t want to begin a save to a database and have

another thread of execution interrupt that save. The first application must complete the save
before starting a second thread in order to ensure data integrity. MFC doesn’t provide

special calls to perform magic in this case; you must develop the thread in such a way that it
saves the data safely. In short, the critical section helps ensure database integrity.

You may want to create a critical section for many different reasons, the most important of
which is application data integrity. An application changes the contents of variables and the
status of objects to meet the needs of a particular user. If another user suddenly decides to
execute the same code, the lack of a critical section to protect the variable and object
content would ruin the application for both parties.

There are two ways to create a critical section for use with threads: a variable of type
CRITICAL_SECTION or a CCriticalSection object. Of the two, the CCriticalSection object is
the easiest and least error prone to use. All you need to do is create a CCriticalSection
object, then use the Lock() and Unlock() methods as needed to either restrict or allow
access to a section of code. Here's an example of what a typical critical section sequence
might look like.

CCritical Section oMySecti on; /1 Critical section object.

/1 Lock the critical section.
if (!oMySection.Lock())
Af xMessageBox("Failed to lock critical section", MB OK);

// Do sonme critical work here.

/1 Unlock the critical section.
if (loMySection. Unl ock())
Af xMessageBox("Failed to unload critical section.", MB_OK);

Using the CCriticalSection object is easy. It returns a BOOL value that signifies success or
failure. You'll normally need to handle a failure to either lock or unlock the critical section in
some way. In this case, | used a simple dialog. A production application would likely use
some kind of loop to try to lock the critical section multiple times. Note that you can supply a
numeric value for the Lock() method that tells how long to wait for the critical section to get
unlocked before a failure result gets returned. Make sure you set this value to a reasonable
amount so that the user doesn't think the application is frozen.

Thread Safety

One of the benefits of using libraries is code reuse. Once a developer writes and tests the
code, he or she can place it in a library and forget about it. The functionality you'll need will

be available without a lot of additional work. All you need to do is access the DLL. Windows
uses this technique for all of the APIs that it supports.

Unfortunately, the functionality of libraries can be a two-edged sword. One of the biggest
problems when using libraries with threads is that the library isn’t thread-safe. In other
words, if two threads attempt to access the same object or function at the same time, there
could be a collision, resulting in a frozen application, lost data, or other unanticipated results.

Fortunately, you can protect your libraries in a number of ways. One way is to use critical
sections as needed to ensure that a sequence of events takes place without interruption. A
second way is to allocate variables and objects on the stack. Finally, it's extremely important
to reduce the risk of collisions by not allowing more than one thread to access the same
variable—use techniques that ensure each thread will have its own set of variables to use.

Even Microsoft's libraries aren't totally thread-safe. For the most part, any MFC object is
thread-safe at the class level but not at the object level. In other words, two threads could
access different objects derived from the same class, but not the same object. If you have a
single CString object that two different threads need to access, then you need to write code
that ensures that each object will have separate access to the CString object. In addition, the
first thread will need to completely finish any work with the CString object before you allow
access by the second thread.

If you want to use MFC at all within a thread, you must create that thread using one of the
two techniques we discussed earlier. These are the only two methods that ensure you can
access the MFC libraries safely. The reason you must use these recommended techniques
is that they tell the MFC libraries to initialize internal variables that allow for multithreaded
access of the routines.

Writing a Desktop Application with Threads

As mentioned in the previous paragraphs, there are many ways to use threads in an
application, and MFC provides two different kinds of threads from which to choose. This
example is going to look at both kinds of threads in a very simple scenario. We’'ll use dialog
boxes just to make the whole interface of the project that much easier.

The first part of the example will use a Ul thread. You'll normally call on this kind of thread
when you need to create multiple windows to display information for the user. For example,
you might use this kind of thread setup when writing a network diagnostic program. A single
window could display all of the statistics for one problem point on the network. The network
administrator could then look at the windows one at a time and prioritize the most severe
ones for immediate repair.

The second part of the example will look at a worker thread. The Ul thread will actually call
the worker thread as part of the initialization process. You'll normally use worker threads to
perform non-user interface tasks in the background. In this case, our worker thread won't
really do all that much. All that it'll do is wait five seconds and terminate.

Defining the Main Dialog

Now that you have an idea of where this project is going, let's create the main dialog for it.
This will include creating the application itself. The following procedure will help you get the
project set up.
1. Create a new MFC Application project named Threads. You'll see the MFC Application
Wizard dialog.
2. Select the Application Type tab. Choose the Dialog based option.

3. Select the User Interface Features tab. Type Thread Demonstration in the Dialog
Title field. Clear the About Box option.

4. Click Finish. Visual C++ will create the new project for you, then display the main
application dialog.

5. Remove the Static Text control and add a Button control below the OK and Cancel
buttons.

6. Change the button ID property to IDC_ADD_THREAD and the Caption property to Add
Thread. Your dialog should look like the one shown here:

IR rveads sc 000 00106 - Dusioar [N TS

7. Right-click the IDC_ADD_THREAD button and choose Add Event Handler from the
context menu. You'll see the Event Handler Wizard.

8. Select the BN_CLICKED option in the Message Type field, then click Add and Edit.
Visual C++ will add a new procedure for the button to the application.

At this point, the main application dialog is ready to go. All we need to do is add some code
to make the Add Thread button functional. Listing 3-1 shows the code you'll need to add.

Listing 3-1

voi d CThreadsDl g: : OnAddThr ead()
{

/1 Begin a new U thread.
CW nThr ead *pThread = Af xBegi nThread(
RUNTI ME_CLASS (CUl Thread));

}
T

As you can see, this code is extremely simple. All we do is create a new thread based on the
CUIThread class. Unfortunately, there’s no CUIThread class associated with our application
now. That's the next step—creating a new class to hold our thread.

Creating the CUIThread Class

The first kind of thread we’ll create is a Ul thread. What this thread will do is display a dialog
box when the user clicks on the Add Thread button. The following procedure will show you

how to create the class.
1. Use the Project | Add Class command to display the Add Class dialog shown here.

This dialog helps you to create any kind of new class, but we’ll use it to create a new
thread for our application, as shown next.

Categone Tessgiates Jﬁg

E g Visusl Cee e Ed =]
ATL Sonple [beck Geanen: Coe Clasy

. 14
% ui

[HFL Claas] MFL E'-a::: From Active

ok
.-m
FiC rjf'.l
WL Clags Fooms Tppelds WFC ODBC Covime
=

arh o WFE clas

[Foomi] vewl| b

2. Select the MFC Class option, as shown in the illustration, and click Open. You'll see
the MFC Class Wizard shown next. This dialog box enables you to create any class
supported by MFC. Of course, Visual C++ supports myriad other class types.

MFC Clses '-Hl:.gfq - II'!I-!_-_!-E_I_

Weskcnime Lo Ui MIC Class Wizard
Thi wizard ket el Bhat indeer s from MPC L your project. Cipliafn fury thangs depending
ot base clayes selaghes]

3. Type CUIThread in the Class Name field. (Visual C++ will automatically name the files
for the new class UIThread—you can change this default flename by clicking
Change.) The value you provide in the Name field determines the class hame
throughout the application. It's traditional to preface all class names with a C,
although there’s no rule that you absolutely have to add the C.

4. Choose CWinThread in the Base Class field. The base class determines the initial
characteristics of the class. Some classes, like CDialog, require you to provide a
Dialog ID as well, but we don’t need one in this case.

5. Click Finish. Visual C++ will add the CUIThread class to the application.

Even though we've added the CUIThread thread class to the application, the CThreadsDlg
class—where we added the OnAddThread() method in the previous section—still can't see

it. We need to add an include statement at the beginning of the ThreadsDIg.CPP, like the
one shown here:

/] Add our thread header.
#i ncl ude "Ul Thread. h"

At this point, you could compile and run the application. If you clicked the Add Thread button,
you wouldn’t see anything happen with the application itself. However, if you looked at the
application with the Process Viewer utility that's supplied with Visual C++, you'd see one
additional thread for each time you pressed the Add Thread button. (If you don’t see the
Process Viewer, you can install it from the Platform SDK.) Figure 3-1 shows what you might
see if you'd clicked Add Thread once. In this case, we have a main thread and one Ul

thread. (Obviously, there’s no dialog associated with the thread class yet, so looking at the
results in Microsoft Spy++ will show only the new threads, not any associated controls.)

=5 Pistats Viewoi
Ewt E
Mgy Ciotal
upd |
'WINLOGOM [Ded
Edl Froceds bl [a0] "
= e Prooees Memory Lsed Frewdy
I Rtk i
Wwiosking Set ZEAKE T Ny High
¥
Haes Urage A ER I: ::‘:w
Thiaad Prieky Thoaadz| Pitstassti r._r.- Piredaged Lljai
I Hishsad o [T (=3 A%
ighes 1 DOROOON0 0% DX
7 Ak Hoamal
7 Moens
™ Belosy Mianal
e
Wi bndormston
Uses PCWaheer (772l 3250 Conleat Swilckes. 374
Stadt Acddrens: (eTTeEToch Dynamic: Prignky 141]

Figure 3-1: The Process Viewer showing the Threads application ready to create new
threads.

Note
The Process Viewer shows that the thread doesn’t consume any time in
Figure3-1. That's because the thread isn't doing anything. Once we add a
dialog to the thread’s Initinstance() method, the Process Viewer will show
that the thread uses a certain amount of Privileged and User time.

Adding a Thread Dialog

A Ul thread always contains some type of user interface element. There are many ways to
create this element, but by far the simplest is to use a standard resource. Therefore, the first
thing we’ll do in this section is design a new dialog that the CUIThread class can display,
using the following procedure:

1. Right-click the Dialog folder on the Resource View tab of the Workspace window, then
choose Insert Dialog from the context menu. You'll see a new dialog added to the
application.

2. Change the ID of the dialog to IDD_NEW_THREAD_DIALOG. The dialog is now ready
for display, but the CUIThread class needs a dialog class for access purposes. (We
won'’t do a lot with this dialog because it's there for display purposes only.)

3. Right-click the new dialog and choose Add Class from the context menu. You'll see an
MFC Class Wizard dialog like the one shown here. Notice that the wizard

automatically enters some class values for you. For example, Visual C++ has already
chosen the CDHtmIDialog class for you in the Base Class field. However, we’ll want

to use the straight CDialog class for this example.

MFC Class Wizaed - Thigads

Whskonime Lo Uwe MIC Class Wizard

This wizard ey & tharis Ehat inharits Irom MRC b3 your prajecl. Opliofs ey tharge depending
ot base clayes selaghes]

Chi navea; ML 1
[|

Base dams:
| e mieog A

[T
b r
. r
i i

|

[B sccesshidty r

Duocummernt: Ternodst

i | e | e |

Note In most cases, you'll create a new class for a dialog. About the only
time you'd choose to add a dialog to an existing class is if that class
natively supports dialogs and doesn’t have one assigned to it. For
example, if you had previously created a CDialog class derivative
and hadn't assigned a dialog to it, you could use this method to do
So.

4, Select CDialog in the Base Class field. Type CNewThreadDlg in the Name field, then
click Finish. (Normally, you'd also need to make a choice about adding automation
support to the dialog, but it's not required in this case.) Visual C++ will add the new
class for you.

It's time to add the new dialog to the CUIThread class. The first thing we’ll need to do is add
two entries to the UlThread.H file. Then, you'll need to create a variable the class can use to
access the dialog. Both of these additions appear in bold type in Listing 3-2.

Listing 3-2

/1 1Include support for the New Thread Di al og
#i ncl ude "NewThr eadDl g. H'

#pragma once

/1 CUl Thread

class CU Thread : public CWnThread
{

DECLARE_DYNCREATE(CUI Thr ead)

prot ect ed:

/1l protected constructor used by dynanic creation
CUl Thread();
virtual ~CUl Thread();

public:
virtual BOOL Initlnstance();

virtual int Exitlnstance();

/1 New Thread Di al og access
CNewThr eadDl g dl gNewThr ead;

prot ect ed:
DECLARE_MESSAGE_MAP()

‘

The Initinstance() method is what controls the starting point for each new thread that the
application will create. We’'ll simply place the dialog display code in there. Listing 3-3 shows
the code you’ll need to use in this case.

Listing 3-3

BOOL CUlI Thread::Initlnstance()

]

/!l Display the thread dial og.
m_pMai nWhd = &dl gNewThr ead;
dl gNewThr ead. DoModal () ;

/1l Returning TRUE will destroy the thread.
return TRUE;

‘

All that this code does is assign the dialog as the main window for the thread. This is a very
important thing to do, because otherwise you'll only be able to create a single new thread.
(Displaying the dialog modally without assigning it as the main window prevents you from
going back to the initial dialog and clicking Add Thread.) Once you assign the dialog as the
main window for the thread, the code displays it modally. When the user clicks OK, the
dialog call returns and the thread returns TRUE. This act destroys the thread.

Creating a Worker Thread

At this point, you could compile the application and see the effects of a Ul thread. Of course,
the thread dialog isn’t doing anything at this point. That's where the worker thread we’'ll

create in this section comes into play. We'll perform two tasks required to create a worker
thread that sleeps for five seconds and then ends.

This section will also look at some thread synchronization issues. For example, you'll learn
about the importance of waiting for any worker threads to end before terminating a main
thread (in this case, the Ul thread we created in the previous section). In this case, we’ll
modify the functionality of the OK button to ensure that the worker thread has actually ended
before we close the dialog. This ensures that the dialog doesn’t create any memory leaks.
Tip
The Sleep() method shown in this section can be used to replace a timer
when working with threads. The thread will sleep for a certain amount of time,
wake itself up, then perform whatever work it needs to do before going back
to sleep.

The first thing we’ll need to do is create the thread. I've chosen to create the thread as part
of the process of creating the dialog, which means we’ll have to change the default
functionality of the OnInitDialog() method. Since our application doesn’t include the handler
for the CNewThreadDialog::OnlnitDialog() method, we’ll need to add it. To do this, select
the CNewThreadDlg entry in Class View. Click Overrides in the Properties dialog, then add a
handler for the OnlInitDialog message. Here’s what the Properties dialog will look like.

Propeite; a
| CHewT bueadily 40T odellass

Etim s af)s
Gt Srrolil ari7H
HirrdH sip:
|tlrranik i Rereend
OrfumbeentPropest;
OrCancsl
OrChidt oy
OriCmaddzg
O e
OrCinatadpgregales
OrFrafdease

T [

Orifotly chdds DnindDisog
OnE

! = % P T] _‘I
il 0 oy
Ot 1o sugmand diskogrbos: mstiskzston

.Iﬁhmzrhr:

Click <Add> OnlnitDialog to create the new method definition. Listing 3-4 shows the code
you'll need to add for this example.

Listing 3-4

BOOL CNewThreadDl g: : Onl ni t Di al og()
{
/1 Performthe default action.
Cbhi al og: : Onl ni t Di al og();

/1l Create a worker thread.

pThread = AfxBegi nThread(Sl eepABit,
NULL,
THREAD_PRI ORI TY_BELOW NORMAL,

01
0,
NULL) ;

return TRUE; // return TRUE unless you set the focus to a
contr ol

/1 EXCEPTI ON: OCX Property Pages should return
FALSE

}
T

The default action and return code are both provided by the MFC ClassWizard for you, so
the only thing you need to add is the AfxBeginThread() function. You'll need to define the
pThread variable in the public section of the NewThreadDIg.H header file as shown here.

CW nThr ead *pThr ead; /1 New thread pointer.

There are six arguments you pass to AfxBeginThread(). The following list describes each
argument and what you'd use it for.

. Function name The first argument is the name of the worker thread function, which
can’t be a member of the current class. (We’'ll see how this works in a moment.)

" Function parameter The second argument is a parameter that you can pass to the
worker thread function. It's of type LPVOID, so you'll need to typecast it within the
worker thread to the desired variable type. Many thread writers use this parameter to
pass a BOOL that tells the worker thread to terminate. However, you can use the
parameter for any purpose and could even pass multiple parameters in the form of a
structure.

. Thread priority This is the default thread priority. It's actually a relative measure of the
thread’s priority when compared to the parent, not an absolute priority level. The
example code shows the worker thread starting at a priority level one point below the
parent thread. A value of THREAD_PRIORITY_ NORMAL would start the thread at the
same priority as the parent.

" Stack size Providing a value of 0 means that you want to use the default stack size,
which is 1 MB maximum in most cases. Windows doesn’t actually allocate 1 MB of
stack space, it allocates only what the application actually needs. The only time you'd
want to specify a stack size is if you wanted to ensure that recursive code or other code
elements didn’t overflow the stack. Obviously, you'd also need to provide a value here
in those rare situations when a thread might need more than 1 MB of stack space.

. Creation flags At present, there are only two creation flags. A value of 0 tells Windows
to start the thread immediately. You can also supply a value of CREATE_SUSPENDED,
which means that you'd have to resume the thread before it would run the first time. The
Suspend() method will allow you to stop a thread after it's created, while the Resume()
method will start it, so you still have control over the thread later using the thread object
pointer. This is one of the reasons we saved the thread object pointer as a public
variable.

" Security Providing a NULL value for this argument starts the thread with the same
security attributes as the parent thread. You'd need to provide a pointer to a
SECURITY_ATTRIBUTES structure if you wanted to change any of the thread’s
security levels. We'll look at the SECURITY_ATTRIBUTES structure in Chapters 21 and
22 of the book.

Now that we have a thread, we’ll need to do some synchronization to ensure the Ul thread
doesn't try to end before the worker thread does. That means adding some code to the

OnOK() method of the CNewThreadDlg class. To add the new method, right-click the OK
button of the IDD_NEW_THREAD_DIALOG dialog and choose Add Event Handler. Select
BN_CLICKED in the Message Type field and click Add and Edit. Listing 3-5 contains the
code you'll need to add for the OnOK() method.

Listing 3-5

voi d CNewThreadDl g:: OnOk()

{
/1 WAit until the thread has term nated.

Wi t For Si ngl eObj ect (pThread->m hThread, | NFIN TE);

/1l Performthe default OnOK() processing.
CDi al 0g: : OnOK() ;

}
T

The WaitForSingleObject() function allows us to detect when the thread has finished
executing. The INFINITE argument tells Windows that we’ll wait forever for the worker thread
to end. There’s a potential problem with using this particular argument. Unless you're
absolutely certain that the thread will actually end, the application could appear to freeze if
the thread doesn’t end for some reason. In many cases, it's actually better to provide a value
in milliseconds for the second argument. If the thread doesn’t finish executing a given
amount of time, you can always add code that allows your application to detect the problem,
display an error message for the user, and end gracefully.

Calling CDialog::OnOK() allows the parent class to complete any handling for the event. It's
important to ensure that the event gets handled. Obviously, unless you have some special
processing to perform, it's easier to allow the parent class to handle the default processing
needs.

It's finally time to add the worker thread code. You'll need to add a function declaration
before the class definition in NewThreadDlg.H like the one shown here:

// Add a declaration for our worker thread.

Ul NT Sl eepABit (LPVO D pParam ;
Note

Make absolutely certain that you add the worker thread function declaration
before the class declaration or the example won’t compile properly. The
worker thread function isn't part of the CNewThreadDlg class and therefore
won't appear in the ClassView tab of the Workspace window. In addition, a
worker thread must always follow the format shown in the declaration. It
must return a UINT and accept a LPVOID parameter value, even if the
parameter isn’'t used within the worker thread function.

The SleepABit() function itself is relatively simple. You'll add this function to the
NewThreadDIg.CPP file. Listing 3-6 shows the source code for this function.

Listing 3-6

U NT Sl eepABit (LPVO D pParam

/'l Sleep for 5 seconds.
Sl eep(5000);

// End the thread
return O;

}
T

As you can see, the source for the worker thread is extremely simple. All we do is tell the
thread to sleep for 5,000 milliseconds, then end.

Testing the Threads Application

Compile the Threads application so that you can see how the various threads work together.
There are several ways that you can view this example. First, start the application, click Add
Thread, then immediately click OK on the resulting Dialog dialog. The dialog won’t actually
disappear for five seconds. What you're seeing is the result of the combination of the Sleep()
and WaitForSingleObject() functions. The worker thread sleeps for five seconds after it
gets created. Since the worker thread is created as part of creating the Ul thread, there isn’'t
any way to close the dialog for five seconds after you start it.

Let's look at this from a different perspective. Open the Process Viewer. Find the Threads
application in the Process list, click Add Thread on the Threads Application, then Refresh on
the Process Viewer. You'll see three threads as shown in Figure 3-2. The first thread is the
main application thread, which will stay even after you close any created thread dialogs. The
second is the Ul thread, which will remain until you click OK on the Dialog dialog. Finally, the
third thread is the worker thread—it'll cease to exist in five seconds. Wait five seconds, click
Refresh, and you'll see that the worker thread has indeed disappeared from the thread list.

- Pisstats Viewsi MmEE
Eu E Ctrgeder |'-.mr |
Poocats Processer Time Privieged Ut
Hemory Detal ! E MmN EBx WX 4
om0 TEx 7
[T]
il Fiogeds
- Frocets Memsy Used Frawty
I Riefmih [¥
\working et KR T Newy High
= i i
Hisep Urage KB = I;"”‘
A Thead:| Fitemzin Term Pm.-fgm .LH:,
r Fishat [T TR EES
ights 1 DOO0OOIS 00X DX
F AboveHomal | |7 popOnon0 0% 0x
& Momsl
™ Bpboss Miimal
£ I
T bnlormaton
User PC Wb (877811250 Condeat Swlckas 1102
Stad dcldragy: (77eSToch Dynamic Py &

Figure 3-2: The Process Viewer shows which threads are executing and how much
processor time they’re using.

Note
Notice that the worker thread shown in Figure 3-2 isn’t using any processor
time because it's in sleep mode. In addition, if you click on the worker thread
entry, you'll see that the Thread Priority field changes to Below Normal and
that the actual worker thread priority is at least one below the main thread
priority.

Writing a Local DLL with Threads

DLLs have always been one of the mainstays of the Windows programmer. The reasons for
using them are easy to understand. A DLL allows you to place commonly used code within
an easy to access module that you don't need to recompile every time you create a new
version of your application. In addition, DLLs allow you to modularize your application,
making it easier to troubleshoot (especially since you'll have already debugged the code
within the DLL). Using DLLs can also be very memory efficient. The DLL loads only when
and if you actually need it (provided you code your application correctly), making the initial
memory footprint for an application smaller.

It's no surprise that some developers want to combine the good features of threads with
DLLs. Placing your common thread code within a DLL makes sense for the same reasons
that you'd use this technique with any application code. In addition, there isn't any reason
why a DLL can’t use internal threads as well. DLLs create these threads for the sole purpose
of making the DLL more efficient and responsive.

There are a few caveats when using threads within DLLs. The following list will provide you
with some of the more common problems that you'll experience.

. Thread safety When you place a thread within an application, you're fairly certain
about the application that will access it and how that access will occur. Any number of
applications could access a thread within a DLL, and you need to take that into account.
Thread safety becomes more critical, in this case, to ensure that data access is checked
and critical areas are protected.

. Exporting requirements You'll find that worker threads are much easier to place
within a DLL simply because they're easier to export. In many cases, exporting complex
Ul thread objects proves more difficult and error prone.

. Development/debugging time The problems that you'll experience writing and
debugging code for an application are only exacerbated when working with DLLs. You
have to take not only parallel processing into account, but the DLL as well. In other
words, you may want to consider developing the thread code within the application
environment first, then moving it to a DLL if needed. Debugging the thread code first will
make it easier to determine where a problem lies when you create the DLL.

Now that we have a few preliminaries out of the way, let's look at an example of a worker
thread that we can call from a DLL. The thread function will reside within a DLL. As with the
previous example, the thread itself will be very simple so that you can better see the
mechanics of using the thread itself. The following sections will help you create the example
program.

Creating the DLLThread DLL

Our application will actually consist of two projects. The first is a DLL that will hold the worker
thread. The following procedure will get you started.
1. Create a new MFC DLL project named DLLThread. Make certain that you create a DLL
project, not an EXE project. Visual C++ will display the MFC DLL Wizard dialog.
2. Click Application Settings. You'll see the dialog shown here. As you can see, the MFC
DLL Wizard allows you to choose from three different DLL types. The first two options

produce DLLs that any application can call. The second type links the required MFC
functions statically, which increases the size of the DLL in memory, but ensures that
the required MFC support is bundled with the DLL. The third DLL option produces an
MFC extension. Only MFC applications can call this type of DLL, making it an unlikely
choice for general application development.

MFC GLL '-?l:-:!d : r.!l.l._l_hli:-:-:l_

Appication Seltings
Speilr ol ey aed Fstures & the DiL,

[l Epp:
& Rmguber (UL yeang shares MPC DLL
' Angradar DL with MPC staticaly inkad
O MFC gctension CLL

Akt [egtines!

[Auygrevabion
I ewwowes sockets

Preh | caw | e |

3. Choose the Regular DLL using the shared MFC DLL option, then click Finish. Visual
C++ will create the DLL shell for you.

Adding the worker thread to the DLL is relatively easy. Listing 3-7 shows the code you'll
need to add for this example.

Listing 3-7

__decl spec(dl |l export) U NT DoDi al og(LPVO D pPar an)

{
/! Required pre-processing.
AFX_MANAGE_STATE(Af xGet St ati cMbdul eState());
/] Display a confirmation nmessage.
Af xMessageBox("Thread Started", MB_(K);
/1 End the thread
return O;

}

Notice that the general calling syntax for this worker thread is the same as before. The big
difference is the addition of __declspec(dllexport) to the beginning of the call. This extra
code tells the compiler that we want to export the DoDialog() function for use outside of the
DLL (we’'ll see the effect of this extra code in a moment).
Ti
P The __declspec() function is a Microsoft-specific extension to Visual C++,
which makes the code unportable to other environments. You can get around
this problem by using the more common DEF file technique for exporting the
function. However, this means maintaining extra code, which the
__declspec() function takes care of for you automatically. The only other
reason to use a DEF file is if you need to control the ordinal order of the
exported functions. Using __declspec() means that you have to reference a
DLL function by name rather than ordinal number.

Let’s look at the DoDialog() function. The first call is to the AFX_MANAGE_ STATE() macro,
which performs a context switch from the main application to the DLL. This macro ensures
that Windows looks for resources within your DLL rather than in the main application. You
have to include this macro if you plan to use any MFC calls or local resources like icons or
bitmaps in most functions. There are, however, exceptions to the rule. For example,
Windows automatically performs a context switch when you call the Initinstance() method of
a class.

The remaining code is quite simple. The DoDialog() function displays a standard message
box. After the user closes the message box, the function returns a 0, which terminates the
thread.

Compile the DLL. Open the DLLThread.DLL file you'll find in the project Debug or Release
folder using Dependency Walker. You should see a mangled form of DoDialog in the
exported functions list. Right-click the Exported Functions pane and choose Undecorate C++
Functions from the context menu. Your display should look similar to the one shown in
Figure 3-3. If you don't see the exported function, be sure to check your code for errors.

Deigeimnbonsy Wl ai - [DLL TRl)
BZ Fie fdd i Dglos Pl ‘wiede Fep TR
AwmED W [

[udnsd™ [l T Farerr Nimyles |

S g preen]

Fig'u'r'é 3-3: The Quick View utility shows a list of exported' function names for your DLL.
Creating the DLLTest Application

It's time to create an application that can use the DLL that we just created. We’'ll use a

dialog-based application that looks very similar to the one that we created earlier in the

chapter.
1. Create a new MFC Application project with the name DLLTest. You'll see the MFC
Application Wizard dialog.

. Select the Application Type tab. Choose the Dialog based option.

. Select the User Interface Features tab. Type DLL Thread Demonstration in the
Dialog Title field. Clear the About Box option.

4. Click Finish. Visual C++ will create the new project for you, then display the main

application dialog in the Design window.
5. Remove the Static Text control and add a Button control.

w N

6. Change the button ID to IDC_ADD_THREAD and the Caption to Add Thread.

7. Right-click IDC_ADD_THREAD and choose Add Event Handler from the context
menu. Select BN_CLICKED in the Message Type field and click Add and Edit. Visual
C++ will add a new procedure for the button to the application.

Note Before we can add any code for the new procedure, we also need to
make changes to the project settings so that Visual C++ will know
where to access the DLLThread.LIB file. This file contains the
information required to use the DLLThread DLL that we created in
the previous section.

8. Use the Project | Properties command to display the DLLTest Property Pages dialog.
9. Choose the Linker | Input tab of the DLLTest Property Pages dialog. You should see a
list of link settings like the ones shown here.

Corapuration [Actvefliataag] =z Pt [actrtvri z Conbgea s Manags

| Corfeps son Propetes 2] Sckibonal [epardsnoas
imrena grames B Dl Lo i
etaarg hgreas Specic Lty

CACaa Module Detrhon. Fils

| g

Lk Ak kb 1o A parntily
Sere s I b 8 rupoed Fescusce Fie

& g Foion & prritd F ol e

Ceebaxy Doy Lagclledd UL Ly

Sychen

T otwesd e

E mbsaciied #iL

dateried

Currrreared L

=) Flasouce

) ML

3 Evgwera Iniaraton

") Bt Evers Akt ol D g

) Custom Budd Sae = | Sonofies adcioeal ibems tn add b the Ik line. e kel R configuration seols

L Web Pefarerost o

—i s

10. Type DLLThread.LIB in the Additional Dependencies field; you may need to change
this entry depending on where the DLLThread.LIB file is located on your machine.

11. Choose the Linker | General tab of the DLLTest Property Pages dialog. Select the
location of the DLLThread\Debug or DLLThread\Release directory on your machine
in the Additional Library Directories field.

12. Click OK. Visual C++ will change the project settings to include a location for the
DLLThread.LIB file.

We'll need to make some changes to the DLLTest.H file as well. The first will add an import
entry for the DoDialog() function. The second is a CWinThread object pointer, like the one
we used in the previous example. Both of these changes are shown in bold type in Listing 3-
8.

Listing 3-8

/1 DLLTestDl g.h : header file
I

#pragma once

/1 Inmport the DoDial og() function.
__decl spec(dllinmport) U NT DobDi al og(LPVO D pParam ;

/1 CDLLTestDl g dial og
class CDLLTestDl g : public CDial og
{
/1 Construction
public:
CDLLTest DI g(CWhd* pParent = NULL); /1l standard constructor

/1 Dialog Data
enum{ 1DD = | DD DLLTEST_DI ALCG };

prot ect ed:
virtual void DoDat aExchange(CDat aExchange* pDX); /1 DDX/ DDV
support

/1 1nplenentation
prot ected:
HI CON m_hl con;

/'l Generated nmessage map functions
virtual BOOL OnlnitDialog();

af x_msg void OnPaint();

af x_msg HCURSOR OnQueryDragl con();
DECLARE_MESSAGE_MAP()

publi c:

af x_msg void OnBnCl i ckedAddThread();

CW nThr ead *pThr ead; /1 New thread pointer.
};

At this point, the main application dialog is ready to go. All we need to do is add some code
to make the Add Thread button functional. Listing 3-9 shows the code you'll need to add.

Listing 3-9

void CDLLTestDl g:: OnBnCl i ckedAddThr ead()
{
/]l Create a worker thread.
pThread = Af xBegi nThr ead(DoDi al og,
NULL,
THREAD_PRI ORI TY_NORMAL,

As you can see, all that this code does is create a thread using the imported DoDialog()
function. In sum, calling the DLL version of the worker thread isn't all that different from using
a worker thread within the application itself.
Note
You must copy the DLLThread.DLL file into the DLLTest application folder
before you attempt to run the application. Otherwise, Windows will complain
that it can’t find the DLL file.

If you ran that application, at this point you'd see many of the same things we did for the
previous example. The process viewer would show a new thread every time you click the
Add Thread button. Using a DLL does require a little more memory— as you’ll see when
using Process Viewer. Looking at the application with Spy++ will show the main thread and
associated window, along with any worker threads that you create. However, since we're
creating a message box within the worker thread this time, you'll also see a dialog
associated with each worker thread.

Chapter 4. Working with Graphics

Overview

Windows is a graphical environment. Therefore, it's little wonder that most Windows desktop
applications have some type of graphics support within them. In the “Working with
Resources” section of Chapter 2, we discussed graphics as a resource. For example, most
applications sport an icon that identifies them in Explorer and within the Start menu. In
addition, applications that work with data generally support one or more icons for each file
extension they support. Resources are fine when working with some types of graphics such
as icons.

You'll run into situations where you need to support other kinds of graphic images or the
image you need to support isn’t known at design time. For example, if you want to display a
PCX image on the hard drive, it's unlikely that you'll place it within the application as a
resource. In this situation, you'll access the graphic externally, which means loading it into
memory from the hard drive and displaying it on screen.

Visual C++ provides graphics support at several levels. For example, you can load images
from a data stream (such as an Internet connection) or your can load them from the hard
drive. Visual C++ .NET also includes two distinct methods for working with graphics:
managed and unmanaged. The unmanaged method relies on the same Win32 calls you've
always used in the past. This is the method you should use when you need to create a
native executable file for platforms that don’t (or won't) support the .NET Framework. The
managed method relies on new classes in the .NET Framework. You'll find that these
classes have a lot to offer, but also have some pitfalls. We'll discuss the pros and cons of
using both graphics techniques.

Visual C++ Graphics Support

Visual C++ provides a lot in the way of graphics support. In fact, given the way Microsoft has
structured Visual Studio .NET, Visual C++ might have more to offer than any other language
you could use. We'll discuss just what Visual C++ has to offer in the sections that follow.
You'll learn about the expanded graphics support that you'll find in Visual C++ .NET. This
first section also tells you what you have to pay in order to receive these additional benefits.
It's important to understand the tradeoffs of using any programming language.

The second section discusses the Image Editor utility. You need to know about this utility in
order to get the most out of Visual Studio. The IDE does support some types of resources
natively, such as icons. However, if you're reading this section of the book, you need
something more than what the Visual Studio .NET IDE can provide. Image Editor is a simple,
yet effective tool for creating drawings. Of course, if you need something more robust or
want to create animations, you'll need a third party product. We'll discuss such products in
the “Animation Technigues Using GIF Files” section of the chapter.

The remaining three sections that follow help you understand graphics programming support
for Visual C++ developers. We'll discuss the Windows API for those of you writing
unmanaged applications in the third section. This section won't discuss every nuance of
every API call, but does provide you with a good overview. The fourth and fifth sections
discuss the two .NET Framework namespaces you need to know about for managed
programming under Visual Studio .NET. Again, we’'ll discuss the two nhamespaces from an
overview perspective, rather than delve into every nuance. (You'll see many details while
working through the coding examples in the chapter.)

Expanded Graphics Support

Visual C++ is a low-level language. Consequently, some people have never viewed Visual
C++ as the optimum choice for end user graphics programming, but they do view it as an
optimal choice for many types of graphics manipulation. Visual C++ provides the low-level bit
manipulation that many graphics routines require, and it provides the speed necessary to
allow processor hungry graphics routines to run quickly on a typical workstation. The sticking
point has always been the amount of code required to create the Visual C++ application.
Some languages, such as Visual Basic (and now C#), provide the means to write graphics
display routines quickly.

Visual C++ .NET changes the programming picture somewhat and makes it much easier to
work with graphics. If your only goal is to display graphics and you can target a machine that
supports the .NET Framework, you can use the same techniques as everyone else to
display graphics. The code is relatively simple and even debugging it is painless. In fact,
using .NET makes working with certain types of graphics applications almost trivial.

Microsoft carefully considered the working environment for most developers when creating
the .NET Framework. The .NET Framework isn’t a one-for-one replacement of the Windows
API, especially when it comes to writing graphics applications. While the .NET Framework
does make writing graphics applications easy, it also lacks the depth of support that you'll
find in the Windows API. For example, all graphics handling in the .NET Framework is two-
dimensional. If you want three-dimensional support, you need to use Windows API calls and
provide access to DirectX. In short, the emphasis of the .NET Framework is business
applications that can rely on two- dimensional presentation.

You'll find that Visual Studio .NET places a greater emphasis on the Internet, even greater

than Visual Studio 6 did. One of the results of this emphasis is support for a greater number
of graphics file types. Two of the most important additions are support for Joint Photographic
Experts Group (JPEG or JPG) and Portable Network Graphics (PNG) file formats. You'll also
find better support for older graphics formats such as Graphics Interchange Format (GIF). Of

course, you only get this support when working with the .NET Framework. The Windows API

still limits you to the graphics formats of the past, such as bitmap (BMP), cursor (CUR), and

icon (ICO).

Note

At the time of this writing, Visual Studio .NET support of a non-native
graphics format such as GIF and JPG is less than perfect. The IDE loads
the image as a custom resource and refuses to display it as anything but
hexadecimal data. While this limitation doesn’t keep you from using the
image in your application, it does mean you can’t see the image in the IDE.
If you plan to work with non-native types, you must use a third party editor to
create the image.

One of the more important features for all users of Visual Studio .NET are the enhanced
drawing features found in the IDE. Figure 4-1 shows a typical example of an icon for Visual
Studio .NET. Notice that this icon is in 256 colors. You can also choose higher and lower
color depths (up to 32-bit color). Visual Studio .NET supports 16x16, 32x32, and the new
48x48 pixel icons. You also have the option to create the usual cursors and bitmaps. We
discussed these capabilities as part of the “Working with Resources” section in Chapter 2.

0 M e gencian aphs - oresaii Visaal D4+ |lesigrs) - Ml ageoba gl io BO6_BUAIHFRASE ; Roos|
fm F e Proec fuic (swg lwh mage e O '
R -i-ck @G L |- BT b vena .o - L
FoaO. eyl AlDEE D BE O % &1, [
[L X M srugedeap i IMFALASE - Boo] Fasmps Ve - Mgt § 5|
Flm i-.. B w—— T]] Enayrtbanph
AT W 5 L0 Mg
plEEREE " e
| EEEEEEEE g
REERE HE g
a .g _&'_1__ EELRT T
- WA 03 e _Mragmmar |
B3 i ey
B TR s
& R AT _1J
== =o BISW|
Fixmim (] :
[ek |
ENE= l
BER 1 = |
]
HEZEE = |
RO e T |
£ Devics |
B ot B s v el
- e Ptilh, sdmpht i e [hagin
[8 erscen. IR NN

& | A |

Figure 4-1: The Visual Studio .NET IDE provides better gré_p"hics drawing capabilities
than previous versions.

The term bitmap is more generic in Visual Studio .NET than in previous versions of the
product. You can now use BMP, Device Independent Bitmap (DIB), GIF, JPG, JPE, and
JPEG files as bitmaps, which makes Visual Studio .NET far more flexible. The only problem
with the bitmap support is that it supports only single image files. You can'’t place an
animated GIF within your application. We'll discuss a technique for getting around the
animated graphic problem in the “Animation Technigues Using GIF Files” section of the
chapter.

Using Image Editor

Given the advanced drawing features found in Visual Studio .NET, you might wonder why
anyone would require an external editor. Image Editor is a tool of convenience. It enables
you to create new graphics without starting the Visual Studio .NET IDE. (The memory

footprint difference between the two products is substantial.) In addition, the graphics you
create with Image Editor will work with every version of Visual Studio and Windows. You'll

use Image Editor when you want to ensure your application provides maximum compatibility
using a common image capability approach.

The Image Editor is a typical drawing tool. You could equate it to something like Paint, since

it has about the same capabilities from a drawing perspective. However, the similarity with

other tools ends with drawing capabilities. Image Editor helps you to create new icon (ICO),

cursor (CUR), and bitmap (BMP) files. All versions of Windows support these native graphic

file types.

Note

Visual Studio .NET includes Image Editor at the time of this writing.
However, given that Visual Studio .NET does include substantially better
graphics support, Microsoft may choose to drop this tool from the list of
supported tools. You'll still find Image Editor in the Platform SDK. In fact, the
Platform SDK contains many image management tools that you won't find in
Visual Studio .NET. If you plan to use many graphics in your applications, it
pays to install a copy of the Platform SDK and associated tools on your
system. However, make sure you get the most recent Platform SDK from
http://www.microsoft.com/msdownload/platformsdk/ sdkupdate/to
ensure you gain maximum compatibility with Visual Studio .NET.

Figure 4-2 shows the Image Editor with an icon loaded. While the tools won't vary with the
kind of resource you create, the size and the format of the image will. The display you see
may vary from the one shown here depending on what type of resource you decide to
create.

1% e E i - (Uil 1 [s] £

| b g | EOAMNGA 16-Colos 1207 - Pai 28,0 Siee 16

Sampln Scivan Sl Cosbonn F Dithaed Colors

.D l EE EEE EE

L B lhversa

Figure 4-2: Image Editor allows you to create a variety of resources using common
drawing tools.

Image Editor allows you to create three different kinds of resources: cursor, bitmap, and
icon. Selecting the File | New command will display the Resource Type dialog box, shown
here, which allows you to choose the type of resource you want to create.

http://www.microsoft.com/msdownload/platformsdk/

Once you select a resource type, you may see a second dialog box that allows you to
choose the size and (optionally) color depth of the resource you'll create. Choose the
settings you want to use for the resource, then click OK on the second dialog box to create
the initial resource.

Using the Standard Win32 API Calls

Developers have struggled with the Win32 API since Windows NT first appeared on the
scene. While it's relatively easy to perform some tasks, such as getting the current machine
state, working with graphics has always been notoriously difficult. Part of the difficulty stems
from the requirement to share the one screen resource with multiple applications. However,
inconsistent API calling conventions also play a role in making the Win32 API difficult to use.

Visual Studio .NET developers have two canvases they can use when working with the

Win32 API . The first is the display device context (DC); essentially a piece of virtual paper
you use to create output. The DC acts as output media, which the system displays on screen
as soon as possible. The second canvas is relatively new. You can also draw on some
controls. For example, we'll discuss the use of a CStatic control as a bitmap drawing
framework in this chapter. At a low level, the system is still using the DC, but the use of a
control hides this fact from the developer. Consequently, most developers find that using the
control approach requires less work while producing the same results. (We'll see other
benefits for using the control approach as the chapter progresses.)

The Win32 API provides a wealth of functions for working with graphics. MFC provides
wrappers to make working with the functions easier, but you gain essentially the same list of
functions when using MFC. In both cases, you can view the functions as falling into four
categories:

. Canvas management

" Pre-rendered graphics display

. Drawing

" Miscellaneous

An example of the canvas management calls is GetDC(). You must gain access to the DC
before you can draw on it. The DC is associated with a window, with the desktop being the
top-most window that you can access. Windows automatically clips anything you place in the
DC to the bounds of the associated window. Therefore, if you select a dialog box as your
canvas, you can draw only within the bounds of the dialog box. When working with a DC,

you must use the ReleaseDC() function when you finish drawing. Windows provides a

limited number of DCs, so failure to release a DC can have serious consequences.

Microsoft has tried to reduce the complexity of using a DC by introducing the CPaintDC,
CClientDC, CMetafileDC, and CWindowDC classes. These classes enable you to use a DC
without worrying as much about pointers. In addition, using these classes reduces the
amount of code you need to produce by taking care of some issues for you automatically.
For example, you don’t need to release the DC manually. We’'ll see how the CClientDC class
works in the sections that follow.

The easiest method to work with pre-rendered graphics (those that you add as resources to
your application or read from another source such as the hard drive) is to use a CStatic or
other suitable control. Otherwise, you have to read the various elements of the graphic file

into memory individually, which can become an exercise in frustration. Along with the
commands for reading bitmaps, icons, and cursors, the Win32 API (and by extension, MFC)
provides calls for stretching or performing bit manipulations on a bitmap as a whole.
However, you must perform these manipulations using the CBitmap object before you draw
the object on screen using the CStatic object.

The Win32 API also includes a wealth of drawing primitives that you can use to render line
art on screen. The native functions work only with two-dimensional drawings, however, so
you'll need to use DirectX for full three-dimensional support. You do obtain functions for
drawing the following primitives:

" Line

. Hollow rectangle

. Solid rectangle

" Rectangle with rounded corners

. Arc

. Chord

" Pie wedge

" Circle/ellipse

I'll demonstrate all of these primitives in the coding sections that follow. Most of them require
some knowledge of the math principles they’re based on. For example, when working with a
circle, you need to know what type of bounding square to create in order to achieve a
specific type of circle (or ellipse). Besides the DrawXXXX() functions used to actually create
the drawings, you also need to know how to use brushes and pens. Every time you want to
create a different affect, you need a new brush or pen. The CBrush and CPen classes make
the process of creating brush or pen relatively painless.

A Quick Overview of the System.Windows.Forms Namespace

The easiest way to think of the System.Windows.Forms namespace is as a replacement for
the diverse set of commands traditionally used to “draw” a dialog box or other window on
screen. Any managed application that requires a window (graphical interface) requires this
namespace. Consequently, you'll add this namespace to your managed applications more
often than any other namespace. We’'ll discuss this namespace with some regularity in the
book, and the following list provides an overview of the types of classes and methods that it
provides:

. Forms One of the main contributions of this namespace is forms of various types. In
fact, you'll inherit from the Form class in many of the examples in this book and in real
world applications that you create.

. Controls This namespace contains all of the familiar controls, including Button,
ComboBox, Label, ListView, PropertyGrid, TextBox, and Toolbar. Note that you no
longer need to place a “C” in front of everything. Using the .NET Framework means
using the same standard names as all Visual Studio .NET languages.

. Components Some, but not all, of the components used for general form design
appear in this namespace. You'll find ContextMenu, ErrorProvider, Help, HelpProvider,
Menu, Menultem, and ToolTip components for starters. You'll learn how to use some of
the components later in the chapter.

. Common Dialog Boxes Instead of doing anything odd to access dialog boxes within
your application, you'll have access to classes with easy to understand names and
relatively consistent configuration methods. For example, you'll use the OpenFileDialog
class for creating a standard Open dialog box. You'll also find FontDialog,
PageSetupDialog, PrintDialog, PrintPreviewDialog, and SaveFileDialog classes.

= Message Boxes The final significant entry is the MessageBox class. Many developers
will find this one oddity in the mix. Instead of merely calling MessageBox as you did in
the past, you must now use MessageBox::Show(). It's a small change, but one that

serves to confuse, rather than help. Message::Show() is one example of the price that
you as a developer will pay for object orientation—no more global functions.

A Quick Overview of the System.Drawing Namespace

The System.Drawing namespace contains all of the classes for displaying any type of
graphic information on screen. The technique for using this namespace is completely
different from anything you may have learned with Win32. For the most part, the classes are
easy to understand. The best part of all is that you won’'t have to work a DC any longer.

We'll discuss this namespace as part of the source code in the sections that follow. The
namespace contains everything you'd expect. You'll find classes for creating pens and
brushes, working with bitmaps, and rendering images on screen. The first big change you'll
notice is that the namespace provides enumerations of common values so you don't need to
“remember” them as you develop the application. For example, if you want to create a black
brush, you'll specify the Color::Black value instead of an RGB value.

The drawing commands are also easier to use than the ones found in the Win32 API. All of
the drawing commands begin by defining a pen for drawing the image and a rectangle with
bounding coordinates for the graphic. When working with primitives such as the arc, you'll
define a starting location using an angular measurement in degrees. The end point is
defined as an angular measurement from the starting point.

The bottom line is that the System.Drawing namespace provides most (but not all) of the
functionality of the Win32 API with little of the inconsistency. There’s one feature provided by
this namespace that you won't find in the Win32 API (this will be discussed in the “Animation
Technigues Using GIF Files” section of the chapter). While the GDI+ functionality provided
by the System.Drawing namespace is phenomenal compared to the Win32 API, the one
thing lacking is support for three-dimensional drawing. There are several likely reasons for
the lack of three-dimensional drawing support. First, developers working in game
programming aren't likely to show interest in managed code any time soon. Second, while
the scientific community could make good use of three-dimensional drawing support, many
of these developers rely on UNIX or Linux. Finally, Microsoft’s focus is on the business
user—a developer who can make use of two-dimensional graphics and doesn’t really need
the capabilities provided by three-dimensional drawing.

Writing a Graphics Desktop Application

As mentioned during the introduction, Visual C++ is unique in the Visual Studio .NET
language setup because it handles managed and unmanaged code with equal ease. In
addition, you can produce native EXE applications with the same ease that you can produce
applications that rely on the .NET framework.

The two sections that follow present basic graphics applications. The unmanaged code
example shows how to perform basic tasks such as load bitmaps, cursors, and icons. We'll
also discuss how to perform basic drawing tasks, such as using drawing primitives. The
managed code example will likewise show how to work with the .NET Framework to load
bitmaps, cursors, and icons. You'll also learn about drawing primitives from a .NET
perspective. By comparing the two sections, you can learn about the capabilities of Windows
drawing in the managed and unmanaged environments—at least where these capabilities
overlap. (Remember that you'll still use unmanaged code to access features such as
DirectX.)

Using Unmanaged Code

As mentioned in this introduction, this example shows you how to load and unload basic
graphics and use the drawing primitives. The unmanaged code example uses the MFC
Application project. | gave my project a name of UnmanagedGraph, but any name will work.
You'll want to use the Dialog Based application type (found on the Application Type tab).
Give the dialog a title of Unmanaged Graphic Example on the User Interface Features tab.
Once you make these changes, click Finish to create the project.

At this point, you'll see the blank dialog box. Add three buttons to it. Give the first button an
ID of IDC_ICONS and a Caption of Icons. The second button will have an ID of
IDC_GRAPHICS and a Caption of Graphics. The third button will have an ID of
IDC_DRAWING and a Caption of Drawing.

Working with Icons

We need to add a handler for loading the standard icons into the display area. Right- click
IDC_ICONS and choose Add Event Handler from the context menu. When you see the
Event Handler Wizard, select BN_CLICKED in the Message Type field, and then click Add
and Edit. You'll see an OnBnClickedlcons() function added to the application. Listing 4-1
shows the code you'll add for this function.

Listing 4-1

voi d CUnnanagedG aphDl g:: OnBnCl i ckedl cons()
{
HI CON hl con; /1 An icon handle.
CRect oRect ; /1l Text display area.

/1 Initialize oRect
oRect . bottom = 36;
oRect.top = 4,
oRect.left = 40;
oRect.right = 256;

/] Get the device context for the current w ndow.
pdc = this->Get DC();

/!l Load and display the icons.
hl con = Loadl con(NULL, | DI _APPLI CATI ON);
Draw con(pdc->m hDC, 4, 4, hlcon);

Dr awText (pdc->m hDC, "Application", 11, LPRECT(oRect),
DT_VCENTER) ;

/'l Rel ease the device context.
t hi s- >Rel easeDC(pdc) ;

}
I —|

Listing 4-1 shows you the essentials of working with icons using a standard DC strategy. In
fact, this is the same method developers have used for every version of the Win32 API. The
code on the CD-ROM is a bit longer than the code shown in the listing. You'll see all of the
icons listed in the source code. The steps you need to perform are always the same when
rendering an icon or cursor on screen.

1. Create a DC for the device that you want to use.

2. Load the icon or cursor that you want to display.

3. Draw the icon on screen using the DC.

4. Release the DC.

This example shows how to use the standard Windows icons. You can also load icons into
your project. If you plan to use anything other than a BMP, ICO, or CUR file, you'll need to
click Import. Visual C++ .NET supports a variety of other file types, but lists them as custom
resources. To add a new icon, right-click anywhere in the Resource View tab and choose
Add | Add Resource from the context menu. You'll see an Add Resource dialog box shown
next, where you can choose from any of the standard resources.

e =]

R
ﬁi] B ot

i) Bt Cuseor Curhom

[Dislog
& HTML Cancel

] loon

T
:':| e _....._._IHm
mi S Tabie
td Tooba
BB Verson

Notice that the example code in Listing 4-1 also contains a DrawText() function call. This
call enabled you to see the name of each icon resource on each screen. Notice that the
DrawText() call also includes a handle to the DC, a bounding rectangle for the text, and one
or more constants that determine how Windows draws the text. In this case, we're using
DT_VCENTER to display the text centered on screen. A bug in the current product
implementation prevents the text from displaying correctly, but Microsoft might fix this
problem by the time you read this chapter.

As mentioned earlier, you do have alternatives for creating a DC. Listing 4-2 shows the
effect of using the CClientDC class. (Note that | added this as an Icons 2 button to the
example, and you can see the associated information on the source code CD.) You'll notice
that this code is shorter than the code in Listing 4-1. While the basic techniques are the
same, the CClientDC class performs some of the work for you. In addition, the class eases
your workload by incorporating the necessary draw commands as part of the class. Rather
than use a pointer, you can call Drawlcon() or DrawText() as a method within the
CClientDC class.

Listing 4-2

voi d CUnnanagedG aphDl g: : OnBnCl i ckedl cons2()

{
HI CON hl con; /1 An icon handle.
CRect oRect; /1 Text display area.

// Initialize oRect

oRect . bottom = 36;
oRect.top = 4;
oRect.left = 40;
oRect.right = 256;

/|l Create the client DC.
CCientDC pdc(this);

/1l Load and display the icons.

hl con = Loadl con(NULL, | DI _APPLI CATI ON);

pdc. Drawi con(4, 4, hlcon);

pdc. DrawText (" Application", 11, LPRECT(oRect), DT_VCENTER);

}
T

The OnBnClickedlcons2() also shows you how to use a custom icon within your
application. (You'll find the Redlcon.ICO file in the Chapter 04 folder of the source code CD.)
The essential difference lies in the way you load the icon. Here’s the new icon loading code
that you'll find in the source code CD file.

hl con = Loadl con(Af xGet | nst anceHandl e(),
MAKEI NTRESOURCE(| DI _RED_ARROW) ;

The finished Icons button produces a list of standard icons. You'll use these icons within

message boxes and for other uses in Windows. Following is the output of the full code found
on the source code CD.

M Unmanaged Graphe: Esampln
== Application
@ Hand
3 'y Duestion
X2
.,"-., Exclamation
ir) Asberink
-
Eﬁ Windwes Logo
Warnin
N
@ Error
jj) Inlermation

[_]
o |
Caresl
araphecs
Drawsing

Working with Bitmaps

Bitmaps are a bit trickier than other types of graphics you'll work with. They require special
handling because you're not drawing the bitmap on screen in the same way as you would a
graphics primitive. In addition, bitmaps use many non-standard file formats. This section of

the chapter relies on the ColorBlk2.BMP file found in the Chapter 04 folder of the source
code CD. Of course, you can use any other bitmap that you'd like.

As part of the preparation for this section, you'll need to load a bitmap into a control created
in the display area. You'll add the bitmap to the project using the same Add Resource dialog
box that we discussed in the previous section. After you add the bitmap to your project, add
an event handler for the Graphics button. Right-click IDC_ GRAPHICS and choose Add
Event Handler from the context menu. When you see the Event Handler Wizard, select
BN_CLICKED in the Message Type field, then click Add and Edit. You'll see a
OnBnClickedGraphics() function added to the application. Listing 4-3 shows the code you'll
add for this function.

Listing 4-3

voi d CUnmanagedGr aphDl g:: OnBnCl i ckedGr aphi cs()
{

CRect rect; // Cient bounding area.

/1l Load the bitmp.
if (bnp. m hObject == 0)
brp. LoadBi t map(| DB_BI TMAPL) ;

/1l Get the client area.
this->GetClientRect (LPRECT(rect));
rect.right = rect.right - 90;

/]l Create a static control to display the graphic,
/1 then display the imge.
if (disp.mhwd == 0)

di sp. Create(_T(" Sanpl e"),

WS_CHI LD | WS_VISIBLE | SS_BI TMAP |
SS_CENTERI MAGE,

rect,
this);
di sp. Set Bi t map(HBI TMAP(bnp)) ;

}
I —

If you're thinking this code is considerably shorter than other code you might have seen for
displaying a bitmap using Visual C++, the magic is in the CStatic object, disp. As you can
see from the code, you need to load the bitmap from the resource file. Notice that, not as
with the icon file in the previous section, we don’t need to do anything special in this case.
The bitmap loads without conversion. The BMP loading technique represents one of the
inconsistencies that tend to drive developers crazy, because you never really know if the
problem is in your code or some quirk in the Win32 API.

Creating the CStatic object is easy. All you need to do is supply window text (you'll never
see it when working with a bitmap), some display options where you want to display the
CsStatic object, and the parent window. The only optional display option shown above is
SS_CENTERIMAGE. You must provide SS_BITMAP so the CStatic object knows what to do
with the bitmap when you load it. While the WS_VISIBLE option is theoretically optional,
there isn’t much point to keeping the bitmap hidden if you plan to load it immediately.

Displaying the bitmap is easy. Just call the SetBitmap() method of the disp object after you
create it. Notice the conversion to an HBITMAP in the code. The Setbitmap() method
doesn't provide an override for CBitmap objects. Here’s what the output of this code looks
like:

B Unsanaged Graphic Esample [_1o]=]
_ = |
Corael
leis
raphecs
Drawing
= L3
2. ." i
2 ay
L] |5
e]
+ - -I. g
o 8 o
= | .

Working with Graphics Primitives

The final area of consideration is creating some code that shows basic drawing functionality.
Right click IDC_DRAWING and choose Add Event Handler from the context menu. When
you see the Event Handler Wizard, select BN_CLICKED in the Message Type field, and then
click Add and Edit. You'll see a OnBnClickedDrawing() function added to the application.
Listing 4-4 shows the code you'll add for this function.

Listing 4-4

voi d CUnnmanagedGr aphDl g: : OnBnCl i ckedDr awi ng()

{
CRect rect; [l Text display area.

/'l Get the client area.
this->GetClientRect (LPRECT(rect));
rect.right = rect.right - 90;

!/l Get the device context for the current w ndow.
pdc = this->CGet DC();

/1 Initialize the brushes and pens.

if (oBackBrush. m hCbject == 0)

{
oBackBr ush. Creat eSol i dBrush(RG&B(0, 0, 255));
oFor eBrush. Creat eSol i dBrush(RGB(255, 0, 0));
oPen. Creat ePen(PS_SCOLID, 5, RGB(0, 255, 0));

}

/1 Set some default col ors.
pdc- >Sel ect Obj ect (& For eBrush) ;
pdc- >Sel ect Obj ect (&oPen) ;

/1 Fill the drawing area with one col or.
pdc->Fi | | Rect (rect, &oBackBrush);

/1 Move to the starting point, then draw a |ine.
pdc- >MoveTo(10, 10);
pdc->Li neTo(100, 100);

/1 Draw a solid rectangle.
pdc- >Rect angl e(40, 200, 90, 120);

/1l Draw a hollow rectangle. The only brush width is 1.
pdc- >FraneRect (CRect (200, 25, 320, 250), &oForeBrush);

/1 Draw a rectangle with rounded corners.
pdc- >RoundRect (150, 80, 265, 320, 25, 25);

// Draw an arc.
pdc->Arc(0, 0O, 150, 150, 200, 200, 0, 0);

// Draw a chord.
pdc- >Chor d(200, 200, 350, 350, 0, 500, 300, 0);

/1 Draw a pi e wedge.
pdc->Pi e(120, 120, 240, 240, 120, 0, 0, 240);

// Draw a circle.
pdc->El | i pse(0, 240, 150, 390);

/'l Rel ease the device context.
t hi s- >Rel easeDC(pdc) ;

}
e,

The first thing you should notice is that this code follows the same path as the icon-loading
example earlier in the chapter. However, you'll find that this example has a few interesting
additions. First, notice that you must create at least a pen or a brush before you can draw
anything on screen. The pen and brush describe how the application should draw the image
on screen. Windows will use a pen for features such as the outer line for a rectangle. It uses
the foreground brush to color the inside of a solid object. By mixing pen and brush colors
and effects, you can achieve just about any effect on your drawing.

Most of the drawing primitives are straightforward. All you need to do is call the drawing
primitive with the appropriate input (which normally begins with a bounding box). Drawing a
line is a two-step process. You must position the caret at the starting position using the
MoveTo() function and then draw the line using the DrawTo() method. Here's what the
output of this part of the example looks like:

i Unimanaged Graphic Esamplo M= E

s

i

il

Using Managed Code

It's time to look at an example of some managed code. You'll find that Visual C++ .NET does

make drawing a little easier than the previous example. At least you'll find a few less

inconsistencies when creating your application.

Note

This application produces output similar to the output produced by the
UnmanagedGraph example in the previous section. As a result, this section
won'’t show the output of the application and will concentrate on the code
instead.

The wizards Microsoft provides to create managed applications are nearly invisible, which
means you don't get all the nice extras provided by an MFC application. To begin this
project, create a Managed C++ application. The example has a name of ManagedGraph, but
you can use any name you like. You'll notice that Visual C++ creates the new application for
you immediately after you click OK in the New Project dialog box.

What you have right now is the barest of console applications—not what we're looking for in
this section of the chapter. You can modify the application to work with you by adding the
code shown in bold below to the ManagedGraph.CPP file. It's essential that you add the
code now or you'll experience problems with some of the tasks we’ll perform as the section
progresses.

#i ncl ude "stdaf x. h"

#using <nscorlib.dl >
#i ncl ude <tchar. h>

usi ng nanespace System

/1 Libraries used to support application.
#usi ng <System DLL>
#usi ng <System Draw ng. DLL>

#usi ng <System W ndows. For ns. DLL>

/'l Add sone nanmespaces.
usi ng nanmespace System : W ndows: : For ns;

usi ng namespace System : Draw ng;

The application still doesn’t provide anything more than console capability, but you have
access to far more. Adding the namespaces enables Visual C++ to locate elements of the
.NET Framework beyond those found in the System namespace. The following sections
show how to build a managed code application that performs some basic graphics tasks.

Modifying the tmain() Method

As previously mentioned, the wizard assumes that everyone wants to create a console
application. This means you have a Console::Write() call in the _tmain() function, and
that's about it. The _tmain() function does play a large role in console applications.
However, for windowed applications, it merely serves as a means to start the application.
Listing 4-5 shows the _tmain() code we’ll use for this example.

Lisithg 4-5

/1 This is the entry point for this application
int _trmain(void)
{
ManagedGr aph* mai nForm /1l Create a copy of the main form

/] Initialize the main form

mai nForm = new ManagedG aph();

/1 Start the application.
Appl i cation:: Run(mai nForn;

return O;

}
e,

As you can see, the _tmain() function creates an instance of the ManagedGraph class (we’'ll
create this class in the next section) and uses it to start the application. The
Application::Run() method starts the application and enables it to continue running. The
two main methods for stopping the application once you start it are to call
Application::Exit() or close the main form. The only reason that closing the main form
works is that the application returns from the Application::Run() call and there’s nothing
more to process. We’ll use this particular form of _tmain() for many of the examples in the
book. However, Chapters 12, 13, and 14 will expand on this part of the application
development process somewhat.

Creating the ManagedGraph Class

Every windowed application you create will contain a minimum of one class. This class will
contain the code for the main form of your application. It doesn’t matter what type of
application you want to create. (Creating dialog-based applications is the easiest route to
start with.). Listing 4-6 contains the main form class for this example.

Listing 4-6

/1l Create a managed cl ass for handing the display.
__gc cl ass ManagedG aph :
public Form

{
public:

ManagedG aph(voi d)

{
/1l Initialize the form appearance.
Text = "Managed G aphic Exanple”;
ClientSize = Size::Size(478, 384);

/!l Create a nenu system
Mai nMenu* nmenu = new Mai nMenu() ;

/[l File nmenu.
Menul tem® Fileltem = nenu->Menultens->Add("F& | e");
Fileltem >Menultens->Add("E&xit",
new EventHandl er(this, OnFileExit));

/1 Display nenu.

Menul tem® Di spl ayltem = nmenu- >Menul t ens- >Add(" D& spl ay") ;
Di spl ayltem >Menul t ens- >Add(" N&ot hi ng",

new Event Handl er (thi s,
OnDi spl ayNot hi ng)) ;

Di spl aylt em >Menul t ens- >Add(" | &ons",

new Event Handl er (thi s,
OnDi spl ayl con));

Di spl ayltem >Menul t ens- >Add(" Gr &aphi cs (Normal)",

new Event Handl er (t hi s,
OnDi spl ayGraphi cs));

Di spl ayltem >Menul t ens- >Add(" Graphics (S& zed to Fit)",

new Event Handl er (t hi s,
OnDi spl ayGraphi cs2));

Di spl aylt em >Menul t emrs- >Add(" &Dbr awi ng",

new Event Handl er (thi s,
OnDi spl ayDr awi ng)) ;

Menu = nenu;

virtual ~ManagedGraph(void)
{
}

prot ect ed:
/1l Override OnPaint to allow graphics display.
voi d OnPai nt (Pai nt Event Args* e);

private:
/1 Declare all of the nmenu sel ections.
void OnFil eExit(Object* sender, EventArgs* e);
voi d OnDi spl ayNot hi ng(Obj ect* sender, Event Args* e);
voi d OnDi spl ayl con(Obj ect* sender, Event Args* e);
voi d OnDi spl ayGraphi cs(Obj ect* sender, Event Args* e);
voi d OnDi spl ayGraphi cs2(Obj ect* sender, Event Args* e);
voi d OnDi spl ayDr awi ng(Obj ect* sender, EventArgs* e);

/1 A variable for tracking the current draw ng type.
int _DrawSel ect;

b

/1 Begin function descriptions for nmanaged cl ass.

voi d ManagedGraph:: OnFil eExit (Obj ect* sender, Event Args* e)

{
/1 Exit the application.

Cl ose();
}
voi d ManagedG aph: : OnDi spl ayNot hi ng(Obj ect* sender, Event Args* e)
{
/1l Set the drawi ng selection and refresh the screen.
_DrawsSel ect = 0;
Refresh();
}
voi d ManagedGraph:: OnDi spl ayl con(Obj ect* sender, Event Args* e)
{
/1l Set the drawi ng selection and refresh the screen.
_DrawSel ect = 1;
Refresh();
}
voi d ManagedGr aph: : OnDi spl ayGr aphi cs(Obj ect* sender, EventArgs* e)
{
/1l Set the drawi ng selection and refresh the screen.
_DrawSel ect = 2;
Ref resh();
}
voi d ManagedGraph: : OnDi spl ayGr aphi cs2(Obj ect* sender, Event Args* e)
{
/'l Set the drawi ng selection and refresh the screen.
_Drawsel ect = 3;
Ref resh();
}
voi d ManagedGr aph: : OnDi spl ayDr awi ng(Obj ect* sender, Event Args* e)
{

/1l Set the drawi ng selection and refresh the screen.
_DrawsSel ect = 4;
Ref resh();

}
T

The main form class derives from Form. You'll find that most of your forms derive from this
class. Notice that the class definition begins with __gc. This attribute tells Visual C++ .NET
that this is a garbage-collected (managed) class. You must add this attribute to all managed
classes within your application. Otherwise, Visual C++ assumes they’re unmanaged, and the
application won't compile.

The constructor, ManagedGraph(), contains the basics for any dialog-based application.
The code initializes the form appearance by changing the title bar caption and resizing the
form as needed for the application. It's at this point that you should spot the first
inconsistency between the unmanaged and the managed worlds. Notice the dimensions of
the client rectangle in this example. When you run the application, you'll see that it's the
same size as the 320x250 form in the unmanaged code example. You'll find that the
managed code size is correct and directly correlates to what you'll see on screen. On the
other hand, many developers find dialog box sizing in the unmanaged environment
frustrating at best.

The next section of code in the constructor creates a menu, and then assigns it to the Menu
property of the form. You create the top-level menu items using the MainMenu class. The
Add() method enables you to add new entries. For some reason, the “&” doesn’t work as
anticipated at the time of this writing, but it should work by the time you read this. You'll
create submenu entries by creating a Menultem object. You must have one Menultem object
for each main menu entry. Note that you also use the Add() method to add the entries.
However, you'll notice that the submenu entries also include an EventHandler() entry that
associates the menu item with an event handler in your code.

The class block ends with declarations of event handlers and global variables. Every menu
event handler uses the same format. The menu event handler must accept a pointer to the
sender and an event object. Notice that we also override the OnPaint() method. When you
override a method, you'll face constraints placed on the method by the base class. In this
case, you must make OnPaint() protected—you can't hide it from view. The OnPaint()
method only accepts a pointer as input to an event object that also provides access to the
DC (although we’ll never access the DC directly).

Each one of the Display menu event handlers performs the same task. First, it selects a
drawing mode that matches the menu entry. Second, the method calls Refresh() to ensure
the user sees the new content.

Overriding OnPaint()

The OnPaint() method deserves special consideration because you'll use it in many of your
applications to ensure the data the user sees always remains current. This is especially
important for drawing applications if you want the user to see the data after a redraw. Listing
4-7 shows the code we'll use for this example. The code is shortened, in this case, because
many elements are repetitive. You can find the full source code on the source code CD.
Notice the use of the switch statement to control the display of data according to the user
selection.

Listing 4-7

voi d ManagedGr aph: : OnPai nt (Pai nt Event Args* e)
{

/1l Create a font, set of brushes, and a pen.

Drawi ng: : Font* oFont = new Drawi ng:: Font("Arial", 12);
Sol i dBr ush* oBrush = new Sol i dBrush(Col or:: Bl ack);
Pen* oPen = new Pen(Col or::LightGeen, 5);

Sol i dBr ush* oForeBrush = new Sol i dBrush(Col or:: Red);
Sol i dBr ush* oBackBrush = new Sol i dBrush(Col or:: Bl ue);
Pen* oBrushPen = new Pen(Col or:: Red, 2);

/!l Create a pointer to the graphics routines.
Graphi cs* g = e->Graphics;

/1l Create sone drawing primtives.
Drawi ng: :lcon* olcon = System cons::get_Application();
Bi t map* oBitmap = new Bitmap(" Col or Bl k2. bmp");

/1l Select the proper draw ng node.
switch (_DrawSel ect)

{
case 1:
/1 Draw the standard icons.
g->Drawl con(ol con, 4, 4);
g->Drawstring("Application", oFont, oBrush, PointF(40, 4));
ol con = System cons::get_Hand();
g- >Drawi con(ol con, 4, 38);
g->Drawstri ng("Hand", oFont, oBrush, PointF(40, 38));
br eak;
case 2:
/1 Draw a graphic nornmal size.
g- >Drawi mage(oBi t map, 4, 4, oBitmap->Wdth, oBitmp->Hei ght);
br eak;
case 3:
/'l Draw a graphic that fills the client rectangle.
g- >Drawi mage(oBi t map, Cli ent Rect angl e);
br eak;
case 4:
/1 Fill the client area with a single color.

g->Fi | | Rect angl e(oBackBrush, ClientRectangle);

/'l Create a drawing using graphics primtives.
g- >Dr awLi ne(oPen, 10, 10, 100, 100);

g->Fi | | Rect angl e(oFor eBrush, 40, 120, 50, 80);
g- >Dr awRect angl e(oPen, 40, 120, 50, 80);

g- >Dr awRect angl e(oBrushPen, 200, 25, 120, 225);
g- >Dr awArc(oPen, 0, 0, 150, 150, 225, 180);
g->Fi | | Pi e(oForeBrush, 120, 120, 120, 120, 165, 90);
g- >Dr awPi e(oPen, 120, 120, 120, 120, 165, 90);
g->Fill Elli pse(oForeBrush, 0, 240, 150, 150);
g- >DrawEl | i pse(oPen, 0, 240, 150, 150);

br eak;

}
e ——————

The OnPaint() method begins by creating the fonts, pens, and brushes used for the rest of
the method. Notice that creating a new drawing tool is easier than using the Win32 API.
Instead of having to remember weird constants or filling out extensive data structures, you
create the drawing elements using simple, human-readable terms. This first section also
creates the drawing primitives used to present information on screen and a pointer to the
graphics routines.

It's faster to draw the standard icons using managed code than using the Win32 API. For
one thing, you use less code. It takes only three lines of code to draw a single entry.
Positioning the icons is easier. Notice that we don’t discuss a DC in any of the calls. The
DrawsString() method also provides better control over the output text. You have a choice of
font and brush (color used to draw the text). Positioning is also easier because you don’t
have to define a drawing rectangle.

Drawing a bitmap on screen is similarly easy. The example code includes two methods for
drawing the bitmap. The first technique draws the bitmap fully sized. The second technique
stretches the bitmap to fit within the client rectangle.

The final drawing task is to use drawing primitives. It's the one area you'll find that the .NET
Framework fails to produce the desired functionality. For example, you won'’t find any
equivalents for the FrameRect() and RoundRect() API calls. The Chord() API call is also
missing. You can simulate these features using other namespace features, but you'll require
a lot more code to do so because you'll have to define a path for the application to follow.
Also, notice that the drawing primitives don’t automatically fill the area inside the graphic.
You must use a FillXXX() call to perform this task. This means that creating a filled ellipse
requires two calls in place of one.

Animation Techniques Using GIF Files

Many applications today use simple animation to get a point across to the user. For
example, Windows Explorer uses animations to show a file moving from one location to
another. One of many ways to create animations it to use a GIF file. GIF files have been
around for gquite some time. You see them all the time on the Internet. All of those little

animations you see on Web sites are very likely GIF files. A GIF file works by placing
multiple images in a single file. Commands separate the images. Each command tells the
displaying application how to present the next frame of the animation and how long to
present it.
Browser
Alert You can see animated GIFs in action on many Internet sites. One
of the more interesting places to look is
http://www.wanderers2.com/rose/animate.html. The site offers
an index of sites you can visit to see various kinds of animated
GIFs. Looking at a variety of sites will help you understand what
works and what doesn’t. You can also download an animated GIF
Wizard, make your own animated GIF online, and learn all about
how to make animated GIFs.

Visual Studio doesn’t support GIF files as an IDE add-on. If you try to add an animated GIF
to your project, you'll receive an error message saying the GIF is damaged or simply
incorrect. Even if you can view the GIF inside Internet Explorer, Visual Studio .NET will
steadfastly refuse to load it. This section of the chapter shows how to get around the
problems that Visual Studio .NET presents when it comes to GIF files.

The following sections divide the task of working with GIFs into two parts. The first part is to
create the animation using a GIF editor. Because Visual Studio .NET doesn’t provide such a
tool, we'll use the GIF Construction Set from Alchemy Mindworks. The second part will show
how to display the animated GIF on screen. In this case, we’ll use unmanaged code.
However, you can achieve similar effects using managed code.

Creating the Animated GIF

If the previous section didn’t show you enough techniques to make your Web site sparkle,
there are a host of other ideas you can use. A favorite idea of webmasters the world over is
the use of animated GIFs. All that an animated GIF does is pack several pictures into one
file. The browser plays these pictures back one at a time—allowing you to create the illusion
of continuous animation. You can also use special effects to create a slide show using a
GIF. The only problem with this approach is the download time—a slide show tends to put
quite a strain on the user’'s download capability.
Note
This section will show you how to create a GIF using the GIF Construction
Set from Alchemy Mind Works. You can download it from several places.
The best place is straight from the vendor at
http://www.mindworkshop.com/alchemy/gifcon.html. You can also
download it from the animated GIF viewing site mentioned earlier in the
chapter: http://www.wanderers2.com/rose/animate.html.

We’'ll use the GIF Construction Set in this example for two reasons. First, since it's
shareware, all of you can download it from the Internet and follow along with the examples.
Second, it's a great program, and most people find that it works just fine for creating
animated GIFs. You'll notice the lack of an actual drawing program with this program, but
Windows already supplies that in the form of Paintbrush or MS Paint.
Note
This chapter uses the 2.0a version of the GIF Construction Set. The
procedures and methods don't work with the 1.0q version of the product.

You'll also need a graphics conversion utility if your drawing program doesn’t support the
GIF file format directly (neither Paintbrush nor MS Paint do). Both Graphics Workshop from
Alchemy Mind Works and Paint Shop Pro by JASC, Inc. are excellent graphics conversion

http://www.wanderers2.com/rose/animate.html
http://www.mindworkshop.com/alchemy/gifcon.html
http://www.wanderers2.com/rose/animate.html

programs. Both vendors provide shareware versions of their product. You can find Alchemy

Mind Works at the Internet site provided in the previous note. The JASC product appears on
various BBS and CompuServe forums (they may also have an Internet site by the time you

read this).

Start the GIF Construction Set program. Use the File | Open command to view the contents
of the \Chapter 04\Animated Graphic directory of the source code CD. Notice that the
directory has several GIF files in it already. Time0.GIF is a base file—a blank used to create
the animation effect. You can save a substantial amount of time by creating such a blank
whenever you create an animation. In fact, cartoonists use this very technique. They draw
the common elements of an animation once on separate sheets, and then combine them to
create the animation. Only unique items are drawn one at a time. Timel.GIF through
Timel2.GIF are the actual animation files—think of each one as an animation cell.

Let's create an animated GIF using these “cel” files. The following procedure isn’t meant to
lock you into a particular regimen, but it does show one way to use the GIF Construction Set
to create an animated GIF.

1. Use the File | New command to create a new GIF. You'll see a blank GIF dialog. GIF
Construction Set always assumes a standard display size of 640x480 pixels. We'll
need to change that value.

2. Double-click on the Header entry. You'll see the Edit Header dialog shown here. It
allows you to change characteristics associated with the GIF—for example, its size.
Notice the Loop option on this dialog. If you keep this value set to 0, the GIF will
continue looping indefinitely. This is a great idea, in most cases, but you might want
to set this value to something else to save system resources when needed.

Sespan
Sronen pad I_:l Sén Help It E
TRONS infoantion 2
Scipen deplh = ﬂh’;‘;‘:ﬁ Carcet
oosgocs R <o | |
Pgiatta
' Gickbal poaleiie Load ME coboin
™ Soted paletin Save Edit
Leop
I Locp
e I_j :::;:mm. couries o

3. Set any header options. The example sets the number of loops to 10 for testing
purposes, but you can set this value as you see fit. Click on OK to make the change
permanent.

4. Click on the + button and select Image from the drop-down list (or use the Block |
Merge command). This allows you to add an image to the GIF. You'll see a standard
File | Open dialog.

5. Double-click on the first file you want to use in the animation. In this case, you'd
double-click Timel.GIF. You'll see the Palette dialog shown here. The palette for this
graphic doesn’t match the standard palette used by GIF Construction Set. Note older
versions of the GIF Construction set provided more options.

Palelle

Thé palete of the mags pou have mpoied E
dhodrd Fid Fatch i gl pabstls |07 thes e

Yo e Cancal

% Dtk this mace o the gobal palslts

™ P Fui i i the global palite Help

 WLipe o local paletts or this imags
‘laerergr ol paleftas can ciach pome web
brimaciii, I o i coditrag GIF Bles o the
rotibd vk vaet, it bl plelten e i Pt
L]

W Lies iz asiachion Iod subiseguent images

6. Select the “Dither this image to the global palette” setting for compatibility reasons.

Click on OK to complete the process. GIF Construction Set will insert a new graphic
into the GIF.

7. Click on the + button and select Image from the drop-down list. You'll see the same

File | Open dialog as before.

8. Select the next image in the series and click OK. Click OK again if GIF Construction

Set asks you about the palette setting. GIF Construction Set will automatically insert
the image in the next position of the animation sequence.

9. Repeat steps 7 and 8 for the remaining GIFs in this animation (Time2.GIF, Time3.GIF,

10.

11.

12.
13.

and so on). Now we have to insert some controls to make this image work properly.
Double-click Block 3 (the second image). You'll see an Edit Image dialog like the one
shown here. Notice that this dialog tells you about the image. You can also use this
dialog to add control blocks between image elements. Control blocks allow you to
modify the behavior of the animated GIF. For example, you can use a control block to
set the time between pictures. Many browsers expect a control block between every
image in your animated GIF, so you must add a control block starting with the second
image.

Irumges Clonitnal —
Image vadh: [¥ Cooniral black: L
I degthe [0 [T Trarsparent colos Cancel
M | e
|Fraegps b II.I ﬂ Dinkay [I_il e
11 (eha of & second ._._.—I
[T Inbslipand
Pageie kg b i
5 T ;l‘:uwmm;
o " Rancvn
HE cokous i Hﬂql_?z -
Ea I Shaow I™ it Fox ismes ingeat
Eiock aile

Check the Control Block option. Set the Delay field to 1. Click OK to add the control
block. You won't see any difference in the main window.

Click on the next Image entry.

Repeat steps 11 and 12 for each of the images. You'll end up with a series of images,
as shown next. (Make sure you add a Control object to the last image, since the
animated GIF will automatically loop back to the first image.)

= GIF Construction Set™ Professions! - UNREGISTERED EVALUATION cOPY =1 E3
Fie Edi Biock ‘Window Help

oo 3 68l) /=] /| o] /x|

o DADEET - Sousce Codo\Chaples Bi\Anmaled Graphic\AnimatedT me, gil _ 5] =]

T HEADER GFSda Scieen (2 %00

. IMAGE

¥ IMAGE

4 IMAGE

B IMAGE

@00

One hlock sefecled

14. To view the completed animation, click on the View button. Press Esc to exit the
viewing area.

15. The only thing left to do is save your animated GIF file. Use the File | Save As
command to do that. You could use any filename, but for the purposes of this
example, save the file as AnimatedTime.GIF.

Designing the Animation Application

In the previous sections, | mentioned that the .NET Framework provides only two-
dimensional drawing capabilities. However, it does provide one easy to use feature that
you'll find very appealing; the ability to show animated files on screen. This section shows
how you'll use the animated GIF created in the previous section by animating it on a
standard desktop application. The part that will amaze you is just how easy it is to present
the animation.

To begin this example, create a new Managed C++ Application. The example uses a name
of “Animated,” but you can use any name desired. You'll need to add the drawing
namespaces shown here to enable the application to access the .NET Framework
functionality.

/1 Libraries used to support application.
#usi ng <System DLL>

#usi ng <System Drawi ng. DLL>

#usi ng <System W ndows. For ns. DLL>

/1 Add sonme nanespaces.
usi ng nanespace System : W ndows: : For ns;

usi ng nanmespace System : Draw ng;

The _tmain() function will require the same modifications as in our previous example. Only
the name of the class will change. Listing 4-8 shows the code we’ll use. We'll look at other
ways of working with _tmain() in Part IV, but this technique works well enough for the
examples now.

Listing 4-8

/1 This is the entry point for this application
int _tmain(void)
{

Ani mat ed* mai nFor m [/l Create a copy of the main form

/[l Initialize the main form
maei nForm = new Ani mat ed() ;

/1 Start the application.
Application:: Run(mai nForm;

return O;
—

All we need now is a class to do the work of animating the GIF. The Animated class appears
in Listing 4-9.

Listing 4-9

/1l Create a managed class for aninating the G F file.
__gc class Animted :
public Form

{
public:

Ani mat ed(voi d)

{
/1l Initialize the form appearance.
Text = "G F Ani mati on Exanpl e";
ClientSize = Size::Size(478, 384);

/1l Create a nenu system
Mai nMenu* menu = new Mai nMenu() ;

/1 File nenu.

Menul tem® Fileltem = nenu->Menultens->Add("&File");
Fileltem >Menul tens- >Add("E&xit",
new EventHandl er(this, OnFileExit));

/1 Ani mate nmenu.
Menul tem® Ani mateltem = nmenu- >Menul t ens- >Add(" &Ani mat e") ;
Ani mat el t em >Menul t ens- >Add(" St a&rt ",

new Event Handl er (t hi s,
OnAni mateStart));

Ani mat el t em >Menul t ens- >Add(" St 0&p",

new Event Handl er (t hi s,
OnAni nat eSt op)) ;

Menu = nenu;

/1 Initialize the bitmap.
oBitmap = new Bi t map(" Ani mat edTine.gif");

virtual ~Ani mat ed(voi d)
{
}

prot ect ed:
/1l Override OnPaint to allow graphics display.
voi d OnPai nt (Pai nt Event Args* e);

private:
/1 Declare all of the menu selections.
void OnFil eExit(Object* sender, EventArgs* e);
voi d OnAni nat eStart (Obj ect* sender, EventArgs* e);
voi d OnAni nat eSt op(Obj ect* sender, Event Args* e);

// Declare an event handler for the anination.
voi d Next Franme(Obj ect* sender, Event Args* e);

// Declare | ocal variabl es.

i nt _DrawsSel ect ; /1 Drawi ng node.
bool _Ani nat ed,; /'l Aninmation active.
Bi t map* o0Bit map; /1 G F bitnap.

/1 Begin function descriptions for nmanaged cl ass.

voi d Aninated:: OnFil eExit (Obj ect* sender, EventArgs* e)
{

/1 Exit the application.

Cl ose();

voi d Ani nmated: : OnAni mat eStart (Obj ect* sender, Event Args* e)
{
/1 Initialize the animating the first tinme the user selects it.
if (!_Aninmated)
{
| mageAni mat or : : Ani mat e(0Bi t nap,
new Event Handl er (thi s, NextFrame));
_Animated = true;

/1l Select a drawi ng node.
_Drawsel ect = 1;

voi d Ani nat ed: : OnAni mat eSt op(Obj ect* sender, Event Args* e)
{

/1l Select a drawi ng node that stops the ani mation.
_DrawsSel ect = 2;

voi d Ani nat ed: : Next Franme(Obj ect* sender, Event Args* e)

{
/'l Force OnPaint() to redraw the ani nation.
I nvalidate();

voi d Ani nat ed: : OnPai nt (Pai nt Event Args* e)
{

/]l Create a pointer to the graphics routines.
Graphics* g = e->Graphics;

switch (_DrawSel ect)

{

case 1:
/1 Animate the G F file.
| mageAni mat or: : Updat eFranes() ;
g- >Dr awi mage(oBi t map, 4, 4, oBitmap->Wdth, oBitmap->Height);
br eak;

case 2:
/1 Draw a graphic normally.
g- >Drawi mage(oBi t map, 4, 4, oBitmap->Wdth, oBitmap->Hei ght);
br eak;

}
e ——————

The example code begins in the same way as the previous example. The constructor
defines some dialog box elements, including a menu system. The final constructor step is to
create the animated GIF bitmap. Notice that you can use the same Bitmap class for any of
the file types that Visual Studio .NET supports. The class also declares event handlers for
each menu entry and overrides the OnPaint() method. We need a special event handler for
this example to handle the animation.

The OnAnimateStart() method begins by checking the animation status. This example
assumes that once the animation starts, it won't stop until the user closes the application. A
full-fledged application might start and stop the animation as needed to avoid flickering. This
method also selects a drawing mode.

The OnAnimateStop() method has a single purpose. It sets the drawing mode to a non-
animated setting.

Animation relies on timed presentation of the frames within the animated file. For this
reason, we need a special event handler in the form of NextFrame() to force the display of
the next frame of the animation. The example doesn’t require special timing because the
control blocks within the animated GIF control execution time between frame elements. The
only call that NextFrame() requires is one to force OnPaint() to do something.

OnPaint() uses the same switching mechanism as the previous example to determine what
to draw on screen. The two cases are essentially the same; they draw the bitmap on screen.
It's important to note the call to ImageAnimator::UpdateFrames(). This is the bit of code
that performs the animation magic. It selects the next frame within the animated GIF file.
DrawIimage() normally assumes you want to draw the first frame in the file. This call tells
DrawIimage() to use another frame—the next frame in line. You'll find that when you run the
application, you can stop the graphic at any point along the animation route. In other words,
clicking stop doesn’t mean returning to the first frame—the application will continue to
display the currently selected frame.

Chapter 5: Working with Active Directory

Overview

For anyone who's worked with Windows for a long time, Active Directory represents yet
another step in a progression of data storage techniques. The path begins in Windows 3.X,
where developers mainly used INI files to store application data. Windows NT introduced the
concept of the registry. Windows 2000 introduced Active Directory. All of these technologies
have two things in common. First, they store more data than their predecessors. Second,
they cure perceived problems with the preceding storage technique.

The INI file is the least centralized method of storing data, while Active Directory represents
the most centralized method. INI files stored setting and other application- specific
information. The registry stretched data storage to include multiple applications, users, and
machine configuration. However, the registry stores information only for a single machine,
which means network administrators still have to rush from machine to machine to find what
they need. Active Directory stores even more information and does it in a centralized server
location for all of the machines on the network. If you're working in an enterprise
environment, this is where Windows should have been at the outset.

Active Directory is an extremely complex topic because it covers so much ground. This
chapter provides you with an overview of the topic and shows you a few coding techniques,
but it doesn’t tell you everything you'll ever need to know about Active Directory. However,
you shouldn’t build Active Directory into an insurmountable mountain either. From a strictly
technological perspective, Active Directory is simply a large hierarchical database with some
built-in redundancy and extensibility. If you know how to work with databases, you already
have the knowledge to begin working with Active Directory.

We'll also discuss the most important part of working with Active Directory, the interfaces.

The Active Directory Service Interface (ADSI) provides you with a standardized means for

working with this rather complex database. The two common methods for working with ADSI

are through a set of COM interfaces or by the .NET Framework. We’'ll discuss both methods

of using ADSI in this chapter. The example program will use the COM interface approach.

Note

This chapter assumes that you've already installed Active Directory.
Windows 2000 Server automatically installs this support when you promote
the server to a domain controller. At the time of this writing, it looks like
Microsoft's new servers will use this same technique. You can install the
Active Directory tools on a local drive by right-clicking the AdminPak.MSiI file
found in the server's \WINNT\ System32 folder and choosing Install from the
context menu. The tools will install properly on any Windows 2000 machine.
If you have Windows XP, you might need to check the Microsoft Web site
for the proper administration tools. Some users reported problems using the
Windows 2000 Server tools on a Windows XP machine. In all cases, you
can also manage Active Directory from the server console.

What Is Active Directory?

You can look at Active Directory in many ways, most of which are overly complex. The
simple way to look at Active Directory is as a massive database designed to make network
management easier for everyone. However, you may not realize just how massive this
database is. Everyone expects that Active Directory will hold the usual network information,
such as user and group security setups. In addition, after looking at Novell'’s Novell Directory

Services (NDS) offering, you'd expect Active Directory to help you manage network
resources like disk drives and printers.

What we’ll look at in this section of the chapter are a few of the things that you might not

expect Active Directory to do. We'll also look at a few potential pitfalls you should consider

when working with any network management system like Active Directory.

Note

Active Directory requires a server. Windows XP isn't a server platform; it's
used for the desktop alone and therefore doesn't provide Active Directory
support. Because the new name for Microsoft’s server product changes
daily, I'll use the term Windows Server throughout the chapter to reference
any Windows 2000 or newer server product.

An Overview of the Interface

Microsoft has put a lot of effort into creating a new management tool look for Windows 2000
in the form of Microsoft Management Console (MMC) and a series of snap-ins (add-on
modules). Windows XP follows in this tradition and there’s no reason to expect Microsoft’s
latest server product to do otherwise. In short, MMC is a container application for specialized
components. If you get the idea that MMC is some form of COM technology, you'd be right.
A snap-in is really nothing more than a component that uses MMC as a container. In fact,
we’ll discuss this issue in Chapter 16 as we build an MMC snap-in. You need to use a few of
the Active Directory snap-ins to work with the example in this chapter, so it's a good idea to
review them now.

Figure 5-1 shows a typical Active Directory Users and Computers console. Any predefined
selection of MMC snap-ins is a console. You can also create custom consoles for your own
use—something we’ll discuss in Chapter 16. As you can see from the figure, the Active
Directory Users and Computers console provides access to computer and uses resource
information on your network. All of this information appears within Active Directory database
entries on the server.

e i ETES
e B | o= (DEEE | TERVE S
Fre Lis 0 gt .
._,."-9_'_"...,-. =y - = e 7 ey I_Iu:j 1ss]:
) Dataler dervan Adviakin e |
B) N Cat Pl
] ey (e ¥
& gl [omar Crdeier (=1
R | s
o L -
R e &
' |

Ifigure 5-1: Use the Active Directory snap-i"r'i to view the entire network at a glance,
although you can’t manage some network details directly.

Let’s spend a few minutes talking about the various components of the display shown in
Figure 5-1. At the top of the tree is the Active Directory root. Below this is the single domain
in this tree, DataCon.domain. If there were multiple domains, then there would be multiple
entries at this level of the tree. Don’'t confuse the domain controller with the domain as a

whole. A domain can have more than one domain controller, and these controllers would
appear in the Domain Controllers folder. The Builtin folder contains all of the built-in groups
for the domain. The Computers folder holds a list of all the computers that have logged into
the domain. Active Directory manages these first three folders—Builtin, Computers, and
Domain Controllers—automatically. Normally, you won’'t need to add new entries, but you'll
have to configure the ones that Active Directory adds for you.

The name of the last folder, Users, is misleading because it can contain a lot more than just
users. This folder can actually contain computers, contacts, groups, printers, users, and
shared folders—as a minimum. An administrator can create other classes of objects to add
into this folder, and you can design components to work with these classes. For the most
part, you'll spend the most time in this folder unless you create additional folders of your
own. Active Directory allows you to add new entries at every level of the database including
the domain level. At the domain level you can add computers, contacts, groups,
organizational units, printers, users, and shared folders. However, unless you want a messy,
hard to follow directory, you’ll usually limit the entries at the domain level to organizational
units.
Tip
The workstation you use must have a domain connection to work with Active
Directory. One of the best ways to check whether your computer has logged
into the domain and exchanged the proper information is to look in the
Computers folder. The client machine will appear in this folder automatically
after a successful logon and the client and server have exchanged
information. This information exchange is essential for many kinds of COM
related activities.

Developers often need to check the status of their development machines. For example, you
may want to ensure that the operating system is up-to-date. A developer can use Active
Directory to check on the status of any accessible machine from a remote location. Open
either the Computers or Domain Controllers folder and then double- click on a computer

icon. You'll see a Properties dialog that enables you to check machine statistics, such as the
fully qualified domain name of the computer and the version of the operating system

installed.

There are times when you need better access to the machine than the computer Properties
dialog will provide. For example, you may need to know the hardware configuration of the
machine or the status of the drivers. This information is also available from Active Directory.
All you need to do is right-click the computer of interest and choose Manage from the
context menu. You'll see the Computer Management console for that machine. The console
groups the entries by System Tools (hardware), Storage (the content and organization of the
hard drives), and Server Applications and Services (a list of services including COM+ and
MSMQ).

One of the most important MMC consoles for this chapter is Component Services. Figure 5-2
shows a typical example of this console. As you can see, this console provides detailed
information about your COM+ applications. You can view all of the features of an application,
its associated components, and even the details of those components. We’'ll discuss this
utility in detail as the chapter progresses. For now, all you need to know is that the
Component Services console is an essential part of most distributed application
development efforts today.

i:igure 5-2: Component Services provides important managément functionality for
Active Directory development.

By this time, you should have a better idea of why Active Directory, even the interface
portion, is important for you as a programmer. Given the right tools, you can manage most
testing scenarios and troubleshoot most application failures without even leaving your desk.
In addition, Active Directory gives you access to real-world data, something that was difficult
to collect in the past. Users tend to behave differently when you watch them directly. This
difference in behavior affects the results you get when running tests and ultimately results in
applications with less than perfect performance characteristics. While I'm not advocating a
“big brother” approach to application testing, getting real-world data is an important part of
working in today’s complex application programming environment.

Why Use Active Directory?

Active Directory has a lot to offer both the network administrator and developer alike. One of
the most important considerations is that it provides complete information security. Not only
will Active Directory allow you to set the security for individual objects, it will also allow you to
set security on object properties as well. This level of functionality means that you can create
an extremely detailed security policy that gives users access to what they need. In addition,
you can block rights at the object level or at the property level, which means that giving
someone access to an object no longer means that they necessarily get full access. Finally,
you can delegate the authority to manage security on an object or even a property level.

Policy-based administration is another feature that Active Directory provides. Policies are an
implementation of role-based security. Active Directory objects always have a context that
defines how a particular user is using the object and expresses the user’s rights to the
object. All of this information is stored in the Active Directory database, making it easy for an
Administrator to create policies that dictate the rights for entire groups of users. The
combination of context, role-based security, and groups means that an administrator can
manage security using a few groups of users, rather than manage individual users, and still
be sure that individual users are getting the access they require.

As a developer, you're already well aware of the extensibility that Active Directory provides.
However, what you may not know is that the administrator can extend Active Directory by
adding new object classes or new attributes to existing classes. For example, you may want
to add the number of sick leave and vacation days an employee has to their entry in Active
Directory. A component that you build could keep this value updated so that the employee

and management could track this information without relying on another resource. Instead of
a simple contact list, you might create special kinds of contacts so that you could keep
outside consultants separate from large customers that the company relies on for income.

Scalability is another feature that makes Active Directory a good choice. Active Directory
enables you to include multiple domains in a single database. Each domain could contain
more than one domain controller. You can organize the entire setup into a contiguous
namespace that Microsoft calls a directory tree. If your organization is so large that a single
tree would be impossible to manage, you can combine directory trees into a non-contiguous
namespace called a forest. The ability to scale a single Active Directory database over the
largest organization means that when you search for a specific domain within your
application, you'll find it as long as you have a connection and the server is online.

As previously stated, DNS and Active Directory are coupled. What this means to you as a
programmer is that the domain controller and other servers could use the same name no
matter how they’re accessed. A user who normally accesses a server from their desktop
computer within the company wouldn’'t need to make any adjustment when accessing that
same server using an Internet connection (assuming that you've properly registered your
domain name). In addition, the components you create can access the server in the same
way using any connection type.

Active Directory can use two standard directory access protocols for access purposes. The
most common method is the Lightweight Directory Access Protocol (LDAP). You can find out
more about this access method at http://www.fags.org/rfcs/rfc2251.html. A secondary
access method is Name Service Provider Interface (NSPI). This is a Microsoft standard used
with Microsoft Exchange version 4.0 and above. Many third party products work with
Microsoft Exchange; so from a Microsoft-specific programming perspective, this second
access method is just as important as LDAP. However, you'll probably use LDAP when
working with multiple directory types.

The last benefit of using Active Directory is the ability to query the database using any of a
number of methods. From a user perspective, you can find any object on the network using
Search, My Network Places, or Active Directory Users and Computers. We'll see in the next
chapter that querying the database within your application is just as easy and flexible.
Finding what you need isn't a problem with Active Directory.

Active Directory Programming Pitfalls

It would be frivolous to say that Active Directory will take care of every need you've ever had
and will have. That just isn’t realistic, despite what Microsoft's marketing arm would have you
believe. A network management system like Active Directory can be a hindrance in more
than a few ways. The following list provides you with a few ideas.

" Domain versus Workgroup Active Directory assumes that the domain is everything
and that workgroups, as such, really don't exist. Obviously, any company with more
than a few employees will have workgroups, because this is the easiest way to work in
many situations. Logging into the workgroup rather than the domain, though, can have
unexpected results. For example, you can't set up services like MSMQ without a
domain connection—at least not as an independent client.

. Server Loading Moving from Windows NT to newer Windows Server versions can
create performance problems. Unfortunately, many administrators will blame the new
suite of components you've developed to take advantage of Windows Server features.
However, a more likely culprit is the polling and data processing that Active Directory
requires. All of that information takes processing cycles and system resources to collect.

" Interface Complexity Microsoft's new MMC snap-ins may be one of the better ways to
manage Active Directory, but the learning curve for this utility is astronomical, and the

http://www.faqs.org/rfcs/rfc2251.html

complexity of Active Directory doesn't help. It seems as if there’s a specialized snap-in
for every situation. For the most part, you'll find that writing applications that take
advantage of everything Active Directory has to offer greatly increases the
administrative learning curve unless you can work within the confines of the current
interface.

. Storage Active Directory stores everything you can imagine and probably a few things
that you don’t even know exist. As a result, disk storage needs for Windows Server
have greatly increased for the same setup you had for Windows NT. This means you'll
have to exercise care when expanding the database schema or face the consequences
of large disk usage increases.

. Programmer Learning Curve Active Directory relies on COM/COM+ components.
Many developers are just learning COM, and a few may be working with their first
applications. The problem is that Active Directory uses some of Microsoft's most
advanced technologies, making the learning curve for developers steep.

As you can see, there are many limitations when using Active Directory, and many
developers categorize them in one of two ways. Most of the limitations are due to new
resource requirements or the complexity of the Active Directory interface. It's important to
keep these limitations in mind as you design projects that require Active Directory. The most
important limitation now is the newness of the technology compared to other directory
services on the market. Novell required several years after their initial release of NDS to
make their product completely functional and at least moderately reliable.
Browser
Alert Microsoft provides places where you can get help from peers and
Microsoft support personnel. Microsoft newsgroups include:
microsoft.public.active.directory.interfaces,
microsoft.public.exchange2000.active.directory.integration,
microsoft.public.platformsdk.active.directory, and
microosft.public.win2000.active_directory.

Understanding the Active Directory Service Interface (ADSI)

Active Directory provides many features that make it easier to manage large networks and
safeguard the information they contain. While the MMC snap-ins that Microsoft provides as
part of Windows 2000 perform adequately for standard classes that come with Active
Directory, customized classes may require more in the way of management capability.
Consequently, it's important that Active Directory also comes with a set of services that you
can access through an application program. ADSI helps you to interact with Active Directory
using a single set of well-defined interfaces.

Microsoft designed ADSI to be easy and flexible to use. ADSI provides few interfaces, and
they're all relatively easy to understand—this means your learning curve won't be as steep
as for other products currently on the market. Two completely different groups use ADSI as
a means for automating directory services tasks. Network administrators fall into one group.
Because ADSI relies on COM, a network administrator could access the features that it
provides with relative ease from a scripting language. Obviously, developers fall into the
other group. Microsoft is hoping that developers will create Active Directory-enabled
applications using the lower-level ADSI features.
Browser
Alert Active Directory has garnered a lot of interest from non-Microsoft
sources that can help you decipher what Active Directory can mean
for your organization. One of the better places to look for
information about the Active Directory Server Interface (ADSI) is
the 15 Seconds Web site at:
http://www.15seconds.com/focus/ADSI.htm. This site contains

http://www.15seconds.com/focus/ADSI.htm

articles, links to other sites, a few examples, and a list of Microsoft
Knowledge Base articles for ADSI specific topics. If you want to
learn about Microsoft’s view of ADSI, then check out the Active
Directory Services Interfaces Overview site at
http://www.microsoft.com/windows2000/techinfo/
howitworks/activedirectory/adsilinks.asp.

Now that I've introduced you to ADSI, let’s take a more detailed look. The following sections
will help you understand what ADSI can provide in the way of programming support. We'll
look at the actual mechanics of using ADSI in the next chapter.

Working with a Common API

ADSI has some advantages besides working with Active Directory, if you take the Microsoft

approach to performing tasks. Most organizations have more than one directory service

structure in place. The three most common directory services are those used by the network,

e-mail program, and groupware. If all of the directory service products in your organization

conform to either the LDAP or NSPI standards, then you could use ADSI to manage them

all. Of course, ADSI won't work in some situations because the product vendor didn’t know

about ADSI during development and didn’t provide the required interface elements.

Note

ADSI actually contains two levels of APl support. The first level provides
support for Active Directory structures that can support automation. The
COM components that provide access to these structures are accessible
from just about any language, as long as the language supports automation.
This includes support for Java, Visual Basic, VBScript, JavaScript, and ASP.
Administrators also obtain this level of support through a standard MMC
shap-in. The second level of support is for structures that can’t support
automation. To gain access to this second level of support, you must use a
programming language like Visual C++.

So, how does Microsoft hope to get these third party directory services to work with ADSI?
Most of the core logic depends on LDAP or NSPI, which are common standards for directory
access. All a third party vendor really needs to do is write an ADSI provider that allows
directory services access through the components that Microsoft provides. That's why
access to any directory service is theoretical at this point—Microsoft has to convince third
parties to supply the required provider so you can gain access to these other directory
services using one interface.

If Microsoft does successfully write ADSI providers themselves or convince third party
vendors to perform the task, then you'll gain an important benefit. Any application designed
to work with ADSI will also work with any directory service. In short, you could write a single
application that would allow you to manage groupware, e-mail, and the network. What this
means for developers is that you'll spend a lot less time writing the same application multiple
times because the directory services API is different for each product that your company
uses.

Creating New Objects

Active Directory doesn’t limit you to the objects that Microsoft provides for ADSI. You can
write new objects that extend the tasks that ADSI can perform. In some respects, this means
you can write your own customized programming platform. Of course, accessing the
directory database won't be a problem because ADSI supports OLE-DB.

http://www.microsoft.com/windows2000/techinfo/

ADSI also divides the kinds of objects that you can create into two categories. Container
objects can act as objects. However, in most cases, they hold other objects and help you
interact with those objects in a consistent manner. Leaf objects are stand-alone components
designed to perform a single task.

Working with Namespaces

Every object on a network has to have a unique identification. Depending on the directory
service, this identification method might look similar to the method you use to access a file
on your hard drive. However, most hamespaces use the X.500 standard for naming, which
consists of object type definitions, followed by the object type value. Here’s an example:

CN=John; OU=Edi t ori al ; O=NewiVagPub

In this example, John is the object that we want to work with. CN stands for the context
name. John is located within an organizational unit known as Editorial, which is part of an
organization called NewMagPub. As you can see, this method of accessing a particular
object on the network is very easy to understand and use.

ADSI doesn’t support every namespace, but it does support four of the most common
namespaces: Active Directory services (ADs://), LDAP (LDAP://), Windows NT/2000
(WIinNT://), and Novell Directory Services (NDS://). Notice that this namespace convention
looks like an URL. You'll find the namespace ends up looking like an URL because of the
DNS support that Active Directory provides. In fact, this is one of the reasons that Microsoft
makes it so easy to find the fully qualified DNS name for the resources on your network.

Working with the Active Directory

Active Directory is a complex part of Windows Server. You must consider database
elements, interaction with other directory services, management issues, and even a new set
of programming features implemented by the COM components that make up ADSI. This
section discusses the programming considerations for Active Directory. The fact that we're
managing a large distributed database changes the entire picture for the programmer. You
need to consider programming requirements that other kinds of applications don't even
touch. For example, how do you create a connection to an object that may reside in another
city or country? Because Active Directory replicates all of the data for the entire database on
each domain controller access is faster, but replication can work against you when it comes
to recording changes in the schema or object attributes.

One of the most important tools for working with Active Directory is the ADSI Viewer. This
utility enables you to find data elements within the database. In addition, many developers
use it to obtain the correct syntax for accessing database elements within an application.

We'll discuss three important programming considerations in this chapter. The following list
tells you about each concern:

. Security Security is always a concern, especially when you're talking about the
configuration data for a large organization.

" Binding Microsoft calls the process of gaining access to Active Directory objects
binding. You’re creating a connection to the object to manipulate the data that it
contains.

. Managing Users and Groups One of the main tasks that you'll likely perform when
working with directory objects is modifying the attributes of groups and users. Even if
your application doesn’t modify users or groups, you'll interact with them to determine
user or group rights and potentially change those rights.

ADSI Viewer

The Active Directory Services Interface (ADSI) Viewer enables you to see the schema for
Active Directory. The schema controls the structure of the database. Knowing the schema
helps you to work with Active Directory, change its contents, and even add new schema
elements. In order to control the kinds of data stored for the applications you create, you
must know the Active Directory schema. Otherwise, you could damage the database (given
sufficient rights) or at least prevent your application from working correctly.
Note
You'll find the AdsVw application in the \Program Files\Microsoft Visual
Studio .NET\Common7\ Tools\Bin folder. This folder contains many of the
other utilities we use throughout the book.

When you first start ADSI Viewer, you'll see a New dialog box that allows you to choose
between browsing the current objects in the database or making a specific query. You'll use
the browse mode when performing research on the Active Directory schema structure. The
query approach provides precise information fast when you already know what you need to
find.

In most cases, you'll begin your work with Active Directory by browsing through it. This
means you'll select Object Viewer at the New dialog box. Once you do that, you'll see a New
Object dialog box like the one shown here.

S g
[T Use Openibect I Ul Ewhonded S yritss

Dpen Dbgect parametery
Open éx | _]

P swmond |

F Secse fuhenncston
F UseEnenp

This figure shows a sample ADs Path entry. You'll need to supply Active Directory path
information, which usually means typing LDAP:// followed by the name of your server
(WinServer in my case). If you're using Windows 2000 to access Active Directory, you'll want
to clear the Use OpenObject option.

Once you've filled in the required information in the New Object dialog box, click OK. If
you've entered all of the right information and have the proper rights to access Active
Directory, then you’ll see a dialog box like the one shown in Figure 5-3. (Note that I've
expanded the hierarchical display in this figure.)

LDAP://followed

APy LI g a1 o) il e [v

St dowanCodd
OLSEY 0 AR S0 TICE A IR
Frwrary vigfacn CEN A0 % 110 ARDE 0RO TR
[
Cortpre s L e e e
e

bbF i et
il bl et
[Ulles N o]
Aperan M
[Te— Frapst; Yaka
5 I Famen
P]
Chargm e R
| e B
Halaad M
Fooerd bandiey T
OO 09754 'EIENn 1A %
veets | T
| | e |

ifigure 5-3: Openinﬁ a new object browser allows you to see the Active Directory
schema for your server.

This is where you'll begin learning about Active Directory. On the left side of the display is
the hierarchical database structure. Each of these elements is an Active Directory object.
Clicking the plus signs next to each object will show the layers of objects beneath.
Highlighting an object displays detailed information about it in the right pane. For example, in
Figure 5-3 you're seeing the details about the domain object for the server. The heading for
this display includes object class information and help file location and shows whether the
object is a container used to hold other objects.

Below the header are the properties for the object. You can choose one of the properties
from the Properties list box and see its value in the Property Value field. Active Directory is
extensible, which means that you can add new properties to an existing object, change an
existing property, or delete properties that you no longer need. If you want to add a new
property, all you need to do is type its name in the Properties list box and assign it a value in
the Property Value field, then click Append. This doesn’t make the change final, however;
you still need to click Apply at the bottom of the dialog box. Deleting a property is equally
easy. Just select it in the Properties list box, then click Delete. Clicking Apply will make the
change final.

Leaf properties often have additional features that you can change. For example, the user
object shown in Figure 5-4 helps you to change the user password and determine user
group affiliation. When working with a computer object, you can determine the computer
status and even shut it down if you'd like.

B Aciive Dbty Bewmies - [LOA® Aalin sresi]

i 1/ EM-Buk et LIV S M ot £ [e il s it
& e
® OS50 0O X0 1107 Bk DORACI 501
& Frwary rigface TR TED VICF AR 25000 W)
[T o ———
= Comprmers §TFOS Sagoepinrsll o B3t
o & s
[e s
£ IHK":.: LETp—
% e
r
E Propes Frageet; Wakon streda
S = =] [k [
Firpary lgma | sarkaryt ey —
3 _ s i |
ia Pri .| e weaan]
T el
g," fpand j T
A1 - oo 2ma3
2 kel L— .l Db M
20
g .- | | Facad |
3 i '
g u d
3
[k- et
17 —————

'F"i'guré”5-4: Some containers and leaf objects provide speciél buttons that help you to
perform tasks associated with that object.

Security

Like the rest of Windows Server, Active Directory relies on a system of access tokens and
security descriptors to ensure the security of each object on the machine. Gaining access to
Windows Server doesn’t necessarily mean that you have automatic access to all of Active
Directory. During the process of binding, the requesting object provides an access token that
describes the object rights to the system. If the requesting object has sufficient rights,
Windows Server creates a connection between the requesting object and Active Directory.
From that point on, the requesting object has access, but nothing else. Every time the
requesting object asks Active Directory to perform a task, Windows Server compares the
access token to the Active Directory object security descriptor. This process goes on
continually to ensure that the requesting object always acts within the confines of its rights.

So, what happens with child objects? The parent controls the rights inherited by a child
object. Depending on how security is set up, a requesting object may have more or less
access to child objects than to the parent. In fact, if the requesting object doesn’t require
access to the child object, the parent may not grant any rights to use it at all.

There’s also a matter of delegation. Active Directory assumes that only a select few
administrators have complete access to the objects in the directory. However, delegating
control allows workgroup managers and others to work with select portions of the directory
database. You can add delegation as part of the setup for your application, or you can ask
the administrator to add this later. Delegation can occur at any level of the directory tree,
except at the directory level.

Let's look at the security interfaces in a little more detail. The following list shows the three

security related interfaces and describes their purpose.

. IADsAccessControlEntry Allows the calling application to gain access to individual
ACEs within an object. The interface methods allow access to the access mask, ACE
type, flags, object type, inherited object type, and trustee information.

" IADsAccessControlList Allows access to one of the ACLs that contain the ACEs
used to access an object. The interface methods allow you to work with the ACL
revision number, determine the number of ACEs that it contains, add or remove ACEs,
copy the ACL, and enumerate the ACL contents.

. IADsSecurityDescriptor Provides access to the security descriptor for a directory
service object. There are interface methods that allow you to access the revision
number and owner and group information and to work with both the SACL and DACL.

Binding

At the simplest level, binding is a process of finding an Active Directory object, requesting
permission to access it, and then connecting to it. Once you have a reference to an object,
you have access to any information, methods, or attributes the object provides. Any
application you create will have to solve two problems. The first is finding the object. If you
don’t know where the object is, then you can't ask for access to it. The second is gaining
access to the object once you've found it. ADSI provides two functions and one interface you
can use to perform this work, as listed below.

. ADsGetObject()

. ADsOpenObiject()

. IADsOpenDSObject::OpenDSObject()

Of these three, the two methods are the preferred way to access a directory services object
if you're using Visual C++ because they require less code and fewer processing cycles. The
ADsGetObject() method is the one that you'll use if you want to access the object using the
name and password of the person currently logged into the system. If you need to access
the object using an alternate name and password, then you'll want to use the
ADsOpenObject() method because it takes additional arguments that enable you to specify
a name and password. You'll also use ADsOpenObject() if you want to encrypt the data
moving between your application and the directory services object or if you want to
specifically bypass authentication so that you can access the object using the Everyone or
Guest accounts. In all cases, you'll receive an indirect pointer to the requested object
interface once the method succeeds.

You'll need to specify the name of the object that you want to access in some way. Active
Directory currently allows you to use one of two methods shown here:

GC:. /| <Host Nane>/ <Cbj ect Nanme>
LDAP: / | <Host Nane>/ <Cbj ect Name>

Except for the access method, both of these examples are the same. You'll need to specify
the name of the host for the object, which would include the fully qualified DNS name for the
container, along with the name of the object that you want to access within that container.
The host name is optional, in many cases, but including it is a good idea if you want to
ensure fast access. The object name can include a distinguished name, canonical name, an
object GUID, or a SID. The use of GC allows you to access the object using entries in the
global catalog, while LDAP allows you to access the object using that protocol. Of the two,
GC normally provides the fastest access, but LDAP is the most flexible when it comes to
multiple directory service scenarios.

Managing Users and Groups

Users and groups form the two most common kinds of objects that you'll find in any directory
service. After all, the whole purpose of creating a network is to allow its users to share both
resources and data. Using groups allows the network administrator to manage large groups
of users with relative ease. Groups allow the network administrator to make one change that
will affect many users, rather than many changes that will affect a single user. As a result of
the emphasis on users and groups in Active Directory, you'll find that this particular category
has received special attention from Microsoft.

Let’s talk about the interfaces that Active Directory provides to work with users and groups.
The following list shows the five interfaces that you'll commonly work with to view, add,
delete, or modify both user and group information.

" IADs Provides access to object properties and methods. You can also use this method
to determine the object name, class, GUID, Active Directory path, parent, and schema.

" IADsPropertyList Allows you to read, modify, and update property values within an
object.

. IADsUser Allows you to read, modify, and update an end user account. You can also
use this interface to obtain user statistics, such as the last time the user logged on, the
number of bad login attempts, personal information like home address, and work
information like the user’s manager. In short, this interface works with the unique
properties of the User object.

. IADsGroup Allows you to read, modify, and update a group account. There are
methods for adding objects to and removing objects from the group, along with a
method for testing group membership.

- IADsMembers Supports group membership for individual accounts. This interface
includes methods for counting the group members, obtaining a new group enumeration,
and viewing or setting filters applied to the group membership.

" IDirectoryObject Provides nonautomation clients (like Visual C++) access to either
User or Group objects. Using this interface not only provides better performance for
nonautomation clients, but it also means that you need to know more about the
attributes associated with individual objects.

Notice there are only two interfaces that are specific to users and groups. All standard
objects within Active Directory have interfaces that fall into the persistent object category
(we'll discuss other categories of interfaces in the Working with the ADSI API section of the
chapter). You'll use the rest of these interfaces for other purposes within Active Directory.

Working with the ADSI API

ADSI is the API that enables you to work with Active Directory and helps you add the new
features that Active Directory provides to your applications. Like many other parts of
Windows Server, ADSI relies heavily on COM components.
Browser
Alert It's interesting to note that only Windows Server products come
with Active Directory as part of the package. Microsoft provides
Active Directory support for Windows 9x, along with a setup for
older versions of Windows NT. You can find links for all four levels
of support at
http://www.microsoft.com/NTServer/nts/downloads/other/ADSI
25/. This site also includes a link for the Active Directory Services
Interfaces SDK. If you want full ADSI information, check the Active
Directory Service Interfaces Web site at
http://www.microsoft.com/windows2000/techinfo/
howitworks/activedirectory/adinterface.asp.

At this point in the chapter, we've discussed many common interfaces and discussed how
you can use them to work with Active Directory. However, ADSI provides a lot more in the
way of interfaces than what we’ve covered so far. Table 5-1 contains a list of additional
interfaces that we either haven't discussed or haven't covered fully. You'll want to spend
some additional time learning about these interfaces as you work with Active Directory using
ADSI.

Table 5-1: il

http://www.microsoft.com/NTServer/nts/downloads/other/ADSI
http://www.microsoft.com/windows2000/techinfo/

Interface

Core:

IADs

IADsContainer

IADsNamespaces

Data Type:
IADsLargelnteger

Dynamic Object:

IADsComputerOperations

IADsFileServiceOperations

IADsPrintJobOperations

Description

Defines the basic
features, properties
and methods of any
ADSI object.

Enables an ADSI
container to create,
delete, enumerate,
and manage ADSI
objects.

Allows you to work
with namespace
objects.

Allows you to work
with large (64-bit)
integers.

Manages computer
operations across
the network.

Manages file
services across the
network.

Provides access to
print jobs executing

Purpose

Helps you to learn about the
features common to every object
such as its name, parent, class,
GUID, path, and schema. Special
methods enable you to work with
either single-value or multiple-
value properties.

Allows you to learn more about
objects held within an ADSI
container. You can count objects,
create filters to exclude objects
from an enumeration or count,
enumerate objects, move objects
to another location, or create copy
that you can modify.

Contains two methods for working
with namespaces. The first obtains
the namespace container name,
while the second modifies the
namespace container name to a
new value. The new namespace
container name becomes the
default namespace container for
the user.

Permits use of 64-bit integers
within Active Directory. Because

many compilers can’'t handle 64-bit

integers, there are two sets of
methods. The first set deals with
the lower 32 bits, while the second
set deals with the upper 32 bits.

Contains two methods. The first
helps determine the status of any
computer. The second helps you
shut a computer down from a
remote location.

Enables you to work with the open
and active file services sessions
for the domain. The two methods
include one that works with
resources and another that deals
with sessions.

Obtains the status of print jobs. In
addition, there are methods for

Interface

IADsPrintQueueOperations

IADsResource

IADsServiceOperations

IADsSession

Extension:

IADsExtension

Persistent Object:

IADsCollection

IADsComputer

IADsDomain

Description
on the domain.

Provides access to
print queues within
the domain.

Works with open file
service resources.

Works with system
services, active or
not.

Works with active

file service sessions.

Implements an
application
extension model.

Manages an
arbitrary collection
of objects.

Allows access to
any computer type.

Represents a

Purpose

pausing, reordering, and resuming
print jobs.

Obtains the status of the print jobs
residing within the queue. There
are also methods for pausing,
resuming, and purging print jobs.

Permits viewing of open file
service resource attributes,
including user, user path, resource
path, and the resource lock count.
A file service resource is open
when the user accesses it and
creates a connection to it.

Stops, starts, pauses, or continues
system services on the domain. In
addition, you can determine the
system service status and set the
system service password.

Permits viewing of user statistics
for the active file service sessions.
A session is active when a user
creates a connection to the file
system and opens one or more
files. The user statistics include
user name, user path, computer
name, computer path, the amount
of connection time for the session,
and the amount of time that the
connection has been idle.

Adds application-specific
behaviors into existing ADSI
objects. An application extension
uses aggregation to modify the
behavior of the existing object.

Provides methods for adding,
removing, retrieving, and
enumerating objects within the
array. Collections are specialized
arrays that can hold any type of
directory services object.

Obtains common information
about workstations, servers, or
other computer types on the
network.

Permits account security

IADsFileService

IADsFileShare

IADsLocality

IADsO

IADsOU

IADsPrintJob

IADsPrintQueue

domain and helps
manage accounts
on the domain.

Represents the file
service and user
access
management.

Allows you to modify
the attributes of any
file share on the
network.

Represents the
domain’s
geographical
location.

Represents an
Organization object
within the domain.

Represents an
Organizational Unit
object within the
domain.

Defines individual
print jobs within the
print queue.

Represents a print
job destination on
the network.

management. You can determine
password length, the age at which
passwords are changed, the
maximum number of bad logins
allowed, lockout parameters, and
other password attributes.

Modifies the file service
description and the number of
users allowed to use the file
service at the same time.

Provides the methods to
determine the user count for a file
share. In addition, you can both
view and set the file share
description, host computer path,
shared directory path, and
maximum user count.

Views or sets the locality
description, region name, postal

code, or “see also” (note)
information.

Views or sets the organization
description, locality, postal
address, telephone number, fax
number, and “see also”

information.

Views or sets the organization
description, locality, postal
address, telephone number, fax
number, “see also” information,

and business category.

Provides management methods

for active print jobs. Methods
enable you to view the host print
gueue location, user name, user
path, time submitted, total pages,
and size. In addition, you can view
or set the description, priority, start
time, until time, notification value,
and notification path.

Manages printer options. You can
view or change the printer path,
model, data type, print processor,
description, location, start time,
until time, default job priority,
gueue priority for processing data
on the printer, banner page, print
devices, and network addresses.

Property Cache:
IADsPropertyEntry

IADsPropertyList

Schema:

IADsClass

IADsProperty

IADsSyntax

Utility:
IADsDeleteOps

IADsObjectOptions

Manages attribute
values as defined
within the schema.

Contains one or
more property
entries associated
with an object
attribute.

Manages object
descriptions within
the schema.

Manages object
attributes within the
schema.

Manages
automation data
types that describe
schema object
property values.

Deletes an object
from the underlying
directory structure.

Allows you to
manage provider-
specific options for
working with ADSI.

Manipulates an individual entry
within a property list. The methods
in this interface help you view or
modify the name, data type,
control code, or value of individual
attribute values.

Manages the value entries
associated with an object attribute.
You can list the entries, obtain a
total number of all entries, get or
put entries, reset the values within
an individual entry or purge the
entire list.

Provides interfaces for describing
Active Directory object creation,
including the class identifier
(CLSID), object identifier (OID),
mandatory and optional properties,
and help file data.

Determines how Active Directory
manages and creates a property.
The methods in this interface
include the OID, syntax object
path, minimum and maximum
ranges, multivalued properties,
and any additional required
property qualifiers.

Provides a single method that
returns the automation value for a
property. These are the virtual
types like VT_BOOL (for a BOOL
value) used in other parts of Visual
C++ to describe the type of a
variable or constant.

Contains a single method that an
object can call to delete itself from
the directory structure once it's no
longer needed.

Contains two methods for viewing
and modifying ADSI provider
options. There are four standard
options: server name, referrals,
page size, and security mask.
Individual providers may support
other options.

IADsPathName Parses Windows Enables you to work with paths

and X.500 paths provided by application programs,
within ADSI. users, other directory services,
and other objects.

Note
Table 5-1 doesn't contain a complete list of ADSI interfaces. Some of these
interfaces are in other areas of the chapter, so they don't appear again here.
In addition, this table doesn’t include any of the NDS specific interfaces. The
table does include the more common interfaces.

Working with the System.DirectoryService Namespace

The System.DirectoryServices namespace is simply a managed version of the interface
we’ve discussed to this point. It enables you to access Active Directory using managed—
rather than unmanaged—techniques. The namespace includes class counterparts for the
interfaces we’ve discussed so far (and will continue to discuss as the chapter progresses).
The main focus of the classes provided in the System.DirectoryService namespace is
implementation of the IADsOpenDSObject interface. Once you have an open connection to
Active Directory, you can begin to manipulate the data it contains. The following list contains
a description of the major classes found in the System.DirectoryService hamespace.

DirectoryEntries Provides access to the child entries for an Active Directory entry.
Essential tasks include adding, removing, and finding the child entries. You'll use the
DirectoryEntry class to modify the child entries.

DirectoryEntry Provides access to a single Active Directory entry, including the root
object. You can also use this class to access some of the information found in schema
entries. Essential tasks include modifying name and path, identifying children and
parent, modifying properties, and obtaining the native object. When working with the
native object, you must cast it to an IADs COM object.

DirectorySearcher Enables you to search Active Directory for specific entries. You
can search for one or all matching entries, cache the entries locally, filter and sort the
search results, and set the search environment. For example, you can set timeouts for
both client and server.

DirectoryServicesPermission Sets the code access permissions (security) for Active
Directory. The Assert() method enables you to validate that the calling code can access
the requested resource. You can also copy, deny, and demand permissions as well as
perform other tasks.

DirectoryServicesPermissionAttribute Permits a declarative
System.DirectoryServices permission check. You can either match a permission to a
specific permission or create a new permission.

DirectoryServicesPermissionEntry Sets the smallest unit of code access security
permission provided by System.DirectoryServices.

DirectoryServicesPermissionEntryCollection Creates a strongly typed collection of
DirectoryServicesPermissionEntry objects. You can perform all of the usual collection
tasks, including counting the number of items and working with a specific item. Other
methods enable you to add, remove, insert, or copy permissions.

PropertyCollection Enables you to examine the properties for a single DirectoryEntry
object. You can count the number of properties, obtain a list of property values, obtain a
list of property names, or extract the value of a single property.

PropertyValueCollection Enables you to examine the property values for a single
DirectoryEntry object. You can count the number of values, set a specific property
value, or set the values for the entire collection. Methods help you perform all of the
usual collection tasks, including counting the number of items and working with a
specific item. Other methods enable you to add, remove, insert, or copy permissions.

. ResultPropertyCollection Enables you to examine the properties for a SearchResult
object. You can count the number of properties, obtain a list of property values, obtain a
list of property names, or extract the value of a single property.

" ResultPropertyValueCollection Enables you to examine the property values for a
SearchResult object. You can count the number of items in the collection and work with
specific items. Methods enable you to perform specific tasks such as copying the
collection to an array or determining if the collection contains a specific property.

. SchemaNameCollection Contains a list of schema names that you can use with the
SchemaFilter property of the DirectoryEntry object. You can count the number of items
in the collection and work with specific items. Methods help you perform all of the usual
collection tasks, including counting the number of items and working with a specific
item. Other methods enable you to add, remove, insert, or copy permissions.

. SearchResult Contains the results of using a DirectorySearcher object to look for
specific Active Directory entries. The SearchResult object contains an entire Active
Directory node, beginning with the location of the first object found.

- SearchResultCollection Contains a collection of SearchResult objects. You can
obtain a count of the of the SearchResult objects, obtain a handle to the
IDirectorySearch::ExecuteSearch interface, work with a specific item, or obtain a list
of properties used for the search. Methods enable you to perform specific tasks, such
as copying the collection to an array or determining if the collection contains a specific
SearchResult object.

. SortOption Determines how Windows XP sorts the results of a search. You can
specify both the search direction and search property.

As you can see, you can perform most tasks using managed code. In the few cases where
you need to perform a task using the COM interfaces, you can obtain a copy of the object
using built-in method calls (see DirectoryEntry as an example). Of course, several issues
besides ease of access remain. One of the most important issues is thread safety—an
important consideration in a distributed application. Generally, you'll find that public static
class members are thread-safe, while instance members aren’t. This limitation means you
must use class members carefully and take steps to ensure method calls occur in a thread-
safe manner.

Writing a COM+ Application that Relies on Active Directory

This section provides you with one example of how to use Active Directory to track users on
the road. We're going to create an application that allows a user to “punch the clock” while
on the road.

On the server, we'll create a component that runs all of the time looking for requests from
users on the road. When a user activates the application, the component will store the time
values within Active Directory. In this way, a manager can keep track of how much time
employees on the road are spending performing certain tasks that require a login to the
system. This type of application has many uses; I've chosen to implement a simpler example
of something that could provide a lot of value to a company. The following sections will help
you design, build, and test both a client side application and a server side component.

Creating the Component

The first thing we need to do to create this application is design a component that will
receive input from the client application on the user’'s machine. This component will interact
with Active Directory by looking for the user’'s name and then placing text in the user's “info”
or Note entry. The user's Note entry appears on the Telephones tab of the User Properties
dialog box.

In the following sections, we’ll create a component shell, add two methods to it, and then
some code to perform the required interactions. We'll need two different methods for this
example. The first will add new login entries, while the second will clear all of the entries
after the network administrator has viewed them or the user has arrived home.

Creating the Component Shell

Begin by creating an ATL Project. I've given the example project a name of UserADLog, but
you can use any name you’'d like. The following procedure will help you create the
component shell required for this example.
1. Create the new ATL Project. Select Application Settings. You'll see the Application
Settings dialog box shown here.

ATL Progesct Wizard - UnesAD Lo

Applcation Seltings — T
Specily thva Al alwsh Ly arul Teabure duppesl [Lhe frapect "‘j,

= tatikated

Sarver bypai
&F Drrarnic-brd Boesey (DLL)
™ Exmoutishis (EXE}
i Fervce {EXE)

2. Clear the Attributed options. (We’'ll discuss how to use attributed programming
techniques in Chapter 13.) This example shows how to work with Active Directory
directly, and attributed programming will hide some details. In addition, you can’t
merge proxy and stub code or use MFC when working with attributes.

3. Check the “Allow merging of proxy/stub code” and “Support MFC” options. Since this is
going to be a COM+ application, we’'ll use the Dynamic Link Library (DLL) server
type.

4. Check Support COM+ 1.0. Visual Studio .NET will support COM+ 1.5, but this support
will appear only on Windows XP. Most of the applications this book targets will need
to run on both Windows 2000 and Windows XP, so we’ll use COM+ 1.0 throughout.

5. Click Finish. Visual C++ will create the new component shell for you. At this point, we’'ll
need to add a new ATL object that will contain the code that the client application will
call later.

6. Right-click the UserADLog folder found on the Class View tab, then choose Add | Add
Class from the context menu. You'll see the Add Class dialog box.

7. Highlight the Simple Object option, then click Open. You'll see the ATL Simple Object
Wizard dialog box shown here.

AL bmple Ubject Wizsd - UssAlBLog

Whedcome Lo Uhe ATL Siple Dbject Wizard
T wirard adchi & simple ATL obijeot 40 vour projedt,

8. Type ADLogEntry in the Short Name field. Visual C++ will automatically fill in the other
field values for you.

9. Click the Options tab. Check No for Aggregation and then click OK. Visual C++ will
create the new class for you.

10. Right-click the IADLogEntry folder entry on the Class View tab, then choose Add |
Add Method from the context menu. You'll see the Add Method Wizard dialog box

shown here:
Add Mathad Wizsed - UseiADLog
Whelonme o Uhe Akl Methoad Wizard
T wirard ik & westhead] 10 wor inleclace.
Hmthesl narr

I I

Pararreter atirbabes

CnF =

Pararmsher Lyps: Par rneber fyre:

| el e |
prih | cwed | e |

11. Type CreateLogEntry in the Method Name field. Select BSTR in the Parameter Type
field and type strUserName in the Parameter Name field. Select In for Parameter
Attributes. Click Add. This is all you need to define the first method we’ll use.

12. Click Finish. Visual C++ will add the method to the interface.

13. Repeat steps 10 through 12 for the ClearLogEntries method.

14. Highlight the UserADLog entry in Solution Explorer. Use the Project | Properties
command to display the UserADLog Property Pages dialog box and select Linker |
Input page, shown here:

HumAl Loy Propety Fages E
[erfacuration |.-..-| e _1_-] Pl ot :J L rigua s SLpnages

[23 Cortupachen Fropeies 2] | Ackiiionsl Deparsdences comrves. s ActiveDS, LID ADGID LIE
Gerey Vigreowe A0 Distonslt Liba ws K
Diatunigrg Igrem Specic Liewy
) CACes WAl Log el
o Loritas = dzreetd
et I b B rggadd Hleacence s
& It Feamian Syl Flebmarced
[T ety Loacied DilLa
it
e e
£ mbamdded i)
Aadegened
Cirmrieared Lirm
3 Binsmar:
oy M
) Browns Intoesabon,
Buad Everts
j “‘:‘_f Akl Dges iuleros s
) ‘el Rustssencons 4 Spwsdeny wicioral fes bo edd o e bk e fea bavelL!] oonhpul s el
) ‘e Dagitgmand =]

¥ i Carcel | | e [

15. Add the ActiveDS.LIB and ADsIID.LIB entries shown in the screenshot. The
component won't link without these two libraries. While the Microsoft documentation
tells you about the first one, it doesn't tell you to add the ADsIID.LIB entry. At this
point, the component shell is ready to go. All we need are the two methods to
demonstrate one aspect of Active Directory.

Adding Some Code

It's time to add some code to the component. Listing 5-1 shows a typical example of an
Active Directory access component. The CreateLogEntry() method adds to the Notes field
of the Active Directory entry for the user, while the ClearLogEntries() method removes all
entries from the Notes field.

Listing 51
I

STDMETHODI MP CADLogENntry: : Creat eLogEnt ry(BSTR st r User Nane)
{

/[Default code.

AFX_MANAGE_STATE(Af xGet St ati cMbdul eState());

| ADsUser *pUser; /1l Pointer to user object.
CString UserNane; /1 Nane input.

CString LDAPConn; /1 LDAP connection to server.
CString QutString; [// Qutput string.

HRESULT hr; /'l Operation result.

VARI ANT CQut put ; /1l Variant output.

CTi me Curr Ti ne; /1 Current tine.

// lnitialize COM
Colnitialize(NULL);
USES CONVERSI ON;

/1l Create a connection to the server.
User Name = strUser Nane;
LDAPConn = "LDAP://W nServer/CN=" +
User Name +
", CN=User s, DC=Dat aCon, DC=domai n";
hr = ADsGet Obj ect (T2W LDAPConn. Get Buf f er (256)),
11 D_I ADsUser,
(voi d**) &User) ;
LDAPConn. Rel easeBuffer (-1);

/1 If the connection failed, exit.
if (FAILED(hr))
Af xMessageBox("Failed to create connection.");
el se
{
/1l Get the user object.
hr = pUser->GetlInfo();
if (FAILED(hr))

{
Af xMessageBox("Failed to get user object.");
CoUninitialize();
return hr;

}

/1 Get the current user information.
pUser->Get (T2BSTR("i nfo"), &Qutput);
if (Qutput.vt == VT_BSTR)

QutString = Qutput.bstrVval;

/1l Create a user login string.
CurrTime = CTinme::GetCurrentTime();
QutString = QutString +
"User Logged In: " +
CurrTime. Format ("% %% %) +

"at "o+
Curr Ti nme. Format (" % 9 %8") +
"\r\n";

Qutput.bstrVal = QutString. All ocSysString();
Qut put.vt = VT_BSTR;

LDAP://WinServer/CN=

/1 Qutput the value to the user record.
hr = pUser->Put (T2BSTR("i nfo"), Qutput);
i f (FAILED(hr))

{
Af xMessageBox("Fail ed to output user data.");
CoUninitialize();
return hr;

}

/1 Make the information pernmanent.
hr = pUser->SetlInfo();
if (FAILED(hr))

{
Af xMessageBox("Failed to enter data in Active Directory.");
CoUninitialize();
return hr;

}

/1l Free the string we all ocated.
SysFreeString(Qutput. bstrVal);

CoUninitialize();

return S_OK;

STDVETHODI MP CADLogENntry: : Cl ear LogEnt ri es(BSTR str User Nane)

{
AFX_MANAGE_STATE(Af xGet St ati cMbdul eState());

| ADsUser *pUser; /1l Pointer to user object.
CString User Nane; /1 Name input.

CString LDAPConn; /1 LDAP connection to server.
CString QutString; [// Qutput string.

HRESULT hr; /1l Operation result.

VARI ANT Cut put ; /1 Variant output.

/Il Initialize COM
Colnitialize(NULL);

USES_CONVERSI ON;

/1l Create a connection to the server.
User Name = str User Nane;
LDAPConn = "LDAP://W nServer/CN=" +
User Name +
", CN=User s, DC=Dat aCon, DC=domai n";
hr = ADsGet Obj ect (T2W LDAPConn. CGet Buf f er (256)),
11 D_| ADsUser,
(voi d**) &User) ;
LDAPConn. Rel easeBuffer(-1);

/1 If the connection failed, exit.
if (FAILED(hr))
Af xMessageBox("Failed to create connection.");
el se
{
/'l Get the user object.
hr = pUser->GetlInfo();
if (FAILED(hr))

{
Af xMessageBox("Failed to get user object.");
CoUninitialize();
return hr;

}

/1l Clear the user login information.
Qut put. bstrVal = SysAllocString(T2BSTR(""));
Qut put.vt = VT_BSTR;

// Qutput the value to the user record.
hr = pUser->Put (T2BSTR("i nfo"), CQutput);
i f (FAILED(hr))

{
Af xMessageBox("Fail ed to output user data.");
CoUninitialize();
return hr;

}

/1 Make the information pernmanent.

LDAP://WinServer/CN=

hr = pUser->SetlInfo();
if (FAILED(hr))

{
Af xMessageBox("Failed to enter data in Active Directory.");
CoUninitialize();
return hr;

}

/1l Free the string we all ocated.
SysFreeString(Qutput. bstrVval);

CoUninitialize();

return S_OK;
—
Note

The source code contains an LDAPConn string entry. This entry is specific
to every server setup, so you'll need to change this string for your particular
server setup. This means changing both the server name and context.

As you can see from the code, both methods perform essentially the same task; they just
make a different kind of entry. Because of the similarities, we'll discuss both method
implementations at the same time.

The Active Directory Services Interface (ADSI) allows you to work with Active Directory using
a standard set of interfaces. We're using one of those interfaces in this example. Both
methods create an Active Directory user object that we’'ll use to access the Notes field of the
Telephones tab of the User Properties dialog box. One of the more difficult tasks is building
an LDAP string that we can use access a particular resource, but using the ADSI Viewer
makes that task a lot easier. See the “ADSI Viewer” section of the chapter for detalils.
Note
The source code in Listing 5-1 is sprinkled heavily with AfxMessageBox()
calls. A standard server side component should never display information
this way, because there’s no guarantee that anyone will monitor the server
console. Using the Event Log is the recommended procedure. The example
uses the message boxes as a convenience only.

You'll instantiate pUser by using the ADsGetObject() method. The ADsGetObject() method
requires an object reference in the form of a string, which is where the LDAP string comes
into play. It also requires that you provide the name of the required interface, 1ID_IADsUser,
and a pointer to the IADsUser variable. However, instantiating pUser isn’'t enough to fill it
with information we can use. The code also calls on the GetInfo() method, which populates
the variable with specific user data.

Now that we have an object and some data to work with, it's time to do something with the
“info” context, which is actually the Notes field in disguise. The CreateLogEntry() method
has to obtain the current log information so it can add a new entry to it. This means calling

the Get() method and requesting the info field. Notice that the code checks the Output.vt
parameter to ensure it contains a value. The default of a “no” value won't return a VT_BSTR
value in this field. If you attempt to set OutString to a “no” value (essentially a bad pointer),
you'll receive an error and the component will terminate.

Both methods place data in the info field. In one case, we’'ll add a new login entry to the
existing contents of the Notes field; in the other we’ll truncate the contents of the Notes field.
Placing the new information in Active Directory is a two-step process. First, we use the Put()
method to transfer the data to Active Directory. Second, we use the Setinfo() method to
make the change permanent. Unless you follow both steps, the data change won't be
reflected in Active Directory.

Creating the output value presents two traps that you need to consider whenever you work

in the COM+ environment. The first is that you need to set both the data and the data type
for a VARIANT. Notice that the code uses Output.bstrVal to hold the output data and sets
Output.vt to VT_BSTR so it reflects the variant data type properly. The second problem is
one of memory. You must allocate a system string (the code shows two techniques—one for
each method) and then free the system string using SysFreeString().

You'll also need to add support for Active Directory to the component. All you need is the
following line of code. Place the entry at the top of the ADLogEntry.CPP file that holds the
code for the two methods.

// Add Active Directory support.
#i ncl ude <ActiveDS. h>

Installing the Component

The component is ready to use. Before you can install it on the server, you'll need to compile
it. Place the compiled component on the server. You don't need to register it, but the
component does need to appear in an easily remembered location. Many developers simply
create a special directory for all of their components. When working with COM+, you install
the component within an application. The following steps show how to create the application.

1. Open Component Services. Right-click the COM+ Applications folder and then choose
New | Application from the context menu. You'll see the Welcome to the COM
Application Install Wizard dialog box.

2. Click Next. You'll see the Install or Create a New Application dialog box. You can
choose to install pre-built applications or create a new application.

3. Click Create an Empty Application. You'll see a Create Empty Application dialog box
that requests an application name and type. A library application activates in the
client’s process, while a server application always activates in a separate process.

4. Type a name for the application in the “Enter a name for the new application” field. The
example uses UserADLog for an application name.

5. Check Server application and then click Next. You'll see the Set Application Identity
dialog box. Normally, the default user security works fine for the application.
However, this is one situation when you may want to enter a specific username and
password. Because the client won't be available for security queries, the user can’t
compensate for incorrect password entries and the like. Unfortunately, the question of
whether to use full security or a known good identity is a hard one to answer, and you
should view the question with your particular application in mind. In some cases, the
security problems incurred using a known good identity just aren’t worth the risks, so
it's better to have the component answer the client request based upon the user’s
actual security.

6. Click Next. You'll see a final COM AppWizard dialog box.

7. Click Finish. Windows 2000 will create the new COM+ application for you.

At this point, we have an application, but we still need to add a component to the application.
The next series of steps will help you install the component we created in this chapter within
the UserADLog application:

1. Right-click the Components folder under the UserADLog application in Component
Services and then choose New | Component from the context menu. You'll see the
Welcome to the COM Component Install Wizard dialog box.

2. Click Next. You'll see the Import or Install a Component dialog box. This dialog box
enables you to install a new component, import a component that’s already registered
on the server, or install a new event class.

3. Click “Install new components™—since we're adding a new component to this
application. You'll see a Select Files to Install dialog box.

4. Locate UserADLog.DLL file, highlight it, then click Open. You'll see an Install New
Components dialog box similar to the one shown here. This dialog box should contain
the name of the components you've defined for the module. In this case, we only

have one named ADLogEntry.

Welcama to thie DI Componesl bdlall Weeaid

Inzlall now componsals \I*

Plaats specaly the hlels] that conbsr B companenit: you wanl 1o natal }}

Chck fuld 1 choose the lisiz] thal contan the comporents pou wand iz nitsl

Fibes fo nstal
Filn Ciorderis Add i
Wil erved\Dorve,_ DT estlonbof Terdh. comporents, hpel b
Cormgeoneris fourd
Componsnt Progesse Inbasiacey F Dot
ADLagE rby COMe I
¢ Back Hed » Cancsl |

5. Click Next. You'll see a final COM Component Install Wizard dialog box.
6. Click Finish. Windows 2000 will add the new component to the UserADLog application

for you.
Exporting the COM+ Application

The COM+ component now resides on the server, and a client could access it through the
COM+ application. However, COM relies on a proxy and stub to make communication
between the client and server seamless. Unlike DCOM, where you have to use different calls
to access a remote component, COM+ applications use the same call. Using this technique
means you must create a local proxy for the client. This proxy will take the place of the
component on the server from the local machine’s perspective. Creating a proxy is relatively
easy; the following steps will show you how.

1. Right-click UserADLog in Component Services, then choose Export from the context
menu. You'll see a Welcome to the COM Application Export Wizard dialog box.

2. Click Next. You'll see an Application Export Information dialog box. This is where you'll
choose the name and type of export application created. We need a proxy
application, in this case, so that the installation routine will direct UserADLog requests
to the server, not to the local machine.

3. Click Browse. You'll see an Export Application to File dialog box. Choose a location for
the installation program. The wizard automatically gives the application an MSI
extension. The example uses an installation program name of UserADLog Install, but
you can use any hame you wish.

4. Click Save. You'll see the location entered in the Application Export Information dialog
box.
. Choose the Application Proxy option.
. Click Next. You'll see a final COM Application Export Wizard dialog box.
. Click Finish. At this point, the wizard has created the application; all you need to do is
install it on the client machine.
8. Locate the UserADLog Install.MSI file from the client machine. You’'ll need to install the
proxy application on every machine.
9. Right-click UserADLog Install.MSI, then choose Install from the context menu. An
installation dialog will appear for a few moments, then go away. At this point, you
have access to the server side component through the proxy application.

~N O Ol

If you open Component Services on the client machine at this point, you'll see that there’s a
new application named UserADLog. However, this application isn’t the full-fledged
application found on the server—it's an application proxy. Open the UserADLog Properties
dialog box and you'll notice that you can’t change any of the application options. This
application precisely replicates the server application.

Creating the Test Application

It's time to test the component. You'll want to create an MFC Application. Use a dialog-
based application to keep things simple. The example has a name of UserADLogTest. The
test application is relatively simple. All we need to do is instantiate the object, call the
selected method, and view the results. The dialog box will contain two pushbuttons
(IDC_MAKE_ENTRY and IDC_CLEAR_ENTRIES) to test the two methods and a text box
(IDC_USER_NAME) where you can enter the username.

Create event handlers for both of the pushbuttons. Create a member variable for the text
box. The example uses a name of m_UserName. You'll need to add references to the
component in the source code. The first reference appears as follows in the
UserADLogTestDIg.cpp file.

/1 Add support for the User ADLog conponent.
#i nclude "..\ User ADLog\ User ADLog. h"

The second reference appears in the UserADLogTestDIg.h file. Use the following code.
/1l I nclude User ADLog conponent support.
#i nclude "..\ User ADLog\ User ADLog _i.c"

Now that you have the references in place, let's look at the test code. Both buttons perform
the same task. The only difference is the method they call within the component. Listing 5-2
shows the source code for OnBnClickedClearEntries().

Listing 5-2

voi d CUser ADLogTest Dl g: : OnBnCl i ckedCl earEntri es()

{
| ADLogEntry *plLog; /1 User ADLog i nstance.
HRESULT hr ; /1 Result of calls.
CString User Nane; /1l Active Directory user nhane.

[/ lnitialize the COM environnment.

Colnitialize(NULL);
USES CONVERSI ON;

/1 Instantiate the conponent.
hr = CoCreatel nstance(CLSI D_ADLogENtry,
NULL,
CLSCTX_ALL,
I'1D_I ADLogEntry,
(voi d**) &olLog) ;
if (FAILED(hr))
Af xMessageBox(" Conponent Creation Failed!");
el se
{
/1l Get the user nane fromthe dial og box.
m_User Nane. Get W ndowText (User Nane. Get Buf f er (40), 40);
User Nane. Rel easeBuffer(-1);

/'l Clear the user |og entries.
hr = pLog->Cl ear LogEnt ri es(T2BSTR(User Nane)) ;

// Uninitialize the COM environnent.
CoUninitialize();

}
e ———

As you can see, the code begins by creating an instance of the component. If the component
creation is successful, the code converts the username input from the dialog box and calls
the appropriate component method. Normally, the code would also tell the user that the call
was successful or make some entry in a local log so the user would know when to check in
next.

Testing the Application

After you compile the test application, it’s time to test it out. Open a copy of the Component
Services shap-in so you can monitor the application. Make sure you have both the local
machine and the server open. Start the application. Enter your name or the name of a test
user in the username field. Click Make Entry. Watch the icon for the UserADLog entry on the
local machine and you'll see the ball rotate within the box for a moment or two until the client
hands the request off to the server. Note that the client side activity may occur so quickly
that you won't see the icon animation. The icon on the server will also animate, but for a
much longer period. The icon animation shows the application in action. The client rotates
for only a few moments, because it places the application in direct contact with the server.

Open the Active Directory entry for the affected user. Click the Telephones tab. You should
see one or more entries in the Notes field, as shown here.

Jehn Propeitics [7] %]
Member @l | D | Emeoement | Sessoms |
Fiermote montal | Tearinal 5 arvicas Prodin
Giewnl | addvees | Accoumt | Prole Telwhorer | drparizaion |
T almgbare reamitmrs
Home | Dther
Fagre | Othar
Hobde: | Ot
P | [thes
Pproee | Olthes
Hobex
Urest Lopgesd b 14 Oict 2000 2 11:1365 =]
=l

C =] come | |

Close the user record. Click Clear Entries in the test application. Open the user record, click
Telephones, and you should see that the Notes field is blank. While this example
demonstrates only one of many Active Directory entries, the principles for modifying any
entry are the same. It's important to remember that Active Directory is simply a large
centralized database. Of course, a user’s individual rights determine which parts of Active
Directory they can access. User rights also determine what tasks the user can perform.

Chapter 6: Creating Components

Creating components with Visual C++ has never been a problem—there are more than a
few ways to accomplish this task. Deciding which method to use when creating components
has presented problems because there are tradeoffs to consider no matter what technique
you choose. Use Active Template Library (ATL) to create a component and you'll find that
complexity and coding time both increase. On the other hand, using Microsoft Foundation
Classes (MFC) means dealing with code bloat and versioning problems. Visual C++ .NET
retains these older methods of creating components, but | think you'll find that the new
methods it introduces are superior in a number of ways. That’s what this chapter is all
about—choices. We'll look at the choices you have with Visual C++ .NET—at how you can
leverage those choices to create new components fast.

This chapter also discusses how to test your components after you create them. We'll begin
with the techniques you'll use to register and unregister your controls. The test section also
shows how to use ActiveX Control Test Container and the OLE/COM Object Viewer utilities.
Knowing how to use these utilities can save you time and effort spent diagnosing problems
with your components. More importantly, these utilities can point out subtle differences
between component implementations that cause one component to behave differently from
another.

ActiveX Controls

This section of the chapter tells you about ActiveX control development. Visual C++ supports

several types of ActiveX control development. The two main types are MFC and ATL

controls. We'll begin with a discussion of the differences between MFC and ATL. This

section answers the question of why you would use one development environment over

another. It pays to know how to use both because they do fulfill different development

requirements.

Note

This chapter won't show you how to use attributed programming techniques;
we'll discuss attributed programming in Chapter 13. You'll find that attributed
programming can make a big difference in the time required to develop new
components, but it might not be the right choice for upgrading existing
projects.

After we discuss the differences between the two control types, it will be time to see them in
action. The next three sections show how to create and test the same control using the MFC
and ATL coding techniques. The first time we’ll create the control using MFC; the second
time we’ll use ATL. Both controls perform the same task, but you'll see significant differences
in the development environment. A third section will show you how the control works within a
standard application.

MFC Versus ATL Based Controls

One of the ways that Visual C++ shows its robust development environment compared to
other programming languages is the inclusion of two technologies to create ActiveX controls:
MFC or ATL. (You also have the choice of using standard or attributed coding as well as
creating managed or unmanaged controls.) Unfortunately, this flexibility can cause some
problems that other developers don’t have to face. For one thing, how do you determine
which type of control to create? Some developers have rendered the question moot by using
the same technology for all their controls, but following this route means that you haven't
really explored and used Visual C++ to its full potential.

There really isn’t any way to say definitively that one method of creating a control is better in
a given situation. What you really need to do is define what you expect the control to do,
what you're willing to invest to get that functionality, and your level of expertise. Obviously,
there are situations when one control creation method is preferred over another, as the two
methods do have distinctly different advantages and disadvantages. To give you some idea
of what you need to consider when looking at an ATL ActiveX control versus one created
using MFC, read through the following list. What you'll find are ideas that can help you make
a decision on which route is best for you.

. Development speed Using the MFC ActiveX Control Wizard is the fastest method to
create a control. The Wizard takes care of most of the interface details so that what you
end up with is a skeleton that's ready for some control logic. In fact, it usually takes the
developers twice as long to use the ATL method for creating a control. Obviously, your
results will vary depending on factors like control complexity and your programming
experience.

. Control size If you want to create the smallest possible ActiveX control, then go the
ATL route. ATL gives you full control over every aspect of the control and makes it
feasible for you to hand-tune every control element without getting bogged down in
MFC-specific code. Not only are MFC-based controls larger, but clients may also have
to download the MFC libraries before they can use the control, which is a significant
amount of code.

. Learning curve ATL controls are much harder to create than MFC controls, simply
because you have to consider more things like interfaces. In most cases, it pays to
create your first couple of controls using the MFC ActiveX Control Wizard so that you
can learn the ropes of creating the control logic.

. Compatibility By definition, MFC-based ActiveX controls require clients to have the
MFC libraries installed on their machine. However, there are more than a few versions
of those libraries floating around, and they aren't all compatible. What happens when
users download your control and the associated libraries, then can’t use an important
application because the new libraries are incompatible with their application? Since the
MFC libraries are stored in the SYSTEM directory, a client machine can have only one
version. That's where the compatibility problems come into play.

. Ease of use The MFC ActiveX Control Wizard tends to throw everything but the
kitchen sink into a control, because it assumes nothing about your ability to write control
code. What this means is that you end up with a wealth of interfaces you may not need
or use. All of this wasted functionality bloats the size of the control and makes it harder
to use.

. Ease of code modification Creating an MFC-based control is very easy the first time
around. Since the Wizard adds much of the code for you, application development goes
quickly. However, what happens when you decide to update that control? Now you have
source files that may contain a good deal of code that wasn’t written by a staff
programmer and that may require additional time to research and understand.

. Component services ATL presents one of the better ways to develop components
that reside on the server and perform a specific service for a client. You'll find
component services used for COM+, MTS, and Queued Components. Many companies
are making the move to component services today. However, given the number of
legacy applications, this move will continue for quite some time to come.

. Future programming needs Microsoft is betting that .NET will take off immediately
and that everyone will instantly move their applications to it. The reality is that most
companies will begin experimenting with .NET in the near future and won't begin
moving applications to it for several years. As a developer, you need to prepare for
future application programming needs as well as keeping abreast of today’s technology.
Managed components present one view of programming in the future.

MFC ActiveX Control Example

I can't think of a single application on my machine that doesn’t rely on a pushbutton or two.
In fact, the pushbutton is one of the very few Windows controls that you could say every
application has. Even an application that displays information in a simple dialog usually
relies on an OK button to close the dialog. Suffice it to say then that the pushbutton is the
one control on your machine that has to work well. The control has to provide all of the
features you need, and it's the one that programmers change the most.

With this much emphasis on the utility of one control by programmers, it didn’t take me too

long to figure out which control to show you how to modify in this section of the chapter. |

also wanted to add a unique feature—something that everyone will need eventually. That's

why | chose an on/off button as the basis for the control in this chapter.

Note

The example on the source code CD has modified forms of the About Box,
control icon, version information, string table, and control bitmap. One
especially important change is to modify the IDS_PBUTTONZ1 string to read
“On/Off Pushbutton Control (MFC).” We've already discussed these issues
as part of the “Working with Resources” section of Chapter 2. See the
resource file in the \Chapter 06\PButtonl folder of the source code CD for
ideas on how you can change the resources for your own controls.

Writing the Code

It's time to look at a simple coding example. Let's begin with a new C++ project. However,
unlike other projects you may have created, you'll want to start with the MFC ActiveX Control

project to create your workspace. The MFC ActiveX Control Wizard provides you with a
framework that you can build on to create the final version of this example. This example
uses PButtonl for a project name. You'll see the MFC ActiveX Control Wizard dialog after
you create the application. The Application Settings tab enables you to add a runtime license
and automatically generate help files. The Control Names tab contains a complete list of the
filenames and registry name entries for the control. Generally, you can leave these tabs
alone for a simple control. However, you'll want to select the Control Settings tab shown
next.

MFL Ackive Corirel Wizaed - Pliwtonl _

Coratral Sed tings ...,I
Spmeelly sk thanid whseribaie el ogdionad sltebaies for v cordiol ﬂg

Flc|
Crgats cortral hased orc
AukStionsl features:
FF activabes when visbis I Flicker-Frew sctrvation
I provisile o run bives I iovalishie in Insert hvieck dalog
W Par am bt b dusiog I Mouma ponker notfastions rkan

™ Cghimized drawing code T

I Windteviemps acthosbon
I ncigpsd devics conbaxt

I s a5 & snple s control
™ Lowdk properties aomcheonoudy

Select the BUTTON class on the Control Settings tab to create the example in this chapter.
Otherwise, look through the list of available classes to determine what you want to use as a
basis for your control. Notice that Visual C++ allows you to create your own basic class.
Click on Finish to create the project.

Some of the options on the Control Settings tab can have unforeseen consequences when
used in the wrong environment. For example, Visual Basic requires controls that create a
window; otherwise you can't interact with them. The Windowless Activation option does
provide a performance boost for your control, but at the cost of compatibility. The Optimized
drawing code option also enhances performance, but can cause flicker in some situations.
The Unclipped device context option not only enables you to create irregularly shaped
controls, but also allows your control to draw outside its window, making it possible to trash
the screen. The Flicker-free activation option does eliminate most causes of flicker, a plus for
graphics controls, but your control will take a performance hit when using this option. The
other Control Settings tab options enable your control to perform special tasks, such as
appearing within a compound document.

Adding Properties and Events

Let's get down to the business of creating an ActiveX control. The first thing you'll want to do
is make some of the button control properties and events visible to someone using the
ActiveX control. For example, it might be nice to be able to detect when the user clicked the
button. You'll definitely want to be able to change default properties, such as the caption
displayed on the button front. There aren’t very many properties visible when you first create
a button. To make these various elements visible, you'll need to use the Add Property
Wizard. You can access the Add Property Wizard by right-clicking _DPButtonl1 (found in the
PButtonlLib folder in Class View) and choosing Add Property from the context menu.

We'll use two different kinds of properties in this example—Microsoft provides access to a lot
more. The first type is a stock property. You'll find that things like the Caption property that

we all take for granted aren't visible when you first create an ActiveX control. A stock
property is one that the parent class supports by default. Visual C++ enables you to select
stock properties using the Property Name field in the Add Property Wizard dialog, as shown
here.

Add Property Wizasd - Piwfon1
Whelcnme Do Uhe Addd Propecly Wirard
Thes wwzard a8 Sragerly b5 v Plerl i, }:.-_
Proparty kype Propperty rosmes;
Yarisbly nare A B
| achC oler
B s Sl
Tghama stion type: oy
 Zock 1 Mamper varisble ™ GeFo
Fror e okor
tiwred
| J I Eradyiaae
Tt
I Cgfml propesty
prh | com | me |

The second type is a custom property. A custom property is one that you've added to a
particular class when you subclass it. One of them is the OnOff property that we’'ll use to
create an OnOff control. We’'ll look at the process for doing this later in this chapter. The
following table shows all the properties that we’'ll create in this example and tells you if
they’re custom or stock implementations.

Property Type
Caption Stock
Enabled Stock
Front Stock
ModalResult Custom
OnOff Custom
StdButtonType Custom

To add a stock property, select its name from the Property Name field of the Add Property
Wizard, verify that you have the Stock implementation type selected, then click Finish.
Create all of the stock properties for this example program now.

We'll also need three custom properties: ModalResult, OnOff, and StdButtonType. To create
these properties, type the names I've just mentioned into the Property Name field. You'll
need to select a data type in the Property Type field as well. In this case, the ModalResult
and StdButtonType properties are the LONG type, while OnOff is a VARIANT_BOOL. You
have a choice between a member variable or get/set implementation. For this example, we'll
use the Member Variable option. Add all of the custom properties to the example.

We also need to add a Click() event. Fortunately, you can add a stock Click handler to the
control. Right-click CPButton1Ctrl in Class View and choose Add | Add Event from the
context menu. You'll see an Add Event Wizard like the one shown next:

.ﬁd-:l L.:M-nll '-:‘I:-!I'-I:.I_- .F'lllqll:.ln'l

Wiedoome Do U Add Event Wizard

Thas wizard adechi & oo iion it svasl b your dadd. g

#
Everd ruar T [rere narss:
I X0 |
t ot
[ichk
O Parameler pama | Baramreter bt
{Emoe [
|KeiDioean:
[kerEren = I I
Pevidn
L e
[Mourseticne
T
|Banch S abelharge
Prsh | e | e |

Notice that you can select a number of stock events in the Event Name field. Choose Click
from the list and click Finish. That's all you need to do to add a stock event.

Defining the Property Pages

Now it's time to add some functionality to the default property page. You access it by double-
clicking IDD_PROPPAGE_PBUTTONL1 in the Dialog folder of Resource View. Developers
use the property page for a variety of purposes—most of them configuration oriented.

There are two standard sizes of the property page supported by Visual C++. The small size,
which is the default for an ActiveX control, is 250x62. This is going to be too small for our
purposes, so we’'ll need to resize it to the large property page size of 250x110. Make sure
you use one size or the other when creating a control. Nothing bad will happen if you don’t
use a standard size, but users get warning messages saying that you didn’t use a standard-
sized property page.

What we’ll do now is add a method for defining standard button types to the page, as shown
in Figure 6-1. These are radio buttons. You'll need ten of them. (Don’t worry about how to
configure them just now; I'll tell you how in the paragraphs that follow.) Each radio button
should have a different ID so that you can detect which one the user clicks (see the ID field
on the General page of the Radio Button Properties dialog).

e e e [T (iwtton? rc (100 ATE1OM1 - istog) [EERELY

o [
Carcal P
Al 2]
Bewy =]

Figure 6-1: The Property Page dialog allows the user to create standard button types in
addition to the on/off button.

You'll need to make a few subtle changes to your radio buttons before they look like the
ones in Figure 6-1. First, select True for the Push-like property of each button. You'll also

need to place the radio buttons into a group so that the current selection gets deselected
when you choose a new button. To place the radio buttons in a group set the Group and the
Tabstop properties to True on the first radio button (IDC_RADIO1). Set only the Tabstop
property to True for all of the other radio buttons, or you'll end up with ten groups of one
button instead of one group of ten buttons. Visual C++ starts with the first button it sees that
has the Group checkbox selected as the starting point for the group. The group continues
with each radio button in tab order until Visual C++ sees the next one with the Group
checkbox selected.

We have to do one more thing with the radio buttons in this dialog. To create an OLE
connection between the radio buttons and the ActiveX control, you have to assign their
output to an OLE property. Begin by creating a public integer value named
m_StdButtonType in the PButton1PropPage.h file. You'll also need to add the code (in bold)
shown in Listing 6-1 to the PButton1PropPage.cpp file.

Listing 6-1

voi d CPButtonlPropPage: : DoDat aExchange(CDat aExchange* pDX)

{
DDP_Radi o(pDX, | DC_RADI O1, m StdButtonType, _T("StdButtonType")

~

DDX_Radi o(pDX, | DC_RADI O1, m StdButtonType);
DDP_Post Processi ng(pDX) ;

‘

The DDP_Radio() call synchronizes the content of the IDC_RADIO1 group with the
StdButtonType property. The DDX_Radio() call manages transfer of int data from the radio
button group to the m_StdButtonType variable.

One of the stock properties we added was the Font property. MFC automatically manages
many of the stock properties for you. However, in the case of the Font property, you do need
to perform a little extra work. Look in the PButton1Ctrl.cpp file and you’ll see a list of property
page identifiers. This list normally contains just one item, the default property page. To add
font support to your control, you'll also need to add the stock Font property page, as shown

in Listing 6-2.

Listing 6-2

BEG N_PROPPAGEI DS(CPBut t onl1Ctrl, 2)
PROPPAGEI D(CPBut t on1Pr opPage: : gui d)
PROPPAGEI D(CLSI D_CFont Pr opPage)

END_PROPPAGEI DS(CPBut t on1Ctrl)

As you can see, the addition consists of adding a stock property page identifier using the
PROPPAGEID() macro. Notice that you also have to change the number of property pages
from “1” to “2” in the BEGIN_PROPPAGEIDS() macro.

Adding Some Control Code

All of the code we've added so far helped set the control up for use. Now it's time to add
code that enables the control to perform useful work. The first thing we want to do is add
some code so our control can exchange data with the client. For example, when you see a
properties dialog for a control, you normally want to see the current values of those
properties. Likewise, when you change a property value, you want to be sure that the actual
control state will change. Listing 6-3 shows the code you'll need to add.

Listing 6-3

voi d CPButtonlCtrl:: DoPropExchange(CPropExchange* pPX)

{
ExchangeVer si on(pPX, MAKELONG _wMer M nor, _wWer Maj or));
CA eControl :: DoPropExchange(pPX) ;

/1 Make all of our properties persistent.

PX_Bool (pPX, "OnOFf", m OnOff, FALSE);

PX _Long(pPX, "Modal Result", m Mbdal Result, nrNone);
PX_Long(pPX, "StdButtonType", m StdButtonType, None);

}
T

One of the problems with the PX_Bool() function is that it doesn’t work with the
VARIANT_BOOL type that the IDE forces you to use for properties. You'll find that
developers use a number of methods to deal with this problem. For example, you could write
a new form of the PX_Bool() function that will accept the VARIANT_BOOL type. Some
developers also use

PX_Short (pPX, "OnOff", m OnOFf, VARI ANT_FALSE)

to make the property persistent, but this method proves unreliable in testing. However, the
easiest way of dealing with the problem is to change the VARIANT_BOOL type into a BOOL
in the PButton1Ctrl.h file. Don’t change the entry in the IDL. This technique works fine in our
example and in most other situations.

Now let's say that you want the button to display a specific caption when the user inserts it
onto a Web page or other layout. You can change the caption property in the OnReset()
function. Listing 6-4 shows the code you'll need to change. Notice that we use the
COleControl class functions to make the required change. The SetText() function allows us
to change the caption of the button. Every time the user inserts this control, the caption of
“Button” will appear.

Listing 6-4

void CPButtonlCtrl:: OnReset State()

{
/'l Resets defaults found in DoPropExchange
CA eControl:: OnReset State();

// Modi fy the control appearance.
CA eControl :: Set Text ("Button");

}
e —

Now that we have a method for exchanging information and we’ve set the control up the way
we want it to look, it's time to implement the three custom properties that we created. Every
time you create a custom property, you'll need to define some code to make that property do
something. Otherwise, it'll just sit there and do nothing at all. Listing 6-5 shows the code
you'll need to add to implement the ModalResult, OnOff, and StdButtonType properties.

Note that I've removed some of the repeated code that you'll find on the source code CD. I'll
explain the inner workings of this code in the next section. For right now, all you need to
know is that it implements the properties we created.

Listing 6-5
|

voi d CPButtonlCtrl:: OnModal Resul t Changed(voi d)

{
AFX_MANAGE STATE(Af xGet St ati cMbdul eState());
/1Set the nodified flag.
Set Modi fi edFl ag() ;

}

void CPButtonlCtrl:: OnStdButtonTypeChanged(voi d)

{
AFX_MANAGE_STATE(Af xGet St ati cMbdul eState());
/] Change the nodal result and button
/1 caption to match the user selection.
switch (m_StdButtonType)
{
case O:
m _Mbdal Result = nr None;
Cd eControl :: Set Text ("Button");
br eak;
I
/] Cases 1 through 8 on source code CD.
I
case 9:

m Mbdal Result = nr O f;
CO eControl::Set Text ("OFf");

/1l Set the OnOff property to fal se
/'l since the user selected another type.
m OnOF f = FALSE;

/1Set the nodified flag.
Set Modi fi edFl ag() ;

void CPButtonlCtrl:: OnOnOf f Changed(voi d)

{
AFX_MANAGE_STATE(Af xGet St ati cMbdul eState());
/1 1f the programrer set the OnOFf property true,
/1l take appropriate action.
if (mOnOif)
{
Cd eControl :: Set Text ("On"); /I Change t he capti on.
m Set On = TRUE; /1Set an internal caption flag.
m _Modal Result = nr On; /] Set the nodal result val ue.
}
el se
{
CO eControl ::Set Text("Button"); //Restore default caption.
m Set On = FALSE; [/ Turn our caption flag off.
m _Modal Result = nr None; /1 Use the default nopdal
result.
}
/1Set the nodified flag.
Set Modi fi edFl ag() ;
}

At this point, the user can change properties. However, what happens when a user clicks the
button? If he or she is using one of the standard button types, the OnOff control will return a
modal result value. However, the OnOff control also has a special behavior. If you set the
OnOff property to True, the button should switch between on and off as the user clicks it. We
need to add some special event code to handle this situation. Click the Overrides button in
the Properties window and you'll see a list of events you can override. Click the down arrow

in the field next to the OnClick entry and choose <Add> OnClick from the list. Visual C++ will
add a new method for you.

Now it's time to add some code to the OnClick() function. Click the Edit Code button, and
Visual C++ will take you to the new function. Listing 6-6 shows the code you'll need to add.

Listing 6-6
I

void CPButtonlCtrl::OnClick(USHORT i Button)
{
/1l See if the OnO'f flag is set. [If so, change
/1 the caption and internal caption flag. The effect
/1 you should see fromthis code is a toggling of the
/1 caption text.
if (MmOnOif)
{
if (m_SetOn)
{
CO eControl::Set Text ("OFf");
m Set On = FALSE;
m Mbdal Result = nr O f;

}

el se

{
CA eControl ::Set Text("On");
m Set On = TRUE;
m _Modal Result = nr On;

}

/1l Call the default OnClick processing.
CA eControl ::OnC i ck(iButton);

}
e —

Using a VARIANT_BOOL type for the OnOff property enables the user to see a nice drop-
down list box containing True and False. Wouldn't it be nice if you could also provide a drop-
down list box for ModalResult and StdButtonType? To make this feature work, you need to
add the two enumerations shown in Listing 6-7. Add them to both the beginning of the IDL
file (right beneath the #include statements) and to the Public area of the class definition in
the PButton1Ctrl.h file.

Listing 6-7

/1 Define the valid Moddal Result property val ues.
typedef enum Modal Type

{
nr None = -1L,
nrOK = 1L,
nr Cancel = 2L,
nr Abort = 3L,
nmrRetry = 4L,
nrlgnore = 5L,
nr Yes = 6L,
nrNo = 7L,
mOn = 8L,
nrOFf = 9L,

} MODALTYPE;

/1 Define the valid StdButtonType property val ues.
typedef enum St dButton
{

None = OL,

XK = 1L,

Cancel = 2L,

Abort = 3L,

Retry = 4L,

I gnore = 5L,

Yes = 6L,

No = 7L,

On = 8L,

Of = 9L,
} STDBUTTON;

Adding the enumerations helps, but you also need to change the two properties in the IDL
file. Note that the type of the properties remains long. All we've done is assign an
enumeration to the property so that it provides help to the user. Here are the small, but
important, changes you need to make to the two properties to enable the drop-down list
boxes.

[id(1), hel pstring("property Mdal Result")] Modal Type Modal Resul t;

[1d(2), helpstring("property StdButtonType")] StdButton
St dBut t onType;

The final coding item is a special variable. You'll notice in the code that | keep referring to an
m_SetOn member variable, but this variable isn’t part of the class right now. All you need to
do is add it as a type BOOL to the Protected area of the PButton1Citrl.h file.

Breaking the Code into Pieces

Let’s start taking this code apart. The first function that you modified is DoPropExchange().
This function performs only one service in this example—it enables you to make your
custom properties persistent. Essentially, the PX_ series of function calls stores the value of
a particular property from one session to the next. There’s one function call for each variable
type that you define. Each one of them accepts four variables like this:

PX Bool (pPX, "OnOff", monCOff, FALSE);

The first variable is a pointer to a property exchange structure. Visual C++ defines this
structure for you automatically—all you need to do is use it. The second parameter contains
the external name of the property, the one that the user will see in the Properties window.
The third parameter is the internal name for the property. That's the one you'll use
throughout the program to define the property. Finally, we have to define a default value for
the property.

The next function you have to modify is OnResetState(). This function provides some of the
aesthetic details that users will see when they add the component to a form. In this case,
we'll give the component a default caption. The important thing to remember is that the
OnResetState() function allows you to perform any setup required to use your control.

Two of the three modified functions in the message-handlers section of the code require
some kind of change. The ModalResultChanged() function doesn’t require any
modification, so | won't talk about it here. The property associated with the
ModalResultChanged() function, ModalResult, gets changed by the other two functions.
The OnOffChanged() function is the first one we’ll look at. What we need to do is set an
internal caption flag and the initial caption. If the programmer sets the OnOff property to
True, we'll set the control up as an on/off switch button by setting its caption to On. We also
provide a different modal result value when the pushbutton is used as an on/off switch.
Notice that the m_onOff internal property variable tracks the status of the flag. The m_SetOn
internal property tracks the current condition of the OnOff control (On or Off). Since the
button is initially On, we set the m_SetOn flag to True.

Now it's time to look at the processing required for the property page feature of this ActiveX
control. The OnStdButtonTypeChanged() function is nothing more than a simple case
statement. It changes the button’s Caption and ModalResult properties as needed to create
various default button types. Notice that we also have to turn off the OnOff pushbutton
processing if the user selects a default button type.

The OnClick() message-handling function is active during runtime. There are two levels of
processing. First, the code determines if the programmer defined this button as an on/off
switch. If so, it changes the internal state variable (m_SetOn) and the button caption. The
function switches the button state between on and off. Once the code finishes the internal
processing, it calls the default OnClick processing routine. Failure to call this default routine
will cause the ActiveX control to skip any code specific to the programming environment that
you attach to button events. For example, if you were to use this control in a Visual C++
application, Visual C++ would ignore any code attached to the exposed events.

ATL ActiveX Control Example

This section of the chapter is going to look at the ATL version of the component that we just
created using MFC in the previous section. You'll find that many of the procedures for
creating a component using ATL are completely different from what we did in the previous
section, because ATL assumes a lot less about what you'll need.

Just to make it easier for you to compare the creation process for ATL and MFC

components, we'll follow approximately the same sequence of construction steps; it's just

that the way you need to perform the steps will be different. The following sections will show

you how to create a duplicate of the OnOff pushbutton control that we’ve just created using

MFC.

Note

The ATL version of the control uses approximately the same resources as
the MFC version of the control. However, implementing the resources
requires more code than an MFC control because nothing is automatic in an
ATL control. For example, you have to write all of the code required to
display an About Box. See the source code found in the \Chapter
06\PButtonl folder of the source code CD for details.

Creating the ATL Version Program Shell

As with the MFC example, the first thing we need to do is create a program shell for our
ActiveX control. However, in this case, we'll need to perform additional preparatory work,
because ATL doesn’t assume anything at all about the control you want to create. For
example, the program shell won't include any objects, which means that you'll need to add
everything manually. The following sections will show you how to create an ATL program
shell that approximates the MFC shell we created in the previous section.

Creating an ATL Program Shell The first task is to create an ATL program shell. Begin by
creating a new ATL Project using the options in the New Project dialog box. The example
uses a hame of PButton2. The following procedure shows you how to complete the shell.

1. Select the Application Settings tab of the ATL Project Wizard. We'll need to use the
DLL format for this control—even though an ActiveX control normally uses an ActiveX
control extension, it's really a DLL. In addition, we’ll want to combine the proxy and
stub code so that the resulting file consumes just one DLL instead of two.

2. Clear the Attributed option. (We’ll discuss attributed programming techniques in
Chapter 13.)

3. Check the Allow merging of proxy/stub code option. Choosing this option will allow
Visual C++ to create a single control file.

4. Click Finish. Visual C++ will create the empty ATL project shell for you.

Adding an Object to the Program Shell All of the extra work you have to do to create an
ATL shell pays off in one respect: design flexibility. When you create an ActiveX component
shell using MFC, there’s a single field on one of the wizard dialogs that allows you to choose
how many objects the component will contain. If you change your mind later on, you have to
go through a lot of extra work to add another object—and forget about removing an object
without a lot of hair pulling. ATL makes life easier by allowing you to add objects when you
decide that you need them. Removing an object may be a little harder, but it's not nearly as
difficult as when you use MFC. The following procedure shows you how to add an ATL
ActiveX object to the program shell we created in the previous section.

1. Right-click the PButton2 folder on the Class View tab, then choose Add | Add Class
from the context menu. You'll see the Add Class dialog.

2. Highlight the ATL Control icon, then click Open. You'll see the ATL Control Wizard.
The Names tab is where you assign a name to your control. This tab also contains
the names of the files used to support the control.

3. Type PButton2Ctrl in the Short Name field. Visual C++ will automatically add default
entries to the remaining fields for you. However, the name in the Type field isn’t very
descriptive, and that's what will get displayed in the various control selection dialogs.

4. Type On/Off Pushbutton Control (ATL) in the Type field. Changing this entry will
make it easier for someone to find the control in a list and reduce the chance that
someone will choose it by mistake.

5. Click the Options tab and you'll see a list of control options. This is where you'll choose
the characteristics of the object. In most cases, these settings are fine. However,
since we want to support events, we’ll need to add connection points support to the
control.

6. Check the Support Connection Points option. This will allow us to add events to the

control later.

Tip You can reduce the size of the resulting control by setting Aggregation
to No. However, this means that the control can't be used as a basis
for creating other controls. If you choose the Only option, then this
control could only be used as a basis for creating other controls—not
by itself.

. Click the Appearance tab. This tab contains a variety of configuration options for the
control, like which general control to use as a base. This tab also includes drawing
options, like whether the control always needs to appear within a window. It's
important to know what kinds of features the environment that the control will appear
in supports.

8. Check the Acts Like Button and Windowed Only options, then choose Button in the
“Add control based on list” box. The Acts Like Button option allows the control to
become a default control in a dialog box. The “Add control based on” list box
determines what general control to use as a basis for creating this control. Notice that
Visual C++ .NET doesn’t select the Windowed Only option for you, which forces the
pushbutton to appear in a Window (allowing it full access to mouse and other user
interface events). If you plan to use the control with older versions of some Microsoft
products, such as Visual Basic, you must check the Windowed Only option.

9. Click the Stock Properties tab. You'll see a list of stock properties that ATL supports.
This is where you'll determine what stock properties the wizard adds to your control,
although you could always add them later. In this case, we’'ll add the same stock
properties that we added for the MFC version of the control: Caption, Enabled, and
Font.

10. Highlight the Caption, Enabled, and Font properties in turn, then click the > (right
arrow) button. The wizard will add the stock properties to the Supported list on the
right side of the dialog.

11. Click Finish. Visual C++ will create the new control for you.

~

Adding a Property Page to the Program Shell At this point, we have an object to work
with, but no property page to change the object properties with when working in
environments that don’t support a Property Window. This section will show you how to add a
custom property page to the project. You'll need to use this manual procedure for any
property page you want to add.

1. Right click the PButton2 folder on the Class View tab, then choose Add | Add Class
from the context menu. You'll see the Add Class dialog.

2. Highlight the ATL Property Page icon, then click Open. You'll see the ATL Property
Page Wizard. The Names tab is where you assign a name to your control. This tab
also contains the names of the files used to support the property page.

3. Type PButton2PropPage in the Short Name field. Visual C++ will automatically enter
values for the rest of the fields for you. In this case, the default entries will work fine
(although you could change the Type field if you wanted something more descriptive
for the property page).

4, Click the Strings tab. This dialog contains the strings that give the property page a title
and tell the client where to find the property page’s help file. In this case, we’ll give
the property page the same title as its MFC counterpart and won't assign a help file to
it. The Doc String field provides balloon help for the property page, but it isn’t used by
most programming languages.

5. Type On/Off Button Settings in the Title field and Set the Standard Button Type for
the On/Off Pushbutton Control in the Doc String field.

6. Clear the Helpfile field.

7. Click Finish. Visual C++ will create the required files and resources for the property
page object. This includes creating a dialog that you can use to add controls to the

property page.
Adding Properties and Events to the ATL Version

We added all of the stock properties to the control as part of the creation process, so we
won’'t need to do that again. However, we still need to add the ModalResult, OnOff, and
StdButtonType custom properties. The following procedure shows you how.
1. Right-click the IPButton2Ctrl interface on the Class View tab, then choose Add | Add
Property from the context menu. You'll see the Add Property Wizard. This dialog
enables you to define a property name, its return value, and any arguments required
for using it.

. Choose LONG in the Property Type field. Type ModalResult in the Property Name
field. At this point, we have the property defined, but notice that the property
description shown in the Implementation field is less than helpful.

3. Click Attributes. This tab helps you change property attributes like the help string
associated with the property. We need to set some attributes for this property so that
the client will fully understand how to interact with it.

. Type Control Return Value in the helpstring field.

. Click Finish. Visual C++ will add the requested property to your IDL file.

. Repeat steps 1 through 5 to add the OnOff and StdButtonType properties. Make sure
you add an appropriate helpstring value, like Sets OnOff Mode When True or Selects
the Type of Button Created. You'll also want to change the property type as
appropriate (VARIANT_BOOL for OnOff and LONG for StdButtonType).

N

(o2 &) IF SN

It's time to add the OnClick() event. ATL handles events through a different interface than
the one used for properties and methods. You'll need to work with the _IPButton2CtrlIEvents
(found in the PButton2Lib folder) interface in this case. Adding an event is essentially the
same as adding a method, except you can use something other than an HRESULT return
value when working with events. The following procedure will show you how.

1. Right-click the _IPButton2CtrlEvents interface folder on the Class View tab, then
choose Add | Add Method from the context menu. You'll see an Add Method Wizard
dialog.

2. Type Click in the Method Name field, and then select “void” in the Return Type field.
Because there aren’t any parameters for the Click event, we don’t add anything else
in this case.

3. Click Finish. Visual C++ will add the event method to your application.

At this point, we need to implement the event interface that we’ve created within the
CPButton2Ctrl object. Simply right-click the CPButton2Citrl folder within the Class View tab
and choose Add | Add Connection Point from the context menu. You'll see an Implement
Connection Point Wizard dialog. Select the interface that you want to implement (there
should be only one in this case) by highlighting it and clicking the right arrow (you should see
the _IPButton2CtrlEvents interface appear in the Implement Connection Points list), then
click Finish. What you'll see added is a new proxy class hamed
CProxy_IPButton2CtrlEvents<class T> with a single method named Fire_Click() in Class
View, which allows you to output Click events to the client. You can also use this technique
to implement interfaces other than the custom interface created specifically for the control.

Writing the ATL Version Code

This section will show you how to add the code required to make the ATL version of our
OnOff Pushbutton Control functional. You'll notice quite a few similarities between this code
and the code used for the MFC version. However, it's the differences that are the most
important. ATL requires making changes in the way you handle some of the method coding.

There are also additional requirements for making things like the About dialog functional that
you didn’t need to worry about with the MFC version. (You'll find the About Box code on the
source code CD.) The following sections describe each of the major code segments for this
version of the control.

Creating Persistent Properties Making properties persistent when working with ATL is
totally different from what you did with MFC. In fact, you'll make the required entries in the
Pbutton2Ctrl.H file instead of the CPP file. Listing 6-8 shows the code you'll need to add in
bold.

Listing 6-8

PROP_ENTRY(" Caption", DI SPI D_CAPTI ON, CLSID_NULL)

PROP_ENTRY(" Enabl ed", DI SPI D ENABLED, CLSI D NULL)
PROP_ENTRY(" Font", DI SPI D_FONT, CLSID St ockFont Page)

/1 Add the custom properti es.

PROP_ENTRY(" Modal Result", DI SPI D MODALRESULT, CLSI D NULL)
PROP_ENTRY("OnOff ", DI SPI D_ONOFF, CLSID_NULL)

PROP_ENTRY(" St dButt onType", DI SPI D_STDBUTTONTYPE, CLSID_NULL)

These entries are relatively easy to understand. The PROP_ENTRY() macro takes three
arguments. The first is the text name of the property as it'll appear in a Properties Window.
The second is the dispatch identifier of the property. The third entry specifies a special
dialog, if any, used to configure the property. Notice that the Font entry contains an entry of
this sort—the stock font property page. If the property doesn’t require any special
configuration, then you need to supply the CLSID_NULL value as shown.

You may be wondering where the dispatch identifiers shown in Listing 6-8 came from. |
defined them in the Pbutton2.IDL file, as shown in Listing 6-9 in bold. There isn’'t any
requirement to create these entries, but doing so will make your code a lot easier to
understand. If you don’t create the DISPID values, then you'll need to use the numbers that
ATL originally supplied (which means you'll need to keep some kind of reference for those
numbers handy). You can also replace the ID values for the custom properties with their
custom DISPID value counterparts for consistency.

Listing 6-9
|
interface | PButton2Ctrl : |Dispatch{

/'l Create sone defines for the various dispatch |Ds.

const int DI SPI D_MODALRESULT = 1L;

const int DI SPI D_ONOFF = 2L;

const int DI SPID STDBUTTONTYPE = 3L;

Defining Get/Put Methods for the Properties Unlike the MFC version of our control, the
ATL version uses Put, instead of Set methods to change the current value of a property.
Fortunately, this is a difference in naming only, not a real difference in how ATL implements

the method. However, you need to be careful when porting your code from one environment
to the other because of these differences. You'll begin by defining the same series of
member variables that we defined for the MFC version of the control, as shown Listing 6-10.

Listing 6-10

/1 Menmber variables for maintaining property state.

| ong m Modal Resul t;
VARI ANT_BOOL m OnOr f
| ong m_St dBut t onType;

Once you have some variables to use, you can add the code required to make the Get/Put
methods work, as shown in Listing 6-11. While the methodology of this code should look
familiar, you should also see some definite differences between this code and the MFC
version.

Listing 6-11

STDVETHODI MP CPButt on2Ctrl :: get _Modal Resul t (LONG pVal)

{
/! Return the stored val ue.
*pVal = m Modal Resul t;
/!l Return a non-error nessage
return S_OK;

}

STDMETHODI MP CPButt on2Ctrl :: put _Mddal Resul t (LONG newal)

—~~

// Set the Modal Result val ue.
m Modal Result = newval ;

/'l Register the update
SetDirty(true);
Fi reVi ewChange() ;

/!l Return a non-error nessage
return S_OK;

—

STDVETHODI MP CPBut t on2Ctrl : : get _OnOf f (VARI ANT_BOOL* pVal)

—~

// Return the stored val ue.
*pval = m OnOFf

/!l Return a non-error nessage
return S_OK;

STDMETHODI MP CPButt on2Ctrl :: put _OnOf f (VARI ANT_BOOL newval)
{

// Set the Modal Result val ue.

m OnOfF f = newval ;

/1 1f the programmer set the OnOff property true,
/1 take appropriate action.

if (MmOnOif)

{
m bstrCaption = T2BSTR("On"); //Change the capti on.
m Set On = TRUE; //Set an internal caption flag.
m Modal Result = nr On; /1 Set the nodal result val ue.

}

el se

{
m bstrCaption = T2BSTR("Button");//Restore default caption.
m Set On = FALSE; [/ Turn our caption flag off.
m Modal Result = nr None; /1 Use the default nopdal

result.
}

/'l Register the update
SetDirty(true);
Fi r eVi ewChange();

/!l Return a non-error nessage
return S_OK;

STDVMETHODI MP CPBut t on2Ctrl:: get _StdButtonType(LONG pVal)
{

// Return the stored val ue.
*pVal = m StdButtonType;

// Return a non-error nessage
return S_OK;

STDMETHODI MP CPBut t on2Ctrl :: put _StdButtonType(LONG newval)

{
/] Set the Mddal Result val ue.

m St dButt onType = newval ;

[l Skip if the OnOff option is true.
if (MmOnOif)
return S_OK;

/'l Change the nodal result and button
/1 caption to match the user sel ection.
switch (m StdButtonType)

{
case O:
m _Mbdal Result = nr None;
m bstr Caption = T2BSTR("Button");
br eak;
I
/] Cases 1 through 8 on source code CD.
I
case 9:
m Mbdal Result = nr O f;
m bstrCaption = T2BSTR("OF f ") ;
}
/'l Register the update
SetDirty(true);
Fi r eVi ewChange();
/1 Return a non-error nessage
return S_OK;
}

As you can see, the basic idea of setting and getting control properties is the same when
using ATL; it's the actual implementation that varies. In this case, we’re working with BSTR
values. You don’t have access to the COleControl class as you did in the MFC example.
These changes account for a large part of the differences in the code shown in Listing 6-11.

Notice that there are a couple of additions to the MFC code. For one thing, you need to use
the SetDirty() method to tell the control to update its property values. In addition, you'll want
to use FireViewChange() method to ensure the control gets repainted to show any
modifications to its appearance.

Defining the OnClick() Event The OnClick() event requires some special monitoring when
working with ATL. You need to monitor the user’s mouse clicks and keystrokes to determine
when to fire a click event. What this means is that two new Windows message handlers
need to be added to our code; one monitors the left mouse button, while the other monitors
the ENTER key. The following steps show how to add the two message handlers.
1. Click the Messages button in the Properties window. You'll see a list of messages you
can override.
2. Highlight the WM_LBUTTONDOWN message. Select <Add> OnLButtonDown from the
drop-down list box. This will add a new handler for a left mouse button down event.
3. Highlight the WM_KEYDOWN. Select <Add> OnKeyDown from the drop-down list box.
Visual C++ will add the new message handler and take you directly to the new
functions.

Now that we have some new functions to work with, let’s look at the code required to make
them work. Listing 6-12 shows the code for the WM_LBUTTONDOWN and WM_KEYDOWN
message handlers. Normally, you require only these two handlers for a pushbutton.

Listing 6-12

LRESULT CPButton2Ctrl:: OnLButtonDown(U NT uMsg,
WPARAM wPar am
LPARAM | Par am
BOOL& bHandl ed)

/1 Performthe nornmal button processing.
m ct | But t on. Def W ndowPr oc(uMsg, wParam | Param;

/1l See if the OnO'f flag is set. |If so, change
/1l the caption and internal caption flag.
if (mMOnOif)
{
if (m_SetOn)
{
m bstrCaption = T2BSTR("OF f ") ;
m Set On = FALSE;
m Modal Result = mr O f;
m ct | But t on. Set W ndowText (_T("Of"));

el se

{

m bstr Caption = T2BSTR("On");

m Set On = TRUE;

m Mbdal Result = nr On;

m ct | Button. Set W ndowText (_T("On"));
}

/1 Performthe default action.
Fire _Cick();

return O;

LRESULT CPButton2Ctrl:: OnKeyDown(U NT uMsg,
WPARAM wPar am
LPARAM | Par am
BOOL& bHandl ed)

/1 Performthe nornmal button processing.
m_ct | But t on. Def W ndowPr oc(uMsg, wParam | Paran;

/1 Determine the current key code. |If the key code is
/1 the Enter key, then change the button status; otherw se,
[l exit.
if (!'(wParam == 13))
return O;

/1l See if the OnO'f flag is set. |If so, change
/'l the caption and internal caption flag.
if (MOnOff)

if (m_SetOn)
{
m bstr Caption = T2BSTR("Of f");
m Set On = FALSE;
m Modal Result = mr O f;
m ct | Butt on. Set W ndowText (_T("Off"));

el se

{

m _bstrCaption = T2BSTR("On");

m Set On = TRUE;

m _Modal Result = nr On;

m ct | Button. Set W ndowText (_T("On"));
}

/1 Performthe default action.
Fire _Cick();

return O;

}
e ——————

Both of these methods do the same thing—they allow the control to detect user input. The
OnKeyDown() method begins by performing one check that the OnLButtonDown() method
doesn’'t need to perform. It uses the wParam input to detect which key the user pressed. The
OnKeyDown() method will react only to the ENTER key. Both methods allow the default
procedure to perform whatever tasks it needs to do first by calling the DefWindowProc()
method of the m_ctIButton object (this object is created automatically for you by the ATL
wizard and allows the control to handle standard button events). The button changing
process works the same as the MFC version of the control. Even though the method used to
fire a click is different, this process works the same as the MFC version of the control as
well.

Adding Some Initialization Code Initialization for the ATL version of our control is much
more complicated than the MFC version. For one thing, ATL assumes nothing about the
initial state of the variables and, unlike MFC, there isn’t any way to define an initial state as
part of the process of making the properties persistent. Obviously, we need another
initialization alternative, which is to add the InitNew() method to the control. The
programming environment calls the InitNew() method to initialize the control’s properties if
you're creating a new control. Listing 6-13 shows the source code for the InitNew() method.

Listing 6-13
T ——

STDMETHODI MP CPBut t on2Ctrl:: 1 nit New()

{
CConPt r <l Font> p; /'l The ambient (default) font pointer.

CConPtr<l Font> pFont; // A copy of the font for |ocal use.

/1 Tell Visual C++ that we'll be converting BSTR val ues.
USES_CONVERSI ON;

/1l Get the default font, create a copy of it, then initialize

/1 our Font property with it. if(!mpFont)
i f (SUCCEEDED(Get Anbi ent Font (&p)) && p)
i f (SUCCEEDED(p- >Cl one(&Font)) && pFont)
pFont - >Queryl nterface(l1D_I Font Di sp, (void**)&m pFont);

/1l Initialize the rest of the properties.
m _bEnabl ed = true;

m bstr Caption = T2BSTR("Button");

m Modal Result = -1;

m OnOF f = FALSE;
m_St dBut t onType

0;

// Set the initial control size.
2100;
580;

m si zeExt ent . cx

m si zeExtent . cy

/'l Register the update
SetDirty(true);
Fi r eVi ewChange() ;

// Set the initialization variable so that we don't
// initialize the control tw ce.

mblnitialized = true;

// Return a non-error result.
return S_OK;

}
T

Let’s talk about the InitNew() method first. This is the method that the programming
environment calls when creating a new control. The first bit of code checks to ensure the
Font property is defined. If not, the method assigns the current system font to the control.
Initializing the other properties is as easy as assigning them a value. You'll want to be sure
that all of the defaults you assign work together. All ATL controls start out as a moderately
large square, which isn’t a very good shape for a pushbutton. The next bit of code assigns a
more believable size to the control that roughly equates to the size of a standard Visual C++
pushbutton. Once all of the initialization is complete, you must use the SetDirty() method to
ensure the control values get changed and the FireViewChange() method to ensure the
changes also get reflected in the control's appearance. Finally, the InitNew() method tells
the control that it's initialized by setting m_blnitialized to true, then returns a non-error result
to the control.

Another potential problem is the appearance of the control itself. You may not see the
control you'd expected to see when you place it in the IDE. Part of the problem is that ATL

makes no assumptions about how you want to create the control—it creates the most basic
form available without considering any special features of a subclassed control. With that in
mind, you need to change the control's OnCreate() method as shown in Listing 6-14 to take
better advantage of the inherent features that control has to offer.

Listing 6-14
L TTT———

LRESULT OnCreate(U NT /*uMsg*/, WPARAM /*wPar ant/, LPARAM
[*| Parant/, BOOL&

/ *bHandl ed*/)
{
// Determ ne how big to nake the control.
/1l Tell Visual C++ that we'll be converting BSTR val ues.
USES_CONVERSI ON;
/! Determine how big to make the control.

RECT rc;

Get W ndowRect (&rc);
rc.right -=rc.left;
rc.bottom-= rc.top;

rc.top =rc.left = 0;

/1 Make sure you nmodify the default Create() nmethod syntax
/1l to create the kind of button that you want.
m ct | Button. Create(m hWhd, rc,
CLE2T(m bstr Capti on),
BS_PUSHBUTTON | WS _VISIBLE | WS _CHI LD | WS _TABSTOP) ;
/1 Return a non-error result.
return O;

}
e,

For the most part you'll find that ATL creates a simple box for you to look at, and it's up to
you to do something with it. In this case, we add a caption to the pushbutton and give it
some of the standard pushbutton flags. The flags you add will depend on the type of control
you'’re creating. In some cases, the default ATL settings will work just fine; but in most cases,
you'll need to make some minor changes. Obviously, the control has to support the flags you
choose.

Visual C++ users will see a problem almost instantly after they compile the control code and
try to use it within a Visual C++ application. What you'll get for a default presentation in the
IDE is a blank white box. Fortunately, the control appears as normal when you compile and
run the application. The problem is that Visual C++ doesn’t InPlaceActivate the control. As a
result, the OnPaint() method never gets called to paint the control on screen, and the ATL
implementation for OnDraw/() doesn’t do anything. Listing 6-15 shows one way to get around
this problem by implementing the OnDraw() method yourself.

Listing 6-15
T ——

HRESULT CPButton2Ctrl:: OnDr aw(ATL_DRAW NFO &di)

{
/1 Control's bounding rectangle.
RECT& rc = *(RECT*) di . pr cBounds;
/1 If the control isn't InPlaceActive, then we
/1l need to draw it. O herw se, the control gets
/1 drawn as part of a call to OnPaint().
if (!'m.blnPlaceActive)
{
/1 Tell Visual C++ that we'll be converting BSTR val ues.
USES_CONVERSI ON,;
/1 Make the control display a sinple rectangle with text.
Rect angl e(di . hdcDr aw,
rc.left,
rc.top,
rc.right,
rc.bottom;
Dr awText (di . hdcDr aw,
OLE2T(m_bstr Capti on),
-1, &rc, DT_SINGLELINE | DT_CENTER | DT_VCENTER);
}
return S_OK;
}

| chose to create a very simple presentation, in this case, because the drawing code isn’t
very important. All the user really needs is a box to show the extent of the control and the
caption text. Creating an image that looks like a button would be nice, but not required.

There’s one absolute necessity. Notice that the code checks the InPlaceActivate status of
the control before it draws anything. You must perform this step or the user will see a flawed
button appearance when the application is running.

Note
At this point, you'd add a property page to the control similar to the one for
the MFC version of the control. In addition, you’d want the ModalResult and
StdButtonType properties to use drop-down list boxes similar to those found
for the MFC version of the control. You'll find both of these additions on the
source code CD.

Testing the Control

After you create a new ActiveX control, you have to test it to make sure it works as
anticipated. I'm going to use Visual C++ throughout the following sections. You could use
any programming environment that supports ActiveX controls. For example, you might want
to test the OnOff control with Visual Basic to see how it works with another language. The
important consideration isn’t the language you use for testing but that you test the control
fully with some programming language that includes full debugging support. You want to
make sure that the control you've created actually works as anticipated in the safest possible
environment designed to do so. Since many Internet tools are in the testing stage, you may
find that a control that seems like it should work doesn’t. Being able to eliminate the control
itself by testing it in a known environment is one step toward troubleshooting the problem.

Performing the ActiveX control test doesn't have to be a long, drawn-out affair. All you really
need to do is create a project using your standard programming environment, then add the
ActiveX control you've created. Make sure all of the properties work as expected. Take time
to check out the property page thoroughly as well.

Start by creating a new project in your favorite programming environment. For the purposes
of this example, you could easily test the control by creating a dialog-based application in
Visual C++. The MFC AppWizard takes care of most of the work for you. (We look at the
process for creating a dialog-based application using Visual C++ in Chapter 2.) | gave my
project the name PButtonl1Test (the source code CD also includes a PButton2Test for
testing the ATL version of the control).

After you have a new project in place, create a form (if needed) and add the ActiveX control
to it. Visual C++ automatically registers ActiveX controls for you, so the control we created in
the previous sections should appear in the list of controls available to you. Most
programming environments also provide a way to view all of the properties associated with a
control at one time. Verify the properties work as expected. If you expect to see a drop-down
list box for a property, then it should appear when you click on the property and should
contain the values you set for it.

You'll probably want to add some test code to the program as well. That way you can check
the effects of various control events. For example, the On/Off pushbutton in our example
provides a variety of modal result values depending on how you set the button properties.
Setting the OnOff property to True creates a special switch button. The ModalResult
property switches between two values. However, you could just as easily select one of the
standard button values from the Property window.

Add a member variable for the control to the test application by right-clicking the control and
choosing Add Variable from the context menu. The member variable enables you to access
the control within the test code. The example uses a member variable name of
m_OnOffButton. You'll also need to add an event handler for the Click event. Listing 6-16
shows the C++ test code for this example. Notice the use of the GetModalResult() wrapper
class function that Visual C++ automatically creates for the control.

Listing 6-16
|
voi d CPButtonlTestDl g:: OnCli ckCcxexmplctrl 1()
{

/1 Get the current Mbdal Result val ue.

I ong |i Mbdal Resul t;

| i Modal Result = m OnOf f Butt on. Get Modal Resul t () ;

/] Det ermi ne which nodal result was returned and display a
nessage.

switch (li Mdal Result)

{
case -1:
MessageBox(" None button pressed", "State of Control",
MB_CK) ;
br eak;
case 1:
MessageBox("OK button pressed", "State of Control", MB _OK);
br eak;
I
/'l Cases 1 through 8 on source code CD.
I
case 9:
MessageBox("Button is Of", "State of Control", MB_OK);
br eak;
}
}

Now that you have a simple form with your control attached to it, try testing it. The example
program will display a simple dialog box with the ActiveX control on it. Click the control and
you'll see another dialog telling you the state of the button.

Component Testing Aids and Techniques

So far, we've discussed the mechanics of creating a control using two different techniques.
However, working with controls also requires knowledge of the tools at your disposal for
working with controls and properly testing them. The following sections will tell you about
some useful tools that you should add to your arsenal.

Unregistering Your Control

In your SYSTEM (or SYSTEMS32) folder you'll find a little program called RegSvr32. It's the
program responsible for adding entries for your ActiveX control to the registry. The same
program can unregister your control using a little known command line switch, -U. So, if you
wanted to unregister the control we created in this, you'd type REGSVR32 -U
PBUTTON1.0CX at the command line. If you're successful, you'll see a dialog like the one
that follows.

‘E) DiUnregs arsanar inAddt. dll sucoseded

K,

Some people find that they don't like using the command prompt to register and unregister
their components using RegSvr32. You'll find an alternative method in the Xteq COM

Register Extension at http://www.xteg.com/downloads/index.html#comr. This utility adds
two new menu entries to your system, as shown next.

Winw Dapandancies |

Mragriter Bbrary
Opsin Wit]
W Adda Tp
B A b AddR g
B Zip and E-Mad Al op

Sand Tor .
o

Copy

Crasatn Shoricut

Diptate

Fisfinsree

Froaperms

All you need to do is right-click the component and choose “Unregister library” to unregister
it. Likewise, choosing “Register library” will add it to the registry. You get the same RegSvr32
messages as you normally would. The only difference is that you don’t have to go to the
command line to perform the task.

ActiveX Control Test Container

Component technology has freed many programmers from the need to perform some types
of repetitive tasks. For example, the addition of standard dialog box support to Windows, like
the File Open dialog box, has reduced the need for everyone to create their own version of
this very standard application feature. Command buttons, labels, and text controls have all
had their share in reducing the programmer’s workload as well. Consider what it would take
to write a modern application using only the C code that programmers of the past had to use
and you can see why component technology is so important.

Because of the faith that many programmers place in the ActiveX controls they use, it's
important to test components fully. That's when the ActiveX Control Test Container
(TSTCON32.EXE) comes into play. This utility helps you to test the features of your ActiveX
control in a special environment designed to help you locate flaws quickly. Figure 6-2 shows
what the ActiveX Control Test Container looks like with the PButton1 component loaded.

http://www.xteq.com/downloads/index.html#comr

F i Betwedd T ondesl it Tanl s - Doled

Pl Dl i Corial Ve Do Tt il

0o I EE iy [il

Props

riy Edit Request: C
Pt s Chmrgm e L apb

PR

Figure 6-2: The ActiveX Control Test Container allows you to check the operation of
components that you create.

Note
To load an ActiveX control in the test container, use the Edit | Insert New
Control command. You'll see an Insert Control dialog box that lists all of the
registered components on the local machine. You can also insert an ActiveX
control into the current test container from a stream or from storage using
the appropriate Edit menu command.

The following sections explore a few of the more important tasks you can perform with
ActiveX Control Test Container. You'll likely need to perform one or more of these tasks as
the book progresses. For example, when using an ActiveX control in a multi-language
environment, you'll normally want to test it using this utility. At a minimum, you’ll want to
check to see that you can access the methods and properties that the component provides.

Checking Methods and Properties

There have been a number of situations when | thought | had defined a property or method
properly, only to have it fail to appear when needed in the final application. In some cases,
the failure isn’t anything in my code, but a difference in the way the two programming
languages support ActiveX controls. Unfortunately, unless you can isolate the component
and test it in an independent test environment, you’ll have trouble figuring out precisely what
the problem is.

ActiveX Control Text Container checks the availability of both methods’ properties. In
addition, you can change these features of your ActiveX control to see if they work as
intended. Let's look at properties first. The normal method used to change the properties is
through a property page. Simply click on the Properties button (or use the Edit | Properties
command) to display a component’s Property dialog. Here’s what the Property dialog for
PButtonl looks like:

Dr/TH Pushbulton Costral (MFL] Piegeitaes
D Bssion Setings | Fants | Evtended|

Hire s

a3 | T
Carcel Mo

Al I On

Rty I il

ok] cwent | o | |

There might be times when you won’t want to place a property on the component’s
Properties dialog box. Perhaps the property affects something that the application designer
won't normally change, or it might be something that would only change during runtime,
instead of at design time. Even if the properties for a component you design aren't listed in
their entirety on property pages, you can still access them by looking through the list of
methods supported by your component. You'll find that ActiveX Control Test Container
creates a get and set method for every property your component supports. However, for the
most part it's still easier to access properties (at least those created for design-time use)
through a property page.

Let’s talk about methods for a moment. All you need to do to look at the methods your
component supports using the Control | Invoke Methods command (you can also click the
Invoke Methods button on the toolbar). In addition to the get and set methods for various
properties, you'll find all of the other methods that your component supports in the Invoke
Methods dialog box shown following:

Irvwink, & M ezl beisila EE
Iedthendi Mt rrckn

| 0n [ProgPu) -

Emcepinon Desonpion
|

Emception Sowce

i v

Tracking Events

Events are the basis of many ActiveX control activities. The ActiveX Control Test Container
has two windows. The upper window displays the components you've loaded for testing,
while the bottom window displays any output from the component. Output occurs (in this
case and most others) because some event has fired. Some events are derived from custom
programming, others occur as part of normal component operation. For example, you'll
normally see a Click event generated when the user clicks a button.

ActiveX Control Test Container provides two levels of event logging. The first level is at the
container level. To set these logging options, use the Options | Logging... command to

display the Logging Options dialog box. The Logging Options dialog box allows you to
choose where the logging output appears. As mentioned earlier, the default setting sends
any log entries to the Output window. You can also choose to stop logging all events from all
components that you currently have loaded or to place the log entries in afile. The “Log to
debugger window” option is supposed to send the log entries to the debug window of your
favorite programming language product, but support for this feature is flaky at best. You'll

find that this option works best with the latest versions of Visual C++ and only marginally well
with Visual Basic.

The second level of logging is at the component level. Normally, ActiveX Control Test
Container logs all component events, but that can lead to overload and make the detection

of a specific event more difficult. It's important to select a specific set of events to monitor, in
most cases, if you want to get optimal results. You must select the component that you want
to work with before using the Control | Logging command to display the Control Logging
Options dialog box.

The Control Logging Options dialog box has three tabs. Each tab controls a major event-
logging type. The first tab, Events, contains a list of all of the events that you component can
fire. For example, when a user clicks the component, it normally fires an event.

The second tab, Property Changes, contains a list of all the standard property changes, but
not necessarily all of the properties that the component provides. In the case of the PButtonl
control, you'll find that only the Caption, Enabled, and Font property changes get tracked.
These logging events get fired only if an actual change takes place, not if the client requests
the current value or the ability to change the property.

The third tab, Property Edit Requests, contains a list of property edit requests. In this case,
you'll find only the Caption and Enabled properties listed, since the Font property uses a
special property page. The special property page handles the request event for a font
change. A request event gets fired whenever the client requests the ability to edit the
property, which generates the logging event. In other words, a request event log entry will
appear even if no actual change takes place.

The Property Edit Requests tab allows you to do something that the other logging options
don't allow. The Always, Prompt, and Never options allow you to tell ActiveX Control Test
Container what to do with edit requests. In most cases, you’ll want to allow the component to
accept changes normally. However, there are some situations when you may want the
component to prompt you before it grants permission or to deny permission so that the
property value remains constant during testing. Whichever option you choose, the edit
request event will still get logged so that you can maintain a record of component activity.
Tip

You can load more than one ActiveX control at a time to see how two or more

components interact. For example, you might have a visible component that

relies on input from an invisible component like a timer. This capability is

especially important when working with data-related components like those

used to set the database and table source.

Testing Persistence

Persistence is the ability of an ActiveX control to retain its values from one session to the
next. In most cases, you want your component to retain any property values that the user
sets. Read only properties, on the other hand, may change from session to session and
therefore don't require persistence. It doesn’t matter whether a property is persistent or not—
you still have to ensure that it reacts as intended.

ActiveX Control Test Container provides three levels of persistence testing: property bag,
stream, and storage. Generally, it's a good idea to test your component in all three
environments to make sure that the persistence it provides actually works. Two of the testing
methods, stream and storage, require you to save the component to disk, then read it back
into the test container. The third method, property bag, provides instant feedback.

OLE/COM Object Viewer

Every OLE object you create, whether it's an application or an ActiveX control, relies on
interfaces of some sort. Even language extensions, like ActiveX Scripting, rely on interfaces.
An interface is a method for bundling functions in a way that’s independent of a
programming language. Interfaces are one of the basics of OLE. In addition to the custom
interfaces you'll create for your object, every object also supports standard interfaces, like
IUnknown.

Visual Studio provides a handy utility, named OLE/COM Object Viewer, that you can use to
see these interfaces in more detail (Microsoft shortened the name to OLE View in recent
versions of Visual Studio). We'll use this utility several times in the book, so you may want to
install it if you haven't done so already.

It's important to understand how the OLE/COM Object Viewer can help you during the
development process. Say you want to find out about the interfaces provided by a
component like the PButtonl control that we talked about earlier in the chapter. The
OLE/COM Object Viewer could help you find out about those interfaces and the associated
entries in the registry. You could use this information to debug problems with the way that a
component (or other COM object like a document server) registers itself. Obviously, this
information also comes in handy in developing a better view of how the component is put
together.

Open the OLE/COM Object Viewer. You'll see a set of folders that encompass the various
types of objects, similar to the one shown in Figure 6-3. Notice that these statically defined
classes are rather broad. There’s a very good chance that a component or other type of
COM server could appear within more than one folder, depending on which interfaces it
implements.

Tie Oigmk Weew Hop

[P S—Ty p——

}ﬂ ATREEY CLASTSE B REO T\ oyt Categosss § mides

Pt |

Zergrat Cakoginn, E

B 0 R (e O (O] AR = oot oo Dy

AR R (O 0 X O] |10 = vy [o B 1
T } AN w vt [i Brmwean B

= fl Cond abeh roufos on ssated dete
%] otk il gk by scplain
%] Db Ciamsse

i el
3] Iroaresss K spicesr Wimar Canmwncoion Band
L=

& CLE 1.6 Obpects

B 7 OO Ly Togects

gy Allbacn
% Ukl Asplzuizs T4 s
L] T L v 1
=] e il

1T PSS AL A4 TN = e P cantrg
L5430 PSP MR A AZE A = Zomis rafvie riadeatse
I ;I'J

'I-:-i-(j)-ure 6-3: The OLE/COM Object Viewer sorts the various COM servers into easily
understood categories.

Open the Controls folder and then open the On/Off Pushbutton Control (MFC) folder. You'll
see a list of interfaces that MFC implemented for you as you built the component, as shown
in Figure 6-4. Notice that the component entry contains information about the registry,
implementation details like the location of files and threading model, activation details like
the remote activation site (when required), launch permissions (who can run the application),
and access permissions (who can look at the component’s settings). All of these settings
have default values.

Tl Ok Wew Hioip

1 papy T P tbon Lk S
j NN £ OG41 65 5207 ST IEEFRAAOE

i Fomgmts | rotarsarygiom | frtuyn | L Prerssoems | dexey Paesserons |
Diepact e - — |
b I BFS80L 00K L30T T CEFTSHEN] = D08 Pt Condol BT
[ER—— Corinf.

frprmeLorvanE | oo g o S0 6 ACHOHD 1P Bl T Dot

e o I L | s NP
(s e ordiprahi hofimm
P oseribomming 11T
Psad Fragits = FUT TN Pt i 1
Pt wary " bl g 2 TR MR PRt Dot Pl o
Paualgylieg Tppnd b = A TR BAR HCTE RO AR I A
P S b Ve s 10}
5 Pt kel PR TIOR 1 Puitor1 ST = D Piahtbion Conto 17
¥ Poskdadds LD ») PO R SRR
¥ Powhld? Topeelil =
¥ Huclhavan B P LT TERTAT L)
W Fpmcb oo Fugi ¥ Sadn bt (b purviie
5§ Lishroes 1
¥ Husbpa s B S [l e irr
& Tasd e NI e A e TP B 11 e gy e 1

Pl p

= R Chrlo Dt Ml Topect HE PO s NI S Docsd s BFUPEEER 'O g

2, Oulogs: Eapesas basdage Lisi
5 e g s T

2 Ol Tapesan sy ki Cpac
2 A Pk Cliss

- I#I-hll-\.'\-ﬂ'hi-- (e
it A L)
d| |] !
Hapy

Figure 6-4: The OLE/COM Object Viewer shows a hierarchical view of objects, starting
with the object type, then the name, and then the interfaces the object supports.

Part Il Visual C++ .NET and
Database Management

Objectives

" Learn about various database technologies including ODBC, ODBC .NET, OLE-DB,
ADO, and ADO.NET

. Work with data source names (DSNs) of various types

. Obtain an overview of database development tools

. Create an unmanaged database application using OLE-DB

. Discover techniques for troubleshooting errant LAN database applications

. Learn how to create database applications that perform well on a LAN

. Create a managed database application using ODBC .NET

. Create a managed database application using ADO.NET

Chapter List

Chapter 7: Visual C++ Database Technologies
Chapter 8: Building Unmanaged Database Applications

Chapter 9: Building Managed Database Applications

Chapter 7: Visual C++ Database Technologies

Overview

Businesses run on data. This is a simple truth that many enterprise developers discover
soon after their introduction to their first company. No matter how many other gizmos you
want to introduce into the business environment, the main event will remain database
management. If anything, database management becomes more important as a company
grows and begins to cultivate partnerships with other companies.

Because database management is so important, technologies for managing data proliferate
at an astounding rate. Every time the developer thinks that the latest technology will stick
around for a few months, another new technology appears on the scene to take its place. In
short, not only is database management a mission critical business requirement, it's also a
moving target, which makes writing code difficult, to say the least.

This chapter discusses the latest database technologies provided with Visual Studio .NET.

Of course, the big news is ADO.NET. However, many developers aren’t ready to move to

ADO.NET yet because it fulfills a specific purpose, so you'll still see applications written for

both ActiveX Data Object (ADO) and Object Linking and Embedding for Databases (OLE-

DB). In fact, despite what you may have heard from early Microsoft documentation, Open

Database Connectivity (ODBC) is still alive and well. We'll discuss a new form of this aging,

but well entrenched technology, ODBC .NET.

Browser
Alert You don’t have to go it alone when it comes to working with Visual

C++ and databases. Database-specific newsgroups like
microsoft.public.access can help you with the mechanics of
creating a database in the first place. However, these newsgroups
provide general information that won't be all that useful when it
comes to actually writing an application. The newsgroups you want
to look at for Visual C++-specific issues are
microsoft.public.vc.database and microsoft.public.vc.mfcdatabase.
If you decide to use ODBC to access your database, you may want
to look at the microsoft.public.odbc.sdk newsgroup, which talks
about a lot more than just the SDK. Programmers interested in the
latest technology will want to check out the microsoft.public.ado
newsgroup, which talks about ADO, or the microsoft.public.oledb
(Object Linking and Embedding Database) newsgroup, which talks
about the technology underlying ADO. There’'s an ADO subgroup
at microsoft.public.ado.rds that talks about remote data access.

We'll also discuss some handy database tools you should know about. We’'ll use these tools
as the book progresses. For the most part, you'll find that these tools make life a little easier,
but they don't take all of the work out of creating a database management system or
performing the endless hours of rework afterward.

ADO and OLE-DB—Rungs on the Same Ladder

One of the more confusing things about working with ADO is that it's not the lowest rung on
the ladder. OLE-DB is the basis for anything you do with ADO,; it provides the basis for
communication with the database. ADO is simply a nice wrapper around the services that
OLE-DB provides. In fact, you can even bypass ADO and go right to OLE-DB if you want to.

However, using ADO will help you to develop applications much faster. The following
sections will help you understand both OLE-DB and ADO.

Understanding OLE-DB

So, what is OLE-DB? As the name implies, it uses OLE (or more specifically, the component
object model—COM) to provide a set of interfaces for data access. Just as with any other
COM object, you can query, create, and destroy an OLE-DB object. The source of an OLE-
DB object is a provider. The Visual C++ package provides a variety of OLE-DB providers,

and more will likely arrive as vendors upgrade their database products. The nice thing about
OLE-DB is that the same provider works with any Visual Studio product: Visual C++, Visual
Basic, and C#.

OLE-DB also relies on events, just as any COM object would. These events tell you when an
update of a table is required to show new entries made by other users or when the table
you've requested is ready for viewing. You'll also see events used to signal various database
errors and other activities that require polling right now.

Microsoft defines four major categories of OLE-DB user. It's important to understand how
you fit into the grand scheme of things. The following list breaks the various groups down
and tells how they contribute toward the use of OLE-DB as a whole.

" Data provider Someone who uses the OLE-DB SDK (software development kit) to
create an OLE-DB provider. The provider uses interfaces to interact with the database
and events to signal special occurrences.

. Data consumer An application, system driver, or user that requires access to the
information contained in a database.

. Data service provider A developer who creates stand-alone utilities (services) that
enhance the user’s or administrator’s ability to use or manage the contents of a
database. For example, a developer could create a query engine that allows the user to
make natural language requests for information in the database. A service works with
the OLE-DB provider and becomes an integral part of it.

" Business component developer A developer who creates application modules or
components that reduce the amount of coding required to create a database
application. A component could be something as generic as a grid control that allows
you to display a subset of the records in the database at a glance or something specific
to the type of database being accessed.

Microsoft designed OLE-DB as an upgrade to ODBC. The fact is that many people still use
ODBC because they perceive it as easier to use than OLE-DB or ADO. The pervasiveness
of this view finally led Microsoft to create ODBC .NET for those developers who refuse to
make the change. In addition, more database vendors provide ODBC access, although this
is changing now. So, how does OLE-DB differ from ODBC? Table 7-1 shows the major
differences between the two products. We’'ll discuss how these differences affect your usage
decisions later in this chapter.

Table 7-1: ElH) o
Element OLE-DB ODBC Description
Access type Component Direct OLE-DB provides interfaces that
interact with the data; user access to
the data is through components
designed to interact with OLE-DB.
Data access Any tabular SQL Microsoft designed ODBC to use SQL

specialization data as the basis for data transactions. In

Table 7-1: QB0 o

Element OLE-DB ODBC Description

some cases, that means the
programmer has to make concessions
to force the data to fit into the SQL

standard.
Driver access Component Native As mentioned earlier, all access to an
method OLE-DB provider is through COM

interfaces using components of various
types. ODBC normally requires direct
programming of some type and relies
heavily on the level of SQL
compatibility enforced by the database

vendor.
Programming COM C OLE-DB relies on COM to provide the
model programmer with access to the

provider. This means that OLE-DB is
language independent, while ODBC is
language specific.

Technology COM SQL OLE-DB adheres to Microsoft's COM

standard standard, which means that it's much
more vendor and platform specific than
the SQL technology standard used by
ODBC.

Don't get the idea that OLE-DB and ODBC are two completely separate technologies meant
to replace each other. Microsoft offers an ODBC OLE-DB provider that enables you to
access all of the functionality that ODBC provides through OLE-DB or ADO. In other words,
the two technologies complement each other and don’t represent complete replacements for
each other. Can you replace ODBC with ADO or OLE-DB? Yes, but you won't get the very
best performance from your applications if you do. The whole idea of OLE-DB is to broaden
the range of database types that you can access with your Visual C++ applications.
Obviously, if you do need to access both ODBC and tabular data with a single application,
OLE-DB provides one of the better solutions for doing so.

Understanding ADO

Now that you've gotten a little better handle on OLE-DB, where does ADO fit in? As
previously mentioned, ADO provides an easy method for accessing the functionality of an
OLE-DB provider. In other words, ADO helps you to create applications quickly and allows
Visual C++ to take care of some of the details that you'd normally have to consider when
using OLE-DB directly.

ADO represents a hew way to provide database access through the combination of
databound ActiveX controls and an ADODC (ADO Data Control). The ADODC acts as a
data source that identifies the information storage location and defines the requirements for
accessing that data. ADODC requires six pieces of information: OLE DB provider name (like
SQL Server), DSN (the data source name as specified in the ODBC applet of the Control
Panel), username, password, record source (usually a SQL query), and connection string.
You'll use ActiveX controls to display the contents of the data source.

ADO provides several advantages over previous database access methods. The following
list will describe them for you.

" Independently created objects You no longer have to thread your way through a
hierarchy of objects. This feature permits you to create only the objects you need,
reducing memory requirements and enhancing application speed.

" Batch updating Instead of sending one change to the server, you can collect them in
local memory and send all of them to the server at once. This feature results in
improved application performance (because the update can be performed in the
background) and reduced network load.

. Stored procedures These procedures reside on the server as part of the database
manager. You'll use them to perform specific tasks on the dataset. ADO uses stored
procedures with in/out parameters and a return value.

. Multiple cursor types Essentially, cursors point to the data you're currently working
with. You can use both client side and server side cursors.

" Returned row limits You get only the amount of data you actually need to meet a
user request.

. Multiple recordset objects Helps you to work with multiple recordsets returned by
stored procedures or batch processing.

" Free threaded objects Enhances Web server performance.

There are two databinding models used for ActiveX controls. The first, simple databinding,
allows an ActiveX control like a text box to display a single field of a single record. The
second, complex databinding, allows an ActiveX control like a grid to display multiple fields
and records at the same time. Complex databinding also requires the ActiveX control to
manage which records and fields the control displays, something that the ADODC normally
takes care of for simple databinding. Visual C++ comes with several ActiveX controls that
support ADO, including these controls:

= DataGrid
= DataCombo
= DatalList

= Hierarchical Flex Grid
= Date and Time Picker

Like OLE-DB, Microsoft-based ADO on COM. ADO provides a dual interface: a program ID
of ADODB for local operations and a program ID of ADOR for remote operations. The ADO
library itself is free threaded, even though the registry shows it as using the apartment
threaded model. The thread safety of ADO depends on the OLE-DB provider that you use. In
other words, if you're using Microsoft's ODBC OLE-DB provider you won't have any
problems. If you're using a third party OLE-DB provider, you'll want to check the vendor
documentation before assuming that ADO is thread safe (a requirement for using ADO over
an Internet or intranet connection).

You'll use seven different objects to work with ADO. Table 7-2 lists these objects and
describes how you'll use them. Most of these object types are replicated in the other
technologies that Microsoft has introduced, although the level of ADO object functionality is
much greater than that offered by previous technologies. We'll talk more about the ADO
classes in the overview section of this chapter.

Table 7-2: Mgy
Object Class Description
Command CADOCommand A command object performs a task using a

connection or recordset object. Even though
you can execute commands as part of the
connection or recordset objects, the command
obiject is much more flexible and allows vou to

Connection

Error

Field

Parameter

Property

Recordset

Note

Class Description
define output parameters.

CADOConnection Defines the connection with the OLE-DB
provider. You can use this object to perform
tasks like beginning, committing, and rolling
back transactions. There are also methods for
opening or closing the connection and for
executing commands.

ADO creates an error object as part of the
connection object. It provides additional
information about errors raised by the OLE-
DB provider. A single error object can contain
information about more than one error. Each
object is associated with a specific event like
committing a transaction.

A field object contains a single column of data
contained in a recordset object. In other
words, a field could be looked at as a single
column in a table and contains one type of
data for all of the records associated with a
recordset.

CADOParameter Defines a single parameter for a command
object. A parameter modifies the result of a
stored procedure or query. Parameter objects
can provide input, output, or both.

Some OLE-DB providers will need to extend
the standard ADO object. Property objects
represent one way to perform this task. A
property object contains attribute, name, type,
and value information.

CADORecordset Contains the result of a query and a cursor for
choosing individual elements within the
returned table. Visual C++ gives you the
option of creating both a connection and a
recordset using a single recordset object or of
using an existing connection object to support
multiple recordset objects.

ADO represents some objects by interfaces rather than actual classes.
Table 7-2 also tells you about object associations, which helps you
understand how to derive the objects not directly represented by Visual C++
classes.

ADO.NET the New Microsoft Vision for Database Management

ADO.NET is a new technology that Microsoft originally named ADO+ (among other names).
The ADO+ moniker is actually more appropriate for the version of ADO.NET that appears in
Visual Studio because this version of the product is essentially an add-on for distributed

computing environments. Most developers have found that they need to continue using ADO

for LAN development or in scenarios where an application requires good two-way
communication. The reason ADO.NET is such a good addition for the distributed computing
environment is that it relies on disconnected datasets and client side cursors—two
requirements for applications used on the road. Using loosely coupled access also reduces
the resource load on a server, making more resources available for all users.

One of the secrets of ADO.NET is the use of eXtensible Markup Language (XML) as the

data transfer media. The use of plain ASCII text by XML enables the data to pass through
firewalls unhindered. Binary data transfers often encounter problems with firewalls because
the use of binary data hinders the efforts of virus checkers. Firewalls also close data ports
that older data transfer methods require. The problem with ports is that administrators
normally keep as many ports closed as possible to help reduce the chance of cracker
intrusions. XML uses port 80, the same port commonly used for HTML data transfers. Binary
data transfer problems became one of the reasons that developers asked for something
better than the Distributed Component Object Model (DCOM) and also the reason they need
something better than ADO or OLE-DB for database management.

Before you can access any data, you need a provider that works with the Database
Management System (DBMS) in question. ADO.NET fully supports all of the providers that
ADO supports. In addition, you gain access to the providers in the .NET Framework.
However, don't get the idea that having two sources for providers increases your
opportunities to connect to other servers. Most of the drivers provided with the .NET
Framework at the time of this writing are for big name DBMS, such as Oracle, or Microsoft's
own products, such as SQL Server. In fact, you'll find that the two main namespaces are
System.Data.SqlClient and System.Data.OleDB. You must have SQL Server 7.0 or later to
use the System.Data.SqlClient namespace. Note that the OLE-DB driver for ODBC
(MSDASQL) doesn’'t work—you must download the separate ODBC .NET provider
discussed in the next section.

As with the other data access technologies discussed so far, you use objects to work with
data under ADO.NET. It's important to remember the purpose of ADO.NET as you look
through the list of objects. These objects focus on the needs of distributed applications—
you'll still use ADO or OLE-DB for LAN or WAN applications. The following list describes the
four objects and tells how you use them.

" Connection Every data communication requires a connection to a data source. A
DBMS manages the data source, and you must establish communication with the
DBMS before you can access the data. The connection process includes setting aside
resources for the data exchange and security issues such as user verification.

" Command The act of accessing data or making some other request of the DBMS after
you establish contact with it is a command. Many developers know something about
structured query language (SQL) commands, because SQL is the default standard for
most DBMS communications. When you work with ADO.NET, you can either process
the results of a command directly or place the results in a DataReader.

. DataReader The DataReader is a special type of object that provides read-only
access to the results of a command. You can read the data in a forward-only direction,
and your application must rely on client side cursors. The purpose of the DataReader is
to provide client side access to data in a disconnected scenario. In short, the client
doesn’t require access to the server to access the information.

" DataAdapter You'll use the DataAdapter to populate a dataset. It also updates the
data source as users make changes to the dataset. The DataAdapter enables you to
update information on the remote server, but requires special handling and a live
connection to the server. You'd use this object to upload new information a user creates
while working in disconnected mode.

ODBC .NET: Microsoft Breathes Life into an
Existing Technology

ODBC is the technology that Microsoft was originally going to leave out of Visual Studio

.NET. After all, the reasoning was that everyone should have moved onto something newer

and better. However, not everyone has moved to OLE-DB or ADO, not to mention their .NET

counterparts. After profuse screaming on the part of a multitude of beta testers, Microsoft

finally relented and provided us with ODBC .NET.

Note

The only problem is that you won’t see ODBC .NET in the Visual Studio
.NET package. Because ODBC .NET got a late start, you won’t actually see
it for a few months after the release of Visual Studio .NET. However, you
can find it at
http://msdn.microsoft.com/downloads/sample.asp?url=/MSDN-
FILES/027/001/668/msdncompositedoc.xml. You can also learn about the
latest ODBC .NET developments on the
microsoft.public.dotnet.framework.odbcnet newsgroup.

After you install the ODBC.NET provider, you'll find a new namespace on your system:
System.Data.Odbc. The new namespace uses the same four objects as ADO.NET, so you
have access to a Connection, Command, DataReader, and DataAdapter object. Working
with the namespace is similar to working with the two ADO.NET namespaces. However, you
have the same options that you would with any ODBC implementation. For example, you
can use Data Source Names (DSNs) to create a connection to a data source.

Windows supports three basic types of DSNs: User, System, and File. The User and System

DSN are essentially the same. However, the User DSN affects only the current user, while

the System DSN affects everyone who logs onto the current machine. The File DSN is a text

representation of a DSN. You can open a File DSN in a program like Notepad and see how

it's put together. The following sections show you how to create the three DSN types and log

the ODBC activities on your system.

Caution

You'll normally need to create an entry on the User DSN tab for single-
user databases and on the System DSN tab for machine databases.
Under no circumstances create an entry on both the User DSN and
System DSN tabs that uses the same name. What will normally happen
is that you’ll attempt to access the database remotely and get really
strange and inconsistent error messages from your server. In fact, the
ODBC applet is one of the first places you should look if you get strange
error messages during remote database access.

Working with User and System DSNs

Designing a database is the first step of any database application. You need to know how
you'll store and access data for your application. After you have a database designed, you
need to create an ODBC DSN for it. That's what we'll look at in this section. The following
procedure shows one technique for getting a data source configured.

1. Double-click the 32-bit ODBC applet in the Control Panel. (Some versions of Windows
use a simple ODBC applet if there are no 16-bit drivers installed on the current
system. Windows 2000 and Windows XP place the Data Sources (ODBC) applet in
the Administrative Tools folder.) You'll see the ODBC Data Source Administrator
dialog.

2. Click the Add button. You'll see a Create New Data Source dialog like the one shown
here:

http://msdn.microsoft.com/downloads/sample.asp?url=/MSDNFILES/027/001/668/msdncompositedoc.xml

Sbact a chever bor vibach you want 10 1t up 3 dada souce

Werion =
¢+ RO ET]
4.00E0N 3 00
Do i Wimrosoft dB e | dbl] & 00BN 8 00
Dol i Wit Esovel]” k] 4,00 BN 800
Ui dio Mimrosolt Pavades [db | 4.000B0A00
Ovreew par © Microsoft Wil Foedfse SO0 BN
Mciodoll Aot [ivvet [* 5] 4 NS00
Micsonodt Scoer-T reber §* mdb| 4 D0ENa M
ectecholt (8 ase Dieved §° lel] 4 (0 R0NS 00

szl B ace VFF Dt 1 il [[i,..“-"]ild

Tip You can ensure that you're using the most current ODBC drivers
available by checking the Drivers and the About tab of the ODBC Data
Source Administrator dialog. These tabs contain the version numbers
of the various ODBC DLLs, the name of the vendor who created them,
and the name of the file as it appears in the SYSTEM folder. In most
cases, you'll be able to use the version number as a method for
verifying that your ODBC driver is up-to-date.

3. Choose one of the data sources. For this exercise, | chose an Access data source.
Click Finish and you'll see some type of configuration dialog like the ODBC Microsoft
Access Setup dialog shown here:

DDBE Meiosoll Accais Selup
Dista Souce Name: |
[Desciplion |
Cncel
[ratabace k]
Diatebae: Help
s | g | ou | cwma ||
Systermn [atatade
& Hong
€ Dabsbase
4I Hptorgs
Note If you select a data source different from the one I've chosen in this

example, the steps required to configure it will differ from the ones
shown here—each ODBC driver requires a different type of
configuration.

4. Type a data source name in the Data Source Name field. Make sure you choose
something descriptive but not overly long. | chose Address Database because Il
eventually create a link to a simple Address database.

5. Type a description in the Description field. You'll want to make this entry a bit longer
than the previous one since it describes the purpose of your database. On the other
hand, you don’t want to write a novel the size of War and Peace. For this exercise, |
typed the following: This database contains a contact management list.

6. Click the Select button. You'll see a Select Database dialog where you can choose an
existing database. The example uses the MyData.MDB database found in the
\Chapter 07 folder of the source code CD. The ODBC driver will automatically choose
the correct file extension for you.

Tip

You don't have to design your database before you create a DSN for it.
Notice that the Access ODBC driver also includes a button to create a
new database. Most, but not all, ODBC drivers provide this feature.
Clicking this button will start the database manager application and
allow you to design the database. It's interesting that the Access
ODBC driver also provides options to compress or repair the database
from this dialog.

7. Choose a system database option. In most cases, you’ll choose None unless you
specifically created a system database for your application.

8. Click the Advanced button and you'll see a Set Advanced Options dialog. You won’t
need to modify many of the entries. However, it usually pays to add the guest user
name to the Login Name field and the guest password to the Password field. This
enables a guest to access your database without really knowing anything about the
access at all—not even the name the guest used to log in.

Sed Advanced Oplion: [x]
Dot Auithiorizatin l__
i

L]

E sdmradedinaf 0l)

FIL M5 A

IeckciCoomits i
sk ol DraladtDin li

Tip

You may want to look through the list of advanced options provided by
your ODBC driver for potential areas of optimization. For example, the
Access ODBC driver allows you to change the number of threads that
the DBMS uses. The default setting of 3 usually provides good
performance, but you may find that more threads in a complex
application will speed foreground tasks. Using too many threads does
have the overall effect of slowing your application down, since

Windows uses some processor cycles to manage the thread overhead.

9. Click OK once you've set any advanced options that you need.

10. Click OK again to close the ODBC Microsoft Access Setup dialog. You should see
your new entry added to the ODBC Data Source Administrator dialog. If you need to
change the settings for the database later, simply highlight it and click Configure.
Getting rid of the database is equally easy. Just highlight the DSN and click Remove.

Working with File DSNs

You may have noticed a problem with the example in the previous section. It works fine if
you want to configure every machine on your network individually, which probably isn’'t your
idea of a good time. There’s another way to store the information needed to create a data
source: the file DSN. That's what we'll look at in this section. The following procedure will
give you a general idea of how to set up a file DSN.

1. Double-click the 32-bit ODBC applet in the Control Panel. You'll see the ODBC Data
Source Administrator dialog. Select the File DSN tab. The first thing you'll need to do

is choose a place to store the DSN information. The example uses the \Chapter 07
folder on the source code CD.

2. Click the Look In drop-down list box. You'll see a list of directories and drives for the
current machine. You can use any storage location for the DSN. | normally choose
the database storage directory on the network. Using UNC (universal naming
convention) directory paths means that everyone will access the DSN file using the
same path. Note that you’ll need to click Set Directory to change the default directory
to the one you select using the Look In drop-down list box.

Tip The Up One Level button (next to the Look In drop-down list box)
works just the way it does in Explorer. You can use this button to go up
one directory at a time. Eventually, you'll end up at My Computer and
see a listing of all the drives on your machine.

3. Click Add. You'll see a Create New Data Source dialog.

4. Choose one of the ODBC drivers in the list, then click Next. For this example, | again
chose Access. You'll see the next page of the Create New Data Source dialog. This
is where you'll choose a name and storage location for your data source. Click
Browse and you'll see a “File Open” type dialog box where you can choose a storage
location. Type a filename and the ODBC wizard will automatically add DSN as the
extension. | chose SAMPLE.DSN as the name for the DSN file in this example.

5. Click Next and you’ll see a summary dialog like the one shown here. It tells you the
parameters for the DSN you're going to create.

6. Click Finish. At this point, you'll see a modified version of the ODBC Microsoft Access
Setup dialog. You won't be able to add information in the Data Source Name or
Description fields as we did in the previous section. However, everything else will
work the same way as before.

7. Make sure you enter the name of a database by clicking the Select button and then
choosing the database you want to use. (You can also click Create if you want to
create a new database.)

8. Click OK when you complete the configuration process. You'll see a new DSN file entry
in the ODBC Data Source Administrator dialog.

Unlike the previous DSN that we created, this one actually creates a file that you can view
and edit with a text editor. Figure 7-1 shows what my file looks like. Notice that it follows a
standard INI file format. You can see the [ODBC] heading at the top. All of the settings |
chose follow. This file will allow me to choose a data source from Visual C++, yet it's very
easy to transfer from machine to machine. | could even change the locations as required
during the installation process—this is a real plus when you don’t know what kind of setup
the user will have.

i) SAMPLE. DSH - Motepad
Fie Edi Fomast Help

[ooEc] |
DRIVER=Microdofe access oeiwer [v.mdb)

ULD=adein

usercommiTSyncayas

Thrgads=3

SafeTrins act ions=d

FageTimeouts=5

M ECanRows =8

paxBuffergize=20438

FIL=MS ACCO5S

D fverId=281
pefaultoir=p: 0083 - Source Copde’Chaprer OF
DOC=0Y00ES - Spurce CodewChaprer 07 \MyData.mdb

Ly of4
Figure 7-1: The SAMPLE.DSN file contains all of the settings required to use my
database from within Visual C++.

Logging ODBC Transactions

It's always nice to have a log of whatever you're doing when it comes time to debug an
application. The ODBC Data Source Administrator dialog offers this capability as well. You
can choose to track the various transactions you make to a database through ODBC. Of
course, these logs can get rather large, but you won’t be using them all the time.

All you need to do to start logging transactions is open the ODBC Data Source Administrator
dialog by double-clicking the 32-bit ODBC applet in the Control Panel. Choose the Tracing
tab. You'll see a dialog like the one shown next:

7 DDBC Dala Seuics Admerstlnaled

User D5H | System DSH | File D58 | Drrvers Titeeng | Connection Pocing | dbout |

Yhen to race

| St Tracing Mow | St Vg Thuscdiy Sonsbres |
Lexg tio Pt Cussienn Tracw DL
iﬁ- 06 J-rlull.v.]

Browes Swebact DL

DOBC bacing slows wou Bo crests iogs of the caly b DDBC devers ‘01
i l.rlrb:.' uppont pearporned of by sid pou in delbanong pour spplcation:
A Wisusl thudks st eriables Micioiol isual shuds radeg b ["IE"

DK i Cancal Higlgs

Note
You might see variations in the content of the Tracing tab based on the
version of Windows that you use and the Visual Studio features you install.
The version shown is for Windows 2000 with Visual Studio Analyzer
installed. In some cases, you'll see three radio buttons that determine when
you'll trace the ODBC calls. The default setting is Don’'t Trace. You'd select
All the Time if you were going to work on debugging a single application.
The One-Time Only traces the ODBC calls during the next connection—
tracing gets turned off as soon as the connection is broken. This is a good
selection to choose when a user calls in with a specific problem. You can
monitor the connection during one session and then use that information to
help you create a plan for getting rid of the bug.

The trace won't start automatically. You'll need to click on the Start Tracing Now button. The
pushbutton caption will change to Stop Tracing Now as soon as tracing starts. Click on the
button again to turn tracing off.

The only other setting that you’ll need to worry about is the Log File Path. ODBC normally
places the transaction information in the SQL.LOG file in your root directory. However, you
may want to place the logging information on a network drive or use a location hidden from
the user. The default location normally works fine during the debugging process.

Note
Unless you want to create your own logging DLL, don’t change the setting in
the Custom Trace DLL field. The DLL listed here, ODBCTRAC.DLL, is

responsible for maintaining the transaction log.

When Should You Use ODBC, ODBC .NET, OLE-DB, ADO, or
ADO.NET?

It's never easy to figure out which database connection technology to use, especially when
the usage environment changes constantly. You may need a common utility to handle more
than one database type; part of your data may appear on a local hard drive, part on a
network, and still other parts on a mainframe. Even the products that a client normally
installs on his or her machine may make the choice more difficult. For example, the level of
ODBC support you can expect might rely on which version of Microsoft Office is installed,
since this product does provide ODBC support. You'll also find that ADO classes offer more
objects and methods than ODBC classes do. ADO may offer some features you absolutely
have to have in your program—for example, you'll find that both OLE-DB and ADO support
DFX_Currency, which has no counterpart in ODBC—but you'll pay a penalty in speed to get
them.

There are a few general rules of thumb you can use for making the choice between OLE-DB
and ODBC. Since ADO is actually a wrapper for OLE-DB, these same rules apply to it. You'll
find the .NET choices make good sense as extensions to existing technology. The following
list provides some guidelines you can use to help decide between the various database
technologies.

" Non-OLE environment If you're trying to access a database that already supports
ODBC and that database is on a server that doesn't support OLE, then ODBC is your
best choice.

. Non-SQL environment Microsoft designed ODBC to excel at working with SQL.
However, many vendors provide ODBC drivers now, making ODBC the best
compatibility choice. If your vendor does supply an OLE-DB provider, OLE-DB might be
the better choice, especially for new coding projects.

" OLE environment The choice between OLE-DB and ODBC may be a toss-up when
looking at a server that supports OLE. Normally, it's a good idea to use ODBC if you
have an ODBC driver available; otherwise, OLE-DB may be your only choice.

. Interoperability required If you need interoperable database components, OLE-DB is
your only choice. OLE-DB provides a broad range of low-level methods that enable a
developer to create robust applications that don’t rely on DSNs and offer maximum
flexibility.

. Distributed application environment If you need to service users on the road, you
have two good choices. Use ADO.NET if you're working with new code and want to gain
the maximum benefit from new .NET Framework features. On the other hand, use
ODBC .NET if you need to update older code or require maximum compatibility with
existing databases.

" Extended application environment Many companies today find themselves with a
fully developed database application that works fine on a LAN, but fails when working
with partners over an Internet connection. Because the Internet has become such a big
part of business-to-business communication, you need to use matching technologies to
extend the existing application. For example, you'd use ODBC .NET with an application
that already uses ODBC.

Other issues tend to compound the problem, or, at least, remove a handy rule that you can
use to differentiate the two technologies. For example, ADO and ODBC have many of the
same features in common. One of these is that Visual C++ allows you to access either
technology directly. This means you'll always have full access to every feature that both
ADO and ODBC can provide. (Yes, this really is a plus, but it's also a minus because the
lack of differentiation makes it difficult to make a decision based on feature set alone.)

Some of these technological similarities actually help you move your application from ODBC
to ADO, or vice versa, if you make a wrong decision. Both technologies rely on database
objects to manage the underlying DBMS, while recordset objects contain the results of
queries made against the DBMS. In addition, both ODBC and ADO use database and
recordset objects with similar members. Even though you'll need to make some changes to

class and member names, you'll find that the code for both ODBC and ADO programming is
remarkably similar.

There’s one place where you absolutely can’'t use ADO. If you need 16-bit data access, ADO
is out. You'll have to use ODBC whether you want to or not. However, very few people are
even working with 16-bit databases anymore. Most of your new projects will use 32-bit
interfaces, which means you’ll have a choice. Since old projects already have a data access
method embedded in the code, you really won't need to make a decision there either.

One area where ODBC falls short is that you can't follow transactions as precisely as you
can with ADO. When using ADO you get workspace-level support for transactions. ODBC
only offers transaction support at the database level, which means that you could be tracking
transactions from several different workspaces at once. (This lack of functionality makes
debugging very difficult, and it could cause other kinds of problems as well.)

Database Tools You Should Know About

Developing database applications means working with several machines, checking the

operation of components from remote locations, and dealing with a level of complexity that

can turn the developer’s hair white. It pays to know about every tool that Microsoft provides

to make the job of creating database applications easier. This section of the chapter

discusses the tools that many developers find useful. These tools will likely appear in the

Enterprise Architect version of Visual Studio .NET. They also appear in the Platform SDK,

and you can download them separately from several places on the Internet.

Browser
Alert There are a number of places to download the Platform SDK.

However, one of the easiest places to get it is the Microsoft
Platform SDK site at
http://www.microsoft.com/msdownload/platformsdk/sdkupdat
el. This site allows you to download just the Setup program first.
After you make choices as to which Platform SDK elements you
want to install, the Setup program will download them from the
Internet for you. You can also order the Platform SDK on CD from
this site. Those of you who want the entire SDK will need to go to
Microsoft's FTP site, which is currently
ftp://ftp.microsoft.com/developr/PlatformSDK/. Be prepared for
a very long wait if you choose more than just a few Platform SDK
elements and you have a dial-up connection. A full download will
take approximately 36 hours with a 56 Kbps dial-up connection.
You can also get the Platform SDK with an MSDN subscription,
which is probably the easiest method if you don't have a high-
speed Internet connection.

Local Test Manager

Local Test Manager allows a developer to perform conformance testing on a database
provider using any of a number of languages. A database provider creates a buffer between
the DBMS and the client application. For example, when you use OLE-DB, a database
provider translates the calls between your client application and the DBMS on the server.
The DBMS sees your generic OLE-DB API calls as specific commands to perform various
types of work. The Local Test Manager only checks database provider conformance—it
won't perform tests like stress analysis or performance monitoring; you'll need other utilities
to perform that kind of testing.

http://www.microsoft.com/msdownload/platformsdk/sdkupdat
ftp://ftp.microsoft.com/developr/PlatformSDK/

Normally, you'd need to create your own test suite DLL for Local Test Manager. However,
the version of Local Test Manager that comes with the Platform SDK also includes a sample
test suite DLL that you can use. You'll need to load this test suite the first time you start
Local Test Manager using the Tests | Tests | Add command. You'll see an Add Test Module
dialog box (essentially the same as a File Open dialog box). Find the QuickTest.DLL (could
be listed as QuikTest.DLL) file in the Platform SDK’s Bin or the \Program Files\Microsoft
Visual Studio.NET\Common7\ Tools\Bin directory, then click Open. You'll see Quicktest
added to the Default Suite entry, as shown in Figure 7-2.

e Miciosolt Local Tes! Manages = (O]
Fie Aun Tesy Akae Took Help

ole|e| 4B =iz 2 e =]
[Dl d i I =
= Defaultsuite
r Cakfit
TODRaSource
1) 106 Irtiakos: [riakiss
§2) T8 [retiakoe: Lindndtishos
C3) DBt niauor
(4} IDBProperthes: GetPropedties
L5 DO roperbes: ;batProperbess il Ly
6] TDEPr opertigs: (GetPropesbylnla
{7} IDEFroperties: GatPropertydnfol sl
LB} IDERropertied: ; SetPropsitng
(5 Gat properties befors intiakestion
{10 Eeliirfo Gatkepwords
{1} B0Edndoc Gt ber allnd o
{12) iSourcesRoerset
113) Mwatalrdvions: - Cr naleDE Nl anis
£14) Mt alnibikes: Gatllat aSorce
15) Wi - b Olaga D
1) DPersbiFle GehTlars Il
(17) PogitFle: hilwty
115) ParptFle: Save
£15) Persistfile:; SayveComplsbed
R Bt e o o
(2] Pershtile GeblunFibe
T Samiian
TR et ot ipedat sabis:
TR st ipedabesble
T oararuared
TCieheribiects
TCErader
TiRow

e [Preae: |

L1 _lJ
St |l - 11 websched J00H00H00E F
Figure 7-2: You'll need to select a suite of tests to run against the database provider.

You can expand the Quicktest entry to see what kinds of tests it will run. The tests are
grouped into categories, then into individual tests. The test entries include an interface name
and method within that interface, as shown in Figure 7-2. What this mean is that selecting a
test will check the specified method within a given interface. For the purposes of this
example, I've chosen to run the TCDataSource group of tests.

Selecting a group of tests is only the first step in the process. You'll also need to select a
data source. Click the Create a New Alias button and you'll see an Alias for MSDASQL
dialog box like the one shown next:

Al Por MSDASIRL

Froreider EEcmﬂaﬂlsl

Mome: [kt lor MEDASTL
Provades - [HSDASTL =] Danie i
| iz ation Sorng

=

=
Clergs Comnterst Meschire Hame
| cLscr_miPROC_SERVER B[

ol Caeel | mee |

To perform a simple test, all you need to do is choose a provider and create an initialization
string. Click Data Link and you'll see the Data Link Properties dialog box. The first step is to
select a provider from the list on the Provider tab. Notice that one of the entries will allow you
to test the provider for Active Directory. I'll be using the Microsoft OLE DB Provider for SQL
Server provider for this example.

Click Next and you'll see a list of connection items for the provider. To create a basic SQL
Server connection, you'll need to choose a server, supply some type of username and
password (or use Windows 2000 integrated security), and select a database from the list of
databases available on the server. | chose to use the Northwind sample database that
comes with SQL Server for demonstration purposes, but you could use any database
desired. Click Test Connection to ensure you actually have a connection to the server, then
click OK. Be sure you select the correct provider in the Alias for MSDASQL dialog box. In
this case, I'll use the SQLOLEDB provider. Click OK to close the Alias for MSDASQL dialog
box.

At this point, you can run a test on the provider of your choice. Make sure you check both a
provider to test and a series of tests to run. Click the Execute Selected Tests button. If the
test is successful, all of the checked items will turn green. You'll also see a report similar to
the one shown in Figure 7-3.

B P - Easks - Al T -
olele| S5 oi2a] 2 Rl 1]
ek in | 2|
Lo Guite Dl Qlsited fun Pk (2 035 08 1088 |
& Dol vats
+ (3 Cubaen 00 Provides SOLOLEDE & SEASOL Vi
T e
o et i L]
w= Jefroerinn
= e romrplriollL
s RS
M [P]
B hesfor MEDSOL. SQUOUEDH
Ll |

ate ke - U comcimd LD 0}

Figure 7-3: Output from the successful completion of tests on an OLE-DB provider for
SQL Server.

ODBC Test

You'll use Open Database Connectivity (ODBC) Test to check the compatibility and
functionality of the ODBC drivers and ODBC Driver Manager on a machine. The OdbcTE32
utility appears in the \Program Files\Microsoft Visual Studio .NET\ Common7\Tools\Bin
directory. This utility checks network connections, DBMS configuration, and other factors as
much as it tests the capability of the driver itself. So, for example, you could check the
driver’s ability to make a connection to a particular server and obtain data from the DBMS
installed on it. There are four different areas of testing or test configuration that you can
perform using this utility, as listed below.

. Functions A single ODBC command. This level of testing is good when you want to
check the compatibility of the driver. It allows you to check for the availability of
individual features.

. Function Tools One or more commands work together to complete a given database
task. For example, a full connect will test all of the commands required to create a
connection to a particular data source. This level of testing allows you to check the
ability of all of the database elements to work together to produce a predefined result.

Note
ODBC Test allows you to perform tests using ODBC 2.x or ODBC 3.0
commands. You can adjust the ODBC Test menus so that they reflect the
kind of testing you want to perform using the options on the ODBC Menu
Version tab of the User Options dialog box. Use the Tools | Options
command to display the User Options dialog box.

. Tools Configuration options within ODBC Test. These options allow you to change
application parameters, like the level of error reporting to use, or determine whether
ODBC Test automatically disables menu options that a particular driver doesn’t support.

. Auto Tests As with the Local Test Manager utility discussed earlier, you can create a
DLL for ODBC Test that will allow automated testing of the ODBC drivers and ODBC
Driver Manager on a machine.

Getting started with ODBC Test is relatively easy. All you need to do is click the Full Connect
button on the toolbar or use the Conn | Full Connect command to display the Full Connect
dialog box shown next.

R el u:ur;ln:.:mcel| H:hl

Data Sowce:
DDEC Behavio
Lo
ECDCMusnc -
e ODBC 20
M5 Access 97 Database " ODEC A0
Fueme Sample Database
Camzor Library
& Defauk
™ Uz If Mesded

Ussar ID: " Use ODBC
" Uze Drives
Patswoid

You can highlight one of the existing data sources, or leave the Data Source field blank, then
click OK. If the Data Source field is blank, you'll be required to create a new Data Source
Name (DSN) using the standard ODBC connection techniques (we’'ll discuss these
techniques later as part of the programming sections of the book). You'll see a display
similar to the one shown next once ODBC Test successfully creates a connection:

@ henw 1, hdbo 1: @Addiess Dstabase
hstmt 1: D00751 580 E

Full ConnactThafaul
Erne Aty SOL_ATTR_ODBC VERSION setto SOL_OW_ODBCI

Succasshill connactad o DEMN Address Databace

2] =

Once you have a connection in place, you can begin working with the database driver. This
includes using all of the predefined commands in the various ODBC Test menus, as well as
entering SQL statements in the upper half of the result window.
Ti
P The Platform SDK provides both ANSI and Unicode forms for the ODBC Test
utility. Make sure you use the right utility for the type of work that you're doing.
ANSI and Unicode support usually appear in separate drivers, which means
that any testing you perform for one driver won't necessarily reflect the
capabilities in the other.

In most cases, you'll combine a set of SQL statements and menu commands. For example, |
opened the Northwind database for this example, then executed a simple SQL statement
that selected all of the columns from the Employees table. (Just typing the SQL statement
isn’t enough; you'll need to click the Execute button, which appears as a button with an
exclamation mark on the toolbar.) After this, | used the Results | Describe Col All command
to display a list of the columns from the Employees table. Figure 7-4 shows the result.

S DAL Touh LAKEE] - [howes 1, Buin 1. @87 wof Comvmaiinrs 1)

Tl [l Bug Dev Coe Dwa Sl A Py Colviyy beiabe Touke lbeicer ik e
= =15 EEGE] FEEE] EE] 6 e sanrszrs -
[=R =
Solel | Employaen” =i

FHLOM Crrglrean

I'fibh'r'é' 7'-'4::"\'/\'/'6'rl'<'in'(::1'with ODBC Test often means combiniri"g SQL statements with
menu commands to achieve a specific result.

As you can see, ODBC Test could double as an SQL statement tester in addition to a utility
that’s designed to check driver compatibility. Since Visual Basic has extensive database
resources built in; you won’t normally need to use this utility while working with Visual Basic
directly. However, it could come in handy for other purposes.

The last step of every testing session is to clear all of your database connections. The
reason for doing this is simple. If you don't clear the connections before you exit the
program, there’s a chance that Windows or SQL Server won't release some resources. As a
result, continued testing could result in a large memory leak or other system problems. Just
use the Conn | Full Disconnect command to disconnect from a database session. The
connection window will disappear, indicating that ODBC Test has cleared the connection.

Rowset Viewer

The Rowset Viewer is yet another utility that allows you to work with a remote database from
your local workstation. However, in this case, it's more like a mini- design utility than
anything else we’ve looked at so far. In fact, you'll find that this utility provides you with just
about everything needed for any kind of database design work that you need to perform.

Using Rowset Viewer begins just like the other utilities that we've discussed so far. You need
to create a connection to the data source. However, there’'s a multitude of connection types
available for Rowset Viewer. For example, you can choose to enumerate the provider root to
determine which providers are available. The resulting table will provide you with the GUIDs

of the various providers installed on the current machine, along with other information you

can use to research the capabilities of a particular setup better. You can also work with the
root binder and with service components. However, we're going to look at data links in this
section, just as we have in other sections of the chapter so far.

To create a data link connection, you'll begin with the File | Data Links command. This
command will display a Data Link Properties dialog box. As before, you can select the
provider you want, then fill out the required connection information. I'll be using the Microsoft
OLE DB Provider for SQL Server in this section of the chapter and the Northwind database
as before. If the connection succeeds, then you'll see a command window where you can
enter SQL statements and perform other tests on your database. In most cases, an SQL

statement will generate a rowset that you can use for working with the data in the selected
table. Figure 7-5 shows an example of the Employees table in this utility.

o M it OLE (W] B i ol W s

Me Dgabmne focar Cowmad Poerel Piow [ne Todi Wiskoe Helgp

HE_;.'!M- [1] £ -_|='|J-c!1*\ |

T S T — T R

Fipmbendn | E~ptmee: | Ligriome [Cragme | T | Tactntoteny [Gty [fienfi e [e |
WG | e e T ekl TMGL. WO |
WiEE P e S I M 3

MRS 3 Lewsing g L. W T

SN Femmb Hagesd | [IE 10

e % Bwhon. Bewm B M 1 |

SR § fymm Habed . W P HEH) |

el G o £ W THOE THL. T |

T] Colohars L P 118 1 . |
£ el & Badamsi . dhvet B s PMEL M. PHos ;

sl B (180 | | Tt

Figure 7-5: Rowset Viewer allows you to manipulate the data in tables, or entire
databases if you want.

At this point, you may be wondering what makes this utility so important. The Rowset Viewer
will allow you to add or remove data from the table, but that's not where the real power of

this utility lies. Click the Get Schema Rowset button on the toolbar and you’'ll generate a list
of every table in the database. You can add new tables to the database using this table as a
starting point. In fact, you can generate a rowset for any database element and use the
resulting rowset to manage that element. Double-click any row in a rowset and you'll see a
details table that allows you to change the data in that row. Just click Set Data to make any
changes permanent.

We haven't even begun to look at the menu options. The Data Source, Session, Command,
Rowset, and Row menus across the top of the utility contain a list of interfaces associated
with that part of the database connection hierarchy. The interfaces will get enabled when
you've highlighted an object that they pertain to. Under each interface option is a list of
methods associated with that interface. You can use these methods to interact with the
database, tables, rows, and associated data. What this means is that you can test out coding
ideas in real time using this utility. Since you know the interface and associated method, you
can transfer what you learn right to the application code. The result of any command you
issue using the menus will appear in the Output window, along with any errors generated by
the use of the methods.

Table Copy

Have you ever wanted to test a new procedure, but didn’t want to do it on an existing table?
Table Copy allows you to create a precise copy of a table (or any subset that you might need
for testing purposes). Using a copy of the table allows you to test a new procedure using live
data, but without the hazards of damaging that data in some way. You'll find the Table Copy
utility in the \Program Files\Microsoft Visual Studio .NET\Common7\Tools\Bin directory.

As with every other utility in this section, you'll begin using Table Copy by creating a
connection to the data source. Once you've established a connection, you can create a copy
of any of the tables within the selected database. The following procedure shows you how.

1. Highlight a table within the database. The rows for that table will appear in the right
pane of the Table Copy utility, as shown next.

Hicigsoali DLE DB Table Copy - Shep 1 ol 4 E
Comnact I |'-|5|."-\$-'5L Murogoit OLE DB Provides foe GDBC Diveees j
MESDAEOL Tent Comnechion 2 Micieolt SUL Serves DA D03 HSDASILDLL 027077120
=13 Nothesnd =} Coblarns | Tupe | Ordnal | Son | Freceson | Scals | ISFEED | 22
= da) BEmel DO 1 4 T8 ®% TAUE F
B SSTEM TARLE Bplae. DB 2 0 W ®5 OFASE F
; 5‘5‘_‘Ew BiFsl DB 3 10 # M OPASE F
Cabgoie: %
i B Tee DE. 4 e R X5 FASE R
g l:;';mg::; "":" ByTee OB 5 &5 ® =5 FMSE F
0 Cutbomer i (= ST 6 3 3 TAUE F
T CiMee DB. 7 B n 3 TAUE F
I Ergloyeelenboins || 445. DB & - - ¥ FALSE F
B0 Ordes Dokl oy DB 9 15 = 25 FASE F
0 Onders MAsg. DB. 1 15 5 25, FALE R
@ Poosducts B Pt DA 11 L[=5 FMSE F
[Fegon L|EyCon DA 12 16 55 B FALSE F
| v R o 1 I _1J
o Ernpoaases, 198 Codimdz| Himd = Carcel

2. Highlight the columns that you want to copy to a new table. Table Copy doesn't force
you to make a precise replica of the original table, which is handy when you need to
test a procedure on only a subset of the data.

3. Click Next. You'll see a list of indexes associated with the current table. Notice that
Table Copy differentiates between primary keys and foreign keys. It also tells you
about any index settings that you need to know about in order to make a decision.

4. Select one or more of the indexes to add to the copy of the table.

5. Click Next. Table Copy will ask you to provide a destination for the new table. You'll
need to create another connection if you want to copy the table to another database.
Otherwise, you'll need to supply a new table name for the copy.

Tip

Table Copy doesn't restrict connections to other kinds of databases. In
other words, you could theoretically use Table Copy to move tables
from one DBMS to another. Obviously, there are situations when this
won't work because the two databases have incompatible data

formats, and you'll experience some level of data loss during the
transfer. It pays to check for incompatibilities before you use this utility,
but Table Copy does offer one solution to a problem that plagues

many developers.

6. Select another connection. Change the target table name if necessary. Make sure you
provide either a unique connection or a unigue table name, as a minimum, or the data

transfer will fail.

7. Click Next. You'll see an options dialog box like the one shown next. This dialog is
where you'll choose the options that Table Copy will employ to make the transfer. For
example, you can choose to include all data rows or just some of the rows (enough
data to perform the test).

Meciosall DLE DE Table Copy - Shep 4 of 4
Cienie Cons [afS P
it % AN s I Sk S0L splemmnis
F Inchesss
i R
' Prissy Kess .
Frin ELOE Codsrrst
I IR s [Irenedhate] A7 |5 pepatribind 5 beam
0 Iiebailsey [Budlaind] A% |dld Gité
& Paarlists 00
10
Selact Datsed Optors o the Cope £ Back i 5 Cancel !

8. Select options as needed to complete the table copying process.

9. Click Next. You'll see a final output dialog box that shows how the data from the
source table will get mapped into the target table. Normally, this table will show an
exact copy when you use the same DBMS for both source and target table. However,
you’ll want to check it carefully when the source and target DBMS aren’t the same.
Since DBMS rarely provides the same level of data type support, you may find that
some data is compromised due to data translation.

10. Click Finish if you're happy with the target data and format. Otherwise, click Cancel. If
you select Finish, then Table Copy will create the new table for you.

An Overview of Visual C++ Classes

Any discussion of creating database applications in C++ will eventually get to the classes
you need to know about in order to actually do something. Each class performs a very
specific task, so it's important to know which class to use and where to use it. The overall
goal of all the classes is to get specific data from the server and display it on your screen or
output it to your printer.

The first class you need to know about is CDatabase (ODBC) or CADOConnection (ADO).
The objects you create with these classes allow you to gain access to the data within the
database. You'll either create a pointer to a particular record or download an entire query;
the database object creates the connection that you'll need. What kind of data access you
get depends on whether you've created a form view (one-record display of all the data) or a
record view (a grid of all records matching a specific criteria).
Note
It helps to think of a database object as a pipe that will bring data from the
data well to your computer.

Once you've got a connection to your database, you'll need some kind of container to hold

the information it contains. That's where the CRecordset (ODBC) and CADORecordset

(ADO) classes come into play. A recordset holds the data that you'll eventually display

onscreen. It helps to think of a recordset as a container for holding the data in your

database. There are three kinds of recordsets:

" Table A table-type recordset represents the data in one table of a database. You can
do anything to this single table, including add, remove, or edit records.

. Dynaset You'll use a dynaset-type recordset when you need to use a query to extract
information from one or more tables in a database. As in a table-type recordset, you can
add, remove, or edit records in a dynaset-type recordset.

. Snapshot This is a static copy of the data contained in one or more tables in a
database. As in a dynaset, you'll use a query to extract the information. Unlike in the
dynaset, you can’t modify the contents of the records. However, you can use a
snapshot-type recordset to find data or generate reports.

You may have noticed that | mentioned the term “query” when talking about recordsets. A
query is simply a question. All you're doing with a query is asking the database to provide
you with a set of records that meet specific criteria. When using ODBC, you'll rely on
CRecordset class data members to change the query for the records that you want to see.
ADO is a little different. You can use the CADOCommand class to create special queries or
the CADOConnection to perform standard queries. CADOCommand is a lot more flexible
than CADOConnection. You can use it to perform a wide variety of tasks with the database.
For example, you can use it to manipulate the structure of the database or perform other
administrative tasks.

The final set of classes we’ll look at in this chapter are for actually viewing the data once you
have it. The CRecordView (ODBC) and CADORecordView (ADO) classes allow you to
actually see the data you've collected. Essentially, all this class does is move the data from
the recordset object to controls on your dialog or window. You'll also use it to monitor when
you've reached the beginning or end of the recordset.

Chapter 8: Building Unmanaged Database
Applications

Database applications come in a variety of sizes and types suited to meet specific business
and personal needs. For example, I've created small database applications to manage my
contacts and to keep track of how | spend my time during the day. These applications are
simple and perform a single task well. Inventory management and other development
projects I've worked on are much larger and more complex. In short, database management
projects encompass the broadest range of any application you might develop.

Chapter 7 provided you with a very brief overview of the database technologies included with
Visual C++ .NET and discussed the tradeoffs of using each database technology in an
application. This chapter will use those technologies to demonstrate how you can create
various database projects using Visual C++. Each of the examples in this chapter relies on a
different technology to perform its work.

Application Compatibility: Moving from Visual Studio 6.0

Many of the small utilities and other programs that | worked with in Visual Studio 6.0 moved
to Visual Studio .NET without too many problems. Unfortunately, | can’t say the same of the
database applications | created with Visual Studio 6.0. Moving these older applications to a
clean machine with Visual Studio .NET meant a lot of additional work. It also seems like
Microsoft went out of its way to ensure you'd pay a big price to use Visual C++ .NET with
your old database applications. The following sections provide you with some tips on fixing
common problems with older database applications.

Application Can’t Find the Provider

The first thing | noticed is most database applications compiled with Visual Studio 6.0 won't
even start. Microsoft has updated the providers in Visual Studio .NET, which means a clean
machine won't have your old Visual Studio 6.0 provider installed. If you see a missing
provider message when you start the compiled application, determine whether you want to
use a new provider (the feature and bug fix solution) or install the old provider (the
compatibility and quick fix solution).

Project Doesn’t Open Correctly

Another problem will occur when you open the project for the first time. You’'ll want to convert
it to Visual Studio .NET format—that's the automatic step. However, the first time you try to
open a form with Visual Studio 6.0 controls, you'll see an error message stating the controls
are no longer installed on your machine. That's right, Visual Studio .NET lacks direct support
for the controls found in the previous version of the product. To restore support, you need to
follow these steps:

1. Copy the controls from your Visual Studio 6.0 disk. You can perform this automatically
by starting Setup and choosing only the ActiveX option. However, the best way to
ensure you get only the controls you want and maximum compatibility is to copy the
controls manually, then register them on your machine. Use the REGSVR32 <Name
of OCX> command to register the controls. Don’t copy the DBGRID32.0CX file to the
System32 folder or register it.

2. Locate the \Extras\VB6 Controls folder on your Visual Studio .NET distribution CD
(Disk 4 for the Enterprise Architect version). In this folder, you'll find DBGRID32.0CX,
README.TXT, and VB6CONTROLS.REG.

3. Review README.TXT for any important information.

4. Copy DBGRID32.0CX to your System32 folder. Register the new OCX using
REGSVR32 DBGRID32.0CX. Make sure you don'’t register the old version.

5. Double-click the VB6CONTROLS.REG to enter the licenses in your registry.

At this point, you should have full access to the components in your Visual Studio 6.0
application. However, if you try to compile your application at this point, it will likely fail.
Microsoft made some changes to the MFC classes that cause just enough problems to make
life interesting. One of the most common changes is the move of CRecordset from a MFC
class to an ATL template. You'll need to convert the CRecordset entries in your application
header file to a template form like this: virtual CRowset<>* OnGetRowset(). The
corresponding OnGetRowset() code also changes to look like this:

CRowset <>* CADOLVi ew. : OnGet Rowset ()
{

return m pSet->Get Rowset Base() ;

}

After the application compiles, you'll likely find that it still won’t run properly. Visual Studio
.NET includes more code checking than Visual Studio 6.0 did. Consequently, you'll find that
the application will generate more ASSERT error messages than ever before. The additional
ASSERT error messages are actually a good feature of Visual Studio .NET because they
help you locate marginal code that may have generated intermittent or difficult to find errors
in the past.

Working with Grids

Working with a grid view in Visual C++ .NET is problematic under any condition. Put aside
any thoughts you might have had about using the Microsoft DataGrid Control and ADO Data
Control from previous versions of Visual Studio. Microsoft doesn’t even include them as part
of the Visual Studio .NET package. With a little trickery, you can install the controls from
Visual Studio 6.0 and add them to your project (see the “Project Doesn’t Open Correctly”
section for instructions). However, these two controls won’t work with Visual Studio .NET in
most conditions, and neither will any of your old projects that rely on these controls. In short,
you need to redesign your existing applications to use a new technique.

The source code CD contains an example in the \Chapter 08\NoGrid folder that
demonstrates the problems with data grid controls. The example will make it easier to
diagnose problems in your own code. When you first start this application, everything will
look fine. The grid will contain the data from the Food.MDB database on the source code
CD. However, you'll notice that the upper-left corner of the grid is blank, as shown here:

i Gind Fadae Demonsdation

Any attempt to move the cell pointer will result in an error message. In addition, when you
close the database, you'll receive another error message. Finally, in some situations, the
problem is severe enough to cause damage to your database. Following is the message that
you'll see when the application attempts to write a NULL value to the database.

W borsci skl vl el

..E it 0 Macamot Aescmas v, T fincd Fioads Frod_ (1 carrot contr a Hul viskar bz dura tha Flaguied prgiety b fi

Tkl b Treile Erd vk i s i

Don't try to debug the application at this point, unless you're working with scrap data you
don't care about losing. Generally, the application won’t work no matter how much effort you
put into it. The underlying problem is that Microsoft has changed certain data types and
didn’t design the older controls to work with these new data types.

The only grid at your disposal is the DBGrid Control. Unfortunately, Microsoft designed this
control to work with Visual Basic, and using it within Visual C++ is difficult, to say the least (it
is possible with a lot of coding). The end result is that you can’t create a pure unmanaged
database application in Visual C++ that uses a grid view without a lot of effort. Hopefully,
Microsoft will receive enough requests to warrant fixing this hideous problem, but in the
meantime, your best option for complex unmanaged database applications that require a

grid view is to keep them in Visual Studio 6.0.

Writing an OLE-DB Application

OLE-DB is one of the latest in a long string of database technologies that Microsoft
introduced over the years. For Visual C++ developers, OLE-DB is the latest product to use
for unmanaged applications. We discussed the theory behind this technology in Chapter 7;
Chapter 9 will show you how to create managed code using ODBC .NET and ADO.NET.
This chapter shows you how to create an unmanaged application using OLE-DB that
includes a form view and printing. As mentioned in the “Working with Grids” section, you'll
experience significant problems working with grids in an unmanaged environment in Visual
Studio .NET.

We'll also discuss some of the issues regarding OLE-DB in this chapter. For example, unlike
ODBC, you don’t use the DDX_FieldXxx functions to provide data exchange between the
controls on the form and your database—we’ll use the DDX_Xxx functions to move data
between the database and controls instead. These differences between ODBC, DAO (Data
Access Objects), and OLE-DB are important if you plan to move from one technology to
another in order to improve the flexibility or performance of your applications.

Browser

Alert You may find that you want some additional training once you get
done reading this chapter. There are a lot of places on the Internet
that provide training for using Visual C++ with OLE-DB, OLE-DB,
DAO, and ODBC. For example, you'll find that Universal Software
Solutions at http://www.unisoftinc.com/courses/ provides in-
depth courses on using Visual C++, relational databases, and
newer Microsoft object technologies like DCOM and COM+.
Another good source is DevelopMentor at
http://www.develop.com/. DevelopMentor offers a variety of
courses on both object technology and Visual C++ (including
various forms of database access). This company used to offer
some DAO-specific classes but have since dropped them.

Creating the OLE-DB Project

This section of the chapter shows how to create the OLE-DB Project shell. Setting up a
database application is only slightly more complex than creating other application types.
However, you do need to perform a few special tasks to get a good start on your application.
The following steps show you how.
1. Create a new MFC application named OLE-DB. You'll see the MFC Application Wizard
dialog.
2. Select the Application Type tab. Choose the Single Document option.
3. Select the Database Support tab. You'll see a dialog box similar to the one shown here
(the screenshot shows the Database View Without File Support option selected—
normally the tab has the None option selected).

MFC Aggcation Wiznd - ADT

Dat sl Support e T Ta
Spedly detabase supgor?, inchudng oy dats seusce.

I ——— F Gorerste pivbtod detshase tiss
O Noran -
" Hasder Flax grly

o Duahain ysee withouk Fils suppant
" Dfabias views with Fls supgort
=

& CHE 08

Ll 1=

Uiz Inbsilace Fastures
D soaroe

Aadvarded Faatires [y

el ie] Cliiind

Pineth I oo I sl i

4. Choose Database View Without File Support from the list of options. Now we need to
choose a data source for our application. Remember that OLE-DB uses a provider in
place of the mechanism used by ODBC; therefore, we have no need for a DSN.

5. Click Data Source. You'll see the Provider tab of the Data Link Properties dialog. We’'ll
use this dialog to choose the data source and determine how we’ll access it. Since
we’re using an Access database for this example, we’'ll work with the Microsoft Jet 4.0
OLE DB Provider (working with the other OLE-DB providers is about the same). You'll
go through the same steps listed here, but the entries that you'll be required to make
on the various tabs will vary by provider. For example, SQL Server will require you to
enter a server name along with other connection criteria, like the type of security that

http://www.unisoftinc.com/courses/
http://www.develop.com/

you prefer to use when accessing the server. The Microsoft Jet 4.0 OLE DB Provider
requires the least information for gaining access to the database.

6. Choose the Microsoft Jet 4.0 OLE DB Provider option, then click Next. You'll see the
Connection tab of the Data Link Properties. This tab is where you specify the location
of the database you want to access, along with a username and password.

7. Type the full path to the database, which is \Chapter 08\Data\Food.MDB in the
example. (You can also use the Browse button to locate the database on your hard
drive.)

8. Type a username and password in the appropriate fields. Neither value should be
required for the example database.

9. Click the Test Connection button. You should see a Test Connection Succeeded
dialog if you entered the information into the Connection tab properly. If you don't see
the dialog, make sure you have all of the right values. More often than not, the
problem is a mistyped password (something that's easy to do because Visual C++
replaces the password with asterisks).

10. Click OK. You now have a connection to the database that doesn’t rely on a DSN.

11. Click OK to close the Database Options dialog. You should see a Select Database
Object dialog like the one shown here. As you can see, you can choose from Views,
Tables, or System Tables. (Note that this is an improvement from the previous
version of Visual C++, in which the dialog contained only table names.)

Select Dalabaes (Mhect

= .ﬁu

B FoodDudes

= [P Tsbies
0 Fooks
B Onders

= [P Sysheen Tshisr
Bl M5sACE:
B MEwmibsects
B M5mGuss
B MSwmFeshonkps

Cancal

i

12. Highlight the FoodOrders view. You could have also selected a table. However, you'll
normally use a query to access the contents of a database so that you can get just
the data you want and in the order you want it. Click OK.

13. Select the Generated Classes tab. You'll see a dialog similar to the one shown next.
There isn’t anything to change on this dialog, but it's important to verify that the
wizard has chosen COleDBRecordView in the Base Class field. This class will
provide you with the functionality needed to make viewing your database easier.

MFC Agplication Wizad - Al

Gerwrated Classes FPATER
Rirvaew gerseraled dadsed ahd sgedly base dladsed For yur apglabion.

Sapeclacw Pet v Ce o pli e

Fadvariind Foatirss

14. Click Finish. Visual C++ will create the new project for you.

Designing the Form View

It's important to remember that the document/view architecture of Visual C++ consists of two
elements. The document is the data that you want to display, while the view is the
presentation of that data. Consequently, you can create multiple views for a single
document. In many cases, database management programs rely on this behavior to present
the user with both an overview and the details of a database. With multiple views, each view
can concentrate on a particular display feature. The form view of a database application
contains the details of a single database record. It enables the user to view the details of a
record without resorting to odd display manipulations. Complex database applications will
often nest form views, with each view presenting more detail than the last.

Figure 8-1 shows the form used for this example. The IDD_OLE-DB_FORM contains fields
for a single customer entry in a fictional database (FOOD.MDB). This database consists of
two tables: Foods and Orders. The Food_ID field links the two tables. The example relies on
a composite view of the two tables called FoodOrders. You can see all of these details by
looking at the database on the source code CD.

[T 0Lk 6 .0c 1DD_..B_FORM - Diskea) [N T

| [T T i i i i i 5

[Pedm ey

=] Lo et

& e Saarapie gk baor

T T [

Dy [.

Figure 8-1: IDD_OLE-DB_FORM shows a composite view of the two tables in the
example database.

You'll need to add member variables for each of the database fields in Figure 8-1. Do this by
right-clicking the control, then choosing Add Variable from the context menu. You'll see an
Add Member Variable Wizard similar to the one shown here:

Aidd Memsbar Vaiable Wizad - OLE-DE

Whelooms Lo Uhe Akl Member Variable Wizard “
Thes wirard adehi & ravber variabls B8 vour clirid, dlna, or ufkeh. @

-
| = F Conirol varisbie
Yoriabin brpa: Crratral [Cibpgany:
f et I R T AT I (T —
Varidin nare: Contrel Lgpa: H
b _sharsg | ST |

[I

I i B =)

‘Cogrent (] rokation not regured):

After you display the wizard, you'll need to select the type of member variable and give it a
name. Table 8-1 provides a list of control names, types, and member variable names for
IDD_OLE-DB_FORM.

Table 8-1: ik

‘ Control Name ‘ Type ‘ Member Variable
‘ IDC_FOOD_ID ‘ Cedit ‘ m_foodID

‘ IDC_NAME ‘ Cedit ‘ m_name

‘ IDC_PRICE ‘ Cedit ‘ m_price

‘ IDC_PURCHASE_DATE ‘ Cedit ‘ m_purchaseDate

‘ IDC_QUANTITY ‘ Cedit ‘ m_quantity

Table 8-1: b
Control Name Type Member Variable

IDC_STORAGE_LIFE Cedit m_storageLife

The wizard creates a menu for you automatically. All of the options are common sense
additions, such as the ability to print database records (something we’ll discuss in the
“Adding Print Capabilities to Your Application” section of the chapter). Visual C++
implements some items for you automatically, such as the Print options on the File menu.
However, the print options won’t do anything—the wizard enables these menu entries and
then adds methods for them to your code.

The four Record menu entries (and associated buttons) perform many tasks automatically.
However, if you want special behavior, you'll need to override them. Essentially, the four
buttons will move the record pointer and call the appropriate methods to display the updated
information. You can’t add new records or perform other tasks using the defaults. We’'ll see
how to add new records as the section progresses.

Adding Display Code to OLE-DB

One of the essentials of programming with Visual C++ .NET is that, as with its predecessor,
Microsoft assumes nothing about your application. This way of thinking means you have to
add code for almost everything in your application, or else it won't do anything. The example
program won't display any information at this point, because we haven't defined a way to
exchange data with the recordset. The fields in the form and the fields in the recordset
require a connection in order to communicate. You'll need to modify the DoDataExchange()
method as shown in Listing 8-1.

Listing 8-1

voi d COLEDBVi ew: : DoDat aExchange(CDat aExchange* pDX)
{
/'l Verify that we're at the first record and not
/1 at an enpty record.
if (m_pSet->m FoodsFood_ I D[0] == 0)
m pSet - >MoveFi rst () ;

/|l Performthe default action.
CO eDBRecor dVi ew: : DoDat aExchange(pDX) ;

/1 Perform data exchange between the recordset and the

/]l text boxes on the form

DDX _Text (pDX, I DC_FOOD I D, CString(m pSet->m FoodsFood ID));
DDX_Text (pDX, | DC_NAME, CString(m pSet->m Nane));

DDX _Text (pDX, 1 DC_PRICE, Cd eCurrency(m pSet->m Price));

DDX_Text (pDX, | DC_PURCHASE DATE, Cd eDateTi me(m pSet -
>m Pur chase));

DDX_Text (pDX, |1 DC_QUANTITY, m pSet->m Quantity);
DDX_Text (pDX, |1 DC_STORAGE LIFE, m pSet->m Storage_Life);

/1 Added for variables for each text box.
DDX_Control (pDX, I DC_FOOD I D, mfoodlD);

DDX_Control (pDX, | DC_NAME, m nane);

DDX_Control (pDX, I DC_PRICE, mprice);

DDX_Control (pDX, | DC_PURCHASE DATE, m purchaseDate);
DDX _Control (pDX, | DC_QUANTITY, m quantity);
DDX_Control (pDX, | DC_STORAGE LI FE, m storagelLife);

}
T

This method performs four essential tasks. First, it positions the record pointer to the first
record if it isn’t already there. OLE-DB often presents a NULL record when you first open the
database (depending on the provider). This bit of code ensures the user doesn't see a blank
screen when opening the application.

The second task is to perform the default data exchange. This act populates the pDX
variable used for all other data exchange tasks. You need to populate pDX prior to
performing any other task in the application.

The third task is to exchange data between the database and the data form. Microsoft chose
not to update the DDX_Xxx() functions, so you will need to perform data conversions in
many situations. For example, notice we must convert the TCHAR of the database to a
string using the CString() class constructor. The same holds true for the price and purchase
database fields where we use COleCurrency() and COleDateTime().

The fourth task is to exchange data between the form controls and local variables. The
current method doesn't use these variables, but we’ll need them in other areas of the
example. It's normally a good idea to create member variables for the controls on the form.

Adding a Search Routine

Locating your data is at least as important as working with it in other ways (perhaps more
important). The wizard doesn't create a search dialog or other essentials required when
searching your database, so you need to create everything manually. Let’s begin with the
simple part of the new feature, adding a menu entry for searching the database. Open the
IDR_MAINFRAME menu resource and add a new Find entry to the Edit menu, as shown
here.

OLEDE Ve h | DLE-DEView cop | stihclib | OLE-DESeth | 2 ¢ %

e Ed@ Bectsd Yww Heb
Urds [eZ
Cud O
Copy DWhD
Pate Ly

Give the new menu entry an ID of ID_EDIT_FIND. You'll likely want to change the prompt for
this resource. Notice that Visual C++ assumes you want to find the selected text, but the
example needs to locate a given record. Unfortunately, you can’t change this property in the
Properties window—you need to open the String Table resource, locate ID_EDIT_FIND, and
then change the text associated with the prompt. This prompt includes two entries separated
by a newline character (\n). The first appears on the Status Bar, while the second appears
as balloon help. Here's an example of the String Table resource with a modified
ID_EDIT_FIND.

0 Vae | C |
10_FILE_MPEU_HLET e tes clocumsend
ID_FILE_MRL_FLE13 SRR Dpen thz docimend

ID_FILE_MRU_FILETE ST629 Oipen tis chocumend
ID_FILE_MRU_FILETS 57530 D this docusmend
ID_FILE_MARU_FALETE 5763 Dgen thiz documend

I0_ED4T_CLEARA EMEX Enmoe e pedechion'nE rase
ID_EMST_CLEAR_ALL 57633 Eimps éverplbwrainEias Al
ID_ED4T_COPY SP6M Copy e selection and pat it o the Cipbesdhnlogy

10 E0eE_CuT G753 Cuk the selecion o pul § on ihe Cipbosdinl
C_E0AT_PR&TE GI6HT lraet Cighond corierisuPatte N
10_EDET_REPEAT TR0 Repeal the sl potorhnfepest

ID_ED4T_REFLACE STE) eplsce specihic lest wh different bed nleplace
10_E0NT_SELECT ALl STE42 Tedecd e entie docurmesdnSelect A1

ID_EQHT_LINDD ST Urdo the lagt sctiononlinds

ID_EMT_REDD ST Foado e previcushy undons schoneFleds

1D_'WIKDPaT SPLIT ol Spi the acine wriow s panEdhAS PRl

IDE_AH‘_.I'IBDW STESd Dimpley program sfommestor, veipon rambey u'hdi:wg'l-.r\ﬁt-j;,
a v

The user will also need some means of entering a search value. While you can do this in a
number of ways, the easiest way is to add a search dialog to the application. Right-click the
Dialog folder in Resource View, then choose Insert Dialog from the context menu. You'll see
a new dialog added to your application. Give this dialog a hame—the example uses
IDD_FIND_FOOD_ID. Figure 8-2 shows the construction of this dialog box.

IS ove oaac (00_.000_10 - Dision) [N

e R

w1 Ik

_ I
- EwiwFoodDymmetts [o0 |
I [semcie et bex cancel

Figure 8-2: The Find Food ID dialog box enables the user to search for a specific
record.

We need to make this new dialog a class so that we can create an instance of it in the code
when the user selects Edit | Find from the menu. Right-click the IDD_FIND_FOOD _ID form
and choose Add Class from the context menu. You'll see an MFC Class Wizard dialog box
similar to the one shown here.

MFC Claes ‘Wizsnd - OLE-DB

Whsloome: Lo Uwe MPC Class Wizard

This wizard ey tharis Bt inheerits From MRS by your project. Oplions may thange dependng
oy bres hase claer selagted

Chaid nae
I |
: pase dlass:
[cosamiesdog = |
Bedvenstion
[ETEE | e
e ™ Bubomstion
B R e
g e
| aul]
™ ischwve sooessiodiny I=
[T o |

Give your class a name of CFindFoodID. The wizard will automatically assign values to the
other fields. Change the Base Class entry to CDialog (unless you really want to create a
CHtmiDialog). Verify that the Dialog ID field has a value of IDD_FIND_FOOD_ID in it, then
click Finish. Visual C++ will create the new class for you.

Now that you have a class associated with the dialog resource, you need to add a member
variable to the CFindFoodID class. Make sure you create the class first; otherwise, you can’t
add the member variable to the class associated with the dialog resource. Give the member
variable a name of m_FindFoodID. Make certain that you create this member variable as a
value, not as a control. (You need a CString, not a CEdit for the example code.)

At this point, you have a new dialog class to display and a menu item to display it. We need
to create some connection between the menu entry and the dialog resource. To make the
connection, select the COLEDBView entry in Class View and click Events in the Properties
window. You'll see a list of properties for various applications elements, including the
ID_EDIT_FIND resource. Unfortunately, because we modified the purpose of

ID_EDIT_FIND, you may see ID_EDIT_FIND as a numeric entry in the list, as shown here.

[Proposies. 8 x|
| COLEDBVIew VCCogeClaan =]
olEl w7 ¢ | =

- R -

WFDATE_COM

D_APF_ASTOUT [Dibject]
D_AFFEAT (Dbt
O_EDIT_COFY (Dbt
D _EDIT_CUT (it
i}
L
o
o]

-

ECIT_PASTE [Déecl)

C_ECT_UMDO [Dfjesct]
IO_PLE_PRSNT (Oject]
_FILE_PRIMT_F [Ditgect]
& I0_PLE_PRINT_S [Ditgsci]
B I0_MENT_PsRE (O]
8 O_PREV_PARE (DRl |

I3

HEaanhE

| egme FONE

Note
Because of the way that Visual C++ mangles the ID of ID_EDIT_FIND, you'll
probably need to change the message map entry near the beginning of the
OLEDB-View.CPP file to read ON_COMMAND(ID_EDIT_FIND,
COLEDBView::OnEditFind). Make sure you declare the method, if
necessary.

Type OnEditFind in the COMMAND field, then press ENTER. It's time to add the code
required to search the database. Listing 8-2 shows the code we’ll use in this case.

Listing 8-2

/1 Added for Find Food ID dialog support.
#i ncl ude "Fi ndFoodl D. h"

voi d COLEDBViI ew. : OnEdi t Fi nd()

{

CFi ndFoodI D oFi ndl t; /1 An instance of our dialog
box.

BOCL | Found = fal se; /1 Did we find a match
record?

BOCL EndOf Rowset = false; // End of the rowset?

HRESULT hr = S _CK; /1 Operation Result

Cd eCurrency ProdPri ce; /1 Price of product.

Cd eDat eTi ne Pr odDat e; /1 Date of purchase.

CString cNuneri c; /1l Text form of nuneric data.

/1 Display the dialog and determ ne which button the user pressed
to exit.

if (oFindlt.DoModal () == | DOK)

{
/1l Go to the beginning of the query and search
/1l for the Food ID entered by the user.
m _pSet - >MoveFi rst () ;

/1 Continue searching until we cone to the end of the database
/1 or we find a matching val ue.
whil e (!EndOf Rowset ~ | Found)
{
/1l Check if the value is equal.

if (oFindlt.mFindFoodl D == CString(m pSet -
>m _FoodsFood_I D))

| Found = TRUE;

// Go to the next record.
el se

hr = m pSet - >MoveNext () ;

/] See if this is the |ast row.
if (hr == DB_S ENDOFROWSET)

/1 If so, end the search | oop.
EndOf Rowset = true;

}
if (!l Found)
/1 Display an error nmessage if we didn't find the record.
MessageBox(" Record not found!",
" Dat abase Error",
MB_OK | MB_| CONERROR) ;
el se
{

/1 Display the data.

m_f oodl D. Set W ndowText (CStri ng(m pSet - >m FoodsFood_I D)) ;
m_nane. Set W ndowText (CSt ri ng(m_pSet - >m Nane)) ;

ProdPrice = CO eCurrency(m pSet->m Price);

m pri ce. Set W ndowText (ProdPri ce. For mat (0,
LANG_USER _DEFAULT)) ;

ProdDat e = CO eDat eTi ne(m _pSet - >m Pur chase);

m_pur chaseDat e. Set W ndowText (Pr odDat e. For mat (0O,
LANG_USER _DEFAULT)) ;

itoa(m pSet->m Quantity, cNuneric.GetBuffer(10), 10);
cNuneric. Rel easeBuffer(-1);

m _quantity. Set W ndowText (cNuneri c);

itoa(m pSet->m Storage_Life, cNuneric.GetBuffer(10), 10);
cNureri c. Rel easeBuffer(-1);

m st or agelLi f e. Set W ndowText (cNuneri c);

Notice the #include added before the OnEditFind() method. You must include the header for
the new dialog class we've created. The header contains the definitions used within the
OnEditFind() method. Even though it's traditional to place all #include entries at the
beginning of the source file, you can also place them immediately before the method that
uses the class.

The first task is to display the dialog and allow the user to enter a value. If the user clicks
OK, the code will continue processing input. Otherwise, the method ends and the display
appears as it did before.

The code begins searching for the value entered by the user. If the search loop finds the
value or it runs out of database entries to search, the loop ends. The code sets IFound to
True if it finds the value. Otherwise, the code moves to the next record and determines if it's
the last record in the database. If it's the last record, it sets EndOfRowset True.

Depending on the value of IFound, the code will display an error message or the data from
the current record. Notice that we don't use the data exchange technique in this case, but
merely place the data in the controls. The data exchange will take place if the user moves to
another record. The OnEditFind() method must convert most of the database values into a
CString acceptable for display in the controls. You'll see these methods used in other areas
of the example because they work well for creating a common data format for all database
values.

Adding Reports to an Application

Expect to create one or more reports for your database application. Even a small application
like the one we've created in this chapter could benefit from multiple report types. For
example, you might have an overview report that shows the database contents as a whole

by summarizing like data (even the method of summarizing can create multiple reports) and
a detail report that shows all of the records. In addition to the data that the report contains
and the order in which you present it, there are other things to consider, like the appearance
of the report from an aesthetic perspective. You may not want to take the time to print a
report using the best-quality type and graphics for a workgroup meeting, but you can bet that
such a report format will be required for a manager's meeting.

There isn’t any way that | can tell you here about all the nuances of creating a report. This
chapter will provide tips for creating a complex array of reports that include everything you'll
need to view your data and will give an example of how to accomplish at least some of these
goals in a programming example.

Printing Can Be Difficult

Trying to create the reports you need is difficult in some situations. You might be on a project
where five managers each want their own set of reports added to the application, but you
know that you only have time to create one or two report sets within the time allotted. Don’t
despair—you probably won't have to write all of those reports if you take a little time to
analyze what the managers are looking for and add a little flexibility into the printing process.

Breaking down the reports you need into simple requirements is the first thing you should do
when trying to reduce application complexity. It's a good idea to create a table with columns
showing simple requirements and then listing the reports along the side. If you can find some
comparable areas of the reports, you may be able to combine several of them into a single
report and add configuration dialogs as needed. The following list gives you some ideas of
what you can do to break down the reports into components parts.

. Sort order Every report requires some type of sorting. Otherwise, you'll end up with a
list of disorganized data that no one can understand. Remember that one of the main
goals for any database is to organize the data it contains into something that’s easier to
understand. Your reports need to do the same thing. Sort order represents one of the
easiest methods for combining two or more reports into a single programming task.

. Groups There are times when you want a detail report that groups like items into a
single heading. For example, you may create groups by ZIP code in a contact database.
The ZIP code would appear as a heading, with all of the contacts in that ZIP code area
in order beneath it. Groups aren’t much different than sorting when it comes to
organizing the data. However, it's very difficult to combine two reports with different
groups even if the main part of the printout is the same. The reason is simple: you'd
have to add a lot of complexity to the print routine to handle the inclusion of various
header types. You can, however, combine two like reports where one includes groups
and the other doesn’t. All you need to do is include a switch to turn the heading on or
off.

" Group totals/summaries A lot of reports will provide a footer where the entire report
or a related group of numbers is tallied. There are a lot of other statistical uses for
footers, but a numeric tally is the most common type. As with group headings, it's
difficult, if not impossible, to combine two reports that have different totals or
summaries. You can, however, combine a report that doesn’t use a footer of any kind
with one that does as long as the columns are the same.

. Report appearance If you have two reports with similar data but different
requirements when it comes to final appearance, try combining them. It doesn’t make
sense to create two different printing routines if the only difference is the font used for
presentation purposes and perhaps a little window dressing, like adding the company
logo to the top of the report.

" Level of detail Some reports are simply an overview of other reports. In other words,
there are some reports that use the parent data only in its entirety. The child records are
summarized in some way to provide an overview. It's easy to combine an overview
report with one that shows the detailed contents of the database. Of course, there’s the
issue of what the reports contain. For example, if you have one report that shows every
invoice for the month in salesperson order and another report that shows the total sales
by individual salesperson, you can combine the two reports into one. A simple switch
will determine whether the data is summarized or if every record in the child table gets
printed as is.

. Filtering It's very common for someone to ask for some, but not all, of the records in a
database. If the only difference between two reports is the filtering used to determine
which records get picked, then you can always combine them. Filtering is a function of
the query you make to the DBMS, not a function of the code you write. In other words,
all you need to do is change one or two lines of code to make the two reports.

At this point, you may be wondering why you don't just create a single report with a lot of
configuration dialogs that will allow users to generate their own reports. There are several
good reasons for not doing so. First, most users are going to be bewildered by the array of
dialogs required to create a report. You'll find yourself spending a lot more time trying to get
the user up to speed on creating the report than if you designed it yourself. In addition, as
soon as you introduce custom reports, you'll also have to create some method for users to
save those reports to disk so that they can create the same report later without a lot of
fiddling around.

Another reason to avoid generic reports is the security risk involved. If you give the user too
many different methods for creating custom reports, you may find that you've created
security holes as well. Management normally wants some assurance that the company’s
confidential data won't get into the wrong hands. This means adding security and tightly
controlling what gets printed—in addition to adding the right security to the database itself.

Tip

Don't allow Visual C++ to Iull you into a false sense of security when it comes
to printer incompatibility problems when working with Windows. Sure,
Windows does make things a little easier by providing a consistent
programming API for print routines. You also have the advantage of print
driver support—at least you won't have to write your own drivers anymore, as
programmers under DOS did. However, the advantages end there. A vendor
can still provide a flaky driver that makes it difficult to get the output from your
application looking right. You'll also find that these problems occur more often
to the database programmer because of the relative complexity of the output
a database application produces. Just adding text and graphics together while
trying to maintain the alignment of various table elements can be a problem.
Suffice it to say you're going to run into a wealth of printer-related problems
when you move your application from the test environment to the outside
world. Even the best testing in the world won’t help you get around the
problems of dealing with poorly designed print drivers or other kinds of
compatibility problems.

Adding Print Capabilities to Your Application

Now that we've looked at some of the complexities of writing a print routine for your
database application, let’s look at some ways to solve these programs. Fortunately, you
already have three of the function shells you need in the OLE-DB application we’ve been
using for example purposes up to this point. Just look at the COLEDBView class; there are
three functions: OnPreparePrinting(), OnBeginPrinting(), and OnEndPrinting().

" OnPreparePrinting() Helps you to get your printer set up and to do any other
preparatory tasks, like saving the current record number in the query so that you can
return there after the print job completes.

. OnBeginPrinting() Helps you to prepare the device context. Think of the device
context as an artist's palette—you use it to draw the information you want to send to the
printer. We’'ll run into this particular part of the Windows GDI (Graphics Device
Interface) quite often in this example, so you'll have a good idea of what a device
context is all about by the time we’re done.

" OnEndPrinting() Helps you to restore global application settings to their preprint
condition. For example, this is where you'd return the query pointer to its preprint

record.

One function is missing. We don’t have a print routine to use to send data to the printer. The
first thing we’ll need to do is add an OnPrint() function to the program using the Overrides
listing of the Properties window shown here.

| COLEDBView VCCiogella: =]

S5 m # q[e]E

Orllicp
OnErdPring

DrEncPiring

O rdPrindPy e
O malFislasce
Orinéadipdsis Ordrifisliposte

OrPreparerrg OrFrepaeFrnbng

Dl

Orfwi =

|

=

Tl by i o preveesy 8 page o thee
documer,

| ! Frogeties R a0

The OnPrint() function contains the code required to actually get the printed information out
to the printer. This routine also gets called for other print-related tasks, like the Print |
Preview command provided by most applications. To view this window, select COLEDBView
in Class View, click Overrides in the Properties window, then locate the OnPrint entry. Click
the drop-down list box for OnPrint and choose <Add> OnPrint from the list. Listing 8-3 shows
the code you’ll need to add to the AddPrint() method to enable your application to print.

Listing 8-3

voi d COLEDBVi ew. : OnPrint (CDC* pDC, CPrintlnfo* plnfo)
{

i nt i RowCount = 1; /1 Current print row count.

CString cNuneri c; /1 Text form of nuneric data.

CPen oPen; /1 Pen for draw ng.

CBrush 0oBr ush; /'l Brush for shading.

CFont oText Font ; /1l Text Font.

CFont oHeadFont ; /'l Headi ng Font.

CFont oCol Font ; /'l Col um Headi ng Font.

LOGFONT | f Font ; /1 Font characteristic
structure.

CSi ze oFont Si ze; /1l Size of a font.

COLORREF cl rRef; /1 Color structure.

i nt i RowPos = 120; /!l Row position on printed
page.

i nt i Text Hei ght = /1 Current text height.

CRect oDr awRect ; /!l Drawing area for printer.

i nt i RecNunPos; /'l Record nunber position.

i nt i Foodl DPos; /1 Food I D position.

int i NamePos; /1 Name position.

i nt i PricePos; /1 Price position.

i nt i Pur chasePos; /1 Purchase Date position.

int i Quantit yPos; /1l Quantity position.

i nt i St or agePos; /1l Storage Life position.

BOCL EndOf Rowset = false; // End of the rowset?

HRESULT hr; /] Operation Result

CdA eCurrency ProdPri ce; /1l Price of product.

CA eDat eTi ne Pr odDat e; /1l Date of purchase.

/1l Get the drawing area for our print routine.
oDrawRect = pl nfo->mrectDraw,

/1l Create a pen and select it into our device context.
cl rRef = 0x00000000;

oPen. Creat ePen(PS_SCLID, 2, clrRef);
pDC- >Sel ect Obj ect (&oPen) ;

/1l Create a brush and select it into our device context.
clrRef = 0x00C0COCO;

oBrush. Creat eSol i dBrush(clrRef);

pDC- >Sel ect Obj ect (&oBr ush) ;

/1l Create a heading font and select it into our device context.
oHeadFont . Cr eat ePoi nt Font (240, "Arial", pDC);
pDC- >Sel ect Obj ect (&oHeadFont) ;

/1 Display our heading.
oFont Si ze = pDC- >CGet Qut put Text Ext ent (" The ABC Conpany");
pDC- >El | i pse(500,
i RowPos - (oFontSize.cy / 2) - 10,
oDrawRect . Wdth() - 500,
i RowPos + (oFontSize.cy / 2) + 10);
pDC- >Set BkMode(TRANSPARENT) ;
pDC- >Text Qut ((oDrawRect . Wdth() - oFontSize.cx) / 2,
i RowPos - (oFontSize.cy / 2) - 10,
"The ABC Conpany");
pDC- >Set BkMbde(OPAQUE) ;

/1l Create the appropriate space.
oHeadFont . Get LogFont (&l f Font) ;
i RowPos = abs(IlfFont.|fHeight) + 175;

/1l Create a text font.
oText Font . Cr eat ePoi nt Font (120, "Arial", pDQC);

/1l Get the current text font height.
oText Font . Get LogFont (& f Font) ;
i Text Hei ght = abs(IfFont.|fHeight) + 10;

/'l Create a font for displaying colum headings.

| f Font. | fWeight = 700; /1 Make it bold, normal is 400.
oCol Font . Creat eFont I ndirect (& fFont);

pDC- >Sel ect Obj ect (&oCol Font) ;

/1 Conpute the colum spacings. Set the first colum to 1/2
i nch.

i RecNunPos int(oDrawRect. Wdth() / 17);

i Foodl DPos = i RecNunmPos + 150 + pDC-
>Cet Qut put Text Ext ent (" ##") . cX;

i NanePos = i Foodl DPos + 150 + pDC-
>Cet Qut put Text Ext ent (" XXX00000XXX") . cX;

i PricePos = i NanePos + 150 + pDC-
>CGet Qut put Text Ext ent (" Peri shabl e") . cx;

i PurchasePos = iPricePos + 150 + pDC-
>Get Qut put Text Ext ent (" $00. 00") . cX;

i QuantityPos = i PurchasePos +
150 + pDC- >Get Qut put Text Ext ent (" Purchase Date"). cx;

i StoragePos = i QuantityPos + 150 + pDC-
>Cet Qut put Text Ext ent (" Quantity"). cx;

/1 Display the colum headi ngs.

pDC- >Text Qut (i RecNumPos, i RowPos, "#");

pDC- >Text Qut (i Foodl DPos, i RowPos, "Food ID");

pDC- >Text Qut (i NamePos, i RowPos, "Nane");

pDC- >Text Qut (i Pri cePos, i RowPos, "Price");

pDC- >Text Qut (i Pur chasePos, i RowPos, "Purchase Date");
pDC- >Text Qut (i QuantityPos, iRowPos, "Quantity");

pDC- >Text Qut (i St or agePos, i RowPos, "Storage Life");

/1l Create a space between the colum headi ng and the text.
i RowPos += i Text Hei ght ;

pDC- >MoveTo(i RecNumPos, i RowPos) ;

pDC- >Li neTo(oDrawRect . Wdt h() - i RecNunmPos, i RowPos);

i RowPos += 20;

/] Select our text font into the device context.
pDC- >Sel ect Obj ect (&oText Font) ;

/!l Deternmine the row height.
i Text Hei ght = 20 + pDC- >Get Qut put Text Extent (" Xy"). cy;

/] Move to the first row.
m _pSet - >MoveFi rst () ;

/1 Print the records in a | oop.
whil e (!EndOf Rowset)

/1 Display the current record nunber.

i toa(i RowCount, cNuneric. GetBuffer(10), 10);
cNureri c. Rel easeBuffer(-1);

pDC- >Text Qut (i RecNunPos, i RowPos, cNuneric);

/1l Print the data.
pDC- >Text Qut (i Foodl DPos, i RowPos, m pSet->m FoodsFood_ID);
pDC- >Text Qut (i NamePos, i RowPos, m pSet->m Nane);
ProdPrice = CA eCurrency(m pSet->m Price);
pDC- >Text Qut (i Pri cePos,

i RowPos,

“$" + ProdPrice. Format (0, LANG USER DEFAULT)):
ProdDat e = CO eDat eTi ne(m_pSet - >m _Pur chase) ;
pDC- >Text Qut (i Pur chasePos,

i RowPos,

Pr odDat e. For mat (0, LANG USER DEFAULT));
itoa(m pSet->m Quantity, cNuneric.GetBuffer(10), 10);
cNureri c. Rel easeBuffer(-1);
pDC- >Text Qut (i Quanti tyPos, i RowPos, cNuneric);
itoa(m pSet->m Storage_Life, cNuneric.GetBuffer(10), 10);
cNuneric. Rel easeBuffer(-1);
pDC- >Text Qut (i St or agePos, i RowPos, cNuneric);

/1 Advance the row.

i RowPos += i Text Hei ght ;
i RowCount ++;

hr = m pSet - >MoveNext () ;

/] See if this is the |last row.
if (hr == DB_S_ ENDOFROWSET)

{
// If so, end the printing | oop.
EndOf Rowset = true;
br eak;

}

[/ Performthe default action

CA eDBRecor dVi ew. : OnPrint (pDC, pl nfo);

}
e ———————

This looks like a lot of code, and it is. Working with printed output can get complicated
without a lot of effort on your part. However, if you divide the task into smaller pieces, it's not
too hard to figure out what's going on.

The first thing you need to know about is the mysterious pDC object of class CDC. |
mentioned the device context earlier. It helps a lot if you think about pDC as your palette, the
area in memory where you'll draw what you want to send to the printer. In fact, Microsoft has
done just about everything it can to foster that view in the naming of functions and structures
used with the GDI.

The first thing we do (besides produce what seems like thousands of variables) is create
some drawing tools. You can’t draw on a palette if you don’t have the required drawing tools.
In this case, I'll show you how to create the three basic drawing tools that you'll use in most
of your programs: a brush, a pen, and a font. Pens can be any color and any one of a range
of widths, and you can even choose a drawing pattern, such as dots. You use a pen for
drawing lines, which includes outlines for objects. For example, a square doesn’t necessarily
need an outline, but most objects do. You could draw a square using just the fill color. That
brings me to the brush. A brush provides fill color for solid objects. Brushes can also have a
particular color, and you can choose to create a brush that has a pattern such as a
crosshatch. Finally, you use a font to write something onscreen. It has many characteristics,
most of them too arcane for the typical programmer’s tastes. The source code in Listing 8-3
shows you a couple of ways to create fonts that don’t require a complete knowledge of
desktop publishing to use.

Just because you have a tool to draw with doesn’'t mean that you can use it. An artist might
have a brush hanging from a nail in the wall, but that doesn’t mean it's available for use in

the current painting. Likewise, when you draw something in Windows, you have to select
your tool first. That's what the SelectObject() function does. It allows you to select an object
for drawing.

There’s one brush, pen, and font object for each device context in Windows. Think of it as
three hands, each one armed with a different tool. Before you can use another tool, you
have to put the current one down and then select the new one. Windows takes care of
putting a tool down for you automatically. Every time you use the SelectObject() function,
you're putting the old tool down and picking up a new one.

Each of your tools is unique in many important ways. If you want an Arial 10 point font, you
need a special font tool for that purpose. You'd have to create another font tool if you found
that you needed the bold version of that font or if you suddenly wanted to write something in
Times New Roman 12. Fortunately, you don’'t have to create a separate font for each color
that you want to use—the device context controls that feature.

Another example of how each tool has a unique function is the pen. You need to create a
pen for each width and style of line you want. Unlike with the font, you'll also need a pen for
each color you want to create.

The bush is the most unique tool in some ways. While you can use the same function to
create just about any font or pen you want, there’s a different function call for each type of
brush. For example, if you want to create a crosshatch brush, you need to use the
CreateHatchBrush() function in place of the CreateSolidBrush() function shown in the

code. It's important to realize the limitations of your existing tools and to create new tools as
you need them.
Note

The drawing commands for this example are optimized for a printer that has
a resolution in the range of 600 dots per inch. If you have a higher resolution
printer, you may need to modify the location values to get a clear picture.
However, no matter what resolution your printer is, you'll still be able to see
how the commands work together to provide some form of output from your
database application.

The first thing that we do in the way of drawing for this example is to create an ellipse using
the Ellipse() function. As with most solid drawing commands, you need to specify the
coordinates of the upper-left and lower-right corners of the graphics primitive. Windows
assumes that you want to use the currently selected brush and pen, so you don’t need to
specify these values.

After drawing the ellipse, the code will place some text within it. The first thing we need to do
is set the background drawing mode to transparent so that we don’t erase any part of the
ellipse. The other mode is opaque, which will replace the background color as well as add a
drawing of some type in the foreground. Look at how the code uses the
GetOutputTextExtent() function to determine the length of the text in pixels. This is about
the only way to conveniently determine the length of a line of text so that you can center it on
the page. The next line uses the TextOut() function to send the text to the printer. The very
last line in this section of code resets the background drawing mode to opaque (the default
setting) using the SetBkMode() function.

It's time to talk briefly about fonts. There are two convenient methods of creating fonts, and
the next section of code shows both. The first method is to use the CreatePointFont()
function. All you need is the name of a typeface and the size of the font you want to create in
tenths of a point. So, if you wanted to create a 10-point font, you'd need to specify a font size
value of 100.

Fonts use a special LOGFONT structure to pass all of the parameters they require. If you
use the CreatePointFont() function, Windows creates this structure for you and makes
certain assumptions in the process. What if you don’t want those defaults? Well, you can
create a simple font using CreatePointFont() (as we just did) and then use the
GetLogFont() function to fill out the LOGFONT structure for you. Now you have a fully
functional structure that you can modify slightly. | say slightly because you'll definitely shoot
yourself in the foot if you try to make big changes in the structure that Windows just returned.
| changed the weight of the font from normal to bold, which is an acceptable change as long
as you don’'t make too big a difference in the font weight. Now you can use the
CreateFontindirect() function to create the bold version of the font. Just pass the
LOGFONT structure provided by Windows with the IfWeight member change.

Notice that the code creates a bunch of headers using the bold font once it selects that font
into the device context. Always remember to create the tool first and then select it as needed
to draw on the device context. We also create a group of variables to track the positioning
information for the columns. These positioning variables are used for both the headers and
the detail information. Notice that the method used to derive the positioning information is
device independent. In other words, it should look about the same whether you use a 300

dpi printer or one that's capable of 600 dpi. Of course, the random element here is how well
Windows can determine the amount of space taken by the text we’ve provided using the
current font. In most cases, you'll find that this calculation is accurate, but you may need to
play around with it a tad to get a good presentation on all the printers in your company.

Drawing a line under the headings comes next. Notice that drawing a line is a two-step
process. First, you use the MoveTo() function to move the pen to a specific point on the
page, and then you use the LineTo() function to actually draw the line. Think of MoveTo() as
moving with the pen up and LineTo() as moving with the pen down.

The last part of our print routine makes use of the data that's already available in the
recordset (m_pSet). All that this code does is move from record to record in the recordset
and print its contents to the printer or screen. Notice the use of data conversion routines to
convert the data from a native database format to a CString. Also notice that the routines
won't add a dollar sign ($) or other currency symbol to your output, so the example adds the
“$” manually. How does the printed output of our application look? Figure 8-3 shows an
example of what you should see when using the File | Print Preview command in the
example application.

B =il af

Figure 8-3: The print routine provides a tabular report of the content of the example
database.

Chapter 9: Building Managed Database
Applications

Overview

It's important to know how to create “old style” applications with Visual C++ because this is
the only language where you can create native EXEs in Visual Studio .NET. The backward
compatibility requirements alone warrant continued use of the techniques we discussed in
Chapter 8. However, time marches on—everyone is looking toward the benefits of the
managed .NET environment.

This chapter discusses two important new technologies: ODBC .NET and ADO.NET. The
examples will show how to use both technologies for your next project. Generally, you'll find
that Microsoft has oriented these managed technologies toward distributed application
development. You can mix these technologies with protocols such as the Simple Object
Access Protocol (SOAP) to provide solutions that span sites or even companies. Chapter 11
contains a discussion on SOAP and related technologies.

We'll also discuss which managed database applications work best. Many developers are
confused about which technology to use in a given situation because Visual C++ .NET
provides so many choices. As part of this discussion, we’ll also consider the differences
between ODBC and ODBC .NET. You'll find that ODBC .NET isn’t a direct replacement for
ODBC, but it does enable you to work with older applications in a managed environment.
Note
This chapter assumes you have a good understanding of how managed
applications work and that you have some familiarity with the .NET
Framework. Chapters 12, 13, and 14 contain a good overview of .NET and
simpler examples than the example in this chapter.

Managed Database Application Scenarios

Visual Studio .NET has a strong emphasis on distributed application development. In fact,
the distributed application takes precedence over any other application type. What this
means to you as a developer is that you can create new application types that no longer
depend on data appearing in one place. Users can grab data from multiple sources, even
sources found in other companies.

The distributed application environment doesn’t require the user to stay in one place. A user
can access data with equal ease from a PDA on the road or a desktop machine at the
office—the database application doesn’t care about the user’s location. All the application
cares about is validating the user’s identity and then responding to user requests. In short,
the users can use data when and where they need it.

As technically appealing as these new capabilities are, they’re unsuitable in some situations
and overkill in others. For example, you wouldn’t want to use distributed application
techniques for an application that will only execute on a LAN and serve a small group of
users. The performance costs of using distributed technologies, plus the additional
development effort, make distributed programming techniques unsuitable.
Note
Microsoft also leaves out one important fact in their literature on ADO.NET
and ODBC .NET—these technologies currently work only on Windows
machines and don’t even work with all versions of Windows. Microsoft's
critics point this fact out regularly, and it bears repeating. If you use the

managed application programming techniques in this chapter for your next
project, the application is limited to platforms that provide the required
support.

You'll also want to consider the importance of updating existing applications. In many cases,
an existing application that works using older techniques won't benefit from an update. With
this in mind, the following list contains some ideas on when distributed application
development using managed code is ideal.

Users on the road This is the first use for distributed applications and the one that
receives most use today. Supporting users on the road is problematic. The user
requires constant updates of corporate data. In addition, the company will want to begin
processing new user data as soon as possible. Using distributed application techniques
means that an order the user takes today might ship tomorrow.

Business to Business (B2B) communication The Internet brought about the idea
that businesses could communicate directly using a flexible technology that requires
less custom programming. Current technology requires companies to create a custom
interface for every business partner. Not only does this increase the complexity of
application development and design, but it also slows the transfer of data from one part
of the company to another. A managed application can rely on XML to send and receive
data in plain text (getting rid of the problems with binary data transfer). In addition, the
use of XSL and XPath enables the developer to translate between data formats without
extensive programming.

Note
The costs of translating between data formats is so high that many
companies invest in applications and servers whose sole purpose is to
reduce the complexity of data transfers. For example, Microsoft’s BizTalk
server addresses this need. In most cases, creating a generic data
translation utility is less expensive and easier to maintain than creating a
custom data translation routine for each partner.

Special purpose Many people are used to the image of a stockbroker whose desk is
packed with monitors of various sizes and shapes. The reason for all of these monitors
is that every exchange uses a different data format. New technologies such as the
managed development strategies found in this chapter promise to cure this problem.
Sometime in the future, your stockbroker will use just one monitor like everyone else.

Consumer Relationship Management (CRM) As more business users gain access to
wireless communication and use it regularly, the need and opportunity to create
specialized distributed applications becomes more lucrative. Anything a company can
do to make its services appear better than the competition helps the bottom line. Many
developers will find themselves working on applications that push content to an
unknown number of wireless devices in the near future. Examples of this type of
application are the wireless communication projects currently under consideration by
major airlines. Not only will these new wireless terminals enable a user to access the
Internet while waiting in an airport, but the network could also have marketing
implications and help the user to verify the status of services like flight times.

Understanding ODBC .NET

Open Database Connectivity (ODBC) has been one of the mainstays of database
connectivity for Microsoft developers for a long time. When Visual Studio .NET appeared on
the scene without a hint of ODBC, developers were understandably concerned (irate is more
like it). After a lot of consideration, Microsoft determined that ODBC might be a good idea
after all and began development of ODBC .NET. Unfortunately, ODBC .NET appeared on
the scene well after the rest of Visual Studio .NET and won't ship with the product—you’ll
need to download it as a separate product and install it on your system separately.

At the time of this writing, ODBC .NET is still in Beta 1. The current beta works only with
Beta 2 of Visual Studio .NET and is completely invisible to the released product. All attempts
to get ODBC .NET Beta 1 to work with the release version of Visual Studio .NET will fail,
which is why | don’t include an example of ODBC .NET in the chapter. However, Microsoft
will eventually release ODBC .NET, and you'll be able to use it to access the same data
sources that you've always used. The following sections describe the current form of ODBC
.NET in more detalil.

ODBC versus ODBC .NET

The biggest plus of using ODBC .NET is that you gain all of the benefits of a managed
environment. You won’t have to worry about memory management. In addition, ODBC .NET
appears as part of the .NET Framework after you install it. You'll use the System.Data.Odbc
namespace. ODBC .NET relies on the same techniques that you use with ADO.NET and
OLE-DB to create code. Of course, the connection technology still relies on the Data Source
Names (DSNSs) that you've used in the past.

ODBC .NET doesn’t add any new features to the world of ODBC. In fact, you'll find ODBC
.NET imposes some new and not so exciting limitations because of the managed
environment. For example, you'll have limited access to ODBC providers (which begs the
question of why Microsoft changed this functionality). One of the big reasons to use ODBC in
the past was that it was compatible with so many vendor products. ODBC .NET is only
compatible with these providers:

" Microsoft SQL ODBC Driver

" Microsoft ODBC Driver for Oracle

" Microsoft Jet ODBC Driver

In many cases, the providers supplied with ODBC .NET are less capable than their
unmanaged counterparts. While testing the beta, | found that many functions that would
normally provide me with some content from the database would return the infamous
E_NOTIMP or E_NOTIMPLEMENTED errors. Theoretically, Microsoft will fix these and
many errors before they release ODBC .NET.

ODBC .NET provides access to four data access components that reflect its managed
orientation. These are the same four objects that you use with other .NET database
technologies and include.

Object Description

Connection Creates a connection between the application and the data source. You
must establish a connection before doing anything else.

Command Executes some action on the data source. You'll use this object after

you create a connection to obtain data access. Commands also enable
you to perform actions such as adding new records and performing
database maintenance.

DataReader Obtains a read-only, forward-only stream of data from the database.
This is the object to use for disconnected application scenarios. You
also use the DataReader when you want to display data without editing
it.

DataAdapter Obtains a read/write data stream from the database. The application can

perform updates and add new records using this object. However, a
DataAdapter requires a live connection to the database.

The ODBC .NET help file appears in the \Program Files\Microsoft.Net\Odbc.Net directory of
your hard drive. Right now, you can't access it from the Start menu unless you add the link
manually. The help file contains a good overview of ODBC .NET, but you'll want to augment
this information with some Microsoft Knowledge Base articles. Here’s the list of articles that |
found most helpful. (Unfortunately, none of the coding examples rely on Visual C++, so you'll
need to convert any examples from Visual Basic or C#).

" HOW TO: BETA: Use the ODBC .NET Managed Provider in Visual Basic .NET and
Connection Strings (http://support.microsoft.com/default.aspx?scid=kb;EN-
US:q310985).

. HOW TO: BETA: Use the ODBC .NET Managed Provider in Visual C# .NET and
Connection Strings (http://support.microsoft.com/default.aspx?scid=kb;EN-
US:g310988).

. HOW TO: BETA: Execute SQL Parameterized Stored Procedures Using the ODBC
.NET Provider and C# .NET
(http://support.microsoft.com/default.aspx?scid=kb;EN-US;g310130).

- HOW TO: BETA: Execute SQL Parameterized Stored Procedures Using the ODBC
.NET Provider and Visual Basic .NET
(http://support.microsoft.com/default.aspx?scid=kb;EN-US;g309486).

Installation Requirements for ODBC .NET

You must install a compatible version of Visual Studio .NET before you install ODBC .NET.
The ODBC .NET installation program relies on the existence of the .NET Framework and
you'll want the installation program to install any special features in the Visual Studio .NET
IDE. ODBC .NET will also require Microsoft Data Access Components (MDAC) version 2.6.
Microsoft provides the MDAC support as part of the Visual Studio .NET installation, so you
won't need to perform a separate update of this product as indicated on the ODBC .NET
download page.

Browser
Alert Microsoft will very likely include ODBC .NET as part of the

Microsoft Developer Network (MSDN) CD. You can also download
the current version of ODBC .NET from
http://msdn.microsoft.com/downloads/sample.asp?url=/MSDN-
FILES/027/001/668/msdncompositedoc.xml. Make certain that
you read the online documentation for any late-breaking news
before you download and install the product. Otherwise, you might
find that the current product implementation breaks some part of
your development environment.

One of the problems you could run into when working with ODBC .NET is that the installation
program fails to update the providers correctly. The ODBC .NET installation program not
only installs new providers, it updates the Microsoft ODBC Administrator to use the new
providers as well. It's important to verify the presence of the new providers by opening the
Microsoft ODBC Administrator and viewing the version numbers on the Drivers tab. Here’s
an example of a Microsoft ODBC Administrator display with updated providers.

http://support.microsoft.com/default.aspx?scid=kb;ENUS;q310985
http://support.microsoft.com/default.aspx?scid=kb;ENUS;q310988
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q310130
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q309486
http://msdn.microsoft.com/downloads/sample.asp?url=/MSDNFILES/027/001/668/msdncompositedoc.xml

7 ODBLC Data Seuics Admeresinals

Uses 5 | System DSH | Fle D58 Drivees | Toscing | Connecton Pockeg | bout |

DDEC Danvins thal ses nstaled on yous pytes

e | et mion | Ctngusreg =]
Micsorot Exces Tredbes [*ds] [LOTEOETi] Macrosolt L
Mzl Fioas VR Drr [df] GO E5230 [y—— s
Micaopolt ODEC for Dhachk: 2EIATTIAOD Macroscit i
Mezizaoht Patados Dirver |° gt 400N Miscigraadt [
Micaocalt Pasci- Toeber [db 4 ENI00 Mxrosolt [
Miceoaolt Tesd Dvreet [bd; ool 40N A0 Miscrosolt [

Wl achectcal Tosod: Tt [° 1 * it 4 IREN 300 Mt rosel
Micsonolt Yisusl FooFr Driver A =] Microsoft [
Ml acbc sl Veimind v 1 ey BN R Miacipendt L

2008 TR0 Macasol [—
il I

ODBC data pounces Toinstall new divers. e the diveds shn

f@ Ar [EC driver abowey (0B C-snabied programs o gsl mfamastion bom
L o

o | cewes | | s |

Writing a Managed Database Application

Managed database applications use the same basic structure and have the same features

that other managed applications support. You still gain the benefits of automatic memory

management, and you'll find it relatively easy to find the classes you need within the .NET

Framework.

Note

This example contains a lot of code, some of which won’t appear in the text.
The \Chapter 09\ManagedDB folder on the source code CD contains the full
source for this example. Make sure you check the source code for data
declarations and other programming elements.

Creating a .NET application does seem to require more code than unmanaged applications
of similar complexity. The tradeoff is that you gain a little more flexibility and the resulting
application is more scalable. The following sections show how to create a basic grid view
application using managed code. We'll begin with the grid, look at what you need to create a
connection between the database and the grid, and then develop a print routine for the
application.

Creating the Grid View

The DataGrid control is one of the most flexible additions to the .NET Framework. You can
use this control to display and manipulate any type of tabular data. In addition, Microsoft
supplied both standard and Web versions of the DataGrid control with essentially the same
characteristics, so it's relatively easy to move your code from the desktop to the Web. Of
course, all of this flexibility comes at a cost—you need to perform substantial setup to obtain
the maximum benefit from this control.
Browser
Alert The DataGrid control has become extremely popular for both Web
and desktop development. You'll find a wealth of examples online.
For example, if you want to see a simple and easy to understand
version of the DataGrid control for ASP development, check
http://www.4quysfromrolla.com/webtech/122300-1.shtml. You'll
find a relatively good tutorial for using the DataGrid control with
ASP .NET at
http://www.aspnextgen.com/tutorials.aspx?tutorialid=37. The
DevASP.NET Web site
(http://Iwww.devasp.net/Net/Search/default.asp?c_id=317) has
a complete list of articles and tutorials for ASP development. You

http://www.4guysfromrolla.com/webtech/122300-1.shtml
http://www.aspnextgen.com/tutorials.aspx?tutorialid=37
http://www.devasp.net/Net/Search/default.asp?c_id=317

can also search for DataGrid examples on GotDotNet
(http://gotdotnet.com/) and The Code Project
(http://thecodeproject.com/ or http://www.codeproject.com/).

Creating the DataGrid

The example application uses a DataGrid control to display data from the same Access
database we used in Chapter 8. (The example in that chapter presented a form view of the
information.) Listing 9-1 shows the code you'll need to create and configure the DataGrid
control for this example.

Listing 9-1

/1 Configure the data grid

dataGi dl->CaptionVisible = fal se;

dat aG i d1- >Dat aMenber "FoodOrders”;

dat aGri d1- >Dat aSour ce FoodDat aSet ;

dat aGi d1- >Dock = DockStyl e:: None;

dat aGri d1- >Header For eCol or = Syst entCol ors:: Control Text;
dat aGri d1- >Nane = "dataGridl";

dat aGi d1->Si ze = System : Drawi ng:: Si ze(500, 361);
dataGi dl->Location = System : Draw ng:: Point (0, 40);
dat aGri d1- >Tabl ndex = O;

dat aGi dl1->Sel ect ();

As you can see, we don't actually configure any part of the data presentation with this
control. The DataGrid control acts as a data viewing mechanism for the most part. The
DataSource property determines which data source the DataGrid control uses for display
purposes. The example uses a dataset, but you can use other sources, such as a
DataTable, DataView, or DataViewManager (among other data structures). You can even
use a single dimensional array or a custom control as a source of data.

The other property that you must set to gain access to data is the DataMember property. A
dataset can contain more than one table or view. The DataSource property selects every
table the dataset has to offer. The DataMember property selects a particular table within the
dataset for display purposes. Other input controls might not require the use of both the
DataSource and DataMember properties, so you'll need to spend some time working with
these properties if you're experiencing problems displaying data on screen.

Notice that the Location property setting places the DataGrid control below the top of the
client area. Later in the example we’ll add a ToolBar control that appears at the top of the
client area. If you wanted to use the entire client area for the DataGrid control, you could use
the Dock property to control its size and location.

Adding a Main Menu to the Application
This example makes use of a menu to enable the user to perform basic commands. In most

cases, a database application will require a menu to avoid cluttering the screen with an
endless array of buttons. The menu consists of a main menu with File and Record entries

http://gotdotnet.com/
http://thecodeproject.com/
http://www.codeproject.com/

and two submenus to hold the File and Record options. Listing 9-2 shows the menu code for
the example.

Listing 9-2

/1 Configure the main nenu.

Menul tem *Mai nMenul tens[] = {muFil e, nmuRecord};
mai nMenul- >Menul t ens- >AddRange(Mai nMenul t ens) ;
muFi | e- >l ndex = O0;

/1 Configure the File nenu.
Menultem *Fil eMenultens[] = {muFil e_Print,
muFi | e_Print Previ ew,
muFi | e_PageSet up,
menuSepar at or,
muFil e Exit};
muFi | e- >Menul t enrs- >AddRange(Fi | eMenul t ens) ;
muFi | e->Text = "&File";
muFi |l e_Print->lndex = 0;
muFi |l e_Print->Shortcut = Shortcut::CrlP;
muFile Print->Text = "&Print";
muFi |l e_Print->add_C i ck(
new EventHandl er(this, muFile_Print_Cick));
muFil e _PrintPrevi ew >l ndex = 1;
muFi |l e_PrintPreview>Text = "Print Pre&view;
muFi | e_PrintPreview >add_Click(
new Event Handl er (this, mmuFile_PrintPreview Cick));
muFi | e_PageSet up- >l ndex = 2;
muFi | e_PageSet up- >Text = "P&age Setup";
muFi | e_PageSet up- >add_Cl i ck(
new Event Handl er (this, muFi | e_PageSetup_Cick));
menuSepar at or - >Text = "-
muFi | e_Exit->l ndex = 4;
muFil e Exit->Text = "E&it";
muFi | e_Exit->add_Click(
new EventHandl er(this, muFile_Exit_Click));

/1 Configure the Record nenu.

Menul t em *Recor dMenul tens[] = {muRecord_First,
muRecord_Previ ous,
muRecor d_Next ,

muRecord_Last};

muRecor d- >Menul t ens- >AddRange(Recor dMenul t ens) ;
muRecor d- >Text = "&Record";
muRecord_Fi rst->l ndex = 0;
muRecord_First->Text = "&First";
muRecord_First->add_Cl i ck(

new Event Handl er(this, RecordFirst_Click));
muRecord_Previ ous- >l ndex = 1;
mmuRecord_Previ ous- >Text = "&Previous";
muRecor d_Previ ous->add_Cl i ck(

new Event Handl er (this, RecordPrevious_Cick));
muRecor d_Next - >l ndex = 2;
muRecor d_Next - >Text = "&Next";
muRecor d_Next - >add_Cl i ck(

new Event Handl er (thi s, RecordNext_ Click));
muRecor d_Last - >l ndex =3;
muRecord_Last->Text = "&Last";
muRecord_Last ->add_Cl i ck(

new Event Handl er(this, RecordLast_Click));

As you can see, all of the standard entries require an Index and a Text property value. The
only exception is the generalized menuSeparator entry, which contains only a Text property
value of “". In addition, you must assign an event handler to the menu entry or it won't do
anything. Notice that mnuFile_Print also uses a Shortcut property value. This value enables
the user to access the menu command using a keyboard shortcut. Even though the text for
mnuFile_Print doesn’t include the shortcut key entry, it will appear in the menu, as shown
next:

P LR
Pird Prsnss
Page Sehp

Ewu

Once you create the individual menu entries, you need to add them to the host menu. Of
course, the top menu in the hierarchy is the main menu. You add the submenus to the host
menu by creating a Menultem array that contains each of the submenus in the order you
want them to appear in the resulting menu. The Index property of each menu should
theoretically order the menus, but .NET doesn’t order them in some situations. In addition,
the generalized menuSeparator entry lacks an index, so you'll want to ensure that the order
is correct so the separators appear in the right places. One way around the separator
problem is to create a unique separator each time one is needed and assign it an Index
value. Add the Menultem array to the host menu by calling the Menultems->AddRange()
method.

Note that the main menu contains no positioning or size properties. The main menu always
appears at the top of the application framework, and it reduces the size of the client area
accordingly. You can’t size the main menu and there’s no option for docking it. In short, the
main menu is part of the framework, not a control you use to augment the application using
part of the client area. This distinction is important (as we’ll see later in this section).

Adding a Toolbar to the Application

Most database applications sport a toolbar. The reason is simple. Using menu commands to
move from record to record is painfully inefficient for the user. While a form view of the data
could support movement buttons on the form, a grid view is less likely to support them.
Toolbars typically contain options for printing as well, but the example application will
concentrate on the buttons used for movement from record to record. Listing 9-3 shows the
code you'll need to create a ToolBar control (we’ll discuss resizing the form in the
“Techniques for Resizing the Form” section that follows).

Listing 9-3
I ————————

/1l Configure the tool bar.

t ool Bar 1- >Dock = DockStyl e: : None;

t ool Bar 1- >Dr opDownArrows = true;

t ool Bar 1- >Nane = "t ool Bar1";

t ool Bar 1- >ShowTool Ti ps = true;

t ool Bar1->Si ze = System : Drawi ng:: Si ze(500, 39);

t ool Bar 1- >Tabl ndex = 1;

bt nNext - >Location = System : Draw ng:: Point (168, 8);

bt nNext - >Nanme = "bt nNext";

bt nNext - >Tabl ndex = 4;

bt nNext - >Text = "Next";

bt nNext - >add_Cl i ck(new Event Handl er (t hi s, RecordNext _Click));
bt nFirst->Location = System :Draw ng:: Point(8, 8);
btnFirst->Nanme = "btnFirst";

bt nFi r st - >Tabl ndex = 2;

btnFirst->Text = "First";

bt nFirst->add_Click(new Event Handl er(this, RecordFirst _Click));
bt nPrevi ous->Locati on = System : Drawi ng: : Point (88, 8);
bt nPr evi ous->Nane = "DbtnPrevious";

bt nPr evi ous- >Tabl ndex = 3;

bt nPrevi ous- >Text = "Previous";

bt nPrevi ous->add_Cl i ck(new Event Handl er (t hi s,
Recor dPrevi ous_Click));

bt nLast->Location = System : Draw ng:: Poi nt (248, 8);
bt nLast->Nanme = "btnLast";

bt nLast - >Tabl ndex = 5;

bt nLast->Text = "Last";

bt nLast->add_Cl i ck(new Event Handl er (t hi s, RecordLast_Click));

Note
The order of control placement for a toolbar is important if you plan to use
standard buttons, as shown in Listing 9-3. You don't place the controls in the
ToolBar control as you would with a menu. The buttons reside on top of the
ToolBar control, making it appear that the ToolBar control is containing them
in some way. The reality is that the ToolBar provides a visual framework for
standard Button controls. You can also create special ToolBarButton
controls that appear as a collection within the toolbar. However, creating
these buttons introduces extra coding, and they don't look different from a
visual perspective.

As you can see, the example uses standard buttons, rather than the special ToolBarButtons
designed for use with the Toolbar control. The order in which you place the controls in the
code is important if you use this technique. The main advantage for using standard buttons
is that you save some coding time for each control, and visually they don'’t look any different
from the special ToolBarButtons. The standard buttons also provide easier access, because
the ToolBar control relies on a collection and Visual C++ doesn’t support the ForEach
looping structure that other languages use to work with collections. The disadvantages of
using this technigue are that you now have to exercise care in the ordering of the buttons in
the code and you must ensure the individual buttons have the proper configuration settings.
In addition, you won’t have the centralized button control that a toolbar can provide. For the
Visual C++ developer, it's a definite trade-off.

As you can see from Listing 9-3, toolBarl requires a minimum of configuration. All you need
to do is provide a name and standard size. Notice that the example specifically sets the
DockStyle property to DockStyle::None. You'll want to use this setting to avoid resizing
problems caused by a multiple control scenario. Notice that the Tablndex property setting
doesn’t make any difference in this case, because the application automatically applies all
tab movements to the DataGrid control.

Each of the buttons receives positioning information—the example uses the default button
size. The code also sets the Name and Text properties as usual. Notice the technique used
to assign an event handler to each of the controls. You can save coding effort by assigning
each control the same event handler as its menu counterpart. Code sharing is also the
reason for the somewhat generic name for the event handler methods.

Techniques for Resizing the Form

Normally, the controls on a .NET form can handle their own resizing needs, because the
majority of the large controls provide some type of docking property. However, the example
presents a challenge for the developer. The DataGrid control will observe the boundaries of
a main menu, but you might experience problems combining it with other controls such as a
ToolBar.
Tip
The Dock property is a welcome addition to the DataGrid and other large
.NET controls. If the DataGrid will consume all or a major part of the client
area of the display, this property enables you to dock the control to one or all
parts of the framework, making a separate OnResize() method unnecessary.
You'll find that the Dock property uses different names with various controls
depending on its purpose. For example, the ToolBar control implements it as
the DockType property. The Dock property is a great feature, but you need to
use it with care.

If you set the DataGrid control to dock fully, it will consume the entire client area, and the
ToolBar will likely hide part of the data (or the DataGrid will hide the ToolBar). On the other
hand, if you choose to dock the DataGrid control with the side or bottom of the framework
and dock the ToolBar with the other side or top of the framework, the two controls will resize
together. The ToolBar and DataGrid will both increase in size. Because of these sizing
problems, you'll want to override the default OnResize() behavior to make the grid look right
when the user resizes the window.

The OnResize() method is part of the Form class. To add the OnResize() method, you need
to declare OnResize() as public, or the compiler will complain that you can’t override virtual
methods using a private or protected declaration. You also need to declare any controls the
OnResize() method will work with in such a way that OnResize() can access them. Here's
the OnResize() method:

voi d Mai nApp:: OnResi ze(Event Args _ _gc *args)

{
/1 Verify the data grid is accessible.
if (MainApp::ActiveForm!= 0)
{
/'l Resize the controls as needed.
dataGri dl->Si ze =
System : Drawi ng:: Si ze(Wdth, Height - tool Bar1l->Height);
tool Bar1->W dth = W dt h;
}
}

The code must verify that the form is active. If it isn’t active, any attempt to resize the form
will result in an error. You can't resize controls on a form that doesn't exist. We need to
resize both aspects of dataGridl, so using the Size property is most appropriate. However,
toolBarl will remain the same height, so changing the width is fine. Notice that we don’t
need to do anything with the main menu because it isn’t part of the client area of the form.
You'll find that you need to declare both dataGrid1l and toolBarl as protected, as shown
here:

prot ected:
/1 Protected display elenments
Dat aGri d *dat aGri di;
Tool Bar *t ool Bar 1;

There are several good reasons for using a protected declaration, but the main reason is
that you can'’t access private variables from a public event handler. Using protected
variables enables you to maintain a level of data hiding. If the variables you access from a
public method must remain private, you'll need to use properties to access them. While the
use of properties does expose the data the variable contains to outside access, you can use
the get and set methods to control access with greater accuracy.

Configuring the Application Form

You might think that configuring the form is going to be difficult because of all the display
elements we've discussed so far. The form configuration is relatively simple because many
of the control elements appear as part of something else. Here's the form configuration code
for this example.

/1 Configure the form

Text = "Managed Dat abase Exanpl e";

For mBor der Styl e = FornBorder Styl e:: Si zabl e;
Start Position = Fornttart Position:: CenterScreen;
Size = System : Drawi ng:: Size(500, 400);
Menu = mai nMenul,

Control s->Add(dat aGri dl);

Control s->Add(btnFirst);

Cont r ol s- >Add(bt nNext) ;

Cont r ol s- >Add(bt nPrevi ous);

Cont r ol s->Add(bt nLast);

Control s->Add(t ool Bar1);

If we had used the ToolBarButtons instead of standard buttons for toolBar1, the code would
have been even shorter. In the sections that follow, you'll learn that most of the magic of this
example happens because of specialized data access controls. Creating the display
elements is relatively simple compared to the data access controls.

Adding Some Data Access Code

You have many options when it comes to data access with Visual C++ .NET. Not only do
you have a choice of access technology, but you also have a choice of methods for working
with the database. The example uses a combination of a connection, data adapter, and a
dataset to fill the data grid we created earlier. The data adapter also requires two
commands, one for insert and a one for select. Here are the declarations of various data
access elements:

/1 Data El enents
O eDbDat aAdapt er *FoodAdapter;

A eDbConmand *ol eDbSel ect Command1l,;
A eDbConmand *ol eDbl nsert Command1l;
O eDbConnecti on *FoodConnecti on;

Dat aSet * FoodDat aSet ;

Defining the Data Adapter

Once you declare and instantiate the various data objects, you need to configure them. You
don’t have to follow a specific order, but it does help, in some cases, to do so. For example,
you can't fill a dataset before you configure the other data elements (this part of the project
appears later in this section). Listing 9-4 shows the configuration code you'll need for the
data adapter we use in this example.

Listing 9-4
|

FoodAdapt er - >l nsert Conmand = ol eDbl nsert Conmandl,;
FoodAdapt er - >Sel ect Command = ol eDbSel ect Commandl,;
Dat aCol uimMappi ng *Food_I DCol utm =

new Dat aCol utmMappi ng(" Food_I D', "Food ldentifier");

Dat aCol umMappi ng *NaneCol um =
new Dat aCol utmMappi ng(" Nane", "Product Nanme");
Dat aCol umMappi ng *PriceCol um =
new Dat aCol utmMappi ng(" Price", "Price");
Dat aCol umMappi ng *PurchaseCol um =
new Dat aCol umMappi ng(" Purchase", "Purchase");
Dat aCol umMappi hg *QuantityColum =
new Dat aCol umMappi ng(" Quantity", "Quantity");
Dat aCol umMappi ng *Storage_Li feColum =
new Dat aCol utmMappi ng(" Storage_Life", "Storage Life (Days)");
Dat aCol umMappi ng *FoodOr dersCol ums[] = {Food_I DCol um,
NanmeCol umm,
Pri ceCol umm,
Pur chaseCol umm,
QuantityCol um,
St orage_Li f eCol um};
Dat aTabl eMappi ng *TenpTabl eMapping =
new Dat aTabl eMappi ng(" Tabl e", "FoodOrders", FoodOrdersCol unms);
Dat aTabl eMappi ng *FoodAdapt er Mappi ng[] = {TenpTabl eMappi ng};
FoodAdapt er - >Tabl eMappi ngs- >AddRange(FoodAdapt er Mappi ng) ;

The OleDbDataAdapter control, FoodAdapter, provides a lot in the way of configuration
options. The code in Listing 9-4 represents a minimum implementation. It provides command
entries for the selection and insertion of data. While you might be able to get by without the
data insertion command, you must include a selection command or the data adapter won't
receive any input data. We’'ll see what the two commands require in the way of configuration
later in the chapter. For now, all you need to know is that you should provide support for
these two commands.

It's also important to tell FoodAdapter how to handle the data it receives from the database.
You'll need to create a set of DataColumnMapping objects. Each object describes a field in
the database. The dataset will eventually use this information as a means for configuring the
data grid. The first string contains the name of the field in the database. The string must
match the name precisely. The second string contains the field name that you want to see in
the data grid. If you don’t provide a precise field name, the column will still appear in the data
grid, but without the name you want to see. Here’s what the fields look like for the example
as a result of the mapping.

_F-w.lh:l-.rﬁm Proxfuct Harme | Prcs Purchase Tty Sacince Liw D) |

After you create the column mappings, you need to combine them into a DataTableMapping.
A data adapter can handle more than one table, so the table you create now could be just
one of many. The final step is to add the DataTableMapping objects you create to
FoodAdapter using the TableMappings->AddRange() method. Note that the process works
similarly to the menu we created earlier in the chapter.

Configuring the Data Insertion Command

Most users will want the ability to add new records to the database, which means creating a
data insertion command. You'll begin configuring oleDbinsertCommandl by adding a
CommandText property value that describes the action you want oleDbInsertCommandl to
perform. In this case, we want oleDbIinsertCommand1l to create a new record, which means
adding the record and giving it default settings. Here’s the command text we’ll use (you'll
normally place the entire command on a single line in your source file):

"1 NSERT | NTO FoodOrders(Food_I D, Nane, Price, Purchase, Quantity,
St or

age _Life) VALUES (2, 2, 2, 2, 2, 2)";

Creating a SQL statement that defines what the database will do with the data once you

send it isn’'t enough to create a new record. The command also requires a live connection to
the database (supplied by FoodConnection in the example). You must also describe the data
and how the Database Management System (DBMS) should react to it. For example, the
DBMS needs to know that one value is a string, while the next is an integer or a special type
such as currency. (The DBMS must support the special type you wish to store—the DBMS is
unlikely to provide a conversion routine that will convert data it doesn’t understand
automatically.) Listing 9-5 shows the code you'll use to create a data field definition.

Listing 9-5

ol eDbl nsert Commandl1- >Connecti on = FoodConnecti on;
ol eDbl nsert Commandl- >Par anmet er s- >Add(

new O eDbParanet er ("Food_I D', O eDbType:: VarWchar, 13,
"Food _ID"));

ol eDbl nsert Commandl1- >Par anet er s- >Add(
new O eDbPar anet er ("Nane", O eDbType:: VarWhar, 50, "Nane"));
ol eDbl nsert Commandl- >Par anet er s- >Add(
new O eDbParaneter("Price",
O eDbType: : Currency,
0,
System : Dat a: : ParaneterDi rection:: | nput,
fal se,
((System :Byte)(19)),
((System :Byte)(0)),
"Price",
System : Dat a: : Dat aRowVer si on: : Current,
0));
ol eDbl nsert Conmmandl- >Par anet er s- >Add(

new O eDbPar anet er (" Purchase", O eDbType:: DBDate, O,
"Purchase"));

ol eDbl nsert Commandl- >Par anet er s- >Add(
new O eDbParaneter (" Quantity",
O eDbType: : | nt eger,

0,

System : Dat a: : Paranet er Di recti on: : | nput,
fal se,

((System :Byte)(10)),

((System :Byte)(0)),

"Quantity",
System : Dat a: : Dat aRowVer si on: : Current,
0));

ol eDbl nsert Conmmandl- >Par anet er s- >Add(
new O eDbParaneter (" Storage_Life",

O eDbType: : Smal | I nt,
0,
System : Data: : ParanmeterDirection:: | nput,
fal se,
((System :Byte)(5)),
((System :Byte)(0)),
"Storage_Life",
System : Dat a: : Dat aRowVer si on: : Current,

0));
[—

As you can see, the Parameters->Add() method does most of the work. The amount of data
an entry requires varies by the type of data you want to supply. As a minimum, you must
supply the name of the field, the field type, size of the field, and the name of the data source
column in the database. In some cases, you must also determine

" Direction of data flow

= Whether the value can include a NULL value

- Number of digits to the left and right of the decimal point

" Version of the source data that you want to use

. Which object to use to represent the data value

Creating a Database Connection

The database connection, FoodConnection, provides the actual connection to the database.
You need to configure only one property, ConnectionString, to make this object usable.
Here’s the connection string found in the example code:

"Provider=M crosoft.Jet. OLEDB. 4. 0; Password=""""; User | D=Admi n; Da

ta Source=D:\\0083 - Source Code\\ Chapter 08\\Data\\Food. ndb; Mo
de=ReadW it e| Share Deny None; Ext ended Properties="""";Jet OLEDB: Sys
tem dat abase=""""; Jet OLEDB: Regi stry Path="""";Jet OLEDB: Dat a

base Password="""";Jet OLEDB: Engi ne Type=4; Jet OLEDB: Dat a

base Locki ng Mode=0; Jet OLEDB: d obal Partial Bul k Ops=2; Jet
OLEDB: d o

bal Bul k Transactions=1; Jet OLEDB: New Dat abase Password=""

"".Jet OLEDB: Create System Dat abase=Fal se; Jet COLEDB: Encrypt Data

base=Fal se; Jet OLEDB: Don't Copy Local e on Conpact =Fal se; Jet
CLEDB: Com

pact Wt hout Replica Repair=Fal se;Jet OLEDB: SFP=Fal se"

Normally, you'll place this entire connection string on one line in the source code. You'll need
to modify the Source portion of the string to match your system setup. In addition, the string
doesn’t have to be this long. The example shows the vast majority of the settings for a
Access database connection. Visual C++ will work just fine with a short string—you just
won't have as much control over the connection.

Configuring the Data Selection Command

The oleDbSelectCommandl command requires two parameters as input. First, you need to
tell the command which connection to use with the Connection property. The example uses
a value of FoodConnection because that's the connection in this case. Next, you need to
provide a command for selecting data from the database. Here's the command string used in
this case (it would normally appear on a single line in the source code):

"SELECT Food_I D, Nane, Price, Purchase, Quantity, Storage_Life FROM
Food

Orders ORDER BY Food_I D, Purchase DESC';

As you can see, this simple SQL statement tells which fields to select from the FoodOrders
view and then tells how to order it. The DESC keyword tells Access to order the Purchase
field in descending order.

Filling the Dataset with Data

The configuration process is for naught without a single command to activate the various
objects. You must provide this line of code after the data connection is completed or the data
grid will remain blank:

FoodAdapt er - >Fi | | (FoodDat aSet) ;

All that this command does is tell the data adapter to fill the dataset with data. Without the

command, the application will create a connection to the database, but will never place

anything in the dataset. Because the data grid relies on the dataset for information, the data

grid will assume there’s no data to display.

Note

You must perform all the database object configuration and fill the dataset
before you begin creating the data grid. The data grid code that appears in
Listing 9-1 depends on a fully functional database connection and a full
dataset. In many cases, you'll obtain odd results if you create the data grid
first, then attempt to create the database connection. In a few cases, the
application will simply report the dataset is Null and refuse the run.

Providing Record Movement Event Handlers

The user is going to want to move from record to record without manually clicking the cell
each time. In addition, you might need some method to move from record to record when
adding automation to the application. Developers normally provide two or three methods of
record pointer movement, all of which use the same code: toolbar button, menu command,
and keyboard shortcut. Listing 9-6 shows the record movement code we’'ll use for this
example.

Listing 9-6

voi d Mai nApp:: RecordFirst_Click(Object* sender, EventArgs* e)
{

/1l Move to the first record.

dat aG i d1->Current Row ndex = 0;

dat aGri d1->Sel ect ();

}
voi d Mai nApp: : RecordPrevi ous_Click(Object* sender, EventArgs* e)
{
/1 Validate pointer |ocation.
if (dataGridl->Current Rowi ndex != 0)
/1 Move to the previous record.
dataGri d1->Current Rowl ndex- -;
el se
/1 Display an error nessage.
MessageBox: : Show(" Al ready at first record!",
"Data Gid Pointer",
MessageBoxBut t ons: : OK|
MessageBoxl| con: : Excl anati on);
dataGi d1->Sel ect ();
}
voi d Mai nApp: : Recor dNext _Cli ck(Obj ect* sender, EventArgs* e)
{
/1 Move to the next record.
dataGri d1->Current Rowl ndex++;
dat aGri d1->Sel ect () ;
}
voi d Mai nApp: : RecordLast _Cli ck(Obj ect* sender, Event Args* e)
{
/1l Move to the last record.
Dat aTabl e *Current = FoodDat aSet - >Tabl es->get _Iten(0);
dat aGri d1- >Curr ent Rowl ndex = Current->Rows->Count - 1;
dat aGi dl1->Sel ect ();
}

As you can see from the code, all of these methods share two features. First, the method
changes the CurrentRowlIndex property. Changing this property moves the record pointer.
Second, the record movement method uses the dataGrid1->Select() method to highlight the
new row.

Obtaining the current row so that you can change the CurrentRowlIndex property isn't difficult
when moving forward or backward. All you need to do is increment or decrement the pointer
as needed. The data grid always uses a value of O for the first record index, so moving to the
first record isn't that difficult either. However, gaining access to the value of the last record in
the data grid can prove troublesome.

The only way to access the last row information is to create a DataTable object and fill it with
the data for the table in question from the dataset (FoodDataSet). Because the dataset can
contain more than one table, you need to track which table resides in each array position of
the dataset. The Rows->Count property contains the 1-based value of the current record.
However, the data grid uses a 0 base for its record number, so you need to subtract 1 from
the value you obtain from Rows->Count. Figure 9-1 shows the final output of the application.

‘- Hanagad Datahazn Exampln

Fie Recod
Firsl Presaous F Hext I Last I
Foodd ldeviiben 1 | Pooduct Mo | Pics Puschae Dty Slosage Lie [Dawnl

ko IVEGOONSPL Canciy (E -] A 6 n
| VEEQOMZSFL Toralza: [1%: -1 MARZDN 20 7
| VEGDOmESFL Tomsioey gy NN 48 7
| WEGOOREGFL Orsons 0¥ 12ARHN. 5]
WEGDONICSFL Do arr NALZDHE 3 50
IWEGOOGESPL e o4z s 19]
WEGHSFL Cabiage nes V2% 200 # 14

Figure 9-1: The example application produces a grid view of the data in the Access
database.

Adding Print Capabilities

As mentioned in Chapter 8, creating reports is an essential task for any database developer.
Some people will never see the database application you create except through the reports
that it generates. The .NET Framework provides drawing tools akin to those found in the
Graphics Device Interface (GDI) API for Win32. In fact, Microsoft calls this support GDI+.
The only problem with GDI+ is that it provides only two-dimensional drawing support. If you
want to use three-dimensional drawing techniques for your reports, you'll need to use
DirectX or some other unmanaged technology.

The example provides a simple text-only report that demonstrates basic GDI+ drawing
capability. You also have access to drawing primitives such as ellipses. The following
sections show you how to perform two essential reporting tasks. First, you must handle the
menu commands for creating a report; second, you must generate the report document.
Note
Don't attempt to move your drawing code from unmanaged Visual C++
applications to the .NET environment. Microsoft has finally decided to bring
some sanity to the drawing environment, so all of the languages now use
the same drawing scale. For example, all fonts now use points as a unit of

measure unless you specifically configure the application for something
else. This standardization is good for developers as whole, because you
don’t have to guess about units of measure anymore. However, the change
also means that some of your code will produce undesired results because
of differences in the unit of measure.

Creating the Print Menu Event Handlers

As previously mentioned, you need to provide event handlers for the various print-related
menu commands. The good news is that you can create several forms of a menu command
using the same drawing code (discussed in the next section). Listing 9-7 shows the menu
event handling code we’ll use for this example. One of the elements you should look for in
the two menu commands that produce output is the PrintPageEventHandler object.

Listing 9-7

voi d Mai nApp:: muFi |l e_PageSetup_Click(Object* sender, EventArgs* e)
{

/1l Use the current printer settings (default if not set).
PrnDi al og->PrinterSettings = PrnSettings;

/1 Show the printer setup dial og.
PrnDi al og- >ShowDi al og() ;

voi d Mai nApp:: muFile_Print_Click(Object* sender, EventArgs* e)
Print Di al og *Dlg = new PrintDial og(): /1 Print Dial og

Print Document *PD = new PrintDocunment(); // Document Rendering

/! Add an event handl er for document printing details.
PD- >add_Pri nt Page(new Pri nt PageEvent Handl er (this, PD_Print Page));

/1l Set up the Print Dialog.
Dl g->PrinterSettings = PrnSettings;

/1 Obtain the print paraneters.

i f (Dl g->ShowDi al og() == Di al ogResul t:: OK)

{
/1 Set up the document for printing.
PD->PrinterSettings = DI g->PrinterSettings;

/'l Print the docunent.
PD->Print();

}

el se

{
/] Exit if the user selects Cancel.
return;

voi d Mai nApp:: muFile_PrintPreview Click(Object* sender, EventArgs*
e)

{
/]l Create a printer docunent and a dialog to display it.
Pri nt Docunment *PD = new PrintDocunent ();
Print Previ ewDi al og *ShowPr evi ew = new PrintPrevi ewDi al og();
/1 Add an event handl er for docunent printing details.
PD- >add_Pri nt Page(new Pri nt PageEvent Handl er (this, PD_Print Page));
/1l Assign the printer docunent to the dialog and then display it.
ShowPr evi ew- >Docunent = PD;
ShowPr evi ew >ShowbDi al og() ;
}

The mnuFile_PageSetup_Click() event handler creates a printer configuration dialog box
and displays it. Notice that this method assigns the PrnSettings object to the printer dialog.
The same object appears in the mnuFile_Print_Click() event handler. In both cases, the
object represents the current printer settings. The reason you want to use a field to hold this
data is to allow the various print routines to coordinate their information. Using this technique
means that a change in the mnuFile_PageSetup_Click() event handler will also show up in
the mnuFile_Print_Click() event handler. You can set a variety of options for the printer
dialog. Here's what the default print dialog looks like.

Prini []=]
Frndsy

e T] r-o |
Sisher Feady

Ty HF Laisiled TMF
Wk Whastscon latorels

Commenk [T P v bl
Frrd range Cogesa
Lo | Hunbed of copet m
~

' el
: LM

The mnuFile_Print_Click() event handler begins by assigning a PrintPageEventHandler
object to the printer document. It then presents the user with a print dialog. If the user clicks
Cancel in the print dialog, the routine exits. However, if the user clicks OK, The code assigns
the printer settings from the print dialog to a print document (P D). The print document
invokes the PD_PrintPage() print page event handler by executing the Print() method.

Creating a print preview still involves the PD_PrintPage() event handler. In this case, the
print document (PD) becomes part of the ShowReview PrintPreviewDialog object. Printing
begins when ShowReview executes the ShowDialog() method.

Creating the Print Page Event Handler

The PD_PrintPage() event handler is the centerpiece of printing for the example application.
In a full-fledged application, you might have several of these event handlers in place. The
example application outputs a simple tabular form. Listing 9-8 shows the code we’ll use in
this case.

Listing 9-8

voi d Mai nApp:: PD _Print Page(Obj ect* sender, PrintPageEvent Args* ev)
{

System : Draw ng: : Font *docFont ; /1 Docunent Font

System : Drawi ng: : Font *headFont ; /1 Headi ng Font

System : Draw ng: : Font *col umFont ; /1 Colum Font

fl oat yPos = 20; /1 Position of text on
page.

i nt Counter; /1 Loop counter.

Dat aTabl e *Current; /1l Data table array.

/1 Create the font.
docFont = new System:Drawi ng::Font("Arial", 12);
headFont = new System :Draw ng::Font("Arial", 24);

col umFont = new System :Drawi ng:: Font("Arial", 14,
Font Styl e: : Bol d) ;

/1 Print the heading.
ev->G aphi cs->Drawst ri ng(" KATZ! Cor poration",
headFont ,
Brushes: : Bl ack,
20,
yPos) ;
yPos = yPos + headFont->Cet Hei ght () + 20;

/1 Print the colum headi ngs.
ev->G aphi cs->DrawStri ng(" Food | D",

col utmpFont

Brushes: : Bl ack,
20,
yPos) ;

ev->G aphi cs->DrawSt ri ng(" Nane",
col umFont,
Brushes: : Bl ack,
150,
yPos) ;

ev->G aphi cs->Drawst ri ng(" Pur chase Date",
col umFont
Brushes: : Bl ack,
250,
yPos) ;

ev->G aphi cs->DrawsString("Price",
col umFont ,
Brushes: : Bl ack,
430,
yPos) ;

ev->G aphi cs->Drawstri ng(" Quantity",
col umFont
Brushes: : Bl ack,
510,
yPos) ;

ev->G aphi cs- >DrawStri ng(" St orage Life",
col umFont ,
Brushes: : Bl ack,
630,
yPos) ;

yPos = yPos + col umFont - >Get Hei ght () + 20;

/1l Continue printing as long as there is space on the page and
/1 we don't run out of things to write.
Current = FoodDat aSet - >Tabl es->get _|Iten(0);
for (Counter = 0; Counter < Current->Rows->Count; Counter++)
{
/1 Print the line of text.
ev->G aphi cs->DrawsSt ri ng(
dataGri dl->get _Itenm(Counter, 0)->ToString(),
docFont,
Brushes: : Bl ack,

20,
yPos) ;
ev->G aphi cs->DrawSt ri ng(

dat aGri d1- >get _| ten(Count er,

docFont,
Brushes: : Bl ack,
150,
yPos) ;
ev->G aphi cs->Dr awSt ri ng(

dat aGri d1- >get _|ten{ Counter,
10),

1)->ToString(),

3)->ToString()->Substring(O0,

2)->ToString(),

4) ->ToString(),

5)->ToString(),

docFont,
Brushes: : Bl ack,
250,
yPos) ;
ev->G aphi cs->Dr awSt ri ng(
dat aGri d1- >get _|ten{ Counter,
docFont,
Brushes: : Bl ack,
430,
yPos) ;
ev->G aphi cs->DrawSt ri ng(
dat aGri d1->get _|ten{ Counter,
docFont,
Brushes: : Bl ack,
510,
yPos) ;
ev->G aphi cs->DrawSt ri ng(
dat aGri d1->get _|ten{ Counter,
docFont,
Brushes: : Bl ack,
630,
yPos) ;
/! Deternmine the next print position.
yPos = yPos + docFont->Get Hei ght() + 10;
}

/1 Tell the application there are no nore pages to print.

ev- >HasMor ePages = fal se;

}
I —

As you can see, the code begins by creating several drawing tools (fonts). You also have
access to pens and brushes, just as you would for an unmanaged application. Unlike
applications that use GDI, you don’t need to create a device context or select the tools you
want to use into the device context. The automatic creation of a device context and use of
tools reduces the amount of code you need to write and the complexity of the print code.

After it creates the required tools, the code begins drawing strings on screen. The data won't
appear on a printer (or on screen) until after the page is complete. GDI+ creates one page at
a time. Each drawing command requires the data you want to output, some positioning
information, and a brush or other drawing tool to use for drawing the image.

Notice how the code calculates the next line position. It uses the height of the current font,
then adds a little to that number to provide separation between lines. If you use only the font
height, the lines of data will stack one on top of another. Some print applications give the
user control over this value, so the user can choose between readability and getting more
data on one page. Figure 9-2 shows an example of the print preview output of this
application.

@S- 00880 .

KATZ! Corporation

Faadl I Mait Furihaie Dale Prne

VEROMTEPL Conis WMDY [T
VENDMIEPL Tenakes 141 o
VEMMIMHIEL Teraie 5 LT
VEIMIERL O

VEXOMIEPL Gakm ore
VEMNHIFL ko o] wiil
VEDOQMIEPL Cabbzpo 1N [T

'Figure 9-2: The print preview output of this example shows the use of fonts and spacing
between the lines of text.

Part lll: Visual C++ and Online
Computing

Objectives:

" Learn how to work with PDAs

. Develop accessibility friendly Web sites

. Create a Web Services application

. Use ISAPI to build Web sites that perform well

. Create ISAPI Filter and ISAPI Extension Applications
. Discover how SOAP builds upon XML

. Learn the structure of SOAP messages

. Create a SOAP application

Chapter List

Chapter 10: Building Applications for the Internet

Chapter 11: Working with Internet Information Server (IIS)

Chapter 10: Building Applications for the
Internet

Overview

There’s little doubt that the Internet is going to be a major force in business communications
of all types. Many businesses now have virtual private networks (VPNS) in place for
employees on the road. Most are at least considering some form of customer relationship
management (CRM) that relies on connections to the company’s Internet site. You'll also find
companies engaged in both business-to-business (B2B) and business-to-consumer (B2C)
transactions. In short, the world today is one where distributed applications are a necessary
part of business.

This chapter helps you begin the journey into a larger world of distributed application
development. Part of that development is the use of alternative devices. We’'ll discuss the
implications of the PDA and I'll show you how to use SOAP to create an application that will
run on both your PDA and desktop machine. The use of component technology helps reduce
the amount of code needed to perform any given task, and adding a browser front end just
makes the job easier. Whenever you create an application that runs on multiple machine
types without change, it's a big win for everyone from the client to the developer. As part of
the browser-based application discussion, we’ll look at the Web Accessibility Initiative (WAI),
which is a new mandate to serve those with special needs.

We'll also discuss Microsoft's “not quite ready for prime time” Web Services. It's true that
Web Services has a lot of promise, but you'll also encounter more than a few pitfalls when
using it. During the Web Services discussion, you'll learn a few of the ins and outs of this
new technology. Note that Web Services do run better on both C# and Visual Basic than
they do on Visual C++.

Web page programming is a major issue for most developers. ASP offered developers a way
to write Web applications quickly and easily. ASP.NET adds to that tradition by offering new
features such as code behind. We'll discuss how ASP.NET can help you create Web-based
applications more quickly. This section contains a simple application that demonstrates the
functionality that ASP.NET has to offer.

Working with PDAs and Other Alternative Devices

The world is becoming more mobile all the time. It's nothing to see someone talking over a
cell phone today—ijust a few years ago it was a novelty. When 1 first saw a Personal Digital
Assistant (PDA) in 1998, | thought they might be a passing fad or a device of limited use.
Today, that vision has changed significantly. Developers create applications for PDAs now
that many people would have thought impossible even a year ago. Helping the wave of new
PDA devices along is the proliferation of wireless services and browser clients that work on
multiple machines.

SOAP is an excellent protocol for PDAs because the people who use them spend most of
their time on the road. PDAs always perform remote communications with the company
network, because vendors don’t design them to communicate in any other way. In short, if
you own a PDA, you need good remote communications of the sort that SOAP can provide.

Obviously, PDAs have special programming requirements. They don’t have a hard drive in
the normal sense of the word, lack a high-speed processor, and even memory is at a
premium. The next section, “Special Needs for PDAs,” examines the special programming

requirements for PDAs. You'll find that you need to jump over some high hurdles to make
some types of applications work on a PDA, even with the help of SOAP.
Note

At the time of this writing, Microsoft doesn’t provide a toolkit that supports
SOAP on a PDA, not even for Windows CE machines. The .NET Compact
Framework is in beta testing, but it runs only on a very select few PDAs.
Consequently, we’ll examine several other SOAP toolkit choices in the
“Getting SOAP for Your PDA” section of the chapter. We’'ll look at choices
for several popular PDA operating systems.

Special Needs for PDAs

There’s no free lunch—I often wish | had been the first one to say that because it's so true.
Companies that want to gain the advantages of using PDAs also have to decide how to
handle the special needs of these devices. A PDA isn't a single purpose device like a radio,
but it isn't a full-fledged computer either; it's somewhere in between. A PDA has more to
offer than the cell phones that some developers will eventually target. However, it can't
process data as quickly as your desktop or laptop machine—which means you have to scale
your applications down slightly to fit within the hardware confines of the PDA.
Tip
The easiest way to create an application that will run on both laptops and
PDAs is to use a browser front end and a component or ASP.NET back end.
Using SOAP combined with components offers greater flexibility and better
performance. Using ASP.NET enables you to perform changes on the fly and
develop the application faster.

After spending some time working with several PDAs as background for this chapter, | found
it apparent that SOAP is even less ready for prime time when it comes to these devices than
it is for the desktop. (The test machine is a Casio Cassiopeia.) This makes sense, since
software of this sort normally appears on the desktop first. However, it also means that you
need to consider your PDA development plans carefully because there are many pitfalls. In
all cases, you'll want to build a desktop version of your application before you attempt to
create one for your favorite PDA.
Note
| also attempted to use a Palm VIl as one of the devices for the book. A lack
of functionality and dearth of third party tools restricts use of this device for
SOAP applications today. Perhaps a third party will eventually create a
SOARP client for the Palm, but a lack of tools makes it unusable as a
distributed application device today.

Fortunately, you can create a SOAP application for your favorite PDA; it just takes a little
more planning. The following sections examine the special needs of PDAs. It's important to
note that most of these special needs are in addition to what you need to consider for a
desktop application.

The Case for PDAS

Developing SOAP applications for PDAs will require considerable work. Many developers
are unused to working with devices that have small screens; the memory limitations are
problematic at best, and there’s a limit to the number of available development tools.
However, the need for PDA development is strong.

Consider the case of Sears. They recently purchased 15,000 PDAs for their business. The
deal is worth between $20 and $25 million. That's a lot of PDA power for their staff. Each
PDA is equipped with a built-in bar-code scanner and a wireless modem. The company

plans to use these new devices for inventory management, price changes, and merchandise
pickups. Some developer has a large programming task in the works as | write this. You can
bet that such a serious investment comes with an equally serious need to affect the bottom

line. In short, PDAs are becoming mainline systems for many different tasks.

Companies often cite two main reasons for switching to PDAs after using other devices. The
first reason is that PDAs cost less to buy, operate, and maintain than many other devices. A
PDA equipped with the right add-on devices can perform myriad tasks in an intelligent
manner.

The second reason is ease of use. PDAs have a limited number of buttons on them, and the
functions of each button are easy to understand. The user writes on the screen as they
would using pen and paper—the PDA uses handwriting recognition to convert the
handwritten information into text.

Sears may be looking toward the future as well. A customer could come into the store with
their PDA, beam a product order to a sale clerk’s PDA, and get their merchandise faster than
ever before. Of course, this use is in the future; most shoppers today don’t place their orders
in a PDA. The point is that Sears and other companies like K-Mart are already planning for
this eventuality.

Unlike older, single-function devices, PDAs are completely programmable. This means an
investment in hardware today won’t become an albatross tomorrow. Companies can extend
the life of an investment by using the same PDA in more than one way. As the PDAs age,
they’ll handle applications with lower programming requirements.

Special Add-ons

Most vendors design PDAs as electronic versions of the calendar, address book, and
personal note taker. Early versions of these products didn’t include the mini word processors
and spreadsheets you'll find in modern versions. In fact, you can extend many PDAs to
double as cameras, scanners, and other devices now with special add-ons.

The PDA isn't exactly a standard device to begin with. There are many hardware
implementations, more than a few operating systems, and even different capabilities to
consider. When users start adding features to their PDA, you may find that it's nearly
impossible to determine what features you can rely on finding. In short, standardization
within the company is essential, even if there’s chaos outside.

These special add-ons can also work to your advantage. Imagine creating an application to
work with one of the camera attachments for a PDA. Each picture is automatically
transferred to a remote processing center as the photographer takes pictures. SOAP could
make this task relatively easy and automatic. The pictures would be ready for viewing by the
time the photographer reaches the home office.

In sum, special PDA add-ons present problems because they create a nonstandard
programming environment. On the other hand, these add-ons can create new productivity
situations where a developer can provide functionality that no one has ever seen before. The
optimum setup is to standardize features required to make SOAP work, such as the type of
network interface card (NIC). On the other hand, it's important to consider specialization.
Adding a camera to a PDA turns it into a direct image transfer device. PDAs provide the
means to extend what computers can do as long as you configure them with application
connectivity in mind.

Networking

SOAP relies on a connection between the client and the server. It's easy to create a
connection when you’re working with a desktop machine. If you can’t create a direct
connection using a LAN, there are always alternatives, such as using dial-up support. SOAP
makes communications between a server and desktop machine easy because there are so
many ways to create the connection.

A PDA may not offer much in the way of a network connection. In many cases, the network
connection will offer a method to synchronize the PDA with the desktop. The synchronization
process works with static data and won't provide you with a live connection to the network. It
helps to have a wireless network setup when working with a PDA, since many vendors
design PDAs to use this connection type. | was able to find a third party product for
connecting a Pocket PC directly to the network using a special NIC.

Every PDA that | looked at does provide some type of modem support, but the modem is
usually an add-on and doesn’t come with the device. Again, you'll need to standardize the
kind of modem support you need for your application. You'll also want to be sure that you
can create the desired connection and view material using a browser if you decide to go that
route.

The bottom line is that the original purpose of a PDA has little relation to the ways that some
people use them today. Vendors design the PDA to provide electronic versions of calendars

and address books. Yes, you can run SOAP on a PDA, but only if you have the required live
network connection. Obtaining that connection can prove difficult, to say the least.

Operating System

You probably know about the major PDA operating systems on the market today. PDA
vendors supply their own operating system. Windows CE is a favorite because it looks and
acts much like Windows for the desktop. What you should realize is that the operating
system the PDA package says it uses might not be the operating system you’ll get. Small
variations between machines make the difference between a SOAP toolkit that works and
one that won't even install.

Windows CE allows for multiple levels of development. The operating system provides a
subset of the features found in the Windows API. This means that you can use the
programming techniques you learned in the past if you're already a Windows developer.
There’s even a special toolkit for working with Windows CE devices
(http://www.microsoft.com/catalog/display.asp?subid=22&site=763&pg=1/).

Note

Unfortunately, about the only part of the current Windows CE toolkit of value
for the Visual C++ developer is the emulator it provides. You can use the
emulator to validate your application before you move it to the PDA.
Microsoft should update this toolkit or provide other resources for PDA
development in the near future.

Because Windows CE also contains Internet Explorer, you can interact with it using a
browser application. In fact, this is the method that | recommend, because it opens a number
of timesaving possibilities, not the least of which is the ability to develop the application on
your desktop system before you move it to the PDA. Be warned, though, that the version of
Internet Explorer that ships with Windows CE doesn’t include full scripting support. You can
use JScript (Microsoft’s form of JavaScript), but not VBScript (see Internet Programming with
Windows CE, http://www.microsoft.com/mind/0599/webce/webce.htm, for details).

Windows CE will simply ignore any script commands that it doesn’t understand in the
HyperText Markup Language (HTML) file. In addition to JScript, you also have access to
some Internet Explorer functions, such as Alert(), and you can use standard HTML tags.

http://www.microsoft.com/catalog/display.asp?subid=22&site=763&pg=1/
http://www.microsoft.com/mind/0599/webce/webce.htm

The Windows CE version of Internet Explorer will also work with Java applets. This means
that you can create complex browser applications that don’t rely on VBScript.

Getting SOAP for Your PDA

If you're the lucky owner of a Pocket PC, getting a SOAP toolkit is relatively painless.
Unfortunately, none of the other PDA choices on the market has a SOAP toolkit available as
of this writing. (There are rumors of a SOAP toolkit for the Palm, but none of the potential
toolkits have appeared on the market yet.) However, given the newness of this technology,
you can expect other vendors to provide SOAP toolkit offerings for other platforms
eventually. The SOAP::Lite site (http://www.soaplite. com/) contains a section of SOAP
toolkit links you can check periodically for new additions. This list tells which toolkits will work
with PDAs.

Tip

According to a recent Research Portal study, developers are most likely to
favor handheld devices that use the Microsoft (32 percent) or Palm (27
percent) operating system. However, if you consider that these top two
operating system choices control about 59 percent of the market, it's plain
that developing for any given platform could be risky. There are two ways to
get around this problem. First, ensure that your company adopts a single
handheld device operating system as standard, if possible. Second, make
sure you write most of the processing code for a PDA application to run on
the server, rather than the client. This allows you to write for multiple PDA
operating systems with less effort.

Although there’s a long list of SOAP toolkits you find on the SOAP::Lite site, most of them
aren’t ready for prime time. The vast majority are in beta or not in any released state at all.
The choices of usable toolkits for SOAP are extremely limited now, but you should see more
choices as SOAP becomes entrenched within the corporate environment. The bottom line is
that you not only need to find a SOAP toolkit for your PDA, but you need to find one that's
fully functional.
Browser
Alert It's impossible to know, at this point, just how many SOAP-related
specifications will eventually appear on the horizon. One of the best
places to learn about new specifications is the XML Web Service
Specifications page at GotDotNet
(http://www.gotdotnet.com/team/xml_wsspecs/default.aspx).
Vendors are now trying to make all of these variations on a theme
fit within a framework (http://www.w3.0rg/2001/03/WSWS-
popa/paper51). The idea of a framework is to show how the pieces
fit together into a cohesive whole. You can monitor progress on the
framework as well as other XML projects at
http://www.w3.0rg/2001/04/wsws-proceedings/ibm-ms-
framework/.

Three new specifications recently appeared on the standards groups agenda: Web Services
Routing Protocol (WS-Routing), Direct Internet Message Encapsulation (DIME), and
XLANG. Each of these three specifications is so new that there’s little in print about them
now. Here’s the short overview of the three new specifications:

. XLANG (http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm) will
allow developers to model business processes using a standardized syntax. Microsoft
uses XLANG with their BizTalk Server product. You'll find the XLANG discussion group
at http://discuss.develop.com/xlang.html.

. WS-Routing (http://msdn.microsoft.com/ws/2001/10/Routing/) makes it easier to
move data using SOAP over transports such as TCP, UDP, and HTTP in one-way,

http://www.soaplite
http://www.gotdotnet.com/team/xml_wsspecs/default.aspx
http://www.w3.org/2001/03/WSWSpopa/paper51
http://www.w3.org/2001/04/wsws-proceedings/ibm-msframework/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://discuss.develop.com/xlang.html
http://msdn.microsoft.com/ws/2001/10/Routing/

request/response, and peer-to-peer scenarios. You'll also want to check the discussion
group for WS-Routing (formerly known as SOAP-RP) at
http://discuss.develop.com/soap-rp.html.

. DIME (http://gotdotnet.com/team/xml_wsspecs/dime/default.aspx) is used to
package data using a binary format in a form called payloads. You'll find the DIME
discusson group at http://discuss.develop.com/dime.html.

The following paragraphs provide a quick overview of some of the better SOAP toolkit
choices for PDAs today. This list isn’'t exhaustive or even partially complete. | chose to
concentrate on those toolkits that are close enough to completion that you can use them for
development today.

pocketSOAP

This is the best choice if you own a Pocket PC. The same developer, Simon Fell, produces
Simon’s Soap Server Services for COM (4S4C) and pocketSOAP (http://
www.pocketsoap.com/). You'll find desktop and PDA versions of pocketSOAP, making it
easy to develop applications on your desktop machine and move them to your PDA later.
This is especially true if you use scripts within a Web page, as we will for the examples in
this chapter. The Pocket PC version is easy to install and works just as well within the
confines of the Pocket PC'’s feature set.

Although this product is still in beta, you'll find that most applications work with few problems.
The only major problem that | experienced during testing was an occasional HTTP timeout
error. The developer has promised to keep working on the kinks, so you'll likely find this
product an optimum choice for PDA development.

The only caveat when using pocketSOAP is that you need to create the message by hand. It
doesn’t support a high-level API as the Microsoft SOAP Toolkit does. However, this actually
turned out to be beneficial when working with more than one platform (as we’'ll see in the
examples). The bottom line is that you need to be prepared to spend a little more time
coding when working with pocketSOAP, but the outcome is well worth the effort.

WASP

Web Applications and Services Platform (WASP)
(http://www.systinet.com/idooxoap.html) is a fully developed desktop product. It currently
comes in Java and C++ flavors, which many developers will find useful for both Web-based
and desktop applications. The vendor is currently working on a version of WASP for the
Pocket PC. Unfortunately, the PDA product wasn’t ready at the time of writing.

One of the advantages of WASP is that it provides cross-platform support. The server part of

the product runs on Linux or Unix. Eventually, it will run on Windows without modification as

well. (There’s a downloadable ISAPI package for WASP on the Web site, but you need to

put the package together before you can use it.) The client runs on Linux, Unix, and all

flavors of Windows (except Windows CE now).

Tip

WASP provides the best support for multi-part MIME messages. The support
is only available on Linux and Unix machines now, but may become available
on other platforms. Compatibility issues flaw the MIME support, but the
vendor may have them fixed by the time you read this. You shouldn’t count on
MIME support for PDAs anytime soon, because of resource limitations.
However, given the progress this particular vendor has made, the possibility
of MIME support on a PDA does exist.

http://discuss.develop.com/soap-rp.html
http://gotdotnet.com/team/xml_wsspecs/dime/default.aspx
http://discuss.develop.com/dime.html
http://
http://www.systinet.com/idooxoap.html

A major goal of this product is to provide the same programming experience no matter which
platform you're using. Like pocketSOAP, this means that you should be able to move at least
some of your code between platforms. However, the Java version is more likely to provide
seamless support.

WASP also provides special support for the Tomcat server. You can download versions with
or without Enterprise Java Beans (EJB). It was interesting to note that several of the
specialty downloads included notes about daily product builds—an indicator of the volatility
of the SOAP toolkit market.

Creating a Simple PDA Application

Now that you have a better idea of what creating a distributed PDA application involves, it's
time to look at a simple example. The example queries the server for some server statistics.
| didn’t choose anything too exciting, but the information is typical of what a network
administrator might want for a remote monitoring application.

The following sections provide a detailed look at the server code, client code, and application
testing. The example uses a single component for data transfer, which means debugging
should be relatively easy. We won't explore all of the intricacies of SOAP in this chapter.
Make sure you look at the “An Overview of SOAP” and “Writing SOAP Applications” sections
of Chapter 11 for more details.

Note

This example only runs with pocketSOAP. You must install pocketSOAP on
both the development machine and the target PDA. In some cases, the
example may not run, even on another Pocket PC, because of small
differences in operating system and hardware implementation between
vendors. The example will run definitely on a Casio Cassiopeia and likely on
most Compaq PDAs.

Creating the Component Code

The component for this example retrieves the various computer name information from the
server using the GetComputerNameEx() Win32 API call. Knowing which computer you're
working with from a remote location is important, so this is a piece of information that
everyone will want to know how to retrieve. Of course, a full- fledged application would
supply a great deal more information than presented here, but this component represents a
good starting point.
Note
You'll find the complete source code for this example in the \Chapter
10\CompName folder of the source code CD. The \Chapter
10\LocalCompNameTest folder contains a local test application you can use
to validate that the component is properly registered and working correctly.

You'll need to create an ATL Project. Make sure you clear the Attributed option, select DLL
as your server type, select Allow merging of proxy/stub code, and select Support MFC on
the Application Settings tab. Once you create the project, add a new object named
NameValues, then add two methods to it named GetCompName and GetAllNames. Listing
10-1 shows the input and output parameters for the component, along with the component
code.

Listing 10-1

STDMETHODI MP CNamneVal ues: : Get ConpName(MYCOMPUTER_NAME_FORNMAT
NanmeType, BSTR*

Ret ur n)

{

AFX_MANAGE_STATE(Af xGet St ati cMbdul eState());

CString oConputerNane; // Buffer to hold conputer nane data.

ULONG ul BufferSize = MAX_ COVMPUTERNAME_LENGTH + 1;

/]l Setup data conversion.

USES_CONVERSI ON;

/1l See if there is a NetBIOS nane for this item

i f (GetConputer NameEx((COMPUTER NAME_FORMAT) NaneType,
oConput er Name. Get Buf f er (MAX_COVMPUTERNAME_LENGTH + 1),
&ul Buf fer Si ze))

{
/'l Release the string buffer.
oConput er Nanme. Rel easeBuffer(-1);
/1l Convert buffer contents to an OLE string.
*Return = T2BSTR(oConput er Nane. Get Buf f er (80)) ;
oConput er Nanme. Rel easeBuffer(-1);

}

/1 1f not, display a failure string.

el se
*Return = T2BSTR("Val ue Not Avail abl e");

/1 return the standard result.

return S_OK;

}

STDMETHODI MP CNaneVal ues: : Get Al | Nanes(BSTR* Ret urn)

{
AFX_MANAGE STATE(Af xGet St ati cModul eState());

CString All Nanes; /1 Return value array.
BSTR Ret Stri ng; /1 Return string fromcall.
[IFill the array with val ues.

USES_CONVERSI ON;

Al | Nanmes = " Conput er NameDnsDomai n\t\t\t";

CGet ConpName(DnsDomai n, &Ret Stri ng);

Al l Nanmes = All Nanes + CString(RetString);

Al | Names = Al'l Nanes + "\r\nConput er NaneDnsFul | yQual i fied\t\t";
Get ConpNane(DnsFul | yQual i fied, &RetString);

Al l Nanmes = All Nanmes + CString(RetString);

Al |l Namres = Al'l Nanes + "\r\nConput er NaneDnsHost nane\t\t\t";

Get ConpNane(DnsHost name, &Ret String);

Al l Nanes = All Nanes + CString(RetString);

Al | Nanes Al | Nanmes + "\ r\nConput er NameNet Bl OS\t\t\t";

Get ConpNane(Net Bl OS, &Ret String);

Al l Nanes = All Nanes + CString(RetString);

Al | Names = All Nanes + "\r\nConput er NanePhysi cal DhsDonmai n\t\t";
Get ConpNane(Physi cal DnsDomai n, &Ret Stri ng);

Al Il Names = Al |l Nanmes + CString(RetString);

Al'l Names = Al | Nanes +
"\ r\ nConput er NanmePhysi cal DnsFul | yQual i fied\t";

Get ConpNane(Physi cal DnsFul | yQual i fied, &RetString);
Al l Nanes = All Nanes + CString(RetString);

Al l Names = Al'l Nanmes + "\r\nConput er NanePhysi cal DhsHost nane\t\t";
Get ConpNane(Physi cal DnsHost nane, &Ret String);

Al Il Names = Al |l Nanmes + CString(RetString);

Al |l Names = All Nanes + "\r\nConput er NanePhysi cal Net Bl OS\t\t";
Get ConpNane(Physi cal Net Bl OS, &Ret String);

Al Il Names = Al |l Nanmes + CString(RetString);

// Return the result.
*Return = T2BSTR(Al | Nanes) ;

return S_OK;
}

As you can see from the listing, the code for GetCompName() isn’t that complex. We
retrieve the computer name value based on the type of value the user wants to retrieve.
Windows supports several levels of network names, so knowing how to retrieve all of them is
a real plus. After the code retrieves the computer name value, it returns it to the client. There
are a few transitions that take place to ensure application compatibility, but that's about it.
Notice that the method uses an odd input value named MYCOMPUTER_NAME_FORMAT.
This is an enumeration found in the IDL file. It replicates the COMPUTER_NAME_FORMAT
enumeration found in the various C++ header files. Here’s the enumeration:

typedef enum MYCOVPUTER_NAME_FORMAT

Net BI CS,
DnsHost nane,
DnsDormmai n,
DnsFul | yQualifi ed,
Physi cal Net Bl CS,
Physi cal DnsHost nane,
Physi cal DnsDomai n,
Physi cal DnsFul | yQual i fi ed,
Max
} MYCOVPUTER_NAME_FORMAT;

The reason you want to include this enumeration is to provide non-Visual C++ clients with a
list of acceptable input values. For example, Visual Basic users won’t have access to the
COMPUTER_NAME_FORMAT enumeration. The reason you have to use a different name
and even different enumeration words is to avoid conflicts with the Visual C++ enumeration.

This component won’t compile until you make one additional change. Open the stdafx.h file
and look for the #define _WIN32_WINNT 0x0400 entry. Comment this entry out and add this
one instead:

#define _WN32_WNNT 0x0500

Creating the Client Code

The client code for this section is somewhat complex compared to other SOAP examples in
the book because we have to use a third party toolkit. For one thing, we need to service two
buttons instead of one. However, the Microsoft SOAP Toolkit also requires slightly different
input than pocketSOAP, so there are differences in the message formatting code as well.
Listing 10-2 shows the client source code for this example.

Listing 10-2

<HTM_>
<HEAD>
<TI TLE>ConpNanme JScri pt Exanpl e</ Tl TLE>

<SCRI PT LANGUAGE="JScri pt">
function cndGet Si ngl eNanme_Cl i ck()
{
var SOAPEnv; /1 SOAP envel ope
var Transport; [/ SOAP transport
var Param [l Parameter |ist
var SOAPParam // SOAP nethod call paraneters.
var RecDat a; /'l Received data hol der

/'l Create the envel ope.

SOAPEnv = new Acti veXObj ect (" pocket SOAP. Envel ope");
SOAPENnv. Met hodNane = " Get ConpNane";
SOAPEnv. URI = "http://tenpuri.org/ nessage/";

/]l Create a paranmeter to place within the envel ope.
Par am = SOAPEnv. Cr eat ePar anet er (" NameType",

wi ndow. docunent . Sanpl eFor mL. conmboNane. val ue, "");

/1l Send the request and receive the data.
Transport = new ActiveXCObject (" pocket SOAP. HTTPTr ansport");
Tran