
Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Beginning

ASP.NET 4
in C# and VB

Imar Spaanjaars

Spaanjaars

 $44.99 USA
 $53.99 CANWeb Development/ASP.NET

Build rich web sites with
the latest version of ASP.NET

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters, and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

ASP.NET is the part of the .NET Framework that enables you to
build rich, dynamic web sites. The latest version—ASP.NET 4—boasts
numerous improvements to the previous iteration, including Web
Forms enhancements and jQuery support. This step-by-step book
walks you through building rich web sites with ASP.NET 4 and is
packed with in-depth examples in both C# and VB. With hands-on
exercises that take you right into the action, you’ll learn how to build web
sites firsthand while you get a good look at what goes on behind
the scenes when you view an ASP.NET 4 page in your browser.

Beginning ASP.NET 4:

• Demonstrates how to build ASP.NET 4 web pages

• Explains adding features with pre-built server controls

• Reviews working with the development tools to create ASP.NET web sites

• Shares techniques for creating consistent-looking web sites

• Teaches you how to implement jQuery and AJAX techniques in your
web sites

• Shows you how to work with databases and the Microsoft® ADO.NET
Entity Framework

• Addresses securing and personalizing your site

• Investigates exception handling, debugging, and tracing pages

Imar Spaanjaars is a Microsoft ASP.NET MVP and runs his own company called
De Vier Koeden in the Netherlands, specializing in Internet and intranet applications
built with Microsoft technologies like ASP.NET 4. He is the author or coauthor of
several books, including ASP.NET 2.0 Instant Results and Beginning ASP.NET 3.5
in C# and VB, and is one of the top contributors to the Wrox Community
Forum at p2p.wrox.com.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

BeginningA
SP.N

ET 4
in C# and VB

Foreword by Vishal R. Joshi, Lead Program Manager, Microsoft Web Platform & Tools

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Beginning Visual C# 2010
ISBN: 978-0-470-50226-6
Using this book, you will first cover the fundamentals such as variables, flow control, and object-oriented programming and
gradually build your skills for Web and Windows programming, Windows forms, and data access. Step-by-step directions walk
you through processes and invite you to “Try it Out,” at every stage. By the end, you’ll be able to write useful programming code
following the steps you’ve learned in this thorough, practical book. If you’ve always wanted to master Visual C# programming, this
book is the perfect one-stop resource.

Professional ASP.NET 4: in C# and VB
ISBN: 978-0-470-50220-4
Written by three highly recognized and regarded ASP.NET experts, this book provides all-encompassing coverage on ASP.NET 4 and
offers a unique approach of featuring examples in both C# and VB, as is the incomparable coverage of core ASP.NET. After a
fast-paced refresher on essentials such as server controls, the book delves into expert coverage of all the latest capabilities of
ASP.NET 4. You’ll learn site navigation, personalization, membership, role management, security, and more.

Professional C# 4 and .NET 4
ISBN: 978-0-470-50225-9
After a quick refresher on C# basics, the author dream team moves on to provide you with details of language and
framework with C#, working in Visual Studio 2010 with C#, and more. With this book, you’ll quickly get up to date on
all the newest capabilities of C# 4.

Professional Visual Basic 2010 and .NET 4
ISBN: 978-0-470-50224-2
If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this
is your guide. You’ll explore all the new features of Visual Basic 2010 as well as all the essential functions that you need, including
.NET features such as LINQ to SQL, LINQ to XML, WCF, and more. Plus, you’ll examine exception handling and debugging, Visual
Studio features, and ASP.NET web programming.

Professional Visual Studio 2010
ISBN: 978-0-470-54865-3
Written by an author team of veteran programmers and developers, this book gets you quickly up to speed on what you can expect from
Visual Studio 2010. Packed with helpful examples, this comprehensive guide examines the features of Visual Studio 2010, and walks you
through every facet of the Integrated Development Environment (IDE), from common tasks and functions to its powerful tools.

Visual Basic 2010 Programmer’s Reference
ISBN: 978-0-470-49983-2
Visual Basic 2010s Programmer’s Reference is a language tutorial and a reference guide to the 2010 release of Visual Basic.
The tutorial provides basic material suitable for beginners but also includes in-depth content for more advanced developers.

Visual Studio 2010 and .NET 4 Six-in-One
ISBN: 978-0-470-49948-1
This comprehensive resource offers a single resource for all you need to know to get productive with .NET 4. It reviews all the important
features of .NET 4, including .NET charting and ASP.NET charting, ASP.NET dynamic data and jQuery, and F#. The coverage is divided
into six distinctive parts for easy navigation and offers a practical approach and complete examples.

WPF Programmer’s Reference: Windows Presentation Foundation with C# 2010 and .NET 4
ISBN: 978-0-470-47722-9
Written by a leading expert on Microsoft graphics programming, this richly illustrated book provides an introduction to WPF
development and explains fundamental WPF concepts. It is packed with helpful examples and progresses through a range of topics
that gradually increase in their complexity.

http://wrox.com

Beginning
ASP.NET 4: in C# and VB

Foreword . xxv

Introduction. xxvii

Chapter 1	 Getting Started with ASP.NET 4 . 1

Chapter 2	 Building an ASP.NET Web Site . 33

Chapter 3	 Designing Your Web Pages. 65

ChaPter 4	 Working with ASP.NET Server Controls. 105

Chapter 5	 Programming Your ASP.NET Web Pages. 139

Chapter 6	 Creating Consistent Looking Web Sites . 197

Chapter 7	 Navigation. 239

ChaPter 8	 User Controls. 271

ChaPter 9	 Validating User Input. 297

Chapter 10	 ASP.NET AJAX. 331

ChaPter 11	 jQuery. 367

Chapter 12	 Introducing Databases. 403

Chapter 13	 Displaying and Updating Data. 433

Chapter 14	 LINQ and the ADO.NET Entity Framework. 477

Chapter 15	 Working with Data — Advanced Topics. 529

Chapter 16	 Security in Your ASP.NET 4 Web Site. 579

Chapter 17	 Personalizing Web Sites. 619

Chapter 18	 Exception Handling, Debugging, and Tracing . 655

Chapter 19	 Deploying Your Web Site. 697

Appendix A	 Exercise Answers. 731

Appendix B	 Configuring SQL Server 2008. 757

Index. 777

502211ffirs.indd 1 2/19/10 9:58:33 AM

502211ffirs.indd 2 2/19/10 9:58:33 AM

Beginning

ASP.NET 4

502211ffirs.indd 3 2/19/10 9:58:33 AM

502211ffirs.indd 4 2/19/10 9:58:33 AM

Beginning

ASP.NET 4
in C# and VB

Imar Spaanjaars

502211ffirs.indd 5 2/19/10 9:58:34 AM

Beginning ASP.NET 4: in C# and VB

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-50221-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limi-
tation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet
Web sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2009943646

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, and Wrox Programmer to Programmer are trademarks or regis-
tered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc.
is not associated with any product or vendor mentioned in this book.

502211ffirs.indd 6 2/19/10 9:58:34 AM

http://www.wiley.com
http://www.wiley.com/go/permissions

To my friends

502211ffirs.indd 7 2/19/10 9:58:34 AM

502211ffirs.indd 8 2/19/10 9:58:34 AM

About the Author

Imar Spaanjaars  graduated in Leisure Management at the Leisure Management School in the
Netherlands, but he quickly changed his career path into the Internet world.

After working in the Internet business at various web agencies for the past twelve years, he recently
started up his own company called De Vier Koeden (www.devierkoeden.nl), a small Internet agency
specializing in consultancy and development of Internet and intranet applications with Microsoft
technologies such as ASP.NET 4.

Imar has written books on ASP.NET and Macromedia Dreamweaver, all published under the Wrox
brand. He is also one of the top contributors to the Wrox Community Forum at p2p.wrox.com,
where he shares his knowledge with fellow programmers.

In 2008 and 2009, Imar received Microsoft’s Most Valuable Professional (MVP) award for his
contributions to the ASP.NET community.

Imar lives in Utrecht, the Netherlands, with his girlfriend, Fleur. You can contact him through his
personal web site at http://imar.spaanjaars.com or by e‑mail at imar@spaanjaars.com.

502211ffirs.indd 9 2/19/10 9:58:34 AM

502211ffirs.indd 10 2/19/10 9:58:34 AM

Acquisitions Editor
Paul Reese

project Editor
Brian Herrmann

Technical Editor
Michael J. Apostol

Production Editor
Rebecca Anderson

Copy Editor
Kim Cofer

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Associate Director of Marketing
David Mayhew

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Craig Johnson, Happenstance Type-O-Rama

Proofreader
Josh Chase, Word One New York

Indexer
Robert Swanson

Cover Designer
Michael E. Trent

Cover Image
© Nevin Giesbrecht/istockphoto

Credits

502211ffirs.indd 11 2/19/10 9:58:34 AM

502211ffirs.indd 12 2/19/10 9:58:34 AM

Acknowledgments

Just as with my prior books,  I really enjoyed writing this one. The process from an empty Word
document at the very beginning to a printed copy as the final result is a really interesting one. Along
the way, I discovered, understood and used a lot of the new features that ASP.NET 4 and Visual
Web Developer 2010 bring. Since this book is a major update on the previous edition — Beginning
ASP.NET 3.5 in C# and VB — I have been able to incorporate a lot of reader feedback into this edi-
tion. While working on this book, I went through the more than 450 threads in the book’s forum,
looking for feedback that could improve this edition. This allowed me to add clarification and more
detailed instructions where needed. If you have the previous edition and posted a question in the
Wrox forums: thanks for your valuable feedback; you’ve really helped to make this book better.

Besides my readers, I owe a lot to other people who helped me write this book.

First of all I’d like to thank Brian Herrmann for his editorial work. Just as before, it was a pleasure
to work with you! I also want to thank Michael J. Apostol for his work as a technical editor, and the
people from Wrox for their support and contributions to this book.

Another person I owe a lot to is my friend Anne Ward from Blue Violet, a UK-based web and graphic
design company. Anne has done most of the new designs used in this book and I highly appreciate her
input. Thanks again, Anne! The concert pictures you see in this book come from Nigel D. Nudds,
who kindly let me use pictures from his collection.

Finally, I would like to thank my good friends Joost and René and my lovely girlfriend Fleur for
their support during this project.

502211ffirs.indd 13 2/19/10 9:58:34 AM

502211ffirs.indd 14 2/19/10 9:58:34 AM

Contents

Foreword	 xxv

Introduction	 xxvii

Getting Started with ASP.NET 4	Chapter 1: 1

Microsoft Visual Web Developer	 2
Getting Visual Web Developer	 3

Installing Visual Web Developer Express	 3

Creating Your First ASP.NET 4 Web Site	 5
An Introduction to ASP.NET 4	 9

Understanding HTML	 10

A First Look at ASP.NET Markup	 14

A Tour of the IDE	 15
The Main Development Area	 15

Informational Windows	 21

Customizing the IDE	 22
Rearranging Windows	 22

Modifying the Toolbox	 23

Customizing the Document Window	 25

Customizing Toolbars	 26

Customizing Keyboard Shortcuts	 26

Resetting Your Changes	 27

The Sample Application	 27
Practical Tips on Visual Web Developer	 29
Summary	 30

Building an ASP.NET Web Site	 3Chapter 2: 3

Creating Web Sites with VWD 2010	 34
Different Project Types	 34

Choosing the Right Web Site Template	 35

Creating and Opening a New Web Site	 37

Working with Files in Your Web Site	 40
The Many File Types of an ASP.NET 4 Web Site	 40

Adding Existing Files	 44

Organizing Your Site	 46

Special File Types	 47

502211ftoc.indd 15 2/19/10 9:58:29 AM

xvi

CONTENTS

Working with Web Forms	 47
The Different Views on Web Forms	 47

Choosing between Code Behind and Pages with Inline Code	 49

Adding Markup to Your Page	 54

Connecting Pages	 60

Practical Tips on Working with Web Forms	 62
Summary	 63

Designing Your Web Pages	 6Chapter 3: 5

Why Do You Need CSS?	 66
Problems of HTML Formatting	 66

How CSS Fixes Formatting Problems	 67

An Introduction to CSS	 68
CSS—The Language	 71

The Style Sheet	 72

Adding CSS to Your Pages	 84

Working with CSS in Visual Web Developer	 87
Creating New Styles in External Style Sheets	 87

Creating Embedded and Inline Style Sheets	 92

Applying Styles	 98

Managing Styles	 99

Practical Tips on Working with CSS	 102
Summary	 103

Working with ASP.NET Server Controls	 10Chapter 4: 5

Introduction to Server Controls	 106
A Closer Look at ASP.NET Server Controls	 110

Defining Controls in Your Pages	 110

Common Properties for All Controls	 110

Types of Controls	 113
Standard Controls	 113

HTML Controls	 126

Data Controls	 127

Validation Controls	 127

Navigation Controls	 127

Login Controls	 127

Ajax Extensions	 127

WebParts	 128

Dynamic Data	 128

502211ftoc.indd 16 2/19/10 9:58:29 AM

xvii

CONTENTS

The ASP.NET State Engine	 128
What Is State and Why Is It Important?	 128

How the State Engine Works	 129

Not All Controls Rely on View State	 133

A Note about View State and Performance	 134

Practical Tips on Working with Controls	 135
Summary	 136

Programming Your ASP.NET Web Pages	 13Chapter 5: 9

Introduction to Programming	 140
Data Types and Variables	 141

Converting and Casting Data Types	 144

Using Arrays and Collections	 146

Statements	 151
Operators	 152

Making Decisions	 159

Loops	 166

Organizing Code	 170
Methods: Functions and Subroutines	 170

The App_Code Folder	 172

Organizing Code with Namespaces	 176

Writing Comments	 179

Object Orientation Basics	 181
Important OO Terminology	 182

Events	 192

Practical Tips on Programming	 194
Summary	 195

Creating Consistent Looking Web Sites	 19Chapter 6: 7

Consistent Page Layout with Master Pages	 198
Creating Master Pages	 200

Creating Content Pages	 201

Using a Centralized Base Page	 207
An Introduction to the ASP.NET Page Life Cycle	 208

Implementing the Base Page	 210

Creating Reusable Page Templates	 214

Themes	 218
Different Types of Themes	 219

Choosing Between Theme and StyleSheetTheme	 219

Applying Themes	 220

Extending Themes	 224

Dynamically Switching Themes	 226

502211ftoc.indd 17 2/19/10 9:58:29 AM

xviii

CONTENTS

Skins	 232
Creating a Skin File	 233

Named Skins	 235

Disable Theming for Specific Controls	 236

Practical Tips on Creating Consistent Pages	 236
Summary	 237

Navigation	 23Chapter 7: 9

Different Ways to Move around Your Site	 240
Understanding Absolute and Relative URLs	 240

Understanding Default Documents	 244

Using the Navigation Controls	 245
Architecture of the Navigation Controls	 245

Examining the Web.sitemap File	 246

Using the Menu Control	 248

Using the TreeView Control	 257

Using the SiteMapPath Control	 261

Programmatic Redirection	 263
Programmatically Redirecting the Client to a Different Page	 263

Server-Side Redirects	 266

Practical Tips on Navigation	 268
Summary	 269

User Controls	 27Chapter 8: 1

Introduction to User Controls	 272
Creating User Controls	 272

Adding User Controls to a Content Page or Master Page	 276

Site-Wide Registration of User Controls	 279

User Control Caveats	 280

Adding Logic to Your User Controls	 282
Creating Your Own Data Types for Properties	 283

Implementing View State Properties	 288

View State Considerations	 294

Practical Tips on User Controls	 294
Summary	 295

Validating User Input	 29Chapter 9: 7

Gathering Data from the User	 298
Validating User Input in Web Forms	 299

Understanding Request Validation	 316

502211ftoc.indd 18 2/19/10 9:58:29 AM

xix

CONTENTS

Processing Data at the Server	 316
Sending E‑mail from Your Web Site	 317

Reading from Text Files	 322

Practical Tips on Validating Data	 328
Summary	 329

ASP.NET AJAX	 33Chapter 10: 1

Introducing Ajax	 332
Using ASP.NET AJAX in Your Projects	 334

Creating Flicker-Free Pages	 334

Providing Feedback to Users	 340

The Timer Control	 345

Using Web Services and Page Methods in Ajax Web Sites	 346
What Are Web Services?	 346

Creating Web Services	 347

Using Web Services in Your Ajax Web Site	 351

Introducing Page Methods	 358

The Client-Side ASP.NET AJAX Library	 361

This Is Just the Beginning	 362

Practical Ajax Tips	 363
Summary	 364

jQuery	 36Chapter 11: 7

An Introduction to jQuery	 368
Choosing the Location for Your jQuery Reference 	 368

Different Ways to Include the jQuery Library	 369

jQuery Syntax	 373
jQuery Core	 374

Selecting Items Using jQuery	 374

Modifying the DOM with jQuery	 382
CSS Methods	 382

Handling Events	 383

Miscellaneous jQuery Functionality	 385

Common Mistakes When Working with jQuery	 386

Effects with jQuery	 391
jQuery and Extensibility	 396
Practical Tips on jQuery	 400
Summary	 401

502211ftoc.indd 19 2/19/10 9:58:29 AM

xx

CONTENTS

Introducing Databases	 40Chapter 12: 3

What Is a Database?	 404
Different Kinds of Relational Databases	 405
Using SQL to Work with Database Data	 405
Retrieving and Manipulating Data with SQL	 407

Reading Data	 408

Creating Data	 417

Updating Data	 418

Deleting Data	 418

Creating Your Own Tables	 421
Data Types in SQL Server	 421

Understanding Primary Keys and Identities	 422

Creating Relationships Between Tables	 426

Practical Database Tips	 430
Summary	 431

Displaying and Updating Data	 43Chapter 13: 3

Data Controls	 433
Data-bound Controls	 434

Data Source Controls 	 435

Other Data Controls	 436

Data Source and Data-bound Controls Working Together	 436
Displaying and Editing Data with GridView	 436

Inserting Data with DetailsView	 442

Storing Your Connection Strings in web.config	 445

Filtering Data	 446

Customizing the Appearance of the Data Controls	 452
Configuring Columns or Fields of Data-bound Controls	 453

Updating and Inserting Data	 459
Using DetailsView to Insert and Update Data	 459

Practical Tips for Displaying and Updating Data	 473
Summary	 474

LINQ and the ADO.NET Entity Framework	 47Chapter 14: 7

Introducing LINQ	 478
LINQ to Objects	 479

LINQ to XML	 479

LINQ to ADO.NET	 479

Introducing the ADO.NET Entity Framework	 480
Mapping Your Data Model to an Object Model	 481

502211ftoc.indd 20 2/19/10 9:58:29 AM

xxi

CONTENTS

Introducing Query Syntax	 487
Standard Query Operators	 487

Shaping Data with Anonymous Types	 491

Using Server Controls with LINQ Queries	 496
Using Data Controls with the Entity Framework	 496

A Few Notes about Performance	 526

Practical LINQ and ADO.NET Entity Framework Tips	 526
Summary	 527

Working with Data — Advanced Topics	 52Chapter 15: 9

Formatting Your Controls Using Styles	 530
An Introduction to Styles	 531

Combining Styles, Themes, and Skins	 535

Handling Events	 539
The ASP.NET Page and Control Life Cycles Revisited	 540

The ASP.NET Page Life Cycle and Events in Data Controls	 545

Handling Errors that Occur in the Data Source Controls	 550

Hand-Coding Data Access Code	 554
Caching	 565

Common Pitfalls with Caching Data	 565

Different Ways to Cache Data in ASP.NET Web Applications	 566

Practical Data Tips	 575
Summary	 576

Security in Your ASP.NET 4 Web Site	 57Chapter 16: 9

Introducing Security	 580
Identity: Who Are You?	 580

Authentication: How Can You Prove Who You Are?	 580

Authorization: What Are You Allowed to Do?	 580

An Introduction to the ASP.NET Application Services	 581

Introducing the Login Controls	 582
The Login Controls	 587

Configuring Your Web Application	 599

The Role Manager	 603
Configuring the Role Manager	 603

Managing Users with the WSAT	 604

Configuring the Web Application to Work with Roles	 608

Programmatically Checking Roles	 612

Practical Security Tips	 616
Summary	 617

502211ftoc.indd 21 2/19/10 9:58:29 AM

xxii

CONTENTS

Personalizing Web Sites	 61Chapter 17: 9

 Understanding Profile	 620
Configuring the Profile	 621

Using the Profile 	 627

Other Ways of Dealing with Profile	 645
Anonymous Identification	 645

Cleaning Up Old Anonymous Profiles	 646

Looking at Other Users’ Profiles	 648

Practical Personalization Tips	 651
Summary	 651

Exception Handling, Debugging, and Tracing	 65Chapter 18: 5

Exception Handling	 656
Different Types of Errors	 656

Catching and Handling Exceptions	 658

Global Error Handling and Custom Error Pages 	 666

The Basics of Debugging	 673
Tools Support for Debugging	 677

Moving around in Debugged Code	 677

Debugging Windows	 677

Debugging Client-Side Script	 684
Tracing Your ASP.NET Web Pages	 688

Using the Standard Tracing Capabilities	 688

Adding Your Own Information to the Trace	 691

Tracing and Performance	 694

A Security Warning	 694

Practical Debugging Tips	 694
Summary	 695

Deploying Your Web Site	 69Chapter 19: 7

Preparing Your Web Site for Deployment	 698
Avoiding Hardcoded Settings	 698

The web.config File	 699

Expression Syntax	 699

The WebConfigurationManager Class	 700

Copying Your Web Site	 706
Creating a Simple Copy of Your Web Site	 707

Publishing Your Web Site	 709

502211ftoc.indd 22 2/19/10 9:58:29 AM

xxiii

CONTENTS

Running Your Site under IIS	 710
Installing and Configuring the Web Server	 711

Installing and Configuring ASP.NET	 714

Understanding Security in IIS	 717

NTFS Settings for Planet Wrox	 718

Troubleshooting Web Server Errors	 721

Moving Data to a Remote Server	 723
Using the Database Publishing Wizard	 723

Recreating the Database	 725

The Deployment Checklist	 727
What’s Next	 728
Summary	 729

Exercise Answers	 73Appendix A: 1

Chapter 1	 731
Chapter 2	 732
Chapter 3	 733
Chapter 4	 734
Chapter 5	 735
Chapter 6	 736
Chapter 7	 737
Chapter 8	 738
Chapter 9	 739
Chapter 10	 741
Chapter 11	 743
Chapter 12	 744
Chapter 13	 745
Chapter 14	 746
Chapter 15	 749
Chapter 16	 751
Chapter 17	 752
Chapter 18	 754

Configuring SQL Server 2008	 75Appendix B: 7

Configuring SQL Server 2008	 757
Terminology and Concepts	 758

Using SQL Server Management Studio 	 759

Enabling Remote Connections in SQL Server	 760

Connecting Your Application to SQL Server 2008	 764

502211ftoc.indd 23 2/19/10 9:58:29 AM

xxiv

CONTENTS

Configuring Application Services	 771
Configuring Your Database for the Application Services	 771

Overriding the LocalSqlServer Connection String	 773

Overriding the Settings of the Application Services	 773

Index	 777

502211ftoc.indd 24 2/19/10 9:58:29 AM

Foreword

This is a very nice book written by one of ASP.NET’s very own Most Valuable Professionals, Imar
Spaanjaars. It takes a lot to be a Microsoft MVP — ​not only do you need expertise in the subject
matter, you also need to be a great teacher and a technology philanthropist. Through his blogs,
articles, and books, Imar has given a considerable amount of his time to benefit the web develop-
ment community.

Imar has been active in the ASP.NET community for a long time and has written several books
on web development, including the previous version of this book, Beginning ASP.NET 3.5. What
makes this book so special is that it does not assume the reader has any prior knowledge of web
development and at the same time it is a great book for anyone hoping to upgrade to ASP.NET 4.
The book uses the free Visual Studio edition, Visual Web Developer Express 2010, starting from
a chapter covering how to get started and then slowly introducing more advanced concepts in a
seamless fashion.

In the process of helping create Visual Studio 2010 for Web Developers, I often interacted with com-
munity leaders to collect feedback on how we could make the product better for every web developer.
Imar has been using ASP.NET 4 and VWD 2010 Express since their first Beta versions, and has
been pouring in feedback on which bugs are important to fix and which features to emphasize. His
passion for the technology is reflected in this book and I am positive that the readers of this book
will feel that same passion.

ASP.NET 4 and Visual Studio 2010 have feature improvements in many areas, including building
standards-compliant web sites, JScript IntelliSense, jQuery integration, Ajax, CSS improvements,
HTML and markup snippets, Web Deployment, and data integration. I believe ASP.NET 4 and
Visual Studio 2010 are great technologies to build fine web sites, and this book will be an excellent
companion to these products, helping users excel in the world of web development.

—Vishal R. Joshi
Senior Program Manager Lead

Microsoft Web Platform & Tools
http://vishaljoshi.blogspot.com

	

502211flast.indd 25 2/19/10 9:58:30 AM

502211flast.indd 26 2/19/10 9:58:30 AM

Introduction

To build effective and attractive database-driven web sites, you need two things: a solid and fast
framework to run your web pages on and a rich and extensive environment to create and program
these web pages. With ASP.NET 4 and Visual Web Developer 2010 you get both. Together they
form the platform to create dynamic and interactive web sites.

ASP.NET 4 builds on top of its popular predecessors ASP.NET 2.0 and ASP.NET 3.5. While main-
taining backward compatibility with sites built using these older versions, ASP.NET 4 and Visual
Web Developer 2010 introduce new, exciting features and bring many smaller, but much needed
changes to the framework and development tools.

With each new release of Visual Studio (which includes Visual Web Developer) since Visual Studio
2003, I am surprised by the sheer amount of new functionality and changes Microsoft has been able
to put in the product. Visual Studio 2010 is no exception. A major new feature in Visual Studio 2010
is the full integration of the ADO.NET Entity Framework 4 that lets you work with databases
with very little code. Another great change in Visual Studio is the use of Windows Presentation
Foundation (WPF) for the User Interface which brings a better user experience and new behavior in
Visual Studio itself.

Although not a new feature by itself, the inclusion of jQuery in Visual Web Developer is an excellent
decision that will help you write fancier web sites in less time. jQuery is a compelling client side,
cross-browser JavaScript framework and is discussed in detail in Chapter 11.

If you’re familiar with earlier versions of ASP.NET, you’ll be happy to find many small gems in the
new version of the framework that will make your life as a developer easier. I’ll mention and discuss
these new features throughout this book where appropriate. For a complete list of all new features
in ASP.NET, check out the following white paper at the official ASP.NET web site:

http://www.asp.net/learn/whitepapers/aspnet4/

Probably the best thing about Visual Web Developer 2010 is its price: it’s still available for free.
Although the commercial versions of Visual Studio 2010 ship with Visual Web Developer, you can
also download and install the free Express edition. This makes Visual Web Developer 2010 and
ASP.NET 4 probably the most attractive and compelling web development technologies available
today.

Who This Book Is For

This book is for anyone who wants to learn how to build rich and interactive web sites that run on
the Microsoft platform. With the knowledge you gain from this book, you create a great foundation
to build any type of web site, ranging from simple hobby-related web sites to sites you may be creat-
ing for commercial purposes.

502211flast.indd 27 2/19/10 9:58:30 AM

xxviii

introduction

Anyone new to web programming should be able to follow along because no prior background in
web development is assumed, although it helps if you do have a basic understanding of HTML and
the web in general. The book starts at the very beginning of web development by showing you how
to obtain and install Visual Web Developer. The chapters that follow gradually introduce you to
new technologies, building on top of the knowledge gained in the previous chapters.

Do you have a strong preference for Visual Basic over C# or the other way around? Or do you
think both languages are equally cool? Or maybe you haven’t made up your mind yet and want to
learn both languages? Either way, you’ll like this book because all code examples are presented in
both languages!

Even if you have some experience with prior versions of ASP.NET, you may gain a lot from this
book. Although many concepts from previous versions are brought forward into ASP.NET 4, you’ll
discover there’s a lot of new stuff to be found in this book, including an introduction to the ADO.NET
Entity Framework, the inclusion of jQuery, ASP.NET AJAX, the many changes to the ASP.NET 4
Framework, and much more.

What This Book Covers

This book teaches you how to create a feature-rich, data-driven, and interactive web site called
Planet Wrox. Although this is quite a mouthful, you’ll find that with Visual Web Developer 2010,
developing such a web site isn’t as hard as it seems. You’ll see the entire process of building a web site,
from installing Visual Web Developer 2010 in Chapter 1 all the way up to putting your web site on a
live server in Chapter 19. The book is divided into 19 chapters, each dealing with a specific subject.

Chapter 1, “Getting Started with ASP.NET 4.”➤➤ In this chapter you’ll see how to obtain and
install Visual Web Developer 2010. You’ll get instructions for downloading and installing
the free edition of Visual Web Developer 2010, called the Express edition. You are also intro-
duced to HTML, the language behind every web page. The chapter closes with an overview
of the customization options that Visual Web Developer gives you.

Chapter 2, “Building an ASP.NET Web Site.”➤➤ This chapter shows you how to create a new
web site and how to add new elements like pages to it. Besides learning how to create a well-
structured site, you also see how to use the numerous tools in Visual Web Developer to cre-
ate HTML and ASP.NET pages.

Chapter 3, “Designing Your Web Pages.”➤➤ Visual Web Developer comes with a host of tools
that enable you to create well-designed and attractive web pages. In this chapter, you see how
to make good use of these tools. Additionally, you learn about CSS, the language that is used
to format web pages.

Chapter 4, “Working with ASP.NET Server Controls.”➤➤ ASP.NET Server Controls are one
of the most important concepts in ASP.NET. They enable you to create complex and feature-
rich web sites with very little code. This chapter introduces you to the large number of server
controls that are available, explains what they are used for, and shows you how to use them.

502211flast.indd 28 2/19/10 9:58:31 AM

xxix

introduction

Chapter 5, “Programming Your ASP.NET Web Pages.”➤➤ Although the built-in CSS tools and
the ASP.NET Server Controls can get you a long way in creating web pages, you are likely to
use a programming language to enhance your pages. This chapter serves as an introduction
to programming with a strong focus on programming web pages. Best of all: all the examples
you see in this chapter (and the rest of the book) are in both Visual Basic and C#, so you can
choose the language you like best.

Chapter 6, “Creating Consistent Looking Web Sites.”➤➤ Consistency is important to give your
web site an attractive and professional appeal. ASP.NET helps you create consistent-looking
pages through the use of master pages, which enable you to define the global look and feel of
a page. Skins and themes help you to centralize the looks of controls and other visual elements
in your site. You also see how to create a base page that helps to centralize programming code
that you need on all pages in your site.

Chapter 7, “Navigation.”➤➤ To help your visitors find their way around your site, ASP.NET
comes with a number of navigation controls. These controls are used to build the navigation
structure of your site. They can be connected to your site’s central site map that defines the
pages in your web site. You also learn how to programmatically send users from one page to
another.

Chapter 8, “User Controls.”➤➤ User controls are reusable page fragments that can be used in
multiple web pages. As such, they are great for repeating content such as menus, banners,
and so on. In this chapter, you learn how to create and use user controls and enhance them
with some programmatic intelligence.

Chapter 9, “Validating User Input.”➤➤ A large part of interactivity in your site is defined by the
input of your users. This chapter shows you how to accept, validate, and process user input
using ASP.NET Server Controls. Additionally, you see how to send e‑mail from your ASP.NET
web site and how to read from text files.

Chapter 10, “ASP.NET AJAX.➤➤ ” Microsoft ASP.NET AJAX enables you to create good-looking,
flicker-free web pages that close the gap between traditional desktop applications and web sites.
In this chapter you learn how to use the built-in Ajax features to enhance the presence of your
web pages, resulting in a smoother interaction with the web site.

Chapter 11, “jQuery.”➤➤ jQuery is a popular, open source and cross-browser JavaScript library
designed to make it easier to interact with web pages in the client’s browser. In this chapter
you learn the basics of jQuery and see how to add rich visual effects and animations to your
web pages.

Chapter 12, “Introducing Databases.”➤➤ Understanding how to use a database is critical to
building web sites, as most modern web sites require the use of a database. You’ll learn the
basics of SQL, the query language that enables you to access and alter data in a database. In
addition, you are introduced to the database tools found in Visual Web Developer that help
you create and manage your SQL Server databases.

502211flast.indd 29 2/19/10 9:58:31 AM

xxx

introduction

Chapter 13, “Displaying and Updating Data.”➤➤ Building on the knowledge you gained
in Chapter 12, this chapter shows you how to use the ASP.NET data-bound and data source
controls to create a rich interface that enables your users to interact with the data in the
database that these controls target.

Chapter 14, “LINQ and the ADO.NET Entity Framework.”➤➤ LINQ is Microsoft’s solution
for accessing objects, databases, XML, and more. The ADO.NET Entity Framework (EF) is
Microsoft’s new technology for database access. This chapter shows you what LINQ is all
about, how to use the visual EF designer built into Visual Studio, and how to write LINQ to
EF queries to get data in and out of your SQL Server database.

Chapter 15, “Working with Data — Advanced Topics.”➤➤ While earlier chapters focused mostly
on the technical foundations of working with data, this chapter looks at the same topic from a
front-end perspective. You see how to change the visual appearance of your data through the
use of control styles. You also see how to interact with the data-bound controls and how to
speed up your web site by keeping a local copy of frequently accessed data.

Chapter 16, “Security in Your ASP.NET 4 Web Site.”➤➤ Although presented quite late in the
book, security is a first-class, important topic. This chapter shows you how to make use of
the built-in ASP.NET features related to security. You learn about a number of application
services that facilitate security. You also learn how to let users sign up for an account on
your web site, how to distinguish between anonymous and logged-on users, and how to man-
age the users in your system.

Chapter 17, “Personalizing Web Sites.”➤➤ Building on the security features introduced in
Chapter 16, this chapter shows you how to create personalized web pages with content tar-
geted at individual users. You see how to configure and use ASP.NET Profile that enables you
to store personalized data for known and anonymous visitors.

Chapter 18, “Exception Handling, Debugging, and Tracing.”➤➤ In order to understand, improve,
and fix the code you write for your ASP.NET web pages you need good debugging tools. Visual
Web Developer ships with great debugging support that enables you to diagnose the state of
your application at runtime, helping you find and fix problems before your users do.

Chapter 19, “Deploying Your Web Site.”➤➤ By the end of the book, you should have a web site
that is ready to be shown to the world. But how exactly do you do that? What are the things
you need to know and understand to put your web site out in the wild? This chapter gives
the answers and provides you with a good look at configuring different production systems in
order to run your final web site.

How This Book Is Structured

This book takes the time to explain concepts step by step using working examples and detailed
explanations. Using the famous Wrox Try It Out and How It Works sections, you are guided
through a task step by step, detailing important things as you progress through the task. Each

502211flast.indd 30 2/19/10 9:58:31 AM

xxxi

introduction

Try It Out task is followed by a detailed How It Works section that explains the steps you per-
formed in the exercise.

At the end of each chapter, you find exercises that help you test the knowledge you gained in this
chapter. You’ll find the answers to each question in Appendix A at the end of this book. Don’t worry
if you don’t know all the answers to the questions. Later chapters do not assume you followed and
carried out the tasks from the exercise sections of previous chapters.

Since this is a beginner’s book, I can’t go into great detail on a number of topics. For pretty much
each chapter in this book, you’ll easily find numerous other books that exclusively deal with the
topic discussed. Where appropriate, I have included references to these books so you can easily
decide where to go to next if you want to deepen your knowledge on a specific subject.

What You Need to Use This Book

This book assumes you have a system that meets the following requirements:

Capable of running Visual Web Developer. For the exact system requirements, consult the ➤➤

readme file that comes with the software.

Running Windows Vista or Windows 7 (both require at least the Home Premium edition), or ➤➤

one of the Windows Server 2008 editions.

Although you should be able to follow along with most of the exercises using another version of
Windows such as Windows XP (as long as it’s supported by Visual Web Developer), the exercises in
Chapter 19 on deployment require the use of Microsoft’s web server IIS 7 or later, which only ships
with the Windows versions in the requirements list.

Chapter 1 shows you how to obtain and install Visual Web Developer 2010, which in turn installs
the Microsoft .NET Framework version 4 and SQL Server 2008 Express edition; all you need is a
good operating system and the drive to read this book!

Conventions

To help you get the most from the text and keep track of what’s happening, a number of conventions
are used throughout the book.

Try It Out Conventions
The Try It Out is an exercise you should work through, following the text in the book.

	 1.	 They usually consist of a set of steps.

	 2.	 Each step has a number.

	 3.	 Follow the steps through with your copy of the code.

	 4.	 Then read the How It Works section to find out what’s going on.

502211flast.indd 31 2/19/10 9:58:31 AM

xxxii

introduction

How It Works
After each Try It Out, the actions you carried out and the code you’ve typed in will be explained in
detail.

NOTE  ​Boxes like this one hold important, not-to-be forgotten information that is
directly relevant to the surrounding text.

COMMON MISTAKES  Mistakes that are easily made while following the exer-
cises are presented in a box like this. Be sure to read these carefully when you
get stuck in an exercise.

As for styles in the text:

New terms and important words are ➤➤ italicized when they are introduced.

Code within the text is presented like this: ➤➤ Request.QueryString.Get(“Id”)

URLs that do not start with ➤➤ www are prefixed with http:// to make it clear it’s an Internet
address. URLs within the text are presented like this: http://imar.spaanjaars.com.

You’ll see many URLs that start with ➤➤ tinyurl.com which is a handy, online service to make
URLs shorter (and thus easier to type). Entering a tinyurl.com address in your browser
should take you to its final destination.

Menu items that require you to click multiple submenus have a special symbol that looks like ➤➤

this: ➪. For example: File ➪ New ➪ Folder.

Code or content irrelevant to the discussion is either left out completely or replaced with ➤➤

ellipsis points (three dots), like this:

<tr>
 <td style=”white-space: nowrap;”>
 ... Menu items go here; not shown
 </td>
</tr>

The three dots are used regardless of the programming language used in the example, so
you’ll see it for C#, Visual Basic, HTML, CSS, and JavaScript. When you see it in code
you’re instructed to type into the code editor, you can simply skip the three dots and any-
thing that follows them on the same line.

502211flast.indd 32 2/19/10 9:58:31 AM

xxxiii

introduction

Code shown for the first time, or other relevant code, is in the following format:➤➤

Dim roles As New ArrayList()
roles.Add(“Administrators”)
roles.Add(“ContentManagers”)

To put emphasis on a block of code surrounded by other code, I used a bolded font like this:

<appSettings>
 <add key=”FromAddress” value=”info@planetwrox.com”/>
</appSettings>

The surrounding code is used to make it easier to see where the bolded code should be
placed.

Quite often, white space in code is irrelevant, as is mostly the case with ASP.NET markup ➤➤

and HTML. To fit code within the boundaries of this book, I often wrap code over multiple
lines and indent the part that should have been on the previous line like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

If you’re typing this code yourself, you can put it all on one line, or use the same line breaks
if you prefer.

Text that appears on screen often has Each Word Start With A Capital Letter, even though ➤➤

the original screen text uses a different capitalization. This is done to make the screen text
stand out from the rest of the text.

Source Code

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code files that accompany the book. All of the source code used in this
book is available for download from the book’s own page on the Wrox web site at www.wrox.com/
go/beginningaspnet4. If somehow this link no longer works, go to www.wrox.com and locate the
book either by using the Search box or by using one of the title lists. Click the Download Code link
on the book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 978-0-470-50221-1.

You can download the full source for this book as a single file for each programming language used
in the book (C# or Visual Basic). You can decompress these files with your favorite decompression
tool. If you extract the source, make sure you maintain the original folder structure that is part of
the code download. The different decompression tools use different names for this feature, but look
for a feature like Use Folder Names or Maintain Directory Structure. Once you have extracted the files
from the code download, you should end up with a folder called Source and a folder called Resources.

502211flast.indd 33 2/19/10 9:58:31 AM

xxxiv

introduction

Then create a new folder in the root of your C drive, call it BegASPNET, and move the Source and
Resources folders into this new folder so you end up with folders like C:\BegASPNET\Source and
C:\BegASPNET\Resources. The Source folder contains the source for each of the 19 chapters of this
book and the final version of the Planet Wrox web site. The Resources folder contains files you need
during some of the exercises in this book. If everything turned out correctly, you should end up with
the structure shown in Figure I-1.

Figure I-1

Later chapters have you create folders called Site and Release inside the same C:\BegASPNET
folder giving you a folder structure similar to that in Figure I-2.

The Site folder contains the site as you’ll build it throughout this book, while the Release folder
will contain your final version at the end of this book. Whenever you’re stuck with some examples
in this book, you can take a peek in the Source folder to see how things should have ended up.

If you want to run the site for a specific chapter to see how it works, be sure to open the chapter’s
folder in Visual Web Developer as a web site. So you should open a folder such as C:\BegASPNET\
Source\Chapter 12 directly rather than opening its parent folder C:\BegASPNET\Source.

502211flast.indd 34 2/19/10 9:58:32 AM

xxxv

introduction

Figure I-2

If you want to following along in both programming languages, create a second folder called C:\
BegASPNETVB to hold the files for the Visual Basic version. This way, the two sites can coexist with-
out any problems. If you create a folder specifically for the C# language, don’t include the hash
symbol (#) as that’s an invalid character in the path name for a web site.

Sticking to this structure ensures a smooth execution of the Try It Out exercises in this book.
Incorrectly mixing or nesting these folders make it harder to carry out the exercises and may even lead
to unexpected situations and errors. Whenever you run into an issue or error that is not explained in
this book, ensure that your site structure is still closely related to the one presented here.

Errata

I have made every effort to ensure that there are no errors in the text or in the code. However, no
one is perfect, and mistakes do occur. If you find an error in this book, such as a spelling mistake
or a faulty piece of code, I’d be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping me provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com/go/beginningaspnet4 or go to www.wrox
.com and locate the title using the Search box or one of the title lists. Then, on the book details
page, click the Errata link. On this page you can view all errata that has been submitted for this
book and posted by Wrox editors. A complete book list including links to each book’s errata is also
available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the book’s Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. I’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent edi-
tions of the book.

502211flast.indd 35 2/19/10 9:58:32 AM

http://www.wrox.com

xxxvi

introduction

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e‑mail you topics
of interest of your choosing when new posts are made to the forums. I am a frequent visitor of the
Wrox forums, and I’ll do my best to help you with any questions you may have about this book.

At p2p.wrox.com you will find a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

	 1.	 Go to p2p.wrox.com and click the Register Now link.

	 2.	 Read the terms of use and click Agree.

	 3.	 Complete the required information to join as well as any optional information you wish to
provide and click Submit.

	 4.	 You will receive an e‑mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages,
you must join (which is free).

After you join, you can post new messages and respond to messages other users post. You’ll find this
book’s own forum under the ASP.NET 4 category that is available from the homepage. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e‑mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

502211flast.indd 36 2/19/10 9:58:32 AM

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

Getting Started with ASP.NET 4

What you will learn in this chapter:

How to acquire and install Visual Web Developer 2010 Express and ➤➤

Visual Studio 2010

How to create your first web site with Visual Web Developer➤➤

How an ASP.NET page is processed by the server and sent to the ➤➤

browser

How you can use and customize the development environment➤➤

Ever since the first release of the .NET Framework 1.0 in early 2002, Microsoft has put a lot
of effort and development time into ASP.NET, the part of the .NET Framework that enables
you to build rich web applications. This first release meant a radical change from the older
Microsoft technology to build web sites called Active Server Pages (ASP), now often referred
to as classic ASP. The introduction of ASP.NET 1.0 and the associated Visual Studio .NET
2002 gave developers the following benefits over classic ASP:

A clean separation between presentation and code. With classic ASP, your program-➤➤

ming logic was often scattered throughout the HTML of the page, making it hard to
make changes to the page later.

A development model that was much closer to the way desktop applications are pro-➤➤

grammed. This made it easier for the many Visual Basic desktop programmers to make
the switch to web applications.

A feature-rich development tool (called Visual Studio .NET) that allowed developers to ➤➤

create and code their web applications visually.

A choice between a number of ➤➤ object-oriented programming languages, of which Visual
Basic .NET and C# (pronounced as C-Sharp) are now the most popular.

1

502211c01.indd 1 2/19/10 10:01:06 AM

2  ❘  Chapter 1   Getting Started with ASP.NET 4

Access to the entire .NET Framework, which for the first time meant that web developers ➤➤

had a unified and easy way to access many advanced features to work with databases, files,
e‑mail, networking tools, and much more.

Despite the many advantages of ASP.NET over the older model, using ASP.NET also meant an
increase of complexity and the knowledge you needed to build applications with it, making it harder
for many new programmers to get started with ASP.NET.

After the initial release in 2002, Microsoft released another version of the .NET Framework (called
.NET 1.1) and the development IDE Visual Studio .NET in 2003. Many people saw this as a service
pack for the initial release, although it also brought a lot of new enhancements in both the frame-
work and the development tools.

In November 2005, Visual Studio 2005 and ASP.NET 2.0 were released. To the pleasant surprise
of many developers around the world, Microsoft had again been able to drastically improve and
expand the product, adding many features and tools that helped reduce the complexity that was
introduced with ASP.NET 1.0. New wizards and smart controls made it possible to reduce the code
required to build an application, decreasing the learning curve for new developers and increasing
their productivity.

Although Visual Studio 2005 and ASP.NET 2.0 were already very feature rich, Microsoft managed
again to add a whole bunch of cool new features in Visual Studio 2008 and ASP.NET 3.5, which were
released in November 2007. Major new functionality included LINQ (discussed in Chapter 14) and
the integration of the AJAX Framework (which you learn more about in Chapter 10). In August 2008
Microsoft released Service Pack 1 for Visual Studio and the .NET Framework, introducing major new
features like the ADO.NET Entity Framework (discussed in Chapter 14) and Dynamic Data.

The current versions, Visual Studio 2010 (often pronounced as “twenty-ten”) and ASP.NET 4, build
on top of the successful Visual Studio 2008 and ASP.NET 3.5 releases, leaving many of the beloved
features in place, while adding new features and tools in other areas.

Over the next 19 chapters, you learn how to build full-featured ASP.NET web sites using Visual
Web Developer 2010, Microsoft’s development tool for ASP.NET web applications, which is part
of the full Visual Studio 2010 suite. This book guides you through the process of creating a fully
functional, database-driven web site, starting with a bare-bones web site in this chapter, all the way
down to the deployment of it to a production environment in Chapter 19.

The sample site that comes with this book and all the examples are built with Visual Web Developer
2010 (VWD), so it’s important that you have it installed on your development machine. The next
section shows you how to acquire and install VWD. Once you have it up and running, you see how
to create your first web site, followed by an extensive tour through the many features of VWD.

Microsoft Visual Web Developer

Although you could theoretically write ASP.NET web applications with Notepad or another text
editor alone, you really want to install a copy of Microsoft Visual Web Developer 2010. VWD is
developed specifically for building ASP.NET web sites, and as such, hosts an enormous amount of
tools that will help you in rapidly creating complex ASP.NET web applications.

502211c01.indd 2 2/19/10 10:01:06 AM

Microsoft Visual Web Developer  ❘  3

Visual Web Developer comes in two flavors: as a standalone and free version called Microsoft Visual
Web Developer 2010 Express, and as part of the larger development suite called Visual Studio 2010,
which is also available in different editions, each with its own price tag. Although the Express edi-
tion of VWD is free, it contains all the features and tools you need to create complex and feature-rich
web applications. All the examples you find in the book can be built with the free Express edition
so there’s no need to shell out big bucks for the commercial versions of Visual Studio 2010 to follow
along with this book.

Getting VWD is easy. You can download it from the Microsoft site as discussed next.

Getting Visual Web Developer
You can get the free version of VWD from the Microsoft site at www.microsoft.com/express/.
On the Express home page, follow the Downloads link until you reach the page that offers the down-
loads for the Express products, including Visual Web Developer 2010 Express. From this page, you
can download Visual Web Developer 2010 Express as a Web Install, where you download only the
installer, while the remaining files are downloaded during the installation process. Make sure you
choose Visual Web Developer 2010 from the page, and not one of the other free Express products or
one of the older editions of Visual Web Developer. The page also enables you to download all Express
products conveniently as an ISO image that you can burn onto a DVD.

Don’t be fooled by the file size of the Web Install download, which is around 3.5MB. The file you
download is just the installer that downloads the required files over the Internet. The total down-
load depends on your current system and will be somewhere between 180 MB and 270 MB.

If you want to try out the full version of Visual Studio 2010, which also contains Visual Web
Developer, you can sign up for a free trial that you can get from the Microsoft site at http://msdn
.microsoft.com/vstudio. You can choose to download an ISO image that you’ll need to burn on
a DVD.

Finally, you can download VWD as part of the Microsoft Web Platform Installer (WPI) application
available for download at www.microsoft.com/web and at www.asp.net/vwd/. Besides VWD, this
tool also gives you easy access to many other web development related tools and programs. The WPI
is an excellent tool to get a whole bunch of web development-related programs and tools in one fell
swoop. I often use it to get up and running real quick on a clean development machine.

Installing Visual Web Developer Express
Installing Visual Web Developer is a straightforward, although somewhat lengthy, process. Depending
on your installation method, your computer and your Internet connection speed, installing VWD may
take anywhere between twenty minutes and an hour or even more.

Installing Visual Web Developer 2010 Express Try It Out	

This Try It Out exercise guides you through installing VWD Express on your computer. It assumes you’re
using the web download option as explained earlier, although the process for installing the Express edition
from a DVD is almost identical. The steps you need to perform to install the full versions of Visual Studio
2010 are similar as well, although the screens you’ll see will be somewhat different.

502211c01.indd 3 2/19/10 10:01:07 AM

4  ❘  Chapter 1   Getting Started with ASP.NET 4

No matter which version of VWD you install, it’s important that you also install SQL Server 2008
Express with Service Pack 1 — a required component if you want to follow along with many of this
book’s examples. When you install the full version of Visual Studio 2010, the option to install SQL
Server is included on the list with features to install that you see during setup. If you install VWD
Express, you get the option to choose SQL Server on the Installation Options dialog box. The Web
Platform Installer has a similar option that enables you to install SQL Server 2008 Express with SP1
or later located under Web Platform ➪ Database.

	1.	 When you’re installing the web version, run the file you downloaded from the Microsoft web site.
Otherwise, start the setup process from the Visual Web Developer DVD.

	2.	 Once the installer has started, click Next, read and accept the license terms, and click Next
once more.

	3.	 On the Installation Options page, make sure you select Microsoft SQL Server 2008 Express. Although
this option adds considerably to the size of the download, you really need it when building data-driven
ASP.NET web applications. If you don’t see the SQL Server option, you already have it installed.
If you’re unsure whether SQL Server 2008 is installed, refer to Appendix B. Click Next again. You
may also see other optional components such as Microsoft Silverlight that you can install as well,
although they are not required for this book.

	4.	 On the Destination Folder page, you can leave the Install In Folder field set to its default if you
have enough space on your primary disk. Otherwise, click the Browse button and select a different
location.

	5.	 Click the Install button. If you’re using the web-based installer, the setup application will first down-
load the files over the Internet to your computer. During the installation process, you’ll see a screen
(similar to Figure 1-1) that shows you the progress of the download and installation of VWD.

Figure 1-1

	6.	 The installer may need to reboot your machine during or after the installation. Once the installer
has finished, VWD is ready for use.

502211c01.indd 4 2/19/10 10:01:07 AM

Creating Your First ASP.NET 4 Web Site  ❘  5

How It Works

The straightforward installation process guided you through the setup of VWD 2010 Express. In the
Installation Options dialog box, you selected Microsoft SQL Server 2008 Express, Microsoft’s free
version of its database engine. SQL Server 2008 is discussed and used a lot in this book, starting with
Chapter 12. Appendix B shows you how to configure security settings for the various versions of SQL
Server 2008 using the free SQL Server Management Studio Express.

Now that VWD is installed, it’s time to fire it up and start working with it. The next section shows
you how to create your very first site in VWD. You see how to create a site, add content to a web
page, and view that page in your browser.

Creating Your First ASP.NET 4 Web Site

You probably can’t wait to get started with your first ASP.NET web site, so instead of giving you a
theoretical overview of web sites in VWD, the next Try It Out exercise dives right into the action
and shows you how to build your first web project. Then, in the How It Works explanation and the
section that follows, you get a good look at what goes on behind the scenes when you view an
ASP.NET page in your browser.

Creating Your First ASP.NET Web SiteTry It Out	

	1.	 Start VWD 2010 from the Windows Start menu if you haven’t done so already. The first time you
start VWD, there might be a delay before you can use VWD because it’s busy configuring itself.
Subsequent starts of the application will go much faster.

	2.	 If you’re using a commercial version of Visual Studio, you also get a dialog box that lets you
choose between different collections of settings the first time you start Visual Studio. The choice
you make on that dialog box influences the layout of windows, toolboxes, menus, and shortcuts.
Choose the Web Development settings because those settings are designed specifically for ASP.NET
developers. You can always choose a different profile later by resetting your settings, as explained
later in this chapter.

	3.	 Once VWD is fully configured, you see the main screen appear, as shown in Figure 1-2.

You get a full description of all the windows, toolbars, panels, and menus in the next section, so
for now, just focus on creating a new web site. Click the File menu in the upper-left corner and
choose New Web Site. If you’re using a commercial version of Visual Studio, depending on the
settings you chose when starting Visual Studio the first time, you may have to open the submenu
New first. (Make sure you don’t accidentally use the New Project menu, because that is used to
create different types of .NET applications.) The New Web Site dialog box appears as shown in
Figure 1-3.

502211c01.indd 5 2/19/10 10:01:07 AM

6  ❘  Chapter 1   Getting Started with ASP.NET 4

Figure 1-2

Figure 1-3

	4.	 In the Installed Templates section on the left you can choose a programming language you will use
for your site. This book shows all examples in both Visual Basic and Visual C# so you can choose
a language to your liking.

502211c01.indd 6 2/19/10 10:01:07 AM

Creating Your First ASP.NET 4 Web Site  ❘  7

	5.	 In the list with templates in the middle, verify that ASP.NET Web Site is
selected. Verify that File System is the selected option in the Web Location
drop-down list at the bottom left. If you want, you could change the loca-
tion on disk where the web site is stored by clicking the Browse button and
choosing a new location on your computer’s hard drive. For now, the
default location — a folder under your Documents folder — is fine, so you
can leave the location as is.

	6.	 Click OK. VWD creates a new web site for you that includes a number of
files and folders to jump start your web site as shown in Figure 1-4. It also
opens the file Default.aspx so you can see the code for the page.

	7.	 Remove the code inside the <asp:Content> block (it starts with <h2> and ends with </p>) and
replace it with the following bolded text and code:

<asp:Content ID=”BodyContent” runat=”server” ContentPlaceHolderID=”MainContent”>
 <h2>Hello World</h2>
 <p>Welcome to Beginning ASP.NET 4 on <%= DateTime.Now.ToString() %></p>
</asp:Content>

You’ll see code formatted like this a lot more in this book. When you are instructed to type in
code formatted like this with some code in bold, you only need to type in the highlighted code.
The other code should already be present in the file.

Don’t worry about the code with the angle brackets (<>) and percentage symbol in the welcome
message; you learn how it works later. Although this code may not look familiar to you now, you
can probably guess what it does: it writes out today’s date and time.

	8.	 Press Ctrl+F5 to open the page in your default web browser. You see a page similar to the one
shown in Figure 1-5.

Figure 1-5

If you get a dialog box asking for your user name and password, close your browser and go back
to VWD. Right-click your site in the Solution Explorer (it’s the first item in Figure 1-4) and choose
Property Pages. In the Start Options section clear the checkbox for the NTLM Authentication item.
Then click OK and press Ctrl+F5 again to view the page in the browser. If you see an information

Figure 1-4

502211c01.indd 7 2/19/10 10:01:07 AM

8  ❘  Chapter 1   Getting Started with ASP.NET 4

bar warning about Intranet settings in Internet Explorer, click the bar and choose Enable Intranet
Settings. If you want to learn more about the implications of these settings first, choose What are
Intranet Settings from the popup menu.

If you don’t see the date and time in the page, or if you get an error, look again at the code in
the welcome message. It starts with an angle bracket (<) followed by a percentage symbol and an
equals sign. It closes with a single percentage sign and another angle bracket (>). Also, make sure
you typed in the code exactly as shown here, including capitalization. This is especially true when
you are using C#, because that language is case sensitive.

	9.	 Notice how a small icon with a screen tip appeared in the tray bar of Windows, visible in
Figure 1-6.

If you don’t see the icon, right-click the arrow near the other icons
in the Windows tray and choose Customize Notification Icons.
Then set the WebDev.WebServer40.exe option to Show Icon and
Notifications. The icon belongs to the ASP.NET Development Server.
This web server has been started by VWD automatically to serve the request for your page. You
learn more about how the web server processes your page later in this chapter.

That’s it. You just created your very first ASP.NET 4 web site with VWD.

How It Works

Although the web site you created in this Try It Out is quite simple, the process that eventually results
in the page Default.aspx being displayed in your browser isn’t so simple. All by itself, an ASP.NET
page (also referred to as an ASPX page because of its extension) can’t do much. It needs to be processed
and served by a web server before your browser can display it. That’s why VWD automatically started
up the built-in ASP.NET Development Server to handle the request for the page. Next, it started up
your default web browser and directed it to the address of the web server, http://localhost:49212/
WebSite1/Default.aspx in the Try It Out example, although the actual number in the address may
change every time you start the web server because the number is randomly chosen by VWD.

It’s important to realize that the ASPX file you modified in VWD is not the same as the one that even-
tually gets displayed by the browser.

When you create a page in VWD, you add markup to it. The markup in an ASPX page is a combination
of plain text, HTML, code for ASP.NET Server Controls (which you learn more about in this chapter
and in Chapter 4), code written in Visual Basic.NET or C#, and more.

When you request an ASPX page in your browser, the web server processes the page, executes any code it
finds in the file, and effectively transforms the ASP.NET markup into plain HTML that it then sends to
the browser, where it is displayed. In the preceding Try It Out, the resulting HTML causes the browser to
display the current date and time. HTML, or HyperText Markup Language, is the language that browsers
use to display a web page. You learn how HTML looks and how to use it later in this chapter.

To see how the final HTML differs from the original ASPX page, open the source for the page in
your browser. In most browsers, you can bring up the source window by right-clicking the page in the
browser and choosing View Source or View Page Source. This brings up your default text editor, show-
ing the HTML for the page.

Figure 1-6

502211c01.indd 8 2/19/10 10:01:08 AM

An Introduction to ASP.NET 4  ❘  9

If you already closed your browser after the preceding Try It Out, press Ctrl+F5 in VWD to open the
page and choose View Source again.

Most of the HTML you see in the text editor is similar to the original ASPX page. However, if you look
at the line that displays the welcome message and the current date and time, you’ll notice a big differ-
ence. Instead of the code between the angle brackets and percentage signs, you now see the actual date
and time:

<div class=”main”>
 <h2>Hello World</h2>
 <p>Welcome to Beginning ASP.NET 4 on 10/30/2009 6:19:16 PM</p>
</div>

When the web server processed the page, it looked up the current date and time from the server, and
inserted it in the HTML that got sent to the browser. Depending on the language settings of your
Windows installation, you may see the date and time formatted differently to accommodate the Windows
Regional Settings.

In the following section, you see how ASP.NET works in much more detail.

An Introduction to ASP.NET 4

When you type a web address like www.wrox.com in your web browser and press Enter, the browser
sends a request to the web server at that address. This is done through HTTP, the HyperText
Transfer Protocol. HTTP is the protocol by which web browsers and web servers communicate.
When you send the address, you send a request to the server. When the server is active and the
request is valid, the server accepts the request, processes it, and then sends the response back to the
client browser. The relationship between the request and response is shown in Figure 1-7.

Because you are using the built-in Development Web Server, the server and the client are really the
same machine. However, in a real-world scenario, you’ll host your
web site on an external web server where it can be accessed by many
different clients.

For simple, static files, like HTML files or images, the web server
simply reads the file from its local hard drive and sends it to the
browser. However, for dynamic files, such as ASPX pages, this is
obviously not good enough. If the web server were to send the ASPX
file directly to the browser as a text file, you wouldn’t have seen the
current date and time in the browser, but instead you would have
seen the actual code (<%= DateTime.Now.ToString() %>). So,
instead of sending the file directly, the web server hands over the
request to another piece of software that is able to process the page.
This is done with a concept called Application Mapping or Handler
Mapping, where an extension of a file (.aspx in this example) is

1 2

Request

Response

Web Server

Browser

Figure 1-7

502211c01.indd 9 2/19/10 10:01:08 AM

10  ❘  Chapter 1   Getting Started with ASP.NET 4

mapped to an application that is capable of handling it. In the case of an .aspx page, the request is
eventually handled and processed by the ASP.NET runtime, part of the Microsoft .NET Framework
designed specifically to handle web requests.

During the processing of the page, three main areas can influence the way the page eventually ends
up in the browser:

Static text.➤➤ Any static text, like HTML, CSS, or JavaScript code you place in a page, is sent
to the browser directly. You learn more about HTML, CSS, and JavaScript (a programming
language used at the client) in this and subsequent chapters, including Chapter 3, which gives
you a detailed look at CSS.

ASP.NET Server Controls.➤➤ These controls are placed in your ASPX page and when they
are processed, they emit HTML that is inserted in the page. You learn more about Server
Controls after the discussion of HTML in this chapter, and Chapter 4 is devoted entirely to
ASP.NET Server Controls.

Programming code.➤➤ You can embed code, like Visual Basic .NET or C#, directly in a page,
as you saw in the previous Try It Out. In addition, you can place code in a separate code file,
called a Code Behind file. This code can be executed by the runtime automatically, or based
on a user’s action. Either way, execution of the code can greatly influence the way the page
is displayed, by accessing databases, performing calculations, hiding or showing specific con-
trols, and much more. You learn more about this Code Behind file in the next chapter, and
programming your ASP.NET web pages is discussed in great detail in Chapter 5.

Once the page is done processing, and all the HTML for the page has been collected, the HTML is
sent back to the browser. The browser then reads it, parses it and, finally, displays the page for you
to look at.

Because HTML is so critical for displaying web pages, the next section gives you an overview of
HTML.

Understanding HTML
HTML is the de facto language for creating web pages and is understood by every web browser that
exists today. Since the beginning of the ‘90s it has been the driving force of the World Wide Web,
the part of the Internet that deals with web pages. HTML documents are simple text files that con-
tain markup, text, and additional data that influences that text.

HTML Elements and Tags

HTML uses text surrounded by angle brackets to indicate how your content should be rendered (or
displayed) in the browser. The text with angle brackets is referred to as a tag; a pair of tags holding
some text or other content is referred to as an element. Take another look at the HTML you saw in
the previous Try It Out where you opened the source window for the page in the browser:

 <h2>Hello World</h2>
 <p>Welcome to Beginning ASP.NET 4 on 10/30/2009 6:19:16 PM</p>

The first line of this example contains an <h2> element with an opening tag (<h2>) and a closing
tag (</h2>). This element is used to signify a heading at the second level (if you scroll up a bit in the

502211c01.indd 10 2/19/10 10:01:08 AM

An Introduction to ASP.NET 4  ❘  11

final source in the browser, you also see an <h1> element). Notice how the element is closed with a
similar tag, but with an additional forward slash (/) in it: </h2>. Any text between these opening
and closing tags is considered part of the element, and is thus rendered as a heading. In most brows-
ers, this means the text is rendered in a larger font. Similar to the <h2> tag are tags for creating
headings up to level six, such as <h1>, <h3>, and so on.

Below the heading element, you see a <p> element, which is used to denote a paragraph. All text
within the pair of <p> tags is considered part of the paragraph. By default, a browser renders a para-
graph with some additional margin spacing at the bottom, although you can override that behavior.

Many tags are available in HTML; too many to cover them all here. The following table lists some
of the most important tags and describes how they can be used. For a complete list of all HTML
elements, take a look at the web site of the organization that maintains the HTML standard:
www.w3.org/TR/html401/index/elements.html.

Tag Description Example

<html> Used to denote the start and

end of the entire page.

<html>

 ...All other content goes here

</html>

<head> Used to denote a special sec-

tion of the page that contains

data about the page, includ-

ing its title and references to

external resources.

<head>

 ... Content goes here

</head>

<title> Used to define the title of the

page. This title will appear in

the browser’s title bar.

<title>

 Welcome to Planet Wrox 4

</title>

<body> Used to denote the start and

end of the body of the page.

<body>

 Page body goes here

</body>

<a> Used to link one web page to

another.

 Visit the Wrox site

 Used to embed images in

a page.

<i>

<u>

Used to format text in a bold,

italic, or underline font.

This is bold text while
<i>this text is in italic</i>

<form>

<input>

<textarea>
<select>

Used for input forms that

enable users to submit infor-

mation to the server.

<input type=”text” value=”Some Text” />

continues

502211c01.indd 11 2/19/10 10:01:08 AM

12  ❘  Chapter 1   Getting Started with ASP.NET 4

Tag Description Example

<table>

<tr>

<td>

These tags are used to cre-

ate a layout with a table. The

<table> tag defines the entire

table, and the <tr> and <td>

tags are used to define rows

and cells, respectively.

<table>
<tr>
 <td>This is a Cell in Column 1</td>
 <td>This is a Cell in Column 2</td>
</tr>
</table>

These three tags are used to

create numbered or bulleted

lists. The and the

tags define the looks of the

list (either unordered, with a

simple bullet, or ordered, with

a number), and the tag

is used to represent items in

the list.

 First item with a bullet
 Second item with a bullet

 First item with a number
 Second item with a number

 This tag is used to wrap and

influence other parts of the

document. It appears as inline,

so it adds no additional line

break on the screen.

<p>This is some normal text while
this text
appears in red</p>

<div> Just like the tag,

the <div> tag is used as a

container for other elements.

However, the <div> acts as a

block element, which causes

an explicit line break after the

<div> element by default.

<div>
 This is some text on 1 line
</div>
<div>
 This text is put directly under the
 previous text on a new line.
</div>

HTML Attributes

In addition to the HTML elements, the examples in the preceding table also showed you HTML
attributes. Attributes contain additional information that changes the way a specific element behaves.
For example, with the tag that is used to display an image, the src attribute defines the source
of that image. Similarly, the tag contains a style attribute that changes the color of the text
to red. The value of the style attribute (color: red;) is part of a Cascading Style Sheet (CSS),
which is discussed in much more detail in Chapter 3. Just as with the HTML elements, there is a long
list of available attributes on the W3C web site: www.w3.org/TR/html401/index/attributes.html.

You don’t need to memorize all these elements and attributes. Most of the time, they are generated for
you automatically by VWD. In other cases, where you need to enter them by hand, VWD offers you
IntelliSense to help you find the right tag or attribute. IntelliSense is discussed in the next chapter.

(continued)

502211c01.indd 12 2/19/10 10:01:09 AM

An Introduction to ASP.NET 4  ❘  13

The Difference Between HTML and XHTML

In addition to HTML, you may also run into the term XHTML. Although the two have very simi-
lar names, they have some interesting differences that you need to be aware of. XHTML is a refor-
mulation of HTML in XML — eXtensible Markup Language. This is a generic, text- and tag-based
language used to describe data and is used as the base language for many other languages, including
XHTML.

So, XHTML is in fact largely just HTML rewritten with XML rules. These rules are pretty simple,
and most of the time VWD will help you get it right or show you a list of errors and suggestions on
how to fix them.

Always Close Your Elements

In XHTML, all elements must be closed. So when you start a paragraph with <p>, you must use
</p> somewhere later in your page to close the paragraph. This is also the case for elements that
don’t have their own closing tags, like or
 (to enter a line break). In XHTML, these tags
are written as self-closing tags, where the closing slash is embedded directly in the tag itself as in
 or
.

Always Use Lowercase for Your Tag and Attribute Names

XML is case sensitive, and XHTML applies that rule by forcing you to write all your tags in lowercase.
Although the tags and attributes must be in all lowercase, the actual value doesn’t have to be. So, the
preceding example that displays the logo image is perfectly valid XHTML, despite the uppercase L in
the image name.

Always Enclose Attribute Values in Quotes

Whenever you write an attribute in a tag, make sure you wrap its value in quotes. For example,
when writing out the tag and its src attribute, write it like this:

And not like this:

You could also use single quotes to enclose the attribute value, as in this example:

It’s also sometimes necessary to nest single and double quotes. When some special ASP.NET syntax
requires the use of double quotes, you should use single quotes to wrap the attribute’s value:

<asp:Label ID=”TitleLabel” runat=”server” Text=’<%# Eval(“Title”) %>’ />

You’ll see this syntax used a lot more in later chapters in this book.

For consistency, this book uses double quotes where possible in all HTML that ends up in the client.

502211c01.indd 13 2/19/10 10:01:09 AM

14  ❘  Chapter 1   Getting Started with ASP.NET 4

Nest Your Elements Correctly

When you write nested elements, make sure that you first close the inner element you opened last,
and then close the outer element. Consider this correct example that formats a piece of text with
both bold and italic fonts:

<i>This is some formatted text</i>

Notice how the <i> tag is closed before the tag. Swapping the order of the closing tags leads to
invalid XHTML:

<i>This is some formatted text</i>

Always Add a DOCTYPE Declaration to Your Page

A DOCTYPE gives the browser information about the kind of HTML it can expect. By default, VWD
adds a DOCTYPE for XHTML 1.0 Transitional to your page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

The DOCTYPE greatly influences the way browsers like Internet Explorer render the page. VWD’s
default DOCTYPE of XHTML 1.0 Transitional gives you a good mix between valid markup and pages
that render the same in all major browsers.

NOTE  ​If you want to learn more about XHTML, get a copy of Wrox’s Beginning
Web Programming with HTML, XHTML, and CSS, 2nd Edition, ISBN: 978-0-470-
25931-3.

Besides HTML, an ASP.NET web page can contain other markup as well. Most pages will have one
or more ASP.NET Server Controls on the page to give it some additional functionality. The next
section briefly looks at these ASP.NET Server Controls, but you get an in-depth look at them in
Chapter 4.

A First Look at ASP.NET Markup
To some extent, the markup for ASP.NET Server Controls is similar to that of HTML. It also
has the notion of tags, elements, and attributes, using the same angle brackets and closing tags as
HTML does. However, some differences also exist.

For starters, most of the ASP.NET tags start with an asp: prefix. For example, a button in ASP.NET
looks like this:

<asp:Button ID=”Button1” runat=”server” Text=”Click Me” />

502211c01.indd 14 2/19/10 10:01:09 AM

A Tour of the IDE  ❘  15

Note how the tag is self-closed with the trailing slash (/) character, eliminating the need to type a
separate closing tag.

Another thing you may have noticed is that the tag and attribute names are not necessarily in all
lowercase. Because an ASP.NET Server Control lives on the server, it doesn’t have to adhere to the
XHTML rules used in the browser at the client. However, when a Server Control is asked to emit its
HTML to a page that is configured to output XHTML, it will do so in XHTML. So, the code for
the same button looks like this when rendered in the browser as XHTML:

<input type=”submit” name=”Button1” value=”Click Me” id=”Button1” />

Notice how the entire tag and its attributes conform to the XHTML standard. The process of con-
verting the Server Control to its HTML representation is similar to the code you saw earlier that
displayed the current date. The Server Control is processed at the server by the ASP.NET handler.
This processing results in HTML, which is sent to the browser where it’s displayed.

Now that you understand the basics of an ASP.NET page and the HTML that it generates, it’s time
to look at VWD again. Knowing how to use the application and its many tools and windows is an
important step in building fun, good-looking, and functional web sites.

A Tour of the IDE

VWD is by far the most extensive and feature-rich integrated development environment (IDE) for
building ASP.NET web pages. The abbreviation IDE refers to the way all the separate tools you need
to build complex web applications are integrated in a single environment. Instead of writing code in
a text editor, compiling code at the command line, writing HTML and CSS in a separate applica-
tion, and managing your database in yet another, VWD enables you to perform all of these tasks,
and more, from the same environment. Besides the efficiency this brings because you don’t have to
constantly switch tools, this also makes it much easier to learn new areas of VWD, because many of
the built-in tools work in the same way.

The Main Development Area
To get familiar with the many tools that are packed in VWD’s interface, take a look at Figure 1-8.
It shows the same screen you got after you created your first web site in VWD, but now it highlights
some of the most important screen elements. If you are already familiar with a previous version of
Visual Web Developer, you could skip this section and pick up again at the next Try It Out exercise
later in this chapter.

If you had a previous version of Visual Studio installed, your screen may look different, because
Visual Studio 2010 is able to import settings from older versions.

502211c01.indd 15 2/19/10 10:01:09 AM

16  ❘  Chapter 1   Getting Started with ASP.NET 4

Main Menu

Toolbox

Document
Window

Toolbar Area

Solution Explorer

Database Explorer

Properties Grid

Figure 1-8

Choosing Your Development Profile

Because Visual Web Developer Express targets people new to ASP.NET development as well as
seasoned web developers, you can choose among different developer profiles: Basic Settings, Code
Optimized, and Expert Settings. In Basic Settings mode, many menu items you don’t frequently use
have been hidden or are placed in their own sub menu. The Code Optimized profile is great for pure
coding sessions where you’re not interested in many of the design features of VWD. It hides items
like the Toolbox and the Properties Grid, both shown in Figure 1-8. Expert Settings mode gives you
access to the full functionality of VWD. You can switch between settings using the Tools ➪ Settings
menu. This book assumes you are using Expert Settings mode right from the beginning. You may
not need all features you see right from the start but you sure will use most of them by the end of
the book. Since the menu items change location depending on the profile you choose, I decided to
use Expert Settings mode right away, to make it easier to refer to a specific menu item or feature.

The Main Menu

At the top of the application, right below the Windows title bar, you see the main menu. This menu
bar contains familiar items you find in many other Windows applications, like the File, Edit, and
Help menus as well as menus that are specific to VWD, such as the Website and Debug menus. The
menu changes dynamically depending on the task you’re working on, so you’ll see menu items appear
and disappear as you work your way through the application. You can use the Help ➪ Manage Help
Settings menu to configure online and offline help. Offline helps needs to be installed first, while
online help requires a connection to the Internet.

The Toolbar Area

Right below the menu, you see the toolbar area that is capable of showing different toolbars that
give you quick access to the most common functions in VWD. In Figure 1-8, only two of the

502211c01.indd 16 2/19/10 10:01:09 AM

A Tour of the IDE  ❘  17

toolbars are enabled, but VWD comes with many other toolbars that you can use in specific task-
oriented scenarios. Some toolbars appear automatically when you’re working on a task that requires
a particular toolbar’s presence, but you can also enable and disable toolbars to your liking. To
enable or disable a toolbar, right-click an existing toolbar or the menu bar and choose the toolbar
from the menu that appears.

The Toolbox

On the left of the main screen, tucked away at the border of VWD, you see the tab for the Toolbox.
If you hover your mouse over the tab, the Toolbox folds out, giving you a chance to see what it
contains. If you click the little pin icon in the upper-right corner of the Toolbox (or any of the other
panels that have this pin icon), it gets pinned to the IDE so it remains open.

Just as with the menu bar and the toolbars, the Toolbox automatically updates itself to show con-
tent that is relevant to the task you’re working on. When you’re editing a standard ASPX page, the
Toolbox shows the many controls you have available for your page. You can simply drag an item
from the Toolbox and drop it on a location of your page where you want it to appear. These controls
are discussed in great detail in Chapter 4.

The Toolbox contains multiple categories with tools that can be expanded and collapsed as you see
fit to make it easier to find the right tool. You can also reorder the items in the list, add and remove
items from the Toolbox, and even add your own tools to it. Customizing the IDE is discussed later
in this chapter.

If the Toolbox is not visible on-screen, press Ctrl+Alt+X to open it or choose View ➪ Toolbox, pro-
vided you have chosen the Expert Settings option in the Tools ➪ Settings menu.

The two additional tabs below the Toolbox tab, CSS Properties and Manage Styles, are discussed
extensively in Chapter 3.

The Solution Explorer

At the right of the screen, you see the Solution Explorer. The Solution Explorer is an important win-
dow because it gives you an overview of the files that comprise your web site. Instead of placing all
your files in one big folder, the Solution Explorer enables you to store files in separate folders, creat-
ing a logical and organized site structure. You can use the Solution Explorer to add new files to your
site, move existing files around using drag and drop or cut and paste, rename files and delete them
from the project, and more. Much of the functionality of the Solution Explorer is hidden behind its
right-click menu, which changes depending on the item you right-click.

At the top of the Solution Explorer, you see a small toolbar that gives you quick access to some
functionality related to your web site, including opening the Properties Grid for the selected item,
refreshing the Solution Explorer window, an option to nest related files, and two buttons that allow
you to copy and configure your web site. Most of this functionality is discussed later in the book.

You can access the Solution Explorer by choosing View ➪ Solution Explorer from the main menu or
by pressing Ctrl+Alt+L.

502211c01.indd 17 2/19/10 10:01:10 AM

18  ❘  Chapter 1   Getting Started with ASP.NET 4

The Database Explorer

This window, hidden behind the Solution Explorer in Figure 1-8, enables you to work with
your databases. If you have a commercial version of Visual Studio, such as Visual Studio 2010
Professional, this window is called the Server Explorer and may be located at the left of your screen.

The Database Explorer is discussed in more detail in the chapters about databases, starting with
Chapter 12.

The Properties Grid

With the Properties Grid, you can view and edit the properties of many items in Visual Studio,
including files in the Solution Explorer, controls on a web page, properties of the page itself, and
much more. The window constantly updates itself to reflect the selected item. You can quickly open
the Properties Grid by pressing F4. This same shortcut can be used to force the Properties Grid to
show the details of a selected item.

The Document Window

The Document Window is the main area in the middle of the application. This is where most of the
action takes place. You can use the Document Window to work with many different document for-
mats, including ASPX and HTML files, CSS and JavaScript files, code files for VB and C#, XML and
text files, and even images. In addition, you can use the same window to manage databases, create
copies of your site, view the pages in your site in the built-in mini-browser, and much more.

At the bottom of the Document Window in Figure 1-8, you see three buttons called Design, Split,
and Source. These buttons appear automatically when you’re working with a file that contains
markup, such as ASPX and HTML pages. They allow you to open the Design View of a page (giv-
ing you an idea of how the page will look in the browser), its Markup View (the HTML and other
markup), or both at the same time. How this works is explained in more detail in Chapter 2, but for
now, it’s important to realize you can switch between Markup, Split, and Design View by clicking
the appropriate buttons. The Markup View is also often called the Source View or Code View win-
dow. However, to avoid confusion with the code editor that is used to edit Code Behind files, this
book uses the term Markup View exclusively.

The Document Window is a tabbed window by default, which means it can host multiple docu-
ments, each one distinguished by a tab with the file name at the top of the window. The right-click
menu of each tab contains some useful shortcuts for working with the file, including saving and clos-
ing it and opening the file’s parent folder in Windows Explorer.

To switch between documents, you can press Ctrl+Tab or you can click the down arrow in the
upper-right corner of the Document Window, next to the Solution Explorer, shown in Figure 1-8.
Clicking the down arrow reveals a list of open documents so you can easily select one.

Another way to switch documents is to press Ctrl+Tab and then hold down the Ctrl key. On the win-
dow that pops ups, you can select a document you want to work with in the right-hand column. You
can then use the cursor keys to move up and down in the list with open documents. This makes it
super easy to select the correct file.

502211c01.indd 18 2/19/10 10:01:10 AM

A Tour of the IDE  ❘  19

On the same dialog box, you see a list with all active tool windows. Clicking one of the windows in
the list will show it on-screen, moving it in front of other windows if necessary.

The Start Page

Whenever you start up VWD, the Start Page is loaded in the Document Window. With the Start
Page, you can quickly create new or open existing web sites and other projects. The Start Page also
provides a number of links to related news and information about web development.

To get a feel for how you can use all these windows, the following Try It Out shows you how to
build a simple web page that contains a few ASP.NET Server Controls.

Creating Your First ASP.NET Web PageTry It Out	

This Try It Out exercise guides you through creating a new web site with a single page that contains
a number of ASP.NET Server Controls. You see how to use windows like the Document Window and
the Solution Explorer, and how to use the Toolbox and the Properties Grid to add ASP.NET Server
Controls to the page and change their looks.

	1.	 Make sure Visual Web Developer 2010 is started.

	2.	 If you’re using the Express edition, choose Tools ➪ Settings and choose Expert Settings to turn on
the developer profile that gives you access to the full feature set of VWD.

	3.	 On the File menu choose New Web Site. If you are using a commercial version of Visual Studio, you
may have to choose File ➪ New ➪ Web Site instead. This triggers the New Web Site dialog box.

	4.	 In this dialog, make sure that ASP.NET Empty Web Site is selected and not the ASP.NET Web Site
item that you used in a previous exercise. Ensure that File System is chosen in the Web Location
drop-down list. Click OK to create the new site.

	5.	 Next, right-click the new web site in the Solution Explorer. Make sure you click the uppermost ele-
ment that says something like C:\..\WebSite2\. It’s the highlighted element in Figure 1-4. From
the context menu that appears, choose Add New Item.

	6.	 In the new window that appears, click Web Form and type ControlsDemo as the name. The ASPX
extension is added for you automatically when you click the Add button. You can leave the other
settings in the dialog box at their default settings. The page should open in Markup View, showing
you the default HTML, like the <html>, <head>, <title>, and <body> elements that Visual Web
Developer adds there for you automatically when you create a new page.

	7.	 Switch the page to Design View by clicking the Design button at the bottom of the Document
Window.

	8.	 If the Toolbox isn’t open yet, press Ctrl+Alt+X to open it or hover your mouse over the Toolbox
tab to show it and then click the pin icon to make the
Toolbox visible at all times. Drag a TextBox and a
Button from the Toolbox into the dashed area in the
Design View of the page. You should end up with a
Design View that looks similar to Figure 1-9. Figure 1-9

502211c01.indd 19 2/19/10 10:01:10 AM

20  ❘  Chapter 1   Getting Started with ASP.NET 4

	9.	 Right-click the button in Design View and choose
Properties. In the Properties Grid, locate the Text property
under the Appearance category (shown in Figure 1-10)
and change it from Button to Submit Information. As
soon as you press Tab or click somewhere outside the
Properties Grid, the Design View of the page is updated
and shows the new text on the button.

	10.	 Press Ctrl+F5 to open the page in your default browser.
Note that it’s not necessary to explicitly save the changes
to your page (although it’s a good idea to do this often any-
way using the shortcut Ctrl+S). As soon as you press
Ctrl+F5 to run the page, VWD saves all changes to open
documents automatically.

NOTE  ​If you don’t like this behavior, you can change it. Choose Tools ➪ Options
from the main menu. Then make sure that Show All Settings is checked, open the
Projects and Solutions node, and choose Build and Run. In the Before Building list,
you can change the way VWD behaves when you open a page in your browser.

	11.	 Type some text in the text box and click the button. Note that after the page has reloaded, the text
is still displayed in the text box. Other than that, not much has happened because you didn’t write
any code for the button yet.

How It Works

When you dragged the Button and the TextBox from the Toolbox on the page in Design View, VWD
added the corresponding code for you in Markup View automatically. Similarly, when you changed
the Text property of the button in the Properties Grid, VWD automatically updated the markup for
the control in Markup View. Instead of using the Properties Grid, you could also have typed the text
directly between the quotation marks of the Text property in Markup View.

After changing the Text property, your page should now contain this code in Markup View:

<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>
<asp:Button ID=”Button1” runat=”server” Text=”Submit Information” />

When you press Ctrl+F5 to view the page in the browser, the web server receives the request, the page is
processed by the ASP.NET runtime, and the resulting HTML for the page is sent to the browser.

After you type in some text and click the button, the same process is more or less repeated: the
web server receives the request, the page is processed, and the result gets sent back to the browser.
When you click the button, you cause a postback to occur, where any information contained in the
page — such as the text you typed in the text box — is sent back to the server. ASP.NET reacts to the
postback by rendering the page again. However, this time it prepopulates controls, like the TextBox,
with the values that were sent to the page.

Figure 1-10

502211c01.indd 20 2/19/10 10:01:10 AM

A Tour of the IDE  ❘  21

Take a look at the resulting HTML for the page using the browser’s View Source command (rerun the
page from VWD by pressing Ctrl+F5 if you already closed it). You should see code similar to this:

<input name=”TextBox1” type=”text” value=”Hello World” id=”TextBox1” />
<input type=”submit” name=”Button1” value=”Submit Information” id=”Button1” />

Just as with the earlier example, you can see that the resulting HTML is substantially different from the
original ASPX markup.

Postbacks are an important concept in ASP.NET, and you see more about them in other chapters,
including Chapters 4 and 9.

VWD hosts many more windows and tool panels than those you have seen so far. The next section
briefly touches upon some of the windows you’ll most frequently use when building ASP.NET web
pages. All of the windows mentioned are accessible from the main View menu in VWD if you’re
using the Expert Settings mode.

Informational Windows
In addition to the windows that are visible by default when you start VWD, many more windows
are available in VWD. You see most of them in action in the remainder of this book, but some are
worth highlighting now. You access all windows that are discussed next from the main View menu.

The Error List

The Error List gives you a list of the things that are currently somehow broken in your site, includ-
ing incorrect markup in your ASPX or HTML files and programming errors in VB or C# files. This
window can even show you errors in XML and CSS files. The Error List shows its messages in three
categories — Errors, Warnings, and Messages — that signify the severity of the problem. Figure 1-11
shows the error list for a page that has some problems with its CSS and XHTML.

Figure 1-11

The Output Window

When you try to build your site using the Build menu, the Output window tells you whether or not
the build succeeded. If the build failed, for example because you have a programming error, it tells
you why the build failed. In the commercial versions of Visual Studio, the Output window is used
for other information as well, including the status of external plug-in programs. Building — or com-
piling — web sites is discussed later in this book, including Chapter 19, which deals with deploy-
ment of your web site.

502211c01.indd 21 2/19/10 10:01:10 AM

22  ❘  Chapter 1   Getting Started with ASP.NET 4

The Find Results Window

The Find and Replace features of VWD are invaluable tools when it comes to managing the content
of your site. You will often need to replace some text in the current document or even in the entire
site. Find in Files (Ctrl+Shift+F) and Replace in Files (Ctrl+Shift+H) both output their results in the
Find Results window, as shown in Figure 1-12.

Figure 1-12

Because having several informational windows open at the same time may take up precious screen
space, it’s often a good idea to dock them. This way, only one of them is visible at a time, while you
still have quick access to the others. You learn how to customize the IDE, including the docking of
windows, next.

Customizing the IDE

Although the standard setup of VWD and its tool windows is pretty useful, there’s a fair chance
you want to customize the IDE to your liking. You may want to rearrange some of the windows to a
location where they are easier to reach, or you may want to open additional windows you frequently
use. VWD is fully customizable and enables you to tweak every little detail of the IDE. In the next
section, you learn how to perform the most common customization tasks.

Rearranging Windows
To give each window the location it deserves, you can drag and drop them in the main IDE. Simply
grab a window’s title bar or its bottom tab and drag it in the direction of the new location. Once
you start dragging, you’ll see that VWD gives you visual cues as to where the window will end up
(see Figure 1-13).

If you drag the window over one of the four square indicators at the sides of the indicator, VWD
shows a preview of how the window will be docked next to an existing window. Once you drop it,
the window will pop to its new location. If you drop the window on the square in the middle of the
large indicator, the window will dock with that window, sharing the same screen space. Each win-
dow has its own tab, as can be seen with the windows at the bottom of Figure 1-13.

In addition to docking windows with others in the IDE, you can also have floating windows. To
change a docked window into a floating one, either drag it away from its current location and drop
it somewhere in the IDE without hitting one of the visual cues on the screen or choose Window ➪
Float from the main menu.

502211c01.indd 22 2/19/10 10:01:10 AM

Customizing the IDE  ❘  23

Figure 1-13

To restore a floating panel to its previous docked location, choose Window ➪ Dock from the
main menu. Make sure you don’t choose Dock as Tabbed Document for the tool windows like the
Toolbox or the Solution Explorer or they’ll end up in the main Document Window. This makes it
difficult to use these tool windows together with an open file as the two windows will share the
same space.

Modifying the Toolbox
The Toolbox can be modified as well. By default, the items are sorted alphabetically but you can
reorder them using drag and drop. To do this, open the Toolbox (press Ctrl+Alt+X), and drag an
item (such as the TextBox under the Standard category) to a different location. You can also delete
items from the Toolbox by right-clicking them and choosing Delete from the context menu. Don’t
worry about items getting lost forever; you can reset the Toolbox again by choosing Reset Toolbox
from the same menu.

You can also add your own items to the Toolbox. The most common use for this is code snippets. Simply
highlight some text or code in the Document Window and drag it to the Toolbox. You can then right-
click the item and choose Rename Item to give it a more meaningful name that you can easily recognize.

To avoid cluttering up the Toolbox with your own code snippets, consider creating a separate cat-
egory for them. You can do this by choosing Add Tab from the Toolbox’s right-click menu. Enter a
name and press Enter, and your Toolbox tab is ready for use.

502211c01.indd 23 2/19/10 10:01:10 AM

24  ❘  Chapter 1   Getting Started with ASP.NET 4

In the next Try It Out exercise, you get the chance to play around with the VWD IDE so you can
customize it to your liking.

Customizing the IDETry It Out	

In this exercise you practice with opening and rearranging the windows in the Visual Web Developer
IDE. Don’t be afraid to mess up the IDE. A little later in this chapter, instructions are given on how to
reset the IDE to the way it was when you opened it the first time.

	1.	 If you closed your web site since the previous Try It Out, open it again, or create a new one using
the File menu.

	2.	 From the View menu, choose Error List to open the Error List window. If you don’t see the Error
List item directly, choose Tools ➪ Settings ➪ Expert Settings first. Notice how the Error List gets
docked below the Document Window by default.

	3.	 From the same View menu, choose Task List. By default, it will be docked in the same space as the
Error List, with the tabs for both windows next to each other.

	4.	 Click the tab of the Task List and while holding down your mouse button, drag the Task List away
from its location in the direction of the Document Window. Once you release the window, it will
appear as a floating window in the IDE. To restore the window, right-click its title bar and choose
Dock. Notice how the tab returns to the same tab group, but possibly at a different position. To
change the order in which tabs appear in a tab group, drag a tab over the other tabs and release it
at the desired location.

	5.	 If you want, you can repeat the previous steps for other windows that are visible in the IDE by
default or for the ones you find under the View menu. Spend some time familiarizing yourself with
all the different windows and how you can arrange them on-screen. Because you’ll be working a lot
with these windows in the remainder of this book, it’s good to be familiar with their locations.

	6.	 Next, open the ControlsDemo.aspx page (or add a new ASPX first if you created a new web site)
from the Solution Explorer by double-clicking it. When the page opens, the Toolbox becomes vis-
ible automatically. If it doesn’t, press Ctrl+Alt+X to open it.

	7.	 Right-click the Toolbox and choose Add Tab. Type HTML Fragments as its new name and press
Enter. This adds a new category to the Toolbox that behaves just like all the others.

	8.	 With the Document Window showing your ASPX page in Markup View, type <h1> directly after
the opening <div> tag. Note that VWD automatically inserts the closing </h1> for you. You should
end up with code in Markup View looking like this:

<form id=”form1” runat=”server”>
 <div>
 <h1></h1>
 </div>

	9.	 Highlight the opening and closing <h1> tags, and then drag the selection from the Markup View win-
dow onto the new Toolbox tab you created in step 7. The selection shows up as Text: <h1></h1>.

	10.	 Right-click the Toolbox item you just created, choose Rename Item, and type Heading 1 as
the name.

502211c01.indd 24 2/19/10 10:01:11 AM

Customizing the IDE  ❘  25

	11.	 Put your cursor in the Document Window again and press Ctrl+K directly followed by Ctrl+D to
format the document in the Document Window. Alternatively, choose Edit ➪ Format Document
from the main menu. This formats the document according to the rules you have set in the Text
Editor options dialog. Formatting is also available for a number of other document types, including
C# and VB.NET code and XML files.

From now on, whenever you need a heading in your document in Markup View, simply place the cur-
sor in the Document Window where you want the heading to appear and double-click the appropriate
heading in the Toolbox.

How It Works

Most of the steps in this Try It Out are self-explanatory. You started off by opening a few windows that
you frequently need when building web sites. You then used the drag-and-drop features of the IDE to
rearrange the window layout to your personal preferences.

You then added an HTML fragment to a custom tab in the Toolbox. When you drag any markup to
the Toolbox, VWD creates a Toolbox item for it that contains the selected markup. Whenever you
need a copy of that markup in your page, simply double-click the item or drag it from the Toolbox into
Markup View. This is a great time saver for HTML fragments that you frequently use. You typically
use this technique for larger blocks of code; for elements like the <h1> VWD has a better tool called
Code Snippets, which you meet later in this book.

At the end you used VWD’s document formatting option to change the layout of the code in the docu-
ment. This helps to keep the code organized and easier to read. You can fully change how the code is
formatted by using the options dialog accessible through Tools ➪ Options. Then expand the path Text
Editor ➪ HTML ➪ Formatting, and click Tag Specific Options.

Besides the Window layout and the Toolbox, VWD enables you to customize a lot more in the IDE.
The following section explains how to customize three other important IDE features: the Document
Window, toolbars, and keyboard shortcuts.

Customizing the Document Window
Visual Web Developer gives you great flexibility with regard to how text is displayed in the
Document Window. You can change things like font size, font color, and even the background color
of the text. You can access the Font and Colors settings by choosing Tools ➪ Options, making sure
that Show All Settings at the bottom of the dialog box is selected, and then choosing Environment ➪
Fonts and Colors.

One thing I like to customize in the Document Window is the tab size, which controls the number
of spaces that are inserted when indenting code. To change the tab size, choose Tools ➪ Options,
and then under Text Editor choose All Languages ➪ Tabs. If you don’t see this option, choose Show
All Settings at the bottom first. I usually set the Tab and Indent Size to 2 spaces, leaving the other
settings in the Tab panel untouched. Another thing I like to customize is the number of line breaks
before and after HTML elements. The Options window gives you full control over this by selecting
Text Editor ➪ HTML ➪ Formatting and then clicking Tag Specific Options.

502211c01.indd 25 2/19/10 10:01:11 AM

26  ❘  Chapter 1   Getting Started with ASP.NET 4

With the exception of the Tab Size being set to 2 and the number of line breaks around a few
HTML elements, all screen shots in this book show the default setup of Visual Web Developer.

Customizing Toolbars
Toolbars can be customized in three ways: you can show or hide the built-in toolbars, you can add
and remove buttons on existing toolbars, and you can create your own toolbars with buttons you
often use.

Enabling and Disabling Toolbars

You disable and enable existing toolbars by right-clicking any existing toolbar or the menu bar and
then selecting the appropriate item from the list. Once the toolbar is displayed, you can use its drag
grip at its left to drag it to a new location within the Toolbar area.

Editing Existing Toolbars

If you feel that an existing toolbar is missing an important button or that it contains buttons you
rarely use, you can customize the buttons on the toolbar. To do this, right-click any toolbar or
the menu bar, choose Customize, switch to the Commands tab and select the toolbar you want to
modify from the Toolbar drop-down. With the command buttons at the right, you can add new and
remove existing commands, or change their order.

If you want to move a toolbar to the left, right or bottom of the window, switch back to the
Toolbars tab of the Customize window, select the toolbar and click Modify Selection.

Creating Your Own Toolbars

Creating your own toolbar is useful if you want to group some functions that you frequently use. To
create a new toolbar, open the Customize window as explained in the preceding section. Click the
New button and type a name for the toolbar. Then switch to the Commands tab and modify your
toolbar as you would do with existing toolbars.

Customizing Keyboard Shortcuts
Another setting many developers like to change is keyboard shortcuts. Keyboard shortcuts are a
good way to save time because they allow you to perform a task with a simple keyboard command
instead of reaching for the mouse and selecting the appropriate item from the menu. To change the
keyboard shortcuts, choose Tools ➪ Options, expand Environment, and click Keyboard. Locate
the command for which you want to change the shortcut in the list with commands. Because this
list contains many items, you can filter the list by typing a few letters from the command. For
example, typing print in the Show Commands Containing field gives you a list of all print-related
commands.

Next, in the Press Shortcut Keys field, type a new shortcut and click Assign. VWD allows you to
enter a double shortcut key for a single command. For example, you can bind the command Close
All Documents to the command Ctrl+K, Ctrl+O. To perform this command, you need to press both
key combinations in rapid succession. Although a double shortcut key may seem like overkill, it
greatly increases the number of available shortcut keys.

502211c01.indd 26 2/19/10 10:01:11 AM

The Sample Application  ❘  27

Resetting Your Changes
Don’t worry if you feel that you have messed up VWD by trying out the numerous customization
options. You have many ways to restore VWD to its previous state.

Resetting the Window Layout

This setting, accessible from the Window menu, resets all windows to the position they were in
when you first started VWD. This command is useful if you misplaced too many windows and
ended up with a cluttered IDE.

Resetting the Toolbox

If you removed an item from the Toolbox by mistake or even deleted an entire tab, you can reset the
Toolbox to its original state by right-clicking the Toolbox and choosing Reset Toolbox. You need to
think twice before you use this command because it will also delete all your custom code snippets.

Resetting All Settings

If you followed along with the previous Try It Out exercises, and then started experimenting with
the customization possibilities, your IDE is now probably in one of two states: it either looks exactly
the way you want it, or it looks like a complete mess. In the latter case, it’s good to know that it is
easy to clean up the chaos.

To completely revert all VWD settings to the way they were right after installation, choose Tools ➪
Settings ➪ Import and Export Settings or Tools ➪ Import and Export Settings, depending on the
version of Visual Web Developer you're using. Next, choose the Reset All Settings option and click
Next. If you want, you can create a backup of the existing settings; otherwise, choose No, Just Reset
Settings. You get another screen that enables you to choose among a number of settings collections.
Choose Expert Settings or Web Development because these options give you access to all features
you need to follow along with this book. Finally, click Finish. This action will cause all settings
to be reset to their defaults, including the Windows layout, Toolbox and Toolbox customizations,
shortcut keys, and everything you may have changed in the VWD Options dialog box. So, use this
command only when you’re really sure you want a fresh, new setup of VWD.

With some basic knowledge about ASP.NET pages and VWD, it’s time for some real action. In the
next chapter, you see how to create ASP.NET web sites and web pages in much more detail. You
learn how to organize your site in a logical and structured way, how to add the many different types
of files to your site and how to use them, and how to connect the pages in your site.

However, before you proceed to the next chapter, there is one more important topic you need to
look at: the sample application that comes with this book.

The Sample Application

Building web sites is what this book is all about, so it makes a whole lot of sense that this book
comes with a complete and functional sample site that is used to showcase many of the capabilities
of ASP.NET.

502211c01.indd 27 2/19/10 10:01:11 AM

28  ❘  Chapter 1   Getting Started with ASP.NET 4

The sample site you build in this book is called Planet Wrox, a site that serves as an online commu-
nity for people interested in music. The site offers the following features to its visitors:

Reviews about CDs and concerts that have been posted on the site by the administrator.➤➤

The Gig Pics section, an online photo album where users can share pictures taken at concerts.➤➤

The ability to switch between the different graphical themes that the site offers, giving you a ➤➤

chance to change the look and feel of the site without altering the content.

Store musical preferences that influence the information users see on the site.➤➤

Access to bonus features for registered users.➤➤

From an administrative perspective (that is you, as the owner of the site) the site enables you to do
the following:

Add and maintain the reviews.➤➤

Manage the different musical genres in the system.➤➤

Manage photo albums created by visitors to the site.➤➤

Figure 1-14 shows the Planet Wrox home page.

Figure 1-14

Figure 1-15 shows another page from Planet Wrox, but with a different theme applied. This page
enables users to enter their personal information and specify preferences with regard to their favorite
musical genres.

502211c01.indd 28 2/19/10 10:01:11 AM

Practical Tips on Visual Web Developer  ❘  29

Figure 1-15

You can find an online running example of the site at www.PlanetWrox.com. There you can play
around with the site from an end user’s perspective.

You can also download the source for the sample application and all other examples from this book
from the Wrox web site at www.wrox.com.

By the end of this book, you’ll be able to build all of the functionality from the sample site (and
hopefully even more) in other web sites. Don’t worry if it sounds like an awful lot of complex things.
I guide you, step by step, from the beginning of the application all the way to the last feature. As
long as you keep having fun doing this, I’m sure you’ll make it all the way.

Practical Tips on Visual Web Developer

Most of the chapters in this book end with a short section of useful tips. These are tips that either
didn’t fit in anywhere in the text or that encourage you to further explore or test out things. Sometimes
they may seem irrelevant or hard to understand at first, but you’ll find that as you make your way
through this book and look back at tips from previous chapters, things start to make sense. Don’t
worry if you don’t understand certain things completely the first time you see them. Give the idea some

502211c01.indd 29 2/19/10 10:01:11 AM

30  ❘  Chapter 1   Getting Started with ASP.NET 4

thought and revisit the topic a few days later. Hopefully, by letting the ideas sink in a little, things start to
make more sense automatically. This applies not only to the Practical Tips section, but to the entire book.

Before you move on to the next chapter, play around with VWD some more. Add a couple ➤➤

of pages to your site, drag and drop some controls from the Toolbox onto your pages, and
view them in your browser. That way, you’ll have a better understanding of the tools and the
many controls available when you start the next chapter.

Familiarize yourself with the many options to tweak the Visual Web Developer IDE. When ➤➤

building web sites, you spend most of your time in this IDE, so it makes sense to tweak it as
much as possible to your liking. Don’t be afraid to mess it up; you can always revert to previ-
ous settings.

Take some time to browse through the settings you find in the Options dialog box of VWD ➤➤

(accessible through the Tools ➪ Options menu). Many of the settings are self-explanatory
and can really help in further tweaking the IDE to your liking.

Summary

This chapter covered a lot of important ground to get you started with ASP.NET 4 and VWD 2010. It
started off with a brief history of the Microsoft .NET Framework in general and ASP.NET in particular.

You then learned how to acquire and install Visual Web Developer 2010 Express. VWD is the most
extensive and versatile tool available for creating ASP.NET 4 web pages. To enable you to work with
it effectively, this chapter showed you how to use and customize the main features of the IDE. In sub-
sequent chapters, you use and extend this knowledge to work with the many tools found in VWD.

It’s important to understand how a page in VWD makes it to your web browser. Some knowledge
of the web server that serves the request and how the page is processed to deliver the final HTML in
the browser is critical in understanding ASP.NET. This chapter gave you a short introduction in the
way a web page is requested and served to the browser.

In the next chapter, you get a much more detailed explanation of creating web sites.

Exercises	

1.	 Explain the differences between the markup of a page in VWD and the final HTML page in the browser.

2.	 Explain the difference between HTML and XHTML. How are the two related?

3.	 Imagine you have a number of HTML fragments that you expect to use a lot throughout the site.

What’s the best way to make these fragments available in VWD?

4.	 What are three of the ways you can reset part or all of the IDE customization settings?

5.	 If you want to change the property of a control on your page, for example the text of a button,

which two options do you have available to make the change?

Answers to Exercises can be found in Appendix A.

502211c01.indd 30 2/19/10 10:01:11 AM

Summary  ❘  31

What You Learned in this Chapter⊲⊲

Attribute Extra information in a tag to define or change its behavior

Element A pair of tags holding some text or other content

HTML HyperText Markup Language: the language that browsers use to display a

web page

HTTP HyperText Transfer Protocol: the protocol by which web browsers and web

servers communicate

IDE Integrated Development Environment: an integrated collection of applica-

tions and tools to develop applications

JavaScript A programming language used to interact with a web page in the client’s

browser

Tag Text surrounded by angle brackets to create HTML elements

Visual Studio 2010 The development environment to build .NET applications

Visual Web
Developer

The part of Visual Studio (but also available separately as the free Express

edition) that enables you to build ASP.NET web applications

XHTML HTML rewritten with XML rules

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

502211c01.indd 31 2/19/10 10:01:11 AM

502211c01.indd 32 2/19/10 10:01:11 AM

Building an ASP.NET Web Site

What you will learn in this chapter:

The different project types you can choose from as a starting point ➤➤

for your ASP.NET web sites

The different project templates that are available to jumpstart your ➤➤

site development

The numerous file types available in ASP.NET and what they are ➤➤

used for

Ways to create structured web sites that are easy to manage, now ➤➤

and in the future

How to use the designer tools to create formatted web pages➤➤

To create good-looking, functional, and successful web sites, you have to understand a
number of important technologies and languages, including (X)HTML, ASP.NET, CSS
(Cascading Style Sheets), a server-side programming language such as C# or VB, and a client-
side language such as JavaScript. This and upcoming chapters provide a solid foundation
in these technologies, so you should be comfortable with the most important concepts once
you’ve finished this book.

Besides these technologies, you also have to understand the Visual Web Developer IDE that
was introduced in the previous chapter. You need to know how to create sites, add pages, and
manage all the toolbars and windows that Visual Web Developer (VWD) offers you. In addi-
tion, you need to know how to build and design web pages in VWD with HTML and Server
Controls.

This chapter shows you, in detail, how to create and manage your web sites. It also shows you
how to create your ASP.NET web pages and add markup to them, enabling you to create use-
ful web pages that can present information to users and react to their response.

2

502211c02.indd 33 2/19/10 10:00:59 AM

34  ❘  Chapter 2   Building an ASP.NET Web Site

Although you already created your first ASP.NET web site in the previous chapter, this chapter
starts off with another in-depth look at creating a new web site. Because you have many choices to
make when you start a new site, it’s important to understand all the different options and pick the
right one for your scenario.

Creating Web Sites with VWD 2010

The previous chapter gave you a quick overview of creating a web site in VWD. You simply chose New
Web Site from the File menu, selected a language, selected the standard ASP.NET Web Site template,
and clicked OK. However, there’s more to the New Web Site dialog box than you saw in the previous
chapter. You may have noticed that you can choose among a number of different templates that enable
you to create different kind of sites. But before looking at the different templates on which you can
base your new web site, you need to know a little more about the different project types that are avail-
able in VWD.

Different Project Types
In the initial release of Visual Web Developer 2008 Express you could only use one project type:
the Web Site Project. You needed one of the commercial versions of Visual Studio in order to use
the second project type — the Web Application Project. In August 2008, Microsoft released Service
Pack 1 for Visual Web Developer 2008, which gave users of the free Express edition access to the
Web Application Project template as well. This addition is still present in VWD 2010 so you now
have two options to choose from. Both project types are discussed next.

Web Site Projects

Web Site Projects represent a project in VWD for a web site. You create a new Web Site Project by
choosing File ➪ New Web Site or File ➪ New ➪ Web Site from Visual Web Developer’s main menu.

Web Site Projects were introduced in Visual Studio 2005 and provide some new flexibility in creat-
ing and working with web sites. In contrast to web sites built with earlier versions of Visual Studio
.NET, a Web Site Project site is simply a Windows folder with a bunch of files and subfolders in
it. There is no collective file (known as the project file with a .vbproj or .csproj extension) that
keeps track of all the individual files in the web site. You just point VWD to a folder, and it instantly
opens it as a web site. This makes it very easy to create copies of the site, move them, and share
them with others, because there are no dependencies with files on your local system. Because of the
lack of a central project file, Web Site Projects are usually simply referred to as web sites, which is
the term I use in the remainder of this book

Besides a lot of positive feedback on this move, Microsoft also received a lot of negative response
from developers who complained that Web Site Projects were too limiting for their development
environment. Because there is no container file that keeps track of everything in the site, it became
much harder to exclude files or folders from the site and work with source control systems — a cen-
tralized system that enables developers to work on a project collaboratively and that keeps track of
changes in the project automatically. Also, Web Site Projects influenced the way web sites are com-
piled and deployed, making it harder for developers accustomed to the previous model to apply their
knowledge and skills to the new project type.

502211c02.indd 34 2/19/10 10:00:59 AM

Creating Web Sites with VWD 2010  ❘  35

In response to the criticism, Microsoft released the Web Application Project template in May 2006
as an add-on for Visual Studio 2005 Standard Edition and up. The Web Application Project is now
an integral part of all versions of Visual Web Developer, free and commercial.

Web Application Projects

Web Application Projects make it easier for developers who work in teams or who need more con-
trol over the contents of the site and their compilation and deployment processes to build web sites
with VWD, because the whole web site is managed as a project with a single project file that keeps
track of all the content of the web site.

In VWD 2010, you create a new Web Application Project through the File ➪ New Project dialog box.
In that dialog box, click your preferred programming language (either Visual Basic or Visual C#) and
click the Web category, where you’ll find a number of ASP.NET web application templates. One of
the available project templates is the ASP.NET MVC 2 Web Application, which creates an application
based on the Model View Controller pattern, another popular style of web application development.
MVC is not used or discussed in this book, but if you want to learn more, check out Beginning
ASP.NET MVC 1.0 by Simone Chiaretta and Keyvan Nayyeri (ISBN: 978-0-470-43399-7).

This book uses the Web Site Project model because it’s easier to work with if you’re new to ASP.NET.
However, you’ll find that sites built using the Web Application Project template have a lot in common
with Web Site Projects. You need to use the Web Site Project template if you want to follow along
with this book. When not referring to a specific project type, I’ll use the terms web site and web
application interchangeably throughout this book when referring to web sites in general.

Now that you know about the different project types, the next thing to consider is the different web
site templates and their options.

Choosing the Right Web Site Template
The New Web Site dialog box in VWD contains different web site templates, each one serving a dis-
tinct purpose.

Figure 2-1 shows the New Web Site dialog box in VWD. You can open this dialog box by choosing
File ➪ New Web Site, or File ➪ New ➪ Web Site depending on your version of VWD. If your dialog
doesn’t look like Figure 2-1, make sure you chose File ➪ New Web Site and not accidentally File ➪
New Project.

In the left-hand section you can choose between Visual Basic and Visual C# as the programming
language for your site. The section in the middle shows the ASP.NET web site templates that are
installed by default. Each of them is discussed in the next section. When you have created your own
templates (which you learn how to do in Chapter 6), or have templates installed from other parties,
they show up in this area as well.

The ASP.NET Empty Web Site template is used throughout this book for the Planet Wrox web
site. The others are described briefly in the following sections so you know how they can be used.
The exact list of installed templates on your system depends on the version of Visual Studio
and the installed components. Don’t worry if you have other templates as long as you have the
ASP.NET Web Site and the ASP.NET Empty Web Site items.

502211c02.indd 35 2/19/10 10:00:59 AM

36  ❘  Chapter 2   Building an ASP.NET Web Site

Figure 2-1

ASP.NET Web Site

This template enables you to set up a basic ASP.NET web site. It contains a number of files and fold-
ers to jump start the development of your site. The different file types are all discussed later in this
chapter. The special App_Data folder and the functionality of the pages in the Account folder are
discussed later in this book.

This template is a good starting point once you start developing real-world ASP.NET web sites.

ASP.NET Empty Web Site

The ASP.NET Empty Web Site template gives you nothing but a single configuration file (web
.config). The ASP.NET Empty Web Site template is useful if you have a bunch of existing files you
want to use to create a new web site or when you want to create your site from scratch. You use this
template as the basis for the sample web site you build in the book and add files and folders as you
progress through the book.

WCF Service

This template enables you to create a web site containing one or more WCF Services. A WCF
Service is somewhat similar to a web service in that it enables you to create methods that are
callable over a network. You see how to create and consume a web service from a browser in
Chapter 10. However, WCF Services, or Windows Communication Foundation Services go
much further than simple web services and offer you a lot more flexibility. WCF Services are
outside the scope of this book, but if you want to learn more about them, pick up the book
Professional WCF Programming: .NET Development with the Windows Communication
Foundation by Scott Klein (ISBN: 978-0-470-08984-2).

502211c02.indd 36 2/19/10 10:00:59 AM

Creating Web Sites with VWD 2010  ❘  37

Dynamic Data Web Sites

The two templates for Dynamic Data enable you to create a flexible yet powerful web site to manage
data in a database without a lot of manual code. These templates are not discussed in this book, but
you learn more about the Microsoft ADO.NET Entity Framework that one of the templates uses in
Chapter 14.

Although it seems you have to make a clear choice up front for the right web site template, this isn’t
really the case. Because an ASP.NET web site in VWD is essentially just a reference to a folder, it’s
easy to add types from one template to another. For example, it’s perfectly acceptable (and very
common) to add a web service file to a standard ASP.NET Web Site or an ASP.NET Empty Web
Site, as you see in Chapter 10.

Creating and Opening a New Web Site
There are a number of different ways to create new and open existing web sites. The choices you
have here are largely influenced by the way you access the web site (either from the local or a remote
machine), and whether you want to use the built-in web server that ships with VWD or use the web
server that comes with Windows.

All the examples in this book assume that you open sites from your local hard drive and that you
use the built-in web server, because it’s very convenient to develop sites with it. However, Chapter 19
shows you how to use and configure Internet Information Services, or IIS for short, the advanced
web server that comes with most editions of Windows. IIS is mostly used for production hosting of
your web sites, because it’s capable of serving web pages in high-traffic scenarios.

Creating New Web Sites

The next Try It Out section guides you through creating the Planet Wrox web site that is the project
you work on in this book. All exercises in the remainder of the book assume you have this web site
open in VWD, except where stated otherwise. The exercise instructs you to store your web site in a
folder called C:\BegASPNET\Site. Take note of this folder name, because it’s used throughout this
book. If you decide to use a different folder, be sure to use your own location whenever you see this
folder name in the book. Also make sure you don’t use special characters like the hash (#) or insert a
space in the folder name because you’ll run into troubles when developing your site.

Creating a New ASP.NET 4 Web SiteTry It Out	

	1.	 Start by creating a folder called BegASPNET in the root of your C drive using Windows Explorer
or My Computer. Inside the folder, create another folder called Site. You should end up with a
folder called C:\BegASPNET\Site. If you followed the instructions from the “Introduction” sec-
tion of this book and unpacked the source for this book, you already have the BegASPNET folder,
which in turn contains the Source and Resources folders. You still need to create the Site folder
though. If you want to follow along with VB.NET and C# at the same time, you can create two
folders: BegASPNETVB and BegASPNETCS and use two instances of VWD.

502211c02.indd 37 2/19/10 10:00:59 AM

38  ❘  Chapter 2   Building an ASP.NET Web Site

	2.	 Start Visual Web Developer 2010 and choose File ➪ New Web Site or File ➪ New ➪ Web Site,
depending on your version of VWD.

COMMON MISTAKES  ​Don’t mistakenly create a new Web Application Project

using File ➪ New Project as this project template is not compatible with the
exercises in this book.

	3.	 In the Installed Templates area on the left, choose between Visual Basic and Visual C#. All the examples
in this book are shown in both programming languages, so you can choose the one you like best.

	4.	 In the area in the middle select ASP.NET Empty Web Site.

	5.	 In the Web Location drop-down list, make sure that File System is selected. The other two options
(HTTP and FTP) enable you to open a remote site running IIS with the so-called Microsoft
FrontPage Server Extensions and open a site from an FTP server, respectively.

	6.	 Click the Browse button next to the location text box, browse to the folder you created in the first
step of this exercise, and click Open.

Your final screen should look like the one in Figure 2-2, except that you may have chosen Visual
C# instead of Visual Basic.

Figure 2-2

	7.	 Click OK and VWD creates the new site for you.

502211c02.indd 38 2/19/10 10:01:00 AM

Creating Web Sites with VWD 2010  ❘  39

How It Works

As soon as you click OK, VWD creates a new, empty web site for you. This new
web site contains nothing but a configuration file (called web.config.) In the
Solution Explorer, your web site now looks like Figure 2-3.

Because a web site based on the Empty Web Site template is just a simple
Windows folder that VWD looks at, the actual folder on disk contains the same
file. No additional files are used to create the site, as shown in Figure 2-4, which
shows a Windows Explorer displaying the files in the folder C:\BegASPNET\Site.

Figure 2-4

If you don’t see the .config extension of the web file, don’t worry. You see how to view file exten-
sions in a later exercise.

As you progress through this book, you’ll add new files and folders to the site. These additional
files and folders show up in the Solution Explorer and will appear in the Windows folder at
C:\BegASPNET\Site as well.

Opening web sites based on the Web Site Project template is very similar to creating new ones. In the
next section, you get a quick overview of opening existing sites in VWD.

Opening Existing Web Sites

Just as with creating new sites, opening an existing site in VWD gives you a few options with regard
to the source location of the web site. You can choose to open a site from the local file system, from
a local IIS web server, from a remote server using FTP, or from a remote site using the Microsoft
FrontPage Server Extensions. Figure 2-5 shows the Open Web Site dialog box in VWD.

All the examples in the book assume that you always open the Planet Wrox web site from the local
file system, using the File System button, which is the first button in the left column of the window.
Then in the right pane, locate your web site (C:\BegASPNET\Site in this example) and click the
Open button.

Figure 2-3

502211c02.indd 39 2/19/10 10:01:01 AM

40  ❘  Chapter 2   Building an ASP.NET Web Site

The site you created in the previous Try It Out is a very bare-bones site. To make it more useful,
you’ll need to add files to it. The many file types you have at your disposal and the way they are
added to the site are the next topics of discussion.

Figure 2-5

Working with Files in Your Web Site

An ASP.NET 4 web site consists of at least a single Web Form (a file with an .aspx extension), but
usually it consists of a larger number of files. Many different file types are available in VWD, each
offering a distinct functionality. In the next section, you see the most important file types that are
used in VWD. In addition, you learn a few different ways to add these files to your site.

The Many File Types of an ASP.NET 4 Web Site
To give you an idea of how many different files you can use in ASP.NET, Figure 2-6 shows the dia-
log box that enables you to add new files to the site (accessible by right-clicking your web site in the
Solution Explorer and choosing Add New Item or by choosing Website ➪ Add New Item from the
main menu).

The files you can add to a site can be grouped in a few different categories. The most important
files — the ones you’ll use throughout the examples in this book — are discussed next.

502211c02.indd 40 2/19/10 10:01:01 AM

Working with Files in Your Web Site  ❘  41

Figure 2-6

Web Files

Web Files are specific to web applications and can either be requested by a browser directly, or are
used to build up part of the web page that is requested in the browser. The following table lists the
various web files and their extensions, and describes how each file is used.

File Type Extension Description

Web Form .aspx The workhorses of any ASP.NET web site, Web Forms rep-

resent the pages that your users view in their browser.

Master Page .master Enable you to define the global structure and the look

and feel of a web site. You see how they can be used in

Chapter 6.

Web User Control .ascx Contains page fragments that can be reused in multiple

pages in your site. Chapter 8 is entirely devoted to user

controls.

HTML Page .htm / .html Can be used to display static HTML in your web site.

Style Sheet .css Contains CSS code that enables you to style and format your

web site. You learn more about CSS in the next chapter.

continues

502211c02.indd 41 2/19/10 10:01:01 AM

42  ❘  Chapter 2   Building an ASP.NET Web Site

File Type Extension Description

Web Configuration

File

.config Contains global configuration information that is used

throughout the site. You see how to use the web.config

later in this book, starting with Chapter 4.

Site Map .sitemap Contains a hierarchical representation of files in your site in

an XML format. The Site Map is used for navigation and is

discussed in Chapter 7.

JScript File .js Contains JavaScript (which Microsoft calls JScript) that can

be executed in the client’s browser.

Skin File .skin Contains design information for controls in your web site.

Skins are discussed in Chapter 6.

The next Try It Out exercise shows you how to add a new master page to the site, which is used
throughout the book.

Adding Files to Your SiteTry It Out	

	1.	 If it is not still open, open the Planet Wrox web site you created earlier by choosing File ➪ Open
Web Site. Make sure that you open the site from the File System, locate the folder that contains your
site (C:\BegASPNET\Site), and click the Open button.

	2.	 In the Solution Explorer, right-click your site and choose New Folder as shown in Figure 2-7.

COMMON MISTAKES  ​Make sure you click the actual site and not the
web.config file or you won’t get the correct menu item.

	3.	 Type MasterPages as the name of the folder and press Enter.
Then right-click this new folder and choose Add New Item.
Alternatively, you can choose File ➪ New File or Website ➪
Add New Item from Visual Web Developer’s main menu.

	4.	 In the dialog box that appears, choose Master Page and type
Frontend as the name. VWD automatically adds the .master
extension for you when you add the file. Verify that under
Installed Templates you have selected the language you want
to use for this site and that Place Code in Separate File in the
bottom right corner is checked. Finally, click the Add button.
The master page is added to the site, and is opened automati-
cally for you in the Document Window.

Figure 2-7

(continued)

502211c02.indd 42 2/19/10 10:01:01 AM

Working with Files in Your Web Site  ❘  43

How It Works

This simple exercise showed you how to add a new item to your web site. Although at this stage the
site isn’t very exciting yet, the file you added forms the basis for the rest of the book. The next sections
briefly look at the remainder of the file types.

Code Files

Adding code files to the site is identical to how you add web files. The following table describes the
various types of code files.

File Type Extension Description

Web Service .asmx Can be called by other systems, including browsers, and

can contain code that can be executed on your server.

Web services are covered in Chapter 10.

Class .cs / .vb Can contain code to program your web site. Note that

Code Behind files (discussed later) also have this exten-

sion because they are essentially class files. C# uses files

with the .cs extension and Visual Basic uses .vb files.

Global Application

Class

.asax Can contain code that is fired in response to interesting

things that happen in your site, such as the start of the

application or when an error occurs somewhere in the site.

You see how to use this file in Chapter 18.

Besides the Code Files category, there is one more group of files worth looking into: Data Files.

Data Files

Data Files are used to store data that can be used in your site and in other applications. The group
consists of the XML files, database files, and files related to working with data.

File Type Extension Description

XML File .xml Used to store data in XML format. In addition to plain XML

files, ASP.NET supports a few more XML-based files, two

of which you briefly saw before: web.config and the

Site Map.

SQL Server

Database

.mdf Files with an .mdf extension are databases that are used

by Microsoft SQL Server. Databases are discussed in

Chapter 12 and later.

continues

502211c02.indd 43 2/19/10 10:01:01 AM

44  ❘  Chapter 2   Building an ASP.NET Web Site

File Type Extension Description

ADO.NET Entity

Data Model

.dbml Used to access databases declaratively, without the need

to write code. Technically, this is not a data file, because

it does not contain the actual data. However, because it is

tied to the database so closely, it makes sense to group

it under this header. You learn more about the ADO.NET

Entity Framework in Chapter 14.

As you saw in the previous Try It Out, adding a new file of any of these types is really easy. It’s just
as easy to add existing files to the site.

Adding Existing Files
Not every file you create in your web site has to be brand new. In some cases it makes sense to
reuse files from other projects. For example, you may want to reuse a logo or a CSS file across mul-
tiple sites. You can easily add existing files by right-clicking the web site in the Solution Explorer
and choosing Add Existing Item. In the dialog box that appears, you can browse for the files, and
optionally select multiple files by holding down the Ctrl key. Finally, when you click Add, the files
are added to the web site.

However, there is an even easier way to add files to the site, which can be a great time saver when
you need to add multiple existing files and folders to your site: drag and drop. The following Try It
Out shows you how this works.

Adding Existing Files to Your SiteTry It Out	

	1.	 In Windows, minimize all open applications, right-click your desktop, and choose New ➪ Text
Document. If you don’t see this option, simply create a new text document using Notepad and save
it on your desktop.

	2.	 Rename the text file Styles.css. Make sure the .txt extension is replaced by .css. If you don’t
see the initial .txt extension and the icon of the file doesn’t change from a text file to a CSS file (by
default this is the same icon as a text file but with a gear symbol on top of it, but you may have
software installed that changed the icon for CSS files), Windows is configured to hide extensions
for known file types. If that’s the case, open up Windows Explorer and choose Tools ➪ Folder
Options in Windows XP or click the Organize button in Windows Vista and Windows 7 and
then choose Folder and Search Options. In both cases, switch to the View tab and deselect the
option labeled Hide Extensions for Known File Types. You now may need to rename the file from
Styles.css.txt to Styles.css.

When you rename the file from .txt to .css, Windows may give you a warning that the file
becomes unusable if you proceed. You can safely answer Yes to this question to continue.

	3.	 Rearrange VWD so you can see part of the desktop with the CSS file as well. You can use the
Restore Down button next to the Close button on the Windows title bar of VWD to get it out of
full screen mode.

(continued)

502211c02.indd 44 2/19/10 10:01:02 AM

Working with Files in Your Web Site  ❘  45

	4.	 Click the CSS file on the desktop and while holding down the mouse button, drag the file into the
Solution Explorer. Make sure you drag the file into the Solution Explorer and not in other parts
of VWD, or the file won’t be added. For example, when you drag it into the Document Window,
VWD simply opens the file for you, but doesn’t add it to the site.

	5.	 When you release the mouse while over the web site node or an existing file in the Solution
Explorer (shown in Figure 2-8), the CSS file will be added to your site.

Figure 2-8

NOTE  ​If you are using Windows Vista or Windows 7 and run VWD as an admin-
istrator, this might not work because Windows doesn’t allow the Windows
Explorer and VWD to communicate. In that case, add existing files using the Add
Existing Item menu discussed earlier or use copy and paste.

How It Works

What’s important to take away from this Try It Out is that VWD creates a copy of the file when it adds
it to the site. So, the original Styles.css file on the desktop is not affected when you make changes to
the copy in VWD. This way, it’s easy to drag and drop files out of existing web sites into your new one,
without affecting the originals. The same applies to files you add using the Add Existing Item dialog
box in VWD.

502211c02.indd 45 2/19/10 10:01:02 AM

46  ❘  Chapter 2   Building an ASP.NET Web Site

If you have added files to your web site’s folder outside of VWD, they may not show up right away.
You can get a fresh copy of the file list by clicking the Refresh button on the Solution Explorer’s
toolbar.

Organizing Your Site
Because of the many files that make up your site, it’s often a good idea to group them by function in
separate folders. For example, all Style Sheet files could go in a folder called Styles, .js files could
go in Scripts, user controls could go in a Controls folder, and master pages could be stored in a
folder called MasterPages. This is a matter of personal preference, but structured and well-organized
sites are easier to manage and understand. The next Try It Out explains how you can move files
around into new folders to organize your site.

Organizing Your Web SiteTry It Out	

	1.	 Right-click the Planet Wrox site in the Solution Explorer and choose New Folder.

	2.	 Type Styles as the new folder name and press Enter.

	3.	 Create another folder, called Controls. These two folders will be used in the remainder of this book.

	4.	 Drag the file Styles.css that you added earlier and drop it into the Styles folder.

	5.	 If everything went well, your Solution Explorer should look like
Figure 2-9.

If your Solution Explorer looks different from the one shown in
Figure 2-9, follow this Try It Out again until your site looks exactly the
same, with the same folder structure and files in it. Future Try It Out
exercises in this book assume you have the correct folders and files in
your web site.

How It Works

Structure and organization are important to keep your sites manageable. Although you may be tempted
to add all of your files to the root of your project, it’s better not to do this. With a very small site, you
may not notice any difference, but as soon as your site begins to grow, you’ll find it becomes a lot
harder to manage when it lacks structure. Placing related files in separate folders is the first step to an
organized site. Storing files of the same type in a single folder is only one way to optimize your site. In
later chapters, you see that separate folders are also used to group files with similar functionality. For
example, all files that are accessible only by an administrator of the site are grouped in a folder called
Management.

The drag-and-drop features of VWD make it easy to reorganize your site. Simply pick up one file or
multiple files and drop them in their new location. If you continue to apply these kinds of organiza-
tion practices while expanding your site, you’ll find that tomorrow or six months from now, you
won’t have any problems locating the right file when you need it.

Figure 2-9

502211c02.indd 46 2/19/10 10:01:02 AM

Working with Web Forms  ❘  47

Special File Types
Some of the files listed in the previous section
require that you put them in a special folder as
opposed to the optional organizational folder
structure proposed in the previous section. The
IDE will warn you when you try to add a file
outside of its special folder, and will offer to
create the folder and put the file there. For
example, when you try to add a class file (with
a .vb or .cs extension), you get the warning
shown in Figure 2-10.

When you get this dialog box, always click Yes. Otherwise your file won’t function correctly. You
get similar dialog boxes for other file types, including skin and database files.

Now that you have a good understanding of the different types of files that make up your web site,
it’s time to look at one of them in much more detail: .aspx files, also known as Web Forms.

Working with Web Forms

Web Forms, represented by .aspx files, are the core of any ASP.NET 4 web application. They are
the actual pages that users see in their browser when they visit your site.

As you saw in the previous chapter, Web Forms can contain a mix of HTML, ASP.NET Server
Controls, client-side JavaScript, CSS, and programming logic. To make it easier to see how all this
code ends up in the browser, VWD offers a number of different views on your pages.

The Different Views on Web Forms
VWD enables you to look at your Web Form from a few different angles. When you have a file with
markup — like a Web Form or master page — open in the Document Window, you see three buttons
at the bottom-left corner of the window. With these buttons, visible in Figure 2-11, you can switch
between the different views.

Figure 2-11

Figure 2-10

502211c02.indd 47 2/19/10 10:01:02 AM

48  ❘  Chapter 2   Building an ASP.NET Web Site

Source View is the default view when you open a page. It shows you the raw HTML and other
markup for the page, and is very useful if you want to tweak the contents of a page and you have a
good idea of what you want to change where. As I explained in the previous chapter, I use the term
Markup View rather than Source View to refer to the markup of ASPX and HTML pages.

The Design button enables you to switch the Document Window into Design View, which gives
you an idea of how the page will end up. When in Design View, you can use the Visual Aids and
Formatting Marks submenus from the main View menu to control visual markers like line breaks,
borders, and spaces. Both submenus offer a menu item called Show that enables you to turn all the
visual aids on or off at once. Turning both off is useful if you want to have an idea of how the page
ends up in the browser. You should, however, use Design View only to get an idea of how the page
will end up. Although VWD has a great rendering engine that renders the page in Design View
pretty well, you should always check your pages in different browsers as well because what you see
in VWD is the markup for the page before it gets processed. Server Controls on the page may emit
HTML that changes the looks of the page in the browser. Therefore, it’s recommended to view the
page in the browser as often as possible so you can check if it’s going to look the way you want it.
It’s also recommended to test your site in as many different browsers as you can get your hands on
because there may be small differences between them in the way they render a web page. The Planet
Wrox web site has been tested against Microsoft Internet Explorer, Firefox, Google Chrome, Safari,
and Opera. You’ll see screenshots of these browsers at various places in the book.

The Split button enables you to look at Design View and Markup View at the same time, as you can
see in Figure 2-12.

Figure 2-12

Split View is great if you want to see the code that VWD generates when you add controls to the
Design View of your page. The other way around is very useful too: when you make changes to the
markup of the page in Markup View, you can see how it ends up in Design View. Sometimes Design
View becomes out-of-sync with Markup View. If that’s the case, a message appears at the top of
Design View. Simply clicking the message or saving the entire page is enough to update the Design
window.

If you want your pages to open in a different view than Markup View, choose Tools ➪ Options.
Then expand HTML Designer, and then in the General category, set your preferred view.

502211c02.indd 48 2/19/10 10:01:02 AM

Working with Web Forms  ❘  49

In addition to the HTML and other markup you see in the Markup View window, a Web Form can
also contain code in either C# or Visual Basic .NET. Where this code is placed depends on the type
of Web Form you create. The next section explains the two options you have in more detail.

Choosing between Code Behind and Pages with Inline Code
Web Forms come in two flavors: either as an .aspx file with a Code Behind file (a file named after
the Web Form with an additional .vb or .cs extension) or as .aspx files that have their code
embedded, often referred to as Web Forms with inline code. Although you won’t see much code
until Chapter 5, it’s important to understand the difference between these types of Web Forms. At
first, Web Forms with inline code seem a little easier to understand. Because the code needed to
program your web site is part of the very same Web Form, you can clearly see how the code relates
to the file. However, as your page gets larger and you add more functionality to it, it’s often easier
if you have the code in a separate file. That way, it’s completely separate from the markup, enabling
you to focus on the task at hand.

In the next exercise, you add two files that demonstrate the difference between Code Behind and
inline code.

Adding Web Forms with Code to Your SiteTry It Out	

The files you add in this exercise aren’t needed for the final application. To avoid cluttering up the proj-
ect, you should put them in a separate Demos folder.

	1.	 In the Solution Explorer, right-click your web site and choose New Folder. Name the folder Demos
and press Enter.

	2.	 Right-click the Demos folder and choose Add New Item. In the dialog box that appears, choose
your preferred programming language on the left, click the Web Form template and name the
file CodeBehind.aspx. Make sure that the check box for Place Code in Separate File is selected.
Finally, click the Add button. The page should open in Markup View so you can see the HTML for
the page.

	3.	 At the bottom of the Document Window, click the Design button to switch the page from Markup
View into Design View. The page you see has a white background with a small, dashed rectangle at
the top of it. The dashed rectangle represents the <div> element you saw in Markup View.

	4.	 From the Toolbox, drag a Label control from the Standard category and drop it in the dashed area
of the page. Remember, you can open the Toolbox with the shortcut Ctrl+Alt+X if it isn’t open yet.
In Design View, your screen should now look like Figure 2-13.

Figure 2-13

502211c02.indd 49 2/19/10 10:01:02 AM

50  ❘  Chapter 2   Building an ASP.NET Web Site

	5.	 Double-click somewhere in the white area below the dashed line of the <div> element. VWD
switches from Design View into the Code Behind of the file and adds code that fires when the page
loads in the browser:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load

End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{

}

Although this odd syntax may look a little scary at this point, don’t worry about it too much
now. In most cases, VWD adds it for you automatically, as you just saw. In later chapters, you see
exactly how this code works, but for now it’s important to realize that the code you’re going to
place between the lines that start with Protected Sub and End Sub in Visual Basic and between
the curly braces in C# will be run when the page is requested in the browser. If you are using
Visual Basic, you won’t have the underscore that is visible in this code snippet. I added that here
to split the code over two lines. You see why in the How It Works section after this exercise.

All code examples you’ll see from now on include a Visual Basic (VB.NET) and a C# version so
always pick the one that matches your programming language.

	6.	 Place your cursor in the open line in the code that VWD created and add the bolded line of code
that assigns today’s date and time to the label, which will eventually show up in the browser:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Label1.Text = “Hello World; the time is now “ & DateTime.Now.ToString()
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Label1.Text = “Hello World; the time is now “ + DateTime.Now.ToString();
}

Note that as soon as you type the L for Label1, you get a list with options to choose from. This
is part of VWD’s IntelliSense, a great tool that helps you rapidly write code. Instead of typing the
whole word Label1, you simply type the letter L or the letters La and then you pick the appropriate
item from the list, visible in Figure 2-14.

502211c02.indd 50 2/19/10 10:01:02 AM

Working with Web Forms  ❘  51

Figure 2-14

To complete the selected word, you can press Enter or Tab or even the period. In the latter case, you
immediately get another list that enables you to pick the word Text simply by typing the first few
letters, completing the word by pressing the Tab or Enter key. This feature is a real productivity tool
because you can write code with a minimum of keystrokes. IntelliSense is available in many other
file types as well, including ASPX, HTML, CSS, JavaScript, and XML. In many cases, the list with
options pops up automatically if you begin typing. If it doesn’t, press Ctrl+Spacebar to invoke it. If
the list covers some of your code in the code window, press and hold the Ctrl key to make the win-
dow transparent.

	7.	 Right-click the page in the Solution Explorer and choose View in Browser. Click Yes if you get a
dialog box that asks if you want to save the changes, and then the page will appear in the browser,
similar to the browser window you see in Figure 2-15.

Figure 2-15

If you don’t see the message with the date and time appear or you get an error on the page in
the browser, make sure you saved the changes to all open pages. To save all pages at once, press
Ctrl+Shift+S or click the Save All button on the toolbar (the one with the multiple floppy disk
symbols). Additionally, make sure you typed the code for the right language. When you created
this new page, you chose a programming language that applies to the entire page. You can’t mix
languages on a single page, so if you started with a Visual C# page, make sure you entered the C#
code snippet from the Try It Out.

	8.	 Setting up a page with inline code is very similar. Start by adding a new Web Form to the Demos
folder. Call it Inline.aspx and make sure you uncheck the Place Code in Separate File option.

502211c02.indd 51 2/19/10 10:01:03 AM

52  ❘  Chapter 2   Building an ASP.NET Web Site

	9.	 Just as you did in steps 3, 4, and 5, switch the page into Design View, drag a label inside the <div>
element, and double-click the page somewhere outside the <div> that now contains the label.
Instead of opening a Code Behind file, VWD now switches your page into Markup View, and adds
the Page_Load code directly in the page.

	10.	 On the empty line in the code block that VWD inserted, type the bolded line you see in step 6 of
this exercise. Make sure you use the correct programming language. You should end up with the
following code at the top of your .aspx file:

VB.NET

<script runat=”server”>
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Label1.Text = “Hello World; the time is now “ & DateTime.Now.ToString()
 End Sub
</script>

C#

<script runat=”server”>
 protected void Page_Load(object sender, EventArgs e)
 {
 Label1.Text = “Hello World; the time is now “ + DateTime.Now.ToString();
 }
</script>

	11.	 Right-click the page in the Solution Explorer and choose View in Browser. Alternatively, press
Ctrl+F5 to open the page in your browser. You should see a page similar to the one you got in step 7.

How It Works

At runtime, pages with inline code behave the same as pages that use Code Behind. In both cases, the
ASP.NET runtime sees the Page_Load code and executes any code it finds in it. In the Try It Out, this
meant setting the Text of Label1 to a welcome message and today’s date and time.

Note that in this example, the C# code looks very similar to the VB.NET code. The code that sets the
Label’s text is almost identical in the two languages. One difference is that VB.NET uses an amper-
sand (&) to glue two pieces of text together, but C# uses the plus (+) character. You can also use plus
(+) character in VB.NET to concatenate strings together, but with a few caveats as you’ll learn in
Chapter 5. The other difference is that in C# all code lines must be terminated with a semicolon (;) to
indicate the end of a unit of code, but Visual Basic uses the line break. If you want to split a long line
of code over multiple lines in Visual Basic, you need to use the underscore (_) character. In earlier ver-
sions, VB.NET required the underscore in a lot of different places. However, in Visual Basic 10, the
version that ships with Visual Web Developer 2010, the designers of the language have greatly reduced
the number of places where you need the underscore.

One place where you do need the underscore if you want to split code over multiple lines is right before
the Handles keyword, as you saw in this code snippet from step 6 of the exercise:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Label1.Text = “Hello World; the time is now “ & DateTime.Now.ToString()
End Sub

502211c02.indd 52 2/19/10 10:01:03 AM

Working with Web Forms  ❘  53

Note that in your page, you won’t see the underscore at the end of the first line of the Visual Basic
example. It was added here because the book’s pages are not wide enough to show the entire code state-
ment on a single line. You’ll see more of these underscores in other Visual Basic examples in the remain-
der of this book. If you decide to manually type the underscore to make your own code more readable,
don’t forget to type an additional space before the actual underscore or your code won’t work.

In C#, you don’t need this character because the language itself allows you to break long lines simply by
pressing Enter. This is because C# uses a semicolon to denote the end of a line instead of a line break in
the source.

You opened the page in your browser using the right-click View in Browser option or by pressing
Ctrl+F5. With the View in Browser option, you always open the page you right-click. With the Ctrl+F5
shortcut, you open the page that is currently the active document in the Document Window, the page
that is currently selected in the Solution Explorer, or the file that has been set as the start page for the
web site. Additionally, all open files are saved automatically, and the site is checked for errors before the
requested page is opened in the browser.

You can assign a page as the start page by right-clicking it in the Solution Explorer and choosing Set As
Start Page. If you want to control this behavior at a later stage, right-click the web site in the Solution
Explorer and choose Property Pages. In the Start Options category, you can indicate that you want the
currently active page to open, or you can assign a specific page, as show in Figure 2-16.

Figure 2-16

In the previous exercise, you learned how to add a page that contains a simple Label control.
Additionally, you saw how to write some code that updates the label with today’s date and time.
You can ignore this code for now; it only served to demonstrate the differences between Code
Behind and inline code. In Chapter 5, you learn more about programming in Visual Basic and C#.

502211c02.indd 53 2/19/10 10:01:03 AM

54  ❘  Chapter 2   Building an ASP.NET Web Site

To make compelling pages, you obviously need a lot more content than just a simple Label control
that shows today’s date and time. The next section shows you how to add content and HTML to
your pages and how to style and format it.

Adding Markup to Your Page
You have a number of ways to add HTML and other markup to your pages. First of all, you can
simply type it in the Markup View window. However, this isn’t always the best option, because it
forces you to type a lot of code by hand. To make it easier to insert new HTML in the page and to
apply formatting to it, the Design View window offers a number of helpful tools. These tools include
the Formatting toolbar and the menu items Format and Table. For these tools to be active, you need
to have the document in Design View. If you’re working in Split View mode, you have to make sure
that the Design View part has the focus, or you’ll find that most of the tools are not available.

Inserting and Formatting Text

You can type text in both Design View and in Markup View. Simply place the cursor at the desired
location and start typing. When you switch to Design View, the Formatting toolbar becomes avail-
able, with the options shown in Figure 2-17.

Bullets Reuse
Existing Style

Target
Rule

Show
Overlay

Bold Align
Text Generate

Local
Resource

Italic
Font
Name

Underline

Block
Format

Font
Size

Foreground Color Background Color

Numbered
Lists Hyperlink

Figure 2-17

The drop-down list labeled Block Format enables you to insert HTML elements like <p> for para-
graphs, <h1> through <h6> for headings, and , , and for lists. You can choose an item
from the drop-down list directly to have it inserted in your page, or you can select some text first
and choose the appropriate block element from the list to wrap the selected text inside the tags.

The drop-down list labeled Font Name enables you to change the font family, and the Font Size
drop-down list enables you to change the font size.

Many of the buttons on the toolbar function exactly the same as in other editing environments. For
example, the B button formats your text with a bold font. Similarly, the I and the U buttons italicize
and underline your font, respectively.

In the next Try It Out, you see how to work with these tools to create the home page of the Planet
Wrox web site.

502211c02.indd 54 2/19/10 10:01:03 AM

Working with Web Forms  ❘  55

Adding Formatted TextTry It Out	

In this Try It Out, you create a Web Form called Default.aspx and add some basic content to it.

	1.	 Add a new Web Form through the Add New Item to the root of the site dialog and call it
Default.aspx. Make sure you check off the Place Code in Separate File option and click Add.
Switch to Design View using the Design button at the bottom of the Document Window.

	2.	 Click inside the dashed rectangle until you see the glyph showing that the <div> element is cur-
rently active. At the same time, the tag navigator at the bottom of the code window should high-
light the last block with the text <div> on it, as shown in Figure 2-18.

Figure 2-18

	3.	 Type Hi there visitor and welcome to Planet Wrox and highlight the text using the mouse.
From the Block Format drop-down list (visible in Figure 2-17) choose Heading 1 <h1>. Note that a
small glyph with the text h1 appears right above the text, to indicate that VWD created a heading
for you automatically. Figure 2-19 shows the Design View with the <h1> element.

Figure 2-19

	4.	 Position your cursor at the end of the heading after the word Wrox and press Enter. A new paragraph
(indicated by a small glyph with the letter p on it) is inserted for you so you can directly start typing.

	5.	 Type the text shown in Figure 2-20 (or make up your own) to welcome the visitor to Planet Wrox.
Notice how the text www.PlanetWrox.com turns blue as soon as you type the comma to indicate
VWD has recognized it as a web address and has turned it into a link. You can press Enter to
start a new paragraph. Select the text “paying a visit,” click the Foreground Color button on the
Formatting toolbar, and select a different color in the dialog box that appears. Then select some
other text, such as “reviews and concert pictures,” and click the Bold button. When you’re done,
your Design View should show something similar to Figure 2-20.

502211c02.indd 55 2/19/10 10:01:03 AM

56  ❘  Chapter 2   Building an ASP.NET Web Site

Figure 2-20

The code for the home page should now look more or less similar to the following (the code has
been reformatted a bit to fit the space in the book):

<div>
 <h1>Hi there visitor and welcome to Planet Wrox</h1>
 <p>
 We're glad you're paying a visit to
 www.PlanetWrox.com,
 the coolest music community site on the Internet.
 </p>
 <p>
 Feel free to have a look around; there are lots of interesting reviews
 and concert pictures to be found here.
 </p>
</div>

	6.	 Open the page in your browser by pressing Ctrl+F5, or by right-clicking the page in the Solution
Explorer and then choosing View in Browser.

How It Works

When you use the various Formatting toolbar buttons, like Foreground Color, VWD inserts the appro-
priate HTML and CSS code for you. For example, when you click the B button, VWD inserts a pair
of tags around the selected text. When you click the I button, it adds a pair of tags to
italicize the text. In this exercise, VWD also inserted a class attribute (shown in the previous code
example) that points to a class called style1 when you changed the text color. The code for this style
has been added to the top of your file and looks similar to this:

<style type=”text/css”>
 .style1
 {
 color: #FF0000;
 }
</style>

502211c02.indd 56 2/19/10 10:01:03 AM

Working with Web Forms  ❘  57

Your code may look slightly different if you chose a different color. The code you see here is explained
in the next chapter. For now, just remember that this code sets the color of the text it is applied to as red.

Note that VWD replaced the apostrophe character (’) in “we’re” in the welcome message with its
HTML-compliant variant: '. Using this kind of code enables you to insert characters in your page
that a browser may have trouble displaying, or that have special meaning within HTML itself, like the
ampersand character (&), which is written as &. When you type text in Design View, VWD auto-
matically inserts the coded equivalents of relevant characters for you; however, if you type in Markup
View directly, you’ll have to do this yourself.

Don’t worry if your code looks different from what is shown here. Many settings in VWD influence the
code that is generated for you.

So far, the exercises have been concerned with adding and styling text in your page. However, VWD
enables you to insert other HTML elements as well, like tables and bullets. The next section shows
you how this works.

Adding Tables and Other Markup

HTML tables are great if you need to present structured or repeating data, like a list of products in
a shopping cart, photos in a photo album, or input controls in a form. There is a lot of debate on the
Internet about whether you should use tables to lay out your page as well. For example, if your page
contains a header with a logo, a main content area, and a footer at the bottom, you could use a table
with three rows to accomplish this. In general, it’s considered bad practice to use tables for this pur-
pose because they add a lot of extraneous markup to the page and are often difficult to maintain.
Besides, quite often the same result can be accomplished using CSS, which you learn about in the
next chapter. Despite the disadvantages that tables may bring, they are still an invaluable asset in
your HTML toolbox when it comes to displaying tabular or otherwise structured information.

Using the Format and Table MenusTry It Out	

In this exercise, you learn how to add tables to your page using the Table menu and how to add rows
and columns. Additionally, you learn how to add other structured elements such as bulleted lists.

	1.	 In the Demos folder, create a new Web Form called TableDemo.aspx. Make sure it uses Code
Behind by checking the Place Code in Separate File option.

	2.	 Switch the page to Design View, click inside the dashed rectangle that represents the standard
<div> tag in the page, and choose Table ➪ Insert Table. The Insert Table dialog box appears, as
shown in Figure 2-21.

502211c02.indd 57 2/19/10 10:01:04 AM

58  ❘  Chapter 2   Building an ASP.NET Web Site

Figure 2-21

	3.	 Set Rows to 3 and leave Columns set to 2. Leave all other settings set to their defaults and click
OK. The table gets inserted in the page.

	4.	 If you see only a single table cell, and not the entire table with three rows and two columns, you
need to enable Visual Aid for tables. To do this, choose View ➪ Visual Aids ➪ Visible Borders
from the main menu to turn the borders on. Your Design View should now look like Figure 2-22.

Figure 2-22

	5.	 Drag the right border of the very first cell in the table to the left. You’ll see a visual indicator
showing the width of the cell. Keep dragging it to the left until it has a width of 200 pixels, as in
Figure 2-23.

Figure 2-23

502211c02.indd 58 2/19/10 10:01:04 AM

Working with Web Forms  ❘  59

	6.	 To add more rows or columns to the table, you can right-click an existing cell. From the pop-
up menu that appears, choose Insert to add additional rows or columns at different locations.
Similarly, you can use the Delete, Select, and Modify options to delete rows or columns, merge
cells, and make selections. For this exercise, you don’t need to add additional rows or columns,
although it’s okay if you had already done so.

	7.	 Place your cursor in the first cell of the first row and type the words Bulleted List.

	8.	 Place your cursor in the second cell of the first row and choose Bullets and Numbering from the
Format menu.

	9.	 Switch to the Plain Bullets tab, click the picture with the round, solid bullets (see Figure 2-24), and
click OK.

Figure 2-24

	10.	 Type some text, like your favorite musical genre (Punk, Rock, Techno, and so on), and press Enter.
VWD inserts a new bullet for you automatically, so you can continue to add new items to the list.
Add two more genres, so you end up with three bullets.

	11.	 Repeat steps 7 through 10, but now create a numbered list. First, type Numbered List in the first
cell of the second row, then position your cursor in the second cell of the same row, and choose
Format ➪ Bullets and Numbering. Switch to the Numbers tab (visible in Figure 2-24 behind the
Plain Bullets tab) and click the second picture in the first row, which shows a standard numbered
list, and click OK. Type a few items for the list, pressing Enter after each item.

	12.	 Open the page in the browser by pressing Ctrl+F5. You should see a screen similar to Figure 2-25.

502211c02.indd 59 2/19/10 10:01:04 AM

60  ❘  Chapter 2   Building an ASP.NET Web Site

Figure 2-25

How It Works

When you visually insert page elements like tables or lists through the available menus, VWD inserts
the required markup for you in Markup View. When you insert a table, VWD adds a <table> element
and a number of <tr> and <td> elements to define rows and cells, respectively. It also applies a style
attribute to the table to control the table’s width. It created another style for the <td> elements when
you dragged the column width to be 200 pixels. Similarly, when you insert a list, VWD inserts a
element for numbered or ordered lists and a element for bulleted or unordered lists. Within these
elements, elements are used to define each item in the list.

Besides the HTML tags you have seen thus far, there is another important tag you need to look at:
the <a> tag, which is used to create links between pages.

Connecting Pages
An important part of any web site is the links that connect the pages in your site. Links enable
your visitors to go from one page to another, in the same site or to a completely different site on the
Internet. There are a few ways to create links between pages, including:

The HTML ➤➤ <a> element, explained in this chapter.

Using the ➤➤ <asp:HyperLink> control, discussed in Chapter 7.

Programmatically through code. This is discussed later in the book.➤➤

The following exercise shows you how easy it is to link from one page to another.

502211c02.indd 60 2/19/10 10:01:04 AM

Working with Web Forms  ❘  61

Linking PagesTry It Out	

In this Try It Out, you modify the page TableDemo.aspx you created earlier by adding text that links to
another page. Once you run the page in the browser and click that link, the new page will replace the old one.

	1.	 Open the page TableDemo.aspx from the Demos folder.

	2.	 If necessary, switch to Design View.

	3.	 In the first cell of the third row, type the text Link.

	4.	 In the second cell of the same row, type the text Go to the Homepage of Planet Wrox and
highlight it with your mouse.

	5.	 On the Formatting toolbar, click the Convert to HyperLink button. It’s located near the end of
the toolbar and has a green globe on it. If you don’t see this button because it’s obscured by other
toolbars, either drag the Formatting toolbar to a new location, or choose Format ➪ Convert to
Hyperlink to bring up the same dialog box.

	6.	 In the dialog box that appears, click the Browse button, browse to the Default.aspx page in the
root of your site and click OK. Next, click OK again to dismiss the Hyperlink dialog box. The
Design View of your page should look similar to the one displayed in Figure 2-26.

Figure 2-26

	7.	 Switch to Markup View and notice how the HTML for the link has been inserted:

Go to the Homepage of Planet Wrox

Note that the href attribute points to the page you want to link to.

	8.	 If you want to change the page being linked to from Markup View, click somewhere between
the opening and closing quote of the href attribute and press Ctrl+Spacebar. A dialog box pops
up that enables you to select another page. Alternatively, you can click the Pick URL option and
browse for the new page somewhere in your site.

502211c02.indd 61 2/19/10 10:01:04 AM

62  ❘  Chapter 2   Building an ASP.NET Web Site

	9.	 Right-click the page TableDemo.aspx in the Solution Explorer and choose View in Browser. When
the page has finished loading, click the Go to the Homepage of Planet Wrox link. The request is
sent to the web server and, as a response, you now get the home page of the web site.

How It Works

Links between pages are likely one of the most important elements in a web page, because they enable
you to create a connection between a page in your site and another page, whether that page lives in
your own site or on a completely different server somewhere on the Internet. For simple links that
should appear somewhere in your page, the HTML <a> tag with a href attribute set is the easiest to set
up. When the user clicks such a link, the browser requests the new page from the server and displays it.
The double dots (..) in the href‘s value are a way to refer to the parent directory. The full href attri-
bute means “go up one level in the folder hierarchy and then select the file Default.aspx.” You see a
lot more about links and how they work in Chapter 7.

You’re not limited to linking to pages in your own site. If you want to link to external pages instead,
simply replace the href attribute value with the full address of the page as shown in the following
example:

Go to the Wrox Homepage

It’s important to include the http:// prefix; otherwise, the browser goes out looking for a file or folder
called www.wrox.com on your web site.

You’ll use the things you learned in this chapter about page creation and formatting in the next
chapter, which deals with designing your web pages using CSS.

Besides the visual tools like the Formatting toolbar and the Table menu, Visual Web Developer has
another great way to quickly insert code in your pages: code snippets. Code snippets enable you to
insert large chunks of code with just a few keystrokes. You see code snippets at work in the next
chapter.

Practical Tips on Working with Web Forms

Here are some tips for working with Web Forms:

Always try to favor Web Forms with Code Behind over those with inline code. Although at ➤➤

first you may not notice a big difference in working with them, as your site and pages start
to grow, you’ll find that it’s easier to work with a page where the code is separated from the
markup.

Spend some time familiarizing yourself with the different menu items of the Format and ➤➤

Table menus. Most of them generate HTML elements that are inserted into your page. Take
a look at the HTML elements and attributes that have been generated for you, and try to
change them directly in the code, and through the menus and toolbars. This way, you get a
good feel for the various tags available and how they behave.

502211c02.indd 62 2/19/10 10:01:04 AM

Summary  ❘  63

Experiment with links to connect pages in your site. Notice how VWD creates different links ➤➤

depending on the location of the page you are linking to. Chapter 7 deals with linking and
the various ways to address pages in your site in much more detail.

Summary

This chapter introduced you to some important topics that help you build maintainable and structured
ASP.NET web sites. Understanding the differences between the various project types and templates
enables you to kick-start a web project with just the files you need.

The same applies to the different file types you can add to your site. Because each file type serves a
specific purpose, it’s important to realize what that purpose is and how you can use the file.

One common activity that you’ll perform when building ASP.NET web pages is adding markup
to the page. As you saw in this and the previous chapter, markup comes in a few flavors, including
plain HTML and ASP.NET Server Controls. Knowing how to add this markup to your page using
the numerous menu options and toolbars that VWD offers is critical in building good-looking web
pages.

Now that you have a solid understanding of creating and modifying Web Forms, it’s time to look at
how you can turn those dull looking black-and-white pages with a few controls into attractive web
pages. The next chapter shows you how to work with the many CSS tools found in VWD to create
the desired effect.

Exercises	

1.	 Name three important files in the Web Files category that you can add to your site. Describe the

purpose of each file.

2.	 What do you need to do to make a piece of text both bold and italicized in your web page? What

will the resulting HTML look like?

3.	 Name three different ways to add existing files to an ASP.NET web site in VWD.

4.	 What are the different views that VWD offers you for your ASPX pages? Does VWD offer other

views as well?

Answers to Exercises can be found in Appendix A.

502211c02.indd 63 2/19/10 10:01:04 AM

64  ❘  Chapter 2   Building an ASP.NET Web Site

What You Learned in this Chapter⊲⊲

Code Behind A page model where server side code is stored in a separate code file

Design View Gives you a graphical representation of your page

File Types ASP.NET supports many different file types, including Web Forms (.aspx),

master pages (.master), CSS files (.css), JavaScript (.js), and SQL Server

databases (.mdf)

Inline Code A page model where server side code is stored in the same file as the markup

Markup View Enables you to look at the markup of your page

Project
Templates

Jump-start your web development by setting up a site targeting a specific scenario

Project Types VWD offers two project types: Web Application Projects and Web Site Projects

Split View Enables you to look at Markup View and Design View at the same time

Web Form Presents the User Interface of your web site at the client

YOU CAN DOWNLOAD THE CODE FOUND IN THIS BOOK. VISIT WROX.COM
AND SEARCH FOR ISBN 9780470502211

502211c02.indd 64 2/19/10 10:01:04 AM

Designing Your Web Pages

What you will learn in this chapter:

What CSS is and why you need it➤➤

How CSS looks and how to write it➤➤

The different ways to add CSS code to your ASP.NET pages and to ➤➤

external files

The numerous tools that VWD offers you to quickly write CSS➤➤

The pages you created in the previous two chapters look pretty plain and dull. That’s because
they lack styling information and therefore default to the standard layout that the browser
applies. To spruce up your pages, you need a way to change their presentation in the browser.
The most common way to do this is by using the Cascading Style Sheets (CSS) language.
CSS is the de facto language for formatting and designing information on the Web, including
ASP.NET web pages. With CSS you can quickly change the appearance of your web pages,
giving them that great look that your design or corporate identity dictates.

Solid support for working with CSS has been added in VWD 2008, the previous version of
Visual Web Developer. The new VWD 2010 builds on top of this CSS support and improves
it in a number of ways, including the ability to render pages much closer to how they’ll even-
tually end up in the browser. The CSS tools enable you to visually create your CSS code,
making it much easier to style your pages without the need to know or remember every little
detail of CSS.

To understand the relevance of and need for CSS in your ASP.NET web sites, you need to
understand the shortcomings of HTML first. The next section looks at the problems that plain
HTML presents, and how CSS is able to overcome these issues.

3

502211c03.indd 65 2/19/10 10:00:51 AM

66  ❘  Chapter 3   Designing Your Web Pages

Why Do You Need CSS?

In the early days of the Internet, web pages consisted mostly of text and images. The text was for-
matted using plain HTML, using tags like to make the text bold, and the tag to
influence the font family, size, and color. Web developers soon realized that they needed more power
to format their pages, so CSS was created to address some of HTML’s styling shortcomings.

Problems of HTML Formatting
One of the problems with using HTML for formatting is that it offers only a limited set of options
to style your pages. You can use tags like , , and to change the appearance of
text and use attributes like bgcolor to change the background color of HTML elements. You also
have a number of other attributes at your disposal for changing the way links appear in your page.

Obviously, this feature set isn’t rich enough to create the attractive web pages that your users expect
and demand.

Another problem of HTML with a lot more impact on how you build your web pages is the way the
styling information is applied to the page. By design, HTML forces you to embed your formatting in
your HTML document, making it harder to reuse or change the design later. Consider the following
example:

<p>
 This is red text in an Arial type face and slightly larger than the default text.
</p>

The problem with this code snippet is that the actual data (the text in the <p> element) is mixed
with the presentation (the formatting of the text with the tag in this example). Ideally, the
two should be separated, so each of them is easier to change without affecting the other.

Imagine you used the <p> and tags to mark up the first paragraph of every page in your site.
Clearly, this code is difficult to maintain. What happens when you decide to change the color of the
font from red to dark blue? Or what if your corporate identity dictates a Verdana font instead of
Arial? You would need to visit each and every page in your site, making the required changes.

Besides maintainability, another problem with HTML formatting is the fact that you can’t easily
change the formatting at runtime in the user’s browser. With the HTML from the previous code snip-
pet, there is no way to let your visitor change things like the font size or color, a common request to
help people who are visually impaired. If you want to offer your visitors an alternative version of the
page with a larger font size or a different color, you’d need to create a copy of the original page and
make the necessary changes.

The final problem with HTML formatting is that the additional markup in your page adds consider-
ably to the size of the page. This makes it slower to download and display because the information

502211c03.indd 66 2/19/10 10:00:51 AM

Why Do You Need CSS?  ❘  67

needs to be downloaded with each page in your web site. It also makes it harder to maintain your
pages because you’d need to scroll through large HTML files to find the content you need.

To summarize, formatting with HTML suffers from the following problems:

Its feature set severely limits the formatting possibilities that your pages require.➤➤

Data and presentation are mixed within the same file.➤➤

HTML doesn’t allow you to easily switch formatting at runtime in the browser.➤➤

The required formatting tags and attributes make your pages larger and thus slower to load ➤➤

and display.

Fortunately, CSS enables you to overcome all of these problems.

How CSS Fixes Formatting Problems
CSS is designed to format your web pages in almost every possible way. It offers a rich set of options
to change every little aspect of your web page, including fonts (size, color, family, and so on), colors
and background colors, borders around HTML elements, positioning of elements in your page, and
much more. CSS is widely understood by all major browsers today, so it’s the language for visual
presentation of web pages and very popular among web developers.

CSS overcomes the problem of mixed data and presentation by enabling you to define all format-
ting information in external files. Your ASPX or HTML pages can then reference these files and
the browser will apply the correct styles for you. With this separation, the HTML document con-
tains what you want to display, and the CSS file defines how you want to display it, enabling you to
change or replace one of the two documents, leaving the other unmodified. In addition, CSS can be
placed directly in an HTML or ASPX page, which gives you a chance to add small snippets of CSS
exactly where you need them. You should be cautious when placing CSS directly in an HTML or
ASPX page, because you can then no longer control style information from a single, central location.

Because all CSS code can be placed in a separate file, it’s easy to offer the user a choice between dif-
ferent styles — for example, one with a larger font size. You can create a copy of the external style
sheet, make the necessary changes, and then offer this alternative style sheet to the user. You see
how this works in Chapter 6 when ASP.NET Themes are discussed.

Another benefit of a separate style sheet file is the decrease in bandwidth that is required for your
site. Style sheets don’t change with each request, so a browser saves a local copy of the style sheet
the first time it downloads it. From then on, it uses this cached copy instead of requesting it from the
server over and over again. Sometimes this caching can work against you when the browser doesn’t
download the latest CSS files with your changes. If you find that the browser is not picking up the
changes you made to a CSS file, use Ctrl+F5 or Ctl+R in the browser (not VWD) to get a fresh copy
from the server.

Now that you have seen why CSS is so important, it’s time to find out how it looks and how to use it.

502211c03.indd 67 2/19/10 10:00:51 AM

68  ❘  Chapter 3   Designing Your Web Pages

An Introduction to CSS

In terms of syntax, CSS is an easy language to learn. Its “grammar” consists of only a few concepts.
That makes it relatively easy to get started with. What makes CSS a bit more difficult is the way
all major browsers render a page. Although virtually every modern desktop browser understands
CSS, they all have their quirks when it comes to displaying a page according to the CSS standard.
This standard, maintained by the same organization that maintains the HTML standard, the World
Wide Web Consortium, or W3C for short, comes in three different versions: 1.0, 2.1, and 3.0. From
these three versions, 2.1 is the most applicable today. It contains everything that version 1.0 contains
but also adds a lot of possibilities on top of that. It’s also the version that VWD uses and generates
by default. Version 3.0 is currently under development and it’s expected to take some time before the
major browsers have solid support for it.

Before you look at the actual syntax of CSS, it’s a good idea to see an example first. In the next exer-
cise, you write a simple ASPX page that contains some CSS to format the contents of the page. This
helps in understanding the CSS language, which is discussed in full detail in the section that follows.

Writing Your First CSSTry It Out	

In this Try It Out you write some CSS that changes the appearance of a header and two paragraphs.
You’ll hand code the page for now; the second half of this chapter shows you how to use the CSS tools
available in VWD.

	1.	 In the Demos folder of the Planet Wrox project, create a new Web Form called CssDemo.aspx. For
this exercise, it doesn’t matter if you choose inline code or Code Behind.

	2.	 Make sure the page is in Markup View and then locate the closing </title> tag in the source.
Position your cursor at the end of the line and press Enter to create an empty line between the
title and head tags. On this new line type the word style and then press Tab. Visual Web
Developer completes the <style> element for you. Press Enter twice to create some room between
the tags. You end up with the following bolded code:

 <title></title>
 <style type=”text/css”>

 </style>
</head>

NOTE  ​This code completion feature uses code snippets that enable you to
associate a piece of code (like the <style> element) with an identifier (like
style in this example). Code snippets are very useful to quickly insert pieces of
code by typing only the short identifier. Many more code snippets are available,
and where appropriate I’ll point them out throughout this book.

502211c03.indd 68 2/19/10 10:00:51 AM

An Introduction to CSS  ❘  69

Instead of using the style code snippet, you can also type the full code yourself. Note that as soon
as you type the opening angle bracket (<), a list pops up that enables you to select the <style>
tag. The same applies to the type attribute; simply type the letters ty and the type attribute is
preselected in the list. All you need to do to complete the word is press the Tab or Enter key. And,
once more, the same help is available for the attribute value text/css. Simply select it in the list
and press Tab or Enter, and the value is inserted for you automatically, nicely surrounded by the
double quotes.

	3.	 Next, between the opening and closing <style> tags, type the following bolded CSS code:

<style type=”text/css”>
 h1
 {
 font-size: 20px;
 color: Green;
 }

 p
 {
 color: Blue;
 font-style: italic;
 }

 .RightAligned
 {
 text-align: right;
 }
</style>

Take great care when typing this code, because CSS is rather picky about syntax. The first item in
the list is an h1 tag to style a heading at the first level so it gets a size of 20 pixels and is displayed
in a green font. Notice the colon between font-size and 20px and that the line is closed with a
semicolon.

The second item in the list simply contains the letter p and defines the look and feel for all <p> ele-
ments in the page.

The last item is prefixed with a period (.) followed by the text RightAligned. This item is used to
right-align some text in the page.

	4.	 Scroll down in the page a bit until you see the opening <div> tag. Right after this tag, type the fol-
lowing bolded code:

<div>
 <h1>Welcome to this CSS Demo page</h1>
 <p>CSS makes it super easy to style your pages.</p>
 <p class=”RightAligned”>
 With very little code, you can quickly change the looks of a page.
 </p>
</div>

502211c03.indd 69 2/19/10 10:00:52 AM

70  ❘  Chapter 3   Designing Your Web Pages

Instead of typing in this code directly, you can also use the Formatting toolbar while in Design
View to create elements like <h1> and <p>. For now, you’ll need to switch to Markup View to add
class=”RightAligned”, but in later exercises in this chapter you see how you can have the IDE
write this code for you.

	5.	 If you switch to Design View (or Split View), you’ll see that the designer shows your text with the
formatting defined in the <style> element of the page. Figure 3-1 shows the page in Split View so
you can see the code and the design at the same time.

Figure 3-1

Although this black and white book makes it difficult to see different font colors, in Figure 3-1
you can clearly see that the <h1> has a larger font size. The figure also shows that all paragraphs
(both the plain paragraph and the one with class=”RightAligned”) are now displayed with
an italic font. Finally, you can see that the final paragraph is aligned to the right of the window,
because the class attribute on the tag is set to RightAligned.

If you don’t see the last paragraph glued to the right border of the Document Window, make sure
you typed RightAligned exactly the same in the <style> tag and in the class attribute. Because
CSS is case sensitive, there’s a big difference between RightAligned and rightaligned.

	6.	 Press Ctrl+F5 to view CssDemo.aspx in your browser. The page you see in the browser is identical
to the preview you got in the Design View of Visual Web Developer.

How It Works

Although the code you typed in this exercise is relatively simple, there’s a lot going on under the hood
of the browser (and the Design View of VWD 2010) to make this possible. You started by adding some
styles to the <head> section of the page:

<style type=”text/css”>
 h1
 {

502211c03.indd 70 2/19/10 10:00:52 AM

An Introduction to CSS  ❘  71

 font-size: 20px;
 color: Green;
 }

 ...
</style>

The <style> tag is used to wrap a style sheet that is embed-
ded in the page with its type attribute set to text/css. The
code block from h1 until the closing curly brace (}) between
the <style> tags is called a rule set or simply a rule. The rule
in this code snippet defines the appearance for all <h1> ele-
ments in your page. The h1 at the top of the code block is
called a selector and is used to indicate to what element the
formatting should be applied. In this case, the selector maps
directly to an HTML element, but many other selectors are
available, as you’ll see in the next section. Figure 3-2 shows
how the elements are related to each other.

Between the curly braces you see the style information that should be applied to the heading. Each line
between the curly braces is called a declaration. A declaration consists of a property, followed by a colon
and then followed by a value. The semicolon (;) at the end of a declaration separates it from the next
declaration and is required on all declarations except for the last one in the rule set. However, for consis-
tency, it’s a good idea to add it to all declarations, which is what I’ll do in the remainder of this book.

When the browser loads this page, it also reads in the styles you defined between the <style> tags.
Then, whenever it comes across an HTML element that matches the selector, it applies the CSS rules to
that element. So, for the <h1> and <p> elements, their respective rules are applied. This causes the head-
ing to turn green with a large font, while the paragraphs turn blue with an italic font.

But why does the last paragraph turn blue and get right-aligned? In CSS, you can have rules coming
from different sources. The last <p> tag gets its style information from the standard p selector in the
style definition. So, the p rule gives the paragraph a blue and italic font. However, it also has a class
defined. This class, called RightAligned, causes the text to be aligned to the right of the window. In
the end, the last <p> element gets its rules from two selectors at the same time. You can make up and
assign your own class names (as shown with the RightAligned class), giving you the flexibility to
design your pages and elements exactly how you want them.

The next section digs a lot deeper in the syntax of CSS, giving you a much more detailed view on
selectors, properties, and values.

CSS—The Language
As you saw in the previous Try It Out exercise, a cascading style sheet is actually a collection of rules.
A rule is a combination of a selector and one or more declarations, which in turn can be broken
down to a property and a value. You’re probably getting a little dizzy from all the new terms that

hl
(
 font-size: 20px;
 color: Green;
)

Rule Set

Selector

Declaration

Property Value

Figure 3-2

502211c03.indd 71 2/19/10 10:00:52 AM

72  ❘  Chapter 3   Designing Your Web Pages

were introduced in the past few paragraphs, so in the next section, you see most of them again, with
a detailed explanation and code examples that show you what they are used for and how they work.

The Style Sheet
The style sheet contains all the relevant style information that should be applied to page elements. In
its simplest form, a style sheet looks like this:

h1
{
 color: Green;
}

A style sheet can also contain more than one rule as you saw in the previous exercise. At the same
time, each rule can contain multiple declarations, enabling you to group them under a single selector:

h1
{
 font-size: 20px;
 color: Green;
}

The code you just saw is functionally identical to this:

h1
{
 font-size: 20px;
}
h1
{
 color: Green;
}

The condensed form, where the two declarations are grouped under the same selector, is much easier
to read, understand, and maintain, so it’s advisable to use this syntax as much as possible.

To be able to style an element on a page, a browser has to know three things:

What element of the page must be styled?➤➤

What part of that element must be styled?➤➤

How do you want that part of the selected element to look?➤➤

The answers to these questions are given by selectors, properties, and values.

Selectors

As its name implies, a selector is used to select or point to one or more specific elements within your
page. A number of different selectors are available, giving you fine control over what elements you
want to style. The selector answers the first question: What element of the page must be styled? The
next section shows you the four most important types of selectors.

502211c03.indd 72 2/19/10 10:00:52 AM

An Introduction to CSS  ❘  73

The Universal Selector

The Universal selector, indicated by an asterisk (*), applies to all elements in your page. The
Universal selector can be used to set global settings like a font family. The following rule set changes
the font for all elements in your page to Arial:

*
{
 font-family: Arial;
}

The Type Selector

The Type selector enables you to point to an HTML element of a specific type. With a Type selector,
all HTML elements of that type will be styled accordingly.

h1
{
 color: Green;
}

This Type selector now applies to all <h1> elements in your code and gives them a green color. Type
selectors are not case sensitive, so you can use both h1 and H1 to refer to the same heading.

The ID Selector

The ID selector is always prefixed by a hash symbol (#) and enables you to refer to a single element
in the page. Within an HTML or ASPX page, you can give an element a unique ID using the id
attribute. With the ID selector, you can change the behavior for that single element, like this:

#IntroText
{
 font-style: italic;
}

Because you can reuse this ID across multiple pages in your site (it only has to be unique within a
single page), you can use this rule to quickly change the appearance of an element that you use once
per page, but more than once in your site, for example with the following HTML code:

<p id=”IntroText”>I am italic because I have the right ID.</p>
<p id=”BodyText”>I am NOT italic because I have a different ID.</p>

In this example, the #IntroText selector changes the font of the first paragraph — which has the
matching id attribute — but leaves the other paragraph unmodified. ID selectors are case sensitive,
so make sure that the id attribute and the selector always use the same casing.

The Class Selector

The Class selector enables you to style multiple HTML elements through the class attribute. This
is handy when you want to give the same type of formatting to a number of unrelated HTML

502211c03.indd 73 2/19/10 10:00:52 AM

74  ❘  Chapter 3   Designing Your Web Pages

elements. The following rule changes the text to red and bold for all HTML elements that have their
class attributes set to Highlight:

.Highlight
{
 font-weight: bold;
 color: Red;
}

The following code snippet uses the Highlight class to make the contents of a element and
a link (<a>) appear with a bold typeface:

This is normal text but this is Red and Bold.
This is also normal text but
 this link is Red and Bold as well.

Notice that the selector uses a period in its name, but you don’t use this period when referring to the
selector in the class attribute. The class attribute is very useful because it enables you to reuse a
piece of CSS for many different purposes, regardless of the HTML element that uses the class.

CSS supports more types of selectors, giving you even more control over the elements you want to
target, but the four different types you just saw are the most widely used.

Grouping and Combining Selectors

CSS also enables you to group multiple selectors by separating them with a comma. This is handy if you
want to apply the same styles to different elements. The following rule turns all headings in the page to red:

h1, h2, h3, h4, h5, h6
{
 color: Red;
}

Moreover, with CSS you can also combine selectors, enabling you to hierarchically point to a specific
element in a page. You can do this by separating the selectors with a space. The following example
targets all <p> elements that fall within an element with an id of MainContent, leaving all other
paragraphs unmodified.

#MainContent p
{
 font-size: 18px;
}

Note that combining is very different from grouping. Grouping is just a shortcut to avoid typing the
same declarations over and over again, whereas combining enables you to target specific elements in
your document.

With combining, you’re not limited to ID and Type selectors; you can also use it with the other
selectors, as is demonstrated with the following example:

502211c03.indd 74 2/19/10 10:00:52 AM

An Introduction to CSS  ❘  75

#MainContent p.Attention
{
 font-weight: bold;
}

This rule changes all paragraphs with the class Attention within the element with its id set to
MainContent and leaves all others untouched. The following HTML snippet uses this rule to show
the effect:

<div id=”MainContent”>
 <p class=”Attention”>My class is Attention, so my text is bold.</p>
 <p>My text is not bold, as it lacks the Attention class.</p>
</div>
<p class=”Attention”>I am NOT bold because I don’t fall within MainContent.</p>

The second question that needs to be answered to apply a certain style in your page is about what
part of the element must be styled. This is done with properties.

Properties

Properties are the part of the element that you want to change with your style sheet. The CSS
specification defines a long list of properties (VWD’s IntelliSense list shows more than 100 items),
although you won’t use all of them in most web sites. The following table lists some of the most
common CSS properties and describes where they are used.

Property Description Example

background-color

background-image

Specifies the background

color or image of an

element.

background-color: White;

background-image: url(Image.jpg);

border Specifies the border of

an element.

border: 3px solid black;

color Changes the font color. color: Green;

display Changes the way ele-

ments are displayed,

enabling you to hide or

show them.

display: none;

This causes the element to be hidden, and

not take up any screen space.

float Enables you to “float” an

element in the page using

a left or right float. Other

content is then placed on

the opposite side.

float: left;

This setting causes other content following

a float to be placed at the top-right corner of

the element. You see how this works later in

the chapter.

font-family

font-size

font-style

font-weight

Changes the appearance

of fonts used on your

page.

font-family: Arial;

font-size: 18px;

font-style: italic;

font-weight: bold;

continues

502211c03.indd 75 2/19/10 10:00:53 AM

76  ❘  Chapter 3   Designing Your Web Pages

Property Description Example

height

width

Sets the height or width

of elements in your page.

height: 100px;

width: 200px;

margin

padding

Sets the amount of free

space inside (padding)

and outside (margin) of

an element.

padding: 0;

margin: 20px;

visibility Controls whether an

element is visible in

the page. Invisible ele-

ments still take up screen

space; you just don’t see

them.

visibility: hidden;

This causes the element to be invisible.

However, it still takes up its original space in

the page. It’s as if the element is still there,

but completely transparent.

Fortunately, VWD helps you to find the right property with its many CSS tools, so you don’t have to
remember them all.

NOTE  ​Many more selectors and properties are available in CSS than I have
described here. For more detail on CSS, consult VWD's IntelliSense lists or take
a look at www.w3schools.com/css/css_reference.asp.

For a property to be useful, you need to give it a value, which answers the third question: How do
you want the part of the selected element to look?

Values

Just as with properties, values come in many flavors. The values you have available depend on the
property. For example, the color attribute takes values that represent a color. This can be a named
color (such as White), or a hexadecimal number representing a red, green, and blue (RGB) compo-
nent (such as #FF0000), or it can be set using the CSS rgb notation. The following examples are all
functionally equivalent:

h1
{
 color: Red;
}

h1
{

(continued)

502211c03.indd 76 2/19/10 10:00:53 AM

An Introduction to CSS  ❘  77

 color: #FF0000;
}

h1
{
 color: rgb(100%, 0%, 0%);
}

The first declaration uses the named color Red, whereas the other
two examples use an RGB value to specify the red color. Using
named colors can increase the readability of your CSS code, but
because you’re limited to a relatively short list of named colors,
you often need the hexadecimal notation to get the exact color
you want. When you type a color property in VWD, it presents
you with a list of known colors as shown in Figure 3-3. If you
want to type in a different color, simply ignore the list (or close it
by pressing the Escape key) and then type your own value. In a
later exercise in this chapter you see how to use a color picker to
select non-standard colors.

Many other values are possible as well, including size units
(px, em, and so on), font families, images (which take the form
of url(SomeImage.jpg)), or so-called enumerations like the
border-style, which allows you to set a border style to solid, dashed, double, and so on.

Using Shorthand

Many of the CSS properties enable you to write a shorthand version as well as a more expanded ver-
sion. Take, for example, the border property. In its shortest form, the border property can be set
like this:

border: 1px solid Black;

This border property applies a border to all four sides of an HTML element. The border size will
be 1px, the style will be solid (some of the other options include dashed, dotted, and double), and
the border color will be set to Black.

This is an easy way to quickly set all four borders of the HTML to the same values. However, if you
want more control over the individual borders and their properties, you can use the expanded version:

 border-top-width: 1px;
 border-top-style: solid;
 border-top-color: Black;
 border-right-width: 1px;
 border-right-style: solid;
 border-right-color: Black;
 border-bottom-width: 1px;

Figure 3-3

502211c03.indd 77 2/19/10 10:00:53 AM

78  ❘  Chapter 3   Designing Your Web Pages

 border-bottom-style: solid;
 border-bottom-color: Black;
 border-left-width: 1px;
 border-left-style: solid;
 border-left-color: Black;

This long version causes the exact same style to be applied: a solid black border on all four sides
with a thickness of 1 pixel. In most cases, you should favor shorthand notation over its expanded
counterpart, because it’s much easier to read and maintain. However, if you need absolute control
over the border — for example, if you want a 2-pixel dashed border on the left and top sides, and
a green, solid border on the right and bottom sides of the HTML element — it’s good to know that
you can set each border property of all four directions individually.

Other CSS properties that support shorthand include font, background, list-style, margin, and
padding. If you’re unsure whether a property supports shorthand, consult the IntelliSense pop-up list
that appears by pressing Ctrl+Space when you’re entering a property in a CSS file or a <style> block.

Although at times it seems you need to write CSS by trial and error, and just hope for the right
result, there’s actually a quite accurate model behind CSS that determines how items should be laid
out on the page. This model is called the CSS Box Model.

The CSS Box Model

The CSS Box Model describes the way three important CSS properties are applied to HTML ele-
ments: padding, border, and margin. Figure 3-4 shows a graphical representation of the box model.

In the middle there is an HTML element like a
<p> or a <div> with a certain height and width.
Just around it there is padding; the whitespace
that surrounds the element within its border.
Immediately after the padding you can see the
border and finally on the outside there is mar-
gin, which defines the room between an element
(including its padding and border) and its sur-
rounding elements. The three outer properties
of an element — padding, border, and mar-
gin — add up to the space that an element takes
up in page. To see how this works, consider the
following CSS and HTML:

.MyDiv
{
 width: 200px;
 padding: 10px;
 border: 2px solid black;
}

ElementLeft Right

Padding

Border

Margin

Top

Bottom

Figure 3-4

502211c03.indd 78 2/19/10 10:00:53 AM

An Introduction to CSS  ❘  79

...
<div class=”MyDiv”>Element</div>

This renders a rectangle in the browser with the <div> element
surrounded by a black border of two pixels shown in Figure 3-5.

Before you read on, try answering the question: How wide is the
arrow below the <div> element?

If you guessed 224 pixels, you are correct. The width of the arrow is the sum of three values: the
width of the actual element (200 pixels), plus the width of the padding surrounding it on both sides
(two times 10 pixels), plus the width of the borders on both sides (two times two pixels), resulting
in a total width of 224 pixels. So, if you wanted the entire box to be 200 pixels wide instead, you’d
need to set the width property of the MyDiv selector to 176px.

The example shows the effect on the width only, but the same principles apply to the height of ele-
ments. Keep this box model in mind when laying out your pages. When things end up wider or taller
than you anticipated, check the width, height, padding, border, and margin properties in the CSS
style sheet.

In the next exercise, you modify the site’s home page that you created in the previous chapter. You
add the basic layout for the site, which is then styled using a style sheet. In Chapter 6 you use this
page again when you upgrade it to a master page.

Styling the Planet Wrox Home PageTry It Out	

In this exercise you modify two files: First, you add the basic layout elements to the Default.aspx page
to create room for a header, a menu, the main content area, a sidebar, and a footer. Then you modify
the Styles.css file from the Styles folder to change the size and location of these elements. Finally,
you attach the style sheet to the page, so the style information is applied when the page is viewed in the
designer or in a browser.

	1.	 Open the file Default.aspx from the root of your web site and if necessary switch to Markup View.

	2.	 Modify the code within the <form> element so it ends up like this:

<form id=”form1” runat=”server”>
 <div id=”PageWrapper”>
 <div id=”Header”>Header Goes Here</div>
 <div id=”MenuWrapper”>Menu Goes Here</div>
 <div id=”MainContent”>
 <h1>Hi there visitor and welcome to Planet Wrox</h1>
 ...
 </div>
 <div id=”Sidebar”>Sidebar Goes Here</div>
 <div id=”Footer”>Footer Goes Here</div>

Element

How wide is this arrow?

Figure 3-5

502211c03.indd 79 2/19/10 10:00:54 AM

80  ❘  Chapter 3   Designing Your Web Pages

 </div>
</form>

Make sure that the welcome message you added in the previous chapter ends up between the
opening and closing tag of the MainContent <div>.

	3.	 Open the file Styles.css from the Styles folder. If you added some code to this file earlier,
remove that code first.

	4.	 At the top of the page, type the following code that uses an ID selector to select the Header <div>:

#Header
{

}

	5.	 Position your mouse between the curly braces and then choose Styles ➪ Build Style from the main
menu. Alternatively, you can choose the same item by right-clicking the ID selector, or clicking the
Build Style button on the Styles toolbar. The Modify Style dialog box shown in Figure 3-6 appears.

Figure 3-6

	6.	 In the Category list on the left, click Background and then open the drop-down list for the back-
ground color. From the color picker that appears, click the Silver color, as shown in Figure 3-7.

Alternatively, you can type the hexadecimal color code for Silver (#C0C0C0) in the background-
color text box directly.

502211c03.indd 80 2/19/10 10:00:54 AM

An Introduction to CSS  ❘  81

Figure 3-7

	7.	 Switch to the Position category by clicking it in the list on the left. The panel that appears enables
you to set position-related information, including the height and width. Under width, enter 844 and
make sure that px is selected in the drop-down list at the right. For the height, enter 86. Click OK to
dismiss the dialog box and to insert the declarations into your code, which now looks like this:

#Header
{
 background-color: #C0C0C0;
 width: 844px;
 height: 86px;
}

	8.	 Repeat steps 4 through 7, this time creating the following rules:

*
{
 font-family: Arial;
}

h1
{
 font-size: 20px;
}

#PageWrapper
{
 width: 844px;
}

#MenuWrapper
{

502211c03.indd 81 2/19/10 10:00:54 AM

82  ❘  Chapter 3   Designing Your Web Pages

 width: 844px;
}

#MainContent
{
 width: 664px;
 float: left;
}

#Sidebar
{
 background-color: Gray;
 width: 180px;
 float: left;
}

#Footer
{
 background-color: #C0C0C0;
 width: 844px;
 clear: both;
}

The float and clear properties are found in the layout category of the Modify Style dialog box.

	9.	 When you’re done creating the rules, save and close the Styles.css file, because you’re done with
it for now.

	10.	 Open the file Default.aspx again and switch to Design View. From the Solution Explorer, drag
the file Styles.css from the Styles folder onto the page. You should immediately see the Design
View change to reflect the code you wrote in the style sheet. When you dropped the style sheet on
the page, VWD inserted code in the <head> section of the page in Markup View that attaches the
style sheet to the document:

<head runat=”server”>
 <title></title>
 <style type=”text/css”>
 .style1
 {
 color: #FF0000;
 }
 </style>
 <link href=”Styles/Styles.css” rel=”stylesheet” type=”text/css” />
</head>

You can also drag an existing style sheet from the Solution Explorer directly in the <head> section
of a page in Markup View. When you do that, VWD adds the same <link> element.

	11.	 Finally, save the changes to all open documents (press Ctrl+Shift+S) and then request Default.aspx
in your browser. Your screen should look similar to Figure 3-8, which shows the page in Mozilla
Firefox.

502211c03.indd 82 2/19/10 10:00:54 AM

An Introduction to CSS  ❘  83

Figure 3-8

How It Works

The Style Builder makes it easy to select CSS properties and change their values. You don’t need to
memorize every little detail about CSS, but instead you can visually create your CSS code. Although
the tool can do most of the work for you, it’s still useful if you can read and understand the CSS code.
When you need to make tweaks to your code, it’s often quicker to do it directly in the Document
Window, instead of opening the Style Builder.

Note that the Header, PageWrapper, MenuWrapper, and Footer have an exact width of 844 pixels.
This way, the site fits nicely on screens with a size of 1024 × 768 pixels, a common screen size for many
of today’s computers, without being squeezed between the Windows borders. Systems with bigger
screens will simply expand the white background at the right of the page.

Note also that the MainContent area and the Sidebar are positioned next to each other. This is done
with the CSS float property:

#MainContent
{
 width: 664px;
 float: left;
}

#Sidebar
{
 background-color: Gray;
 width: 180px;
 float: left;
}

502211c03.indd 83 2/19/10 10:00:54 AM

84  ❘  Chapter 3   Designing Your Web Pages

This tells the MainContent to “float” on the left side of the Sidebar, effectively placing the Sidebar to
the right of it. You need to tell the Sidebar to float as well; if you leave it out, it will be placed at the
left of the page, right where it was before you applied the CSS.

The combined width of the two elements adds up to 844 pixels, which is exactly the width of their par-
ent element: the PageWrapper.

To end the float and tell the Footer element to be placed directly under the MainContent and Sidebar
elements, the clear property is used to clear any float (left or right) that may be in effect:

#Footer
{
 background-color: #C0C0C0;
 width: 844px;
 clear: both;
}

The gray backgrounds are just temporarily added to the code, so it’s easier to see what <div> ends up
where. In future exercises, you modify the CSS file again to fit the scheme of the Planet Wrox web site.

To tell the browser what styles to apply, you link the style sheet in the head of the page:

<link href=”Styles/Styles.css” rel=”stylesheet” type=”text/css” />

This tells the browser to look in the Styles folder for a file called Styles.css and apply all rules in
that file to the current document. Once the browser has downloaded the CSS file, it applies all the styles
it finds in there to your HTML elements, resulting in the layout shown in Figure 3-8.

In this exercise, you saw how to link a style sheet to a page using the <link> tag. There are, how-
ever, more ways to include style sheets in your web pages.

Adding CSS to Your Pages
The first way to add CSS style sheets to your web pages is through the <link> element that points to
an external CSS file, as you saw in the previous exercise. Take a look at the following <link> to see
what options you have when embedding a style sheet in your page:

<link href=”StyleSheet.css” rel=”Stylesheet” type=”text/css” media=”screen” />

The href property points to a file within your site, just as you saw in the previous chapter when you
created links between two pages. The rel and type attributes tell the browser that the linked file is
in fact a cascading style sheet. The media attribute is quite interesting: it enables you to target differ-
ent devices, including the screen, printer, handheld devices, and even Braille and aural support tools
for visually impaired visitors. The default for the media attribute is screen, so it’s OK to omit the
attribute if you’re targeting standard desktop browsers.

You briefly saw the second way to include style sheets at the beginning of this chapter: using embedded
<style> elements. The <style> element should be placed at the top of your ASPX or HTML page,
between the <head> tags. Within the <style> tags, you can write the exact same CSS you saw

502211c03.indd 84 2/19/10 10:00:54 AM

An Introduction to CSS  ❘  85

earlier. For example, to change the appearance of an <h1> element in the current page alone, you
can add the following code to the <head> of your page:

<head runat=”server”>
 <title></title>
 <style type=”text/css”>
 h1
 {
 color: Blue;
 }
 </style>
</head>

The third way to apply CSS to your HTML elements is to use inline styles with the style attribute
that you saw in the previous chapter. Because the style attribute is already applied to a specific
HTML element, you don’t need a selector and you can write the declaration in the attribute directly:

 This is white text on a black background.

Choosing among External, Embedded, and Inline Style Sheets

Because you have so many options to add style sheets to your site, what’s the best method to use? In
general, you should give preference to external style sheets over embedded styles, which in turn are
preferred over inline styles. External style sheets enable you to change the appearance of the entire
site through a single file. Make one change to your external style sheet file, and all pages that use
this style sheet pick up the change automatically.

However, it’s perfectly acceptable to use embedded and inline styles as well in certain circum-
stances. If you want to change the look of a single page, without affecting other pages in your site,
an embedded style sheet is your best choice. The same applies to inline styles: if you only want to
change the behavior of a single element in a single page, and you’re pretty sure you’re not going to
need the same declaration for other HTML elements, use an inline style.

An important thing to consider is the way that the various types of style sheets override each other.
If you have multiple identical selectors with different property values, the one defined last takes pre-
cedence. For example, consider a rule defined in an external style sheet called Styles.css that sets
the color of all <h1> tags to green:

h1
{
 color: Green;
}

Now imagine you’re attaching this style sheet in a page that also has an embedded rule for the same
h1 but that sets a different color:

 <link href=”Styles/Styles.css” rel=”stylesheet” type=”text/css” />
 <style type=”text/css”>
 h1
 {

502211c03.indd 85 2/19/10 10:00:55 AM

86  ❘  Chapter 3   Designing Your Web Pages

 color: Blue;
 }
 </style>

With this code, the color of the actual <h1> tag in the page will be blue. This is because the embed-
ded style sheet that sets the color to blue is defined later in the page and thus overrides the setting in
the external file. If you turn the styles around like this:

 <style type=”text/css”>
 h1
 {
 color: Blue;
 }
 </style>
 <link href=”Styles/Styles.css” rel=”stylesheet” type=”text/css” />

the heading will be green, because the setting in the external style sheet now overrules that of the
embedded style.

The same principle applies to inline style sheets. Because they’re defined directly on the HTML ele-
ments, their settings take precedence over embedded and external style sheets.

It’s also good to know that CSS generally overrules attributes on HTML elements. For example, if
you have a CSS rule that sets the width and height of an image, the height and width attributes on
the img element are ignored and the image in this example ends up as a 100-pixel square:

img
{
 height: 100px;
 width: 100px;
}
...

NOTE  ​There’s a lot more to CSS than what is shown here. To learn more about
CSS, pick up a copy of Professional ASP.NET 2.0 Design: CSS, Themes, and
Master Pages by Jacob J. Sanford (ISBN: 978-0-470-12448-2) or a copy of
Beginning CSS: Cascading Style Sheets for Web Design, Second Edition by
Richard York (ISBN: 978-0-470-09697-0).

In general, it’s recommended that you attach external files at the top of the <head> section, followed
by embedded style sheets. That way, the external file defines the global look of elements, and you
can use embedded styles to overrule the external settings.

VWD makes it easy to move embedded style sheets to an external CSS file, something you learn
how to do in the next section, which discusses the remainder of the CSS tools in VWD.

502211c03.indd 86 2/19/10 10:00:55 AM

Working with CSS in Visual Web Developer  ❘  87

Working with CSS in Visual Web Developer

VWD has the following handy tools on board for working with CSS:

The ➤➤ Style Sheet toolbar, giving you quick access to creating new rules and styles.

The ➤➤ CSS Properties Grid, which enables you to change property values.

The ➤➤ Manage Styles window, enabling you to organize styles in your site, changing them from
embedded to external style sheets and vice versa; reorder them; link existing style sheets to a
document; and create new inline, embedded, or external style sheets.

The ➤➤ Apply Styles window, which you can use to choose from all available styles in your site
and quickly apply them to elements in your page.

The ➤➤ Style Builder, which you can use to visually create declarations.

The ➤➤ Add Style Rule window, which helps in building more complex selectors.

The next sections give you a detailed look at these six tools.

Creating New Styles in External Style Sheets
In an earlier Try It Out, you manually added selectors to the CSS file and then used the Style Builder
to write the rules. However, you can also use the VWD tools to write the selectors for you. In the
next Try It Out, you see how to use the Add Style Rule window to create a new rule in an external
file. You then use the Style Builder to modify the rule.

Creating New Styles in an Existing Style SheetTry It Out	

In this exercise, you create a new style that affects all the links in the MainContent area. By using com-
bined selectors, you can target the links in the content area only, leaving the others unmodified.

	1.	 Start by opening the file Styles.css from the Styles folder.

	2.	 Scroll down in the file and position your cursor at the end, right below the #Footer rule.

	3.	 Make sure the Style Sheet toolbar is visible and
click the first button, labeled Add Style Rule,
or choose Styles ➪ Add Style Rule from the
main menu. With the dialog that appears you
can visually create a combined selector. In the
left section of the dialog box, you can choose
among Element, Class, and ID selectors.

Select the last option, labeled Element ID, and
in its text box type MainContent. Your dialog
now looks like Figure 3-9.

Figure 3-9

502211c03.indd 87 2/19/10 10:00:55 AM

88  ❘  Chapter 3   Designing Your Web Pages

If you don’t see the hash symbol (#) in front
of MainContent in the Style Rule Preview
box, make sure you selected Element ID and
not Element. Click the button with the right
arrow in the middle of the screen to add the
selector to the Style Rule Hierarchy list.

	4.	 Next, select the Element radio button at the
top of the dialog box and from its drop-down
list, choose a (for links) and click the arrow
button once more. Your screen should now
show a preview of the selector in the Style Rule
Preview box, as in Figure 3-10.

	5.	 Click OK to add the selector to your style sheet file. You should end up with the following
empty rule:

#MainContent a
{
}

	6.	 Right-click between the curly braces of the rule you just inserted and choose Build Style.

	7.	 In the Font category, change the color property to #008000 by clicking the arrow of the drop-down
list box, and then clicking the green square on the top row.

	8.	 In the text-decoration section at the right of the same dialog box, place a check mark for the under-
line option. The Modify Style dialog box should now look like the one shown in Figure 3-11.

Figure 3-11

Figure 3-10

502211c03.indd 88 2/19/10 10:00:55 AM

Working with CSS in Visual Web Developer  ❘  89

	9.	 Click OK to dismiss the dialog box. Back in the CSS file, select the entire rule set you just created
(including #MainContent a and both curly braces), copy it to the clipboard, and then paste it
again twice below the original rule set.

	10.	 Rename the first selector you just pasted from #MainContent a to #MainContent a:visited.
This style is used for links that the user has already visited.

	11.	 Right-click the new rule you just created and choose Build Style. In the Font category, change the
color from green to red by typing #FF0000 in the color text box and click OK.

	12.	 Change the third selector in the file from #MainContent a to #MainContent a:hover. This style
is applied to links when the user hovers over them with the mouse.

	13.	 Once again, right-click the new selector you just created and choose Build Style. In the Font cat-
egory, change the color from green to orange by typing #FFA500 in the color text box. Click OK to
close the Modify Style dialog box.

You should end up with the following three rules in your CSS file below the styles that were
already present:

#MainContent a
{
 color: #008000;
 text-decoration: underline;
}

#MainContent a:visited
{
 color: #FF0000;
 text-decoration: underline;
}

#MainContent a:hover
{
 color: #FFA500;
 text-decoration: underline;
}

	14.	 Save and close the Styles.css file because you’re done with it for now.

How It Works

You started off by creating a new rule using the Add Style Rule dialog box. Quite often, you’ll find
it easier and quicker to type the rule directly in the code editor. However, when you’re creating com-
plex combined rules, the Add Style Rule dialog box can help you understand and create the hierarchy
of the rule.

The Modify Style dialog box is an excellent tool for creating new CSS declarations. Instead of memo-
rizing all the different CSS properties and values, you can simply point and click them together in an
organized dialog box. All the different CSS properties are grouped under logical categories, making it
easy to find and change them.

Figure 3-10Figure 3-10

502211c03.indd 89 2/19/10 10:00:55 AM

90  ❘  Chapter 3   Designing Your Web Pages

The :hover and :visited parts on the a selector are probably new to you. These selectors are called
pseudo class selectors. The a:visited selector is only applied to links that you have already visited in
your browser. The a:hover selector is only applied to the <a> tag when the user hovers the mouse over
the link. In the next Try It Out you see the effect of these two selectors in the browser.

With the style sheet created, the next thing you need to do is attach this style sheet to your docu-
ment. You have a number of ways to do this, including typing in the code by hand or dropping the
file in Markup or Design View. The next Try It Out exercise shows you a third option: using the
Manage Styles window.

Attaching Your New Style Sheet to Your DocumentTry It Out	

In this exercise, you remove and reattach the style sheet called Styles.css to your Default.aspx page
so you see another alternative to attaching a style sheet file to an ASPX page. You then add some text
and links to this page so you can see the behavior of rule sets you created earlier.

	1.	 Switch the page Default.aspx into Markup View and remove the <link />
element from the <head> section that you added earlier in this chapter.
Then switch to Design View and make sure the Manage Styles window is
open. If it isn’t, click somewhere in the Document Window to activate the
Design View and then choose View ➪ Manage Styles from the main menu.
The window shown in Figure 3-12 appears. Recall from Chapter 1 that
if you don’t see this item in the View menu, choose Tools ➪ Settings ➪
Expert Settings first.

The Manage Styles window gives you an overview of all external and embedded style sheets that
apply to the current document. Notice how VWD sees that the current document already contains
an embedded style: style1 that you created in Chapter 2.

	2.	 Click the Attach Style Sheet button on the Manage Styles window (it’s the
second button in Figure 3-12), browse to your Styles folder in the root
of the site, and select the Styles.css file. Click OK and the style sheet is
inserted in your page again.

	3.	 When you attach the style sheet, the Manage Styles window (shown in
Figure 3-13) is updated and now shows your newly attached style sheet.

	4.	 With the page Default.aspx still open in Design View, select the text
“look around” in the paragraph. If you typed something else in an earlier
Try It Out, select that text instead. At this stage, all that’s important is that
you have some text to turn into a link.

	5.	 On the Formatting toolbar, click the Convert to Hyperlink button (with the
globe and link symbol on it), click the Browse button in the dialog box that
appears, and select Default.aspx in the root of the site. This way, the link
points to the same page it’s defined in, which is fine for this exercise. Click
OK twice to dismiss the dialog boxes.

Figure 3-12

Figure 3-13

502211c03.indd 90 2/19/10 10:00:55 AM

Working with CSS in Visual Web Developer  ❘  91

	6.	 Save the changes to all open documents (choose File ➪ Save All from the main menu or press
Ctrl+Shift+S) and then request Default.aspx in your browser by pressing Ctrl+F5. You should see
the page appear with the “look around” link underlined, as shown in Figure 3-14.

Figure 3-14

	7.	 Hover your mouse over the “look around” link; note that it turns to orange.

	8.	 Click the “look around” link, and the page will reload. The link has now turned to red. If the link
was already red the first time you visited it, don’t worry. You opened the page in your browser
before, which caused the browser to mark the link as visited. The browser keeps track of the pages
you visit and then applies the correct style to new and visited links. If you want to see the desired
behavior in Internet Explorer, open up the Internet Options by choosing Tools ➪ Internet Options.
Then on the General tab, click the Delete button. In the dialog box that pops up, clear the his-
tory by following the on-screen instructions. When you now reload the page by pressing Ctrl+F5
in your browser, the link should turn to green. Other browsers have similar options to clear the
browser’s history. For example, Firefox enables you to clear the history using the Tools ➪ Clear
Recent History menu option. If you don’t have this menu item, choose Tools ➪ Options and then
switch to the Privacy tab, where you can delete the history as well.

Alternatively, you can open the page in a different browser. To select an alternate browser, right-
click Default.aspx in the Solution Explorer and choose Browse With from the context menu.
If your alternate browser is listed there already, select it from the list and then click Browse.
Optionally you can make this browser your default, by clicking the Set as Default button.

If your browser is not listed, click the Add button and then the ellipsis next to the Program Name
box to search for your favorite browser. When the browser is displayed in the list, click it to select
it and then click Browse to open the page in that browser. The page should now appear in your
alternate browser.

502211c03.indd 91 2/19/10 10:00:55 AM

92  ❘  Chapter 3   Designing Your Web Pages

How It Works

The Manage Styles window gives you a quick overview of style sheets that are active for the current
page, either as an external and attached style sheet, or as an embedded style sheet in the <head> section
of the page. It’s a very useful window to attach new styles to the current document, and to move styles
from one location to another, which you see how to do in the next section. When you open the page
in the browser, the updated style sheet is downloaded and the browser then applies the #MainContent
a:visited selector to all links to pages you visited before. When you hover your mouse over a link, the
selector #MainContent a:hover is applied, causing the link to turn orange.

Viewing your pages in different browsers is a good thing to do. Although modern browsers tend to ren-
der a page more and more similarly, there are subtle differences that you need to be aware of and han-
dle in your HTML and CSS code. Installing a few different browsers on your system (Internet Explorer,
Firefox, Safari, Opera, and Chrome, for example), assigning them to the Browse With dialog as shown
in this Try It Out, and testing your pages in these browsers as often as you can will help to ensure your
pages look exactly right in the majority of the browsers.

Useful as external style sheets may be, there are times when you really want to use embedded or
inline styles instead. Creating and managing those styles, explained in the next section, is just as easy.

Creating Embedded and Inline Style Sheets
When you’re working with a page in Design View, you often need to make minor tweaks to part of the
page, like styling a piece of text, aligning an image, or applying a border to an element. At this stage,
you need to make a decision about whether to create an inline, embedded, or external style sheet. As
you saw earlier, you should opt for external or embedded style sheets if you envision you’re going to
reuse a style later. VWD doesn’t care much, though. It enables you to create styles at all three levels.
Even better, it enables you to easily upgrade an embedded style to an external one, or copy inline style
information to a different location, giving you great flexibility and the option to change your mind later.

In the next exercise, you see how to create inline and embedded style sheets. You see later how to
move those styles to an external style sheet, enabling other pages to reuse the same styles.

Creating Embedded and Inline Styles in a PageTry It Out	

In this Try It Out, you add a style rule to the <h1> element of the page, to remove the default margin
that a browser draws around the heading. In addition, you style the first paragraph using a class, giving
it a different look to make it stand out from the other paragraphs on the page.

	1.	 Go back to VWD and make sure that the page Default.aspx is open in Design View.

	2.	 Click once on the h1 element in the Document Window to select it and then choose Format ➪
New Style. The New Style dialog box appears (visible in Figure 3-15), which is pretty similar to the
Modify Style dialog box you saw earlier.

	3.	 At the top of the screen, open the Selector drop-down list and choose (inline style). It’s the first
item in the list. This ensures that the new style is applied as an inline style to the <h1> element.

	4.	 Switch to the Box category, shown in Figure 3-16.

502211c03.indd 92 2/19/10 10:00:55 AM

Working with CSS in Visual Web Developer  ❘  93

Figure 3-15

Figure 3-16

502211c03.indd 93 2/19/10 10:00:56 AM

94  ❘  Chapter 3   Designing Your Web Pages

This dialog box has a handy diagram that serves as a refresher on the CSS Box Model, showing
you where the properties padding, border, and margin end up.

By default, browsers draw some white space above or below an <h1> element, but the actual
amount differs between browsers. To give each browser the same consistent settings, you can reset
the padding to 0 and then apply a little bit of margin at the bottom of the heading, which creates
some distance to the elements following it. To do this, set padding to 0 in the top box. By leaving
the Same for All option selected, VWD creates a shorthand declaration for you. Then uncheck
Same for All for the margin section, enter 0 for the top, right, and left boxes and enter 10 for the
bottom text box. Leave all drop-down lists set to px and click OK. You end up with the following
<h1> element with an inline style in Markup View:

<h1 style=”padding: 0px; margin: 0px 0px 10px 0px”>
 Hi there visitor and welcome to Planet Wrox
</h1>

	5.	 Next, in Design View, select the first paragraph by clicking it. A small glyph appears to indi-
cate you selected a <p> element, as visible in Figure 3-17. The Tag Selector at the bottom of the
Document Window should highlight the <p> element.

Figure 3-17

	6.	 With the paragraph still selected, choose Format ➪ New Style from the main menu. This time,
instead of creating an inline style, type the text .Introduction in the Selector box that is visible in
Figure 3-18. Don’t forget the dot (.) in front of the selector’s name.

	7.	 At the top of the screen, select the check box for Apply New Style to Document Selection. With
this setting on, the new class you’re about to create is applied to the <p> tag that you have selected.

	8.	 From the font-style drop-down list, choose italic. Your New Style dialog box should now look like
Figure 3-18.

	9.	 Finally, click OK. Note that the entire paragraph is now displayed with an italic font.

502211c03.indd 94 2/19/10 10:00:56 AM

Working with CSS in Visual Web Developer  ❘  95

Figure 3-18

	10.	 With the <p> tag still selected, open the CSS
Properties Grid (see Figure 3-19) by choosing
View ➪ CSS Properties. This grid gives you an
overview of all the CSS properties and shows
which ones are currently active for your page.

This grid shows a list of applied rules in
the top half of the window. The bottom
half of the window is used to show the CSS
properties for those rules. In Figure 3-19
you see the rules that are applicable to the
.Introduction selector. Properties that
appear in blue and bold have their value set, whereas others appear in a normal font. If you don’t
see these styles, click the third button on the toolbar of the CSS Properties Grid, which moves the
properties that are set up in the list.

	11.	 In the CSS Properties list in the bottom half, locate the color property and set it to a dark blue
color, like #003399. To achieve this, open the drop-down list for the property value and choose a
color from the color picker. If the color you’re looking for is not available, click the More Colors
button to bring up the extended color picker, shown in Figure 3-20.

Figure 3-19

502211c03.indd 95 2/19/10 10:00:56 AM

96  ❘  Chapter 3   Designing Your Web Pages

Figure 3-20

Instead of using the color picker, you can also type in a value in the Properties Grid directly. This
is how all properties work in the CSS Properties Grid: they let you enter values directly or enable
you to visually change the value using a drop-down list or a button with ellipses at the end of the
property’s value box. Figure 3-21 shows the different options you have for the font-style property
in a convenient drop-down list.

Figure 3-21

Take special note of the three buttons at the top of the window, because they house some useful
functionality. The first two buttons enable you to switch between categorized mode and alphabeti-
cal mode, making it easier to find the right property. The third button enables you to display the
applied properties at the top of the list (as is the case in Figure 3-21) or at their default location in
the list.

	12.	 Finally, save all changes and open Default.aspx in your browser (see Figure 3-22). You’ll see that
the first paragraph is now displayed with a blue and italic font except for the link in the text, which
should be green. Additionally, if you followed all the instructions from the previous chapter, the
text “paying a visit” is red, set by the embedded CSS class.

502211c03.indd 96 2/19/10 10:00:56 AM

Working with CSS in Visual Web Developer  ❘  97

Figure 3-22

	13.	 Switch back to VWD and look at your page in Markup View. In the <head> section of the page,
you should see the following embedded style sheet:

 .Introduction
 {
 font-style: italic;
 color: #003399;
 }
 </style>
 <link href=”Styles/Styles.css” rel=”stylesheet” type=”text/css” />
</head>

How It Works

The numerous tools that VWD offers make it easy to write CSS for your web site. You don’t need to
hand code anything, or remember all the different properties that the CSS standard supports. Instead,
you can simply choose them from different lists on the CSS Properties Grid. This grid enables you to
enter values manually but also offers handy tools to select colors, files, and items from drop-down lists.

All changes you make in the Properties Grid are applied to the relevant style sheet, whether you’re
working with an inline, embedded, or external style sheet. At the same time, the Design View is
updated to reflect the new CSS options you have set.

When you look at the <h1> element, you can see that VWD created an inline style with a padding set
to 0px to affect all four sides at once and a margin set to 0px 0px 10px 0px to control all four sides
individually.

Once you have created a bunch of useful and reusable styles, you need a way to apply your existing
styles to other pages or HTML elements. You see how this works next.

502211c03.indd 97 2/19/10 10:00:56 AM

98  ❘  Chapter 3   Designing Your Web Pages

Applying Styles
If you have some experience with Microsoft Word, you may be familiar with the Styles dialog box,
which lists all available styles and enables you to apply them to selected portions of text. This way,
you can quickly apply identical formatting to blocks of text. This works similarly in VWD. With the
Apply Styles window — accessible by choosing View ➪ Apply Styles from the main menu — you can
easily apply style rules to elements in the page.

Using the Apply Styles WindowTry It Out	

In this exercise, you reuse the .Introduction class and apply it to the second paragraph of the page as
well. That way, both paragraphs end up looking the same.

	1.	 Still in Default.aspx, make sure you’re in Design View and then select the second paragraph of
the page by clicking it. Ensure that the Tag Selector at the bottom of the Document Window shows
that the <p> tag is selected, and not another tag like that may be part of the <p> element.
If you have only one paragraph of text, create a new one first (by pressing Enter after the first para-
graph in Design View), enter some text, and then select that paragraph.

	2.	 Open the Apply Styles window by choosing View ➪ Apply Styles.
This window shows all the selectors it finds in the current page and
any attached style sheet. If you don’t see all the styles shown in
Figure 3-23, click the Options button and choose Show All Styles.

To help you find the right style, VWD uses a number of different
visual cues. First of all, the Apply Styles window uses red, green,
blue, and yellow dots to represent ID selectors, class selectors, ele-
ment selectors, and inline styles, respectively. Figure 3-23 only shows
red and green dots (you’ll just have to trust me) because the <p> ele-
ment doesn’t have any inline styles applied. However, if you select
the <h1> element, an inline style and an element selector appear. If
you do try this out, make sure you select the <p> element again after-
ward. Furthermore, styles that are currently used in the page are surrounded by an additional
circle, as is the case with all selectors in Figure 3-23.

	3.	 Click the Introduction class in the CSS Styles list. VWD adds a class attribute to the <p> tag:

<p class=”Introduction”>
 Feel free to have a look around; there are lots of
 interesting reviews and concert pictures to be found here.
</p>

If you want to apply multiple classes, hold down the Ctrl key while clicking one of the other
classes in the list. This applies a list of classes separated by a space to the element’s class attri-
bute. You can follow the same steps to apply the selected style in Markup View as well.

	4.	 Using the Clear Styles button, you can quickly remove existing classes and inline styles from a tag.
Consider the HTML fragment you saw in the previous chapter when you used the Formatting

Figure 3-23

502211c03.indd 98 2/19/10 10:00:56 AM

Working with CSS in Visual Web Developer  ❘  99

toolbar to format text in the page. If you used the Foreground Color button, you ended up with
code similar to this:

We're glad you're paying a visit

To remove the class attribute, select the tag in the tag selector, or simply click the
 tag in Markup View and then click Clear Styles in the Apply Styles window, which you
can see at the top of Figure 3-23. You’ll end up with this HTML:

We're glad you're paying a visit

Because an empty around the text has no use, VWD removes it for you as well.

Removing style attributes from HTML elements works the same way.

How It Works

Once again, VWD is able to keep all relevant windows in sync: the Design View, Markup View, and
the various CSS design tools. When you apply a class from the Apply Styles window, VWD adds the
requested class to the selected HTML element in Markup View. It then also updates the Design View
window. Similarly, when you remove a selector or a declaration from an embedded style in Design
View, both the Design View and the CSS Tools windows are updated.

The final CSS functionality you need to look at in this chapter is located on the Manage Styles and
Apply Styles windows. Besides helping you attach CSS files to your documents, these windows
enable you to easily manage your styles.

Managing Styles
Because it’s so easy to add new inline and embedded styles, your pages may quickly become a mess
with styles all over the place. To achieve reusability, you should move as much of your inline and
embedded styles as possible to an external style sheet. This is exactly what the Apply Styles and
Manage Styles windows enable you to do.

Managing Styles With the Manage Styles and Apply Styles WindowsTry It Out	

Earlier in this chapter, you modified the <h1> element and applied padding and margin to the head-
ing. However, Default.aspx is not the only page that could benefit from this style for a heading, so
it makes sense to move it to the Styles.css file. Similarly, the Introduction class seems reusable
enough to include it in the Styles.css file so other pages can access it. This Try It Out shows you how
to move styles around in your site.

	1.	 Make sure that Default.aspx is still open and switch to Markup View if necessary.

	2.	 Locate the <h1> element and click it once. VWD highlights the tag in the Tag Selector at the bot-
tom of the Document Window to indicate it’s the active tag, as shown in Figure 3-24.

502211c03.indd 99 2/19/10 10:00:56 AM

100  ❘  Chapter 3   Designing Your Web Pages

Figure 3-24

	3.	 Open the Apply Styles window by choosing View ➪ Apply Styles
from the main menu. Alternatively, if you have the window docked
with other windows, simply click its tab to make it active. Make sure
the window is not accidentally docked in the main Document
Window, but either floats or is placed at the side of the Document
Window. At the bottom of the Apply Styles window, you’ll see an
inline style appear (see Figure 3-25).

	4.	 Right-click Inline Style and choose New Style Copy. The New Style
dialog box appears, enabling you to create a new style based on
the current selection. At the top of the window, choose h1 from
the Selector drop-down list, and from the Define In drop-down list
choose Existing style sheet. From the URL drop-down list, choose
Styles/Styles.css. If that item isn’t available, click the Browse button
to locate and select it. Your dialog box should end up like Figure 3-26.

Figure 3-26

Figure 3-25

502211c03.indd 100 2/19/10 10:00:56 AM

Working with CSS in Visual Web Developer  ❘  101

	5.	 Click OK to close the dialog box. VWD creates a copy of the h1 style and places it in the
Styles.css file. Notice that VWD creates a new selector for h1 in the Styles.css file
instead of adding the padding and margin info to the existing rule set. If you want, you could
combine the two selectors into one manually.

	6.	 In the Apply Styles window, right-click Inline Style again, and this time choose Remove Inline Style
from the context menu. This removes the style attribute from the h1 element.

	7.	 Switch to the Manage Styles window. Again, make sure the window is
placed besides the Document Window and not docked in the Document
Window. Under the Current Page item, locate the .Introduction selector,
visible in Figure 3-27.

	8.	 Click the .Introduction selector once, and then drag it into the area
for Styles.css, for example dropping it after the h1 selector. Note that
VWD draws lines between the selectors as you hover over them to indi-
cate the point where the selector will end up. Figure 3-27 shows how the
.Introduction selector is dragged from the current page into Styles.css,
between the h1 and #PageWrapper selectors.

	9.	 Once you drop the selector in the Styles.css section of the Manage Styles
window, the associated style is removed from your current page, and then
inserted in Styles.css. Because that CSS file is included in your current
page using the <link /> element, you won’t see a difference in Design View.
You can now remove the empty <style> element from Default.aspx, because
it’s not needed anymore.

	10.	 Save any pending changes you may have and then open Default.aspx in your browser by pressing
Ctrl+F5. Note that the paragraphs haven’t changed and still use the same blue and italic font.

How It Works

Unfortunately, VWD doesn’t allow you to move inline styles to external style sheet files. However, by
creating a copy of the existing style, and then deleting the original inline style, you can achieve the
same effect. Moving embedded or external style sheets between files is a lot easier. You can simply drag
a style from one file to another, and VWD will automatically move the code for you. This makes it
extremely easy to organize your CSS. Instead of leaving all your embedded CSS in your page because
you’re afraid to touch it, you can now simply drag and drop it into an external file. This makes it a lot
easier to reuse those styles in other pages, decreasing page size and page bloat, and making your site a
lot easier to manage. Obviously, it’s important that the file you are moving your CSS to is attached to
the pages you’re working with.

Figure 3-27

502211c03.indd 101 2/19/10 10:00:57 AM

102  ❘  Chapter 3   Designing Your Web Pages

Practical Tips on Working with CSS

Follow these tips to make the most of CSS:

Take some time to familiarize yourself with the many properties that CSS supports. The ➤➤

best way to do this is to create a brand new page in your Demos folder, create a few HTML
elements like <div> and <p> tags, and then simply experiment with all the different proper-
ties. By trying out many of the properties on the CSS Properties Grid, you get a feel for what
options you have available. This makes it easier later if you want to apply a certain effect to
some piece of content.

When creating custom CSS classes, try to come up with names that describe the behavior of ➤➤

the rule, rather than the look and feel. For example, a class called .Introduction to style
the first paragraph of a page is a good description. It enables you to change the underly-
ing values without affecting the actual meaning of the name. But classes with names like
.BlueAndItalic are guaranteed to give you problems later. What if you decide to change
the blue to black later? You either end up with a very odd class name not describing its own
behavior, or you’ll need to rename the class and then update the entire site, changing refer-
ences to the old class to .BlackAndItalic.

Try to create smaller and reusable rule sets that you can combine if required, rather than ➤➤

creating large, monolithic rules that can only be used on a single UI element. For example,
instead of creating a style like this:

.ImportantHeading
{
 font-size: 20px;
 font-weight: bold;
 color: red;
}

You’re better off creating a few lightweight rules that are easier to reuse:

h1
{
 font-size: 20px;
}

.Attention
{
 font-weight: bold;
 color: red;
}

When you apply the .Attention class to a heading like this: <h1 class=”Attention”>
you get the exact same behavior you got when you gave it the ImportantHeading class.
However, with the separate Attention class, you have created a reusable rule that you can
apply to other elements that need the user’s attention, like <p> or elements.

502211c03.indd 102 2/19/10 10:00:57 AM

Summary  ❘  103

Summary

This chapter gave you a good look at CSS, the most important language for styling your ASPX and
HTML web pages.

CSS enables you to overcome the limitations of HTML with respect to styling your web pages
because it is designed to minimize page bloat, give you greater control over the looks of your page,
and generally help you create web sites that load quicker and that are easier to maintain.

Once you have a good understanding of the CSS terminology, you’ll find it’s easy to work with the
many CSS tools that VWD has on board. Tools like the Manage Styles and Apply Styles windows, the
Style Builder, and the smart IntelliSense in the code editor make writing and managing CSS very easy.

CSS can be applied not only to HTML as you’ve seen in this chapter, but also to ASP.NET Server
Controls. The CSS you apply to those controls eventually ends up in the browser as plain HTML
where the same principles apply as those you’ve seen in this chapter. The next chapter gives you a
detailed look at the many available ASP.NET Server Controls.

Exercises	

1.	 What is the main benefit of using an external style over embedded style sheets?

2.	 Write a CSS rule that changes the appearance of all headings at level one (h1) in your page to

the following:

The heading uses an Arial font face.➤➤

The heading should be blue.➤➤

The heading must have a font size of 18 pixels.➤➤

The heading has a blue, thin border at the top and left sides.➤➤

		 For the last requirement, check out VWD’s IntelliSense list in a CSS file to discover another short-

hand version for the border property.

3.	 Which of the two following rules is easier to reuse across pages in your web site? Can you

explain why?

#MainContent
{
 border: 1px solid blue;
}

.BoxWithBorders
{
 border: 1px solid blue;
}

4.	 VWD enables you to attach an external style sheet to a page in a number of different ways. Can

you name three different options to do this?

Answers to Exercises can be found in Appendix A.

502211c03.indd 103 2/19/10 10:00:57 AM

104  ❘  Chapter 3   Designing Your Web Pages

What You Learned in this Chapter⊲⊲

CSS Cascading Style Sheets: the language to layout web pages in the browser

CSS Box Model The model on which the dimensions of elements are calculated with regard

to height, width, padding, border, and margin

Declaration A combination of a property and a value that determines the styling for the

element to which the declaration applies

Embedded style
sheets

CSS code that is defined in a page in a <style /> element

External style sheets CSS code that is defined in a separate file and then included in a page

using the <link /> element

In-line style sheets CSS defined directly on an element using the style attribute

Rule set A combination of a selector and one or more declarations wrapped in a

pair of curly braces

Selector A CSS construct to point to one or more elements in the page. Different

selectors exist, including the universal selector, the ID and class selectors

and the element selector

YOU CAN DOWNLOAD THE CODE FOUND IN THIS BOOK. VISIT WROX.COM
AND SEARCH FOR ISBN 9780470502211

502211c03.indd 104 2/19/10 10:00:57 AM

Working with ASP.NET Server
Controls

What You Will Learn in This Chapter:

What ASP.NET Server Controls are➤➤

The different kinds of server controls you have at your disposal➤➤

The common behavior shared among most of the server controls➤➤

How the ASP.NET runtime processes the server controls on your page➤➤

How server controls are able to maintain their state across postbacks➤➤

ASP.NET Server Controls are the workhorses of ASP.NET. Almost all the pages you build
in VWD will contain one or more server controls. These controls come in all sorts and sizes,
ranging from simple controls like a Button and a Label to complex controls like the TreeView
and the GridView that are capable of displaying data from a data source (like a database or an
XML file). You see these controls in Chapters 7 and 13.

The architecture of ASP.NET Server Controls is deeply integrated into ASP.NET, giving the
controls a feature set that is quite unique in today’s technologies for building web sites. This
chapter shows you what server controls are, how they work, and which ones are available out
of the box when you install Visual Web Developer.

The chapter starts off with a general discussion of server controls. You see how to define them
in your code by adding them to Design or Markup View.

The section that follows gives you a thorough look at the many controls that are available in
the VWD Toolbox.

4

502211c04.indd 105 2/19/10 10:00:43 AM

106  ❘  Chapter 4   Working with ASP.NET Server Controls

Introduction to Server Controls

It’s important to understand how server controls operate and how they are completely different from
the way you define controls in other languages like classic ASP or PHP — another popular program-
ming language creating dynamic web sites.

For example, to influence the text in a text box in these languages, you would use plain HTML and
mix it with server-side code. This works similarly to the example in Chapter 2 where the current
date and time are displayed on the page. To create a text box with a message and the current time in
it in classic ASP, you can use the following code:

<input type=”text” value=”Hello World, the time is <%=Time()%>” />

As you can see, this code contains plain HTML, mixed with a server-side block, delimited by <%
and %> that outputs the current time using the equals (=) symbol. This type of coding has a major
disadvantage: the HTML and server-side code is mixed, making it difficult to write and manage
your pages. Although this is a trivial example in which it’s still easy to understand the code, this
type of programming can quickly result in very messy and complex pages.

Server controls work differently. In ASP.NET, the controls “live” on the server inside an ASPX page.
When the page is requested in the browser, the server-side controls are processed by the ASP.NET
runtime — the engine that is responsible for receiving and processing requests for ASPX pages. The
controls then emit client-side HTML code that is appended to the final page output. It’s this HTML
code that eventually ends up in the browser, where it’s used to build up the page.

So, instead of defining HTML controls in your pages directly, you define an ASP.NET Server
Control with the following syntax, where the italicized parts differ for each control.

<asp:TypeOfControl ID=”ControlName“ Runat=”Server” />

For the controls that ship with ASP.NET 4 you always use the asp: prefix followed by the name of
the control. For example, to create a TextBox that can hold the same welcome message and current
time, you can use the following syntax:

<asp:TextBox ID=”Message” Runat=”Server” />

Note that the control has two attributes: ID and Runat. The ID attribute is used to uniquely identify
a control on the page, so you can program against it. It’s important that each control on the page
has a unique ID; otherwise the ASP.NET runtime won’t understand what control you’re referring to.
If you accidentally type a duplicate control ID, VWD will signal the problem in the error list. The
mandatory Runat attribute is used to indicate that this is a control that lives on the server. Without
this attribute, the controls won’t be processed and will end up directly in the HTML source. If you
ever feel you’re missing a control in the final output in the HTML of the browser, ensure that the
control has this required attribute. Note that for non-server elements, like plain HTML elements,
the Runat attribute is optional. With this attribute on non-server controls, they can be reached by
your programming code. You learn more about this later in the book.

You can easily add the Runat attribute to an existing element by typing runat and pressing the
Tab key.

502211c04.indd 106 2/19/10 10:00:43 AM

Introduction to Server Controls  ❘  107

The preceding example of the TextBox is using a self-closing tag where the closing slash (/) is embed-
ded in the opening tag. This is quite common for controls that don’t need to contain child content
such as text or other controls. However, the long version, using a separate closing tag is acceptable as
well:

<asp:TextBox ID=”Message” Runat=”Server”></asp:TextBox>

You can control the default behavior of closing tags per tag using Tools ➪ Options ➪ Text Editor ➪
HTML ➪ Formatting ➪ Tag Specific Options.

You can program against this text box from code that is either placed inline with the page or in a
separate Code Behind file, as you saw in Chapter 2. To set the welcome message and the time, you
can use the following code:

VB.NET

Message.Text = “Hello World, the time is “ & DateTime.Now.TimeOfDay.ToString()

C#

Message.Text = “Hello World, the time is “ + DateTime.Now.TimeOfDay.ToString();

The definition of the control in the markup section of the page is now separated from the actual
code that defines the text displayed in the text box, making it easier to define and program the text
box (or any other control) because it enables you to focus on one task at a time: either declaring the
control and its visual appearance in the markup section of the page, or programming its behavior
from a code block.

You see how server controls send their underlying HTML to the client in the next exercise.

Working with Server ControlsTry It Out	

In this exercise, you add a TextBox, a Label, and a Button control to a page. When you request the
page in the browser, these server controls are transformed into HTML, which is then sent to the client.
By looking at the final HTML for the page in the browser, you’ll see how the HTML is completely dif-
ferent from the initial ASP.NET markup.

	1.	 Open the Planet Wrox project in Visual Web Developer.

	2.	 In the Demos folder in the Solution Explorer, create a new Web Form called ControlsDemo.aspx.
Choose your programming language and make sure the Web Form uses Code Behind.

	3.	 Switch to Design View. From the Toolbox, drag a TextBox, a Button, and a Label control onto
the design surface within the dashed lines of the <div> tag that was added for you when you cre-
ated the page.

Type the text Your name in front of the TextBox and add a line break between the Button and
the Label by positioning your cursor between the two controls in Design View and then press-
ing Enter. If you’re having trouble positioning the cursor between the controls, place it after the
Label control and then press the left arrow key twice. The first time you press it, the Label will
be selected; the second time, the cursor is placed between the two controls, enabling you to press
Enter. Your Design View should now look like Figure 4-1.

502211c04.indd 107 2/19/10 10:00:43 AM

108  ❘  Chapter 4   Working with ASP.NET Server Controls

Figure 4-1

	4.	 Right-click the Button and choose Properties to open
up the Properties Grid for the control. Pressing F4
after selecting the Button does the same thing. The
window that appears, shown in Figure 4-2, enables
you to change the properties for the control, which in
turn influence the way the control behaves at
runtime.

	5.	 Set the control’s Text property to Submit
Information and set its ID (which you’ll find all
the way down at the bottom of the list wrapped
in parentheses) to SubmitButton.

	6.	 Change the ID of the TextBox to YourName using the Properties Grid.

	7.	 Clear the Text property of the Label using the Properties Grid. You can right-click the property’s
label in the grid and choose Reset, or you can manually remove the text. You can leave its ID set
to Label1.

	8.	 Still in Design View, double-click the button to have VWD add some code to the Code Behind of
the page that will be fired when the button is clicked in the browser. Add the bolded line of code to
the code block that VWD inserted for you:

VB.NET

Protected Sub SubmitButton_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles SubmitButton.Click
 Label1.Text = “Your name is “ & YourName.Text
End Sub

C#

protected void SubmitButton_Click(object sender, EventArgs e)
{
 Label1.Text = “Your name is “ + YourName.Text;
}

Note that the VB.NET example doesn’t need an underscore here to split the code over two lines.
In previous versions of VB.NET the underscore was required to split this code over two lines.

	9.	 Save the changes to the page and then open it in the browser by pressing Ctrl+F5. When it appears
in the browser, don’t click the button yet, but open up the source of the page by right-clicking the

Figure 4-2

502211c04.indd 108 2/19/10 10:00:44 AM

Introduction to Server Controls  ❘  109

page in the browser and choosing View Source or View Page Source. You should see the following
HTML code (I changed the formatting slightly so the HTML fits on the page):

<div>
 Your name <input name=”YourName” type=”text” id=”YourName” />
 <input type=”submit” name=”SubmitButton” value=”Submit Information”
 id=”SubmitButton” />

</div>

	10.	 Switch back to your browser, fill in your name in the text box, and click the button. When the page
is done reloading, open up the source for the page in the browser again using the browser’s right-
click menu. The code should now look like this:

<div>
 Your name <input name=”YourName” type=”text” value=”Imar” id=”YourName” />
 <input type=”submit” name=”SubmitButton” value=”Submit Information”
 id=”SubmitButton” />

 Your name is Imar
</div>

Note that the two bold lines have changed, and now show the name you entered in the text box.
You can ignore the other HTML in the page for now.

How It Works

As its name implies, an ASP.NET Server Control lives on the server in your ASPX page where it can be
processed by the ASP.NET runtime. When you request a page in the browser, the runtime creates an
in-memory representation of the ASPX file with the controls you created. Once the runtime is about to
send the HTML to the browser, it asks each of the controls in the page for their HTML, which is then
injected in the final response. For example, when the Label control is asked for its HTML the first time
it loads, it returns the following:

Although you defined the Label control with the <asp:Label> syntax, it ends up as a simple
element in the browser. Because the Text property of the Label control is empty, you don’t see any
text between the two tags. The same applies to other controls; an <asp:TextBox> ends up as
<input type=”text”>, whereas the <asp:Button> ends up as <input type=”submit”>.

When you click the button, the control causes a postback, which sends the information for the controls
in the page to the server, where the page is loaded again. Additionally, the code that you wrote to han-
dle the button’s Click event is executed. This code takes the name you entered in the text box and then
assigns it to the Label control:

Label1.Text = “Your name is “ + YourName.Text;

Don’t worry about the syntax for the code that handles the button’s Click event for now. In Chapter 5,
you see how this works, and why you need this code.

502211c04.indd 109 2/19/10 10:00:44 AM

110  ❘  Chapter 4   Working with ASP.NET Server Controls

At this stage, the Label control contains the text you entered in the text box, so when it is asked for its
HTML, it now returns this:

Your name is Imar

You get a good look at postbacks later in this chapter when the ASP.NET state engine is discussed.

A Closer Look at ASP.NET Server Controls

Because you’ll be working with server controls for most of the time when building your ASP.NET
web pages, you need to know in detail how they work and how to use them. In the next section, you
see how to add the controls to your pages and change the way they behave in the browser. In the
section that follows, you get an overview of the behavior that all server controls have in common.
Once you understand this shared behavior, it’s easy to apply this knowledge to other, new controls
as well, enabling you to get up to speed with them very quickly.

Defining Controls in Your Pages
As demonstrated in the previous Try It Out, you can simply drag controls from the Toolbox onto the
design surface of the page. This makes it very easy to add a bunch of controls to a page to get you
started. However, because of the way the design surface works, it’s sometimes difficult to add them
exactly where you want them. For example, it can be difficult to drag a control between the opening
and closing tags of an HTML element. Fortunately, you can just as easily drag a control from the
Toolbox in Markup View. Additionally, you can also type the control’s markup directly in Markup
View, letting IntelliSense and Code Snippets help you with the different tags and attributes. You’ll
also find that the Properties Grid works in Markup View. Simply click the relevant markup, and the
Properties Grid will be updated to reflect the tag you clicked. This makes it easy to change the prop-
erties of the control, while you can still see exactly what markup gets generated for you.

If you look at the Properties Grid for some of the controls in a page, you’ll notice that many of them
have similar properties. In the next section, you see exactly what these properties are and what they
are used for.

Common Properties for All Controls
Most of the server controls you find in the VWD Toolbox share some common behavior. Part of
this behavior includes the so-called properties that define the data a control can contain and expose.
You learn more about properties and other behavior types in the next chapter. Each server con-
trol has an ID to uniquely identify it in the page, a Runat attribute that is always set to Server to
indicate the control should be processed on the server, and a ClientID that contains the client-side
ID attribute that will be assigned to the element in the final HTML. In versions of ASP.NET up
to 3.5 this ClientID was always generated for you automatically. However, in ASP.NET 4 a new
ClientIDMode property has been introduced that gives you more control over the ID of an element

502211c04.indd 110 2/19/10 10:00:44 AM

A Closer Look at ASP.NET Server Controls  ❘  111

at the client. You see how this works in later chapters. The Runat attribute does not really belong to
the server control, but is necessary to indicate that the markup for the control should be processed
as a server control and not end up as plain text or HTML in the browser.

Besides these properties, many of the server controls share more properties. The following table lists
the most common ones and describes what they are used for.

Property Description

AccessKey Enables you to set a key with which a control can be accessed at the client by

pressing the associated letter.

BackColor

ForeColor

Enables you to change the color of the background (BackColor) and text

(ForeColor) of the control.

BorderColor

BorderStyle

BorderWidth

Changes the border of the control in the browser. The similarities with the CSS

border properties you saw in the previous chapter are no coincidence. Each of

these three ASP.NET properties maps directly to its CSS counterpart.

CssClass Lets you define the HTML class attribute for the control in the browser. This class

name then points to a CSS class you defined in the page or an external CSS file.

Enabled Determines whether the user can interact with the control in the browser. For

example, with a disabled text box (Enabled=”False”) you cannot change its text.

Font Enables you to define different font-related settings, such as Font-Size, Font-

Names, and Font-Bold.

Height

Width

Determines the height and width of the control in the browser.

TabIndex Sets the client-side HTML tabindex attribute that determines the order in which

users can move through the controls in the page by pressing the Tab key.

ToolTip Enables you to set a tooltip for the control in the browser. This tooltip, rendered as

a title attribute in the HTML, is shown when the user hovers the mouse over the

relevant HTML element.

Visible Determines whether or not the control is sent to the browser. You should really

see this as a server-side visibility setting because an invisible control is never sent

to the browser at all. This means it’s quite different from the CSS display and

visibility properties you saw in the previous chapter that hide the element at

the client.

To see how all these attributes end up in the browser, consider the following markup for a TextBox
server control:

<asp:TextBox AccessKey=”a” BackColor=”Black” ForeColor=”White” Font-Size=”30px”
 BorderColor=”Yellow” BorderStyle=”Dashed” BorderWidth=”4” CssClass=”TextBox”
 Enabled=”True” Height=”40” Width=”200” TabIndex=”1” ToolTip=”Hover text here”
 Visible=”True” ID=”TextBox1” runat=”server” Text=”Hello World”>
</asp:TextBox>

502211c04.indd 111 2/19/10 10:00:44 AM

112  ❘  Chapter 4   Working with ASP.NET Server Controls

When you request the page with this control in the browser, you end up with the following HTML:

<input name=”TextBox1” type=”text” value=”Hello World” id=”TextBox1” accesskey=”a”
 tabindex=”1” title=”Hover text here” class=”TextBox” style=”color:White;
 background-color:Black;border-color:Yellow;border-width:4px;
 border-style:Dashed;font-size:30px;height:40px;width:200px;”
/>

This results in the text box shown in Figure 4-3.

Note that most of the server-side control properties have
been moved to CSS inline styles with the style attribute.

When building web sites, it’s quite uncommon to define
a TextBox in this manner. As you learned in the previous
chapter, you should avoid inline styles as much as pos-
sible, and opt for external CSS style sheets instead. You can
accomplish the exact same behavior with this server-side
control:

<asp:TextBox ID=”TextBox1” AccessKey=”a” CssClass=”TextBox” TabIndex=”1”
 ToolTip=”Hover text here” runat=”server” Text=”Hello World”>
</asp:TextBox>

And the following CSS class:

.TextBox
{
 background-color: Black;
 color: White;
 font-size: 30px;
 border-color: Yellow;
 border-style: Dashed;
 border-width: 4px;
 height: 40px;
 width: 200px;
}

Obviously, the second example is much easier to read, reuse, and maintain. If you want another
text box with the exact same look, you simply assign TextBox to the CssClass of that control. Also,
notice I left out the Enabled and Visible properties. Both default to True so there’s no need to
explicitly state that in the control declaration.

Although it’s recommended to use CSS classes instead of these inline styles, it’s good to know about
the server-side control properties in case you need fine control over them. If you programmatically
change the control’s properties (as you learn how to do later) they still end up as inline styles, and
thus possibly override settings in embedded or external style sheets.

Now that you have seen the generic behavior that all server controls share, it’s time to look at the
large number of controls that ship with ASP.NET 4.

Figure 4-3

502211c04.indd 112 2/19/10 10:00:45 AM

Types of Controls  ❘  113

Types of Controls

Out of the box, ASP.NET 4 comes with a large number of server controls, supporting most of your
web development needs. To make it easy for you to find the right controls, they have been placed in
separate control categories in the Visual Web Developer Toolbox (accessible by pressing Ctrl+Alt+X).
Figure 4-4 shows the Toolbox with all the available categories.

In the following sections, you see the controls in each category and the tasks
for which they are designed.

With the discussion of the various controls, you see a mention of the prop-
erties of a control. For example, a TextBox has a Text property (among
many others), and a ListBox has a SelectedItem property. Some proper-
ties can only be set programmatically and not with the Properties Grid.
Programmatically reading and changing control properties is discussed in
detail in the next chapter.

Standard Controls
The Standard category contains many of the basic controls that almost any
web page needs. You’ve already seen some of them, like the TextBox,
Button, and Label controls earlier in this chapter. Figure 4-5 shows all the
controls in the Standard category.

Many of the controls probably speak for themselves, so instead of giving you
a detailed description of them all, the following sections briefly highlight a
few important ones.

Simple Controls

The Toolbox contains a number of simple and straightforward con-
trols, including TextBox, Button, Label, HyperLink, RadioButton, and
CheckBox. Their icons in the Toolbox give you a good clue as to how they
end up in the browser. In the remainder of this book, you see these controls
used many times.

List Controls

The standard category also contains a number of controls that present them-
selves as lists in the browser. These controls include ListBox, DropDownList,
CheckBoxList, RadioButtonList, and BulletedList. To add items to the
list, you define <asp:ListItem> elements between the opening and closing
tags of the control, as shown in the following example:

<asp:DropDownList ID=”FavoriteLanguage” runat=”server”>
 <asp:ListItem Value=”C#”>C#</asp:ListItem>
 <asp:ListItem Value=”Visual Basic”>Visual Basic</asp:ListItem>
 <asp:ListItem Value=”CSS”>CSS</asp:ListItem>
</asp:DropDownList>

Figure 4-4

Figure 4-5

502211c04.indd 113 2/19/10 10:00:45 AM

114  ❘  Chapter 4   Working with ASP.NET Server Controls

The DropDownList enables a user to select only one item at a time. To see the currently active and
selected item of a list control programmatically, you can look at its SelectedValue, SelectedItem,
or SelectedIndex properties. SelectedValue returns a string that contains the value for the
selected item, like C# or Visual Basic in the preceding example. SelectedIndex returns the
zero-based index of the item in the list. With the preceding example, if the user had chosen C#,
SelectedIndex would be 0. Similarly, when the user has chosen CSS, the index would be 2 (the
third item in the list). The BulletedList control doesn’t allow a user to make selections, and as
such doesn’t support these properties.

For controls that allow multiple selections (like CheckBoxList and ListBox), you can loop through
the Items collection and see what items are selected. In this case, SelectedItem returns only the
first selected item in the list; not all of them. You learn how to access all the selected items in the
next exercise.

To see how to add list items to your list control, and how to read the selected values, the following
exercise guides you through creating a simple Web Form with two list controls that ask users for
their favorite programming language.

Working with List ControlsTry It Out	

In this exercise you add two list controls to a page. Additionally, you add a button that, when clicked,
displays the selected items as text in a Label control.

	1.	 In the Demos folder, create a new Web Form called ListControls.aspx. Make sure you create a
Code Behind file by checking the Place Code in Separate File option.

	2.	 Switch to Design View and drag a DropDownList from the Toolbox onto the design surface of the
page within the dashed border of the <div> element that is already present in your page.

	3.	 Notice that as soon as you drop the DropDownList control on the page, a pop-up menu appears
that is labeled DropDownList Tasks, as shown in Figure 4-6.

Figure 4-6

This pop-up menu is called the Smart Tasks panel. When it appears, it gives you access to the
most common tasks of the control it belongs to. In the case of the DropDownList, you get three
options. The first option enables you to bind the control to a data source, which is demonstrated
in Chapter 13. The second item enables you to manually add items to the list, whereas the last
option sets the AutoPostBack property of the control. With this option checked, the control will

502211c04.indd 114 2/19/10 10:00:45 AM

Types of Controls  ❘  115

submit the page it is contained in back to the server as soon as the user chooses a new item from
the list.

The Smart Tasks panel only appears for the more complex controls that have a lot of features.
You won’t see it for simple controls like Button or Label. To reopen the Smart Tasks panel, right-
click the control in the designer and choose Show Smart Tag. Alternatively, click the small arrow
at the top-right corner of the control, visible in Figure 4-6.

On the Smart Tasks panel of the DropDownList, click the Edit Items link to bring up the ListItem
Collection Editor, shown in Figure 4-7.

Figure 4-7

This dialog box enables you to add new items to the list control. The items you add through this
window will be added as <asp:ListItem> elements between the tags for the control.

	4.	 Click the Add button on the left side of the screen to insert a new list item. Then in the Properties
Grid on the right, enter C# for the Text property and press Tab. As soon as you tab away from the
Text property, the value is copied to the Value property as well. This is convenient if you want
both the Text and the Value property to be the same. However, it’s perfectly OK (and quite com-
mon) to assign a different value to the Value property.

	5.	 Repeat step 4 twice, this time creating list items for Visual Basic and CSS. You can use the up and
down arrows in the middle of the dialog box to change the order of the items in the list. Finally,
click OK to insert the items in the page. You should end up with the following code:

<asp:DropDownList ID=”DropDownList1” runat=”server”>
 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>Visual Basic</asp:ListItem>
 <asp:ListItem>CSS</asp:ListItem>
</asp:DropDownList>

	6.	 Switch to Markup View and drag a CheckBoxList control from the Toolbox directly into the code
window, right after the DropDownList.

502211c04.indd 115 2/19/10 10:00:45 AM

116  ❘  Chapter 4   Working with ASP.NET Server Controls

	7.	 Copy the three <asp:ListItem> elements from the DropDownList you created in steps 4 and 5
and paste them between the opening and closing tags of the CheckBoxList. You should end up
with this code:

 <asp:ListItem>CSS</asp:ListItem>
</asp:DropDownList>
<asp:CheckBoxList ID=”CheckBoxList1” runat=”server”>
 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>Visual Basic</asp:ListItem>
 <asp:ListItem>CSS</asp:ListItem>
</asp:CheckBoxList>

	8.	 Switch to Design View and drag a Button from the Toolbox in Design View to the right of the
CheckBoxList control. The Button will be placed below the CheckBoxList. Next, drag a Label
control and drop it to the right of the Button. Create some room between the Button and the
Label by positioning your cursor between the controls and then pressing Enter twice. Double-click
the Button to open the Code Behind of the page.

	9.	 In the code block that VWD added for you, add the following bolded code, which will be executed
when the user clicks the button:

VB.NET

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Button1.Click
 Label1.Text = “In the DDL you selected “ &
 DropDownList1.SelectedValue & “
”

 For Each item As ListItem In CheckBoxList1.Items
 If item.Selected Then
 Label1.Text &= “In the CBL you selected “ & item.Value & “
”
 End If
 Next
End Sub

C#

protected void Button1_Click(object sender, EventArgs e)
{
 Label1.Text = “In the DDL you selected “ +
 DropDownList1.SelectedValue + “
”;

 foreach (ListItem item in CheckBoxList1.Items)
 {
 if (item.Selected == true)
 {
 Label1.Text += “In the CBL you selected “ + item.Value + “
”;
 }
 }
}

Notice how in the VB.NET code the underscore is needed again to split the code over two lines.
VB.NET requires the underscore if you want to move the Handles keyword to its own line.

502211c04.indd 116 2/19/10 10:00:45 AM

Types of Controls  ❘  117

	10.	 Save the changes to the page and then request it in the browser. Choose an item from the
DropDownList, check one or more items in the CheckBoxList, and click the button. You should
see something similar to Figure 4-8, which shows the page in Firefox.

Figure 4-8

How It Works

The various list controls all use <asp:ListItem> elements. That makes it easy to reuse them by copying
them from one control to another. Because the DropDownList supports only one selected item at a time,
it’s pretty easy to get its selected value. All it takes is a single line of code (shown in C#):

Label1.Text = “In the DDL you selected “ + DropDownList1.SelectedValue + “
”;

The CheckBoxList control enables a user to select multiple items at once. Therefore, you need a bit
more code to loop over the collection of items, checking the Selected property of each item (again
shown in C#):

foreach (ListItem item in CheckBoxList1.Items)
{
 if (item.Selected == true)
 {
 Label1.Text += “In the CBL you selected “ + item.Value + “
”;
 }
}

The CheckBoxList and the other list controls have an Items collection that contains all the items you
defined in the code. So, given the code from this Try It Out, CheckBoxList1 contains three items, for
C#, Visual Basic, and CSS, respectively. Each ListItem in turn contains a Selected property that
determines whether or not the user has checked the item in the list.

Using a foreach loop (For Each in VB.NET), you can iterate over the collection of ListItem elements,
testing the Selected property one by one. If the item was selected in the list, its Selected property is
true and its Value is appended to the text of the Label. Notice the use of += (&= in VB.NET) in the

502211c04.indd 117 2/19/10 10:00:45 AM

118  ❘  Chapter 4   Working with ASP.NET Server Controls

last code example to assign the Value of the list item together with the text. The += and &= syntax is
shorthand for this:

Label1.Text = Label1.Text + “In the CBL you selected “ + item.Value + “
”;

This code takes the current text from the Label control, appends “In the CBL you selected “ +
item.Value + “
” to it, and then reassigns the entire string back to the Text property of the
label. Using the += syntax is often a bit easier to write and understand, but the longer version is com-
mon as well.

Both VB.NET and C# have support for a For Each loop, although both languages use a slightly differ-
ent syntax. In the next chapter you learn a lot more about looping and other language constructs.

Also of note is the way the ListItems are set up. In the first example, before the Try It Out, you saw
ListItem elements with both a value and text:

 <asp:ListItem Value=”C#”>C#</asp:ListItem>
 <asp:ListItem Value=”Visual Basic”>Visual Basic</asp:ListItem>
 <asp:ListItem Value=”CSS”>CSS</asp:ListItem>

When you add items to the list yourself with the ListItem Collection Editor, you don’t get the Value
attributes:

 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>Visual Basic</asp:ListItem>
 <asp:ListItem>CSS</asp:ListItem>

You didn’t get the Value attribute, because you didn’t supply an explicit value for the item in the
ListItem Collection Editor. If you omit the Value, the text between the opening and closing tags of the
ListItem is used implicitly as the value, which is fine in many cases. However, it’s also quite common
to have a different Value and Text property in the list. For example, when you have a list with coun-
tries, you could use the full name of the country as the Text (like Netherlands) and use the official
country code (nl) as the Value for the drop-down list. You see the list controls at work in other chap-
ters in this book.

Container Controls

Quite often it’s desirable to have the ability to group related content and controls. This grouping
can be done by putting the controls (and other markup) in one of the container controls, like the
Panel, the PlaceHolder, the MultiView, or the Wizard. For example, you can use the PlaceHolder
or the Panel control to hide or show a number of controls at once. Instead of hiding each control
separately, you simply hide the entire container that contains all the individual controls and markup.
Both of these controls have their own advantages and disadvantages. The good thing about the
PlaceHolder control is that it emits no HTML of its own into the page, so you can use it as a con-
tainer without any side effects in the final page. However, it lacks design-time support, making it
hard to manage the controls inside the PlaceHolder at design time in VWD. In contrast, the Panel
enables you to easily access all controls and other content it contains but renders itself as a <div>
tag. In many cases this isn’t a problem, so usually you’re best off with the Panel control because of
its design-time support.

502211c04.indd 118 2/19/10 10:00:46 AM

Types of Controls  ❘  119

The MultiView (which can contain one or more <asp:View> controls) and the Wizard are similar in
that they enables you to split up a long page into multiple areas, making it easy to fill in a long form,
for example. The Wizard has built-in support for moving from page to page using Previous, Next,
and Finish buttons, whereas the MultiView must be controlled programmatically.

A Closer Look at the Panel Control

In the following exercise, you use a Panel control to create a container for other controls and
markup. You only add some text for now, but in a subsequent Try It Out exercise you add ASP.NET
controls to the panel.

Using the Panel ControlTry It Out	

In this exercise you see how to use the Panel control as a container for some simple text. In addition,
you use a CheckBox to control the visibility of the Panel at the server.

	1.	 Start by creating a new Web Form with Code Behind called Containers.aspx in the Demos folder.

	2.	 Switch the page into Design View and drag a CheckBox and a Panel control from the Toolbox on
the design surface into the dashed <div> element.

	3.	 Give the CheckBox control a meaningful description by setting its Text property to Show Panel
and set its AutoPostBack property to True using the Properties Grid. Rather than choosing True
from the drop-down list for the property, you can also double-click the AutoPostBack property or
its value to toggle between False and True.

	4.	 Set the Visible property of the Panel control to False using the Properties Grid. This hides the
Panel control when the page first loads.

	5.	 Inside the Panel control, type some text (for example, I am visible now). Note that the panel
behaves like the rest of VWD’s design surface. You can simply add text to it, select and format it,
and even add new controls to it by dragging them from the Toolbox. The code for the panel should
end up like this:

<asp:Panel ID=”Panel1” runat=”server” Visible=”False”>
 I am visible now
</asp:Panel>

	6.	 Double-click the CheckBox control in Design View and, inside the code that VWD added for you,
enter the following bolded line of code:

VB.NET

Protected Sub CheckBox1_CheckedChanged(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles CheckBox1.CheckedChanged
 Panel1.Visible = CheckBox1.Checked
End Sub

C#

protected void CheckBox1_CheckedChanged(object sender, EventArgs e)
{
 Panel1.Visible = CheckBox1.Checked;
}

502211c04.indd 119 2/19/10 10:00:46 AM

120  ❘  Chapter 4   Working with ASP.NET Server Controls

	7.	 Save all your changes and then request the page in the browser by pressing Ctrl+F5.

	8.	 When the page first loads, all you see is the CheckBox and the text beside it. When you click the
CheckBox control to place a checkmark in it, the page reloads and now shows the text you entered
in step 5.

COMMON MISTAKES  If nothing happens, go back to the source of the page in
VWD and ensure that AutoPostBack is set to True on the CheckBox control.

If you look at the HTML in the browser (right-click the page and choose View Source or View
Page Source), you’ll see that the text you typed in step 5 is surrounded with a <div> tag with an
id of Panel1:

<div id=”Panel1”>
 I am visible now
</div>

How It Works

In step 4 of this exercise you set the Visible property of the Panel control to False. This means that
when the page loads, the control is not visible on the server and thus its HTML never makes it to the
browser. When you then check the CheckBox, a postback occurs, which sends the information con-
tained in the form to the server. At the server, some code is run that is fired whenever the checkbox
changes its state from checked to unchecked or vice versa. Inside that code block, the following code is
executed (shown in C#):

 Panel1.Visible = CheckBox1.Checked;

This means that the Panel is only visible when the checkbox is checked. When it isn’t, the Panel is hid-
den automatically.

In the next chapter you learn much more about the code that makes this happen, and why you need
code like the line with CheckBox1_CheckedChanged.

As you can see, it’s easy to add text and other markup to the Panel control in Visual Web
Developer. Right now, you only added some plain text but in the next section you see how to add a
Wizard control and how to use it.

Magic with the Wizard Control

The Wizard control is a great tool for breaking apart large Web Forms and presenting them as bite-
sized chunks of information to the user. Instead of confusing your user with one page with many
controls and text on it, you can break the page apart and present each part on a separate wizard
page. The Wizard control then handles all navigation issues by creating Next, Previous, and Finish
buttons automatically. In the following exercise you use a wizard to ask a user for her name and
favorite programming language. Although the example itself is pretty trivial, and you could have

502211c04.indd 120 2/19/10 10:00:46 AM

Types of Controls  ❘  121

placed both questions on the same page without confusing the user, the example shows how the
wizard works and why it’s useful. You can easily apply the same techniques to your own, possibly
larger, Web Forms.

Using the Wizard to Create Easy-to-Use FormsTry It Out	

In this Try It Out, you place a Wizard inside the panel you created in the previous exercise that enables
a user to fill in a form that is spread over a couple of pages. The wizard will have two steps where a
user can enter details and a results page that shows the data the user has provided.

	1.	 Make sure you still have Containers.aspx page open in Design View. Remove the text “I am
visible now” that you entered in the previous Try It Out, and then drag a Wizard control from the
Toolbox inside the Panel. Drag its right edge further to the right, increasing the total width of
the control to 500px. Your page now looks similar to Figure 4-9.

Figure 4-9

	2.	 Open the Wizard’s Smart Tasks panel (click the arrow in its upper right-hand corner) and choose
Add/Remove WizardSteps. In the dialog box that follows click the Add button to insert a third
wizard step, shown in Figure 4-10.

Figure 4-10

	3.	 Click the first WizardStep labeled Step 1 in the Members list on the left and change its Title from
Step 1 to About You. Set the Title of the other two steps to Favorite Language and Ready,
respectively.

502211c04.indd 121 2/19/10 10:00:46 AM

122  ❘  Chapter 4   Working with ASP.NET Server Controls

	4.	 Change the StepType of the second step (now labeled Favorite Language) to Finish and of the
last step to Complete. You can leave the StepType of the first step set to Auto. Click OK to close
the WizardStep Collection Editor.

	5.	 In Design View, click About You in the list at the left to make it the active step and drag a Label
and a TextBox to the right side of the Wizard. You need to drag them inside the grey rectangle
that’s in the upper-right corner of the Wizard, or the controls won’t end up inside the Wizard.
Set the Text property of the Label to Type your name and change the ID of the TextBox to
YourName. When you’re done, your Wizard looks like Figure 4-11.

Figure 4-11

	6.	 Click the Favorite Language item in the list on the left to make it the active step. If you
don’t see Favorite Language turn bold, open the Wizard’s Properties Grid and set the
ActiveStepIndex to 1. Add a DropDownList to the rectangle with the grey border on the right
part of the wizard step. Rename the DropDownList by setting its ID to FavoriteLanguage. Open
the Smart Tasks panel of the DropDownList control and choose Edit Items. Add the same three
items you added in an earlier Try It Out: for C#, Visual Basic, and CSS, respectively. If you want,
you can copy the three items from the page ListControls.aspx and paste them between the
<asp:DropDownList> tags inside the second step. You should end up with the following code for
the second step:

</asp:WizardStep>
<asp:WizardStep runat=”server” Title=”Favorite Language” StepType=”Finish”>
 <asp:DropDownList ID=”FavoriteLanguage” runat=”server”>
 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>Visual Basic</asp:ListItem>
 <asp:ListItem>CSS</asp:ListItem>
 </asp:DropDownList>
</asp:WizardStep>
<asp:WizardStep runat=”server” StepType=”Complete” Title=”Ready”>

	7.	 Switch to Markup View, and inside the last WizardStep labeled Ready, drag a label control from
the Toolbox and rename it by setting its ID to Result. If you try to switch to the last step in
Design View, you may notice that the wizard disappears. If that happens, switch to Markup View
and set ActiveStepIndex to 0 again on the opening tag of the <Wizard> control.

	8.	 Double-click the wizard in Design View and add the following bolded code, which will be executed
when the user clicks the Finish button on the last step of the wizard. If you’re having problems get-
ting VWD to create the correct code for you, as you see it in the next snippet, select the Wizard,

502211c04.indd 122 2/19/10 10:00:46 AM

Types of Controls  ❘  123

press F4 to open up the control’s Properties Grid, and then click the button with the lightning bolt
on it (the fourth button from the left on the toolbar of the Properties Grid), as shown in Figure 4-12.

Figure 4-12

This part of the Properties Grid is often referred to as the Events Tab of the Properties Grid.
Locate and double-click FinishButtonClick in the Action category. With both methods, you
should end up with some code for Wizard1_FinishButtonClick that you need to extend with the
following code (the next chapter shows you what the lightning bolt does, exactly, and what it is
used for):

VB.NET

Protected Sub Wizard1_FinishButtonClick(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles Wizard1.FinishButtonClick
 Result.Text = “Your name is “ & YourName.Text
 Result.Text &= “
Your favorite language is “ &
 FavoriteLanguage.SelectedValue
End Sub

C#

protected void Wizard1_FinishButtonClick(object sender,
 WizardNavigationEventArgs e)
{
 Result.Text = “Your name is “ + YourName.Text;
 Result.Text += “
Your favorite language is “ +
 FavoriteLanguage.SelectedValue;
}

	9.	 Switch back to Design View and open the Properties Grid for the Wizard and make sure its
ActiveStepIndex is set to 0. The designer remembers the last step you designed and stores the
value in the ActiveStepIndex of the Wizard in Markup View. To make sure the wizard starts on
the first page, you should always set the ActiveStepIndex back to 0 (or click the first step in the
Wizard control in Design View) before you save your changes and run the page.

	10.	 Press Ctrl+F5 to open the page in the browser. Select the CheckBox to make the Panel visible and
enter your name on the first wizard page. Click Next and choose your favorite programming lan-
guage. Notice how there’s now a Previous button available that enables you to go back to the first

502211c04.indd 123 2/19/10 10:00:46 AM

124  ❘  Chapter 4   Working with ASP.NET Server Controls

step of the wizard if you wanted to change your name. Instead of clicking the Next and Previous
buttons, you can also click the links on the left of the wizard in the browser. When you click the
Finish button, you’ll see the results of the information you entered in the wizard (see Figure 4-13).

Figure 4-13

How It Works

The Wizard control takes care of most of the hard work for you. It handles the navigation, determines
when to show the correct buttons (Next, Previous, and Finish), and ensures that in the resulting page
the values for the controls you added in the wizard steps are still available so you can show them in the
results label. It does this with a concept called View State, something you learn more about toward the
end of this chapter.

All you have to do is define the steps and set their StepType. The StepType of the first step was set to
Auto. With this setting, the wizard figures out what buttons to show. Because it’s the first step in the
Wizard and there’s no previous step to go to, it leaves out the Previous button. You set the StepType
of the second step to Finish, which tells the wizard to draw a Previous button and a Finish button.
When you click the Finish button, the wizard arrives at the last step with its StepType set to Complete.
On this step, the navigation buttons are hidden, and all you see is the label with the result, which was
assigned with the code in the Code Behind of the page. In Chapter 5, you learn more about the code in
the Code Behind that makes this possible.

In addition to the controls you have seen in the previous sections, a few other controls are worth
examining. Not all of them are discussed here in detail because they aren’t used any further in
this book. Consult the documentation that comes with VWD for a detailed description of these
controls. Another good source of information is the Microsoft Developer Network (MSDN) site
at http://msdn.microsoft.com. To find information about controls on this site, use your favorite
search engine and then search for ControlName Control MSDN. For example, to find more infor-
mation on the Wizard control you’d search for Wizard Control MSDN. Typically, the MSDN site is
at the top of the search results.

Other Standard Controls

This section briefly discusses the remainder of the controls in the Standard category of the Toolbox.
You see many of them used in the sample application in the rest of the book.

502211c04.indd 124 2/19/10 10:00:46 AM

Types of Controls  ❘  125

LinkButton and ImageButton

The LinkButton and the ImageButton controls operate similarly to an ordinary Button control.
Both of them cause a postback to the server when they are clicked. The LinkButton presents itself
as a simple <a> element but posts back (using JavaScript) instead of requesting a new page. The
ImageButton does the same, but displays an image that the user can click to trigger the postback.

Image and ImageMap

These controls are pretty similar in that they display an image in the browser. The ImageMap enables
you to define hotspots on the image that when clicked either cause a postback to the server or navi-
gate to a different page.

Calendar

The Calendar control presents a rich interface that enables a user to select a date. You see more of it
toward the end of this chapter when the ASP.NET state engine is discussed.

FileUpload

The FileUpload control enables a user to upload files that can be stored on the server. You see more
of this control later in this book.

Literal, Localize, and Substitute

All three controls look a little like the Label control because they can all display static text or
HTML. The biggest advantage of the Literal is that it renders no additional tag itself; it displays
only what you assign to its Text property and is thus very useful to display HTML or JavaScript
that you build up in the Code Behind or that you retrieve from a database.

The Localize control is used in multilingual web sites and is able to retrieve its contents from trans-
lated resource files. The Substitute control is used in advanced caching scenarios and enables you
to update only parts of a page that is otherwise cached completely. Both of these controls fall outside
the scope of this book, but for a good discussion of them you may want to get a copy of Wrox’s
Professional ASP.NET 4 in C# and VB (ISBN: 978-0-470-50220-4).

AdRotator

The AdRotator control enables you to display random advertisements on your web site. The ads
come from an XML file that you create on your server. Because it lacks advanced features like click
tracking and logging that are required in most but the simplest scenarios, this control isn’t used
much in today’s web sites.

HiddenField

The HiddenField control enables you to store data in the page that is submitted with each request.
This is useful if you want the page to remember specific data without the user seeing it on the page.
Because the field does show up in the HTML source of the page and is thus accessible to the end
user, you should never store any sensitive data in it.

502211c04.indd 125 2/19/10 10:00:47 AM

126  ❘  Chapter 4   Working with ASP.NET Server Controls

XML

The XML control enables you to transform data from an XML format to another format (like
XHTML) for display on a page. Check out Professional ASP.NET 4 for a detailed description.

Table

The <asp:Table> control is in many respects identical to its HTML <table> counterpart.
However, because the control lives at the server, you can program against it, dynamically creating
new columns and rows and adding dynamic data to it.

This concludes the discussion of the controls in the Standard category of the Toolbox. In most
web pages, you’ll be working with at least a few of these controls. The remainder of this section
discusses the other categories of the Toolbox. Because most of them are used in some form in the
remainder of this book, this chapter just briefly describes their purpose so you get a rough idea
what they are used for. You’ll find cross-references to the other chapters where you can find out
more information about them.

HTML Controls
The HTML category of the Toolbox contains a number of HTML controls that look similar to
the ones found in the Standard category. For example, you find the Input (Button) that looks
like the <asp:Button>. Similarly, there is a Select control that has the <asp:DropDownList> and
<asp:ListBox> as its counterparts.

In contrast to the ASP.NET Server Controls, the HTML controls are client-side controls and end
up directly in the final HTML in the browser. You can expose them to server-side code by adding
a Runat=”Server” attribute to them. This enables you to program against them from the Code
Behind of a Web Form, to influence things like their visibility.

The HTML controls have a lot less functionality than the ones in the Standard category. For exam-
ple, the Select control lacks design-time support for adding new items to the list with the ListItem
Collection Editor. This forces you to write the items by hand in the Markup View of VWD.

Because the controls in the Standard and HTML category look quite like each other, the next sec-
tion discusses their differences and gives you some idea when to favor one category over the other.

How to Choose between Standard and HTML Controls

There seems to be some overlap between the controls in the Standard and HTML categories of the
Toolbox. So which ones should you choose and when? Generally, the true server controls in the
Standard category offer you a lot more functionality, both in terms of design-time support in VWD
and what they can do at runtime. But this functionality comes at a price. Because of their increased
complexity, the server controls take a little more time to process. However, on most web sites you
probably won’t notice the difference. Only when you have a high-traffic web site with lots of con-
trols on the page do the HTML controls give you a slightly better performance and consume less
memory on the server when compared to the server controls.

In most scenarios, favor the server controls over their HTML counterparts. Because server controls
offer more functionality, they give you more flexibility in your pages, allowing you to create a richer
user experience. Also the better design-time support makes it worth choosing these controls.

502211c04.indd 126 2/19/10 10:00:47 AM

Types of Controls  ❘  127

Choose the HTML controls if you’re really sure that you don’t need the functionality that the server
controls offer you.

The remainder of this section quickly guides you through the other categories in the Toolbox.

Data Controls
Data controls were introduced in ASP.NET 2.0, and offer an easy way to access various data sources
like databases, XML files, and objects. Instead of writing lots of code to access the data source as
you had to do in earlier versions of ASP.NET, you simply point your data control to an appropriate
data source, and the ASP.NET runtime takes care of most of the difficult issues for you. You see a
lot more about these controls in Chapter 13 and onward.

Validation Controls
Validation controls enable you to rapidly create Web Forms with validation rules that prohibit users
from entering invalid data. For example, you can force users to enter values for required fields and
check whether the entered data matches a specific format like a valid date or a number between 1
and 10. They even allow you to write custom code to create validation routines that are not covered
by the standard controls. The beauty of the validation controls is that they can execute both on the
client and the server, enabling you to create responsive and secure web applications. Chapter 9 digs
much deeper into these controls.

Navigation Controls
The controls you find under the Navigation category of the Toolbox are used to let users find their
way through your site. The TreeView control presents a hierarchical display of data and can be used
to show the structure of your site, giving easy access to all the pages in the site. The Menu control
does a similar thing and provides options for horizontal and vertical fold-out menus.

The SiteMapPath control creates a “breadcrumb trail” in your web pages that enables your users to
easily find their way up in the hierarchy of pages in your site.

You see all of these controls in action in Chapter 7, which deals with navigation in web sites exclusively.

Login Controls
Just like the Data and Navigation controls, the Login controls were introduced in ASP.NET 2.0 and
are still strongly present in ASP.NET 4. With very little effort, login controls enable you to create
secure web sites where users need to sign up and log in before they can access specific parts of the
web site (or even the entire web site). In addition, they provide the tools for users to change their
password, or request a new password if they forget the old one, and enable you to display different
data depending on the logged-in status and role of the user. Chapter 16 provides more details about
the security features and login controls of ASP.NET.

Ajax Extensions
More than a year after the official release of ASP.NET 2.0 in November 2005, Microsoft released
the ASP.NET 2.0 AJAX Extensions 1.0 as an add-on for ASP.NET 2.0. These extensions enable you

502211c04.indd 127 2/19/10 10:00:47 AM

128  ❘  Chapter 4   Working with ASP.NET Server Controls

to create flicker-free web applications that are able to retrieve data from the server from client-side
JavaScript without a full postback. Ever since Ajax became a hot technology in 2005, Microsoft has been
working hard to get to the top of the Ajax implementers. The Ajax extensions were fully integrated in the
VWD 2008 IDE and have been upgraded to AJAX 4 in VWD 2010. Chapter 10 focuses on Ajax.

WebParts
ASP.NET WebParts are a set of controls that enables an end user of a web page to change the appear-
ance and behavior of a web site. With a few simple actions, users can change the entire appearance
of a web site by rearranging content, hiding or showing parts of the web page, and adding other con-
tent fragments to the page. The ASP.NET WebParts are outside the scope of this book because they
deserve an entire book. If you want to learn more about WebParts, check out Professional Web Parts
and Custom Controls with ASP.NET 2.0 by Peter Vogel (ISBN: 978-0-7645-7860-1). Although the
book is targeted at ASP.NET 2.0, you’ll find that many of the concepts presented in the book still
apply to ASP.NET 4.

Dynamic Data
The controls in this category are used in Dynamic Data Web Sites. Dynamic Data sites enable you to
quickly build a user interface to manage data in a database. These controls are not discussed further
in this book.

The ASP.NET State Engine

In the previous chapter, you created a page with a TextBox and a Button control. In the Try It Out,
you ran this page in the browser, typed some text, and clicked the button. The button caused a post-
back to the server, and when the page reloaded, the text was still present in the text box. You pretty
much did the same thing with the Wizard control in this chapter, where the values from the text box
and the drop-down list were maintained as well. If you’re familiar with other web technologies like
ASP or PHP, this probably surprised you. In those languages, you often need to write lots of code to
make this happen. So why and how does this work automatically in ASP.NET?

The text in the text box is maintained by the ASP.NET state engine, a feature that is deeply integrated
into the ASP.NET runtime. It enables controls to maintain their state across postbacks, so their values
and settings remain available after every postback of the page.

What Is State and Why Is It Important?
To understand state, it’s important to realize that by design, HTTP — the protocol used to request
and serve pages in a web browser — is stateless. What this means is that the web server does not
keep track of requests that have been made from a specific browser. As far as the web server is con-
cerned, each request you make to the server by browsing to a page and clicking links to other pages
stands on its own. The web server has no recollection of pages you requested previously.

502211c04.indd 128 2/19/10 10:00:47 AM

The ASP.NET State Engine  ❘  129

This poses some interesting problems. Consider, for example, a simple
login page that enables you to log in to a web site, like your favorite web
mail program. You can see a sample of the login box in Figure 4-14.

Now imagine that you try to log in with a correct user name but with
an incorrect password. The page will then inform you that your login
attempt failed. Ideally, you would also want your user name to be filled
in for you automatically, and you’d want the Remember Me Next Time check box to retain its selec-
tion as well. That way, it’s easy for the user to enter the correct password and click the Log In button
again. This is just a trivial example, but it’s easy to come up with many more scenarios where it’s
useful if controls are able to maintain their own state.

However, by default, a web page or a control cannot do this on its own. Because each request is a stand-
alone request, the server won’t fill in the text boxes again after a postback, but will simply serve the page
the same way it did when it first loaded it. In other web technologies, like classic ASP or PHP, you could
work around this by manually writing code that prepopulates controls after a postback. Fortunately,
ASP.NET makes this much easier for you by integrating this functionality in the ASP.NET feature set.

How the State Engine Works
The state engine in ASP.NET is capable of storing state for many controls. It can store state not only
for user input controls like a TextBox and a CheckBox but for other controls like a Label and even
a Calendar. This is best demonstrated by a demo. The following exercise shows you how to create a
page with controls that are capable of maintaining their state. The sections that follow then explain
how ASP.NET is able to do this.

Examining the ASP.NET State EngineTry It Out	

In this exercise you add Label, Button, and Calendar controls to the page. These controls are used to
demonstrate some of the inner workings of ASP.NET, including postbacks and the way ASP.NET main-
tains state.

	1.	 Under the Demos folder, create a new page called State.aspx. Make sure it uses Code Behind, and
don’t forget to choose your preferred programming language.

	2.	 Switch the page to Design View, click inside the dashed <div> to put the focus on it, and then
choose Table ➪ Insert Table from the main menu and click OK to insert a table with two rows and
two columns.

	3.	 In the first cell of the first row, drag a Label control from the Toolbox. In the first cell of the sec-
ond row, drag a Calendar control.

	4.	 Note that as soon as you drop the calendar in the cell, the Smart Tasks panel for the Calendar pops
up as shown in Figure 4-15.

In the case of the Calendar, you only get one option on this panel, Auto Format, which enables
you to change the appearance of the calendar. Click the link, choose from one of the predefined
color schemes, like Simple, and click OK.

Figure 4-14

502211c04.indd 129 2/19/10 10:00:47 AM

130  ❘  Chapter 4   Working with ASP.NET Server Controls

Figure 4-15

	5.	 Next, drag a Button control into each of the two cells in the right column of the table.

	6.	 Click the Button in the first row and press F4 to open the Properties Grid. Set the Button’s ID
to SetDate and set its Text property to Set Date. You’ll find the ID property all the way at
the end of the list with properties or at the beginning if you have the list with properties sorted
alphabetically.

	7.	 Repeat the previous step for the other button but call it PlainPostBack and set its Text property
to Plain PostBack. When you’re done, the page should look like Figure 4-16 in Design View.

Figure 4-16

	8.	 Double-click the Set Date button in Design View and add the following bolded code on the empty
line between the code lines that VWD inserted for you:

VB.NET

Protected Sub SetDate_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles SetDate.Click
 Label1.Text = DateTime.Now.ToString()
End Sub

502211c04.indd 130 2/19/10 10:00:47 AM

The ASP.NET State Engine  ❘  131

C#

protected void SetDate_Click(object sender, EventArgs e)
{
 Label1.Text = DateTime.Now.ToString();
}

	9.	 Open the page in the browser by pressing Ctrl+F5. Select a date on the calendar by clicking one of
the days. Notice that as soon as you click the date, the page seems to reload, caused by a postback.
You learn more about this in the How It Works section that follows this exercise.

	10.	 Click the Set Date button a few times. Again, the page is posted back to the server and the Label
is updated with today’s date and time each time you click the button. Wait a few seconds, and then
click the Plain PostBack button. Once again, a postback occurs, and then the page reloads. Now
take a look at the text for the Label. It still contains the date and time that was displayed when
you last clicked the Set Date button. Click the Plain PostBack button a few more times and notice
that the Label doesn’t change.

	11.	 Go back to VWD and open the Properties Grid for the Label control in Design View. Locate the
EnableViewState property and set it to False by selecting that value from the drop-down list or
by double-clicking the property name or its value.

	12.	 Repeat steps 9 and 10 by reopening the page in the browser and clicking the calendar and the
buttons. This time, when you click the Plain PostBack button, you’ll see that the Label control
defaults to its initial text: Label.

How It Works

To understand how this all works, there are a few important elements to look at. First, open up the
page in the browser again and view its HTML source. You can do this by right-clicking the page in the
browser and choosing the View Source or View Page Source menu item. Near the top of the window,
you see the following <form> element:

<form name=”form1” method=”post” action=”State.aspx” id=”form1”>
...
</form>

The HTML <form> element is used to enable a user to submit information from the browser to the
server. A user can enter information using controls like text boxes, drop-down lists, check boxes, and
so on. A form can be submitted in two ways: with POST (as shown in the previous <form> element) or
with GET. In the former case, all data from the form is added to the body of the request and then sent to
the server. In the case of the GET method, all the data is appended to the actual address of the request.
The intricacies of the differences are not that important right now; what’s important to understand is
what the <form> element is used for: it encapsulates form controls whose values are submitted back to
the server en masse.

When a control like a Button is clicked, it causes a postback to the server. During this postback, all the
relevant information in the form is submitted back to the server where it can be used to rebuild the page.

By default, all your ASP.NET Web Forms always use the POST method to send data to the server. Also, by
default, an entire ASP.NET page always contains exactly one form. Because this is so common, a new

502211c04.indd 131 2/19/10 10:00:47 AM

132  ❘  Chapter 4   Working with ASP.NET Server Controls

page (or Master Page as you learn in Chapter 6) created in VWD already contains the <form> element,
so you don’t have to add it yourself. Finally, it’s important to understand that an ASP.NET Web Form
by default always submits back to itself. In other web environments, like classic ASP and PHP, it’s not
uncommon to set the action attribute of the page to a second page that then processes the data the
user has submitted. However, with an ASP.NET page, you’ll find that even if you set the action attri-
bute in the code explicitly, the ASP.NET runtime will revert it to the name of the current page.

NOTE  ​ASP.NET supports a feature called Cross Page PostBacks that enables
you to submit from one page to another. To learn more about this concept,
search the MSDN site for Cross Page PostBacks or get yourself a copy of
Professional ASP.NET 4 from Wrox.

The next thing to look at is the hidden __VIEWSTATE field that you see in the HTML source bolded in
the following snippet:

<form name=”form1” method=”post” action=”State.aspx” id=”form1”>
...
 <input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”
 value=”/wEPDwULLTE5Njc4MzkzNDdkZI+lOWZMZpVv0hc7i/HFGMdOO8oc” />
</div>

Although at first the text appears to contain nothing more than random characters, it actually contains
useful information. To protect the information stored in this field, and to decrease the size of it, ASP.NET
has converted the page state in the preceding string. If you were able to look inside the value of the fields,
you’d find a value for the Label1 control with the current date and time.

When your ASP.NET page loads, the ASP.NET runtime fills this hidden field with information about
the page. For example, it added the value for the Text property of the Label1 control when you caused
a postback by clicking the Set Date button. Similarly, it contains the selected date for the Calendar.
When the page is then submitted back by a postback, the value in this hidden __VIEWSTATE field is sent
with the request. Then, when ASP.NET creates the new page on the server, the information from the
__VIEWSTATE field is read and applied to the controls in the page. This way, a control like the Label is
able to maintain its text even after the page has been posted back to the server.

To reiterate, here’s a rundown of the process that took place in the preceding Try It Out.

	1.	 You requested the page in the browser by opening it from within VWD.

	2.	 The browser got the page from the server by making a request for it.

	3.	 The ASP.NET runtime read the page file from disk, processed it, and sent the resulting HTML to
the browser. At this stage, all the controls were set to their default values that were defined in the
markup of the page. For example, the Text of the Label control is set to Label.

	4.	 After the page got displayed in the browser, you clicked the Set Date button. This caused a post-
back to the server.

502211c04.indd 132 2/19/10 10:00:48 AM

The ASP.NET State Engine  ❘  133

	5.	 At the server, the page was reconstructed again, similar to the first time it loaded, described in
step 3. At this stage, all the controls contain their default values. So, again, the Label1 control had
its Text property set to Label. Shortly after the defaults have been set, the runtime overrides these
defaults for controls it finds in View State. However, because this was the first postback and the
Label control’s Text property hadn’t changed yet, its value was not present in View State. So the
Text property just contained the default word Label.

	6.	 While still processing the same request, the ASP.NET runtime fired the code in SetDate_Click. As
you have seen, this code changed the Text property of the Label control to the current date and
time. The ASP.NET runtime sees this change and stores this new value in View State as well, so it
stays available for subsequent postbacks.

	7.	 Next, you clicked the Plain PostBack button. Just as with the other button, this caused a postback
to occur. The page was constructed again, and all defaults are set. Again, this means that the Text
property of Label1 control simply contains the word Label. However, shortly after that, during
the same processing cycle, the ASP.NET runtime processes the View State, restoring control values
it finds in the hidden __VIEWSTATE field. In this example, it found the Text property with the cur-
rent date and time, and assigned it again to the Label control. Because the Plain PostBack button
doesn’t change the Text of the Label anymore, the Text property doesn’t change: it contains the
date and time from the previous postback. At the end, the entire page is sent to the browser, where
the label correctly displays its previous value.

	8.	 Finally, you turned off the View State for the Label control by setting EnableViewState to False.
With this setting turned off, the ASP.NET runtime doesn’t track the Label control anymore. So
when you click the Plain PostBack button, the ASP.NET runtime doesn’t find any information for
the label in View State, which eventually results in the label displaying its own default text: the
word Label.

Not All Controls Rely on View State
You have to understand that not all controls rely on View State all the time. A number of controls
are able to maintain some of their own state. These controls include, among others, the TextBox,
CheckBox, RadioButton, and DropDownList controls. They are able to maintain their values because
they are rendered as standard HTML form controls in the browser. For example, a TextBox server
control looks like this in the browser:

<input name=”TextBox1” type=”text” value=”Initial Text” id=”TextBox1” />

When a page with such a TextBox in it is posted back, the browser also sends the value of the con-
trol back to the server. The ASP.NET runtime can then simply look at that value to prepopulate
the text box again, instead of getting the value from View State. Obviously, this is more efficient
than storing the value in View State too. If that were the case, the value would get sent to the server
twice: once in the text box and once in View State. Especially with large values, this could quickly
increase the page’s size, and thus its load time. For some features — such as tracking changes made
at the client — these controls still need to store their values in View State as well, and will do so on a
need-to-have basis.

502211c04.indd 133 2/19/10 10:00:48 AM

134  ❘  Chapter 4   Working with ASP.NET Server Controls

A Note about View State and Performance
Because the View State engine adds a considerable amount of information to the page, it’s often a
good idea to turn it off when you don’t need it. This way, you can minimize the size of the hidden
__VIEWSTATE field, which means the page becomes smaller and thus loads faster in the browser.
Turning off View State is easy, and can be done at three different places:

At the web site level.➤➤ You can do this in the web.config file in the root of the site by modi-
fying the <pages> element under <system.web>, setting the enableViewState attribute to
false:

<pages enableViewState=”false”>
 ...
</pages>

Turning off View State at the site level is problematic, as you can’t turn it on later for specific
controls. Fortunately, ASP.NET 4 offers a new ViewStateMode property that gives you more
control over how View State is used.

At the page level.➤➤ At the top of each page you find the page directive, a series of instructions
that tell the ASP.NET runtime how the page should behave. In the page directive you can set
EnableViewState to False:

<%@ Page Language=”VB” AutoEventWireup=”False” CodeFile=”State.aspx.vb”
 Inherits=”Demos_State” EnableViewState=”False” %>

This option is useful for pages where you’re sure you don’t need View State at all.

At the control level.➤➤ Each ASP.NET Server Control enables you to set EnableViewState indi-
vidually, giving you the option to turn it off for some controls, while leaving it on for others.

Once you’ve turned off View State at a higher level (web.config or page level) you can’t turn it on
again at a lower level (the page or a specific control). However, using the new ViewStateMode prop-
erty you can still accomplish this as follows:

Do not turn off View State in the ➤➤ web.config file.

At the page level, set ➤➤ EnableViewState to True and ViewStateMode to Disabled like this:

<%@ Page Language=”C#” … EnableViewState=”True” ViewStateMode=”Disabled” %>

This turns off View State for all controls in the page except for those that explicitly enable it
again by setting the ViewStateMode to Enabled.

For the controls you want to give View State support, set the ➤➤ ViewStateMode to Enabled,
like this:

<asp:Label ID=”Label1” runat=”server” Text=”Label” ViewStateMode=”Enabled” />

502211c04.indd 134 2/19/10 10:00:48 AM

Practical Tips on Working with Controls  ❘  135

If you want to see this at work in your demo page, modify the page directive of State.aspx as in
the previous example by setting EnableViewState to True and ViewStateMode to Disabled. Then
create a second Label in the page and set ViewStateMode for the first to Enabled:

<asp:Label ID=”Label1” runat=”server” Text=”Label” ViewStateMode=”Enabled” />
<asp:Label ID=”Label2” runat=”server” Text=”Label” />

In the code behind of the page, assign today’s date and time to the second label as well:

VB.NET

Label1.Text = DateTime.Now.ToString()
Label2.Text = DateTime.Now.ToString()

C#

Label1.Text = DateTime.Now.ToString();
Label2.Text = DateTime.Now.ToString();

Finally, run steps 9 and 10 of the last Try It Out exercise. You’ll notice the first Label maintains its
text, whereas the second defaults back to the text Label.

Practical Tips on Working with Controls

The following list presents some practical tips on working with controls:

Spend some time trying out the different controls in the Standard category. Although many ➤➤

of them are used and discussed throughout the book, it’s good to know how you should use
them and how they operate. By experimenting with them now in a few sample pages, you
have a head start when the controls reappear in later chapters.

Consider turning off View State for controls that don’t need it. In many cases, you hardly ➤➤

notice the difference, but especially with the data-driven controls discussed in Chapter 13 and
onward, disabling View State can seriously decrease the size of your web page, resulting in
shorter load times and improved user experience.

Before you design a complex Web Form with multiple controls to accept user input, step ➤➤

back from your computer and take a piece of paper and a pen to draw out the required
functionality. By thinking about the (technical) design of your application before you start
coding, it’s much easier to create a consistent and well-thought-out user interface. Making
considerable changes later in the page if you’ve taken a wrong route will always take more
time than doing it (almost) right the first time.

Experiment with the View State mechanism to get a better understanding of how it works. ➤➤

Create a couple of pages similar to the one you created in the last exercise. Then turn off
View State at the page or control level and see how the page behaves. Take note of the con-
trols, such as TextBox, that are capable of maintaining their value even with View State off.

502211c04.indd 135 2/19/10 10:00:48 AM

136  ❘  Chapter 4   Working with ASP.NET Server Controls

Summary

This chapter gave you a good look at the large set of ASP.NET Server Controls. Because these con-
trols are so important and used throughout every ASP.NET application, it’s really critical that you
understand what controls you have available in the Toolbox, what they are used for, how they work
and how they maintain their own state.

One of the biggest inventions in ASP.NET is the state engine that enables controls to maintain their
state across postbacks. The state engine is a real time saver and frees you from writing loads of
tedious and boring code in every single web page to replicate this behavior. However, you should
turn View State off when possible because enabling it means a performance hit.

This chapter also introduced you to some trivial server-side code in Visual Basic and in C#. The
next chapter gives you a much better understanding of programming ASP.NET pages. You see how
a programming language looks, what elements it contains, and how to write code yourself to use in
your ASP.NET pages. And best of all, the examples are presented in Visual Basic and C#, so you’re
not stuck with a language you may not like.

Exercises	

1.	 Name the mechanism that enables server controls to maintain their state.

2.	 How is the ASP.NET runtime able to keep track of control state between postbacks?

3.	 Name a difference between an <asp:DropDownList> and an <asp:ListBox>.

4.	 What property do you need to cause a postback to the server when you change the checked

state of a CheckBox in the browser?

5.	 Many server controls have a common set of properties that affects their looks at runtime. Name

three properties that change styling elements such as color, borders, and size.

6.	 Instead of setting individual control properties like BackColor and ForeColor, it’s better to set a

single CSS-related property. What’s the name of this property and what benefit does it give you?

Answers to Exercises can be found in Appendix A.

502211c04.indd 136 2/19/10 10:00:48 AM

Summary  ❘  137

What You Learned in this Chapter⊲⊲

__VIEWSTATE The hidden form field that is used to transfer the state from the server to the

client and back

Container controls Server controls that serve as a container by wrapping other content and

controls

Events tab The part of the Properties Grid that lets you set up handlers for control

events such as Click for a Button

List controls Server controls that present a list of items to the user. Controls include the

DropDownList, CheckBoxList and more

Post and Get
methods

Different methods to submit data from the client to the server. With Post

the data is added to the body of the request whereas with Get the data is

appended to the address of the requested page

Postback The process of sending form data from a client browser back to the server

Server Controls The work horses of ASP.NET, used to build up the User Interface of a web

page in the browser

Smart Tasks panel The action panel that appears for some controls to help you accomplish com-

mon tasks

View State The mechanism that enables the ASP.NET controls to store state at the client

502211c04.indd 137 2/19/10 10:00:48 AM

502211c04.indd 138 2/19/10 10:00:48 AM

Programming Your ASP.NET
Web Pages

What You Will Learn in This Chapter:

How to work with data types, variables, objects, and collections in a ➤➤

programming environment

Different ways to make decisions in your code➤➤

The options available for creating blocks of functionality that can eas-➤➤

ily be reused

Different ways to write well-organized and documented code➤➤

What object orientation is, and how you can use it in your ➤➤

applications

In the previous four chapters, you created a number of Web Forms that contained mostly
ASP.NET Server Controls and plain HTML. Only a few of the examples contained actual
programming code, written in either C# or Visual Basic (VB.NET), and most of that code was
pretty straightforward. However, not all of your pages will always be so simple. Although the
many smart Server Controls you have at your disposal minimize the amount of code you need
to write compared to the older 1.x family of the .NET Framework or other web technologies
like classic ASP or PHP, the ability to read, understand, and write code is a critical asset in
your web development toolkit.

This chapter teaches you the basics and beyond of programming for web applications. Just
as with all the other samples in the book, this entire chapter covers both VB.NET and C#.
For every concept or piece of theory introduced in this chapter, you see an example in both
VB.NET and C# at the same time. Which language you prefer is entirely your decision.

5

502211c05.indd 139 2/19/10 10:00:33 AM

140  ❘  Chapter 5   Programming Your ASP.NET Web Pages

NOTE  ​To get the most out of this chapter, it’s recommended to actually try out
the code. Most of the examples can be tested with a simple ASPX page. Drag a
Label and a Button on your page and double-click the Button in Design View.
Then type the sample code on the open line of the code block that VWD added
for you and press Ctrl+F5. After the page has finished loading, click the button
and the code will be executed. Some of the examples call fictitious code and
won’t run correctly. They only serve to illustrate the topic being discussed.

Introduction to Programming

To get started with programming, it’s critical to understand a common set of terms shared by pro-
grammers in all types of languages and applications. The remainder of this chapter introduces you to
a relatively large number of terms and concepts. Most of the terminology comes with code examples
so you can see how they are used in real code.

It’s also important to realize this is not a complete introduction to programming. Not every detail
of a programming language is covered. Instead, this chapter focuses on the key concepts that you
need to understand to successfully build day-to-day web sites. Once you get the hang of that you’ll
find it’s easier to deepen your knowledge about programming by learning the more exotic features of
your favorite programming language.

NOTE  ​If you’re interested in learning a lot more about programming in VB.NET
or C#, find Beginning Microsoft Visual Basic 2010 (ISBN: 978-0-470-50222-8) or
Beginning Microsoft Visual C# 2010 (ISBN: 978-0-470-50226-6), both published
by Wrox.

The code you are going to write in this and coming chapters is either added to the Code Behind of a
web page, or in a separate class file placed in the special App_Code folder. When the ASP.NET run-
time processes the request for a page containing code, it compiles any code it finds in the page, Code
Behind, or class file first. When code is compiled, it is being transformed from a human-readable
programming language (like C# or VB.NET) into Intermediate Language (IL), the language that
the .NET Framework runtime can understand and execute. The result of the compilation process of
an ASP.NET web site is one or more files with a DLL extension in a temporary folder on your sys-
tem. This compilation process only takes place the first time the page is requested after it has been
changed. Subsequent requests to the same page result in the same DLL being reused for the request.
Fortunately, in ASP.NET web sites, compilation takes place behind the scenes, so you usually don’t
have to worry about it.

To get started with programming, the first concepts that you need to look at are data types and vari-
ables, because they are the building blocks of any programming language.

502211c05.indd 140 2/19/10 10:00:34 AM

Data Types and Variables  ❘  141

NOTE  ​The .NET Framework used by ASP.NET is huge and contains thousands
of types with hundreds of thousands of methods, properties and so on. Clearly,
you cannot memorize all the types in the framework, so you need to make good
use of resources like IntelliSense and the on-line help. Navigating the MSDN site
(http://msdn.microsoft.com/en-us/library/) can sometimes be a daunt-
ing task. However, I often find that searching for something like typeName type
.NET MSDN brings up exactly what I need. So, if I wanted to learn more about the
string class, I’d type string class .NET MSDN in my favorite search engine.
Nine out of ten times the first result is a link to the relevant page on the MSDN
web site, where I can learn more about the class, where it’s defined and located
and how to use it.

Data Types and Variables

At first when you think about data that is used in some programming environment, you may not
realize that each piece of data has a data type. You may think that a computer would store the text
Hello World in exactly the same way as today’s date or the number 26, as a series of characters, for
example. However, to be able to effectively work with data, many programming languages have
different data types, where each data type is constrained to a specific type of information. Out of
the box, the .NET Framework comes with a long list of data types that enables you to work with
numbers (like Integer, Short, and Double), text strings (Char and String), dates (DateTime), true/
false constructs (the Boolean), and more. A list with the most common types is supplied later in this
section.

For each major type of data there is a special data type. To work with that data, you can store it
in a variable that you need to declare first using the required data type. In VB.NET you use Dim
myVariable As DataType whereas in C# you use DataType myVariable to declare a variable.
The following example shows you how to declare two variables: an Integer (int in C#) to hold a
number and a String (string in C#) to hold a piece of text:

VB.NET

‘ Declare a variable of type Integer to hold medium sized whole numbers.
Dim distanceInMiles As Integer

‘ Declare a variable to hold some text like a first name.
Dim firstName As String

C#

// Declare a variable of type int to hold medium sized whole numbers.
int distanceInMiles;

// Declare a variable to hold some text like a first name.
string firstName;

502211c05.indd 141 2/19/10 10:00:34 AM

142  ❘  Chapter 5   Programming Your ASP.NET Web Pages

These two code examples also contain comments, prefixed with a tick (‘) in VB.NET and two for-
wards slashes (//) in C#. You learn more about commenting your code later in this chapter.

After you have declared a variable, you can assign it a value. You can assign types like numbers and
Booleans directly to a variable. To assign a String to a variable you need to enclose it in double
quotes:

VB.NET

Dim distanceInMiles As Integer
distanceInMiles = 437

Dim firstName As String
firstName = “Imar”

C#

int distanceInMiles;
distanceInMiles = 437;

string firstName;
firstName = “Imar”;

In addition to separate declarations and assignments, you can also declare a variable and assign it a
value in one fell swoop:

VB.NET

Dim distanceInMiles As Integer = 437

C#

int distanceInMiles = 437;

Although a variable name can be nearly any-
thing you like, it’s advised to give each variable
a meaningful name that describes its purpose.
For example, a string to hold a first name
would be called firstName and a variable that
holds someone’s age would simply be called
age. To help you find the type of the variable
later in the code, VWD and all other products
in Visual Studio show a useful tooltip when you hover over a variable in the code editor, making it
super easy to find a variable’s type. Figure 5-1 shows that the distanceInMiles variable in the C#
example is of type int.

You’re advised not to prefix your variables with a few letters to indicate the type. For example,
write firstName and not sFirstName for a String holding someone’s name. This type of notation,
called Hungarian Notation, is considered outdated. IDEs like VWD, with their smart IntelliSense
and other programming tools, don’t really require this anymore. Without Hungarian Notation, your
code becomes easier to read (age is more readable than iAge) and easier to maintain because you
can change a variable’s type without renaming it everywhere it’s used.

Figure 5-1

502211c05.indd 142 2/19/10 10:00:34 AM

Data Types and Variables  ❘  143

Microsoft .NET (and thus the ASP.NET environment) supports a large number of different program-
ming languages, including VB.NET, C#, and others. All these languages are able to communicate
with each other. For example, you can write some code in C#, use Visual C# Express Edition to
compile it to a .dll file (a file with reusable code that can be consumed by other .NET applications),
and then use it in a web application that uses VB.NET as the primary language. Because of this
interoperability, it’s necessary to agree on some system that enables all .NET programming languages
to understand each other. This system is called the Common Type System (CTS). It’s the CTS that
defines the data types that are accessible to all CTS-compliant languages. Each language is then free
to define a set of primitive types, which are essentially shortcuts or aliases for the more complex type
descriptions in the .NET Framework. So, even if the CTS defines a type called System.Int32, a lan-
guage like C# is free to alias this type as int to make it easier for a developer to work with it.

The following table lists the most common CTS types in the .NET Framework and their C# and
VB.NET aliases. The table also lists the ranges of the variables and what they are used for.

.NET C# VB.NET Description

System.Byte byte Byte Used to store small, positive whole numbers from 0 to

255. Defaults to 0 when no value is assigned explicitly.

System.Int16 short Short Capable of storing whole numbers between –32,768 and

32,767. Defaults to 0.

System.Int32 int Integer Capable of storing whole numbers between

–2,147,483,648 and 2,147,483,647. Defaults to 0.

System.Int64 long Long Holds whole large numbers between

–9,223,372,036,854,775,808 and

9,223,372,036,854,775,807. Defaults to 0.

System.Single float Single Stores large numbers with decimals between

–3.4028235E+38 and 3.4028235E+38. Defaults to 0.0.

System.Double double Double Can hold large fractional numbers. It’s not as accurate as

the Decimal when it comes to the fractional numbers but

when extreme accuracy is not a requirement, you should

prefer the Double over the Decimal, because the Double

is a little faster. Defaults to 0.0.

System.Decimal decimal Decimal Stores extremely large fractional numbers with a high

accuracy. Defaults to 0. This data type is often used to

store monetary values.

System.Boolean bool Boolean Used to hold a simple boolean value: either True (in VB),

true (in C#), False (in VB), or false (in C#). Defaults to False.

System.

DateTime

n/a Date VB.NET has an alias for the System.DateTime data type

to store date and time values. C# doesn’t define an alias

for this type. Defaults to 1/1/0001: 12:00 am.

continues

502211c05.indd 143 2/19/10 10:00:34 AM

144  ❘  Chapter 5   Programming Your ASP.NET Web Pages

.NET C# VB.NET Description

System.Char char Char Holds a single character. Defaults to Nothing (null in C#).

System.String string String Can hold text with a length of up to 2 billion characters.

Defaults to Nothing (null in C#).

System.SByte sbyte SByte Used to store small numbers from –128 to 127. Defaults

to 0.

System.UInt16 ushort UShort Similar to a System.Int16, but this data type can only

store unsigned whole numbers, between 0 and 65,535.

Defaults to 0. The other data types prefixed with a U are

all unsigned as well.

System.UInt32 uint UInteger Capable of storing whole numbers between 0 and

4,294,967,295. Defaults to 0.

System.UInt64 ulong ULong Capable of storing whole numbers between 0 and

18,446,744,073,709,551,615. Defaults to 0.

System.Object object Object The parent of all data types in .NET, including the CTS

types and types you define yourself. Each data type is

also an object, as you learn later in the book. Defaults to

Nothing (null in C#).

The standard .NET types are all prefixed with System followed by a period. This System part is the
namespace for this data type. You learn what namespaces are and what they are used for later in
this chapter.

Sometimes you need to convert data from one type to another. For example, you may have an
Integer that you need to treat as a Double. You can do this in a number of different ways.

Converting and Casting Data Types
The most common way to convert a type is converting it into a String. Web applications use string
types in many places. For example, the Text returned from a TextBox is a String, and so is the
SelectedValue of a DropDownList. To convert any Object to a String, you can simply call its
ToString() method. Every object in the .NET world supports this method, although the exact behavior
may differ from object to object. For now, it’s important to understand that ToString is a method — or
an operation — on an object, like a String or a Double and even the parent Object itself. You learn
more about methods and objects later in this chapter when object-oriented programming is discussed.

Using ToString() is easy, as the following example that outputs today’s date and time on a Label
control demonstrates:

VB.NET

Label1.Text = System.DateTime.Now.ToString()

(continued)

502211c05.indd 144 2/19/10 10:00:35 AM

Data Types and Variables  ❘  145

C#

Label1.Text = System.DateTime.Now.ToString();

Another way to convert data types is by using the Convert class.

NOTE  ​Classes are an important concept in .NET so they are discussed in their
own section later in this chapter. For now it’s important to understand that a
class is like a blueprint for objects that are used in .NET. You can create your
own classes, but you will also use many of the standard classes that are part of
the .NET Framework.

The Convert class contains functionality to convert a number of data types into another type. The
following is a simple example of converting a String containing a value that looks like a Boolean
into a true Boolean type:

VB.NET

Dim myBoolean1 As Boolean = Convert.ToBoolean(“True”) ‘ Results in True
Dim myBoolean2 As Boolean = Convert.ToBoolean(“False”) ‘ Results in False

C#

bool myBoolean1 = Convert.ToBoolean(“True”); // Results in true
bool myBoolean2 = Convert.ToBoolean(“False”); // Results in false

Besides the ToBoolean method, Convert offers you a host of other conversion methods including
ToInt32 (for numbers), ToDateTime (for dates), and ToString.

Another way to convert one type into another is by using casting. With casting you actually force
one type into another, which is different from converting, in which the underlying value of a data
type is transformed into a new value.

Casting only works for compatible types. You can’t, for example, cast a DateTime into an Integer.
You can, however, cast similar types, like a Double to an Integer or a String to an Object.
The reverse of the latter example isn’t always true. Earlier I said that every data type in the .NET
Framework is based on the Object data type, meaning that, for example, a String is an Object.
However, not every Object is also a String. When you try to cast one type into another and get a
compilation error, keep this in mind. Later chapters in this book show you more examples of how to
cast compatible types into each other.

To cast one type into another using VB.NET, you have a few options. First, you can use CType and
DirectCast. CType is a bit more flexible in that it allows you to cast between two objects that look
similar. DirectCast, on the other hand, only allows you to cast between compatible types but per-
forms slightly faster. The following VB.NET example shows how this works:

Dim o1 As Object = 1
Dim i1 As Integer = DirectCast(o1, Integer) ‘ Works, because o1 is an Integer
Dim i2 As Integer = CType(o1, Integer) ‘ Works, because o1 is an Integer

Dim o2 As Double = 1

502211c05.indd 145 2/19/10 10:00:35 AM

146  ❘  Chapter 5   Programming Your ASP.NET Web Pages

Dim i3 As Integer = DirectCast(o2, Integer) ‘ Fails, because o2 is not an
 ‘ Integer
Dim i4 As Integer = CType(o2, Integer) ‘ Works, because o2 looks like an
 ‘ Integer

In the first part of the example, an object called o1 is declared and assigned the Integer value
of 1. Although o1 exposes itself to the outside world as an Object, its underlying value is still an
Integer. When DirectCast is called, the cast succeeds because o1 is, under the hood, an Integer.

In the second example, o2 is declared as a Double, a numeric type that looks somewhat like an
Integer, but isn’t really one. Therefore, the call to DirectCast fails because a Double cannot be
cast to an Integer. CType, on the other hand, works fine, because the underlying value of the vari-
able o2 looks like an Integer and can therefore be cast to one.

The third option to cast in VB.NET is using the keyword TryCast, which is somewhat similar to
the other two options. When an object cannot be cast correctly, TryCast returns Nothing, whereas
DirectCast and CType result in a crash of the code.

In C# you have two options to cast objects. The most common way is to put the data type in paren-
theses in front of the expression you want to cast:

object o1 = 1;
int i1 = (int)o1; // Works

double o2 = 1;
int i2 = (int)o2; // Works

Alternatively, you can use the as keyword, which works similar to TryCast in VB.NET in that the
code doesn’t crash if the cast doesn’t succeed. The following sample code shows that you cannot cast
an Integer to an ArrayList (which you meet later in this chapter). Instead of crashing, the variable
myList simply contains null to indicate that the cast operation didn’t succeed.

object o1 = 1;
ArrayList myList = o1 as ArrayList; // Doesn’t cast, but doesn’t crash either.

You see more about casting and converting in the remaining chapters in this book.

Using Arrays and Collections
So far the data types you have seen are relatively straightforward and singular objects. For exam-
ple, you store a value of True or False in a Boolean type, and you store a number like 123 in an
Integer. But what if you have the need to store lots of integers? You may have the need to do so if
you want to store the points of a complex shape like a polygon. Or you may have the need to store
all the roles that your application supports in a single variable so you can show them on a web page
in the Management section, for example. Here’s where arrays and collections come to the rescue.

Defining and Working with Arrays

You can see an array as a big bag or list of the same type of things. You define the data type of the
things in the array when you declare it. Each item in the array is identified by a sequential number

502211c05.indd 146 2/19/10 10:00:35 AM

Data Types and Variables  ❘  147

(its so-called index) starting at 0, making arrays zero-based. When declaring and accessing an array
in VB.NET you use parentheses, whereas in C# you use square brackets. After you have defined the
array and populated its elements, you can access the elements by their zero-based element index (0,
1, 2, and so on).

The following code snippet defines an array called roles that can hold up to two roles at the
same time:

VB.NET

Dim roles(1) As String

C#

string[] roles = new string[2];

See the difference between the VB.NET and C# examples? That’s not a typo. In VB.NET you define
an array’s size by specifying the upper bound. The upper bound is the last element in the array that
you can access. Because arrays are zero-based (that is, you address the first item in the array with an
index of 0) it means that if you need room for two items, the upper bound is 1, giving you the items
0 and 1.

In C#, on the other hand, you don’t define the upper bound but instead you define the size. So in C#,
you simply specify 2 to get an array with two elements.

Additionally, C# requires you to use the keyword new, which instantiates a new array for you.
VB.NET does that for you automatically and raises an error if you add the New keyword as in the
C# example. You see the new (New in VB.NET) keyword again later in this chapter.

To enter the role names into the array you use the following syntax:

VB.NET

roles(0) = “Administrators”
roles(1) = “ContentManagers”

C#

roles[0] = “Administrators”;
roles[1] = “ContentManagers”;

Just as with the array’s declaration, you use parentheses in VB.NET and square brackets in C# to
address the elements in the array. Note that roles[0] refers to the first element in the array and
roles[1] refers to the second.

By design, arrays have a fixed size. So, given the previous example that defines an array with room
for two elements, the following code will throw an error:

VB.NET

roles(2) = “Members” ‘ Throws an error

C#

roles[2] = “Members”; // Throws an error

502211c05.indd 147 2/19/10 10:00:35 AM

148  ❘  Chapter 5   Programming Your ASP.NET Web Pages

This code tries to squeeze a third role into an array that has room for only two. Obviously, that
doesn’t fit and you’ll get an error stating that the “Index was outside the bounds of the array.”
But what if you need to create more room in the array at a later stage in your code at runtime? In
VB.NET this is pretty easy. You can use the ReDim statement:

ReDim Preserve roles(2)
roles(2) = “Members” ‘ Works fine now

This line of code redimensions the array to its new size: an upper bound of two, thus creating room
for a third element. The Preserve keyword is necessary to leave the current items in the array
intact. Without it, the resized array will be empty.

In C#, you need to do a little more work. In that language, you need to create a new array of the
desired size, and then copy over the elements from the old array into the new one. Then you can
point your old variable to the new one and add the element:

string[] tempRoles = new string[3]; // Create new array with required size
Array.Copy(roles, tempRoles, roles.Length); // Use Copy to copy the elements
 // from the old to the new array
roles = tempRoles; // Assign the new array to the
 // old variable

roles[2] = “Members”; // Works fine now

Instead of creating a new array and copying the elements, you can also use Resize with a concept
called generics, which you learn about later in this chapter. For the brave of heart, here’s some code
that uses Resize and has the same effect as the previous code snippet:

Array.Resize<string>(ref roles, 3); // Resize the array so it can
 // hold three elements

roles[2] = “Members”; // Works fine now

Don’t worry about this odd-looking generics syntax right now; you probably won’t need it very
often, because the .NET Framework offers alternatives to fixed size arrays.

When you start working with arrays, you find that they are quick to use at runtime, but lack some
useful functionality. For example, it’s not so easy to add new elements or to remove existing items
from the array. Fortunately, the .NET Framework offers a range of useful collections that do give
you the feature set you need.

Defining and Working with Collections

Collections are similar to arrays in that they enable you to store more than one object in a single
variable. The same bag analogy works for collections: you can simply drop a number of items in a
bag, and it will hold them for you. What’s different with collections is how they enable you to work
with the data in the bag. Instead of simply accessing each item by its index, most collections expose
an Add method that enables you to add an item to the collection. Similarly, they have Remove and
Clear methods to remove one or all items from the collection. Just like arrays, they enable you to
iterate, or loop, over them to access the items in the collection.

502211c05.indd 148 2/19/10 10:00:35 AM

Data Types and Variables  ❘  149

When collections were first introduced in the .NET Framework 1.0, the ArrayList and Hashtable
became popular very quickly because they were so easy to use. The ArrayList enables you to add
arbitrary objects that are then stored in the order you add them, whereas the Hashtable enables you
to store objects referenced by a custom key. The main benefit of these collections over their array
cousins is that they can grow on demand. Unlike the previous example where you needed to resize
the array to create room for the third role, the ArrayList grows dynamically when required. The
following example shows you how this works:

VB.NET

Dim roles As New ArrayList() ‘ Create a new ArrayList. You don’t need
 ‘ to set its size explicitly

roles.Add(“Administrators”) ‘ Add the first role
roles.Add(“ContentManagers”) ‘ Add the second role
roles.Add(“Members”) ‘ Keep adding roles and the ArrayList
 ‘ grows as necessary

C#

ArrayList roles = new ArrayList(); // Create a new ArrayList. You don’t need
 // to set its size explicitly

roles.Add(“Administrators”); // Add the first role
roles.Add(“ContentManagers”); // Add the second role
roles.Add(“Members”); // Keep adding roles and the ArrayList
 // grows as necessary

Because this code now calls a method (Add) rather than assigning an item to a predefined index in
an array, you need parentheses (()) in both VB.NET and C#. The usage of methods is discussed
later in this chapter.

Although collections solve some of the problems that arrays have, they introduce a few problems of
their own. The biggest drawback of the ArrayList is that it isn’t strongly typed. What this means
is that you can add any object to the list using the Add method. This means that the ArrayList
could hold objects that are of different types at the same time. This may not seem to be a big deal
at first, but as soon as you start working with an ArrayList that contains multiple types of objects,
you’ll quickly see why this is problematic. Take the roles example again. With the array and the
ArrayList versions, the code simply added a few strings containing role names. You can then use
these three strings to, say, build up a drop-down list in a Web Form to enable a user to pick a role.
So far so good. But what if one of the items in the list is not a string? What if another developer
accidentally wrote some code that adds a DropDownList control to the ArrayList? Because the
ArrayList accepts all objects, it won’t complain. However, your code will crash if it expects a
String, but gets a DropDownList control instead.

With .NET 2.0, Microsoft introduced a concept called generics. Generics are still strongly pres-
ent in version 4 of .NET, helping you overcome the problems that weakly typed collections like the
ArrayList introduced.

502211c05.indd 149 2/19/10 10:00:36 AM

150  ❘  Chapter 5   Programming Your ASP.NET Web Pages

An Introduction to Generics

Since their introduction with .NET 2.0, generics pop up in many different locations in the .NET
Framework. Although they are used often in situations where collections are used, the use of gener-
ics is not limited to collections; you can also use them for singular type of objects.

Generics are to code what Microsoft Word templates are to word processing. They enable you to
write a code template that can be used in different scenarios with different types. With generics, you
can define a generic code template that doesn’t explicitly specify a type. Only when that code is used
do you define the type. The main benefit of this is that you can reuse the same template over and
over again for multiple data types, without retyping and maintaining multiple versions of the code.
Besides using generics in your own code definitions, you find a host of generics-enabled objects and
collections in the .NET Framework ready to be used by your code.

To understand how you can take advantage of generics, take a look at the following example. It’s
essentially the same code you saw earlier where the ArrayList was used, but this time the type of
the list is constrained so it accepts strings only:

VB.NET

Dim roles As New List(Of String)

roles.Add(“Administrators”)
roles.Add(“ContentManagers”)
roles.Add(“Members”)

C#

List<string> roles = new List<string>();

roles.Add(“Administrators”);
roles.Add(“ContentManagers”);
roles.Add(“Members”);

Not much code has changed to make the roles list type safe. However, with the definition of List
(Of String) in VB.NET and List<string> the new list is now set up to only allow strings to be
added through its Add method. This compiles fine:

roles.Add(“Administrators”);

The following will fail because 33 is not a String:

roles.Add(33);

Similar to a generics list of strings, you can also create lists to hold other types. For example:

VB.NET

Dim intList As New List(Of Integer) ‘ Can hold Integers only
Dim boolList As New List(Of Boolean) ‘ Can hold Booleans only
Dim buttonList As New List (Of Button) ‘ Can hold Button controls only

C#

List<int> intList = new List<int>(); // Can hold ints only
List<bool> boolList = new List<bool>(); // Can hold bools only
List<Button> buttonList = new List<Button>(); // Can hold Button controls only

502211c05.indd 150 2/19/10 10:00:36 AM

Statements  ❘  151

NOTE  ​Because there’s a lot more to generics than what is shown here,
they deserve an entire book on their own. Wrox has released such a book:
Professional .NET 2.0 Generics by Tod Golding (ISBN: 978-0-7645-5988-4).
Although it was originally written for .NET 2.0, you’ll find that all the concepts
and examples introduced in that book still apply.

The generics examples you have seen barely scratch the surface of what is possible with generics.
However, when building ASP.NET web sites, you often don’t need all the advanced stuff that gener-
ics offer you. The List collection is so useful it had to be discussed here. Without a doubt, you’ll use
that collection in your own code one way or another.

Though the Add method is useful to add items to a collection, it can sometimes be a bit tedious if
you need to add multiple items to a collection at once. To make this easier, .NET supports collec-
tion initializers. With a collection initializer, you declare the collection, and add some items in one
step. You do this by adding the items in a pair of curly braces (prefixed with the keyword From in
VB.NET) as shown in the following example:

VB.NET

Dim myList As New List(Of Integer) From {1, 2, 3, 4, 5}

C#

List<int> myList = new List<int>() { 1, 2, 3, 4, 5 };

Right after this line, the list is populated with the five integers.

Collection initializers are not limited to the List class or integers. You can use them with other col-
lection types and data types as well.

Statements

To make a program or a web site do something useful, you need to provide it with code state-
ments that it can execute. Statements cover a wide range of actions, such as show this button, send
this e‑mail, execute this and that code when a user clicks that button, and so on. However, simply
executing these actions is not enough. You often need to execute some code only when a certain
condition is true. For example, if a visitor to an e-commerce web site is buying more than $100
of merchandise at one time, she might get a discount of 10 percent. Otherwise, she’ll pay the full
price. Conditions or decisions are therefore very important statements in a programming language.
Another important set of statements is the loops. Loops enable you to repeat a certain piece of code
a number of times. For example, you can have a loop that goes from 1 to 10, performing some
action on each iteration. Or you can loop through the products in a shopping cart, summing up
their total price, for example.

The final important set of statements is the operators. Operators enable you to do something with
your values; or, to be more exact, they enable you to operate on them. For example, you use opera-
tors to add or subtract values, concatenate (combine) them, or compare them to each other.

The following three sections dig deeper into operators, decision making, and loops.

502211c05.indd 151 2/19/10 10:00:36 AM

152  ❘  Chapter 5   Programming Your ASP.NET Web Pages

Operators
The most important operators can be grouped logically into five different types. Of these five
groups, the assignment operators are probably the easiest to understand and use.

Assignment Operators

The assignment operators are used to assign a value to a variable. This value can come from many
sources: a constant value, like the number 6, the value of another variable, and the result of an expres-
sion or a function, which are discussed later. In its simplest form, an assignment looks like this:

VB.NET

Dim age As Integer = 38

C#

int age = 38;

What if the person this age variable is referring to just had his birthday? You’d need to add 1 to the
age value. That’s where arithmetic operators come into play.

Arithmetic Operators

Arithmetic operators enable you to perform most of the familiar calculations on variables and values,
like adding, subtracting, and dividing. The following table lists the common arithmetic operators for
both VB.NET and C#.

VB.NET C# Usage

+ + Adds two values to each other. These values can be numeric types like

Int32, but also String, in which case they are concatenated.

- - Subtracts one value from another.

* * Multiplies two values.

/ / Divides two values.

\ n/a Divides two values but always returns a rounded integer.

^ n/a Raises one value to the power of another.

Mod % Divides two whole numbers and returns the remainder.

The first five operators probably look familiar, and their usage is pretty straightforward. The follow-
ing code snippet shows the basic operations you can perform with these operators:

VB.NET

Dim firstNumber As Integer = 100
Dim secondNumber As Single = 23.5
Dim result As Double = 0

result = firstNumber + secondNumber ‘ Results in 123.5
result = firstNumber - secondNumber ‘ Results in 76.5

502211c05.indd 152 2/19/10 10:00:36 AM

Statements  ❘  153

result = firstNumber * secondNumber ‘ Results in 2350
result = firstNumber / secondNumber ‘ Results in 4.25531914893617
result = firstNumber \ secondNumber ‘ Results in 4

C#

int firstNumber = 100;
float secondNumber = 23.5F;
double result = 0;

result = firstNumber + secondNumber; // Results in 123.5
result = firstNumber - secondNumber; // Results in 76.5
result = firstNumber * secondNumber; // Results in 2350
result = firstNumber / secondNumber; // Results in 4.25531914893617

VB.NET supports the \ operator, which basically performs the division and then drops the remain-
der from the value, effectively rounding the return value down to the nearest integer. C# doesn’t
have a special operator for this. However, when you try to divide two integers, the result is always
an integer as well. This means that 7 (stored as an int) divided by 2 (stored as an int) will be 3. It’s
important to realize that this rounding occurs or you may end up with unexpected results.

Note that in the C# example you need to add the letter F to the value of 23.5. This tells the compiler
you really want it to be a float rather than a double.

The final two operators need a bit more explanation. First, the ^ operator — for raising one number
to the power of another — is only available in the VB.NET language:

VB.NET

Dim result As Double

result = 2 ^ 3 ‘ Results in 8 (2 * 2 * 2)
result = 3 ^ 2 ‘ Results in 9 (3 * 3)

C# doesn’t support this operator, but you can easily replicate its behavior using Math.Pow, which is
made available by the .NET Framework. The following code snippet is functionally equivalent to
the preceding one:

C#

result = Math.Pow(2, 3); // Results in 8 (2 * 2 * 2)
result = Math.Pow(3, 2); // Results in 9 (3 * 3)

Of course Math.Pow is available to VB.NET as well, so if you’re using that language, you have two
options to choose from.

The final operator is called the mod or the modulus operator. It returns the remainder of the division
of two numbers, like this:

VB.NET

Dim firstNumber As Integer = 17
Dim secondNumber As Integer = 3
Dim result As Integer = firstNumber Mod secondNumber ‘ Results in 2

502211c05.indd 153 2/19/10 10:00:36 AM

154  ❘  Chapter 5   Programming Your ASP.NET Web Pages

C#

int firstNumber = 17;
int secondNumber = 3;
int result = firstNumber % secondNumber; // Results in 2

Simply put, the modulus operator tries to subtract the second number from the first as many times
as possible and then returns the remainder. In the preceding example this will succeed five times,
subtracting a total of fifteen, leaving a remainder of two, which is then returned and stored in the
result. The modulus operator is often used to determine if a number is odd or even.

When working with operators, it’s important to keep their precedence in mind. To see why this is
important, consider the following calculation:

2 + 10 * 4

What is the outcome of this? You may think the answer is 48 if you first add 2 and 10 together, and
then multiply the result by 4. However, the right answer is 42; first the multiplication operator is
applied on 10 and 4, resulting in 40. Then 2 is added, which leads to 42 as the final result. The fol-
lowing table shows the operator precedence for both VB.NET and C#.

VB.NET C#

^ Exponentiation *, /, % Multiplication, division, and

modulus

*, / Multiplication and division +, - Addition and subtraction

\ Integer division

Mod Modulus arithmetic

+, - Addition and subtraction and string

concatenation using the plus (+)

& String concatenation

To force a different operator order, you can use parentheses around expressions. The contents of the
expressions are evaluated first, resulting in a different order. For example:

(2 + 10) * 4

This does result in 48 now, because the addition operator is applied before the multiplication
operator.

Another common set of operators is the comparison operators, which enable you to compare values.

Comparison Operators

Just as with the arithmetic operators, VB.NET and C# each have their own set of comparison
operators to compare one value to another. A comparison operator always compares two values

502211c05.indd 154 2/19/10 10:00:36 AM

Statements  ❘  155

or expressions and then returns a Boolean value as the result. The following table lists the most
common comparison operators.

VB.NET C# Usage

= == Checks if two values are equal to each other.

<> != Checks if two values are not equal.

< < Checks if the first value is less than the second.

> > Checks if the first value is greater than the second.

<= <= Checks if the first value is less than or equal to the second.

>= >= Checks if the first value is greater than or equal to the second.

Is is In VB.NET: Compares two objects. In C#: Checks if a variable is of a certain

type.

The first thing you’ll notice is that C# uses a double equals symbol (==) for the standard comparison
operator. This clearly makes it different from the assignment operator. It’s a common mistake in
C# to use only a single equals symbol if you intend to compare two values. Consider the following
example:

if (result = 4)
{
 // Do something here with result
}

The intention here is to see if result equals 4. However, because the assignment operator is used
instead of a proper comparison operator, you’ll get the compile error that is displayed in Figure 5-2.

Figure 5-2

At first the error message may look a little strange. But if you look at the code a little closer, it starts
to make more sense. First, result gets assigned a value of 4. This value is then used for the if state-
ment. However, the if statement needs a Boolean value to determine whether it should run the code
inside the if block. Because you can’t convert an integer value to a Boolean like this, you get a com-
pile error. The fix is easy though; just use the proper comparison operator instead:

if (result == 4)
{
 // Do something here with result
}

502211c05.indd 155 2/19/10 10:00:36 AM

156  ❘  Chapter 5   Programming Your ASP.NET Web Pages

Similar to the simple comparison operator, you can use the other operators to compare values:

VB.NET

4 > 5 ‘ 4 is not greater than 5; evaluates to False
4 <> 5 ‘ 4 is not equal to 5; evaluates to True
5 >= 4 ‘ 5 is greater than or equal to 4; evaluates to True

C#

4 > 5 // 4 is not greater than 5; evaluates to false
4 != 5 // 4 is not equal to 5; evaluates to true
5 >= 4 // 5 is greater than or equal to 4; evaluates to true

The Is keyword in VB.NET and is in C# do something completely different. In VB.NET, Is com-
pares two instances of objects, something you learn more about in the second half of this chapter. In
C#, you use is to find out if a certain variable is compatible with a certain type. You can accomplish
that in VB.NET using the TypeOf operator. The following two examples are functionally equivalent:

VB.NET

Dim myTextBox As TextBox = New TextBox()

If TypeOf myTextBox Is TextBox Then
 ‘ Run some code when myTextBox is a TextBox
End If

C#

TextBox myTextBox = new TextBox();

if (myTextBox is TextBox)
{
 // Run some code when myTextBox is a TextBox
}

One of the arithmetic operators enables you to add two values to each other. That is, you use the
plus (+) symbol to add two values together. But what if you want to combine two values, rather than
add them up? That’s where the concatenation operators are used.

Concatenation Operators

To concatenate two strings, you use the + in C# and the & character in VB.NET. Additionally, you
can use += and &= to combine the concatenation and assignment operators. Consider this example:

VB.NET

Dim firstString As String = “Hello “
Dim secondString As String = “World”
Dim result As String

‘ The following three blocks are all functionally equivalent
‘ and result in the value “Hello World”

result = firstString & secondString

502211c05.indd 156 2/19/10 10:00:37 AM

Statements  ❘  157

result = firstString
result = result & secondString

result = firstString
result &= secondString

C#

string firstString = “Hello “;
string secondString = “World”;
string result;

// The following three blocks are all functionally equivalent
// and result in the value “Hello World”

result = firstString + secondString;

result = firstString;
result = result + secondString;

result = firstString;
result += secondString;

In addition to the & and &= concatenation operators in VB.NET, you could use + and += as well.
However, depending on the data types of the expressions you’re trying to concatenate, you may not
get the result you’d expect. Take a look at this code snippet:

Dim firstNumber As String = “4”
Dim secondNumber As Integer = 5
Dim result As String = firstNumber + secondNumber

Because firstNumber is a String, you may expect the final result to be 45, a concatenation of 4
and 5. However, by default, the VB.NET compiler will silently convert the string “4” into the num-
ber 4, after which addition and not concatenation takes place, giving result a value of 9.

To avoid this ambiguity, always use the & and &= operators to concatenate values. Additionally, you
can tell VB.NET to stop converting these values for you automatically by adding the following line
to the top of your code files:

Option Strict On

This forces the compiler to generate errors when an implicit conversion is about to occur, as in the
previous example.

The final group of operators worth looking into is the logical operators, which are discussed in the
next section.

Logical Operators

The logical operators are used to combine the results of multiple individual expressions, and to
make sure that multiple conditions are true or false, for example. The following table lists the most
common logical operators.

502211c05.indd 157 2/19/10 10:00:37 AM

158  ❘  Chapter 5   Programming Your ASP.NET Web Pages

VB.NET C# Usage

And & Returns True when both expressions result in a True value.

Or | Returns True if at least one expression results in a True value.

Not ! Reverses the outcome of an expression.

AndAlso && Enables you to short-circuit your logical And condition checks.

OrElse || Enables you to short-circuit your logical Or condition checks.

The And, Or, and Not operators (&, |, and ! in C#) are pretty straightforward in their usage, demon-
strated in the following code snippets:

VB.NET

Dim num1 As Integer = 3
Dim num2 As Integer = 7

If num1 = 3 And num2 = 7 Then ‘ Evaluates to True because both
 ‘ expressions are True

If num1 = 2 And num2 = 7 Then ‘ Evaluates to False because num1 is not 2

If num1 = 3 Or num2 = 11 Then ‘ Evaluates to True because num1 is 3

If Not num1 = 5 Then ‘ Evaluates to True because num1 is not 5

C#

int num1 = 3;
int num2 = 7;

if (num1 == 3 & num2 == 7) // Evaluates to true because both
 // expressions are true

if (num1 == 2 & num2 == 7) // Evaluates to false because num1 is not 2

if (num1 == 3 | num2 == 11) // Evaluates to true because num1 is 3

if (!(num1 == 5)) // Evaluates to true because num1 is not 5

The AndAlso and OrElse operators in VB.NET and the && and || operators in C# work very simi-
larly to their And and Or counterparts (& and | in C#). The difference is that with these operators the
second expression is never evaluated when the first one already determines the outcome of the entire
expression. So with a simple And operator:

If num1 = 2 And num2 = 7 Then

both expressions are checked. This means that both num1 and num2 are asked for their value to
see if they equal 2 and 7 respectively. However, because num1 does not equal 2, there really isn’t a
point asking num2 for its value anymore as the result of that expression will never change the final
outcome of the combined expressions. This is where the AndAlso (&& in C#) operator enables you to
short-circuit your logic:

502211c05.indd 158 2/19/10 10:00:37 AM

Statements  ❘  159

VB.NET

If num1 = 2 AndAlso num2 = 7 Then

C#

if (num1 == 2 && num2 == 7)

With this code, the expression num2 = 7 (num2 == 7 in C#) is never evaluated because num1 already
didn’t meet the required criteria.

This may not seem like a big deal with these simple expressions, but it can be a real performance booster
if one of the expressions is actually a slow and long-running operation. Consider this fictitious code:

VB.NET

If userName = “Administrator” And GetNumberOfRecordsFromDatabase() > 0 Then

C#

if (userName == “Administrator” & GetNumberOfRecordsFromDatabase() > 0)

The code for this If block executes only when the current user is called Administrator
and the fictitious call to the database returns at least one record. Now, imagine that
GetNumberOfRecordsFromDatabase() is a long-running operation. It would be a waste of time to
execute it if the current user weren’t Administrator. AndAlso (&& in C#) can fix this problem:

VB.NET

If userName = “Administrator” AndAlso GetNumberOfRecordsFromDatabase() > 0 Then

C#

if (userName == “Administrator” && GetNumberOfRecordsFromDatabase() > 0)

Now, GetNumberOfRecordsFromDatabase() will only be executed when the current user is
Administrator. The code will be ignored for all other users, resulting in increased performance for them.

Most of the previous examples used an If statement to demonstrate the logical operators. The If
statement itself is a very important language construct as well. The If statement and other ways to
make decisions in your code are discussed next.

Making Decisions
Making decisions in an application is one of the most common things you do as a developer. For
example, you need to hide a button on a Web Form when a user is not an administrator. Or you
need to display the even rows in a table with a light grey background while the odd rows get a white
background. All these decisions can be made with a few different logic constructs: If, If Else,
ElseIf, and switch or Select Case statements.

If, If Else, and ElseIf Constructs

The If statement is the simplest of all decision-making statements. The If statement contains two
relevant parts: the condition being tested and the code that is executed when the condition evaluates
to True. For example, to make a button visible only to administrators you can use code like this:

502211c05.indd 159 2/19/10 10:00:37 AM

160  ❘  Chapter 5   Programming Your ASP.NET Web Pages

VB.NET

If User.IsInRole(“Administrators”) Then
 DeleteButton.Visible = True
End If

C#

if (User.IsInRole(“Administrators”))
{
 DeleteButton.Visible = true;
}

Note that VB.NET uses the If and End If keywords, whereas C# uses if together with a pair of
curly braces to indicate the code block that is being executed. Also, with C#, the parentheses around
the condition being tested are required, whereas VB.NET requires you to use the keyword Then
after the condition.

Often you want to perform a different action if the condition is not True. Using the negation opera-
tor Not or ! you could simply write another statement:

VB.NET

If User.IsInRole(“Administrators”) Then
 DeleteButton.Visible = True
End If
If Not User.IsInRole(“Administrators”) Then
 DeleteButton.Visible = False
End If

C#

if (User.IsInRole(“Administrators”))
{
 DeleteButton.Visible = true;
}
if (!User.IsInRole(“Administrators”))
{
 DeleteButton.Visible = false;
}

Clearly, this leads to messy code, because you need to repeat each expression evaluation twice: once
for the True case and once for the False case. Fortunately, there is an easier solution: the Else
block (else in C#):

VB.NET

If User.IsInRole(“Administrators”) Then
 DeleteButton.Visible = True
Else
 DeleteButton.Visible = False
End If

C#

if (User.IsInRole(“Administrators”))
{
 DeleteButton.Visible = true;
}

502211c05.indd 160 2/19/10 10:00:37 AM

Statements  ❘  161

else
{
 DeleteButton.Visible = false;
}

For simple conditions, this If Else construct works fine. But consider a scenario where you have more
than two options. In those scenarios you can use ElseIf in VB.NET or the else if ladder in C#.

Imagine that your site uses three different roles: administrators, content managers, and standard
members. Administrators can create and delete content; content managers can only create new con-
tent, whereas members can’t do either of the two. To show or hide the relevant buttons, you can use
the following code:

VB.NET

If User.IsInRole(“Administrators”) Then
 CreateNewArticleButton.Visible = True
 DeleteArticleButton.Visible = True
ElseIf User.IsInRole(“ContentManagers”) Then
 CreateNewArticleButton.Visible = True
 DeleteArticleButton.Visible = False
ElseIf User.IsInRole(“Members”) Then
 CreateNewArticleButton.Visible = False
 DeleteArticleButton.Visible = False
End If

C#

if (User.IsInRole(“Administrators”))
{
 CreateNewArticleButton.Visible = true;
 DeleteArticleButton.Visible = true;
}
else if (User.IsInRole(“ContentManagers”))
{
 CreateNewArticleButton.Visible = true;
 DeleteArticleButton.Visible = false;
}
else if (User.IsInRole(“Members”))
{
 CreateNewArticleButton.Visible = false;
 DeleteArticleButton.Visible = false;
}

Although the ElseIf or else if ladder helps to make the code more readable, you can still end
up with difficult code when you have many expressions to test. If that’s the case, you can use the
Select Case (VB.NET) or switch (C#) statement.

Switches / Select Case Constructs

Imagine you’re building a web site for a concert hall that has shows on Saturday. During the week,
visitors can buy tickets online for Saturday’s gig. To encourage visitors to buy tickets as early as pos-
sible, you decide to give them an early-bird discount. The earlier in the week they buy their tickets,

502211c05.indd 161 2/19/10 10:00:37 AM

162  ❘  Chapter 5   Programming Your ASP.NET Web Pages

the cheaper they are. Your code to calculate the discount rate can look like this, using a Select
Case / switch statement:

VB.NET

Dim today As DateTime = DateTime.Now
Dim discountRate As Double = 0

Select Case today.DayOfWeek
 Case DayOfWeek.Monday
 discountRate = 0.4
 Case DayOfWeek.Tuesday
 discountRate = 0.3
 Case DayOfWeek.Wednesday
 discountRate = 0.2
 Case DayOfWeek.Thursday
 discountRate = 0.1
 Case Else
 discountRate = 0
End Select

C#

DateTime today = DateTime.Now;
double discountRate = 0;

switch (today.DayOfWeek)
{
 case DayOfWeek.Monday:
 discountRate = 0.4;
 break;
 case DayOfWeek.Tuesday:
 discountRate = 0.3;
 break;
 case DayOfWeek.Wednesday:
 discountRate = 0.2;
 break;
 case DayOfWeek.Thursday:
 discountRate = 0.1;
 break;
 default:
 discountRate = 0;
 break;
}

For each day where the discount is applicable (Monday through Thursday) there is a Case block.
The differences between VB.NET and C# syntax are quite small: C# uses a lowercase c for case
and requires a colon after each case label. Additionally, you need to exit each block with a break
statement. At runtime, the condition (today.DayOfWeek) is evaluated and the correct block is
executed. It’s important to understand that only the relevant block is executed, and nothing else.
When no valid block is found (the code is executed on a day between Friday and Sunday) the code in
the Case Else or default block fires. You’re not required to write a Case Else or default block

502211c05.indd 162 2/19/10 10:00:37 AM

Statements  ❘  163

although it’s recommended to do so, because it makes your code more explicit and easier to read.
The preceding examples could have left it out, because discountRate already gets a default value of
0 at the top of the code block.

To get a feel for the statements you have seen so far, the following Try It Out exercise shows you
how to use them in a small demo application.

Creating a Simple Web-Based CalculatorTry It Out	

In this exercise you create a simple calculator that is able to add, subtract, multiply, and divide values.
It shows you how to use some of the logical and assignment operators and demonstrates the If and
Select Case / switch constructs.

	1.	 Start by creating a new Web Form called CalculatorDemo.aspx in the Demos folder. Make sure you
don’t name the page Calculator or you’ll run into troubles later in this chapter where you create a
class by that name. Once again, make sure you’re using the Code Behind model and select the correct
programming language.

	2.	 Switch the page to Design View, and click in the dashed rectangle to put the focus on it. Choose
Table ➪ Insert Table from the main menu and add a table with three rows and three columns.
Merge all three cells of the first row by selecting them, right-clicking the selection, and choosing
Modify ➪ Merge Cells from the menu that appears.

	3.	 Add the following controls to the page, set their ID and other properties as in the following table,
and arrange the controls as shown in Figure 5-3.

Control Type Control ID Property Settings

Label ResultLabel Clear its Text property. To do this, right-click the prop-

erty name in the Properties Grid and choose Reset.

TextBox ValueBox1

DropDownList OperatorList Add four ListItems for the following arithmetic operators

using the DropDownList’s Smart Tasks panel.

+

-

*

/

TextBox ValueBox2

Button CalculateButton Set the Text property of the button to Calculate.

When you’re done, your page should look like Figure 5-3 in Design View.

502211c05.indd 163 2/19/10 10:00:37 AM

164  ❘  Chapter 5   Programming Your ASP.NET Web Pages

Figure 5-3

	4.	 Double-click the Calculate button and add the following bolded code in the code placeholder that
VWD added for you:

VB.NET

Protected Sub CalculateButton_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles CalculateButton.Click
 If ValueBox1.Text.Length > 0 AndAlso ValueBox2.Text.Length > 0 Then

 Dim result As Double = 0
 Dim value1 As Double = Convert.ToDouble(ValueBox1.Text)
 Dim value2 As Double = Convert.ToDouble(ValueBox2.Text)

 Select Case OperatorList.SelectedValue
 Case “+”
 result = value1 + value2
 Case “-”
 result = value1 - value2
 Case “*”
 result = value1 * value2
 Case “/”
 result = value1 / value2
 End Select
 ResultLabel.Text = result.ToString()
 Else
 ResultLabel.Text = String.Empty
 End If
End Sub

C#

protected void CalculateButton_Click(object sender, EventArgs e)
{
 if (ValueBox1.Text.Length > 0 && ValueBox2.Text.Length > 0)
 {
 double result = 0;
 double value1 = Convert.ToDouble(ValueBox1.Text);
 double value2 = Convert.ToDouble(ValueBox2.Text);

 switch (OperatorList.SelectedValue)
 {
 case “+”:
 result = value1 + value2;
 break;
 case “-”:
 result = value1 - value2;

502211c05.indd 164 2/19/10 10:00:37 AM

Statements  ❘  165

 break;
 case “*”:
 result = value1 * value2;
 break;
 case “/”:
 result = value1 / value2;
 break;
 }
 ResultLabel.Text = result.ToString();
 }
 else
 {
 ResultLabel.Text = string.Empty;
 }
}

	5.	 Save all changes and press Ctrl+F5 to open the page in the browser. If you get an error instead of
seeing the page, make sure you typed the code exactly as shown here, and that you named all con-
trols according to the table you saw earlier.

	6.	 Enter a number in the first and second text boxes, choose an operator from the drop-down list, and
click the Calculate button. The code in the Code Behind fires and then — based on the item you
selected in the drop-down list — the correct calculation is performed and the label is updated with
the result.

	7.	 Go ahead and try some other numbers and operators; you’ll see that the calculator carries out the
right operation every time you click the Calculate button.

How It Works

When you enter two values and click the Calculate button, the following code in the Code Behind fires:

VB.NET

If ValueBox1.Text.Length > 0 AndAlso ValueBox2.Text.Length > 0 Then

C#

if (ValueBox1.Text.Length > 0 && ValueBox2.Text.Length > 0)

This code is necessary to ensure that both text boxes contain a value. (In Chapter 9 you see a
much cleaner way to perform this validation.) The code uses a simple If statement to ensure that
both fields have a value. It also uses AndAlso or && to avoid checking the Text property of the sec-
ond TextBox when the first is empty.

The code then declares a Double to hold the result of the calculation and then gets the values
from the two text box controls, converts the values to a Double using the ToDouble method of the
Convert class, and then sets up a Select Case (switch in C#) block to handle the type of opera-
tor you have chosen in the drop-down list:

VB.NET

Select Case OperatorList.SelectedValue
 Case “+”
 result = value1 + value2

502211c05.indd 165 2/19/10 10:00:38 AM

166  ❘  Chapter 5   Programming Your ASP.NET Web Pages

C#

switch (OperatorList.SelectedValue)
{
 case “+”:
 result = value1 + value2;
 break;

For each item in the drop-down list, there is a case statement. When you have chosen the + oper-
ator from the list, the code in the first case block will fire, and result is assigned the sum of the
numbers you entered in the two text boxes. Likewise, when you choose the subtraction operator,
for example, the two values are subtracted from each other.

At the end, the result is converted to a String and then displayed on the label called ResultLabel.

The Select Case / switch statements close off the discussion about making decisions in your code.
There’s one more group of statements left: Loops that enable you to loop over code or over objects
in a collection.

Loops
Loops are extremely useful in many applications, because they enable you to execute code repeti-
tively, without the need to write that code more than once. For example, if you have a web site
that needs to send a newsletter by e‑mail to its 20,000 subscribers, you write the code to send the
newsletter once, and then use a loop that sends the newsletter to each subscriber the code finds in a
database.

Loops come as a few different types, each with their own usage and advantages.

The For Loop

The For loop simply repeats its code a predefined number of times. You define the exact number of
iterations when you set up the loop. The For loop takes the following format:

VB.NET

For counter [As datatype] = start To end [Step stepSize]
 ‘ Code that must be executed for each iteration
Next [counter]

C#

for (startCondition; endCondition; step definition)
{
 // Code that must be executed for each iteration
}

This looks a little odd, but a concrete example makes this a lot easier to understand:

VB.NET

For loopCount As Integer = 1 To 10
 Label1.Text &= loopCount.ToString() & “
”
Next

502211c05.indd 166 2/19/10 10:00:38 AM

Statements  ❘  167

C#

for (int loopCount = 1; loopCount <= 10; loopCount ++)
{
 Label1.Text += loopCount.ToString() + “
”;
}

Although the syntax used in both languages is quite different, both code examples perform the same
action: they write out numbers from 1 to 10 on a Label control. That is, the loop is started by the
assignment of 1 to the variable loopCount. Next, the value is converted to a String and assigned
to the Label control. Then loopCount is increased by 1, and the loop continues. This goes on until
loopCount is 10 and then the loop ends. In this example, hardcoded numbers are used. However,
you can replace the start and end conditions with dynamic values from variables or other objects.
For example, if you’re working with the roles array you saw earlier, you can write out each role in
the array like this:

VB.NET

For loopCount As Integer = 0 To roles.Length - 1
 Label1.Text &= roles(loopCount) & “
”
Next

C#

for (int loopCount = 0; loopCount < roles.Length; loopCount ++)
{
 Label1.Text += roles[loopCount] + “
”;
}

Because arrays are zero-based, you need to address the first item with roles(0) in VB.NET and
roles[0] in C#. This also means that the loop needs to start at 0. The Length property of an array
returns the total number of items that the array contains. So when there are three roles in the array,
Length returns 3. Therefore, in VB.NET the code subtracts one from the Length and uses that value
as the end condition of the loop, causing the loop to run from 0 to 2, accessing all three elements.

The C# example doesn’t subtract 1 from the Length, though. Instead it uses the expression:

loopCount < roles.Length;

So, as long as loopCount is less than the length of the array, the loop continues. Again, this causes
the loop to access all three items, from 0 to 2.

The previous examples loop by adding 1 to the loopCount variable on each iteration. To use a
greater step increase, you use the keyword Step in VB.NET, whereas C# enables you to define the
step size directly in the step definition:

VB.NET

For loopCount As Integer = 0 To 10 Step 2
Next

C#

for (int loopCount = 0; loopCount <= 10; loopCount = loopCount + 2)
{
}

502211c05.indd 167 2/19/10 10:00:38 AM

168  ❘  Chapter 5   Programming Your ASP.NET Web Pages

This loop assigns loopCount the even numbers between zero and 10.

If you are looping over an array or a collection of data, there’s another loop at your disposal that’s a
bit easier to read and work with: the For Each or foreach loop.

The For Each / foreach Loop

The For Each loop in VB.NET and the foreach in C# simply iterate over all the items in a collec-
tion. Taking the roles array as an example, you can execute the following code to print each role
name on the Label control:

VB.NET

For Each role As String In roles
 Label1.Text &= role & “
”
Next

C#

foreach (string role in roles)
{
 Label1.Text += role + “
”;
}

Because the roles variable is an array of strings, you need to set up the loop with a String as well.
Likewise, if the collection that is being looped over contains Integer or Boolean data types, you
would set up the loop with an Integer or Boolean, respectively.

Besides the For and the For Each loops, there is one more loop that you need to look at: the
While loop.

The While Loop

As its name implies, the While loop is able to loop while a certain condition is true. Unlike the other
two loops that usually end by themselves, the While loop could potentially loop forever if you’re not
careful. The following example shows how to use the While loop:

VB.NET

Dim success As Boolean = False
While Not success
 success = SendEmailMessage()
End While

C#

bool success = false;
while (!success)
{
 success = SendEmailMessage();
}

This code tries to send an e‑mail message using the fictitious SendEmailMessage method and will do
so until it succeeds — that is, as long as the variable success has the value False (false in C#). Note

502211c05.indd 168 2/19/10 10:00:38 AM

Statements  ❘  169

that Not and ! are used to reverse the value of success. The SendEmailMessage method is supposed
to return True when it succeeds and False when it doesn’t. If everything works out as planned, the
code enters the loop and calls SendEmailMessage. If it returns True, the loop condition is no longer
met, and the loop will end. However, when SendEmailMessage returns False, for example, because
the mail server is down, the loop will continue and SendEmailMessage is called again.

To avoid endless loops with the While loop, it’s often a good idea to add a condition that terminates
the loop after a certain number of tries. For example, the following code helps to avoid an infinite
loop if the mail server is down:

VB.NET

Dim success As Boolean = False
Dim loopCount As Integer = 0
While Not success And loopCount < 3
 success = SendEmailMessage()
 loopCount = loopCount + 1
End While

C#

bool success = false;
int loopCount = 0;
while (!success && loopCount < 3)
{
 success = SendEmailMessage();
 loopCount = loopCount + 1;
}

With this code, the variable loopCount is responsible for exiting the loop after three attempts to call
SendEmailMessage. Instead of using loopCount = loopCount + 1, you can also use the combined
concatenation and assignment operators, like this:

VB.NET

loopCount += 1

C#

loopCount += 1;

// Alternatively C# enables you to do this:
loopCount++;

All examples have the same result: the loopCount value is increased by one, after which the new
total is assigned to loopCount again. The C# shortcut, loopCount++, is a very common way to
increase a variable’s value by 1. Similarly, you can use loopCount-- or loopCount -= 1 to decrease
the value by 1. The latter option is available in VB.NET as well.

Besides the While loop, there are a few other alternatives, like the Do While loop (that ensures that
the code to be executed is always executed at least once) and the Do Until loop that goes on until a
certain condition is true, as opposed to looping while a certain condition is true as is the case with
the While loop.

502211c05.indd 169 2/19/10 10:00:38 AM

170  ❘  Chapter 5   Programming Your ASP.NET Web Pages

So far, the code you’ve seen has been comprised of short and simple examples that can be placed
directly in the Code Behind of a web page; for example, in Page_Load or in a Button’s Click han-
dler that you have seen before. However, in real-world web sites, you probably want to structure and
organize your code a lot more. In the next section, you see different ways to accomplish this.

Organizing Code

When you start adding more than just a few pages to your web site, you’re almost certain to end
up with some code that you can reuse in multiple pages. For example, you may have some code
that reads settings from the web.config file that you need in multiple files. Or you want to send
an e‑mail with user details from different pages. So you need to find a way to centralize your code.
To accomplish this in an ASP.NET 4 web site, you can use functions and subroutines, which are
discussed next. To make these functions and subroutines available to all the pages in your site, you
need to create them in a special location, which is discussed afterward.

Methods: Functions and Subroutines
Functions and subroutines (subs) are very similar; both enable you to create a reusable block of code
that you can call from other locations in your application. The difference between a function and a
subroutine is that a function can return data whereas a sub doesn’t. Together, functions and subrou-
tines are referred to as methods. You’ll see that term again in the final part of this chapter that deals
with object orientation.

To make functions and subs more useful, they can be parameterized. That is, you can pass in addi-
tional information that can be used inside the function or subs. Functions and subs generally take
the following format:

VB.NET

‘ Define a function
Public Function FunctionName ([parameterList]) As DataType

End Function

‘ Define a subroutine
Public Sub SubName ([parameterList])

End Sub

C#

// Define a function
public datatype FunctionName([parameterList])
{

}

// Define a subroutine
public void SubName([parameterList])
{

}

502211c05.indd 170 2/19/10 10:00:38 AM

Organizing Code  ❘  171

The complete first line, starting with Public, is referred to as the method signature because it defines
the look of the function, including its name and its parameters. The Public keyword (public in
C#) is called an access modifier and defines to what extent other web pages or code files can see this
method. This is discussed in detail later in the chapter. For now, you should realize that Public has
the greatest visibility, so the method is visible to any calling code.

The name of the function is followed by parentheses, which in turn can contain an optional param-
eter list. The italic parts in these code examples will be replaced with real values in your code. The
parts between the square brackets ([]) are optional. To make it a little more concrete, here are some
examples of functions and subs:

VB.NET

Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer
 Return a + b
End Function

Public Sub SendEmailMessage(ByVal emailAddress As String)
 ‘ Code to send an e‑mail goes here
End Sub

C#

public int Add(int a, int b)
{
 return a + b;
}

public void SendEmailMessage(string emailAddress)
{
 // Code to send an e‑mail goes here
}

In these code examples it’s clear that functions return a value, and subs don’t. The Add method
uses the Return keyword (return in all lowercase in C#) to return the sum of a and b. The Sub in
VB.NET and the void method in C# don’t require the Return keyword, although you can use it to
exit the method prematurely.

Finally, both the function and subroutine have a parameter list that enables you to define the name
and data type of variables that are passed to the method. Inside the method you can access these
variables as you would normal variables. In the case of the Add method, there are two parameters:
one for the left side of the addition and one for the right side. The SendEmailMessage method only
has a single parameter: a String holding the user’s e‑mail address.

In the VB.NET example you see the keyword ByVal in front of each parameter in the parameter list.
This is the default type for all parameters and it will be added by the IDE for you automatically if
you leave it out. The opposite of ByVal is ByRef. These keywords determine the way a value is sent
to the function or subroutine. When you specify ByVal, a copy of the variable is made. Any changes
made to that copy inside the method are lost as soon as the method finishes. In contrast, when you
specify ByRef, a reference to the variable is sent to the method. Any changes made to the incoming

502211c05.indd 171 2/19/10 10:00:38 AM

172  ❘  Chapter 5   Programming Your ASP.NET Web Pages

variable reflect on the original variable as well. The following short example demonstrates how this
works:

Public Sub ByValDemo(ByVal someValue As Integer)
 someValue = someValue + 20
End Sub

Public Sub ByRefDemo(ByRef someValue As Integer)
 someValue = someValue + 20
End Sub

Dim x As Integer = 0
ByValDemo(x)

Label1.Text = x.ToString() ‘ Prints out 0; A copy of x is sent to ByValDemo,
 ‘ leaving the original value of x unmodified.

Dim y As Integer = 0
ByRefDemo(y)

Label1.Text = y.ToString() ‘ Prints out 20; A reference to y is sent
 ‘ to ByRefDemo so when that method modified
 ‘ someValue, it also changed the variable y.

C# has a similar construct using the ref keyword. The biggest difference from VB.NET is that you
don’t need to specify anything when you don’t want to use reference parameters, and that you need
to specify the ref keyword in the call to the method as well:

public void ByRefDemo(ref int someValue)
{
 someValue = someValue + 20;
}

int y = 0;
ByRefDemo(ref y); // Just as in the VB example, y contains 20
 // after the call to ByRefDemo

Be careful when using reference parameters like this; before you know it the method may change
important variables in the calling code. This can lead to bugs that are hard to track down.

To make your site-wide methods accessible to pages in your web site, you should place them in a
centralized location. The App_Code folder of your web site is a perfect location for your code.

The App_Code Folder
The App_Code folder is a special ASP.NET 4 folder. It’s designed specifically to hold code files, like
classes that you’ll use throughout the site. Code that only applies to one page (like the handler of a
Button control’s click) should remain in the page’s Code Behind, as you have seen so far.

502211c05.indd 172 2/19/10 10:00:38 AM

Organizing Code  ❘  173

NOTE  ​The App_Code folder is specific to Web Site Projects, the project type
used for the Planet Wrox sample web site. Web Application Projects on the
other hand don’t use or support an App_Code folder. However, that project type
enables you to create code files in pretty much any location. When you build
sites using the Web Application Project model, you’re advised to create a central
code folder (called Code or CodeFiles, for example) to store all your code files.
To follow along with the samples in this and later chapters, it’s important you’re
using a Web Site Project as explained in Chapter 2.

To add the App_Code folder to your site, right-click the site’s name in the
Solution Explorer and choose Add ASP.NET Folder ➪ App_Code. The
folder is added to the site and gets a special icon: a folder with a little code
document on top of it, shown in Figure 5-4.

With the App_Code folder in place, you can start adding class files to it.
Class files have an extension that matches the programming language
you have chosen for the site: .cs for C# files and .vb for files containing
VB.NET code. Inside these class files you can create classes that in turn con-
tain methods (functions and subroutines) that can carry out common tasks. Classes are discussed
in more detail in the final section of this chapter; for now, focus on the methods in the code file and
how they are called, rather than on why you need to add the code to a class first.

The next exercise shows you how to use the App_Code folder to optimize the calculator you created
in an earlier Try It Out.

Optimizing the CalculatorTry It Out	

In this exercise, you create a class called Calculator that exposes four methods: Add, Subtract,
Multiply, and Divide. When the class is set up and is capable of performing the necessary computing
actions, you modify the file CalculatorDemo.aspx so it uses your new Calculator class. Although
this is a trivial example when it comes to the amount of code you need to write and the added flexibility
you gain by moving your code from the ASPX page to the App_Code folder so it can be reused by other
applications, it’s comprehensive enough to show you the concept, yet short enough to enable you to
understand the code. For now, just focus on how the calculator works and how to call its methods. In
the section on object orientation later in this chapter you see what a class is exactly.

	1.	 If you haven’t already done so, start by adding an App_Code folder to your site by right-clicking
the site and choosing Add ASP.NET Folder ➪ App_Code.

	2.	 Right-click this newly created folder and choose Add New Item.

	3.	 In the dialog box that follows, select the appropriate programming language, and click Class.

	4.	 Type Calculator as the name of the file and click Add. This creates a class file that in turn con-
tains a class called Calculator. Note that it’s common practice to name classes using what’s called
Pascal Casing, where each word starts with a capital letter.

Figure 5-4

502211c05.indd 173 2/19/10 10:00:39 AM

174  ❘  Chapter 5   Programming Your ASP.NET Web Pages

	5.	 Right after the line of code that defines the Calculator class, add the following four methods:

VB.NET

Public Class Calculator

 Public Function Add(ByVal a As Double, ByVal b As Double) As Double
 Return a + b
 End Function

 Public Function Subtract(ByVal a As Double, ByVal b As Double) As Double
 Return a - b
 End Function

 Public Function Multiply(ByVal a As Double, ByVal b As Double) As Double
 Return a * b
 End Function

 Public Function Divide(ByVal a As Double, ByVal b As Double) As Double
 Return a / b
 End Function

End Class

C#

public class Calculator
{

 public double Add(double a, double b)
 {
 return a + b;
 }

 public double Subtract(double a, double b)
 {
 return a - b;
 }

 public double Multiply(double a, double b)
 {
 return a * b;
 }

 public double Divide(double a, double b)
 {
 return a / b;
 }

 public Calculator()
 {
 //
 // TODO: Add constructor logic here
 //
 }
}

502211c05.indd 174 2/19/10 10:00:39 AM

Organizing Code  ❘  175

	6.	 Next, modify the Code Behind of the CalculatorDemo.aspx page so it uses the class you just cre-
ated. You need to make two changes: first you need to add a line of code that creates an instance of
the Calculator class and then you need to modify each Case block to use the relevant calculation
methods in the calculator:

VB.NET

Dim myCalculator As New Calculator()
Select Case OperatorList.SelectedValue
 Case “+”
 result = myCalculator.Add(value1, value2)
 Case “-”
 result = myCalculator.Subtract(value1, value2)
 Case “*”
 result = myCalculator.Multiply(value1, value2)
 Case “/”
 result = myCalculator.Divide(value1, value2)
End Select

C#

Calculator myCalculator = new Calculator();
switch (OperatorList.SelectedValue)
{
 case “+”:
 result = myCalculator.Add(value1, value2);
 break;
 case “-”:
 result = myCalculator.Subtract(value1, value2);
 break;
 case “*”:
 result = myCalculator.Multiply(value1, value2);
 break;
 case “/”:
 result = myCalculator.Divide(value1, value2);
 break;
}

	7.	 Save all your changes and open the page in the browser. The calculator still works as before; only
this time the calculations are not carried out in the page’s Code Behind file, but by the Calculator
class in the App_Code folder instead.

How It Works

The file you created in the App_Code folder contains a class called Calculator. You learn more about
classes in the final section of this chapter, but for now it’s important to know that a class is like a defi-
nition for an object that can expose methods you can call at runtime. In this case, the definition for
the Calculator class contains four methods to perform arithmetic operations. These methods accept
parameters for the left-hand and right-hand side of the calculations. Each method simply carries out the
requested calculation (Add, Subtract, and so on) and returns the result to the calling code.

The code in the Code Behind of the CalculatorDemo.aspx page first creates an instance of the
Calculator class. That is, it creates an object in the computer’s memory based on the class definition.

502211c05.indd 175 2/19/10 10:00:39 AM

176  ❘  Chapter 5   Programming Your ASP.NET Web Pages

To do this, it uses the New (new in C#) keyword to create an instance of Calculator, which is then
stored in the variable myCalculator. You learn more about the New keyword later in this chapter when
objects are discussed. Note that the data type of this variable is Calculator: the name of the class.

VB.NET

Dim myCalculator As New Calculator()

C#

Calculator myCalculator = new Calculator();

Once the Calculator instance is created, you can call its methods. Just as you saw earlier with other
methods, the methods of the Calculator class accept parameters that are passed in by the calling code:

VB.NET

Case “+”
 result = myCalculator.Add(value1, value2)

C#

case “+”:
 result = myCalculator.Add(value1, value2);
 break;

The Add method then adds the two values and returns the result as a double, which is stored in the
variable result. Just as in the first version of the calculator, at the end the result is displayed on the
page with a Label control.

Functions and subroutines are a great way to organize your web application. They enable you to
create reusable blocks of code that you can easily call from other locations. Because code you need
more than once is only defined once, it’s much easier to maintain or extend the code. If you find a
bug in a function, simply fix it in its definition in the App_Code folder and all pages using that func-
tion automatically benefit from the change. Besides the increased maintainability, functions and subs
also make your code easier to read: Instead of wading through long lists of code in a page, you just
call a single function and work with the return value (if any). This makes the code easier on your
brain, minimizing the chance of bugs in your application.

Functions and subs are not the only way to organize code in your .NET projects. Another common
way to organize things is to use namespaces.

Organizing Code with Namespaces
Namespaces seem to cause a lot of confusion with new developers. They think they’re scary, they
think there are way too many of them, or they don’t see the need to use them. None of this is true,
and with a short explanation of them, you’ll understand and maybe even like namespaces.

Namespaces are intended to solve two major problems: to organize the enormous amount of func-
tionality in the .NET Framework and in your own code, and to avoid name collisions, where two
different data types share the same name. One common misconception about namespaces is that
there is a direct relation with .NET assemblies (files with a .dll extension that are loaded and

502211c05.indd 176 2/19/10 10:00:39 AM

Organizing Code  ❘  177

used by the .NET Framework) but that’s not the case. Although you typically find namespaces
like System.Web.UI in a DLL called System.Web.dll it’s possible (and common) to have multiple
namespaces defined in a single DLL or to have a namespace be spread out over multiple assemblies.
Keep that in mind when adding references to assemblies as explained later.

To see what a namespace looks like, open one of the Code Behind files of the ASPX pages you’ve
created so far. You’ll see something similar to this:

VB.NET

Partial Class Demos_CalculatorDemo
 Inherits System.Web.UI.Page

C#

public partial class Demos_CalculatorDemo : System.Web.UI.Page
{

Note that the definition of the class name is followed by the Inherits keyword (a colon in C#),
which in turn is followed by System.Web.UI.Page. You see later what this Inherits keyword is
used for. In this code, Page is the name of a class (a data type), which is defined in the System.Web.
UI namespace. By placing the Page class in the System.Web.UI namespace, developers (and compil-
ers) can see this class is about a web page. By contrast, imagine the following (fictitious) class name:

Microsoft.Word.Document.Page

This code also refers to a Page class. However, because it’s placed in the Microsoft.Word.
Document namespace, it’s easy to see that it’s referring to a page of a Word document, not a web
page. This way there is no ambiguity between a web page and a Word document page. This in turn
helps the compiler understand which class you are referring to.

Another benefit of namespaces is that they help you find the right data type. Instead of displaying
thousands and thousands of items in the IntelliSense list, you get a few top-level namespaces. When
you choose an item from that list and press the dot key (.) you get another relatively short list with
types and other namespaces that live inside the chosen namespace.

Namespaces are nothing more than simple containers that you can refer to by name using the dot
notation. They are used to prefix each data type that is available in your application. For example,
the Double data type lives in the System namespace and thus its fully qualified name is System.
Double. Likewise, the Button control you’ve added to your web pages lives in the System.Web.
UI.WebControls namespace and thus its full name is System.Web.UI.WebControls.Button.

It’s also easy to create your own namespaces. As long as they don’t collide with an existing name,
you can pretty much make up your own namespaces as you see fit. For example, you could wrap the
Calculator class in the following namespace (in Calculator.vb or Calculator.cs in App_Code):

VB.NET

Namespace Wrox.Samples

 Public Class Calculator
 ...

502211c05.indd 177 2/19/10 10:00:39 AM

178  ❘  Chapter 5   Programming Your ASP.NET Web Pages

 End Class

End Namespace

C#

namespace Wrox.Samples
{
 public class Calculator
 {
 ...
 }
}

With the calculator wrapped in this namespace, you could create a new instance of it like this:

VB.NET

Dim myCalculator As New Wrox.Samples.Calculator()

C#

Wrox.Samples.Calculator myCalculator = new Wrox.Samples.Calculator();

Although you get some help from IntelliSense to find the Calculator class, typing these long names
becomes boring after a while. Fortunately, there’s a fix for that as well.

After you have created your own namespaces or if you want to use existing ones, you need to make
them available in your code. You do this with the keyword Imports (in VB.NET) or using (in C#).
For example, to make your Calculator class available in the Calculator demo page, you can add
the following namespace to your code:

VB.NET

Imports Wrox.Samples

Partial Class Demos_CalculatorDemo
 Inherits System.Web.UI.Page

C#

using Wrox.Samples;

public partial class Demos_CalculatorDemo : System.Web.UI.Page
{

If you are using C#, you’ll see a number of using statements by default in the Code Behind
of an ASPX page for namespaces like System and System.Web.UI.WebControls. If you’re
using VB.NET, you won’t see these references. Instead, with a VB.NET web site, the default
namespaces are included in the machine’s global web.config file under the <namespaces>
element.

Quite often, you know the name of the class, but you don’t know the
namespace it lives in. VWD makes it very easy to find the namespace
and add the required Imports and using statement for you. Simply
type the name of the class you want to use and then place the cursor in

Figure 5-5

502211c05.indd 178 2/19/10 10:00:39 AM

Organizing Code  ❘  179

the class name and press Ctrl+. (Ctrl+Dot). You see a menu appear that lets you select the right
namespace, as shown in Figure 5-5.

If the dialog doesn’t offer to add an Imports or using statement, the assembly that contains the
class you’re looking for may not be referenced by the project. If that’s the case, right-click the web
site in the Solution Explorer and choose Add Reference. In the dialog that follows you can choose
from the many built-in .NET assemblies on the .NET tab or browse to a third party assembly using
the Browse tab. Once the reference is added you should be able to add an Imports or using state-
ment for the class you’re looking for by pressing Ctrl+. again on the class name.

Once you start writing lots of code, you may quickly forget where you declared what, or what a vari-
able or method is used for. It’s therefore wholeheartedly recommended to put comments in your code.

Writing Comments
No matter how clean a coder you are, it’s likely that someday you will run into code that makes you
raise your eyebrows and think, “What on earth is this code supposed to do?” Over the years, the
way you program will change; you’ll learn new stuff, optimize your coding standards, and find ways
to code more efficiently. To make it easier for you to recognize and understand your code now and
two years from now, it’s a good idea to comment your code. There are two main ways to add com-
ments in your code files: inline and as XML comments.

Commenting Code Inline

Inline comments are written directly in between your code statements. You can use them to com-
ment on existing variables, difficult loops, and so on. In VB.NET, you can only comment out one
line at a time using the tick (‘) character that you place in front of the text that you want to use as a
comment. To comment a single line in C#, you use two slashes (//). Additionally, you can use /* and
*/ to comment out an entire block of code in C#. The following examples show some different uses
of comments:

VB.NET

‘ Usage: explains the purpose of variables, statements and so on.
‘ Used to store the number of miles the user has traveled last year.
Dim distanceInMiles As Integer

‘ Usage: comment out code that’s not used (anymore).
‘ In this example, SomeUnfinishedMethod is commented out
‘ to prevent it from being executed.
‘ SomeUnfinishedMethod()

‘ Usage: End of line comments.
If User.IsInRole(“Administrators”) Then ‘ Only allow admins in this area
End If

C#

// Usage: explains the purpose of variables, statements and so on.
// Used to store the number of miles the user has traveled last year.
int distanceInMiles;

502211c05.indd 179 2/19/10 10:00:39 AM

180  ❘  Chapter 5   Programming Your ASP.NET Web Pages

// Usage: comment out code that’s not used (anymore).
// In this example, SomeUnfinishedMethod is commented out
// to prevent it from being executed.
// SomeUnfinishedMethod();

// Usage: End of line comments.
if (User.IsInRole(“Administrators”)) // Only allow admins in this area
{ }

/*
 * This is a block of comments that is often used to add additional
 * information to your code for example to explain a difficult loop. You can
 * also use this to (temporarily) comment a whole block of code.
*/

To comment out the code, simply type the code character (‘ or //) at the location where you
want the comment to start. To comment out a block of code, select it in the text editor and press
Ctrl+K followed by Ctrl+C. Similarly, press Ctrl+K followed by Ctrl+U to uncomment a selected
block of code.

Alternatively, you can choose Edit ➪ Advanced ➪
Comment Selection or Uncomment Selection from the
main menu, or click the respective buttons on the
Text Editor toolbar, shown in Figure 5-6.

Inline comments are usually good for documenting small details of your code. However, it’s also a
good idea to provide a high-level overview of what your code does. For example, for a method called
SendEmailMessage it would be good to have a short description that explains what the method does
and what the parameters are used for. This is exactly what XML comments are used for.

Writing XML Comments

XML comments are comments that are added as XML elements (using angle brackets: < >) in your
code to describe its purpose, parameters, return value, and so on. The VWD IDE helps you by
writing these comments. All you need to do is position your cursor on the line just before a class or
method and type ‘’’ (three tick characters) for VB or /// (three forward slashes) for C#. As soon as
you do that, the IDE inserts XML tags for the summary and optionally the parameters and return
type of a method. Once again, consider a SendEmailMessage method. It could have two parameters
of type String: one for the e‑mail address to send the message to, and one for the mail body. With
the XML comments applied, the method could look like this:

VB.NET

‘’’ <summary>
‘’’ Sends out an e‑mail to the address specified by emailAddress.
‘’’ </summary>
‘’’ <param name=”emailAddress”>The e‑mail address of the recipient.</param>
‘’’ <param name=”mailBody”>The body of the mail message.</param>
‘’’ <returns>This method returns True when the message was sent successfully;
‘’’ and False otherwise.</returns>
‘’’ <remarks>Attention: this method assumes a valid mail server is
‘’’ available.</remarks>

Figure 5-6

502211c05.indd 180 2/19/10 10:00:39 AM

Object Orientation Basics  ❘  181

Public Function SendEmailMessage(ByVal emailAddress As String,
 ByVal mailBody As String) As Boolean
 ‘ Implementation goes here
End Function

C#

/// <summary>
/// Sends out an e‑mail to the address specified by emailAddress.
/// </summary>
/// <param name=”emailAddress”>The e‑mail address of the recipient.</param>
/// <param name=”mailBody”>The body of the mail message.</param>
/// <returns>This method returns true when the message was sent successfully;
/// and false otherwise.</returns>
/// <remarks>Attention: this method assumes a valid mail server is
/// available.</remarks>
bool SendEmailMessage(string emailAddress, string mailBody)
{
 // Implementation goes here
}

The cool thing about this type of commenting is that the comments you type here show up in
IntelliSense in the code editor when you try to call the method (see Figure 5-7).

Figure 5-7

This makes it much easier for you and other developers to understand the purpose of the method
and its parameters.

Besides aiding development in the code editor, the XML comments can also be used to create good-
looking, MSDN-like documentation. A number of third-party tools are available that help you
with this, including Microsoft’s own Sandcastle (http://msdn2.microsoft.com/en-us/vstudio/
bb608422.aspx) and Document! X from Innovasys (www.innovasys.com/).

Object Orientation Basics

A chapter about writing code in ASP.NET wouldn’t be complete without a section on object ori-
entation (OO). Object orientation, or object-oriented programming, is a highly popular style of
programming where the software is modeled as a set of objects interacting with each other. Object
orientation is at the heart of the .NET Framework. Literally everything inside the framework is an
object, from simple things like integers to complex things like a DropDownList control, a connection
to the database, or a data-driven control.

Because object orientation is such an important aspect of .NET, it’s important to be familiar with
the general concepts of object-oriented programming. At the same time, you don’t have to be an
expert on OO to be able to build web sites with ASP.NET. This section gives you a 10,000-foot

502211c05.indd 181 2/19/10 10:00:39 AM

182  ❘  Chapter 5   Programming Your ASP.NET Web Pages

overview of the most important terms and concepts. This helps you get started with object orienta-
tion, so you can start building useful applications in the next chapter instead of keeping your nose
in the books for the next three weeks.

Important OO Terminology
In object orientation, everything revolves around the concept of objects. In OO everything is, in
fact, an object. But what exactly is an object? And what do classes have to do with them?

Objects

Objects are the basic building blocks of object-oriented programming languages. Just like in the real
world, an object in OO-land is a thing, but stored in the computer’s memory. It can be an integer holding
someone’s age or an open database connection to a SQL Server located on the other side of the world,
but it can also be something more conceptual, like a web page. In your applications, you create a new
object with the New (new in C#) keyword, as you saw with the calculator example. This process of creat-
ing new objects is called instantiating and the objects you create are called instances. You can instantiate
complex or custom types like Calculator as well as simple types like Integers and Strings:

VB.NET

Dim myCalculator As Calculator = New Calculator()

Dim age As Integer = New Integer()

C#

Calculator myCalculator = new Calculator();

int age = new int();	

Because it’s so common to create variables of simple types like Integer (int in C#) and String
(string in C#), the compiler allows you to leave out the new keyword and the assignment.
Therefore, the following code is functionally equivalent to the preceding age declaration:

VB.NET

Dim age As Integer

C#

int age;

All data types listed at the beginning of this chapter except System.Object can be created without
the New keyword.

Once you have created an instance of an object, such as the myCalculator object, it’s ready to
be used. For example, you can access its methods and properties to do something useful with the
object. But before you look at methods and properties, you need to understand classes first.

Classes

Classes are the blueprints of objects. Just as you can use a single blueprint to build a bunch of simi-
lar houses, you can use a single class to create multiple instances of that class. So the class acts as

502211c05.indd 182 2/19/10 10:00:40 AM

Object Orientation Basics  ❘  183

the definition of the objects that you use in your application. At its most basic form, a class looks
like this:

VB.NET

Public Class ClassName

End Class

C#

public class ClassName
{
}

Because this code simply defines an empty class, it cannot do anything useful. To give the class some
behavior, you can give it properties, methods, and constructors. In addition, you can let the class
inherit from an existing class to give it a head start in terms of functionality and behavior. You’ll
come to understand these terms in the next couple of sections.

Properties

Properties of an object are the characteristics the object has. Consider a Person object. What kind
of properties does a Person have? It’s easy to come up with many different characteristics, but the
most common are:

First name➤➤

Last name➤➤

Date of birth➤➤

You define a property in a class with the Property keyword (in VB.NET) or with a property header
similar to a method in C#. In both languages, you use a Get block (get in C#) and a Set block
(set in C#) to define the so-called getters and setters of the property. The getter is accessed when
an object is asked for the value of a specific property, and the setter is used to assign a value to the
property. Properties only provide access to underlying data stored in the object; they don’t contain
the actual data. To store the data, you need what is called a backing variable. This is often a simple
variable defined in the class that is able to store the value for the external property. In the following
example, the variable _firstName is the backing variable for the FirstName property:

VB.NET

Public Class Person
 Private _firstName As String
 Public Property FirstName() As String
 Get
 Return _firstName
 End Get
 Set(ByVal value As String)
 _firstName = value
 End Set
 End Property
End Class

502211c05.indd 183 2/19/10 10:00:40 AM

184  ❘  Chapter 5   Programming Your ASP.NET Web Pages

C#

public class Person
{
 private string _firstName;
 public string FirstName
 {
 get { return _firstName; }
 set { _firstName = value; }
 }
}

It is common to prefix the private backing variables with an underscore, followed by the first word in
all lowercase, optionally followed by more words that start with a capital again. So the FirstName
property has a backing variable called _firstName, LastName has one called _lastName, and so on.
This way, all variables that apply to the entire class are nicely packed together in the IntelliSense list.
Simply type an underscore in your code and you’ll get the full list of private variables. Note that the
underscore is typically not used when defining variables inside a function or a subroutine.

Just as the Public keyword you saw earlier, Private is also an access modifier. You learn more
about access modifiers later in this chapter.

The main reason for a property in a class is to encapsulate data. The idea is that a property enables
you to control the data that is being assigned to it. This way, you can perform validation or manipu-
lation of the data before it’s stored in the underlying backing variable. Imagine that one of the busi-
ness rules of your application states that all first names must be written with the first letter as a
capital. In non–object-oriented languages, the developer setting the name would have to keep this
rule in mind every time a variable was filled with a first name. In an OO approach, you can make
the FirstName property responsible for this rule so others don’t have to worry about it anymore.
You can do this type of data manipulation in the setter of the property:

VB.NET

Set(ByVal value As String)
 If Not String.IsNullOrEmpty(value) Then
 _firstName = value.Substring(0, 1).ToUpper() & value.Substring(1)
 Else
 _firstName = String.Empty
 End If
End Set

C#

set
{
 if (!string.IsNullOrEmpty(value))
 {
 _firstName = value.Substring(0, 1).ToUpper() + value.Substring(1);
 }
 else
 {
 _firstName = string.Empty;
 }
}

502211c05.indd 184 2/19/10 10:00:40 AM

Object Orientation Basics  ❘  185

This code demonstrates that both in VB.NET as in C#, the value parameter is accessible, just as a
parameter to a method. The value parameter contains the value that is being assigned to the property.
In VB.NET, the value parameter is defined explicitly in the property’s setter. In C# it’s not specified
explicitly, but you can access it nonetheless.

The code first checks if the value that is being passed is not Nothing (null in C#) and that it
doesn’t contain an empty string using the handy String.IsNullOrEmpty method.

The code in the If block then takes the first letter of value, using the SubString method of the
String class, which it passes the values 0 and 1. The 0 indicates the start of the substring and the
1 indicates the length of the string that must be returned. String indexing is zero-based as well, so
a start of 0 and a length of 1 effectively returns the first character of the value parameter. This
character is then changed to uppercase using ToUpper(). Finally, the code takes the remainder of
the value parameter using SubString again and assigns the combined name back to the backing
variable.

You can now use code that sets the name with arbitrary casing. But, when you try to access the
name again, the first name will always begin with a proper first character:

VB.NET

Dim myPerson As Person = New Person() ‘ Create a new instance of Person
myPerson.FirstName = “imar” ‘ Accessing the setter that changes the value

Label1.Text = myPerson.FirstName ‘ Accessing the getter that now returns Imar

C#

Person myPerson = new Person(); // Create a new instance of Person
myPerson.FirstName = “imar”; // Accessing the setter that changes the value

Label1.Text = myPerson.FirstName; // Accessing the getter that now returns Imar

For simple properties that don’t need any data manipulation or validation, you can use so-called
automatic properties. Automatic properties used to be available in C# only, but starting with the
release of .NET 4, automatic properties are now available in VB.NET as well. With these properties,
you can use a much more condensed syntax without the need for a private backing variable. When the
code is compiled, the compiler will create the necessary backing variable for you, and you’ll need to
refer to the public property. Here’s the DateOfBirth property of the Person class written as an auto-
matic property:

VB.NET

Public Property DateOfBirth As DateTime

C#

public DateTime DateOfBirth { get; set; }

The Visual Basic implementation of automatic properties has one advantage over the C# ver-
sion: you can declare the property and give it a value in one shot. The following snippet defines a
CreateDate property and assigns it with the current date and time:

VB.NET

Public Property CreateDate As DateTime = DateTime.Now

502211c05.indd 185 2/19/10 10:00:40 AM

186  ❘  Chapter 5   Programming Your ASP.NET Web Pages

To assign a default value to an automatic property in C#, you need to set its value using construc-
tors, which are discussed later.

If you later decide you need to write code in the getter or the setter of the property, it’s easy to
extend the relevant code blocks without breaking your existing applications. Until that time, you
have nice, clean property definitions that don’t clutter up your class.

Creating Read-Only and Write-Only Properties

At times read-only or write-only properties make a lot of sense. For example, the ID of an object
could be read-only if it assigned by the database automatically. When the object is constructed from
the database, the ID is assigned to the private backing variable. The public Id property is then made
read-only to stop calling code from accidentally changing it. Likewise, you can have a write-only
property for security reasons. For example, you could have a Password property on a Person object
that you can only assign to if you know it, but no longer read it afterward. Internally, code within
the class can still access the backing variables to work with the password value. Another good
candidate for a read-only property is one that returns a combination of data. Consider a FullName
property of a Person class that returns a combination of the FirstName and LastName properties.
You use the setter of each individual property to assign data, but you can have a read-only property
that returns the concatenated values.

Read-only or write-only properties in C# are simple: just leave out the setter (for a read-only prop-
erty) or the getter (for a write-only property). VB.NET is a bit more verbose and wants you to spec-
ify the keyword ReadOnly or WriteOnly explicitly. The following code snippet shows a read-only
FullName property in both VB.NET and C#:

VB.NET

Public ReadOnly Property FullName() As String
 Get
 Return _firstName & “ “ & _lastName
 End Get
End Property

C#

public string FullName
{
 get { return _firstName + “ “ + _lastName; }
}

When you try to assign a value to a read-only property, you’ll get an error in VWD.

Similar to properties, objects can also have methods.

Methods

If properties are the things that a class has (its characteristics), then methods are the things a class
can do or the operations it can perform. A Car class, for example, has characteristics such as Brand,
Model, and Color. Its methods could be Drive(), Brake(), and OpenDoors(). Methods give objects
the behavior that enables them to do something.

502211c05.indd 186 2/19/10 10:00:40 AM

Object Orientation Basics  ❘  187

You have already seen methods at work earlier when this chapter discussed some ways to write
organized code using subs and functions. You simply add methods to a class by writing a function
or a sub between the start and end elements of the class. For example, imagine the Person class has
a Save method that enables the object to persist itself in the database. The method’s signature could
look like this:

VB.NET

Public Class Person
 Public Sub Save()
 ‘ Implementation goes here
 End Sub
End Class

C#

public class Person
{
 public void Save()
 {
 // Implementation goes here
 }
}

If you want to call the Save method to have the Person object save itself to the database, you’d cre-
ate an instance of it, set the relevant properties such as FirstName, and then call Save:

VB.NET

Dim myPerson As Person = New Person()
myPerson.FirstName = “Joop”
myPerson.Save()

C#

Person myPerson = new Person();
myPerson.FirstName = “Joop”;
myPerson.Save();

The Save method would then know how to save the Person in the database.

Note that a new instance of the Person class is created with the New (new in C#) keyword followed
by the class name. When this code fires, it calls the object’s constructor, which is used to create
instances of objects.

Constructors

Constructors are special methods in a class that help you create an instance of your object. They run
as soon as you try to create an instance of a class, so they are a great place to initialize your objects
to some default state. Earlier you learned that you create a new instance of an object using the New
(new in C#) keyword:

VB.NET

Dim myCalculator As Calculator = New Calculator()

502211c05.indd 187 2/19/10 10:00:40 AM

188  ❘  Chapter 5   Programming Your ASP.NET Web Pages

C#

Calculator myCalculator = new Calculator();

The New keyword is followed by the object’s constructor: the name of the class. By default, when
you create a new class in Visual Web Developer, you get a default constructor for C# but not for
VB.NET. That’s not really a problem, though, because the compiler will generate a default construc-
tor for you if no other constructor exists. A default constructor has no arguments and takes the
name of the class in C# and the reserved keyword New in VB.NET:

VB.NET

Public Class Person
 Public Sub New()

 End Sub
End Class

C#

public class Person
{
 public Person()
 {

 }
}

Although this default constructor is nice for creating standard instances of your classes, sometimes
it is really useful to be able to send some information into the class up front, so it’s readily available
as soon as it is constructed. For example, with the Person class, it could be useful to pass in the
first and last names and the date of birth to the constructor so that data is available immediately
afterwards. To enable this scenario, you can create an overloaded constructor. An overloaded con-
structor or method is essentially a copy of an existing method with the exact same name, but with
a different method signature. To have the constructor accept the names and the date of birth, you
need the following code:

VB.NET

Public Sub New(ByVal firstName As String, ByVal lastName As String,
 ByVal dateOfBirth As DateTime)
 _firstName = firstName
 _lastName = lastName
 _dateOfBirth = dateOfBirth
End Sub

C#

public Person(string firstName, string lastName, DateTime dateOfBirth)
{
 _firstName = firstName;
 _lastName = lastName;
 _dateOfBirth = dateOfBirth;
}

502211c05.indd 188 2/19/10 10:00:40 AM

Object Orientation Basics  ❘  189

With this code, you can create a new Person object:

VB.NET

Dim myPerson As Person = New Person(“Imar”, “Spaanjaars”, New DateTime(1971, 8, 9))

C#

Person myPerson = new Person(“Imar”, “Spaanjaars”, new DateTime(1971, 8, 9));

The constructor accepts the values passed to it and assigns them to the private backing variables, so
right after this line of code, the myPerson object is fully initialized.

Visual Basic supports a slightly different syntax to declare and initialize an object in one fell swoop
using the Dim myVariable As New ClassName syntax. The following code is equivalent to the pre-
vious instantiation of a Person instance:

Dim myPerson As New Person(“Imar”, “Spaanjaars”, New DateTime(1971, 8, 9))

In addition to overloaded constructors, .NET offers another quick way to create an object and ini-
tialize a few properties: object initializers. With an object initializer, you provide the initial values
for some of the properties at the same time you declare an instance of your objects. The following
code creates a Person object and assigns it a value for the FirstName and LastName properties:

VB.NET

Dim myPerson As New Person() With {.FirstName = “Imar”, .LastName = “Spaanjaars”}

C#

Person myPerson = new Person() { FirstName = “Imar”, LastName = “Spaanjaars” };

In VB.NET, you need the With keyword in front of the properties list. In addition, you need to pre-
fix each property name with a dot (.). Other than that, the syntax is the same for both languages.
Object initializers are great if you quickly need to set a bunch of properties on an object without
forcing you to write specialized overloaded versions of the constructors.

Although it’s useful to have this Person class in your application, at times you may need specialized
versions of a Person. For example, your application may require classes like Employee and Student.
What should you do in this case? Create two copies of the Person class and name them Employee
and Student, respectively?

Although this approach certainly works, it has a few large drawbacks. The biggest problem is the
duplication of code. If you decide to add a SocialSecurityNumber property, you now need to add it
in multiple locations: in the general Person class and in the Employee and Student classes. Object
inheritance, a major pillar of object orientation, is designed to solve problems of this kind.

Inheritance

Earlier you learned that System.Object is the parent of all other data types in .NET, including
all the built-in types and types that you define yourself, meaning that each type in .NET (except
Object itself) inherits from Object. One of the benefits of inheritance is that you can define a
behavior at a high level (for example in the Object class) that is available to inheriting classes

502211c05.indd 189 2/19/10 10:00:40 AM

190  ❘  Chapter 5   Programming Your ASP.NET Web Pages

automatically without the need to duplicate that code. In the .NET Framework, the Object class
defines a few members that all other objects inherit, including the ToString() method.

To let one class inherit another, you need to use the Inherits keyword in VB.NET and the colon (:)
in C# as shown in the following example that defines a Student class that inherits Person:

VB.NET

Public Class Student
 Inherits Person

C#

public class Student : Person
{
}

To see how inheritance works, think again about the Person class shown in
earlier examples. That class had a few properties such as FirstName and
LastName, and a Save method. But, if it is inheriting from Object, does it
also have a ToString() method? You bet it does. Figure 5-8 shows the rela-
tion between the Object class and the Person class that inherits from
Object.

Figure 5-8 shows that Person inherits from Object (indicated by the line
with a single arrow head pointing in the direction of the class that is being
inherited from), which in turn means that a Person instance can do whatever
an Object can do. So, for example, you can call ToString() on your Person
object:

Label1.Text = myPerson.ToString() ‘ Writes out Person

The default behavior of the ToString() method defined in Object is to say its own class name. In
the preceding example, it means that the Person class inherits this behavior and thus says Person
as its name. Usually, this default behavior is not enough and it would be much more useful if the
Person could return the full name of the person it is representing, for example. You can easily do
this by overriding the ToString() method. Overriding a method or property effectively redefines
the behavior the class inherits from its parent class. To override a method you use the keyword
Overrides in VB.NET and override in C#. The following snippet redefines the behavior of
ToString in the Person class:

VB.NET

Public Overrides Function ToString() As String
 Return FullName & “, born at “ & _dateOfBirth.ToShortDateString()
End Function

C#

public override string ToString()
{
 return FullName + “, born at “ + _dateOfBirth.ToShortDateString();
}

Figure 5-8

502211c05.indd 190 2/19/10 10:00:41 AM

Object Orientation Basics  ❘  191

With this definition of ToString in the Person class, it no longer returns the word “Person,” but
now returns the full name of the person it is representing:

Label1.Text = myPerson.ToString() ‘ Imar Spaanjaars, born at 8/9/1971

Notice how the code uses the read-only FullName property to avoid coding the logic of concatenat-
ing the two names again. You can’t just override any method member you see fit. For a method to
be overridable, the parent class needs to mark the member with the keyword virtual (in C#) or
Overridable (in VB.NET).

Object inheritance in .NET enables you to create a hierarchy of objects that
enhance, or add functionality to, other objects. This enables you to start out with
a generic base class (Object). Other classes can then inherit from this class, add-
ing specialized behavior. If you need even more specialized classes, you can inherit
again from the class that inherits from Object, thus creating a hierarchy of classes
that keep getting more specialized. This principle works for many classes in the
.NET Framework, including the Page class. You may not realize it, but every
ASPX page you create in VWD is actually a class that inherits from the class
System.Web.UI.Page. This Page class in turn inherits from TemplateControl,
which inherits from Control, which inherits from Object. The entire hierarchy is
shown in Figure 5-9. At the bottom you see the class MyWebPage, which could be a
Code Behind class of a page such as MyWebPage.aspx.

In Figure 5-9 you can see that TemplateControl is an abstract class — a class
that cannot be instantiated; that is, you cannot use New (new in C#) to create a
new instance of it. It serves solely as common base class for others (like Page)
that can inherit from it. The exact classes between Page and Object are not
really relevant at this stage, but what’s important is that your page inherits all the
behavior that the Page class has. The fact that all your ASPX pages inherit from
Page is more useful than you may think at first. Because it inherits from Page, you get loads of
properties and methods defined in this class for free. For example, the Page class exposes a Title
property that, when set, ends up as a <title> element in the page. Your page can simply set this
property, and the parent Page class handles the rest for you:

VB.NET

Title = “Beginning ASP.NET 4 in C# and VB from Wrox”

C#

Title = “Beginning ASP.NET 4 in C# and VB from Wrox”;

You use inheritance in the next chapter when you create a BasePage class that serves as the parent
class for most of the pages you create in the Planet Wrox web site.

In earlier examples, including the override for the ToString() method, you have seen the keyword
Public. Additionally, when creating backing variables, you saw the keyword Private. These key-
words are called access modifiers and determine the visibility of your code.

Figure 5-9

502211c05.indd 191 2/19/10 10:00:41 AM

192  ❘  Chapter 5   Programming Your ASP.NET Web Pages

Access Modifiers

Earlier in this chapter I mentioned that a core concept of OO is encapsulation. By creating members
such as functions and properties, you make an object responsible for the implementation. Other
objects interacting with this object consider those methods and properties as black boxes. That is,
they pass some data in and optionally expect some result back. How the method performs its work
is of no interest to them; it should just work as advertised. To enable an object to shield some of its
inner operations, you need a way to control access to types and members. You do this by specify-
ing an access modifier in front of the class, property, or method name. The following table lists the
available access modifiers for C# and VB.NET and explains their purpose.

C# VB.NET Description

public Public The class or member can be accessed from everywhere, including

code outside the current application.

protected Protected Code with a protected access modifier is available only within the type

that defines it or within types that inherit from it. For example, a pro-

tected member defined in the Page class is accessible to your ASPX

page because it inherits from Page.

internal Friend Limits the accessibility of your code to other code within the same

assembly. An assembly is a set of one or more compiled code files

(either an .exe or a .dll file) containing reusable .NET code.

private Private A class or member that is accessible only within the type that defines

it. For example, with the Person class, the _firstName variable is

accessible only from within the Person class. Other code, like an

ASPX page, cannot access this field directly, and needs to access the

public FirstName property to get or set the first name of a person.

Of these four access modifiers, only protected and internal (Protected and Friend in VB) can
be combined. The other two must be used separately. By combining protected and internal, you
can create members that are accessible by the current class and any class that inherits from it in the
current assembly only.

As with some of the other OO concepts, you won’t be spending half your day specifying access
modifiers in your code. However, it’s good to know that they exist and what they do. That way,
you may have a clue why sometimes your classes don’t show up in the IntelliSense list. There’s a fair
chance you forgot to specify the public access modifier (Public in VB.NET) on the class in that
case. The default is internal (Friend in VB.NET), which makes the class visible to other classes in
the same assembly (usually a file with a .dll extension) but hides it from code outside the assembly.
Adding the keyword public or Public in front of the class definition should fix the problem.

Events
The final important topic that needs to be discussed in this chapter is events. ASP.NET is an event-
driven environment, which means that code can execute based on certain events that occur in your

502211c05.indd 192 2/19/10 10:00:41 AM

Object Orientation Basics  ❘  193

application. Events are raised by certain objects in the application and then handled by others.
Many objects in the .NET Framework are capable of raising an event, and you can even add your
own events to classes that you write.

To be able to handle an event raised by an object, you need to write an event handler, which is basi-
cally a normal method with a special signature. You can wire up this event handler to the event
using event wiring syntax, although VWD takes care of that most of the time for you. When an
object, such as a control in a web page, raises an event, it may have the need to pass additional
information to the event handler, to inform it about relevant data that caused or influenced the
event. You can send out this information using an event arguments class, which is the class System.
EventArgs or any class that inherits it.

To see how all these terms fit together, consider what happens
when you click a button in a web page. When you click it, the
client-side button in the browser causes a postback. At the server,
the Button control sees it was clicked in the browser and then
raises its Click event. It’s as if the button says: “Oh, look every-
one. I just got clicked. In case anyone is interested, here are some
details.” Usually, the code that is interested in the button’s Click
event is your own page that needs to have an event handler to
handle the click. You can create an event handler for the Button
by double-clicking it in the designer. Alternatively, you can double-click the relevant event on the
Properties Grid of the control with the Events tab listed (see Figure 5-10), which you can open by
clicking the button with the lightning bolt on the toolbar.

If you double-click the control in Design View or the event name in the Properties Grid, Visual Web
Developer writes the code for the event handler for you. The following snippet shows the handler for
a Button control’s Click in VB.NET and C#:

VB.NET

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Button1.Click
End Sub

C#

protected void Button1_Click(object sender, EventArgs e)
{
}

In the VB.NET example, you see a standard method with some arguments, followed by Handles
Button1.Click. This is the event wiring code that hooks up the Button control’s Click event to the
Button1_Click method. Now, whenever the button is clicked, the code inside Button1_Click is
executed.

The C# version doesn’t have this Handles keyword. Instead, with C# you’ll find that VWD has
added the following bold code to the Button control in the markup of the page:

<asp:Button ID=”Button1” runat=”server” Text=”Button” OnClick=”Button1_Click” />

Figure 5-10

502211c05.indd 193 2/19/10 10:00:41 AM

194  ❘  Chapter 5   Programming Your ASP.NET Web Pages

With this piece of markup, the compiler generates the necessary code to link up the Button1_Click
method to the Click event of the button. At runtime you’ll see the exact same behavior: when you
click the button, the code in Button1_Click is executed.

You can also see that this Button1_Click event handler has two parameters: an Object called
sender and an EventArgs class called e. This is a standard .NET naming scheme and is followed
by all objects that generate events. The sender parameter contains a reference to the object that trig-
gered the event; Button1 in this example. This enables you to find out who triggered an event in
case you wired up multiple events to the same event handler.

The second parameter is an instance of the EventArgs class and supplies additional arguments
to the event. With a button’s click, there is no additional relevant data to submit, so the plain
and empty EventArgs class is used. However, in later chapters (for example, Chapter 9, which
deals with data-driven Web Forms), you see some examples of classes that fire events with richer
information.

With the concepts of events, you have come to the end of the section on object orientation. This sec-
tion should have familiarized you with the most important terms used in object-oriented program-
ming. You see practical examples of these concepts in the remainder of this book.

Practical Tips on Programming

The following list presents some practical tips on programming:

Always give your variables meaningful names. For simple loop counters, you can use ➤➤ i although
loopCount probably describes the purpose of the variable much better. Don’t prefix variables
with the word var. All variables are variables, so adding var only adds noise to your code.
Consider useful names such as _firstName and _categoryId as opposed to strFName or catI
for private fields, and names like FirstName and Person for public properties and classes,
respectively.

Experiment and experiment. Even more so than with working with controls and ASPX pages, ➤➤

the best way to learn how to program is by actually doing it. Just type in some code and hit
Ctrl+F5 to see how the code behaves. The compiler will bark at you when something is wrong,
providing you with useful hints on how to fix it. Don’t be afraid to mess anything up; just keep
trying variations until the code does what you want it to do. If you can’t make your code work,
check out Chapter 18 that deals with debugging. You’ll find useful tips to locate and fix many
of the errors that may occur in your code.

When writing functions or subroutines, try to minimize the number of lines of code. Usually, ➤➤

methods with more than 40 or 50 lines of code are a sign of bad design. When you see such
code, consider the option to move certain parts to their own routine. This makes your code
much easier to understand, leading to better code with fewer bugs. Even if a method is used
only once, keeping a chunk of code in a separate method can significantly increase the read-
ability and organization of your code.

502211c05.indd 194 2/19/10 10:00:41 AM

Summary  ❘  195

When writing comments in your code, try to describe the general purpose of the code instead ➤➤

of explaining obvious statements. For example, this comment (seen many times in real code)
is completely useless:

Dim loopCount As Integer = 0 ‘ Declare loopCount and initialize it to zero

Anyone with just a little bit of coding experience can see what this code does.

Summary

Although programming can get really complex, the bare basics that you need to understand are
relatively easy to grasp. The fun thing about programming is that you don’t have to be an expert
to make useful programs. You can simply start with a simple Hello World example and work from
there, each time expanding your view on code a little.

This chapter covered two main topics. First you got an introduction to programming in .NET using
either C# or VB.NET. You saw what data types and variables are and learned about operators,
decision making and loops. You also saw how to write organized code using functions, subs and
namespaces and how to add comments to your code.

The final section of this chapter dealt with object orientation. Though object orientation in itself is
a very large subject, the basics are easy to pick up. In this chapter you learned about the basic ele-
ments of OO programming: classes, methods, properties, and constructors. You also learned a bit
about inheritance, the driving force behind object-oriented design.

In the next chapter, which deals with creating consistent-looking web pages, you see inheritance
again when you create a BasePage class that serves as the parent for most of the Code Behind
classes in the Planet Wrox project.

Exercises	

1.	 Considering the fact that the oldest person in the world lived to be 122, what’s the best numeric

data type to store a person’s age? There are bonus points to collect if you come up with an even

better alternative to store someone’s age.

2.	 What does the following code do?

VB.NET

DeleteButton.Visible = Not DeleteButton.Visible

C#

DeleteButton.Visible = !DeleteButton.Visible;

continues

502211c05.indd 195 2/19/10 10:00:41 AM

196  ❘  Chapter 5   Programming Your ASP.NET Web Pages

3.	 Given the following class Person, what would the code look like for a new class Student that con-

tains a string property called StudentId? Make use of inheritance to create this new class.

VB.NET

Public Class Person
 Public Property Name As String
End Class

C#

public class Person
{
 public string Name { get; set; }
}

Answers to Exercises can be found in Appendix A.

What You Learned in this Chapter⊲⊲

Class A blueprint for objects in a programming language

Collection A special data type that is capable of holding multiple objects at the same time

Encapsulation Hiding the inner workings and data of a class to the outside world in order to

better manage and protect that data

Instantiating The process of creating a new object in memory based on a type’s definition

Method An operation on an object, like Brake() for a Car class

Namespace A way to structure classes and other types in a hierarchical manner

Object Orientation A popular style of programming where the software is modeled as a set of

objects interacting with each other

Overriding Redefining the behavior in a child class of a member defined in a parent class

Property A characteristic of an object, like the first name of a person

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

502211c05.indd 196 2/19/10 10:00:41 AM

Creating Consistent Looking
Web Sites

What You Will Learn in This Chapter:

How to use master and content pages that enable you to define the ➤➤

global look and feel of a web page

How to work with a centralized base page that enables you to define ➤➤

common behavior for all pages in your site

How to create themes to define the look and feel of your site with an ➤➤

option for the user to choose a theme at runtime

How to create skins to make site-wide changes to control layout➤➤

What the ASP.NET page life cycle is and why it’s important ➤➤

When you’re building a web site you should strive to make the layout and behavior as consistent
as possible. Consistency gives your site a professional appearance and it helps your visitors to
find their way around the site. Fortunately, ASP.NET 4 and Visual Web Developer 2010 offer a
number of great features and tools to implement a consistent design, helping you create great-
looking pages in no time.

In previous chapters you learned how to work with VWD, HTML, CSS, and server controls
to create your web pages visually. Chapter 5 introduced you to programming in ASP.NET.
This chapter is the first that combines these concepts, by showing you — among many other
things — how to use programming code to change the appearance of the site.

The next section shows you how to create a master page that defines the general look and
feel of a page. The ASPX pages in your site can then use this master page without the need to
rewrite the layout. The remaining sections of this chapter build on top of this master page.

6

502211c06.indd 197 2/19/10 10:00:24 AM

198  ❘  Chapter 6   Creating Consistent Looking Web Sites

Consistent Page Layout with Master Pages

With most web sites, only part of the page changes when you go from one page to another. The parts
that don’t change usually include common regions like the header, a menu, and the footer. To create
web pages with a consistent layout you need a way to define these relatively static regions in a single
template file. Versions of ASP.NET prior to 2.0 did not have a template solution so you were forced to
duplicate your page layout on every single page in the web site, or resort to weird programming tricks.
Fortunately, this is no longer the case due to master pages. The biggest benefit of master pages is that
they enable you to define the look and feel of all the pages in your site in a single location. This means
that if you want to change the layout of your site — for instance, if you want to move the menu from
the left to the right — you only need to modify the master page and the pages based on this master will
pick up the changes automatically.

When master pages were introduced in ASP.NET 2.0, they were quickly embraced by the developer
community as the template solution for ASP.NET pages because they are very easy to use. Even bet-
ter, VWD has great design-time support, because it enables you to create and view your pages at
design time during development, rather than only in the browser at runtime.

To some extent, a master page looks like a normal ASPX page. It contains static HTML such as the
<html>, <head>, and <body> elements, and it can also contain other HTML and ASP.NET server
controls. Inside the master page, you set up the markup that you want to repeat on every page, like
the general structure of the page and the menu.

However, a master page is not a true ASPX page and cannot be requested in the browser directly; it
only serves as the template that real web pages — called content pages — are based on.

Instead of the @ Page directive that you have seen in Chapter 4, a master page uses an @ Master directive
that identifies the file as a master page:

VB.NET

<%@ Master Language=”VB” %>

C#

<%@ Master Language=”C#” %>

Just like a normal ASPX page, a master page can have a Code Behind file, identified by its CodeFile
and Inherits attributes:

VB.NET

<%@ Master Language=”VB” CodeFile=”Frontend.master.vb”
 Inherits=”MasterPages_Frontend” %>

C#

<%@ Master Language=”C#” AutoEventWireup=”true” CodeFile=”Frontend.master.cs”
 Inherits=”MasterPages_Frontend” %>

To create regions that content pages can fill in, you need to define ContentPlaceHolder controls in
your page like this:

<asp:ContentPlaceHolder ID=”ContentPlaceHolder1” runat=”server”>
</asp:ContentPlaceHolder>

502211c06.indd 198 2/19/10 10:00:24 AM

Consistent Page Layout with Master Pages  ❘  199

You can create as many placeholders as you like, although you usually need only a few to create a
flexible page layout.

The content pages, which are essentially normal ASPX files, but without the usual code you find in
them like the <html>, <head>, <body>, and <form> elements, are connected to a master page using
the MasterPageFile attribute of the Page directive:

VB.NET

<%@ Page Title=”“ Language=”VB” MasterPageFile=”~/MasterPages/Frontend.master”
 AutoEventWireup=”false” CodeFile=”Default.aspx.vb” Inherits=”_Default”>

C#

<%@ Page Title=”“ Language=”C#” MasterPageFile=”~/MasterPages/Frontend.master”
 AutoEventWireup=”true” CodeFile=”Default.aspx.cs” Inherits=”_Default”>

The page-specific content is then put inside a Content control that points to the relevant
ContentPlaceHolder:

<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”
 Runat=”Server”>
</asp:Content>

Note that the ContentPlaceHolderID attribute of the Content control points to the
ContentPlaceHolder that is defined in the master page. Right now it points to the default name
of ContentPlaceHolder1, but in a later exercise you see how to change this.

At runtime, when the page is requested, the markup from the master page and the content page are
merged, processed, and sent to the browser. Figure 6-1 shows a diagram of the master page and the
content page that result in the final page that is sent to the browser.

Master Page

Header

Menu ContentPlaceHolder

Header

Final Page

Menu

Content Page

Figure 6-1

502211c06.indd 199 2/19/10 10:00:25 AM

200  ❘  Chapter 6   Creating Consistent Looking Web Sites

To see this process in action, the following sections guide you through creating master and content
pages.

Creating Master Pages
Master pages are added to the site using the Add New Item dialog box. They can be placed any-
where in the site, including the root folder, but from an organizational point of view, it’s often easier
to store them in a separate folder. Just like normal ASPX pages, they support the inline code model
as well as the Code Behind model. The master pages used in the Planet Wrox project use the Code
Behind model exclusively. In the following exercise, you learn how to create a simple master page
and add some HTML to it to define the general structure of the pages in your web site.

Creating a Master PageTry It Out	

	1.	 Open the Planet Wrox project in VWD if it is not open already.

	2.	 In Chapter 2 you created a folder called MasterPages to hold your master pages and then added
a single master page to that folder. If you didn’t carry out that exercise, add the master page now.
To do this, create the MasterPages folder, right-click the new folder, choose Add New Item, and
select Master Page. Make sure that the master page uses Code Behind and that it is using your pre-
ferred programming language. Name the master page Frontend.master.

	3.	 Add the following highlighted code between the <form> tags of the master page, replacing the
<div> tags and the ContentPlaceHolder that VWD added for you when you created the master.
Note that this is almost the same code you added to Default.aspx in Chapter 3, except for the
<asp:ContentPlaceHolder> element and the <a> element within the Header <div>. The <a> ele-
ment takes the user back to the home page, and will be styled later.

<form id=”form1” runat=”server”>
 <div id=”PageWrapper”>
 <div id=”Header”>Header Goes Here</div>
 <div id=”MenuWrapper”>Menu Goes Here</div>
 <div id=”MainContent”>
 <asp:ContentPlaceHolder ID=”cpMainContent” runat=”server”>
 </asp:ContentPlaceHolder>
 </div>
 <div id=”Sidebar”>Sidebar Goes Here</div>
 <div id=”Footer”>Footer Goes Here</div>
 </div>
</form>

Make sure that you have the ContentPlaceHolder within the MainContent <div> tags. You can
drag one from the Toolbox onto the page or enter the code directly, using IntelliSense’s helpful
hints. In both cases you should give the control an ID of cpMainContent.

	4.	 Next, switch the master page into Design View and then drag Styles.css from the Styles folder
in the Solution Explorer onto the master page. As soon as you drop the file, VWD updates the Design
View and shows the layout for the site that you created in Chapter 3. If the design doesn’t change,

502211c06.indd 200 2/19/10 10:00:25 AM

Consistent Page Layout with Master Pages  ❘  201

switch to Markup View and ensure there’s a <link> tag in the head of the page pointing to your
CSS file:

 <asp:ContentPlaceHolder ID=”head” runat=”server”>
 </asp:ContentPlaceHolder>
 <link href=”../Styles/Styles.css” rel=”stylesheet” type=”text/css” />
</head>

The page should now look like Figure 6-2 in Design View.

Figure 6-2

Note the area with the purple border around it between the menu and the footer region in your
Design View. This is the ContentPlaceHolder control that is used by the content pages. You see
how to use it in the next exercise.

	5.	 You can save and close the master page because you’re done with it for now.

How It Works

Within Visual Web Developer, master pages behave like normal pages. You can add HTML and server
controls to them, and you can manage the page both in Markup and Design View. The big difference is, of
course, that a master page isn’t a true page itself; it only serves as a template for other pages in your site.

In the next section you see how to use this master page as the template for a content page.

Creating Content Pages
A master page is useless without a content page that uses it. Generally, you’ll only have a few mas-
ter pages, whereas you can have many content pages. To base a content page on a master page, you
check the option Select Master Page at the bottom right of the Add New Item dialog box when you
add a new Web Form to your site. Alternatively, you can set the MasterPageFile attribute on the
page directly in the Markup View of the page. You saw this @ Page directive earlier in this chapter
when master and content pages were introduced.

502211c06.indd 201 2/19/10 10:00:25 AM

202  ❘  Chapter 6   Creating Consistent Looking Web Sites

Content pages can only directly contain Content controls that each map to a ContentPlaceHolder
control in the master page. These content controls in turn can contain standard markup like HTML
and server control declarations. Because the entire markup in a content page needs to be wrapped
by <asp:Content> tags, it’s not easy to turn an existing ASPX page into a content page. Usually the
easiest thing to do is copy the content you want to keep to the clipboard, delete the old page, and
then add a new page based on the master page to the web site. Once the page is added, you can paste
the markup within the <asp:Content> tags. You see how this works in the following exercise.

Adding a Content PageTry It Out	

In this Try It Out you see how to add a content page to the site that is based on the master page you
created earlier. Once the page is added you add content to the <asp:Content> regions.

	1.	 In previous exercises you added standard ASPX pages to your project, which should now be
“upgraded” to make use of the new master page. Because VWD has no built-in support to change
a standard page into a content page, you need to manually copy the content from the old ASPX
page into the new one. If you want to keep the welcome text you added to Default.aspx earlier,
copy all the HTML between the MainContent <div> tags to the clipboard (that is, the <h1> and
the two <p> elements that you created earlier) and then delete the Default.aspx page from the
Solution Explorer. Next, right-click the web site in the Solution Explorer and choose Add New
Item. Select the correct programming language, click Web Form, name the page Default.aspx,
and then, at the bottom of the dialog box, select the check boxes for Place Code in Separate File
and Select Master Page, as shown in Figure 6-3.

Figure 6-3

Finally, click the Add button.

	2.	 In the Select a Master Page dialog box (see Figure 6-4), click the MasterPages folder in the left-
hand pane, and then in the area at the right, click Frontend.master.

502211c06.indd 202 2/19/10 10:00:25 AM

Consistent Page Layout with Master Pages  ❘  203

Click OK to add the page to your web site.

Figure 6-4

Instead of getting a full page with HTML as you got with standard ASPX pages, you now only
get two <asp:Content> placeholders as shown in this VB.NET example:

<%@ Page Title=”“ Language=”VB” MasterPageFile=”~/MasterPages/Frontend.master”
 AutoEventWireup=”false” CodeFile=”Default.aspx.vb” Inherits=”_Default” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”head” Runat=”Server”>
</asp:Content>
<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” Runat=”Server”>
</asp:Content>

	3.	 Switch to Design View and note that everything is grayed out and read-only, except for the
<asp:Content> region for cpMainContent. Figure 6-5 shows you how the page should look.

Figure 6-5

	4.	 If you still have the old markup from the Default.aspx on the clipboard, click once inside the
cpMainContent placeholder and press Ctrl+V. (Note: you can do this both in Design View and in
Markup View). This adds the markup to the page, right between the <asp:Content> tags.

	5.	 Save your changes by pressing Ctrl+S and press Ctrl+F5 to open the page in your browser. The
browser should display the page very closely to what you saw in Design View (see Figure 6-5).

502211c06.indd 203 2/19/10 10:00:25 AM

204  ❘  Chapter 6   Creating Consistent Looking Web Sites

	6.	 Now take a look at the HTML for the page in the browser. You can do this by right-clicking the
page and choosing View Source or View Page Source. Note that the source of the final page in the
browser is a combination of the source of the master page and the content page:

 <div id=”PageWrapper”>
 <div id=”Header”>Header Goes Here</div>
 <div id=”MenuWrapper”>Menu Goes Here</div>
 <div id=”MainContent”>
 <h1>Hi there visitor and welcome to Planet Wrox</h1>
 <p class=”Introduction”>We're glad you're paying a visit to
 www.PlanetWrox.com,
 the coolest music community site on the Internet.
 </p>
 ...

The first four lines come from the master page and the highlighted lines of HTML code come
from the content page.

	7.	 Switch back to VWD and create a new page called Login.aspx in the root of the site based on
the master page. Notice how VWD remembered your last settings with regard to the master page
and Code Behind (make sure both are checked in case you unchecked them earlier). Switch to
Markup View and create an <h1> element inside the cpMainContent placeholder with the text Log
in to Planet Wrox. There’s no need to add any other controls to this page just yet, but it serves
as the basis for the login functionality you’ll create in Chapter 16. Without any content in the
MainContent element, the Sidebar will be moved to the left of the page.

	8.	 Go back to Default.aspx and switch to Design View. Beneath the welcome text with the header
and two <p> elements, create a new paragraph (press Enter in Design View) and type some text
(for example, You can log in here). Notice how this new paragraph has a class attribute
called Introduction as VWD applies the previous class to new paragraphs automatically. Remove
this class using the Clear Styles option of the Apply Styles window, or manually remove it from the
code in Markup View.

	9.	 Highlight the words “log in” and choose Format ➪ Convert to Hyperlink from the main menu. In
the dialog box that follows, click the Browse button and select the Login.aspx page that you just
created. Click OK twice.

	10.	 Save all changes and press Ctrl+F5 again to view Default.aspx in the browser. Then click the link
you created in the preceding step. You should now be taken to Login.aspx. Note that the general
layout, like the header and the sidebar, is maintained. The only thing that changes when you go
from page to page is the content in the main content area.

How It Works

When a page based on a master page is requested in the browser, the server reads in both the content
page and the master page, merges the two, processes them, and then sends the final result to the browser.
In step 6 of this exercise you saw that the HTML in the browser for the requested page contained the
markup from both files.

502211c06.indd 204 2/19/10 10:00:25 AM

Consistent Page Layout with Master Pages  ❘  205

Master pages will save you from a lot of work when it comes to updating or radically changing the
looks of your site. Because the entire design and layout of your site is defined in the master page, you
only need to touch that single file when you want to make any changes. All content pages will pick
up the changes automatically.

A Closer Look at Master Pages

So far you’ve seen a master page with a content placeholder for the main content. But if you look at
the master page in Markup View, you’ll find another content placeholder in the head section of the
page:

<head runat=”server”>
 <title></title>
 <asp:ContentPlaceHolder id=”head” runat=”server”>
 </asp:ContentPlaceHolder>
 ...
</head>

This placeholder is added for you automatically to each new master page you create. You can use it
in content pages to add page-specific content that belongs between the <head> tags of a page, such
as CSS (both embedded and external style sheets) and JavaScript, like a reference to the jQuery
library. You learn more about JavaScript and jQuery in Chapters 10 and 11. You need to add con-
tent to this placeholder in Markup View, because it’s not visible in Design View.

The ContentPlaceHolder called cpMainContent in the master page currently does not contain any
markup itself. However, it doesn’t have to be like this. You can easily add your own content there
that will serve as the default in your content pages as long as it’s not overridden by the content page.
For example, you can have the following ContentPlaceHolder in a master page:

<asp:ContentPlaceHolder ID=”cpMainContent” runat=”server”>
 This is default text that shows up in content pages that don’t
 explicitly override it.
</asp:ContentPlaceHolder>

When you base a new page on this master page, you won’t see this default at first in Markup View.
However, you can open the Content control’s Smart Tasks panel, shown in Figure 6-6, and choose
Default to Master’s Content.

Figure 6-6

502211c06.indd 205 2/19/10 10:00:26 AM

206  ❘  Chapter 6   Creating Consistent Looking Web Sites

When you click Yes when asked if you want to default to the master page content, VWD removes
the entire Content control from the Markup View of the page. However, when you request the
page in the browser you will still see the default content from the master page. In Design View, the
content is still visible, now presented as a read-only area on the design surface. A master page with
default content can be useful if you add a new ContentPlaceHolder at a later stage. Existing pages
can simply display the default content, without the need for you to touch all these pages. New pages
can define their own content.

Once you have defaulted to the master page’s content, you can create custom content again by open-
ing the Smart Tasks panel and choosing Create Custom Content. This will copy the default contents
into a new Content control that you can then modify.

Nesting Master Pages

It is also possible to nest master pages. A nested master page is a master that is based on another master
page. Content pages can then be based on the nested master page. This is useful if you have a web site
that targets different areas that still need to share a common look and feel. For example, you can have
a corporate web site that is separated by departments. The outer master page defines the global look
and feel of the site, including corporate logo and other branding elements. You can then have different
nested master pages for different departments. For example, the sales department’s section could be
based on a different master than the marketing department’s, enabling each to add their own identity to
their section of the site. Visual Web Developer 2010 has excellent Design View support for nested mas-
ter pages, giving you a good look at how the final page will end up.

Creating a nested master page is easy: check the Select Master Page check box when you
add a master page just as you do when you add a normal content page to the site. Then add
ContentPlaceHolder controls to the Content controls at locations that you want to override in the
content pages. Finally, you choose your nested master page as the master for new content pages you
create.

Master Page Caveats

Although master pages are great and can save you a lot of work, there are some caveats that you
need to be aware of.

For starters, the ASP.NET runtime changes the client ID of your controls in the page. This is the id
attribute that is used in client script to access controls from JavaScript in the browser. With normal
ASPX pages, the server-side ID of a control is usually inserted one on one in the final HTML. For
example, a Button control with a server-side ID of Button1 in a normal ASPX page defined with
this code:

<asp:Button ID=”Button1” runat=”server” Text=”Click Me” />

ends up with a client-side ID like this in the final HTML:

<input type=”submit” name=”Button1” value=”Click Me” id=”Button1” />

502211c06.indd 206 2/19/10 10:00:26 AM

Using a Centralized Base Page  ❘  207

However, the same button inside an <asp:Content> control ends up like this:

<input type=”submit” name=”ctl00$cpMainContent$Button1” value=”Click Me”
 id=”cpMainContent_Button1” />

The name attribute has been prefixed with the auto-generated ID of the master page (ctl00)
and both the name and the id attributes contain the ID of the ContentPlaceHolder control
(cpMainContent).

This means that any client-side code that refers to Button1 should now refer to
cpMainContent_Button1.

Note that this is not just a master page problem. You’ll also run into this behavior in other situa-
tions; for example, when working with user controls (discussed in Chapter 8) and data-bound con-
trols (discussed in Chapter 13 and onward).

The second caveat is related to the first. Because the name and id of the HTML elements are
changed, they add considerably to the size of the page. This may not be problematic for a single con-
trol, but once you have pages with lots of controls, this could impact the performance of your site.
The problem gets worse with nested master pages, where both content controls are appended to the
ID. The same button inside a nested master page can end up like this:

<input type=”submit” name=”ctl00$ctl00$cpMainContent$ContentPlaceHolder1$Button1”
 value=”Click Me” id=”cpMainContent_ContentPlaceHolder1_Button1” />

To mitigate the problem, you should keep the IDs of your ContentPlaceHolder and Content con-
trols as short as possible. To improve readability, this book uses longer names, like cpMainContent.
However, in your own sites, you can reduce this to cpMC or cp1 to save some bandwidth on every
request.

NOTE  ​ASP.NET 4 introduces a new feature called ClientIDMode that helps
minimize the problems typically associated with changing client-side IDs. You
learn more about this feature in Chapter 8.

Master pages enable you to define the general look and feel of your site in a single location, thus
improving the consistency and maintainability of your site. However, there is another way to
improve consistency: centralize the behavior of the pages in your web site. You can do this with a
so-called base page, which is discussed next.

Using a Centralized Base Page

In Chapter 5 you learned that by default all ASPX pages derive from a class called System.Web.UI
.Page. This means all of your pages have at least the behavior defined in this class.

502211c06.indd 207 2/19/10 10:00:26 AM

208  ❘  Chapter 6   Creating Consistent Looking Web Sites

However, in some circumstances this behavior is not enough
and you need to add your own stuff to the mix. For example,
you may have the need to add some behavior that applies to all
the pages in your site. Instead of adding this behavior to each
and every individual page, you can create a common base page.
All the pages in your site can then inherit from this intermedi-
ate page instead of from the standard Page class. The left half
of Figure 6-7 shows how a default ASPX page called MyWebPage
inherits from the Page class directly. The right half shows a
situation where the ASPX page inherits from a class called
BasePage, which in turn inherits from Page.

To have your pages inherit from this base page, you need to do
two things:

Create a class that inherits from ➤➤ System.Web.UI.Page in the App_Code folder of your web site.

Make the web pages in your site inherit from this base page instead of the standard ➤➤ Page class.

In an upcoming exercise you create a new base page class inside the App_Code folder. For now, the
sole purpose of this class is to check the Title of the page at runtime to stop pages with an empty
title or a meaningless title like “Untitled Page” making it to the browser. Giving your pages a unique
and helpful title helps your pages to be found by the major search engines, so it’s recommended to
always include a title in your web pages. Checking the title programmatically is relatively easy to
do, which enables you to focus on the concept of inheritance rather than on the actual code. In the
section that discusses themes later in this chapter you modify the base page once more, this time to
retrieve the user’s preference for a theme.

NOTE  ​Previous versions of VWD used “Untitled Page” as the default title for
new Web Forms. However, starting with the Service Pack 1 release of VWD
2008, the new default title is now an empty string. I decided to leave the check
for “Untitled Page” in the base page for cases where you add older pages with
an incorrect title to your new ASP.NET 4 web site.

Before you can implement the base class, you need to know more about the ASP.NET page life
cycle, an important concept that describes the process a web page goes through when requested by a
browser.

An Introduction to the ASP.NET Page Life Cycle
When you think about how a page is served by a web server to the browser and think of this process as
the life cycle of a page, you can probably come up with a few important moments in the page’s life.
For example, the initial request by the browser is the starting point for the page’s “life.” Similarly,
when the page has sent its entire HTML to the browser, its life may seem to end. However, more
interesting events are going on in the page’s life cycle. The following table describes eight broad

Figure 6-7

502211c06.indd 208 2/19/10 10:00:26 AM

Using a Centralized Base Page  ❘  209

phases the page goes through. Within each phase, at least one event is raised that enables a page
developer to hook into the page’s life cycle and perform actions at the right moment. You see an
example of this in the next exercise.

Phase Description

Page request A request to an ASPX page starts the life cycle of that page. When the

web server is able and allowed to return a cached copy of the page, the

entire life cycle is not executed. In all other situations, the page enters

the start phase.

Start In this phase, the page gets access to properties like Request and

Response that are used to interact with the page’s environment. In addi-

tion, during this phase the PreInit event is raised to signal that the

page is about to go into the initialization phase. You use this event later

to set the theme of a page.

Page initialization During this phase, the controls you have set up in your page or added

programmatically become available. Additionally, the Page class fires

three events: Init, InitComplete, and PreLoad. Also during this

phase, the control properties are loaded from View State and Control

State again during a postback. So, for example, when you change the

selected item in a DropDownList and then cause a postback, this is the

moment where the correct item gets preselected in the drop-down list

again, which you can then work with in your server-side code.

Load During this phase the page raises the Load event.

Validation In the validation phase, the Validation controls used to validate user

input are processed. You learn about validators in Chapter 9.

Postback event handling During this phase, the controls in your page may raise their own events.

For example, the DropDownList may raise a SelectedIndexChanged

event when the user has chosen a different option in the list. Similarly, a

TextBox may raise the TextChanged event when the user has changed

the text before she posted back to the server. When all event processing

is done, the page raises the LoadComplete event. During this phase the

PreRender event is raised to signal that the page is about to render to

the browser. Shortly after that, SaveStateComplete is raised to indicate

that the page is done storing all the relevant data for the controls in View

State.

Rendering Rendering is the phase where the controls (and the page itself) output

their HTML to the browser.

Unload The unload phase is really a clean-up phase. This is the moment where

the page and controls can release resources like database connections.

During this phase, the Unload event is raised so you can handle any

cleanup you may need to do.

502211c06.indd 209 2/19/10 10:00:26 AM

210  ❘  Chapter 6   Creating Consistent Looking Web Sites

One thing that’s important to realize is that all these events fire at the server, not at the client. So,
even if you change, say, the text of a text box at the client, the TextChanged event of the TextBox
control will fire at the server after you have posted back the page.

Now you may wonder why you need to know all of this. The biggest reason to have some under-
standing of the page life cycle is that certain actions can only be performed at specific stages in the
page life cycle. For example, dynamically changing the theme has to take place early in the page’s
life cycle, as you’ll see later. To really understand the ASP.NET page life cycle, you need to know a
little more about controls, state, events, and so on. Therefore, you’ll revisit the page life cycle again
in Chapter 15 where you get a good look at all the different events that fire, and in what order.

In the next exercise, you use the PreRender event of the Page class to check the title. Because a
developer could set the page’s title programmatically during many events, checking for a correct title
should be done as late as possible in the page’s life cycle, which is why PreRender is the best event
for this, as shown in the next exercise.

Implementing the Base Page
Implementing a base page is pretty easy: all you need to do is add a class file to your App_Code
folder, add some code to it, and you’re done. What’s often a bit more difficult is to make sure
each page in your site inherits from this new base page instead of from the standard System.
Web.UI.Page class. Unfortunately, there is no way to configure the application to do this for you
automatically when using Code Behind, so you’ll need to modify each page manually. Visual Web
Developer makes it a little easier for you by enabling you to export a page template that already
contains this code. In the next exercise you add a base page to the site and in a later exercise you see
how to export a page to a template so you can add files that use the base page in no time.

Creating a Base PageTry It Out	

	1.	 Right-click the App_Code folder in the Solution Explorer and choose Add New Item. Select Class
in the Templates list and name the file BasePage. You can choose any name you like but BasePage
clearly describes the purpose of the class, making it easier to understand what it does.

	2.	 Clear the contents of the file, and then add the following code:

VB.NET

Public Class BasePage
 Inherits System.Web.UI.Page

 Private Sub Page_PreRender(
 ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.PreRender

 If Me.Title = “Untitled Page” Or String.IsNullOrEmpty(Me.Title) Then
 Throw New Exception(
 “Page title cannot be “”Untitled Page”“ or an empty string.”)
 End If
 End Sub

End Class

502211c06.indd 210 2/19/10 10:00:27 AM

Using a Centralized Base Page  ❘  211

C#

using System;
using System.Web;

public class BasePage : System.Web.UI.Page
{
 private void Page_PreRender(object sender, EventArgs e)
 {
 if (this.Title == “Untitled Page” || string.IsNullOrEmpty(this.Title))
 {
 throw new Exception(
 “Page title cannot be \”Untitled Page\” or an empty string.”);
 }
 }

 public BasePage()
 {
 this.PreRender += new EventHandler(Page_PreRender);
 }
}

	3.	 Save the file and close it, and then open the Login.aspx page that you created earlier. Open its
Code Behind file and change the Inherits code (the colon [:] in C#) so the login page inherits
from the BasePage class you created earlier:

VB.NET

Partial Class Login
 Inherits BasePage
 ...
End Class

C#

public partial class Login : BasePage
{
 ...
}

	4.	 Save the page and then request it in the browser by pressing Ctrl+F5. If you haven’t changed the
title of the page earlier, you should be greeted by the error shown in Figure 6-8 in your browser.

Instead of this generic error, you may see an error that displays the source for the BasePage class
where the title is checked.

	5.	 Go back to VWD and open the login page in Markup View. Locate the Title attribute in the @
Page directive (or add one if it isn’t there) and set its value to Log in to Planet Wrox. The fol-
lowing snippet shows the VB.NET version of the @ Page directive but the C# version is almost
identical:

<%@ Page Title=”Log in to Planet Wrox” Language=”VB”
 MasterPageFile=”~/MasterPages/Frontend.master” AutoEventWireup=”false”
 CodeFile=”Login.aspx.vb” Inherits=”Login” %>

502211c06.indd 211 2/19/10 10:00:27 AM

212  ❘  Chapter 6   Creating Consistent Looking Web Sites

Figure 6-8

	6.	 Repeat steps 3 and 5 for all the pages in your site. To make this a bit quicker, you can use Find and
Replace to quickly replace all the occurrences of System.Web.UI.Page with BasePage. Make sure
you don’t accidentally replace it in the BasePage file in the App_Code folder itself. To prevent this
from happening, make sure you search only in Code Behind files, like this:

Open the Replace in Files dialog box (press Ctrl+Shift+H or select Edit ➤➤ ➪ Find and
Replace ➪ Replace in Files).

In the Find What box enter ➤➤ System.Web.UI.Page. In the Replace With text box enter
BasePage.

Expand the Find Options section and in the Look at These File Types text box enter ➤➤ *.aspx.vb
or *.aspx.cs depending on the language you use. This leaves the BasePage file, which has a
single extension of .vb or .cs, alone.

Click Replace All and then click Yes to confirm the Replace operation.➤➤

	7.	 Save the changes you made to any open page and then browse to Login.aspx again. If everything
worked out as planned, the error should be gone and you now see the Login page.

Remember, though, that all other pages in your site now throw an error when you try to access
them. The fix is easy; just give them all a valid Title. For pages without a Title attribute in their
page directive, you need to do this manually. For other pages, with an empty Title=”“ attribute,
you can quickly do this by searching the site for Title=”“ and replacing it with something like
Title=”Planet Wrox”. (Don’t forget to reset the Look At These File Types back to *.*). For
pages other than the demo pages you’ve created so far, you’re better off giving each page a unique
title, clearly describing the content it contains.

502211c06.indd 212 2/19/10 10:00:27 AM

Using a Centralized Base Page  ❘  213

How It Works

By default, all pages in your web site inherit from the Page class defined in the System.Web.UI namespace.
This gives them the behavior required to make them act as web pages that can be requested by the
browser and processed by the server. Because the inheritance model in .NET enables you to create a
chain of classes that inherit from each other, you can easily insert your own base page class between
a web page and the standard Page class. You do this by changing the Inherits statement (the colon [:]
in C#) to your new BasePage:

VB.NET

Partial Class Login
 Inherits BasePage

C#

public partial class Login : BasePage

Inside this new BasePage class you add an event handler that is called when the class fires its
PreRender event. As you learned earlier, this event is raised quite late in the page’s life cycle, when the
entire page has been set up and is ready to be rendered to the client:

VB.NET

Private Sub Page_PreRender(
 ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.PreRender

 ‘ Implementation here

End Sub

C#

private void Page_PreRender(object sender, EventArgs e)
{
 // Implementation here
}

Note that Visual Basic uses the Handles keyword to tell the compiler that the Page_PreRender method
will be used to handle the event. In C#, you need to hook up this handler manually. A good place to do
this is in the class’s constructor:

public BasePage()
{
 this.PreRender += new EventHandler(Page_PreRender);
}

This highlighted line of code serves the same purpose as the Handles keyword in VB.NET: it tells the
compiler what method to run when the page raises its PreRender event.

502211c06.indd 213 2/19/10 10:00:27 AM

214  ❘  Chapter 6   Creating Consistent Looking Web Sites

Inside the event handler, the code checks the current page title. If the page title is still Untitled Page
or an empty string (the default for any new page you add to your web project) it throws an exception.

VB.NET

If Me.Title = “Untitled Page” Or String.IsNullOrEmpty(Me.Title) Then
 Throw New Exception(
 “Page title cannot be “”Untitled Page”“ or an empty string.”)
End If

C#

if (this.Title == “Untitled Page” || string.IsNullOrEmpty(this.Title))
{
 throw new Exception(
 “Page title cannot be \”Untitled Page\” or an empty string.”);
}

Notice how the keywords Me (in VB.NET) and this (in C#) are used. These keywords are context-
sensitive and always refer to the instance of the class where they are used. In this example, Me and
this refer to the current instance of the BasePage class. This BasePage instance has a Title property
(which it inherits from Page) that can be checked for unwanted values. If it still contains the default
title (an empty string) or the text “Untitled Page” the code raises (or throws) an exception. This imme-
diately stops execution of the page so you as a page developer can fix the problem by providing a valid
title before the page ends up in public. In Chapter 18 you’ll learn more about exceptions and how to
prevent and handle them.

To display a double quote (“) in the error message, both languages use a different format. In Visual
Basic, you need to double the quotes. In C#, you need to prefix the double quote with a backslash (\) to
escape the double quote. In both cases, the error message ends up in the browser with a single pair of
double quotes around the error message as you saw in Figure 6-8.

Because every new page you add to the site should now inherit from this new base page, you should
create a page template that already has the correct code in its Code Behind and markup, making it
easy to add the correct page to the site right from the start.

Creating Reusable Page Templates
Visual Web Developer comes with a great tool to export templates for a number of different file
types including ASPX pages, class files, and even CSS files. By creating a custom template, you
define the code or markup that you need in every file once and then create new files based on this
template, giving you a jump start with the file and minimizing the code you need to type. The next
exercise shows you how to create your own templates.

502211c06.indd 214 2/19/10 10:00:27 AM

Using a Centralized Base Page  ❘  215

Creating a Reusable Page TemplateTry It Out	

In this exercise you see how to create a template file for all new ASPX pages you add to your site. To
avoid conflicts with existing pages in your current site, you create a new temporary page and use that
for the template. Afterward you can delete the temporary file.

	1.	 Add a new Web Form to the site and call it Temporary.aspx. Make sure it uses Code Behind, uses
your programming language, and is based on the master page in the MasterPages folder.

	2.	 Open the Code Behind of this new page (by pressing F7) and change the Inherits line (the colon
in C#) so the page inherits from BasePage instead of from System.Web.UI.Page. Also rename the
class from Temporary to $relurlnamespace$_$safeitemname$:

VB.NET

Partial Class $relurlnamespace$_$safeitemname$
 Inherits BasePage
 ...
End Class

C#

public partial class $relurlnamespace$_$safeitemname$: BasePage
{
 ...
}

Make sure you don’t remove any of the existing code, like the using statements or the Page_Load
method in the C# version.

Don’t worry about any compile errors you may get about unexpected characters like $. Once you
start adding pages based on this template, $relurlnamespace$_$safeitemname$ will be replaced
by the name of the page you’re adding.

	3.	 Switch to Markup View, and change the Inherits attribute from Temporary to
$relurlnamespace$_$safeitemname$:

<%@ Page Title=”“ Language=”C#” MasterPageFile=”~/MasterPages/Frontend.master”
 AutoEventWireup=”true” CodeFile=”Temporary.aspx.cs”
 Inherits=”$relurlnamespace$_$safeitemname$” %>

You can leave the CodeFile attribute alone; VWD will change it to the right Code Behind file
automatically whenever you add a new page to the site.

	4.	 Optionally, add other code you want to add to your pages by default, like a comment block with a
copyright notice.

	5.	 Save all changes and then choose File ➪ Export Template. In the dialog box that follows, select
Item Template and choose your programming language from the drop-down list at the bottom of
the screen, shown in Figure 6-9.

	6.	 Click Next and place a check mark in front of Temporary.aspx that you find near the bottom of
the list. Click Next again to go to the Select Item References dialog box.

502211c06.indd 215 2/19/10 10:00:27 AM

216  ❘  Chapter 6   Creating Consistent Looking Web Sites

Figure 6-9

	7.	 There is no need to set anything in the Select Item References dialog box now. If you had a web
page referencing specific assemblies (.dll files) you could pick them here, so VWD adds the refer-
ences for you automatically next time you add a file based on this template. In this case, click Next
again to go to the Select Template Options screen. Type MyBasePage as the new template name,
and optionally type a short note describing the purpose of the template. Figure 6-10 shows the final
dialog box.

Figure 6-10

502211c06.indd 216 2/19/10 10:00:27 AM

Using a Centralized Base Page  ❘  217

	8.	 Click Finish to create the template. VWD opens a Windows Explorer showing the new template as
a ZIP file. You can close that window, because you don’t need it.

If you want to carry out this exercise for both VB.NET and C#, be sure to rename the result-
ing ZIP file first before you make an export for the second language; otherwise the ZIP file gets
overwritten. To rename the file, open Windows Explorer, go to My Documents (Documents
in Windows Vista and Windows 7) and then browse to Visual Studio 2010\Templates\
ItemTemplates. You’ll find a file called MyBasePage.zip, which you can rename to some-
thing like MyBasePageCS.zip. Note that the file’s location is different from the one you see in
Figure 6-10; the output location contains just a copy of the exported template that you can use as
a backup.

	9.	 Back in VWD, delete the temporary file Temporary.aspx you created. Then right-click the web site
in the Solution Explorer and choose Add New Item. Note that your custom template now shows
up in the list of templates, shown in Figure 6-11. If you click it, it even shows you the description
you gave it earlier.

Figure 6-11

	10.	 Type a new name for the page such as TestPage.aspx and click Add to add it to your site. Look at
the markup and the Code Behind of the file and verify that $relurlnamespace$_$safeitemname$
has been renamed to _TestPage to reflect the new name of the page. If everything looks OK, you
can delete TestPage.aspx because it’s not used in the Planet Wrox web site.

How It Works

When you export the template, Visual Web Developer creates a ZIP file with the necessary files — an
ASPX file and a Code Behind file in this exercise. This template is then stored in the ItemTemplates sub-
folder of the Visual Studio 2010 folder under your Documents folder. Some of the files in the ZIP file
contain the placeholder $relurlnamespace$_$safeitemname$. When you add a new file to the site that

502211c06.indd 217 2/19/10 10:00:27 AM

218  ❘  Chapter 6   Creating Consistent Looking Web Sites

is based on your template using the Add New Item dialog box, VWD replaces $relurlnamespace$ with
the name of the folder (nothing, in the case of a file added to the root of the site) and $safeitemname$
with the actual name of the page. In this exercise, you typed TestPage.aspx as the new name for the
page, so you ended up with a class in the Code Behind called _TestPage, which in turn inherits from the
global BasePage. The underscore (_) is hardcoded between the two placeholders and is really only needed
when adding a Web Form based on this template to a sub folder. However, it’s a valid start of a class iden-
tifier so you can safely leave it in for pages at the root of your web site. If you add a file to a sub folder,
such as the Demos folder, the class name is prefixed with the name of the folder so you end up with a class
called Demos_TestPage. In addition to $relurlnamespace$_$safeitemname$, you can use a few other
placeholders. Search the MSDN site at http://msdn2.microsoft.com for the term $safeitemname$ to
find the other template parameters.

If you need to make a change to the exported template, either redo the entire export process, or manu-
ally edit the files in the zip file.

With this exported template you now have a very quick way to add pages to your site that inherit from
the BasePage class. You don’t need to manually change the Code Behind of the class file or the markup
of the page anymore.

Besides master pages and the central BasePage class you have more options to create consistent-
looking web sites. One of them is themes.

Themes

So far you’ve seen how to create a master page to define the global look and feel of the pages in your
site. You also saw how to centralize the behavior of your pages by using a central base page. There
are, however, more ways to influence the look and feel of your site: themes and skins. Skins are dealt
with later in the chapter because they are a part of themes, which need to be discussed first.

A theme is a collection of files that define the look of a page. A theme
typically includes skin files, CSS files, and images. You define themes in
the special App_Themes folder in the root of your web site. Within this
folder you create one or more subfolders that define the actual themes.
Inside each subfolder, you can have a number of files that make up the
theme. Figure 6-12 shows the Solution Explorer for a web site that
defines two themes: Monochrome and DarkGrey.

A link to each CSS file in the theme folder is added to your page’s
<head> section automatically whenever the theme is active. You see
how this works later. The images in the theme folder are referenced
from the CSS files. They can be used to change common elements of
the web site, such as background images, or images used in bulleted
lists or navigation lists.

Figure 6-12

502211c06.indd 218 2/19/10 10:00:28 AM

Themes  ❘  219

To create a theme, you need to do the following:

Create the special ➤➤ App_Themes folder if it isn’t already present in your site.

For each theme you want to create, create a subfolder with the theme’s name, like ➤➤

Monochrome or DarkGrey in Figure 6-12.

Optionally, create one or more CSS files that will be part of the theme. Although naming the ➤➤

CSS files after the theme helps in identifying the right files, this is not a requirement. Any CSS
file you add to the theme’s folder is added to the page at runtime automatically.

Optionally, add one or more images to the theme folder. The CSS files should refer to these ➤➤

images with a relative path as explained later.

Optionally, add one or more skin files to the theme folder. Skins enable you to define indi-➤➤

vidual properties (like ForeColor and BackColor) for a specific control that are then applied
at runtime.

After you have followed these steps, you can configure your site or an individual web page to make
use of this theme. To be able to set up the right theme, you should be aware that there are two types
of themes.

Different Types of Themes
An ASP.NET page has two different properties that enable you to set a theme: the Theme property
and the StyleSheetTheme property. Both of these properties use the themes that you define in the
App_Themes folder. Although at first they seem very similar, it’s their runtime behavior that makes
the difference. The StyleSheetTheme is applied very early in the page’s life cycle, shortly after the
page instance has been created. This means that an individual page can override the settings from
the theme by applying inline attributes on the controls. So, for example, a theme with a skin file that
sets the BackColor of a button to purple can be overridden by the following control declaration in
the markup of the page:

<asp:Button ID=”Button1” runat=”server” Text=”Button” BackColor=”Red” />

The theme in the Theme property, on the other hand, is applied late in the page’s life cycle, effec-
tively overriding any customization you may have for individual controls.

Choosing Between Theme and StyleSheetTheme
Because properties of the StyleSheetTheme can be overridden by the page, and the Theme
in turn can override these properties again, both serve a distinct purpose. You should set
the StyleSheetTheme if you want to supply default settings for your controls. That is, the
StyleSheetTheme can supply defaults for your controls, which can then be overridden at the page
level. You should use the Theme property instead if you want to enforce the look and feel of your
controls. Because the settings from the Theme cannot be overridden anymore and effectively over-
write any customizations, you can be assured that your controls look the way you defined them in
the theme. There is one exception: by setting EnableTheming on the control to False you can dis-
able theming for that control. You see this property and its effect toward the end of the chapter.

502211c06.indd 219 2/19/10 10:00:28 AM

220  ❘  Chapter 6   Creating Consistent Looking Web Sites

Applying Themes
To apply a theme to your web site, you have three different options: at the page level in the Page
directive, at the site level by modifying the web.config file, and programmatically.

Setting the theme at the page level:➤➤ Setting the Theme or StyleSheetTheme property at the
page level is easy: just set the relevant attribute in the Page directive of the page:

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”
 Inherits=”_Default” Theme=”DarkGrey” %>

Replace Theme with StyleSheetTheme to apply a theme whose settings can be overridden
by the individual pages. Figure 6-13 shows that as soon as you type Theme=” VWD pops up
with a list with all the themes it finds in the App_Themes folder.

Figure 6-13

Setting the theme at the site level:➤➤ To enforce a theme throughout the entire web site, you
can set the theme in the web.config file by adding a theme attribute to the <pages> element
inside the <system.web> element:

<pages theme=”DarkGrey”>
 ...
</pages>

Make sure you type theme with all lowercase letters because the XML in the web.config
file is case sensitive.

Setting themes programmatically:➤➤ The third and final way to set a theme is programmatically
through code. You see how this works in a later exercise.

The next Try It Out exercise shows you how themes work. You create a theme, add the necessary
CSS, and then configure the application to use the new theme.

Creating a New Theme for Your Web SiteTry It Out	

In this exercise you create two themes: Monochrome and DarkGrey. For each theme, you add the CSS
layout, which is applied to the site automatically. You configure the application to use one of the themes
and then switch to the other to see the differences.

	1.	 Add the special App_Themes folder to your web site. To do this, right-
click the web site in the Solution Explorer and choose Add ASP.NET
Folder ➪ Theme. This not only creates the App_Themes folder, but
immediately creates a subfolder for the theme called Theme1 by
default. Type Monochrome as the new name instead. Your Solution
Explorer should now look like Figure 6-14.

Figure 6-14

502211c06.indd 220 2/19/10 10:00:28 AM

Themes  ❘  221

	2.	 From the Styles folder, move the Styles.css file into this new Monochrome folder. You can either
drag it directly into the new folder or use Ctrl+X to cut the file, click the Monochrome folder, and
press Ctrl+V to paste it again. You can leave the empty Styles folder because it’s used again later.

	3.	 To make it clear later where your CSS is coming from, rename the file from Styles.css to
Monochrome.css.

	4.	 Because the main layout is now going to be controlled by the theme, you no longer need the
<link> element in the <head> section of the master page pointing to the old CSS file, so you can
remove it. To this end, open the master page, switch to Markup View, and remove the following
highlighted line from the code:

<head runat=”server”>
 <title></title>
 <asp:ContentPlaceHolder ID=”head” runat=”server”>
 </asp:ContentPlaceHolder>
 <link href=”../Styles/Styles.css” rel=”stylesheet” type=”text/css” />
</head>

	5.	 The next step is to apply the theme to the entire web site. Open the web.config file from the root of
the site and directly inside the <system.web> element, add a <pages> element with the theme attribute:

<system.web>
 <pages theme=”Monochrome”></pages>
 ...

	6.	 To test the theme, save all your changes and then request the Default.aspx page in your browser.
The design of the site should be identical to how it was.

COMMON MISTAKES  ​If you get an error about an invalid page title, go back
to Visual Web Developer and change the Title attribute of the @ Page direc-
tive of Default.aspx to “Welcome to Planet Wrox.” If your design doesn’t look
as it should, press Ctrl+F5 or Ctrl+R in the browser. This forces a “hard refresh,”
which means you get the latest version of the files from the server instead of a
cached local copy of the page.

Instead of linking to the CSS file from the master page, the CSS is now included in the page source
through the theme set in the web.config file. To see how this works, open the HTML source of
the page in the browser. At the top you should see the following code (I altered the layout for bet-
ter readability):

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Welcome to Planet Wrox</title>
 <link href=”App_Themes/Monochrome/Monochrome.css” type=”text/css”
 rel=”stylesheet” />
</head>
<body>

502211c06.indd 221 2/19/10 10:00:28 AM

222  ❘  Chapter 6   Creating Consistent Looking Web Sites

Note that a link to the style sheet from the Monochrome theme folder is injected in the <head> of
the page. The ASP.NET runtime does this for every CSS file it finds in the currently active theme
folder, so be sure to keep your theme folder clean to avoid unnecessary files from being included
and downloaded by the browser. Also note that the <link> is added just right before the closing
</head> tag. This ensures that the theme file is included after all other files you may have added
yourself (through the master page, for example). This is in contrast to how the styleSheetTheme
attribute works. Because this type of theme allows its settings to be overridden, it’s imported at the
top of the file, giving room for other CSS files that follow it to change the look and feel of the page.

	7.	 Return to Visual Web Developer and open the master page file in Design View. Notice how all the
design is gone and VWD now shows the basic layout of the page again. Unfortunately, VWD does
not display the theme you’ve set using the theme attribute. However, you can overcome this limita-
tion by setting the styleSheetTheme instead. To do this, open the web.config file again, locate
the <pages> element you created earlier, and add the following attribute:

<pages theme=”Monochrome” styleSheetTheme=”Monochrome“></pages>

	8.	 Save the changes to web.config, close and reopen the master page, and switch to Design View.
You’ll see that VWD now applies the correct styling information to your pages.

	9.	 To add another theme to the site, create a new folder under App_Themes
and call it DarkGrey. Next, open the folder where you extracted the
downloaded code that comes with this book. If you followed the
instructions in the Introduction of this book, this folder is located at
C:\BegASPNET\Resources. Open the Chapter 06 folder and then
the DarkGrey folder. Position the Windows Explorer and VWD side
by side and then drag the file DarkGrey.css from Windows Explorer
into the DarkGrey theme folder in VWD. If dragging doesn’t work
for you, you can use Ctrl+C in Windows Explorer to copy the file,
and then use Ctrl+V in VWD to paste the file in the right folder.
Your Solution Explorer should now resemble Figure 6-15.

You add the images that the CSS file refers to in a later exercise.

	10.	 Open the web.config file once more and change both occurrences of Monochrome to DarkGrey
in the <pages> element. Save the changes again and press Ctrl+F5. Instead of the purple
Monochrome theme, you’ll now see the site with the DarkGrey theme applied as visible in
Figure 6-16. If you don’t see the menu, the main content and the sidebar all next to each other,
make sure your browser window is wide enough to display all content.

If you don’t see the new theme appear, close all open browsers, ensure you changed web.config
correctly and open Default.aspx again. If you still don’t see the theme, press Ctrl+F5 or Ctrl+R
in your browser to force it to get a fresh copy from the server. If the new theme is still not dis-
played, right click the ASP.NET Development Server in the Windows tray bar, and choose Stop.
Next, request Default.aspx in the browser again by pressing Ctrl+F5 in VWD.

Figure 6-15

502211c06.indd 222 2/19/10 10:00:28 AM

Themes  ❘  223

Figure 6-16

How It Works

In this exercise you first applied the Monochrome theme by changing the <pages> element in the web.
config file. When the runtime sees that a theme is active, it scans the associated theme folder for .css
files and includes a link to all those files in the page’s <head> section. In the case of the Monochrome
theme it finds the file Monochrome.css and adds it to the <head> section automatically. An identical
process took place when you changed the theme to DarkGrey. The linked style sheet then influences the
way the page is displayed in the browser by changing the layout and colors used in the page.

To enable design-time support in Visual Web Developer you need to change the styleSheetTheme
in the web.config file as well. The only downside of this is that the relevant CSS file is now included
twice: once for the Theme and once for the StyleSheetTheme. Because the exact same file is included
twice, it doesn’t affect the layout of the site. All the selectors in the second file simply overrule those
in the first. However, if you feel this duplication is a waste of CPU cycles, you should delete the
styleSheetTheme attribute from the web.config file when you go live with the application.

The layout of the page is changed radically because of the CSS in the DarkGrey.css file. If you want to
know what CSS the file contains and what elements of the page it changes, open it up in VWD. It has
lots of comments describing each selector in detail.

ASP.NET themes are not limited to just CSS files. As you learn next, themes can also contain images
and skin files.

502211c06.indd 223 2/19/10 10:00:28 AM

224  ❘  Chapter 6   Creating Consistent Looking Web Sites

Extending Themes
Besides CSS files and skins (discussed toward the end of this chapter), a theme can also contain
images. The most common use of theme images is referring to them from your CSS. To put this to
good use it’s important to understand how CSS refers to images.

By design, an image referred to by a CSS selector will be searched for
relative to the location of the CSS file, unless you give it a path that
starts with a forward slash (/) to indicate the root of the site. Consider,
for example, the App_Themes folder depicted in Figure 6-17.

To refer to the MenuBackground.jpg file in the Images folder of the
Monochrome theme, you can add the following CSS to Monochrome.css:

#MenuWrapper
{
 background-image: url(Images/MenuBackground.jpg);
}

If you wanted to refer to an image in the Images folder in the root
of the site, you would use this CSS:

background-image: url(/Images/MenuBackground.jpg);

Note the leading forward slash in front of the image path to indicate the root of the site. This latter
syntax is useful if you want to share images between different themes. Simply put them in a folder
outside a specific theme, like an Images folder at the root, and then use this root-based syntax to
refer to them. This only works correctly when you have set the Virtual Path property of the web site
to a forward slash (/) as well. The next chapter digs a lot deeper into the different forms a URL can
take to refer to a resource like an image and explains how to use the Virtual Path property.

Adding Images to Your ThemeTry It Out	

In this Try It Out you add the images and CSS files to the site to complete both themes. The images and
CSS files are available in the zip file that comes with this chapter’s code download, found at www.wrox.
com/go/beginningaspnet4. You will overwrite the file Monochrome.css in the Monochrome theme,
so if you made any customizations to that file, create a backup of it first.

	1.	 Open Windows Explorer and navigate to the files you extracted from the zip file for this chapter (at
C:\BegASPNET\Resources). Open the Chapter 06 folder and then the Monochrome folder. Select
the Images folder and the Monochrome.css file.

	2.	 Drag (or copy and paste) the selected folder and files from Windows Explorer into the Monochrome
theme folder in VWD. Click Yes when you’re asked to overwrite Monochrome.css.

	3.	 Repeat steps 1 and 2, but this time drag (or copy and paste) only the Images folder from the
Windows Explorer’s DarkGrey folder into the DarkGrey theme folder in VWD. Your Solution
Explorer now looks like Figure 6-17.

Figure 6-17

502211c06.indd 224 2/19/10 10:00:29 AM

Themes  ❘  225

	4.	 Open up the master page from the MasterPages folder and remove the text Header Goes Here
between the <a> tags. Because the header will be filled with an image, you no longer need this text.

	5.	 Request the Default.aspx page in your browser by right-clicking it and choosing View in
Browser. You should now see the web page with images from the DarkGrey theme, shown in
Figure 6-18.

Figure 6-18

	6.	 Go back to VWD, open the web.config file, and switch the two theme attributes of the <pages>
element from DarkGrey to Monochrome again. Open Default.aspx in your browser and you’ll
see the page with the new theme and images as shown in Figure 6-19.

Figure 6-19

502211c06.indd 225 2/19/10 10:00:29 AM

226  ❘  Chapter 6   Creating Consistent Looking Web Sites

How It Works

From a theme point of view, not much has changed in this exercise. Just as you saw before, the theme is
added to the head of the page. However, this time the style sheet in the theme points to images located
in the theme folder. The browser reads the CSS file, follows the link to the images, downloads them,
and then displays them at the right location as dictated by the various CSS selectors in the code file.

The CSS files you added for both themes contain a lot of comments, so if you want to know what the
CSS does, check out the files in the two theme folders.

Useful as themes may be to enable you, the page developer, to quickly change the appearance and
even the layout of the site, they become even more useful if you let your users switch them at run-
time. This way, users can customize the site to their liking. The next section shows you how to
accomplish this.

Dynamically Switching Themes
Switching themes at runtime has a few benefits. For example, you can please your users by enabling
them to choose a theme with colors and layout they like. Not everyone appreciates a dark back-
ground with white text, so the option to change that at runtime is something that many people like.
However, you can also deploy themes to help visually impaired users. By creating a theme that has a
high-contrast color scheme and a large font size, you make it much easier for people to see your site.
The themes in the Planet Wrox web site only change screen elements like colors and layout, but it’s
easy to create a copy of one of those themes and then change the font size and the color scheme.

Because of the way themes are applied to a page at runtime, you need to set the theme early on in
the page’s life cycle, in the PreInit event to be precise. The base page of the web site is once again
the ideal location to do this, because every page in the site inherits from this class.

To enable users to change the theme, you can offer them a drop-down menu that automatically
posts back to the server when they change the active option in the list. At the server, you get the
chosen theme from the list, apply it to the page, and then store the selection in a cookie so it can be
retrieved on subsequent visits to the web site.

Cookies are little pieces of text that you can store on the user’s computer. The data you store in a
cookie is sent only to the server that set it in the first place, so other sites can’t read the cookie from
yours. However, because cookies are stored on the user’s computer as plain text, you should never
use them to store any sensitive data, such as a password. Storing harmless data like the preferred
theme is an excellent use of cookies, though.

In the following two exercises you see how to implement the functionality to switch themes dynami-
cally. The first exercise guides you through modifying the master page to enable the user to select a
theme. This exercise only retrieves the name of the theme the user selects and stores it in a cookie.
The second exercise then shows you how to apply that theme at runtime to every page that inherits
from BasePage.

502211c06.indd 226 2/19/10 10:00:29 AM

Themes  ❘  227

NOTE  ​There has been a lot of debate about cookies and whether or not they
can harm your privacy. Generally, cookies are safe, because they only store
data that the server that sets it already has. They can’t be used to steal sensi-
tive data from your computer if you haven’t given this data to the server your-
self. In most scenarios, cookies improve the user’s browsing experience by
remembering little pieces of data instead of asking you every single time you
visit a page. Unfortunately, some large corporations like advertising agencies
use a unique cookie to track your trails on the web, giving them some global
idea of the sites you visit. To ensure that visitors to your site understand what
information you have and keep about them, it’s usually a good idea to add a
privacy statement to your site describing the intent and usage of cookies and
any personal data you may keep.

Letting the User Select a ThemeTry It Out	

In this exercise you add a DropDownList control to the master page. This control contains the available
themes so a user can choose one. The user’s choice is stored in a cookie so it’s available again later. The
final step is to preselect the right theme in the drop-down list when the user revisits the page.

	1.	 Open the master page in Markup View and locate the <div> called Sidebar. Remove the static
text Sidebar Goes Here and replace it with a DropDownList control by dragging it from
the Toolbox between the two div tags. Change the ID of the control from DropDownList1 to
ThemeList. Type some text (for example, Select a Theme) followed by a line break (
) in
front of the drop-down list to clarify the purpose of the list.

	2.	 Switch to Design View, open the control’s Smart Tasks panel, and select Enable AutoPostBack.

	3.	 On the same Smart Tasks panel, click the Edit Items link and insert two items: one with the text
Monochrome and one with the text DarkGrey.

	4.	 Double-click the drop-down list to set up an event handler for
the SelectedIndexChanged event. Instead of double-clicking,
you can also select the DropDownList, press F4 to open its
Properties Grid, click the button with the lightning bolt to switch
to the Events tab, and double-click SelectedIndexChanged.
Figure 6-20 shows the Properties Grid in Events mode.

Any code you write in the SelectedIndexChanged handler
fires at the server when the user makes a new selection in the
drop-down list at the client. Within the handler block, add the
following bolded code that retrieves the selected theme from the
list and stores it in a cookie:

VB.NET

Protected Sub ThemeList_SelectedIndexChanged(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles ThemeList.SelectedIndexChanged

Figure 6-20

502211c06.indd 227 2/19/10 10:00:30 AM

228  ❘  Chapter 6   Creating Consistent Looking Web Sites

 Dim preferredTheme As HttpCookie = New HttpCookie(“PreferredTheme”)
 preferredTheme.Expires = DateTime.Now.AddMonths(3)
 preferredTheme.Value = ThemeList.SelectedValue
 Response.Cookies.Add(preferredTheme)
 Response.Redirect(Request.Url.ToString())
End Sub

C#

protected void ThemeList_SelectedIndexChanged(object sender, EventArgs e)
{
 HttpCookie preferredTheme = new HttpCookie(“PreferredTheme”);
 preferredTheme.Expires = DateTime.Now.AddMonths(3);
 preferredTheme.Value = ThemeList.SelectedValue;
 Response.Cookies.Add(preferredTheme);
 Response.Redirect(Request.Url.ToString());
}

	5.	 Still in the Code Behind of the master page, you need to add some code that preselects the cor-
rect item in the list again when the page loads. The best place to do this is in the Page class’s Load
event. If you’re using C#, the Page_Load handler should already be there. When you’re using
Visual Basic you can add one in two different ways: either double-click the page anywhere in
Design View (this works in C# as well), or select (Page Events) from the left drop-down list just
above the Document Window in the Code Behind (shown in Figure 6-21), and then choose Load
from the second drop-down. This is a nice way to add handlers for other controls as well, like
Button and DropDownList controls.

Figure 6-21

Within the handler block that VWD added for you, add the following code:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Not Page.IsPostBack Then
 Dim selectedTheme As String = Page.Theme
 Dim preferredTheme As HttpCookie = Request.Cookies.Get(“PreferredTheme”)
 If preferredTheme IsNot Nothing Then
 selectedTheme = preferredTheme.Value
 End If

502211c06.indd 228 2/19/10 10:00:30 AM

Themes  ❘  229

 If Not String.IsNullOrEmpty(selectedTheme) AndAlso
 ThemeList.Items.FindByValue(selectedTheme) IsNot Nothing Then
 ThemeList.Items.FindByValue(selectedTheme).Selected = True
 End If
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 string selectedTheme = Page.Theme;
 HttpCookie preferredTheme = Request.Cookies.Get(“PreferredTheme”);
 if (preferredTheme != null)
 {
 selectedTheme = preferredTheme.Value;
 }
 if (!string.IsNullOrEmpty(selectedTheme) &&
 ThemeList.Items.FindByValue(selectedTheme) != null)
 {
 ThemeList.Items.FindByValue(selectedTheme).Selected = true;
 }
 }
}

	6.	 Save all changes and then request Default.aspx in your browser again. The drop-down list in the
sidebar should display the first item in the list as selected. Select the other option from the list and
the page will reload. The item you chose last in the drop-down list should now be preselected in the
drop-down list. Notice that you keep seeing the same theme because you haven’t written any code
yet that applies the selected theme. You see how to do that in a later exercise.

COMMON MISTAKES  ​If you get an error, make sure you have no typos in the
code. If nothing seems to happen (for example, the page doesn’t post back),
check if you set the AutoPostBack attribute on the DropDownList control to
True. If you don’t see any theme applied at all, check the <pages> element in
web.config for a configured theme. Also, check the spelling of the name of the
cookie (PreferredTheme) in both code blocks.

How It Works

You made three important changes to the master page. First, you added the drop-down list and set
AutoPostBack to True. This causes the page to submit itself back to the server as soon as you choose a
new item in the list. When that happens, the code in the SelectedIndexChanged handler fires. This code
creates a cookie that can be stored on the user’s computer. To make the cookie last between browser ses-
sions, you need to set the Expires property. In the code example, the cookie is set to expire three months

502211c06.indd 229 2/19/10 10:00:30 AM

230  ❘  Chapter 6   Creating Consistent Looking Web Sites

from now, which means the browser will discard it automatically after that period. However, whenever
the user chooses a new theme, this date is extended, setting it for another three months:

VB.NET

Dim preferredTheme As HttpCookie = New HttpCookie(“PreferredTheme”)
preferredTheme.Expires = DateTime.Now.AddMonths(3)

C#

HttpCookie preferredTheme = new HttpCookie(“PreferredTheme”);
preferredTheme.Expires = DateTime.Now.AddMonths(3);

After the cookie has been created, you can set its Value property. In the example, the SelectedValue
of the DropDownList (containing the name of the theme) is stored in the cookie. The cookie is then
added to the Cookies collection using Response.Cookies.Add:

VB.NET

preferredTheme.Value = ThemeList.SelectedValue
Response.Cookies.Add(preferredTheme)

C#

preferredTheme.Value = ThemeList.SelectedValue;
Response.Cookies.Add(preferredTheme)

Note that the cookie is added to the Cookies collection of the Response object that is associated with
the response to the user. Later you see how to read this cookie again from the Cookies collection of the
Request object that is associated with the request the user is making for a page.

The final step is to redirect the user to the same page:

VB.NET

Response.Redirect(Request.Url.ToString())

C#

Response.Redirect(Request.Url.ToString());

This is necessary because otherwise the new theme won’t be applied immediately. Because the theme
needs to be set early in the page’s life cycle, it can no longer be set for the current request. By redirect-
ing the user to the same page, a new request is made that can successfully apply the selected theme. The
next exercise shows you the code to programmatically set the selected theme.

The final change in the master page you made was a modification to the Page_Load handler. Inside this
method, a String variable is declared that holds the currently active theme by looking at Page.Theme.
This will be the default theme that is preselected in the drop-down list if the user doesn’t have a cookie
holding her preferred theme. The code then sees if there is a cookie called PreferredTheme. If it exists,
its value is used to give the string selectedTheme a new value. In the end, this String variable is then
used to find the item in the drop-down list and preselect it.

This way, the drop-down list always displays the currently configured site theme or the item the user
has chosen manually, even if she comes back to the site next week. Note the use of the FindByValue
method on the Items collection of the DropDownList control. This method returns the item if it is
found or Nothing (null in C#) when the item isn’t there. This ensures that if the cookie contains a
theme that is no longer available, the code doesn’t try to preselect an item in the list that doesn’t exist.

502211c06.indd 230 2/19/10 10:00:30 AM

Themes  ❘  231

With the ability to let a user select a theme in place, the next step is to apply the chosen theme.

As you learned previously, the theme needs to be set in the PreInit event, which takes place early
in the page’s life cycle. Inside this event, you can see if the cookie with the selected theme exists. If it
does, you can use its value to set the right theme.

Applying the User-Selected ThemeTry It Out	

In this exercise, you modify the base page and add some code for the PreInit event to set the user’s
theme.

	1.	 Open the BasePage file from the App_Code folder and add the following code that sets the selected
theme during the PreInit event. You can add this code before or after the method that checks the
page title.

VB.NET

Private Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.PreInit
 Dim preferredTheme As HttpCookie = Request.Cookies.Get(“PreferredTheme”)
 If preferredTheme IsNot Nothing Then
 Page.Theme = preferredTheme.Value
 End If
End Sub

C#

private void Page_PreInit(object sender, EventArgs e)
{
 HttpCookie preferredTheme = Request.Cookies.Get(“PreferredTheme”);
 if (preferredTheme != null)
 {
 Page.Theme = preferredTheme.Value;
 }
}

	2.	 If you’re working with C#, you need to set up an event handler in the class’s constructor for the
PreInit event, just as you did with the PreRender event handler in an earlier exercise. This tells
the ASP.NET runtime which method will handle the PreInit event:

public BasePage()
{
 this.PreRender += new EventHandler(Page_PreRender);
 this.PreInit += new EventHandler(Page_PreInit);
}

	3.	 Save changes to all open documents and then request Default.aspx in the browser. The page
should load with the theme you chose last in the drop-down list in the previous exercise.

	4.	 Choose a new item from the list. The page should reload and should now show the other theme.

If you find that the page in the browser is showing a combination of the two themes, go back to
VWD, open web.config, and remove the styleSheetTheme attribute from the <pages> element,
leaving the theme attribute in place because it serves as the default for new visitors.

502211c06.indd 231 2/19/10 10:00:30 AM

232  ❘  Chapter 6   Creating Consistent Looking Web Sites

How It Works

With the hard work of getting the user’s favorite theme and storing it in a cookie already done, apply-
ing the theme is now very easy. The code in the PreInit event handler first verifies whether there is
a cookie called PreferredTheme. It does this by comparing the return value of the Get method to
Nothing (null in C#).

VB.NET

Dim preferredTheme As HttpCookie = Request.Cookies.Get(“PreferredTheme”)
If preferredTheme IsNot Nothing Then

C#

HttpCookie preferredTheme = Request.Cookies.Get(“PreferredTheme”);
if (preferredTheme != null)

Here, Request.Cookies is used to read from the cookies that the user’s browser sent together with the
request. If the cookie exists, its Value property is used to set the correct theme:

VB.NET

Page.Theme = preferredTheme.Value

C#

Page.Theme = preferredTheme.Value;

Because the theme is set early in the page’s life cycle, this setting will carry through all the way to the
end of the page, effectively giving the page the look and feel defined in it. Note that this code causes the
page to crash when the cookie contains a theme that is no longer present in the site. In Chapter 18, you
will learn more about the techniques to handle these kinds of scenarios and deal with them gracefully.

With the ability of setting the theme programmatically, you’re offering your users a quick and easy
way to change the page to their likings. The theme affects colors and layout throughout each page in
the entire web site. Combined with master pages this gives you a flexible way to influence the look
and feel of an entire page. It could also be useful if you were able to change certain controls on a
page. For example, you may have the need to give each button in your site the exact same look. This
is where the ASP.NET skins come into play.

Skins

Skins are simple text files that contain markup that enables you to define the look and feel of one or
more server controls from a central location. Placed in a theme’s folder, they are an integral part of the
ASP.NET themes feature. A skin file (with a .skin extension) contains the server-side presentational
elements of a control. These settings are then applied to all the controls to which the skin applies. To see
how this works, consider the following example that defines the skin or appearance of a Button control:

<asp:Button BackColor=”#cccccc” ForeColor=”#308462” runat=”server” />

With this skin definition, the buttons in your site will get a BackColor of #cccccc and a ForeColor
of #308462. All you need to do is create a skin file under your theme’s folder, add this markup

502211c06.indd 232 2/19/10 10:00:30 AM

Skins  ❘  233

to it, and that’s it. From then on, all the buttons will be changed automatically. Just as with set-
ting the properties on the controls directly as you saw earlier, these properties like BackColor and
ForeColor are transformed into client-side HTML and CSS.

Note that this skin markup is similar to the markup of a button. There are a few differences though.
First of all, the control in the skin file cannot have an ID attribute. The ID is used to uniquely iden-
tify a control in a page, and because the skin is applied to all controls, there’s no point in giving it
an ID. Another difference is the number of attributes you can set in the markup. Not all properties
of a control are skinnable. For example, you can’t set the Enabled property of the Button through a
skin. Microsoft’s MSDN documentation lists for each property whether or not they can be skinned.
Another way to find out if you can skin a certain property is by simply trying it: just set the property
in the skin and if you’re not allowed to set it, you’ll get an error at runtime.

Generally speaking, properties that influence the appearance (BackColor, ForeColor, BorderColor,
and so on) can be skinned and properties that influence behavior (Enabled, EnableViewState, and
more) cannot be set.

When you create a new skin file using the Add New Item dialog box, you get a bunch of text wrapped
in a server-side comment block. You can safely remove these comments because they only give you a
short example of how skins work. You can define multiple controls in a single skin file. However, from
a maintainability point of view, it’s often easier to name each skin file after the control it represents.
For example, you would have a file called Button.skin for buttons, Label.skin for labels, and so on.

Instead of applying formatting elements directly to the control’s properties in the skin and thus to
the final markup in the page, it’s often better to use the CssClass property to point to a CSS class
in one of your CSS files. That way, it’s even easier to make site-wide changes and you avoid bloating
the final HTML. Given the previous example, a file with the following skin definition and a class in
the theme’s CSS file would give the same effect:

<asp:Button CssClass=”MyButton” runat=”server” />

.MyButton
{
 color: #308462;
 background-color: #cccccc;
}

Creating a Skin File
Skin files must be created in the theme’s folder directly. You can’t store them in a subfolder like you
do with the theme’s images. In the following exercise you see how to create a simple skin file to
change the look and feel of all button controls in the web site. Later chapters in this book build on
this knowledge by defining more complex skins for other controls like the GridView.

When you start typing in a skin file, you’ll notice that the familiar IntelliSense doesn’t kick in. This
makes it slightly difficult to define your controls and their attributes. However, there is a simple
workaround:

	 1.	 Open VWD’s Options dialog box by choosing Tools ➪ Options.	

	 2.	 Expand the Text Editor category and click File Extension. If you don’t see these categories,
make sure that Show All Settings at the bottom of the screen is selected.

502211c06.indd 233 2/19/10 10:00:30 AM

234  ❘  Chapter 6   Creating Consistent Looking Web Sites

	 3.	 In the Extension box type skin and then from the Editor drop-down list choose User Control
Editor.

	 4.	 Click the Add button and then click the OK button to dismiss the Options dialog box.

From now on, you’ll get IntelliSense in skin files (you may need to reopen existing skin files first if
you already created one). With this setting on, you may get a warning in the Error List about build
providers when you have a skin file open. You can safely ignore this error, because skins work fine at
runtime even with these settings in VWD.

Creating a Skin for the Button ControlTry It Out	

To effectively use skins, you should strive to use CssClass attributes as much as possible instead of
applying inline attributes that all end up in the final HTML of the page, increasing its size and load
time. However, to show you how it works in case you do have a special need to add inline attributes,
this exercise shows you how to apply both.

	1.	 In the Monochrome theme folder, add a new skin file and call it Button.skin. You add the file by
right-clicking the Monochrome folder and choosing Add New Item. In the dialog box that follows
select Skin File and type Button as the file name.

	2.	 Delete the entire contents from the file and type the following code:

<asp:Button CssClass=”MyButton” BackColor=”#7a70a4” runat=”server” />

Note that this markup uses a combination of inline attributes for styling (the BackColor) and the
CssClass to point to a selector in your CSS file. As explained earlier, you can ignore the warning
about missing build providers because your skin files will work fine at runtime. As soon as you
close the skin file, the warning goes away.

	3.	 Open the Monochrome.css file from the theme folder and add this CSS selector at the end of
the file:

.MyButton
{
 color: White;
}

	4.	 Create a new Web Form in the Demos folder and call it SkinsDemo.aspx. Make sure you base it
on the exported template you created earlier. Give the page a Title of Skins Demo and then add
a Button by dragging it from the Toolbox into the cpMainContent area of the page. You end up
with this code:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” Runat=”Server”>
 <asp:Button ID=”Button1” runat=”server” Text=”Button” />
</asp:Content>

	5.	 Save all changes and then request SkinsDemo.aspx in the browser. If necessary, switch to the
Monochrome theme. The button you added in step 4 should now have a purple background with
white text on it. If the changed colors don’t show up, make sure you selected the right theme in
the drop-down list and that you added the MyButton CSS class to the CSS file of the Monochrome
theme. If you still don’t see the changes, press Ctrl+F5 or Ctrl+R to force a fresh copy of the CSS
file from the server.

502211c06.indd 234 2/19/10 10:00:30 AM

Skins  ❘  235

How It Works

To see how it works, you should take a look at the HTML for the page in the browser. The Button con-
trol has been transformed in the following HTML:

<input type=”submit” name=”ctl00$cpMainContent$Button1” value=”Button”
 id=”cpMainContent_Button1” class=”MyButton” style=”background-color:#7a70a4;” />

Both the CssClass and the BackColor attributes in the skin have been added to the HTML. The for-
mer ended up as a class attribute on the button, and the latter has been transformed into a style
attribute. The MyButton class in the CSS file gives the button its white text and the inline style deter-
mines the background color of the button. If you choose the DarkGrey theme in the drop-down list and
then look at the HTML again, you’ll notice there are no class and style attributes, giving the button its
default Windows look.

As you can see, skins are extremely easy to use and enable you to radically change the look of spe-
cific controls in your site. But what if you don’t want all your buttons to change purple and white
at the same time? What if you need one special button that has a red background? You can do this
with named skins.

Named Skins
Named skins are identical to normal skins with one exception: they have a SkinID set that enables
you refer to that skin by name. Controls in your ASPX pages can then use that SkinID to apply that
specific skin to the control. The next exercise shows you how this works.

Creating a Named Skin for the Button ControlTry It Out	

The easiest way to create a named skin is by copying the code for an existing one and then adding a
SkinID attribute. Be aware that if you copy and paste a skin definition, VWD automatically adds an ID
attribute (that is, if you connected skin files to the User Control Editor as described earlier). This ID is
not allowed, so you need to remove it.

	1.	 Open Button.skin again, copy all the code, and paste it below the existing markup.

	2.	 If VWD added an ID attribute, remove it, together with its value (for example, remove ID=”Button1”).

	3.	 Remove the CssClass attribute and its value, change the BackColor of the button to Red, and set
the ForeColor to Black.

	4.	 Add a SkinID attribute of RedButton. You should end up with this code:

<asp:Button CssClass=”MyButton” BackColor=”#7a70a4” runat=”server” />
<asp:Button BackColor=”Red” ForeColor=”Black” SkinID=”RedButton” runat=”server” />

	5.	 Save and close the skin file.

	6.	 Open SkinsDemo.aspx and add a second button. Set the SkinID of this button to RedButton. Notice
how IntelliSense helps you pick the right SkinID. The code for the two buttons should now look like this:

<asp:Button ID=”Button1” runat=”server” Text=”Button” />
<asp:Button ID=”Button2” runat=”server” Text=”Button” SkinID=”RedButton” />

502211c06.indd 235 2/19/10 10:00:31 AM

236  ❘  Chapter 6   Creating Consistent Looking Web Sites

	7.	 Open SkinsDemo.aspx in the browser. You should now see two buttons with different colors. If
you don’t see the different colors, ensure you have selected the Monochrome theme in the browser.

How It Works

Named skins work almost exactly the same as normal skins. However, with a named skin a control can
point to a specific skin in one of the skin files. In the SkinsDemo.aspx page, the first button gets its set-
tings from the default, unnamed skin, and the other now gets its settings from the skin with its SkinID
set to RedButton.

With named skins, you have a very flexible solution at your disposal. With the normal skins, you
can quickly change the appearance of all controls in your site. You can then use a named skin to
override this behavior for a few controls that you want to look different.

Disable Theming for Specific Controls
If for some reason you don’t want to apply a skin to a specific control you can disable the skin by
setting the EnableTheming property of the control, like this:

<asp:Button ID=”Button1” runat=”server” EnableTheming=”False” Text=”Button” />

With EnableTheming set to False, the skin is not applied to the control. CSS settings from the
theme’s CSS file are still applied, though.

Practical Tips on Creating Consistent Pages

The following list provides some practical tips on creating consistent pages:

When you create a new web site, always start by adding a master page that you base all other ➤➤

pages on. Even if you think you have a site with only a few pages, a master page will help
you ensure a consistent look across the entire site. Adding a master page at a later stage to
the site means making a lot of manual changes to existing pages.

As soon as you find yourself adding styling information to complex controls like the ➤➤

TreeView and Menu (discussed in the next chapter) or data-aware controls like the GridView
(discussed in Chapter 13), consider creating a skin for them. The fact that you can control
the layout of all similar controls from a single location makes it a lot easier to update your
site. If you want to override the layout for a few controls, you can always use named skins
with a SkinID or disable the skin entirely by setting EnableTheming to False.

When creating skins or setting style properties directly on a control, consider using the ➤➤ CssClass
property instead, and then moving all styling-related properties to the CSS for the site or theme.
This decreases the page’s size and makes it easier to make changes to the layout afterward.

The Export Template feature of Visual Web Developer is a great time saver. You can use it ➤➤

not only to create a template for an ASPX page and its Code Behind, but also for other files
like classes and CSS files, and even a complete web site. This enables you to jump-start the
creation of new files, saving you from typing the same stuff over and over again.

502211c06.indd 236 2/19/10 10:00:31 AM

Summary  ❘  237

Summary

A consistent look and feel of all pages in your site is important to give your site a professional and
attractive look. This in turn helps your visitors in finding the right information in your site, increas-
ing the chances that they might visit your site again. ASP.NET 4 offers a number of great tools to
aid you in creating a consistent looking web site.

ASP.NET master pages and content pages help you create a layout that is repeated in every page that
is based on that master.

Where master pages define a centralized look and feel, you can use a Base Page class to centralize
behavior such as checking the page for invalid titles.

Themes are used to change the look and feel of the pages in your site and the controls they contain.
Because themes can contain CSS files, images, and skins, you can change colors, fonts, position-
ing, and images simply by applying a theme. By making good use of techniques like named skins,
and the EnableTheming attribute, you can create a design that applies to your entire site, while you
maintain the flexibility to overrule the design on a control-by-control basis.

The Planet Wrox web site is now starting to grow. This means it becomes more difficult for you and
your visitors to find the right pages. The next chapter shows you a number of different ways for your
users to navigate your site so they won’t have any problems finding the page they are looking for.

Exercises	

1.	 What’s the difference between a ContentPlaceHolder and a Content control? In what type of

page do you use which one?

2.	 How do you hook up a Content control in a content page to the ContentPlaceHolder in the mas-

ter page?

3.	 Imagine you have created a skin that gets applied to all buttons in your site with the following skin

definition:

<asp:Button runat=”server” CssClass=”MyButton” />

		 The imaginary CSS class MyButton sets the background color of the button to black and the fore-

ground color to white. To draw attention to a specific button in a page, you decide to give it a red

background instead. Which options do you have to control the look of this single button?

4.	 Explain the differences between setting the Theme property and the StyleSheetTheme property

for a page.

5.	 Name three different ways to set the Theme property for a page and explain the differences

between the options.

6.	 What’s the main reason for implementing a base page in your web site?

﻿Answers to Exercises can be found in Appendix A.

502211c06.indd 237 2/19/10 10:00:31 AM

238  ❘  Chapter 6   Creating Consistent Looking Web Sites

What You Learned in This Chapter⊲⊲

Base page A class inheriting from the ASP.NET Page class that serves as the parent class

for your ASPX pages

Content page An ASPX Web Form that uses a master page to build up its global appearance

and layout

Cookies Little pieces of text that you can store on the user’s computer and access

again from the server

Master page A central page that defines the look and feel of content pages that use the

master page

Named skin An ASP.NET skin with an explicit SkinID set enabling you to refer to this skin

by its ID

Page life cycle The cycle of events that an ASPX page goes through when requested by a

browser

Skin A collection of presentational settings to influence the appearance of controls

in the browser

Theme A collection of CSS styles, skins and images to change the appearance of

pages in your site

502211c06.indd 238 2/19/10 10:00:31 AM

Navigation

What You Will Learn in This Chapter:

How to move around in your site using server controls and plain HTML➤➤

How to address pages and other resources like images ➤➤

How to use the ASP.NET ➤➤ Menu, TreeView, and SiteMapPath

navigation controls

How to programmatically send users from one page to another➤➤

When your site contains more than a handful of pages, it’s important to have a solid and clear
navigation structure that enables users to find their way around your site. By implementing a
good navigation system, all the disconnected web pages in your project will form a complete
and coherent web site.

When you think about important parts of a navigation system, the first thing that you may come
up with is a menu. Menus come in all sorts and sizes, ranging from simple and static HTML
links to complex, fold-out menus driven by CSS or JavaScript. But there’s more to navigation
than menus alone. ASP.NET comes with a number of useful navigation controls that enable
you to set up a navigation system in no time. These controls include the Menu, TreeView, and
SiteMapPath, which you learn about in this chapter.

Besides visual controls like Menu, navigation is also about structure. A well-organized site is
easy for your users to navigate. The Web.sitemap file that is used by the navigation controls
helps you define the logical structure of your site.

Another important part of navigation takes place at the server. Sending a user from one page
to another in Code Behind based on some condition is a very common scenario. For example,
imagine an administrator entering a new CD or concert review in the Management section of
the web site. When the review is done, you may want to show the administrator the full details
by redirecting to a new page.

7

502211c07.indd 239 2/19/10 10:00:17 AM

240  ❘  Chapter 7   Navigation

In this chapter, you learn how to use the different navigation options at your disposal. Before you look
at the built-in navigation controls, however, you need to understand the different options you have to
address the resources in your site like ASPX pages and images.

Different Ways to Move Around Your Site

The most common way to let a user move from one page to another is by using the <a> element.
This element has an href attribute that enables you to define the address of a page or other resource
you want to link to. Between the tags you can place the content you want to link, such as text, an
image, or other HTML. The following snippet shows a simple example of the <a> element:

You can log in here

With this code in a web page, users, after clicking the text “You can log in here,” will be taken to
the page Login.aspx that should be in the same folder as the page that contains the link.

The <a> element has a server-side counterpart called the HyperLink, which can be created in
the markup using <asp:HyperLink>. It eventually ends up as an <a> element in the page. The
NavigateUrl property of this control maps directly to the href attribute of the <a> element. For
example, a server-side HyperLink in a content page such as this:

<asp:HyperLink runat=”server” id=”LoginLink” NavigateUrl=”Login.aspx”>
 You can log in here</asp:HyperLink>

produces the following HTML in the browser:

You can log in here

Other than the long ID that is assigned by the ASP.NET runtime, this code is identical to the earlier
example. In both cases, the href attribute points to the page Login.aspx using a relative URL. The
next topic describes the differences between relative and absolute URLs.

Understanding Absolute and Relative URLs
Key to working with links in your site is a good understanding of the different forms a Uniform
Resource Locator (URL) to a resource inside or outside your web site can take. A URL is used to
uniquely identify a resource in your or another web site. These URLs are used in different places,
including the href attribute of a hyperlink or a <link> element to point to a CSS file, the src attri-
bute pointing to an image or a JavaScript source file, and the url() value of a CSS property. These
URLs can be expressed as a relative URL or as an absolute URL. Both have advantages and disad-
vantages that you should be aware of.

Relative URLs

In the previous examples you saw a relative URL that points to another resource relative to the loca-
tion where the URL is used. This means that the page containing the <a> element and the Login.
aspx page should both be placed in the same folder in your site. To refer to resources in other folders
you can use the following URLs. All the examples are based on a site structure shown in Figure 7-1.

502211c07.indd 240 2/19/10 10:00:17 AM

Different Ways to Move Around Your Site  ❘  241

To link from Login.aspx in the root to Default.aspx in the
Management folder you can use this URL:

Management

To refer to the image Header.jpg from Default.aspx in the
Management folder you can use this URL:

The two leading periods “navigate” one folder up to the root, and then
the path goes back in the Images folder to point to Header.jpg.

For a deeper folder hierarchy, you can use multiple double periods, one
for each folder you want to go upward in the site hierarchy, like this
 element, which can be used to refer to the same image from pages
in the Reviews folder, which is located under the Management folder:

One benefit of relative URLs is that you can move a set of files around to another directory at the
same level without breaking their internal links. However, at the same time, they make it more
difficult to move files to a different level in the site hierarchy. For example, if you moved the page
Login.aspx to a separate folder like Members, the link to the Management folder would break. The
new Members folder doesn’t have Management as its subfolder so Management/Default.aspx is no
longer a valid link.

To overcome this problem, you can use root-based relative URLs.

Root-Based Relative URLs

Root-based relative URLs always start with a leading forward slash to indicate the root of the site. If
you take the link to the Management folder again, its root-based version looks like this:

Management

Note the leading forward slash in front of the Management folder to indicate the root of the web site.
This link is unambiguous. It always points to the file Default.aspx in the Management folder in the
root. With this link, moving the Login.aspx page to a subfolder doesn’t break it; it will still point to
the exact same file.

Relative URLs in Server-Side Controls

With ASP.NET Server Controls you have another option at your disposal to refer to resources in
your web site: you can use the tilde (~) character to point to the current root of the site. To understand
what problems this tilde solves you need to be aware of the way Visual Web Developer creates new
web sites and hooks them up to the built-in web server. When you create a new web site, VWD by
default creates a site in a separate application folder under the built-in web server where all your pages
are created. So, for example, when you create a new site and press Ctrl+F5 to open the default page
in your browser you end up with an address similar to http://localhost:23143/MySiteName.
Usually when you put your site live on a remote server, you don’t want to have this application folder

Figure 7-1

502211c07.indd 241 2/19/10 10:00:17 AM

242  ❘  Chapter 7   Navigation

anymore. Instead, users browse to a URL such as http://www.PlanetWrox.com and expect to see the
site. Fortunately, there’s an easy way to stop VWD from creating this separate folder: you can set the
Virtual Path property of the project to a forward slash (/) using the Properties Grid for the web site.

To see how this setting influences the way you refer to files, the following Try It Out shows you how
to create a new web site and add some images to it that use different URL naming schemes. You
then change the virtual path property to see what effect this property has.

Investigating the Behavior of the Virtual Path PropertyTry It Out	

In this Try It Out, you create a brand new web site that is only used for this exercise. Afterward, you
can delete the web site if you want. For this exercise, you also need an image file ​— ​for example, the
Header.jpg from the previous chapter; any other image will do as well.

	1.	 Choose File ➪ New Web Site in VWD to create a new web site.

	2.	 Choose ASP.NET Empty Web Site as the template and set the Web Location to File System. Note
that VWD offers a path that ends with WebSite1. If you’ve created other web sites before without
giving them an explicit name, you may have a path that ends with WebSite2, WebSite3, and so on.
Click OK to create the site.

	3.	 Add a new Web Form called Default.aspx to the site (use the default Web Form option and not
your custom template) and then add an image to the root of the site called Header.jpg. You can
drop one of the images from the previous chapter in the root of the site, or you can use an existing
image and add that to the site. If you don’t rename the image to Header.jpg, make sure you adjust
the code in the next step.

	4.	 In Default.aspx, add the following code to the Markup View that inserts three ASP.NET Image
controls using different ways to address the image. The images are separated by a line break:

<asp:Image ID=”Image1” runat=”server” ImageUrl=”Header.jpg” />

<asp:Image ID=”Image2” runat=”server” ImageUrl=”/Header.jpg” />

<asp:Image ID=”Image3” runat=”server” ImageUrl=”~/Header.jpg” />

	5.	 Press Ctrl+F5 to open the page in the browser. Note that the address bar of the browser reads
something like http://localhost:49696/WebSite1/Default.aspx. Your port number and
application name may be slightly different, but what’s important to notice is that the web site is
located in a separate folder under the web server called localhost. You’ll also find that the second
image shows up broken. That’s because the leading slash refers to the root of the web server, so the
image is looked for at http://localhost:49696/Header.jpg, which doesn’t exist because the
image is located in the WebSite1 subfolder.

Open up the source of the page in the browser and look at the three elements:

The first two URLs are identical to what you added to the ASPX page. However, the third one has
been modified to refer to an image in the same folder as the page that references the image.

502211c07.indd 242 2/19/10 10:00:18 AM

Different Ways to Move Around Your Site  ❘  243

	6.	 Close your browser and go back to VWD, click the
root of the web site in the Solution Explorer, and
press F4 to open up the web site’s Properties Grid.
Set the Virtual Path from /WebSite1 to / as shown
in Figure 7-2.

	7.	 Press Ctrl+F5 again to reopen Default.aspx in the
browser. The address bar now reads something like
http://localhost:49696/Default.aspx. As you
can see, the page Default.aspx is now located at
the root of the server. Therefore, all three images
show up correctly.

	8.	 Go back to VWD and create a folder called Test. Drag the Default.aspx file from the root of the
site into this new folder and then request the page in the browser. This time the first image will be
broken. If you look at the HTML source, you’ll see this:

The first element tries to find an image relative to the current document. Because the cur-
rent document lives in the Test folder and the image is located at the root of the site, this results
in a broken image. The other two src attributes point to the correct image in the root of the site.

	9.	 You can close the test project in VWD now, and delete it from disk because it is no longer needed.

How It Works

This example demonstrates that the ~ syntax to indicate the root of the site is often the most reliable
way to refer to a resource like an image. In three different cases you saw in this exercise, only the third
image showed up correctly every time. When a server control such as the Image control needs to render
a path, it finds out what the current application root is and adjusts the path accordingly. This can be
a real time saver when you decide to move around folders and files or develop your site using VWD’s
default setting of an additional application folder and then try to put your site on a production server
that enables you to access files from the actual root of the server.

Plain HTML controls can also benefit from this syntax by changing them to server controls. You do
this by adding a runat=”server” attribute to the element. You can type the code snippet runat and
then press the Tab key once or twice (depending on whether the IntelliSense list is open or not) to quickly
add the required attribute to any element. With the attribute, the following element exhibits the
same behavior as the third <asp:Image> from the previous example:

You won’t be able to use the ~ syntax in pure client HTML elements and CSS files. That is, if you try to
use the preceding src attribute without adding runat=”server” to the img element to make it a server-
side image or you try to use the ~ syntax in a CSS file or code block, the image won’t show up in the
browser. For these scenarios you should use relative linking instead.

Figure 7-2

502211c07.indd 243 2/19/10 10:00:18 AM

244  ❘  Chapter 7   Navigation

The remainder of this book assumes you’ve set the Virtual Path property to a forward slash (/),
which makes it easier to refer to your files using URLs without the ~ syntax. If you find that some
resources don’t show up correctly, check whether you set the virtual path property of your web site
correctly.

Absolute URLs

In contrast to relative URLs that refer to a resource from a document or site root perspective, you
can also use absolute URLs that refer to a resource by its full path. So instead of directly referring
to an image and optionally specifying a folder, you include the full name of the domain and proto-
col information (the http:// prefix). Here’s an example that refers to the Wrox logo at the Wrox
Programmer to Programmer site (http://p2p.wrox.com) where you go for questions regarding this
and other Wrox books or for general questions regarding programming:

Absolute URLs are required if you want to refer to a resource outside your own web site. With such
a URL, the http:// prefix is important. If you leave it out, the browser will look for a folder called
p2p.wrox.com inside your own web site.

Absolute URLs are unambiguous. They always refer to a fixed location, which helps you to make
sure you’re always referring to the exact same resource, no matter where the source document is
located. This may make you think that they are ideal to use everywhere ​— ​including references to
resources within your own site ​— ​but that’s not the case. The extra protocol and domain informa-
tion adds to the size of the page in the browser, making it unnecessarily slower to download. But
more importantly, it creates difficulties if you’re changing your domain name, or if you want to
reuse some functionality in a different web site. For example, if you previously had your site running
on www.mydomain.com but you’re moving it to www.someotherdomain.com, you will need to update
all the absolute URLs in the entire web site.

You will also have trouble with absolute URLs during development. Quite often, you test your web
site on a URL such as http://localhost. If you were to point all your images to that URL, they
would all break as soon as you put your site on a production domain like www.PlanetWrox.com.

In short, use absolute URLs with caution. You always need them when referring to resources outside
your web site, but you should give preference to relative URLs within your own projects wherever
possible.

Understanding Default Documents
In the context of URLs you should also know about default documents. When you browse to a site
like www.domainname.com you magically see a page appear. How does this work? Each web server has
so-called default documents, a list of document names that can be served to a browser when no explicit
document name is supplied. So, when you browse to www.domainname.com, the web server scans the
directory requested (the root folder in this example) and processes the first file from its default docu-
ment list it finds. In most ASP.NET scenarios, the web server is set up to use Default.aspx as the
default document. So, when you browse to www.domainname.com on an ASP.NET web server, you are
actually served the page www.domainname.com/Default.aspx.

502211c07.indd 244 2/19/10 10:00:18 AM

Using the Navigation Controls  ❘  245

In the links you create, you should generally leave out Default.aspx when it isn’t needed. It
decreases the page size, but more importantly, it makes it easier for your users to type the address.

Now that you have seen how you can use URLs to point to documents and other files, it’s time to
look at some higher-level controls that make use of these URLs: the ASP.NET navigation controls.

Using the Navigation Controls

ASP.NET 4 offers three useful navigation tools: SiteMapPath, TreeView, and Menu. Figure 7-3
shows basic examples of the three navigation controls, without any styling applied.

The SiteMapPath on the left shows the user the path to the current page. This helps if users want to
go up one or more levels in the site hierarchy. It also helps them to understand where they are. The
TreeView can display the structure of your site and enables you to expand and collapse the different
nodes; in Figure 7-3 the entire tree is expanded. The Menu control on the right initially only displays
the “Home” menu item. However, as soon as you move the mouse over the menu item, a submenu
appears. In Figure 7-3 one of these child elements is the Reviews item, which in turn has child ele-
ments itself.

Figure 7-3

Although quite different in behavior and appearance, these three navigation controls have part of
their design in common.

Architecture of the Navigation Controls
To make it easy to show relevant pages in your site using a Menu, a TreeView, or a SiteMapPath,
ASP.NET uses an XML-based file that describes the logical structure of your web site. By default,
this file is called Web.sitemap. This file is then used by the navigation controls in your site to pres-
ent relevant links in an organized way. Simply by hooking up one of the navigation controls to the
Web.sitemap file you can create complex user interface elements like fold-out menus or a tree view.

502211c07.indd 245 2/19/10 10:00:18 AM

246  ❘  Chapter 7   Navigation

Examining the Web.sitemap File
By default, you should call the site map file Web.sitemap. This enables the controls to find the right
file automatically. For more advanced scenarios you can have multiple site map files with different
names, with a configuration setting in the web.config file that exposes these additional files to the
system. In most cases, a single site map file will be sufficient. A basic version of the site map file can
look like this:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0”>
 <siteMapNode url=”~/” title=”Home” description=”Go to the homepage”>
 <siteMapNode url=”~/Reviews” title=”Reviews”
 description=”Reviews published on this site” />
 <siteMapNode url=”~/About” title=”About”
 description=”About this site” />
 </siteMapNode>
</siteMap>

The site map file contains siteMapNode elements that together form the logical structure of your
site. In this example, there is a single root node called “Home,” which in turn contains two child
elements, “Reviews” and “About.”

Key Elements of the Web.sitemap File

Each siteMapNode can have many child nodes (but there can only be one siteMapNode directly under the
siteMap element), enabling you to create a site structure that can be both wide and deep at the same
time. The siteMapNode elements in this example have three of their attributes set: url, title, and
description. The url attribute should point to a valid page in your web site. You can use the ~ syntax
you saw in the previous section to refer to application-root–based URLs. The ASP.NET runtime doesn’t
allow you to specify the same URL more than once, but you can work around that by making the URL
unique by adding a query string. For example, ~/Login.aspx and ~/Login.aspx?type=Admin will be
seen as two different pages. You see more of the query string later in this chapter.

The title attribute is used in the navigation controls to display the name of the page. You see
more about this later when you work with the Menu, TreeView, and SiteMapPath controls. The
description attribute is used as a tooltip for the navigation elements. Figure 7-3 shows a tooltip
for the “By Genre” item.

The navigation controls work together with the ASP.NET security mechanism. That is, you can
automatically hide elements from controls like the Menu that users don’t have access to. Security is
described in more detail in Chapter 16.

To be able to work with the Web.sitemap file, ASP.NET makes use of the SiteMapDataSource con-
trol, which you’ll find under the Data category of the Toolbox. When you use the SiteMapPath control
to display a breadcrumb, ASP.NET will find the Web.sitemap file itself. With the other two naviga-
tion controls, you need to specify a SiteMapDataSource explicitly as an intermediate layer to the
Web.sitemap file.

To create a useful Web.sitemap file, you need to add one to your site and then manually add the
necessary siteMapNode elements to it. There is no automated way in Visual Web Developer to create
a sitemap file based on the current site’s structure, although third-party solutions are available that
help you with this.

502211c07.indd 246 2/19/10 10:00:18 AM

Using the Navigation Controls  ❘  247

Creating a Web.sitemap FileTry It Out	

In this exercise you add a new Web.sitemap file to the site and add a bunch of siteMapNode elements
to it. This site map serves as the basis for the other navigation controls in the site. If you already set the
Virtual Path property of the web site earlier, you can skip the first step.

	1.	 Open the Planet Wrox project again in VWD and click the web site in the Solution Explorer to
select it. Press F4 to open the Properties Grid and then set the Virtual Path property to a forward
slash (/) as shown in Figure 7-2. From now on, it’s assumed that you always run the web site with
this root-based URL.

	2.	 Right-click the web site in the Solution Explorer, choose Add New Item, and click Site Map. Leave
the default name set to Web.sitemap and click Add. You end up with one root element containing
two child nodes in the Web.sitemap file.

	3.	 Modify the Web.sitemap so it contains this code:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0”>
 <siteMapNode url=”~/” title=”Home” description=”Home”>
 <siteMapNode url=”~/Default.aspx” title=”Home”
 description=”Go to the homepage” />
 <siteMapNode url=”~/Reviews/Default.aspx” title=”Reviews”
 description=”Reviews published on this site”>
 <siteMapNode url=”~/Reviews/AllByGenre.aspx” title=”By Genre”
 description=”All Reviews Grouped by Genre” />
 <siteMapNode url=”~/Reviews/All.aspx” title=”All Reviews”
 description=”All Reviews” />
 </siteMapNode>
 <siteMapNode url=”~/About/Default.aspx” title=”About”
 description=”About this Site”>
 <siteMapNode url=”~/About/Contact.aspx” title=”Contact Us”
 description=”Contact Us” />
 <siteMapNode url=”~/About/AboutUs.aspx” title=”About Us”
 description=”About Us” />
 </siteMapNode>
 <siteMapNode url=”~/Login.aspx” title=”Login”
 description=”Log in to this web site” />
 </siteMapNode>
</siteMap>

Remember, you don’t have to type all this code yourself. You can find a copy of the file in this
chapter’s code file that you can download from the Wrox web site.

	4.	 Save the file; you’re done with it for now.

COMMON MISTAKES  ​Make sure you type the code exactly as shown here.
Notice that some items, such as the first “Home” element, contain other child
elements and have their closing tag further down the code. In contrast, items
such as “By Genre” are using self-closing tags and do not have any child
elements.

502211c07.indd 247 2/19/10 10:00:19 AM

248  ❘  Chapter 7   Navigation

How It Works

Although you didn’t add any spectacular code in the Web.sitemap file, a few things are worth discuss-
ing. First of all, note that the site map only contains a single root node called Home. This is enforced by
the Web.sitemap file, which doesn’t allow more than one root element. The downside of this is that this
single root element will also be the root item of your Menu and TreeView controls. In Figure 7-3 you can
see how all submenus of the TreeView fall under the Home node. In most web sites, however, it’s much
more common to have the Home item at the same level as the others. Therefore, in this exercise you added
an additional Home node directly under the parent node to align it with the Reviews, About, and Login
items. In a later exercise you see how to hide the root element from the controls, enabling you to only
show the “first children” of the root node and their children. To overcome the problem that URLs in the
siteMapNode elements need to be unique, you set one to ~/ and the other to ~/Default.aspx. Because
of the way web servers can handle default documents, this eventually points to the same file.

A Web.sitemap file all by itself isn’t very useful. You need to add navigation controls to your site to
make use of the site map. In the next section you see how to use the Menu control. Later sections dig
into the TreeView and SiteMapPath controls.

Using the Menu Control
The Menu control is very easy to use and tweak. To create a basic menu, all you need to do is add
one to your page, hook it up to a SiteMapDataSource control, and you’re done. But at the same
time, the control is quite flexible and has around 80 public properties (including the ones shared by
all controls) that enable you to tweak every visual aspect of the control. The following table lists
the most common properties used with the menu. Refer to the MSDN online help for a complete
description of this control.

Property Description

CssClass Enables you to set a CSS class attribute that applies to

the entire control.

StaticEnableDefaultPopOutImage A Boolean that determines whether images are used to

indicate submenus on the top-level menu items.

DynamicEnableDefaultPopOutImage A Boolean that determines whether images are used to

indicate submenus on submenu items.

DisappearAfter Determines the time in milliseconds that menu items will

remain visible after you move your mouse away from them.

MaximumDynamicDisplayLevels Determines the number of levels of submenu items that

the control can display. Useful with very large site maps

to limit the number of items being sent to the browser.

DataSourceID The ID of a SiteMapDataSource control that supplies

the data for the menu from the Web.sitemap file.

502211c07.indd 248 2/19/10 10:00:19 AM

Using the Navigation Controls  ❘  249

Property Description

Orientation Determines whether to use a horizontal menu with drop-

out submenus, or a vertical menu with fold-out submenus.

RenderingMode New in ASP.NET 4, this property determines whether

the control presents itself using tables and inline styles

or unordered lists and CSS styles.

IncludeStyleBlock New in ASP.NET 4, this property gives you full control

(and responsibility) in styling the control. When set to

False, ASP.NET does not add the embedded style

sheet block used to lay out the Menu, making you

responsible for writing the CSS.

The Menu control also has a few properties that start with Static or Dynamic. The Static proper-
ties are used to control the main menu items that appear when the page loads. Because they don’t
change or get hidden when you hover over them, they are considered static. The submenus are
dynamic, because they appear only when you activate the relevant main menu items.

In addition to these properties, the menu also has a number of style properties that enable you to
change the look and feel of the different parts of the menu.

Using the Rendering Mode

Earlier versions of the Menu control were criticized because of the HTML they generated. In ASP.NET 2.0
and 3.5 the Menu control generated bloated HTML using tables and inline styles. Besides increasing
the size of the page unnecessarily, this also meant that the Menu was much harder to style using your
own CSS. Fortunately, this has been fixed in ASP.NET 4 with the introduction of the RenderingMode
property on the control. By default in new ASP.NET 4 sites, this property ensures the control renders itself
as an unordered list using elements. You can override this behavior by setting the RenderingMode
property to Table instead. You can also set this property to List to force the control to render itself as
unordered lists even if you configured the entire web site to render itself in legacy mode to be backwards
compatible with ASP.NET 3.5. This is done by setting the controlRenderingCompatibilityVersion
attribute of the <pages> element in the web.config file to 3.5:

 <system.web>
 <pages controlRenderingCompatibilityVersion=”3.5” />

However, for new ASP.NET 4 web sites, like the Planet Wrox project, you don’t need to set this
value explicitly and the control will use a modern CSS and unordered-lists-based menu instead.
You’ll see the Menu control and the HTML it generates in the next exercise.

Creating a Basic Version of the Menu Control

To see how the Menu control operates, you’re best off creating a very basic version first. Once you
understand how it works and how it operates under the hood, you can style the menu to your liking
so it blends in with the rest of the design of your site.

502211c07.indd 249 2/19/10 10:00:19 AM

250  ❘  Chapter 7   Navigation

Adding a Menu to the SiteTry It Out	

In this exercise, you see how to add a simple Menu control to the master page that uses the Web.sitemap
file to build up the menu. The Menu is added to the MenuWrapper area in the master page and presents
the menu items horizontally. Because of this orientation, this Menu is suitable only for the Monochrome
theme. Later you add a TreeView to represent the pages in the site, and write some code that shows the
Menu for the Monochrome theme and the TreeView for the DarkGrey theme.

	1.	 Open the master page in Markup View and locate the <div> called MenuWrapper. Remove the place-
holder text Menu Goes Here. If you added some default text between the ContentPlaceHolder tags
in the MainContent <div> earlier, now is a good place to remove that text again.

	2.	 From the Navigation category of the Toolbox, drag a Menu and drop it between the MenuWrapper
div tags. Set the CssClass of the Menu control to MainMenu:

<div id=”MenuWrapper”>
 <asp:Menu ID=”Menu1” runat=”server” CssClass=”MainMenu”></asp:Menu>
</div>

	3.	 Switch to Design View. You may notice that the Design View doesn’t look like the final page any-
more. That’s because you may have removed the styleSheetTheme attribute from the <pages>
element in web.config. You can leave it like this for now. With much of the styling already done,
this isn’t so important. You can still see how the content inside the cpMainContent placeholder is
going to end up in the browser.

	4.	 Click the Menu control’s grey arrow to open the Smart Tasks panel.

	5.	 From the Choose Data Source drop-down list select <New data source>. In the dialog box that
appears click the Site Map icon. Figure 7-4 shows what your screen should look like now.

Figure 7-4

502211c07.indd 250 2/19/10 10:00:19 AM

Using the Navigation Controls  ❘  251

	6.	 Click OK to close the dialog box.

	7.	 When you return to the page, the Menu control now shows the top-level element, Home (see
Figure 7-5).

Figure 7-5

If your Design View doesn’t look like this, but looks much closer to the final page, open the web.
config file and remove the styleSheetTheme attribute from the <pages> element.

	8.	 Click the SiteMapDataSource once and then press F4 to open or activate the Properties Grid.
Change the ShowStartingNode property from True to False. Note that as soon as you do this,
the Menu control in the designer is updated and shows all direct child menus under the root ele-
ment: Home, Reviews, About, and Login. Figure 7-6 shows how your menu should look now.

Figure 7-6

	9.	 Click the Menu control once to select it and then make the following changes to the properties of
the control using the Properties Grid. Because the Menu control has so many properties, you may
find it easier to find them if you alphabetically sort the list of properties in the Properties Grid. You
can do that by clicking the second button on the toolbar with an A, a Z, and an arrow on it.

Property Value

StaticEnableDefaultPopOutImage False

Orientation Horizontal

502211c07.indd 251 2/19/10 10:00:19 AM

252  ❘  Chapter 7   Navigation

When you’re ready, the code for your Menu should look like this:

<asp:Menu ID=”Menu1” runat=”server” CssClass=”MainMenu” Orientation=”Horizontal”
 DataSourceID=”SiteMapDataSource1” StaticEnableDefaultPopOutImage=”False”>
</asp:Menu>

	10.	 Save the changes to the master page and then request Default.aspx in your browser. If neces-
sary, use the Theme drop-down list to make Monochrome the active theme. You should now see
the menu in the horizontal menu area. Hover your mouse over the items, and you’ll see sub items
appear as in Figure 7-7, which shows the page in Google’s Chrome browser.

Figure 7-7

Note that the text on the sub items is hard to read. That’s because the CSS from the Monochrome
theme has changed the text of all anchors in the menu area to white and no explicit background
color has been set. After you’ve seen how the Menu control works, you get a chance to fix its styling.

Don’t worry if the menu doesn’t look good in the DarkGrey theme. You see how to implement a
different navigation control for that theme later in this chapter.

How It Works

When a page with the menu is sent to the browser, the Menu control asks the SiteMapDataSource,
defined in the same master page, for data. This data source control in turn reads the Web.sitemap file
and then hands over the XML to the Menu control. Based on the hierarchical XML, the Menu is able
to generate the necessary HTML and JavaScript. It generates a element for the top menu items
with nested sub elements, each containing one or more menu items. The Menu control initially hides the
submenus through some JavaScript. When you hover your mouse over one of the main menu items, the
submenu becomes visible. This is done by some JavaScript as well.

If you search the source of the page for the JavaScript code that hides or shows the menu, you won’t
find it. So where is the JavaScript that is used to show and hide the relevant menu items? The answer is
in the cryptic <script> tag in the page that looks similar to this:

<script src=”/WebResource.axd?d=vxurWY7jjhneEhwNQbmdBEdPSXwLRytjgBhME9lyLoo1
 &t=633925206143355520” type=”text/javascript”>

502211c07.indd 252 2/19/10 10:00:19 AM

Using the Navigation Controls  ❘  253

This <script> tag references a special ASP.NET handler called WebResource.axd. The seemingly
random characters in the query string (the part of the URL after the question mark) tell the ASP.NET
runtime to fetch a JavaScript file that contains the functionality for the menu. The file doesn’t exist
on your disk, but is returned by the WebResource.axd handler on the fly based on the query string.
If you’re brave, you can look at the file by requesting it in your browser by copying the value of the
src attribute and pasting it right after the port number of your web site in the browser (for example,
http://localhost:50404). You can safely ignore the file, because you don’t need to make any changes
to it for the menu to function correctly. The WebResource.axd syntax is also used by other controls,
like the TreeView that uses it to retrieve the images used in the TreeView.

In addition to the JavaScript, you also find a CSS <style> block at the top of your page which sets the
default layout for your menu items. Among other things, it removes the default bullet that elements
display by default and removes underlining from the <a> elements in the menus.

To better integrate the Menu control with the existing design of the Monochrome theme, you can
style it using CSS.

Styling the Menu Control

The Menu control exposes a number of complex style proper-
ties that enable you to change the looks of items such as the
main and submenu items. You can also define how these items
look when they are active (selected) or when you hover your
mouse over them. Each of these style properties has a number
of subproperties for visual aspects, such as font, color, and
spacing. Figure 7-8 shows the Properties Grid for the
StaticMenuItemStyle, which defines the looks of the main
menu items that are visible when the page first loads.

Most of the properties, like BackColor, ForeColor, and Font
are added to the <style> block at the top of the page that
contains the Menu control. This makes it difficult to reuse the
design in other pages or with other themes, so it’s much better
to use CSS instead. You see how this works next.

Styling the Menu ControlTry It Out	

In this exercise you add some CSS rules to the Monochrome.css file to influence the way the Menu
control is styled. By default, the Menu control adds CSS classes to the menu items such as level1 and
level2, which makes it easy to apply styling at various levels in the menu.

	1.	 Open Monochrome.css from the Monochrome theme folder and add the following CSS rules. You
can leave out the comments placed between /* and */, because they only serve to describe the pur-
pose of the selectors. If you don’t feel like typing all this CSS, remember you can also get a copy of

Figure 7-8

502211c07.indd 253 2/19/10 10:00:20 AM

254  ❘  Chapter 7   Navigation

this file from the code download that comes with this book and copy it from that file into yours.
You find the file Monochrome.css in the Monochrome theme folder for this chapter. Remember,
CSS is case sensitive, so type the selectors exactly as shown here:

ul.level1
{
 /* Defines the appearance of main menu items. */
 font-size: 14px;
 font-weight: bold;
 height: 19px;
 line-height: 19px;
}

ul.level1 .selected
{
 /* Defines the appearance of active menu items */
 background-color: #BCD1FE;
}

a.level1
{
 /* Adds some white space to the left of the main menu item text */
 margin-left: 5px;
}

a.level2
{
 /* Defines the appearance of the sub menu items */
 background-color: #cccccc;
 padding-left: 8px;
}

a.level1:hover, a.level2:hover
{
 /* Defines the hover style for the main and sub items */
 background-color: #BCD1FE;
}

	2.	 Save and close the file.

	3.	 Next, create the following folders and Web Forms that you’ll use in this and later chapters. Use the
MyBasePage template to create the new files. Also, in Markup View, give each page a meaningful
Title to avoid errors later.

Folder File Name Title

/Reviews Default.aspx My Favorite Reviews

/Reviews All.aspx All Reviews

502211c07.indd 254 2/19/10 10:00:20 AM

Using the Navigation Controls  ❘  255

Folder File Name Title

/Reviews AllByGenre.aspx Reviews Grouped by Genre

/About Default.aspx About this Site

/About Contact.aspx Contact Us

/About AboutUs.aspx About Us

	4.	 Save all changes and open the Default.aspx page from the root in your browser. Your site menu
now looks a lot better and more in line with the rest of the Monochrome theme. When you hover
the mouse over a main menu, the submenus appear, showing the text on a light grey background.
When you hover over a submenu, its background color changes again. Figure 7-9 shows the
expanded Reviews menu with the hover style applied to the By Genre menu item in Opera.

Figure 7-9

COMMON MISTAKES  If you get an error when you navigate to one of the new
pages you created, make sure you gave all of them a valid title. Because they
all inherit from the base page, the title is checked when the page loads.

How It Works

The Menu control renders itself as a series of and elements. The menu items itself are simple
<a> elements with a class attribute to indicate at what level they are. If you look in the HTML for the
page in the browser you see something like this:

<ul class=”level1”>
 <a title=”Go to the homepage” class=”level1 selected”
 href=”/Site/Default.aspx”>Home

502211c07.indd 255 2/19/10 10:00:20 AM

256  ❘  Chapter 7   Navigation

 <a title=”Reviews published on this site” class=”level1”
 href=”/Site/Reviews/”>Reviews
 <ul class=”level2”>
 <a title=”All Reviews Grouped by Genre” class=”level2”
 href=”/Site/Reviews/AllByGenre.aspx”>By Genre
 <a title=”All Reviews” class=”level2”
 href=”/Site/Reviews/All.aspx”>All Reviews

 ... <!-- Other menu items go here -->

Because this code is pure HTML with a few class attributes applied, it’s easy to style this information
using the CSS techniques you learned in earlier chapters. The code you added in step 1 uses a number
of selectors to style individual elements of the menu. For example, the main menu items are styled as
follows:

ul.level1
{
 font-size: 14px;
 font-weight: bold;
 height: 19px;
 line-height: 19px;
}

This code is applied to all elements with a CSS class of level1, which means it’s applied to
all main menu items such as Home, Reviews, and About. Take a look at the first <a> element in the
HTML of the menu which represents the selected Home item. Notice how it has a second class called
selected applied:

<a title=”Go to the homepage” class=”level1 selected”
 href=”/Site/Default.aspx”>Home

Selected items are then given a different color using this CSS selector:

ul.level1 .selected
{
 background-color: #BCD1FE;
}

The same principle is used for the other selectors, including the pseudo :hover selector that applies to
<a> elements when you hover your mouse over them:

a.level1:hover, a.level2:hover
{
 background-color: #BCD1FE;
}

502211c07.indd 256 2/19/10 10:00:20 AM

Using the Navigation Controls  ❘  257

The Menu control in horizontal mode is ideal for the Monochrome theme, because it features a hori-
zontal navigation bar. For the DarkGrey theme you can use the same Menu and set its Orientation
to Vertical. This creates a vertical menu with the main items stacked on top of each other, while
the submenus will fold out to the right of the main menus. But instead of the Menu control, you can
also use a TreeView control to display a hierarchical overview of the site map. This control is dis-
cussed next.

Using the TreeView Control
A TreeView is capable of displaying a hierarchical list of items, similar to how the tree in Windows
Explorer looks. Items can be expanded and collapsed with the small plus and minus icons in front
of items that contain child elements. As such, it’s an ideal tool to display the site map of the web site
as a means to navigate the site. The data used by the TreeView control is not limited to the Web.
sitemap file, however. You can also bind it to regular XML files and even create a TreeView or its
items (called nodes) programmatically.

The following table lists the most common properties of the TreeView. Again, the MSDN online
help is a good place to get a detailed overview of all the available properties and their descriptions.

Property Description

CssClass Enables you to set a CSS class attribute that applies to the entire

control.

CollapseImageUrl The image that collapses a part of the tree when clicked. The default

is an icon with a minus symbol on it.

ExpandImageUrl The image that expands a part of the tree when clicked. The default

is an icon with a plus symbol on it.

CollapseImageToolTip The tooltip that is shown when a user hovers over a collapsible

menu item.

ExpandImageToolTip The tooltip that is shown when a user hovers over an expandable

menu item.

ShowExpandCollapse Determines whether the items in the TreeView can be collapsed

and expanded by clicking an image in front of them.

ShowLines Determines whether lines are used to connect the individual items in

the tree.

ExpandDepth Determines the level at which items in the tree are expanded when

the page first loads. The default setting is FullyExpand, which

means all items in the tree are visible. Other allowed settings are

numeric values to indicate the level to which to expand.

502211c07.indd 257 2/19/10 10:00:20 AM

258  ❘  Chapter 7   Navigation

The TreeView control has a number of style properties that enable you to change the look and
feel of the different parts of the tree. To tell the TreeView which items to show, you bind it to a
SiteMapDataSource control, which is demonstrated next.

Building a Navigation System with the TreeView ControlTry It Out	

In this exercise, you add a TreeView control to the MenuWrapper <div> tag, right below the Menu you
created earlier. The TreeView is then bound to the same data source as the Menu. Next, you write some
code that shows either the Menu or the TreeView, depending on the active theme.

	1.	 Open the master page in Markup View and just below the Menu control, add a TreeView control
by dragging it from the Toolbox.

	2.	 Within the opening and closing tags of the control, add the following <LevelStyles> element:

<LevelStyles>
 <asp:TreeNodeStyle CssClass=”FirstLevelMenuItems” />
</LevelStyles>

The FirstLevelMenuItems class selector is defined in DarkGrey.css and is used to create some
room above each tree item at the first level.

	3.	 Switch to Design View, click the TreeView once, and click the small arrow to open the Smart
Tasks panel. From the Choose Data Source drop-down, select SiteMapDataSource1, the data
source control you created for the Menu control (see Figure 7-10).

Figure 7-10

As soon as you select the data source, the TreeView is updated in Design View; it now shows the
correct menu items from the site map file.

	4.	 Open the Properties Grid for the TreeView control and set the ShowExpandCollapse property to
False.

502211c07.indd 258 2/19/10 10:00:20 AM

Using the Navigation Controls  ❘  259

	5.	 Click somewhere in the document to put the focus on it and then press F7 to open the Code Behind
of the master page file and locate the Page_Load event that you used earlier to preselect the theme
in the Theme list. Right below that code, and before the end of the method, add the following
highlighted code that shows or hides the TreeView and Menu controls based on the currently active
theme:

VB.NET

 ThemeList.Items.FindByValue(selectedTheme).Selected = True
 End If
 End If
 Select Case Page.Theme.ToLower()
 Case “darkgrey”
 Menu1.Visible = False
 TreeView1.Visible = True
 Case Else
 Menu1.Visible = True
 TreeView1.Visible = False
 End Select
End Sub

C#

 ThemeList.Items.FindByValue(selectedTheme).Selected = true;
 }
 }
 switch (Page.Theme.ToLower())
 {
 case “darkgrey”:
 Menu1.Visible = false;
 TreeView1.Visible = true;
 break;
 default:
 Menu1.Visible = true;
 TreeView1.Visible = false;
 break;
 }
}

	6.	 Save all changes and open Default.aspx in the browser. Depending on your currently active
theme, you should see either the Menu or the TreeView control. Select a different theme from the
list and the page will reload, now showing the other control as the navigation system of the web
site (see Figure 7-11).

COMMON MISTAKES  ​If you get an error on the code in the BasePage class,
make sure you set a valid theme in the <pages> element in the web.config file.
If the theme is switched when you move from one page to another, make sure
your pages inherit BasePage, which should be the case if you based the new
pages on your custom template.

502211c07.indd 259 2/19/10 10:00:21 AM

260  ❘  Chapter 7   Navigation

Figure 7-11

How It Works

Just as the Menu control, the TreeView control can get its data from a SiteMapDataSource control,
which in turn gets its information from the Web.sitemap file. By default, the TreeView shows plus
and minus signs to indicate that items can be collapsed and expanded. For a site menu this may not
make much sense, so by setting ShowExpandCollapse to False, you effectively hide the images. The
TreeView enables you to set a number of Style properties, including the NodeStyle, RootNodeStyle,
and LevelStyles that influence the appearance of individual items in the tree. In this exercise, you
used the LevelStyles to apply a class called FirstLevelMenuItems that adds some room above each
item at the first level such as Home and Reviews.

The code in the Code Behind of the master page looks at the current theme by investigating the Theme
property of the Page. When DarkGrey is the current theme, the code hides the Menu and then displays the
TreeView. In the Case Else / default block the reverse is true. This means that for the Monochrome
theme and all future themes you may add, the TreeView is hidden and the Menu is used instead as the
navigation system.

The TreeView still suffers from the same problems as the Menu control in previous versions of ASP.NET
in that it generates a lot of bloated HTML. Unfortunately, this control has no RenderingMode prop-
erty, so if you’re using the TreeView you’re stuck with the table-based HTML.

502211c07.indd 260 2/19/10 10:00:21 AM

Using the Navigation Controls  ❘  261

With two of the three navigation controls discussed, the final control you need to look at is the
SiteMapPath control.

Using the SiteMapPath Control
The SiteMapPath control shows you where you are in the site’s structure. It presents itself as a series
of links, often referred to as a breadcrumb. It’s a pretty simple yet powerful control with more than
50 public properties you can set through the Properties Grid to influence the way it looks. Just like
the Menu and TreeView it has a number of style properties you use to change the look of elements
like the current node, a normal node, and the path separator.

The following table lists a few of the most common properties of the SiteMapPath control.

Property Description

PathDirection Supports two values: RootToCurrent and CurrentToRoot.

The first setting shows the root element on the left, intermediate

levels in the middle, and the current page at the right of the path.

The CurrentToRoot setting is the exact opposite where the

current page is shown at the left of the breadcrumb path.

PathSeparator Defines the symbol or text to show between the different ele-

ments of the path. The default is the greater than symbol (>) but

you can change it to something like the pipe character (|).

RenderCurrentNodeAsLink Determines whether the last element of the path (the current

page) is rendered as a text link or as plain text. The default is

False, which is usually fine, because you are already on the

page that element is representing, so there’s no real need for a

link.

ShowToolTips Determines whether the control displays tooltips (retrieved from

the description attribute of the siteMapNode elements in the

Web.sitemap file) when the user hovers over the elements

in the path. The default is True, which means the tooltips are

shown by default.

Depending on your personal preferences, you usually don’t need to define any of the styles of the
SiteMapPath control. In the final page in the browser, the SiteMapPath consists of mainly anchor
tags (<a>) and plain text. If you have set up a specific selector for anchors in your CSS file, the
SiteMapPath will automatically show itself in line with the other links in the page.

Creating a Breadcrumb with the SiteMapPath ControlTry It Out	

A good location for the SiteMapPath is in the global master page of the site. That way it becomes vis-
ible in all your pages automatically.

	1.	 Open the master page in Markup View and locate the opening tag of the MainContent element.
Right after that tag, and before the <asp:ContentPlaceHolder> tag, drag a SiteMapPath from

502211c07.indd 261 2/19/10 10:00:21 AM

262  ❘  Chapter 7   Navigation

the Toolbox. Right after the SiteMapPath add two line breaks (
). You should end up with
code like this:

<div id=”MainContent”>
 <asp:SiteMapPath ID=”SiteMapPath1” runat=”server”></asp:SiteMapPath>

 <asp:ContentPlaceHolder ID=”cpMainContent” runat=”server”>

	2.	 Save the changes and then request Default.aspx in the browser. Note that the page now shows
the path from the root of the site (identified by the Home link) to the current page. Click a few of
the items in the Menu or TreeView controls to navigate around the site and you’ll see the bread-
crumb change for each page. Figure 7-12 shows the breadcrumb for the All Reviews page in
Internet Explorer. The All Reviews page is a subelement of Reviews, which in turn falls under the
Home root element.

Figure 7-12

When you navigate to one of the subpages, you can click the elements of the path to go up one
or more levels. Clicking Reviews in the page shown in Figure 7-12 takes you back to the main
Reviews page, and clicking Home takes you back to the root of the site.

	3.	 Using the Theme selector, switch to the other theme. Note that the SiteMapPath looks pretty
much the same, except for the color of the links, which are defined in each of the themes’ CSS file.

How It Works

The SiteMapPath renders as a series of elements that either contain a link or plain text. Here’s
a part of the HTML code for the SiteMapPath from Figure 7-12:

Home
 >
<a title=”Reviews published on this site”
 href=”/Reviews/Default.aspx”>Reviews
 >
All Reviews

The first two elements (Home and Reviews) are represented by a link (<a>) to enable you to navigate
to the pages defined in their href property. The final element ​— ​All Reviews ​— ​is just plain text. In
between the elements you see a with the character you can set in the PathSeparator property.

502211c07.indd 262 2/19/10 10:00:21 AM

Programmatic Redirection  ❘  263

Because this separator character (>) has a special meaning in HTML its value is encoded to >
(greater than) to ensure it ends up as a plain text character in the browser.

If you look at the HTML for the page in your browser, you also see an <a> element that enables you to skip
links. The <a> contains a small image with its width and height properties set to 0px so it is invisible.
This is useful for vision impaired users with screen readers because it enables them to skip the navigation
and directly go to the content of the page. The TreeView and Menu controls use an identical approach to
avoid a screen reader from reading out loud the entire site structure every time the page loads.

The three navigation controls give you a great feature set for a navigation system in your web site
from the client side. Both the Menu and the TreeView controls enable you to quickly display the entire
structure of the site so users can easily find their way. SiteMapPath helps users understand where
they are in the site and gives them an easy way to navigate to pages higher up in the site hierarchy.

In addition to navigating from the client browser, it’s also very common to navigate a user to a dif-
ferent page from the server side using code. How this works is discussed in the next section.

Programmatic Redirection

Programmatic redirection is very useful and common in ASP.NET pages. For example, imagine a
page that enables a user to enter a review into the database. As soon as she clicks the Save button,
the review is saved and the user is taken to another page where she can see the entire review.

ASP.NET supports three major ways to redirect users to a new page programmatically. The first
two, Response.Redirect and Response.RedirectPermanent (which is new in ASP.NET 4), send
an instruction to the browser to fetch a new page. The third option, Server.Transfer, executes
at the client. Because there’s quite a difference in client- and server-side redirection, the following
sections describe them in more detail.

Programmatically Redirecting the Client to a Different Page
Within each ASPX page you have access to a property called Response that you saw earlier when sav-
ing the cookie for the selected theme. The Response object gives you access to useful properties and
methods that are all related to the response from the server to the user’s browser. Two of these methods
are the Redirect and RedirectPermanent methods. These methods send an instruction to the browser
to request a new page. This is useful if you want to redirect your user to another page in your site, or to
a completely different web site. Each redirect method can be used in two different ways:

Response.Redirect(newUrl)
Response.Redirect(newUrl, endResponse)
Response.RedirectPermanent(newUrl)
Response.RedirectPermanent(newUrl, endResponse)

The difference between Redirect and RedirectPermanent mainly has to do with search engine
optimization. Using Redirect tells the client that the page has moved temporarily. You often use
this to redirect a user to a new page based on some action. For example, after filling in a contact
form, you may want to send the user to ThankYou.aspx that displays a message.

502211c07.indd 263 2/19/10 10:00:21 AM

264  ❘  Chapter 7   Navigation

RedirectPermanent tells the client the page has moved permanently. This is useful if you want to
tell a search engine to stop looking at an old page, and index the new one instead. For example,
imagine your site has a page called Index.aspx that you no longer use. Search engines may keep
requesting this page. If you add the following code to the Code Behind of Index.aspx, clients
(including search engines) are sent to Default.aspx. Moreover, search engines keep note of the per-
manency of the redirect and will stop requesting Index.aspx and focus on Default.aspx instead.

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Response.RedirectPermanent(“Default.aspx”)
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Response.RedirectPermanent(“Default.aspx”);
}

The versions of these redirect methods that accept an additional Boolean parameter called
endResponse enable you to execute any remaining code after the redirect action when you pass
False for the endResponse parameter. This is usually not necessary so you’re better off calling
the first version, which ends the response by default.

Quite often when you want to send the user to a different page, you want to send some additional
information. You can do that by passing it in the query string, the part of the address that comes
after the page name, separated by a question mark. Consider the following URL:

http://localhost:49246/Demos/Target.aspx?CategoryId=10&From=Home

The entire bold part (after the question mark) is considered the query string. It consists of name-
value pairs, each separated from another by an ampersand (&). In this case, there are two pairs:
CategoryId with a value of 10 and From with a value of the word Home. The page, Target.aspx in
this example, is able to read these values using Request.QueryString. You see how to use the query
string in the next exercise.

Redirecting the User to Another PageTry It Out	

To give you a closer look at how it works, this exercise shows you how to create a page that redirects
from one page to another using Response.Redirect. The example uses a temporary redirect (the initial
page remains accessible after the redirect), so the code uses Response.Redirect instead of Response.
RedirectPermanent.

	1.	 In the Demos folder, create two new Web Forms based on your custom template. Call them
Source.aspx and Target.aspx. Set their Title to Source and Target, respectively.

	2.	 Open Source.aspx in Design View and double-click somewhere in the grey, read-only area of the
page outside the ContentPlaceHolder to set up a Page_Load handler. Inside this handler write

502211c07.indd 264 2/19/10 10:00:21 AM

Programmatic Redirection  ❘  265

the following code that redirects the user to the Target.aspx page. To show you how to pass
additional data through the query string and how to read that information in the target page, the
code passes a query string field called Test with SomeValue as the value:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Response.Redirect(“Target.aspx?Test=SomeValue”)
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Response.Redirect(“Target.aspx?Test=SomeValue”);
}

	3.	 Open Target.aspx, switch to Design View, and add a Label control to the cpMainContent place-
holder. Leave its ID set to Label1. Set up a Page_Load handler similar to the one you created in
the previous step by double-clicking the grey, read-only area of the page and then add the follow-
ing code:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Label1.Text = Request.QueryString.ToString()
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Label1.Text = Request.QueryString.ToString();
}

	4.	 Save all your changes, go back to Source.aspx and press Ctrl+F5 to open it in the browser.
Instead of seeing Source.aspx, you now see the page depicted in Figure 7-13.

Figure 7-13

502211c07.indd 265 2/19/10 10:00:21 AM

266  ❘  Chapter 7   Navigation

Note that the address bar now reads Target.aspx?Test=SomeValue, the page you redirected to in
the Page_Load event handler of the source page. The Label in the target page shows the query string
that is passed to this page. Notice that QueryString.ToString() only contains Test=SomeValue.
The address or even the question mark is not a part of the query string for the page.

How It Works

When you use Response.Redirect, ASP.NET sends an instruction to the browser to tell it to fetch
a new page. In technical terms, it sends a “302” HTTP status code to indicate the page has moved
temporarily. With this instruction it also sends the new URL so the browser understands what page to
fetch next. In this exercise, the new page was Target.aspx?Test=SomeValue, which contains both the
page name and a query string. The Target.aspx page is then requested by the browser, the Page_Load
event fires, and the query string is displayed on the label in the page. Because of this client redirect, the
new page name and query string is fully exposed to the client.

If you use Response.RedirectPermanent, ASP.NET sends out a “301 Moved Permanently” instruc-
tion. For regular browsers, there’s no difference in behavior. Your browser is still able to request the
initial page later, even though it has been redirected. However, for search engines, the 301 redirect is
interpreted as “don’t bother fetching this page again” and the page will no longer be indexed.

Redirects follow the same naming scheme for URLs as those used in server controls, so you can redirect
to a page like ~/Default.aspx to redirect the user to the file Default.aspx in the web site’s root.

In contrast to Response.Redirect and Response.RedirectPermanent, there is also Server.
Transfer, which redirects to another page at the server.

Server-Side Redirects
Server-side redirects are great if you want to send out a different page without modifying the client’s
address bar. This enables you to hide details of page names and query strings, which may lead to
cleaner URLs from a user’s point of view. This is often used in so-called URL-rewrite scenarios that
are used to create pretty URLs. For example, a user may request a page like this:

http://www.domain.com/Cars/Volvo/850/T5/

Under the hood the server might transfer to:

http://www.domain.com/Cars/ShowCar.aspx?Make=843&Model=984&Type=7345

Clearly, the first URL is a lot easier to understand and type in a browser. It also enables a user to
guess other URLs that match the same pattern. For example, there’s a fair chance you can request a
page like this:

http://www.domain.com/Cars/Volvo/V70/R/

and end up with the right page showing you the Volvo V70 R.

In addition to being easier to understand, server-side transfers may also speed up your site a little.
Instead of sending a response to the browser to tell it to fetch a new page, which results in a new

502211c07.indd 266 2/19/10 10:00:22 AM

Programmatic Redirection  ❘  267

request for a page, you can directly transfer the user to a new page, saving you from some network
overhead.

Server-side transfers are carried out with the Server object. Just like the Request and Response
objects you saw earlier give you information about the request and the response, so does the Server
object provide you with information about the server the page is running on. You can use it to get
information about the server name, its IP address, and so on. One of its methods is Transfer, which
performs a server-side transfer.

Server.Transfer can only be used to redirect to other pages within your site. You cannot use it to
send the user to pages on different domains. If you try to do so, the ASP.NET runtime throws an error.

To see the difference between Response.Redirect and Server.Transfer, the following exercise
shows you how to change the page Source.aspx to perform a Server.Transfer operation.

Server-Side RedirectingTry It Out	

It’s easy to change the redirect code so it transfers the user to another page. All you need to do is
replace Response.Redirect with Server.Transfer as demonstrated in this exercise.

	1.	 Open the Code Behind of Source.aspx and replace the line with Response.Redirect with the
following line:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Server.Transfer(“Target.aspx?Test=SomeValue”)
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Server.Transfer(“Target.aspx?Test=SomeValue”);
}

	2.	 Save the changes and then press Ctrl+F5 to open Source.aspx in the browser (see Figure 7-14).

Figure 7-14

502211c07.indd 267 2/19/10 10:00:22 AM

268  ❘  Chapter 7   Navigation

The Label control displays the query string values that were sent from Source.aspx to Target.
aspx, demonstrating the fact that you are really viewing the output of the Target.aspx page.
However, the browser’s address bar is left unmodified and still shows Source.aspx, hiding the
new page name and query string values from the user.

How It Works

Instead of instructing the browser to fetch a new page, Server.Transfer takes place completely at the
server. The output of the old page is discarded and a new page life cycle is started for the page that is
being transferred to. This page then generates its content and sends it back to the browser, while leaving
the browser’s address bar unmodified.

If you look at the emitted HTML in the browser, you see that the form action is set to the new page
so any postback that occurs is executed against that page, which in turn will change the address in the
address bar:

<form name=”aspnetForm” id=”aspnetForm” method=”post”
 action=”Target.aspx?Test=SomeValue”>
...
</form>

With programmatic ways to send a user to another page, you have come to the end of this chapter
on navigation. With the concepts shown in this chapter, you have all the knowledge to create a
highly effective navigation system in your site, from both the client’s browser and your own server-
side code.

Practical Tips on Navigation

The following list presents some practical tips on navigation:

When you start building a web site that you think will grow in the future, create a logical ➤➤

structure right away. Don’t place all files in the root of your web site, but group logically
related files in the same folder. Such logical grouping makes it easier for you to manage the
site and for your users to find the pages they want. Although it’s easy to move a page in a
Menu or TreeView using the Web.sitemap file, it’s more difficult if you are also using pro-
grammatic redirects or transfers, because you also need to update the server-side code to
reflect the new site structure. To create a solid page structure, you can draw it out on paper
before you start with the site, or use site map diagramming tools like Microsoft Visio.

Try to limit the number of main and sub items that you display in your ➤➤ Menu or TreeView
controls. Users tend to get lost or confused when they are presented with long lists of options
to choose from.

When creating folders to store your pages in, give them short and logical names. It’s much ➤➤

more intuitive to navigate to a page using www.PlanetWrox.com/Reviews than it is to navi-
gate to a folder with a long name including abbreviations and numbers.

502211c07.indd 268 2/19/10 10:00:22 AM

Summary  ❘  269

Summary

This chapter familiarized you with navigation in an ASP.NET web site. Users don’t just type in the
address of a web page directly, so it’s important to offer them a clear and straightforward navigation
system.

A critical foundation for a good navigation system is a good understanding of how URLs work.
URLs come in two types: relative URLs and absolute URLs. Relative URLs are used to point to
resources within your own site. Absolute URLs enable you to point to resources by their complete
location, including protocol and domain information. Absolute URLs are mostly useful if you want
to point to resources outside your own web site.

ASP.NET offers three navigation controls used in the user interface of a web site. These controls
enable your users to visit the different pages in your site. The Menu control displays either as a verti-
cal or a horizontal menu with submenus folding or dropping out. The TreeView control can show
the complete structure of the site in a hierarchical way. The SiteMapPath control displays a bread-
crumb trail to give users a visual cue as to where they are in the site.

In addition to the built-in navigation controls, you can also programmatically send the user to a
different page. ASP.NET supports two major ways to do this: client side using Response.Redirect
and Response.RedirectPermanent and server side using Server.Transfer. The redirect methods
instruct the browser to fetch a new page from the server whereas the transfer method is executed at
the server.

In the next chapter you learn more about ASP.NET user controls, which enable you to reuse specific
code and user interface elements in different pages in your web site.

Exercises	

1.	 The TreeView control exposes a number of style properties that enable you to change items in

the tree. Which property do you need to change if you want to influence the background color of

each item in the tree? What’s the best way to change the background color?

2.	 What options do you have to redirect a user to another page programmatically? What’s the differ-

ence between them?

3.	 The TreeView controls can be used in two different ways: either as a list with items and sub items

that can be collapsed and expanded by clicking them, or as a static list showing all the items with

no way to collapse or expand. What property do you need to set on the control to prevent users

from expanding or collapsing items in the tree?

Answers to Exercises can be found in Appendix A.

502211c07.indd 269 2/19/10 10:00:22 AM

270  ❘  Chapter 7   Navigation

What You Learned in This Chapter⊲⊲

Menu control A navigation control that is able to display data, including data

coming from the Web.sitemap file, in a horizontal or vertical

manner using drop-down or fold-out sub menus

Permanent redirect A mechanism to inform a client, such as a search engine, that a

page has moved permanently, telling the client to stop request-

ing the old resource

Server-side transfer A redirect to another page that takes place at the server without

informing the client browser

SiteMapDataSource control The bridge between the Web.sitemap file and the navigation

controls such as TreeView and Menu

SiteMapPath control A navigation control that displays a breadcrumb from the root of

the site to the current page, enabling users to move back up in

the hierarchy of a site

Temporary redirect A mechanism to redirect a client to a new, temporary location

TreeView control A navigation control that is able to display data, including data

coming from the Web.sitemap file, in a hierarchical way

Web.sitemap The XML-based file that contains the logical structure of your site.

This file drives the other navigation controls

YOU CAN DOWNLOAD THE CODE FOUND IN THIS BOOK. VISIT WROX.COM
AND SEARCH FOR ISBN 9780470502211

502211c07.indd 270 2/19/10 10:00:22 AM

User Controls

What You Will Learn in This Chapter:

What user controls are, how they look, and why they are useful➤➤

How to create user controls➤➤

How to consume (or use) user controls in your pages➤➤

How you can improve the usefulness of user controls by adding ➤➤

coding logic to them

Besides master pages, themes, and skins discussed in Chapter 6, ASP.NET 4 has another
feature that enables you to create reusable and thus consistent blocks of information: user
controls.

User controls enable you to group logically related content and controls together so they can
be used as a single unit in content pages, master pages, and inside other user controls. A user
control is actually a sort of mini-ASPX page in that it has a markup section and optionally a
Code Behind file in which you can write code for the control. Working with a user control is
very similar to working with normal ASPX pages with a few minor differences.

In versions of ASP.NET before 2.0, user controls were often used to create blocks of reusable
functionality that had to appear on every page in the site. For example, to create a menu, you
would create a user control and then add that control to each and every page in the site. Due
to the ASP.NET support for master pages, you don’t need user controls for these scenarios
anymore. This makes it easier to make changes to your site’s structure. Despite the advantages
that master pages bring, there is still room for user controls in your ASP.NET web sites, as you
discover in this chapter.

By the end of this chapter, you’ll have a firm understanding of what user controls are and how
they work, enabling you to create functional, reusable blocks of content.

8

502211c08.indd 271 2/19/10 10:00:11 AM

272  ❘  Chapter 8   User Controls

Introduction to User Controls

User controls are great for encapsulating markup, controls, and code that you need repeatedly through-
out your site. To some extent, they look a bit like server controls in that they can contain program-
ming logic and presentation that you can reuse in your pages. However, rather than dragging existing
ones from the VWD Toolbox, you need to create your own user controls and then add them to your
ASPX pages, as you learn how to do later in this chapter.

Though master pages enable you to create content that is displayed in all pages in your site, it’s
common to have content that should appear only on some but not all pages. For example, you may
want to display a banner on a few popular pages, but not on the home page or other common pages.
Without user controls, you would add the code for the banner (an image, a link, and so on) to each
page that needs it. When you want to update the banner (if you want to use a new image or link),
you need to make changes to all pages that use it. If you move the banner to a user control and use
that control in your content pages instead, all you need to change is the user control, and the pages
that use it pick up the change automatically. This gives you a flexible way to create reusable content.

User controls have the following similarities with normal ASPX pages:

They have a markup section where you can add standard markup and server controls.➤➤

They can be created and designed with Visual Web Developer in Markup, Design, and ➤➤

Split View.

They can contain programming logic, either inline or with a Code Behind file.➤➤

You have access to page-based information like ➤➤ Request.QueryString.

They raise some (but not all) of the events that the ➤➤ Page class raises, including Init, Load,
and PreRender.

You should also be aware of a few differences. User controls have an .ascx extension instead of
the regular .aspx extension. In addition, user controls cannot be requested in the browser directly.
Therefore, you can’t link to them. The only way to use a user control in your site is by adding it to a
content or master page or another user control (which eventually should be added to a page).

In the remainder of this chapter, you see how to create a user control that is capable of displaying
banners. The user control is able to present itself as a horizontal or vertical banner to accommodate
for differently sized regions in your pages. In the next section you see how to create a user control.
The sections that follow show you how to use that control in an ASPX page.

Creating User Controls
User controls are added to the site like any other content type: through the Add New Item dialog
box. Similar to pages, you get the option to choose the programming language and whether you
want to place the code in a separate Code Behind file. Figure 8-1 shows the Add New Item dialog
box for a user control.

502211c08.indd 272 2/19/10 10:00:11 AM

Introduction to User Controls  ❘  273

Figure 8-1

Once you add a user control to the site, it is opened in the Document Window automatically. The first
thing you may notice is that a user control doesn’t have an @ Page directive, but rather an @ Control
directive as shown in this example that uses Code Behind:

<%@ Control Language=”C#” AutoEventWireup=”true” CodeFile=”WebUserControl.ascx.cs”
 Inherits=”WebUserControl” %>

This marks the file as a user control, so the ASP.NET runtime knows how to deal with it. Other
than that, the directive is identical to a standard ASPX page that doesn’t use a master page.

With the user control open in the VWD Document Window, you can use all the tools you have used
in the previous seven chapters to create pages. You can use the Toolbox to drag controls in Markup
and Design View, the CSS windows to change the look and feel and content of the user control, and
the Properties Grid to change the properties of controls in your user controls. You can also write
code that reacts to the events that the control raises.

To try this out yourself, the next exercise shows you how to create your first user control. In a later
exercise you see how to use the control in ASPX pages in your site.

Creating a User ControlTry It Out	

In this exercise, you create a basic user control that displays a single vertical banner using an Image
control. In later exercises, you see how to use this control and how to add another (horizontal) image.
You will then add some intelligence to the control so you can determine which of the two images to
display at runtime.

For this exercise, you need two images that represent banners ​— ​one in portrait mode with dimensions
of roughly 120 × 240 pixels and one in landscape mode with a size of around 486 × 60 pixels. The
Resources folder for this chapter’s code download that comes with this book has these two images,

502211c08.indd 273 2/19/10 10:00:11 AM

274  ❘  Chapter 8   User Controls

but you could also create your own. Don’t worry about the exact size of the images; as long as they are
close to these dimensions you should be fine.

	1.	 Open the Planet Wrox site in VWD.

	2.	 If you haven’t done so already, create a new folder called Controls in the root of the site.
Although user controls can be placed anywhere in the site hierarchy, placing them in a separate
folder makes them easier to find and manage.

	3.	 Create another folder called Images at the root of the site.

	4.	 Using Windows Explorer, open up the Resources folder for this chapter (at C:\BegASPNET\
Resources\Chapter 08 if you followed the instructions in the Introduction of this book). If you
haven’t done so already, you can download the necessary resources from www.wrox.com. Drag (or
copy and paste) the files Banner120x240.gif and Banner486x60.gif from Windows Explorer
into the Images folder you created in Step 3. If you’re using your own images, drag them into the
Images folder as well and give them the same names.

	5.	 Right-click the Controls folder and choose Add New Item. In the
dialog box that follows, choose your programming language, click
Web User Control, and make sure that Place Code in Separate File is
selected as shown in Figure 8-1. Name the file Banner and then click
Add to add the control to the site. Notice how VWD adds the exten-
sion of .ascx for you automatically if you don’t type it in. VWD does
this for all file types you add through the Add New Item dialog so
you don’t need to type the extension yourself. Your Solution Explorer
should now look like Figure 8-2.

	6.	 Switch the user control to Design View and drag a Panel from the
Standard category of the Toolbox onto the design surface. Using the
Properties Grid, change the ID of the Panel to VerticalPanel.

	7.	 From the Toolbox, drag an Image control into the
Panel. Select the Image and then open the Properties
Grid. Locate the ImageUrl property and click its ellipsis
button, shown in Figure 8-3.

Browse to the Images folder, select the Banner120x240.gif
image, and click OK to add it to the user control. Your
Design View now looks like Figure 8-4.

	8.	 Using the same Properties Grid, locate the AlternateText
property and type This is a sample banner. Some
browsers, like Firefox and Internet Explorer 8 and later,
display the alternate text (rendered as a client-side alt attribute) only when the image cannot be
displayed correctly. Other browsers including older versions of Internet Explorer show the alter-
nate text as the tooltip for the image when you hover your mouse over it.

Figure 8-2

Figure 8-3

502211c08.indd 274 2/19/10 10:00:12 AM

Introduction to User Controls  ❘  275

Figure 8-4

	9.	 Switch to Markup View and if your Panel control has Height and Width attributes that were
added by default when you dragged it on the page, remove both of them.

	10.	 Wrap the Image in a standard <a /> element and set its href attribute to http://p2p.wrox.com.
If you want, you can use the a code snippet to insert the bare link for you. To do this, type the let-
ter a and then press Tab. VWD inserts a link for you and enables you to directly type in the href
value. When you then press Tab again, the content of the link is selected, which you can delete by
pressing Del (the Image control will be the contents of the link). Finally, cut the closing tag
and move it to after the image.

	11.	 Set the target of the anchor tag (<a>) to _blank to force the browser to open up the page in a
new window when the image is clicked. When you’re done, the code for the entire user control
should look like the following code, except for the Language attribute that you may have set to VB
and the AutoEventWireup that is False by default in VB.NET:

<%@ Control Language=”C#” AutoEventWireup=”true” CodeFile=”Banner.ascx.cs”
 Inherits=”Controls_Banner” %>
<asp:Panel ID=”VerticalPanel” runat=”server”>

 <asp:Image ID=”Image1” runat=”server” AlternateText=”This is a sample banner”
 ImageUrl=”~/Images/Banner120x240.gif” />

</asp:Panel>

	12.	 Save the changes by pressing Ctrl+S and then close the user control file by pressing Ctrl+F4.

How It Works

The design experience of user controls in the Visual Web Developer IDE is identical to that of pages.
You can use drag and drop, the Toolbox, the Markup, Split, and Design Views, and so on. This makes
it easy to work with user controls because you can use all the familiar tools you also use for page
development.

502211c08.indd 275 2/19/10 10:00:12 AM

276  ❘  Chapter 8   User Controls

The control you just created displays a single image wrapped in an anchor element. In the next
section you see how to add the user control to the master page so it will be displayed in the sidebar
<div> of every page in the site. Later sections in this chapter show you how to add the other image
that can be used to display a horizontal banner in individual content pages.

Adding User Controls to a Content Page or Master Page
To be able to use a user control in a content or master page or in another user control, you need to
perform two steps. First, you need to register the control by adding an @ Register directive to the
page or control where you want the user control to appear. The second step involves adding the tags
for the user control to the page and optionally setting some attributes on it.

A typical @ Register directive for a user control looks like this:

<%@ Register Src=”ControlName.ascx” TagName=”ControlName“ TagPrefix=”uc1“ %>

The directive contains three important attributes, described in the following table.

Attribute Description

Src Points to the user control you want to use. To make it easier to move pages at a

later stage, you can also use the tilde (~) syntax to point to the control from the

application root.

TagName The name for the tag that is used in the control declaration in the page. You’re free

to make up this name, but usually it is the same as the name of the control.

TagPrefix Holds the prefix of the TagName that is used in the control declaration. Just as ASP.NET

uses the asp prefix to refer to its controls, you need to provide a prefix for your own

user controls. By default, this prefix is uc followed by a sequential number, but you

can also change it to your own liking ​— ​for example, to your own company name or a

custom abbreviation.

Considering the user control you created in the preceding exercise, your @ Register directive could
look like this:

<%@ Register Src=”~/Controls/Banner.ascx” TagName=”Banner” TagPrefix=”uc1” %>

When the control is registered, you can add it to the page using the TagPrefix:TagName construct,
similar to the way you add standard server controls to a page. Given the @ Register directive for
the banner control you need the following markup to add the control to your page:

<uc1:Banner ID=”Banner1” runat=”server” />

This is the minimum code needed for a user control in a page. Note that the control is defined by
a combination of the TagPrefix and the TagName. The other two attributes ​— ​ID and runat ​— ​are
standard attributes that most controls in an ASP.NET page have.

502211c08.indd 276 2/19/10 10:00:12 AM

Introduction to User Controls  ❘  277

Fortunately, in most cases, you don’t have to type all this code yourself. When you drag a user con-
trol from the Solution Explorer into a page in Design View, VWD adds the required code for you
automatically. The following exercise demonstrates how this works.

Adding the User Control to Your PageTry It Out	

In this exercise you add the user control Banner.ascx to the master page, so it displays a banner on
each page in the site in the sidebar area.

	1.	 Open up Frontend.master from the MasterPages folder and switch it into Design View.

	2.	 Locate the drop-down list that enables you to select a theme, position your cursor right after the
drop-down list, and press Enter three times to create some room.

	3.	 From the Solution Explorer, drag the file Banner.ascx from the Controls folder into the empty
spot you just created. Design View is updated and now looks like Figure 8-5.

Figure 8-5

COMMON MISTAKES  ​If your Design View doesn’t look like this, but looks
much closer to how the file ends up in the browser, you may still have the
styleSheetTheme set in the web.config file. Also, you may have more or fewer
options selected in the View ➪ Visual Aids or View ➪ Formatting Marks menu,
which may affect your display.

	4.	 Switch to Markup View and locate the @ Register directive at the top of the file. Change the two
dots in the src attribute to a tilde (~):

<%@ Register Src=”~/Controls/Banner.ascx” TagName=”Banner” TagPrefix=”uc1” %>

	5.	 Save the changes to the master page and close it.

502211c08.indd 277 2/19/10 10:00:12 AM

278  ❘  Chapter 8   User Controls

	6.	 Open the file Monochrome.css from its theme folder and add the following CSS declaration:

img
{
 border: 0;
}

	7.	 Copy this declaration to the other theme (add it to DarkGrey.css).

	8.	 Save all your changes, right-click Default.aspx in the root of your site in the Solution Explorer,
and choose View in Browser.

	9.	 The banner is now displayed below the drop-down list. Switch to the other theme and you’ll see
the same banner appear. When you click the banner, a new window is opened that takes you to the
site you linked to in the previous exercise.

How It Works

When you dragged the user control onto the design surface of the master page, VWD performed two
tasks: first it added the @ Register directive to tell the page where to look for the user control. It then
added the control declaration right below the drop-down list.

When the page loads, the ASP.NET runtime sees the control declaration and injects the output of the
control at the specified location. In this example, the Panel, the <a /> element, and the Image are
inserted in the sidebar region of the page. If you look at the HTML for the page in the browser, you see
the following code:

</select>

<div id=”Banner1_VerticalPanel”>

 <img id=”Banner1_Image1” src=”Images/Banner120x240.gif”
 alt=”This is a sample banner” />

</div>

The Panel control has been transformed into an HTML <div /> element and the Image control into
an element. Because the anchor element (<a />) was defined with plain HTML in the user
control, it ends up exactly as you wrote it.

Notice how the id of the panel has been changed from VerticalPanel to the client ID Banner1_
VerticalPanel. This is necessary to give the <div> tag a unique client-side id attribute that is used in
client-side scripting. The same has happened to the id of the element. You see more about this
in a later section of this chapter.

Normally when you put an element inside an <a /> element to link it, the browser draws a
border around the image. The border is usually blue for unvisited links and purple for links you have
visited before. To remove that border, you need to add the following CSS:

img
{
 border: none;
}

502211c08.indd 278 2/19/10 10:00:12 AM

Introduction to User Controls  ❘  279

Earlier versions of ASP.NET automatically injected the border property with a border-width of zero
pixels (making it invisible) as an inline style on the tag. Because inline style sheets overrule
embedded and external style sheets, this made it difficult to influence the border from your own CSS
if you wanted to change it again. Fortunately, this issue has been fixed in ASP.NET 4. You now have
more control over borders around images, but need to explicitly remove them if you don’t want them
using the CSS shown here.

When you add a user control to a page, VWD by default refers to the control using a relative path.
In this exercise, this path first contained two dots (..) to indicate the parent folder, followed by the
Controls folder, and finally by the name of the control:

<%@ Register Src=”../Controls/Banner.ascx” TagName=”Banner” TagPrefix=”uc1” %>

By changing the two dots to the tilde symbol, it becomes easier to move your pages around in your site
because the src attribute now always points to the Controls folder at the application’s root, no matter
where the page that consumes the control is located.

Though the tilde syntax makes your pages with user controls a little easier to manage, there is an
even easier way to register your user controls site-wide.

Site-Wide Registration of User Controls
If you have a control that you expect to use quite often on separate content pages in your site, like
the banner in the previous examples, you can register the control globally in the web.config file.
This way it becomes available throughout the entire site, without the need to register it on every
page. The following exercise shows how to do this.

Registering User Controls in the web.config FileTry It Out	

In this exercise you register the Banner.ascx user control in the web.config file. You can then
remove the @ Register directive from the master page because it isn’t needed anymore. After you
have changed the web.config file, adding the same user control to other pages will no longer add the
@ Register directive to the page.

	1.	 Open the web.config file from the root of the site. If you’re familiar with previous versions of
ASP.NET you may find the web.config worrying empty. But don’t worry; the functionality it
included has not been removed from .NET. The configuration information placed in the web site’s
web.config file has now been moved to the central web.config and machine.config files that
apply to the entire machine instead. This gives you a much cleaner configuration file, making it
easy to focus on your own stuff that you put in there.

	2.	 Locate the <pages /> element that you used in Chapter 6 to apply the theme and within its tags
add the following bolded code that contains a <controls /> element with a child <add /> element.

<pages theme=”Monochrome”>
 <controls>
 <add tagPrefix=”Wrox” tagName=”Banner” src=”~/Controls/Banner.ascx” />
 </controls>
</pages>

502211c08.indd 279 2/19/10 10:00:13 AM

280  ❘  Chapter 8   User Controls

	3.	 Save the changes and close the file.

	4.	 Open the master page again in Markup View and locate the Banner control in the sidebar area.
Change uc1 to Wrox:

<Wrox:Banner ID=”Banner1” runat=”server” />

If the declaration for your user control has its own closing tag, be sure to update that as well (or
change it to a self-closing tag):

<Wrox:Banner ID=”Banner1” runat=”server”></Wrox:Banner>

	5.	 Scroll all the way up in the master page file and remove the entire line with the @ Register
directive.

	6.	 Save and close the master page.

	7.	 Open Default.aspx again in your browser. Note that the banner is still present in the sidebar area.

COMMON MISTAKES  If you get an error, verify you added the correct code at
the right location to the web.config file. Also make sure that you changed uc1
to Wrox in the control declaration and that you deleted the @ Register directive
from the master page.

How It Works

Without the @ Register directive in the master page, the ASP.NET runtime scans the web.config file
for controls that have been registered there. It then finds the registration of the Wrox:Banner control so
it is able to successfully find the file using the src attribute and add its contents to the page hierarchy.

With the control registration added to the web.config file, it’s much easier to move or rename the con-
trol. Instead of finding and replacing the @ Register directive in all pages that use it, the only thing
you need to change is the registration in the web.config file. When you make a change there, all pages
using the control will automatically find the new location or name of the user control.

Useful as user controls are, they have a few caveats that you need to be aware of.

User Control Caveats
Earlier you saw that the ID of the Panel control you added to the page was modified by the ASP.NET
runtime. Instead of getting a <div/ > element with its id set to VerticalPanel, you got the
following id:

<div id=”Banner1_VerticalPanel”>
 ...
</div>

502211c08.indd 280 2/19/10 10:00:13 AM

Introduction to User Controls  ❘  281

In many cases, this isn’t problematic because you often don’t need the client id. However, if you
need to access this control from client-side JavaScript or CSS, it’s important to understand why this
id is modified.

Understanding and Managing Client IDs

By design, all elements in an HTML page need to be unique. Giving them an id attribute is not
required, but if you do so, you have to make sure they are unique. To avoid conflicts in the final HTML
code of the page, ASP.NET ensures that each server-side element gets a unique client id by prefixing
them with the name of their naming container. Within a naming container all elements should have
unique IDs. VWD warns you when you try to add a control that doesn’t have a unique server ID. For
example, you get an error when you try to add a second panel with an ID of VerticalPanel to the
user control. But what if you place two Banner controls in the same page, or one in the master page
and another in a content page? Potentially, you could end up with two client <div /> elements with
an ID of VerticalPanel. To avoid this problem, ASP.NET prefixes each element with the ID of its
nearest naming container. For the Panel inside the user control it means it’s prefixed with Banner1,
the server-side ID of the user control in the master page.

You can use the ClientID of a control to get its full client-side id. The following snippet shows
how to display the ClientID of the Panel control on a Label control within the Banner.ascx user
control:

VB.NET

Label1.Text = VerticalPanel.ClientID

C#

Label1.Text = VerticalPanel.ClientID;

With this code, the Label control’s Text property will contain Banner1_VerticalPanel, the client-
side id of the Panel. You see a more practical example of using ClientID in the next chapter.

With an explicit ID, it’s easier to predict the final id of a client-side HTML element, which in turn
makes it easier to reference those elements in JavaScript or CSS.

NOTE  ​Because the ASP.NET runtime can change the client id attributes of your
HTML elements, you may have trouble using CSS ID selectors to refer to ele-
ments. The easiest way to fix this is to use class selectors instead of ID selectors.
Alternatively, you can use the control’s ClientID when using embedded style
sheets.

ASP.NET 4 introduces a new option to influence the client ID: the ClientIDMode.

502211c08.indd 281 2/19/10 10:00:13 AM

282  ❘  Chapter 8   User Controls

Introducing ClientIDMode

Starting with ASP.NET 4, each web control now has a ClientIDMode property that enables you
to determine the way the client ID is made up. You can set the ClientIDMode to any of these four
values:

Value Description

AutoID Generates the ID as it did in previous versions of ASP.NET.

Predictable This value is mostly used for data-bound controls (discussed in Chapter 13 and

later) and enables you to create predictable client IDs for repeating elements.

The client ID of a control is generated by concatenating the client ID of the

parent control and the server ID of the control itself. The ID can optionally be

extended with a unique value for each element using the ClientIDRowSuffix

property.

Static With this value the client ID will be exactly the same as the server ID that you

set. This enables you to explicitly set the client ID, giving you greater control.

However, it doesn’t prevent you from assigning the same value twice, which

may result in duplicate IDs in the client’s HTML. Use with care!

Inherit With this setting the control inherits its ClientIDMode value from its parent

control.

Currently, the Planet Wrox web site doesn’t benefit a whole lot from changing the client IDs for any
of the existing controls so there’s no need to change any of them right now. However, in later chap-
ters you use the ClientIDMode property again to create cleaner client IDs.

Although the current banner user control makes it easy to display a banner at various loca-
tions in your site, it isn’t very smart yet. All it can do is display a linked image and that’s it. To
improve its usability, you can add behavior to the control so it can behave differently on pages in
your site.

Adding Logic to Your User Controls

Although using controls for repeating content is already quite useful, they become even more useful
when you add custom logic to them. By adding public properties or methods to a user control, you
can influence its behavior at runtime. When you add a property to a user control, it becomes avail-
able automatically in IntelliSense and in the Properties Grid for the control in the page you’re work-
ing with, making it easy to change the behavior from an external file like a page.

To add properties or methods to a user control, you add them to the Code Behind of the control.
The properties you add can take various forms. In its simplest form, a property looks exactly like the
properties you saw in Chapter 5. For more advanced scenarios you need to add View State properties
that are able to maintain their state across postbacks. In the next two exercises you see how to create
both types of properties.

502211c08.indd 282 2/19/10 10:00:14 AM

Adding Logic to Your User Controls  ❘  283

Creating Your Own Data Types for Properties
To make the banner control more useful, you can add a second image to it that displays as a hori-
zontal banner. You could also add a property to it that enables you to determine whether to display
the vertical or horizontal image. You could do this by creating a numeric property of type System.
Byte. Then 0 would be vertical and 1 would be horizontal, for example. However, this makes it
hard to remember what each number represents. You can make it a bit easier by creating a String
property that accepts the values Horizontal and Vertical. However, strings cannot be checked at
development time, so you may end up with a spelling mistake, resulting in an error or in the incor-
rect banner being displayed. The .NET Framework supplies a nice way to solve this by enabling you
to create your own data type in the form of an enumeration. With an enumeration, or enum for
short, you assign numbers to human-friendly text strings. Developers then use this readable text,
while under the hood the numeric value is used. The following snippet shows a basic example of an
enum (notice how the VB example doesn’t use commas, whereas they are required in C#):

VB.NET

Public Enum Direction
 Horizontal
 Vertical
End Enum

C#

public enum Direction
{
 Horizontal,
 Vertical
}

With these enums, the compiler assigns numeric values to the Horizontal and Vertical members
automatically, starting with 0 and counting upward. You can also explicitly define numeric values if
you want:

VB.NET

Public Enum Direction
 Horizontal = 0
 Vertical = 1
End Enum

C#

public enum Direction
{
 Horizontal = 0,
 Vertical = 1
}

The cool thing about enums is that you will get
IntelliSense in code files, in the Properties Grid, and even
in the code editor for your user controls. Figure 8-6
shows how IntelliSense kicks in for a C# code file. Figure 8-6

502211c08.indd 283 2/19/10 10:00:14 AM

284  ❘  Chapter 8   User Controls

In Figure 8-7 you see the same list with values from the enum in the Properties Grid.

And in Figure 8-8 you see the same list appear for a property of a user control in Markup View.

Just as with other code files like classes, you should put your enums in a file under the App_Code
folder. If you have more than one of them you can store them all in the same file or create a separate
file for each enum.

Enums are great for simple and short lists. They help you find the right item quickly without memo-
rizing “magic numbers” like 0 or 1 but enable you to use human-readable text strings instead.

In the next exercise, you see how to create an enum and use it in your Banner user control.

Creating Smarter User ControlsTry It Out	

In this exercise, you add a second banner to the user control. This banner displays as a horizontal
image inside its own panel. To avoid the two banners showing up at the same time you add a property
that determines which banner to display. Pages that use the control can then define the correct banner.

	1.	 Start by creating an enumeration that contains two members for the different directions: vertical
and horizontal. To do this, right-click the App_Code folder and choose Add New Item. Choose
your programming language and add a class file called Direction.

	2.	 Once the file opens, clear its contents and add the following code to it:

VB.NET

Public Enum Direction
 Horizontal
 Vertical
End Enum

C#

public enum Direction
{
 Horizontal,
 Vertical
}

	3.	 Save and close the file.

	4.	 Open the Code Behind for the user control Banner.ascx and add the following property. To
help you create properties, VWD comes with a handy code snippet. To activate the snippet in C#,

Figure 8-7 Figure 8-8

502211c08.indd 284 2/19/10 10:00:14 AM

Adding Logic to Your User Controls  ❘  285

type prop and then press Tab twice. VWD adds the code structure for an automatic property for
you. For VB.NET you can type Property and then press Tab twice. However, this creates a full
property rather than an automatic property (which is what is used in this exercise) so you’re better
off manually typing in the code in this case. Once the code is inserted, you can press Tab again to
move from field to field, each time typing the right data type or property name. Complete the code
so it looks like this:

VB.NET

Public Property DisplayDirection As Direction

C#

public Direction DisplayDirection { get; set; }

COMMON MISTAKES  ​Make sure you add the property outside the Page_Load
method (when you’re working with C#) but before the closing End Class (in
VB.NET) or the closing curly brace for the class (in C#).

Note that the name of the property is DisplayDirection and its type is Direction, the enum
you defined earlier.

	5.	 Open the Markup View of Banner.ascx, copy the entire <asp:Panel>, and paste it right
below the existing Panel. Name the control HorizontalPanel and set the src of the image
to ~/Images/Banner468x60.gif. If you want to browse for the image instead of typing its path
directly, position your cursor in Markup View after the opening quote of the src attribute’s value
and press Ctrl+Space. Choosing Pick URL in the menu that appears enables you to browse for a
file. Your code should now look like this:

<asp:Panel ID=”HorizontalPanel” runat=”server”>

 <asp:Image ID=”Image2” runat=”server” AlternateText=”This is a sample banner”
 ImageUrl=”~/Images/Banner468x60.gif” />

</asp:Panel>

	6.	 Switch back to the Code Behind of the control and add the following bolded code to the Page_
Load handler. In C# the handler should already be there. In Visual Basic, you can choose (Page
Events) from the left drop-down list at the top of the Document Window and Load from the right
drop-down list to set up the handler, or you can double-click the user control in Design View.

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 HorizontalPanel.Visible = False
 VerticalPanel.Visible = False

 Select Case DisplayDirection
 Case Direction.Horizontal
 HorizontalPanel.Visible = True

502211c08.indd 285 2/19/10 10:00:14 AM

286  ❘  Chapter 8   User Controls

 Case Direction.Vertical
 VerticalPanel.Visible = True
 End Select
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 HorizontalPanel.Visible = false;
 VerticalPanel.Visible = false;

 switch (DisplayDirection)
 {
 case Direction.Horizontal:
 HorizontalPanel.Visible = true;
 break;
 case Direction.Vertical:
 VerticalPanel.Visible = true;
 break;
 }
}

	7.	 Save and close the two files that make up the user control because you’re done with them for now.

	8.	 Open up the master page file once more in Markup View and locate the user control declaration.
Right after the runat=“server“ attribute add the following DisplayDirection attribute that sets
the correct image type:

<Wrox:Banner ID=”Banner1” runat=”server” DisplayDirection=”Horizontal” />

IntelliSense will help you pick the right DisplayDirection from the list. If you don’t get
IntelliSense, wait a few seconds until VWD has caught up with all the changes. Alternatively,
close all files, open the master page, and try again.

	9.	 Save all changes and request Default.aspx in the browser. Note that the right sidebar area now
contains the horizontal image, breaking the layout a little because the image is too wide for the
sidebar area.

	10.	 Switch back to the master page and change the DisplayDirection from Horizontal to
Vertical. Save your changes and refresh the page in the browser. The sidebar should now display
the vertical banner, as shown in Figure 8-9.

	11.	 Open the page AboutUs.aspx from the About folder in Markup View. If you don’t have that file,
create it first. In the cpMainContent ContentPlaceHolder add some text describing you or your
organization and the reason you created the site. Switch to Design View and drop the Banner.
ascx control from the Solution Explorer onto the design surface, right below the text you just
added. VWD detects the user control in the master page called Banner1 and assigns the ID of
Banner2 to the user control you just dropped. Notice how you see four banners in Design View;
two come from the Banner control in the master page and the other two come from the Banner
control in the About Us page itself. At runtime, two of them will be hidden.

	12.	 Select the control in Design View, open its Properties Grid, and set the DisplayDirection to
Horizontal.

502211c08.indd 286 2/19/10 10:00:14 AM

Adding Logic to Your User Controls  ❘  287

Figure 8-9

	13.	 Save all your changes and then press Ctrl+F5 to open the About Us page in your browser. Besides
the banner in the right sidebar, you should now also see the horizontal banner appear in the content
area. Note: Figure 8-9 displays the outcome of step 10, and as such doesn't display the horizontal
banner in the main content area.

How It Works

The property called DisplayDirection gives your user control some extra behavior. Pages using the
control should now set the DisplayDirection like this:

<Wrox:Banner ID=”Banner1” runat=”server” DisplayDirection=”Horizontal” />

When the control instance is created by the ASP.NET runtime, the value you set in the control declara-
tion is assigned to the property DisplayDirection.

When the page loads, this code in the user control is executed:

VB.NET

HorizontalPanel.Visible = False
VerticalPanel.Visible = False

Select Case DisplayDirection
 Case Direction.Horizontal

502211c08.indd 287 2/19/10 10:00:14 AM

288  ❘  Chapter 8   User Controls

 HorizontalPanel.Visible = True
 Case Direction.Vertical
 VerticalPanel.Visible = True
End Select

C#

HorizontalPanel.Visible = false;
VerticalPanel.Visible = false;

switch (DisplayDirection)
{
 case Direction.Horizontal:
 HorizontalPanel.Visible = true;
 break;
 case Direction.Vertical:
 VerticalPanel.Visible = true;
 break;
}

The first thing that this code does is hide both panels that contain the images. It then uses a Select
Case / switch block to determine which image to show. When the DisplayDirection equals
Horizontal, the Visible property of HorizontalPanel is set to True. The same principle is applied to
the Vertical setting.

Implementing View State Properties
Besides the DisplayDirection, another useful property for the user control would be the URL that
the banner links to. In the next section you see how to implement this and learn how to create a
View State property called NavigateUrl that is able to survive postbacks.

Implementing the NavigateUrl PropertyTry It Out	

To be able to set the URL that a user is taken to programmatically, you need to be able to access
the anchor tag that is defined in the control’s markup. To do this, you need to give it an id and a
runat=“server“ attribute. Alternatively, you could change the simple <a> tag to its server-side coun-
terpart: the <asp:HyperLink>. To be able to programmatically set the new NavigateUrl property that
you’ll add to the Banner control and to ensure this property survives postbacks, you need to implement
a View State property. To show you why you need a View State property, the first three steps of this
exercise have you modify the About Us page so it sets the DisplayDirection of the Banner control
programmatically. You’ll then cause a postback so you can see that the value for the direction gets lost
because it doesn’t maintain its state in View State. The second part of the exercise then shows you how
to implement the NavigateUrl property that is able to maintain its state.

	1.	 Open the Code Behind of AboutUs.aspx and add the following bolded code to the Page_Load
event handler. If the handler isn’t there yet, switch to Design View and double-click somewhere on
the grey area of the page.

502211c08.indd 288 2/19/10 10:00:14 AM

Adding Logic to Your User Controls  ❘  289

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Not Page.IsPostBack Then
 Banner2.DisplayDirection = Direction.Vertical
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 Banner2.DisplayDirection = Direction.Vertical;
 }
}

Verify that the Banner user control has an ID of Banner2 in the Markup View of the page, or
update your code accordingly.

	2.	 Switch to Design View and add a Button control by dragging it from the Standard category of
the Toolbox on top of the Banner.ascx control that is placed inside the page (not the one that’s
defined in the master page). There’s no need to write any code for the Button control’s Click
event.

	3.	 Save the page and open it in your browser. Because of the code in Page_Load, the first time the
page loads, the banner at the bottom of the screen displays the vertical banner. Now click the
button so the page will reload. This time, the page displays the horizontal image. Because the
DisplayDirection of the Banner control is only set in Page_Load when Page.IsPostBack is
False, that setting is lost when you post back, causing the banner to revert to its default setting of
Horizontal.

	4.	 To avoid this problem with the NavigateUrl, you need to implement it as a View State property
where the ViewState collection is used as the backing store to store the underlying value. That
way, the value is sent to the browser and back to the server with every request. To implement the
property, add the following code to the Code Behind of the Banner.ascx user control, right below
the DisplayDirection property you created earlier.

Remember, you don’t have to type all this code manually because the download that comes with
this book contains all the code shown.

VB.NET

Public Property NavigateUrl() As String
 Get
 Dim _navigateUrl As Object = ViewState(“NavigateUrl”)
 If _navigateUrl IsNot Nothing Then
 Return CType(_navigateUrl, String)
 Else
 Return “http://p2p.wrox.com” ' Return a default value
 End If
 End Get

502211c08.indd 289 2/19/10 10:00:14 AM

290  ❘  Chapter 8   User Controls

 Set(ByVal Value As String)
 ViewState(“NavigateUrl”) = Value
 End Set
End Property

C#

public string NavigateUrl
{
 get
 {
 object _navigateUrl = ViewState[“NavigateUrl”];
 if (_navigateUrl != null)
 {
 return (string)_navigateUrl;
 }
 else
 {
 return “http://p2p.wrox.com”; // Return a default value
 }
 }
 set
 {
 ViewState[“NavigateUrl”] = value;
 }
}

	5.	 Switch to Markup View of the user control and add runat=“server“ attributes to both links.
Give the link in the vertical panel an id of VerticalLink and the other an id of HorizontalLink.
They should end up looking like this:

...

	6.	 Switch back to the Code Behind of the user control (press F7) and modify the Page_Load handler
of the user control so it also sets the HRef property of the anchor element:

VB.NET

Case Direction.Horizontal
 HorizontalPanel.Visible = True
 HorizontalLink.HRef = NavigateUrl
Case Direction.Vertical
 VerticalPanel.Visible = True
 VerticalLink.HRef = NavigateUrl

C#

case Direction.Horizontal:
 HorizontalPanel.Visible = true;
 HorizontalLink.HRef = NavigateUrl;
 break;
case Direction.Vertical:
 VerticalPanel.Visible = true;
 VerticalLink.HRef = NavigateUrl;
 break;

�

502211c08.indd 290 2/19/10 10:00:15 AM

Adding Logic to Your User Controls  ❘  291

	7.	 Save the changes and go back to the Code Behind of AboutUs.aspx. Modify the code so it sets the
NavigateUrl property of the Banner control to a different URL. You should overwrite the code
that sets the DisplayDirection.

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Not Page.IsPostBack Then
 Banner2.NavigateUrl = “http://imar.spaanjaars.com”
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 Banner2.NavigateUrl = “http://imar.spaanjaars.com”;
 }
}

	8.	 Save all your changes and then request the AboutUs.aspx page in your browser by pressing F5.

COMMON MISTAKES  ​Make sure you get a fresh browser window, so close any
windows you may have open first.

Click the horizontal banner at the left side of the page. A new window will pop up, showing the URL
you set in the previous step.

	9.	 Close this new window and click the button you added to AboutUs.aspx earlier to cause the page
to post back to the server. Once the page is reloaded, click the banner image again. You are taken
to the same site as in step 8. This illustrates the point that the NavigateUrl property is now able
to maintain its value across postbacks, unlike the DisplayDirection property you added to the
user control earlier.

How It Works

In the first three steps you witnessed the behavior of non-View State properties. You started off by writ-
ing some code in the Page_Load event handler that sets the DisplayDirection programmatically:

VB.NET

If Not Page.IsPostBack Then
 Banner2.DisplayDirection = Direction.Vertical
End If

C#

if (!Page.IsPostBack)
{
 Banner2.DisplayDirection = Direction.Vertical;
}

502211c08.indd 291 2/19/10 10:00:15 AM

292  ❘  Chapter 8   User Controls

Because of the check for Page.IsPostBack, this code only fires when the page loads the first time. It
doesn’t fire when the page is reloaded due to a postback. When it fires, it sets the DisplayDirection
property of the Banner control so the banner displays the correct image. However, as soon as the page
is posted back, this value is lost and the control reverts to its default direction of Horizontal. One
way to overcome this problem is to make sure the code fires both the first time and on subsequent post-
backs. Removing the check for Page.IsPostBack is enough to accomplish this. However, this is not
always a desired solution. Imagine you’re getting the correct display direction from a database. Because
fetching data from a database is a costly operation, you want to minimize the number of times you hit
the database. In such scenarios, developers are likely to fetch the data only when the page loads the
first time, and expect it to stay around on subsequent postbacks. That is exactly what the NavigateUrl
property does. You set its value once and it stays available, even if you post the page back to the server.
This is accomplished with a View State property.

To see how this works, take a look at the setter of that property first:

VB.NET

Public Property NavigateUrl() As String
 ...
 Set(ByVal Value As String)
 ViewState(“NavigateUrl”) = Value
 End Set
End Property

C#

public string NavigateUrl
{
 ...
 set
 {
 ViewState[“NavigateUrl”] = value;
 }
}

When you assign a value to the NavigateUrl property, its value is stored in the ViewState collection.
You can see the ViewState collection as a bag that enables you to store data that you can retrieve
again after a postback. You identify values in View State using a unique key. In the example the key
equals the name of the property so it’s easy to see they belong together. Once you assign a value to a
View State property, it’s stored in the page in the hidden __VIEWSTATE field that you learned about in
Chapter 4. This means it gets sent to the browser when the page loads and it is sent back to the server
when the page is posted back again.

When the postback occurs, the code in Page_Load in the user control fires again. Just as with the initial
request, the code accesses the NavigateUrl property in the Select Case / switch block:

VB.NET

Case Direction.Horizontal
 ...
 HorizontalLink.HRef = NavigateUrl
 ...

502211c08.indd 292 2/19/10 10:00:15 AM

Adding Logic to Your User Controls  ❘  293

C#

case Direction.Horizontal:
 ...
 HorizontalLink.HRef = NavigateUrl;
 ...

The value for NavigateUrl is returned by the getter of the property:

VB.NET

Public Property NavigateUrl() As String
 Get
 Dim _navigateUrl As Object = ViewState(“NavigateUrl”)
 If _navigateUrl IsNot Nothing Then
 Return CType(_navigateUrl, String)
 Else
 Return “http://p2p.wrox.com” ' Return a default value
 End If
 End Get
 ...
End Property

C#

public string NavigateUrl
{
 get
 {
 object _navigateUrl = ViewState[“NavigateUrl”];
 if (_navigateUrl != null)
 {
 return (string)_navigateUrl;
 }
 else
 {
 return “http://p2p.wrox.com”; // Return a default value
 }
 }
 ...
}

This code first tries to get the value from View State using ViewState(“NavigateUrl“) in VB.NET or
ViewState[“NavigateUrl“] in C#, which uses square brackets to access items in a collection. If the
value that is returned is Nothing or null, the getter returns the default value for the property: http://
p2p.wrox.com.

However, if the value is not Nothing, it is cast to a string using CType in VB.NET and (string) in C#
and eventually returned to the calling code. At the end, the NavigateUrl returned from the View State
property is assigned to the HRef property of the anchor tag again, which is then used as the URL users
are taken to when they click the image.

502211c08.indd 293 2/19/10 10:00:15 AM

294  ❘  Chapter 8   User Controls

View State Considerations
Although View State is designed to overcome the problems of maintaining state as outlined in the
previous exercise, you should carefully consider whether or not you use it. The values you store in
View State are sent to the browser and back to the server on every request. When you store many
or large values in View State, this increases the size of the page and thus negatively impacts perfor-
mance. Never store large objects like database records in View State; it’s often quicker to get the
data fresh from the database on each request than passing it along in the hidden View State field if
the amount of data that needs to be stored is large. Also, because the View State is stored within
the page and is thus transferred over the wire, you shouldn’t use it to store secure values such as
passwords.

Practical Tips on User Controls

The following list provides some practical tips on working with user controls:

Don’t overuse user controls. User controls are great for encapsulating repeating content, but ➤➤

they also make it a little harder to manage your site because code and logic is contained in
multiple files. If you’re not sure if some content will be reused in another part of the site, start
by embedding it directly in the page. You can always move it to a separate user control later
if the need arises.

Keep user controls focused on a single task. Don’t create a user control that is able to display ➤➤

five different types of unrelated content with a property that determines what to display. This
makes the control difficult to maintain and use. Instead, create five lightweight controls and
use them appropriately.

When you create user controls that contain styled markup, don’t hardcode style information ➤➤

like the CssClass for the server controls contained in the user control. Instead, consider creat-
ing separate CssClass properties on the user control, which are then used to set the CssClass
of your server controls. This improves the reusability of your user control, making it easier to
incorporate the control in different designs.

502211c08.indd 294 2/19/10 10:00:15 AM

Summary  ❘  295

Summary

User controls can greatly improve the maintainability of your site. Instead of repeating the same
markup and code on many different pages in your site, you encapsulate the code in a single control,
which can then be used in different areas of your site.

To improve the usefulness of your controls, you can add behavior to them. It’s common to create
controls with properties you can set in consuming pages, enabling you to change the behavior of the
control at runtime. Although View State properties can solve some of the state issues you may come
across, you should carefully consider whether you really need them. Because these properties add to
the size of the page, they can have a negative impact on your site’s performance.

You can further improve the Banner control by keeping track of the number of times each image has
been clicked. The Planet Wrox site doesn’t implement this, but with the knowledge you gain in the
chapters about database interaction, this is easy to implement yourself.

In the next chapter you create another user control that serves as a contact form. By building the
form as a user control, it’s easy to ask your users for feedback from different locations in the site.

Exercises	

1.	 In this chapter you saw how to create a standard property and a View State property. What is the

main difference between the two? And what are the disadvantages of each of them?

2.	 Currently, the DisplayDirection property of the Banner control doesn’t maintain its state across

postbacks. Change the code for the property so it is able to maintain its state using the ViewState

collection, similar to how NavigateUrl maintains its value.

3.	 What are the two main benefits of using a custom enumeration like Direction over built-in types

like System.Byte or String?

Answers to Exercises can be found in Appendix A.

502211c08.indd 295 2/19/10 10:00:15 AM

296  ❘  Chapter 8   User Controls

What You Learned in This Chapter⊲⊲

@ Register directive Used to register user controls and point to their source inside pages,

master pages, and other user controls

AlternateText The property that enables you to set the alt attribute on images that is

shown when the image cannot be displayed

Machine.config The central .NET configuration file that applies to your entire system

and provides defaults for your web site’s settings

User Control A block of content (stored in a file with an .ascx extension and an

optional Code Behind file) that can be reused in pages, master pages

and other user controls in your site

View State Properties Properties at the page, master page or user control level that store

their values in View State so they can survive postbacks

ViewState collection The ViewState collection is the property on the Page class that

enables you to store and retrieve values using View State

502211c08.indd 296 2/19/10 10:00:15 AM

Validating User Input

What You Will Learn in This Chapter:

What user input is and why it’s important to validate it➤➤

What ASP.NET 4 has to offer to aid you in validating user input➤➤

How to work with the built-in validation controls and how to create ➤➤

solutions that are not supported out of the box

How to send e‑mail using ASP.NET➤➤

How to read text files➤➤

So far you have been creating a fairly static web site where you control the layout and content
by adding fixed pages to the site and its navigation menus. But you can make your site a lot
more attractive by incorporating dynamic data. This data usually flows in two directions: it
either comes from the server and is sent to the end user’s browser, or the data is entered by the
user and sent to the server to be processed or stored.

Data coming from the server can be retrieved from many different data sources, including files
and databases, and is often presented with the ASP.NET data controls. You see how to access
databases in Chapter 12 and onward.

The other flow of data comes from the user and is sent to the server. The scope of this infor-
mation is quite broad, ranging from simple page requests and “Contact Us” forms to complex
shopping cart scenarios and wizard-like user interfaces. The underlying principle of this data
flow is basically the same in all scenarios ​— ​users enter data in a Web Form and then submit it
to the server.

To prevent your system from receiving invalid data, it’s important to validate this data before
you allow your system to work with it. Fortunately, ASP.NET 4 comes with a bag of tools to
make data validation a simple task.

9

502211c09.indd 297 2/19/10 10:00:04 AM

298  ❘  Chapter 9   Validating User Input

The first part of this chapter gives you a good look at the validation controls that ASP.NET sup-
ports. You see what controls are available, how to use and customize them, and in what scenarios
they are applicable.

The second half of this chapter shows you how to work with data in other ways. You see how to
send the information a user submits to your system by e‑mail and how to customize the mail body
using text-based templates.

By the end of the chapter, you will have a good understanding of the flow of information to an
ASP.NET web application and the various techniques you have at your disposal to validate this data.

Gathering Data from the User

Literally every web site on the Internet has to deal with input from the user. Generally, this input
can be sent to the web server with a number of different techniques of which GET and POST are the
most common. In Chapter 4 you briefly saw the difference between these two methods and saw
that GET data is appended to the actual address of the page being requested whereas with the POST
method the data is sent in the body of the request for the page.

With the GET method, data is added to the requested address for a page. You can retrieve it using the
QueryString property of the Request object as discussed in Chapter 7. Imagine you are requesting
the following page:

http://www.PlanetWrox.com/Reviews/ViewDetails.aspx?ReviewId=34&CategoryId=3

With this example, the query string is ReviewId=34&CategoryId=3. The question mark is used to
separate the query string from the rest of the address, and the query string itself consists of name/
value pairs separated by an ampersand (&). Each name and value in turn are separated by the
equals symbol (=). To access individual items in the query string, you can use the Get method of the
QueryString collection:

VB.NET

‘ Assigns the value 34 to the reviewId variable
Dim reviewId As Integer = Convert.ToInt32(Request.QueryString.Get(“ReviewId”))
‘ Assigns the value 3 to the categoryId variable
Dim categoryId As Integer = Convert.ToInt32(Request.QueryString.Get(“CategoryId”))

C#

// Assigns the value 34 to the reviewId variable
int reviewId = Convert.ToInt32(Request.QueryString.Get(“ReviewId”));
// Assigns the value 3 to the categoryId variable
int categoryId = Convert.ToInt32(Request.QueryString.Get(“CategoryId”));

The POST method, on the other hand, gets its data from a form with controls that have been sub-
mitted to the server. Imagine you have a form with two controls: a TextBox called Age to hold the

502211c09.indd 298 2/19/10 10:00:04 AM

Gathering Data from the User  ❘  299

user’s age and a Button to submit that age to the server. In the Button control’s Click event you
could write the following code to convert the user’s input to an integer:

VB.NET

Dim age As Integer = Convert.ToInt32(Age.Text) ‘ age now holds the user’s age

C#

int age = Convert.ToInt32(Age.Text); // age now holds the user’s age

Note that in this case, there is no need to access a collection like Form as you saw with the QueryString
earlier. ASP.NET shields you from the complexity of manually retrieving data from the submitted form,
and instead populates the various controls in your page with the data from the form.

All is well as long as users enter values that look like an age in the text box. But what happens when
a user submits invalid data, either deliberately or by accident? What if a user sends the text I am 38
instead of just the number 38? When that happens, the code will crash. The ToInt32 method of the
Convert class throws an exception (an error) when you pass it something that cannot be represented
as a number. As soon as the exception is thrown, page execution stops completely. Chapter 18 digs
deeper into exception handling.

To avoid these problems, you need to validate all the data that is being sent to the server. When it
doesn’t look valid, you need to reject it and make sure your application deals with it gracefully.

Validating User Input in Web Forms
People concerned with validating user input often use the mantra: Never trust user input. Although
this may seem like paranoia at first, it is really important in any open system. Even if you think you
know who your users are and even if you trust them completely, they are often not the only users
that can access your system. As soon as your site is out on the Internet, it’s a potential target for
malicious users and hackers who will try to find a way into your system. In addition to these evil
visitors, even your trustworthy users may send incorrect data to your server by accident.

To help you overcome this problem as much as possible, ASP.NET ships with a range of validation
controls that help you validate data, before it is used in your application. In the following sections, you
see how to use the standard validation controls to ensure the user submits valid data into the system.

The ASP.NET Validation Controls

ASP.NET 4 comes with six useful controls to perform validation in your
web site. Five of them are used to perform the actual validation whereas
the final control ​— ​the ValidationSummary ​— ​is used to provide feedback
to the user about any errors made in the page. Figure 9-1 shows the avail-
able controls in the Validation category of the Toolbox.

The validation controls are extremely helpful in validating the data that
a user enters in the system. They can easily be hooked to other controls
like the TextBox or a DropDownList; however, they also support cus-
tom validation scenarios. Figure 9-2 demonstrates two of the validation Figure 9-1

502211c09.indd 299 2/19/10 10:00:04 AM

300  ❘  Chapter 9   Validating User Input

controls ​— ​RequiredFieldValidator and RangeValidator ​— ​at work to prevent a user from sub-
mitting the form without entering required and valid data.

Figure 9-2

The great thing about the validation controls is that they can check the input at the client and at
the server. When you add a validation control to a web page, the control renders JavaScript that
validates the associated control at the client. This client-side validation works on most modern web
browsers with JavaScript enabled, including Internet Explorer, Firefox, Chrome, Opera, and Safari.
At the same time, the validation is also carried out at the server automatically. This makes it easy to
provide your user with immediate feedback about the data using client-side script, while your web
pages are safe from bogus data at the server.

A Warning on Client-Side Validation

Although client-side validation may seem enough to prevent users from sending invalid data to your
system, you should never rely on it as the only solution to validation. It’s easy to disable JavaScript
in the browser, rendering the client-side validation routines useless. In addition, a malicious user can
easily bypass the entire page in the browser and send information directly to the server, which will
happily accept and process it if you don’t take countermeasures.

In general, you should see client-side validation as a courtesy to your users. It gives them immediate
feedback so they know they forgot to enter a required field, or entered incorrect data without a full
postback to the server. Server-side validation, on the other hand, is the only real means of valida-
tion. It’s effectively the only way to prevent invalid data from entering your system.

The following section discusses how you can employ the validation controls to protect your data.

Using the Validation Controls

To declare a validation control in your ASPX page, you use the familiar declarative syntax. For
example, to create the RequiredFieldValidator control used in Figure 9-2, you need the fol-
lowing code:

<asp:RequiredFieldValidator ID=”ReqVal1” runat=”server” ControlToValidate=”TextBox1”
 ErrorMessage=”Enter your name” />

502211c09.indd 300 2/19/10 10:00:04 AM

Gathering Data from the User  ❘  301

To give you an idea of how the validation controls work, the following exercise guides you through
the process of using the RequiredFieldValidator in a contact form that is placed in a user control.
The exercise is followed by an in-depth discussion of the various validation controls.

NOTE  ​Visual Web Developer comes with a number of useful code snippets that
enable you to quickly insert controls like the validation controls in Markup View.
In the following exercise, you see how to add the necessary controls using the
Toolbox, Design View, and drag and drop, but it’s useful to know how to quickly
add controls in Markup View as well. For example, to insert a TextBox in Markup
View, type textbox and then press Tab. VWD completes the full control code
for you. To insert a RequiredFieldValidator, type the letters req, then press
Ctrl+Spacebar to have VWD complete the word requiredfieldvalidator for
you, and then press Tab again to insert the entire tag. If you do this directly below
a TextBox control with its ID set, VWD even sets the correct ControlToValidate
attribute for you. This latter trick doesn’t work in the next exercise because the
various controls are not directly next to each other, but are placed in separate
table cells. VWD still inserts the code for the RequiredFieldValidator for you
but you need to manually set the ControlToValidate property to the ID of the
associated TextBox.

Using the RequiredFieldValidatorTry It Out	

In this exercise you create a user control called ContactForm.ascx. It can be placed in a web page so
visitors to your site can leave some feedback. In later exercises you extend the control by sending the
response by e‑mail to your e‑mail account.

	1.	 Open the Planet Wrox project and add a new user control in the Controls folder. Call the control
ContactForm.ascx. Make sure it uses your programming language and a Code Behind file.

	2.	 Switch to Design View and insert a table by choosing Table ➪ Insert Table. Create a table with
eight rows and three columns.

	3.	 Merge the three cells of the first row. To do this, select all three cells, right-click the selection, and
choose Modify ➪ Merge Cells.

	4.	 In the merged cell, type some text that tells your users they can use the contact form to get in touch
with you.

	5.	 In the first cell of the second row type the word Name. Into the second cell of the same row, drag a
TextBox and set its ID to Name. Into the last cell of the same row, drag a RequiredFieldValidator
from the Validation category of the Toolbox. Finally, into the second cell of the last row, drag a
Button. Rename the button to SendButton by setting its ID and set its Text property to Send. When
you’re done, your Design View looks like Figure 9-3.

502211c09.indd 301 2/19/10 10:00:05 AM

302  ❘  Chapter 9   Validating User Input

Figure 9-3

	6.	 Click the RequiredFieldValidator once in Design View and then open up its Properties Grid by
pressing F4. Set the following properties on the control.

Property Value

CssClass ErrorMessage

ErrorMessage Enter your name

Text *

ControlToValidate Name

	7.	 Save the changes to the user control and then close it because you’re done with it for now.

	8.	 Add the following CSS declaration to the CSS files for both themes (Monochrome.css and
DarkGrey.css):

.ErrorMessage
{
 color: red;
}

Save and close both files.

	9.	 Open Contact.aspx from the About folder and switch to Design View. From the Solution
Explorer, drag the user control ContactForm.ascx into the main content area of the page,
identified by the purple border. Switch back to Markup View, and you should see this control
declaration:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” Runat=”Server”>
 <uc1:ContactForm ID=”ContactForm1” runat=”server” />
</asp:Content>

502211c09.indd 302 2/19/10 10:00:05 AM

Gathering Data from the User  ❘  303

	10.	 Save the page and press Ctrl+F5 to open it in your browser. If you get an error, make sure
you renamed the TextBox to Name and that you set the ControlToValidate property on the
RequiredFieldValidator to Name.

	11.	 Leave the Name text box empty and click the Send button. Note that the page is not submitted to
the server. Instead, you should see a red asterisk appear at the very right of the row for the name
field to indicate an error. If the asterisk is not red, press Ctrl+F5 or Ctrl+R to get a fresh copy of
the theme’s CSS file from the server and click the Send button again.

	12.	 Enter your name and click Send again. The page now successfully posts back to the server.

How It Works

With the RequiredFieldValidator attached to the TextBox through the ControlToValidate prop-
erty, client-side JavaScript is sent to the browser that validates the control at the client.

NOTE  ​This is the first chapter where you’ll actually write some JavaScript on your
own. Don’t worry about it too much because you won’t have to write a whole lot
of it. The examples should be pretty easy to follow, even if you don’t have any
prior experience with JavaScript. If you want to learn more about JavaScript, con-
sider getting a copy of Professional JavaScript for Web Developers, 2nd Edition
by Nicholas C. Zakas (Wrox, ISBN: 978-0-470-22780-0).

The RequiredFieldValidator control is able to validate another control like a TextBox. It does this by
comparing the value of the other control with its own InitialValue property and making sure that the
other control’s value is different. By default, this property is an empty string, which means that anything
except an empty string is considered a valid value. Whenever you try to submit the form to the server by
clicking the Send button, the validation control checks the control it is attached to. When the text box is
still empty, the asterisk from its Text property is shown (formatted with the ErrorMessage CSS class),
and the form is not submitted. You see how to use and display the ErrorMessage property later in this
chapter. When the user enters something in the Name text box, validation succeeds and the page submits
to the server successfully.

Besides the RequiredFieldValidator control, the Validation category of the Toolbox contains a
number of other controls that are discussed next.

The Standard Validation Controls

The five validation controls (the ones in the Validation category of the Toolbox whose names end
in Validator) ultimately all inherit from the same base class, and thus share some common behav-
ior. Four of the five validation controls operate in the same way, and contain built-in behavior that
enables you to validate associated controls. The last control, the CustomValidator, enables you to
write custom validation rules not supported out of the box.

502211c09.indd 303 2/19/10 10:00:06 AM

304  ❘  Chapter 9   Validating User Input

The following table lists a number of common properties that are shared by the validation controls
and that you typically use when working with them.

Property Description

Display This property determines whether or not the hidden error message

takes up space. With the Display set to Static, the error message

takes up screen estate, even when it is hidden. This is similar to the

CSS setting visibility: hidden you saw in earlier chapters. The

Dynamic setting hides the error message using display: none until

it needs to be displayed. With a setting of None, the error message is

not visible at all. This is useful if you are using a ValidationSummary,

which you see later in this chapter.

CssClass This property enables you to set the CSS class attribute that is applied

to the error message text.

ErrorMessage This property holds the error message used in the

ValidationSummary control. When the Text property is empty, the

ErrorMessage value is also used as the text that appears on the page.

Text The Text property is used as the text that the validation control displays

on the page. This could be an asterisk (*) to indicate an error, or text like

“Enter your name.”

ControlToValidate This property contains the server ID of the control that needs to be

validated.

EnableClientScript This property determines whether the control provides validation at the

client. The default is True.

SetFocusOnError This property determines whether client-side script gives the focus to

the first control that generated an error. This setting is False by default.

ValidationGroup Validation controls can be grouped together, enabling you to perform

validation against a selection of controls. All controls with the same

ValidationGroup are checked at the same time, which means that

controls that are not part of that group are not checked. Consider, for

example, a login page with a Login button and fields for a user name

and password. The same page may also contain a search box that

enables you to search the site. With the ValidationGroup, you can

have the Login button validate the user name and password boxes,

whereas the Search button triggers validation for just the search box.

IsValid You don’t typically set this property at design time, but at runtime it pro-

vides information about whether the validation test has passed.

502211c09.indd 304 2/19/10 10:00:06 AM

Gathering Data from the User  ❘  305

The Difference between the Text and ErrorMessage Properties

At first glance, these two properties seem to serve the same purpose. Both of them can be used
to provide feedback to the user in the form of an error message. But when used in combination
with a ValidationSummary control, there’s a subtle difference between the two. When you set
both the properties at the same time, the validation control displays the Text property, whereas
the ValidationSummary uses the ErrorMessage. Figure 9-4 shows a sample login page with two
RequiredFieldValidator controls. Both the validation controls have their Text property set to an
asterisk (*) to give the user a visual cue there is a problem. The ValidationSummary below the con-
trol then displays the full ErrorMessage properties.

Figure 9-4

You’ve already seen the RequiredFieldValidator at work, so the next sections give you a good
look at the three remaining standard validation controls. A later section then shows you how to use
the CustomValidator and the ValidationSummary controls.

RangeValidator

The RangeValidator control enables you to check whether a value falls within a certain range. The
control is able to check data types like strings, numbers, dates, and currencies. For example, you can
use it to make sure a number is between 1 and 10, or a selected date falls between today and the next
two weeks. The following table lists its most important properties.

Property Description

MinimumValue This property determines the lowest acceptable value. For example, when

checking an integer number between 1 and 10, you set this property to 1.

MaximumValue This property determines the highest acceptable value. For example, when

checking an integer number between 1 and 10, you set this property to 10.

Type This property determines the data type that the validation control checks. This

value can be set to String, Integer, Double, Date, or Currency to check

the respective data types.

502211c09.indd 305 2/19/10 10:00:06 AM

306  ❘  Chapter 9   Validating User Input

The following example shows a RangeValidator that ensures the value entered in the Rate text box
is a whole number that lies between 1 and 10:

<asp:RangeValidator ID=”RangeValidator1” runat=”server”
 ControlToValidate=”Rate” ErrorMessage=”Enter a number between 1 and 10”
 MaximumValue=”10” MinimumValue=”1” Type=”Integer” />

RegularExpressionValidator

The RegularExpressionValidator control enables you to check a value against a regular expression
that you set in the ValidationExpression property of the control. Regular expressions offer a
compact syntax that enables you to search for patterns in text strings. Regular expressions are
a complex subject, but fortunately, Visual Web Developer comes with a few built-in expressions
that make it easy to validate values like e‑mail addresses and zip codes. If you want to learn more
about regular expressions, pick up a copy of Wrox’s Beginning Regular Expressions by Andrew
Watt (ISBN: 978-0-7645-7489-4).

The following example shows a RegularExpressionValidator control that ensures a user enters a
value that looks like an e‑mail address:

<asp:RegularExpressionValidator ID=”RegularExpressionValidator1” runat=”server”
 ControlToValidate=”Email” ErrorMessage=”Enter a valid e‑mail address”
 ValidationExpression=”\w+([-+.’]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*” />

CompareValidator

The CompareValidator can be used to compare the value of one control to another value. This is
often used in sign-up forms where users have to enter a password twice to make sure they type the
same password both times. Instead of comparing to another control, you can also compare against
a constant value.

The following table lists the additional properties for the CompareValidator control.

Property Description

ControlToCompare This property contains the ID of the control that the validator compares

against. When this property is set, ValueToCompare has no effect.

Operator This property determines the type of compare operation. For example,

when Operator is set to Equal both controls must contain the same

value for the validator to be considered valid. Similarly, you have options

like NotEqual, GreaterThan, and GreaterThanEqual to perform differ-

ent validation operations.

Type This property determines the data type that the validation control checks.

This value can be set to String, Integer, Double, Date, or Currency

to check the respective data types.

502211c09.indd 306 2/19/10 10:00:06 AM

Gathering Data from the User  ❘  307

Property Description

ValueToCompare This property enables you to define a constant value to compare against.

This is often used in agreements where you have to enter a word like Yes

to indicate you agree to some condition. Simply set the ValueToCompare

to the word Yes and the ControlToValidate to the control you want to

validate and you’re done. When this property is set, make sure that the

ControlToCompare property is empty because that will otherwise take

precedence.

This example shows a CompareValidator that ensures that two TextBox controls contain the same
password:

<asp:CompareValidator ID=”CompareValidator1” runat=”server”
 ControlToCompare=”ConfirmPassword” ControlToValidate=”Password”
 ErrorMessage=”Your passwords don’t match” />

In the following exercise you see most of these controls at work, except for the RangeValidator.
However, its usage is similar to the other validation controls, so it’s just as easy to add it to your web
page or user control when you need it.

Extending the Contact FormTry It Out	

In the previous Try It Out you started with the basics for the contact form by creating a user control
holding a table and a few controls to let users enter their name. In this exercise, you extend the form
and add fields for an e‑mail address, a home phone number, and a business phone number. You will use
the validation controls to ensure the e‑mail address is in a valid format, and that at least one of the two
phone numbers is filled in. To make sure users enter a correct e‑mail address, they are asked to enter
it twice. If you don’t like this behavior, you can simply delete the row with the text box for the second
e‑mail address and ignore the CompareValidator.

	1.	 Open ContactForm.ascx from the Controls folder again and switch it to Design View.

	2.	 In the second column, drag five additional text boxes in the empty table cells between the text box
for the name and the Send button. From top to bottom, name the new controls by setting their ID
as follows:

EmailAddress➤➤

ConfirmEmailAddress➤➤

PhoneHome➤➤

PhoneBusiness➤➤

Comments➤➤

	3.	 Set the TextMode property of the Comments control to MultiLine and then make the control a
little wider and taller in the designer so it’s easier for a user to add a comment.

502211c09.indd 307 2/19/10 10:00:06 AM

308  ❘  Chapter 9   Validating User Input

	4.	 In the first cell of the rows to which you added the TextBox controls, add the text as shown in
Figure 9-5.

Figure 9-5

	5.	 In the last cell of the row for the first e‑mail address, drag a RequiredFieldValidator and a
RegularExpressionValidator. In the last cell of the row for the second e‑mail address, drag a
RequiredFieldValidator and a CompareValidator. Finally, in the last cell for the comments
row, drag a RequiredFieldValidator. When you’re done, your form looks like Figure 9-6.

Figure 9-6

	6.	 For each of the five validation controls you added, open the Properties Grid and set the Text prop-
erty to an asterisk (*), the Display property to Dynamic and the CssClass to ErrorMessage. To
do this for all controls at once, select the first validator control, then press the Ctrl key and click
the others. When you make changes to the Properties Grid while you’ve selected multiple controls,
the changes are applied to all of them.

502211c09.indd 308 2/19/10 10:00:07 AM

Gathering Data from the User  ❘  309

	7.	 Next, set the remaining properties for the controls as shown in the following table.

Control Properties You Need to Set

RequiredFieldValidator

(for the first e‑mail address)

ErrorMessage: Enter an e‑mail address

ControlToValidate: EmailAddress

RegularExpressionValidator ErrorMessage: Enter a valid e‑mail address

ControlToValidate: EmailAddress

RequiredFieldValidator

(for the second e‑mail address)

ErrorMessage: Confirm the e‑mail address

ControlToValidate: ConfirmEmailAddress

CompareValidator ErrorMessage: Retype the e‑mail address

ControlToCompare: EmailAddress

ControlToValidate: ConfirmEmailAddress

RequiredFieldValidator

(for the Comments field)

ErrorMessage: Enter a comment

ControlToValidate: Comments

	8.	 Still in Design View, click the
RegularExpressionValidator once, open its Properties
Grid, and locate the ValidationExpression property.
When you click the property in the grid, the grid shows a
button with an ellipsis. When you click that button you get
a dialog box that enables you to select a regular expression,
shown in Figure 9-7.

	9.	 Click Internet e‑mail address from the list and note that
VWD inserts a long regular expression in the Validation
Expression box. Click OK to add the property to the
control and dismiss the dialog box.

	10.	 Save all the changes and then request the Contact.aspx page from the About folder in your browser.
If you get errors, make sure you set all the ControlToValidate properties on the relevant controls
as shown earlier. Play around with the various validation controls by leaving out required data or
by entering bogus data. Only when you have entered all required fields and typed the same e‑mail
address in both text boxes will the page submit to the server. At this stage, you will only see the red
asterisks appear to give an indication of the problem. After you have seen how these validators work,
you will learn how to use the ValidationSummary to provide more detailed information to the user.

Figure 9-7

502211c09.indd 309 2/19/10 10:00:07 AM

310  ❘  Chapter 9   Validating User Input

How It Works

Just like the RequiredFieldValidator control, the other validation controls emit JavaScript to the cli-
ent, which is triggered when you click the Send button or when the value of one of the client controls is
changed. The CompareValidator works by looking at the value of two different controls. Only when
both contain the same data will it return true. It’s important to realize that the CompareValidator
control does not trigger its validation code when the text boxes are empty. Therefore, it’s important to
hook up a RequiredFieldValidator control as well. This control first makes sure the user entered at
least some data and then the CompareValidator control ensures the text is the same in both text boxes.

The RegularExpressionValidator control works by checking the pattern of the data that it is validat-
ing. If you look at the ValidationExpression property of the control, you see a long, cryptic string.
This pattern ensures that the e‑mail address contains some text, optionally followed by some separation
character like a dash (-) or period, followed by more text. It also ensures there’s an @ symbol in the
address, followed by a domain name, a period, and then at least one more character to represent the
top-level domain like .com, .nl, or .co.uk. With this expression, you@yourprovider.com is consid-
ered a valid e‑mail address. So is a@a.a, whereas you@you isn’t.

Note that the RegularExpressionValidator control only roughly checks the syntax of the e‑mail
address. It’s still perfectly possible to enter a non-existent e‑mail address that just looks valid or even
an invalid e‑mail address as a@a.a. However, in many cases, this validator is good enough to filter out
common typos that users make when entering e‑mail addresses.

The validation controls you have seen so far are very easy to use. You add them to a page, set a few
properties, and then they do all the hard work for you. However, they do not support every pos-
sible validation scenario you may come up with. For example, what if you wanted to ensure that a
user entered at least one of the two phone numbers? And what if you wanted to present your users
with a full list of all the errors they made in the form? This is where the CustomValidator and the
ValidationSummary controls come in.

The CustomValidator and ValidationSummary Controls

The CustomValidator control enables you to write custom validation functions for both the client
(in JavaScript) and the server (using VB.NET or C#). This gives you great flexibility with regard to
the data you want to validate and the rules you want to apply.

The ValidationSummary control provides the user with a list of errors that it retrieves from the
individual validation control’s ErrorMessage properties. It can display these errors in three different
ways: using a list embedded in the page, using a JavaScript alert box, or using both at the same time.
You control this setting with the ShowMessageBox and ShowSummary properties. Additionally, the
DisplayMode property enables you to change the way the list of errors is presented. The default set-
ting is BulletList where each error is an item in a bulleted list, but other options are List (without
bullets) and SingleParagraph.

You learn how to write client- and server-side validation methods and how to use the ValidationSummary
control in the following exercise.

502211c09.indd 310 2/19/10 10:00:07 AM

Gathering Data from the User  ❘  311

Writing Client- and Server-Side Validation MethodsTry It Out	

In this exercise you see how to use the CustomValidator in your page to ensure at least one of the two
phone numbers is entered. The validation is carried out at the client and at the server. Additionally, you
see how to use the ValidationSummary control to provide feedback to your users about the errors they
made in the form.

	1.	 Go back to the ContactForm.ascx user control in VWD and switch it to Design View. Right-click
the row with the Button control in it (right-click a cell, not the button) and choose Insert ➪ Row
Below from the context menu to insert a new table row. Alternatively, you can click in a cell of the
row to select it and then press Ctrl+Alt+down arrow to have the row inserted for you as well.

	2.	 Select the three cells of the row you just inserted with your mouse, right-click them, and choose
Modify ➪ Merge Cells to create a single cell that spans all three columns.

	3.	 From the Validation category of the Toolbox, drag a ValidationSummary control into this newly
created cell and set its CssClass property to ErrorMessage.

	4.	 In the empty cell after the text box for the Home phone number, drag a CustomValidator control
and set the following properties.

Property Value

CssClass ErrorMessage

Display Dynamic

ErrorMessage Enter your home or business phone number

Text *

ClientValidationFunction ValidatePhoneNumbers

	5.	 Double-click the CustomValidator control in Design View to have VWD write an event handler
for the ServerValidate event. Add the following code to the handler:

VB.NET

Protected Sub CustomValidator1_ServerValidate(ByVal source As Object,
 ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs) _
 Handles CustomValidator1.ServerValidate
 If Not String.IsNullOrEmpty(PhoneHome.Text) Or
 Not String.IsNullOrEmpty(PhoneBusiness.Text) Then
 args.IsValid = True
 Else
 args.IsValid = False
 End If
End Sub

502211c09.indd 311 2/19/10 10:00:07 AM

312  ❘  Chapter 9   Validating User Input

C#

protected void CustomValidator1_ServerValidate(object source, ServerValidateEventArgs args)
{
 if (!string.IsNullOrEmpty(PhoneHome.Text) ||
 !string.IsNullOrEmpty(PhoneBusiness.Text))
 {
 args.IsValid = true;
 }
 else
 {
 args.IsValid = false;
 }
}

	6.	 Switch to Markup View of the user control and add the following block of JavaScript code right
before the table with the controls:

<script type=”text/javascript”>
 function ValidatePhoneNumbers(source, args)
 {
 var phoneHome = document.getElementById(‘<%= PhoneHome.ClientID %>’);
 var phoneBusiness = document.getElementById(‘<%= PhoneBusiness.ClientID %>’);
 if (phoneHome.value != ‘’ || phoneBusiness.value != ‘’)
 {
 args.IsValid = true;
 }
 else
 {
 args.IsValid = false;
 }
 }
</script>
<table class=”style1”>

If you find that VDW is adding your opening curly braces ({) at the end of a line, rather than on
their own line, choose Tools ➪ Options from the main menu. Then expand the path Text Editor ➪
JScript ➪ Formatting and check off both items in the New Lines category. This is purely a format-
ting preference; the JavaScript runs fine with or without the curly brace on its own line.

	7.	 Save all the changes by pressing Ctrl+Shift+S and then request the page Contact.aspx in your
browser. Note that you can’t submit the form if you haven’t at least entered one of the two phone
numbers. Also note that the ValidationSummary control shows a list of all the problems with the
data entered in the form. The client-side JavaScript function ValidatePhoneNumbers now ensures
that you enter at least one phone number before you can submit the page back to the server.
Figure 9-8 shows how the page ends up in Google Chrome.

	8.	 Go back to VWD and click the ValidationSummary control in Design View. On the Properties
Grid, change ShowMessageBox to True and ShowSummary to False. (Quick tip: you can easily
choose the next item in a drop-down list on the Properties Grid by double-clicking the value. For
Booleans, this means that if you double-click False it turns to True and vice versa). Also, set its
HeaderText property to: “Please correct the following errors before you press the Send button:”.

502211c09.indd 312 2/19/10 10:00:07 AM

Gathering Data from the User  ❘  313

Figure 9-8

	9.	 Open the page in the browser again and click the Send but-
ton once more. Note that instead of the inline list with
errors you now get a client-side alert, shown in Figure 9-9.
The list of errors is preceded with the HeaderText of the
ValidationSummary.

How It Works

When you added the CustomValidator control, you set up two event handlers: one for the client- and
one for the server-side validation check, both in bold in the following snippet:

<asp:CustomValidator ID=”CustomValidator1” runat=”server” ErrorMessage=”Enter your
 home or business phone number” ClientValidationFunction=”ValidatePhoneNumbers”
 OnServerValidate=”CustomValidator1_ServerValidate”
 Display=”Dynamic”>*</asp:CustomValidator>

If you’re using VB.NET, you won’t see the OnServerValidate attribute because that is set up in the
Code Behind using the Handles keyword.

The JavaScript function ValidatePhoneNumbers you set in the ClientValidationFunction is trig-
gered at the client when you click the Send button. This function is defined in the markup section of the
user control and contains two references to the text boxes for the phone numbers:

 var phoneHome = document.getElementById(‘<%= PhoneHome.ClientID %>’);
 var phoneBusiness = document.getElementById(‘<%= PhoneBusiness.ClientID %>’);

Figure 9-9

502211c09.indd 313 2/19/10 10:00:07 AM

314  ❘  Chapter 9   Validating User Input

The calls to the ClientID are wrapped in a server-side <%= %> block. This code runs at the server, and
then returns the ClientID of the control to the client. If you look at the HTML for the Contact page in
the browser, you find the following code:

function ValidatePhoneNumbers(source, args)
{
 var phoneHome = document.getElementById(‘cpMainContent_ContactForm1_PhoneHome’);
 var phoneBusiness =
 document.getElementById(‘cpMainContent_ContactForm1_PhoneBusiness’);
 if (phoneHome.value != ‘’ || phoneBusiness.value != ‘’)

Here you can see how the server-side ClientID properties of the controls have been transformed into
their client id counterparts. This is a much better solution than hard-coding the id attributes of the
text boxes in the final HTML, because they can easily be changed by the ASP.NET runtime. You saw
how and why this happened in the preceding chapter.

To make the final JavaScript in the browser slightly shorter and easier to read, you can use the
ClientIDMode property you saw in the preceding chapter to “fix” the IDs of the phone number con-
trols. Because it’s unlikely you will have two ContactForm user controls in a single page, you can safely
assume you won’t end up with two client controls with the same name if you fixate the client control
IDs. In order to do this, you need to set the ClientIDMode for these two controls to Static, like this:

<asp:TextBox ID=”PhoneHome” runat=”server” ClientIDMode=”Static” />
…
<asp:TextBox ID=”PhoneBusiness” runat=”server” ClientIDMode=”Static” />

Because the control IDs are now fixed, they end up as-is in the final HTML:

var phoneHome = document.getElementById(‘PhoneHome’);
var phoneBusiness = document.getElementById(‘PhoneBusiness’);

Because the controls now have a fixed client ID, you could also get rid of the ClientID property alto-
gether in the JavaScript in the user control and directly use the following code there:

var phoneHome = document.getElementById(‘PhoneHome’);
var phoneBusiness = document.getElementById(‘PhoneBusiness’);

This may be a bit easier to type and use, but at a cost: if you rename any of these server controls,
your code will break without a good error message or warning. So it’s still recommended to use the
ClientID to get the control’s client ID at runtime.

Eventually, the client IDs are passed to the JavaScript function getElementById on the document object
to get a reference to their respective text boxes in JavaScript. The code then examines the value proper-
ties of these two text box controls. If one of them is not an empty string, the validation succeeds. But
how does the ValidatePhoneNumbers method report back to the validation mechanism that the vali-
dation succeeded or not? When the ASP.NET validation mechanism calls the ValidatePhoneNumbers
method it passes two arguments: source, which is a reference to the actual CustomValidator in
the HTML, and args. The args object exposes an IsValid property that enables you to determine
whether or not the validation succeeded:

if (phoneHome.value != ‘’ || phoneBusiness.value != ‘’)
{
 args.IsValid = true;
}

502211c09.indd 314 2/19/10 10:00:07 AM

Gathering Data from the User  ❘  315

else
{
 args.IsValid = false;
}

With this code, if both text boxes are empty, IsValid is set to false, so validation won’t succeed, stop-
ping the form from being submitted. If at least one of the text boxes contains a value, IsValid is set to
true. In this example, the source argument is not used, but you could use it to highlight or otherwise
change the validation control based on whether or not it’s valid.

At the server, the CustomValidator control calls the server-side validation method, which performs the
same check:

VB.NET

If Not String.IsNullOrEmpty(PhoneHome.Text)
 Or Not String.IsNullOrEmpty(PhoneBusiness.Text) Then
 args.IsValid = True
Else
 args.IsValid = False
End If

C#

if (!string.IsNullOrEmpty(PhoneHome.Text) ||
 !string.IsNullOrEmpty(PhoneBusiness.Text)
{
 args.IsValid = true;
}
else
{
 args.IsValid = false;
}

By checking the data at the client and at the server, you ensure your system only accepts valid data.
Even when the browser doesn’t support JavaScript (possibly because the user turned it off deliberately)
your data is still checked at the server. However, it’s important to realize that you still need to check
whether the page is valid before you work with the data submitted to it. You do this by checking the
IsValid property of the page:

VB.NET

If Page.IsValid Then
 ‘ OK to proceed
End if

C#

if (Page.IsValid)
{
 // OK to proceed
}

The IsValid property returns True when all the controls in the page or in the active ValidationGroup
are valid. By checking the IsValid property on the server before you work with the data, you can be

502211c09.indd 315 2/19/10 10:00:08 AM

316  ❘  Chapter 9   Validating User Input

sure that the data is valid according to your validation controls, even if the user turned off JavaScript in
the browser, and sent the form to the server without any client-side checks. You see the IsValid prop-
erty used again later in this chapter, when sending e‑mail is discussed.

Besides the validation controls you have seen so far, ASP.NET comes with another validation mech-
anism, which is discussed next.

Understanding Request Validation
By design, an ASP.NET page throws an exception whenever one of the controls on a page contains
content that looks like HTML tags. For example, you see the error shown in Figure 9-10 when you
enter <h1>Hello World</h1> or <script type=”text/javascript”>alert(‘Hello World’);
</script> as the contents for the comments text box in the contact form.

Figure 9-10

The ASP.NET runtime does this to prevent users from entering HTML or JavaScript that can poten-
tially mess with the design or workings of your web site. If you’re sure you want to allow your users
to enter HTML, you can disable request validation by setting the ValidateRequest attribute in the
@ Page directive to False:

<%@ Page Inherits=”Contact” Title=”Contact Us” ValidateRequest=”False” %>

With this setting set to False, users can enter HTML without causing an error. Just make sure you
really want to allow users to enter HTML when you set ValidateRequest to False.

Processing Data at the Server

The information that a user inputs on your Web Forms is typically not the only data that makes
your web site an interactive, data-driven system. In most web sites, you have information coming
from other data sources as well, such as databases, text, XML files, and web services. In addition,
there is also data going out of your system. You may want to send an e‑mail to the owner of the

502211c09.indd 316 2/19/10 10:00:08 AM

Processing Data at the Server  ❘  317

web site whenever someone posted information through the contact page or you may want to notify
people whenever you add a new feature or review to the web site. For these scenarios, it’s important
to understand how ASP.NET 4 enables you to send e‑mail. This is discussed in the next section.

Sending E‑mail from Your Web Site
Writing code that sends e‑mail from an ASP.NET page is pretty straightforward. Inside the System
.Net.Mail namespace you find a number of classes that make it easy to create and send e‑mail
messages. These classes enable you to create new messages; add addressees in the To, CC, and Bcc
fields; add attachments; and, of course, send the messages.

The following table describes four classes that you typically work with when sending e‑mail from a
.NET application.

Class Description

MailMessage This class represents the message you’re going to send. It has properties such as

Subject and Body to set the message contents; To, CC, and Bcc properties to set

the addressees; and an Attachments collection to attach files to the message.

MailAddress This class represents a sender or receiver address used in the e‑mail. It has a few

constructor overloads that enable you to set the e‑mail address and display name.

Attachment This class represents files you can attach to a MailMessage. When you construct

an Attachment instance, you can pass in the name of the file you want to send.

You then add the attachment to the MailMessage using the Add method of its

Attachments collection.

SmtpClient This class is used to send the actual message. By default, an instance of this class

checks the web.config file for settings such as the SMTP server (which stands

for Simple Mail Transfer Protocol) to send the mail to and an optional user name

and password that is used for sending e‑mail.

Configuring Your Web Site for Sending E‑mail

Although the code to send e‑mail is pretty easy, configuring your application and network can often
be a bit trickier. The machine you are using to send e‑mail must be able to access an SMTP server,
either locally available on your network or over the Internet. In most cases, you should use the SMTP
server that you also use in your e‑mail client (for example, Microsoft Outlook). If you’re hosting your
site with an external hosting party, you need to use the SMTP server they provide. Contact your net-
work administrator or your ISP if you are unsure about your SMTP server.

When you have the address of the SMTP server, you can configure it globally in the web.config file
in the <system.net> element. When you are using the SMTP server from your ISP, the configura-
tion setting looks like this:

 <system.net>
 <mailSettings>
 <smtp deliveryMethod=”Network” from=”Your Name <you@yourprovider.com>”>
 <network host=”smtp.yourprovider.com” />

502211c09.indd 317 2/19/10 10:00:08 AM

318  ❘  Chapter 9   Validating User Input

 </smtp>
 </mailSettings>
 </system.net>
 ...
</configuration>

The <system.net> element must be added as a direct child of the web.config file’s root element
<configuration>. Within <system.net> you add a <mailSettings> element, which in turn contains an
<smtp> element. Finally, the <network> element has a host attribute that points to your SMTP server.

The <smtp> element accepts an optional from attribute that lets you set the name and e‑mail address
of the sender in the format Name <E‑mail Address>. Because the angle brackets (< >) in XML have
special meaning, you need to escape them with < and >. When you send e‑mail programmati-
cally, you can override this From address as you see in the next Try It Out exercise.

If your ISP requires you to authenticate before you can send the e‑mail or they want you to use a dif-
ferent port number, you can add this information to the <network /> element:

<smtp deliveryMethod=”Network”>
 <network host=”smtp.yourprovider.com“ userName=”UserName“ password=”Password“
 port=”587“ />
</smtp>

Some mail servers ​— ​like the one supplied by Gmail ​— ​require you to use SSL, a technique that
encrypts the data going to the mail server to improve security. In ASP.NET prior to version 4,
you had to enable SSL programmatically in your own code. Fortunately, with the inclusion of the
enableSsl attribute on the <network /> element, this is no longer the case. To use a Gmail server
or any other mail server that requires SSL, you use a <network /> element that looks like this:

<network enableSsl="true" host="smtp.gmail.com" password="YourPassword"
 userName="YourAccountName@gmail.com" />

Don't forget to enter your password and user name ​— ​which in the case of Gmail is your full Gmail
e-mail address.

During development there’s an easier way to handle mail sent by your application: drop it in a folder on
your local hard drive directly. To do this, create a folder like C:\TempMail. You need to create the folder
yourself because it won’t be created automatically. Then configure the <smtp /> element as follows:

<smtp deliveryMethod=”SpecifiedPickupDirectory”>
 <specifiedPickupDirectory pickupDirectoryLocation=”C:\TempMail” />
</smtp>

With these settings in web.config, your messages are not sent over the network, but are dropped as
physical files (with an .eml extension) in the folder you configured in the pickupDirectoryLocation
attribute. You can read these files with mail clients like Windows Mail (on Vista) or Windows Live
Mail (which you can download from the Internet). I prefer this setting during development over the
networked version because mail arrives instantly, and doesn’t clutter up my mail account or Inbox.

Refer to the online MSDN documentation at http://tinyurl.com/yz59sb4 for more information
about the different settings that the <mailSettings> element takes.

502211c09.indd 318 2/19/10 10:00:08 AM

Processing Data at the Server  ❘  319

Creating E‑mail Messages

To create and send an e‑mail message, you need to carry out four steps. First, you need to create an
instance of the MailMessage class. You then configure the message by adding a body and a subject.
The next step is to provide information about the sender and receivers of the message, and finally
you need to create an instance of the SmtpClient class to send the message. The following exercise
shows you how to code these four steps.

Sending E‑mail MessagesTry It Out	

In this exercise, you create a simple page in the Demos folder. The code in this page creates an e‑mail
message that is sent when the page loads. In a later exercise you modify the contact form so it can send
the user’s response by e‑mail.

	1.	 Under the Demos folder create a new file called Email.aspx. Make sure it’s based on your own
base page template so that it has the right master page and inherits from BasePage automatically.
Change the page’s Title to E‑mail Demo.

	2.	 Switch to the Code Behind by pressing F7 and at the top of the file, before the class definition, add
the following statement to make the classes in the System.Net.Mail namespace available to your
code:

VB.NET

Imports System.Net.Mail

C#

using System.Net.Mail;

	3.	 Add the following code to a Page_Load handler. If you’re using VB.NET you need to set up the
handler first using the two drop-down lists at the top of the Document Window (or by double-
clicking the page in Design View):

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim myMessage As MailMessage = New MailMessage()
 myMessage.Subject = “Test Message”
 myMessage.Body = “Hello world, from Planet Wrox”
 myMessage.From = New MailAddress(“you@yourprovider.com”, “Sender Name”)
 myMessage.To.Add(New MailAddress(“you@yourprovider.com”, “Receiver Name”))

 Dim mySmtpClient As SmtpClient = New SmtpClient()
 mySmtpClient.Send(myMessage)
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 MailMessage myMessage = new MailMessage();
 myMessage.Subject = “Test Message”;

502211c09.indd 319 2/19/10 10:00:08 AM

320  ❘  Chapter 9   Validating User Input

 myMessage.Body = “Hello world, from Planet Wrox”;
 myMessage.From = new MailAddress(“you@yourprovider.com”, “Sender Name”);
 myMessage.To.Add(new MailAddress(“you@yourprovider.com”, “Receiver Name”));

 SmtpClient mySmtpClient = new SmtpClient();
 mySmtpClient.Send(myMessage);
}

Change the e‑mail addresses and names in the two lines that set the From and To addresses to
your own. If you have only one e‑mail address, you can use the same address for the sender and
the receiver.

	4.	 Open web.config and right before the closing </configuration> tag, add the following settings:

 <system.net>
 <mailSettings>
 <smtp deliveryMethod=”Network”
 from=”Your Name <you@yourprovider.com>”>
 <network host=”smtp.yourprovider.com“ />
 </smtp>
 </mailSettings>
 </system.net>
</configuration>

Don’t forget to change smtp.yourprovider.com to the name of your SMTP server. Also, be sure
to enter your name and e‑mail address in the from attribute. If necessary, add the userName,
password, and port attributes to the <network> element as shown earlier. If you're using Gmail
or another server that requires SSL for sending your e-mail, your <network /> element should
look like this:

<network enableSsl="true" userName="YourAccountName@gmail.com"
 password="YourPassword" host="smtp.gmail.com" />

Check with your host for specific requirements concerning the port number when SSL is used;
typical port numbers include 465 and 587.

	5.	 Save all changes, switch back to Email.aspx, and request it in your browser. After a while, you
should receive an e‑mail message at the address you specified in step 3 of this exercise or in your
local pickup folder.

COMMON MISTAKES  ​If you get an error, there are a couple of things you can
check. First, make sure you entered the right SMTP server in web.config. You
may need to talk to your Internet provider or network administrator to get the
right address and optionally a user name and password. Also make sure that
the mail server you are using actually allows you to send messages. If you get
an error such as “The SMTP server requires a secure connection or the client
was not authenticated,” your provider may require you to log in or to use SSL
to secure the connection. If that’s the case, check the user name, password
and port number in web.config or try setting the enableSsl attribute of the
<network /> element as shown earlier.

502211c09.indd 320 2/19/10 10:00:08 AM

Processing Data at the Server  ❘  321

Finally, if you get the error “The specified string is not in the form required for an
e‑mail address,” check if you entered a valid e‑mail address in the from attri-
bute in the web.config file. You get this error if you leave out the @ symbol or
make some other syntax error.

If you can’t make sending mails from your local machine work, you can always
use the SpecifiedPickupDirectory delivery option to store the files on your
local machine.

How It Works

You added the following Imports or using statement to the Code Behind file:

VB.NET

Imports System.Net.Mail

C#

using System.Net.Mail;

This statement is used to make the classes in this namespace available in your code without prefixing
them with their full namespace. This enables you, for example, to create a MailMessage instance
like this:

VB.NET

Dim myMessage As MailMessage = New MailMessage()

C#

MailMessage myMessage = new MailMessage();

Without the Imports or using statement, you would need this longer code instead:

VB.NET

Dim myMessage As System.Net.Mail.MailMessage = New System.Net.Mail.MailMessage()

C#

System.Net.Mail.MailMessage myMessage = new System.Net.Mail.MailMessage();

After the Imports / using statement, the code creates a new MailMessage object and sets its Subject
and Body properties. The code then assigns addresses for the sender and recipient of the e‑mail message:

VB.NET

myMessage.From = New MailAddress(“you@yourprovider.com”, “Sender Name”)
myMessage.To.Add(New MailAddress(“you@yourprovider.com”, “Receiver Name”))

502211c09.indd 321 2/19/10 10:00:08 AM

322  ❘  Chapter 9   Validating User Input

C#

myMessage.From = new MailAddress(“you@yourprovider.com”, “Sender Name”);
myMessage.To.Add(new MailAddress(“you@yourprovider.com”, “Receiver Name”));

The From property of the MailMessage is of type MailAddress, so you can assign a new MailAddress
directly. The constructor of the MailAddress class accepts the e‑mail address and friendly name as
strings so you can create and assign the From address with a single line of code.

The To property of the MailMessage class is a collection, so you cannot assign a MailAddress directly.
Instead, you need to use the Add method to assign an address. This also enables you to add multiple
recipients by calling To.Add multiple times, each time passing in a different MailAddress instance. You
use the CC and Bcc properties in a similar way to assign e‑mail addresses to the carbon copy and blind
carbon copy fields of an e‑mail message.

The final two lines of the code send out the actual message:

VB.NET

Dim mySmtpClient As SmtpClient = New SmtpClient()
mySmtpClient.Send(myMessage)

C#

SmtpClient mySmtpClient = new SmtpClient();
mySmtpClient.Send(myMessage);

When the Send method is called, the SmtpClient scans the web.config file for a configured SMTP
server or local drop folder. It then contacts that server and delivers the message or saves it locally.

In the preceding Try It Out exercise, the body text for the e‑mail message is hardcoded. This isn’t
always the best solution because it means you need to scan and change your code whenever you
want to change the text. It’s often better to use a text-based template instead. You see how to do this
in the next section.

Reading from Text Files
The .NET Framework comes with a few handy classes and methods that make working with files
very easy. For example, the File class located in the System.IO namespace enables you to read
from and write to files, create and delete files, and move files around. This class contains only static
methods, which means you don’t have to create an instance of the class first. Instead, you directly
call methods on the File class. For example, to read the complete contents of a text file, you can use
the following code:

VB.NET

Dim myContents As String = System.IO.File.ReadAllText(“C:\MyFile.txt”)

C#

string myContents = System.IO.File.ReadAllText(@”C:\MyFile.txt”);

502211c09.indd 322 2/19/10 10:00:09 AM

Processing Data at the Server  ❘  323

In this example, the file name in C# is prefixed with an @ symbol, to avoid the need to prefix each
backslash (\) with an additional backslash. In C#, the backslash has a special meaning (it’s used to
“escape” other characters that have a special meaning), so to use it in a string you normally need
to prefix it with another backslash. Using the @ symbol tells the compiler that it should treat each
backslash it finds as literal, ignoring the special meaning of the character. It also preserves any line
breaks inside the string.

The following table lists the most common methods of the File class that enable you to work with files.

Method Value

AppendAllText Appends a specified string to a text file. If the file does not exist, it’s created

first.

Copy Copies a file from one location to another.

Delete Deletes the specified file from disk.

Exists Checks if the specified file exists on disk.

Move Moves the specified file to a different location.

ReadAllText Reads the contents of a text file.

WriteAllText Writes the contents of a string to a new file and overwrites the target file if it

already exists.

You can use these methods for all kinds of purposes. For example, when a user has uploaded a file,
you can use the Move method to move it to a different folder. Additionally, when you want to get rid
of uploaded files that you don’t need anymore, you use the Delete method.

The ReadAllText method is useful to read the complete contents of a text file. For example, when
sending text by e‑mail, you could store the body text of the e‑mail in a text file. When you’re about
to send the e‑mail, you call ReadAllText and assign the contents that this method returns to the
body of the e‑mail. You see how this works in the following Try It Out.

Sending Mail from the ContactForm User ControlTry It Out	

This exercise shows you how to use e‑mail to send the user data from the contact form to your own
Inbox. As the body of the e‑mail message, the code reads in a text file that contains placeholders. These
placeholders are filled with the actual user data from the form and then sent by e‑mail.

	1.	 Start by adding a new text file to the App_Data folder in your web site. If you don’t have the App_
Data folder yet, right-click the web site and choose Add ASP.NET Folder ➪ App_Data. Create the
text file by right-clicking the App_Data folder and choosing Add New Item. Then click Text File
and name the file ContactForm.txt.

502211c09.indd 323 2/19/10 10:00:09 AM

324  ❘  Chapter 9   Validating User Input

	2.	 Enter the following text in the text file, including the placeholders wrapped in a pair of double hash
symbols:

Hi there,

A user has left the following feedback at the site:

Name: ##Name##
E‑mail address: ##Email##
Home phone: ##HomePhone##
Business phone: ##BusinessPhone##
Comments: ##Comments##

Save and close the file.

	3.	 Open the Code Behind of the ContactForm.ascx user control and import the following
namespaces (without the comments) at the top of the file:

VB.NET

Imports System.IO ‘ Provides access to the File class for reading the file
Imports System.Net.Mail ‘ Provides access to the various mail related classes

Partial Class Controls_ContactForm
 Inherits System.Web.UI.UserControl

C#

using System.IO; // Provides access to the File class for reading the file
using System.Net.Mail; // Provides access to the various mail related classes

public partial class Controls_ContactForm : System.Web.UI.UserControl

	4.	 Switch to Markup View and add runat=”server” and id=”FormTable” attributes to the table
with the server controls. This way you can hide the entire table programmatically when the form
has been submitted. To do this, locate the opening table tag and modify it like this:

<table class=”style1” runat=”server” id=”FormTable”>

	5.	 Scroll down to the end of the file and right after the closing </table> tag, add a label called
Message. Set its Text property to Message Sent. Hide the label by setting the Visible property
to False:

</table>
<asp:Label ID=”Message” runat=”server” Text=”Message Sent” Visible=”False” />

	6.	 Switch the control into Design View and set ShowSummary of the ValidationSummary back to
True and ShowMessageBox to False. Next, double-click the Send button. Inside the event handler
that VWD adds for you, add the following code:

VB.NET

Protected Sub SendButton_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles SendButton.Click
 If Page.IsValid Then

502211c09.indd 324 2/19/10 10:00:09 AM

Processing Data at the Server  ❘  325

 Dim fileName As String = Server.MapPath(“~/App_Data/ContactForm.txt”)
 Dim mailBody As String = File.ReadAllText(fileName)

 mailBody = mailBody.Replace(“##Name##”, Name.Text)
 mailBody = mailBody.Replace(“##Email##”, EmailAddress.Text)
 mailBody = mailBody.Replace(“##HomePhone##”, PhoneHome.Text)
 mailBody = mailBody.Replace(“##BusinessPhone##”, PhoneBusiness.Text)
 mailBody = mailBody.Replace(“##Comments##”, Comments.Text)

 Dim myMessage As MailMessage = New MailMessage()
 myMessage.Subject = “Response from web site”
 myMessage.Body = mailBody

 myMessage.From = New MailAddress(“you@yourprovider.com”, “Sender Name”)
 myMessage.To.Add(New MailAddress(“you@yourprovider.com”, “Receiver Name”))

 Dim mySmtpClient As SmtpClient = New SmtpClient()
 mySmtpClient.Send(myMessage)

 Message.Visible = True
 FormTable.Visible = False
 End If
End Sub

C#

protected void SendButton_Click(object sender, EventArgs e)
{
 if (Page.IsValid)
 {
 string fileName = Server.MapPath(“~/App_Data/ContactForm.txt”);
 string mailBody = File.ReadAllText(fileName);

 mailBody = mailBody.Replace(“##Name##”, Name.Text);
 mailBody = mailBody.Replace(“##Email##”, EmailAddress.Text);
 mailBody = mailBody.Replace(“##HomePhone##”, PhoneHome.Text);
 mailBody = mailBody.Replace(“##BusinessPhone##”, PhoneBusiness.Text);
 mailBody = mailBody.Replace(“##Comments##”, Comments.Text);

 MailMessage myMessage = new MailMessage();
 myMessage.Subject = “Response from web site”;
 myMessage.Body = mailBody;

 myMessage.From = new MailAddress(“you@yourprovider.com”, “Sender Name”);
 myMessage.To.Add(new MailAddress(“you@yourprovider.com”, “Receiver Name”));

 SmtpClient mySmtpClient = new SmtpClient();
 mySmtpClient.Send(myMessage);

 Message.Visible = true;
 FormTable.Visible = false;
 }
}

Again, make sure you replace the e‑mail addresses for the From and To properties of the
MailMessage with your own.

502211c09.indd 325 2/19/10 10:00:09 AM

326  ❘  Chapter 9   Validating User Input

	7.	 Save all your changes and once again request the page Contact.aspx in the browser. Enter your
details and click the Send button. You’ll see the text Message Sent appear.

	8.	 Check the e‑mail account you sent the e‑mail to and after a while, you should receive an e‑mail
message, similar to Figure 9-11.

Figure 9-11

How It Works

The mail-sending part of this exercise is pretty similar to the demo page you created earlier. What’s
different, however, is where the body text for the mail message comes from. Instead of hardcoding the
body in the Code Behind of the ContactForm control, you moved the text to a separate file. This file
in turn contains a few placeholders that are replaced at runtime with the user’s details. To read in the
entire file at once, you use the following code:

VB.NET

Dim fileName As String = Server.MapPath(“~/App_Data/ContactForm.txt”)
Dim mailBody As String = File.ReadAllText(fileName)

C#

string fileName = Server.MapPath(“~/App_Data/ContactForm.txt”);
string mailBody = File.ReadAllText(fileName);

502211c09.indd 326 2/19/10 10:00:09 AM

Processing Data at the Server  ❘  327

The first line uses Server.MapPath to translate a virtual path into its physical counterpart. By using
the virtual path, it’s easier to move your site to a different location because it doesn’t depend on any
hardcoded paths. Server.MapPath(“~/App_Data/ContactForm.txt”) returns a physical path such as
C:\BegASPNET\Site\App_Data\ContactForm.txt. This path is then fed to the ReadAllText method
of the File class, which opens the file and returns its contents, which are then assigned to the mail‑
Body variable.

NOTE  ​Reading this file every time you need it isn’t very efficient. In Chapter 15
you see how to cache the contents of this file so you don’t have to read it on
every request.

The code then uses a number of calls to the Replace method of the String class to replace the static
placeholders in the message body with the details the user entered in the contact form. The return value
of the Replace method ​— ​the new text with the replaced strings ​— ​is reassigned to the mailBody variable.
After the final call to Replace, the mailBody no longer contains the placeholders, but the user’s details
instead:

VB.NET

mailBody = mailBody.Replace(“##Name##”, Name.Text)
...
mailBody = mailBody.Replace(“##Comments##”, Comments.Text)

C#

mailBody = mailBody.Replace(“##Name##”, Name.Text);
...
mailBody = mailBody.Replace(“##Comments##”, Comments.Text);

The Replace method is case sensitive, so if you find that some placeholders are not replaced correctly,
make sure you used the same capitalization in the code and in the message body.

The placeholders are wrapped in a pair of double hash symbols (##). The hash symbols are arbitrarily
chosen, but help to identify the placeholders, minimizing the risk that you accidentally replace some
text that is supposed to be in the actual message.

In addition to the Replace method, you could also use String.Format to format the message. The
Format method accepts a string containing numeric placeholders wrapped in curly braces and a number
of values (that correspond to the numbers used in the placeholders) to replace the placeholders with.
You see more of this method in the next chapter.

Once the message body is set up, it’s assigned to the MailMessage object, which is then sent using the
SmtpClient, identical to what you saw in an earlier exercise.

502211c09.indd 327 2/19/10 10:00:09 AM

328  ❘  Chapter 9   Validating User Input

When you filled in your details in the contact form and clicked the Send button, you may have noticed
some page flicker, as the page submits to the server and is then reloaded with the success message. This
page flicker can easily be minimized or completely removed using Ajax technologies, which are dis-
cussed in the next chapter.

Practical Tips on Validating Data

The following list provides practical tips on validating data:

Always validate all user input. Whenever you have a public web site on the Internet, you lose ➤➤

the ability to control its users. To stop malicious users from entering bogus data in your sys-
tem, always validate your users’ input using the ASP.NET validation controls.

Always provide useful error messages in your validation controls. Either assign the error mes-➤➤

sage to the ErrorMessage property and leave the Text empty, or use a ValidationSummary
control to show a list of error messages.

Consider using the ➤➤ CssClass attribute of the validation controls to move the style definitions
for the error messages to a separate CSS file instead of setting them directly on the validation
controls.

Whenever you are writing code that sends an e‑mail message, consider moving the body of ➤➤

the e‑mail to a separate text file stored in the App_Data folder because it makes your applica-
tion much easier to maintain.

When storing data in text or XML files, always store them in the ➤➤ App_Data folder that is
designed specifically for this purpose. This way, all your data files are nicely packed together.
More importantly, by default the web server blocks access to the files in this folder so a visi-
tor to your site cannot directly request them.

When sending e‑mails as a test, always send them to an existing and valid address. Even ➤➤

though an address like asdf@test.com may appear to be invalid, there’s a fair chance the
account exists and is monitored, leading to the possible loss of sensitive data like passwords
you may be sending through e‑mail.

Consider using ➤➤ SpecifiedPickupDirectory as the deliveryMethod for SMTP mail dur-
ing development. It avoids the need to send messages over the network, resulting in a faster
response and a cleaner Inbox.

502211c09.indd 328 2/19/10 10:00:09 AM

Summary  ❘  329

Summary

User input is an important aspect of most interactive web sites. The input comes from different sources
in your web site: the contact form you created in this chapter, the query string, and other sources. To
stop users from entering invalid or even dangerous content into your system, it’s important to validate
all input before you work with it.

The biggest benefit of the validation controls that ship with ASP.NET 4 is that they work at the cli-
ent and at the server, enabling you to create responsive forms where users get immediate feedback
about any errors they make, without the need for a full postback. At the same time, the data is vali-
dated at the server, ensuring that data coming from clients that don’t use JavaScript is valid as well.

To store the information that users submit to your site, you have a couple of options. The data can
be stored in a database or a text file or sent by e‑mail. The latter option is particularly useful for
contact forms, so you get an immediate alert when someone leaves a comment at your web site.
Sending e‑mail is a breeze with the classes in the System.Net.Mail namespace. These classes enable
you to create an e‑mail message, add subject, body, sender, and recipient information, and then send
the message using the SmtpClient class.

Exercises	

1.	 To make the ContactForm.ascx user control even more reusable, you can create a string prop-

erty such as PageDescription on it that enables you to set the name of the page that uses the

control. You then add this string to the declaration of the control in the containing page. Finally,

you can add the description to the subject of the message that you send. This way, you can

see from which page the contact form was called. What code do you need to write to make this

happen?

2.	 Why is it so important that you check the value of the IsValid property of the Page when pro-

cessing data? What can happen if you forget to make this check?

3.	 What’s the difference in behavior between the To and the From property of the MailMessage

class?

4.	 When you use a CustomValidator, you can write validation code at the client and at the server.

How do you tell the ASP.NET runtime what client-side validation method to call during the valida-

tion process?

5.	 How do you tell the validation mechanism that validation succeeded or failed in your

CustomValidator routines?

Answers to Exercises can be found in Appendix A.

502211c09.indd 329 2/19/10 10:00:09 AM

330  ❘  Chapter 9   Validating User Input

What You Learned in this Chapter⊲⊲

Client-side validation Validation that takes place in the client’s browser. Mainly serves

as a courtesy to users and offers quick feedback

File class Contains methods that enable you to work with files, including

reading and writing text files

Format method A method on the String class to replace numeric placeholders

in a string with other values

Regular expressions A compact and flexible syntax for finding strings of text in other

strings

Replace method A method on the String class to replace one value in a string

with another

Server-side validation Validation that takes place at the server. You always need

server-side validation to protect your data as client-side valida-

tion can be bypassed

SMTP Server A server responsible for accepting and delivering e‑mail

SSL A technique to encrypt (and thus protect) data flowing between

two machines

System.Net.Mail namespace The namespace for e‑mail classes such as MailMessage,

MailAddress and SmtpClient

Validation controls A set of ASP.NET server controls that enable you to validate

user input at the client and at the server

502211c09.indd 330 2/19/10 10:00:09 AM

ASP.NET AJAX

What You Will Learn in This Chapter:

Using the ➤➤ UpdatePanel control to avoid page flicker

Understanding the ➤➤ ScriptManager control that enables the Ajax

functionality

Using the ➤➤ UpdateProgress control to notify users about progress of

an Ajax operation

Creating web services and page methods that are accessible by your ➤➤

client-side script

Using the client-side ASP.NET AJAX Library ➤➤

Over the past few years, Ajax has popularized itself immensely in the web development com-
munity. Although the technology that drives Ajax has been around for quite some time,
it wasn’t until the beginning of 2005 that it got an official name. Ajax, which stands for
Asynchronous JavaScript And XML, enables your client-side web pages to exchange data with
the server through asynchronous calls. Probably the most popular feature driven by Ajax is the
flicker-free page that enables you to perform a postback to the server without refreshing the
entire page.

To enhance your web site with Ajax features you can choose among different Ajax frame-
works, each offering a set of features and tools including a client-side JavaScript framework to
enable Ajax in the browser and at the server. Although a number of different Ajax frameworks
are available for ASP.NET, the most obvious one is Microsoft ASP.NET AJAX, because it
comes fully integrated with the .NET 4 Framework and Visual Web Developer 2010. The cool
thing about ASP.NET AJAX is that it has great interoperability with other client-side frame-
works (including jQuery, which you learn more about in the next chapter) so you’re not limited
to ASP.NET AJAX alone.

10

502211c10.indd 331 2/19/10 9:59:55 AM

332  ❘  Chapter 10   ASP.NET AJAX

Microsoft ASP.NET AJAX gives you a lot more than flicker-free postbacks. In addition to the con-
trols that make flicker-free pages possible, Microsoft ASP.NET AJAX gives you a few more server
controls to create rich, interactive, and responsive user interfaces.

In addition to the server control-based part of the framework, the ASP.NET AJAX Framework also
comes with a rich client-side framework. This framework enables your JavaScript to communicate
with the server and enables you to access the entire client-side page using an intuitive code model
that works the same, regardless of the browser you’re targeting.

By the end of the chapter, you should have a good understanding of the various server controls
that the ASP.NET AJAX Framework has to offer. You will also have a basic understanding of cre-
ating web services and page methods using ASP.NET and how you can call them from client-side
JavaScript code.

Introducing Ajax

In the first chapter of this book you learned how browsers interact with the server. The browser
makes a request for a page using GET or POST as you’ve seen in Chapter 4 and Chapter 9. The server
processes that page and sends back the resulting HTML. The browser then parses that HTML and
renders the page to the user, optionally downloading any external resources like images, script files,
and CSS style sheets. When a user then interacts with the page (for example, by clicking a button to
submit a filled-in contact form) the page is posted back to the server, after which the entire page is
loaded in the browser again. The left-hand side of Figure 10-1 shows a visual representation of this
process.

Though this model has been used for years to serve web pages, it has a few big drawbacks. First,
because the entire page is loaded after a postback, the HTML sent to the browser is much larger
than it needs to be. Think back to the contact form you created in the previous chapter. Right after
the user has submitted the contact form, the server shows a Label control with the text Message
Sent. It does that by fully loading a new page that hides the form controls and shows the message.
Even though the rest of the page hasn’t changed (the menu, the sidebar, the footer, and so on), they
are still sent from the server to the client. Ideally, you would only want to send back the HTML
that has changed. In the case of the contact form, that could be as little as the text Message Sent.
The right-hand side of Figure 10-1 shows how this works. Rather than sending the entire page as
a response, the server sends a partial response (containing little more than the text Message Sent),
which is then used by the browser to update just the part of the page that has changed, leaving the
rest of the page as it was.

The second drawback of a full page reload has to do with the way the browser renders the page.
Because the entire page is replaced, the browser has to dismiss the old one and then draw the new
one. This causes the page to “flicker,” which results in an unattractive user experience. Ajax tech-
niques can be deployed to overcome these two problems, as you see in the remainder of this chapter.

The concepts behind Ajax have been around for many years. Browsers since Internet Explorer 5 have
shipped with the XMLHttpRequest object that enabled you to make calls to the server from JavaScript
to send and receive data. However, people also used other techniques to emulate the behavior of what
is now called Ajax, including Macromedia Flash, iframe elements, or hidden frames.

502211c10.indd 332 2/19/10 9:59:55 AM

Introducing Ajax  ❘  333

1 2

Traditional
Request

Full Page
Response

Web Server

Traditional Page Processing

Browser

1 2

Ajax
Request

Partial
Response

Web Server

Ajax Page Processing

Browser

Figure 10-1

However, when the term Ajax was introduced, things really took off. In an attempt to stay ahead of
the curve, Microsoft started building ASP.NET AJAX, the Ajax framework that is now fully inte-
grated in ASP.NET and Visual Web Developer 2010. This framework offers a number of benefits
that you as a web developer can take advantage of to create responsive applications.

In particular, ASP.NET AJAX enables you to:

Create flicker-free pages that enable you to refresh portions of the page without a full reload ➤➤

and without affecting other parts of the page

Provide feedback to your users during these page refreshes➤➤

Update sections of a page and call server-side code on a scheduled basis using a timer➤➤

Access server-side web services and page methods and work with the data they return➤➤

Use the rich, client-side programming framework to access and modify elements in your ➤➤

page, and get access to a code model and type system that looks similar to that of the .NET
Framework

ASP.NET AJAX consists of two important parts: the ASP.NET AJAX Server Controls and the
client-side ASP.NET AJAX Library. You see both in the remainder of this chapter where you learn
how to use the ASP.NET AJAX Framework to create rich and interactive web applications. Note
that Ajax itself is a broad subject that cannot be fully covered in a single chapter. If you want to dig
deep into ASP.NET AJAX, check out Wrox’s Professional ASP.NET 3.5 Ajax by Bill Evjen and others
(ISBN: 978-0-470-39217-1). Although it targets the previous version of Ajax, you’ll find a wealth
of information that still applies today.

The nice thing about ASP.NET AJAX is that it is very easy to get started with. Creating a flicker-free
page is a matter of dragging and dropping a few controls from the Toolbox onto your page. When
you understand the basics of the Ajax framework, you can extend your knowledge by looking at

502211c10.indd 333 2/19/10 9:59:56 AM

334  ❘  Chapter 10   ASP.NET AJAX

more advanced topics such as calling web services and using the rich client-side framework to inter-
act with the page.

Using ASP.NET AJAX in Your Projects

ASP.NET AJAX is fully integrated in ASP.NET and VWD, which means you can start using it right
away. Each new ASP.NET 4 web project you create in VWD is already Ajax-enabled. In addition,
the Toolbox contains an AJAX Extensions category with a number of Ajax-related controls that you
can use in your pages. Visual Web Developer also has great support for ASP.NET AJAX, giving you
IntelliSense for the controls at the server as well as for the client-side JavaScript you’ll write to inter-
act with the client page and code running on the server.

Creating Flicker-Free Pages
To avoid full postbacks in your ASPX pages and update only part of
the page, you can use the UpdatePanel server control. For this control
to operate correctly, you also need a ScriptManager control. If you’re
going to use Ajax functionality in many of your ASPX pages, you can
place the ScriptManager in the master page, so it’s available in all pages
that are based on this master. You can only have one ScriptManager
per page, so if you add one to a master page, you can’t add another one
to a content page. In order to access a ScriptManager control that is
defined in a master page from a content page, you can use the ScriptManagerProxy as explained
later. You’ll find these and other Ajax-related server controls in the AJAX Extensions category of the
Toolbox, shown in Figure 10-2.

The following two sections introduce you to the UpdatePanel and ScriptManager controls.
After the introduction you see how to make use of these controls in the pages in your Planet Wrox
web site. Later sections introduce you to the UpdateProgress, Timer, and ScriptManagerProxy
controls.

The UpdatePanel Control

The UpdatePanel control is a key component in creating flicker-free pages. In its most basic applica-
tion, you simply wrap the control around content you want to update, add a ScriptManager to the
page, and you’re done. Whenever one of the controls within the UpdatePanel causes a postback to
the server, only the content within that UpdatePanel is refreshed.

To see what problems the UpdatePanel control solves and how it behaves in a client page, the fol-
lowing Try It Out shows a simple example that uses the panel to avoid page flicker during postbacks.

Adding an UpdatePanel to a PageTry It Out	

In this exercise, you add a Label and a Button control to a page. When you click the button in the
browser, the Text property of the Label is updated with the current date and time at the server.

Figure 10-2

502211c10.indd 334 2/19/10 9:59:56 AM

Using ASP.NET AJAX in Your Projects  ❘  335

To avoid the page flicker typically associated with postbacks, you then wrap the controls in an
UpdatePanel to see how that control affects the behavior.

	1.	 Open the Planet Wrox project in Visual Web Developer.

	2.	 In the Demos folder, create a new Web Form called UpdatePanel.aspx using your custom tem-
plate. Give the page a Title of UpdatePanel Demo.

	3.	 Switch the new page into Design View and drag a Label control and a Button control from the
Toolbox into the cpMainContent placeholder. If the ContentPlaceHolder suddenly gets as small
as the Label, simply drop the Button on top of the Label. The Button is then placed before the
Label but if you now drag the Label on top of the Button again, the two change places.

	4.	 Use the Properties Grid to clear the Text property of the Label control. To do this, right-click the
Text property label in the Properties Grid and choose Reset.

	5.	 Double-click the grey and read-only area of the page in Design View to set up a handler for its
Load event and add the following code to the handler that VWD added for you:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Label1.Text = System.DateTime.Now.ToString()
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Label1.Text = System.DateTime.Now.ToString();
}

	6.	 Save all your changes and press Ctrl+F5 to open the page in your browser. The Label displays the
current date and time. Click the Button control a few times. Note that each time you click the but-
ton, the page flickers and is then redrawn, displaying the updated date and time. Now take a look
at the HTML that is used by the browser (right-click the page in the browser and choose View
Source or View Page Source). Notice how the page contains a span element with the date and time
that was sent from the server.

	7.	 Close your browser, go back into VWD and switch the page UpdatePanel.aspx to Markup View.
Make some room right before the Label control, and then type updatepanel and press Tab. VWD
inserts the code for an UpdatePanel and a <ContentTemplate> for you.

	8.	 Next, cut both the closing </ContentTemplate> and the closing </UpdatePanel> tags and paste
them below the button you created in step 3. You should end up with this markup (although your
control may lack the ID attribute):

<asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <asp:Label ID=”Label1” runat=”server”></asp:Label>
 <asp:Button ID=”Button1” runat=”server” Text=”Button” />
 </ContentTemplate>
</asp:UpdatePanel>

502211c10.indd 335 2/19/10 9:59:57 AM

336  ❘  Chapter 10   ASP.NET AJAX

	9.	 Right before the opening tag of the UpdatePanel, drag a ScriptManager from the AJAX
Extensions category of the Toolbox. Alternatively, type sm followed by the Tab key to insert
the ScriptManager using a code snippet. Your code should look similar to this (although your
ScriptManager may lack the ID attribute and may use a self-closing element when you use a
code snippet):

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” runat=”Server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”></asp:ScriptManager>
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>

	10.	 Save your changes and request the page in the browser again. Click the button a few times to
update the label with the current date and time. Note that there is no page flicker now. It’s as if
only the label is updated on the page. If you look at the source in the browser again you see the
span element that contains the date and time of the very first request. The updates to the label
that were added by clicking the button are not a part of the HTML source because they have been
added dynamically by the Ajax framework to the browser’s internal HTML.

How It Works

By wrapping the content in an UpdatePanel you define a region in your page that you want to refresh
without affecting the entire page. In the example, the Button control inside the UpdatePanel caused a
postback and thus a refresh of just the region the control is defined in. Rather than replacing the entire
page, only the part of the page that is wrapped in the UpdatePanel is refreshed, causing a flicker-free
reload of the page.

If you analyze the data that gets sent from the server to the browser (using a network analysis tool like
Fiddler, which you can download from http://fiddlertool.com) you would see that only a limited
amount of data gets sent to the client. Rather than the full page (weighing around 12KB), only the fol-
lowing data is sent:

1|#||4|233|updatePanel|cpMainContent_ctl00|
11/14/2009 8:46:21 PM
<input type=”submit” name=”ctl00$cpMainContent$Button1” value=”Button”
id=”cpMainContent_Button1” class=”MyButton” style=”background-color:#7A70A4;” />
|0|hiddenField|__EVENTTARGET||0|hiddenField|__
EVENTARGUMENT||0|hiddenField|__LASTFOCUS||1600|hiddenField|__VIEWSTATE|/
wEPDwUJMzU5Mjc3OTcxD2QWAmYPZBYCAgMPZBYKAgUPPCsADQI
...
asyncPostBackControlIDs|||0|postBackControlIDs|||46|updatePanelIDs||tctl00$cpMainConte
nt$ctl00,cpMainContent_ctl00|0|childUpdatePanelIDs|||45|panelsToRefreshIDs||ctl00$cpM
ainContent$ctl00,cpMainContent_ctl00|2|asyncPostBackTimeout||90|16|formAction||Update
Panel.aspx|16|pageTitle||UpdatePanel Demo|119|scriptBlock|ScriptPath|/ScriptResource.
axd?d=p4-mCo3_3Zdf8FVdrAYB5ByMKQUtQlr0TxvHwcFKKzRKu5tGLKlOgeOQvo0myHomX3hZm2cb3pq-S-
yKeS2I5w2&t=e196b05|

Note that I cut out a big piece of content including much of the View State of the page from the middle
(represented by the three dots) to save some space in this book. If you look at this response, you’ll
recognize the HTML for the updated Label and the Button; the two controls that have been defined
within the <ContentTemplate> of the UpdatePanel control. The remaining text is used by the ASP.NET
AJAX Framework to maintain page state (using the __VIEWSTATE field) and to understand where to

502211c10.indd 336 2/19/10 9:59:57 AM

Using ASP.NET AJAX in Your Projects  ❘  337

place the response in the page. Even though a lot of data still gets sent down the wire, it’s far less than
the original full page of around 12KB. This results in a faster response and a better user experience.

When you looked at the source of the page in the browser in step 10 you may have noticed that the
page still contained the original source, not the updated source modified by the Ajax framework. This
sometimes makes it difficult to build, test, and debug Ajax applications because you cannot really see
what data gets sent to the browser. Fortunately, many tools are available that help with this. Besides the
aforementioned Fiddler tool, you’re advised to take a look at the Microsoft Internet Explorer Developer
Toolbar. It ships with Internet Explorer 8 and is accessible through the Tools ➪ Developer Tools menu
option. For earlier versions of Internet Explorer you can download a separate installer at http://
tinyurl.com/IEDevBar.

Another great tool for debugging is Firebug, which integrates nicely with the Firefox browser. You can
get the tool at http://getfirebug.com.

In this exercise, you used two important AJAX Extensions controls. The ScriptManager — that you
placed in UpdatePanel.aspx directly in this exercise — is a requirement for most Ajax functional-
ity to operate correctly. It serves as the bridge between the client page and the Ajax framework and
takes care of things like registering the correct JavaScript files that are used in the browser. The
UpdatePanel is then used to define regions you want to update without reloading the entire page.
You see both controls in more detail in the following sections.

A Closer Look at the UpdatePanel

The UpdatePanel and its content is the only part of the page that is updated when you click a but-
ton (as discussed in the previous exercise). This is the default behavior of an UpdatePanel, where
only its inner contents are refreshed by other server controls defined within the <ContentTemplate>
element. However, the UpdatePanel can do more than this, as you see in the next section.

Common UpdatePanel Properties

The following table lists some of the important properties of the UpdatePanel that enable you to
influence its behavior.

Property Description

ChildrenAsTriggers This property determines whether controls located within the UpdatePanel

can cause a refresh of the UpdatePanel. The default value is True, as you

saw in the previous exercise. When you set this value to False, you have to

set the UpdateMode to Conditional. Note that controls defined within the

UpdatePanel still cause a postback to the server with this property set to

False; they just don’t update the panel automatically anymore.

Triggers The Triggers collection contains PostBackTrigger and

AsyncPostBackTrigger elements. The first is useful if you want to

force a complete page refresh, whereas the latter is useful if you want to

update an UpdatePanel with a control that is defined outside the panel.

continues

502211c10.indd 337 2/19/10 9:59:57 AM

338  ❘  Chapter 10   ASP.NET AJAX

Property Description

RenderMode This property can be set to Block or Inline to indicate whether the

UpdatePanel renders itself as a <div> or element.

UpdateMode This property determines whether the control is always refreshed (the

UpdateMode is set to Always) or only under certain conditions, for example,

when one of the controls defined in the <Triggers> element is causing a

postback (the UpdateMode is set to Conditional).

ContentTemplate Although not visible in the Properties Grid for the UpdatePanel, the

<ContentTemplate> is an important property of the UpdatePanel. It’s

the container in which you place controls as children of the UpdatePanel.

If you forget this required ContentTemplate, VWD gives you a warning.

You see more of the UpdatePanel in later exercises in this chapter.

UpdatePanel Caveats

Useful as the UpdatePanel seems (and is), its usage comes at a price. Although it appears if only
part of the page is refreshed, the entire page (and all of its form data) is still posted back to the
server. At the server, the page still goes through its normal life cycle and then sends back the HTML
that is needed to update the page. However, the data that is sent back isn’t in a very optimal format
because it contains some overhead data (required by ASP.NET AJAX to understand how to interpret
it). This means that the UpdatePanel carries some overhead in terms of form posts, page processing,
and network traffic. Later in this chapter you see some ways to get data to and from the server from
client-side code that minimize this overhead.

As demonstrated in the previous exercise, the UpdatePanel control is capable of refreshing parts of
a page. Controls that are defined either inside the UpdatePanel or outside of it can cause a refresh
of the UpdatePanel. However, in order to function, the UpdatePanel needs a ScriptManager con-
trol that manages the client-side JavaScript, among other things.

The ScriptManager Control

The ScriptManager control serves as the bridge between the client page and the server. It manages
script resources (the JavaScript files used at the client), takes care of partial-page updates as shown
earlier, and handles interaction with your web site for things like web services and the ASP.NET
application services such as membership, roles, and profile. Chapters 16 and 17 dig deeper into
these services from a server perspective.

You usually place the ScriptManager control directly in a content page if you think you need Ajax
capabilities on only a handful of pages. You briefly saw how this worked in the previous Try It Out
exercise. However, you can also place the ScriptManager in a master page so it becomes available
throughout the entire site. You do this in a later exercise in this chapter.

(continued)

502211c10.indd 338 2/19/10 9:59:57 AM

Using ASP.NET AJAX in Your Projects  ❘  339

The ScriptManager class has a number of properties of which most are used in advanced scenarios.
In many situations, like updating sections of a page using the UpdatePanel as you just saw, you
don’t need to change any of the properties of the ScriptManager class. In other scenarios, you may
need to change or set some of its properties. The following table lists some of the more common
properties of the ScriptManager control.

Property Description

AllowCustomErrorsRedirect This property determines whether errors that occur during an

Ajax operation cause the customized error page to be loaded.

The default is True; with a setting of False the error is shown

as a JavaScript alert window in the browser or is hidden from

the client when debugging is disabled. Note that if you haven’t

configured any customized error page, the error is always

shown as a JavaScript alert, regardless of the value of this set-

ting. Chapter 18 talks more about setting up customized error

pages and debugging your application.

AsyncPostBackErrorMessage When you’re not using customized error pages, this property

enables you to customize the error message that users see

when an Ajax error occurs. It enables you to hide the dirty

details from the user and instead present them a more friendly

error message.

EnablePageMethods This property determines whether client code is allowed to call

methods defined in the page. You see how this works later.

EnablePartialRendering This property determines whether the ScriptManager sup-

ports the partial rendering of the page using UpdatePanel

controls. You should leave this setting to True, unless you

want to block the partial updates for the entire page.

EnableCdn With this property set to True, ASP.NET includes links to the

client-side framework files on Microsoft’s Content Delivery

Network, rather than on your own server. This could save you

some bandwidth and may speed up the initial load of the page

if the user already had a cached copy of the files from visiting

another site using these files.

MicrosoftAjaxMode Determines whether the Microsoft AJAX client library is

included. This setting enables you to use the ScriptManager

for server-related tasks (like registering client scripts) without

embedding the client-side framework in the page.

Scripts The <Scripts> child element of the ScriptManager control

enables you to add additional JavaScript files that must be

downloaded by the client at runtime.

continues

502211c10.indd 339 2/19/10 9:59:57 AM

340  ❘  Chapter 10   ASP.NET AJAX

Property Description

CompositeScript Just like the <Scripts> element, the <CompositeScript>

element enables you to add additional JavaScript files. However,

files registered under <CompositeScript> are combined into

a single, downloadable file, minimizing network overhead and

improving performance.

Services The <Services> element enables you to define web services

that are accessible by your client-side pages. You see how to

use web services in the second half of this chapter.

Although the UpdatePanel and the ScriptManager together are all you need to create flicker-free
pages, ASP.NET AJAX offers more to enhance the user’s experience in an Ajax-enabled web site.
One way to improve the user’s experience is by using the UpdateProgress control, discussed next.
Another option is to use the Timer control, which is discussed later in this chapter.

Providing Feedback to Users
Despite the visual problems that postbacks usually cause, they have one big advantage: the user
can see something is happening. The UpdatePanel makes this a little more difficult. Users have no
visual cue that something is happening until it has happened. To tell your users to hold on for a few
seconds while their request is being processed, you can use the UpdateProgress control.

The UpdateProgress Control

You connect the UpdateProgress control to an UpdatePanel using the AssociatedUpdatePanelID
property. Its contents, defined in the <ProgressTemplate> element, are then displayed whenever
the associated UpdatePanel is busy refreshing. You usually put text such as “Please wait” or an
animated image in this template to let the user know something is happening, although any other
markup is acceptable as well.

In addition to the AssociatedUpdatePanelID and <ProgressTemplate> properties, the
UpdateProgress control features the following properties you typically use:

Property Description

DisplayAfter Determines the time in milliseconds that the control waits before it displays its

contents. This is useful when the refresh period is so short that a notification

message would be overkill. The default is 500 milliseconds, which is half a

second.

DynamicLayout Determines whether the control takes up screen real estate when hidden.

This maps directly to the CSS display: none; or visibility: hidden;

properties that you have seen before.

(continued)

502211c10.indd 340 2/19/10 9:59:58 AM

Using ASP.NET AJAX in Your Projects  ❘  341

In the following exercise, you see how to combine the UpdatePanel, the ScriptManager, and the
UpdateProgress to make the contact form user control flicker-free.

Flicker-free Pages — Putting It All TogetherTry It Out	

In this exercise, you modify the user control ContactForm.ascx that you created earlier, wrapping the
entire control in an UpdatePanel so the page doesn’t perform a full postback when you enter a message
and click the Send button. To help users understand that the page is busy when the message is being sent,
you add an UpdateProgress panel to the control. Inside this control you place an animated GIF image
that is available in the code download from this book. Alternatively, you can go to www.ajaxload.info
and create your own animated image.

	1.	 Open the user control ContactForm.ascx from the Controls folder in Markup View and wrap
the entire <table> element and the Label at the bottom of the control in an UpdatePanel with a
<ContentTemplate>. You can do this by typing the code directly in Markup View, by using a code
snippet, or by dragging the control from the Toolbox. Make sure the ID of the UpdatePanel is set
to UpdatePanel1. You should end up with the following code:

<asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <table class=”style1” runat=”server” id=”FormTable”>

 </table>
 <asp:Label ID=”Message” runat=”server” Text=”Message Sent” Visible=”false” />
 </ContentTemplate>
</asp:UpdatePanel>

	2.	 Save the changes to the control and then open the file Frontend.master from the MasterPages
folder. Between the opening <form> tag and the <div> for the PageWrapper, add a ScriptManager
control by dragging it from the Toolbox into the source of the page. You should end up with this
code:

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”></asp:ScriptManager>
 <div id=”PageWrapper”>

	3.	 Save the changes to the master page and close it.

	4.	 Open the UpdatePanel.aspx page you created in an earlier Try It Out and remove the
ScriptManager element. Because this control is now declared in the master page, you can no
longer redefine it in pages that are based on that master. Save and close the page.

	5.	 Open the Contact.aspx page from the About folder in your browser and then fill in the contact
form. Note that as soon as you click the Send button, the form disappears and is replaced with the
label stating that the message is sent. Just as with the earlier example, you’ll notice no page flicker
when the page reloads and displays the text Message Sent.

502211c10.indd 341 2/19/10 9:59:58 AM

342  ❘  Chapter 10   ASP.NET AJAX

	6.	 To keep the user updated on the progress while the message is deliv-
ered to the mail server, you should add an UpdateProgress control
to the page. Inside this control, you add an animated image and some
text informing the user the message is being sent. To add the image,
locate the folder where you extracted the files that come with this
book (at C:\BegASPNET\Resources) with Windows Explorer. Open
the Chapter 10 folder and then the Monochrome folder. Drag the file
PleaseWait.gif from Windows Explorer into the Images folder of
the Monochrome theme under App_Themes. Repeat this process, but
now drag PleaseWait.gif from the DarkGrey folder into its respec-
tive theme’s Images folder. Figure 10-3 shows how both images should
end up.

	7.	 Open the Monochrome.css file, scroll all the way down to the end, and add the following rule:

.PleaseWait
{
 height: 32px;
 width: 500px;
 background-image: url(Images/PleaseWait.gif);
 background-repeat: no-repeat;
 padding-left: 40px;
 line-height: 32px;
}

	8.	 Copy the exact same rule into the DarkGrey.css file for the DarkGrey theme.

	9.	 Switch back to the ContactForm.ascx user control and below the closing tag of the UpdatePanel
at the end of the file, drag an UpdateProgress control from the AJAX Extensions category of the
Toolbox. Set its AssociatedUpdatePanelID to UpdatePanel1, the ID of the UpdatePanel defined
earlier in the page.

	10.	 Between the <UpdateProgress> tags create a <ProgressTemplate>, and within this template,
create a <div> element with its class attribute set to PleaseWait, the CSS class you created in
step 7. Inside the <div> element, type some text to inform your users that they should hold on for
a while. You should end up with this code:

</asp:UpdatePanel>
<asp:UpdateProgress ID=”UpdateProgress1” runat=”server”
 AssociatedUpdatePanelID=”UpdatePanel1”>
 <ProgressTemplate>
 <div class=”PleaseWait”>
 Please Wait...
 </div>
 </ProgressTemplate>
</asp:UpdateProgress>

	11.	 To emulate a long delay while sending out the message so you can see the UpdateProgress con-
trol, add the following line of code to the Code Behind of the control, just after the lines that
change the visibility of the controls in the method that sends out the e‑mail:

Figure 10-3

502211c10.indd 342 2/19/10 9:59:58 AM

Using ASP.NET AJAX in Your Projects  ❘  343

VB.NET

Message.Visible = True
FormTable.Visible = False
System.Threading.Thread.Sleep(5000)

C#

Message.Visible = true;
FormTable.Visible = false;
System.Threading.Thread.Sleep(5000);

	12.	 Save all your changes and open the page Contact.aspx from the About folder once again. Fill in
the required details and click the Send button. Shortly after you click the button, you should see the
UpdateProgress control appear that displays text and an animated image below the form, shown
in Figure 10-4. Shortly after that, the UpdateProgress and the entire form should disappear and
you should be presented with the Message Sent text.

Figure 10-4

COMMON MISTAKES  ​If you don’t see the described behavior, your browser
may be working with an outdated version of the CSS files. Press Ctrl+F5 or
Ctrl+R to get the latest version from the server and try again. Alternatively, you
can clear the browser’s cache.

How It Works

With the UpdatePanel in the user control, everything that falls within the ContentTemplate of the
UpdatePanel will be updated upon postback, without affecting other parts of the page. This way, you
can hide the form with the server controls and replace it with the Message Sent label without causing
any page flicker.

502211c10.indd 343 2/19/10 9:59:58 AM

344  ❘  Chapter 10   ASP.NET AJAX

To inform the user that his or her message is being sent, you also added an UpdateProgress control to
the site. By default, this control will be shown when refreshing the Ajax UpdatePanel it is attached to
takes longer than 500 milliseconds (half a second). The <ProgressTemplate> element for the control
contained a simple <div> element with its class set to PleaseWait. You added the following CSS rule
to the two CSS files for the themes:

.PleaseWait
{
 height: 32px;
 width: 500px;
 background-image: url(Images/PleaseWait.gif);
 background-repeat: no-repeat;
 padding-left: 40px;
 line-height: 32px;
}

This code first sets the dimensions of the Update message to be 500 pixels wide and 32 pixels high.
This is enough to span the width of the content block, giving you enough room for a longer message.

The code then adds the animated image as a background image. To prevent the image from being
repeated in the background, the repeat property is set to no-repeat. Then the left padding is set to 40
pixels. This moves the text in the <div> to the right, so it appears next to the animated image. Finally,
the line-height of the text is set to 32 pixels, the same height as the entire <div>. This centers the
entire text block vertically within the <div> element and aligns it nicely with the animated image.

Finally, you added the following line of code to the handler that sends the message:

System.Threading.Thread.Sleep(5000);

This code halts the execution of the page for 5 seconds (the number you pass to the Sleep method is
expressed in milliseconds) so you can get a good look at the message in the UpdateProgress control.
In production code, you should remove this line, because it slows down the page considerably without
adding any value to the page.

In addition to user-triggered page updates as you saw with the Send button, you can also trigger
page refreshes programmatically at a specified interval, as discussed in the following section.

NOTE  ​When you wrap server-side functionality in an UpdatePanel it may
sometimes be hard to see if an error has occurred and what the exact error
message is. For example, when sending the e‑mail fails, you won’t see the real
error message because it’s hidden in the JavaScript. To make it easier to see
the error message in case something goes wrong, you can temporarily remove
the UpdatePanel from the page, or uncomment its closing and opening tags
using the server-side comments tags <%-- and --%> like this:

<%--<asp:UpdatePanel ID=”up1” runat=”server”><ContentTemplate>--%>
... Existing content goes here
<%--</ContentTemplate></asp:UpdatePanel>--%>

502211c10.indd 344 2/19/10 9:59:59 AM

Using ASP.NET AJAX in Your Projects  ❘  345

The Timer Control
The Timer control that you find in the AJAX Extensions category of the Toolbox is great for execut-
ing server-side code on a repetitive basis. For example, you can use it to update the contents of an
UpdatePanel every 5 seconds. The contents of this UpdatePanel could come from a variety of
sources, such as a database with the latest forum posts on a forum or news items on a news site, an
XML file with information to rotate advertisements in the browser, stock quotes from a stock web
service, and more.

The Timer control is pretty simple to use. At a specified interval, the control fires its Tick event. Inside
an event handler for this event you can execute any code you see fit. The following code snippet shows
the markup for a simple UpdatePanel and a Timer control that you can place inside a content page
based on your master page (because the master page already contains the required ScriptManager):

<asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <asp:Label ID=”Label1” runat=”server”></asp:Label>
 <asp:Timer ID=”Timer1” runat=”server” Interval=”5000” OnTick=”Timer1_Tick” />
 </ContentTemplate>
</asp:UpdatePanel>

NOTE  ​Note that when you’re using VB.NET, you don’t need the OnTick handler
on the Timer control because that is taken care of with the Handles keyword in
the Code Behind file in that language.

When the timer “ticks” it raises its Tick event, which you can handle with the following code:

VB.NET

Protected Sub Timer1_Tick(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Timer1.Tick
 Label1.Text = System.DateTime.Now.ToString()
End Sub

C#

protected void Timer1_Tick(object sender, EventArgs e)
{
 Label1.Text = System.DateTime.Now.ToString();
}

When this code is run in the browser, the label will be updated with the current date and time every
5 seconds. If you want to make it tick slower or faster, you need to adjust its Interval property,
which specifies the time in milliseconds.

This scenario with an auto-updating panel and the ability to refresh the content with a button click
is quite common. The auto-refreshing panel is a non-intrusive way to feed the user the most up-to-
date information from the server. In addition, you could offer your users a button to force a refresh
of the data at any moment they choose. From a coding perspective, you wouldn’t have to change

502211c10.indd 345 2/19/10 9:59:59 AM

346  ❘  Chapter 10   ASP.NET AJAX

much; you would call the same code (preferably wrapped in a separate method) from the Timer’s
Tick event handler and from the Button’s Click event handler.

For more information about the Timer control, check out the MSDN documentation at http://
tinyurl.com/TimerClass.

You have now seen the most important server-side controls that the ASP.NET AJAX Framework has
to offer. In the remainder of this chapter you find a discussion of web services and page methods in
your Ajax-enabled web pages and an introduction of the client-side JavaScript framework. During the
discussion of web services and the client framework, you see how to use the ScriptManagerProxy,
the final control in the AJAX Extensions category of the Toolbox.

Using Web Services and Page Methods in Ajax Web Sites

The ability to call web services and page methods from an Ajax-enabled ASP.NET web site is a great
addition to your web development toolkit. Being able to call a web service or page method means it’s
now much easier to access data at the server from client-side code, giving you a great alternative to
full postbacks. The next section discusses web services, and a later section digs into ASP.NET page
methods.

Before you can create and consume web services in your own application, it’s important to under-
stand what a web service is, and how you define one in your ASP.NET project.

What Are Web Services?
Web services are essentially methods that you can call over the Internet and that can optionally
return data to the calling code. This makes them ideal for exchanging data between different sys-
tems. Because web services are based on solid and well-understood standards, they make it easy to
exchange data between different types of platforms and systems. For example, with a web service
it’s possible to exchange data between an ASP.NET web site running on Microsoft Windows and a
PHP-based site running on Linux. But at the same time, it’s also possible to exchange data between
an ASP.NET web site and a client browser using JavaScript.

The web services in the Planet Wrox project will only be used to have a client page in the browser
talk to the server and exchange data. So, in this site, both the server and the client are in the same
web project — one executes at the client (the JavaScript that calls the web server), the other lives at
the server (the web service itself). From a security point of view, this is the easiest solution because
both parts trust each other.

If you want your client-side pages to talk to a web service on a different domain, you need to set
up security in the browser to allow this. Additionally, you can also use web services to have two
servers or other applications (desktop applications, for example) communicate with each other. In
that case, one application (a Windows desktop application, a PHP or classic ASP web application,
or even another ASP.NET web service) interacts with an ASP.NET web service over the network to
exchange data. Both these scenarios fall outside the scope of this chapter, though.

502211c10.indd 346 2/19/10 9:59:59 AM

Using Web Services and Page Methods in Ajax Web Sites  ❘  347

The web services you create in the Planet Wrox projects look similar to ordinary methods you have
created already. What’s different is that you need to decorate each method with a WebMethod attri-
bute. An attribute is like a little tag or label that you can stick on code elements, like methods, prop-
erties, and so on, to mark that piece of code as something special. Other code interacting with the
attributed code can then see what attributes that code contains and make decisions based on that
information. Don’t worry about that too much because you don’t have to read those attributes your-
self when working with web services. All you need to do is stick the attribute on a method to turn it
into a web method and you’re good to go. For example, to change a standard method that returns
a string into a web method, you would apply the following attribute:

VB.NET

<WebMethod()>
Public Function HelloWorld(ByVal yourName As String) As String
 Return String.Format(“Hello {0}”, yourName)
End Function

C#

[WebMethod]
public string HelloWorld(string yourName)
{
 return string.Format(“Hello {0}”, yourName);
}

In C# you use square brackets to wrap the attribute whereas VB.NET uses angle brackets. You
may also come across examples where the VB.NET attribute is followed by a space and an under-
score, because previous versions of VB.NET required this. You don’t need the underscore anymore,
although it’s perfectly valid to use it anyway.

With this attribute in place, you signal to the ASP.NET runtime that you really want to expose this
method as a web method that can be called from client-side code. This also enables you to create
other methods in the same class that are not exposed as web services automatically, giving you flex-
ibility in determining what to open up for the outside world.

Besides the WebMethod attribute to mark the method as a web method, you generally place this
method in a file with an .asmx extension and inside a class that inherits from System.Web.
Services.WebService. You see how this works in the following section.

Creating Web Services
Creating web services with VWD is very easy. Just as with all the other document types, VWD
comes with a template for a web service. You add a web service to the site using the Add New Item
dialog box. You can then modify the service and test it out in a web browser using the standard test
page that the ASP.NET runtime creates for you automatically. When the web service functions cor-
rectly, you can call it from your client-side JavaScript code, as you see after the following exercise.

502211c10.indd 347 2/19/10 9:59:59 AM

348  ❘  Chapter 10   ASP.NET AJAX

Creating a Web ServiceTry It Out	

In this exercise you create a simple “Hello World” web service. This service accepts your name as an
input parameter and returns a friendly, personalized greeting. There’s not much real-world usage for
this exact web service, but because of the simplicity in the service itself, it’s easy for you to focus on the
underlying concepts.

	1.	 Create a new folder called WebServices in the root of your site to group all web services in the site
in a single folder. This is not required, but helps in organizing your site.

	2.	 Next, right-click this new folder and choose Add New Item. Click the Web Service item (don’t
accidentally choose WCF Service as that results in a different type of service), make sure that your
preferred programming language and Place Code in Separate File are selected, and call the service
NameService, as shown in Figure 10-5.

Figure 10-5

	3.	 Click Add to add the service to the site. Notice how the .asmx file is
added to the WebServices folder and the Code Behind file (.vb or
.cs) is placed in the site’s App_Code folder shown in Figure 10-6.

	4.	 Open the NameService Code Behind file from the App_Code folder
and change the code for the HelloWorld method so it accepts a
string and returns a personalized greeting. You should end up with
code like this:

VB.NET

<WebMethod()>
Public Function HelloWorld(ByVal yourName As String) As String
 Return String.Format(“Hello {0}”, yourName)
End Function

Figure 10-6

502211c10.indd 348 2/19/10 9:59:59 AM

Using Web Services and Page Methods in Ajax Web Sites  ❘  349

C#

[WebMethod]
public string HelloWorld(string yourName)
{
 return string.Format(“Hello {0}”, yourName);
}

	5.	 Save all your changes, right-click NameService.asmx in the Solution Explorer, and choose View
in Browser. Once the browser is done loading, you get a page that lists all the public web services
defined in the NameService.asmx service. In this exercise, you should only see HelloWorld, shown
in Figure 10-7.

Figure 10-7

	6.	 Click the HelloWorld link and you are taken to a page where you can test out the service. Type
your name in the yourName field and click Invoke. A new window opens (see Figure 10-8), show-
ing the XML that has been returned by the web service.

Figure 10-8

How It Works

Web services are essentially methods that can be called over a network, like the Internet or your local
network. They are designed to enable applications to communicate and exchange data with each other.
The underlying message format is XML, as you can see in Figure 10-8, which displays the result of the
HelloWorld method.

502211c10.indd 349 2/19/10 9:59:59 AM

350  ❘  Chapter 10   ASP.NET AJAX

When you add a web service to your project, not all methods in this file become web-callable automati-
cally. To expose a method as a service, you need to apply the WebMethod attribute:

VB.NET

<WebMethod()>
Public Function HelloWorld(ByVal yourName As String) As String

C#

[WebMethod]
public string HelloWorld(string yourName)

With this attribute, the method is visible to the outside world, and can thus be accessed by external
systems. When you open an .asmx file in the browser on the machine that hosts the service, you auto-
matically get a test page that lets you try out your services. In the case of the HelloWorld service, you
submitted your name and clicked the Invoke button to send this name as a parameter to the service.
The service responded by adding your name to the welcome message and then returned it as a string
using String.Format:

VB.NET

Public Function HelloWorld(ByVal yourName As String) As String
 Return String.Format(“Hello {0}”, yourName)
End Function

C#

public string HelloWorld(string yourName)
{
 return string.Format(“Hello {0}”, yourName);
}

As you saw in the preceding chapter, the String.Format method takes a string that can contain
numeric placeholders wrapped in a pair of curly braces ({}). Then for each numeric value, you supply a
string value as subsequent parameters. In the preceding example there is only one placeholder, but you
can easily extend the call to the Format method with more parameters. For example, if you wanted to
format a string with a first and last name, you’d use this code:

VB.NET

Return String.Format(“Hello {0} {1}”, firstName, lastName)

C#

return string.Format(“Hello {0} {1}”, firstName, lastName);

The String.Format method is great to make your strings much more readable. Instead of messy string
concatenation using & or +, you simply define placeholders in the string, and then supply the values at
runtime.

Finally, the web service method returns the welcome message as a string. The web service runtime
then takes care of sending this return value to the calling code; the test page in this example shows the
return value as a raw XML string. This XML string can then be parsed and used by other frameworks
and programming languages, like ASP.NET AJAX using JavaScript, as you see later in this chapter.

502211c10.indd 350 2/19/10 10:00:00 AM

Using Web Services and Page Methods in Ajax Web Sites  ❘  351

Although this is a trivial example, the concepts you have seen here also work for complex web ser-
vices that exchange extensive data that go beyond simple strings. Obviously, the test page is only used
to test whether your service operates correctly. With real web services the data is usually consumed
by other code, such as a web application or client-side JavaScript. You see how the latter works in the
following section.

Using Web Services in Your Ajax Web Site
Before ASP.NET AJAX, calling web services from a client browser and working with the data they
return involved writing a lot of code, especially if you wanted it to work in all major browsers like
Internet Explorer and Firefox. Fortunately, the Ajax framework shields you from all the complex-
ity and code that is needed to consume a web service. All you need to do is add an attribute to the
web service to mark it as a service that can be called by a script. Then you register the service in
the ScriptManager control and write a few lines of JavaScript to invoke the service and receive its
return value. This only works for services that are defined within your own web site, as you see
next. If you want to call services that are not on the same domain as the page that calls them, you
need to write additional code. This falls outside the scope of this book, but Professional ASP.NET
4: in C# & VB from Wrox (ISBN: 978-0-470-50220-4) shows you more about calling external web
services.

In the following section you see how to configure your web services so they can be called by client-
side script. In the Try It Out that follows you see how to use this knowledge and call a web service
from a client page.

Configuring the Web Service

Earlier you saw how to mark a method as a web method by adding an attribute. This exposes the
method to the outside world. To make a web service visible by client-side script also, you need to
add an attribute to the service class. If you look at the NameService class in the App_Code folder,
you see that the template already added the attribute for you, but commented it out:

VB.NET

‘ <System.Web.Script.Services.ScriptService()> _

C#

// [System.Web.Script.Services.ScriptService]

Simply uncomment the line to expose the entire service as a client-script service.

Configuring the ScriptManager

In an earlier section in this chapter you saw that the ScriptManager control is a required com-
ponent in almost all Ajax-related operations. It registers client-side JavaScript files (those used
by the Ajax framework and optionally your own), takes care of partial-page updates with the
UpdatePanel, and handles interaction with the web services you have defined in your web site.
You can add a ScriptManager to an individual page or to the master page so it becomes available
throughout your site.

502211c10.indd 351 2/19/10 10:00:00 AM

352  ❘  Chapter 10   ASP.NET AJAX

When using web services, you also need to tell the ScriptManager that you want to expose your
web service to client script. There are two ways to do this:

In the ➤➤ ScriptManager in the master page

In a content page that uses the web service, using the ➤➤ ScriptManagerProxy class

When you are going to use the web service in all or in most pages, you’re best off declaring the web
service in the master page’s ScriptManager. You do this by giving the ScriptManager control a
<Services> element that in turn contains one or more ServiceReference elements that point to
your public services. For example, to make the NameService.asmx service you created available in
all pages in your site, you’d add the following highlighted code to the master page:

<asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Services>
 <asp:ServiceReference Path=”~/WebServices/NameService.asmx” />
 </Services>
</asp:ScriptManager>

By referencing the service in the master page, it becomes available to all pages based on that mas-
ter. This also means that each page will download the JavaScript files needed to run this service.
This is a waste of bandwidth and resources if your page is not using the web service at all. So, for
services that you use on only a few pages, you’re better off referencing the service in the page itself.
On a normal page that doesn’t use a master page with a ScriptManager you can simply add a
ScriptManager to the Web Form directly. However, if you are using a master page that already has
its own ScriptManager (as is the case with the pages in the Planet Wrox web site) you need to use a
ScriptManagerProxy control. Because you can have only one ScriptManager in a page, you can’t
add another one in a content page that uses your master page with the ScriptManager. Therefore,
the ScriptManagerProxy serves as a bridge between the content page and the ScriptManager in
the master page, giving you great flexibility as to where you register your services.

When you have the ScriptManagerProxy in place, you add the exact same <Services> element to
it as you saw with the ScriptManager itself:

<asp:ScriptManagerProxy ID=”ScriptManagerProxy1” runat=”server”>
 <Services>
 <asp:ServiceReference Path=”~/WebServices/NameService.asmx” />
 </Services>
</asp:ScriptManagerProxy>

The following exercise demonstrates how to register and access your web service from client-side
code using the ScriptManagerProxy.

Calling Web Services from Client-Side CodeTry It Out	

In this exercise you register your web service in a ScriptManagerProxy control so it becomes available
in one page only. In addition, you modify the service so its methods are accessible by script. Finally, you
write some client-side JavaScript code that accesses the service and then displays its return value.

	1.	 The first thing you need to do is add the ScriptService attribute to your service class to mark
it as callable by client-side script. To do this, open the file NameService.vb or NameService.cs

502211c10.indd 352 2/19/10 10:00:00 AM

Using Web Services and Page Methods in Ajax Web Sites  ❘  353

from the App_Code folder and uncomment the line that defines the attribute. You should end up
with this code:

VB.NET

<System.Web.Script.Services.ScriptService()> _
<WebService(Namespace:=”http://tempuri.org/”)> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class NameService
 Inherits System.Web.Services.WebService

C#

[System.Web.Script.Services.ScriptService]
public class NameService : System.Web.Services.WebService
{

	2.	 While you’re at it, change the Namespace property of the WebService attribute. By default, the
namespace looks like this:

VB.NET

<WebService(Namespace:=”http://tempuri.org/”)> _

C#

[WebService(Namespace = “http://tempuri.org/”)]

Although this name is fine during development of your web services, it should really reflect the
unique name of your service when you put it in a production environment in order to avoid possible
conflicts with other services carrying the same names or types. If you have your own domain
name, you can change the namespace to something like http://www.yourdomain.com/. If you
don’t have your own domain, don’t worry about it. Even with the Namespace set to the default
value of http://tempuri.org/, things will work fine.

	3.	 The next step is creating a page that uses the service and then registers it using a ScriptManagerProxy
control. Add a new Web Form in the Demos folder and call it WebServices.aspx. Make sure you
base this page on your custom template, so it has the correct master page set and inherits from the
BasePage class, and then give it a Title such as Web Services Demo. Once you’ve added the
page, drag a ScriptManagerProxy control from the AJAX Extensions category of the Toolbox
into the markup of the cpMainContent placeholder.

	4.	 Within the ScriptManagerProxy element, add a <Services> element that in turn contains a
ServiceReference with its Path set to the NameService you created earlier. Note that IntelliSense
helps you pick the right file as soon as you type Path=” by showing you a list with files. Click Pick
URL at the bottom of the list and browse to the service file in the WebServices folder. You should
end up with this code in the WebServices.aspx page:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” runat=”Server”>
 <asp:ScriptManagerProxy ID=”ScriptManagerProxy1” runat=”server”>
 <Services>
 <asp:ServiceReference Path=”~/WebServices/NameService.asmx” />

502211c10.indd 353 2/19/10 10:00:00 AM

354  ❘  Chapter 10   ASP.NET AJAX

 </Services>
 </asp:ScriptManagerProxy>
</asp:Content>

	5.	 Right below the closing tag of the <ScriptManagerProxy>, add an Input (Text) and an Input
(Button) by dragging them from the HTML category of the Toolbox. By using plain HTML ele-
ments and not ASP.NET Server Controls, you can see that the code you are going to write really
executes at the client. Set the id of the text box to YourName and the id of the button to SayHello.
Set the value of the button to Say Hello. You should end up with this markup:

</asp:ScriptManagerProxy>
<input id=”YourName” type=”text” />
<input id=”SayHello” type=”button” value=”Say Hello” />

	6.	 Below these two lines, add a client-side JavaScript block with the following code:

<input id=”SayHello” type=”button” value=”Say Hello” />
<script type=”text/javascript”>
 function HelloWorld()
 {
 var yourName = $get(‘YourName’).value;
 NameService.HelloWorld(yourName, HelloWorldCallback);
 }

 function HelloWorldCallback(result)
 {
 alert(result);
 }

 $addHandler($get(‘SayHello’), ‘click’, HelloWorld);
</script>

	7.	 Save all your changes by pressing Ctrl+Shift+S,
and then request the page WebServices.aspx
in your browser. Enter your name and click
the Say Hello button. If everything turned out
well, you should be greeted with a message
from the web service, repeating your name.
Figure 10-9 shows the alert window in Apple’s
Safari.

COMMON MISTAKES  ​If you get an error instead of this message box, or you
see a small yellow triangle in the bottom-left corner of the screen, make sure
you typed the JavaScript exactly as in the code snippet. JavaScript is case-
sensitive, so make sure you get all the capitalization right. Also make sure that
the JavaScript block you added in step 6 comes after the input box and button
that you defined earlier. Finally, make sure that the path to your web service
matches the actual path of your .asmx service file and that you have applied
the ScriptService attribute to the service class.

Figure 10-9

502211c10.indd 354 2/19/10 10:00:00 AM

Using Web Services and Page Methods in Ajax Web Sites  ❘  355

How It Works

The web service you used in this example is almost identical to the one you used in the test page in an
earlier exercise. The only difference is the ScriptService attribute that marks the service as accessible
by client-side script code.

To expose the service to the client-side script in your application, you need to register it. You could do
this in the <Services> element of the ScriptManager in the master page. The downside of registering
the web service in the master page is that its client JavaScript is referenced in each and every page in
your site. For a service you only use once or twice, it’s much better to add a ScriptManagerProxy to
the specific page(s) and register the service there. Within your page, the ScriptManagerProxy control
looks and acts like a normal ScriptManager control. However, in reality it’s just a proxy class that
relays all its settings to the true ScriptManager in the master page. You use the ScriptManagerProxy
control as follows to set up the <Services> element:

<asp:ScriptManagerProxy ID=”ScriptManagerProxy1” runat=”server”>
 <Services>
 <asp:ServiceReference Path=”~/WebServices/NameService.asmx” />
 </Services>
</asp:ScriptManagerProxy>

All you need to do is refer to the service by setting the Path property. Just as with other server-side
URLs you have seen in this book so far, you can use the tilde (~) syntax to refer to the application’s root.

Once you have registered the service, it becomes available in your client-side code. Note that
IntelliSense in VWD is smart enough to discover the web services you have defined and registered. As
soon as you type NameService followed by a dot in a client-side script block, IntelliSense kicks in again
and shows the public methods it has found. Figure 10-10 shows the HelloWorld method highlighted in
the IntelliSense list.

This makes it extremely easy to find the correct services you
have defined in your site. This is a huge improvement over
old versions of Visual Studio that had only a fixed number of
JavaScript-related items in the IntelliSense list. Starting with
Visual Web Developer 2008, IntelliSense is now actually
able to look at your code and fill the IntelliSense list with the
right variable names, methods, services, and so on that it
finds in your code. In VWD 2010, Microsoft improved
IntelliSense even further by improving the performance and
the accuracy of the items shown in IntelliSense.

To see how the actual page works, and how it accesses the
web service, take a look at the code in the <script> block.

The first code you need to look at is the HelloWorld
method:

function HelloWorld()
{
 var yourName = $get(‘YourName’).value;
 NameService.HelloWorld(yourName, HelloWorldCallback);
}

Figure 10-10

502211c10.indd 355 2/19/10 10:00:00 AM

356  ❘  Chapter 10   ASP.NET AJAX

First, this code gets a reference to the text box you created earlier. Normally, with plain JavaScript you
would use document.getElementById(‘YourName’) to get at the text box. However, the client-side
Ajax framework offers a shortcut called $get that essentially performs the same function. Once you
have a reference to the text box, you can access its value property to get the name the user entered.

This name is then sent to the web service method HelloWorld with the following code:

 NameService.HelloWorld(yourName, HelloWorldCallback);

The first argument of the call to HelloWorld is the argument that the web service method expects:
a string holding your name. The second argument, HelloWorldCallback, is a reference to another
JavaScript method that is triggered when the service gives back its result. This is called the success call-
back method because it’s the one called after the service has returned its information successfully.

By design, the call to the web service is made asynchronously. This means the call to the service is made
in a separate thread and the HelloWorld method exits shortly afterward. Because it can potentially
take a long time for the web service to respond, you need to designate a method that is responsible for
handling the response when it comes back from the service. In this case, the responsible method is called
HelloWorldCallback, although you could give the method any name you like.

In addition to this success callback, you could add another one that is triggered when the web service
somehow fails, for example because the network connection is down or because the service threw an
exception. In that case, the call to HelloWorld would look like this:

 NameService.HelloWorld(yourName, HelloWorldCallback, ErrorCallback);

The ErrorCallback function could then look like this:

function ErrorCallback(error)
{
 alert(error.get_message());
}

The error argument (which is a WebServiceError object) that is passed to this method has conve-
nient methods and properties to display information about the exception. As in the example, you use
get_message() to get at the original exception that occurred at the server. For more information about
the WebServiceError object check out the official ASP.NET AJAX documentation accessible through
http://tinyurl.com/ner882.

If everything goes according to plan, the call to HelloWorld triggers the web service method HelloWorld.
This method receives the name and returns a friendly welcome message, as you have seen before. When
the web service returns its value, the HelloWorldCallback method is invoked. This method has a result
parameter that holds the return value of the web service:

function HelloWorldCallback(result)
{
 alert(result);
}

In the preceding exercise the result is a simple string. This means you can use alert(result) to
directly display the result in a JavaScript alert window.

502211c10.indd 356 2/19/10 10:00:01 AM

Using Web Services and Page Methods in Ajax Web Sites  ❘  357

In other situations, the result parameter could hold more complex objects that provide access to its
properties. The cool thing about the ASP.NET AJAX Framework is that most of the work handling these
complex objects is done for you transparently. If you return a complex object like a Person, an Order,
or a Review from a web service, the ASP.NET AJAX Framework makes this object available in client-
side script automatically, without the need to write custom code to transform the object from a server-
side instance to something that your client-side JavaScript understands. One of the concepts involved in
this process is called JSON, which stands for JavaScript Object Notation. JSON is an extremely com-
pact way to describe objects that need to be transferred from one machine to another — from the server
to the client in this example. For more information about JSON usage, check out http://json.org or
search the MSDN site for JSON.

The final thing you need to look at is how everything started in the first place. When you clicked the
button, the client-side HelloWorld function was triggered automatically. But how is this possible? The
answer is in the mysterious call to $addHandler:

$addHandler($get(‘SayHello’), ‘click’, HelloWorld);

The $addHandler is actually a shortcut to the addHandler method of the Sys.UI.DomEvent class
defined in the Ajax framework. You can use it to register event handlers for specific events of the
objects in your pages. This is similar to the event handlers you have seen so far in VB.NET and C#
server-side code.

In this example, $get is used again to get a reference to the button. Its click event is then hooked to
the HelloWorld method. This means that whenever you click the button, the code in the HelloWorld
function is executed.

Just like $get, the $addHandler method is a convenient shortcut that works cross-browser to register
events. Though it is possible to register event handlers for events like a Button’s click without the
client-side Ajax framework, the $addHandler method makes it very easy to register events in a clear,
concise, and cross-browser way, which also gives you some IntelliSense as an added bonus.

The cool thing about $get and $addHandler is that you can use them in any site. All you need to do is
include the ScriptManager control in a master or content page and you’re ready to use the client-side
framework. You don’t need to use web services or other Ajax-related controls in your page to make
this work. If you want, you don’t even need to use ASP.NET to make use of the client-side library. You
could use the client JavaScript files directly from any other web environment, including plain HTML
and PHP pages. All this makes it very easy to write advanced JavaScript functionality with the least
amount of code.

Obviously, the NameService you saw in this chapter has little real-world usage. However, the principles
of web services you learned in this chapter are easily applied to more complex services as well, enabling
you to access data on the server from client-side JavaScript with just a few lines of code.

You see the NameService again in Chapter 18 when debugging is discussed. In that chapter you step
through the code line by line so you can see which code executes and in what order.

502211c10.indd 357 2/19/10 10:00:01 AM

358  ❘  Chapter 10   ASP.NET AJAX

Although web services are extremely useful and pretty easy to create, they may be a bit of overkill
at times. Sometimes you just need to send and receive a tiny bit of information to and from the page
you’re currently working with. You can do this using page methods, which are discussed next.

Introducing Page Methods
Page methods and web services have a few things in common. In both cases, you can call them at
the client using very little code. You can send data to them, and receive data back. Additionally,
when calling them you can define success and failure callback methods. What’s different is that page
methods are defined directly in an existing ASPX page instead of a separate ASMX service file. You
can only call them from script running within that page. That makes them ideal for small, simple
functionality that is limited in scope to the current page.

To enable page methods you need to set the property EnablePageMethods of the ScriptManager
control to True. You cannot set this property on the ScriptManagerProxy class so you need to set it
on the ScriptManager control directly, which is — in the case of the Planet Wrox web site — placed
in the master page. Once you have enabled page methods, setting them up and using them is a two-
step process:

	 1.	 Create a public and static method (called a shared method in VB.NET) in the Code
Behind of the page you’re working with. You need to apply the [WebMethod] attribute
(<WebMethod()> in VB.NET) to this method. The method can optionally receive data
through its parameters and optionally return some data.

	 2.	 Write the necessary JavaScript to call the page method and work with its result.

You see how this works in the next exercise.

NOTE  ​A static method is a method that applies to a class, rather than to an
instance of a class. In Chapter 5 you created the Calculator class that had
four instance methods. This means that in order to use these methods, you
need to create an instance of the class first using the new keyword (New in
VB.NET). If you change the methods to be static methods instead, you could
directly call them on the Calculator class like this:

VB.NET

Dim result As Integer = Calculator.Add(4, 5) ‘ result is now 9

C#

int result = Calculator.Add(4, 5); // result is now 9

Static methods are often used for utility methods that don’t require an object to hold its own state,
but as you see next you also need static methods if you want to implement page methods. Static
methods and instance methods each serve a distinct purpose and are often not easily interchange-
able. In the case of the Calculator class, which doesn’t maintain state between method calls, static
methods would have been a good option as well.

502211c10.indd 358 2/19/10 10:00:01 AM

Using Web Services and Page Methods in Ajax Web Sites  ❘  359

Calling Page Methods from Client-Side CodeTry It Out	

In this exercise, you modify the WebServices.aspx page and add a second button that calls a page
method. To make it easy to compare the two techniques of calling code on the server, the page method
you create is similar to the web service you called earlier.

	1.	 Open up the master page Frontend.master in Markup View and set the EnablePageMethods
attribute of the ScriptManager control to True:

<asp:ScriptManager ID=”ScriptManager1” runat=”server”
 EnablePageMethods=”True”></asp:ScriptManager>

	2.	 Open the Code Behind of WebServices.aspx in the Demos folder and add the following server-
side method within the Demos_WebServices class:

VB.NET

<WebMethod()>
Public Shared Function HelloWorld(ByVal yourName As String) As String
 Return String.Format(“Hello {0}”, yourName)
End Function

C#

[WebMethod]
public static string HelloWorld(string yourName)
{
 return string.Format(“Hello {0}”, yourName);
}

Notice how this code is almost identical to what you defined in the web service, including the
WebMethod attribute. The only difference is the inclusion of the Shared keyword (static in C#).

The Webmethod attribute won’t be recognized directly. To fix this, type the following using or
Imports statement at the top of the page, below the other statements:

VB.NET

Imports System.Web.Services

C#

using System.Web.Services;

Alternatively, click the attribute once in the code and then press Ctrl+. (Ctrl+Dot) to bring up a list
with suggested options and choose the first item to have the code inserted for you.

	3.	 Switch to Markup View and create a copy of the HTML button you created earlier, set its id to
SayHelloPageMethod and change its value to better describe what the button does. You should
end up with code like this:

<input id=”SayHelloPageMethod” type=”button”
 value=”Say Hello with a Page Method” />

502211c10.indd 359 2/19/10 10:00:01 AM

360  ❘  Chapter 10   ASP.NET AJAX

	4.	 Set up a handler for the button’s client click event, similar to the one you created earlier. Use
HelloWorldPageMethod as the client method to call:

$addHandler($get(‘SayHelloPageMethod’), ‘click’, HelloWorldPageMethod);

	5.	 Implement the HelloWorldPageMethod method as follows:

function HelloWorldPageMethod()
{
 var yourName = $get(‘YourName’).value;
 PageMethods.HelloWorld(yourName, HelloWorldCallback);
}

You can add the method directly below the HelloWorld function, in the same script block.
Notice there’s no need to write a new callback method to handle the return value of the call to
HelloWorld. The one you created in the web service example can easily be reused because all it
does is simply alert the return value.

	6.	 Save all your changes and press Ctrl+F5 to run the page in the browser. Enter your name and click
the Say Hello with a Page Method button. You should see the same message as you saw with the
web service example.

COMMON MISTAKES  ​If you get an error about PageMethods not being defined,
make sure you added the static or Shared keyword to the method’s signa-
ture and make sure you set EnablePageMethods to True on the ScriptManager
control in the master page.

How It Works

From a client code perspective, almost all code is identical to the web service example except for
the actual call to the method. Rather than calling ServiceName.MethodName you now need to call
PageMethods.MethodName where PageMethods is a fixed name to refer to the ASP.NET AJAX
JavaScript implementation to call a page method. When you click the button, the ASP.NET AJAX
Framework sets up the necessary code to call the method that you defined in the Code Behind. Because
the method is marked as static, the ASP.NET runtime doesn’t need to create an instance of the Page
class (and consequently doesn’t need to go through its entire life cycle) but can simply call the method.
This results in a fast and efficient response from the method. However, there is one caveat you need to
be aware of: because the method is static and applies to a class, rather than an instance of that class,
you can’t access instance members, such as the controls defined in the page, from the page method.

Page methods are ideal for sending and retrieving little bits of information that don’t require a full post-
back or don’t need the overhead of a web service. You can use them for all kinds of scenarios, including
sending user data (such as a user name, preferences, pages they have visited, and so on), getting up-to-
date data from a database or a web service, and so on.

In the web services and page methods examples you have been using the client-side ASP.NET AJAX Library
to get references to the button controls and to set up their click handlers using $get and $addHandler,
respectively. The framework contains a lot more than these two methods though, as you see next.

502211c10.indd 360 2/19/10 10:00:01 AM

Using Web Services and Page Methods in Ajax Web Sites  ❘  361

The Client-Side ASP.NET AJAX Library
You may not realize it at first, but the client-side ASP.NET AJAX Library is extremely powerful
and offers a lot of functionality that plain JavaScript in the browser lacks. Microsoft has been able
to take a lot of the good parts from the .NET Framework and transform them into their client-side
JavaScript counterparts. For you this means you can use familiar .NET concepts in your JavaScript-
enabled web sites, even though JavaScript doesn’t support these concepts out of the box.

So far you have seen only a few of the methods and objects that the client-side ASP.NET AJAX
Library has to offer. However, $get and $addHandler are just the tip of the iceberg. The client-
side library contains six top-level namespaces (including Sys, the root namespace) and a global
namespace that in turn give you access to more than 30 classes with hundreds of useful methods
that help you in building rich, client-side web interfaces.

For example, you can use the client-side framework to set up and handle page events like load and
unload, make requests to other web pages using the WebRequest class, present data in different
formats respecting the client’s cultural settings with code in the CultureInfo class, perform data-
binding (where data coming from some source like a web service is bound to user interface controls
so you can display and edit them), and a lot more.

The global namespace contains members and types that extend the capabilities of JavaScript beyond
what it was originally designed for. It contains types you also find in JavaScript like Array, Boolean,
Error, Number, Object, and String that have been extended to include behavior that mimics the
.NET Framework. The following table lists a few of the frequently used methods on these types.

Type Method Purpose

String format Returns a formatted string using the specified format string and

arguments. Example:

var greeting = String.format(‘Hello {0}’, name);

endsWith

startsWith

Used to determine if a string starts or ends with another string.

Example:

var isSonic = ‘Sonic Youth’.startsWith(‘Sonic’);

trim

trimEnd

trimStart

Removes leading and trailing whitespace from a string. Example:

var trimmed = ‘ Sonic Youth ‘.trim();
// results in Sonic Youth

Boolean parse Converts a string holding the text true or false to a true Boolean.

Throws an exception with other values. Example:

var isTrue = Boolean.parse(‘true’);

Date format Enables you to get differently formatted string representations of

a date. Example:

alert(new Date().format(‘f’));
// Alerts a date like Monday, 22 March 2010 23:52

502211c10.indd 361 2/19/10 10:00:01 AM

362  ❘  Chapter 10   ASP.NET AJAX

The client-side ASP.NET AJAX Library is quite large, so it’s not always easy to find the methods,
classes, or namespaces you need. To make the most out of the client library, a few great resources are
available. The first one is IntelliSense, which helps you by offering available members on the different
types. It does this by looking at the value you assign to a type. For example, in Figure 10-11 you can
see that VWD inferred the type of the variable name to be a string because it offers string-related
methods like trim and trimStart that have been added to the String type by the client library.

If you assign a number to a variable, you get a completely different list as shown in Figure 10-12.

Many of these members have been documented so you also get a nice tooltip explaining how to use
them. If you don’t see the correct methods appear, make sure your page (or a master page) contains
a ScriptManager control. Without it, the client-side JavaScript framework is not available and so
VWD prevents you from using functionality that is not going to be available in the final page in
the browser. It’s possible that sometimes IntelliSense doesn’t show the members you’d expect in the
list. That doesn’t always mean these methods are not available. Because JavaScript is not a strongly
typed language, VWD has a lot of parsing, inferring, and guessing to do to offer you the right
options. When you don’t see the expected items, make sure you fix any errors in the code, save all
changes, and then close and reopen the file. In many cases this resolves the problem.

Another great resource is the official ASP.NET AJAX documentation on the MSDN site, which you
can find at http://tinyurl.com/AjaxClient4. Here you can find a fully documented list of the
various namespaces and all the types and members they contain.

This Is Just the Beginning
There’s a lot more to ASP.NET AJAX than I’ve been able to squeeze into a single chapter. Although
the server and client components of ASP.NET AJAX are probably the biggest and most used features,
other parts are worth checking out as well, including:

The ASP.NET AJAX Control Toolkit➤➤  — A great collection of AJAX-enabled controls, with
functionality like calendar extenders and auto-complete text boxes. Check out the control
toolkit at www.asp.net/ajax/AjaxControlToolkit/Samples/.

Figure 10-11 Figure 10-12

502211c10.indd 362 2/19/10 10:00:02 AM

Practical Ajax Tips  ❘  363

Membership and Role Services➤➤  — ASP.NET AJAX enables you to directly interact with ser-
vices like Membership and Roles from client-side code. You learn more about Membership
and Roles in Chapter 16, but I won’t go into the AJAX functionality in that chapter.

Client Data Binding➤➤  — Using client data binding you can create an attractive data-driven web
application that enables a user to manage data from the client. Without requiring full page
postbacks, users can work with the data on the server through web services. Through a smart
templating engine it’s easy to define the presentation of the page using standard HTML and
CSS while AJAX takes care of all the data handling functionality. Check out an introductory
article about Client Data Binding on the MSDN site via this URL: http://tinyurl.com/
ClientDataBinding.

Microsoft ASP.NET AJAX is actively developed by Microsoft with input from the developer ➤➤

community. Make sure you visit the official ASP.NET AJAX web site at www.asp.net/ajax
to find out more about new developments, documentation, videos, and sample code.

Practical Ajax Tips

Remember these tips to get the most out of ASP.NET AJAX:

Because the content for an ➤➤ UpdateProgress panel is visible only during an Ajax page update,
you’ll find that it’s hard to design its contents. You only see the content for a few seconds
or less and only after you cause a postback to the server. To make it easier to design an
UpdateProgress panel, you should first design the message outside of the UpdateProgress
panel. For example, in the exercise from this chapter, you should move the <div
id=”PleaseWait”> outside any other controls so it’s always visible. You can then change
the HTML and the CSS for the <div> until it looks exactly right. Then you can move the
<div> back into the UpdateProgress panel so it’s shown only during a partial page update.

Whenever you are using an ➤➤ UpdatePanel, consider adding an associated UpdateProgress
control as well. Even if you don’t see the need because the UpdatePanel refreshes really fast,
it may be worth adding the UpdateProgress for people on slow computers or slow net-
works. Or better yet: add an UpdateProgress to the master page in a convenient and visible
area of the page (in the Footer region, for example). Don’t set AssociatedUpdatePanelID to
anything so the progress panel will show on any Ajax callback. This way, you don’t need lots
of different waiting indicators in different areas of your site.

Don’t overuse ➤➤ UpdatePanel controls. In many situations, the perceived performance of an
application increases when using UpdatePanel controls even if the true performance is the
same. This is a good thing, because your users think your application is faster than without
an UpdatePanel. However, using too many UpdatePanel controls may confuse your users,
especially when they are not bound to an UpdateProgress control that tells them something
is going on. Consider web services and page methods instead because they can decrease the
overhead and the data that gets transferred over the wire.

502211c10.indd 363 2/19/10 10:00:02 AM

364  ❘  Chapter 10   ASP.NET AJAX

Summary

Ajax is a broad and very interesting technology that can really add a lot of value to your site. It can
be divided in two different areas: the server-side controls and the client-side JavaScript Framework.

At the server, the UpdatePanel control enables you to create flicker-free pages in no time whereas
the ScriptManager serves as the bridge between the server and the client and is responsible for tasks
like registering the necessary client scripts. Other controls in the AJAX Extensions toolkit include
the ScriptManagerProxy, the UpdateProgress, and the Timer control.

Besides these very useful server-side controls, the ASP.NET AJAX Framework also comes with a
rich client-side framework that enables you to access web services and page methods in your site
with just a few lines of code. Both web services and page methods can be used to exchange data
with the server without blocking or refreshing the user interface. The framework also gives you hun-
dreds of useful types and methods to work with almost every aspect of your page in the browser. All
you need to do is include a ScriptManager control in your master or content page and you can use
the entire client-side framework in your own web pages.

Although Ajax itself is a very compelling technology, it becomes even more useful in richer, data-
driven scenarios. For example, using an UpdatePanel control around the records returned from a
database to avoid page flicker when sorting, filtering, or paging your data greatly enhances the user’s
browsing experience. You learn how to work with databases in Chapter 12. With the knowledge about
Ajax you gained from this chapter, you will quickly create flicker-free database-driven web pages.

Exercises	

1.	 The AJAX Extensions category of the Toolkit defines a ScriptManager and a ScriptManagerProxy.

Explain the difference between these two controls, and explain when you should use the

ScriptManager and when the ScriptManagerProxy.

2.	 How can you let your users know a partial page update is in progress?

3.	 To expose a method in your site as a web method which can be called by client-side script, you

need to create a special class and apply two attributes. What class do you need to create, and

what attributes do you need to apply?

4.	 What are the steps you need to take to expose and use a method in your page as a page

method?

Answers to Exercises can be found in Appendix A.

502211c10.indd 364 2/19/10 10:00:02 AM

Summary  ❘  365

What You Learned in This Chapter⊲⊲

AJAX Asynchronous JavaScript And XML, a term for a collection of

techniques used to create flicker-free web pages and to interact

with the server from client-side code

Attribute A code element that can be applied to other elements such as

classes and methods to change their meaning or behavior

Page method A server-side static (shared in VB.NET) method defined in a page

that can be called from client script

ScriptManager control A core component of the Microsoft ASP.NET AJAX Framework

that takes care of managing client script files and server-side Ajax

behavior

ScriptManagerProxy control The bridge between a content page and the ScriptManager

control defined in a master page

UpdatePanel control A control that helps create flicker-free pages by only updating

content defined within its <ContentTemplate> element

UpdateProgress control A panel (a <div> or a) that can be shown during the

execution of an asynchronous Ajax operation

Web service A method that can be called over the Internet or local network by

other applications

502211c10.indd 365 2/19/10 10:00:02 AM

502211c10.indd 366 2/19/10 10:00:02 AM

jQuery

What You Will Learn in This Chapter:

What jQuery is➤➤

How to use jQuery to enhance your pages, including adding rich ➤➤

visual effects and animations

How to extend jQuery with the many available plugins➤➤

In previous chapters you were introduced to JavaScript, the de facto language for client-side
scripting and interacting with elements in your web pages at the client. Though the examples
shown were relatively straightforward, JavaScript can do much more and is quite a power-
ful programming language. But powerful as it may be, it has a few shortcomings. One of
the problems with JavaScript is that not all browsers interpret it the same way. A lot of the
JavaScript code you’ll write will work in all major browsers, but subtle differences in code and
behavior exist that make it difficult to write code that behaves exactly the same in all major
browsers. Also, JavaScript lacks some useful features that would come in handy in your day-to-
day JavaScript coding. For example, it has built-in methods to find a specific element on a page
(using getElementById as you saw in Chapter 9) and to find all elements of a specific HTML
tag (using getElementsByTagName), but it lacks features like getElementsByClassName to get
a list of elements with a specific class applied to them. The client-side ASP.NET AJAX Library
you were introduced to in the previous chapter helps to overcome some of these problems, but
it isn’t enough in all situations.

Fortunately, the Internet developer community has been very active developing frameworks
that use JavaScript under the hood and that extend its power, while offering a very rich feature
set that helps you create interactive client-side web pages. Over the years, many JavaScript
libraries have been developed — most of which are free — including:

Prototype (➤➤ http://prototypejs.org)

Scriptaculous, an add-on to Prototype (➤➤ http://script.aculo.us)

11

502211c11.indd 367 2/19/10 9:59:48 AM

368  ❘  Chapter 11   jQuery

Ext JS (➤➤ http://extjs.com)

Dojo (➤➤ http://dojotoolkit.org)

One of the frameworks that has gotten a lot of attention is jQuery. Initially developed and released
by John Resig in January 2006, jQuery has grown to be a very popular client-side frameworks. It
also caught the attention of Microsoft, which decided to start shipping jQuery with Microsoft products.
Initially, jQuery shipped with the Microsoft ASP.NET MVC Framework, but it’s now also included
in Visual Studio and Visual Web Developer 2010.

An Introduction to jQuery

The main focus of the jQuery library has always been to simplify the way you access the elements
in your web pages, provide help in working with client-side events, enable visual effects like anima-
tions, and make it easier to use Ajax in your applications. In January 2006, John Resig announced
the first version of jQuery, which was followed by an official release of jQuery 1.0 in August 2006.
Many more versions would follow, with version 1.4.1 as the latest, stable release.

NOTE  ​jQuery is under active development and as such there’s a fair chance that
by the time you read this book, a new version of jQuery will have been released.
To avoid version problems with breaking changes in the jQuery library, you’re
advised to use the jQuery version that ships with this book’s code. That ensures
you’ll be able to follow along with all the examples in this and later chapters.
Once you get the hang of jQuery, you can start using the latest version that you
can download from http://jquery.com. Be sure to check out the change log
of the release you download so you can see what’s new and what has changed
since the version used in this book.

You can download the latest version of jQuery from the official web site at http://jquery.com.
Not only will you find the downloadable files there, but you’ll also find the documentation, FAQs,
tutorials, and much more information you can use to make the most out of jQuery. Besides down-
loading the library from the jQuery web site, any new web site you create using the ASP.NET Web
Site template already contains a Scripts folder with the necessary jQuery files. However, back in
Chapter 2 you based the Planet Wrox web site on the ASP.NET Empty Web Site template, which
doesn’t include these files. You see later how to add jQuery files to your site manually.

Because the jQuery library adds to the size of your web pages, it should be a deliberate choice whether
or not you include it in your site. When adding the jQuery library to your site, you have a few choices
to make.

Choosing the Location for Your jQuery Reference
To include jQuery in your web site, you have a couple options:

Add a reference to the jQuery library in just the web pages or user controls that require it.➤➤

Add a reference to the jQuery library in the master page of your site so it’s available in all pages.➤➤

502211c11.indd 368 2/19/10 9:59:48 AM

An Introduction to jQuery  ❘  369

Both methods have their own advantages and disadvantages. Adding a reference to the jQuery
library in just the pages that need it helps keep the size of your pages down a bit. When your users
browse only to pages without jQuery, they’ll never have to download the library file. Once they’ve
downloaded the file, the browser will cache a copy of it, removing the need to download it again on
subsequent visits to pages.

Adding the reference to jQuery in the master page of your site is quite convenient, because all pages
based on this master page automatically get access to the jQuery functionality. However, this results
in a small performance hit on the first page of your site because the library needs to be downloaded
from the server.

Because the jQuery library is quite small, you typically want to include the library in the master page.

Besides the location where you add your jQuery file, you also have a few options with regard to the
way you include the file.

Different Ways to Include the jQuery Library
Because the jQuery library consists of a single file with JavaScript code, you can embed a reference
to the library in a page, user control, or master page using the standard <script> syntax:

<script src=”FileName.ext“ type=”text/javascript”></script>

It’s important to use a separate closing </script> tag because some browsers will choke if you use
a self-closing tag.

I prefer to store all my client-side script files in a Scripts folder in the root of my site, so a reference
to the jQuery library (called jquery-1.4.1.min.js) will end up like this:

<script src=”/Scripts/jquery-1.4.1.min.js” type=”text/javascript”></script>

You can also embed the reference inside the ScriptManager control that you have added to the mas-
ter page in the previous chapter. The ScriptManager control has a <Scripts> child element that
lets you register JavaScript files that will be added to the final page in the browser. In its simplest
form, a JavaScript file registered in the ScriptManager looks like this:

<asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Path=”~/Scripts/jquery-1.4.1.min.js” />
 </Scripts>
</asp:ScriptManager>

Another alternative is to refer to an online version of the library with Microsoft’s Content Delivery
Network (CDN) or Google Code. For more information on this, visit Microsoft’s CDN site at www.
asp.net/ajax/cdn or Google’s API site at http://code.google.com/apis/ajaxlibs/.

The advantages of using online versions of external libraries are improved performance and lowered
bandwidth for your servers. Since it is likely that visitors to your site already have downloaded the
shared scripts when visiting another site, they don’t have to download them again when visiting
yours.

502211c11.indd 369 2/19/10 9:59:48 AM

370  ❘  Chapter 11   jQuery

In the following exercise, you add the jQuery library version 1.4.1 to the master page of the Planet
Wrox web site. With the jQuery library set up, the remainder of this chapter teaches you how
jQuery works and how to use it in the Planet Wrox web site.

Your First jQuery PageTry It Out	

In this exercise, you add the jQuery library to the master page so it’s available to all pages in your site.
Remember, you’re strongly advised to use the version that ships with this book (and that you can down-
load from the Wrox web site), even though a new version of jQuery may have been released by the time
you read this book. This ensures that the examples all work as discussed.

	1.	 Start by adding a new Scripts folder to the root of the site in Visual
Web Developer.

	2.	 Next, open the folder where you extracted the downloaded code that
comes with this book in Windows Explorer. If you followed the
instructions in the Introduction of this book, this folder is located at
C:\BegASPNET\Resources. Open the Chapter 11 folder and then
drag the three JavaScript files (with a .js extension) from the
Windows Explorer into the Scripts folder in VWD that you created
in the previous step. The file jquery-1.4.1.min.js is the actual
jQuery library and jquery-1.4.1-vsdoc.js is a documentation file
for IntelliSense and is used only in the context of VWD. Finally,
jquery.updnWatermark.js contains a plugin for jQuery and is dis-
cussed toward the end of this chapter. Your Solution Explorer should
now look like Figure 11-1.

	3.	 Next, it’s time to add the library to the site’s master page so the pages in your web site have access
to the jQuery library. To do this, open the file Frontend.master from the MasterPages folder
and switch it to Markup View if necessary. Locate the ScriptManager control and add the follow-
ing bolded markup to it:

<asp:ScriptManager ID=”ScriptManager1” runat=”server” EnablePageMethods=”true”>
 <Scripts>
 <asp:ScriptReference Path=”~/Scripts/jquery-1.4.1.min.js” />
 </Scripts>
</asp:ScriptManager>

If your ScriptManager didn’t have a separate closing tag yet you should add one now (and
remove the slash (/) from the opening tag) or the code won’t be added correctly.

	4.	 Save and close the master page because you’re done with it for now.

	5.	 To try out the jQuery library, create a brand new Web Form in the Demos folder based on your
custom template. Call the page jQuery.aspx, and set its Title to jQuery Demo.

	6.	 With the new page open in Markup View, add the following code to the Content block for
cpMainContent:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” runat=”Server”>
 <input id=”Button1” type=”button” value=”button” />
 <script type=”text/javascript”>

Figure 11-1

502211c11.indd 370 2/19/10 9:59:49 AM

An Introduction to jQuery  ❘  371

 $(document).ready(function() {
 $(‘#MainContent’).css(‘background-color’, ‘green’)

 $(‘#Button1’).click(function() {
 $(‘#MainContent’).css(‘background-color’, ‘red’)
 .animate({ width: ‘100px’, height: ‘800px’ })
 });
 });
 </script>
</asp:Content>

Just like many other programming languages, JavaScript (and thus jQuery) is quite sensitive to
missing quotes, brackets, and parentheses, so make sure you type this code exactly as shown here.
Alternatively, you can copy and paste the code from the jQuery.aspx page that is part of the full
source code that comes with this book.

Note that while typing, IntelliSense pops up, helping you complete the code, and giving you infor-
mation about various methods and parameters in a tooltip. If it doesn’t pop up, make sure you
added the right <Scripts> element to the master page. Also, try saving and closing all open docu-
ments and then reopen jQuery.aspx.

	7.	 Save the changes to the page and then press Ctrl+F5 to open it up in the browser. Notice how the
background color of the MainContent div has turned to green. Click the button and notice how
the background color changes to red and how the MainContent element changes size, ending up
with a width of 100 pixels and a height of 800 pixels.

COMMON MISTAKES  ​If you get an error, or you don’t see the animation, make
sure the link to the jQuery is added to the page correctly. Also, check your code
for any typos you may have made.

How It Works

Although the effects shown in this exercise aren’t that fancy, a lot is going on under the hood to make
this example work. To understand how it works, first look back at the master page where you added a
reference to the jQuery library:

<asp:ScriptManager ID=”ScriptManager1” runat=”server” EnablePageMethods=”true”>
 <Scripts>
 <asp:ScriptReference Path=”~/Scripts/jquery-1.4.1.min.js” />
 </Scripts>
</asp:ScriptManager>

This tells the script manager to include a script element pointing to the jQuery library. If you look in
the HTML source for the page in the browser you should see the following script element:

<script src=”../Scripts/jquery-1.4.1.min.js” type=”text/javascript”></script>

This in turn tells the browser to download the jquery-1.4.1.min.js file from the Scripts folder,
giving your page access to all functionality included in the jQuery library.

502211c11.indd 371 2/19/10 9:59:49 AM

372  ❘  Chapter 11   jQuery

The next thing to look at is the code in the jQuery demo page. First, you added a standard <script>
block that can contain JavaScript. Inside this block, you added some jQuery code that is fired as soon
as the browser is done with loading the page. Everything between the opening ({) and closing (}) curly
braces is executed when the page is ready:

<script type=”text/javascript”>
 $(document).ready(function() {
 // Remainder of the code skipped
 });
</script>

Because the jQuery code interacts with the elements on the page, you often have to wait until the entire
page has loaded so the elements you’re programming against are available. Adding jQuery code like this
is a standard practice to delay execution of the code until the entire page is ready. You see more of this,
including a handy shortcut to the “document ready function” $(document).ready later in this chapter.

The code that is executed when the page is ready consists of two parts. The first line of code sets the
background color of the MainContent div to green:

$(‘#MainContent’).css(‘background-color’, ‘green’)

This code gets a reference to the MainContent div element and then calls a css method to change
the background color to green. Remember $get from the previous chapter that gets a reference
to an element in the page by its id in the client-side ASP.NET AJAX Library? In this example,
$(‘#MainContent’) is jQuery’s equivalent, but as you see later, it’s much more powerful.

The second part sets up a click handler for the HTML button you added to the page, similar to how
you used addHandler in Chapter 10. Inside the click handler you see some code that changes the back-
ground color of the MainContent div to red, and changes the height and the width of it using a fluid
animation:

 $(‘#Button1’).click(function() {
 $(‘#MainContent’).css(‘background-color’, ‘red’)
 .animate({ width: ‘100px’, height: ‘800px’ })
 });

Again, you learn more about how jQuery is able to find the button and the div element and how the
css and animate methods work later in this chapter, so don’t worry too much if none of this is making
a lot of sense right now.

When you click the button in the browser, the MainContent’s background color is changed to red, and
then its width and height are changed to 100 and 800 pixels, respectively.

When you typed the jQuery code you may have noticed you got help from IntelliSense. As soon as
you typed $(you got a tooltip explaining the information you can pass to this function. Likewise,
IntelliSense helps you find and complete the css method and the various arguments you need to pass
to it as shown in Figure 11-2 (which shows the tooltip under the IntelliSense list to better accommodate
the width of this book).

IntelliSense for jQuery works through the extra file — jquery-1.4.1-vsdoc.js — you added to the
site. VWD scans the solution for files ending in vsdoc.js, parses them, and then uses the documenta-
tion it finds in them to build up the IntelliSense list.

502211c11.indd 372 2/19/10 9:59:49 AM

jQuery Syntax  ❘  373

Figure 11-2

The reason for the separate documentation file is to keep the size of the original jQuery library down.
Without the documentation, the library is only 70KB; with the documentation the file size increases
to 230KB.

You should use the vsdoc file only for development in VWD and never include a link to it in your pages
because it doesn’t add any value in the browser compared to the real library file. Because of the large
size of the documentation file, you’re wasting valuable bandwidth and time if you use that file instead
of the real library file.

Now that you’ve seen some jQuery at work, it’s time to get a better understanding of its possibilities
and syntax.

jQuery Syntax

To understand and use jQuery, you need to know a few important basics. First, you need to know
more about jQuery’s core functionality, including the $ function you’ve seen before, and its ready
method that enables you to execute code when the page is done loading in the browser. Next, you
need to learn more about jQuery’s selector and filter syntax that enables you to find elements in a
page by criteria that you specify. Once you have a reference to one or more elements in a page, you
can apply various methods to them, like the css method you saw earlier. You also need to know a
little about jQuery events that enable you to attach behavior to the events that your HTML elements
might fire, like click, onmouseover, and so on. In the next couple of sections, you see all of these
main jQuery topics at work.

502211c11.indd 373 2/19/10 9:59:49 AM

374  ❘  Chapter 11   jQuery

jQuery Core
Most of the jQuery code you write will be executed when the browser is done loading the page. It’s
important to wait with executing your code until the page is done loading the DOM. The DOM — the
document object model — is a hierarchical representation of your web page and contains a tree-like
structure of all your HTML elements, script files, CSS, images, and so on. The DOM is always in
sync with the page you see in the browser, so if you make a programmatic change to the DOM (for
example, with jQuery code), the change is reflected in the page in the browser. If you execute your
jQuery code too early (for example, at the very top of the page), the DOM may not have loaded the
elements you’re referring to in your script, and you may get errors. Fortunately, it’s easy to post-
pone the execution of your code until the DOM is ready using the ready function in jQuery. You’ve
already seen the ready function at work in the previous Try It Out, but it’s shown here again now
that you better understand what it’s used for:

$(document).ready(function() {
 // Code added here is executed when the DOM is ready.
});

Any code you add between the opening and closing curly brace is executed when the page is ready for
DOM manipulation. jQuery also comes with a shortcut for the ready function to make it easier to write
code that fires when the DOM is ready. The following snippet is equivalent to the preceding example:

$(function() {
 // Code added here is executed when the DOM is ready.
});

NOTE  ​It’s important that any code referencing the jQuery library is not run
before the jQuery library itself is loaded. Because the link to the jQuery library
is added after the <body> tag by the ScriptManager, you need to find a loca-
tion later in the page. A good place for this is near the closing </body> tag
defined in the master page.

Because jQuery code is often specific to a page, it makes sense to add the code to the end of just the
pages that require it. To make this a little easier, you can add a ContentPlaceHolder in your master
page especially for this purpose. The pages that use this master page then have an easy location to
write jQuery code. You see how to do this in the next exercise.

In the previous jQuery example you saw some code that selected the MainContent div and the but-
ton in your page. However, jQuery comes with a lot more options to select specific elements in your
pages. These options are discussed next.

Selecting Items Using jQuery
In jQuery you use the dollar sign ($) as a shortcut to find elements in your page. The elements that
are found and returned are referred to as a matched set. The basic syntax for the $ method is this:

$(‘Selector Here’)

502211c11.indd 374 2/19/10 9:59:49 AM

jQuery Syntax  ❘  375

Between the quotes (you can use single or double quotes, as long as you use the same type on each
end) you enter one or more selectors, which are discussed later. The $ method returns zero or more
elements that you can then influence using one of the many jQuery methods. For example, to apply
some CSS to all h2 elements, you use the css method:

$(‘h2’).css(‘padding-bottom’, ‘10px’);

This applies a padding of ten pixels at the bottom of all headings at level two in the page. The cool
thing about many of the jQuery methods is that, besides applying some design or behavior, they
return the matched set again. This enables you to call another method on the same matched set.
This concept is called chaining, where you use the result of one method as the input of another,
enabling you to create a chain of effects. For example, the following code first changes the font size
of all level-two headings in the page, and then fades them out until they are invisible in five seconds:

$(‘h2’).css('font-size', '40px').fadeOut(5000); // timeout is in milliseconds

You learn more about the different visual effects like animate and fadeOut after you’ve seen how
selectors and filters work.

Basic Selectors

jQuery selectors enable you to find one or more elements in your page’s document object model so
you can apply all sorts of jQuery methods to these elements. The great thing about jQuery selectors
is that you already know how they work. Rather than inventing a new technique to find page ele-
ments, the designers of jQuery decided to use an existing selector-based syntax that you are already
familiar with: CSS. Remember the CSS selectors from Chapter 3? You can use the exact same ones
in jQuery.

The Universal Selector

Just as its CSS counterpart, the universal selector matches all elements in your page. To set the font-
family of each element in your page to Arial, you use this code:

$(‘*’).css(‘font-family’, ‘Arial’);

The ID Selector

This selector finds and retrieves an element by its id, the same as you would do in CSS. For example,
to set the CSS class for a button called Button1, you use this code:

$(‘#Button1’).addClass(‘NewClassName’);

When this code sets the CSS class (using the addClass method), the standard CSS rules apply. That
means that for this code to work and change the appearance of the button, the NewClassName class
needs to be available to the page, either through an external CSS file or by an embedded style sheet.
Refer to Chapter 3 if you need a refresher on the different CSS style sheet types.

502211c11.indd 375 2/19/10 9:59:49 AM

376  ❘  Chapter 11   jQuery

NOTE  ​Both jQuery’s $(‘#Button1’) and ASP.NET AJAX’s $get(‘Button1’)
get a reference to an element with an id of Button1. So which one do you
choose? In general, when you’re applying any of the jQuery methods to the
result (like the css method), you should use jQuery’s $ method. When you’re
working with a single element (as is the case with Button1 in this example) and
you want to change a standard property of the element (like setting its value
to a different text) you can use $get instead. You could also use jQuery’s $ for
this, but because all jQuery selectors return a collection of items, you need to
index the collection using [0] or get(0) to get at the first (and only) element.
The following three examples are functionally equivalent and all set the value of
Button1 to Click Me:

$get(‘Button1’).value = ‘Click Me’;
$(‘#Button1’)[0].value = ‘Click Me’;
$(‘#Button1’).get(0).value = ‘Click Me’;

The Element Selector

This selector gets a reference to zero or more elements that match a specific tag name. For example,
this code turns the text color of all headings at level two to blue:

$(‘h2’).css(‘color’, ‘blue’);

The Class Selector

The class selector gets a reference to zero or more elements that match a specific class name.
Consider this HTML fragment:

<h1 class=”Highlight”>Heading 1</h1>
<h2>Heading 2</h2>
<p class=”Highlight”>First paragraph</p>
<p>Second paragraph</p>

Notice how two of the four elements have a CSS class called Highlight. The following jQuery code
changes the background color of the first heading and the first paragraph to red, leaving the other
elements unmodified:

$(‘.Highlight’).css(‘background-color’, ‘red’);

Grouped and Combined Selectors

Just as with CSS, you can group and combine selectors. The following grouped selector changes the
text color of all h1 and h2 elements in your page:

$(‘h1, h2’).css(‘color’, ‘orange’);

502211c11.indd 376 2/19/10 9:59:50 AM

jQuery Syntax  ❘  377

With a combined selector, you can find specific elements that fall within some others. For example,
the following jQuery touches just the paragraphs that fall within the MainContent element, leaving
all other paragraphs alone:

$(‘#MainContent p’).css(‘border’, ‘1px solid red’);

To get a feel of the selectors in jQuery and the effects you can apply to the matched set, the next
exercise shows you how to use some of the selectors and apply some animations to the matched sets.
In later sections of this chapter, you get a more detailed explanation of the different animations; for
now, just focus on the selector part of the jQuery code.

Using Basic SelectorsTry It Out	

In this exercise, you first add an additional ContentPlaceHolder control to the main master page so
it’s easier to add client-side jQuery code to your pages. You then write some jQuery to try out the vari-
ous selectors.

	1.	 Open up the Frontend.master file from the MasterPages folder and make sure it’s in Markup View.

	2.	 Near the bottom of the page, right before the closing </form> tag, drag a ContentPlaceHolder
from the Toolbox. Set its ID to cpClientScript. Your code should end up like this:

 <div id=”Footer”>Footer Goes Here</div>
 </div>
 <asp:ContentPlaceHolder ID=”cpClientScript” runat=”server”>
 </asp:ContentPlaceHolder>
</form>

	3.	 Save and close the master page because you’re done with it for now.

	4.	 Create a new demo page called BasicSelectors.aspx in the Demos folder. Once again, base it
on your own template and give it a meaningful title. Switch the page to Design View, locate the
cpClientScipt placeholder at the bottom, open its Smart Task panel, and choose Create Custom
Content.

	5.	 Switch to Markup View and add the following HTML to the cpMainContent placeholder (don’t
accidentally add it to the placeholder you just added).

<h1>Basic Selectors</h1>
<div class=”SampleClass”>I am a div.</div>

	6.	 Add the following jQuery code demonstrating all six basic selectors to the cpClientScript place-
holder you created in step 4.

<asp:Content ID=”Content3” runat=”server” ContentPlaceHolderID=”cpClientScript”>
<script type=”text/javascript”>
 $(function()
 {
 $(‘*’).css(‘color’, ‘Green’); // Universal
 $(‘#Footer’).css(‘border-bottom’, ‘2px solid black’); // ID
 $(‘h1’).bind(‘click’, function() { alert(‘Hello World’) }); // Element
 $(‘.SampleClass’).addClass(‘PleaseWait’).hide(5000); // Class
 $(‘#Footer, #Header’).slideUp(‘slow’).slideDown(‘slow’); // Grouped

502211c11.indd 377 2/19/10 9:59:50 AM

378  ❘  Chapter 11   jQuery

 $(‘#Sidebar img’).fadeTo(5000, 0.1); // Combined
 });
</script>
</asp:Content>

	7.	 Save all your changes and request the page in the browser. All text is now green, the footer has an
extra border, you see the Please Wait animated icon appear and then disappear, the header and
footer slowly disappear and then reappear, and finally, during a 5-second period, the banner in the
sidebar becomes almost transparent. If you click the Basic Selectors heading you get a popup saying
Hello World.

How It Works

Phew, lots of animation fun. I typically don’t recommend adding all these features to your pages at once
or you’ll be sure to scare away most of your users. However, for this demo it works really well because
you can see some of the power of jQuery. You’ve seen all of the six selectors, but the code that is being
executed against their matched sets is probably new to you. The first selector selects all elements in
your page and then applies the css method to turn their font color to green. The ID selector then gets
a single element and calls the same css method to apply a border. The third example uses the element
selector to find the h1 element and then dynamically binds a click handler so that when you click the
heading, the code between the curly braces is executed.

Selector four demonstrates the class selector and shows you how to find elements by their class
name. Notice that the CSS class being searched for doesn’t have to be an existing CSS class defined in
your style sheet. Once the elements are found, the addClass method then adds a new class to them,
PleaseWait in this example, which applies the spinner image as the background to the div element.
The hide method then hides them again during a five-second time frame.

Line number five uses the grouped selector to find both the Footer and the Header. The slideUp
method then slowly decreases the height of these elements until they have completely disappeared.
In doing so, it remembers the initial size so when you call slideDown again it knows to what size to
restore the elements.

The final example uses a combined selector to find the banner image in the right-hand sidebar. Once
it has found the image, it slowly dissolves it (in 5 seconds) by setting its opacity to 0.1 (10%) so it gets
almost invisible.

In a later section in this chapter you see more of the various styling and animation methods that jQuery
offers. For now, it’s just important that you understand the selector syntax to refer to the elements in
your page.

Quite often, simply selecting items in your page is not enough. For instance, when selecting rows in
a table you may not want to select all rows at once, but only the odd or even rows, so you can apply
a “zebra stripe” effect to the table where odd and even rows have different colors. That’s where fil-
ters come into play.

502211c11.indd 378 2/19/10 9:59:50 AM

jQuery Syntax  ❘  379

Basic Filters

In jQuery you can use filters to further filter the result set from a selector. This opens a lot of oppor-
tunities because it enables you to get at elements like the first, last, all even or odd ones, all headings,
or items at a specific location. The table after the next exercise lists the most-used basic filters and
gives an example of how to use them. To follow along with these examples and many that follow,
carry out this exercise, which sets up a test page for most of the jQuery examples.

Setting up a jQuery Demo PageTry It Out	

In this exercise, you create a brand new demo page you can use to try out many of the examples in this
chapter, simply by replacing a single line of code.

	1.	 Create a new page based on your custom template and call it jQueryDemos.aspx. Then in the
cpMainContent placeholder add the following HTML:

<h1 title=”First Header”>First Header</h1>
<table id=”DemoTable”>
 <tr><td>Row 1 Cell 1</td><td>Row 1 Cell 2</td></tr>
 <tr><td>Row 2 Cell 1</td><td>Row 2 Cell 2</td></tr>
 <tr><td>Row 3 Cell 1</td><td>Row 3 Cell 2</td></tr>
 <tr><td>Row 4 Cell 1</td><td>Row 4 Cell 2</td></tr>
 <tr><td>Row 5 Cell 1</td><td>Row 5 Cell 2</td></tr>
</table>
<h2>Second Header</h2>
<input id=”Button1” type=”button” value=”button” />
<input id=”Text1” type=”text” />
<input id=”Checkbox1” type=”checkbox” />
<input id=”Checkbox2” type=”checkbox” />

You don’t have to type all this code yourself. Instead, you can use VWD to write most of it for
you. Make good use of the Table menu and the HTML category of the Toolbox.

	2.	 Add a Content block for the cpClientScript below cpMainContent and enter the following
code:

</asp:Content>
<asp:Content ID=”Content3” runat=”server” ContentPlaceHolderID=”cpClientScript”>
<script type=”text/javascript”>
 $(function()
 {
 // Examples go here

 });
</script>
</asp:Content>

	3.	 Replace the line // Examples go here with the following code to test out your setup:

$(‘#DemoTable’).css(‘background-color’, ‘green’);

502211c11.indd 379 2/19/10 9:59:50 AM

380  ❘  Chapter 11   jQuery

	4.	 Save your changes and press F5 to open the page in your browser. If all went well, the background
color of the cells in the table turned green.

	5.	 Close your browser and go back to VWD. Press Ctrl+Z to undo your last changes until you see the
// Examples go here line again and save the page.

How It Works

In this exercise you created a simple Content block that can hold your jQuery code. You then defined
a code block that fires as soon as the browser is done loading the DOM. Inside this block you wrote a
simple selector that selects the table with an id of DemoTable and then used jQuery’s css method to
change its background color.

In the following table you see a list of jQuery’s basic filters. Remember, you can try out each example
by replacing the //Examples go here line with the code examples given. Then save the page and
load it in your browser to see the code at work.

Filter Purpose

:first

:last

Enables you to select the first or last item in a matched set. The following example

changes the background color of the first or last row of the table to red:

$(‘#DemoTable tr:first’).css(‘background-color’, ‘red’);
$(‘#DemoTable tr:last’).css(‘background-color’, ‘red’);

First, the table is found using #DemoTable. Then all its rows are found using tr.

Finally, the first or last row is found using the :first and :last filters.

:odd

:even

Enables you to select the odd or even items in a matched set. The following example

changes the background color of the odd rows of the table to red. Because the

numbering is zero based, you actually see the second and fourth row change color

(because they have an index of 1 and 3, respectively).

$(‘#DemoTable tr:odd’).css(‘background-color’, ‘red’);

:eq(index)

:lt(index)

:gt(index)

Matches elements by their index. :eq (equals) returns a single element by its index,

and :lt (less than) and :gt (greater than) return items smaller or greater than the

given index, respectively. Examples:

// Changes the color in the first row (with an index of 0)
$(‘#DemoTable tr:eq(0)’).css(‘color’, ‘green’);

// Changes the last two rows (rows 1, 2 and 3,
// with an index of 0, 1 and 2 respectively, are skipped.)
$(‘#DemoTable tr:gt(2)’).css(‘color’, ‘green’);

// Changes the text color of the first two rows to green.
$(‘#DemoTable tr:lt(2)’).css(‘color’, ‘green’);

:header Finds all headers (from h1 to h6) in the page. Example:

$(‘:header’).css(‘color’, ‘green’);

502211c11.indd 380 2/19/10 9:59:50 AM

jQuery Syntax  ❘  381

For a complete list of all basic filters check out the jQuery documentation at http://api.jquery.com/
category/selectors/.

Advanced Filters

Besides the basic filters you just saw, jQuery supports a lot more filters that enable you to get items
based on the text they contain, whether or not they are visible, and also on any attributes they may
have. Additionally, there are filters to get at form elements (like buttons, check boxes, radio buttons,
and so on) and a number of selectors that enable you to select children, parents, siblings, and descen-
dants. The following table lists the ones you’ll use most. The online jQuery documentation gives you
access to the complete list, with full working examples showing how they work.

Filter Purpose

:contains(text) Matches an element by the text it contains. Example:

$(‘td:contains(“Row 3”)’).css(‘color’, ‘green’);

If you leave out the td, the entire table will be green. This is because the

table itself is matched as well (one of its children contains the text Row 3)

so the color is applied to the table, which in turn changes the text in each

cell to green.

:has(element) Matches elements that contain at least one of the given elements.

Example:

$(‘:header:has(“span”)’).css(‘color’, ‘green’);

This matches only the h2 because it’s a header (:header) and contains a

span element (has(“span”)).

[attribute] Matches an element based on the given attribute. Example:

// Matches the button and the text box as both
// have a type attribute
$(‘[type]’).css(‘color’, ‘green’);

You need to type some text in the text box to see the green font color.

[attribute=value] Matches an element based on an attribute and that attribute’s value.

Example:

// Matches just the text box
$(‘[type=text]’).css(‘color’, ‘green’);

:input

:text

:password

:radio

:checkbox

:submit

:image

:reset

:button

:hidden

:file

These selectors enable you to match specific client HTML form elements.

For example, the code snippet that finds the button and the text box can

be rewritten using a grouped selector as follows:

$(‘:button, :text’).css(‘color’, ‘green’);

You can use these filters to do some fancy stuff. For example, to write

some functionality that checks all check boxes in a form, you can use:

$(‘:checkbox’).attr(‘checked’, true);

In order to uncheck all check boxes, you pass false as the second argu-

ment to the attr method.

502211c11.indd 381 2/19/10 9:59:50 AM

382  ❘  Chapter 11   jQuery

Powerful as these selectors and filters are, they are pretty useless without a way to act upon their results.
Changing the looks and behavior of the items in the matched set is the topic of the next section.

Modifying the DOM with jQuery

Once you have a matched set, you want to do something with it. For example, you may want to
apply a CSS class or style to the items in it. Or you may want to append some behavior to them, like
adding a click handler that fires some code when the items get clicked. You’ve already seen some
examples of this using the css and bind methods, but jQuery has a lot more to offer. In the next
two sections, you see how to work with the various CSS methods and learn how to set up event
handlers. In the Try It Out that follows, you put everything you learned so far together and enhance
the contact form user control with jQuery.

CSS Methods
CSS is supported in jQuery in a few different ways. First, there’s the css method that enables you
to retrieve a specific CSS value (like the color of an item), and to set one or more CSS properties on
a set of elements. Secondly, methods like addClass, removeClass, toggleClass, and hasClass
enable you to alter or inspect the CSS classes that are applied to elements. Furthermore, a couple of
methods enable you to work with the dimensions and position of an element. I only discuss the most
common ones, but you can look up the entire list at the jQuery web site. The examples once again
use the same HTML fragment you saw before, so it’s easy to follow along if you want to try them
out in your browser.

css(name, value)

This method enables you to set a specific CSS property on a matched element. The name argument
refers to a CSS property (such as border, color, and so on) and the value defines the style you
want to apply. The following example changes the background color of the h1 element:

$(‘h1’).css(‘background-color’, ‘green’);

css(name)

This method retrieves a specific CSS value based on the property you pass to it. The following exam-
ple will alert ‘italic’ because that’s the font-style of the span element in the heading level 2:

alert($(‘h2 span’).css(‘font-style’));

You can use this value in your jQuery scripts; for example, it can be used to toggle the font-style
between italic and normal or to set multiple elements to the same style.

css(properties)

This is quite a powerful method because it enables you to set multiple properties on the matched
elements in one fell swoop. The following example changes the color of all cells in the table to red,
sets their padding to 10px, and changes the font to Verdana. Notice how each property and value

502211c11.indd 382 2/19/10 9:59:50 AM

Modifying the DOM with jQuery  ❘  383

are separated by a colon (:) and each pair is separated by a comma. The entire set of properties is
wrapped in a pair of curly braces ({}):

$(‘#DemoTable td’).css({‘color’ : ‘red’, ‘font-family’ : ‘Verdana’,
 ‘padding’ : ‘10px’});

addClass, removeClass, and toggleClass

The addClass and removeClass methods enable you to add and remove classes from elements, respec-
tively. Just as with plain CSS, you’re better off using these methods than assigning inline CSS with the
css(properties) method. This way, it’s easier to define CSS classes at a central place, which makes
them easier to maintain and reuse. The next example shows how to assign a class to the h2 element:

$(‘h2’).addClass(‘PleaseWait’);

If you want to remove the class again, you call removeClass like this:

$(‘h2’).removeClass(‘PleaseWait’);

The toggleClass method assigns the class if it’s not present yet and removes it otherwise.

All three methods enable you to pass multiple classes by separating them with a space.

Together, these CSS methods give you great power to change the look and feel of elements in your
page. You can take this one step further by using the rich event system in jQuery that enables you to
assign and remove all kinds of handlers to your elements through code.

Handling Events
Events are a very common technique in many programming languages. You’ve seen .NET events
at work in previous chapters where you used them to handle a Button control’s Click event or
a Page’s Load event. JavaScript and the DOM are no exception and events are available in many
places. For example, many HTML elements (such as a button defined with input type=”button”)
have a click event that fires when you click it. Likewise, they have onmouseover and onmouseout
events that fire when you move your mouse over or away from them. Normally, when you define the
events directly in markup, they look like this:

<input type=”button” onclick=”alert(‘Hello’);” value=”Click Me” />

Rather than writing the code they trigger in-line (the alert function in this example), you can also
point them to JavaScript functions you can write yourself. The following example calls a fictitious
SayYourName function:

<input type=”button” onclick=”SayYourName();” value=”Click Me” />

In the preceding chapter you saw how the addHandler method of the ASP.NET AJAX framework
makes this a bit easier and more flexible because you can set up the handler in a separate code block.

jQuery goes one step further, and enables you to hook up events not only to a single element, but to
a whole matched set at once. This is extremely powerful because it enables you to bind handlers to a
large number of elements with only a few lines of code. Consider, for example, a table with many

502211c11.indd 383 2/19/10 9:59:50 AM

384  ❘  Chapter 11   jQuery

rows. To make the table a little more visually attractive, you could apply a technique that is called
“active item tracking,” where the item your mouse is over changes color. Without jQuery you would
write onmouseover and onmouseout events on each and every row in the table. This clearly leads to
a lot of excessive bloat in the final HTML of the page. With jQuery, all you need is this code, again
using the HTML code samples you used before:

$(function()
{
 $(‘#DemoTable tr’)
 .bind(‘mouseover’, function() { $(this).css(‘background-color’, ‘yellow’) });
});

This code finds all the table rows within the #DemoTable element and then dynamically assigns a
function that is called when you hover your mouse over each row. If you hover your mouse over
them, the background changes color. But if you move your mouse away, the new color remains. To
fix this problem, you can use jQuery’s chaining concept where the result of a jQuery method returns
the matched set so you can apply another function to it. To bind the onmouseout to a new function,
simply call bind again on the return value of the first call to bind:

$(‘#DemoTable tr’)
 .bind(‘mouseover’, function() { $(this).css(‘background-color’, ‘yellow’) })
 .bind(‘mouseout’, function() { $(this).css(‘background-color’, ‘’) });

Notice how the semicolon that closed off the line in the previous example has been moved to the
final line. Then the second bind is simply chained to the previous call to bind. It’s a bit difficult to
see because the code is spread out over multiple lines to accommodate the width of this book, but
this code actually comes down to this:

$(‘#DemoTable tr’).bind(‘mouseover’, ...). bind(‘mouseout’, ...);

This code does three things: first it uses $(‘#DemoTable tr’) to find all rows in the table. On the
matched set that is returned it calls bind to dynamically hook up some behavior that fires when you
move your mouse over a row. Then bind is called again on the matched set returned by the first call
to bind to reset the background color when you move your mouse away from the table row. Notice
how I am setting the color to an empty string (‘’) to remove the CSS background property so you
can see the original background again.

There’s one more important thing to look at in this example and that’s the way the background
color is set:

$(this).css(‘background-color’, ‘yellow’)

The this keyword in this example refers to the element to which the item is applied: the table row
in this case. Using $(this) then gives you a jQuery matched set (containing a single element) to
which you can apply regular jQuery methods such as css. Instead of using jQuery you can also
execute standard JavaScript against the this element.

this.style.backgroundColor = ‘yellow’

The table row (and many other HTML elements) has a style property that lets you programmati-
cally change CSS styles. Maybe you expected to use style.background-color to change the color,

502211c11.indd 384 2/19/10 9:59:51 AM

Modifying the DOM with jQuery  ❘  385

but that’s not how it works in JavaScript. In that language, the dash (-) is not a valid identifier so in
JavaScript all dashes are removed from the property names. Furthermore, each letter following the
original dash is written in uppercase. So, background-color in CSS becomes backgroundColor
in JavaScript, font-family becomes fontFamily, and so forth. Keep these naming rules in mind
when you try to dynamically set CSS information through JavaScript and jQuery.

Miscellaneous jQuery Functionality
Before you go to the next exercise and put all your new jQuery knowledge in practice, you need to
understand a few important functions in jQuery. First of all, there’s each.

The each method iterates (or loops) over a collection. This is great if you want to apply some behav-
ior to items in your matched set that you cannot set with a single jQuery function. As an argument
to each you supply a function that is executed for each item. The following each example alerts
the contents of each table cell by looping over the items in the matched set and then calling alert.
Again, you can try this out with your jQueryDemos.aspx page.

$(‘#DemoTable td’).each(function()
 {
 alert(this.innerHTML);
 });

Two other important methods include parent and prev. These methods are used in DOM travers-
ing, where you can “walk” up and down the document tree finding elements that are either below or
above an item, or at the same level.

The prev method selects a matched element’s direct sibling. To see how this works, take a look
at this:

alert($(‘#DemoTable td:contains(“Row 1 Cell 2”)’).prev()[0].innerHTML);

What do you think this alerts? If you guessed “Row 1 Cell 1,” you’re right. The $ selector first
selects the table cell in the second column of the first row by the text it contains. The prev method
then returns its first sibling: the cell to the left of it. Because a matched set is a collection even if it
only contains a single item, you still need to use an indexer (with [0]) to refer to that first item. The
table cell then exposes an .innerHTML property that returns the content of the cell.

Finally, take a look at parent:

alert($(‘#DemoTable td:contains(“Row 1 Cell 2”)’).parent()[0].innerHTML);

If you run this code in the demo page you get the result
shown in Figure 11-3.

If you’re not seeing this exact same HTML, make sure that
the line that begins with alert is the only one inside your
document ready function as the other examples may influ-
ence the HTML for the table.

The selector is the same as in the previous example. The parent function then points to the <tr>
around the matched table cell. Alerting the innerHTML then returns the HTML for the two cells that
this row contains.

Figure 11-3

502211c11.indd 385 2/19/10 9:59:51 AM

386  ❘  Chapter 11   jQuery

Common Mistakes When Working with jQuery
Depending on the complexity of the jQuery functionality you’re using, writing the code can be quite
challenging. You need to take care of the proper parentheses, brackets, commas, and more. When
you find your jQuery code doesn’t run or has unexpected behavior, check to see if your code is suf-
fering from the following problems.

Your ID Selectors Don’t Work

It’s likely you forgot to include the # symbol in front of it. $(‘DemoTable’) does not select the table
with an id of DemoTable, whereas $(‘#DemoTable’) does select it. Another situation where your
ID selector might not work is when you’ve got the casing wrong. ID selectors are case-sensitive, so
$(‘#DemoTable’) is not the same as $(‘#demotable’).

Your ID Selectors Don’t Work, Even with a Hash Symbol

In this case, it’s likely that the client element doesn’t have the id you expect. Maybe the ASP.NET
runtime changed the client id by prefixing it with the id of its parent? In that case, try setting the
ClientIDMode on the relevant control to Static so the id ends up more predictable. Also make
sure your code executes inside the document ready function because the elements you’re targeting
may not be available yet.

None of Your Code Seems to Run

Check your parentheses, curly braces, and quotes. Each pair needs to be balanced, with an equal
number of opening and closing items.

You’ll use many of the jQuery selectors, filters, and methods you saw in the previous sections in the
next exercise.

Putting It All TogetherTry It Out	

Forms that users can fill in often have a so-called “watermark” where a short instruction about what
to type in is supplied in each text box, often in a gray or italic font. Figure 11-4 shows a form that
is watermarked. The text disappears as soon as the user puts focus on this field. With traditional
JavaScript, adding this to each text field in a form is a lot of work. Fortunately, this is easy to do with
jQuery, as you see next.

	1.	 Open up the user control ContactForm.ascx from the Controls folder and make sure it’s in
Markup View.

	2.	 In the <style /> block at the top, add the following declaration:

.Watermark
{
 font-style: italic;
 color: Gray;
}

Rather than adding this selector to the user control directly, you could add it to the CSS file of
each theme. If you do that instead, don’t forget to add it to both CSS files. For this example, it
doesn’t matter where you add it.

502211c11.indd 386 2/19/10 9:59:51 AM

Modifying the DOM with jQuery  ❘  387

	3.	 Scroll to the end of the control’s markup and below the closing UpdateProgress tag, add a
<script> block with the following jQuery code:

<script type=”text/javascript”>
 $(function()
 {
 $(‘:input[type=text], textarea’).each
 (
 function()
 {
 var newText = ‘Please enter your ‘ +
 $(this).parent().prev().text().toLowerCase().trim();
 $(this).attr(‘value’, newText);
 }).one(‘focus’, function()
 {
 this.value = ‘’, this.className = ‘’
 }).addClass(‘Watermark’).css(‘width’, ‘300px’);
 });
</script>

This looks extremely funky, but don’t worry. I explain it line by line in the How It Works section.
If you don’t feel like typing all this code, remember you can get a copy of it from the code down-
load that goes with this book.

	4.	 Save the changes and press Ctrl+F5. You’ll be taken to the homepage of the site because you can’t
request a user control directly in the browser. Click the Contact Us item from either the Menu con-
trol (when using the Monochrome theme) or the TreeView. You should see something similar to
Figure 11-4.

Figure 11-4

502211c11.indd 387 2/19/10 9:59:51 AM

388  ❘  Chapter 11   jQuery

	5.	 Click the Name field to put the cursor in that field. Notice how the text disappears as shown in the
Name field in Figure 11-5.

Figure 11-5

	6.	 Complete the form and click Send. The mail should be sent (or stored in your temporary mail
folder) normally.

How It Works

Most of what you did in this exercise is pretty standard stuff by now, except for that complex looking
jQuery thing. However, once you dissect it, it’s not as bad as it looks. I’ll go over it line by line, explain-
ing how the code works.

$(function()
 {
 ...
 });

First, there’s the standard document ready function, which you’ve seen a few times by now. Inside the
function it defines, the code first gets a matched set with all the text boxes and the text area and then
calls the each method on the set:

 $(‘:input[type=text], textarea’).each
 (
 function()
 {
 var newText = ‘Please enter your ‘ +
 $(this).parent().prev().text().toLowerCase().trim();
 $(this).attr(‘value’, newText);
 })

Notice how I am using an attribute selector (using input[type=text] to get only the text boxes, and
not the button. Because the comments field is rendered as a <textarea> in the browser and not as an
<input type=”text” /> you need that in the selector as well, which is easily done using a grouped
selector.

502211c11.indd 388 2/19/10 9:59:51 AM

Modifying the DOM with jQuery  ❘  389

The code inside the each method is called for each item in the set. In this example it means it’s called
six times; once for each text box and textarea in the form. Within the each method you have access to
the this pointer, which points to the item currently being looped over. In the first iteration, this means
the Name text box, in the second it’s referring to the e‑mail address box, and so on.

The idea of this code is that the text box ends up with the text that is placed in the label in front of the
text box prefixed with the text Please enter your. This is done with this line of code:

var newText = ‘Please enter your ‘ +
 $(this).parent().prev().text().toLowerCase().trim();

First, $(this) is used to refer to the current text box just as you saw earlier when dynamically chang-
ing a table cell’s background color. On this result the code calls parent, which gives a reference to the
table cell that holds the text box. The prev method then returns the previous sibling of the table cell,
which is the cell in front of it, holding the text. Finally, text().toLowerCase().trim() gets the cell’s
text (Name for example), converts it to lower case and then calls trim() to remove any surrounding
white space. Getting dizzy? Then take a look at Figure 11-6, which shows the four phases of the process
and what gets selected by which step.

3 — prev()

2 — parent() 1 — this

4 — text()

Figure 11-6

The final line inside the each block assigns the new text to the value property of the text box:

$(this).attr(‘value’, newText);

The end result is that the text box now contains text like Please enter your name.

Just like other methods, each returns the matched set, which makes it easy to call more jQuery code on
the set. That’s exactly what the one method takes advantage of:

 $(‘:input[type=text], textarea’).each
 (
 function()
 {
 ...
 }).one(‘focus’, function()
 {
 this.value = ‘’, this.className = ‘’
 }).addClass(‘Watermark’).css(‘width’, ‘300px’);

502211c11.indd 389 2/19/10 9:59:52 AM

390  ❘  Chapter 11   jQuery

Just like bind that you used earlier to hook up the click event handler of the button, one dynamically
assigns a function to one of the events of an element. What’s really cool about one is that it automati-
cally removes the handler again after it’s been called the first time. This is necessary in this example,
because you don’t want to clear out the text box every time the user clicks one of the text boxes. This
stops the field from getting cleared after you enter some real data and then put focus on the field again
to correct it.

The one function is used to hook up the focus event (which fires when you click or tab to the text field)
to some code that clears the value and then dynamically resets the CSS class to an empty string. You
might have thought that this.class would have worked as well. However, class is a reserved word in
JavaScript, so to refer to the CSS class property of an element you use className in JavaScript.

Once again, one returns a matched set, which can be used to chain yet another method: addClass,
which assigns the Watermark CSS class to all matched elements to change the appearance of the font.
Notice that this just happens when the page loads the first time. After that, when the user puts focus on
the control, its class is reset and Watermark won’t be assigned again.

The final chained call is the css method, which sets the width of all input controls to 300 pixels. This
isn’t strictly necessary, and it’s probably better to do this using plain CSS, but for this demo it’s a con-
venient way to make sure all controls have an equal width and are wide enough to fit the text they con-
tain. A later exercise fixes this problem by assigning a proper CSS class.

Although this example is an excellent way to show the many capabilities and features of jQuery, you
may not want to use this code in a production site as-is. The code as it stands now suffers from the
following problems:

If the text boxes already contain a CSS class, it gets erased once the user clicks the box. You ➤➤

can overcome this by restoring the class inside the focus handler, but it’s not ideal.

This method depends on labels in front of the controls containing logical text. If you changed ➤➤

the Comments label to read something like “Feel free to let us know what you think of this
site,” you end up with some awkward watermark text. It would be better if you could define
the text to display on a control-by-control basis.

Often, watermarks reappear in the text if the control loses focus and the user still hasn’t ➤➤

typed some text. That’s not the case in this example.

Client-side validation won’t be triggered correctly because the validation framework thinks ➤➤

that the required fields are already filled in.

Fortunately, jQuery has another excellent way to solve the problems with the current watermark
implementation: plugins, which you meet toward the end of this chapter, after you’ve seen how to
work with animations.

502211c11.indd 390 2/19/10 9:59:52 AM

Effects with jQuery  ❘  391

Effects with jQuery

In an earlier example in this chapter you saw how to use slideUp and slideDown to slowly hide and
show elements. But these are only two of the many effect and animation methods that jQuery has
available. The following table lists the most common ones you can use. Once again, you’re advised
to try out all examples using the jQueryDemos.aspx page.

Method Name Purpose

show()

hide()

Hides or shows the matched elements by decreasing the height, width, and

opacity (making them transparent). Both methods enable you to define a fixed

speed (slow, normal, and fast) or a number defining the animation time in millisec-

onds. Examples:

$(‘h1’).hide(1000); //Hide the heading in 1 second
$(‘h1’).show(1000); //Make it reappear in 1 second

toggle() The toggle method uses show and hide internally and changes the display of

the matched elements, That is, visible items are hidden, and vice versa. Example:

$(‘h1’).toggle(2000); // hide or show the h1 in 2 seconds

slideDown()

slideUp()

slideToggle()

Just like hide and show, these methods make matched elements appear or

disappear. However, they do this by adjusting the height from its current size

to zero or vice versa, causing the element to “slide up” or “slide down.” The

slideToggle method slides down hidden elements and slides up visible

elements, which makes it easy to show and hide elements repeatedly with a

single action. Examples:

$(‘h1’).slideUp(1000);
$(‘h1’).slideDown(1000);
$(‘h1’).slideToggle(1000);

fadeIn()

fadeOut()

fadeTo()

These methods make the matched elements visible or invisible by changing their

opacity. fadeOut sets the opacity to 0, making the item completely transparent,

and then sets the CSS display property to none, hiding the item completely.

fadeTo lets you specify an opacity (a number between 0 and 1) to determine the

transparency level of the elements. All three methods enable you to define a fixed

speed (slow, normal, and fast) or a number defining the duration of the animation

in milliseconds. Examples:

$(‘h1’).fadeOut(1000); // dissolve the h1 in 1 second
$(‘h1’).fadeIn(1000); // h1 reappears in 1 second
$(‘h1’).fadeTo(1000, 0.5); // fade to semi-transparant

continues

502211c11.indd 391 2/19/10 9:59:52 AM

392  ❘  Chapter 11   jQuery

Method Name Purpose

animate() Internally, animate is used for many of the animation methods like show and

hide. However, it’s also externally available to give you great flexibility in animat-

ing your matched elements. With the animate method you can specify a bunch of

properties to animate. Consider this example:

$('h1').animate({
 opacity: 0.4,
 marginLeft: '50px',
 fontSize: '50px'

 }, 1500);

In one smooth animation with a duration of 1.5 seconds, this code takes the h1 ele-

ment and increases its font size to 50 pixels, sets the opacity to 0.4 to make the ele-

ment semi-transparent, and changes the left margin to 50 pixels. The first argument

of the animate method is an object holding one or more properties you want to

animate, each one separated by a comma. Notice how you need to use JavaScript’s

marginLeft and fontSize, rather than the CSS margin-left and font-size

properties. You can only animate properties that take numeric values. That is, you

can use properties like margin, fontSize, opacity, and so on, but not properties

like color or fontFamily.

Now that you’ve seen the most important jQuery concepts, from simple selectors to advanced ani-
mation options, you can use this knowledge to make the contact form of the Planet Wrox site a little
more attractive.

Animating the Contact FormTry It Out	

In this exercise you apply two main animations: one is triggered when the user submits the contact
form and slowly slides it up until it disappears. The other animation is used to show and hide the
Message Sent label, attracting more attention until it completely disappears.

	1.	 Start by adding an additional text paragraph below the Message Sent label in the ContactForm.
ascx control in Markup View. This paragraph will be visible after the form has been submitted,
and remains visible, even after the Message Sent text has been hidden. Within the paragraph tags
add some text that thanks the user for his response. Add id and runat=”server” attributes to the
paragraph (so you can program against it in Code Behind) and set its Visible property to False.
Finally, set the CssClass attribute of the Label control placed before the paragraph to Attention.
You should end up with this code:

<asp:Label ID=”Message” runat=”server” CssClass=”Attention” Text=”Message Sent”
Visible=”False” />
<p runat=”server” id=”MessageSentPara” visible=”False”>Thank you for your message.
 We’ll get in touch with you if necessary.</p>

(continued)

502211c11.indd 392 2/19/10 9:59:52 AM

Effects with jQuery  ❘  393

	2.	 Wrap the entire table that holds the form controls in a <div> and set its id to TableWrapper.
Tables can’t be easily resized using slideUp and slideDown, but by wrapping the table in a div
you can resize that element instead:

<div id=”TableWrapper”>
<table class=”style1” runat=”server” id=”FormTable”>
...
</table>
</div>

	3.	 At the top of the user control, right below the @ Control directive, add this code:

VB.NET

<% If False Then %>
<script src=”../Scripts/jquery-1.4.1-vsdoc.js” type=”text/javascript”></script>
<% End If %>

C#

<% if (false) { %>
 <script src=”../Scripts/jquery-1.4.1-vsdoc.js” type=”text/javascript”></script>
<% } %>

By design, VWD is not able to give you IntelliSense for jQuery and other script libraries in user
controls. That’s because it doesn’t know in which pages or master page the control will show up.
Because the script references are added to these pages, the user control doesn’t know of their exis-
tence. The preceding code is a little hack around this issue. VWD thinks you are adding a jQuery
reference to this user control, follows the links, and reads the document for you, thereby offering
IntelliSense. At runtime, though, the file won’t be included because it’s wrapped in an if statement
that always returns false. Notice that this generates a warning in the Error list about unreach-
able code, but you can safely ignore it. The whole reason for the if block is that the code becomes
unreachable, which stops the file from being referenced in the final HTML in the browser.

	4.	 Scroll down to the end of the control’s markup, and below the last line of the watermark code, add
the following jQuery code that fires when the form is about to be submitted:

 }).addClass(‘Watermark’).css(‘width’, ‘300px’);
 $(‘form’).bind(‘submit’, function()
 {
 if (Page_IsValid)
 {
 $(‘#TableWrapper’).slideUp(3000);
 }
 });

Don’t overwrite the closing }); of the document ready function that was already there, but add
this code within the existing block.

	5.	 Right before the closing </script> tag and after the closing curly brace, parentheses and semi
colon of the jQuery document ready function, add the following bold piece of JavaScript:

 });
 function pageLoad()
 {

502211c11.indd 393 2/19/10 9:59:52 AM

394  ❘  Chapter 11   jQuery

 $(‘.Attention’).animate({ width: '600px' }, 3000).
 animate({ width: '100px' }, 3000).fadeOut(‘slow’);
 }
</script>

The pageLoad method (which is part of the client-side ASP.NET AJAX Library) serves the same
purpose as jQuery’s document ready, with one exception: it also fires after a partial page update,
which is what takes place after you submit the form because of the UpdatePanel in the user control.

	6.	 Switch to Code Behind and add the following line of code, which makes the text paragraph visible
when the form is submitted and the e‑mail message is sent:

VB.NET

 Message.Visible = True
 MessageSentPara.Visible = True
 FormTable.Visible = False

C#

 Message.Visible = true;
 MessageSentPara.Visible = true;
 FormTable.Visible = false;

	7.	 Save all your changes and close the user control because you’re done with it.

	8.	 Open the Monochrome.css file from its theme folder and add the following CSS declaration to the
bottom of the file:

.Attention
{
 border: 4px solid red;
 padding: 10px 0;
 width: 100px;
 margin: auto;
 display: block;
 text-align: center;
}

	9.	 Repeat the previous step but now add the same declaration to the DarkGrey theme’s CSS file.

	10.	 Save your changes and then request the Planet Wrox site in your browser. Choose the Contact Us
item from the Menu or TreeView control, fill in the form, and click Submit. Notice how shortly
after clicking the button the form slides up slowly until it completely disappears. Figure 11-7 shows
the form halfway during the slideUp operation.

Figure 11-7

502211c11.indd 394 2/19/10 9:59:52 AM

Effects with jQuery  ❘  395

	11.	 Once the page is done loading, the Message Sent label and the thank you text appear. Notice how
the label first grows in size to span the full content width, then shrinks again and finally disappears
completely. Figure 11-8 shows the message while it’s being resized.

Figure 11-8

How It Works

A lot of the steps involved in this exercise deal with things you’ve already seen: adding div elements,
classes, and CSS declarations. However, there’s some jQuery and some Ajax code in this example that’s
worth examining. First, take a look at the code you added in the jQuery document ready function:

 $(‘form’).bind(‘submit’, function()
 {
 if (Page_IsValid)
 {
 $(‘#TableWrapper’).slideUp(3000);
 }
 });

The first line dynamically binds some code to the form’s submit event. This way, the remainder of the
code fires when the user clicks the Send button. The check for Page_IsValid is necessary to prevent
the form from sliding up if the user made a mistake somewhere. Imagine that a user leaves both phone
numbers empty and clicks the Send button. This button then tries to submit the form, causing the form’s
submit event to fire. The ASP.NET client framework intercepts this event and validates the form, caus-
ing an alert box with an error message to appear. But even though the form is invalid, it continues to
handle other submit event handlers, including the one your code set up. If you didn’t take precautions,
the form would slide up, no matter whether it was valid. This makes it impossible for the user to com-
plete the form. Fortunately, you can check Page_IsValid, which is set to false when the form contains
invalid data. Only when Page_IsValid returns true will the slideUp method hide the form. During a
three-second period (3,000 milliseconds) the form smoothly slides up until it’s no longer visible.

Then the server code runs and sends out the message as you’ve seen in previous chapters. Once the
e‑mail is sent, the server code sends back the Message Sent label and the paragraph. The message is
then animated through this code, which uses a combination of ASP.NET AJAX and jQuery:

function pageLoad()
{
 $(‘.Attention’).animate({ width: '600px' }, 3000).
 animate({ width: '100px' }, 3000).fadeOut(‘slow’);
}

502211c11.indd 395 2/19/10 9:59:52 AM

396  ❘  Chapter 11   jQuery

Rather than using jQuery’s $(function() to fire code when the page loads, this example uses ASP.NET
AJAX’s pageLoad and for a very specific reason: this event is fired by the Ajax framework when the page
loads the first time, and after every postback, partial or not! This is important, because the Message Sent
text is only available after the partial postback caused by the button. Notice that pageLoad also fires on
the initial request of ContactUs.aspx. However, in that case, the Label with the Attention class is not
present in the page so $(‘.Attention’) results in an empty matched set and no animation takes place.

The code that executes here is relatively straightforward. First, using animate({ width: '600px'
}, 3000) the message is animated to have a width of 600 pixels. The animation takes three seconds
to complete. Once the three seconds are over, another chained method animates the message back
to 100 pixels. Finally, the fadeOut method is used to dissolve the message, after which it completely
disappears.

Although some of the code looks quite complex, I hope you agree that with jQuery it’s relatively easy
to apply some fancy design makeover to your pages. Not every page or form should be abused for these
techniques, but when used sparingly, jQuery animations can really add some flavor to your web site.

If by now you think that jQuery really rocks, I completely agree. However, there’s even more. The
jQuery community has been actively developing hundreds of useful plugins that you add to your
pages with very little effort. In the next section, you see where to get those plugins and you see a
walkthrough of implementing one of them: a replacement for the shaky watermark feature devel-
oped earlier in this chapter.

jQuery and Extensibility

Plugins really add to the power of jQuery. Rather than reinventing the wheel and coding the same
functionality over and over, jQuery comes with a flexible plugin architecture that enables plugin
authors (including you if you want) to write a piece of functionality that can easily be reused by
including one or more JavaScript files and calling one or more methods.

The jQuery plugins are so popular that a whole section of the jQuery site is devoted to it: http://
plugins.jquery.com/. At the time of writing, hundreds of plugins were available in many different
categories such as Menus, Ajax functionality, Forms, and Drag & Drop. In addition to the plugins
repository on jQuery.com, many other plugins are also available on the Internet.

Typically, including and using a jQuery plugin comes down to the following four steps:

	 1.	 Go to http://plugins.jquery.com/ and locate and download the plugin you want to use.

	 2.	 Include the plugin in your project. In the Planet Wrox site, this would mean adding the
downloaded .js file to the Scripts folder.

	 3.	 Add a reference to the plugin file in one of your pages. If you’re going to use the plugin a lot,
add it to the master page. Otherwise, add it to the page or user control where you need it.
Wherever you add it, make sure it gets loaded in the final HTML after the main jQuery library.

502211c11.indd 396 2/19/10 9:59:53 AM

jQuery and Extensibility  ❘  397

	 4.	 Use the plugin by writing some code. What this code is exactly depends on the plugin. Often
you find online examples and documentation or the plugin comes with a readme file.

In the next exercise, you carry out these steps to include the Watermark plugin from Ting Zwei
Kuei. You can find the plugin at http://plugins.jquery.com/project/updnWatermark. You
added the plugin file used in this exercise already to the site in the first Try It Out in this chapter, so
there’s no need to download it again.

Extending jQuery with PluginsTry It Out	

In this exercise you replace the watermark code you wrote in an earlier Try It Out with a ready-made
plugin. All you do in this exercise is include the file in a user control, add some CSS, and call a single
method. Additionally, you need to supply the text you want displayed in the controls. All other func-
tionality is handled for you automatically.

	1.	 Open up the ContactForm.ascx in Markup View again and locate the closing </UpdateProgress>
tag. From the Solution Explorer’s Scripts folder drag the file jquery.updnWatermark.js to directly
after the closing UpdateProgress tag to insert a script element pointing to the .js file like this:

</asp:UpdateProgress>
<script src=”../Scripts/jquery.updnWatermark.js“ type=”text/javascript”></script>

	2.	 Remove the code you wrote in an earlier exercise for the Watermark feature. You should remove
everything that starts with $(‘:input[type=text], textarea’).each until (and including) the
call to addClass. Don’t accidentally take out the code that slides up the form.

$(‘:input[type=text], textarea’).each
 … // rest of the code is omitted
 }).addClass(‘Watermark’).css(‘width’, ‘300px’);

	3.	 Replace the code you removed with the following jQuery call to the plugin’s updnWatermark
method:

$.updnWatermark.attachAll({ cssClass: 'Watermark' });

	4.	 Scroll to the top of the file until you see the TextBox control for the visitor’s name. Set its ToolTip
property to the text you want to display in the text box as a watermark. The plugin will pick up
this text (which ends up client-side in a title attribute) and put it in the control for you. While
you’re there, add a CssClasss to the TextBox set to InputBox:

<asp:TextBox ID=”Name” runat=”server” ToolTip=”Enter your name”
 CssClass=”InputBox”></asp:TextBox>

	5.	 Repeat this step for the other five TextBox controls in the page (including the field for the com-
ments), each time supplying a logical text in the ToolTip property and setting the CssClass
property.

502211c11.indd 397 2/19/10 9:59:53 AM

398  ❘  Chapter 11   jQuery

Rather than setting the CssClass properties one by one on the individual controls, you can
also select all text controls in Design View (using Ctrl+Click) and then set the property in the
Properties Grid for all controls at once.

	6.	 Remove the Width property from the Comments box because its width is going to be taken care of
through CSS.

	7.	 Scroll up in the control and remove the .Watermark CSS declaration you added there earlier.

	8.	 Save the changes and then close the user control file.

	9.	 Add the following three CSS declarations to both of your theme files:

.Watermark
{
 position: relative;
 width: 0;
 height: 1.25em;
 vertical-align: top;
}

.Watermark label
{
 position: absolute;
 left: 0;
 top: 2px;
 white-space: nowrap;
 color: #999;
 padding-left: 4px;
 height: 1.25em;
 vertical-align: middle;
}

.InputBox
{
 width: 300px;
}

If you’re tired of adding the same CSS declarations to both the theme files, consider adding a
central CSS file stored in the Styles folder. You can then link this style sheet in your master page
so it becomes available in both themes. This way, you need to manage shared styles only once.
In Chapter 14 you find instructions how to do this, so you could postpone this change until that
chapter.

	10.	 Save all your changes and then open the Planet Wrox site in your browser. Navigate to the
ContactUs.aspx page and notice how the watermark text has been placed inside the controls for
you as shown in Figure 11-9.

Click a control and the text disappears. Leave the control without entering a value by pressing the
Tab key and the text reappears. Finally, complete all the required fields and click the Send button
to confirm the form still operates as before.

502211c11.indd 398 2/19/10 9:59:53 AM

jQuery and Extensibility  ❘  399

Figure 11-9

How It Works

The cool thing about this Try It Out exercise is that you really don’t have to care how it works. You
just use a plugin, execute it, and be done with it. Just as you don’t need to know the inner workings of
Visual Web Developer or jQuery to make use of it, you often don’t need to know how jQuery plugins
work. What’s important, though, is that you can read and understand the support documentation and
be able to use the plugin as it is intended.

In this case, things are quite simple. For the plugin to put the watermark text in the text boxes, you
need to set a ToolTip on each control you want to watermark. The ToolTip property in markup maps
to a title attribute in the final HTML as shown in this example for the Name field:

<input name=”ctl00$cpMainContent$ContactForm1$Name” type=”text” class=”InputBox”
 id=”cpMainContent_ContactForm1_Name” title=”Enter your name” />

You then need to call the plugin’s main method like this:

$.updnWatermark.attachAll({ cssClass: 'Watermark' });

Notice how there’s no need to select any items; you just call the updnWatermark method on the jQuery
object (using its $ shortcut) without specifying any selectors. The updnWatermark method then scans
the form looking for form fields that have a title attribute. You can optionally pass in a CSS class that
defines the presentation of the text labels. In this example, the .Watermark and .Watermark label
selectors define the position and color of the watermark text that is placed on top of the text boxes.

502211c11.indd 399 2/19/10 9:59:53 AM

400  ❘  Chapter 11   jQuery

This Watermark plugin is quite smart in that it doesn’t actually put the text inside the text box. Instead,
it creates a label on the fly that it positions on top of the text box, giving the impression that the text is
in the text box. What’s so smart about this solution is that because the actual field isn’t changed, vali-
dation of the controls still works as before. The validation controls still see an empty text box and will
trigger the validation popup if you try to submit the form without entering valid data.

You’re strongly advised — once you get the hang of jQuery — to browse around the plugin catalog
at the jQuery site. It has plugins for almost anything you can come up with. Not only does this avoid
reinventing the wheel, but most of all it enables you to extend jQuery and client-side JavaScript beyond
anything you’d imagined.

Also, while visiting the jQuery web site, be sure to check out the documentation section at http://
docs.jquery.com/. You’ll find that jQuery is even more powerful than what I’ve been able to show
you in a single chapter and includes a lot more functionality.

Up until now, you’ve been working on fairly static web pages. Although jQuery enables you to
create dynamically changing pages at the client, the content that’s available on the web site is still
static. To fix that, you can use a database, the topic of the next four chapters. In the next chapter
you get a thorough introduction to databases, and the chapters that follow give you in-depth infor-
mation on working with data in an ASP.NET environment.

Practical Tips on jQuery

To get the most out of jQuery, follow these short tips:

Experiment and experiment. At first, jQuery is a bit of an odd technique to master, mostly ➤➤

because of all its curly braces and parentheses. However, by practicing a lot you can become
a jQuery master in no time.

Visit the ➤➤ jQuery.com web site. Besides very good documentation with many examples show-
ing off jQuery’s capabilities, you also find a wealth of articles and links on using jQuery,
including links to sites that feature video content.

Invest some time in browsing the plugin catalog. You may not need plugins right away, but ➤➤

it’s good to know what they can do for you in case you do need them.

502211c11.indd 400 2/19/10 9:59:53 AM

Summary  ❘  401

Summary

In this chapter you were introduced to jQuery, a very popular, open source, client-side JavaScript
framework for interacting with the document object model.

The chapter started off by showing you where to get jQuery and how to add it to your site. You then
got a quick example of jQuery, which was followed by an introduction of jQuery selectors and filters
that enable you to find relevant elements in your page.

The second part of this chapter was devoted to the numerous methods that jQuery supports to apply
effects and animations to your matched sets. You saw how to use methods like css to manipulate
CSS settings, parent and prev to navigate through the items in your set, and how to work with
events to fire code in reaction to some action like the click of a button or the submission of a form.

Near the end of the chapter you learned how to use the many animation methods in jQuery to give
your page a more compelling and interactive appearance and you saw how to extend jQuery by
using plugins.

Exercises	

1.	 Imagine that you want to offer your users the possibility to hide a certain region of a page. For

example, you could offer them a link to hide or show the large banner in the Sidebar element with

the click of a button. What jQuery does this require? Bonus points if you can find a way to change

the text that triggers the code from Hide to Show and vice versa.

2.	 What’s the difference between slideUp and slideDown? What important argument do both

methods accept?

3.	 What’s the difference between jQuery’s document ready function, defined with $(function()...)

and the ASP.NET AJAX pageLoad method? How can you make good use of this difference?

Answers to Exercises can be found in Appendix A.

502211c11.indd 401 2/19/10 9:59:53 AM

402  ❘  Chapter 11   jQuery

What You Learned in This Chapter⊲⊲

Chaining The concept where the result of one method is used as the input of another to

create a chain of effects

Filters Enable you to further refine your jQuery matched set of elements

jQuery A popular client-side JavaScript framework that simplifies working with the DOM,

visual effects, event handling and Ajax functionality

Matched set The set of elements that are returned by a jQuery selector

Plugins Enable you to extend jQuery using ready-made behavior written by third-party

programmers

Selectors A CSS-like syntax to find elements in your page using jQuery

Watermarking Adding gray or dimmed text hints to form controls to help users understand what

they need to enter

YOU CAN DOWNLOAD THE CODE FOUND IN THIS BOOK. VISIT WROX.COM
AND SEARCH FOR ISBN 9780470502211

502211c11.indd 402 2/19/10 9:59:53 AM

Introducing Databases

What You Will Learn in This Chapter:

What a database is and which databases are typically used with ➤➤

ASP.NET pages

What SQL is, how it looks, and how you use it to manipulate data➤➤

What database relationships are and why they are important➤➤

Which tools you have available in VWD to manage objects (such as ➤➤

tables) and how to use them

Being able to use a database in your ASP.NET 4 web sites is just as critical as understanding
HTML and CSS: it’s almost impossible to build a modern, full-featured web site without it.
Databases are useful because they enable you to store and retrieve data in a structured way.
The biggest benefit of databases is that they can be accessed at runtime, which means you
are no longer limited to just the relatively static files you create at design time in Visual Web
Developer. You can use a database to store reviews, musical genres, pictures, information about
users (usernames, e‑mail addresses, passwords, and so on), log information about who reads
your reviews, news articles, and much more, and then access that data from your ASPX pages.

This gives you great flexibility in the data you present, and the way you present it, enabling
you to create highly dynamic web sites that can adapt to your visitors’ preferences, to the con-
tent your site has to offer, or even to the roles or access rights that your users have.

To successfully work with a database in an ASPX page, this chapter teaches you how to access
databases using a query language called SQL — or Structured Query Language. This language
enables you to retrieve and manipulate data stored in a database. You also see how to use the
database tools in VWD to create tables and queries.

Although ASP.NET and the .NET Framework offer you many tools and technologies that
enable you to work with databases without requiring a firm knowledge of the underlying

12

502211c12.indd 403 2/19/10 9:59:39 AM

404  ❘  Chapter 12   Introducing Databases

concepts like SQL, it’s still important to understand them. Once you know how to access a data-
base, you’ll find it easier to understand and appreciate other technologies, like the ADO.NET Entity
Framework (discussed in Chapter 14), which provides easier access to database operations directly
from code.

In the chapters that follow, you apply the things you learn in this chapter. In Chapter 13, you see
how to use built-in controls to work with data in your database. In Chapter 14, you learn how to
use the ADO.NET Entity Framework as an additional layer on top of your database to access data in
an object-oriented way with minimal code. Chapter 15, the last of the data-focused chapters, shows
you advanced techniques for working with data.

In the following sections, you see what a database is, and what different kinds of databases are
available to you.

What Is a Database?

By its simplest definition, a database is a collection of data that is arranged so it can easily be
accessed, managed, and updated. For the purposes of this book, and the web sites you will build,
it’s also safe to assume that the data in the database is stored in an electronic format.

The most popular type of database is the relational database. It’s the type of database that is fre-
quently used in web sites and is also the type of database that is used in the remainder of this book.
However, the relational database is not the only one. Other types exist, including flat-file, object-
relational, and object-oriented databases, but these are less common in Internet applications.

A relational database has the notion of tables where data is stored in rows and columns, much like
a spreadsheet. Each row in a table contains the complete information about an item that is stored
in the table. Each column, on the other hand, contains information about a specific property of the
records in the table.

The term “relational” refers to the way the different tables in the database can be related to each
other. Instead of duplicating the same data over and over again, you store repeating data in its own
table and then create a relationship to that data from other tables. Consider the table called Review
in Figure 12-1. This table could store the CD or concert reviews that are presented on the Planet
Wrox web site.

Figure 12-1

As you can see in Figure 12-1, each review is assigned to a musical genre such as Pop, Indie Rock,
or Techno. But what if you wanted to rename the genre Techno to something like Hardcore Techno?

502211c12.indd 404 2/19/10 9:59:40 AM

Using SQL to Work with Database Data  ❘  405

You would need to update all the records that have this genre assigned. If you had other tables that
stored a genre, you would need to visit those tables as well and manually make the changes.

A much better solution would be to use a separate table and call it Genre, for example. This table
could store the name of a genre and an ID (a sequential number for example) that uniquely identi-
fies each genre. The Review table then has a relationship to the Genre table and stores only its ID
instead of the entire name. Figure 12-2 shows the conceptual model for this change.

Figure 12-2

With just the ID of the genre now stored in the Review table, it’s easy to rename a genre. All you
need to do is change the name of the genre in the Genre table, and all tables with a relationship to
that genre pick up the change automatically. Later in this chapter, you see how to create and make
use of relationships in your relational database.

Different Kinds of Relational Databases

You can use many different kinds of databases in your ASP.NET projects, including Microsoft Access,
SQL Server, Oracle, and MySQL. However, the most commonly used database in ASP.NET 4 web
sites is probably Microsoft SQL Server. This book focuses on using Microsoft SQL Server 2008
Express edition, because it comes free with VWD and has a lot to offer out of the box. Also, because
the database engine is identical to that of the commercial versions of SQL Server 2008, it’s easy to
upgrade to those versions at a later stage in the development cycle. This upgrade path is described in
more detail in Appendix B. Even if you already have a different version of SQL Server 2008 installed,
it’s still recommended to install a copy of the 2008 Express edition as well. This makes it easy
to follow along with the examples in this book, and with many examples you find on the Internet,
which often assume you’re using the Express edition.

To work with the data in the database, SQL Server (and all other relational database systems) sup-
ports a query language called SQL.

Using SQL to Work with Database Data

To get data in and out of a database, you need to use Structured Query Language (SQL). This is
the de facto language for querying relational databases that almost all relational database systems
understand. A number of clear standards exist, with the most popular one being the ANSI 92 SQL
standard. Besides the grammar that this standard supports, many database vendors have added their
own extensions to the language, giving it a lot more flexibility and power on their own system, at
the cost of decreased interoperability with other systems.

502211c12.indd 405 2/19/10 9:59:40 AM

406  ❘  Chapter 12   Introducing Databases

Microsoft SQL Server 2008 is no exception, and supports most of the grammar that has been
defined in the ANSI 92 SQL Standard. On top of this standard, Microsoft has added some propri-
etary extensions. Collectively, the two are referred to as T-SQL, or Transact SQL. I’ll stick to the
term SQL for the remainder of this book.

In the following sections, you see how to use SQL targeting a SQL Server 2008 database to retrieve
and manipulate data in your database. However, before you can write your first SQL statement, you
need to know how to connect to your database first. The following exercise shows you how to con-
nect to the sample database that comes with the downloadable code for this book.

Connecting to the SQL Server Sample DatabaseTry It Out	

In this exercise you learn how to connect to and work with a database from within VWD. To give you
something to work with, the code download for this chapter comes with a sample database that con-
tains a few tables. To be able to access the database from within VWD, the account that you use to log
on to your Windows machine needs at least read and write permissions to the folder where the database
resides. If you are logged on as an Administrator, there’s a fair chance this is already the case. When
you get errors while accessing the database in the next exercise, refer to Chapter 19, in the section
“Understanding Security in IIS” for detailed instructions about setting up the proper permissions.

	1.	 For this Try It Out exercise you need a brand new web site, which you can create by choosing
File ➪ New Web Site (or File ➪ New ➪ Web Site) in VWD and then choose the ASP.NET Web Site
template. Don’t follow this exercise with the Planet Wrox web site you’ve been working on so far
or you’ll get in trouble later when a database with the same name is used. You can save the web
site in a folder like C:\BegASPNET\DatabaseTest. If you use a different location, make note of it
because you need it in the next step.

	2.	 After you have created the new web site, ensure that your
account has sufficient permissions to write to its App_
Data folder. Because VWD, and thus the built-in web
server, runs under the account that you use to log in
to Windows, you need to make sure that your account
has the correct permissions. To this end, open Windows
Explorer (not VWD’s Solution Explorer), and locate the
folder C:\BegASPNET\DatabaseTest. Right-click the
App_Data folder and choose Properties. Switch to the
Security tab, and ensure that your account (or a group
you have been assigned to) has at least the Modify per-
mission, as shown in Figure 12-3.

If you don’t have a Security tab, or your account or the
Users group is not listed, refer to the Try It Out entitled
“NTFS Settings for Planet Wrox” in Chapter 19 for
detailed instructions on adding your own account to
this list.

Figure 12-3

502211c12.indd 406 2/19/10 9:59:40 AM

Retrieving and Manipulating Data with SQL  ❘  407

	3.	 Open the Resources folder at C:\BegASPNET\Resources using Windows Explorer. If you don’t
have this folder, refer to the Introduction of this book to learn how to acquire the code that comes
with this book. Then open the Chapter 12 folder and select the file PlanetWrox.mdf. Arrange
VWD and the Windows Explorer side by side and then drag the file from the Windows Explorer
into the App_Data folder of your web site in VWD. Remember, if drag and drop doesn’t work,
you can accomplish the same thing using copy and paste. This .mdf file is the actual database and
contains tables, records, and so on. When you start working with the database, you may also see
an .ldf file appear in the App_Data folder on disk. This file is used by SQL Server to keep track of
changes made to the database. If you are using SQL Server 2005 Express edition, you should get
the database from the Sql2005 folder instead.

	4.	 Double-click the database file in the Solution Explorer in VWD. Doing so opens the database in the
Database Explorer (called the Server Explorer in the commercial versions of Visual Studio).

	5.	 You can now expand the connected database to access its objects, such as the tables and columns it
contains, shown in Figure 12-4.

 How It Works

To be able to access a database from within VWD, it needs to be registered
in the Database Explorer window under Data Connections. In most cases,
adding a database is as simple as adding the database to your App_Data
folder and double-clicking it. However, when security on your system is
tight, or you are not connecting to a physical SQL Server data file located
in your web site, connecting to a database may be a bit trickier. In those
cases, refer to the section “Understanding Security in IIS” in Chapter 19
and to Appendix B for more details about configuring your system. The
App_Data folder is used only for data that is used at the server, such as
databases and text files. Because the web server blocks access to this folder
for remote browsers, you can’t use it to store files such as images that must
be downloaded by the client.

When you have a connection to your database in the Database Explorer, you can work with the
objects in the database. In a later exercise you see how to store the information about the connection
to the database (called the connection string) in the web.config file of your web site so you can use
the database from code and with ASP.NET controls.

However, first you need to understand how you can access and change the data in your database.

Retrieving and Manipulating Data with SQL

When interacting with databases, you’ll spend a good deal of time retrieving and manipulating data.
Most of it comes down to four distinct types of operations, grouped under the CRUD acronym:
Create, Read, Update, and Delete.

Because these data operations are so crucial, the next couple of sections show you how to use them
in detail.

Figure 12-4

502211c12.indd 407 2/19/10 9:59:40 AM

408  ❘  Chapter 12   Introducing Databases

Reading Data
To read data from a database, you typically use a few different concepts. First, you need the ability
to indicate the columns that you want to retrieve from the table you are querying. You do that with
the SELECT statement. You need to indicate the table(s) you want to select the data from using the
FROM keyword. Then you need a way to filter the data, making sure only the records you’re inter-
ested in are returned. You can filter the data using the WHERE clause in the SQL statement. Finally,
you can order your results using the ORDER BY clause.

Selecting Data

To read data from one or more database tables, you use the SELECT statement. In its most basic
form, the SELECT statement looks like this:

SELECT ColumnName [, AnotherColumnName] FROM TableName

Here, the parts between the square brackets are considered optional. For example, to retrieve all
rows from the Genre table and only select their Id and Name columns you use this SQL statement:

SELECT Id, Name FROM Genre

Right after the SELECT statement comes a comma-separated list of column names. You can have
only one or as many columns as you like here. Instead of explicitly specifying the column names,
you can also use the asterisk (*) character to indicate you want all columns to be returned. However,
using SELECT * is usually considered a poor programming practice so it’s better to explicitly define
each column you want to retrieve.

Right after the FROM keyword, you specify the name of the table from which you want to retrieve
data. The previous example showed only one table (the Genre table), but you see later that you can
also specify multiple tables using joins.

NOTE  ​Although the SQL language is not case sensitive, it’s common practice to
write all keywords such as SELECT and FROM in all caps. Additionally, this book
uses Pascal casing — where each new word is capitalized — for names of tables,
columns, and so on. For example, the date and time a certain review is created
are stored in a column called CreateDateTime in the Review table.

Filtering Data

To filter data, you use the WHERE clause, with which you indicate the criteria that you want your data
to match. For example, to retrieve the ID of the Grunge genre you use the following SQL statement:

SELECT Id FROM Genre WHERE Name = ‘Grunge’

Note that the word Grunge is wrapped in single quotes. This is required for text data types and
dates when you filter data or want to send values to an INSERT or UPDATE statement that enables

502211c12.indd 408 2/19/10 9:59:40 AM

Retrieving and Manipulating Data with SQL  ❘  409

you to create new or change existing records, as explained later. You can’t use them for numeric or
Boolean types, though, so to get the name of the genre with an ID of 8 you would use the following
statement:

SELECT Name FROM Genre WHERE Id = 8

The preceding two examples show a WHERE clause that uses the equals operator for an exact match.
However, you can also use other operators for different criteria. The following table lists a few pop-
ular comparison operators you can use in your WHERE clauses.

Operator Description

= The equals operator matches only when the left side and the right side of the com-

parison are identical.

> The greater than operator matches when the left side of the comparison represents a

larger value than the right side.

>= The greater than or equal operator matches when the left side of the comparison is

equal to or larger than the right side.

< The less than operator matches when the left side of the comparison represents a

value smaller than the right side.

<= The less than or equal operator matches when the left side of the comparison is

equal to or smaller than the right side.

<> The not equals operator does the reverse of the equals operator and matches when

the left side and the right side of the comparison are different.

To combine multiple WHERE criteria, the SQL language supports a number of logical operators such
as AND and OR. In addition, it supports other operators to search for text and to specify ranges. The
following table lists a few of the operators and describes what they are used for.

Operator Description

AND Enables you to join two expressions. For example, the WHERE clause

... WHERE Id > 20 AND Id < 30

gives you all records with IDs that fall between 20 and 30 (with 20 and 30 themselves

not included).

OR Enables you to define multiple criteria of which only one has to match (although more

matches are allowed). For example, this WHERE clause

... WHERE Id = 12 OR Id = 27

gives you all the records with an ID of 12 or 27.

continues

502211c12.indd 409 2/19/10 9:59:41 AM

410  ❘  Chapter 12   Introducing Databases

Operator Description

BETWEEN Enables you to specify a range of values that you want to match with a lower and upper

bound. For example,

... WHERE Id BETWEEN 10 AND 35

gives you all records whose IDs are between 10 and 35 (including 10 and 35 them-

selves if they exist in the database).

LIKE Used to determine if a value matches a specific pattern. You can use wildcards like

% to match any string of zero or more characters, and the underscore (_) to match a

single character. For example, the following WHERE clause

... WHERE Name LIKE ‘%rock%’

returns all genres that have rock in their name, including Indie Rock, Hard Rock, and

so on.

If no records match the WHERE clause, you don’t get an error, but you simply get zero results back.

After you have defined your filtering requirements with the WHERE clause, you may want to change
the order in which the results are returned from the database. You do this with the ORDER BY clause.

Ordering Data

The ORDER BY clause comes at the end of the SQL statement and can contain one or more column
names or expressions, which can optionally include ASC or DESC to determine if items are sorted in
ascending order (with ASC, which is the default if you leave out the keyword) or in descending order
(using DESC).

For example, to retrieve all genres from the Genre table and sort them alphabetically by their name
in ascending order, you can use this SQL statement:

SELECT Id, Name FROM Genre ORDER BY Name

Because ascending is the default order, you don’t need to specify the ASC keyword explicitly,
although you could if you wanted to. The next example is functionally equivalent to the preceding
example:

SELECT Id, Name FROM Genre ORDER BY Name ASC

If you wanted to return the same records but sort them in reverse order on their SortOrder column,
you use this syntax:

SELECT Id, Name FROM Genre ORDER BY SortOrder DESC

Notice how you can order by columns in the ORDER BY statement that are not part of the SELECT
statement as is the case with the SortOrder column. So, even though a specific column is not part of
the final result set, you can still use it to order on.

(continued)

502211c12.indd 410 2/19/10 9:59:41 AM

Retrieving and Manipulating Data with SQL  ❘  411

In the next exercise, you see how to perform a number of queries against the sample database, giv-
ing you a good idea of how different queries affect the results returned from the database.

Selecting Data from the Sample DatabaseTry It Out	

In this exercise you use the database that you connected to in an earlier exercise. This database is used
only for the samples in this chapter, so don’t worry if you mess things up.

	1.	 Open the Database Explorer (or the Server Explorer in the paid ver-
sions of Visual Studio) by choosing View ➪ Database Explorer.
Locate the Data Connection that you added earlier, expand it, and
then expand the Tables node. You should see two tables, Genre and
Review, as shown in Figure 12-5.

	2.	 Right-click the Genre table and choose Show Table Data. In the
Document Window you should now see a list with all the available
genres in the Genre table, shown in Figure 12-6.

Figure 12-6

Note that this is not just a list with all the records in the Genre table. It’s actually the result of a
SQL SELECT query that is executed when you open the window. To see the query behind this list,
ensure that the Query Designer toolbar, shown in Figure 12-7, is displayed onscreen. If the toolbar
isn’t visible, right-click an existing toolbar and choose Query Designer.

Diagram
Pane

SQL
Pane

Change type
of Query

Verify SQL
Syntax

Add
Table

Criteria
Pane

Results
Pane

Execute
SQL

Add
Group

By

Add
Derived

Table

Figure 12-7

On this toolbar, click the Diagram pane, the Criteria pane, and the SQL pane buttons to open
their respective windows. The first four buttons on the toolbar should now be in a pressed state
and the Document Window is split in four regions, with each region corresponding to one of the
buttons on the toolbar. Figure 12-8 shows the entire Document Window with the four panes.

Figure 12-5

502211c12.indd 411 2/19/10 9:59:41 AM

412  ❘  Chapter 12   Introducing Databases

Diagram Pane

Criteria Pane

SQL Pane

Results Pane

Figure 12-8

The SQL pane displays the SQL statement that is used to retrieve the genres that are displayed in
the Results pane. In this case, the SQL statement reads SELECT * FROM Genre to retrieve all col-
umns and records from the table, but you can easily change that.

	3.	 In the SQL pane, position your cursor right after the word Genre, press Enter once, and then type
WHERE Id > 4. Your complete SQL statement should end up like this:

SELECT * FROM Genre WHERE Id > 4

In your SQL pane, the query is split over multiple lines. That’s fine, because SQL enables you to
spread your statements over multiple lines without the need for a line continuation character.

	4.	 To make sure the SQL statement is valid, click the Verify SQL Syntax button on the toolbar and fix
any errors your SQL statement may contain. Next, click the Execute SQL button (the one with the
red exclamation mark on it) or press Ctrl+R. In both cases, the SQL statement is executed and the
Results pane is updated to show all genres with an ID larger than 4.

	5.	 In addition to showing the results, VWD also changed your query. Instead of SELECT *, it has listed
each column in your table explicitly. Now take a look at the Diagram pane — the top part of the
dialog box in Figure 12-8 that shows your entire table. In the Diagram pane you can check and
uncheck column names to determine whether they end up in the query. Deselect the SortOrder col-
umn (don’t accidentally change the check mark of the Output column in the Criteria pane instead).
Note that it also gets removed from the Criteria pane (visible in Figure 12-9) and the SQL statement
in the SQL pane.

Figure 12-9

502211c12.indd 412 2/19/10 9:59:42 AM

Retrieving and Manipulating Data with SQL  ❘  413

	6.	 Take a look at the Criteria pane in Figure 12-9. It shows the two columns you are selecting. In the
Filter column it shows the expression that filters all genres with an ID larger than 4.

In this pane you can modify the query without manually writing a lot of code. To see how you
can apply an additional filter, type LIKE ‘%rock%’ in the Filter cell for the Name row. This limits
the results to all genres that contain the word rock and that have an ID that is larger than 4. If
you press Ctrl+R again the Results pane is updated to reflect the change in the query.

	7.	 To determine the sort order, you can use the Sort Type column. You can do this for visible col-
umns (for example, those that have their Output check box checked and end up in the final result
set) but also for other columns. To order by the SortOrder column, click the cell under Name once.
It changes and now shows a drop-down list instead. Choose SortOrder from the drop-down list.
When you click or tab away from the field, VWD places a check mark in the Output column. You
can click that check mark to remove the column again from the output so it remains available for
ordering and filtering, but won’t show up in the query results. However, for this exercise it’s okay
to leave the column selected.

	8.	 In the Sort Type column choose Descending from the drop-down list for the SortOrder. Your final
Criteria pane now looks like Figure 12-10.

Figure 12-10

While you make your changes using the Diagram and Criteria panes, VWD continuously updates
the SQL pane. Your final SQL statement should now include the extra WHERE clause and the ORDER
BY statement:

SELECT Id, Name, SortOrder
FROM Genre
WHERE (Id > 4) AND (Name LIKE ‘%rock%’)
ORDER BY SortOrder DESC

	9.	 Press Ctrl+R again (or click the Execute SQL button on the toolbar) and the Results pane shows
the records from the Genre table that match your criteria, visible in Figure 12-11.

Figure 12-11

Note that the records are now sorted in descending order based on the SortOrder column.

502211c12.indd 413 2/19/10 9:59:42 AM

414  ❘  Chapter 12   Introducing Databases

How It Works

The Query Designer in VWD is a very helpful tool for creating new queries against your database. Instead
of hand coding the entire SQL statement in the SQL pane, you use the Diagram and Criteria panes to
create your queries visually. Of course, you can still use the SQL pane to make manual tweaks to the
SQL code that VWD generates for you.

The final query you executed returned all the records that contain the word rock and that had an ID
larger than 4. The query shown in step 8 has a WHERE clause that consists of two parts: the first part
limits the records returned to those with an ID larger than 4. The second part filtered the records
to those that contain the text rock. The two criteria are both applied at the same time using the AND
keyword, so only records with an ID larger than 4 and the word rock in their name are returned.
Effectively, this returns the Alternative Rock, Indie Rock, and Rock genres, while leaving out the Hard
Rock genre because it has an ID of 4.

At the end, the result set is sorted in descending order on the SortOrder column using the syntax
ORDER BY SortOrder DESC. Notice that SortOrder is an arbitrarily chosen name. You can easily give
this column a different name, or order on a different column like the Name column to retrieve the genres
in alphabetical order.

In this example, you saw how to retrieve data from a single table. However, in most real-world
applications you get your data from multiple tables that are somehow related to each other. You
define this relationship in your SQL syntax using the JOIN keyword.

Joining Data

A JOIN in your query enables you to express a relationship between one or more tables. For example,
you can use a JOIN to find all the reviews from the Review table that have been published in a specific
genre and then select some columns from the Review table together with the Name of the genre.

The basic syntax for a JOIN looks like the following bolded code:

SELECT
 SomeColumn
FROM
 LeftTable
INNER JOIN RightTable ON LeftTable.SomeColumn = RightTable.SomeColumn

The first part is the standard SELECT part of the query that you saw earlier, and the second part
introduces the keywords INNER JOIN to express the relationship between the two tables. This query
only returns the records in the table LeftTable with a corresponding record in RightTable. For
example, to return the ID and the title of a review together with the name of the genre it belongs to,
you use this SQL statement:

SELECT
 Review.Id, Review.Title, Genre.Name
FROM
 Review
INNER JOIN Genre ON Review.GenreId = Genre.Id

502211c12.indd 414 2/19/10 9:59:42 AM

Retrieving and Manipulating Data with SQL  ❘  415

Note that in the SELECT statement each column is prefixed with the table name. This makes it clear
what table you are referring to and avoids conflicts when multiple tables have similar column names
(like the Id column that exists in both tables).

In addition to an INNER JOIN that only returns matching records, you can also use an OUTER JOIN.
The OUTER JOIN enables you to retrieve records from one table regardless of whether they have a
matching record in another table. The following example returns a list with all the genres in the sys-
tem together with the reviews in each genre:

SELECT
 Genre.Id, Genre.Name, Review.Title
FROM
 Genre
LEFT OUTER JOIN Review ON Genre.Id = Review.GenreId

For each review assigned to a genre, a unique row is returned that contains the review’s title.
However, even if a genre has no reviews assigned, the row is still returned.

Figure 12-12

In Figure 12-12 you can see that the genre Indie Rock is repeated multiple times, for each review in
the Review table that has been assigned to that genre. The Punk genre has only one review attached
to it, so it’s listed only once. Finally, the Rock and Grunge genres have no reviews associated with
them. However, because the SQL statement uses a LEFT OUTER JOIN, those two genres (listed on
the left side of the JOIN) are still returned. Instead of the Title of a review, that column now con-
tains a NULL value to indicate there is no associated review.

Besides the LEFT OUTER JOIN, there is also a RIGHT OUTER JOIN that returns all the records from
the table listed at the right side of the JOIN. LEFT and RIGHT OUTER JOIN statements are very simi-
lar, and in most cases you’ll see the LEFT OUTER JOIN.

In addition, there are other joins including cross joins and self joins. For a detailed descrip-
tion of these types of joins, pick up a copy of the book Beginning Microsoft SQL Server 2008
Programming by Robert Vieira (ISBN: 978-0-470-25701-2).

You see how to use a very common type of join, the INNER JOIN, in the next Try It Out.

502211c12.indd 415 2/19/10 9:59:42 AM

416  ❘  Chapter 12   Introducing Databases

Joining DataTry It Out	

To join data from two tables, you need to write a JOIN statement in your code. To help you write the
code, VWD adds a JOIN for you whenever you add a table to the Diagram pane. However, sometimes
this JOIN is not correct, so you’ll need to check the code to see if it’s okay.

	1.	 Still in your test site, on the Database Explorer (or Server Explorer), right-click the Review table
and choose Show Table Data. You’ll see all the reviews in the table appear. Next, enable the
Diagram, Criteria, and SQL panes by clicking their respective buttons on the Query Designer
toolbar.

	2.	 Right-click an open spot of the Diagram pane next to the Review table and choose Add Table.
Alternatively, choose Query Designer ➪ Add Table from the main menu.

	3.	 In the dialog box that opens, click the Genre table and then click the Add button. Finally, click Close.

	4.	 The SQL statement that VWD generated looks like this:

SELECT * FROM Review
INNER JOIN Genre ON Review.GenreId = Genre.Id

VWD correctly detected the relationship defined in the database between the GenreId column
of the Review table and the Id column of the Genre table, and applied the correct JOIN for you.
Later you see how to define these relationships yourself.

	5.	 To see how you can create JOINs yourself without writing code directly, you’ll manually recreate
the JOIN. First, right-click the line that is drawn between the two tables in the Diagram pane and
choose Remove. The SQL statement now contains a CROSS JOIN.

	6.	 Next, click the GenreId column of the Review table in the Diagram pane once and drag it onto the
Id column of the Genre table. As soon as you release the mouse, VWD creates a new INNER JOIN
in the SQL pane for you with the exact same code as you saw earlier.

	7.	 In the Criteria pane, click the left margin of the first row that contains the asterisk (*) symbol to
select the entire row and then press the Delete key or right-click the left margin and choose Delete.
This removes the asterisk from the SQL statement. Alternatively, you can delete the asterisk from
the SQL pane directly.

	8.	 In the Diagram pane place a check mark in front of the Id and Title columns of the Review table
and in front of the Name column of the Genre table.

	9.	 Finally, press Ctrl+R to execute the query. Your Document Window should now look like
Figure 12-13, showing the results of the query at the bottom of the screen in the Results pane.

How It Works

By using a JOIN in your SQL statement, you tell the database how to relate records to each other. In this
example, you joined the GenreId column of the Review table to the actual Id of the Genre table:

SELECT
 Review.Id, Review.Title, Genre.Name
FROM
 Review
INNER JOIN Genre ON Review.GenreId = Genre.Id

502211c12.indd 416 2/19/10 9:59:42 AM

Retrieving and Manipulating Data with SQL  ❘  417

With this JOIN, you can retrieve data from multiple tables and present them in a single result set. SQL
Server returns the correct genre name for each review, as is shown in Figure 12-13.

Figure 12-13

Besides selecting data, you also need to be able to insert data into the database. You do this with the
INSERT statement.

Creating Data
To insert new records in a SQL Server table, you use the INSERT statement. It comes in a few differ-
ent flavors, but in its simplest form it looks like this:

INSERT INTO TableName (Column1 [, Column2]) VALUES (Value1 [, Value2])

Just as with the WHERE clause, you need to enclose string and date values in single quotes, but you
can enter numbers and Boolean values directly in your SQL statement. The following snippet shows
how to insert a new row in the Genre table:

INSERT INTO Genre (Name, SortOrder) VALUES (‘Tribal House’, 20)

After you have created some data, you may want to edit it again. You do this with the UPDATE
statement.

502211c12.indd 417 2/19/10 9:59:42 AM

418  ❘  Chapter 12   Introducing Databases

Updating Data
To update data in a table, you use the UPDATE statement:

UPDATE TableName SET Column1 = NewValue1 [, Column2 = NewValue2] WHERE
 Column3 = Value3

With the UPDATE statement, you use Column = Value constructs to indicate the new value of the
specified column. You can have as many of these constructs as you want, with a maximum of one
per column in the table. To limit the number of items that get updated, you use the WHERE clause,
just as with selecting data as you saw earlier.

The following example updates the record that was inserted with the INSERT statement you saw ear-
lier. It sets the Name to Trance and updates the SortOrder to 5 to move the item up a little in sorted
lists. It also uses the unique ID of the new record (13 in this example) in the WHERE clause to limit
the number of records that get affected with the UPDATE statement.

UPDATE Genre SET Name = ‘Trance’, SortOrder = 5 WHERE Id = 13

Obviously, you may also have the need to delete existing records. It should come as no surprise that
the SQL language uses the DELETE statement for this.

Deleting Data
Just as with the SELECT and UPDATE statements, you can use the WHERE clause in a DELETE statement
to limit the number of records that get deleted. This WHERE clause is often very important, because
you will otherwise wipe out the entire table instead of just deleting a few records.

When you write a DELETE statement, you don’t need to specify any column names. All you need to
do is indicate the table that you want to delete records from and an (optional) WHERE clause to limit
the number of records that get deleted. The following example deletes the record that was inserted
and updated in the previous two examples:

DELETE FROM Genre WHERE Id = 13

If you leave out the WHERE clause, all records will be deleted from the table.

You see these SQL statements at work in the next exercise.

Working with Data in the Sample DatabaseTry It Out	

In this exercise, you put everything you learned so far into practice. In a series of steps, you see how to
create a new record in the Genre table, select it again to find out its new ID, update it using the UPDATE
statement, and finally delete the genre from the database. Although the examples themselves may seem
pretty trivial, they are at the core of how SQL works. If you understand the examples from this section,
you’ll be able to work with the remaining SQL statements in this and coming chapters.

	1.	 Open the Database Explorer window in your temporary test site and locate the Genre table in the
database. Right-click it and choose Show Table Data. If the table was already open with an old
query, you need to close it first by pressing Ctrl+F4. This gets rid of the existing SQL statement.

502211c12.indd 418 2/19/10 9:59:43 AM

Retrieving and Manipulating Data with SQL  ❘  419

	2.	 Click the first three buttons on the Query Designer toolbar (Diagram, Criteria, and SQL pane) to
open up their respective panes.

	3.	 In the Diagram pane, check the columns Name and SortOrder. Make sure you
leave Id unchecked, as shown in Figure 12-14.

Because the Id column gets an auto-generated value from the database, you
cannot supply an explicit value for it in an INSERT statement.

	4.	 On the Query Designer toolbar click the Change Type button and choose the
third option: Insert Values. The query in the SQL pane is updated and now
contains a template for the INSERT statement:

INSERT INTO Genre (Name, SortOrder) VALUES (,)

	5.	 Between the parentheses for the VALUES, enter a name (between apostrophes) and a sort order for
your genre separated by a comma:

VALUES (‘Folk’, 15)

	6.	 Press Ctrl+R to execute the query. You should get a dialog
box that tells you that your action caused one row to be
affected as shown in Figure 12-15.

	7.	 Click OK to dismiss the dialog box.

	8.	 Clear out the entire SQL statement from the SQL pane (you
can use Ctrl+A to select the entire SQL statement and then
press the Delete key to delete it) and replace it with this code,
which selects all the genres and sorts them in descending order:

SELECT Id, Name FROM Genre ORDER BY Id DESC

	9.	 Press Ctrl+R to execute this SELECT statement. The Results pane shows a list of genres with the one
you just inserted at the top of the list. Note the ID of the newly inserted record. It should be 13 if
you haven’t inserted any record before although it’s okay if you have a different ID.

	10.	 Click the Change Type button on the toolbar again, this time choosing Update. Complete the SQL
statement that VWD created for you so it looks like this:

UPDATE
 Genre
SET
 Name = ‘British Folk’,
 SortOrder = 5
WHERE
 Id = 13

Don’t forget to replace the number 13 in the SQL statement with the ID you determined in step 9.

	11.	 Press Ctrl+R again to execute the query and you’ll get a dialog box informing you that one record
has been modified.

Figure 12-14

Figure 12-15

502211c12.indd 419 2/19/10 9:59:43 AM

420  ❘  Chapter 12   Introducing Databases

	12.	 Once again, clear the SQL pane and then enter and execute the following query by pressing Ctrl+R:

SELECT Id, Name FROM Genre WHERE Id = 13

Replace the Id in the WHERE clause with the ID of the record you determined in step 9. You should
see the updated record appear.

	13.	 On the Query Designer toolbar, click the Change Type button and choose Delete. VWD changes
the SQL statement so it is now set up to delete the record with an ID of 13:

DELETE FROM Genre WHERE (Id = 13)

	14.	 Press Ctrl+R to execute the query and delete the record from the database. Click OK to dismiss the
confirmation dialog.

	15.	 To confirm that the record is really deleted, click the Change Type button once more and choose
Select. Then choose one or more columns of the Genre table in the Diagram pane and press Ctrl+R
again. You’ll see that this time no records are returned, confirming the newly inserted genre has
indeed been deleted from the database.

How It Works

In this short exercise, you carried out all four parts of the CRUD acronym, which gave you a look at
the life cycle of data in a SQL Server database from creation to deletion.

You started off with an INSERT statement:

INSERT INTO Genre (Name, SortOrder) VALUES (‘Folk’, 15)

This creates a new record in the Genre table. As you see in the next section, the Id column of the Genre
table is an identity column, which means that each new record gets a new, sequential ID assigned
automatically.

To retrieve that ID, you used a SELECT statement with an ORDER BY clause that orders the records on
their IDs in descending order, so the most recent ID was put on top of the list. Retrieving the new ID
like this in a busy application is not reliable because you may end up with someone else’s ID. You see
later in the book how to retrieve the ID in a reliable way, but for the purposes of this exercise, the
ORDER BY method works well enough.

Armed with the new ID, you executed an UPDATE statement to change the Name and SortOrder of the
newly inserted genre. If you only want to update a single column with the UPDATE statement — say you
want to change only the Name — you can simply leave out the other columns. For example, the following
UPDATE statement changes only the Name, leaving all other columns at their original values:

UPDATE
 Genre
SET
 Name = ‘British Folk’
WHERE
 Id = 13

502211c12.indd 420 2/19/10 9:59:43 AM

Creating Your Own Tables  ❘  421

Finally, at the end of the exercise, you executed a DELETE statement to get rid of the new record. It’s
always important to specify a WHERE clause when executing a DELETE or an UPDATE statement to stop
you from clearing the entire table or from assigning the same value to all records.

DELETE FROM Genre WHERE (Id = 13)

This SQL statement simply deletes the record with an ID of 13. If the record exists, it gets deleted. If the
record does not exist, no error is raised, but the dialog box in VWD shows you that zero records have
been affected. The parentheses are not required in this example, but help in determining precedence
when you have multiple conditions in your WHERE clause.

Up to this point, you have seen how to work with existing tables in a database. However, it’s also
important to understand how to create new tables with relationships yourself. This is discussed in
the next section.

Creating Your Own Tables

Creating tables in a SQL Server 2008 database is easy using the built-in database tools that are part
of VWD. You see how you can create your own tables in the database after the next section, which
briefly introduces you to the data types you have at your disposal in SQL Server 2008 and up.

Data Types in SQL Server
Just as with programming languages like Visual Basic .NET and C#, a SQL Server database uses
different data types to store its data. SQL Server 2008 supports more than 30 different data types,
most of which look similar to the types used in .NET. The following table lists the most common
SQL Server data types together with a description and their .NET counterparts.

SQL 2008 Data Type Description .NET Data Type

bit Stores Boolean values in a 0 / 1 format. (1 = True,

0 = False)

System.Boolean

char / nchar Contains fixed-length text. When you store text

shorter than the defined length, the text is padded

with spaces. The nchar stores the data in Unicode

format, which enables you to store data for many

foreign languages.

System.String

datetime Stores a date and a time. System.DateTime

datetime2 Similar to the datetime type, but with a greater

precision and range.

System.DateTime

date Stores a date without the time element. System.DateTime

time Stores a time without the date element. System.TimeSpan

continues

502211c12.indd 421 2/19/10 9:59:43 AM

422  ❘  Chapter 12   Introducing Databases

SQL 2008 Data Type Description .NET Data Type

decimal Enables you to store large, fractional numbers. System.Decimal

float Enables you to store large, fractional numbers. System.Double

image Enables you to store large binary objects such as

files. Although the name suggests that you can

only use it to store images, this is not the case.

You can use it to store any kind of document or

other binary object.

System.Byte[]

tinyint Used to store integer numbers ranging from 0 to 255. System.Byte

smallint Used to store integer numbers ranging from

–32,768 to 32,767.

System.Int16

int Used to store integer numbers ranging from

–2,147,483,648 to 2,147,483,647.

System.Int32

bigint Used to store large integer numbers ranging from

–9,223,372,036,854,775,808 to

9,223,372,036,854,775,807.

System.Int64

text / ntext Used to store large amounts of text. System.String

varchar /

nvarchar

Used to store text with a variable length. The

nvarchar stores the data in Unicode format, which

enables you to store data for many foreign languages.

System.String

uniqueidentifier Stores globally unique identifiers. System.Guid

For a complete list of all the supported data types in SQL Server 2008, check out the MSDN docu-
mentation at http://tinyurl.com/SqlDataTypes.

Some of these data types enable you to specify the maximum length. When you define a column of
type char, nchar, varchar, or nvarchar you need to specify the length in characters. For example,
an nvarchar(10) allows you to store a maximum of 10 characters. Starting with SQL Server 2005,
the version of SQL Server before SQL Server 2008, these data types also enable you to specify MAX
as the maximum size. With the MAX specifier, you can store data up to 2GB in a single column. For
large pieces of text, like the body of a review, you should consider the nvarchar(max) data type. If
you have a clear idea about the maximum length for a column (like a zip code or a phone number)
or you want to explicitly limit the length of it, you should specify that length instead. For example,
the title of a review could be stored in an nvarchar(200) column to allow up to 200 characters.

Understanding Primary Keys and Identities
To uniquely identify a record in a table, you can set up a primary key. A primary key consists of one
or more columns in a table that contains a value that is unique across all records. When you identify

(continued)

502211c12.indd 422 2/19/10 9:59:43 AM

Creating Your Own Tables  ❘  423

a column as a primary key, the database engine ensures that no two records can end up with the
same value. A primary key can consist of just a single column (for example, a numeric column that
contains unique numbers for each record in the table) or it can span multiple columns, where the
columns together form a unique ID for the entire record.

SQL Server also supports identity columns. An identity column is a numeric column whose sequen-
tial values are generated automatically whenever a new record is inserted. They are often used as
the primary key for a table. You see how this works in the next section when you create your own
tables.

It’s not a requirement to give each table a primary key, but it makes your life as a database program-
mer a lot easier, so it’s recommended to always add one to your tables.

Creating tables, primary keys, and identity columns is really easy with VWD’s database tools, as
you see in the next Try It Out.

Creating Tables in the Table DesignerTry It Out	

In this exercise you add two tables to a new database that you add to the Planet Wrox project. You
should carry out the exercises in the Planet Wrox web site you have been building in the past chapters.
You can close and delete the test site you created at the beginning of this chapter because you don’t
need it anymore. This exercise assumes you’re creating tables for a local database (stored in the App_
Data folder). If you are using a separate, remote SQL Server database you can’t use VWD Express to do
so. Instead, you need to get a copy of the SQL Server Management Studio Express edition that you can
download from www.microsoft.com/sql/express.

	1.	 Open up the Planet Wrox web site from C:\BegASPNET\Site in VWD, right-click the App_Data
folder, and choose Add New Item. In the dialog box that follows, click SQL Server Database, type
PlanetWrox.mdf as the name, and then click Add to add the database to your site. The Database
Explorer (or Server Explorer) should open automatically showing you the new database. If it
doesn’t, double-click PlanetWrox.mdf in the Solution Explorer.

	2.	 On the Database Explorer, right-click the Tables node and choose Add New Table, as shown in
Figure 12-16.

	3.	 In the dialog box that follows, you can enter column names and data types that together make up
the table definition. Create three columns for the Id, Name, and SortOrder of the Genre table so
the dialog box ends up as shown in Figure 12-17.

Figure 12-16 Figure 12-17

502211c12.indd 423 2/19/10 9:59:43 AM

424  ❘  Chapter 12   Introducing Databases

Make sure you clear the check box for all three items in the Allow Nulls column. This column
determines if fields are optional or required. In the case of the Genre table, all three columns will
be required, so you need to clear the Allow Nulls check box.

	4.	 Next, select the entire row for the Id by clicking in the margin on the left (identified by the black
arrow in Figure 12-17) and then on the Table Designer toolbar, visible in Figure 12-18, click the
second button from the left (with the yellow key on it) to turn the Id column into a primary key.

Generate
Change

Script

Manage
Indexes

and Keys

Manage
Fulltext
Index

Manage
XML

Indexes

Set
Primary

Key

Relationships

Manage
Check
Constraints

Manage
Spatial
Indexes

Figure 12-18

	5.	 Below the table definition you see the Column Properties, a panel that looks similar to the Properties
Grid in VWD. With the Id column still selected, scroll down a bit on the Column Properties Grid
until you see Identity Specification. Expand the item and then set (Is Identity) to Yes, as shown in
Figure 12-19.

Figure 12-19

	6.	 Press Ctrl+S to save your changes. A dialog box pops up that enables you to provide a name for the
table. Type Genre as the name and click OK to apply your changes.

	7.	 Create another table by following steps 2 and 3, but this time create a table with the following
specifications to hold the CD and concert reviews for the Planet Wrox web site.

502211c12.indd 424 2/19/10 9:59:44 AM

Creating Your Own Tables  ❘  425

Column Name Data Type Allow

Nulls

Description

Id int No The primary key and identity of the table.

Title nvarchar(200) No Contains the title of the review.

Summary nvarchar(max) No Contains a short summary or teaser text

for the review.

Body nvarchar(max) Yes Contains the full body text of the review.

GenreId int No Contains the ID of a genre that the

review belongs to.

Authorized bit No Determines whether the review is

authorized for publication by an admin-

istrator. Unauthorized reviews will not

be visible on the web site.

CreateDateTime datetime No The date and time the review is created.

UpdateDateTime datetime No The date and time the review is last

updated.

	8.	 Make the Id column the primary key again, and set its (Is Identity) property to Yes just as you did
in steps 4 and 5.

	9.	 Click the CreateDateTime column once and then on the Column Properties Grid, type getdate()
in the field for the Default Value or Binding property, as shown in Figure 12-20.

Figure 12-20

	10.	 Repeat the preceding step for the UpdateDateTime column.

	11.	 When you’re done, press Ctrl+S to save the table and call it Review.

502211c12.indd 425 2/19/10 9:59:44 AM

426  ❘  Chapter 12   Introducing Databases

How It Works

The Table Designer in VWD is pretty straightforward. You simply type new column names and define
a data type for the column, and you’re pretty much done. Some columns, such as the Id column in
the Genre and Review tables, require a bit more work. For those columns, you set (Is Identity) to Yes.
This means that SQL Server automatically assigns a new sequential number to each new record that
you insert. By default, the first record in the table gets an ID of 1, and the ID of subsequent records is
increased by one. You can change the default behavior by setting the Identity Increment and Identity
Seed in the Identity Specification element for the column.

You also assigned a default value to the CreateDateTime and UpdateDateTime columns of the Review
table. Default values are inserted by the database when you don’t supply one explicitly in your SQL
statements. This means that if your INSERT statement does not contain a value for the CreateDateTime
or UpdateDateTime column, the database will insert a default value for you automatically. In the pre-
ceding Try It Out, this default value was getdate(), which inserts today’s date and time automatically.
This way, you can easily track when a review was created. In later chapters you see how to update the
UpdateDateTime column when reviews are updated.

If you’re unsure whether you followed all the steps correctly, take a look at the database that comes with
the source for this chapter. It contains the correct tables that already have a few records in them. To look at
the database, create a new temporary web site in VWD and then drag the database files into the App_Data
folder. You can then access the database using the Database Explorer. You’ll find a version specific to SQL
Server 2005 in the Resources folder for this chapter as you saw earlier in this chapter.

In addition to relationships that are only defined in your own SQL queries as you saw before with
the SELECT and JOIN statements, you can also create relationships in the database. The benefits of
relationships and how you can create them in your database are discussed in the next section.

Creating Relationships Between Tables
Consider the tables you have created so far. You created a Genre table with an Id column to
uniquely identify a genre record. You also created a Review table with a GenreId column. Clearly,
this column should contain an Id that points to a record in the Genre table so you know to which
genre a review belongs. Now imagine that you delete a record from the Genre table that has reviews
attached to it. Without a relationship, the database will let you do that. However, this is causing a
great deal of trouble. If you now try to display the genre together with a review, it will fail because
there is no longer a matching genre. Similarly, if you want to list all the reviews in your system
grouped by genre, you’ll miss the ones that belong to the deleted genre.

To avoid these kinds of problems and keep your database in a healthy and consistent state, you can
create a relationship between two tables. With a proper relationship set up, the database will stop
you from accidentally deleting records in one table that still have other records attached to it.

Besides the protection of data, relationships also make your data model clearer. If you look at the
database through a diagram (which you use in the next exercise), you’ll find that relationships
between tables help you better understand how tables are connected, and what data they represent.

You can define a relationship by creating one between the primary key of one table, and a column
in another table. The column in this second table is referred to as a foreign key. In the case of the

502211c12.indd 426 2/19/10 9:59:44 AM

Creating Your Own Tables  ❘  427

Review and Genre tables, the GenreId column of the Review table points to the primary key col-
umn Id of the Genre table, thus making GenreId a foreign key. In the next exercise you see how to
create a relationship between two tables and then execute a SQL statement that shows how the rela-
tionship is helping you to protect your data.

Creating a Relationship between Two TablesTry It Out	

Before you can visually add a relationship between two tables, you need to add a diagram to your data-
base. A diagram is a visual tool that helps you understand and define your database. On the diagram,
you can drag a column from one table to another to create the relationship. In this exercise, you create
a relationship between the Review and Genre tables.

	1.	 Open the Database Explorer again for the Planet Wrox site. Right-click the Database Diagrams
element (visible in Figure 12-16) and click Add New Diagram. If this is the first time you are add-
ing a diagram to the database, you may get a dialog box asking if you want VWD to make you the
owner of the database. Click Yes to proceed. Don’t worry if you don’t get this prompt; things will
work fine without it. The prompt may be followed by another that indicates that in order to work
with diagrams, VWD needs to create a few required objects. Again, click Yes to proceed.

	2.	 In the Add Table dialog box that follows, select both tables you created in the previous Try It Out
(hold down the Ctrl key while you click each item), click Add to add the tables to the diagram, and
then click Close to dismiss the Add Table dialog box.

	3.	 If necessary, arrange the tables in the diagram using drag and drop so they are positioned next to
each other.

	4.	 On the Genre table, click the left margin of the Id column (it should contain the yellow key to
indicate this is the primary key of the table) and then drag it onto the GenreId column of the
Review table and release your mouse.

	5.	 Two dialog boxes pop up that enable you to customize the defaults for the relation. In the top-most
window, confirm that Id is selected from Genre as the Primary Key Table and that GenreId is selected
from Review as the Foreign Key Table. Click OK to dismiss the top window and confirm the columns
that participate in the relationship. In the dialog box that remains, visible in Figure 12-21, notice how
Enforce Foreign Key Constraint is set to Yes. This property ensures that you cannot delete a record
from the Genre table if it still has reviews attached to it. Click OK to dismiss this dialog box as well.

Figure 12-21

502211c12.indd 427 2/19/10 9:59:44 AM

428  ❘  Chapter 12   Introducing Databases

	6.	 The diagram window should now show a line between the two tables. At the side of the Genre
table, you should see a yellow key to indicate this table contains the primary key for the relation-
ship. At the other end, you should see the infinity symbol (the number 8 turned 90 degrees) to indi-
cate that the Review table can have many records that use the same GenreId. You see the diagram
in Figure 12-22.

Figure 12-22

Note that the line between the two tables doesn’t
necessarily point to the correct columns. This can be
confusing sometimes because you may think that
other columns are actually related. To confirm the
columns participating in the relationship, right-click
the line between the two tables and choose
Properties. The Table and Columns Specification
item shows which columns and tables participate in
the relationship, shown in Figure 12-23.

	7.	 Press Ctrl+S to save the changes to the diagram. You can leave the name set to its default of Diagram1
or you can enter a more descriptive name such as Reviews and Genres and click OK. You’ll get
another warning that states that you are about to make changes to the Review and Genre tables.
Click Yes to apply the changes.

	8.	 Go back to the Database Explorer, right-click the Genre table, and choose Show Table Data. Enter
a few different genres by typing a Name and a SortOrder. When you press Tab in the SortOrder
field to tab away from the current row, the row is inserted in the database, and the Id column is
filled with a unique, sequential number. You should end up with a list similar to the one shown in
Figure 12-24.

Figure 12-23

502211c12.indd 428 2/19/10 9:59:45 AM

Creating Your Own Tables  ❘  429

Figure 12-24

	9.	 Open the Review table from the Database Explorer using the Show Table Data command and
enter a few review records. For the GenreId, supply some of the new IDs you got when you
inserted records in the Genre table. You can just make up the Title, Summary, and Body fields for
now and set Authorized to True. Remember, you don’t have to enter a value for the date columns.
If you leave them out, the database will insert the default value for you. Notice that you can’t insert
a value in the Id column yourself. Because this column is an Identity field, the database supplies
values for you automatically. If you get an error about missing values for the date columns, ensure
that you entered a proper default value in the previous exercise. When you’re done entering a row,
click outside the row (on the new, empty row below it, for example) and press Ctrl+R to insert the
row in the table. Your list of records should look similar to Figure 12-25, although your content
for the columns, of course, may be different.

Figure 12-25

	10.	 Right-click the Genre table again and choose
Show Table Data. Click the SQL pane button
on the Query Designer toolbar and then use
the Change Type button on the same toolbar
to create a DELETE query. Modify the query
so it looks like this:

DELETE FROM Genre WHERE Id = 5

This code will attempt to delete the Indie
Rock genre. However, because reviews are
connected to it, the delete action should fail.
Make sure that the Id in the WHERE clause Figure 12-26

502211c12.indd 429 2/19/10 9:59:45 AM

430  ❘  Chapter 12   Introducing Databases

matches one of the genre IDs you used in step 9 to link the reviews to. Press Ctrl+R to execute the
query. Instead of deleting the record from the Genre table, VWD now shows you the dialog box
you see Figure 12-26.

How It Works

When you create a relationship between two tables, the database will enforce this relationship when
you try to insert, update, or delete data. In this example, records in the Review table have a genre that
exists in the Genre table. When you try to delete a record from the Genre table, the database sees that
the genre is used by a record in the Review table and cancels the delete operation. In Chapter 15 you
learn how to handle this situation in your web site and present your user with a friendly error message.

Now that you’ve seen the underlying concepts in dealing with databases, you’re ready for the next
chapter, which shows you how to work with your database using the many available ASP.NET data
controls.

Practical Database Tips

The following list provides some practical tips on working with databases:

Because the database is often at the heart of a web site, you need to carefully consider its design. ➤➤

It’s especially important to think of a good design up front, before you start building your site
on top of it. When you have a number of pages that access your database, it will become harder
to make changes — such as removing tables or renaming columns — to the data model.

Always consider the primary key for your table. I prefer to give each table a column called ➤➤

Id. The underlying data type is then an int and an identity, which gives each record a unique
ID automatically. Instead of an int, you can also consider the uniqueidentifier data type,
which ensures uniqueness even across database or application boundaries.

Give your database objects such as tables and columns logical names. Avoid characters ➤➤

such as spaces, underscores, and dashes. A name like GenreId is much easier to read than
colGen_ID_3.

Don’t use ➤➤ SELECT * to get all columns from a database. By using SELECT * you may be
selecting more columns that you actually need. By explicitly defining the columns you want
to retrieve, you make your intentions to others clearer and increase the performance of your
queries at the same time.

Always create relationships between tables when appropriate. Although querying for the ➤➤

reviews and genres you saw in this chapter without a relationship between the two tables
works just fine, relationships help you enforce the quality of your data. With proper relation-
ships, you minimize the chance of ending up with orphaned or incorrect data.

502211c12.indd 430 2/19/10 9:59:45 AM

Summary  ❘  431

Summary

The ability to work with databases is a good addition to your set of web development skills. Most of
today’s dynamic web sites use databases, so it’s important to understand how to work with them.

To access and manipulate data in a relational database, you use a language called Structured Query
Language, or SQL for short. Among other elements, this language defines four important keywords
that enable you to perform CRUD — Create, Read, Update, Delete — operations against a database.

The SELECT statement enables you to retrieve data from one or more tables. To access more than
one table, you can use one of the available JOIN types to define a relationship between the tables.
To limit the number of records returned by a query, you can use a WHERE clause. To order the items
in the result set returned by your query, you use the ORDER BY clause. To create new records in
your database you use the INSERT statement, and you need an UPDATE statement to change existing
records. Finally, to delete records that you no longer need, you use the DELETE statement. Just like
the SELECT and UPDATE statements, DELETE takes an optional WHERE clause that enables you to limit
the number of records that get deleted.

The second part of this chapter showed you how to use the built-in database tools to create tables
with relationships between them. In addition, you saw how a relationship between two tables
enables you to protect your data from becoming corrupt or orphaned.

Although this chapter had a strong focus on the SQL that you need to write to access a database,
you see in the next chapter that in many cases VWD makes accessing databases pretty easy by gen-
erating most of the code for you. However, a solid knowledge of SQL helps you in understanding
and tweaking the code that VWD writes for you.

Exercises	

1.	 If you try to delete a record from the Genre table that has matching records in the Review table,

the DELETE statement fails. How is this possible?

2.	 If you try to delete a record from the Review table that has its GenreId set to the Id of an existing

genre in the Genre table, the DELETE statement succeeds. Why?

3.	 Imagine you want to clean up your database and decide to delete all records from the Review

table that have an Id of 100 or less. Write a SQL statement that deletes these records.

4.	 Imagine you want to delete the genre with an ID of 4. But before you delete the genre, you want

to reassign reviews assigned to this genre to another genre with an ID of 11. What SQL statements

do you need to accomplish this?

5.	 Write a SQL statement that updates the Rock genre to read Punk Rock instead. There are at least

two ways to write the WHERE clause for this statement.

Answers to Exercises can be found in Appendix A.

502211c12.indd 431 2/19/10 9:59:45 AM

432  ❘  Chapter 12   Introducing Databases

What You Learned in This Chapter⊲⊲

CRUD The four basic SQL operations to work with data in a database: Create, Read,

Update, and Delete

Foreign key Identifies a column in a table that refers to the primary key of another table to

enforce referential integrity

Identity An automatic, sequential number assigned to new records

JOIN Enables you to express the relationship between two or more tables in a query to

find related data

Primary key Consists of one or more columns in a table that uniquely identify a record in that

table

Relational
database

A type of database where data is stored in separate, spreadsheet-like tables that

can refer to each other

Relationship Defines the relation between one or more tables and helps you enforce referential

integrity

Table An object in a database that enables you to store data

502211c12.indd 432 2/19/10 9:59:45 AM

Displaying and Updating Data

What You Will Learn in This Chapter:

How to display, insert, edit, and delete data using controls such as ➤➤

GridView, DetailsView, and SqlDataSource

How to create a rich interface that enables a user to insert and edit data ➤➤

while maintaining data integrity with the ASP.NET validation controls

The best way to store your connection strings in your application so ➤➤

they are easily updatable

In this chapter you learn how to display, insert, update, and delete data using the popular
data controls that ship with ASP.NET. Besides working with the visual controls that are used
to display and edit data in a web page, you also learn how to work with the SqlDataSource
control that acts as the bridge between the database and your ASPX pages.

The first things you need to look at are the available data controls, discussed in the next section.

Data Controls

To enable you to work efficiently with the data in your system, ASP.NET
offers two sets of data-aware controls: the data-bound controls and the
data source controls.

The first group contains controls that you use to display and edit data, such
as the GridView, Repeater, and ListView controls in the user interface.
The data source controls are used to retrieve data from a data source, like
a database or an XML file, and then offer this data to the data-bound con-
trols. Figure 13-1 shows you the complete list of available data controls in
the Data category of the Toolbox.

Figure 13-1

13

502211c13.indd 433 2/19/10 9:59:26 AM

434  ❘  Chapter 13   Displaying and Updating Data

The following three sections provide a quick overview of all the controls in the Data category. In the
remainder of this chapter you get a much more detailed look at some of these controls and how to
use them.

Data-bound Controls
Seven of the controls in the Toolbox depicted in Figure 13-1 are the so-called data-bound controls.
You use them to display and edit data on your web pages. The GridView, DataList, ListView, and
Repeater are all able to display multiple records at the same time. As such they are often referred to
as list controls. The DetailsView and the FormView are designed to show a single record at a time.
The DataPager is a helper control used to provide paging capabilities to the ListView controls.

List Controls

Because ASP.NET offers multiple controls to display lists of records, you may be wondering when
to choose what control. The GridView is a very versatile control that supports automatic paging
(where records are spread out over multiple “pages”), sorting, editing, deleting, and selecting. It ren-
ders its data like a spreadsheet with rows and columns where each row contains a complete record.
Although many possibilities exist to style the looks of these rows and controls (you learn more about
this in Chapter 15), you cannot radically change the way the data is presented. Additionally, the
GridView does not allow you to insert records in the underlying data source directly.

Figure 13-2 shows a typical GridView.

The DataList control enables you to present
records of data not only in rows as with the
GridView, but in columns as well, enabling
you to create a matrix-like presentation of data.
Additionally, the control enables you to define
the look and feel of the data through a set of templates. As a downside, the control does not support pag-
ing and sorting natively, and doesn’t allow you to insert new records or update or delete existing ones.

The Repeater gives you the greatest flexibility in terms of the HTML that you output to the
browser because the control by itself does not add any HTML to the page output. As such, it’s often
used for HTML ordered or unordered lists (and) and other lists where you can’t afford
to have unwanted HTML mixed with your own. You define the entire client markup through the
numerous templates the control exposes. However, this flexibility comes at a price: the control has
no built-in capabilities to page, sort, or modify data. You see more of the Repeater control in the
next chapter.

The ListView was introduced in ASP.NET 3.5 and is a best-of-all-worlds combination of the
GridView, the DataList, and the Repeater. It has undergone some changes in ASP.NET 4 that
make it even easier to work with. The control supports editing, deleting, and paging of data, similar
to the GridView. It supports multi-column and multi-row layouts like the DataList offers, and it
enables you to completely control the markup generated by the control, just as the Repeater does.
In the next chapter, you see a lot more of the ListView control.

Figure 13-2

502211c13.indd 434 2/19/10 9:59:26 AM

Data Controls  ❘  435

In ASP.NET 4, list controls have been extended with a ClientIDRowSuffix property that enables
you to indicate the column whose value is used to create unique client-side IDs based on data in the
database. For this to work, you need to set the ClientIDMode property that you saw in earlier chap-
ters to Predictable.

Single Item Controls

The DetailsView and FormView controls are some-
what similar in that both of them can display a single
record at a time. The DetailsView uses a built-in tab-
ular format to display the data, whereas the FormView
uses templates to let you define the look and feel of
your data. A simple, template-based DetailsView
could look like the one shown in Figure 13-3.

New in ASP.NET 4 is the RenderOuterTable property on the FormView (and on a few of the Login
controls you’ll see in Chapter 16). When you set this property to True (it defaults to False so you
need to set it explicitly) the control doesn’t generate a wrapping HTML <table> element. This in
turn results in less code and cleaner HTML. Both controls enable you to define the templates for
different situations, such as a read-only display of data, and inserting and updating of data. You see
how to customize these templates in the second half of this chapter.

Paging Controls

Another useful control is the DataPager control that enables paging on other controls. For the time
being, it can only be used to extend the ListView control, but that might change with future versions
of the .NET Framework. The ListView and DataPager controls are discussed in Chapter 14.

For the data-bound controls to display something useful, you need to assign them a data source. To
bind this data source to the controls, you have two main methods available: You can assign data to
the control’s DataSource property, or you can use one of the separate data source controls. In later
chapters, you see how to use the DataSource property; the different data source controls are the
topic of the following section.

Data Source Controls
The Data category of the Toolbox contains seven different data source controls that you can use to
bind data to your data-bound controls. The XmlDataSource and SiteMapDataSource are used to
bind hierarchical, XML-based data to these controls. You saw SiteMapDataSource at work when
you created the site map in Chapter 7.

The AccessDataSource control is used to display data from a Microsoft Access database in your
web pages. It’s pretty straightforward, and to some extent it’s similar to the SqlDataSource control
in that it enables you to work with data from a database. However, it differs in that it’s optimized for
(and only works with) Microsoft Access databases.

The ObjectDataSource control enables you to connect your data-bound controls to separate objects
in your application. Instead of tying your data-aware controls directly to a database, you bind data

Figure 13-3

502211c13.indd 435 2/19/10 9:59:26 AM

436  ❘  Chapter 13   Displaying and Updating Data

from a separate layer with custom objects to them. Get yourself a copy of Wrox’s Professional
ASP.NET 4 (ISBN 978-0-470-50220-4) if you want to find out more about the ObjectDataSource
control.

The final three controls are the SqlDataSource, the EntityDataSource, and the LinqDataSource
controls. The first two are discussed in this chapter and Chapter 14, respectively. The LinqDataSource
serves as a data source for LINQ to SQL, a technology similar to the ADO.NET Entity Framework
you learn more about in Chapter 14. Because Microsoft is now pushing the Entity Framework instead
of LINQ to SQL, I won’t discuss the LinqDataSource control in this book.

The QueryExtender control acts like an add-on to the LinqDataSource and EntityDataSource
controls in that it enables you to create a rich filtering interface to search for specific data without
manually writing a lot of code.

Other Data Controls
The final control in the Toolbox is the Chart control. It was initially released as an add-on to Visual
Studio 2008 but has now been fully integrated into Visual Studio 2010. It’s designed to render chart
graphics ranging from simple bar charts to 3-D pie charts and fancy line diagrams. This control is
outside the scope of this book and won’t be discussed any further but you can find a series of articles
discussing this control in detail here: http://tinyurl.com/nsnbvv.

In the next section you see how to use the SqlDataSource and the GridView to retrieve and display
data from a database. Later sections and chapters dig deeper into the other data controls.

Data Source and Data-bound Controls
Working Together

The SqlDataSource control enables you to quickly create functional, database-driven web pages.
Without writing a whole lot of code, you can create web pages that enable you to perform all four
operations of the CRUD acronym: create, read, update, and delete data. Although its name may
seem to imply that the control can access only Microsoft’s SQL Server, that’s not the case. The
control can access other databases, such as Oracle or MySQL, as well.

Displaying and Editing Data with GridView
To give you an idea of how the SqlDataSource control works in conjunction with the data-bound
controls, the next Try It Out shows you how to you create a very simple data-driven web page that
enables you to manage the musical genres that are stored in the Genre table in the database. This
chapter assumes you have the PlanetWrox.mdf database with the Genre and Review tables in your
App_Data folder. It’s also assumed that these tables each contain at least a few records. If you didn’t
follow the steps in the previous chapter, or you’re not sure you followed them correctly, be sure to
grab a copy of the file PlanetWrox.mdf from the Resources folder in the code download for this
chapter (at C:\BegASPNET\Resources\Chapter 13) and drop them in the App_Data folder of the
Planet Wrox web site, overwriting the existing database if you had one. It’s also a good idea to get a
copy of the PlanetWrox.mdf database from the Resources folder if your own copy doesn’t contain
a lot of review and genre records. This gives you a good set of sample records to work with.

502211c13.indd 436 2/19/10 9:59:27 AM

Data Source and Data-bound Controls Working Together  ❘  437

Using the GridView and SqlDataSource ControlsTry It Out	

In this exercise you start building the Management section of the web site that will be your main entry
point to manage things such as reviews and genres in your site. For now, the pages you create in this
section are accessible to all users of your site, but Chapter 16 shows you how to block access to this folder
to any user that is not an administrator.

You see how to drag a table from the Database Explorer (the Server Explorer in the commercial versions
of Visual Studio) onto the page and have VWD create a web user interface to manage items in the data-
base for you by automatically generating the necessary code for a GridView and a SqlDataSource. In
later exercises in this book you see how to reproduce this behavior manually, giving you more control
over the generated code.

	1.	 Open the Planet Wrox web site from its location at C:\BegASPNET\Site in VWD.

	2.	 Right-click the MasterPages folder, choose Add New Item, and add a new Master Page called
Management.master to the site. Make sure it uses your programming language and that it’s not
based on an existing master page. Also, make sure it’s using Code Behind by checking the Place
Code in Separate File option.

	3.	 Change the HTML inside the <form> element to the following code that creates two <div> elements
floating next to each other. The first contains a simple list-based menu for the Management section,
whereas the second <div> contains the ContentPlaceHolder control that enables content pages to
provide custom content:

<form id=”form1” runat=”server”>
<div>
 <div style=”width: 200px; float: left;”>

 Management Home
 Manage Genres

 </div>
 <div style=”width: 750px; float: left;”>
 <asp:ContentPlaceHolder ID=”cpMainContent”
 runat=”server”></asp:ContentPlaceHolder>
 </div>
</div>
</form>

You can ignore the warnings that VWD gives you for the missing pages because they’ll be added
next. Save and close the master page.

	4.	 Add a new folder to the root of the site and call it Management. Right-click this new folder, choose Add
New Item, and create a new Web Form called Default.aspx. Make sure the page is based on the
new Management.master file you just created by checking Select Master Page. Add some text to the
cpMainContent content block that welcomes the user to the Management section of the web site:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” runat=”Server”>
 <h1>Planet Wrox Management Section</h1>
 <p>Welcome to the Management section of this web site. Please choose an item
 from the menu on the left to continue.</p>
</asp:Content>

502211c13.indd 437 2/19/10 9:59:27 AM

438  ❘  Chapter 13   Displaying and Updating Data

Give the page a title of Planet Wrox - Management - Home.

	5.	 Create another page in the Management folder and call it Genres.aspx. Base it on the same master
page and then change its title to Planet Wrox - Management - Genres.

	6.	 Switch this page to Design View and make sure the Database Explorer (or the Server Explorer)
window is open. If you don’t see the Planet Wrox database listed here, refer to the first Try It Out
of the previous chapter that explains how to set up the connection. Remember there’s a database
in the Resources folder for this chapter that contains the tables you’ll work with in this chapter in
case you don’t have your own.

	7.	 Expand the PlanetWrox.mdf database, then the Tables node, and then drag the Genre table from
the Database Explorer and drop it in the cpMainContent area of the Genres page. VWD creates a
GridView and a SqlDataSource for you automatically.

	8.	 On the Smart Tasks panel for the GridView control that should open automatically (if it doesn’t,
click the grey arrow on the upper-right corner of the control or right-click the control and choose
Show Smart Tag), select all the available options, shown in Figure 13-4.

Figure 13-4

	9.	 Right-click the Management folder in the Solution Explorer and choose Add New Item. Choose
Web Configuration File and then click Add to add a web.config file that applies to the Management
folder only. In the file that opens, add a <pages> element under <system.web> and set theme to an
empty string, effectively disabling the theme for the entire Management section of the site:

<configuration>
 <system.web>
 <pages theme=”“></pages>
 </system.web>
</configuration>

502211c13.indd 438 2/19/10 9:59:27 AM

Data Source and Data-bound Controls Working Together  ❘  439

	10.	 Save all your changes and then request Genres.aspx from the Management folder in your browser.
You should see a grid with the genres from the Genre table (see Figure 13-5). The links in the left
columns enable you to edit, delete, and select the relevant genres. Note that you can’t delete genres
that have one or more reviews attached to them. If you try, you’ll get an error instead. Chapter 15
digs much deeper into changing the user interface (UI) to disable the Delete links so users can no
longer accidentally click them.

Figure 13-5

If the list with reviews ends up below the menu on the left, you may need to make your browser
window a little wider.

	11.	 You can click the column headers, such as Name and SortOrder, visible in Figure 13-5 to sort the
data in the grid on that column. If you click the same header again, the data is sorted in reverse
order.

	12.	 Click the Edit link for one of the genres, change the name in the text box that has appeared, and
click the Update link. The GridView should now display the new name.

How It Works

You didn’t write much code in this exercise, but you got a lot of functionality simply by dragging and
dropping a database table. To see how it works, take a look at the source that VWD generated. First,
look at the markup for the SqlDataSource control:

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
 ConnectionString=”<%$ ConnectionStrings:PlanetWroxConnectionString1 %>”
 ProviderName=”
 <%$ ConnectionStrings:PlanetWroxConnectionString1.ProviderName %>”
 DeleteCommand=”DELETE FROM [Genre] WHERE [Id] = @Id”
 InsertCommand=”INSERT INTO [Genre] ([Name], [SortOrder]) VALUES (@Name,
 @SortOrder)”
 SelectCommand=”SELECT [Id], [Name], [SortOrder] FROM [Genre]”
 UpdateCommand=”UPDATE [Genre] SET [Name] = @Name, [SortOrder] = @SortOrder
 WHERE [Id] = @Id”>

502211c13.indd 439 2/19/10 9:59:27 AM

440  ❘  Chapter 13   Displaying and Updating Data

 <DeleteParameters>
 <asp:Parameter Name=”Id” Type=”Int32” />
 </DeleteParameters>
 <InsertParameters>
 <asp:Parameter Name=”Name” Type=”String” />
 <asp:Parameter Name=”SortOrder” Type=”Int32” />
 </InsertParameters>
 <UpdateParameters>
 <asp:Parameter Name=”Name” Type=”String” />
 <asp:Parameter Name=”SortOrder” Type=”Int32” />
 <asp:Parameter Name=”Id” Type=”Int32” />
 </UpdateParameters>
</asp:SqlDataSource>

A couple of interesting things are worth examining. First, note that the ConnectionString and
ProviderName attributes point to a connection string that has been defined in the web.config file. You
see more of this in the next section, including an explanation of the <%$ %> syntax used for the connec-
tion string.

You then see four commands, each one of them containing a SQL statement that is used for one of
the four operations of the CRUD acronym: The INSERT, UPDATE, and DELETE commands contain
parameters, identified by the at symbol (@) prefix. At runtime, when the control is asked to perform
the relevant data operation, these parameters are substituted by runtime values. The SqlDataSource
control keeps track of the relevant parameters in the *Parameters collections. For example, the
<DeleteParameters> element contains a single parameter for the Id (the primary key) of the genre:

<DeleteParameters>
 <asp:Parameter Name=”Id” Type=”Int32” />
</DeleteParameters>

Note that the Name of the parameter lines up with the parameter in the SQL statement:

 DeleteCommand=”DELETE FROM [Genre] WHERE [Id] = @Id”

All by itself, the SqlDataSource control can’t do much at this stage. It needs a data-bound control
that tells it what data operations to execute. In this Try It Out exercise the data-bound control is the
GridView that is defined with this code:

<asp:GridView ID=”GridView1” runat=”server” AllowPaging=”True” AllowSorting=”True”
 AutoGenerateColumns=”False” DataKeyNames=”Id” DataSourceID=”SqlDataSource1”
 EmptyDataText=”There are no data records to display.”>
 <Columns>
 <asp:CommandField ShowDeleteButton=”True” ShowEditButton=”True”
 ShowSelectButton=”True” />
 <asp:BoundField DataField=”Id” HeaderText=”Id” ReadOnly=”True”
 SortExpression=”Id” />
 <asp:BoundField DataField=”Name” HeaderText=”Name” SortExpression=”Name” />
 <asp:BoundField DataField=”SortOrder” HeaderText=”SortOrder”
 SortExpression=”SortOrder” />
 </Columns>
</asp:GridView>

502211c13.indd 440 2/19/10 9:59:28 AM

Data Source and Data-bound Controls Working Together  ❘  441

The GridView contains a few important attributes. First, the DataKeyNames attribute tells the GridView
what the primary key of the record in the database is. It needs this to be able to uniquely identify records
in the grid.

The DataSourceID attribute points to the SqlDataSource control that you saw earlier, whereas
AllowPaging and AllowSorting enable their associated features on the GridView.

Under the <Columns> element you see a number of fields set up. First, you see a CommandField. A
CommandField is a column in the GridView that enables a user to execute one or more actions for the
row that the CommandField applies to. It ends up in the browser as one or more text links or buttons. In
this example, ShowDeleteButton, ShowEditButton, and ShowSelectButton have all been set to True.
This gives the grid the functionality you see in Figure 13-5. When you click one of the links that have
been created by the CommandField, they’ll trigger a command at the server. For example, clicking the Edit
link puts the GridView in Edit mode so you can edit the selected record. Notice how clicking the Select
link doesn’t seem to change the GridView at all. In Chapter 15 you see how to create styles for the
GridView so you can radically change the appearance of the control, including visually distinguishing
a selected row from the others.

If you want the GridView to render buttons instead of links you need to set ButtonType to Button:

<asp:CommandField ShowDeleteButton=”True” ShowEditButton=”True”
 ShowSelectButton=”True” ButtonType=”Button”></asp:CommandField>

The other three fields are so-called bound fields and map directly to the columns of the Genre table in
the database with their DataField attribute so the GridView knows what data to display where.

The GridView and SqlDataSource controls work together closely to retrieve and modify the data in
the underlying data source. To give you an idea of how this works, here’s a rundown of the events that
took place when you requested the Genres page in the browser and then edited a single genre:

	1.	 You request the page in your browser and the page begins its page life cycle.

	2.	 The GridView knows it is set up to retrieve and display data because it has a DataSourceID attri-
bute that points to a SqlDataSource control. It contacts this data source control and asks it for its
data. The SqlDataSource in turn connects to the database and then fires its SelectCommand, the
SQL statement that selects the Id, Name, and SortOrder from the Genre table in the database:

 SelectCommand=”SELECT [Id], [Name], [SortOrder] FROM [Genre]”

	3.	 When the SqlDataSource receives the requested records from the database it hands them over to
the GridView, which creates an HTML table out of them using the bound fields that have been set
up in the <Columns> element. The GridView keeps track of the unique ID for each record that is
displayed in the page by storing it in View State.

	4.	 As soon as you click the Edit link, the page posts back. The GridView is able to see what row
you clicked by looking at the associated DataKeyName and retrieving the record’s ID from View
State. It then gets the latest results from the database by asking the SqlDataSource again to fire
its SelectCommand and finally puts the selected row in Edit mode so you can change the relevant
details. When you click the Update link, the GridView collects the new values from the TextBox
controls and then contacts the SqlDataSource again.

502211c13.indd 441 2/19/10 9:59:28 AM

442  ❘  Chapter 13   Displaying and Updating Data

	5.	 For each of the parameters in the <UpdateParameters> element of the SqlDataSource, the GridView
supplies a value. It retrieves the Id of the genre from the selected row, and then retrieves the new Name
and SortOrder values from the TextBox controls in the page.

	6.	 Armed with the relevant data for the Id, Name, and SortOrder, the SqlDataSource then executes
its UpdateCommand against the database:

 UpdateCommand=”UPDATE [Genre] SET [Name] = @Name,
 [SortOrder] = @SortOrder WHERE [Id] = @Id”

Each of the parameters prefixed with the at symbol (@) is filled with the values that the GridView
supplied. The SQL statement that gets sent to the database ends up looking similar to this:

UPDATE [Genre] SET [Name] = ‘New Name’, [SortOrder] = 1 WHERE [Id] = 1

The table names and column names have been wrapped in a pair of square brackets ([]). This
isn’t needed in this scenario, but it’s useful in cases where the column name contains a space, or
where the table or column name matches a reserved word.

	7.	 Finally, the GridView refreshes the data on the page by once again asking the SqlDataSource to
execute its SelectCommand. This way, the GridView now displays the latest data with the update
you made.

The other commands work in a similar way and send their own SQL commands to the database.

At the end of the exercise, you added a new web.config file to the Management folder and reset the
theme that is applied to all pages in the Management section. With the theme removed, it’s easier to
focus on the functionality of the Management section, rather than be distracted by layout issues. In
Chapter 15 you create a third theme specifically for the Management folder and apply that theme in the
web.config file in the Management folder. That way, your management pages will have a look and feel
that’s different from the pages in the front end.

Now that you’ve seen how to display, edit, and delete data it’s time to learn how to insert new
records in the database using the DetailsView control.

Inserting Data with DetailsView
Just as displaying, updating, and deleting data with the GridView are pretty easy, so is inserting data
with the DetailsView control. As with the GridView, the DetailsView supports a number of tem-
plates that enable you to customize the look and feel of the control in different states. For example,
the control has a <FooterTemplate>, a <HeaderTemplate>, and a <PagerTemplate> element that
enable you to define the look of the top and bottom parts of the control. In addition, the control has
a <Fields> element that enables you to define the rows that should appear in the control, much like
the <Columns> element of the GridView.

The DetailsView is able to display data in a few different modes. First of all, it can display an
existing record in read-only mode. In addition, the control can be used to insert new records and

502211c13.indd 442 2/19/10 9:59:28 AM

Data Source and Data-bound Controls Working Together  ❘  443

to update existing ones. You control the mode of the DetailsView with the DefaultMode prop-
erty that you can set to ReadOnly, Insert, and Edit, respectively. You see how to configure the
DetailsView and set the DefaultMode property next.

Inserting Data with the DetailsView ControlTry It Out	

In this exercise, you see how to use the DetailsView to let your users insert new records into the Genre
table. As with the GridView example, the next exercise requires no coding from your side. All you need
to do is drag and drop a few controls, set a few properties, and you’re done. Obviously, these code-free
pages have limitations that make them less useful in more advanced scenarios. Therefore, later in this
chapter, you see how to extend and customize these controls.

	1.	 Go back to the Genres.aspx page in VWD and make sure it’s in Design View.

	2.	 Drag and drop a DetailsView from the Data category of the Toolbox immediately below
the GridView. If you have trouble dropping the control below the GridView but above the
SqlDataSource control, you can simply drop it on the SqlDataSource; VWD then adds the
markup of the dropped control before the one you drop it on.

	3.	 Open the control’s Smart Tasks panel if it didn’t open automatically and hook up the control to
the existing SqlDataSource1 by selecting that name from the Choose Data Source drop-down list.

	4.	 On the same Smart Tasks panel, select the item Enable Inserting.

	5.	 Open the control’s Properties Grid by pressing F4 and then locate the DefaultMode property in the
Behavior category. Set the DefaultMode to Insert. The code for the DetailsView should now
look like this:

<asp:DetailsView ID=”DetailsView1” runat=”server” AutoGenerateRows=”False”
 DataKeyNames=”Id” DataSourceID=”SqlDataSource1” DefaultMode=”Insert”
 Height=”50px” Width=”125px”>
 <Fields>
 <asp:BoundField DataField=”Id” HeaderText=”Id” InsertVisible=”False”
 ReadOnly=”True” SortExpression=”Id” />
 <asp:BoundField DataField=”Name” HeaderText=”Name” SortExpression=”Name” />
 <asp:BoundField DataField=”SortOrder” HeaderText=”SortOrder”
 SortExpression=”SortOrder” />
 <asp:CommandField ShowInsertButton=”True” />
 </Fields>
</asp:DetailsView>

	6.	 Save the changes to the page, and press Ctrl+F5 to open it up in your browser. Below the GridView
you should now see the controls that enable you to insert a new genre as shown in Figure 13-6.

	7.	 Insert a new genre such as Disco or Dance. Make sure you enter both a name and a sort order (a
number) and then click the Insert link. You may need to page to the last page of the GridView by
clicking one of the numbers at the bottom of the screen in the Pager bar to see the new record.

502211c13.indd 443 2/19/10 9:59:28 AM

444  ❘  Chapter 13   Displaying and Updating Data

Figure 13-6

How It Works

Identical to the other data-bound controls, you hook up the DetailsView to a data source control by
setting the DataSourceID property. Because you already have a working SqlDataSource control on the
page, you can simply reuse that. The DetailsView exposes different views, for read-only, insert, and
edit modes. By setting the DefaultMode to Insert, you force the control to switch to Insert mode,
which means you automatically get a UI for entering details for the genre, and Insert and Cancel links.
The DetailsView control is actually pretty smart. When you point it to the SqlDataSource control,
it is able to figure out the DataKeyNames property, which it set to Id:

<asp:DetailsView ID=”DetailsView1” runat=”server” AutoGenerateRows=”False”
 DataKeyNames=”Id” DataSourceID=”SqlDataSource1” ...

It also understands that the Id column is an identity column in the database and therefore hides it in
the Insert screen in Figure 13-6 by setting InsertVisible to False. Because the database generates
this ID automatically, there is no point in letting the user enter a value for it.

When you enter some values and click the Insert link, a process similar to updating with the GridView
takes place. The DetailsView collects the relevant information from the page’s controls (the Name and
the SortOrder) and forwards them to the SqlDataSource. This control in turn pushes the new values
in the parameters for the INSERT statement and then sends the command off to the database, which
inserts the new record in the Genre table. If you click the Insert link without entering a name or sort
order, you'll get an error. In this and later chapters you’ll see how to modify the data-bound controls
to include validation functionality.

When you dropped the Genre table on the Genres.aspx page earlier in this chapter, VWD not only
created a bunch of controls for you but it also stored information about the database in your web.
config file. The next section explains how this works and why it is important.

502211c13.indd 444 2/19/10 9:59:28 AM

Data Source and Data-bound Controls Working Together  ❘  445

Storing Your Connection Strings in web.config
The first time you dropped the Genre table on your page, VWD created a SqlDataSource control
for you. To tell this control what database to access, VWD also created a connection string in the
web.config file under the <connectionStrings> element and pointed the SqlDataSource to this
connection string. The setting in web.config looks like this:

<connectionStrings>
 <add name=”PlanetWroxConnectionString1” connectionString=
 “Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\PlanetWrox.mdf;
 Integrated Security=True;Connect Timeout=30;User Instance=True”
 providerName=”System.Data.SqlClient” />
</connectionStrings>

The SqlDataSource then accesses this connection string:

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
 ConnectionString=”<%$ ConnectionStrings:PlanetWroxConnectionString1 %>”

This code uses expression syntax to refer to the connection string in the web.config. It effectively asks
the web.config file for the connection string that listens to the name PlanetWroxConnectionString1.

In addition to the expression syntax that uses <%$ %> to bind control values to resources like a
connection string, you’ll also come across similar syntax that uses <%# %>. This is called the data-
binding expression syntax and it enables you to bind control values to data that comes from data
sources like a database. You see more about data-binding expression syntax in this and the next
two chapters.

Storing your connection strings in web.config is considered a very good practice. By centralizing
your connection strings you make it much easier to modify them when your database changes (for
example, when you switch from a development environment to a production server). Never store
your connection strings directly in Code Behind files or in the markup section of the page. You’ll
seriously regret that the day you have to change your connection string and have to wade through
all the pages in your site looking for connection strings.

The Express edition of SQL Server that you have used so far enables you to work with databases
that are attached to SQL Server on the fly when you need them. Take a look at the actual connection
string to see how this works:

Data Source=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory|\PlanetWrox.mdf;
Integrated Security=True;
Connect Timeout=30;
User Instance=True

This connection string consists of five parts (which are all on one line in your config file). The value
of the first part contains the data source to identify the SQL Server that is targeted and can be split
in two parts of its own. The part before the backslash (the dot in this example) identifies the server.
The dot refers to the local machine, although you could also use (local). Additionally, you can
enter the server’s name here instead of the dot. The part after the dot is required only when using
what is called a named instance of SQL Server. Because you can install multiple instances of SQL

502211c13.indd 445 2/19/10 9:59:28 AM

446  ❘  Chapter 13   Displaying and Updating Data

Server side by side on the same machine, the instance name is used to refer to a unique SQL Server
instance. When you install SQL Server 2008 Express, it gets a default instance name of SqlExpress.
Therefore, to refer to your SQL Server 2008 Express instance on your local machine you need to refer
to it as .\SqlExpress or (local)\SqlExpress.

AttachDbFileName contains a path to your SQL Server Express database. The |DataDirectory|
placeholder is expanded to the full and physical path of the App_Data folder at runtime. So, when
your pages load and the SqlDataSource needs to connect to the database, it will open the file
PlanetWrox.mdf in C:\BegASPNET\Site\App_Data\. As an alternative to AttachDbFileName
you’ll also come across Initial Catalog in other connection strings. The Initial Catalog simply
points to a database available on the SQL Server you are using, such as PlanetWrox. You see more
of this in Appendix B.

The last three parts of the connection string have to do with security and timeouts. With Integrated
Security, the account used by the web server is used to connect to the database. In the case of VWD
and the built-in web server, this account is the one you use to log on to your machine. In case you’re
using IIS, this account is a special ASP.NET account, called Network Service on most versions of
Windows. Chapter 19, which deals with deployment, and Appendix B, which explains how to con-
nect to SQL Server, dig deeper into security-related issues.

The Connect Timeout defines the time that the application waits for the initialization of a connec-
tion to complete. When the timeout is reached and no connection is established, an error occurs.

So far you have seen most of the database concepts that were introduced in the previous chapter. You
saw creating (with the DetailsView in Insert mode), reading (with the SelectCommand and the
GridView), updating (inline within the GridView and an UpdateCommand), and deleting (also with
the delete option in the GridView and a DeleteCommand). Moreover, you saw sorting that can be
enabled in the GridView with just a single setting. What you haven’t seen is filtering, a way to limit
the data that is presented in the page. In the next section you see how to create a filter that enables
you to display reviews that belong to a certain genre. You create the filter in the Management sec-
tion in a new page called Reviews.aspx that will be your main entry point for managing the reviews
in your web site. Subsequent sections build on top of this, gradually expanding the Reviews page
with more useful features.

Filtering Data
As you learned in the previous chapter, filtering your data is done with a WHERE clause. VWD
and ASP.NET come with a bunch of tools that make creating filters very easy. To filter data, the
SqlDataSource control (and other data source controls) have a <SelectParameters> element that
enables you to supply values at runtime that are used for filtering. These values can come from a
variety of sources, including the ones described in the following table.

With a The value is retrieved from

ControlParameter A control in the page, such as a DropDownList or a TextBox.

CookieParameter A cookie that is stored on the user’s computer and that is sent to the

server with each request.

502211c13.indd 446 2/19/10 9:59:29 AM

Data Source and Data-bound Controls Working Together  ❘  447

With a The value is retrieved from

FormParameter A value posted in the form that has been submitted to the server.

Parameter A variety of sources. With this parameter, you typically set the value

through code.

ProfileParameter A property on the user’s profile. The ASP.NET Profile is discussed in

full detail in Chapter 17.

QueryStringParameter A query string field.

SessionParameter A value that is stored in a session, which is a user-specific store of

data that exists during a user’s visit to a site.

Because these parameters all behave more or less the same, it’s easy to use them in your own code.
Once you understand how to use one of them, you’ll quickly be able to use the others as well. You
see the ControlParameter at work in the next exercise where you use a DropDownList with all the
genres to filter a list of reviews that belong to the chosen genre.

Setting Up the FilterTry It Out	

To make long lists of data easier to manage, it’s a good idea to offer them to the user in smaller, bite-size
blocks. For example, when you need to present a list with reviews in your database you could enable
your users to filter them by genre. A DropDownList with the genres to limit the reviews in the GridView
to those that belong to the selected genre would be the perfect solution for that. You see how to build
this next.

	1.	 Create a new Web Form called Reviews.aspx in the Management folder and make sure it uses
Code Behind and is based on the new Management master page. Change the Title of the page to
Planet Wrox - Management - Reviews.

	2.	 Add a link to this page in the master page for the Management section:

 Manage Genres
 Manage Reviews

	3.	 Go back to Reviews.aspx and switch the page into Design View. From the Standard category of
the Toolbox, drag a DropDownList control into the page. On its Smart Tasks panel, select Enable
AutoPostBack and click the Edit Items link. Insert an item with its Text set to Make a selection,
and then clear its Value that was inserted for you automatically.

	4.	 Once you return from the ListItem Collection Editor dialog box, the Smart Tasks panel for the
drop-down list is still open. Click the Choose Data Source item and choose <New data source>
from the drop-down list at the top of the screen. The Data Source Configuration Wizard, shown in
Figure 13-7, appears.

502211c13.indd 447 2/19/10 9:59:29 AM

448  ❘  Chapter 13   Displaying and Updating Data

Figure 13-7

	5.	 Click Database, leave the ID set to SqlDataSource1, and click OK.

	6.	 In the dialog box that follows, select the connection string called PlanetWroxConnectionString1
from the drop-down list and click Next.

	7.	 Verify that the radio button for Specify Columns from a Table or View is selected. Also ensure that
Genre is selected in the drop-down list with table names and then select the Id and Name columns
in the Columns section. Click the ORDER BY button and choose SortOrder from the Sort By
drop-down list and click OK. When you’re done, your Configure Data Source wizard should look
like Figure 13-8.

Figure 13-8

502211c13.indd 448 2/19/10 9:59:29 AM

Data Source and Data-bound Controls Working Together  ❘  449

	8.	 Click Next and then Finish to have VWD create the SqlDataSource for you. You return to the
Data Source Configuration Wizard for the drop-down list where you can now set up a field that is
displayed in the drop-down list for the genres and a field that serves as the underlying value in the
list. Choose Name as the field to display and leave the second drop-down list set to Id. You should
end up with the screen shown in Figure 13-9.

Figure 13-9

	9.	 Click OK to close the dialog box and finish setting up the data source for the drop-down list.

	10.	 With the DropDownList control still selected in Design View, press F4 to open up its Properties
Grid and set the property AppendDataBoundItems to True. Switch to Markup View and if the
static ListItem that instructs your users to select an item does not have a Value attribute, add it
manually and set it to an empty string. Your final code should look like this:

<asp:DropDownList ID=”DropDownList1” runat=”server” DataSourceID=”SqlDataSource1”
 DataTextField=”Name” DataValueField=”Id” AppendDataBoundItems=”true”
 AutoPostBack=”True”>
 <asp:ListItem Value=”“>Make a selection</asp:ListItem>
</asp:DropDownList>

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
 ConnectionString=”<%$ ConnectionStrings:PlanetWroxConnectionString1 %>”
 SelectCommand=”SELECT [Id], [Name] FROM [Genre] ORDER BY [SortOrder]”>
</asp:SqlDataSource>

	11.	 Save all your changes and press Ctrl+F5 to open the page in the browser. You should now see a
drop-down list with all the genres in the database ordered by their SortOrder column. Once you
choose a new genre from the list, the page posts back to the server. Nothing else happens because
you didn’t tie any logic to the DropDownList control, but you see how to do this in the next
exercise.

502211c13.indd 449 2/19/10 9:59:29 AM

450  ❘  Chapter 13   Displaying and Updating Data

How It Works

At the end of this exercise you end up with code similar to what VWD created automatically when you
dropped a GridView on the page in an earlier exercise. You have a data-bound control (the DropDownList)
that gets its data from a data source control (the SqlDataSource control). What’s different is that the way
you set things up gave you a lot more flexibility with regard to the code that is generated. Instead of relying
on VWD to generate a SQL statement for all the columns in the database, you now choose only the two
columns that you need. Additionally, because the SqlDataSource doesn’t require any updates to the data
source, you only needed to provide a SelectCommand. You also used the ORDER BY button to control
the order in which the items are added to the list.

With the SqlDataSource control set up, displaying the data it returns in a DropDownList control is
pretty easy. You start by pointing the DropDownList to the correct data source using the DataSourceID
attribute, and then set up the DataTextField and DataValueField to tell the control what columns to
use for the text displayed in the control and the underlying value. By setting AppendDataBoundItems to
True, you can preserve the item that you add in your code manually. With this setting turned off, the
static item Make a selection would have been cleared as soon as the data-bound items were added.

With the filter control set up, the next step is to create the GridView that displays reviews for the
selected genre. You see how to do this in the next exercise.

Applying the FilterTry It Out	

In this Try It Out you add another SqlDataSource that gets its data from the Review table. By creat-
ing a filter (the WHERE clause in the SQL statement) you can limit the number of items displayed in the
grid to those that belong to a specific genre. The genre chosen in the drop-down list you created in
the previous section is sent into the SqlDataSource control’s SelectParameters collection using an
<asp:ControlParameter>.

	1.	 Switch the page Reviews.aspx to Design View and drag a GridView from the Data category of the
Toolbox on top of the existing SqlDataSource control. The GridView is added right above it and
its Smart Tasks panel opens.

	2.	 In the Choose Data Source drop-down list, choose <New data source>. In the Data Source
Configuration Wizard, click Database (just as with the wizard for the genres that is shown in
Figure 13-7) and click OK.

	3.	 In the dialog box that follows, select the Planet Wrox connection string from the drop-down list
and click Next again.

	4.	 Select the Review table in the Name drop-down list and then make sure the asterisk (*) is checked
in the Columns list to select all columns.

	5.	 Click the WHERE button that enables you to set up a WHERE clause using the SelectParameters.
In the dialog box that follows, enter the details so the screen ends up like Figure 13-10.

502211c13.indd 450 2/19/10 9:59:29 AM

Data Source and Data-bound Controls Working Together  ❘  451

Figure 13-10

For some reason, each of your controls may show up twice in the Control ID drop-down list. It
doesn’t matter which of the DropDownList1 options you choose.

	6.	 Click the Add button to add the selection to the WHERE clause list at the bottom the screen and
click OK.

	7.	 Back in the Configure Data Source wizard, click Next. To test the query, click the Test Query
button. If you set up the parameter correctly, a dialog box pops up enabling you to enter a value.
Enter a number that you know exists in the Genre table and click OK. If there are records in the
Review table for the chosen genre, they are displayed in the Test Query window. Finally, click Finish
to finalize the wizard. If you get a dialog box about refreshing parameters, click Yes to have the code
in Markup View updated for you.

	8.	 Save all your changes and open Reviews.aspx in your browser.

COMMON MISTAKES  If you get an error stating that the “input string was not
in a correct format,” ensure that you set the Value of the static ListItem in the
drop-down list to an empty string (“”).

	9.	 Select a new item in the drop-down list. The page refreshes, and now shows the reviews that belong
to the chosen genre. If the page doesn’t refresh, ensure that you set AutoPostBack to True in the
previous exercise. At this stage the page looks rather messy because the GridView contains many
columns, some of which can be very wide (like the Body column), but in the next Try It Out you
see how to fix this.

502211c13.indd 451 2/19/10 9:59:30 AM

452  ❘  Chapter 13   Displaying and Updating Data

How It Works

For the most part, this exercise works the same as a previous exercise where you displayed a list with
the available genres. What’s different this time is the way the SqlDataSource is able to filter the records
from the Review table based on the selection you made in the drop-down list. Take a look at the code
for the SqlDataSource to see how this works:

<asp:SqlDataSource ID=”SqlDataSource2” runat=”server”
 ConnectionString=”<%$ ConnectionStrings:PlanetWroxConnectionString1 %>”
 SelectCommand=”SELECT * FROM [Review] WHERE ([GenreId] = @GenreId)”>
 <SelectParameters>
 <asp:ControlParameter ControlID=”DropDownList1” Name=”GenreId”
 PropertyName=”SelectedValue” Type=”Int32” />
 </SelectParameters>
</asp:SqlDataSource>

The SQL statement for the SelectCommand contains a parameter for the GenreId denoted by the
@GenreId variable in the SELECT statement. That means that the SQL statement only returns records
from the Review table for a specific genre. At runtime, the value for this parameter is retrieved from
the control defined in the ControlParameter element. In this example, the code is set up to get the
value from the DropDownList1 control. VWD knows that in order to get the selected value from the
DropDownList it should access its SelectedValue property so it adds that as the PropertyName for
the ControlParameter. If you have the need to use a different property, you can simply change it in the
ControlParameter element’s declaration.

With this code set up, the GridView asks the SqlDataSource for its data. This data source in turn asks
the DropDownList for the item that the user has selected in the list. This value is inserted in the SQL
statement, which is sent to the database. The results that are returned from the database are sent back
through the data source to the GridView, which uses them to create the HTML table in the browser.

When you choose “Make a Selection” from the drop-down list, you get an empty page with no records.
In this case, the DropDownList returns an empty string as its value (defined in the Value property),
which is converted to null, the database equivalent of nothing. This in turn causes the query to return
no records from the Review table.

Until now, you’ve relied on the code-generation tools of VWD to set up the GridView and the
DetailsView. By default, VWD creates a column (for the GridView) or a field (for the DetailsView)
for each column that it finds in the data source. It’s smart enough to recognize some of the under-
lying types of the data in the data source so you get a nice CheckBoxField for Boolean (bit) fields in
the database, but that’s about it. To further customize the look and feel of these data controls, you
need to customize their Columns and Fields collections.

Customizing the Appearance of the Data Controls

By default, the GridView and DetailsView render columns or rows automatically based on the data
they receive. Alternatively, you can have VWD create a number of fields or columns for you when
you attach the control to a data source. But, more often than not, you want to change what you

502211c13.indd 452 2/19/10 9:59:30 AM

Customizing the Appearance of the Data Controls  ❘  453

see on-screen, be it fewer columns, different column headings, or different controls to display data.
Fortunately, this is really easy to do with the Fields editor in VWD. In the next section you see how
to use this editor to create and modify the different types of built-in columns and fields. In the section
that follows, you see how to customize the fields even further with user-defined templates.

Configuring Columns or Fields of Data-bound Controls
Within the <Columns> or <Fields> element of the GridView and the DetailsView, you can add the
types of fields shown in the following table.

Field Type Description

BoundField The default field for most database types. It renders as simple text in

read-only mode, and as a TextBox in edit mode.

ButtonField Renders as a link or a button enabling you to execute a command on the

server.

CheckBoxField Renders as a read-only check box in read-only mode, and as an editable

check box in edit mode.

CommandField Enables you to set up various commands, including editing, inserting,

updating, and deleting.

HyperLinkField Renders as a link (an <a> element). You can set properties like

DataNavigateUrlFields, DataNavigateUrlFormatString, and

DataTextField to influence the behavior of the hyperlink. You see

more of this in the next exercise.

ImageField Renders as an element in the browser.

TemplateField Enables you to define your own look and feel for various templates, like

ItemTemplate, InsertItemTemplate, and EditItemTemplate.

Clearly, each Field type serves a distinct purpose so you can choose the one that best fits your needs.
You see some of these Field types in more detail in the next exercise.

Customizing GridView ColumnsTry It Out	

In this exercise, you see how to do the following in the Reviews.aspx page:

Use the Fields editor to customize the fields for the ➤➤ GridView with reviews.

Use a ➤➤ HyperLink column to create a link to a details page that enables you to manage the details
of a review.

Format the output of the existing ➤➤ BoundField columns.

Use a custom function in the Code Behind to have full control over the output in a ➤➤

TemplateField.

502211c13.indd 453 2/19/10 9:59:31 AM

454  ❘  Chapter 13   Displaying and Updating Data

A later exercise shows you how to create the details page to insert new and edit existing reviews.

	1.	 In Reviews.aspx, open the Smart Tasks panel for the SqlDataSource2 control in Design View
and click Configure Data Source. Click Next to skip the connection string screen and then complete
the screen as shown in Figure 13-11 by selecting the Id, Title, Authorized, and CreateDateTime
columns from the Review table. Make sure the SQL Statement box also contains the WHERE clause
filter that you set up earlier.

Figure 13-11

Click the Advanced button and have VWD generate commands for the INSERT, UPDATE, and
DELETE statements by checking off the first item. You can leave the Optimistic Concurrency check
box — which deals with detecting changes to the record since it was last loaded from the data
source — cleared. Click OK to close the Advanced SQL Generation Options dialog box, then
click Next and finally Finish to update the SQL statement in the source for the page. When asked
whether you want to reset the fields and keys for the GridView, click Yes.

COMMON MISTAKES  ​If both options in the Advanced SQL Generation
Options dialog box are grayed out, check your table in the database using the
Database Explorer. Make sure that you made the Id column of the Review table
the primary key as explained in the preceding chapter.

502211c13.indd 454 2/19/10 9:59:31 AM

Customizing the Appearance of the Data Controls  ❘  455

	2.	 At this stage, VWD has created columns for the GridView in Markup View. To remove those items
and define your own, open the Smart Tasks panel for the GridView and click Edit Columns. This
brings up the Fields dialog box. If the Selected Fields list contains items, use the Delete button (with
the red X) to clear the list first.

	3.	 In the Available Fields list, select Authorized under BoundField (not the one under CheckBoxField)
and then click the Add button to copy the item to the Selected Fields list. Repeat this step for the
CreateDateTime field. Your dialog box now looks like Figure 13-12.

Figure 13-12

	4.	 In the Available Fields at the top of the screen, select HyperLinkField and then click the Add but-
ton to add the item to the Selected Fields list as well. Move the HyperLinkField to the top of the
list by clicking the button with the up arrow twice. Then, using the Properties Grid on the right, set
the following properties on the HyperLinkField:

Property Set Its Value To

HeaderText Title

DataNavigateUrlFields Id

DataNavigateUrlFormatString AddEditReview.aspx?Id={0}

DataTextField Title

	5.	 In the list with Available Fields, click CommandField and click the Add button again. Then set the
HeaderText of the item you just inserted to Delete and ShowDeleteButton to True using the
Properties Grid. This enables you to delete reviews from the database using the GridView later.
The Fields dialog box should now look like Figure 13-13.

502211c13.indd 455 2/19/10 9:59:31 AM

456  ❘  Chapter 13   Displaying and Updating Data

Figure 13-13

	6.	 Click the Authorized column in the Selected Fields list and then click the blue Convert This Field
into a TemplateField link at the bottom-right of the dialog box visible in Figure 13-13.

	7.	 Click the CreateDateTime column on the left and set its DataFormatString property to {0:g}.

	8.	 Click OK to apply the changes to the source code.

	9.	 Switch to Markup View and remove the <EditItemTemplate> for the Authorized field. The
GridView displays reviews only in read-only mode, so you don’t need this template.

	10.	 Modify the Label control in the ItemTemplate of the Authorized field so it ends up like this:

<asp:Label ID=”AuthorizedLabel” runat=”server”
 Text=’<%# GetBooleanText(Eval(“Authorized”)) %>’ />

	11.	 Switch to the Code Behind of the page by pressing F7 and add the following function — which
returns the text Yes or No depending on the Boolean value that you pass — to the top of the class
file, right after the Inherits line in VB.NET and after the opening curly brace in C#:

VB.NET

Inherits System.Web.UI.Page
Protected Function GetBooleanText(ByVal booleanValue As Object) As String
 Dim authorized As Boolean = CType(booleanValue, Boolean)
 If authorized Then
 Return “Yes”
 Else
 Return “No”
 End If
End Function

502211c13.indd 456 2/19/10 9:59:31 AM

Customizing the Appearance of the Data Controls  ❘  457

C#

public partial class Management_Reviews : System.Web.UI.Page
{
 protected string GetBooleanText(object booleanValue)
 {
 bool authorized = (bool)booleanValue;
 if (authorized)
 {
 return “Yes”;
 }
 else
 {
 return “No”;
 }
 }

	12.	 Save all your changes (press Ctrl+Shift+S) and press Ctrl+F5 to open Reviews.aspx in the
browser. Choose a genre from the drop-down list and you’ll see a list of reviews appear. Note that
the Authorized column now shows the text Yes or No. The CreateDateTime column shows the
date and time in a short format. Figure 13-14 shows the result for the Indie Rock genre. If you
don’t see the time correctly, switch back to VWD, add an HtmlEncodeFormatString property to
the BoundField for the CreateDateTime and set it to True:

<asp:BoundField DataField=”CreateDateTime” DataFormatString=”{0:g}”
 HeaderText=”CreateDateTime” HtmlEncodeFormatString=”True”
 SortExpression=”CreateDateTime” />

Figure 13-14

Note that the title in the first column of the GridView now links to a page where the ID of
the review is passed in the query string field Id: http://localhost:1049/Management/
AddEditReview.aspx?Id=1. You create this Add / Edit page later in this chapter.

502211c13.indd 457 2/19/10 9:59:31 AM

458  ❘  Chapter 13   Displaying and Updating Data

How It Works

You started off by modifying the SelectCommand for the SqlDataSource. Instead of selecting all col-
umns using SELECT *, the SQL statement now contains a subset of the columns, making the page load
slightly faster:

<asp:SqlDataSource ID=”SqlDataSource2” runat=”server”
 ConnectionString=”<%$ ConnectionStrings:PlanetWroxConnectionString1 %>”
 SelectCommand=”SELECT [Id], [Title], [Authorized], [CreateDateTime]
 FROM [Review] WHERE ([GenreId] = @GenreId)”>
 ...
</asp:SqlDataSource>

You then used the Fields dialog box to modify the different fields that are displayed by the GridView.
You created the Title column using a HyperLinkField:

<asp:HyperLinkField DataNavigateUrlFields=”Id” DataTextField=”Title”
 DataNavigateUrlFormatString=”AddEditReview.aspx?Id={0}” HeaderText=”Title”>
</asp:HyperLinkField>

The DataNavigateUrlFields contains a comma-separated list of fields you want to use in the
DataNavigateUrlFormatString property. In this case, only one field is used. To display the value
of this field you use placeholders such as {0} in the DataNavigateUrlFormatString property. For
example, a review with an ID of 10 will end up with a HyperLink column having this NavigateUrl:
AddEditReview.aspx?Id=10. With this setup, the {0} is replaced with the value for the first field in the
DataNavigateUrlFields property. If you defined more fields separated by a comma, you would access
them with {1}, {2}, and so on.

The DataTextField is set to the column Title. This tells the HyperLink to render its Text attribute
with the title of the review, as shown in Figure 13-14.

You also set the DataFormatString property of the bound field for the CreateDateTime column:

<asp:BoundField DataField=”CreateDateTime” DataFormatString=”{0:g}”
HeaderText=”CreateDateTime” HtmlEncodeFormatString=”True”
SortExpression=”CreateDateTime” />

The DataFormatString enables you to define the format in which the underlying data is displayed. In
this case, the lowercase letter g is used to display both the date and the time in short format (without
seconds). You can find more information about the different format strings in the MSDN documentation
at http://tinyurl.com/DateFormatters.

You then converted the Authorized column to a template column. A template column gives you full
freedom with regard to the content you are presenting. Essentially, you can add almost anything you
see fit as content for the column, including HTML and ASPX controls. In this exercise, you changed the
Label so that it gets its text from a custom function using the data binding expression syntax <%# %>:

<asp:Label ID=”AuthorizedLabel” runat=”server”
 Text=’<%# GetBooleanText(Eval(“Authorized”)) %>’></asp:Label>

502211c13.indd 458 2/19/10 9:59:31 AM

Updating and Inserting Data  ❘  459

Two things are used here to make this work. First, look at the Eval(“Authorized”) statement. This
is called a one-way data binding expression and results in the value of the Authorized column being
passed as an object to the custom GetBooleanText method. This method in turn converts the incom-
ing value to a Boolean and then returns Yes or No, depending on the value of the Authorized column
in the database. This is just a simple example to demonstrate how to call custom methods in your Code
Behind during data binding. However, the principle remains the same for more complex methods: you
pass one or more arguments to a Code Behind method using Eval(“ColumnName“). The method in the
Code Behind accepts these arguments as objects, casts them to an appropriate type, and then uses them
as appropriate. In the end, the method can return a string with any text or HTML you see fit.

The HyperLink for the Title column that you set up points to a page called AddEditReview.aspx.
This page enables you to create new and update existing reviews. You see how to create this page in
the following section.

Updating and Inserting Data

Earlier in this chapter I discussed how to do simple updates with the GridView and the
SqlDataSource controls. Although this built-in update behavior is fine in many circumstances, it is
not always extensive enough to meet all your demands.

Fortunately, controls like FormView and DetailsView enable you to tweak their look and feel, giv-
ing you a lot more flexibility in the way your end users work with their data. In the next section you
see how to use the DetailsView to give the user a much easier interface to insert and edit reviews in
the database.

Using DetailsView to Insert and Update Data
Earlier in this chapter you learned how to set up a simple DetailsView control and fully rely on
VWD and the control itself to render the relevant user interface in the browser. Obviously, this
default behavior is often not enough. What if you wanted to influence the controls used in the inter-
face? For example, what if you wanted to use a DropDownList instead of a simple TextBox for the
genre? And what if you wanted to add one or more validation controls that you learned about in
Chapter 9? Or what if you wanted to manage some of the data being sent to the database program-
matically? All of this is possible with the DetailsView control, its template-based columns, and the
numerous events that the control fires at various stages in its life cycle.

First, however, you need to learn a bit more about the different events that the data-bound and data
source controls fire. The following table lists some of the events that the DetailsView, the FormView,
and the ListView expose and raise during their lifetime. The GridView has similar events, but they
start with Row instead of Item. Because the DataList and Repeater controls do not natively sup-
port editing of data, they do not have any of these events.

502211c13.indd 459 2/19/10 9:59:31 AM

460  ❘  Chapter 13   Displaying and Updating Data

Event Description

ItemInserting Fires right before the Insert command is executed against the data source.

This is an ideal location to change the data that is about to be sent to the

database.

ItemInserted Fires right after the Insert command has been executed against the data

source.

ItemUpdating Fires right before the Update command is executed against the data source.

This is an ideal location to change the data that is about to be sent to the

database.

ItemUpdated Fires right after the Update command has been executed against the data

source.

ItemDeleting Fires right before the Delete command is executed against the data source.

ItemDeleted Fires right after the Delete command has been executed against the data

source.

These six events fire at very convenient moments in the life of the control: right before and right after
the data for the operation is sent to the database. You see how to use them in the next Try It Out.

Managing Data with the DetailsView ControlTry It Out	

In this exercise you create the AddEditReview.aspx page that you created a link for earlier in the
Reviews page. In this page you create a DetailsView, customize most of its fields by implementing tem-
plate fields, and then handle some of the events of the control to change its behavior. After you’re done,
you have everything you need to create, list, update, and delete reviews in your web site.

	1.	 In the Management folder, create a new Web Form and call it AddEditReview.aspx. Again, select
your preferred programming language and base it on the master page for the Management section.
Give it a Title of Planet Wrox - Management - Insert and Update Reviews.

	2.	 Switch the page to Design View and drop a DetailsView control on the page. In the Smart Tasks
panel that opens automatically, choose <New data source> from the Choose Data Source drop-
down list. Click the Database icon and then click OK. In the dialog box that follows, choose the
connection string from the drop-down list and click Next.

	3.	 Enter the details as displayed in Figure 13-15.

Note that all fields of the Review are selected explicitly, except for the CreateDateTime field.

	4.	 Click the WHERE button to set up a SelectParameter that retrieves the review ID from the query
string by completing the dialog box as shown in Figure 13-16.

Don’t forget to type Id in the QueryString field.

502211c13.indd 460 2/19/10 9:59:32 AM

Updating and Inserting Data  ❘  461

Figure 13-15

Figure 13-16

502211c13.indd 461 2/19/10 9:59:32 AM

462  ❘  Chapter 13   Displaying and Updating Data

	5.	 Click the Add button to add the parameter to the WHERE Clause list at the bottom and then click
OK to close the dialog box.

	6.	 Back in the Configure Data Source wizard (shown in Figure 13-15),
click the Advanced button, select the option to generate INSERT,
UPDATE, and DELETE statements, and click OK to close the dialog
box. Finally, click Next and then Finish to finalize the data source
wizard.

	7.	 On the Smart Tasks panel for the DetailsView select the options
for Inserting and Editing as shown in Figure 13-17.

	8.	 On the Properties Grid for the DetailsView, set DefaultMode to
Insert.

	9.	 Double-click an empty spot of the page in Design View to set up a
Page_Load handler and enter the following code:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Request.QueryString.Get(“Id”) IsNot Nothing Then
 DetailsView1.DefaultMode = DetailsViewMode.Edit
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (Request.QueryString.Get(“Id”) != null)
 {
 DetailsView1.DefaultMode = DetailsViewMode.Edit;
 }
}

	10.	 Open the page Reviews.aspx in Design View and drag the page AddEditReview.aspx from the
Solution Explorer onto the page below the GridView. This creates a link to this page so you can
insert new reviews. Switch to Markup View and change the text between the <a> tags to Insert
New Review:

Insert New Review

	11.	 Save all your changes and open AddEditReview.aspx in your browser. You should get the default
layout for the control, with simple text boxes for all the columns in the data source. Fill in the
fields as shown in Figure 13-18.

Figure 13-17

502211c13.indd 462 2/19/10 9:59:33 AM

Updating and Inserting Data  ❘  463

Figure 13-18

COMMON MISTAKES  ​If you get an empty screen, make sure you set
DefaultMode to Insert.

Be sure the GenreId that you enter matches one of the genres in the Genre
table in the database or you’ll get an error when you try to insert the item. Also
be sure you enter a valid date using the yyyy/mm/dd format where y stands for
year, m for month, and d for day.

Click Insert to insert the item in the database. At first, not much seems to happen except that the con-
trols are now all cleared. However, you can now locate the new review through the Reviews.aspx by
following these two steps:

Click the Manage Reviews link in the menu on the left.➤➤

Select the right genre from the drop-down list at the top of the page. If you are using the ➤➤

database that comes with the download for this chapter and you entered 1 for the GenreId
when inserting the Review, the genre is Rap and Hip-Hop.

When you have found your review, you can click its title and you’ll be taken to AddEditReview.
aspx where you can change the review’s details again.

How It Works

Most of this exercise should be familiar by now. The DetailsView works the same for inserting as
the DetailsView for genres you saw earlier. What’s different is how updates are handled. The code
in the Code Behind looks at the query string and if it finds an Id query string parameter, it flips the
DetailsView into Edit mode:

VB.NET

If Request.QueryString.Get(“Id”) IsNot Nothing Then
 DetailsView1.DefaultMode = DetailsViewMode.Edit
End If

502211c13.indd 463 2/19/10 9:59:33 AM

464  ❘  Chapter 13   Displaying and Updating Data

C#

if (Request.QueryString.Get(“Id”) != null)
{
 DetailsView1.DefaultMode = DetailsViewMode.Edit;
}

When the control is in Edit mode, it knows what to do. It calls the SqlDataSource and requests its data.
The SqlDataSource in turn retrieves the ID of the review from the query string, accesses the database,
and then returns the right review, which is displayed on the page. When you subsequently click the Update
link, the SqlDataSource fires its UpdateCommand to send the changes to the database.

This exercise provides a nice foundation for the following exercise, where you extend the
DetailsView by implementing custom templates with validation controls and set up various event
handlers to respond to the control’s events.

Right now, the page with the DetailsView looks quite dull. It would look a lot better and be easier
to use if it had the following features:

A text area instead of a single line text box for the Summary and Body fields➤➤

A drop-down list for the genre filled with the available genres from the database➤➤

Automatic updating of the ➤➤ UpdateDateTime column

Validation controls to stop you from leaving required fields empty➤➤

Automatic redirection to the ➤➤ Reviews.aspx page after an item has been inserted or updated

The next exercise shows you how to implement all of these features.

Customizing the DetailsView and Handling Its EventsTry It Out	

This walkthrough is quite long and has a large number of steps. Remember you can always download
the final version of this page from the Wrox web site in case you want to compare your result with mine.

	1.	 Make sure AddEditReview.aspx is in Design View and bring up the Fields editor for the
DetailsView control by clicking Edit Fields on its Smart Tasks panel. Locate the UpdateDateTime
column in the Selected Fields list and set its Visible property to False.

	2.	 Click the Title column in the Selected Fields list and then click the blue link with the text Convert
This Field into a TemplateField. Repeat this for the Summary, Body, and GenreId fields and then
close the Fields dialog box by clicking OK.

	3.	 Switch to Markup View and add a TextMode attribute with its value set to MultiLine for
the four text box controls for the Summary and Body fields. In addition, set their Width and
Height properties to 500 and 100 pixels, respectively. Make sure you do this for both the
EditItemTemplate and the InsertItemTemplate. You should end up with the following
code that shows the Summary field:

<asp:TemplateField HeaderText=”Summary” SortExpression=”Summary”>
 <ItemTemplate>

502211c13.indd 464 2/19/10 9:59:33 AM

Updating and Inserting Data  ❘  465

 <asp:Label ID=”Label2” runat=”server”
 Text=’<%# Bind(“Summary”) %>’></asp:Label>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox ID=”TextBox2” TextMode=”MultiLine” Width=”500” Height=”100”
 runat=”server” Text=’<%# Bind(“Summary”) %>’></asp:TextBox>
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:TextBox ID=”TextBox2” TextMode=”MultiLine” Width=”500” Height=”100”
 runat=”server” Text=’<%# Bind(“Summary”) %>’></asp:TextBox>
 </InsertItemTemplate>
</asp:TemplateField>

	4.	 Add a RequiredFieldValidator in the EditItemTemplate and the InsertItemTemplate of both
the Title and the Summary rows. You can drag and drop it from the Toolbox directly in Markup
View or manually enter the required code. Using a code snippet makes this even easier: position
your mouse on an empty, new line below the TextBox, type req, use Ctrl+Spacebar to complete
the word to requiredfieldvalidator, and press Tab. VWD inserts a RequiredFieldValidator
for you and automatically assigns the ControlToValidate property with the ID of the previous
TextBox defined in the code.

Make sure you hook up all validators to their respective TextBox controls in the template by
setting the ControlToValidate property and providing a useful error message. Give all four
RequiredFieldValidator controls unique names by setting their ID to reqVal1, reqVal2, and
so on. When you’re done, the summary field should look like this:

<asp:TemplateField HeaderText=”Summary” SortExpression=”Summary”>
 <EditItemTemplate>
 <asp:TextBox ID=”TextBox2” TextMode=”MultiLine” Width=”500” Height=”100”
 runat=”server” Text=’<%# Bind(“Summary”) %>’></asp:TextBox>
 <asp:RequiredFieldValidator ID=”reqVal3” ControlToValidate=”TextBox2”
 runat=”server” ErrorMessage=”Enter a summary”>
 </asp:RequiredFieldValidator>
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:TextBox ID=”TextBox2” TextMode=”MultiLine” Width=”500” Height=”100”
 runat=”server” Text=’<%# Bind(“Summary”) %>’></asp:TextBox>
 <asp:RequiredFieldValidator ID=”reqVal4” ControlToValidate=”TextBox2”
 runat=”server” ErrorMessage=”Enter a summary”>
 </asp:RequiredFieldValidator>
 </InsertItemTemplate>
 <ItemTemplate>
 <asp:Label ID=”Label2” runat=”server” Text=’<%# Bind(“Summary”) %>’>
 </asp:Label>
 </ItemTemplate>
</asp:templatefield>

The Title and Body fields should look similar to Summary. The TextBox for the Title field
doesn’t have the TextMode, Width, and Height properties applied, whereas the Body field is miss-
ing the RequiredFieldValidator. Other than that, the fields should look pretty similar to the
Summary field.

502211c13.indd 465 2/19/10 9:59:33 AM

466  ❘  Chapter 13   Displaying and Updating Data

	5.	 Switch to Design View and drag a new SqlDataSource control next to SqlDataSource1 that is
already on the page. Open the new control’s Smart Tasks panel and click Configure Data Source.
Select the Planet Wrox connection string from the drop-down list and click Next. Select the Id and
Name columns from the Genre table and set up an ORDER BY clause on the SortOrder column by
clicking the ORDER BY button and choosing SortOrder from the Sort By drop-down list. When
you click OK, the Configure Data Source screen looks like Figure 13-19.

Figure 13-19

	6.	 Click Next and then Finish to finalize the Configure Data Source wizard.

	7.	 Select the new SqlDataSource (called SqlDataSource2) in Design View and change its ID to
GenresDataSource using the Properties Grid so it’s easier to recognize in the page.

	8.	 Switch to Markup View, locate the InsertItemTemplate for the GenreId of the DetailsView,
and remove its contents (the TextBox control). At the place where you removed the TextBox, add
a DropDownList by dragging it from the Toolbox into Markup View. Your code looks like this:

<asp:TemplateField HeaderText=”GenreId” SortExpression=”GenreId”>
 <EditItemTemplate>
 <asp:TextBox ID=”TextBox4” runat=”server”
 Text=’<%# Bind(“GenreId”) %>’></asp:TextBox>
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:DropDownList ID=”DropDownList1” runat=”server”>
 </asp:DropDownList>
 </InsertItemTemplate>
 ...
</asp:TemplateField>

502211c13.indd 466 2/19/10 9:59:34 AM

Updating and Inserting Data  ❘  467

	9.	 Switch to Design View, right-click the DetailsView, and choose Edit Template ➪ Field[4] - GenreId,
as shown in Figure 13-20. If you don’t see this menu item, you may need to click on one of the rows
with controls ​— ​such as the summary row ​— ​first to put the focus on the DetailsView correctly.

Figure 13-20

	10.	 When the control is in template editing mode, you can directly access the DropDownList. Scroll down
a bit until you see the DropDownList and open its Smart Tasks panel and select Choose Data Source.
In the Data Source Configuration Wizard choose GenresDataSource from the data source drop-down
list and Name and Id from the other two drop-down lists (see Figure 13-21). If Name and Id don’t appear
in the drop-down lists, click the blue Refresh Schema link at the bottom of the screen. If you don’t
see the Data Source listed, but you see SqlDataSource2 instead, make sure you renamed the control
correctly as described in Step 7.

Figure 13-21

502211c13.indd 467 2/19/10 9:59:34 AM

468  ❘  Chapter 13   Displaying and Updating Data

	11.	 Click OK to close the Data Source Configuration Wizard.

	12.	 Back on the Smart Tasks panel of the DropDownList control, click on Edit DataBindings. In the
dialog box that follows, click SelectedValue in the list on the left and then choose GenreId from
the Bound To drop-down list on the right, as shown in Figure 13-22. If you find that the Field
Binding radio button at the top-right of the screen is read-only, click the Refresh Schema link.
Enter an ID like 1 in the Value field for the Parameters list and click OK. When you return to the
DataBindings dialog the item should now be enabled.

Figure 13-22

	13.	 Click OK to close the dialog box. The code for the InsertItemTemplate now looks like this in
Markup View:

<InsertItemTemplate>
 <asp:DropDownList ID=”DropDownList1” runat=”server”
 DataSourceID=”GenresDataSource“ DataTextField=”Name” DataValueField=”Id”
 SelectedValue=’<%# Bind(“GenreId”) %>’>
 </asp:DropDownList>
</InsertItemTemplate>

	14.	 Copy the contents of the InsertItemTemplate (the bolded code in the previous step) and paste
it in the EditItemTemplate, overwriting the existing TextBox control. This adds the same drop-
down list to the DetailsView in Edit mode.

	15.	 Switch back to Design View, click the DetailsView, and press F4 to open up the Properties
Grid. Switch to the Events tab of the Properties Grid and double-click the following events. VWD
switches to the Code Behind for the page every time you double-click an event, so you need to
switch back to the page (using Ctrl+Tab) to add the other events:

ItemInserted➤➤

ItemInserting➤➤

ItemUpdated➤➤

ItemUpdating➤➤

502211c13.indd 468 2/19/10 9:59:34 AM

Updating and Inserting Data  ❘  469

When you’re done, the event category of the Properties Grid should look like Figure 13-23.

Figure 13-23

	16.	 Go into the Code Behind and modify the code as follows. Note that the ItemInserted and
ItemUpdated handlers call the EndEditing method (that you also need to add to the code),
whereas ItemInserting and ItemUpdating both set the UpdateDateTime value:

VB.NET

Protected Sub DetailsView1_ItemInserted(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.DetailsViewInsertedEventArgs) _
 Handles DetailsView1.ItemInserted
 EndEditing()
End Sub

Protected Sub DetailsView1_ItemInserting(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.DetailsViewInsertEventArgs) _
 Handles DetailsView1.ItemInserting
 e.Values(“UpdateDateTime”) = DateTime.Now
End Sub

Protected Sub DetailsView1_ItemUpdated(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.DetailsViewUpdatedEventArgs) _
 Handles DetailsView1.ItemUpdated
 EndEditing()
End Sub

Protected Sub DetailsView1_ItemUpdating(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.DetailsViewUpdateEventArgs) _
 Handles DetailsView1.ItemUpdating
 e.NewValues(“UpdateDateTime”) = DateTime.Now
End Sub

Private Sub EndEditing()
 Response.Redirect(“Reviews.aspx”)
End Sub

C#

protected void DetailsView1_ItemInserted(object sender,
 DetailsViewInsertedEventArgs e)
{

502211c13.indd 469 2/19/10 9:59:35 AM

470  ❘  Chapter 13   Displaying and Updating Data

 EndEditing();
}

protected void DetailsView1_ItemInserting(object sender,
 DetailsViewInsertEventArgs e)
{
 e.Values[“UpdateDateTime”] = DateTime.Now;
}

protected void DetailsView1_ItemUpdated(object sender,
 DetailsViewUpdatedEventArgs e)
{
 EndEditing();
}

protected void DetailsView1_ItemUpdating(object sender,
 DetailsViewUpdateEventArgs e)
{
 e.NewValues[“UpdateDateTime”] = DateTime.Now;
}

private void EndEditing()
{
 Response.Redirect(“Reviews.aspx”);
}

	17.	 Finally, save all your changes and open AddEditReview.aspx in your browser. Leave all fields
empty and click the Insert link. Note that the validation controls kick in, preventing you from send-
ing empty values to the server. Next, fill in valid values and click Insert again. You’re now taken to
Reviews.aspx. Locate your review by choosing its genre from the drop-down list and then click
its title to edit it. The DetailsView should now display all the values you entered previously (see
Figure 13-24).

Figure 13-24

502211c13.indd 470 2/19/10 9:59:35 AM

Updating and Inserting Data  ❘  471

How It Works

The DetailsView and the SqlDataSource controls take care of most of the hard work for you. You set
up different templates that enable a user to insert new records and update existing records and then the
two controls take care of the rest. There are a few interesting things to look at to help you understand
how it all works. Take a look at the InsertItemTemplate for the Title column first:

<InsertItemTemplate>
 <asp:TextBox ID=”TextBox1” runat=”server” Text=’<%# Bind(“Title”) %>’>
 </asp:TextBox>
 <asp:RequiredFieldValidator ID=”reqVal2” ControlToValidate=”TextBox1”
 runat=”server” ErrorMessage=”Please enter a title”>
 </asp:RequiredFieldValidator>
</InsertItemTemplate>

The most important piece of code in this snippet is the way the Text property of the TextBox is bound.
Earlier you saw the one-way binding syntax using Eval that basically outputs the value of a bound
column. With Bind, however, something much more powerful occurs. Basically, Bind enables you to
express a data binding between a column from the SqlDataSource and a control in the page in two
directions. In this example, the Title column of a review is bound to the TextBox. This means that
when the control must display its data (for example, when updating an existing record) it knows that it
must display the Title of a review. But more importantly, on postback, after you click the Update link,
the control still understands the relationship between the TextBox control and the Title column. So,
when you click Update after making changes to the review in the page, the DetailsView collects all the
bound data from the form (the Title, Summary, Body, GenreId, and whether the item is authorized)
and then sends it to the SqlDataSource control that has parameters set up for each of the relevant
columns of the Review table:

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
 ...
 <UpdateParameters>
 <asp:Parameter Name=”Title” Type=”String” />
 <asp:Parameter Name=”Summary” Type=”String” />
 <asp:Parameter Name=”Body” Type=”String” />
 <asp:Parameter Name=”GenreId” Type=”Int32” />
 <asp:Parameter Name=”Authorized” Type=”Boolean” />
 <asp:Parameter Name=”UpdateDateTime” Type=”DateTime” />
 <asp:Parameter Name=”Id” Type=”Int32” />
 </UpdateParameters>
</asp:SqlDataSource>

Eventually, the SqlDataSource grabs all the parameter values, injects them in the UpdateCommand,
and then sends them to the database.

This all works nicely for all columns of the Review table that have a form control attached to them,
but what about the other columns? You may have noticed that the CreateDateTime was not a part of
any of the SqlDataSource commands. Because the database is set up to insert today’s date and time
automatically, there’s no need to include it in the code. The UpdateDateTime column is a different
story. Obviously, you don’t want your users to enter the value for this column manually. Instead, the
system should keep track of it automatically. That’s why you hid the control from the user interface
by setting its Visible property to False. However, because the Insert and Update commands still

502211c13.indd 471 2/19/10 9:59:35 AM

472  ❘  Chapter 13   Displaying and Updating Data

expect a value for this column, you need to find a different way to insert it. Here’s where the Inserting
and Updating events come into play. Take a look at the ItemInserting event handler to get a general
understanding of how this works:

VB.NET

Protected Sub DetailsView1_ItemInserting(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.DetailsViewInsertEventArgs) _
 Handles DetailsView1.ItemInserting
 e.Values(“UpdateDateTime”) = DateTime.Now
End Sub

C#

protected void DetailsView1_ItemInserting(object sender,
 DetailsViewInsertEventArgs e)
{
 e.Values[“UpdateDateTime”] = DateTime.Now;
}

As you saw earlier, ItemInserting fires right before the InsertCommand is sent to the database. This
is a perfect location to supply (default) values for the columns in your table that have no correspond-
ing control in the user interface, as is the case with the UpdateDateTime. This code simply sets the
UpdateDateTime value to today’s date and time. This value is then sent to the database where it is used
to assign a value to the Review table’s UpdateDateTime column.

The same principle applies to the ItemUpdating command. Within that event, you need to index the
NewValues collection instead of the Values collection, but the principle is the same.

You might argue that in the case of an Insert command, you don’t need to set the UpdateDateTime. After
all, the database inserts a value for you automatically when you insert a new record. However, to make the
distinction between inserting and updating, you need to do a lot more manual work. You have to remove
the column from the InsertCommand and then remove the column from the <InsertParameters> col-
lection as well. Although in itself this is not a lot of work, you get into trouble when you later try to
modify the SQL commands for the SqlDataSource, because the Insert and Update commands are
now out of sync. Simply setting the UpdateDateTime through code, as in this case, solves many of these
problems.

When the SqlDataSource control is done with inserting or updating, it fires its ItemInserted or
ItemUpdated events, respectively. Inside these events, the EndEditing method is called, which simply
takes the user back to the Reviews.aspx page:

VB.NET

Private Sub EndEditing()
 Response.Redirect(“Reviews.aspx”)
End Sub

C#

private void EndEditing()
{
 Response.Redirect(“Reviews.aspx”);
}

502211c13.indd 472 2/19/10 9:59:35 AM

Practical Tips for Displaying and Updating Data  ❘  473

With the discussion of the various events that the DetailsView control fires, you have come to the
end of this chapter. By now, you should have a reasonably good understanding of how to perform
CRUD operations using the GridView, DetailsView, and SqlDataSource controls.

Useful as the SqlDataSource controls may be, many developers don’t like or use it. One of the
biggest drawbacks of this control is the fact that your SQL statements end up directly in your ASPX
pages. This can be really problematic if you start changing your database schema. Even if you
think there’s no need to do that ever, you can be pretty sure you’ll need to change it one day. Once
you do that, things are likely to break. For example, if you rename the Name column of the Genre
table to Description, your application will break. However, you won’t notice that until runtime
because VWD is not able to check the database schema against the command texts defined in
the SqlDataSource controls. You have a few ways to work around this. One solution is to build
strongly typed objects and work with the ObjectDataSource control instead. Details of this solu-
tion are beyond the scope of this book but you’re invited to check out my web site where I’ve pub-
lished an article series demonstrating this concept: http://imar.spaanjaars.com/QuickDocId.
aspx?quickdoc=476. The concepts presented in this series are quite advanced, so you may want to
postpone digging into it until you’ve finished this book.

Another alternative is to make use of the ADO.NET Entity Framework, the topic of the next chapter
that also shows you how to use the EntityDataSource control and the ListView and DataPager
controls to perform similar actions without the need to write embedded SQL statements in your code.

Practical Tips for Displaying and Updating Data

The following list provides some practical tips for displaying and updating data:

Always store your connection strings in the ➤➤ web.config file. Although it may seem easy to
store them directly in the SqlDataSource control in a page, you’ll get in trouble when you
need to make changes to your connection string later.

Always consider adding validation controls to your data entry pages. It makes it a lot easier ➤➤

for your users to find out what data is required, and in what format they should deliver it,
while you protect your system from receiving and processing incorrect data.

If you have long lists of data to present, always consider turning paging on for controls like ➤➤

the GridView. Users tend to get lost if you present them with lists containing many items.
Generally, a page size of somewhere between 10 and 20 items works best.

Consider renaming the controls in the page to something other than their default val-➤➤

ues. For example, in the previous Try It Out exercise you renamed SqlDataSource2 to
GenresDataSource. This makes it much easier to see which data source is needed to get
information about the genres. With only a few controls in a page this isn’t really an issue, but
as soon as your page grows, it is increasingly important to choose distinguishing names for
your controls.

Consider setting the ➤➤ CssClass of the Validation controls in AddEditReview.aspx and hook
them up to a CSS class. You can create them in a style sheet in the Styles folder in the root
for now and link that file to the master page. In a later chapter you’ll create a separate theme
for the Management section.

502211c13.indd 473 2/19/10 9:59:35 AM

474  ❘  Chapter 13   Displaying and Updating Data

Summary

This chapter built on the general knowledge you gained in Chapter 12 about accessing a database
through SQL. It started off with a discussion of the numerous controls in the Data category of the
Toolbox in Visual Web Developer.

These controls can be split in two groups: data-bound controls and data source controls. The first
group of controls — including the GridView, the DetailsView, and the ListView — is used to
display data in a web page. Most, but not all of them enable you to maintain your data as well, by
exposing inserting, updating, and deleting capabilities.

The controls in the other group, the data source controls, have no visual appearance themselves.
They serve as a bridge between the user interface and the database. A number of different data
source controls exist, each providing access to a specific kind of data store. In this chapter you saw
the SqlDataSource control, which enables you to retrieve data from many different kinds of rela-
tional databases.

Exercises	

1.	 If you need to create a user interface that enables a user to display, filter, edit, and delete data

coming from a database, what is the best control to use? How do you hook up that control to the

database?

2.	 Which control would you pick if you want to display a simple list of the genres in your database in

the following format?

 Punk

 Hard Rock

 Jazz

 Techno

3.	 What’s the difference between a BoundField and a TemplateField? When would you use which

of the two?

4.	 What’s the best place to store your connection strings? How do you access the connection strings

from that location? And why shouldn’t you store them in a page?

Answers to Exercises can be found in Appendix A.

502211c13.indd 474 2/19/10 9:59:35 AM

Summary  ❘  475

What You Learned in This Chapter⊲⊲

Connection string A string containing information necessary to connect to a database such as

SQL Server

Data source controls A set of ASP.NET controls that serve as a bridge between a data source (a

database, an XML file, and so on) and the data-bound controls

Data-binding
expression syntax

Syntax used to bind values from data sources to control properties such as

labels and text boxes. Example:

Text=’<%# Bind(“Title”) %>’

Data-bound controls A set of ASP.NET controls that can display flat and hierarchical data

Expression syntax A terse syntax to bind a variety of sources, including connection strings

from the web.config file, to control properties. Example:

ConnectionString=

 ”<%$ ConnectionStrings:PlanetWroxConnectionString1 %>”

InsertParameters
UpdateParameters
DeleteParameters

A set of parameters used to feed data into the data source controls to sup-

port insert, update, and delete behavior

Named instance The name of a specific SQL Server instance. Used to distinguish between

multiple installations of SQL Server on the same machine

SelectParameters A set of parameters that can get their data from other sources (a query

string, a cookie, and so on) and that can be used in the data source con-

trols to filter data

502211c13.indd 475 2/19/10 9:59:35 AM

502211c13.indd 476 2/19/10 9:59:35 AM

LINQ and the ADO.NET Entity
Framework

What You Will Learn in This Chapter:

What LINQ is and what its syntax looks like➤➤

The different forms of LINQ that are available and when they are ➤➤

appropriate to use

How to use the ADO.NET Entity Framework➤➤

How to use the new ➤➤ EntityDataSource control to access the ADO.

NET Entity Framework

How to use the ➤➤ ListView and DataPager controls

In the previous version of this book, targeting .NET 3.5, I mentioned LINQ as my favorite new
feature in the .NET Framework. And, though not completely new anymore, that still holds
true for version 4 of the framework. LINQ is the query language that is tightly integrated with
the programming languages used in the .NET Framework. It stands for language-integrated
query and enables you to query data from within .NET programming languages similar to
how SQL enables you to query data in a database. In fact, the LINQ syntax has been modeled
partially after the SQL language, making it easier for programmers familiar with SQL to get
started with LINQ.

LINQ comes in a few different implementations, enabling you to access and query a wide vari-
ety of sources including collections in your own code, XML files, .NET DataSets, and data-
bases from your VB.NET or C# code. In the next section you get a brief overview of the main
LINQ pillars. The remainder of this chapter focuses on the LINQ syntax and on the ADO.NET
Entity Framework (EF), a technology that enables you to work with databases without writing

14

502211c14.indd 477 2/19/10 9:59:16 AM

478  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

a lot of code. The ADO.NET Entity Framework uses LINQ a lot under the hood so you get a good
shot at practicing your new LINQ skills.

Introducing LINQ

LINQ enables you to query data from a wide variety of data sources, directly from your programming
code. LINQ is to .NET programming what SQL is to relational databases. With straightforward,
declarative syntax you can query collections for objects that match your criteria.

LINQ is not just an add-on that is part of the .NET Framework. On the contrary, LINQ has been
designed and implemented as a true part of the programming languages in .NET. This means that
LINQ is truly integrated into .NET, giving you a unified way to query data, regardless of where that
data comes from. In addition, because it is integrated into the language and not in a certain project
type, LINQ is available in all kinds of projects including web applications, Windows Forms appli-
cations, Console applications, and so on. To help developers get familiar with LINQ, its syntax is
closely modeled after SQL, the most popular query language for relational databases. This means
that LINQ has keywords such as Select, From, and Where to get data from a data source.

To give you an idea of what a LINQ query looks like, here’s a quick example that shows a list of
Wrox authors whose names contain the letter S:

VB.NET

Imports System.Linq
...
Dim authors As String() = New String() {“Hanselman, Scott”, “Evjen, Bill”,
 “Haack, Phil”, “Vieira, Robert”, “Spaanjaars, Imar”}
Dim result = From author In authors
 Where author.Contains(“S”)
 Order By author
 Select author
For Each author In result
 Label1.Text += author + “
”
Next

C#

using System.Linq;
...
string[] authors = new string[] { “Hanselman, Scott”, “Evjen, Bill”,
 “Haack, Phil”, “Vieira, Robert”, “Spaanjaars, Imar” };
var result = from author in authors
 where author.Contains(“S”)
 orderby author
 select author;

foreach (var author in result)
{
 Label1.Text += author + “
”;
}

Although the syntax used in this example is probably quite easy to follow, the example itself is really
powerful. Given an array of strings containing author names, you can simply select all the authors

502211c14.indd 478 2/19/10 9:59:16 AM

Introducing LINQ  ❘  479

whose names contain the capital letter S and order them in ascending order. It should come as no
surprise that in this example, the Label control displays my name and that of Scott Hanselman
because only those two names match the Where criterion. Notice how the code imports the System
.Linq namespace. This is necessary to bring the LINQ functionality into scope for your application.
If you’re finding that some keywords don’t show up in IntelliSense or VWD gives you compilation
errors on your LINQ queries, check that you have this namespace imported in your code file.

Of course this example is only the beginning. The different types of LINQ discussed in the follow-
ing three sections enable you to create much more powerful queries against a wide variety of data
sources.

Because LINQ is so powerful and has so much potential, it has been integrated into many dif-
ferent areas of the .NET Framework. The following sections introduce the different LINQ
implementations.

LINQ to Objects
This is the purest form of language integration. With LINQ to Objects, you can query collections
in your .NET applications as you saw in the previous example. You’re not limited to arrays because
LINQ enables you to query almost any kind of collection that exists in the .NET Framework.

LINQ to XML
LINQ to XML is the new .NET way to read and write XML. Instead of typical XML query lan-
guages like XSLT or XPath you can now write LINQ queries that target XML directly in your
application.

LINQ to ADO.NET
ADO.NET is the part of the .NET Framework that enables you to access data and data services like
SQL Server and many other different kinds of data sources. ADO.NET is also used under the hood
by the SqlDataSource control and is commonly used in “raw data access code”; code written in C#
or VB.NET that connects to a database without using the declarative data controls. With LINQ to
ADO.NET you can query database-related information sets, including LINQ to DataSet, LINQ to
SQL, and LINQ to Entities.

LINQ to DataSet enables you to write queries against the DataSet, a class that represents an in-
memory version of a database.

LINQ to SQL enables you to write object-oriented queries in your .NET projects that target
Microsoft SQL Server databases. The LINQ to SQL implementation translates your queries into
SQL statements, which are then sent to the database to perform typical CRUD operations. In the
3.5 version of this book, this entire chapter was devoted to LINQ to SQL. However, in the mean-
time, a lot has happened. Microsoft has indicated that it will no longer actively develop LINQ to
SQL. It will remain part of the .NET Framework and Visual Studio for the foreseeable future, but
Microsoft probably won’t be adding new functionality to it. The reason for this is the great overlap
in functionality with the Entity Framework (EF). Almost anything you can do in LINQ to SQL can
be done in EF. However, this latter framework is a lot more powerful and offers many more features

502211c14.indd 479 2/19/10 9:59:16 AM

480  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

than LINQ to SQL. Because it’s more powerful, the Entity Framework is preferred over LINQ to
SQL and as such it’s the main topic of this chapter.

For more information about the other types of implementations, check out the official LINQ home
page at http://tinyurl.com/42egdn.

Introducing the ADO.NET Entity Framework

With the ADO.NET Entity Framework (EF), you take a bunch of database objects like tables and
turn them into .NET objects that you can access in your code. You can then use these objects in
queries or use them directly in data-binding scenarios. EF also enables you to do the reverse: design
an object model first and then let EF create the necessary database structure for you.

Working with EF is pretty easy and quite flexible. Using a diagram designer, you drag and drop
objects like tables from your database into your Entity model. The objects you drop on the diagram
become available as objects. For example, if you drop the Review table on the diagram, you end up
with a strongly typed Review class. You can create instances of this class using LINQ queries and
other means, as you see later in this chapter.

NOTE  ​The ADO.NET Entity Framework is a large and complex topic by itself.
There’s a lot more to it than what I can cover in this chapter. For an in-depth
look at EF, pick up a copy of the excellent book Programming Entity Framework
Second Edition by Julia Lerman (O’Reilly Media).

When you drop more than one related database table on your diagram, the designer detects the rela-
tionships between the tables and then replicates these relationships in your object model. For example,
if you had a Review instance created in code using some LINQ to EF query (as you see later), you
could access its Genre property, which in turn gives you access to properties like Name:

VB.NET

Label1.Text = myReview.Genre.Name

C#

Label1.Text = myReview.Genre.Name;

Similarly, you can access the associated Reviews collection for a specific genre, for example to bind
it to a data-bound control:

VB.NET

Repeater1.DataSource = myGenre.Reviews

C#

Repeater1.DataSource = myGenre.Reviews;

Don’t worry about the actual syntax right now. You see a lot more of it in the remainder of this
chapter. What’s important to take away from this section is that EF creates a layer between your

502211c14.indd 480 2/19/10 9:59:16 AM

Mapping Your Data Model to an Object Model  ❘  481

.NET application and your SQL Server database. The Entities Designer takes care of most of the
work for you, providing access to a clean object model that you can use in your application.

Mapping Your Data Model to an Object Model

With EF, you map database items such as tables, columns, and relationships in the database, to
objects and properties in an object model in your application. VWD comes with great tools to make
this mapping as easy as possible, as you see in the following exercise.

A Simple LINQ to Entities ExampleTry It Out	

In this Try It Out, you see how to add an ADO.NET Entity Data Model file to your project, add data-
base tables to the model, and then write a simple LINQ query to access the data in the underlying tables.

	1.	 Open the Planet Wrox project that you have been working on so far. Right-click the App_Code
folder, choose Add New Item, and select your programming language under Installed Templates.
Then click ADO.NET Entity Data Model, type PlanetWrox as the name, and click Add to add the
item to your project. If you don’t see the item in the list, check that you right-clicked App_Code and
not another folder like App_Data.

	2.	 On the dialog that follows make sure that Generate from Database is selected and click Next.

	3.	 In the Choose Your Data Connection step make sure PlanetWroxConnectionString1 is selected in
the drop-down and that the check box to store the settings in web.config is checked. Your dialog
now looks like Figure 14-1.

Click Next to go to the Choose Your Database Objects dialog.

Figure 14-1

502211c14.indd 481 2/19/10 9:59:17 AM

482  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

	4.	 In this dialog, expand Tables and then check off the Genre and Review tables. Leave the sysdiagrams
table unchecked. This is a table used by SQL Server internally and you don’t need it in your Planet
Wrox model. If you’re using an English version of VWD, you get an option to pluralize or singularize
names in the model automatically, which you should leave checked. For other languages you’ll need
to do this manually, as you see next. Finally, make sure you leave the option to include foreign key
columns in the model checked. You see what that option is used for later in this chapter. Click Finish
to add the model to your site.

	5.	 VWD adds a file called PlanetWrox.edmx and then opens the Entity Designer for you in the main
editor window, shown in Figure 14-2.

This Entity Designer shows you classes that
have been generated based on the tables in
your database. VWD draws a line connect-
ing the two classes indicating it picked up
the relationship that you created between
the underlying tables in Chapter 12. If you
don’t see the line, or you don’t see Reviews
at the bottom of the Genre class or Genre at
the bottom of the Reviews class, make sure
you set up your database as explained in
Chapter 12, or grab a copy of the database
from the Chapter 13 folder that you find in
this book’s code download.

	6.	 If you’re using a non-English version of VWD you need to pluralize the names of the entity sets
and properties yourself. To do this, click the Genre class in the Designer, open its Properties Grid
by pressing F4, and change the Entity Set Name from Genre to Genres. Repeat this for the Review
class and change its Entity Set Name to Reviews. Finally, click the Review property on the dia-
gram for the Genre class (located under the Navigation Properties header in Figure 14-2), press F2
to rename the item, and enter Reviews as the new name. Because a Review only belongs to a single
Genre, you don’t need to pluralize the Genre property of the Review class.

	7.	 Save and close the diagram.

	8.	 Open All.aspx from the Reviews folder, switch it into Design View, and drag a GridView from the
Toolbox onto the page. If you don’t have this page, create it now and base it on your custom template.

	9.	 Double-click the page in the grey, read-only area to have VWD set up a handler for the Page’s
Load event and add the following code:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Using myEntities As New PlanetWroxEntities()
 Dim allReviews = From review In myEntities.Reviews
 Where review.Authorized = True
 Order By review.CreateDateTime Descending
 Select review

Figure 14-2

502211c14.indd 482 2/19/10 9:59:17 AM

Mapping Your Data Model to an Object Model  ❘  483

 GridView1.DataSource = allReviews
 GridView1.DataBind()
 End Using
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 var allReviews = from review in myEntities.Reviews
 where review.Authorized == true
 orderby review.CreateDateTime descending
 select review;
 GridView1.DataSource = allReviews;
 GridView1.DataBind();
 }
}

Notice how you immediately get an error when you
type PlanetWroxEntities because it’s defined in a
namespace that is not in scope. You can fix the problem
in two ways. You can type Imports PlanetWroxModel
if you’re using VB.NET or using PlanetWroxModel; if
you’re using C# at the top of the code file. Alternatively,
you can click the word PlanetWroxEntities once and
then press Ctrl+. (Ctrl+Dot) to bring up a dialog that lets
you choose the fix for the problem, shown in Figure 14-3
for the C# language. Choose the first item and VWD
adds the necessary Imports/using statement for you.

	10.	 Save all your changes and press Ctrl+F5 to open the page. You’ll get a screen full of reviews that
have been retrieved from the Review table in the database, as shown in Figure 14-4.

Figure 14-4

Figure 14-3

502211c14.indd 483 2/19/10 9:59:17 AM

484  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

The page looks rather messy because of the way the data is presented in the GridView, but in later exer-
cises you see how to improve the layout of the grid and the data.

How It Works

EF comes with an object-relational designer (accessible in VWD) that enables you to create an object
model that is accessible through code based on the tables in your database. By adding tables to this
designer, VWD generates code for you that enables you to access the underlying data in the database
without writing a lot of code. The classes that are added to the designer are stored in the .edmx file and
its Code Behind files. The designer file (the Code Behind of the PlanetWrox.edmx file) contains a class
that inherits from ObjectContext, the main object in EF that provides access to your database. In the
preceding exercise, this class is called PlanetWroxEntities (named after the .edmx file) and you use it
to access the data in the tables you added to the diagram. Although you normally don’t need to look at
the generated code, you can open the file PlanetWrox.designer.vb or PlanetWrox.designer.cs and
see what code has been generated for you.

The designer is smart enough to detect the relationships in the database and is thus able to create the
necessary relationships in code as well, as you saw in Figure 14-2. The model defines two main object
types: Review and the Genre, both of which also have a collection counterpart called Reviews and
Genres, respectively. These collections are referred to as entity sets. Note that on English versions
of VWD the designer has correctly pluralized the names of the Review and Genre tables (Reviews
and Genres, respectively), making it easier to see what is a collection (Reviews) and what is a single
instance of an object (Review). For other language versions of VWD, you had to apply this logic your-
self using the Entities Designer.

After the model has been generated, you can execute LINQ queries against it to get data out of the
underlying database. To access the data, you need an instance of the ObjectContext class, which is
created inside the Using block in the code. A Using block (using in C#) is used to wrap code that cre-
ates a variable that must be disposed of (cleared from memory) as soon as you’re done with it. Because
the myEntities variable holds a (scarce) connection to the SQL Server database, it’s a good idea to
wrap the code that uses it in a Using block, so the object is destroyed at the end of the block. This
myEntities object then exposes your data (such as reviews and genres) that you can use in a query:

VB.NET

Using myEntities As New PlanetWroxEntities()
 Dim allReviews = From review In myEntities.Reviews
 Where review.Authorized = True
 Order By review.CreateDateTime Descending
 Select review
 ...
End Using

C#

using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
{
 var allReviews = from review in myEntities.Reviews
 where review.Authorized == true
 orderby review.CreateDateTime descending
 select review;
 ...
}

502211c14.indd 484 2/19/10 9:59:17 AM

Mapping Your Data Model to an Object Model  ❘  485

Note that this query looks similar to the SQL that you learned in the previous chapters. Under the hood,
the runtime converts this LINQ query into its SQL counterpart, and executes it against the underlying
database. Within this query, the variable review in the From clause is used to refer to the review in the
other parts of the query (Where, Order By, and Select), enabling you to specify the select, filter, and
ordering criteria.

What’s important to realize is that EF uses a mechanism called lazy loading, which means sub objects
are not loaded until you explicitly tell them to. What this means is that in the previous example the
Genre properties of the Review objects you’ve queried are null and don’t contain any data. As soon as
your code tries to access them, they are loaded by executing another query to the database. This can
greatly improve performance if you don’t need these sub objects. However, if you’re sure you need them
in your code beforehand, executing a separate SQL statement for each item results in a lot of overhead.
In that case, you can preload the objects with the initial query. To express that you want to include
these objects as well you use the Include method for the types you want to query:

VB.NET

Dim allReviews = From review In myEntities.Reviews.Include(“Genre”)
 Where review.Authorized = True
...

C#

var allReviews = from review in myEntities.Reviews.Include(“Genre”)
 where review.Authorized == true
...

With this addition to the query, the Review objects now have their Genre property correctly filled with
data. Though this may seem a little counterintuitive and counterproductive at first, it’s actually quite
a nice feature. If you don’t need the extra Genre property in a specific page, you don’t take the perfor-
mance hit of selecting and returning these objects. If you do need them, all you need to add is a single
call to Include.

Besides the Reviews collection the model now also contains a Genres collection. When you want to
select all the genres in the database, you can use this query:

VB.NET

Dim allGenres = From genre In myEntities.Genres
 Order By genre.Name
 Select genre

C#

var allGenres = from genre in myEntities.Genres
 orderby genre.Name
 select genre;

In addition to these two separate objects and their collections, both objects have properties that refer to
each other’s type. For example, a Review instance has a Genre property that provides additional infor-
mation about the genre the review was assigned to. A Genre instance in turn has a Reviews collection
property, giving you access to all reviews posted in that genre. You see later how to make use of these
properties.

502211c14.indd 485 2/19/10 9:59:17 AM

486  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

From the keywords used in the first query in this Try It Out it’s probably easy to see what the query
does: it gets a list of all the reviews in the system that have been authorized and orders them in descend-
ing order on their creation date. The result of the query is then assigned to the allReviews variable.
Notice that in both languages you can spread out the query over multiple lines to improve readability.
This is not required, but you’re encouraged to do it anyway because it makes your queries a lot easier to
understand and maintain.

You may notice some strange syntax in the query. The VB.NET example doesn’t use an As clause to
define the type of the variable. Similarly, the C# snippet uses the new var keyword, also without a
type name. Although you may not conclude it from these code snippets, in both languages the variable
allReviews is still strongly typed and not just a variable with an undefined type.

NOTE  ​Strongly typed refers to the fact that the variable’s type is explicitly
defined when it’s declared. Once you’ve defined the type for a variable (using
Dim in VB or the type’s name in C#) you cannot change it anymore at run-time.
Strongly typed languages — such as C# and VB.NET — bring many advantages,
including the ability to check the types being used at compile time; something
that a weakly typed programming language cannot do.

Because the code didn’t state the type for allReviews (the example used Dim or var instead) .NET
needs a different solution to determine the type. This is done by a concept called type inference, where
the compiler is able to infer the type for a variable by looking at the right side of the assignment. In
this case, the compiler sees that a list of Review objects will be returned from the query, and correctly
types the allReviews variable as a generics type IQueryable(Of Review) in VB.NET syntax or
IQueryable<Review> in C#. Although this looks a little scary and incomprehensible at first, it becomes
much easier to understand if you simply read it as “a bunch of Review objects that you can access in
queries.”

These Review objects are then assigned to the DataSource property of the GridView. In previous chap-
ters you saw how to use the DataSourceID property to connect a control such as the GridView to a
data source control like the SqlDataSource. By using the DataSource property instead, you can assign
the actual data yourself, which the control then uses to build up the UI:

VB.NET

GridView1.DataSource = allReviews
GridView1.DataBind()

C#

GridView1.DataSource = allReviews;
GridView1.DataBind();

By calling DataBind() on the GridView you instruct the control to display the individual Review
objects on the page. Because the GridView control’s AutoGenerateColumns property is True by
default, the control creates a column for each property it finds on the Review object. Later you see how
to customize the control and the data that is being assigned to the DataSource property.

502211c14.indd 486 2/19/10 9:59:18 AM

Introducing Query Syntax  ❘  487

In the following section you learn more about the LINQ query syntax, the language that drives the
querying capabilities of .NET 4.

Introducing Query Syntax

The query you saw in the previous example is quite simple; it requests all the authorized reviews
from the system and returns them in a sorted order. However, the querying capabilities of LINQ
are much more powerful than this. In this section you learn more about the LINQ query syntax
that you use to query your object model. Remember, LINQ syntax is not invented just for the Entity
Framework. Most of the LINQ concepts that follow can also be used in the other LINQ implemen-
tations such as LINQ to Objects and LINQ to ADO.NET.

Standard Query Operators
LINQ supports a large number of query operators — keywords that enable you to select, order, or
filter data that is to be returned from the query. Although all of the examples in this chapter are dis-
cussed in the context of EF, you can easily apply them to the other LINQ implementations as well.
In the following section you get an overview of the most important standard query operators fol-
lowed by an example. Each of the examples uses the object model and the ObjectContext object called
myEntities you created earlier as the data source to query against.

Select

The Select keyword (select in C#) is used to retrieve objects from the source you are querying. In
this example you see how to select an object of an existing type. Later in this chapter you see how to
define new object shapes on the fly.

VB.NET

Dim allReviews = From r In myEntities.Reviews
 Select r

C#

var allReviews = from r in myEntities.Reviews
 select r;

The r variable in this example is referred to as a range variable that is only available within the cur-
rent query. You typically introduce the range variable in the From clause, and then use it again in the
Where and Select clauses to filter the data, and to indicate the data you want to select. Although
you can choose any name you like, you often see single letter variables like the r (for Review) or
you see the singular form of the collection you are querying (review instead of r in the preceding
examples).

From

Although not considered a standard query operator — because it doesn’t operate on the data but
rather points to the data — the From clause (from in C#) is an important element in a LINQ query,

502211c14.indd 487 2/19/10 9:59:18 AM

488  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

because it defines the collection or data source that the query must act upon. In the previous exam-
ple, the From clause indicates that the query must be executed against the Reviews collection that is
exposed by the myEntities object in EF.

Order By

With Order By (orderby in C#, without the space that VB.NET uses) you can sort the items in
the result collection. Order By is followed by an optional Ascending or Descending (ascending
and descending in C#) keyword to specify sort order. You can specify multiple criteria by separat-
ing them with a comma. The following query returns a list of genres first sorted by SortOrder in
descending order, then sorted on their Name in ascending order (the default):

VB.NET

Dim allGenres = From g In myEntities.Genres
 Order By g.SortOrder Descending, g.Name
 Select g

C#

var allGenres = from g in myEntities.Genres
 orderby g.SortOrder descending, g.Name
 select g;

Where

Just like the WHERE clause in SQL, the Where clause in LINQ (where in C#) enables you to filter the
objects returned by the query. The following query returns all authorized reviews:

VB.NET

Dim allReviews = From r In myEntities.Reviews
 Where r.Authorized = True
 Select r

C#

var allReviews = from r in myEntities.Reviews
 where r.Authorized == true
 select r;

Note that the Where clause uses the language’s standard equality operator: a single equals sign (=) in
VB.NET and two of them in C#.

Sum, Min, Max, Average, and Count

These aggregation operators enable you to perform mathematical calculations on the objects in the
result set. For example, to retrieve the number of reviews, you can execute this query:

VB.NET

Dim numberOfReviews = (From r In myEntities.Reviews
 Select r).Count()

502211c14.indd 488 2/19/10 9:59:18 AM

Introducing Query Syntax  ❘  489

C#

var numberOfReviews = (from r in myEntities.Reviews
 select r).Count();

Note that the Count method is applied to the entire result set. Therefore, you need to wrap the entire
statement in parentheses followed by a call to Count. Without the parentheses you’ll get an error.
The numberOfReviews variable in this example will be inferred as an integer and contains the num-
ber of items in the Review table.

Take, Skip, TakeWhile, and SkipWhile

Take and Skip enable you to make sub-selections within the result set. This is ideal for paging sce-
narios where only the records for the current page are retrieved. Take gets the requested number of
elements from the result set and then ignores the rest, whereas Skip ignores the requested number of
elements and then returns the rest.

Within EF, the Take and Skip operators are translated to SQL statements as well. This means that
paging takes place at the database level, and not in the ASP.NET page. This greatly enhances perfor-
mance of the query, especially with large result sets because not all elements have to be transferred
from the database to the ASP.NET page.

For Skip to work, you must add an Order By clause (orderby in C#) to your query to sort the
results before the designated number of records are skipped. Databases may return results in an
unpredictable order if you don’t add an explicit ORDER BY statement, so adding the Order By action
in your LINQ query helps to get a consistent result from the Skip method because records are
sorted first before they are skipped and taken.

The following example shows you how to retrieve the second page of records, given a page size of 10:

VB.NET

Dim allReviews = (From r In myEntities.Reviews
 Order By r.Title
 Select r).Skip(10).Take(10)

C#

var allReviews = (from r in myEntities.Reviews
 orderby r.Title
 select r).Skip(10).Take(10);

Just as with the Count example, the query is wrapped in a pair of parentheses, followed by the calls
to Skip and Take to get the requested records.

The TakeWhile and SkipWhile query operators work in a similar fashion, but enable you to take or
skip records while a specific condition is true. Unfortunately, they don’t work in EF but you can usu-
ally work around that by adding a simple Where clause to your query.

Single and SingleOrDefault

The Single and SingleOrDefault operators enable you to return a single object as a strongly typed
instance. This is useful if you know your query returns exactly one record; for example, when you

502211c14.indd 489 2/19/10 9:59:18 AM

490  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

retrieve it by its unique ID. The following example retrieves the review with an ID of 37 from the
database:

VB.NET

Dim review37 = (From r In myEntities.Reviews
 Where r.Id = 37
 Select r).Single()

C#

var review37 = (from r in myEntities.Reviews
 where r.Id == 37
 select r).Single();

The Single operator raises an exception when the requested item is not found or if the query returns
more than one instance. If you want the method to return null (Nothing in VB.NET) ​— ​for example,
for a Review or Genre that is not found ​— ​or the default value for the relevant data type (such as a
0 for an Integer, False for a Boolean, and so on) instead, use SingleOrDefault.

Even though there is only one Review with an Id of 37 in the database, you would still get a collection
of reviews (holding only one element) if you omit the call to Single. By using Single you force the
result set into a single instance of the type you are querying.

First, FirstOrDefault, Last, and LastOrDefault

These operators enable you to return the first or the last element in a specific sequence of objects.
Just as with the Single method, First and Last throw an error when the collection is empty,
whereas the other two operators return the default value for the relevant data types.

In contrast to Single, the First, FirstOrDefault, Last, and LastOrDefault operators don’t
throw an exception when the query returns more than one item.

The Last and LastOrDefault queries are not supported in EF. However, you can easily accomplish
the same behavior with First and a descending sort order. The following code snippet shows how
to retrieve the oldest (the one with the lowest ID) and the most recent review from the database:

VB.NET

Dim firstReview = (From r In myEntities.Reviews
 Order By r.Id
 Select r).First()

Dim lastReview = (From r In myEntities.Reviews
 Order By r.Id Descending
 Select r).First()

C#

var firstReview = (from r in myEntities.Reviews
 orderby r.Id
 select r).First();

var lastReview = (from r in myEntities.Reviews
 orderby r.Id descending
 select r).First();

502211c14.indd 490 2/19/10 9:59:18 AM

Introducing Query Syntax  ❘  491

Simply by reordering the result set in reverse order before executing First, you actually get the last
record in the sequence. Note that in both cases, the type returned by the query is a true Review
object, enabling you to access its properties such as Id and Title directly.

Shaping Data with Anonymous Types
So far, the queries you have seen in the previous sections returned full types. That is, the que-
ries returned a list of Review instances (such as the Select method), a single instance of Review
(Single, First, or Last), or a numeric value (such as Count and Average).

Quite often, however, you don’t need all the information from these objects. Figure 14-4 shows a
GridView with all the properties from the Review object. To improve the presentation of this list,
you usually want to skip properties like Body and Authorized, and instead of the genre ID you
probably want to display the genre name instead. Although you could tell the GridView to only
display the columns you want to see, it would be more efficient if you were able to limit the actual
data. This is pretty easy to do with anonymous types, another language feature available in C# and
VB.NET. An anonymous type is a type whose name you don’t define up front like you do with other
types such as classes. Instead, you construct the anonymous type by selecting data and then let the
compiler infer the type for you.

If you don’t define the actual type and give it a name, how can you access the type and its proper-
ties? This is once again done with type inference, where the compiler can see what data is assigned
to a variable and then creates a new, anonymous type on the fly.

Creating an anonymous type is easy; instead of selecting the actual object using something like
Select review, you use the new keyword in C# and New With in Visual Basic and then define the
properties you want to select between a pair of curly braces:

VB.NET

Dim allReviews = From myReview In myEntities.Reviews
 Where myReview.Authorized = True
 Select New With {myReview.Id, myReview.Title, myReview.Genre.Name}

C#

var allReviews = from review in myEntities.Reviews
 where review.Authorized == true
 select new { review.Id, review.Title, review.Genre.Name };

Although the type is anonymous and cannot be accessed by name directly, the compiler is still able
to infer the type, giving you full IntelliSense for the new properties that were selected in the query.
Figure 14-5 shows how you access the properties of the anonymous type in the allReviews vari-
able, using the var keyword in C#.

Note that the preceding query accessed the actual Genre property of the Review. Besides its
GenreId (defined as a column in the table Review in the database), the Review class now also has a
strongly typed Genre property, giving you direct access to the genre’s properties like the Name as the
previous query demonstrates.

502211c14.indd 491 2/19/10 9:59:18 AM

492  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

Figure 14-5

Besides directly selecting existing properties — as shown in the query that selected the Id, Title,
and Name of the Genre — you can also make up property values and give them different names as
you go. For example, the following query creates a new anonymous type that renames the Id as
Number, limits the Title to the first 20 characters, and contains a Boolean value that determines
whether the item has been updated in the database previously:

VB.NET

Dim allReviews = From myReview In myEntities.Reviews
 Select New With
 {
 .Number = myReview.Id,
 .Title = myReview.Title.Substring(0, 20),
 myReview.Genre.Name,
 .HasBeenUpdated = (myReview.UpdateDateTime >
 myReview.CreateDateTime)
 }

C#

var allReviews = from myReview in myEntities.Reviews
 select new
 {
 Number = myReview.Id,
 Title = myReview.Title.Substring(0, 20),
 myReview.Genre.Name,
 HasBeenUpdated = (myReview.UpdateDateTime >
 myReview.CreateDateTime)
 };

Note the difference between VB.NET and C#; in the VB.NET example, the names of the new prop-
erties (Number, Title, and HasBeenUpdated) are prefixed with a period (.). C# doesn’t have this
requirement and lets you write new property names directly.

The ability to select extra properties that are not present in the original object gives you great flex-
ibility in the data you display. This example determines whether the current review has been updated
by comparing the CreateDateTime and UpdateDateTime properties. The result of this comparison (a
Boolean with the value True or False) is then stored in the property HasBeenUpdated. You can select

502211c14.indd 492 2/19/10 9:59:19 AM

Introducing Query Syntax  ❘  493

nearly anything you want, including the current date and time, complex calculations, substrings or
combinations of properties, and so on.

In the following exercise you see how to create a new anonymous type that has a Reviews collection
as a property. You’ll use this type to create a list of all the available genres in the database, and the
reviews that each genre contains.

Working with Queries and Anonymous TypesTry It Out	

In this Try It Out you create a page that lists all the available genres, each followed by the list of reviews
that have been published in the genre. You’ll use a Repeater control to display the list of genres and a
nested BulletedList to display the inner reviews. When you’re done, you should see a list similar to
the one displayed in Figure 14-6.

	1.	 Open the page AllByGenre.aspx from the Reviews folder. Make sure the page is in Markup View
and then drag a Repeater from the Data category of the Toolbox between the opening and closing
tags of the cpMainContent content placeholder.

	2.	 Inside the Repeater create an <ItemTemplate> element that in turn contains an <h3> element that
contains a Literal. You should end up with this code:

<asp:Repeater ID=”Repeater1” runat=”server”>
 <ItemTemplate>
 <h3><asp:Literal ID=”Literal1” runat=”server”></asp:Literal></h3>
 </ItemTemplate>
</asp:Repeater>

	3.	 Set the Text property of the Literal control to <%# Eval(“Name”) %>. Instead of double quotes,
make sure you use single quotes to delimit the property’s value:

<asp:Literal ID=”Literal1” runat=”server”
 Text=’<%# Eval(“Name”) %>’></asp:Literal>

	4.	 Below the <h3> element, drag and drop a BulletedList control from the Standard category and
set the following properties on the control. You can either enter them directly in Markup View or
use the Properties Grid.

Property Name Value

ID ReviewList

DataSource <%# Eval(“Reviews”)%> (make sure you use single quotes again to wrap

this attribute value, as shown in the following code snippet)

DataTextField Title

DisplayMode Text

You should end up with the following control code:

<asp:BulletedList ID=”ReviewList” runat=”server”
 DataSource=’<%# Eval(“Reviews”)%>’ DataTextField=”Title”
 DisplayMode=”Text”></asp:BulletedList>

502211c14.indd 493 2/19/10 9:59:19 AM

494  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

	5.	 Switch to Design View and double-click the page somewhere in the read-only area defined
by the master page to set up a handler for the Load event of the page. Within the handler,
write the following code. Again, use Ctrl+. to let VWD insert the right namespace for the
PlanetWroxEntities class.

VB.NET

Imports PlanetWroxModel
... ‘ Class definition goes here
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Using myEntities As New PlanetWroxEntities()
 Dim allGenres = From genre In myEntities.Genres
 Order By genre.Name
 Select New With {genre.Name, genre.Reviews}
 Repeater1.DataSource = allGenres
 Repeater1.DataBind()
 End Using
End Sub

C#

using PlanetWroxModel;
... // Class definition goes here
protected void Page_Load(object sender, EventArgs e)
{
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 var allGenres = from genre in myEntities.Genres
 orderby genre.Name
 select new { genre.Name, genre.Reviews };
 Repeater1.DataSource = allGenres;
 Repeater1.DataBind();
 }
}

	6.	 Save the changes to your page and then request it in the browser. You should see a similar result as
shown in Figure 14-6 where each genre appears as a group header above the lists with reviews.

Figure 14-6

502211c14.indd 494 2/19/10 9:59:19 AM

Introducing Query Syntax  ❘  495

How It Works

There are two important things to look at in this exercise. First of all,
there’s the LINQ query that is used to get the genres and reviews from the
database. This query creates a new anonymous type with two properties:
the Name of the Genre as a String and a collection of Review objects called
Reviews. The class diagram for the new anonymous type could look like
Figure 14-7.

These Name and Reviews fields are then used in the second important part: the Repeater control with
the nested bulleted list. First, take a look at the Repeater:

<asp:Repeater ID=”Repeater1” runat=”server”>
 <ItemTemplate>
 <h3><asp:Literal ID=”Literal1” runat=”server”
 Text=’<%# Eval(“Name”) %>’></asp:Literal></h3>
 <!-- BulletedList here -->
 </ItemTemplate>
</asp:Repeater>

Although you haven’t worked with the Repeater control before, it may look familiar, because it works
in a manner similar to the other data controls. Within the <ItemTemplate> you define the markup that
you want repeated for each item in the data source. Using Eval you can get the value of the Title and
assign it to the Literal, which is wrapped in a pair of <h3> tags. A similar construct is used for the
BulletedList to feed it a DataSource:

<asp:BulletedList ID=”BulletedList1” runat=”server” DisplayMode=”Text”
 DataSource=’<%# Eval(“Reviews”)%>’ DataTextField=”Title” />

In addition to assigning simple properties like the Text
of the Literal from the Name of the underlying data
item, you can also use Eval to get complex properties.
In this example, Eval(“Reviews”) is used to get the
collection of Reviews for the current Genre. The
BulletedList control then understands how to handle
this data source and retrieves the Title from each indi-
vidual Review object and then displays that in the list.
The diagram in Figure 14-8 shows you how each Genre
contains one or more reviews whose titles are displayed
below the name of the genre.

After you have set up the Repeater and defined the
query, you need to start the data-binding process. You
do this by assigning the results of the query to the
DataSource property of the Repeater, followed by a
call to DataBind() as shown in the C# example:

 Repeater1.DataSource = allGenres;
 Repeater1.DataBind();

Figure 14-7

Name (from AnonymousType(0).Name)

Review Title (from AnonymousType(0).Reviews(0).Title)

Review Title (from AnonymousType(0).Reviews(1).Title)

Review Title (from AnonymousType(0).Reviews(2).Title)

Review Title (from AnonymousType(0).Reviews(3).Title)

Name (from AnonymousType(2).Name)

Review Title (from AnonymousType(2).Reviews(0).Title)

Review Title (from AnonymousType(2).Reviews(1).Title)

Review Title (from AnonymousType(2).Reviews(2).Title)

Name (from AnonymousType(1).Name)

Review Title (from AnonymousType(1).Reviews(0).Title)

Review Title (from AnonymousType(1).Reviews(1).Title)

Figure 14-8

502211c14.indd 495 2/19/10 9:59:19 AM

496  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

These two lines set things in motion: as soon as you call DataBind(), the query is executed and the rel-
evant genres and reviews are retrieved from the database. In this example, the genres are sorted on their
Name, but obviously you can order on other properties, such as SortOrder, as well. The Repeater then
loops through each item in the result set (this item is the anonymous type you just saw) and uses that
item’s Name to fill in the <h3> element with the genre name. The Repeater then assigns the Reviews col-
lection to the inner BulletedList control’s DataSource property. This control loops over the available
Review instances, using their Title to build up the bulleted list. In this example, you see that genres
without reviews are displayed in the list as well. In the Exercises section at the end of the chapter, you’ll
find an exercise that shows you how to hide empty genres.

Although it may take you some time to fully understand the principles behind these LINQ queries
and the Entity Framework, I am sure you are beginning to appreciate their power and accessibility.
With just a few lines of code and a few controls, you can create powerful data presentation pages.

However, it’s possible to create LINQ queries that execute against EF and use them with the
ASP.NET Server Controls with even fewer lines of code. You see how this works in the next section,
which deals with the new EntityDataSource, the ListView, and the DataPager controls.

Using Server Controls with LINQ Queries

So far you have seen one way to bind the results of a LINQ query against EF to a control in your
ASPX page: assign the data to the control’s DataSource property and then call DataBind. This way
of getting data into the controls has a few shortcomings. First of all, this method does not support
the editing, updating, and deleting of data directly. Secondly, because you define the data source in
the Code Behind, the GridView doesn’t know what data you’re feeding it until runtime, so you get
no tool support to set up its columns. These shortcomings are easy to overcome by using the new
server controls, including the ListView and the EntityDataSource control.

Using Data Controls with the Entity Framework
In the previous chapter you were introduced to some of the data controls like the GridView and
the SqlDataSource. But ASP.NET 4 ships with more controls that let you create data-driven pages
with very few lines of code. Two of these controls provide a visual interface in your ASP.NET pages,
and the third one works as a bridge between your data-bound controls and your underlying data
sources. The following table briefly introduces you to these controls.

Control Description

EntityDataSource As with the SqlDataSource that you saw in previous chapters, the

EntityDataSource works as a bridge between your data-bound controls

and the underlying data source: EF in this case.

ListView The ListView control provides a visual interface that enables you to display,

insert, edit, and delete items in a database, providing full CRUD services.

502211c14.indd 496 2/19/10 9:59:19 AM

Using Server Controls with LINQ Queries  ❘  497

Control Description

DataPager The DataPager is used together with the ListView and enables you to

paginate the data in the data source, feeding data to users in bite-sized

chunks instead of all records at once.

The next few sections provide you with more detail about these controls and show you how to use
them in a few Try It Out exercises.

Introducing the EntityDataSource Control

As its name implies, the EntityDataSource is a close relative of the SqlDataSource and other
data source controls. The EntityDataSource control is to EF what the SqlDataSource control
is to SQL-based data sources: it provides a declarative way to access your model. Just like the
SqlDataSource control, EntityDataSource gives you easy access to the CRUD operations and
additionally makes sorting and filtering of data very easy. The following table describes the main
properties and capabilities of this new control.

Property Description

EnableDelete

EnableInsert

EnableUpdate

Determine whether the control provides automatic insert, update, and delete

capabilities. When enabled, you can use the control together with data-bound

controls like the GridView or ListView to support data management.

ContextTypeName The name of the ObjectContext class that the control should use. In the

examples in this book, this type name is PlanetWroxEntities.

EntitySetName The name of the entity set from the EF diagram you want to use, such as

Reviews.

Select

OrderBy

Where

Enable you to define the query that the EntityDataSource control fires

against the model. Each of these properties maps to one of the query opera-

tors you’ve seen before.

Together with a data-bound control, the EntityDataSource provides you full access to the underly-
ing SQL Server database through LINQ to EF. The next exercise shows you how to use the control
in your ASPX pages.

A Simple EntityDataSource ApplicationTry It Out	

In this Try It Out you start building the Gig Pics feature of Planet Wrox, a section of the web site where
users can upload photos they created during concerts of their favorite bands. You see how to let a user
create a new photo album that acts as a container for the pictures that are uploaded. You see how to use
the EntityDataSource and a DetailsView to create a user interface that enables you to enter a name

502211c14.indd 497 2/19/10 9:59:20 AM

498  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

for a new photo album into the system. In later exercises you see how to add pictures to this photo
album.

	1.	 Add the following two tables to your database using the Database Explorer window. Refer to
Chapter 12 for more details about creating tables, primary keys, and identity columns. If you don’t
want to create the tables by hand, you can also grab the database that comes with this chapter’s
code download.

PhotoAlbum

Column Name Data Type Description

Id int The unique ID (identity and primary key) of the photo album.

Name nvarchar(100) The name of the photo album.

Picture

Column Name Data Type Description

Id int The unique ID (identity and primary key) of the picture.

Description nvarchar(300) A short text describing the picture.

ToolTip nvarchar(50) A tooltip displayed when you hover over a picture.

ImageUrl nvarchar(200) The virtual path to the picture on disk.

PhotoAlbumId int The ID of the photo album this picture belongs to.

For both tables, make sure that none of the columns in the two tables are nullable by unchecking
their Allow Nulls check boxes. Make the Id column the primary key by clicking it once, and then
clicking the yellow key icon on the Table Designer toolbar. Additionally, make this column the
table’s Identity column by setting the (Is Identity) property on the Column Properties Grid to Yes.
Refer to Chapter 12 if you’re not sure how to do this.

	2.	 On the Database Explorer open the database
diagram that you created in Chapter 12 and add
the two new tables to it by dragging them from
the Database Explorer. Arrange the two new
tables side by side if necessary. Next, drag the
Id column from the PhotoAlbum table onto
the PhotoAlbumId column of the Picture
table. Confirm that the Primary Key Table is
PhotoAlbum with Id as the selected column
and that Picture is the Foreign Key Table with
PhotoAlbumId as the selected column as shown
in Figure 14-9.

Figure 14-9

502211c14.indd 498 2/19/10 9:59:20 AM

Using Server Controls with LINQ Queries  ❘  499

	3.	 Click OK twice to apply the changes and then save and close the diagram. Click Yes to confirm the
changes made to the two tables.

	4.	 Next, open the ADO.NET Entity Framework Model file
PlanetWrox.edmx from the App_Code folder by double-
clicking it. Right-click an empty spot of the diagram and
choose Update Model from Database. In the wizard that
appears, expand Tables and then check the two tables you
just created: PhotoAlbum and Picture. Click Finish to have
the two tables added to your model. Your diagram should
end up like Figure 14-10.

If you’re using a non-English version of VWD you need to
pluralize the names of the entity sets and properties again.
To do this, click the Picture class, open its Properties
Grid by pressing F4, and change the Entity Set Name from
Picture to Pictures. Repeat this for the PhotoAlbum
class and change its Entity Set Name to PhotoAlbums.
Finally, click the Picture property on the diagram for the
PhotoAlbum class, press F2 to rename the item, and then
enter Pictures as the new name.

Save all your changes and close the diagram.

	5.	 Create a new Web Form based on your custom template in the root of the site and call it
NewPhotoAlbum.aspx. Give the page a title of Create New Photo Album.

	6.	 Switch the page into Design View and from the Data category of the Toolbox, drag a DetailsView
control and drop it into the cpMainContent placeholder. On the DetailsView control’s Smart
Tasks panel, open the Choose Data Source drop-down list and select <New data source>. In the
Data Source Configuration Wizard dialog box, click the Entity icon and click OK. In the Named
Connection drop-down, choose PlanetWroxEntities.

NOTE  ​If you get an error about incorrect metadata, close the dialog, delete the
existing EntityDataSource control from the page and manually drag a new
one from the Toolbox. On the DetailsView control’s Smart Task panel choose
the new data source control. Then open the EntityDataSource control’s Smart
Task panel and choose Configure Data Source.

Click Next to go to the Configure Data Selection screen, shown in Figure 14-11. From the
EntitySetName drop-down list, choose PhotoAlbums.

Figure 14-10

502211c14.indd 499 2/19/10 9:59:20 AM

500  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

Figure 14-11

	7.	 For this exercise, you need insert behavior, so check off the Enable Automatic Inserts check box.
Click Finish to close the Data Source Wizard.

	8.	 If you don’t see the Id and Name columns in the DetailsView, but a general Databound Col0
instead, click the Refresh Schema link on the control’s Smart Task panel.

Enable inserting for the DetailsView control by checking the item Enable Inserting on the same
Smart Tasks panel.

	9.	 Open the DetailsView control’s Properties Grid and change the DefaultMode from ReadOnly to
Insert.

	10.	 Switch to Markup View, locate the BoundField for the Id property of the PhotoAlbum and set
its InsertVisible property to False so you don’t get a text box for the ID when inserting a new
photo album.

<asp:BoundField DataField=”Id” HeaderText=”Id”
 SortExpression=”Id” InsertVisible=”False” />

	11.	 Select the EntityDataSource control in Design View, open its Properties Grid, and switch to the
Events tab. Double-click the Inserted event, visible in Figure 14-12.

	12.	 At the top of the code file, add the following Imports/using statement to bring your entities model
in scope so you can access classes such as PhotoAlbum:

VB.NET

Imports PlanetWroxModel

C#

using PlanetWroxModel;

502211c14.indd 500 2/19/10 9:59:20 AM

Using Server Controls with LINQ Queries  ❘  501

Figure 14-12

Then, in the event handler that VWD added for you write the following code that redirects the
user to a new page once the photo album has been inserted in the database:

VB.NET

Protected Sub EntityDataSource1_Inserted(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.EntityDataSourceStatusEventArgs) _
 Handles EntityDataSource1.Inserted
 Dim myPhotoAlbum As PhotoAlbum = CType(e.Entity, PhotoAlbum)
 Response.Redirect(String.Format(“ManagePhotoAlbum.aspx?PhotoAlbumId={0}”,
 myPhotoAlbum.Id.ToString()))
End Sub

C#

protected void EntityDataSource1_Inserted(object sender,
 EntityDataSourceChangedEventArgs e)
{
 PhotoAlbum myPhotoAlbum = (PhotoAlbum)e.Entity;
 Response.Redirect(string.Format(“ManagePhotoAlbum.aspx?PhotoAlbumId={0}”,
 myPhotoAlbum.Id.ToString()));
}

	13.	 Save all changes and then request NewPhotoAlbum.aspx in the browser.

COMMON MISTAKES  ​If the page you get is empty, make sure you set the
DefaultMode property of the DetailsView to Insert.

Enter a new name for the photo album such as Placebo playing live at Rock Werchter
2009 and click the Insert link. You’ll get a Resource Not Found error (because you haven’t cre-
ated ManagePhotoAlbum.aspx yet) but you can at least see the ID of the new photo album in the
address bar of your browser.

How It Works

You started this exercise by adding the Picture and PhotoAlbum tables to both the database and EF
diagram. These tables are used to store data about photo albums and the pictures they contain. Each
individual picture belongs to a PhotoAlbum referred to by its PhotoAlbumId that points to the Id

502211c14.indd 501 2/19/10 9:59:20 AM

502  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

column of the PhotoAlbum table in the database. The Picture table is designed to only hold data about
the picture; the actual picture file will be stored on disk, as you see later.

To enable users to create a new photo album you added a DetailsView control to the page. To make sure
the control can be used to insert new photo albums, you enabled inserting and then set the DefaultMode
to Insert. This forces the control to jump into insert mode, instead of the default read-only mode. You
then hooked up an EntityDataSource to the DetailsView, which takes care of inserting the photo
album in the PhotoAlbum table. The code for the EntityDataSource control looks like this:

<asp:EntityDataSource ID=”EntityDataSource1” runat=”server”
 ConnectionString=”name=PlanetWroxEntities” EnableFlattening="False"
 DefaultContainerName=”PlanetWroxEntities” EnableInsert=”True”
 EntitySetName=”PhotoAlbums” OnInserted=”EntityDataSource1_Inserted”>
</asp:EntityDataSource>

If you are using Visual Basic.NET, your code won’t have the OnInserted attribute set. Note how
straightforward the EntityDataSource is in this scenario: you point it to a DefaultContainerName,
the PlanetWroxEntities in this example, which is the main entrance for the control to get its
data. You also turned on inserting by setting EnableInsert to True. Additionally, you set the
EntitySetName, so the control knows what object to use from the EF diagram. For simple inserts, this
is all you need to do. When the page loads in the browser, the DetailsView renders a user interface
that enables you to enter a new name for the photo album. When you click Insert, the data you entered
is assembled and forwarded to the EntityDataSource. This control in turn creates a new PhotoAlbum
instance and then saves it in the database by sending the appropriate INSERT SQL statement to the
database.

In many situations, this standard behavior is not enough. You may need to validate the data that is
entered or you may have a need to change the actual data before it gets sent to the database. You see an
example of the latter in a later Try It Out when you upload images to the server.

Another common requirement is retrieving the ID of the newly created item, which is then sent to the
next page. This exercise used the following code to accomplish that:

VB.NET

Dim myPhotoAlbum As PhotoAlbum = CType(e.Entity, PhotoAlbum)
Response.Redirect(String.Format(“ManagePhotoAlbum.aspx?PhotoAlbumId={0}”,
 myPhotoAlbum.Id.ToString()))

C#

PhotoAlbum myPhotoAlbum = (PhotoAlbum)e.Entity;
Response.Redirect(string.Format(“ManagePhotoAlbum.aspx?PhotoAlbumId={0}”,
 myPhotoAlbum.Id.ToString()));

The cool thing about the EntityDataSource control is that it works with strongly typed objects, where
the type maps to the tables you added to the model diagram. In this case, you are working with real
instances of PhotoAlbum, the class that represents the photo albums in the system. This enables you to
retrieve the photo album you have inserted in the database in the Inserted event of the data source
control. The e argument exposes a property called Entity that contains a reference to the new photo

502211c14.indd 502 2/19/10 9:59:21 AM

Using Server Controls with LINQ Queries  ❘  503

album. Simply by casting it to a real PhotoAlbum (by using CType in VB.NET or putting the class name
in parentheses before it in C#), you can access the properties of the PhotoAlbum, including its new
ID that has been generated by the database (through the Identity settings on the ID column) and then
stored in the Id property of the PhotoAlbum. The final line in the event handler takes the user to the
next page and sends the ID of the new photo album in the query string.

Note that you get an error when you leave the name field empty and click Insert. The previous chapter
showed you how to modify the DetailsView to insert validation controls to its templates.

Now that you can insert new photo albums, the next logical step is to add pictures to the photo
album. In the next exercise you see how to create a user interface with the ListView control that
enables a user to upload new pictures in the photo album.

Introducing the ListView Control

Up until now, you have seen a few data-bound controls at work. You saw the GridView, which is
quite powerful because it supports updates, deletes, sorting, and paging of data, but lacks inserting
and generates a lot of HTML markup. You also saw the Repeater control that gives you precise
control over the generated HTML, but lacks most advanced features that the other data controls
have, such as update and delete behavior and sorting and filtering capabilities. And finally you saw
the DetailsView that enables you to insert or update one record at a time.

The ListView is a “best of all worlds” control, combining the rich feature set of the GridView
with the control over the markup that the Repeater gives you and adding the insert behavior of the
DetailsView. The ListView enables you to display data in a variety of formats, including a grid
(rows and columns like the GridView), as a bulleted list (similar to how you set up the Repeater
earlier in this chapter), and in Flow format, where all the items are placed in the HTML after each
other, leaving it up to you to write some CSS to format the data.

The ListView displays and manages its data through templates that enable you to control many of
the different views that the ListView gives you on its underlying data. The following table describes
all the available templates that you can add as direct children of the ListView control in the markup
of the page.

Template Description

<LayoutTemplate> Serves as the container for the control. It enables you to

define a location where the individual data items are placed.

The data items, presented through the ItemTemplate and

AlternatingItemTemplate, are then added as children of this

container.

<ItemTemplate>

<AlternatingItemTemplate>

Define the read-only mode for the control. When used together,

they enable you to create a “zebra effect,” where odd and even

rows have a different appearance (usually a different background

color).

continues

502211c14.indd 503 2/19/10 9:59:21 AM

504  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

Template Description

<SelectedItemTemplate> Enables you to define the look and feel of the currently active, or

selected, item.

<InsertItemTemplate>

<EditItemTemplate>

These two templates enable you to define the user interface for

inserting and updating items in the list. You typically place con-

trols like text boxes, drop-down lists, and other server controls in

these templates and bind them to the underlying data source.

<ItemSeparatorTemplate> Defines the markup that is placed between the items in the list.

Useful if you want to add a line, an image, or any other markup

between the items.

<EmptyDataTemplate> Displayed when the control has no data to display. You can add

text or other markup and controls to it to tell your users there’s

no data to display.

<GroupTemplate>

<GroupSeparatorTemplate>

<EmptyItemTemplate>

Used in advanced presentation scenarios where data can be pre-

sented in different groups.

Although this long list of templates seems to suggest you need to write a lot of code to work with the
ListView, this is not always the case. First of all, Visual Web Developer 2010 creates most of the
code for you based on the data that is exposed by controls such as the EntityDataSource. Secondly,
you don’t always need all templates, enabling you to minimize the code for the control.

Besides the numerous templates, the control has the following properties that you typically set to
influence its behavior.

Property Description

ItemPlaceholderID The ID of a server-side control placed within the LayoutTemplate. The

control referred to by this property is replaced by all the repeated data

items when the control is displayed onscreen. It can be a true server con-

trol like an <asp:PlaceHolder> or a simple HTML element with a valid ID

and its runat attribute set to server (for example, <ul runat=”server”

id=”MainList”>). If you don’t set this property, ASP.NET tries to find

a control with an ID of itemPlaceholder and uses that control instead.

DataSourceID The ID of a data source control on the page, such as an EntityDataSource

or a SqlDataSource control.

InsertItemPosition The enumeration for this property contains three values — None, FirstItem,

and LastItem — to determine the position of the InsertItemTemplate:

either at the beginning or end of the list, or not visible at all.

(continued)

502211c14.indd 504 2/19/10 9:59:21 AM

Using Server Controls with LINQ Queries  ❘  505

Just like the other data-bound controls, the ListView has a number of events that fire at specific
moments during the control’s lifetime. For example, it has ItemInserting and ItemInserted
events that fire right before and after an item has been inserted in the underlying data source.
Similarly, it has events that trigger right before and after you update or delete data. You see more
about handling these kinds of events in the next chapter.

Besides the templates, properties, and events you just saw, the ListView has more to offer. For a
detailed explanation of the ListView control and all of its members and behavior, check out the
MSDN documentation at http://tinyurl.com/mupjot.

The next exercise shows you how to put all of this information together. You see how to define
the various templates and set the relevant properties to control the look and feel of the ListView
control.

Inserting and Deleting Data with the ListView ControlTry It Out	

Inserting items with the ListView can be just as easy as with the DetailsView: you point the control
to a data source and let VWD create the necessary templates for you. However, in many real-world
web sites, these default templates won’t cut it. You may want to display fewer fields than are available
in the data source, validate data before it gets sent to the database, or you may want to store data at
a different location than the database. For example, you may want to store uploaded images on disk
rather than in the database and then only store a reference to the file in the database table. The next
exercise shows you how to customize the ListView templates and handle the Inserting event of the
EntityDataSource when you build functionality to add pictures to your photo albums.

This exercise has you work with a lot of code that is generated automatically by VWD. Most of what
you need to do in this exercise is remove code instead of add new code. If you get lost somewhere, or
you feel your code does not look like it should, remember this chapter comes with the full source code
that you can download from the Wrox web site, so you can compare your code with mine.

	1.	 In the root of the web site, create a new Web Form based on your custom template. Call it
ManagePhotoAlbum.aspx, set its Title to Manage Photo Album and switch it into Design View.

	2.	 From the Toolbox, drag a ListView control onto the page in the cpMainContent placeholder and
then hook it up to an EntityDataSource control by choosing <New data source> in the Choose
Data Source drop-down list on the Smart Tasks panel (just as you did with the DetailsView ear-
lier). Click the Entity icon, click OK, choose PlanetWroxEntities as the named connection, and
click Next.

In the Configure Data Selection dialog of the EntityDataSource control’s wizard, visible in
Figure 14-11, choose Pictures from the EntitySetName drop-down list.

	3.	 Check the first and the last check box of the three at the bottom of the screen to give the
EntityDataSource insert and delete support. Finally, click Finish to close the Configure Data
Source Wizard.

502211c14.indd 505 2/19/10 9:59:21 AM

506  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

	4.	 Back in Design View, select the EntityDataSource control, open its Properties Grid, locate the
Where property, and open its Expression Editor by clicking the ellipsis for that property. You may
recall that the page ManagePhotoAlbum.aspx receives the photo album ID through the query
string so you’ll set up a QueryStringParameter in this step to filter the ListView to those pic-
tures belonging to the designated photo album. Click Add Parameter, enter PhotoAlbumId as the
name and then fill in the Expression Editor dialog box as shown in Figure 14-13.

Figure 14-13

Make sure you enter it.PhotoAlbum.Id = @photoAlbumId in the Where Expression box at the
top of the dialog. Next, click the Show Advanced Properties link and change the Type property of
the parameter to Int32. When you’re done, click OK to dismiss the dialog box.

	5.	 Back in the page, the ListView should appear as a plain rectangle, shown in Figure 14-14, because
you haven’t provided any template information yet.

Figure 14-14

502211c14.indd 506 2/19/10 9:59:21 AM

Using Server Controls with LINQ Queries  ❘  507

	6.	 On the Smart Tasks panel of the ListView choose Configure ListView. (If you don’t see this link,
click Refresh Schema first and reopen the Smart Tasks panel.) A dialog box appears that enables
you to choose the layout of the control, a style, and whether or not you want to enable operations
such as inserting and updating. Choose Bulleted List as the layout, and check the Enable Inserting
and Enable Deleting items so your dialog box ends up as shown in Figure 14-15.

Figure 14-15

	7.	 Click OK to close the dialog box. If you get a dialog box that asks if you want to regenerate the
ListView control, click Yes.

	8.	 Switch to Markup View and remove the code for the following templates. To make this as easy as
possible, click the relevant opening tag once, then click the tag in the tag selector at the bottom of
the Document Window to select the entire element and its content, and then press the Delete key.
Alternatively, you can collapse the tag using the plus (+) symbol in the left margin, select the whole
line, and delete it at once.

<AlternatingItemTemplate>➤➤

<EditItemTemplate>➤➤

<EmptyDataTemplate>➤➤

<ItemSeparatorTemplate>➤➤

<SelectedItemTemplate>➤➤

502211c14.indd 507 2/19/10 9:59:21 AM

508  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

	9.	 Locate the element in the LayoutTemplate and remove its ID, runat, and style attributes.
Then add a class attribute and set it to ItemContainer. You can also remove the empty <div> ele-
ment that VWD added for you below the . Your <LayoutTemplate> now contains this code:

<LayoutTemplate>
 <ul class=”ItemContainer”>
 <li runat=”server” id=”itemPlaceholder” />

</LayoutTemplate>

	10.	 Locate the ItemTemplate and remove the lines that make up the Id, PhotoAlbumId, and
PhotoAlbum columns, bolded in the following code snippet, because you don’t need them. Make
sure you don’t accidentally delete the opening tag:

<li style=”“>
 Id:
 <asp:Label ID=”IdLabel” runat=”server” Text=’<%# Eval(“Id”) %>’ />

 Description:
 <asp:Label ID=”DescriptionLabel” runat=”server”
 Text=’<%# Eval(“Description”) %>’ />

 ToolTip:
 <asp:Label ID=”ToolTipLabel” runat=”server”
 Text=’<%# Eval(“ToolTip”) %>’ />

 ImageUrl:
 <asp:Label ID=”ImageUrlLabel” runat=”server”
 Text=’<%# Eval(“ImageUrl”) %>’ />

 PhotoAlbum.Id:
 <asp:Label ID=”PhotoAlbum_IdLabel” runat=”server”
 Text=’<%# Eval(“PhotoAlbum.Id”) %>’ />

 PhotoAlbum:
 <asp:Label ID=”PhotoAlbumLabel” runat=”server”
 Text=’<%# Eval(“PhotoAlbum”) %>’ />

 <asp:Button ID=”DeleteButton” runat=”server” CommandName=”Delete”
 Text=”Delete” />

	11.	 Repeat the previous step for the InsertItemTemplate that is also part of the ListView control’s
markup.

Compare your code with the following code and make any changes if necessary. Check if your
ListView has a DataKeyNames property set to Id and add it if it isn’t there. Sometimes VWD
doesn’t add this property, while the code requires it to be there. Also check that the templates
contain the correct controls. The order of the templates or the white space can be different in
your code.

<asp:ListView ID=”ListView1” runat=”server” DataKeyNames=”Id”
 DataSourceID=”EntityDataSource1” InsertItemPosition=”LastItem”>
 <InsertItemTemplate>

502211c14.indd 508 2/19/10 9:59:21 AM

Using Server Controls with LINQ Queries  ❘  509

 <li style=”“>
 Description:
 <asp:TextBox ID=”DescriptionTextBox” runat=”server”
 Text=’<%# Bind(“Description”) %>’ />

 ToolTip:
 <asp:TextBox ID=”ToolTipTextBox” runat=”server”
 Text=’<%# Bind(“ToolTip”) %>’ />

 ImageUrl:
 <asp:TextBox ID=”ImageUrlTextBox” runat=”server”
 Text=’<%# Bind(“ImageUrl”) %>’ />

 <asp:Button ID=”InsertButton” runat=”server”
 CommandName=”Insert” Text=”Insert” />
 <asp:Button ID=”CancelButton” runat=”server”
 CommandName=”Cancel” Text=”Clear” />

 </InsertItemTemplate>
 <ItemTemplate>
 <li style=”“>Description:
 <asp:Label ID=”DescriptionLabel” runat=”server”
 Text=’<%# Eval(“Description”) %>’ />

 ToolTip:
 <asp:Label ID=”ToolTipLabel” runat=”server”
 Text=’<%# Eval(“ToolTip”) %>’ />

 ImageUrl:
 <asp:Label ID=”ImageUrlLabel” runat=”server”
 Text=’<%# Eval(“ImageUrl”) %>’ />

 <asp:Button ID=”DeleteButton” runat=”server”
 CommandName=”Delete” Text=”Delete” />

 </ItemTemplate>
 <LayoutTemplate>
 <ul class=”ItemContainer”>
 <li ID=”itemPlaceholder” runat=”server” />

 </LayoutTemplate>
</asp:ListView>

	12.	 Switch back to Design View, select the EntityDataSource control, and open its Properties Grid.
Switch to the Events tab and double-click the Inserting event. At the top of the page add an
Imports or a using statement for the PlanetWroxModel namespace as you also did in the page
All.aspx. Then in the event handler that VWD added for you, write the following code:

VB.NET

Protected Sub EntityDataSource1_Inserting(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls. EntityDataSourceChangingEventArgs) _
 Handles EntityDataSource1.Inserting
 Dim photoAlbumId As Integer =
 Convert.ToInt32(Request.QueryString.Get(“PhotoAlbumId”))
 Dim myPicture As Picture = CType(e.Entity, Picture)
 myPicture.PhotoAlbumId = photoAlbumId
End Sub

502211c14.indd 509 2/19/10 9:59:21 AM

510  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

C#

protected void EntityDataSource1_Inserting(object sender,
 EntityDataSourceChangingEventArgs e)
{
 int photoAlbumId = Convert.ToInt32(Request.QueryString.Get(“PhotoAlbumId”));
 Picture myPicture = (Picture)e.Entity;
 myPicture.PhotoAlbumId = photoAlbumId;
}

	13.	 Create a new Style Sheet file in the Styles folder and call it Styles.css. Replace the existing CSS
in the file with this:

.ItemContainer
{
 width: 600px;
 list-style-type: none;
 clear: both;
}

.ItemContainer li
{
 height: 300px;
 width: 200px;
 float: left;
}

.ItemContainer li img
{
 width: 180px;
 margin: 10px 20px 10px 0;
}

	14.	 Save and close the file.

	15.	 Open the site’s Frontend master page (not the Management master page) from the MasterPages
folder. Switch to Design View and drag the Styles.css file from the Solution Explorer onto the
master page. This ensures that all pages in the site get a reference to this new style sheet, regardless
of the theme that is being used.

	16.	 Save all your changes, close all open files, and then request NewPhotoAlbum.aspx in your browser.
Make sure you don’t accidentally open ManagePhotoAlbum.aspx because it requires a query string
that is sent by NewPhotoAlbum.aspx. Enter a new name for the photo album and click Insert. You’re
taken to ManagePhotoAlbum.aspx where you can enter new pictures. For now, all you can do is
enter the description of the picture, the tooltip, and a fake URL of the image (just enter some text);
you see later how to modify this and let a user upload real pictures to the web site. Once you click
the Insert button, a new item appears in the list, next to the Insert controls. Add a few more items
and you’ll notice that the Insert controls move to a row below the others, as shown in Figure 14-16,
which shows the Manage Photo Album page in Google Chrome.

502211c14.indd 510 2/19/10 9:59:21 AM

Using Server Controls with LINQ Queries  ❘  511

Figure 14-16

	17.	 Click the Delete button for an item and see how the item is removed from the list automatically.

	18.	 If you’re currently viewing the site in the Monochrome theme, use the drop-down list to switch
to DarkGrey. Note that the layout is slightly messed up because there is not enough room to
place three images side by side. The fix is easy though. Open up the DarkGrey.css file from the
DarkGrey theme folder and add the following CSS at the end of the file:

.ItemContainer
{
 width: 400px;
}

This overrules the width for the picture list to 400 pixels, so only two columns of pictures are
shown in this theme.

How It Works

You started this exercise by attaching an EntityDataSource control to the ListView control. The
EntityDataSource is configured to work with the Pictures entity set. As you saw earlier, each picture
is linked to a photo album by its PhotoAlbumId. To have the ManagePhotoAlbum.aspx page display
only those pictures that belong to the current photo album (identified by the PhotoAlbumId query
string) you set up a WhereParameter:

<asp:EntityDataSource ID=”EntityDataSource1” runat=”server”
 ConnectionString=”name=PlanetWroxEntities”
 DefaultContainerName=”PlanetWroxEntities” EnableDelete=”True”
 EnableFlattening=”False” EnableInsert=”True” EntitySetName=”Pictures”
 Where=”it.PhotoAlbum.Id = @photoAlbumId”

502211c14.indd 511 2/19/10 9:59:22 AM

512  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

 OnInserting=”EntityDataSource1_Inserting”>
 <WhereParameters>
 <asp:QueryStringParameter Name=”PhotoAlbumId”
 QueryStringField=”PhotoAlbumId” Type=”Int32” />
 </WhereParameters>
</asp:EntityDataSource>

You should take note of two important parts in this markup. First, there’s the WhereParameters collec-
tion that contains a QueryStringParameter that looks at the PhotoAlbumId field in the query string.
When the EntityDataSource is about to get its data, it retrieves the value for the parameter from the
query string.

The second important part is the Where attribute of the EntityDataSource control. It uses a Where
clause to limit the items that are returned from the database:

Where=”it.PhotoAlbum.Id = @photoAlbumId”

This gets all the Pictures from the Picture table that have the requested PhotoAlbumId. The “it” in
the Where clause is an implicit range variable, just as other range variables in queries you’ve seen before.
However, here you need to use “it” and cannot make up your own name as you can do with your own
LINQ queries. At runtime, the Where clause is filled in with the actual PhotoAlbumId, retrieved from
the query string, which ensures only pictures belonging to the current album are returned.

The first time the page loads after you create a new photo album, there won’t be any pictures. However,
as soon as you start adding items using the InsertTemplate of the ListView control, you’ll see them
appear in the list.

To display the pictures on the page, you used the ListView control. Just like other data-bound con-
trols, the ListView is able to display repetitive data in a structured way. In this example, you set the
ListView to bulleted list mode, so the control presents its data as a set of elements. You define the
container of the items with the <LayoutTemplate>:

<LayoutTemplate>
 <ul class=”ItemContainer”>
 <li ID=”itemPlaceholder” runat=”server” />

</LayoutTemplate>

Note that this has its ID set to itemPlaceholder. This tells the ListView control where to add
the individual pictures. At runtime, this element will be replaced by the actual items from the templates
like <ItemTemplate>.

When the ListView control needs to display its data, it creates an item based on the <ItemTemplate>
for each data item in the data source. In this example, each data item is a strongly typed Picture object
which provides access to properties such as ToolTip and Description:

<ItemTemplate>

 ...
 ToolTip:
 <asp:Label ID=”ToolTipLabel” runat=”server”
 Text=’<%# Eval(“ToolTip”) %>’ />
 ...

502211c14.indd 512 2/19/10 9:59:22 AM

Using Server Controls with LINQ Queries  ❘  513

 <asp:Button ID=”DeleteButton” runat=”server” CommandName=”Delete” />

</ItemTemplate>

With this code in place, each item in the data source is presented as a series of labels that display rel-
evant properties of the picture. Eval(PropertyName) is used to retrieve the requested value from the
object, which is then displayed as the Label control’s text. Note that at this stage, the <ItemTemplate>
only displays data about the picture. You see how to upload and display real pictures later.

Note the CommandName of the Button control in the ItemTemplate. It’s set to Delete, which turns this
button into a true Delete button. When you click it, the ListView figures out what picture you clicked
the button for and then instructs the EntityDataSource control to delete the associated picture from
the database.

The CSS you added to Styles.css displays the items in an organized way. By setting the class attri-
bute of the control to ItemContainer, the following CSS is applied to that list:

.ItemContainer
{
 width: 600px;
 list-style-type: none;
 clear: both;
}

The first property sets the entire width of the list to 600 pixels and the second declaration removes the
bullet from the items in the list. Each item in the list is then displayed within a element, to which
the following CSS is applied:

.ItemContainer li
{
 height: 300px;
 width: 200px;
 float: left;
}

Each item gets a forced width of 200 pixels. The float property tells each element to float next
to each other. Within the parent area of 600 pixels you can fit three elements of 200 pixels each,
causing the fourth and further elements to be placed on their own line. This is a great alternative to
presenting data with HTML tables, which generally needs a lot more markup to achieve the same effect.

Finally, each image within the element gets a forced width of 180 pixels and 10 pixels of margin
at the top and bottom, 20 pixels on the right (to create some room between the images), and none at the
left side:

.ItemContainer li img
{
 width: 180px;
 margin: 10px 20px 10px 0;
}

In the DarkGrey theme, the width of the ItemContainer is overridden to only 400 pixels. This way,
the <div> is just wide enough to display two images side by side.

502211c14.indd 513 2/19/10 9:59:22 AM

514  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

In contrast to many of the other data-bound controls, the ListView also supports inserting by defining
an InsertItemTemplate that contains one or more controls that are bound to properties in the under-
lying object. For example, the Description property of the picture is bound like this:

<InsertItemTemplate>

 Description:
 <asp:TextBox ID=”DescriptionTextBox” runat=”server”
 Text=’<%# Bind(“Description”) %>’ />

 ...
</InsertItemTemplate>

Instead of Eval(PropertyName), this code uses Bind(PropertyName) to set up a two-way binding
mechanism. This ensures that the ASP.NET runtime is able to figure out the relationship between the
Description property of a Picture and the text box called DescriptionTextBox, even after a post-
back. So when you enter some details and click the special Insert button (with its CommandName set to
Insert), a new Picture object is constructed, its properties, such as Description, Title, and ToolTip,
are filled with the values from the associated server controls in the InsertItemTemplate, and then the
picture instance is forwarded to the EntityDataSource control, which takes care of saving the item in
the database and refreshing the list of pictures that are displayed on the page.

Once the EntityDataSource control is about to save the picture, it fires its Inserting event. In
that event handler in this exercise you added some code that linked the new Picture instance to the
PhotoAlbumId like this:

VB.NET

 Dim photoAlbumId As Integer =
 Convert.ToInt32(Request.QueryString.Get(“PhotoAlbumId”))
 Dim myPicture As Picture = CType(e.Entity, Picture)
 myPicture.PhotoAlbumId = photoAlbumId

C#

 int photoAlbumId = Convert.ToInt32(Request.QueryString.Get(“PhotoAlbumId”));
 Picture myPicture = (Picture)e.Entity;
 myPicture.PhotoAlbumId = photoAlbumId;

In previous versions of the Entity Framework, this code wouldn’t be so straightforward. Rather than
setting the PhotoAlbumId you would retrieve and then assign the entire PhotoAlbum property with
some cryptic code. Fortunately, the Include Foreign Key Columns option you enabled earlier in this
chapter has given you a PhotoAlbumId property on the Picture class that enables you to directly set
the ID of the PhotoAlbum (which you retrieved from the query string). This in turn relates the Picture
in the database to a specific photo album in the PhotoAlbum table.

Obviously, it’s not very user friendly to have users enter the ImageUrl of an image directly. It would
be much easier for them if they could pick an image from their local computer and upload it to the
server. You see how to accomplish this in the next exercise.

502211c14.indd 514 2/19/10 9:59:22 AM

Using Server Controls with LINQ Queries  ❘  515

Customizing Templates of the ListView ControlTry It Out	

The default templates for the ListView control that VWD generates based on the information from the
EntityDataSource are enough only in the most trivial situations. Usually, you need much more control.
For example, in the ItemTemplate you may want to display an actual Image control instead of the plain
ImageUrl property as text. Likewise, in the InsertItemTemplate you may want to display a file upload
control instead of a simple text box. In this exercise, you see how to change the standard templates so
you can incorporate both features. Additionally, you see how to handle the Inserting event of the
EntityDataSource control to save the uploaded file to disk, and update the database with the URL of
the image.

For this example to work, the account used by the web server (the account you use to log on to your
machine if you are using the built-in web server that comes with VWD) needs read and write permis-
sions to the GigPics folder that you create in this exercise. In case you run into problems with this
exercise, refer to the section “Understanding Security in IIS” in Chapter 19.

	1.	 Create a new folder in the root of the web site called GigPics. This folder will contain concert pic-
tures uploaded by users.

	2.	 Open the page ManagePhotoAlbum.aspx in Markup View and locate the <ItemTemplate> ele-
ment. Remove the Label that displays the ImageUrl and replace it with an Image control, with its
ImageUrl set to the ImageUrl of the picture object.

<asp:Image ID=”ImageUrl” runat=”server” ImageUrl=’<%# Eval(“ImageUrl”) %>’ />

Remove the text ImageUrl: that appears right above the image.

	3.	 To enable users to upload images, you need to replace the TextBox for the ImageUrl property
with a FileUpload control. You also need to remove the text ImageUrl: again. You do this in
the InsertItemTemplate:

<asp:TextBox ID=”ToolTipTextBox” runat=”server”
 Text=’<%# Bind(“ToolTip”) %>’ />

<asp:FileUpload ID=”FileUpload1” runat=”server” />

<asp:Button ID=”InsertButton” runat=”server” CommandName=”Insert” Text=”Insert” />

Note that you don’t need to bind the property to the control here. Because the uploaded image
needs special treatment, you’ll write some code in the Code Behind of the page instead of relying
on the built-in data-binding capabilities.

	4.	 Set the CausesValidation property of the Cancel button in the <InsertItemTemplate> to
False:

<asp:Button ID=”CancelButton” runat=”server” CommandName=”Cancel” Text=”Clear”
 CausesValidation=”False” />

	5.	 Similarly, set the CausesValidation property of the Delete button in the <ItemTemplate> to
False.

502211c14.indd 515 2/19/10 9:59:22 AM

516  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

	6.	 Switch to the Code Behind of the page (press F7) and then extend the Inserting event handler
with the following code, which saves the file to disk and then updates the ImageUrl property of the
Picture instance with its new location:

VB.NET

myPicture.PhotoAlbumId = photoAlbumId

Dim FileUpload1 As FileUpload =
 CType(ListView1.InsertItem.FindControl(“FileUpload1”), FileUpload)
Dim virtualFolder As String = “~/GigPics/”
Dim physicalFolder As String = Server.MapPath(virtualFolder)
Dim fileName As String = Guid.NewGuid().ToString()
Dim extension As String = System.IO.Path.GetExtension(FileUpload1.FileName)

FileUpload1.SaveAs(System.IO.Path.Combine(physicalFolder, fileName + extension))
myPicture.ImageUrl = virtualFolder + fileName + extension

C#

myPicture.PhotoAlbumId = photoAlbumId;

FileUpload FileUpload1 =
 (FileUpload)ListView1.InsertItem.FindControl(“FileUpload1”);
string virtualFolder = “~/GigPics/”;
string physicalFolder = Server.MapPath(virtualFolder);
string fileName = Guid.NewGuid().ToString();
string extension = System.IO.Path.GetExtension(FileUpload1.FileName);

FileUpload1.SaveAs(System.IO.Path.Combine(physicalFolder, fileName + extension));
myPicture.ImageUrl = virtualFolder + fileName + extension;

	7.	 Go back to Markup View and add three validation controls to the InsertItemTemplate: two
RequiredFieldValidator controls hooked up to the text boxes for the Description and ToolTip,
and one CustomValidator with its ErrorMessage set to Select a valid .jpg file and its ID
set to cusValImage. Finally, set the TextMode property of the text box for the Description to
MultiLine and enter a line break (a
) before the Insert button.

You should end up with the following code:

Description:
<asp:RequiredFieldValidator ID=”reqDesc” ControlToValidate=”DescriptionTextBox”
 runat=”server” ErrorMessage=”Enter a description.” />
<asp:TextBox ID=”DescriptionTextBox” runat=”server” TextMode=”MultiLine”
 Text=’<%# Bind(“Description”) %>’ />

ToolTip:
<asp:RequiredFieldValidator ID=”reqTooltip” ControlToValidate=”ToolTipTextBox”
 runat=”server” ErrorMessage=”Enter a tool tip.” />
<asp:TextBox ID=”ToolTipTextBox” runat=”server”
 Text=’<%# Bind(“ToolTip”) %>’ />

<asp:FileUpload ID=”FileUpload1” runat=”server” />

502211c14.indd 516 2/19/10 9:59:22 AM

Using Server Controls with LINQ Queries  ❘  517

<asp:CustomValidator ID=”cusValImage” runat=”server”
 ErrorMessage=”Select a valid .jpg file.” />

<asp:Button ID=”InsertButton” runat=”server” CommandName=”Insert” Text=”Insert” />

	8.	 Switch to Design View, select the ListView control, and set up an event handler for its
ItemInserting event by double-clicking the event in the Event tab of the Properties Grid.
Complete the event handler with the following code:

VB.NET

Protected Sub ListView1_ItemInserting(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.ListViewInsertEventArgs) _
 Handles ListView1.ItemInserting
 Dim FileUpload1 As FileUpload =
 CType(ListView1.InsertItem.FindControl(“FileUpload1”), FileUpload)
 If Not FileUpload1.HasFile OrElse
 Not FileUpload1.FileName.ToLower().EndsWith(“.jpg”) Then
 Dim cusValImage As CustomValidator =
 CType(ListView1.InsertItem.FindControl(“cusValImage”), CustomValidator)
 cusValImage.IsValid = False
 e.Cancel = True
 End If
End Sub

C#

protected void ListView1_ItemInserting(object sender, ListViewInsertEventArgs e)
{
 FileUpload FileUpload1 =
 (FileUpload)ListView1.InsertItem.FindControl(“FileUpload1”);
 if (!FileUpload1.HasFile || !FileUpload1.FileName.ToLower().EndsWith(“.jpg”))
 {
 CustomValidator cusValImage =
 (CustomValidator)ListView1.InsertItem.FindControl(“cusValImage”);
 cusValImage.IsValid = false;
 e.Cancel = true;
 }
}

	9.	 Save all your changes, and then request NewPhotoAlbum.aspx in your browser. Enter a new name
for the photo album and click the Insert link. Insert a few pictures by entering a description and a
tooltip, selecting a .jpg picture from your hard drive, and clicking the Insert button. Then enter
the description and tooltip of another image, but leave the file upload box empty. When you click
Insert, you get an error message indicating that you didn’t upload a valid JPG file, as shown in
Figure 14-17 in Apple’s Safari browser.

	10.	 Click the Browse button of the file upload box, browse for a valid .jpg file, and click the Insert
button once more. The file now gets uploaded successfully.

502211c14.indd 517 2/19/10 9:59:22 AM

518  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

Figure 14-17

How It Works

You haven’t changed much in the actual process of inserting the Picture into the database. The ListView
control still collects all the relevant data from the page and then sends it to the EntityDataSource control,
which then inserts the item in the Picture table in the database through EF. What is different is the way
you set up the templates and the way you handled the events of the EntityDataSource and ListView
controls. Look at the templates first. Inside the ItemTemplate you added an <asp:Image> to take the
place of the plain text label. As you can see in Figure 14-17 this displays the actual image, rather than just
its URL.

To enable a user to upload the images, you replaced the TextBox control in the InsertItemTemplate
with a FileUpload control. Additionally, you added a few validation controls to force the user to enter
the required fields. As soon as you click the Insert button, the page posts back and the ListView control
fires its ItemInserting event. This event is a good place to perform any custom validation. One of the
arguments this event handler receives (the e argument) is of the type ListViewInsertEventArgs, a class
that provides context-sensitive information to the ItemInserting event. When you detect an error, you
can set the Cancel property of this e argument to True to tell the ListView control you want to can-
cel the insert operation. Inside this event handler you added some code that “finds” the upload control
in the InsertItem template. Because you can potentially have multiple controls with the same name
(for example, a FileUpload control in the InsertItemTemplate and EditItemTemplate) you cannot
access FileUpload1 directly. Instead, you need to use FindControl on the InsertItem object to search
for the control:

VB.NET

Dim FileUpload1 As FileUpload =
 CType(ListView1.InsertItem.FindControl(“FileUpload1”), FileUpload)

502211c14.indd 518 2/19/10 9:59:22 AM

Using Server Controls with LINQ Queries  ❘  519

C#

FileUpload FileUpload1 =
 (FileUpload)ListView1.InsertItem.FindControl(“FileUpload1”);

When you have a reference to the FileUpload control you can check its HasFile property to see if a
file has been uploaded. Additionally, you can check FileUpload1.FileName.ToLower().EndsWith(“.
jpg”) to see if a file with a .jpg extension has been uploaded. To ensure that this test is only carried
out when the user has uploaded a file, the code uses OrElse in VB and || in C# to short-circuit the
logic in the If statement, as explained in Chapter 5.

If the user doesn’t upload a valid file, the code in the If block runs. It uses FindControl again to find
the CustomValidator control and sets its IsValid property to False. This tells the control to display
its ErrorMessage property when the page renders. Finally, to stop the ListView from continuing the
insert operation you need to set the Cancel property of the e argument to True:

VB.NET

e.Cancel = True

C#

e.Cancel = true;

If the user uploaded a valid .jpg file, the ListView continues with its insert operation, which eventu-
ally results in an insert action against the EntityDataSource control. When that control is about to
send the insert operation to EF, it fires its Inserting event, giving you a last chance to hook into the
process and look at the data. Inside this event handler, you used similar code to find a reference to the
FileUpload control inside the InsertItem template. You then used the following code to determine
the physical and virtual folder for the file, its name, and its extension:

VB.NET

Dim virtualFolder As String = “~/GigPics/”
Dim physicalFolder As String = Server.MapPath(virtualFolder)
Dim fileName As String = Guid.NewGuid().ToString()
Dim extension As String = System.IO.Path.GetExtension(FileUpload1.FileName)

C#

string virtualFolder = “~/GigPics/”;
string physicalFolder = Server.MapPath(virtualFolder);
string fileName = Guid.NewGuid().ToString();
string extension = System.IO.Path.GetExtension(FileUpload1.FileName);

The variable virtualFolder holds the virtual location — starting off the root of the web site — 

of the folder where the uploaded images are stored. Using Server.MapPath you can turn this into a
physical folder. Assuming you have your project in its default location of C:\BegASPNET\Site, the
physicalFolder variable now contains C:\BegASPNET\Site\GigPics.

Next, a new, random file name is generated using Guid.NewGuid(). The Guid class is able to generate
more or less random file names that are guaranteed to be unique across time and space. This code assigns
the variable fileName something like f6d8ed05-2dbe-4aed-868a-de045f9462e3, which guarantees a
unique file name. Finally, the extension of the file is retrieved using the static GetExtension method of
the Path class in the System.IO namespace.

502211c14.indd 519 2/19/10 9:59:23 AM

520  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

At this stage, you have all the required information to store the file on disk, and then update the data-
base. Storing the file on disk is easy using the SaveAs method of the FileUpload control:

VB.NET

FileUpload1.SaveAs(System.IO.Path.Combine(physicalFolder, fileName + extension))

C#

FileUpload1.SaveAs(System.IO.Path.Combine(physicalFolder, fileName + extension));

This code takes the physical folder, the file name, and the extension and passes it to the SaveAs
method, which saves the file at the requested location.

Finally, the Picture instance is updated with the new ImageUrl:

VB.NET

myPicture.ImageUrl = virtualFolder + fileName + extension

C#

myPicture.ImageUrl = virtualFolder + fileName + extension;

This assigns something like ~/GigPics/f6d8ed05-2dbe-4aed-868a-de045f9462e3.jpg to the
ImageUrl property, which is the new virtual location of the uploaded image. Right after you insert the
new image, the ListView is updated and now shows the new image using the Image control with its
ImageUrl set to the image you just uploaded.

You can imagine that if you upload a large number of images for a single photo album, the page
becomes more difficult to manage. This is especially true at the front end where users may be access-
ing your site over a slow network connection. Instead of presenting them all the images in the photo
album on a single page, you can split up the photo album in multiple pages, enabling the user to
go from page to page. You see how to do this in the next section, which discusses the DataPager
control.

Introducing the DataPager Control

In older versions of ASP.NET paging was only possible using functionality built in directly to some
controls, like the GridView and the DetailsView, or by manually writing code. This has changed
somewhat with the introduction of the DataPager control in ASP.NET 3.5.

The DataPager is different in that it is a separate control that you can use to extend another, data-
bound control. Currently, the .NET Framework lets you use the DataPager only to provide paging
capabilities to the ListView control, but the developer community has been active writing imple-
mentations for other controls, like the GridView, as well.

You can hook up the DataPager to the ListView control in two ways: you can either define it
within the <LayoutTemplate> of the ListView control or you can define it entirely outside the

502211c14.indd 520 2/19/10 9:59:23 AM

Using Server Controls with LINQ Queries  ❘  521

ListView. In the first case the DataPager knows to what control it should provide paging capabili-
ties automatically. In the latter case, you need to set the PagedControlID property of the DataPager
to the ID of a valid ListView control. You see how to configure and use the DataPager in conjunc-
tion with a ListView next. Being able to define the DataPager outside of the ListView control is
useful if you want to place it at a different location of the page, in the Footer or Sidebar area, for
example.

Paging Data with the ListView and DataPager ControlsTry It Out	

In this Try It Out you create the front-end page of the Gig Pics feature. Users to your site can choose
one of the available photo albums from a drop-down list and then view all the available pictures in a
pageable list that is created by a ListView and a DataPager control. Figure 14-20 shows the final result
of this exercise.

	1.	 In the root of your site, create a new folder called PhotoAlbums. Inside this folder create a new
Web Form based on your custom page template and call it Default.aspx. Set the Title of the
page to All Photo Albums.

	2.	 Switch to Design View and drop a DropDownList control on the page. On the control’s Smart
Tasks panel enable AutoPostBack and then hook it up to a new EntityDataSource control by
clicking Choose Data Source, and then choosing <New data source> from the first drop-down list.
Click the Entity icon, click OK, and select PlanetWroxEntities in the Named Connection drop-
down list. Click Next and on the Configure Data Selection dialog box choose PhotoAlbums from
the EntitySetName drop-down list and select the fields Id and Name, shown in Figure 14-18.

Figure 14-18

502211c14.indd 521 2/19/10 9:59:23 AM

522  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

	3.	 Click Finish to close the Data Source Wizard and then in the Choose Data Source dialog box select
Name from the Data Field to Display drop-down list, and leave Id selected in the Data Field for the
Value drop-down list. If you don’t see the items in the lists, click Refresh Schema first.

	4.	 Click OK to close the Data Source Configuration Wizard.

	5.	 Below the DropDownList add a new ListView control and connect it to a new EntityDataSource
by selecting <New data source> from the drop-down list on the control’s Smart Tasks panel. Click
the Entity icon and click OK. Select PlanetWroxEntities in the drop-down and click Next. In the
dialog box that follows, choose Pictures from the EntitySetName drop-down list and click Finish.

	6.	 Select the new EntityDataSource control (called EntityDataSource2) in Design View, open
its Properties Grid, and click the button with the ellipsis for the Where property to open up the
Expression Editor. Check off the checkbox for an automatically generated Where clause at the top of
the dialog. Click the Add Parameter button and enter PhotoAlbumId as the name for the parameter.
Then choose Control in the Parameter Source drop down property and choose DropDownList1 as the
ControlID. Finally, click the Show Advanced Properties link and change the Type of the parameter
to Int32. Your Expression Editor should look like Figure 14-19.

Figure 14-19

Click OK to close the dialog.

	7.	 On the ListView control’s Smart Tasks panel, click Configure ListView (click Refresh Schema and
reopen the Smart Tasks panel first if you don’t see that option). Select Bulleted List as the layout,
and in the Options area choose Enable Paging. The drop-down list below it should default to Next/
Previous Pager, which is fine for this exercise.

	8.	 Click OK and VWD creates a couple of templates for you.

502211c14.indd 522 2/19/10 9:59:23 AM

Using Server Controls with LINQ Queries  ❘  523

	9.	 Switch to Markup View and remove the following templates and the code they contain:

<AlternatingItemTemplate>➤➤

<EditItemTemplate>➤➤

<InsertItemTemplate>➤➤

<ItemSeparatorTemplate>➤➤

<SelectedItemTemplate>➤➤

	10.	 Remove the ID, runat, and style attributes from the in the LayoutTemplate and add a
class attribute and set it to ItemContainer. Locate the DataPager inside the LayoutTemplate
and add a PageSize attribute set to 3. Finally, add clear: both; to the empty style attribute:

<LayoutTemplate>
 <ul class=”ItemContainer”>
 <li id=”itemPlaceholder” runat=”server” />

 <div style=”clear: both;”>
 <asp:DataPager ID=”DataPager1” runat=”server” PageSize=”3”>
 <Fields>
 <asp:NextPreviousPagerField ButtonType=”Button” ShowFirstPageButton=”True”
 ShowLastPageButton=”True” />
 </Fields>
 </asp:DataPager>
 </div>
</LayoutTemplate>

	11.	 Modify the code in the ItemTemplate so it ends up like this:

<ItemTemplate>

 <asp:Image ID=”Image1” runat=”server” ImageUrl=’<%# Eval(“ImageUrl”) %>’
 ToolTip=’<%# Eval(“ToolTip”) %>’ />
 <asp:Label ID=”DescriptionLabel” runat=”server”
 Text=’<%# Eval(“Description”) %>’ />

</ItemTemplate>

This creates an Image control with its ImageUrl and ToolTip properties bound to the corre-
sponding properties of the Picture object that you’re binding to. The ToolTip appears when
you hover your mouse over the image in the browser. Below the image, a simple Label control
displays the Description of the image. You don’t need the other properties that were initially
defined in the template for this exercise.

	12.	 Next, wrap the entire code in the cpMainContent content block in an UpdatePanel with a
ContentTemplate element to avoid page flicker when paging the list of pictures, or when choosing
a new photo album from the list.

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” runat=”Server”>
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <asp:DropDownList ID=”DropDownList1” runat=”server” AutoPostBack=”True”
 DataSourceID=”EntityDataSource1” DataTextField=”Name” DataValueField=”Id”>
 ...

502211c14.indd 523 2/19/10 9:59:23 AM

524  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Content>

	13.	 Open the Web.sitemap file for the site and add a main menu and two submenu items for the Gig
Pics section, between the Reviews and About sections:

</siteMapNode>
<siteMapNode url=”~/PhotoAlbums/” title=”Gig Pics” description=”All Gig Pics”>
 <siteMapNode url=”~/PhotoAlbums/Default.aspx” title=”Gig Pics”
 description=”All Gig Pics” />
 <siteMapNode url=”~/NewPhotoAlbum.aspx” title=”New Album”
 description=”Create a new Photo Album with Gig Pics” />
</siteMapNode>
<siteMapNode url=”~/About/Default.aspx” title=”About”
 description=”About this site”>

	14.	 Because you added another menu item, you need to change the width of each item in the menu
for the Monochrome theme. To do this, open up Monochrome.css and change the width for the
.MainMenu ul li selector from 200 to 160 pixels:

.MainMenu ul li
{
 width: 160px;
}

	15.	 Save all your changes and then request Default.aspx from the PhotoAlbums folder in your
browser. Choose a photo album from the drop-down list and the page reloads, showing you the
relevant pictures in the photo album.

COMMON MISTAKES  If nothing happens when you choose a new item from
the drop-down list, go back to VWD and ensure you set AutoPostBack on the
DropDownList control to True.

If you don’t have any pictures in a photo album, or not enough to fill an entire page, choose New
Album from the Gig Pics menu, create a new photo album, and add at least four images to it. Then
click the Gig Pics menu item and choose your new photo album from the drop-down list. Note that
there is now a paging user interface, enabling you to move forward and backward through the list of
pictures in the photo album using the First, Previous, Next, and Last buttons visible at the bottom of
the screen in Figure 14-20. Because of the AJAX panel you added, the selection and paging operations
now occur completely flicker-free.

NOTE  ​Your first few albums will end up broken. That’s because you didn’t
supply images when you created them. You can delete the albums (and their
associated picture records) from the database if you want to clean up a bit. In
Chapter 16 you'll develop functionality to delete images from photo albums.

502211c14.indd 524 2/19/10 9:59:23 AM

Using Server Controls with LINQ Queries  ❘  525

Figure 14-20

How It Works

Most of what you have seen in this exercise should be familiar. You connected a DropDownList to an
EntityDataSource similar to how you created the Genres drop-down list in the previous chapter. The
ListView and its associated EntityDataSource are also similar to what is discussed earlier in this
chapter. However, instead of a Where parameter that looks at the query string, the code now uses a
Where parameter that looks at the DropDownList:

<WhereParameters>
 <asp:ControlParameter ControlID=”DropDownList1” Name=”PhotoAlbumId”
 PropertyName=”SelectedValue” Type=”Int32” />
</WhereParameters>

Because you set AutoGenerateWhereClause to True on the EntityDataSource control, a Where
clause is created on the fly based on these parameters. This is in contrast to an earlier example where
you explicitly defined a Where clause. For simple scenarios as in the preceding exercise, relying on the
automatically generated Where clause works fine. For more detailed scenarios, it’s good to know you
can also assign one explicitly.

When the EntityDataSource is about to get its data from the database, it looks at the SelectedValue
property of the drop-down list and then only retrieves the pictures that match the requested
PhotoAlbumId.

The biggest difference from previous examples is the addition of the DataPager. As demonstrated in
this exercise, paging is handled for you automatically. All you need to do is embed a DataPager con-
trol somewhere in the LayoutTemplate of the ListView and the rest is taken care of automatically. If
you place the DataPager outside the ListView, don’t forget to hook it up to the ListView by setting
the PagedControlID property. If you prefer links or images over buttons, you can set the ButtonType

502211c14.indd 525 2/19/10 9:59:24 AM

526  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

property of the NextPreviousPagerField element to Link or Image, respectively. If you prefer a
numeric pager, replace the NextPreviousPagerField item with a NumericPagerField:

<asp:NumericPagerField NextPageText=”...” PreviousPageText=”...” />

In this exercise you set the PageSize to 3 so it’s easier to fill more than one page and see the pager at
work. In real-world applications the PageSize is usually a bit higher, such as 10 or 20. Because the lay-
out uses a three-column layout for the Monochrome theme and a two-column layout for the DarkGrey
theme, you may want to select a value that’s dividable by both, such as 18.

A Few Notes about Performance
The preceding exercise has two known performance problems that you should be aware of. First,
although the ItemTemplate of the ListView resizes the images to 180 pixels in the browser by setting
their widths through CSS, the actual image is left unmodified. This means that if you upload a large
image, the entire image is still downloaded, only to display as a small thumbnail image. It would be
better to create a true thumbnail image at the server, and send that to the browser instead. The chapter
entitled “Greeting Cards” in my book ASP.NET 2.0 Instant Results (ISBN: 978-0-471-74951-6) has a
number of examples on resizing images on the server.

The other potential performance problem lies in the way the data is paged. With the DataPager con-
trol, the data is paged inside the ASPX page. That means that all data is retrieved from the database
and sent to the EntityDataSource control. The DataPager control then selects the right records to
display on the current page. This works fine for result sets of up to hundreds of records. However,
as soon as the number of items in a photo album or other collection grows above that number, you
may find that your pages start to slow down. If that’s the case you may want to look at paging at
the database level. The ADO.NET Entity Framework supports this scenario using the Skip() and
Take() methods you’ve seen before.

Practical LINQ and ADO.NET Entity Framework Tips

Here are some practical LINQ and ADO.NET Entity Framework tips:

In this chapter you saw how to create anonymous types to shape the data you want to return ➤➤

from your queries. The compiler and IntelliSense are invaluable tools in determining what
data you can return and what properties you have available. Spend some time playing around
with the anonymous types, looking at the different options that the IntelliSense lists give you.

Just as with other data access methods like the ➤➤ SqlDataSource control you saw in the previ-
ous chapter, try to filter your data as much as possible. If you know you only need reviews in
the Jazz genre, be explicit and incorporate a Where clause in your code or EntityDataSource
control that limits the list of reviews at the database level. This speeds up your queries and
data retrieval, improving the overall speed of the application.

Make use of anonymous types to decrease the memory consumption of your LINQ queries. ➤➤

For example, instead of retrieving the entire Review object, use the New keyword to create
a new anonymous type on the fly. Because this new object contains only the properties you
really need, you save yourself the overhead of bringing in the full object.

502211c14.indd 526 2/19/10 9:59:24 AM

Summary  ❘  527

Summary

LINQ is a compelling and exciting technology that ships with .NET 4. LINQ is an important
plumbing technique in many data-access scenarios, including database access in ASP.NET web
applications using the ADO.NET Entity Framework.

Because LINQ is so important, it has been integrated in many different places in .NET. LINQ is
available for objects enabling you to query in-memory collections. Additionally, LINQ is available
for XML, Entities, ADO.NET, and DataSets, each type providing access to a different data store,
but with the same, unified querying language. LINQ is also used as the query language for the
ADO.NET Entity Framework.

To work with EF in your ASP.NET web applications you have a couple of different options. First,
you can write queries in the Code Behind of a page and then bind the results to a data-bound con-
trol using the DataSource property and DataBind method of the control. Alternatively, you can use
the EntityDataSource control that serves as the bridge between your data-bound controls and your
model. Combined with the new ListView and DataPager controls, the EntityDataSource gives
you the ability to create fully functional CRUD pages.

Until now, the database-driven pages you have seen look quite dull. You haven’t applied any styling,
or provided any conditional formatting, where data is presented differently based on its values. This
can be accomplished through control styles and the many events of the data-bound and data source
controls. The next chapter shows you how to make use of these styles and events.

Exercises	

1.	 Imagine you have a page in the Reviews folder called MostRecent.aspx. This page should show

the 10 most recently added reviews. What would your LINQ query look like if you only wanted to

show the review’s Title property and the name of the genre it belongs to? You should use the

Take method to limit the result set to 10. If you’re having trouble writing the code to get the last

reviews, look at the section titled “First, FirstOrDefault, Last, and LastOrDefault,” which shows you

how to get the last review in the database.

2.	 What is the major benefit of the ListView control over other data controls like GridView and Repeater?

3.	 Currently the Default.aspx page from the PhotoAlbums folder just shows the thumbnails of the pic-

tures. What would you need to do to display the full-size picture on its own page using a LINQ query?

4.	 When you delete a picture from the ListView on the Photo Album page, only the database

record is deleted, but the image on disk is left untouched. Make use of the static System.

IO.File.Delete method to delete the item from disk. Choose an appropriate event of the

EntityDataSource to handle this and make use of e.Entity that’s available.

5.	 Currently, the AllByGenre.aspx page displays the title of the genre, regardless of whether it has

any reviews attached to it. How can you hide genres that don’t have any reviews? Make use of the

Count method on the Reviews collection to solve this question.

Answers to Exercises can be found in Appendix A.

502211c14.indd 527 2/19/10 9:59:24 AM

528  ❘  Chapter 14   LINQ and the ADO.NET Entity Framework

What You Learned in This Chapter⊲⊲

ADO.NET Entity Data Model file The file that contains the information necessary to map your

object model to the tables in your database

Anonymous types Types that are created on-the-fly without defining them

explicitly

Entity Framework A technology to create a strongly typed object model with an

underlying database that enables you to interact with the data

in your database

Entity sets A collection of objects in your entity model. For example, a

PhotoAlbum instance has a Pictures entity set that contains

the pictures in the album

EntityDataSource control An ASP.NET control that serves as a bridge between your

ASPX pages and the Entity Framework

Lazy loading A technique where data is not loaded from the database until

it is accessed at runtime

LINQ Language integrated query; the part of.NET Framework pro-

gramming languages that provides querying support against

all kinds of data collections, including objects, XML and

databases

Range variable A variable defined in your LINQ query that is subsequently

used in the select and where parts

Strong typing A programming concept where the type of a variable is explic-

itly defined when the variable is declared

Type inference A technique where the compiler determines the type of a vari-

able based on the data it gets assigned. This enables you to

create strongly typed variables without explicitly defining the

variable’s type first

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

502211c14.indd 528 2/19/10 9:59:24 AM

Working with Data — Advanced
Topics

What You Will Learn in This Chapter:

How to change the formatting of the various data-bound controls ➤➤

using styles, themes, and skins

How to handle the various events that are fired by the data controls ➤➤

to change their appearance conditionally

How to hand-code the UI of data access pages to get complete ➤➤

freedom over the page’s structure and markup

How to use the built-in caching mechanisms to improve the ➤➤

performance of your web site

The previous three chapters introduced you to a lot of new concepts. Chapter 12 discussed
databases in general and SQL Server 2008 Express edition in particular. That chapter also
covered the basic operations to create, read, update, and delete data. Chapter 13 focused mostly
on working with the SqlDataSource control and the different data-bound controls that you
have at your disposal. Finally, the preceding chapter explored the world of the ADO.NET
Entity Framework, Microsoft’s latest data access strategy designed to speed up the way you
write data access code.

To help you really understand the core concepts of data access, those three chapters focused
mainly on the data source controls and the principles behind them, and much less on the pre-
sentation of data with the data-bound controls. Obviously, in a real-world application this is
not enough and you need a way to present data in a clear and attractive way.

The data-bound controls that ship with ASP.NET 4 provide many options to change the
way data is presented. They enable you to completely change the design (font, colors,

15

502211c15.indd 529 2/19/10 9:59:07 AM

530  ❘  Chapter 15   Working with Data — Advanced Topics

spacing, and so on) of the data they are presenting. Additionally, you can tweak these controls to
hide specific columns, modify column headers, and even change the look and feel of the controls
programmatically.

In the next sections you see how to style your controls using a variety of techniques. Later sections
in this chapter show you how to hand-code your data access pages, giving you great flexibility. Near
the end of the chapter, caching — a technique to improve the performance of your web site — is
discussed.

Formatting Your Controls Using Styles

Chapters 13 and 14 explained how to work with the numerous data-bound ASP.NET 4 controls.
You learned how to display and edit lists of data with controls like GridView, Repeater, and
ListView, as well as how to work with single record controls such as DetailsView.

So far, you’ve relied on the built-in look and feel of the controls, which often results in dull and
plain-looking screens. Figure 15-1 shows the GridView that you created in Chapter 13 to manage
the genres in the Planet Wrox database.

This control relies on the default settings of the browser to display text and links, which usually
results in purple and blue links with the default font, such as Times New Roman. Additionally, the
columns in the grid are just as wide as necessary to display the text they contain. It would be a lot
easier on the eyes if you could present the GridView as in Figure 15-2 instead.

The column for the Edit and Delete links is now a little wider, separating it clearly from the actual
content in the grid. The Id column has been hidden and the Name column has been made wider as
well. The different colors for the header, footer, items, and alternating items make the data in the
grid a lot easier to read. Because some genres have reviews attached to them, their Delete link is dis-
abled. And finally, a little glyph has been added to the Sort Order heading to indicate the direction
the column is sorted on.

Changing the dull-looking GridView from Figure 15-1 into the snazzier one shown in Figure 15-2
can easily be accomplished with the use of ASP.NET styles and the many events that the data-bound

Figure 15-1 Figure 15-2

502211c15.indd 530 2/19/10 9:59:07 AM

Formatting Your Controls Using Styles  ❘  531

controls fire. In the next section you see how to apply these styles to a single control in a page. In
the section that follows you see how to move the styles to a theme, so styles can be reused more eas-
ily by all controls in a section of your site. You have already seen some styles at work in Chapter 7,
where you used them to style the Menu and the TreeView controls. However, because styles are used
so much for formatting data-bound controls, they really deserve their own topic.

An Introduction to Styles
Many of the data-bound and navigation controls have a number of style properties that enable
you to modify the look and feel of the control. For example, the GridView control has a RowStyle
property that enables you to customize the look of an individual row in the grid. Likewise, the
DetailsView has a CommandRowStyle property that is used to control the appearance of the com-
mand row that holds commands such as Insert, Delete, Cancel, and so on.

Ultimately, each style property inherits from the Style class that lives in the
System.Web.UI.WebControls namespace. Figure 15-3 shows you a filtered
view of the diagram for this class with its most common properties visible.

As you can see from their names, the properties of the Style class are used to
change style-related information on the objects to which this class is applied.
Each of these properties is eventually converted to a CSS property or an HTML
attribute, such as background-color, border, and so on. Other styles, like the
styles for the GridView control, add various layout-related properties, such as
different options to control alignment. The following table lists the most impor-
tant properties of the various Style-derived classes that are available. Note that
not every property is available for every style. IntelliSense shows you exactly
what properties you can use in a certain style.

Property Description

BackColor

ForeColor

Enable you to change the background and text color of the elements. They

map to the CSS properties background-color and color, respectively.

BorderColor

BorderStyle

BorderWidth

Enable you to change the border of the element to which the style is applied.

They map directly to their CSS counterparts border-color, border-style,

and border-width.

CssClass Enables you to assign a CSS class instead of inline style information. You should

try to give preference to the CssClass property over the individual style prop-

erties because they minimize page bloat. You see how to use CssClass in a

later exercise.

Font Enables you to set the font for the element through the various subproperties

like Font-Names, Font-Size, and Font-Bold. These properties end up as vari-

ous CSS font properties, such as font-family, font-size, and font-weight.

Figure 15-3

continues

502211c15.indd 531 2/19/10 9:59:07 AM

532  ❘  Chapter 15   Working with Data — Advanced Topics

Property Description

HorizontalAlign

VerticalAlign

End up as align and valign attributes on the HTML element to which they

are applied and enable you to control the alignment of the contents of the ele-

ment. For example, you use HorizontalAlign to left-, center-, or right-align

the text of the column headers of a GridView.

Wrap Ends up as a white-space: nowrap; CSS declaration when set to False

and determines whether a piece of text is allowed to wrap to a new line.

Height

Width

Enable you to control the width and height of the elements to which they are

applied and map directly to their CSS height and width counterparts.

The different data-bound controls all have a different set of styles, although they do share a few. The
following table lists the available styles for the GridView and the DataList classes, and describes
their purpose. The other data-bound controls have slightly different styles, but from their names you
should be able to see what they do and determine what they are used for. Check out the MSDN docu-
mentation (at http://tinyurl.com/lsab9e) for a full description of the Style class. Another good
way to learn more about the different styles that are available is by using Visual Web Developer’s Auto
Format, which inserts a number of styles for you. You see later how to use and improve the styles that
are generated by the Auto Format feature.

Style Description

RowStyle

AlternatingRowStyle

Control the look of a single row in the GridView. By default,

the RowStyle affects all rows and the AlternatingRowStyle

can override the RowStyle on only even rows when

it’s set. Because the DataList doesn’t work with rows,

but with more generic data items, it has ItemStyle and

AlternatingItemStyle properties instead, but their

behavior is more or less the same.

SelectedRowStyle Can be applied to selected rows, and gives you the

opportunity to visually present selected rows differ-

ently from unselected rows. The DataList control has a

SelectedItemStyle that serves the same purpose.

EditRowStyle Can be applied to rows that are currently in edit mode.

For example, when you click the Edit link for a row in the

GridView on the Genres page in the Management sec-

tion, the row switches to edit mode and this EditRowStyle

is applied. To define the layout of an editable item in the

DataList, you use the EditItemStyle instead.

(continued)

502211c15.indd 532 2/19/10 9:59:07 AM

Formatting Your Controls Using Styles  ❘  533

Style Description

EmptyDataRowStyle Enables you to define the look of the row that is displayed

when the grid is bound to an empty data source. This style

works together with the EmptyDataText property of the grid

that contains the text displayed when there are no records,

or with the EmptyDataTemplate that enables you to define

your own custom template to be displayed when an empty

data source is used. The DataList has no support for an

EmptyDataRowStyle.

RowStyle

FooterStyle

Control the appearance of the header and footer rows of the

GridView.

PagerStyle Enables you to influence the look of the pager bar displayed

in the GridView when paging is enabled. The DataList

does not support paging all by itself, and as such has no

PagerStyle.

SortedAscendingCellStyle

SortedAscendingHeaderStyle

SortedDescendingCellStyle

SortedDescendingHeaderStyle

Collectively, these styles enable you to change the looks of

the header and the entire column when the column is sorted

in ascending or descending order. These styles are only avail-

able to the GridView control.

Some controls, like Repeater and ListView, have no built-in styles. Because these controls do not
contribute any HTML to the page all by themselves and leave it up to you to define the look and feel
in the numerous templates these controls have, there is no point in having separate styles; you can
simply add the necessary style or class information to the elements you define in their templates.

To show you how to use these styles with your controls, the next exercise guides you through the
process of enhancing the GridView control in the Genres page of the Management section. In a later
exercise, you see how to move the style-related information to a theme and CSS file to improve the
reusability of the code and to reduce the amount of HTML sent to the browser on each request.

Applying StylesTry It Out	

In this Try It Out, you use the built-in formatting capabilities of VWD to change the appearance of the
GridView control. You see how VWD creates the necessary styles for you, each with their relevant styl-
ing properties set. In a later exercise you see how to modify these styles to use the CssClass properties
instead, resulting in a much easier-to-manage style set.

	1.	 Open Genres.aspx from the Management folder of the main Planet Wrox application that you
have been working on so far.

	2.	 Switch the page into Design View and open the GridView control’s Smart Tasks panel. Make sure
you open that of the GridView and not the one for the surrounding Content block.

502211c15.indd 533 2/19/10 9:59:07 AM

534  ❘  Chapter 15   Working with Data — Advanced Topics

	3.	 At the top of the panel, click the Auto Format link.

	4.	 From the list of format schemes on the left, choose Classic. The Preview on the right is updated and
now looks like Figure 15-4.

Figure 15-4

	5.	 Click OK to have VWD generate the necessary templates for you. The GridView is updated in
Design View immediately, showing the selected format scheme.

	6.	 Switch back to Markup View and inspect the various styles that have been generated. You should
see the following styles, some placed before and others placed below the <Columns> element:

<AlternatingRowStyle BackColor=”White” />
...
<EditRowStyle BackColor=”#2461BF” />
<FooterStyle BackColor=”#507CD1” Font-Bold=”True” ForeColor=”White” />
... Some styles are not shown here to save some space
<SortedDescendingHeaderStyle BackColor=”#4870BE” />

	7.	 Save the changes to the page and request it in the browser by pressing Ctrl+F5. You should see the
list of genres with the selected formatting scheme applied.

	8.	 Open the HTML source for the page by right-clicking the page in the browser and choosing the
View Source or View Page Source command. Scroll down a bit until you see an HTML table with
its id set to cpMainContent_GridView1. You’ll see that the table itself has a style attribute that
sets text color and border properties:

<table cellspacing=”0” cellpadding=”4” id=”cpMainContent_GridView1”
 style=”color:#333333;border-collapse:collapse;”>

502211c15.indd 534 2/19/10 9:59:08 AM

Formatting Your Controls Using Styles  ❘  535

Additionally, you see that the numerous child elements of the table (table rows and anchor elements)
all have different style settings applied. For example, odd and even rows now have the following style
applied:

<tr style=”background-color:#EFF3FB;”> ... </tr>
<tr style=”background-color:White;”> ... </tr>

Click on the headers of the GridView a few times. The header and the column change color to indicate
the column is now sorted.

How It Works

The different style elements you created in step 5 are converted into their CSS and HTML equivalents.
For example, RowStyle and AlternatingRowStyle have their BackColor set to a different background
color:

<RowStyle BackColor=”#EFF3FB” />
<AlternatingRowStyle BackColor=”White” />

When the control renders its HTML it applies these backgrounds to the table row of the items and
alternating items:

<tr style=”background-color:#EFF3FB;”> ... </tr>
<tr style=”background-color:White;”> ... </tr>

The same principle is applied to the other styles in the GridView.

If you look at the source of the page in the browser, you see a lot of page bloat, because each individual
row has its properties set. This increases the page size, especially with larger results displayed in the
GridView. To decrease the page size and improve the performance of the page, you should move the
style definitions to a page theme and then use CSS and jQuery instead. You see how to do this next.

Combining Styles, Themes, and Skins
Chapter 6 discussed how to create consistent-looking web pages using master pages, themes, and
skins. With the basic theme infrastructure set up, it’s now easy to add a new theme that applies to
the entire Management section. Earlier you saw how to create a skin file to change the appearance
of a button; in the following exercise you see how to reuse this concept to create a skin file for the
GridView, enabling you to style all GridView controls in the Management folder in one fell swoop.

Creating Advanced Style SolutionsTry It Out	

In this Try It Out you move the various Style properties from the Genres.aspx page into a separate
.skin file. You also move the inline style information to a separate CSS file. You then use some jQuery
to separate data and appearance of the page even further.

	1.	 On the Solution Explorer, right-click the App_Themes folder, choose Add ASP.NET Folder ➪
Theme, and type Management as the new theme name.

502211c15.indd 535 2/19/10 9:59:08 AM

536  ❘  Chapter 15   Working with Data — Advanced Topics

	2.	 Right-click this new folder and choose Add New Item. Add a skin
file called GridView.skin. You should end up with a Solution
Explorer looking like Figure 15-5.

	3.	 Open the Genres.aspx page in Markup View and delete all the
styles you created in the previous exercise except the HeaderStyle,
the PagerStyle, the SortedAscendingHeaderStyle and the
SortedDescendingHeaderStyle. From the four remaining styles,
remove all attributes and replace them with a single CssClass
attribute named after the style and prefixed with GridView.
You should end up with the following styles:

<HeaderStyle CssClass=”GridViewHeaderStyle” />
<PagerStyle CssClass=”GridViewPagerStyle” />
<SortedAscendingHeaderStyle CssClass=”GridViewSortedAscendingHeaderStyle” />
<SortedDescendingHeaderStyle CssClass=”GridViewSortedDescendingHeaderStyle” />

Don’t worry if VWD adds red error lines under the CSS class names. Because the CSS classes
aren’t defined yet, it can’t find them. Later you will add them to the theme’s CSS file, where VWD
still can’t find them. They’ll work fine at runtime, though, so don’t worry.

	4.	 Select the styles in the code editor and then cut them to the clipboard using Ctrl+X. Switch to the
file GridView.skin, delete all existing code (the comment text you saw earlier), and paste the
styles into the skin file.

	5.	 Wrap the styles in an <asp:GridView> element with its runat attribute set to server and its
CssClass attribute set to GridView. Don’t add an ID attribute, because skin files don’t need this.
You should end up with this code:

<asp:GridView runat=”server” CssClass=”GridView”>
 ... styles go here
</asp:GridView>

	6.	 Open the resources folder for this chapter (located at C:\BegASPNET\
Resources\Chapter 15 if you followed the instructions in the
Introduction section of this book) in Windows Explorer, select the
Images folder and the Management.css file and press Ctrl+C to
copy them. Switch back to VWD, click the Management folder under
App_Themes and press Ctrl+V. Just as the other two themes, the
management theme now has its own style sheet and Images folder,
shown in Figure 15-6.

The two images are used to change the header for sorted columns
in the GridView as you’ll see later.

	7.	 Open the web.config file for the Management folder that you added earlier and set the theme to
Management:

<system.web>
 <pages theme=”Management”></pages>
</system.web>

Figure 15-5

Figure 15-6

502211c15.indd 536 2/19/10 9:59:08 AM

Formatting Your Controls Using Styles  ❘  537

	8.	 Open the file Management.master from the MasterPages folder, switch to Markup View, and below
the ContentPlaceHolder in the <head> section of the page drag the file jquery-1.4.1.min.js from
the Scripts folder. VWD inserts the following <script> element for you:

 </asp:ContentPlaceHolder>
 <script src=”../Scripts/jquery-1.4.1.min.js” type=”text/javascript”></script>
</head>

	9.	 Go back to Genres.aspx and in Markup View under the Columns element of the GridView control,
delete the bound field for the Id column. Users typically don’t need to see the ID of items in the user
interface because they are often meaningless to them. By removing the Id column, you reduce the
noise in the page. Set the ItemStyle-Width for the CommandField to 100px and for the Name column
to 200px. Finally, set ShowSelectButton of the CommandField to False, and set the HeaderText of
the SortOrder field to Sort Order with a space between the words. You should end up with this
GridView:

<asp:GridView ID=”GridView1” runat=”server” AllowPaging=”True”
 AllowSorting=”True” AutoGenerateColumns=”False” DataKeyNames=”Id”
 DataSourceID=”SqlDataSource1” GridLines=”None” CellPadding=”4”
 ForeColor=”#333333” EmptyDataText=”There are no data records to display.”>
 <Columns>
 <asp:CommandField ShowDeleteButton=”True” ShowEditButton=”True”
 ShowSelectButton=”False” ItemStyle-Width=”100px” />
 <asp:BoundField DataField=”Name” HeaderText=”Name”
 SortExpression=”Name” ItemStyle-Width=”200px” />
 <asp:BoundField DataField=”SortOrder” HeaderText=”Sort Order”
 SortExpression=”SortOrder”></asp:BoundField>
 </Columns>
</asp:GridView>

	10.	 Scroll down to the end of the page in Markup View and right before the closing </asp:Content>
tag, add the following jQuery code wrapped in a <script> block:

<script type=”text/javascript”>
 $(function()
 {
 $(‘.GridView tr:odd:not(.GridViewPagerStyle)’).
 addClass(‘GridViewAlternatingRowStyle’);
 });
</script>

	11.	 Save all your changes by pressing Ctrl+Shift+S and then open Genres.aspx in the browser. You
should now see the list of genres that was presented in Figure 15-2, except for the disabled Delete
links, which you add later. Click the header of the Name or Sort Order columns to order the data
in the GridView. Notice how the GridView now shows a little glyph besides the name to indicate
the sort direction.

	12.	 Click Manage Reviews in the main Management menu to open the Reviews page. Select a genre from
the drop-down list to display a list of reviews. Note that the Reviews list — visible in Figure 15-7 — 
now also has the same styles applied as the Genres list you saw earlier except for the alternating
row styles applied by jQuery.

502211c15.indd 537 2/19/10 9:59:08 AM

538  ❘  Chapter 15   Working with Data — Advanced Topics

Figure 15-7

How It Works

The concepts from this exercise should be familiar by now. You have seen how to create and apply themes
and skins in Chapter 6, and how to use the various control styles in the previous exercise. You also saw
the concepts behind jQuery in Chapter 11. What may be new is the way that odd rows in the GridView
are selected to dynamically change their background color, skipping the footer row using the not filter:

$(‘.GridView tr:odd:not(.GridViewPagerStyle)’)

First, all odd table rows are selected using the selector .GridView tr:odd. However, depending on
the number of rows in the GridView, this may also select the footer row (with the paging controls
in it) because the footer is rendered as a <tr> as well. To stop the footer from being included you
use the not filter and pass it an expression on which you want to filter. In this case, the expression is
.GridViewPagerStyle because that’s the class name applied to the footer row. The jQuery code is only
applied to the Genres.aspx page but you could move it to the Management master page or copy it to
individual pages. Either way, it helps in removing page bloat because you don’t have to add a style or
class attribute to each row in the GridView. Instead, you can let jQuery figure out what rows are odd
and even. If you want, you can create a ContentPlaceHolder in the master page for the Management
section as you’ve done with the Frontend.master file.

Assigning the image to the sorted column header requires changes to a few selectors. First, each sorted
header (ascending or descending) is given some padding:

.GridViewSortedAscendingHeaderStyle, .GridViewSortedDescendingHeaderStyle
{
 padding-left: 20px;
}

This moves the text in the header cell a bit to the right, making room for the image. Then for both the
ascending and descending sort order, there is a separate selector that assigns the image. The selector is
applied by ASP.NET by adding a class attribute to the relevant HTML elements. The following shows
the selector for a column that is sorted in ascending order:

.GridViewSortedAscendingHeaderStyle
{
 background-image: url(Images/SortAscending.png);
}

502211c15.indd 538 2/19/10 9:59:08 AM

Handling Events  ❘  539

The .GridViewHeaderStyle th selector then stops the background image from repeating, positions
the image near the top and determines the background color and text alignment:

.GridViewHeaderStyle th, .GridViewPagerStyle
{
 background-color: #BCD1FE;
 background-repeat: no-repeat;
 background-position: 0 5px;
 text-align: left;
}

By moving your control style declarations to a separate skin file that in turn is part of a theme, you
have created a very flexible, maintainable solution. If you want to see how the new styles are applied,
open the source of the page in the browser using its View Source command. Instead of inline styles the
relevant class attributes are applied. If you want to change the layout of all the GridView controls in
the Management section, all you need to do now is modify the relevant CSS in the file Management.css.
If you need to make changes to other styles, don’t forget to add them to the GridView.skin file first.

Obviously, you can still tweak the controls at the page level. Though the skin defines the global
look and feel of the GridView, you can still set individual properties on columns as you did with the
ItemStyle-Width in the Genres page.

Although styles, skins, and themes are powerful tools to style your web pages, you’ll find that they are
often an all-or-nothing solution. For example, if you create ItemStyle and AlternatingItemStyle
elements (rather than using jQuery as you just did), they are applied to each and every row in the
grid. What if you wanted to change the look and feel of just a few rows? Or what if you wanted to
change some rows based on the actual data that the row is holding? You see how to accomplish
conditional formatting and more using event handling in the following section.

Handling Events

Previous chapters have covered how the ASP.NET controls can raise events. You learned how to
handle these events with event handler code that you typically add to the page’s Code Behind file.
For example, you wrote code to handle a Button control’s Click event. Additionally, in the preced-
ing chapter, you learned how to react to various events — such as Inserting and Inserted — that
happen just prior to and after interaction with the database. However, most controls expose a lot
more events.

A solid understanding of the various events that fire during a control’s life cycle and the order in
which they fire is important knowledge for an ASP.NET developer. Being able to hook into the con-
trol’s life cycle, tweaking parts of the output as you go, enables you to create flexible, dynamic web
pages that do exactly what you want.

To gain an understanding of the various events and the order in which they fire, the next section
explains the basic steps in the ASP.NET control life cycle. You won’t see every event that is fired in
the process, but instead you see the ones you are most likely to use. Later sections then show you
how to make use of these events to change the behavior of your web pages.

502211c15.indd 539 2/19/10 9:59:09 AM

540  ❘  Chapter 15   Working with Data — Advanced Topics

The ASP.NET Page and Control Life Cycles Revisited
In Chapter 6 you learned about the stages in a page’s life. You learned about different events such
as PreInit, Load, PreRender, and Unload. Besides these events that are raised by the ASPX page,
all the other controls in your ASPX pages can raise their own events. These events can be as simple
as a Button control’s Click event (triggered by a user action) or be more complex events, such as
Inserting, which is raised by controls like the EntityDataSource and the SqlDataSource, or the
DataBound event that is raised by various data-bound controls. You see many of these events in the
next exercise.

Seeing the Page and Control Life Cycles at WorkTry It Out	

To give you an idea of the different events that you can hook into during a page or control’s life cycle
and the order in which they fire, this Try It Out shows you how to set up a page that displays some data
from the Genres table using an EntityDataSource. You also add a button to the page that you can use
to trigger a postback to see how that influences things. You then hook up a number of event handlers to
a few interesting events of the controls on the page so you can see in what order things are called.

	1.	 Inside the Demos folder create a new file called Events.aspx. Make sure it’s based on your custom
page template so it inherits from BasePage. Set the page’s Title to Events Demo.

	2.	 Switch the page to Design View, drop a GridView into the cpMainContent placeholder, and then
hook it up to a new EntityDataSource control using the GridView’s Smart Tasks panel. Use
PlanetWroxEntities as the named Connection and bind the EntityDataSource control to the
Genres entity set. There’s no need to set up insert, update, or delete behavior nor do you need to
add a Where clause.

	3.	 Back on the GridView control’s Smart Tasks panel, click Refresh Schema if the GridView doesn’t
show the columns for the Id, Name and SortOrder. Then enable sorting by selecting the second
check box. If the BoundField for the Id column doesn’t have a ReadOnly attribute, add it to
Markup View and set its value to True. Finally, if your GridView doesn’t have a DataKeyNames
attribute set to Id, add it manually. When you’re done, your code should look like this:

<asp:GridView ID=”GridView1” runat=”server” AutoGenerateColumns=”False”
 DataKeyNames=”Id” DataSourceID=”EntityDataSource1” AllowSorting=”True”>
 <Columns>
 <asp:BoundField DataField=”Id” HeaderText=”Id”
 ReadOnly=”True” SortExpression=”Id” />
 <asp:BoundField DataField=”Name” HeaderText=”Name”
 SortExpression=”Name” />
 <asp:BoundField DataField=”SortOrder” HeaderText=”SortOrder”
 SortExpression=”SortOrder” />
 </Columns>
</asp:GridView>
<asp:EntityDataSource ID=”EntityDataSource1” runat=”server” EntitySetName=”Genres”
 ConnectionString=”name=PlanetWroxEntities” EnableFlattening=”False”
 DefaultContainerName=”PlanetWroxEntities”>
</asp:EntityDataSource>

502211c15.indd 540 2/19/10 9:59:09 AM

Handling Events  ❘  541

	4.	 Make sure you’re in Markup View and directly under the opening Content tag add the follow-
ing markup that creates a table with one row and two cells, each with a large heading (h1) and a
Label control called NoPostBack and PostBack, respectively.

<table>
 <tr>
 <td><h1>No PostBack</h1><asp:Label ID=”NoPostBack” runat=”server” /></td>
 <td><h1>PostBack</h1><asp:Label ID=”PostBack” runat=”server” /></td>
 </tr>
</table>

	5.	 Switch to Design View and below the GridView drop a Button control and double-click it in
Design View to set up an event handler for its Click event in the Code Behind.

	6.	 Switch back to Design View and double-click the gray and read-only area of the page to set up a
handler for the Page control’s Load event.

	7.	 Switch to Design View again, click the GridView, and open its Properties Grid by pressing F4. Switch
to the Events tab and double-click the following events to set up handlers for them in the Code
Behind. After each handler, switch back to Design View by pressing Ctrl+Tab so you can add the
next event.

Sorted➤➤

Sorting➤➤

RowCreated➤➤

DataBinding➤➤

DataBound➤➤

RowDataBound➤➤

	8.	 Repeat the preceding step, but now set up the following events for the EntityDataSource control:

ContextCreating➤➤

Selecting➤➤

	9.	 Make sure you are in Code Behind and below the last event handler (but still within the class
definition), add the following method that writes some text to one of the two labels depending on
whether the current page request is the result of a postback:

VB.NET

Private Sub WriteMessage(ByVal handlerName As String)
 If Page.IsPostBack Then
 PostBack.Text &= handlerName & “
”
 Else
 NoPostBack.Text &= handlerName & “
”
 End If
End Sub

502211c15.indd 541 2/19/10 9:59:09 AM

542  ❘  Chapter 15   Working with Data — Advanced Topics

C#

private void WriteMessage(string handlerName)
{
 if (Page.IsPostBack)
 {
 PostBack.Text += handlerName + “
”;
 }
 else
 {
 NoPostBack.Text += handlerName + “
”;
 }
}

	10.	 To each of the event handlers that you have set up, add the following code that calls your custom
method and sends it the name of the event, which is then added to the two Label controls by the
WriteMessage method. Don’t forget to replace the name of the event in the text with the actual
event name:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 WriteMessage(“Page_Load”)
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 WriteMessage(“Page_Load”);
}

	11.	 Finally, add the following event handler to the page manually:

VB.NET

Protected Sub Page_PreRenderComplete(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.PreRenderComplete
 WriteMessage(“Page_PreRenderComplete
-----------------”)
End Sub

C#

protected void Page_PreRenderComplete(object sender, EventArgs e)
{
 WriteMessage(“Page_PreRenderComplete
-----------------”);
}

The PreRenderComplete event fires very late in the Page control’s life cycle, making it an ideal
place to put a line at the bottom of the event list. That way you can clearly see what set of events
belong to each other, which in turn helps you to figure out what events are triggered during page
load or a postback.

	12.	 Save all your changes and open the page in the browser. Besides the GridView with the available
genres, you should also see a list with event names under the No PostBack heading:

Page_Load
EntityDataSource1_ContextCreating

502211c15.indd 542 2/19/10 9:59:09 AM

Handling Events  ❘  543

EntityDataSource1_Selecting
GridView1_DataBinding
GridView1_RowCreated
GridView1_RowDataBound
GridView1_RowCreated
GridView1_RowDataBound
...
GridView1_DataBound
Page_PreRenderComplete

Note that the RowCreated and RowDataBound events are repeated multiple times — once for each
genre from the database plus two more. You see later why that is. Click the button below the
GridView to cause a postback. The No PostBack label won’t change, but the PostBack label now
shows the following list of event names:

GridView1_RowCreated
GridView1_RowCreated
...
GridView1_RowCreated
GridView1_RowCreated
Page_Load
Button1_Click
Page_PreRenderComplete

Click one of the column headers of the GridView to order the data it is displaying. Notice that the
second label’s text is extended with a second set of event names. Each set is separated by a line of
dashes, created by the Page_PreRenderComplete event handler.

How It Works

Technically, this exercise isn’t complicated. You set up a bunch of event handlers for the various con-
trols in your page. Inside the event handler you call a method that checks whether the page is currently
loading for the first time or is loading due to a postback. Finally, the code updates one of the two Label
controls with the name of the event that triggered the event handler.

What’s interesting about this exercise is the order in which the events occur. Take a look at the first list,
displayed when the page first loads:

Page_Load
EntityDataSource1_ContextCreating
EntityDataSource1_Selecting
GridView1_DataBinding
GridView1_RowCreated
GridView1_RowDataBound
GridView1_RowCreated
GridView1_RowDataBound
...
GridView1_DataBound
Page_PreRenderComplete

502211c15.indd 543 2/19/10 9:59:09 AM

544  ❘  Chapter 15   Working with Data — Advanced Topics

First Page_Load is triggered. Then the GridView sees that it’s hooked up to an EntityDataSource and
asks that control for its data. This causes the ContextCreating and Selecting events to be triggered.
When the GridView receives the data from the EntityDataSource, it fires its DataBinding event to
signal it’s about to bind the data to the control. The GridView then starts to create rows. For each item
in the data source, it creates a row, fires RowCreated, binds the item’s data to the row, and finally calls
RowDataBound. If you carefully count the number of times that RowCreated and RowDataBound are
called, you’ll notice they are being called two times more than the actual number of items that are in
the data source. This is because the same event is also raised when the control creates its header and
footer rows. You see how to distinguish between these rows inside an event handler in a later exercise.

Finally, when the GridView is done creating and binding all the rows in the data source, it fires its
DataBound event.

On postback, the story looks quite different. When you click the button to cause a postback, the fol-
lowing events are raised:

...
GridView1_RowCreated
GridView1_RowCreated
GridView1_RowCreated
GridView1_RowCreated
Page_Load
Button1_Click
Page_PreRenderComplete

Note that there are no RowDataBound or DataBound events in this list and the EntityDataSource is
also nowhere to be seen. The GridView is able to reconstruct the entire control from View State, elimi-
nating the need to access the database again. While getting the data from View State, the GridView
still needs to recreate each row in the grid, so you still see the RowCreated events. Toward the end
of the list you see the Page_Load event followed by the Button control’s Click event. It’s important
to understand and remember that user-triggered control events like a Button control’s Click or a
SelectedIndexChanged of a DropDownList occur after the Load event of the Page. Note that this
Load event isn’t the start of the Page’s life cycle. Before the Load event, the Page is already instantiated
and has fired its Init event.

At the end of the exercise, you clicked a column header to sort the data in the grid. This time, the
GridView knows it must sort the data that is being displayed. It cannot do that itself, so instead it asks
the EntityDataSource for a fresh copy of the data in the order the user requested. Just as the first time
the page loaded, you see the various RowCreated and DataBound events appear.

If you want to see other events at work, simply repeat steps 7 and 10 of the preceding exercise, setting
up handlers for the various events. To see the effect of View State, try disabling it either at the control
level (for example for the GridView) or at the page level. In Chapter 18 you learn a technique called
tracing that enables you to find out this information for all controls in your page, including the time it
takes to execute the various events.

502211c15.indd 544 2/19/10 9:59:09 AM

Handling Events  ❘  545

Although the preceding exercise is quite useless in a real-world application, it should help you gain
an understanding of the various control events and the order in which they fire. You can use the
exact same principles to hook into the page and make modifications to the page itself, or to any of
the controls in the page. In the next exercise you see how to change the appearance of rows in the
data source, depending on the data that you are displaying.

The ASP.NET Page Life Cycle and Events in Data Controls
As discussed earlier, the GridView raises its RowCreated and RowDataBound events for each row it
adds to its output. These events are ideal to peek into the data and then, based on that data, take
appropriate action. For example, you can use these events to verify whether a review that is being
displayed is authorized. If it’s not (meaning it won’t be visible in the front-end web site) you can
change the review’s appearance to draw attention to it. Another example of using events would be to
hide or disable elements in the interface when it doesn’t make sense for them to be visible or active.
You see how to disable the Delete link in the Genres GridView in the next exercise.

Hooking into RowDataBoundTry It Out	

In this Try It Out you write an event handler for the RowDataBound event of the GridView control in
the Genres page of the Management section. Within this event, you can diagnose the data item that is
being bound to the GridView row, enabling you to see if the genre has reviews attached to it or not. If
there are reviews associated with the Genre, you use some code to disable the Delete link so users can-
not accidentally try to delete that genre.

	1.	 Open the page Genres.aspx from the Management folder in Markup View and locate the
SqlDataSource control. Find the SelectCommand and modify the SQL statement so it reads like this:

SelectCommand=”SELECT Genre.Id, Genre.Name, Genre.SortOrder,
 COUNT(Review.Id) AS NumberOfReviews FROM Genre LEFT OUTER JOIN Review
 ON Genre.Id = Review.GenreId GROUP BY Genre.Id, Genre.Name, Genre.SortOrder”

You can type the entire SQL statement on a single line or break it up over multiple lines as I’ve
done here.

	2.	 Switch to Design View and open the GridView control’s Smart Tasks panel. If the control gives
you an error about a missing Id property, click the Refresh Schema link on the Smart Tasks panel
and answer No to the questions about regenerating fields and keys to maintain the current layout
of the controls. Click Edit Columns on the Smart Task panel to bring up the Fields dialog. Click
the CommandField item in the Selected Fields list and then click the blue link at the bottom right of
the dialog to convert the field to a TemplateField. This way the column is expanded into a tem-
plate, which makes it easier to access the controls, such as the Delete link, it contains. Click OK
to dismiss the Fields dialog.

	3.	 In Markup View, locate the delete link (the one with its CommandName set to Delete) and change
its ID to DeleteLink:

<asp:LinkButton ID=”DeleteLink“ runat=”server” CausesValidation=”False”
 CommandName=”Delete” Text=”Delete”></asp:LinkButton>

502211c15.indd 545 2/19/10 9:59:09 AM

546  ❘  Chapter 15   Working with Data — Advanced Topics

	4.	 Switch to Design View and open the Properties Grid for the GridView and switch to the Events
tab. Set up an event handler for the RowDataBound event.

	5.	 At the top of the Code Behind of the Web Form, add the following line of code:

VB.NET

Imports System.Data

C#

using System.Data;

	6.	 Inside the event handler that VWD created for you, add the following code:

VB.NET

Protected Sub GridView1_RowDataBound(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles GridView1.RowDataBound
 Select Case e.Row.RowType
 Case DataControlRowType.DataRow
 Dim myRowView As DataRowView = CType(e.Row.DataItem, DataRowView)
 If Convert.ToInt32(myRowView(“NumberOfReviews”)) > 0 Then
 Dim deleteLink As LinkButton =
 TryCast(e.Row.FindControl(“DeleteLink”), LinkButton)
 If deleteLink IsNot Nothing Then
 deleteLink.Enabled = False
 End If
 End If
 End Select
End Sub

C#

protected void GridView1_RowDataBound(object sender, GridViewRowEventArgs e)
{
 switch (e.Row.RowType)
 {
 case DataControlRowType.DataRow:
 DataRowView myDataRowView = (DataRowView)e.Row.DataItem;
 if (Convert.ToInt32(myDataRowView[“NumberOfReviews”]) > 0)
 {
 LinkButton deleteLink = e.Row.FindControl(“DeleteLink”) as LinkButton;
 if (deleteLink != null)
 {
 deleteLink.Enabled = false;
 }
 }
 break;
 }
}

	7.	 Save changes to all open files and then request Genres.aspx in the browser. Notice how for genres
that have reviews attached to them, the Delete link is now disabled as shown in Figure 15-8.

502211c15.indd 546 2/19/10 9:59:09 AM

Handling Events  ❘  547

Figure 15-8

How It Works

Although short, this exercise demonstrates a powerful way to hook into the different events of a control
and change the presentation of the underlying control. To see how it works, take a look at the modified
SQL code first:

SELECT
 Genre.Id, Genre.Name, Genre.SortOrder, COUNT(Review.Id) AS NumberOfReviews
FROM
 Genre LEFT OUTER JOIN
 Review ON Genre.Id = Review.GenreId
GROUP BY
 Genre.Id, Genre.Name, Genre.SortOrder

This modified SQL statement gets all the columns from the Genre table but introduces a new column,
called NumberOfReviews, which contains the number of reviews associated with each genre. It does
this by executing the SQL COUNT function against the Id column of the Review table. Because the SQL
statement is grouped on all unique columns in the Genre table, you get a unique record including the
count for each genre record, whether or not reviews are associated, as shown in Figure 15-9, which
displays the result of this query in VWD.

Figure 15-9

502211c15.indd 547 2/19/10 9:59:10 AM

548  ❘  Chapter 15   Working with Data — Advanced Topics

When this query is executed, the GridView in the markup of the page makes use of the first three col-
umns, just as it did in the previous version of this page. But you can access the fourth column as well,
which is done in the Code Behind, in the RowDataBound event to be exact, which fires for each row
after the GridView is done binding the data for a specific row:

VB.NET

Protected Sub GridView1_RowDataBound(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles GridView1.RowDataBound
 Select Case e.Row.RowType
 Case DataControlRowType.DataRow
 ...
 End Select
End Sub

C#

protected void GridView1_RowDataBound (object sender, GridViewRowEventArgs e)
{
 switch (e.Row.RowType)
 {
 case DataControlRowType.DataRow:
 ...
 }
}

The RowDataBound event gets passed an instance of GridViewRowEventArgs, a class that provides
information about the row and data that are being bound at this stage. One of the properties of this
class is the Row that represents the actual row that is being added to the GridView. This row in turn
contains a RowType enumeration property that you can test to see what kind of row is being added.
This enumeration contains six different members that map directly to the different types of rows
the GridView can contain: DataRow for normal and alternating rows, EmptyDataRow for empty data
rows, Header and Footer for the header and footer rows that are placed at the top and bottom of the
GridView, and so on. Because you need to change the appearance of an actual data row, the code in
the Case block only fires for normal and alternating rows.

Inside the Case block, the following code is executed:

VB.NET

Dim myRowView As DataRowView = CType(e.Row.DataItem, DataRowView)
If Convert.ToInt32(myRowView(“NumberOfReviews”)) > 0 Then
 Dim deleteLink As LinkButton =
 TryCast(e.Row.FindControl(“DeleteLink”), LinkButton)
 If deleteLink IsNot Nothing Then
 deleteLink.Enabled = False
 End If
End If

C#

DataRowView myDataRowView = (DataRowView)e.Row.DataItem;
if (Convert.ToInt32(myDataRowView[“NumberOfReviews”]) > 0)
{

502211c15.indd 548 2/19/10 9:59:10 AM

Handling Events  ❘  549

 LinkButton deleteLink = e.Row.FindControl(“DeleteLink”) as LinkButton;
 if (deleteLink != null)
 {
 deleteLink.Enabled = false;
 }
}

The DataItem property contains a reference to the data item object that is being bound. When
you are using a SqlDataSource control, the DataItem is presented as a DataRowView, a .NET
object that encapsulates a row returned from the database. The DataItem is therefore cast to a
DataRowView object and then it’s indexed — using myRowView(“NumberOfReviews”) in VB.NET and
myRowView[“NumberOfReviews”] in C# — to get the count of reviews from the NumberOfReviews
column. If the count is larger than zero, it means reviews are associated with this genre and the Delete
link must be hidden. Earlier you converted the CommandField to a template field, which added an
explicit declaration for the Delete link in your code:

<asp:LinkButton ID=”DeleteLink” runat=”server” CausesValidation=”False”
 CommandName=”Delete” Text=”Delete”></asp:LinkButton>

Using FindControl you can then get a reference to the Delete link, convert it to a proper LinkButton,
and set its Enabled property to false. Because this code is also called when a row in the GridView
is in Edit mode (by clicking the Edit link) you need to check if deleteLink is null (Nothing in
VB.NET) or not. In case you’re editing, the GridView row does not contain the DeleteLink (as the
EditItemTemplate is active, and not the ItemTemplate) and therefore FindControl returns null.

When you disable a LinkButton by setting Enabled to False as in this example, ASP.NET applies a
CSS class of aspNetDisabled:

Delete

You can then style this disabled link with the CSS class (which you find in Management.css that you
added earlier) and give it a gray color:

a.aspNetDisabled
{
 color : #CCC;
}

With this code, you can easily prevent errors that may occur when you try to delete a genre that has
associated reviews. However, you may not always be able to prevent an error from occurring during
a CRUD operation against a data source control. For example, you may try to delete a genre that ini-
tially didn’t have any reviews attached. However, right before you try to delete the genre, somebody
else inserts a new review for it. When you then try to delete the genre you’ll get an error because the
genre is now linked to a review. In such cases, the data source controls enable you to diagnose the error
that occurred and then take the necessary measures, like providing feedback to the users informing
them that their CRUD operation didn’t succeed.

502211c15.indd 549 2/19/10 9:59:10 AM

550  ❘  Chapter 15   Working with Data — Advanced Topics

Handling Errors that Occur in the Data Source Controls
In Chapter 18 you see a lot more about recognizing and handling errors that occur in your
ASP.NET pages. That chapter demonstrates how to catch errors that may occur in your code, and
then handle them by logging them or by informing the user. But because the data source controls
expose error information as well, it’s interesting to look at data access errors in this chapter.

Both the EntityDataSource and the SqlDataSource control give you information about
errors (exceptions in .NET parlance) that may occur during one of the four CRUD opera-
tions. With the EntityDataSource, the three events that occur after the database has been
updated (Inserted, Updated, and Deleted) all provide access to an instance of a class
called EntityDataSourceChangedEventArgs, whereas the Selected event gets passed an
EntityDataSourceSelectedEventArgs. With the SqlDataSource control, all four events accept
an instance of SqlDataSourceStatusEventArgs. Figure 15-10 shows these three EventArgs
classes and their properties.

Figure 15-10

These classes share two important properties: Exception and ExceptionHandled. The first con-
tains the actual exception that occurred or Nothing (in VB.NET) or null (in C#) when everything
goes according to plan and no error occurs. You can examine this error and take appropriate action.
For example, you can inform the user that something went terribly wrong, or you can send an
e‑mail to the site’s web master informing her about the error so appropriate follow up action can be
taken.

If you decide to handle the error in the event handler of the data source control, you should set the
ExceptionHandled property of the object to True. This signals to the ASP.NET runtime that you
are aware of the exception and have dealt with it adequately. If you omit setting this property, the
runtime forwards the exception, which is eventually displayed to the user.

In the following exercise you see how to make use of the SqlDataSourceStatusEventArgs class in
the page Genres.aspx. Rest assured, you can apply the exact same principles from this section to
events that are raised by the EntityDataSource control as well.

Handling Errors When Deleting RowsTry It Out	

In this Try It Out you see how to deal with exceptions that occur in a GridView when deleting rows.
You’ll temporarily remove the code that disables the Delete link so you can delete genres with associ-
ated reviews. You then display an error message when a user tries to delete a genre that still has reviews
attached to it. This exercise mainly serves to demonstrate how to handle exceptions that may be thrown

502211c15.indd 550 2/19/10 9:59:10 AM

Handling Events  ❘  551

by the data source controls. From an end user’s perspective, disabling the Delete link when it’s not
appropriate as you did in an earlier exercise should take care of the problem in most circumstances, but
there are still chances of someone else inserting a new review before you try to delete that genre.

	1.	 Open Genres.aspx from the Management folder.

	2.	 Switch to Design View and from the Toolbox drag a Label control onto the GridView. This
places the Label that will hold an error message above the GridView. Change the ID of the Label
to ErrorMessage and clear its Text property. (Right-click the Text property label in the Properties
Grid and choose Reset. This removes the entire Text property and its value from the control’s
markup.) Set its CssClass to ErrorMessage. Finally, set its EnableViewState property to False
to ensure the label doesn’t maintain its text after postbacks. You should end up with this code:

<asp:Label ID=”ErrorMessage” runat=”server” CssClass=”ErrorMessage”
 EnableViewState=”False”></asp:Label>
<asp:GridView ID=”GridView1” runat=”server” AllowPaging=”True”

	3.	 Open the Management.css file from the Management theme folder and add the following rule set:

.ErrorMessage
{
 color: Red;
 font-weight: bold;
}

	4.	 Switch back to Genres.aspx, make sure the page is in Design View, and click the SqlDataSource
control once to select it. Then open its Properties Grid, switch to the Events tab, and set up an
event handler for the Deleted event by double-clicking the event name in the list with events.

	5.	 At the top of the Code Behind, add the following namespace:

VB.NET

Imports System.Data.SqlClient

C#

using System.Data.SqlClient;

	6.	 Inside the event handler that VWD added for you in step 4, write the following code:

VB.NET

Protected Sub SqlDataSource1_Deleted(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.SqlDataSourceStatusEventArgs) _
 Handles SqlDataSource1.Deleted
 If e.Exception IsNot Nothing AndAlso
 TypeOf (e.Exception) Is SqlException Then
 Dim myException As SqlException = CType(e.Exception, SqlException)
 If myException.Number = 547 Then
 ErrorMessage.Text = “Sorry, you can’t delete this genre because “ &
 “it has associated reviews that you need to delete first.”
 e.ExceptionHandled = True
 End If
 End If
End Sub

502211c15.indd 551 2/19/10 9:59:10 AM

552  ❘  Chapter 15   Working with Data — Advanced Topics

C#

protected void SqlDataSource1_Deleted(object sender,
 SqlDataSourceStatusEventArgs e)
{
 if (e.Exception != null && e.Exception is SqlException)
 {
 SqlException myException = (SqlException)e.Exception;
 if (myException.Number == 547)
 {
 ErrorMessage.Text = @”Sorry, you can’t delete this genre because
 it has associated reviews that you need to delete first.”;
 e.ExceptionHandled = true;
 }
 }
}

	7.	 Comment out the code that you added in the previous Try It Out to stop the Delete link from being
disabled. For this exercise it’s enough to just comment out the line that disables the link:

VB.NET

‘ deleteLink.Enabled = False

C#

// deleteLink.Enabled = false;

If you wanted to remove this functionality completely, you could remove the entire event handler.
In that case, don’t forget to remove the handler from the GridView’s markup in C# as well.

	8.	 Save all your changes and then press Ctrl+F5 to open Genres.aspx in your browser. Try deleting
a genre that you know has associated reviews, such as Rap and Hip-Hop. Instead of deleting the
genre, the ASPX page now presents you with the error that is displayed above the GridView in
Figure 15-11.

Figure 15-11

	9.	 Click the Manage Reviews menu item in the Management menu and then select the Rap and Hip-Hop
genre from the drop-down list. Delete the reviews in the genre, or edit them and reassign them to a
different genre.

502211c15.indd 552 2/19/10 9:59:10 AM

Handling Events  ❘  553

	10.	 Go back to Genres.aspx and try deleting the Rap and Hip-Hop genre again. This time the genre is
successfully deleted from the database.

	11.	 To see the error you would get without this error handling, comment out the line in the Code
Behind that sets ExceptionHandled to True. Save your changes, open the page again in your
browser, and try to delete a genre with reviews. You’ll get a detailed ASP.NET error instead,
shown in Figure 15-12. Notice how this error is almost identical to the one you got near the end of
Chapter 12 when you manually tried to delete a genre. Don’t forget to enable the line again when
you’re done.

Figure 15-12

How It Works

When you click the Delete link in the GridView visible in Figure 15-11, the GridView triggers the
Delete command on the associated SqlDataSource control. As you have seen in previous chapters,
this control tries to send a DELETE statement to the database. The database then tries to delete the
requested genre from the database, but finds out that it can’t because there are related reviews. This
results in a foreign key constraint error; which means the genre cannot be deleted because its ID is
used as a foreign key in another table.

This foreign key constraint error is then returned from the database and eventually ends up in the
Exception property of the e argument of the SqlDataSource1_Deleted handler. The code then checks
if there was an error (e.Exception is not Nothing/null) and checks the type of the exception to find
out whether it’s a SqlException:

VB.NET

If e.Exception IsNot Nothing AndAlso _
 TypeOf (e.Exception) Is SqlException Then
 ...
End If

C#

if (e.Exception != null && e.Exception is SqlException)
{
 ...
}

502211c15.indd 553 2/19/10 9:59:10 AM

554  ❘  Chapter 15   Working with Data — Advanced Topics

When you are working with a SQL Server database, as is the case in the Planet Wrox example, the errors
thrown by the database are of type SqlException from the System.Data.SqlClient namespace that
you imported in this exercise. This enables you to clearly separate database errors from other errors.

When SQL Server throws an error, it also passes an error number, which is stored in the Number prop-
erty of the exception. To access that number, you need to cast the exception to a true SqlException,
done with this code:

VB.NET

Dim myException As SqlException = CType(e.Exception, SqlException)

C#

SqlException myException = (SqlException)e.Exception;

Finally, the code checks the Number property. When it is 547, it means that SQL Server threw a foreign
key constraint error to indicate you cannot delete a genre because it still has associated reviews. When
this is the case, the Label control’s Text property is set, and finally the code sets e.ExceptionHandled
to True. This tells the ASP.NET runtime that the error has been dealt with, so the user won’t get a
nasty error page, but a nice and friendly error message at the top of the GridView instead. Note that for
all other types of exceptions, the user still gets the default ASP.NET error message screen, also called
the Yellow Screen of Death. Chapter 18 teaches you some techniques to log the error in a central loca-
tion and present the user with a friendly, human-readable error page instead.

The number 547 seems to be arbitrarily chosen, but it’s the number that SQL Server returns for a for-
eign key constraint exception. In Chapter 18, which deals with debugging, you learn a few tricks that
enable you to look into the exceptions that are thrown so you can diagnose the Number property for
different kinds of exceptions.

In the past few chapters you have seen many examples of accessing a database using one of the built-in
data controls like SqlDataSource and EntityDataSource. Useful and quick to use as they are, they
are not suitable for every situation. In cases where they don’t fit, you can always hand-code your pages,
as you see how to do next.

Hand-Coding Data Access Code

The biggest issue I often have with the data controls is the amount of markup that they require.
Although, for example, the ListView generates most of the code for you, you still end up with a
lot of code in the page. This makes it cumbersome and time-consuming to make a lot of modifica-
tions to this control. Another issue with these controls is that often you find yourself defining almost
identical markup twice: once for an Insert template and once for an Update template. The final issue
I often encounter when working with the data controls is that I do not have complete control over
the markup they create. This can make it difficult sometimes to create fancy and complex pages with
multiple levels of bound drop-down controls, AJAX UpdatePanel controls, image uploads, and

502211c15.indd 554 2/19/10 9:59:10 AM

Hand-Coding Data Access Code  ❘  555

more. To overcome these issues, you can hand-code your pages, which gives you full control over the
markup in the page, and the code in the Code Behind.

Hand-coding isn’t as difficult as it seems and you do get a lot of flexibility in return. Though the
actual process differs from page to page, here’s a general description of the steps you need to carry
out to hand-code an Add/Edit page that enables you to enter a new or update an existing item in the
database with the same markup:

Create the user interface by adding a number of controls, such as ➤➤ TextBox and
DropDownList controls, to a page that enables users to enter new and update existing data.

Add validation controls to the page so users are forced to enter valid data.➤➤

In the Code Behind, figure out whether you’re creating a new or editing an existing item. You ➤➤

can make the distinction by looking at the query string, for example. When you’re editing an
existing item, you get it from the data source and prepopulate the form controls.

Handle the Save button to insert or update the item. When you’re updating an existing item, ➤➤

you should get the item from the database first and then overwrite the existing values with
the new ones from the form. Finally, save the items back to the data store.

In the next Try It Out you build a page that implements this process.

NOTE  ​In the next exercise, you hand-code the user interface and use the
ADO.NET Entity Framework to handle all data access for you. It’s also common
to hand-code the interaction with the database using ADO.NET classes such as
classes that inherit from DbConnection, DbCommand and DbDataReader. While
hand-coding the interaction with the database requires a lot more code, it also
gives you greater control and more flexibility. Get yourself a copy of Wrox’s
Professional ASP.NET 4 in C# and VB (ISBN: 978-0-470-50220-4) or Professional
ADO.NET 2 (ISBN: 978-0-7645-8437-4) for a deep dive into ADO.NET.

Hand-Coding Data Access PagesTry It Out	

In this exercise you create a new version of the AddEditReview.aspx page to replace the existing one
that currently uses a DetailsView to handle the insert and update process. In the new page you’ll add
form controls to enter the review’s title, summary, body, and genre and whether or not it’s authorized.
In the Code Behind of the page you work with the PlanetWroxEntities class to handle all data access
code. To keep the exercise short you won’t be adding any validation controls. However, with the knowl-
edge you gained from Chapter 9 you know what to do to make this page accept valid data only.

	1.	 Start by adding a standard Web Form (don’t use your custom template) using Code Behind to the
Management folder of your site and call it AddEditReviewHandCoded.aspx. Base the page on the
Management master page and give it a meaningful title.

502211c15.indd 555 2/19/10 9:59:11 AM

556  ❘  Chapter 15   Working with Data — Advanced Topics

	2.	 Switch to Design View, choose Table ➪ Insert Table, and insert a table of six rows and two col-
umns. Add controls to the cells of the HTML table and set their properties according to this table:

Row Column 1 Column 2

1 Add a Label control

Text: Title

AssociatedControlID: TitleText

Add a TextBox control

ID: TitleText

Width: 450px

AccessKey: T

2 Add a Label control

Text: Summary

AssociatedControlID: SummaryText

Add a TextBox control

ID: SummaryText

Width: 450px

AccessKey: U

TextMode: MultiLine

3 Add a Label control

Text: Body

AssociatedControlID: BodyText

Add a TextBox control

ID: BodyText

Width: 450px

AccessKey: B

TextMode: MultiLine

4 Add a Label control

Text: Genre

AssociatedControlID: GenreList

Add a DropDownList control

ID: GenreList

AccessKey: G

5 Add a Label control

Text: Authorized

AssociatedControlID: Authorized

Add a CheckBox control

ID: Authorized

AccessKey: A

6 Leave this cell empty Add a Button control

ID: SaveButton

Text: Save

AccessKey: S

When you’re done, your page looks similar to Figure 15-13.

Figure 15-13

502211c15.indd 556 2/19/10 9:59:11 AM

Hand-Coding Data Access Code  ❘  557

	3.	 Switch to Markup View and except for the Summary Label, wrap each first letter of the Text
properties of the Label controls in a pair of <u> tags, like this:

<asp:Label ID=”Label1” runat=”server” AssociatedControlID=”TitleText”
 Text=”<u>T</u>itle”></asp:Label>

For the Summary Label, wrap the second letter (the u) in a pair of <u> tags since the letter S is
used for the Save button.

Text=”S<u>u</u>mmary”

This underlines that letter giving the user an idea with which access key to activate the associated
control, as you see later in this exercise.

	4.	 Next, hook up the DropDownList to a new EntityDataSource control. You should bind it to
the Genres entity set and use Id and Name as the DataValueField and DataTextField proper-
ties, respectively. If you don’t see the Name and Id properties listed in the drop-down lists for
DataValueField and DataTextField , remember you can click the Refresh Schema link. Refer to
the previous chapter if you’re not sure how to hook up the control to an EntityDataSource any-
more. When you’re done, the code for the two controls looks like this:

<asp:DropDownList ID=”GenreList” runat=”server” DataSourceID=”EntityDataSource1”
 DataTextField=”Name” DataValueField=”Id” AccessKey=”G”></asp:DropDownList>
<asp:EntityDataSource ID=”EntityDataSource1” runat=”server”
 ConnectionString=”name=PlanetWroxEntities”
 DefaultContainerName=”PlanetWroxEntities” EnableFlattening=”False”
 EntitySetName=”Genres”></asp:EntityDataSource>

	5.	 The next step is to write some code that gets an existing Review from the database in case the user
is editing an item. The page assumes a user is editing an item when the query string contains the
item’s ID. If it doesn’t, it assumes you are creating a new review.

To set up the code, double-click the gray and read-only area of the page in Design View to set up
a handler for the Page’s Load event, add an Imports/using statement at the top of the page for
the PlanetWroxModel namespace, and then add the following bold code. Don’t forget the _id
variable outside Page_Load but inside the class definition.

VB.NET

Imports PlanetWroxModel

Partial Class Management_AddEditReviewHandCoded
 Inherits System.Web.UI.Page

 Dim _id As Integer = -1
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Not String.IsNullOrEmpty(Request.QueryString.Get(“Id”)) Then
 _id = Convert.ToInt32(Request.QueryString.Get(“Id”))
 End If
 If Not Page.IsPostBack And _id > -1 Then
 Using myEntities As New PlanetWroxEntities()
 Dim review = (From r In myEntities.Reviews

502211c15.indd 557 2/19/10 9:59:11 AM

558  ❘  Chapter 15   Working with Data — Advanced Topics

 Where r.Id = _id
 Select r).SingleOrDefault()

 If review IsNot Nothing Then
 TitleText.Text = review.Title
 SummaryText.Text = review.Summary
 BodyText.Text = review.Body
 GenreList.DataBind()
 Dim myItem As ListItem =
 GenreList.Items.FindByValue(review.GenreId.ToString())
 If myItem IsNot Nothing Then
 myItem.Selected = True
 End If
 Authorized.Checked = review.Authorized
 End If
 End Using
 End If
 End Sub
End Class

C#

using PlanetWroxModel;

public partial class Management_AddEditReviewHandCoded : System.Web.UI.Page
{
 int _id = -1;
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!string.IsNullOrEmpty(Request.QueryString.Get(“Id”)))
 {
 _id = Convert.ToInt32(Request.QueryString.Get(“Id”));
 }
 if (!Page.IsPostBack && _id > -1)
 {
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 var review = (from r in myEntities.Reviews
 where r.Id == _id
 select r).SingleOrDefault();
 if (review != null)
 {
 TitleText.Text = review.Title;
 SummaryText.Text = review.Summary;
 BodyText.Text = review.Body;
 GenreList.DataBind();
 ListItem myItem =
 GenreList.Items.FindByValue(review.GenreId.ToString());
 if (myItem != null)
 {
 myItem.Selected = true;
 }
 Authorized.Checked = review.Authorized;
 }
 }
 }
 }
}

502211c15.indd 558 2/19/10 9:59:11 AM

Hand-Coding Data Access Code  ❘  559

If you don’t feel like typing all this code, remember you can find a copy of it in the Chapter 15
folder of the source for this book that you can download from www.wrox.com. However, in real-
world applications you typically need to type this code as well, so rather than copying and pasting
it now, you’re better off finding the most efficient way to enter code like this, letting IntelliSense
do most of the work for you.

	6.	 Switch back to Design View and double-click the Save button to set up a handler for the Button
control’s Click event. Then back in the Code Behind add the following code to that handler:

VB.NET

Protected Sub SaveButton_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles SaveButton.Click
 Using myEntities As New PlanetWroxEntities()
 Dim myReview As Review
 If _id = -1 Then ‘ Insert new item
 myReview = New Review()
 myReview.CreateDateTime = DateTime.Now
 myReview.UpdateDateTime = myReview.CreateDateTime
 myEntities.AddToReviews(myReview)
 Else ‘ update existing item
 myReview = (From r In myEntities.Reviews
 Where r.Id = _id
 Select r).Single()
 myReview.UpdateDateTime = DateTime.Now
 End If

 myReview.Title = TitleText.Text
 myReview.Summary = SummaryText.Text
 myReview.Body = BodyText.Text
 myReview.GenreId = Convert.ToInt32(GenreList.SelectedValue)
 myReview.Authorized = Authorized.Checked

 myEntities.SaveChanges()
 Response.Redirect(“Reviews.aspx”)
 End Using
End Sub

C#

protected void SaveButton_Click(object sender, EventArgs e)
{
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 Review myReview;
 if (_id == -1) // Insert new item
 {
 myReview = new Review();
 myReview.CreateDateTime = DateTime.Now;
 myReview.UpdateDateTime = myReview.CreateDateTime;
 myEntities.AddToReviews(myReview);
 }
 else // update existing item
 {
 myReview = (from r in myEntities.Reviews

502211c15.indd 559 2/19/10 9:59:11 AM

560  ❘  Chapter 15   Working with Data — Advanced Topics

 where r.Id == _id
 select r).Single();
 myReview.UpdateDateTime = DateTime.Now;
 }

 myReview.Title = TitleText.Text;
 myReview.Summary = SummaryText.Text;
 myReview.Body = BodyText.Text;
 myReview.GenreId = Convert.ToInt32(GenreList.SelectedValue);
 myReview.Authorized = Authorized.Checked;

 myEntities.SaveChanges();
 Response.Redirect(“Reviews.aspx”);
 }
}

	7.	 Open the file Reviews.aspx from the Management folder and replace the two occurrences
of AddEditReview.aspx to AddEditReviewHandCoded.aspx. You should find one in the
HyperLinkField for the Title and one in the Insert New Review link at the bottom.

	8.	 Save all pending changes by pressing Ctrl+Shift+S. Then right-click the page AddEditReviewHandCoded
.aspx in the Solution Explorer and choose View in Browser. You should see a screen that enables
you to insert a new review, as shown in Figure 15-14, which shows the page in Opera 10.

Figure 15-14

	9.	 Remember you set the AccessKey property and underlined some letters? Together, they can be
used to easily access controls in the page. In many browsers, pressing Alt plus the associated letter
puts focus on the connected control. In this example, pressing Alt+T puts the focus on the Title
field. This makes it easy for keyboard fanatics or disabled people to use your form without a mouse.
Not all browsers use Alt+Letter, though. Opera requires you to press Shift+Esc first before you can
choose a letter whereas Firefox uses Shift+Alt+Letter.

Notice that the underlining of letters is just visual decoration to give a cue to users so they know
what shortcuts they can use (just like Windows programs do). Without the underlining, the short-
cuts still work.

502211c15.indd 560 2/19/10 9:59:11 AM

Hand-Coding Data Access Code  ❘  561

	10.	 Enter a new review, choose a genre, and click the Save button (or press the access key for the Save
button). You’re taken to the Reviews page again. Open your genre, locate your review, and click its
title. You’re taken to AddEditReviewHandCoded.aspx where all form controls should already be
filled in, ready to be edited.

How It Works

You actually coded quite a lot in this exercise and didn’t use many of the ready-made controls, other
than those to let the user enter some details and to create the list of genres. Although hand-coding often
means more work, you do gain a lot of flexibility and — when done right — you end up with a page that’s
a lot easier to maintain. In this example, the markup section of the page is much easier to maintain
than the previous version that used a DetailsView. Gone are the endless attributes on the controls,
gone is the duplication that existed between the InsertItemTemplate and the EditItemTemplate,
and gone is the awkward code to handle the UpdateDateTime in the Code Behind. What remains is a
simple table-based presentation of the necessary form controls. Just like the Contact form you created
in Chapter 9, it’s easy to modify this page, add Validation Controls from Chapter 9, and use CSS to
change the appearance of the page.

What may be new is the AssociatedControlID that you set on the Label controls. When you assign a
control ID to this property of the Label control, it ends up like this in the browser:

<label for=”cpMainContent_TitleText”
 id=”cpMainContent_Label1”><u>T</u>itle</label>

This in turn tells the browser to put the focus on the Title text box when you click the Title label.
The AccessKey properties of the server controls have been assigned to their client side counter parts:

<input name=”ctl00$cpMainContent$TitleText” type=”text”
 id=”cpMainContent_TitleText” accesskey=”T” style=”width:450px;” />

The browser also puts focus on the control when you press the associated access key.

NOTE  ​Rather than formatting the access keys yourself, you can also use a
jQuery plug-in for this. Take a look at the Access Key Highlighter plugin at
http://plugins.jquery.com/project/AccessKeyHighlighter if you’re
interested in this solution.

Next up is the code in the Code Behind. I’ll discuss saving the form for a new review in the database first.
After that I’ll show you how to load an existing review from the database and prepopulate the form.

When you fill in the form’s controls and click the Save button, the code in the SaveButton_Click
method fires. This code first creates a new PlanetWroxEntities object with a using block to enable
you to interact with the database through EF. Then when the _id variable does not contain an ID of an
existing review (you see how the ID is retrieved later), a new Review instance is created and added to
the Reviews collection of the entities object. This would be the case when you are creating a brand new
review using the Insert New Review link.

502211c15.indd 561 2/19/10 9:59:11 AM

562  ❘  Chapter 15   Working with Data — Advanced Topics

VB.NET

myReview = New Review()
myReview.CreateDateTime = DateTime.Now
myReview.UpdateDateTime = myReview.CreateDateTime
myEntities.AddToReviews(myReview)

C#

myReview = new Review();
myReview.CreateDateTime = DateTime.Now;
myReview.UpdateDateTime = myReview.CreateDateTime;
myEntities.AddToReviews(myReview);

Because the review needs a CreateDateTime and an UpdateDateTime, this code sets both. Notice how
the UpdateDateTime is filled with the CreateDateTime so both contain the exact same date and time
indicating the item hasn’t been modified yet.

If the _id variable did contain a review ID (which means an existing review is being edited and saved),
it’s queried from the database with a LINQ to Entities query:

VB.NET

myReview = (From r In myEntities.Reviews
 Where r.Id = _id
 Select r).Single()
myReview.UpdateDateTime = DateTime.Now

C#

myReview = (from r in myEntities.Reviews
 where r.Id == _id
 select r).Single();
myReview.UpdateDateTime = DateTime.Now;

Whether or not an ID was passed to this page, at this stage the myReview variable contains a review
object. The remaining code then fills the review’s properties by retrieving them from the relevant form
controls. For the genre, the code directly assigns the GenreId property instead of querying a complete
Genre instance and assigning it to the Genre property of the Review instance. This works because the
model has support for foreign key columns, as you learned in the previous chapter.

Finally, when the object is fully set up, the code calls SaveChanges on the PlanetWroxEntities object.
This eventually sends a SQL INSERT or UPDATE instruction to the database to tell it to insert a new or
update the existing Review record. After that, the user is redirected to the Reviews.aspx page using
Response.Redirect:

VB.NET

myEntities.SaveChanges()
Response.Redirect(“Reviews.aspx”)

C#

myEntities.SaveChanges();
Response.Redirect(“Reviews.aspx”);

502211c15.indd 562 2/19/10 9:59:12 AM

Hand-Coding Data Access Code  ❘  563

Obviously, once you’ve saved a review in the database, you can edit it again. Once you click one of the
existing reviews in the reviews list at Reviews.aspx you’re taken to the Add/Edit page with the ID
of the review in the query string. For example, browsing to http://localhost:1049/Management/
AddEditReviewHandCoded.aspx?Id=28 enables me to edit the Death Magnetic album by Metallica.
The page is able to detect the ID in the query string using this code in Page_Load:

VB.NET

If Not String.IsNullOrEmpty(Request.QueryString.Get(“Id”)) Then
 _id = Convert.ToInt32(Request.QueryString.Get(“Id”))
End If

C#

if (!string.IsNullOrEmpty(Request.QueryString.Get(“Id”)))
{
 _id = Convert.ToInt32(Request.QueryString.Get(“Id”));
}

Because this _id variable is assigned a value in Page_Load it can be used to load an existing item
to display in the form, but also to get the item from the database in the SaveButton’s Click event
(which you saw earlier.)

If there is an ID (_id is assigned a value other than -1) the code sets up a new PlanetWroxEntities
instance inside a using block and queries the Review using the following LINQ to Entities query:

VB.NET

Dim review = (From r In myEntities.Reviews
 Where r.Id = _id
 Select r).SingleOrDefault()

C#

var review = (from r in myEntities.Reviews
 where r.Id == _id
 select r).SingleOrDefault();

Once the Review is found in the database, its properties are used to prepopulate the form controls:

VB.NET

If review IsNot Nothing Then
 TitleText.Text = review.Title
 SummaryText.Text = review.Summary
 BodyText.Text = review.Body
 GenreList.DataBind()
 Dim myItem As ListItem = GenreList.Items.FindByValue(review.GenreId.ToString())
 If myItem IsNot Nothing Then
 myItem.Selected = True
 End If
 Authorized.Checked = review.Authorized
End If

C#

if (review != null)
{

502211c15.indd 563 2/19/10 9:59:12 AM

564  ❘  Chapter 15   Working with Data — Advanced Topics

 TitleText.Text = review.Title;
 SummaryText.Text = review.Summary;
 BodyText.Text = review.Body;
 GenreList.DataBind();
 ListItem myItem = GenreList.Items.FindByValue(review.GenreId.ToString());
 if (myItem != null)
 {
 myItem.Selected = true;
 }
 Authorized.Checked = review.Authorized;
}

The code checks if review is not Nothing/null before it tries to access its properties. The chances
of the review being null in this example are pretty small because you access the Add/Edit page by
clicking an existing item in the Reviews page so you can be pretty sure the item is there. However,
this is not always the case, especially not in public-facing pages. Your clients may have a bookmark
for a page with a specific ID in the query string. If you then delete that item from the database and
your users access the page using the old bookmark, the review can’t be found and a so called Null
Reference exception occurs.

The same defensive coding mechanism is used to preselect the genre in the drop-down list. In this
case you can be sure the Genre still exists in the database because there’s a relationship between
the Id column of the Genre table and the GenreId of the Review table. However, checking to make
sure an item exists in a DropDownList control before you try to select it is a best practice and helps
in avoiding other Null Reference exceptions. Because the DropDownList with genres hasn’t been
populated at this stage, you need to call DataBind() first. This forces the EntityDataSource con-
trol to get the genres and add them to the DropDownList. Afterward, the code can successfully find
and preselect the appropriate item.

Finally, when you click the Save button for an edited item the exact same code is fired that was
used to insert a new item.

If you were using validation controls (and you really should, as you learned in Chapter 9), you
need to check whether or not the page is valid before you proceed with saving the Review instance:

VB.NET

Protected Sub SaveButton_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles SaveButton.Click
 If (Page.IsValid) Then
 Using myEntities As New PlanetWroxEntities()

C#

protected void SaveButton_Click(object sender, EventArgs e)
{
 if (Page.IsValid)
 {
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())

This is really all there is to adding and editing new reviews using your own code against the Entities
Framework. I realize it may look a little funky at first because you need to reset your head, forget about
smart controls and their many properties and events, and think in straight code. However, EF makes
this pretty straightforward and most of it comes down to querying entities, copying values from or to
an object’s properties, and calling SaveChanges to propagate the changes back to the database.

502211c15.indd 564 2/19/10 9:59:12 AM

Caching  ❘  565

Clearly, this is just the beginning. There’s a whole lot more you can do once you start writing your own
code, whether or not it targets EF. For more information get yourself of a copy of Programming Entity
Framework Second Edition by Julia Lerman or Professional ASP.NET 4 in C# and VB from Wrox
(ISBN: 978-0-470-50220-4).

In all the database examples you have seen so far, the code accesses the database for each and every
request. Every time some data needs to be displayed, it’s retrieved fresh from the database. Clearly,
this can be a waste of time and resources like CPU cycles, especially if the data hasn’t changed since
the last time you accessed it. In the final section of this chapter you are introduced to a technique
called caching that can greatly improve the responsiveness and performance of your application.

Caching

Caching is one of the best and often easiest ways to
improve the performance of an application. It’s also an
option that is too often overlooked by developers. With
caching, a copy of your data is stored in a location that
can be accessed very quickly. The idea with caching is
that fetching data from the cache should be faster than
regenerating or fetching it from the original data source.
Therefore, most caching solutions store data in memory,
which is usually the fastest way to get the data. The
.NET cache is no exception, and enables you to store
frequently accessed data in a special location in the
computer’s memory.

Typically, the caching principle takes the route displayed in Figure 15-15.

The application queries for some data — for example, a list of genres from the database. Instead of
accessing the database directly, the cache is examined to see if it already contains the requested data.
If it does, the data is returned from the cache directly. If it’s not stored in the cache yet, it is retrieved
from the data source (such as a SQL Server database), a copy of the data is stored in the cache for
later retrieval, and finally the data is returned to the calling code.

Though caching is generally a great solution to improve your application, it has a few drawbacks
that you need to be aware of. The following section explains a few common pitfalls you can run into
when using caching. The section that follows then shows the different caching mechanisms you have
available in your ASP.NET web applications.

Common Pitfalls with Caching Data
When working with cached data you typically encounter two common problem areas:

You end up with stale — or out-of-date — data.➤➤

You assume an item is present in the cache when it isn’t.➤➤

Request
for data

Return data from
the cache

Yes

NoData in
cache?

Get data from
source and store

it in the cache

Figure 15-15

502211c15.indd 565 2/19/10 9:59:12 AM

566  ❘  Chapter 15   Working with Data — Advanced Topics

In the next sections you see how to avoid these two problems.

Avoiding Stale Data

Stale data is cached data that no longer matches its original source. For example, when you cache
the results of a query for all the genres in the database and use that data instead of getting it fresh
from the database, a new genre inserted by another user may go unnoticed.

To avoid stale data you need a way to invalidate the cache. With cache invalidation, an item is
removed from the cache so it can be re-created on the next request. To invalidate cached data, you
have a number of options at your disposal. First of all, you can choose to set a short cache dura-
tion. For example, you could cache the Genres list for, say, 10 minutes. If another user inserts a new
genre during those 10 minutes, it won’t show up in your pages. However, after 10 minutes, the list is
removed from the cache and re-created with fresh data the next time it is requested. You see how to
use time-based caching later.

Another option to invalidate the cache is by using a cache dependency. With a cache dependency,
you create a relationship between the cached item and the original data source. When the underly-
ing data source changes, the cached item is invalidated so it can be re-created the next time it is
requested. You see how to use the CacheDependency later.

You can also use a cache dependency when using a database like Microsoft SQL Server. This means
that as soon as the data that is part of the cached query is changed, the cached item is invalidated.
Database caching and invalidation is an advanced and broad subject. Scott Hanselman wrote about
it in the chapter that deals with caching in Professional ASP.NET 4 in C# and VB, published by
Wrox (ISBN: 978-0-470-50220-4).

Don’t Rely on the Data Being There

To minimize memory consumption for an application, the caching mechanism in ASP.NET auto-
matically removes old and infrequently used items from the cache from time to time. Therefore, you
shouldn’t rely on items being in the cache. They may have been removed by the cache itself when the
ASP.NET runtime determined that the item is not used often enough and is thus taking up precious
space unnecessarily. The entire cache is also cleared when the web application or web server restarts
(which happens when you make changes to the web.config file for example). But items can also be
removed because of their dependencies. Therefore, you should never rely on the item being in the
cache, even if you set it there yourself earlier in the application’s life cycle. Later in this chapter you
see how to use the Cache API (application programming interface; the way you can interact with a
program) to use the cache programmatically.

Using the Cache API is not the only way to use the cache. The next section shows you the different
ways of caching data in ASP.NET.

Different Ways to Cache Data in ASP.NET Web Applications
You can deploy a few different caching strategies in your ASP.NET applications, including out-
put caching, caching with the built-in data source controls, and programmatic caching. All three
options are discussed in the remainder of this chapter.

502211c15.indd 566 2/19/10 9:59:12 AM

Caching  ❘  567

Output Caching

With output caching, the end result of a rendered page is cached. This means that the very first time
a page is requested, its final result is added to the cache. Subsequent requests to the same page result
in the same HTML being sent. This last sentence is important enough to be repeated: Subsequent
requests to the same page result in the same HTML being sent. This means the page is not pro-
cessed at the server again, and no custom code in the Code Behind will fire. The exact same HTML
from the first request is simply returned on each subsequent request.

Enabling output caching is extremely simple; just add an OutputCache directive below your Page
directive, as shown below this C# @ Page directive (you use the same code if you’re using VB.NET,
but your @ Page directive may look slightly different):

<%@ Page Title=”About this Site” Language=”C#”
 MasterPageFile=”~/MasterPages/Frontend.master” AutoEventWireup=”true”
 CodeFile=”Default.aspx.cs” Inherits=”About_Default” %>
<%@ OutputCache Duration=”60” VaryByParam=”None” %>

The Duration is the number of seconds you want to cache the page before ASP.NET creates a new
copy of it. In the preceding example, the page is cached for a minute.

The None value in the VaryByParam attribute tells .NET to cache a single version of the page, no
matter what query string values you pass to it. Although this is fine for relatively static pages like
the About page in the Planet Wrox site, this is typically not an ideal solution for dynamic pages.
Imagine a dynamic page that shows the details for a review based on the query string that is being
passed to the page. The first time you request the page you may browse to something like:

http://localhost:12345/Reviews/ViewDetails.aspx?Id=23

ASP.NET generates a page showing review 23 and then caches the entire output of the page. So
what happens when you then request this page?

http://localhost:12345/Reviews/ViewDetails.aspx?Id=33

Instead of seeing the review with an ID of 33, you end up with the same review with an ID of 23!
To overcome this problem ASP.NET enables you to cache specific versions of a page. For example, you
can instruct the page to cache a copy of the page for each unique query string field that it retrieves.
You do this by setting the VaryByParam attribute of the directive to a comma-separated list of possible
query string or form values. ASP.NET will cache a copy of the page for each unique combination
of the fields it finds. As an example, consider a page that accepts the ID of a review in the query
string and then displays its details. To cache a copy for each unique review, you add Id to the
VaryByParam attribute like this:

<%@ OutputCache Duration=”60” VaryByParam=”Id” %>

For a page showing the details of a specific review, this is perfect. For each unique review, ASP.NET
keeps a cached copy. This means that the database will only be hit the very first time a specific review
is requested; subsequent requests will be served from the cache.

One of the problems with output caching is that it’s often an all-or-nothing scenario. Although it’s
easy to cache different pages based on, for example, a query string value, you’ll need to write custom

502211c15.indd 567 2/19/10 9:59:12 AM

568  ❘  Chapter 15   Working with Data — Advanced Topics

code to handle other situations like dealing with themes. When a page is requested and cached for
the first time, the user’s theme is taken into account. If subsequent users have a different theme set they
still see the page in the originally requested theme. Although you could programmatically influence
this behavior, there is an easier solution available: instruct the data source controls to cache data for
you as you’ll see in the next section. For scenarios where this is not a problem (such as when you’re not
using themes), output caching is an excellent mechanism to improve the performance of your site.

Caching with Data Source Controls

The biggest benefit of caching with the data source controls is that they only cache dynamic, data-
base-driven data, and not the entire page. That enables you to keep other parts of the page dynamic,
such as a banner module or a personalized greeting welcoming the user. Caching is supported by
design on most of the data source controls, except for the SiteMapDataSource, LinqDataSource,
and EntityDataSource controls.

Caching with the data source controls is very easy: all you need to do is set the EnableCaching
property and then specify a CacheDuration. The following code snippet shows a SqlDataSource
control that caches its data for 10 minutes:

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server” CacheDuration=”600”
 EnableCaching=”True”></asp:SqlDataSource>

What’s cool about caching with the data source controls is that they are smart enough to see if you
are making updates to the underlying data. So, when you have set up a SqlDataSource control to
cache data for the SelectCommand for 20 minutes, but then make a change to the data by using the
InsertCommand, UpdateCommand, or DeleteCommand, the cache is invalidated automatically. This only
works when you execute the insert, update, or delete command against the exact same SqlDataSource.
If you have one page that displays and caches a list with reviews (such as All.aspx, for example) and
then have another page that is used to insert a new review (such as AddEditReview.aspx in the
Management folder) this won’t work. After you have inserted a new review in the Management sec-
tion of the site, it won’t show up in All.aspx until the cache has expired.

Besides the CacheDuration and EnableCaching properties, the data source controls provide more
caching options. Professional ASP.NET 4 in C# and VB, published by Wrox, gives you a detailed
look at the advanced caching capabilities found in ASP.NET 4.

Code-free caching with the data source controls is useful in many situations. However, the data
source controls cannot be used in every situation. What if you want to cache the results of data you
get from a completely different source? What if you want to cache data you receive in a hand-coded
page targeting the Entity Framework, or the contents of a text or an XML file that you frequently
need to access? For those cases, ASP.NET gives you programmatic access to the cache.

Programmatic Caching

With programmatic caching, you can store items in the cache through VB.NET or C# code.
Obviously, you can also access them again later. To store items, you use the Add or the Insert
method or you index the Cache collection directly. The Add method is quite powerful (and com-
plex) and enables you to specify a host of options that determine how long the item is cached, what
priority it should have compared to other cached items, and based on what factors the item must be
removed from the cache.

502211c15.indd 568 2/19/10 9:59:13 AM

Caching  ❘  569

The Insert method, on the other hand, is much easier. It has a few short overloads that enable you
to specify the cached item and associate it with a specific key. You saw an example of this earlier in
this section on caching. Another overload also enables you to define dependencies that can be used
to invalidate a cached item when the original source is changed. This is great for caching files that
don’t change very often. You can read a file from disk, and store it in the cache with a dependency
on the original file. You then keep reading the file from the cache instead of from disk. When the file
on disk is changed, the cached item is invalidated automatically and you can read the original source
file again and store it in the cache. The following example shows how to modify the ContactForm.
ascx user control to store and get the item from the cache until it changes:

VB.NET

If Page.IsValid Then
 Dim mailBody As String = TryCast(Cache(“ContactFormMailBody”), String)
 If String.IsNullOrEmpty(mailBody) Then
 Dim fileName As String = Server.MapPath(“~/App_Data/ContactForm.txt”)
 mailBody = System.IO.File.ReadAllText(fileName)
 Cache.Insert(“ContactFormMailBody”, mailBody, New CacheDependency(fileName))
 End If
 mailBody = mailBody.Replace(“##Name##”, Name.Text)

 ...
End If

C#

if (Page.IsValid)
{
 string mailBody = Cache[“ContactFormMailBody”] as string;
 if (string.IsNullOrEmpty(mailBody))
 {
 string fileName = Server.MapPath(“~/App_Data/ContactForm.txt”);
 mailBody = System.IO.File.ReadAllText(fileName);
 Cache.Insert(“ContactFormMailBody”, mailBody, new CacheDependency(fileName));
 }
 mailBody = mailBody.Replace(“##Name##”, Name.Text);

 ...
}

Notice how a new CacheDependency (for which you need to bring the System.Web.Caching
namespace into scope with an Imports/using statement) is created and passed to the Insert
method. This CacheDependency expects the name of the file it is dependent on. As soon as you
change the file on disk (using VWD or Notepad, for example), ASP.NET removes the item from the
cache so it can be read from the original source file again the next time this code is executed.

You remove items from the cache using the Remove method that accepts the key of the cached item.
You define this key when inserting the item using either Add or Insert.

To access the items in the cache, you have a few options available. First of all you can directly access
the Cache collection:

502211c15.indd 569 2/19/10 9:59:13 AM

570  ❘  Chapter 15   Working with Data — Advanced Topics

VB.NET

myReview = TryCast(Cache(myKey), Review)

C#

Review myReview = Cache[myKey] as Review;

Here, the Cache collection is indexed using the key stored in the myKey variable.

Additionally, you can use the Get method that expects the key:

VB.NET

myReview = TryCast(Cache.Get(myKey), Review)

C#

myReview = Cache.Get(myKey) as Review;

Because Get is a method, the C# example now also uses parentheses around the cache key, making
both examples look more like each other.

Finally, you can access items in the cache using the Item property that also accepts the key of the
cached item.

All three ways to access items in the cache always return an object. That means that if you know
the type you are getting back from the cache, you should cast it to the appropriate type using
TryCast in VB.NET or the as keyword in C# before you can use its properties. The previous two
examples show you how the item from the cache is cast to a strongly typed Review object first.

To give you an idea of how to use the cache programmatically, the next exercise shows you how to
insert a review in the cache, so you don’t have to get it from the database every time you need it.

Using the Cache APITry It Out	

In this Try It Out exercise you see how to cache a Review instance you get from EF using a LINQ to
Entities query so it can be retrieved later by its key (that contains the review’s ID).

	1.	 Start by adding a new page called ViewDetails.aspx in the Reviews folder of your web applica-
tion. Make sure it’s based on your custom template. There’s no need to set an explicit title, because
it will be set programmatically. Instead, remove the Title=”“ attribute from the Page directive.
There’s a funny and old bug in ASP.NET that causes programmatic modifications to the page’s
Title not to stick when this attribute is set to an empty string in Markup View.

	2.	 In Markup View, add three Label controls to the cpMainContent content placeholder and name
the controls as follows:

TitleLabel➤➤

SummaryLabel➤➤

BodyLabel➤➤

Delete the Text attribute and its value of all three labels.

502211c15.indd 570 2/19/10 9:59:13 AM

Caching  ❘  571

	3.	 Wrap the TitleLabel label in an <h1> element, and set the CssClass property of the
SummaryLabel control to Summary. You should end up with this code:

<h1><asp:Label ID=”TitleLabel” runat=”server”></asp:Label></h1>
<asp:Label CssClass=”Summary” ID=”SummaryLabel” runat=”server”></asp:Label>
<asp:Label ID=”BodyLabel” runat=”server”></asp:Label>

	4.	 Switch to Design View and double-click the read-only area of the page to set up a handler for
Page_Load.

	5.	 Add an Imports/using statement at the top of the page for the PlanetWroxModel namespace as
you’ve done before in AddEditReviewHandCoded.aspx and then add the following code to the
Page_Load event handler that has been created for you:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim reviewId As Integer = Convert.ToInt32(Request.QueryString.Get(“ReviewId”))
 Dim myReview As Review = TryCast(Cache(“Reviews” + reviewId.ToString()), Review)
 If myReview Is Nothing Then
 Using myEntities As New PlanetWroxEntities()
 myReview = (From r In myEntities.Reviews
 Where r.Id = reviewId
 Select r).SingleOrDefault()
 If myReview IsNot Nothing Then
 Cache.Insert(“Reviews” + reviewId.ToString(), myReview, Nothing,
 DateTime.Now.AddMinutes(20),
 System.Web.Caching.Cache.NoSlidingExpiration)
 End If
 End Using
 End If

 If myReview IsNot Nothing Then
 TitleLabel.Text = myReview.Title
 SummaryLabel.Text = myReview.Summary
 BodyLabel.Text = myReview.Body
 Title = myReview.Title
 MetaDescription = myReview.Summary
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 int reviewId = Convert.ToInt32(Request.QueryString.Get(“ReviewId”));
 Review myReview = Cache[“Reviews” + reviewId.ToString()] as Review;
 if (myReview == null)
 {
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 myReview = (from r in myEntities.Reviews
 where r.Id == reviewId
 select r).SingleOrDefault();

502211c15.indd 571 2/19/10 9:59:13 AM

572  ❘  Chapter 15   Working with Data — Advanced Topics

 if (myReview != null)
 {
 Cache.Insert(“Reviews” + reviewId.ToString(), myReview, null,
 DateTime.Now.AddMinutes(20),
 System.Web.Caching.Cache.NoSlidingExpiration);
 }
 }
 }

 if (myReview != null)
 {
 TitleLabel.Text = myReview.Title;
 SummaryLabel.Text = myReview.Summary;
 BodyLabel.Text = myReview.Body;
 Title = myReview.Title;
 MetaDescription = myReview.Summary;
 }
}

	6.	 Open the page All.aspx from the Reviews folder and delete the GridView that you created in the
previous chapter. Replace it with a simple Repeater control that contains a single HyperLink into
your new details page:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” Runat=”Server”>
 <asp:Repeater ID=”Repeater1” runat=”server”>
 <ItemTemplate>
 <asp:HyperLink ID=”HyperLink1” runat=”server”
 NavigateUrl=’<%# “ViewDetails.aspx?ReviewId=” + Eval(“Id”).ToString() %>’
 Text=’<%# Eval(“Title”) %>’></asp:HyperLink>

 </ItemTemplate>
 </asp:Repeater>
</asp:Content>

	7.	 Switch to the Code Behind of the page and replace the last two calls that used the GridView so
they end up using the Repeater control instead:

VB.NET

Repeater1.DataSource = allReviews
Repeater1.DataBind()

C#

Repeater1.DataSource = allReviews;
Repeater1.DataBind();

	8.	 Open Styles.css from the Styles folder and add the following CSS declaration to the end of the file:

.Summary
{
 font-style: italic;
 display: block;
}

502211c15.indd 572 2/19/10 9:59:13 AM

Caching  ❘  573

	9.	 Save all changes and then request All.aspx from the Reviews folder in your browser. Click the
title of a review and you’re taken to ViewDetails.aspx with the ID of the requested review in the
query string.

COMMON MISTAKES  ​If you see the error message about an invalid page title,
make sure you removed Title=”“ from the Page directive in ViewDetails.aspx.
With the attribute set to an empty string, the title you set in Code Behind won’t
stick and then your BasePage will raise an exception because the title is missing.

You should now see the details of the review displayed on the page. Press Ctrl+F5 or Ctrl+R to
refresh the contents of the page. Although you don’t see the difference, the review now comes
from the cache. If you want to confirm this is really the case, you can add a Label control to the
ViewDetails.aspx page and then update it with a different text depending on whether or not
the item was in the cache:

VB.NET

Label1.Text = “In the cache”
If myReview Is Nothing Then
 Label1.Text = “NOT in the cache”
 Using myEntities As New PlanetWroxEntities()

C#

Label1.Text = “In the cache”;
if (myReview == null)
{
 Label1.Text = “NOT in the cache”;
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())

This code initially sets the Label’s Text to “In the cache”. However, if the item isn’t found, the
Label is updated to reflect that observation.

COMMON MISTAKES  ​If you ever get the error “Sequence contains no ele-
ments” on the page, make sure you’re passing a valid Review ID in the ReviewId
query string parameter to the ViewDetails.aspx page. You usually get this error
when you browse to the details page directly from within VWD using Ctrl+F5 rather
than through All.aspx.

How It Works

In the page ViewDetails.aspx you first added a few labels that hold relevant properties of the Review,
such as its Title, Summary, and Body. You assigned the Label control for the summary a CssClass so
you can influence its styling from your CSS files. The .Summary selector assigns an italic font and sets
the display property to block, forcing the body text that follows on its own line.

502211c15.indd 573 2/19/10 9:59:13 AM

574  ❘  Chapter 15   Working with Data — Advanced Topics

The code in the Code Behind then starts by looking at whether or not it can retrieve the item from the
cache:

VB.NET

Dim myReview As Review = TryCast(Cache(“Reviews” + reviewId.ToString()), Review)

C#

Review myReview = Cache[“Reviews” + reviewId.ToString()] as Review;

As the key for the cached item the code uses a combination of the word Reviews and the Id of each
item. This gives each review a unique key to be used for the cache. If the item cannot be found in the
cache (possible because you’re loading the page for the first time or because ASP.NET removed it), the
TryCast method in VB.NET and the as keyword in C# return Nothing/null. So, by checking the
myReview variable for that value you can determine whether the item was in the cache. If it was, you’re
pretty much done, but if it wasn’t you need to get it from the database using a LINQ to Entities query
similar to those you’ve seen before. Note that the query uses the SingleOrDefault() operator to limit
the query to a single Review instance because there should only be one by the given ID, or to Nothing/
null when the item could not be found. What you do when the item is not found is up to you; you can
display an error message in a Label control informing the user that the item is no longer available, or
you can redirect to the home page or another page in your site.

After the item is retrieved from the database, it’s inserted into the cache with the following code:

VB.NET

Cache.Insert(“Reviews” + reviewId.ToString(), myReview, Nothing,
 DateTime.Now.AddMinutes(20), System.Web.Caching.Cache.NoSlidingExpiration)

C#

Cache.Insert(“Reviews” + reviewId.ToString(), myReview, null,
 DateTime.Now.AddMinutes(20), System.Web.Caching.Cache.NoSlidingExpiration);

The first parameter of the Insert method is the cache key and the second parameter is the object you want
to cache: the actual Review instance in this case. The third parameter defines the absolute expiration date:
the date and time at which the item is considered outdated and has to be removed from the cache. In
this example this date is constructed by adding 20 minutes to the current date and time, meaning the
item will be cached for a maximum duration of 20 minutes. The final parameter can be used to extend
the expiration time every time the item is accessed. This is a great way to cache frequently used items and
ensures that items that are not used often are removed from the cache sooner. However, this example is
using an absolute expiration date, which means you have to pass the constant value of System.Web
.Caching.Cache.NoSlidingExpiration as the sliding expiration parameter because the two param-
eters are mutually exclusive.

At this stage, if the item exists in the database, you have a valid Review instance, whether or not it
came from the cache. This instance is then used to fill the Label controls in the page, and the page’s
Title and MetaDescription properties:

VB.NET

TitleLabel.Text = myReview.Title
...

502211c15.indd 574 2/19/10 9:59:14 AM

Practical Data Tips  ❘  575

Title = myReview.Title
MetaDescription = myReview.Summary

C#

TitleLabel.Text = myReview.Title;
...
Title = myReview.Title;
MetaDescription = myReview.Summary;

Setting the Title and MetaDescription is good for your users and for the ranking of your page in
search engines. The title is used when bookmarking a page, so a clear title helps the user find your
page again. Search engines such as Google and Bing use the title in their evaluation of what the
page is about. They use the text that you set in the MetaDescription (which ends up as a <meta
name=”description” /> element in the <head> section of the page’s HTML) to present the results to
the user. This means the text you enter there is often your first point of contact with a user that uses a
search engine. As such it’s an important piece of information. Rather than reusing the Summary prop-
erty for this purpose, you could add an additional column (called SearchEngineDescription, for
example) to the Reviews table in the database. You then need to bring this column into the ADO.NET
Entity Data Model by right-clicking the EDMX model diagram in the Entity Designer and choosing
Update Model from Database. Once you’ve added this property to the model, don’t forget to change the
edit pages in the Management section (AddEditReview.aspx or AddEditReviewHandCoded.aspx) so
they support this new property as well. Finally, in the ViewDetails.aspx page you can then assign its
value to the MetaDescription property of the Page class.

Besides the new MetaDescription property, the Page class has also been extended with a MetaKeywords
property in ASP.NET 4. This property works more or less the same as the MetaDescription and enables
you to set the keywords for the page. Although the importance of keywords to influence search engine
ranking is heavily debated (most say they are not used by search engines at all), it can’t hurt to set them.
You could add the keywords to the database and model by following the same steps as outlined for the
SearchEngineDescription property. For a lot more tips on search engine optimization (SEO) consid-
ering getting a copy of Wrox’s Professional Search Engine Optimization with ASP.NET: A Developer’s
Guide to SEO (ISBN: 978-0-470-13147-3.)

The ViewDetails.aspx page is now a pretty well-performing page; the first time it loads the item is
retrieved from the database and stored in the cache. On subsequent visits to the page the database is no
longer accessed but the item is retrieved from the much faster cache.

Practical Data Tips

Here are some practical tips on working with data in your ASP.NET web sites:

Whenever you use the numerous style properties of the data-bound controls, consider using ➤➤

the CssClass property instead of setting the individual style properties directly.

502211c15.indd 575 2/19/10 9:59:14 AM

576  ❘  Chapter 15   Working with Data — Advanced Topics

The section about the control’s life cycle has an exercise that shows you how to display the ➤➤

various events and the order in which they occur. You could extend the example and write
code for even more events. Additionally, you could add more controls to the page and handle
their events as well to help you establish a solid understanding of those events. Because a
good understanding of those events and their order is often critical in writing web applica-
tions, the time you put into this little research project is well spent.

Whenever you are writing pages that access a database or other slow or scarce resources like ➤➤

files or web services, consider whether they can benefit from caching. Although it’s not that
hard to add caching at a later stage, it’s best to put it in as early as possible.

Consider hand-coding complex data access pages. Though more difficult to write at first, ➤➤

you’ll end up with pages that are easier to maintain in the long run.

Summary

This chapter covered some of the more advanced topics on presenting data with the data controls
that earlier chapters deliberately skipped to enable you to focus on the core data access concepts.

The chapter started off with a good look at the numerous style elements that most data-bound controls
have to influence their appearance. You then learned more about the numerous events that controls can
fire. These events can be used to programmatically change the appearance of the controls. Therefore, a
solid understanding of the page’s life cycle is important knowledge.

The chapter closed with a discussion of the various caching capabilities that ASP.NET supports to
help you improve the performance of your web sites.

With caching, you have come to the end of this chapter, which showed you some advanced topics
on handling data in an ASP.NET web application. The following chapter shows you how to protect
some of this data — for example, the Management folder — from unauthorized users by implementing
ASP.NET security.

Exercises	

1.	 Imagine you have a simple Web Form with a single Button on it. If you click the Button in the

browser, it causes a postback and at the server its Click event is triggered. What happens first?

The Page’s Load event or the Button control’s Click event?

2.	 Right now when you insert or edit an item on AddEditReviewHandCoded.aspx you’re taken back

to Reviews.aspx when you’re done. It would be nice if the genre for the new or updated review

item would already be preselected in the drop-down list. What code do you need to write for this?

3.	 What’s the proper way to avoid an exception that you handled in a data-bound control’s event in

the Code Behind from being displayed in the page?

Answers to Exercises can be found in Appendix A.

502211c15.indd 576 2/19/10 9:59:14 AM

Summary  ❘  577

What You Learned in This Chapter⊲⊲

Access keys A way to assign letters to HTML controls to put focus on these controls

by pressing a key combination including the assigned letter

ASP.NET styles Control properties that inherit from the Style class and that let you

change the appearance of controls

Caching A technique used to store copies of data in a location that is quicker to

access than the original source in order to improve performance

Cache invalidation A mechanism where items are removed from the cache when they are

no longer valid

Exception The .NET term for an error. Exceptions are discussed in great detail in

Chapter 18

Foreign key
constraint error

An error that occurs at the database level when you try to delete a

record that other records depend on

MetaDescription

MetaKeywords

These two properties on the Page class (both new in ASP.NET 4) enable

you to set metadata for the page in the browser that can be used by

search engines

Output caching A form of caching where an entire page or a user control is cached to

prevent it from being generated from scratch every time it’s accessed

Stale data A cached copy of some data that no longer accurately represents the

original data cache invalidation

502211c15.indd 577 2/19/10 9:59:14 AM

502211c15.indd 578 2/19/10 9:59:14 AM

Security in Your ASP.NET 4
Web Site

What You Will Learn in This Chapter:

Important terminology you’ll encounter when dealing with security➤➤

The ASP.NET application services that drive the security model of ➤➤

ASP.NET

How you can let users sign up for an account for your site➤➤

How users can reset their passwords or request new ones➤➤

How you can manage the users and roles in your database at devel-➤➤

opment time

How you can present different content to different users based on ➤➤

their access rights in the system

Until now you have been creating pages in your web site that are accessible to all visitors to
your site. There is yet no way to block certain resources like ASPX files or even whole folders
for specific users. That means, for example, that currently anyone can access your Management
folder and start messing with the genres and reviews in the system.

Clearly this is not something you’d want in a production web site. So, you need to think of a
good security strategy to stop unwanted users from accessing specific content. You also need
to look at a mechanism that enables users to sign up for a new account and at the same time
enables you to designate certain users as managers of your web site and grant them special
access rights.

ASP.NET 4 ships with all the tools you need to create a solid and safe security mechanism. In
this chapter you learn how to make use of these tools in your ASP.NET web site.

16

502211c16.indd 579 2/19/10 9:58:59 AM

580  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

Before you start looking at how security is implemented in the ASP.NET Framework, you need to
understand a few important terms that you’ll come across in every discussion on security.

Introducing Security

Although security can be quite a complex subject, it often revolves around three straightforward
questions:

Who are you?➤➤

How can you prove that?➤➤

What are you allowed to do in the system?➤➤

Identity: Who Are You?
An identity is what makes you, you. The answer to what an identity is depends on the context it is
used in. As a citizen of a country, your identity revolves around your person, your official name and
birth date, and maybe even a Social Security number. However, for a web site like p2p.wrox.com,
Wrox’s community web site, your identity may be as little as your e‑mail address.

No matter what you include in an identity, it is a way to refer to you. But how does anyone else
know you? And how can they be sure it’s really you when you log on to a web site, for example?
This is where authentication enters the game.

Authentication: How Can You Prove Who You Are?
Authentication is about providing evidence about who you are. When you need to register for a
library card, you may need to show your passport to prove that the name you register the card under
really belongs to you. With a web site like p2p.wrox.com you need to provide an e‑mail address
and a password. Together these two pieces form the evidence that proves your identity. Many other
mechanisms are used for authentication, including high-tech fingerprint or iris scans, smart cards
and tokens (where the evidence is stored on something tangible), and so on. However, in light of the
discussion on security of ASP.NET web sites, this chapter sticks to a user name and password for
authentication.

Authorization: What Are You Allowed to Do?
Depending on who you are, a system grants you more or fewer privileges to access certain areas.
Think about the highly secured headquarters of a national security agency in an action movie, for
example. Even if the main character is allowed to enter the building, he is often not allowed to enter
specific areas because he lacks the proper authorization (the fact that the hero eventually gains
access in those movies using a two-minute hack in the system is beside the point here).

To determine what a user is allowed to do, a system needs to know two things: the permissions for
the current user and the authorization rules for the resource a user is trying to access.

502211c16.indd 580 2/19/10 9:58:59 AM

Introducing Security  ❘  581

The permissions for the user are based on its user name (the identity it represents) and the roles (or
security groups) the user is optionally assigned to. Similarly, resources can be opened up or blocked
for specific users or roles. When there is a match between the current user and the access rules for
the resource a user is trying to access, the user is granted access. If the user is blocked specifically,
access is denied. Imagine a file that is only accessible to the user Tom and the group Developers. The
user Tom can access that file, regardless of whether he is in the Developers role. At the same time,
the user Charlotte must be in the Developers role in order to access the file.

You see how to work with these concepts in the remainder of this chapter.

A large part of these security concepts in ASP.NET are implemented with the so-called application
services, discussed next.

An Introduction to the ASP.NET Application Services
Versions of ASP.NET before ASP.NET 2.0 had some support for security. However, they lacked the
high-level controls and concepts that ship with ASP.NET 2.0 and later. In ASP.NET 1.x applications
you needed to write a lot of code to implement a solid security strategy. The downside of writing this
code is that it was often pretty much the same in all your web sites. You were more or less forced to
write the same code over and over again to implement a security mechanism.

These problems were solved in ASP.NET 2.0, which shipped with the application services: a set of
services you can use in your web application to support management of users, roles, profiles, and
more. These services are still strongly present in ASP.NET 4.

ASP.NET 4 ships with a number of application services, of which the most important ones are:

Membership:➤➤ Enables you to manage and work with user accounts in your system.

Roles:➤➤ Enables you to manage the roles that your users can be assigned to.

Profile:➤➤ Enables you to store user-specific data in a back-end database.

Figure 16-1 gives an overview of these services and shows how they are related to your web site and
the underlying data stores that the services may use.

ASP.NET 4 Web Applications/Web Sites

A
S

P.
N

E
T

S
e

rv
ic

e
s

Membership Role Manager Other Services

P
ro

vi
d

e
rs

SqlMembershipProvider SqlRoleProvider Other Providers

D
a

ta
S

to
re

s

Sql
Server

Active
Directory

Oracle Microsoft
Access

Other Data
Stores

Figure 16-1

502211c16.indd 581 2/19/10 9:58:59 AM

582  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

At the top of the diagram you see the ASP.NET 4 web sites and web applications that represent
the web sites that you build. These web sites can contain controls like the login controls (discussed
next) that in turn can talk to the ASP.NET application services such as membership and profile. To
create a flexible solution, these services don’t talk to an underlying data source directly, but instead
talk to a configured provider. A provider is an interchangeable piece of software that is designed
for a specific task. For example, in the case of the membership services, the membership provider is
designed to work with users in the underlying data store. You can configure different providers for
the same application service depending on your needs. ASP.NET ships with a SQL Server provider
that enables your membership services to talk to a SQL Server database. This is an ideal provider for
Internet-connected web sites like PlanetWrox.com. It also ships with an Active Directory provider
that lets you create and manage users in Active Directory on Windows instead. This provider is best
suited in closed networks, like an intranet. If you have your own custom data store you could write
your own provider and plug it into your web site to replace one of the default providers with very
little effort. The beauty of these providers and their underlying model is that you can swap them
through configuration without any changes to your programming code.

Each provider needs a data store — represented by the bottom part of the diagram in Figure 16-1 — and
is written to work with a specific data store. For example, the SQL Server membership provider
(to handle membership services such as creating users, logging in, and resetting passwords) and the
SQL Server role provider (to handle role-related tasks) are designed to work with a Microsoft SQL
Server database.

In the remainder of this chapter, you see how to use the SQL Server membership provider and the
SQL Server role provider. In the next chapter you work with the SQL Server profile provider. All
three providers can be configured to use a single SQL Server database, making it easy to centralize
all your user data.

Ideally, you don’t deal with these providers directly. Under normal circumstances, the various pro‑
viders are configured for your web site at a central location. You then use these providers by talking
to the application services. Although you could access these services directly from code, you often use
the ASP.NET built-in login controls to do the hard work for you. These controls are discussed next.

Introducing the Login Controls

The login controls that ship with ASP.NET 4 take away much of the complexity usually associated
with writing a security layer in a web site. The available login controls effectively encapsulate all the
code and logic you need to validate and manage users. These controls work by communicating with
the configured provider through the application services, instead of talking to a database directly.
To see how this works, the following exercise shows you how to create a simple Login and Sign Up
page that enables new users to create an account and then log in. The section that follows then looks
at the seven login controls that ship with ASP.NET 4.

502211c16.indd 582 2/19/10 9:59:00 AM

Introducing the Login Controls  ❘  583

Creating Login and Sign Up PagesTry It Out	

In this Try It Out you extend the Login page that you created earlier. You also create a new page that
enables a user to sign up for an account on the Planet Wrox web site.

	1.	 Open up the page Login.aspx that you created in Chapter 6 from the root of the site in Markup
View. (If you don’t have that page, create it now, based on your custom template, and set its Title
to Log in to Planet Wrox. Add an <h1> element with the same text in the cpMainContent
placeholder.)

	2.	 From the Login category of the Toolbox drag a LoginStatus control and drop it in the page after
the h1 element.

	3.	 Switch to Design View and from the Toolbox drag a Login control and drop it on the LoginStatus,
so it ends up right above it. Both controls are visible in Figure 16-2 (the LoginStatus appears as a
small Login link below the Login control).

Figure 16-2

	4.	 Open the Properties Grid for the Login control and set the two properties shown in the following
table:

Property Value

CreateUserText Sign Up for a New Account at Planet Wrox

CreateUserUrl SignUp.aspx

	5.	 In the root of the web site create a new Web Form called SignUp.aspx based on your custom tem‑
plate and give it a Title of Sign Up for a New Account at Planet Wrox.

	6.	 Switch the page to Design View and from the Toolbox drag a CreateUserWizard control into the
main content area for the page. Save and close the page.

502211c16.indd 583 2/19/10 9:59:00 AM

584  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

	7.	 Open the web.config file from the root of the site and add an <authentication> element with its
mode attribute set to Forms as a direct child of the <system.web> element.

<system.web>
 <authentication mode=”Forms” />
 ...
</system.web>

	8.	 Go back to Login.aspx, save all your changes, and press Ctrl+F5 to
open that page in your browser. You are greeted with a login box as
shown in Figure 16-3.

Note that the login status below the Login control is currently set
to Login (as a call-to-action) to indicate you are not logged in yet.
If the text says Logout instead, verify that you set authentication to
Forms in the web.config file.

	9.	 Try to log in by entering a random user name and password. Obviously, this fails because the
account doesn’t exist. It may take a while before you see the result because ASP.NET is busy set‑
ting up the membership database.

	10.	 Follow the Sign Up link below the Login control to go to SignUp.
aspx and then create an account by entering your personal details
(see Figure 16-4). By default, the password needs to have a mini‑
mum length of seven characters and must contain at least one non-
alphanumeric character. Note that numbers are not considered
non-alphanumeric characters so you need to make sure your pass‑
word contains at least one character like # or $ or *. For example,
Pa55word is not a valid password, but Pass##Word will be accepted.
Note that the password is case-sensitive. Write down the user name
and password you just entered, because you’ll need this account
information again later.

For the security question and answer, you can make up your own question with an answer. You
need to supply the answer to the security question in case you lose your password.

	11.	 Click the Create User button to have the account created for you.
When the page reloads, you get a confirmation that the account was
created successfully. Ignore the Continue button for now (you haven’t
written any behavior for it yet), but click the Login item from the main
Menu or TreeView (depending on the theme you currently have selected)
in the web site instead. You are taken to Login.aspx again where the
LoginStatus control below the Login control now indicates that you
are logged in (see Figure 16-5). When you create a new account using
the CreateUserWizard, you’re logged in automatically, although you
can change that behavior by setting the LoginCreatedUser property
of the control to False.

Figure 16-3

Figure 16-4

Figure 16-5

502211c16.indd 584 2/19/10 9:59:00 AM

Introducing the Login Controls  ❘  585

	12.	 Click the Logout link and you’ll be logged out, causing the LoginStatus to display the text Login
again. In the Login control, enter the user name and password you entered in step 10 and click the
Log In button. You’re logged in and redirected to the home page. On the main Menu or TreeView
click Login to return to the Login page again. Note that the LoginStatus has changed and now
shows Logout again, illustrating the fact that you successfully logged in.

At this stage, being logged in doesn’t add much value; all you see is the LoginStatus change from
Login to Logout. However, later in this chapter you see how to offer different content to logged-in
users.

How It Works

Besides adding and configuring a few ASP.NET Server Controls, you didn’t do any coding in this exer‑
cise. Still, you were able to implement a fully functional login procedure that enables a user to sign up
for an account and then log in to the site. So how does all this work? As you learned earlier, the ASP.NET
controls talk to the configured application services providers; a software layer that sits between the
login controls and the SQL Server database that keeps track of the users.

The very first time you try to log in (or use other login controls that require database access), the pro‑
vider checks if your application is using a database with the necessary database objects, such as tables.
By default, it checks the database by looking at a connection string called LocalSqlServer. You won’t
find this connection string in your web.config file though because it is defined in a file called machine
.config located in the central .NET Framework folder. You learn more about this file later. The con‑
nection string in that file looks like this:

<connectionStrings>
 <add name=”LocalSqlServer” connectionString=”data source=.\SQLEXPRESS;
 Integrated Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true”
 providerName=”System.Data.SqlClient” />
</connectionStrings>

This is a connection string that targets SQL Server 2008 Express Edition, the free version of Microsoft
SQL Server that you installed in Chapter 1. In Chapter 19 and Appendix B you see more examples of
connection strings that target the full versions of SQL Server.

In Chapter 13 you learned that a connection string that uses
|DataDirectory| points to a database located in the App_Data
folder of your web site. If the ASPNETDB.MDF database doesn’t exist at
the specified location the first time you use one of the login controls
or the other application services, it is created for you automatically
by the application services (that’s why there was a delay when you
entered the first user name and password in step 9). To find out what
the database looks like, go back to VWD, click the App_Data folder,
and then click the Refresh button on the toolbar of the Solution
Explorer. You should see the new database called ASPNETDB.MDF as
shown in Figure 16-6.

Figure 16-6

502211c16.indd 585 2/19/10 9:59:00 AM

586  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

Double-click the new database in the Solution Explorer to open it in
the Database Explorer window. Expand items such as Tables and
Views to get a list of database objects that have been added for you,
visible in Figure 16-7, which shows the tables used for the application
services.

After this database has been created successfully, the login controls
can use it. For example, when you create a new account using the
CreateUserWizard control, records are inserted in the aspnet_
Membership and aspnet_Users tables. Similarly, when you try
to log in, your user name and password are checked against these
tables.

To force the ASP.NET runtime to use forms-based authentication,
(which the SQL Server membership provider uses under the hood) you
need to set the mode attribute of the authentication element to Forms
in the web.config file:

<authentication mode=”Forms” />

Other options for the mode attribute include Windows (where security is handled by Windows itself),
Passport (using Microsoft’s Passport services), and None, which disables security altogether. In the
remainder of this book, you use the Forms option exclusively because it’s the most common solution for
Internet-facing web applications.

The Remember Me Next Time option of the Login control is more forgetful than you may think. When
you check this option you are logged in automatically the next time you visit the site, provided your
authentication cookie hasn’t expired. The first time you log in, the server sets a cookie that is saved for
future sessions. However, this cookie expires after 30 minutes, which means a user returning to the site
after that period needs to re-authenticate. To extend the period that users remain logged in you need to
set the timeout attribute of the <forms> element that itself is a direct child of the <authentication>
element in web.config. The timeout takes an integer value representing the timeout period in minutes.
The following code sets the timeout to 24 hours (1440 minutes):

<authentication mode=”Forms”>
 <forms timeout=”1440” />
</authentication>

Lower timeout values are generally considered safer because they don’t provide unlimited or long-last‑
ing access, but longer timeout values are more user friendly because users don’t need to re-authenticate
every time they visit the site.

The database that ASP.NET creates for you in the App_Data folder makes it very easy to work with the
various application services in a development scenario. However, when you need to roll out your appli‑
cation to a production server in your own network or with your Internet service provider (ISP) you may
need more control over the database and the way it is accessed. Chapter 19, which deals with deploy‑
ment, and Appendix B, which deals with SQL Server configuration, show this in more detail.

Figure 16-7

502211c16.indd 586 2/19/10 9:59:01 AM

Introducing the Login Controls  ❘  587

Now that you have seen how the login controls work in conjunction with the auto-generated SQL
Server Express database, it’s time to look at the controls in the Login category of the Toolbox in
more detail.

The Login Controls
ASP.NET 4 ships with seven login controls, each serving a distinct purpose.
Figure 16-8 shows the Toolbox with the seven login controls.

In the sections that follow, each of these controls is explained in more detail.

Login

As you saw in the previous exercise, the Login control enables a user to log
in to the site. Under the hood the control talks to the configured member‑
ship provider through the application services to see if the user name and
password represent a valid user in the system. If the user is validated, a cookie is issued that is sent
to the user’s browser. On subsequent requests the browser resubmits the cookie to the server so the
system knows it’s still dealing with a valid user. The different settings for the membership provider
are all configured in the <membership /> element of the web.config file. You learn more about this
element later in this chapter.

To create a fully functional Login page, you only need the following control declaration:

<asp:Login ID=”Login1” runat=”server” />

However, in most situations you want to enhance the appearance and behavior of the control by set‑
ting one or more of the properties shown in the following table.

Property Description

DestinationPageUrl Defines the URL the user is sent to after a successful login attempt.

CreateUserText Controls the text that is displayed to invite users to sign up for a new

account.

CreateUserUrl Controls the URL where users are taken to sign up for a new account.

DisplayRememberMe Specifies whether the control displays the Remember Me option. When

set to False or when the check box is not checked when logging in, users

need to re-authenticate every time they close and reopen the browser.

RememberMeSet Specifies whether the Remember Me option is initially checked.

PasswordRecoveryText Controls the text that is displayed to tell users they can reset or

recover their password.

PasswordRecoveryUrl Specifies the URL where users are taken to get their (new) password.

VisibleWhenLoggedIn Determines whether the control is visible when the current user is

logged in. True by default.

Figure 16-8

502211c16.indd 587 2/19/10 9:59:01 AM

588  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

The authentication mechanism of ASP.NET by default assumes you have a page called Login.aspx
in the root of your site that is used to let users log in. To be functional, the minimum that this
page requires is a Login control. If you want to use a different page, you can specify its path in the
<forms /> element under <authentication /> like this:

<authentication mode=”Forms”>
 <forms loginUrl=”MyLoginPage.aspx” />
</authentication>

With this configuration you tell the ASP.NET runtime to load the page MyLoginPage.aspx whenever
a user needs to present her credentials. Note that on the Login page (configured in the loginUrl) the
VisibleWhenLoggedIn property of the Login control has no effect. On the configured Login page,
the Login control is always visible. If you want to hide it you can use a LoginView control, as you
see in a later exercise.

In addition to these properties, the Login control has a range of Text properties, such as
LoginButtonText, RememberMeText, TitleText, and UserNameLabelText that are used to set
the text that appears in the control and in its various child controls like the Button and Label
controls that make up the user interface.

Just as with the data-bound controls, the login controls have numerous style properties that enable
you to tweak their appearance. You’re encouraged to check out the Styles category of the Properties
Grid for the controls to see how you can set the various styling options. Remember, just as with the
data-bound controls, you can move much of the styling information to skin and CSS files.

The Login control also exposes a few events that you typically don’t need to handle, but that
can come in handy from time to time. For example, the LoggedIn event fires right after the
user has logged in and is a good place to send the user to another page dynamically if the
DestinationPageUrl is not flexible enough.

LoginView

The LoginView is a handy control that lets you display different data to different users. It enables
you to differentiate between anonymous and logged-in users, and you can even differentiate between
users in different roles. The LoginView is template driven and as such lets you define different tem‑
plates that are shown to different users. The following table describes the two main templates and
the special RoleGroups element.

Template Description

AnonymousTemplate The content in this template is shown to unauthenticated users only.

LoggedInTemplate The content in this template is shown to logged-in users only. This template

is mutually exclusive with the AnonymousTemplate. Only one of the two

can be visible at any time.

502211c16.indd 588 2/19/10 9:59:01 AM

Introducing the Login Controls  ❘  589

Template Description

RoleGroups This template can contain one or more RoleGroup elements that in

turn contain a ContentTemplate element that defines the content for

the specified role. The role or roles that are allowed to see the content

are defined in the Roles attribute, which takes a comma-separated

list of roles. The RoleGroups element is mutually exclusive with the

LoggedInTemplate. That means that if a user is a member of one of the

roles for the RoleGroup, the content in the LoggedInTemplate is not vis-

ible. Additionally, only content for the first RoleGroup that matches the

user’s roles is shown.

The LoginView control itself doesn’t output any markup other than the content you define in the
various child elements of the control, which means you can easily embed it between a pair of HTML
tags like <h1>and to create customized headings or list items.

The following code snippet shows a LoginView control that defines content for three different users:
anonymous visitors to the site, logged-in users, and users that have logged in and are members of the
Managers role:

<asp:LoginView ID=”LoginView1” runat=”server”>
 <AnonymousTemplate>
 Hi there visitor. Would you be interested in signing up for an account?
 </AnonymousTemplate>
 <LoggedInTemplate>
 Hi there visitor and welcome back to PlanetWrox.com.
 </LoggedInTemplate>
 <RoleGroups>
 <asp:RoleGroup Roles=”Managers”>
 <ContentTemplate>
 Hi there manager. You can proceed to the Management section.
 </ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
</asp:LoginView>

You see how to create and configure roles later in this chapter.

LoginStatus

As demonstrated in the previous Try It Out exercise, the LoginStatus control provides information
about the current status of the user. It provides a Login link when the user is not authenticated and
a Logout link when the user is already logged in. You control the actual text being displayed by set‑
ting the LoginText and LogoutText properties. Alternatively, you can set the LoginImageUrl and
LogoutImageUrl properties to display an image instead of text. Finally, you can set the LogoutAction
property to determine whether the current page refreshes if the user logs out, or whether the user
is taken to another page after logging out. You determine this destination page by setting the
LogoutPageUrl.

502211c16.indd 589 2/19/10 9:59:01 AM

590  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

Besides these properties, the control is capable of raising two events, LoggingOut and LoggedOut,
that fire right before and after the user is logged out.

LoginName

LoginName is an extremely simple control. All it does is display the name of the logged-in user.
To embed the user’s name in some text, such as You are logged in as Imar, you can use the
FormatString property. If you include {0} in this format string, it will be replaced with the user’s
name.

You see how this works in the next exercise, which has you modify the login and master pages for
the site so they display relevant information about the user.

Working with the Login ControlsTry It Out	

In this Try It Out you hide the Login control on the Login.aspx page when the user is already logged
in and display a message instead. Additionally, you add text to the footer of the page that displays the
name of the user together with an option to log out again.

	1.	 Open Login.aspx and switch to Design View. From the Login category of the Toolbox, drag a
new LoginView control on top of the Login control so it’s placed right above it in the page.

	2.	 Open the Smart Tasks panel of the LoginView control and make sure that AnonymousTemplate is
selected in the Views drop-down list, visible in Figure 16-9.

Any content you put in the control will be placed in the
AnonymousTemplate area, because that is now the active tem‑
plate for the control in Design View.

	3.	 Click the Login control once to select it and then press Ctrl+X
to cut it to the clipboard. Click inside the small white rectangle
that represents the LoginView to position your cursor in the
control and then press Ctrl+V to paste the Login control into
your LoginView.

	4.	 Open the Smart Tasks panel of the LoginView again and switch
to the LoggedInTemplate using the Views drop-down list.
Click inside the small white rectangle of the control again and
type the text You are already logged in.

	5.	 Switch to Markup View and look at the code. The Login control should be placed inside the
AnonymousTemplate, and the text you typed should be displayed within the LoggedInTemplate tags:

<asp:LoginView ID=”LoginView1” runat=”server”>
 <AnonymousTemplate>
 <asp:Login ID=”Login1” runat=”server” CreateUserUrl=”SignUp.aspx”
 CreateUserText=”Sign Up for a New Account at Planet Wrox”>
 </asp:Login>
 </AnonymousTemplate>
 <LoggedInTemplate>
 You are already logged in.
 </LoggedInTemplate>
</asp:LoginView>

Figure 16-9

502211c16.indd 590 2/19/10 9:59:01 AM

Introducing the Login Controls  ❘  591

	6.	 Save and close the page, because you’re done with it for now.

	7.	 Open the master page Frontend.master in Markup View and locate the <div> element with
an id of Footer at the bottom of the page. Remove the text Footer Goes Here and replace it
with a new LoginName control by dragging it from the Toolbox into the <div> element. Set its
FormatString property to Logged in as {0} by typing in the code directly.

<asp:LoginName ID=”LoginName1” runat=”server” FormatString=”Logged in as {0}” />

	8.	 From the Toolbox, drag a new LoginView control and drop it below the LoginName control, but
still in the Footer <div>. Switch to Design View and on the Smart Tasks panel of the LoginView
choose LoggedInTemplate from the Views drop-down list, and then in the white rectangle for the
active LoggedInTemplate, drag and drop a new LoginStatus control.

	9.	 Switch to Markup View again and wrap the code for the LoginStatus in a pair of parentheses.
You should end up with the following code:

<div id=”Footer”>
 <asp:LoginName ID=”LoginName1” runat=”server”
 FormatString=”Logged in as {0}” />
 <asp:LoginView ID=”LoginView1” runat=”server”>
 <LoggedInTemplate>
 (<asp:LoginStatus ID=”LoginStatus1” runat=”server” />)
 </LoggedInTemplate>
 </asp:LoginView>
</div>

	10.	 Save all your changes and request Login.aspx in your browser. Log in with the account and pass‑
word you created in a previous exercise (you may need to log out first by clicking the Logout link).
If you don’t recall the user name and password, simply click the Sign Up
link to create a new account. Note that as soon as you are logged in, the
footer displays the text visible in Figure 16-10.

	11.	 Click the Login item in the Menu or TreeView to go to the Login page. Instead of the Login control
you should now see a message indicating you are already logged in.

	12.	 Click the Logout link in the footer at the bottom of the page. The page refreshes and displays the
Login control again. Additionally, the text from the footer has now disappeared.

How It Works

You started by adding a LoginView to the Login page to wrap the Login control and a text message.
The Login control is shown when the user is not logged in, whereas the text is displayed for logged-in
users only.

The code in the footer of the master page contains a LoginName control that displays the name of the
user that is logged in. It doesn’t display anything for anonymous users. To control the text being dis‑
played, you use the FormatString property:

<asp:LoginName ID=”LoginName1” runat=”server” FormatString=”Logged in as {0}” />

At runtime, the {0} is replaced with the user’s name.

Figure 16-10

502211c16.indd 591 2/19/10 9:59:01 AM

592  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

By default the LoginStatus you added displays a link to enable users to log in and log out. Because the
Menu or the TreeView already contains a link to the Login page, the footer uses a LoginView again to
only display the Logout text when the user is currently logged in. If you want to add a Login link as
well, you can extend the LoginView with an anonymous template and an additional LoginStatus or
remove the entire LoginView so the LoginStatus is visible to all users.

Besides the controls you have seen that enable a user to log in and that use the current user’s log-in
status to show or hide relevant content, the Login category of the Toolbox contains three more con‑
trols that enable users to sign up for a new account on the site, to change an existing password, and
to recover a lost password. These controls are discussed next.

CreateUserWizard

You briefly saw CreateUserWizard at work in an earlier exercise. But the control has a lot more to
offer than the standard behavior you saw in that exercise.

To start with, the control has a long list of Text properties, such as CancelButtonText,
CompleteSuccessText, UserNameLabelText, and CreateUserButtonText, that affect the text
used in the control. All properties have good (English) defaults, but you can change them if they
don’t suit your needs.

The control has a bunch of properties that end in ImageUrl, such as CreateUserButtonImageUrl.
These properties enable you to define images for various user actions instead of the default buttons
that the control generates. If you set any of these properties to a valid ImageUrl, you also need to
set the corresponding ButtonType. For example, to change the Create User button to an image, you
need to set the CreateUserButtonImageUrl to a valid image and set CreateUserButtonType to
Image.

The default value for the ButtonType is Button, which renders standard buttons by default. You
can also set these properties to Link to have them rendered as standard LinkButton controls.

Additionally, the control exposes a number of useful properties that you can set to change its behav‑
ior and appearance, shown in the following table.

Property Description

ContinueDestinationPageUrl Defines the page where users are taken when they click

Continue after signing up.

DisableCreatedUser Whether or not the user is marked as disabled when the

account is created. When set to True, users cannot log in to

the site until their account has been enabled. You see how to

manually activate and deactivate user accounts later. Defaults

to False.

LoginCreatedUser Whether or not the user is logged in automatically after the

account has been created. Defaults to True.

502211c16.indd 592 2/19/10 9:59:01 AM

Introducing the Login Controls  ❘  593

Property Description

RequireEmail Determines whether or not the control asks the user for an

e‑mail address. Defaults to True.

MailDefinition Contains a number of subproperties that enable you to define

the (optional) e‑mail that gets sent to users after they sign up.

You may notice that the control doesn’t have any properties to hide the security question and
answer, or to change the strong password policy that requires users to type a password of at least
seven characters. Because multiple controls need access to these settings, you need to configure them
on the underlying provider. In the section “Configuring Your Web Application” later in this chapter,
you see how this works.

The CreateUserWizard control is able to send a confirmation e‑mail to users to inform them their
new account was created successfully. This e‑mail message can also serve as a reminder of their user
names and passwords. In the following exercise you see how to configure the MailDefinition ele‑
ment so the CreateUserWizard sends an e‑mail message to new users to confirm their account and
send them their user name and password for future reference.

Sending Confirmation E-Mail with CreateUserWizardTry It Out	

For this exercise to work, you need to have configured the <system.net> element of the web.config
file with a valid mail server name or local pickup folder. Refer to Chapter 9 if you don’t have these set‑
tings and don’t know how to configure them.

	1.	 Add a new Text File to the App_Data folder and call it SignUpConfirmation.txt.

	2.	 Add the following text to the file and then save and close it:

Hi <% UserName %>,

Thank you for signing up for a new account at www.PlanetWrox.com.

To log in to the site, use the following details:

User name: <% UserName %>
Your password: <% Password %>

We look forward to your contributions.

The Planet Wrox Team

Take care when typing the UserName and Password placeholders. They are wrapped in a pair of
server-side tags (<% and %>), which are used to give special meaning to these placeholders.

	3.	 Open SignUp.aspx and make sure it’s in Design View. Then, on the Properties Grid of
the CreateUserWizard control, locate the MailDefinition property and expand it.
Click the BodyFileName property, click the ellipsis to browse for a file, and then select
SignUpConfirmation.txt, which you created in the App_Data folder.

502211c16.indd 593 2/19/10 9:59:01 AM

594  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

	4.	 Set the Subject property to Your New Account at PlanetWrox.com. When you’re done, the
Properties Grid should look like Figure 16-11.

Figure 16-11

	5.	 Save all changes and request SignUp.aspx in your browser. Enter the required details for a
new account and click Create User to sign up for an account. If you get an error about specify‑
ing a From address make sure you assigned a valid e‑mail address to the from attribute in the
web.config file:

<smtp deliveryMethod=”SpecifiedPickupDirectory” from=”info@PlanetWrox.com”>

Refer to Chapter 9 to see how to add this attribute. Make sure you enter a valid e‑mail address or
the mail server may still reject it.

If your mail server requires you to use SSL (for example, when you are using Gmail’s SMTP server),
don’t forgot to set the enableSsl attribute of the <network /> element to true in web.config.
Alternatively, you could write your own code in the SendingMail event of the control to send
your message and override some settings of the MailMessage or the SmtpClient. You can access
e.Message of the SendingMail event to get access to the message that is being sent. To set this up,
switch SignUp.aspx to Design View, open the Properties Grid for the CreateUserWizard, switch
to the Events tab, and set up a handler for the SendingMail event. Inside that handler, write the
following code (you need to add an Imports/using statement for the System.Net.Mail namespace
in order to bring the SmtpClient class in scope). The following code assumes you configured the
web.config file to use Gmail’s mail server and configured a port number such as 587 or 465 in the
port attribute of the <network /> element. If you keep having trouble getting this to work, check
out the article on my web site that deals with this in more detail: http://tinyurl.com/ybx7qkh.

VB.NET

Protected Sub CreateUserWizard1_SendingMail(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.MailMessageEventArgs) _
 Handles CreateUserWizard1.SendingMail
 Dim myClient As New SmtpClient()
 myClient.EnableSsl = True
 myClient.Send(e.Message)
 e.Cancel = True
End Sub

502211c16.indd 594 2/19/10 9:59:02 AM

Introducing the Login Controls  ❘  595

C#

protected void CreateUserWizard1_SendingMail(object sender,
 MailMessageEventArgs e)
{
 SmtpClient myClient = new SmtpClient();
 myClient.EnableSsl = true;
 myClient.Send(e.Message);
 e.Cancel = true;
}

This is just an example to show you how you can change the way the mail is being sent ​— ​for
example, by programmatically enabling SSL on the SmtpClient. If all you need to do is send
e-mail using Gmail’s secure mail server, you're better off using just the settings in web.config
instead, as described in Chapter 9.

	6.	 After a while you should receive an e‑mail that contains the welcome text you typed in step 2.
Figure 16-12 shows the message with the user name and password placeholders replaced with the
details that were entered in step 5.

Figure 16-12

How It Works

The CreateUserWizard comes with built-in functionality to send a confirmation message to the user. It
doesn’t send the message until you specify the <MailDefinition> element. You use the BodyFileName
property to point to a text file or an HTML file that is used as the e‑mail’s body.

Within this body you can use the special placeholders <% UserName %> and <% Password %>, which are
replaced automatically with the actual user name and password that the user entered in the signup form.

Although sending mail is normally taken care of automatically, it’s good to know that you can hook into
the process and make changes to the message being sent or to the SmtpClient that is being used to send

502211c16.indd 595 2/19/10 9:59:02 AM

596  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

the message. In this exercise, you saw how to hook into the SendingMail event and make changes to the
SmtpClient, but other changes ​— ​to properties of the e.Message parameter, for instance ​— ​would have
been acceptable as well.

NOTE  ​It would be a nice addition if you could check whether a given user name
already existed before the user tried to submit the form. You can use the tech-
niques from previous chapters to easily accomplish this. For example, you could
use a page method at the server to check whether a given name was already
taken. You could then call this page method with some JavaScript as soon as
the user moves away from the User Name field. For a step-by-step guide of
this solution take a look at my web site at http://imar.spaanjaars.com/
QuickDocId.aspx?quickdoc=494

The PasswordRecovery control, discussed next, also supports a custom mail body and enables you
to manually send the message in a hander for the SendingMail event.

PasswordRecovery

The PasswordRecovery control enables users to retrieve their existing passwords (when the system
supports it) or to get a new auto-generated password. In both cases, the password is sent to the
e‑mail address that the user entered when signing up for an account.

Most of the properties of the PasswordRecovery control should be familiar by now. It has a number
of Text properties, such as GeneralFailureText (shown when the password could not be recov‑
ered) and SuccessText, that enable you to set the text that is displayed by the control. It also has
properties that end with ButtonType, ButtonText, and ButtonImageUrl that enable you to change
the look and behavior of the various action buttons of the control. You set the SuccessPageUrl to a
page in your site if you want to send the user to another page when password recovery succeeds.

As with the CreateUserWizard, the PasswordRecovery also has a MailDefinition element that
can point to a file that you want to send as the mail body. You can use the same placeholders for the
user name and password to customize the message. If you leave out the MailDefinition, the con‑
trol uses a default mail body, as you see in the next exercise.

ChangePassword

The ChangePassword control enables existing and logged-in users to change their passwords. It
has a host of properties to change things like text, error messages, and buttons, similar to the
CreateUserWizard and PasswordRecovery controls. It also has a MailDefinition element that
enables you to send a confirmation of the new password to the user’s e‑mail address.

502211c16.indd 596 2/19/10 9:59:02 AM

Introducing the Login Controls  ❘  597

Implementing the Password FunctionalityTry It Out	

In this Try It Out you add PasswordRecovery and ChangePassword controls to the web site to enable
users to change and recover their passwords. Because changing a password only makes sense for logged-in
users, you add the ChangePassword control to its own page. In a later exercise in this chapter you pro‑
tect this page so only authenticated users can access it.

	1.	 Open up Login.aspx in Markup View and locate the closing </asp:Login> tag inside the
<AnonymousTemplate>. Right after it, type two
 elements (use the br code snippet and
press Tab to complete the element) to create some room below the Login control.

	2.	 Drag a PasswordRecovery control from the Toolbox into the code editor, right after the two

 elements you added in step 1.

	3.	 Between the opening and closing tags of the PasswordRecovery control add a <MailDefinition>
element and then set the Subject of the e‑mail to Your New Password for PlanetWrox.Com.
Your code should now look like this:

</asp:Login>

<asp:PasswordRecovery ID=”PasswordRecovery1” runat=”server”>
 <MailDefinition subject=”Your New Password for PlanetWrox.Com”></MailDefinition>
</asp:PasswordRecovery>

	4.	 Save your changes and close the file.

	5.	 In the root of your site create a new Web Form based on your custom template and call it
MyProfile.aspx. Set the Title of the page to My Profile.

	6.	 Make sure you’re in Markup View and in the cpMainContent content placeholder create an <h1>
element (type h1 followed by the Tab key) with its contents set to My Profile. Right below the
heading type some text that explains that the My Profile page is used for things like changing pass‑
words. Wrap the text in a pair of <p> tags to denote a paragraph.

	7.	 Drag a ChangePassword control from the Toolbox and drop it after the closing </p> tag. You
should end up with something like this:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” Runat=”Server”>
 <h1>My Profile</h1>
 <p>The My Profile page allows you to make changes to your personal profile.
 For now, all you can do is change your password below.</p>
 <asp:ChangePassword ID=”ChangePassword1” runat=”server”></asp:ChangePassword>

	8.	 Open the file Web.sitemap from the Solution Explorer and add a new element in the About sec‑
tion. Let the url point to ~/MyProfile.aspx and set the title and description to My Profile.
You should end up with this code:

<siteMapNode url=”~/About/Default.aspx” title=”About”
 description=”About this site”>
 <siteMapNode url=”~/About/Contact.aspx” title=”Contact Us”
 description=”Contact Us” />
 <siteMapNode url=”~/About/AboutUs.aspx” title=”About Us”
 description=”About Us” />

502211c16.indd 597 2/19/10 9:59:02 AM

598  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

 <siteMapNode url=”~/MyProfile.aspx” title=”My Profile”
 description=”My Profile” />
</siteMapNode>

	9.	 Save all changes and close all open files. Right-click Login.aspx
in the Solution Explorer and choose View in Browser. Below the
Login control you should now see the PasswordRecovery con‑
trol, visible in Figure 16-13.

Note that if you were already logged in, you need to click the
Logout link first.

	10.	 Enter your user name in the PasswordRecovery control and
click the Submit button. You’re asked to enter the answer to
the security question that you provided when you signed up for
the account. Enter the answer and click Submit once more. You
should get an e‑mail message with your new, auto-generated
password. If your mail server requires special handling, follow the
same steps as with the CreateUserWizard control by manually
constructing an SmtpClient instance in the SendingMail
event of the PasswordRecovery control.

	11.	 Use this new password to log in to the site. When you’re logged in, choose My Profile from the
Menu or the TreeView. The ChangePassword control visible in Figure 16-14 appears.

Figure 16-14

	12.	 Enter the auto-generated password that was sent to you by e‑mail, type a new password that is eas‑
ier to remember, and then retype the same password. Finally, click Change Password. From now
on, you can log in to the site using your new password.

Figure 16-13

502211c16.indd 598 2/19/10 9:59:02 AM

Introducing the Login Controls  ❘  599

How It Works

By default, your passwords are stored in a hashed format in the database, which means they cannot
be retrieved. Hashing is an irreversible process that creates a unique fingerprint of your data. Because
it’s irreversible, there is no way to re-create the password from the hash, which makes it safer to store
in a database. When you log in, the password you enter is also hashed and then the two hashes are
compared to see if you are allowed to enter. Because the original password cannot be retrieved, the
PasswordRecovery control generates a new password for you. It then sends this password to the e‑mail
address that is associated with the user name you entered. As the mail body it uses a standard template
that contains the user name and the new password. To customize the mail body, you can point the
BodyFileName of the MailDefinition to a text file that contains placeholders for the user name and
password, just as you saw how to do with the CreateUserWizard.

You may have noticed that the login controls use a couple of defaults that you haven’t been able to
change so far. For example, the CreateUserWizard and PasswordRecovery controls always ask
the user for a security question and answer as an additional layer of security. You also need to enter
strong passwords with a minimum length of seven characters. You can change these settings for the
entire application through the web.config file.

Configuring Your Web Application
Earlier in this chapter I discussed how the default connection string called LocalSqlServer is defined in
the machine.config file so that it’s effective by default in all web applications that you build. The same
is true for many of the other settings that are relevant to the ASP.NET application services, like member‑
ship, roles, and profile. The machine.config contains the following settings for the membership services:

<membership>
 <providers>
 <add name=”AspNetSqlMembershipProvider”
 type=”System.Web.Security.SqlMembershipProvider, System.Web,
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 connectionStringName=”LocalSqlServer”
 enablePasswordRetrieval=”false”
 enablePasswordReset=”true”
 requiresQuestionAndAnswer=”true”
 applicationName=”/”
 requiresUniqueEmail=”false”
 passwordFormat=”Hashed”
 maxInvalidPasswordAttempts=”5”
 minRequiredPasswordLength=”7”
 minRequiredNonalphanumericCharacters=”1”
 passwordAttemptWindow=”10”
 passwordStrengthRegularExpression=”“
 />
 </providers>
</membership>

502211c16.indd 599 2/19/10 9:59:02 AM

600  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

This provider configuration features a number of interesting attributes that are described in the fol‑
lowing table.

Attribute Description

connectionStringName Points to the name of the connection string for the

application. Defaults to the LocalSqlServer con-

nection you saw earlier.

enablePasswordRetrieval Determines whether users are able to retrieve

their current password. This option cannot be

set when passwordFormat is Hashed (see

passwordFormat).

enablePasswordReset Determines whether a user is able to request a

new password.

requiresQuestionAndAnswer Determines whether controls like

CreateUserWizard and PasswordRecovery

have the user enter a security question and

answer.

applicationName Provides the unique name of the application.

requiresUniqueEmail Determines whether the system allows duplicate

e‑mail addresses for user accounts. When set to

True, each user must provide a unique user name

and a unique e‑mail address.

passwordFormat Determines the way passwords are stored in the

database. It supports the following formats:

Clear: Passwords are stored as plain text.

Encrypted: Passwords are encrypted in a revers-

ible format that enables the system to retrieve the

clear text representation of the password again.

Hashed: Passwords are encrypted with an irrevers-

ible, one-way algorithm. When the passwordFormat

is Hashed, users cannot retrieve their original

passwords anymore. They can only request a new,

auto-generated password.

maxInvalidPasswordAttempts Specifies the number of times a user can enter an

invalid password or invalid security answer before

their account is locked.

minRequiredPasswordLength Determines the minimum length of the password.

minRequiredNonalphanumericCharacters Determines the minimum number of non-

alphanumeric characters that must be included

in the password.

502211c16.indd 600 2/19/10 9:59:03 AM

Introducing the Login Controls  ❘  601

Attribute Description

passwordAttemptWindow Determines the time frame in minutes during

which invalid password attempts are counted.

passwordStrengthRegularExpression Enables you to specify a custom regular expres-

sion to enforce a strong password.

To change these settings for the Planet Wrox application you could modify the machine.config directly.
However, I strongly encourage you not to do this. Because this file applies to your entire machine,
you may end up with a lot of unwanted side effects, or even render ASP.NET in a broken state.

Instead, you should reconfigure the <membership> element in the web.config file, and change the
necessary attributes for the current application only. In the following Try It Out you see what it
takes to reconfigure the membership provider for the Planet Wrox application.

Configuring MembershipTry It Out	

In this short exercise you see how to override the default behavior for the membership in the Planet
Wrox site. First you see how to obtain a copy of the membership settings from the central configuration
file. You then modify these settings to remove the security question and answer option and to change
the rules for the password.

	1.	 Locate the file machine.config, which by default you’ll find in C:\Windows\Microsoft.NET\
Framework\v4.0.30128\Config. If you installed Windows in a different folder or drive, be sure to
change the path accordingly. If you’re using a 64 bit version of Windows, the Framework folder is
called Framework64 instead. Don’t worry if your system administrator doesn’t allow you to access
this file on your machine. If you can’t access it, you can type the code from step 6 directly in the web
.config file. Also, don’t worry if the version number of the framework following v4.0 is slightly
different; you can have a more recent version of the .NET than the one I used to write this book. Use
Windows Explorer to find out the exact folder name.

	2.	 Open the file with Notepad and locate the <membership> element under <system.web> near the
end of the file.

	3.	 Copy the entire <membership> element to the clipboard.

	4.	 Go back to VWD, open web.config, and paste the <membership> element right before the
<authentication> element but still within the <system.web> element. Except for some different
formatting (you could have the settings all on one line), you should end up with the configuration
settings you saw at the beginning of this section.

	5.	 Change minRequiredPasswordLength to 6 and set requiresQuestionAndAnswer to false.

	6.	 Right before the <add> element, add a self-closing <clear /> element. When you’re done, your
configuration settings should look like this:

<membership>
 <providers>

502211c16.indd 601 2/19/10 9:59:03 AM

602  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

 <clear />
 <add name=”AspNetSqlMembershipProvider”
 type=”System.Web.Security.SqlMembershipProvider, System.Web,
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 connectionStringName=”LocalSqlServer”
 enablePasswordRetrieval=”false”
 enablePasswordReset=”true”
 requiresQuestionAndAnswer=”false”
 applicationName=”/”
 requiresUniqueEmail=”false”
 passwordFormat=”Hashed”
 maxInvalidPasswordAttempts=”5”
 minRequiredPasswordLength=”6”
 minRequiredNonalphanumericCharacters=”1”
 passwordAttemptWindow=”10”
 passwordStrengthRegularExpression=”“
 />
 </providers>
</membership>
<authentication mode=”Forms”/>

	7.	 Save all your changes and request SignUp.aspx in the browser. Note that the security question
and answer no longer appear in the Sign Up form as they did in Figure 16-4 at the beginning of this
chapter.

	8.	 Fill in the form, but for the password fields type something short like pass.

	9.	 Click the Create User button. Note that the control now forces you to enter a password with a
minimum length of six characters as you defined in web.config by showing the correct error mes‑
sage below the control, shown in Figure 16-15.

Figure 16-15

If you still see the secret question and answer text boxes, you may need to restart your browser,
or even VWD.

	10.	 Enter a password of at least six characters with at least one non-alphanumeric character like # or
% and click the Create User button again. This time your password is accepted and the account is
created.

502211c16.indd 602 2/19/10 9:59:03 AM

The Role Manager  ❘  603

How It Works

The configuration settings for ASP.NET work in a hierarchical manner. This means that settings
defined at a high level (for example, in machine.config) are applicable to all web applications and
web sites on your computer. The Planet Wrox web site inherits the settings defined in machine.config,
including those for the membership provider. To change the behavior in a single web site, you need to
create a copy of the original settings and then modify the necessary attributes.

However, in order to do that, you first need to remove the original settings. You do this with the
<clear /> element:

 <providers>
 <clear />
 <add name=”AspNetSqlMembershipProvider” ...

In this case, <clear /> means as much as “remove any provider setting that has been added some‑
where in the configuration hierarchy.” So, right after the <clear /> element, the <providers> element
is considered empty, allowing you to add the same provider again, but this time with different settings.

Although this seems like a lot of work to change just a few settings, you’ll find the ability to override
the settings in your own web site to be of much more use when you need your application to talk to a
different database or database server. Appendix B shows you how to do this.

So far you have seen how to let users sign up for an account so they can log in. But how can you
differentiate between the different users in the system? How can you block access to specific folders
such as the Management folder for unauthorized uses? You do this with the role manager, another
application service that ships with ASP.NET.

The Role Manager

Although it’s nice that your users can now sign up and log in to your site, it would be a lot more use‑
ful if you could differentiate among your users. That would enable you to grant access rights to one
or just a few users to access the Management folder so only they can change your reviews and genres.
With the Role Manager that ships with ASP.NET this is pretty easy to do. The Role Manager
enables you to assign users to different roles. You can then use these roles to open or block specific
functionality in your site. For example, you can block access to the Management folders for all users
except for those in the Managers role. Additionally, you can display different content based on the
roles users are in with the LoginView as you saw earlier.

Configuring the Role Manager
As with membership, the settings for the Role Manager are placed in config files. However, the Role
Manager is not turned on by default, so you need to do that explicitly in the web.config file in the
<roleManager> element that should be placed inside the <system.web> element in web.config:

<roleManager enabled=”true” />

502211c16.indd 603 2/19/10 9:59:03 AM

604  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

In the next exercise you see how to enable the roles with a management tool that is accessible from
within VWD so you can enable roles without modifying the web.config by hand.

After you have enabled roles, you can assign users to different roles in a number of ways:

Using the Web Site Administration Tool, generally referred to as the WSAT➤➤

Using IIS (the Windows web server) on recent Windows editions (you see more about this in ➤➤

Chapter 19)

Programmatically using the Role Manager API (application programming interface)➤➤

Managing roles using the Role Manager API is beyond the scope of this book. If you want to learn
more about it, get a copy of Wrox’s Professional ASP.NET 4 in C# and VB (ISBN: 978-0-470-
50220-4) or take a look at the Bug Base chapter in my book ASP.NET 2.0 Instant Results (ISBN:
978-0-471-74951-6). Although that book targets ASP.NET 2.0, you’ll see that many of the concepts
still apply to ASP.NET 4.

The Web Site Administration Tool (WSAT) is used for a lot more than managing roles alone, and is
discussed in detail in the next section. It is only available from your local machine and is available
as a menu shortcut in VWD. As such, it’s great for setting up the initial users and roles during devel‑
opment, but it isn’t suitable for managing users in a production environment.

Managing Users with the WSAT
The WSAT tool ships with VWD and is available from the Website menu. The tool is used for the
following tasks:

Managing users➤➤

Managing roles➤➤

Managing access rules ​— ​for example, to determine what user can access which files and ➤➤

folders

Configuring application, mail, and debug settings➤➤

Taking the site offline so users can’t request any pages and get a friendly error message ➤➤

instead

Some of the changes you make with the WSAT are persisted in the web.config file for the applica‑
tion. Other settings, like users and roles, are stored in the database for the configured provider.

In the next exercise you see how to start and use the WSAT. You see how to create a new role and a
new user account, and how to assign that user to the role.

Using the WSAT to Manage User Accounts and RolesTry It Out	

To protect your Management folder from users that are not authorized to access it, you need to create a
role that is allowed to access this folder. After you have set up this role, you can grant all users in that
role access to the folder while keeping all other users out. In this Try It Out you learn how to create the

502211c16.indd 604 2/19/10 9:59:03 AM

The Role Manager  ❘  605

Managers role and assign a user to it. In a later exercise you see how to limit access to the Management
folder to Managers only.

	1.	 From within VWD, choose Website ➪ ASP.NET Configuration. Your browser opens and displays
the Web Site Administration Tool, shown in Figure 16-16.

Figure 16-16

	2.	 In the top-right corner you see a Help link that takes you to a help file describing how you can use
the tool. Right below the logo of the application you see four tabs: Home, Security, Application,
and Provider. The Home tab takes you back to the start page you see in Figure 16-16. The
Application tab is used to configure different application settings and the Provider tab enables you
to reconfigure the chosen provider for the application. In this exercise, all that’s important is the
Security tab, so go ahead and click it. You should see the screen displayed in Figure 16-17.

The bottom part of the screen is divided into three parts: Users, Roles, and Access Rules. You
see how to use the Users and Roles in this exercise. The Access Rules is used to block or open
up specific parts of your web site to users or roles. You won’t see how to use it in this chapter,
but instead you’ll learn how to change some of these settings in web.config directly in a later
exercise.

	3.	 Make sure that under Users you see the Create User and Manage Users links. If you don’t see
them, but you see a note about Windows authentication instead, click the Select Authentication
Type link, then select From the Internet, and finally click Done. Your screen should now look like
Figure 16-17.

	4.	 In the Roles section, click the Enable Roles link. The page reloads and now offers a link with
the text Create or Manage Roles. Click that link to open the Create New Role page visible in
Figure 16-18.

502211c16.indd 605 2/19/10 9:59:03 AM

606  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

Figure 16-17

Figure 16-18

	5.	 Enter Managers as the new role name and click the Add Role button. You should see the new role
appear. Click the Back button at the bottom-right of the page to return to the main Security page.

	6.	 Click the Create User link under the Users section. You’re taken to a page that enables you to
enter the details for a new user and assign that user to the Managers role at the same time. Type
Manager as the user name. As a password, enter something that meets the password rules you

502211c16.indd 606 2/19/10 9:59:03 AM

The Role Manager  ❘  607

configured earlier. A password like Manager##123 will do. Enter your e‑mail address and don’t
forget to check the Managers role name in the list of roles on the right.

	7.	 Click Create User to add the user to the system and then click Continue on the confirmation page.
At the bottom of the page click the Back button so you reach the main Security page.

	8.	 On the Security page click the Manage Users link. You are taken to a page that shows a list of all
available users in the system, shown in Figure 16-19.

Figure 16-19

From here you can edit, enable, disable, or delete existing users. For example, if you previously
set DisableCreatedUser to True in the CreateUserWizard, you can enable the user here by
checking the check box in front of the user name, visible in Figure 16-19. You can change the roles
that are assigned to the user by clicking the Edit Roles link. Also, using the filter controls and the
alphabet above the user list, you can quickly search for a specific user in case you’re dealing with
a lot of user accounts.

	9.	 To see where your user and role ended up, close the browser and go back to VWD. On the
Solution Explorer, double-click the ASPNETDB.MDF database in the App_Data folder to open it in
the Database Explorer window. Then expand the Tables node, right-click the aspnet_Roles table,
and choose Show Table Data. The role you created in step 5 should be listed. Open up some of the
other tables such as aspnet_Membership and aspnet_UsersInRoles and inspect the data they
contain. In the first table you should see the user account you created in steps 6 and 7, and the lat‑
ter table contains a relationship between the new role and user account.

502211c16.indd 607 2/19/10 9:59:03 AM

608  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

How It Works

Just like the login controls, the WSAT eventually talks to the provider you configured in the web.config
file. In the case of the Planet Wrox application it means it talks to the AspNetSqlMembershipProvider,
which in turn talks to a SQL Server Express database identified by the LocalSqlServer connection string.
The users and roles you create are stored in the various aspnet_* tables in the database. Users that you
create using the WSAT end up in the exact same location as those created with the CreateUserWizard
control. In fact, the WSAT uses a CreateUserWizard to create new user accounts. This means that
any user you enter in the WSAT is able to log in using your standard Login.aspx page. In a later
exercise, you use the Manager account you created in this exercise to log in to the site and access
the Management folder.

In order to use the role you created in this exercise you have a few options at your disposal. First, you
can use the role name to block access to specific folders in your web application through settings in the
web.config file. Secondly, you can use the role in controls like the LoginView to present different con‑
tent to different users. Finally, you can use the Role API to check whether the current user is in a spe‑
cific role. This gives you fine control over the content or functionality you can offer to certain privileged
users.

You see how to block access to the Management folder and modify the LoginView in the next sec‑
tion; using the Role API is discussed in a later exercise.

Configuring the Web Application to Work with Roles
On the Security page of the WSAT you saw a section called Access Rules. This part of the tool
enables you to block or open up resources in your site. It enables you to define rules such as “This
folder is blocked for anyone except for users in the Managers role,” or “Anyone can access this file,
except for the users in the Members role and the Joe account.” The tool is quite intuitive to use, so
it isn’t difficult to set up the different rules. However, it has one downside: it stores the security set‑
tings in separate web.config files, one for each subfolder you configure.

This makes it somewhat difficult to get an overview of all the different security settings. Fortunately,
ASP.NET also enables you to configure the same settings in the main web.config using <location>
elements. A <location> element has a path attribute that points to a file or folder you want to con‑
figure differently. You can use the <location> element for many (but not all) other settings from
web.config as well (for example, you could set the theme attribute of the <pages> element for the
Management folder in the main web.config). For the following exercise, you’ll only set the child ele‑
ments of <location> to those related to security.

Blocking Access to the Management FolderTry It Out	

Obviously, you don’t want just anyone to mess with the reviews and genres that you have posted on
your web site. Therefore, it’s important to block access to the Management folder to anyone except site
managers assigned to the Managers role. In this exercise you see how to modify web.config to block
the folder so only the user account you assigned to the Managers role earlier can access this folder and
the files it contains.

502211c16.indd 608 2/19/10 9:59:04 AM

The Role Manager  ❘  609

	1.	 Open the web.config file at the root of the site. Scroll all the way down to the closing
</configuration> tag and right before it type a <location> element. Add a path attribute to
the element and set its value to Management. Note that IntelliSense kicks in to help you complete
the element and find the attribute. Complete the configuration by entering the following settings:

 </system.net>
 <location path=”Management”>
 <system.web>
 <authorization>
 <allow roles=”Managers” />
 <deny users=”*” />
 </authorization>
 </system.web>
 </location>
</configuration>

	2.	 Save and close the web.config file.

	3.	 Open the main master page for the site (Frontend.master) in Design View and scroll down to
the end of the file. Select the LoginView control and open its Smart Tasks panel. At the top of the
panel, click the Edit RoleGroups link, shown in Figure 16-20.

Figure 16-20

	4.	 In the dialog box that opens, click the Add button to insert a new RoleGroup and then set the
Roles property of this group to Managers, as shown in Figure 16-21.

Figure 16-21

502211c16.indd 609 2/19/10 9:59:04 AM

610  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

	5.	 Click OK to insert the RoleGroup and return to Design View.

	6.	 Still on the Smart Tasks panel of the LoginView, choose RoleGroup[0] - Managers from the
Views drop-down list. This switches the current template of the control to the RoleGroup for
Managers, so you can add content that is only visible to Managers.

	7.	 From the Standard category of the Toolbox drag a HyperLink control and drop it into the
LoginView. Using the Properties Grid, set the Text property of this HyperLink to Manage Site
and set the NavigateUrl to ~/Management/Default.aspx. (You can use the URL picker for the
HyperLink by clicking the small button with the ellipsis on it.) Switch to Markup View and after
the closing tag of the HyperLink control type the word or followed by a LoginStatus control that
you can drag from the Toolbox, or copy from the existing code in the LoggedInTemplate.

When you are ready your LoginView should contain the following code:

<asp:LoginView ID=”LoginView1” runat=”server”>
 ...
 </LoggedInTemplate>
 <RoleGroups>
 <asp:RoleGroup Roles=”Managers”>
 <ContentTemplate>
 <asp:HyperLink ID=”HyperLink1” runat=”server”
 NavigateUrl=”~/Management/Default.aspx”>Manage Site</asp:HyperLink> or
 <asp:LoginStatus ID=”LoginStatus2” runat=”server” />
 </ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
 ...

	8.	 Save all your changes and then request the home page (Default.aspx) for the site in your browser.
Verify that you are currently not logged in (check the footer of the page and if necessary click the
Logout link).

	9.	 Click the Login link on the Menu or TreeView and then log in with
the Manager account you created earlier in this chapter. Make sure
you don’t check the Remember Me option. The page refreshes and
now shows the Manage Site link in the footer of each page
(see Figure 16-22).

If you don’t see the Manage Site and Logout links in the footer region, close all browser windows,
go back to the WSAT (using Website ➪ ASP.NET Configuration in VWD), and ensure the account
you’re using is assigned to the Managers role. Additionally, you may need to stop the built-in develop‑
ment web server by using the Windows tray bar, and then open the Login page again.

	10.	 Click the Manage Site link to open the Management section of the web site. Copy the current URL
of the page from the browser’s address bar to the clipboard (it should be something like http://
localhost:49666/Management/Default.aspx). Click the Back button of your browser to go
back to the home page and then click the Logout button in the footer. Close all open browser win‑
dows and open a new instance of your browser again. (You can do this from the Windows Start
menu or from your desktop if you have a shortcut there, or you can right-click a page in VWD and
choose View in Browser.)

Figure 16-22

502211c16.indd 610 2/19/10 9:59:04 AM

The Role Manager  ❘  611

	11.	 Paste the address you just copied in the address bar of the browser window and press Enter.
Instead of going to an address like:

http://localhost:49666/Management/Default.aspx

you are taken to the Login page:

http://localhost:49666/login.aspx?ReturnUrl=%2fManagement%2fDefault.aspx

Note that the page you initially requested (Management/Default.aspx) is now appended to
the query string. The forward slashes (/) in the address have been encoded to their URL-safe
counterpart ​— ​%2f ​— ​automatically. Log in with your Manager account and you should see the
Management section appear again.

How It Works

There are a couple of interesting things you need to look at in this exercise. First, look at the settings
you added to the web.config file to limit access to the Management folder:

<location path=”Management”>
 <system.web>
 <authorization>
 <allow roles=”Managers” />
 <deny users=”*” />
 </authorization>
 </system.web>
</location>

When the ASP.NET runtime processes the request for a page, it checks the various configuration files to
see whether the current user is allowed to access that resource. For requests to files in the Management
folder, it encounters the rule set in the <location> element. It starts scanning the various rules (allow
and deny elements with roles or users attributes to specify the users or roles that are affected by the
rule) and as soon as it finds a rule, it stops the scanning process and applies that rule. If no rule is satis‑
fied, access is granted! Therefore, it’s important to end the rule with a deny rule to block all other users
that haven’t been granted access previously.

When an unauthenticated user logs in, the first rule won’t match because the anonymous user is not a
member of the Managers role. The user is then denied access because of the deny rule that blocks all
users, indicated by the asterisk (*).

After you logged in as a Manager and requested the same resource, the rule set was scanned again. The
runtime then found the allow element that grants access to the Managers role and immediately let you
in. The final rule that blocks access to all other users was not even checked. In addition to specific roles
or user names and the asterisk (*) to refer to all users, you can also use the question mark (?) to refer
to unauthenticated or anonymous users. So, for example, to let any logged-in user access the Reviews
folder regardless of the role they are in, and block access to all other users, you can add the following
<location> element to your configuration file:

<location path=”Reviews”>
 <system.web>
 <authorization>
 <deny users=”?” />
 </authorization>
 </system.web>
</location>

502211c16.indd 611 2/19/10 9:59:04 AM

612  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

This denies access to all users that are not logged in. Because of the default rule that grants access to
the resource if the current user is not matched by an earlier rule, all logged-in users can successfully
access files in the Reviews folder.

You can specify multiple roles or user names in the roles and user attributes by separating them with
a comma.

It’s important to understand how the RoleGroups element of the LoginView works. Although you can
specify multiple RoleGroup elements that may all apply to a certain user, only the first that matches is
displayed. Consider a user called Lucas assigned to the role WebMasters and to the role Managers and
a web page with the following LoginView:

<asp:LoginView ID=”LoginView1” runat=”server”>
 <RoleGroups>
 <asp:RoleGroup Roles=”Managers”>
 <ContentTemplate>
 <!-- Content for Managers here -->
 </ContentTemplate>
 </asp:RoleGroup>
 <asp:RoleGroup Roles=”WebMasters”>
 <ContentTemplate>
 <!-- Content for WebMasters here -->
 </ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
</asp:LoginView>

With this code, the user Lucas only sees the content of the first RoleGroup, even though he is also assigned
to the WebMasters role.

Programmatically Checking Roles
Although it’s easy to use the LoginView control to change the content a user is allowed to see at run‑
time, this isn’t always enough. There are times where you need programmatic control over the data
you are presenting based on someone’s role membership. You can access information about roles for
the current user in a number of ways. First of all, you can access the IsInRole method of the User
property from the current page or user control like this:

VB.NET

If User.IsInRole(“Managers”) Then
 ‘ This code runs for Managers only
End If

C#

if (User.IsInRole(“Managers”))
{
 // This code runs for Managers only
}

502211c16.indd 612 2/19/10 9:59:04 AM

The Role Manager  ❘  613

Alternatively, you can access the Roles class that contains a number of static methods that you can
access directly. The following code is functionally equivalent to the previous example:

VB.NET

If Roles.IsUserInRole(“Managers”) Then
 ‘ This code runs for Managers only
End If

C#

if (Roles.IsUserInRole(“Managers”))
{
 // This code runs for Managers only
}

The biggest difference between the two is that for the latter option to work, you need to have the
Role Manager enabled. Because that’s the case in the Planet Wrox web site, you can choose any of
these two methods. For custom solutions, where you are not using a role provider but your own cus‑
tom solution, you can only use the first code construct.

Besides the IsUserInRole method, the Roles class contains a lot of other methods that enable you to
work with roles programmatically. For example, you can create and delete roles, assign users to and
remove users from roles, and you can get a list of users that are assigned to a certain role. For more
information about the Roles API, check out the MSDN documentation at http://tinyurl.com/
RolesAPI or pick up a copy of Professional ASP.NET 3.5 Security, Membership, and Role
Management with C# and VB by Bilal Haidar (Wrox, ISBN: 978-0-470-37930-1). Although the book
targets ASP.NET 3.5, you’ll find that most topics discussed in that book still apply to ASP.NET 4.

In the following exercise you learn how to modify the photo albums page so users logged in as
Managers are able to delete pictures from a photo album. Other users won’t be able to delete a pic‑
ture because the Delete button will be hidden for them.

Checking Roles with IsUserInRole at RuntimeTry It Out	

This Try It Out uses a programmatic check for the user’s role to hide or show the Delete but‑
ton. Although you could recreate this example by using a LoginView with different templates and
RoleGroups, this exercise uses custom code to make it easier to modify the code later on so that owners
of a specific photo album can delete their own pictures as well. For now, the Edit Photo Album link you
add is visible to all users, but you see how to fix that in the next chapter.

	1.	 Open Default.aspx from the PhotoAlbums folder in Markup View and right below the closing
tag of the ListView control enter two HTML breaks (you can use the br snippet) followed by a
HyperLink control. Set its ID property to EditLink and its Text property to Edit Photo Album.
You assign the NavigateUrl in the next step.

<asp:HyperLink ID=”EditLink” runat=”server” Text=”Edit Photo Album” />

502211c16.indd 613 2/19/10 9:59:04 AM

614  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

	2.	 Switch to Design View, select the ListView control, open up its Properties Grid and switch to
the Events tab. Double-click DataBound to set up a handler for that event. Inside the handler that
VWD created, add the following code:

VB.NET

Protected Sub ListView1_DataBound(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles ListView1.DataBound
 If Not String.IsNullOrEmpty(DropDownList1.SelectedValue) Then
 EditLink.NavigateUrl = String.Format(
 “~/ManagePhotoAlbum.aspx?PhotoAlbumId={0}”, DropDownList1.SelectedValue)
 EditLink.Visible = True
 Else
 EditLink.Visible = False
 End If
End Sub

C#

protected void ListView1_DataBound(object sender, EventArgs e)
{
 if (!string.IsNullOrEmpty(DropDownList1.SelectedValue))
 {
 EditLink.NavigateUrl = string.Format(
 “~/ManagePhotoAlbum.aspx?PhotoAlbumId={0}”, DropDownList1.SelectedValue);
 EditLink.Visible = true;
 }
 else
 {
 EditLink.Visible = false;
 }
}

	3.	 Open up ManagePhotoAlbum.aspx in the root of the site and switch it to Design View. Select
the ListView, and open its Properties Grid. Switch to the Events tab and double-click the
ItemCreated event to set up an event handler for that event.

	4.	 At the top of the Code Behind file add an Imports/using statement for the System.Web.Security
namespace:

VB.NET

Imports System.Web.Security

C#

using System.Web.Security;

	5.	 Add the following code to the event handler that VWD created:

VB.NET

Protected Sub ListView1_ItemCreated(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.ListViewItemEventArgs) _
 Handles ListView1.ItemCreated
 Select Case e.Item.ItemType

502211c16.indd 614 2/19/10 9:59:04 AM

The Role Manager  ❘  615

 Case ListViewItemType.DataItem
 Dim deleteButton As Button =
 CType(e.Item.FindControl(“DeleteButton”), Button)
 deleteButton.Visible = Roles.IsUserInRole(“Managers”)
 End Select
End Sub

C#

protected void ListView1_ItemCreated(object sender, ListViewItemEventArgs e)
{
 switch (e.Item.ItemType)
 {
 case ListViewItemType.DataItem:
 Button deleteButton = (Button)e.Item.FindControl(“DeleteButton”);
 deleteButton.Visible = Roles.IsUserInRole(“Managers”);
 break;
 }
}

	6.	 Save all your changes and then request Default.aspx from the PhotoAlbums folder in your browser
by pressing Ctrl+F5. If you’re not logged in, click the Login link in the main Menu or TreeView, log in
with the Manager account you created earlier in this chapter, and return to the Gig Pics page.

	7.	 Choose one of the photo albums from the drop-down list. The page reloads and shows the pictures
in the photo album.

	8.	 Click the Edit Photo Album link at the bottom of the page. Figure 16-23 shows how each picture is
now associated with a Delete button that deletes the picture when clicked. Click the Delete button
to confirm that it works.

Figure 16-23

502211c16.indd 615 2/19/10 9:59:04 AM

616  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

	9.	 Click the Logout link in the footer again and go to the Login page. Log in with an account you
created earlier in this chapter that is not a member of the Managers role. Go back to the Gig Pics
page, choose a photo album from the list and click the Edit Photo Album link. This time, you don’t
get a Delete button, because the account you’re logged in with is not assigned to the Managers role.

How It Works

Most of the code in this exercise shouldn’t be new to you. You have seen how you can delete items with
the EntityDataSource and ListView controls. You also learned how to handle the ItemCreated and
other events and search for controls in an item using FindControl.

What’s new in this example is the way you check whether the current user is a member of the
Managers role:

VB.NET

Dim deleteButton As Button = CType(e.Item.FindControl(“DeleteButton”), Button)
deleteButton.Visible = Roles.IsUserInRole(“Managers”)

C#

Button deleteButton = (Button)e.Item.FindControl(“DeleteButton”);
deleteButton.Visible = Roles.IsUserInRole(“Managers”);

The IsUserInRole method returns a Boolean that indicates whether the current user is a manager.
When the method returns True, it means that the Visible property of the Button is set to True. When
the method returns False, the button is hidden and the user is not able to delete pictures from the
photo album.

Practical Security Tips

The following list provides some practical security tips:

Although the concept of security is introduced quite late in the chapter, you shouldn’t see ➤➤

it as an afterthought. To ensure you create a solid and secure application you should keep
security in mind from the very early stages of your web site development. Deciding whether
you want to have areas that are only accessible to certain users, and whether you are going
to force users into getting an account for your site before they get access is best done as early
as possible. The later in the process you introduce these concepts, the more difficulties you’ll
face when integrating this functionality.

Try to group resources like ASPX pages under folders that represent roles in your system. ➤➤

Take, for example, the Management folder in the Planet Wrox web site. All pages related
to the management of your site are packed together in a single folder, making it very easy
to block the entire folder with a single <location> element in the web.config file. When
the files you want to protect are scattered throughout your web site, you’ll need more time
to configure the application, and you’ll end up with a cluttered view of the active security
settings.

502211c16.indd 616 2/19/10 9:59:04 AM

Summary  ❘  617

When you create roles to differentiate between users on your web site, try to limit the num‑➤➤

ber of different roles your system has. You’ll find that your system becomes much easier to
manage with only a handful of logically grouped roles than with a large number of roles with
only one or two users in them.

Summary

Security in your ASP.NET site can be implemented with several techniques, including Windows
authentication (where the web server takes care of authentication) or third-party authentication
(where an external service like Microsoft Passport takes care of validating the user). Last, you can
use Forms authentication, which is the de facto standard for many of today’s ASP.NET web sites.

In general, authentication encompasses three important concepts: identity, authentication, and
authorization. Together, they determine who you are and what you are allowed to do.

The ASP.NET Membership provider enables you to create and manage users in a central database
using handy controls such as the CreateUserWizard, PasswordRecovery, and Login.

Users and roles are managed with the WSAT, so you can assign user accounts to different roles as
you saw in this chapter. You can then open specific resources in your web site to members in a cer‑
tain role using simple <location> elements in the web.config file.

The various login controls enable you to customize the content that users get to see. In the next
chapter you discover how to take this one level further, by creating dynamic pages that adapt based
on the user that is accessing them.

Exercises	

1.	 What’s the difference between authentication and authorization?

2.	 Right now the Management folder is blocked for all users except those in the Managers role. What

change do you need to make to the web.config file if you also want to open up the folder for the

user John and all people in the Editors role?

3.	 Imagine you have a web site that features a Login page with a single Login control. What change

to the Login control do you need to make to send users to MyProfile.aspx in the root after they

log in?

4.	 What’s the difference between the LoginView and LoginStatus controls? When would you use

each one?

Answers to Exercises can be found in Appendix A.

502211c16.indd 617 2/19/10 9:59:05 AM

618  ❘  Chapter 16   Security in Your ASP.NET 4 Web Site

What You Learned in This Chapter⊲⊲

Application services A set of ASP.NET services that you can access from your web application

to handle tasks such as membership, role and profile management

Authentication The process of proving your identity to a system

Authorization The process of determining the permissions a user has in a system

Login controls The set of security controls that ship with ASP.NET and enable you to sign

up, log in, recover your password and more

Membership provider One of the ASP.NET application services that handles membership

related tasks (including creating of users, logging in and more)

Permissions Determine the operations a user in the system is allowed to carry out

Provider model A model where an interchangeable piece of software is used for certain

application tasks. Through configuration you can assign a different piece

of software that handles the same tasks (but in a different way)

Role manager One of the ASP.NET application services that handles role related tasks

including creating roles, assigning users to roles and checking their role

membership

502211c16.indd 618 2/19/10 9:59:05 AM

Personalizing Web Sites

What You Will Learn in This Chapter:

Details about the Profile feature that ships with ASP.NET➤➤

How to create and consume a user’s profile in a web site➤➤

How you can recognize your users and how to serve them custom-➤➤

ized content

How you can access the profile of other users in the site➤➤

There is only one thing that beats good content on the Web ​— ​good personalized content. In the
era of information overload and the huge amount of competitive sites, it’s important to know
your visitors and understand the possibilities you have to present them personalized content.
With a good personalization strategy you can create a web site that lives up to your users’
expectations by presenting them with exactly the data they are looking for. Personalization is
useful for many different scenarios. For example, on a sports site you use personalized con‑
tent to highlight activities from the user’s favorite team. On a site that deals with program‑
ming, you can personalize content by showing users examples in their preferred programming
language(s) only. On a news web site, you can let users choose one or more news categories
(World, Local, Sports, Business, Financial, and so on) and target the content you show them
based on these preferences. You can take this one step further by sending them e‑mail updates
when a new article is posted in one of those categories.

However, personalization goes further than just storing personal preferences and adapting
the content to these preferences. With personalization you can also keep track of other user
details, such as a name, date of birth, visits to the site, items users bought in an online shop,
and so on. You can then use these details to further personalize web pages, creating a closer
relationship with your visitors.

In the Planet Wrox web site, personalization is implemented simply yet effectively. The main
Reviews page is designed to only show the reviews for those music genres that the user is

17

502211c17.indd 619 2/19/10 9:58:52 AM

620  ❘  Chapter 17   Personalizing Web Sites

interested in. To see all the available reviews, users can still visit the All.aspx page but by visiting
the personalized page, they only see reviews in genres they really like.

Additionally, users can enter personal details about themselves, such as a first and last name, and a
short biography. These details will be shown on the Photo Albums details page so you know who
uploaded a particular photo album.

To enable you to add personalization features to a web site, ASP.NET 4 ships with an application
service called Profile. With the Profile service you can store data for a particular user with very few
lines of code.

By the end of this chapter, you’ll have enough knowledge about the personalization features brought
by Profile to create dynamic and personalized web sites.

 Understanding Profile

The ASP.NET Profile is another application service that ships with ASP.NET. It enables you to store
and retrieve information about users to your site that goes beyond basic information such as an
e‑mail address and password that users can enter during sign-up. With Profile, you can store infor‑
mation such as a first and last name, a date of birth, and much more, as you see later in this chap‑
ter. By keeping track of the user to which that data belongs, ASP.NET is able to map that data to a
user the next time she visits your site, whether that be minutes or weeks later. The cool thing about
Profile is that it enables you to store data for registered users as well as anonymous users. So, even
if your visitors haven’t signed up for an account, you can recognize them and store information
about them.

You access the information in a user’s profile through a clean API with virtually no code. All you
need to do is define the information you want to keep track of in the central web.config file and
the Profile feature takes care of the rest. All interaction with the database to retrieve or store profile
information in the database is handled automatically for you.

Enabling Profile in your web application is a simple, two-step process:

	 1.	 Define the information you want to store for a user in the web.config file. Based on this
information, the ASP.NET runtime generates and compiles a class for you on the fly that
gives you access to the properties you defined. It then dynamically adds a property called
Profile to the pages in your web site, so you can easily access it from every page in your site.

	 2.	 In your application you program directly to this generated class to get and store the profile
information for the current user.

The ASP.NET Profile by default is connected to a logged-in user, although you can also save profile
data for unauthenticated users as you see later in this chapter.

Because data about the logged-in user is stored in a cookie by default, your users need to have browsers
that support cookies for the ASP.NET Profile feature to work correctly.

502211c17.indd 620 2/19/10 9:58:52 AM

 Understanding Profile  ❘  621

In the following section you see how to define profile properties in web.config, and how to access
them in your web pages.

NOTE  ​It’s important to realize that the built-in Profile feature works only with
Web Site Projects and not with Web Application Projects. For a discussion on
the difference between the two, refer to Chapter 2. If you find that none of the
examples in this chapter seem to work, check that you haven’t accidentally cre-
ated a Web Application Project. The simplest way to check is look at the Code
Behind file of a Web Form. If you see two Code Behind files (one named after
the page with a .cs or .vb extension and one with an additional Designer
extension) you have created a Web Application Project. In that case, get your-
self a copy of the Chapter 16 folder that is part of the source that comes with
this book and use that as the starting point for this chapter.

Configuring the Profile
You define a profile for your web site in the web.config file by creating a <profile> element as
a direct child of the <system.web> element. Between the <profile> tags you need to create a
<properties> element that is used to define the properties you want to expose from your Profile
object. Two types of properties exist: simple properties and complex properties, referred to as profile
groups.

Creating Simple Profile Properties

You define simple properties as direct children of the <properties> element using an <add> ele‑
ment. The following example demonstrates how to create a property that can be used to hold a
user’s first name and one to hold a date of birth. The FirstName property can be accessed and set
for authenticated and anonymous users, whereas the DateOfBirth property is accessible only to
logged-in users:

<system.web>
 ...
 <profile>
 <properties>
 <add name=”FirstName” allowAnonymous=”True” />
 <add name=”DateOfBirth” type=”System.DateTime” />
 </properties>
 </profile>

Because properties are by default of type System.String, there’s no need to define an explicit type
on the property for simple properties like a first name. However, for other types like a DateTime, a
Boolean, an Integer, or your own types, you need to define the type explicitly using the type attri‑
bute and its fully qualified name including its namespace as shown for the DateOfBirth property.
The following table lists the most common attributes of the <add> element that influence the proper‑
ties of a profile.

502211c17.indd 621 2/19/10 9:58:52 AM

622  ❘  Chapter 17   Personalizing Web Sites

Attribute Description

name Defines the name of the property, such as FirstName, DateOfBirth, and so

forth.

type Sets the full .NET type name of the property, such as System.String,

System.Boolean, System.DateTime, and so on.

allowAnonymous Specifies whether the property can be written to for anonymous users.

The default is False. When you set this attribute to True, you also need to

enable anonymousIdentification, discussed later in this chapter.

defaultValue Defines the default value for the property if it hasn’t been set explicitly. When

you leave out this attribute, the profile property has as its default value the

default value for the underlying type (for example null for a String, 0 for an

Int32, and so on).

readOnly Specifies whether the profile property can be changed at runtime. The

default is False, which means you can read from and write to the property.

Besides simple properties, you can also create profile groups that enable you to group other simple
properties together.

Creating Profile Groups

Profile groups serve two distinct purposes: first, they enable you to logically group related proper‑
ties. For example, you can create a group called Address that in turn has properties like Street,
PostalCode, and City.

Groups also enable you to have properties with the same name, but located in a different group.
For example, you can have two groups called VisitAddress and PostalAddress that both feature
properties like Street and PostalCode, making it easier for a developer using your Profile object
to find the relevant information.

To create a profile group you add a <group> element to the <properties> element of your profile
and then specify a name. The <group> element then contains one or more simple properties. The
following example shows a profile group for a PostalAddress:

<properties>
 <add name=”FirstName” />
 <group name=”PostalAddress”>
 <add name=”Street” />
 <add name=”PostalCode” />
 <add name=”City” />
 <add name=”Country” />
 </group>
</properties>

You can have multiple groups within the <properties> tags, but you can have only one level of
groups. This means that you can’t nest a <group> element in another <group> or <add> element.

502211c17.indd 622 2/19/10 9:58:52 AM

 Understanding Profile  ❘  623

Using Non-standard Data Types

In addition to the data types listed earlier such as String, DateTime, and Integer, you can also use
your own types you have defined (in the App_Code folder, for example).

As with the built-in .NET types, you need to refer to your type using its fully qualified name that
includes the namespace and the class name. Imagine you have a type called Preference that con‑
tains various properties (implemented as automatic properties in this example) related to the user’s
preference. To include this type in the profile you need to wrap it in a namespace first:

VB.NET

Namespace PlanetWrox
 Public Class Preference
 Public Property FavoriteColor As String
 ‘ Other properties go here
 End Class
End Namespace

C#

namespace PlanetWrox
{
 public class Preference
 {
 public string FavoriteColor { get; set; }
 // Other properties go here
 }
}

You then refer to the type in an <add /> element as follows:

<add name=”Prefs” type=”PlanetWrox.Preference” />

A situation where you need a different syntax to refer to a type in the profile setup is when you are
using generics. Chapter 5 discusses how to use generics to store role names using a List of strings:

VB.NET

Dim roles As New List(Of String)
...
roles.Add(“Members”)

C#

List<string> roles = new List<string>();
...
roles.Add(“Members”);

To give your profile a property that is of a generic List type, you need to use some special syntax.
The following setting in web.config creates a profile property called FavoriteGenres that stores
the user’s favorite genres as a List (Of Integer) in VB.NET and as a List<int> in C#:

<add name=”FavoriteGenres”
 type=”System.Collections.Generic.List`1[System.Int32]” />

502211c17.indd 623 2/19/10 9:58:53 AM

624  ❘  Chapter 17   Personalizing Web Sites

The first part of the type attribute looks quite normal. The List class lives in the System.
Collections.Generic namespace so it makes sense that you need to specify that here as well.
However, right after the class name (List) you see `1. This is not a typo, but the .NET way to refer
to generic types in plain text. To define a property that is based on a generic type you need to use
the back tick (`) followed by a 1. The back tick is usually found to the left of the 1 key on your key‑
board. The `1 is then followed by a pair of square brackets that contains the actual type you want
to use for the list. The type specified in this profile property is identical to its VB.NET and C# coun‑
terparts that are defined as follows:

VB.NET

Dim FavoriteGenres As New List(Of Integer)

C#

List<int> FavoriteGenres = new List<int>();

You see how to make use of this and other profile properties in the following exercises. First, you
learn how to configure Profile in web.config in the next Try It Out. Later exercises show you how
to work with these properties, and how to use the various methods of the List class.

Creating a ProfileTry It Out	

In this Try It Out you see how to create a profile that is capable of storing a user’s first and last name,
a date of birth, a short biography, and a list of IDs of the user’s favorite genres. This list is later used to
show only the reviews that match the user’s interest.

	1.	 Open the web.config file from the root of the site and locate the opening <system.web> tag.

	2.	 Add a new <profile> element as a direct child of <system.web>.

	3.	 Complete the <profile> element so it ends up looking like this:

<system.web>
 <profile>
 <properties>
 <add name=”FirstName” />
 <add name=”LastName” />
 <add name=”DateOfBirth” type=”System.DateTime” />
 <add name=”Bio” />
 <add name=”FavoriteGenres”
 type=”System.Collections.Generic.List`1[System.Int32]” />
 </properties>
 </profile>
<roleManager enabled=”true”/>

	4.	 Save the web.config file by pressing Ctrl+S. As soon as you save the file, a background process
starts to generate a class file that is used for the profile. After the class file has been created and
compiled successfully, you can access it programmatically through the Profile property of the
Page class.

502211c17.indd 624 2/19/10 9:58:53 AM

 Understanding Profile  ❘  625

	5.	 To test the profile, open the file MyProfile.aspx that you created in the previous chapter in
Design View. Double-click the page to set up an event handler for the Load event and add the
following code containing your own first and last name:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Profile.FirstName = “Your first name here“
 Profile.LastName = “Your last name here“
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Profile.FirstName = “Your first name here“;
 Profile.LastName = “Your last name here“;
}

As soon as you type the dot (.) after Profile, an IntelliSense
list appears, showing you the available profile properties (see
Figure 17-1).

	6.	 When you are finished typing the code, save and close the file because you’re done with it for now.

COMMON MISTAKES  ​If nothing shows up when pressing the dot, choose
Build ➪ Build Web Site from the main menu or press Ctrl+Shift+B. This forces
VWD to start a recompilation of the application, including the special class for
the Profile property. You see more about compilation in Chapter 19. After a
delay of a few seconds, the properties should now appear in the IntelliSense
list for the Profile property of the Page class. If they still don’t show up, check
the Error List (choose View ➪ Error List from the main menu to open up the
Error List) to verify that you didn’t make any mistakes in the web.config file and
make sure you are using a Web Site Project and not a Web Application Project.

	7.	 Switch back to the web.config file and scroll all the way to the end. Create a copy of the <location>
element that blocks access to the Management folder for unauthorized users and paste it right below
the existing element. Then modify the copy so it blocks access to the file MyProfile.aspx in the root
of the site to all unauthenticated users. You should end up with these settings:

 </location>
 <location path=”MyProfile.aspx”>
 <system.web>
 <authorization>
 <deny users=”?”/>
 </authorization>
 </system.web>
 </location>
</configuration>

Figure 17-1

502211c17.indd 625 2/19/10 9:58:53 AM

626  ❘  Chapter 17   Personalizing Web Sites

	8.	 In the Solution Explorer, right-click the file MyProfile.aspx and choose View in Browser. You
can only view this file when you’re logged in; if you weren’t logged in previously, you are taken to
Login.aspx first. Login with the user name and password you created in the previous chapter and
click Login. You’re taken back to MyProfile.aspx. Although you don’t see anything new in the
page, the code in Page_Load has run and has created a profile for you in the database.

	9.	 To see this profile, close your browser and go back to Visual Web Developer. Open the Database
Explorer (the Server Explorer in paid versions of VS) and expand the Tables element of the
ASPNETDB.MDF database. Locate the table aspnet_Profile, right-click it, and choose Show Table
Data. You should see something similar to Figure 17-2.

Figure 17-2

This figure shows the profile data for a single user. The first and last name you entered in step 5
are stored in the column PropertyValuesString. Because of the special format this data is stored
in, you shouldn’t modify this data manually. Instead, you should use Profile to change the under‑
lying data.

How It Works

When you define profile properties in web.config, the ASP.NET runtime creates a class for you in
the background. This class, called ProfileCommon, gives you access to the strongly typed properties
such as FirstName, LastName, and FavoriteGenres. The ProfileCommon class is then made acces‑
sible to the Page through its Profile property. ProfileCommon inherits from ProfileBase, the base
class defined in the .NET Framework that contains the behavior to access the profile in the database by
talking to the configured provider, the ASP.NET Profile provider. The provider in turn takes care of
all the hard work of persisting the data in the configured database. Just as the Membership and Roles
providers you saw in previous chapters, the Profile provider by default uses the database defined in the
LocalSqlServer connection string. Appendix B teaches you how to change this behavior and have the
provider use a different database.

To define properties you use <add> elements with a name attribute and an optional type if the property
is of another type than System.String. For example:

<add name=”FavoriteGenres”
 type=”System.Collections.Generic.List`1[System.Int32]” />

This property sets up a list that can store Integer values to hold the user’s favorite music genres. You
see how to use this property in a later exercise.

502211c17.indd 626 2/19/10 9:58:53 AM

 Understanding Profile  ❘  627

After you have set up the profile in web.config and the background class has been compiled, you can
access the profile in code. For example, you can now set properties such as FirstName through code:

VB.NET

Profile.FirstName = “Your first name here“

C#

Profile.FirstName = “Your first name here“;

Although not used in this exercise, you access properties in a group in pretty much the same way. All
you need to do is prefix the property name with the group name and a dot. Given the example of a
PostalAddress, you would store the street for that address like this:

VB.NET

Profile.PostalAddress.Street = “Some Street”

C#

Profile.PostalAddress.Street = “Some Street”;

Changes made to the profile are saved automatically for you during EndRequest, an event that fires
very late during the ASP.NET page life cycle. This way, you can change the profile during many of the
stages of the life cycle without having to worry about explicitly saving the profile manually.

In Figure 17-2 you can see how a single record is used to store the entire profile. The first column con‑
tains the unique ID of the user to which the profile belongs. The second column contains a list of prop‑
erty names that are saved for the current user, together with a starting index of the value and a length.
For example, for the last name you see:

LastName:S:4:10

This states that the value for the LastName property, which is stored in the PropertyValuesString col‑
umn, starts at position 4 (the fifth character because zero-based positions are used) and has a length of
10 characters. The letter between the LastName and the start index defines the column the data can be
found in: S means the PropertyValuesString column, whereas B indicates the PropertyValuesBinary
column, which is used to store complex objects in a binary format. This dense format enables the Profile
provider to store many different properties in a single column, which eliminates the need to mess with
the database schema any time the profile changes.

You learn more about reading from and writing to the profile in the following section.

Using the Profile
As you saw in the previous section, writing to the profile is easy. To change a property like
FirstName, all you need is a single line of code. The profile keeps track of the changes you have
made to it, and, if necessary, automatically saves the changes during EndRequest. Reading from the

502211c17.indd 627 2/19/10 9:58:53 AM

628  ❘  Chapter 17   Personalizing Web Sites

profile is just as easy; all you need to do is access one of its properties. The following snippet shows
how to fill a TextBox with the first name from the profile:

VB.NET

FirstName.Text = Profile.FirstName

C#

FirstName.Text = Profile.FirstName;

Retrieving properties in a group is almost identical. To access the Street property discussed in a
previous example, you need this code:

VB.NET

PostalAddressStreet.Text = Profile.PostalAddress.Street

C#

PostalAddressStreet.Text = Profile.PostalAddress.Street;

Accessing the FavoriteGenres property is slightly different. Because this property is a collection,
you shouldn’t access it directly. Instead you use its methods and properties to get data in and out.
The following example clears the entire list first, and then adds the IDs of two genres to it:

VB.NET

Profile.FavoriteGenres.Clear()
Profile.FavoriteGenres.Add(7)
Profile.FavoriteGenres.Add(11)

C#

Profile.FavoriteGenres.Clear();
Profile.FavoriteGenres.Add(7);
Profile.FavoriteGenres.Add(11);

The following exercise shows you how to store basic data in the user’s profile. You see a real-world
implementation of using the FavoriteGenres list in a later exercise.

Storing Basic User Data in the ProfileTry It Out	

In this Try It Out you modify the Profile page so users can save their first and last name, birthday, and
a short biography in their profile.

	1.	 Open MyProfile.aspx again and switch to Code Behind. Remove the two lines of code in
Page_Load that set the first and last name.

	2.	 Switch to Design View and, right above the ChangePassword control, add an HTML table of five
rows and three columns by choosing Table ➪ Insert Table.

	3.	 In the second column of each of the first four rows, drag TextBox controls and rename them, from
the first to the last row, FirstName, LastName, DateOfBirth, and Bio by setting their ID attribute.
Figure 17-3 shows you where the TextBox controls should be placed exactly.

502211c17.indd 628 2/19/10 9:58:54 AM

 Understanding Profile  ❘  629

	4.	 In the first column of each of the first four rows, drop Label controls and set their properties as
follows so each label is associated with a TextBox in the same row.

ID Text AssociatedControlID

FirstNameLabel First name FirstName

LastNameLabel Last name LastName

DateOfBirthLabel Date of birth DateOfBirth

BioLabel Biography Bio

	5.	 In the second cell of the fifth row, drag a Button, and set its ID to SaveButton and its Text to
Save Profile. Design View should look like Figure 17-3.

Figure 17-3

	6.	 In the last column of each of the first three rows, drag RequiredFieldValidator controls. Set their
properties as follows, so each validator lines up with a TextBox in the same row. Remember: you can
set the Display property for all controls at once by selecting the controls while pressing the Ctrl key.

ControlToValidate Display ErrorMessage

FirstName Dynamic First name is required.

LastName Dynamic Last name is required.

DateOfBirth Dynamic Date of birth is required.

	7.	 Next to the validator for the DateOfBirth box, drag a CompareValidator and set its properties as
follows:

Property Value

Display Dynamic

ErrorMessage Please enter a valid date.

ControlToValidate DateOfBirth

Operator DataTypeCheck

Type Date

502211c17.indd 629 2/19/10 9:58:54 AM

630  ❘  Chapter 17   Personalizing Web Sites

	8.	 Set the TextMode of the Bio control to MultiLine and set its Width and Height properties to
300px and 75px, respectively.

	9.	 Modify the text above the table to indicate that users can now do more than just change their pass‑
word alone. Your Design View should look like Figure 17-4.

Figure 17-4

	10.	 Double-click the Save Profile button and in the Click event handler that VWD added for you,
write the following bolded code:

VB.NET

Protected Sub SaveButton_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles SaveButton.Click
 If Page.IsValid Then
 Profile.FirstName = FirstName.Text
 Profile.LastName = LastName.Text
 Profile.DateOfBirth = DateTime.Parse(DateOfBirth.Text)
 Profile.Bio = Bio.Text
 End If
End Sub

C#

protected void SaveButton_Click(object sender, EventArgs e)
{
 if (Page.IsValid)
 {
 Profile.FirstName = FirstName.Text;
 Profile.LastName = LastName.Text;
 Profile.DateOfBirth = DateTime.Parse(DateOfBirth.Text);

502211c17.indd 630 2/19/10 9:58:54 AM

 Understanding Profile  ❘  631

 Profile.Bio = Bio.Text;
 }
}

	11.	 In the Page_Load event handler of the same page, add the following code, which fills in the text
box controls with the data from the profile when the page loads:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Not Page.IsPostBack Then
 FirstName.Text = Profile.FirstName
 LastName.Text = Profile.LastName
 DateOfBirth.Text = Profile.DateOfBirth.ToShortDateString()
 Bio.Text = Profile.Bio
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 FirstName.Text = Profile.FirstName;
 LastName.Text = Profile.LastName;
 DateOfBirth.Text = Profile.DateOfBirth.ToShortDateString();
 Bio.Text = Profile.Bio;
 }
}

	12.	 Save all changes and request the page in the browser. If you’re required to log in first, enter your
details and click the Login button. You should see the My Profile page reappear with the data you
entered for the first and last names in the previous Try It Out already filled in. Change that data
into your details and click the Save Profile button.

	13.	 Close your browser and request MyProfile.aspx again. Note that your changes have been per‑
sisted between the two browser sessions.

How It Works

Much of what you have seen in this exercise should be familiar by now. The page contains a num‑
ber of TextBox controls that are validated using RequiredFieldValidator and CompareValidator
controls. Additionally, the Label controls are hooked up to their respective TextBox controls using
the AssociatedControlID property. This makes it easy to put focus on the controls in the browser
because clicking a Label now puts the cursor in the associated TextBox. With the tricks you learned in
Chapter 15 you make the controls even more accessible by setting the AccessKey properties.

When you click the Save Profile button, the values are retrieved from the four TextBox controls and
stored in the profile. When the page loads the first time, the reverse of this process takes place: the
controls are pre-filled with the values from the profile. To avoid overwriting the data that the user has

502211c17.indd 631 2/19/10 9:58:54 AM

632  ❘  Chapter 17   Personalizing Web Sites

entered, the code only gets the data from the profile when the page initially loads, and not during a
postback:

VB.NET

If Not Page.IsPostBack Then
 FirstName.Text = Profile.FirstName

End If

C#

if (!Page.IsPostBack)
{
 FirstName.Text = Profile.FirstName;
 ...
}

Although the example itself is pretty trivial, it lays out a nice foundation for a more advanced sce‑
nario using the List of integers to store the user’s preference for certain music genres. You can then
use this list of favorite genres to limit the list with reviews to those the user is really interested in.
You see how to store the user’s preference in Profile in the following exercise; a later exercise shows
you how to use the saved data again.

Storing Genre Preferences in the ProfileTry It Out	

In this Try It Out you learn how to fill the FavoriteGenres property of the user profile. In order
to let the user choose their favorite genres, you’ll display a CheckBoxList that is hooked up to an
EntityDataSource that retrieves the available genres. When the user saves the data, the items that the
user checked are then stored in the profile.

	1.	 In MyProfile.aspx, add a table row above the one with the Save Profile button. To do this, make
sure you’re in Design View, right-click an empty spot in the row with the button, and choose
Insert ➪ Row Above from the context menu that appears. Alternatively, click the cell to put the
cursor in it and press Ctrl+Alt+up arrow.

	2.	 In the first cell of the new row, drag a Label and set its Text to Favorite genres.

	3.	 In the second cell drag a CheckBoxList control from the Standard category of the Toolbox and set
its ID to PreferenceList.

	4.	 Hook up the CheckBoxList control to a new EntityDataSource by clicking Choose Data Source
on its Smart Tasks panel. Choose <New data source> from the data source drop-down list, then
choose the Entity data source type and click OK. In the Configure Data Source wizard for the new
data source control, choose PlanetWroxEntities as the Named Connection, click Next, and
choose Genres as the EntitySetName. In the Select list, check only the items for the Id and Name
properties. Your Configure Data Source dialog box now looks like Figure 17-5.

502211c17.indd 632 2/19/10 9:58:54 AM

 Understanding Profile  ❘  633

Figure 17-5

	5.	 Click Finish to close the dialog box. Back in the Data Source Configuration Wizard for the
CheckBoxList control, choose Name as the data field to display and Id as the data field for the
value. If these items don’t appear in the drop-down lists, click the blue Refresh Schema link at
the bottom of the dialog first. Your screen now looks like Figure 17-6.

Figure 17-6

502211c17.indd 633 2/19/10 9:58:54 AM

634  ❘  Chapter 17   Personalizing Web Sites

Click OK to close the dialog.

	6.	 Back in Design View, click the EntityDataSource that was just added and press F4 to open its
Properties Grid. Locate the OrderBy property and enter it.Name to sort the list of genres alpha‑
betically. Switch to Markup View and confirm that the code for the EntityDataSource control
and the CheckBoxList looks as follows:

<asp:CheckBoxList ID=”PreferenceList” runat=”server”
 DataSourceID=”EntityDataSource1” DataTextField=”Name” DataValueField=”Id”>
</asp:CheckBoxList>
<asp:EntityDataSource ID=”EntityDataSource1” runat=”server”
 ConnectionString=”name=PlanetWroxEntities”
 DefaultContainerName=”PlanetWroxEntities” EnableFlattening=”False”
 EntitySetName=”Genres” OrderBy=”it.Name” Select=”it.[Id], it.[Name]”>
</asp:EntityDataSource>

	7.	 In Design View, click the CheckBoxList control once, open its Properties Grid, and switch to the
Events tab. Double-click the DataBound event and add the following code in the Code Behind to
preselect the items in the list based on the user’s profile settings:

VB.NET

Protected Sub PreferenceList_DataBound(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles PreferenceList.DataBound
 For Each myItem As ListItem In PreferenceList.Items
 Dim currentValue As Integer = Convert.ToInt32(myItem.Value)
 If Profile.FavoriteGenres.Contains(currentValue) Then
 myItem.Selected = True
 End If
 Next
End Sub

C#

protected void PreferenceList_DataBound(object sender, EventArgs e)
{
 foreach (ListItem myItem in PreferenceList.Items)
 {
 int currentValue = Convert.ToInt32(myItem.Value);
 if (Profile.FavoriteGenres.Contains(currentValue))
 {
 myItem.Selected = true;
 }
 }
}

	8.	 Extend the SaveButton_Click handler with the following code so it also saves the user’s preferred
genres:

VB.NET

Profile.Bio = Bio.Text
‘ Clear the existing list
Profile.FavoriteGenres.Clear()

502211c17.indd 634 2/19/10 9:58:54 AM

 Understanding Profile  ❘  635

‘ Now add the selected genres
For Each myItem As ListItem In PreferenceList.Items
 If myItem.Selected Then
 Profile.FavoriteGenres.Add(Convert.ToInt32(myItem.Value))
 End If
Next

C#

Profile.Bio = Bio.Text;
// Clear the existing list
Profile.FavoriteGenres.Clear();

// Now add the selected genres
foreach (ListItem myItem in PreferenceList.Items)
{
 if (myItem.Selected)
 {
 Profile.FavoriteGenres.Add(Convert.ToInt32(myItem.Value));
 }
}

	9.	 Save all your changes, request the Profile page in your browser, and log in when required. You
should see the list of genres displayed in the browser, each one preceded by a check box. Select
a couple of your favorite genres and click the Save Profile button. Browse to another page and
choose My Profile again from the main Menu or TreeView. The genres you selected should still be
selected in the page, as shown in Figure 17-7.

Figure 17-7

How It Works

Earlier you defined the FavoriteGenres property in the profile as a generic list that can hold integer
values. Because this property is a List, you do not assign values to it directly; instead, you use its
methods like Add and Clear to add and remove items. Because each genre ID should be stored in the

502211c17.indd 635 2/19/10 9:58:54 AM

636  ❘  Chapter 17   Personalizing Web Sites

list only once, the list is cleared before the selected items are added again when the user clicks the Save
Profile button to remove any selection made earlier:

VB.NET

Profile.FavoriteGenres.Clear()

C#

Profile.FavoriteGenres.Clear();

Then when the list is empty, the IDs of the selected genres are added:

VB.NET

For Each myItem As ListItem In PreferenceList.Items
 If myItem.Selected Then
 Profile.FavoriteGenres.Add(Convert.ToInt32(myItem.Value))
 End If
Next

C#

foreach (ListItem myItem in PreferenceList.Items)
{
 if (myItem.Selected)
 {
 Profile.FavoriteGenres.Add(Convert.ToInt32(myItem.Value));
 }
}

This code loops through all the items in the CheckBoxList. The Selected property determines
whether the user has selected the item in the Profile page. If it has been selected, the value of the genre
is retrieved, converted to an Integer (an int in C#), and then added to the FavoriteGenres list using
the Add method.

That’s really all you need to store complex data like a list of favorite genres in the user’s profile. All
you need to do is add a bunch of numbers to a list. The .NET runtime then takes care of persisting
the Profile in the database and making it available again in subsequent pages.

Of course, the list with favorite genres isn’t really useful until you actually make use of it in the site.
In the next exercise you see how to use the list to limit the list of Reviews that users initially see
when they visit the default Reviews page.

Using Profile in the Reviews PageTry It Out	

Currently your site has two pages in the Reviews folder that are capable of displaying reviews:
AllByGenre.aspx and All.aspx. In this Try It Out, you modify the page Default.aspx so it displays
yet another list of reviews. However, this time the list with reviews is limited to those belonging to the
genres that the user has selected in the My Profile page. When anonymous users see the page, they get a
message that they haven’t set their favorite genres yet.

	1.	 From the Reviews folder open Default.aspx in Markup View.

502211c17.indd 636 2/19/10 9:58:55 AM

 Understanding Profile  ❘  637

	2.	 Inside the control for the cpMainContent placeholder, add the following code that creates a nested
Repeater with each selected genre as a heading, followed by a list of reviews belonging to that
genre:

<asp:Repeater ID=”GenreRepeater” runat=”server”>
 <HeaderTemplate>
 <p>Below you find a list with reviews for your favorite music genres.</p>
 </HeaderTemplate>
 <ItemTemplate>
 <h3><asp:Literal ID=”Literal1” runat=”server”
 Text=’<%# Eval(“Name”) %>’></asp:Literal></h3>
 <asp:Repeater ID=”ReviewRepeater” runat=”server”
 DataSource=’<%# Eval(“Reviews”)%>’>
 <ItemTemplate>
 <asp:HyperLink ID=”HyperLink1” runat=”server”
 Text=’<%# Eval(“Title”) %>’
 NavigateUrl=’<%# “ViewDetails.aspx?ReviewId=” +
 Eval(“Id”).ToString() %>’>
 </asp:HyperLink>

 </ItemTemplate>
 </asp:Repeater>
 </ItemTemplate>
</asp:Repeater>
<asp:PlaceHolder ID=”NoRecords” runat=”Server” Visible=”False”>
 <p>Sorry, no reviews were found. You either didn’t set your favorite genres
 or you may need to log in first. </p>
</asp:PlaceHolder>
<p>You can change your genre preferences <a href=”~/MyProfile.aspx”
 runat=”server”>here.</p>

You can create the Repeater controls manually by writing the necessary code, or you can drag
and drop them from the Data category of the Toolbox. The inner Repeater contains a HyperLink
control that points to the ViewDetails.aspx page that you created in Chapter 15.

	3.	 Double-click the page in Design View to set up a Load handler. Add an Imports/using statement
at the top of the page for the PlanetWroxModel namespace and add the following code to the han‑
dler that VWD created for you:

VB.NET

Imports PlanetWroxModel
...
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Using myEntities As PlanetWroxEntities = New PlanetWroxEntities()
 If Profile.FavoriteGenres.Count > 0 Then
 Dim favGenres = From genre In myEntities.Genres
 Order By genre.Name
 Where Profile.FavoriteGenres.Contains(genre.Id)
 Select New With {genre.Name, genre.Reviews}

 GenreRepeater.DataSource = favGenres
 GenreRepeater.DataBind()

502211c17.indd 637 2/19/10 9:58:55 AM

638  ❘  Chapter 17   Personalizing Web Sites

 End If

 GenreRepeater.Visible = GenreRepeater.Items.Count > 0
 NoRecords.Visible = GenreRepeater.Items.Count = 0
 End Using
End Sub

C#

using PlanetWroxModel;
...
protected void Page_Load(object sender, EventArgs e)
{
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 if (Profile.FavoriteGenres.Count > 0)
 {
 var favGenres = from genre in myEntities.Genres
 orderby genre.Name
 where Profile.FavoriteGenres.Contains(genre.Id)
 select new { genre.Name, genre.Reviews };
 GenreRepeater.DataSource = favGenres;
 GenreRepeater.DataBind();
 }
 GenreRepeater.Visible = GenreRepeater.Items.Count > 0;
 NoRecords.Visible = GenreRepeater.Items.Count == 0;
 }
}

	4.	 Save all your changes and request the page in the browser. If you selected one or more genres in the
Profile page previously, and reviews are available for those genres, you should see a list similar to
Figure 17-8.

Figure 17-8

502211c17.indd 638 2/19/10 9:58:55 AM

 Understanding Profile  ❘  639

If you haven’t set any preferred genres, or you’re not logged in, you get the message shown in
Figure 17-9.

Figure 17-9

By clicking the link in the message you are taken to the My Profile page so you can set or change
your preferred genres. Unauthorized users are asked to log in or sign up for an account before
they can access the Profile page.

How It Works

The code in the Code Behind executes a LINQ to EF query that retrieves all the reviews that belong to
the user’s favorite genres. For anonymous users, the list of favorite genres will be empty so they always
get to see the message about setting their preferences in the Profile page. To avoid an unnecessary call
to the database, the query is only executed when the user has selected at least one preferred genre by
checking the Count property of the FavoriteGenres list.

The nested Repeater you added to the Default.aspx page in the Reviews folder looks similar to the
code for the AllByGenre.aspx page that has a Repeater that contains a BulletedList control. Just as
in that page, the nested Repeater gets its data from the outer Repeater with the DataSource attribute:

<asp:Repeater ID=”ReviewRepeater” runat=”server”
 DataSource=’<%# Eval(“Reviews”)%>’>
 ...
</asp:Repeater>

The nested Repeater then uses the list of Reviews to build up the hyperlinks that take you to the
details page:

<asp:HyperLink ID=”HyperLink1” runat=”server” Text=’<%# Eval(“Title”) %>’
 NavigateUrl=’<%# “ViewDetails.aspx?ReviewId=” + Eval(“Id”).ToString() %>’>
</asp:HyperLink>

The HyperLink control gets its Text from the Review instance that it’s bound to and uses its Id
to build up the NavigateUrl. The ToString method is used on Eval(“Id”) to convert the value
to a string before it’s concatenated to the string that contains the URL. This is done to avoid type

502211c17.indd 639 2/19/10 9:58:55 AM

640  ❘  Chapter 17   Personalizing Web Sites

conversions in Visual Basic where Eval(“Id”) normally results in a number that you can’t concatenate
to a string directly.

To see how these controls get their data, you need to look at the Code Behind that uses a LINQ query
targeting the Entity Framework:

VB.NET

Dim favGenres = From genre In myEntities.Genres
 Order By genre.Name
 Where Profile.FavoriteGenres.Contains(genre.Id)
 Select New With {genre.Name, genre.Reviews}

C#

var favGenres = from genre in myEntities.Genres
 orderby genre.Name
 where Profile.FavoriteGenres.Contains(genre.Id)
 select new { genre.Name, genre.Reviews };

Except for the highlighted line of code and the variable name, this LINQ query is identical to the one
used in AllByGenre.aspx. What makes this example special is the where clause that limits the number
of reviews to those that the user is really interested in. Note how the Contains method of the generic
List class is used here. Although at first it may seem that all genres and reviews are retrieved from
the database into the ASPX page and then compared with the values in the profile property called
FavoriteGenres, the reverse is actually the case. The Entity Framework is smart enough to collect all
the IDs from the FavoriteGenres property first and then include them in the SQL statement that is
sent to the database to fetch the requested genres and reviews. This means that filtering of the requested
genres takes place at the database level, and not in the ASPX page. This in turn means that fewer records
are transferred from the database to the ASPX page (only those that are really needed), which results in
a better performance.

The profile property FavoriteGenres returns an empty list, rather than throwing an exception for
anonymous users. So, even users with no profile can safely view this page. Instead of seeing any
reviews, they get a message stating they haven’t set their genre preferences yet, or that they need to
log in first.

In the end of the Page_Load handler, some code determines whether to show or hide the Repeater and
the NoRecords control:

VB.NET

GenreRepeater.Visible = GenreRepeater.Items.Count > 0
NoRecords.Visible = GenreRepeater.Items.Count = 0

C#

GenreRepeater.Visible = GenreRepeater.Items.Count > 0;
NoRecords.Visible = GenreRepeater.Items.Count == 0;

If after data binding the outer Repeater its Items collection is still empty, it means no genres were
found for the current user. If that’s the case, the entire Repeater is hidden and the PlaceHolder is
shown. However, if the Count property of the Items collection is larger than zero, the Repeater is
made visible and the PlaceHolder is hidden.

502211c17.indd 640 2/19/10 9:58:55 AM

 Understanding Profile  ❘  641

In Chapter 14 you created a page called NewPhotoAlbum.aspx that lets users insert new Gig Pics
albums. The current implementation of this page has a few shortcomings. First of all, anyone can
insert a new album. There’s no way to block anonymous users from creating a new album and
uploading pictures.

Secondly, only Managers can remove pictures from an existing photo album. It would be nice of the
owner of an album could also remove her own pictures. Now that you know more about security
and personalizing web pages, this is pretty easy to implement, as you see in the following exercise.

Letting Users Manage Their Own Photo AlbumsTry It Out	

In this Try It Out you see how to block the NewPhotoAlbum.aspx and ManagePhotoAlbum.aspx pages
from unauthenticated users. Additionally, you see how to record the name of the user who created the
photo album and use that name later on to enable users to alter their own photo albums.

	1.	 Open the Database Explorer, expand the PlanetWrox database, and locate the PhotoAlbum table.
Right-click it and choose Open Table Definition. Add a new column called UserName, set its data
type to nvarchar(256), and leave the Allow Nulls option selected. (There are already photo albums
in this table without a valid UserName, so you can’t make the column required at this stage unless
you delete these photo albums and their related pictures from the database first.) Save the changes
and close the table designer.

	2.	 Open the ADO.NET Entity Data Model file PlanetWrox
.edmx from the App_Code folder, right-click an empty
space in the designer, and choose Update Model from
Database. Wait until VWD has analyzed your database
and click Finish. The UserName column in the database
now shows up as a property of the PhotoAlbum class (see
Figure 17-10).

Save your changes and close the file.

	3.	 Open the web.config file and below the existing <location> elements add the following two
<location> elements to block access to the two referenced files for anonymous users:

 </location>
 <location path=”ManagePhotoAlbum.aspx”>
 <system.web>
 <authorization>
 <deny users=”?” />
 </authorization>
 </system.web>
 </location>
 <location path=”NewPhotoAlbum.aspx”>
 <system.web>
 <authorization>
 <deny users=”?” />
 </authorization>
 </system.web>
 </location>
</configuration>

Figure 17-10

502211c17.indd 641 2/19/10 9:58:56 AM

642  ❘  Chapter 17   Personalizing Web Sites

Save your changes and close the web.config file.

	4.	 Open NewPhotoAlbum.aspx in Design View, locate the EntityDataSource control, and set up an
event handler for its Inserting event using the Events tab of the Properties Grid. Add the follow‑
ing code to the handler that VWD created for you:

VB.NET

Protected Sub EntityDataSource1_Inserting(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.EntityDataSourceChangingEventArgs) _
 Handles EntityDataSource1.Inserting
 Dim myPhotoAlbum As PhotoAlbum = CType(e.Entity, PhotoAlbum)
 myPhotoAlbum.UserName = User.Identity.Name
End Sub

C#

protected void EntityDataSource1_Inserting(object sender,
 EntityDataSourceChangingEventArgs e)
{
 PhotoAlbum myPhotoAlbum = (PhotoAlbum)e.Entity;
 myPhotoAlbum.UserName = User.Identity.Name;
}

	5.	 From the PhotoAlbums folder open Default.aspx and switch to its Code Behind.

	6.	 At the top of the file add an Imports/using statement for the PlanetWroxModel namespace and
then extend the DataBound event handler with the following code that shows the Edit link when
the current user is either a Manager or the owner of the photo album:

VB.NET

Protected Sub ListView1_DataBound(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles ListView1.DataBound
 If Not String.IsNullOrEmpty(DropDownList1.SelectedValue) Then
 Dim photoAlbumId As Integer = Convert.ToInt32(DropDownList1.SelectedValue)
 Using myEntities As PlanetWroxEntities = New PlanetWroxEntities()
 Dim photoAlbumOwner As String = (From p In myEntities.PhotoAlbums
 Where p.Id = photoAlbumId
 Select p.UserName).Single()

 If User.Identity.IsAuthenticated And (User.Identity.Name = photoAlbumOwner _
 Or User.IsInRole(“Managers”)) Then
 EditLink.NavigateUrl = String.Format(
 “~/ManagePhotoAlbum.aspx?PhotoAlbumId={0}”, DropDownList1.SelectedValue)
 EditLink.Visible = True
 Else
 EditLink.Visible = False
 End If
 End Using
 Else
 EditLink.Visible = False
 End If
End Sub

502211c17.indd 642 2/19/10 9:58:56 AM

 Understanding Profile  ❘  643

C#

protected void ListView1_DataBound(object sender, EventArgs e)
{
 if (!string.IsNullOrEmpty(DropDownList1.SelectedValue))
 {
 int photoAlbumId = Convert.ToInt32(DropDownList1.SelectedValue);
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 string photoAlbumOwner = (from p in myEntities.PhotoAlbums
 where p.Id == photoAlbumId
 select p.UserName).Single();
 if (User.Identity.IsAuthenticated &&
 (User.Identity.Name == photoAlbumOwner || User.IsInRole(“Managers”)))
 {
 EditLink.NavigateUrl = string.Format(
 “~/ManagePhotoAlbum.aspx?PhotoAlbumId={0}”, DropDownList1.SelectedValue);
 EditLink.Visible = true;
 }
 else
 {
 EditLink.Visible = false;
 }
 }
 }
 else
 {
 EditLink.Visible = false;
 }
}

	7.	 Open the Code Behind of ManagePhotoAlbum.aspx in the root. Add the following code to a
Page_Load handler. If the handler isn’t there yet, double-click the page in Design View to have
VWD set one up for you.

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim photoAlbumId As Integer =
 Convert.ToInt32(Request.QueryString.Get(“PhotoAlbumId”))

 Using myEntities As PlanetWroxEntities = New PlanetWroxEntities ()
 Dim photoAlbumOwner As String = (From p In myEntities.PhotoAlbums
 Where p.Id = photoAlbumId
 Select p.UserName).Single()
 If User.Identity.Name <> photoAlbumOwner And
 Not User.IsInRole(“Managers”) Then
 Response.Redirect(“~/”)
 End If
 End Using
End Sub

502211c17.indd 643 2/19/10 9:58:56 AM

644  ❘  Chapter 17   Personalizing Web Sites

C#

protected void Page_Load(object sender, EventArgs e)
{
 int photoAlbumId = Convert.ToInt32(Request.QueryString.Get(“PhotoAlbumId”));

 using (PlanetWroxEntities myEntities = new PlanetWroxEntities ())
 {
 string photoAlbumOwner = (from p in myEntities.PhotoAlbums
 where p.Id == photoAlbumId
 select p.UserName).Single();
 if (User.Identity.Name != photoAlbumOwner && !User.IsInRole(“Managers”))
 {
 Response.Redirect(“~/”);
 }
 }
}

	8.	 Because the entire page is now blocked for users without the proper permissions, there’s no longer
the need to hide the individual buttons in the ListView control. This means you can remove the
code for the ListView1_ItemCreated event handler. If you’re using C#, don’t forget to remove
the handler definition from the ListView’s control in Markup View as well.

	9.	 Save the changes to all open files (press Ctrl+Shift+S) and request NewPhotoAlbum.aspx in your
browser. If necessary, log in with an account you created earlier.

	10.	 Enter a new name for the photo album and click Insert. At this stage, the photo album is saved,
together with your user name. Proceed by adding a few images to your photo album.

	11.	 Click Gig Pics from the main Menu or TreeView and choose the new photo album you just created
from the drop-down list. After the page has reloaded, your new photo album should be displayed,
together with the Edit Photo Album link at the bottom of the screen. Clicking the link takes you to
ManagePhotoAlbum.aspx, which lets you add or remove pictures in your photo album.

	12.	 Click Logout in the footer of the page. Then go to the Gig Pics page again and choose your new
photo album from the drop-down list. Note that the Edit Photo Album link is now no longer
visible.

How It Works

You started this exercise by adding a column for the user’s name to the PhotoAlbum table. With this
column, you can keep track of the user who created the photo album, giving you the opportunity to
display data related to the user together with a photo album. When you run the Update Wizard by
choosing Update Model from Database, changes in the database (such as adding a column to a table)
are reflected in the model.

In the New Photo Album page, you used this new property by assigning it the name of the current user
with this code:

VB.NET

myPhotoAlbum.UserName = User.Identity.Name

502211c17.indd 644 2/19/10 9:58:56 AM

Other Ways of Dealing with Profile  ❘  645

C#

myPhotoAlbum.UserName = User.Identity.Name;

The Page class has a User property that represents the user associated with the current request. This
user in turn has an Identity that contains the user’s Name. The Name is then assigned to the UserName
property of the PhotoAlbum instance, which is retrieved from e.Entity.

At this stage, the name is successfully stored in the database, together with the rest of the photo album.
What’s left is doing something useful with this name. The first place where you use this name is in the
default page of the PhotoAlbums folder. There you used the following LINQ to EF query to retrieve the
UserName for a photo album:

VB.NET

Dim photoAlbumOwner As String = (From p In myEntities.PhotoAlbums
 Where p.Id = photoAlbumId
 Select p.UserName).Single()

C#

string photoAlbumOwner = (from p in myEntities.PhotoAlbums
 where p.Id == photoAlbumId
 select p.UserName).Single();

This code uses the Single method to retrieve the UserName for a single photo album; the one specified
in photoAlbumId. The remainder of the code then determines the visibility of the Edit link if the cur‑
rent user is logged in and an owner of the photo album or a member of the Managers group. This way,
both owners and all Managers can change existing photo albums.

The code in ManagePhotoAlbum.aspx performs a similar check to stop unauthorized users from accessing
the page directly.

Other Ways of Dealing with Profile

In the final section of this chapter you see two other useful ways of dealing with the Profile feature
in ASP.NET. First, you see how to use Profile for anonymous users followed by a discussion on
accessing the profile of a user other than the current user.

Anonymous Identification
The Profile feature is extremely easy to configure, yet very powerful. All you need to do to give
logged-in users access to their profiles is create a few elements in web.config and the ASP.NET
runtime takes care of the rest. But what about anonymous users? What if you wanted to store data
for your visitors who haven’t signed up for an account or aren’t logged in yet? For those users you
need to enable anonymous identification. With anonymous identification, ASP.NET creates an

502211c17.indd 645 2/19/10 9:58:56 AM

646  ❘  Chapter 17   Personalizing Web Sites

anonymous user in the aspnet_Users table for every new visitor to your site. This user then gets
a cookie that is linked to the anonymous user account in the database. On every visit, the browser
sends the cookie with the request, enabling ASP.NET to associate a user, and thus a profile, with the
user for the current request.

To enable an anonymous profile, you need to do two things: turn on anonymous identification, and
modify some or all profile properties to expose them to anonymous users.

Enabling anonymous identification is done with the following element in web.config, directly
under <system.web>:

<anonymousIdentification enabled=”true” cookieName=”PlanetWroxAnonymous” />

The enabled attribute turns on the feature, and the cookieName attribute is used to give the appli‑
cation a unique cookie name used to store the user’s ID at the client.

After you have turned on anonymous identification, the next step involves modifying properties
under the <profile> element and setting their allowAnonymous attribute to true:

<add name=”FavoriteGenres” type=”System.Collections.Generic.List`1[System.Int32]”
 allowAnonymous=”true” />

This profile property can now be accessed through code for anonymous users as well. If you try to
set a profile property without the allowAnonymous attribute set to true for a user that is not logged
on, you’ll get an error. It’s up to you to only write to these properties from pages that are accessible
only to logged-in users. Reading from a property works just fine although you’ll get empty values or
the defaults you specified in web.config.

Once you have enabled profile properties for anonymous users, reading from and writing to them
is identical to how you deal with normal profile properties. In the “Exercises” section at the end of
this chapter, you find code to modify the current theme selector so it uses Profile for anonymous and
logged-in users.

Cleaning Up Old Anonymous Profiles
You may wonder what is happening with an anonymous user’s profile when the associated user signs
up for an account and becomes a registered user. The answer is: nothing. The old profile is discarded
and the user gets a new profile that is associated with the registered account. Fortunately, this is easy
to fix. Whenever a user changes from an anonymous to an authenticated user (that is, when they
log in), ASP.NET fires the Profile_OnMigrateAnonymous event that you can handle. You handle
this event in a special file called Global.asax (of which you’ll see more in the next chapter), which
is used for code that handles application- or session-wide events. Inside an event handler for this
event you can access two profiles for the same user: the old, anonymous profile that is about to get
detached from the user and the new profile that is associated with the user who is currently logging
in. You can then delete the old user account and its related profile data because you can deal with
the new profile from now on. Although not used in the Planet Wrox web site, this event handler is a

502211c17.indd 646 2/19/10 9:58:56 AM

Other Ways of Dealing with Profile  ❘  647

perfect place to copy anonymous profile data from the old profile to the new one, as demonstrated
by the following code:

VB.NET

Public Sub Profile_OnMigrateAnonymous(ByVal sender As Object,
 ByVal args As ProfileMigrateEventArgs)
 Dim anonymousProfile As ProfileCommon = Profile.GetProfile(args.AnonymousID)

 ‘ Copy over anonymous properties only
 Profile.AnonymousProperty = anonymousProfile.AnonymousProperty

 ProfileManager.DeleteProfile(args.AnonymousID)
 AnonymousIdentificationModule.ClearAnonymousIdentifier()
 Membership.DeleteUser(args.AnonymousID, True)
End Sub

C#

public void Profile_OnMigrateAnonymous(object sender, ProfileMigrateEventArgs args)
{
 ProfileCommon anonymousProfile = Profile.GetProfile(args.AnonymousID);

 // Copy over anonymous properties only
 Profile.AnonymousProperty = anonymousProfile.AnonymousProperty;

 ProfileManager.DeleteProfile(args.AnonymousID);
 AnonymousIdentificationModule.ClearAnonymousIdentifier();
 Membership.DeleteUser(args.AnonymousID, true);
}

Note that this code uses Profile.GetProfile(args.AnonymousID) to get an instance of the previ‑
ous, anonymous profile of the user. This gets a reference to the profile of the user before they logged in.

The code then continues to copy over the existing, anonymous profile properties from the old to
the new profile. In this example, only one property ​— ​called AnonymousProperty ​— ​is copied.
However, you can modify the code to copy more properties. Note that there is no point in copying
over properties that are not accessible by anonymous users. Those types of properties cannot have
been set previously, so there’s nothing to copy.

The final three lines of code then delete the old profile, clear the anonymous user ID from the cookie
and, finally, delete the old, anonymous user account from the database. When this code has finished,
the old profile is migrated successfully to the new profile, and all the old profile stuff has been suc‑
cessfully deleted from the database and the user’s cookies.

The ProfileManager class ​— ​which lives in the System.Web.Profile namespace that you need to
import for the previous example to work ​— ​provides you with more useful methods to work with
Profile. For example, you can use DeleteInactiveProfiles to delete profiles for users who have
been inactive for a certain amount of time. For detailed information about the ProfileManager
class look at this MSDN web page: http://tinyurl.com/ManageProfile.

502211c17.indd 647 2/19/10 9:58:56 AM

648  ❘  Chapter 17   Personalizing Web Sites

Looking at Other Users’ Profiles
The examples you have seen so far use Profile to access data for the current user. However, what if
you need to display data for a different user? For example, what if you wanted to display a user’s
biography below a Gig Pics album? You won’t be able to use the Profile property of the Page class
in this case directly because it provides information about the current user, not about the user who
created the photo album.

To solve this problem, the ProfileCommon class, the base class of the Profile property of the Page
class, comes with a GetProfile method. The GetProfile method retrieves an existing profile from
the database if the name passed to it exists, or it creates a brand new profile if it doesn’t exist yet.
For example, to get the Manager’s profile you can use this code:

VB.NET

Dim theProfile As ProfileCommon = Profile.GetProfile(“Manager”)

C#

ProfileCommon theProfile = Profile.GetProfile(“Manager”);

With the Profile instance created, you can access its properties as you are used to. The following
code assigns the Bio property of the Manager to the Text property of a Label control:

VB.NET

BioLabel.Text = theProfile.Bio

C#

BioLabel.Text = theProfile.Bio;

Being able to read someone else’s profile is extremely useful. You can use it to show some of the
properties of the profile to other users, as you see in the last exercise of this chapter. However, you
can also use similar code to update other users’ profiles. For example, you could create a page in the
Management section that enables you to manage the profiles of the users that registered at your site.
When you do modify other users’ profiles, be sure to call the Save method when you’re done. As you
learned earlier, changes to the profile are normally persisted in the database automatically. However,
this applies only to the profile of the current user. To change and persist the previously retrieved
Manager’s profile, you can use this code:

VB.NET

theProfile.Bio = “New Bio for the Manager account here“
theProfile.Save()

C#

theProfile.Bio = “New Bio for the Manager account here“;
theProfile.Save();

In the following exercise you put some of this into practice when you show the name of the user who
created a specific photo album, together with the biography of the user.

502211c17.indd 648 2/19/10 9:58:56 AM

Other Ways of Dealing with Profile  ❘  649

Working with Other Users’ ProfilesTry It Out	

The Default.aspx page in the PhotoAlbums folder displays the pictures in a specific photo album.
You can’t see which user created the photo album, so that would be a nice new feature. And to further
improve the page, you can also display the user’s biography on the page. In this Try It Out you see how
to implement both features.

	1.	 From the PhotoAlbums folder open the page Default.aspx in Markup View. Scroll down and locate
the two breaks and the HyperLink you added earlier. Just before the breaks and the HyperLink con‑
trol, drag a PlaceHolder control from the Toolbox and set its ID to PhotoAlbumDetails. Inside
this PlaceHolder drag two Label controls and then manually modify the code so it ends up like this:

<asp:PlaceHolder ID=”PhotoAlbumDetails” runat=”server”>
 <h2>Photo Album Details</h2>
 Created by:
 <asp:Label ID=”UserNameLabel” runat=”server” Text=”“></asp:Label>

 About this user:
 <asp:Label ID=”BioLabel” runat=”server” Text=”“></asp:Label>
</asp:PlaceHolder>

<asp:HyperLink ID=”EditLink” runat=”server” Text=”Edit Photo Album” />

	2.	 Switch to the Code Behind of the page (press F7) and locate the DataBound event handler for the
ListView control. Right after the first Else (else in C#) block that hides the HyperLink control
when the user doesn’t have the necessary permissions, add these lines of code that retrieve the pro‑
file for the user who created the photo album and then update the relevant labels:

VB.NET

 EditLink.Visible = False
End If

If Not String.IsNullOrEmpty(photoAlbumOwner) Then
 Dim ownerProfile As ProfileCommon = Profile.GetProfile(photoAlbumOwner)
 UserNameLabel.Text = photoAlbumOwner
 BioLabel.Text = ownerProfile.Bio
 PhotoAlbumDetails.Visible = True
Else
 PhotoAlbumDetails.Visible = False
End If

C#

 EditLink.Visible = false;
}

if (!string.IsNullOrEmpty(photoAlbumOwner))
{
 ProfileCommon ownerProfile = Profile.GetProfile(photoAlbumOwner);
 UserNameLabel.Text = photoAlbumOwner;
 BioLabel.Text = ownerProfile.Bio;
 PhotoAlbumDetails.Visible = true;
}

502211c17.indd 649 2/19/10 9:58:56 AM

650  ❘  Chapter 17   Personalizing Web Sites

else
{
 PhotoAlbumDetails.Visible = false;
}

	3.	 Save all your changes and open the page in your browser.

	4.	 From the drop-down list, choose a photo album you created and you should see the photo album
details appear. If you don’t see them, make sure you selected a recent photo album from the list.
Because you added the UserName column to the database at a later stage, some of the photo
albums don’t have a user associated with them. If the Photo Album Details section remains hidden,
create a new photo album and add one or more pictures to it. This ensures you have at least one
photo album with the UserName property. If you now select the photo album from the list, you
should see the Photo Album Details, as displayed in Figure 17-11.

Figure 17-11

How It Works

Much of the code in this exercise has been discussed before. After adding a few Label controls in the
Photo Album page, you retrieved the profile for the owner of the album with this code:

VB.NET

Dim ownerProfile As ProfileCommon = Profile.GetProfile(photoAlbumOwner)

C#

ProfileCommon ownerProfile = Profile.GetProfile(photoAlbumOwner);

This code gets a reference to an existing profile using GetProfile. The class that is returned is of type
ProfileCommon; the underlying data type of the Profile property. When you have the reference, work‑
ing with it is almost identical to working with normal profiles. The only difference is that you must call
Save to persist any changes made to the profile in the database as you saw earlier.

502211c17.indd 650 2/19/10 9:58:57 AM

Summary  ❘  651

Practical Personalization Tips

The following list provides some personalization tips:

Don’t try to access the profile in the Login page, because it isn’t available yet. The profile ➤➤

is instantiated early in the page’s life cycle, so when a Login control authenticates you in
a Login page, it’s too late to associate the user’s profile with the current request. Use the
GetProfile method of ProfileCommon instead or redirect to another page.

Carefully consider what to store in Profile and what is better stored in your own database ➤➤

tables. Although the single-record structure that ASP.NET uses to store your profile offers
you a quick and convenient solution, it’s not the most efficient solution, especially not with
large amounts of data. Don’t try to store complete reviews or even photo albums in Profile,
but use your own database tables instead.

The current implementation of Profile makes it difficult to query data from the ➤➤ aspnet_

Profile database in your own queries. For example, it’s difficult to answer queries like
“Give me all users that prefer the Rock genre” because all the data is stored in a single col‑
umn. To work around these issues, you can use a different Profile provider that you can
download from the Sandbox section of the official ASP.NET web site at www.asp.net/
downloads/sandbox/.

Summary

In this chapter you learned how to use the Profile feature that ships with ASP.NET 4 to store user-
related data. You can use Profile to keep track of data for authenticated but also for anonymous
users.

Setting up a profile is a pretty straightforward operation. You need to create a <profile> element in
the web.config file with a <properties> child element and then add one or more properties using
<add> elements. To group related properties you use the <group> element.

When you have set up the profile, you access its properties through the Profile property of the Page
class. This always accesses the profile for the current user. Any changes you make to this profile are
persisted for you automatically at the end of the ASP.NET life cycle.

By design, profile properties are accessible only to logged-in users. However, you can easily change
this by turning on anonymous identification.

To access the profile of a user other than the one associated with the current request, you can use
the GetProfile method. Any changes made to this profile are not persisted automatically, so you
must call Save to send the changes to the database.

Now that your pages contain more and more code, chances are that bugs and problems will creep
into your application. In the next chapter you learn how to use exception handling to avoid those
problems from ending up in the user interface. You also learn how to debug your code, so you can
fix problems before they occur.

502211c17.indd 651 2/19/10 9:58:57 AM

652  ❘  Chapter 17   Personalizing Web Sites

Exercises	

1.	 The favorite theme feature you created earlier would be a great candidate for a profile property.

What code would you need to add to the profile in web.config to make this possible?

2.	 To set the favorite theme in the BasePage, you need to access the profile in a special way. Instead

of accessing the Profile property on the Page class, you access it through the HttpContext

like this:

VB.NET

Dim myProfile As ProfileCommon = CType(HttpContext.Current.Profile, ProfileCommon)

C#

ProfileCommon myProfile = (ProfileCommon) HttpContext.Current.Profile;

		 Given this code, how can you rewrite Page_PreInit so it gets the preferred theme from the pro-

file instead of from a cookie?

3.	 What else do you need to change to finalize storing the theme in the profile instead of a custom

cookie?

Answers to Exercises can be found in Appendix A.

502211c17.indd 652 2/19/10 9:58:57 AM

Summary  ❘  653

What You Learned in This Chapter⊲⊲

Anonymous identification The ASP.NET feature that enables you to track users to your site, even

if they haven’t signed up for an account or are not logged in

ASP.NET Profile The ASP.NET application service that enables you to store and retrieve

information about users to your site

ASP.NET Profile provider The ASP.NET provider responsible for storing and retrieving profile

related data

EndRequest An event fired by the application in which the changes to the profile are

persisted in the database

OnMigrateAnonymous An event fired by the ASP.NET Profile feature that you can handle in

Global.asax to copy anonymous properties into the new profile

Personalization The process of targeting users with customized content based on their

preferences or other information

Profile groups The mechanism that enables you to group related profile properties

502211c17.indd 653 2/19/10 9:58:57 AM

502211c17.indd 654 2/19/10 9:58:57 AM

Exception Handling, Debugging,
and Tracing

What You Will Learn in This Chapter:

How to write code that is able to detect and handle errors that occur ➤➤

at runtime, at the same time shielding your users from the error

details

How to detect errors that occur on your production machine so you ➤➤

can take countermeasures

What debugging is and what debugging tools VWD offers➤➤

What tools you can use to gain information about your system and ➤➤

code while it’s running in a development or production environment

You can’t make an omelet without breaking eggs and you cannot write code without creating
bugs. No matter how hard you try and how good you are, your code will contain problems
that affect the behavior of your web site.

Of course you should strive to minimize the impact of these bugs, aiming for a “zero bug
count.” To aid you in this, the ASP.NET runtime and Visual Web Developer provide you with
a number of tools.

First of all, the languages supported by .NET implement exception handling, a methodology
to identify and handle errors that occur at runtime. By handling these errors, you can present
your users a friendly error message. At the same time you can log these errors, giving you a
chance to fix them before they re-occur. In this chapter you see how exception handling works,
and how to log your errors.

Before your code goes into production you need to write and debug it first. To help you debug
your code, VWD comes with a rich toolset that includes ways to step through your code line

18

502211c18.indd 655 2/19/10 9:58:43 AM

656  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

by line, look at your variables and objects at runtime, and even change them as you go. The toolset
also provides you with valuable information about the execution path your code follows: the path
that your application takes through your code, following methods, event handlers, If and Else
statements, and so on.

Exception Handling

Whenever you write code, there is a chance things won’t turn out as expected, resulting in code that
does not compile, a crash, or otherwise unexpected behavior of your application. Things can go
wrong for a large number of reasons: you introduce a typo in your code, the database server you’re
connecting to at runtime suddenly goes down, you got your logic mixed up and accidentally deleted
all records from a database table instead of just one, you try to delete a record from a database table
that still has associated records, you try to write a file to a folder without proper permissions, your
users enter incorrect data, and so forth.

To understand these problems and think of ways to anticipate, avoid, and handle them, you first
need to understand the different types of errors that may occur in your web site. Once you under-
stand the main differences, the remainder of this section is spent discussing ways to prevent and
solve them.

Different Types of Errors
You can broadly categorize errors into the following groups:

Syntax errors:➤➤ Errors that are caused by typos, missing keywords, or otherwise incorrect code.

Logic errors:➤➤ Errors in applications that seem to run fine but that produce unexpected or
unwanted results.

Runtime errors:➤➤ Errors that cause the application to crash or behave unexpectedly at runtime.

Each of these categories is discussed in the following sections, together with information on avoid-
ing and fixing them.

Syntax Errors

Syntax errors, or compile errors, are the easiest to find and fix because they happen during develop-
ment. The IDE tells you when an error occurs and often prevents you from running the application
while it still contains errors. Syntax errors are caused by simple typos, missing or duplicate keywords
and characters, and so on. The following examples all show errors that are caught at development
time by the compiler. A compiler is a program that turns the human-readable code you write in
VB.NET or C# into machine-readable code that can be executed.

VB.NET

mailBody = mailBody.Repalce(“##Name##”, Name.Text) ‘ Replace is misspelled

Response.Write() ‘ Required parameter for the
 ‘ Write method is missing

502211c18.indd 656 2/19/10 9:58:43 AM

Exception Handling  ❘  657

If i > 10 ‘ Missing keyword Then
 ‘ Do something here
End If

C#

mailBody = mailBody.Repalce(“##Name##”, Name.Text); // Replace is misspelled

Response.Write(); // Required parameter for the
 // Write method is missing

if (i > 10) // Missing opening brace or
 // extraneous closing brace
 // Do something here
}

Compile errors are always displayed in the Error List (accessible through the View ➪ Error List
menu) that is shown in Figure 18-1.

Figure 18-1

You can force the compiler to give you an up-to-date list of all the compilation errors in your site.
To do this, from the main menu choose Build ➪ Rebuild Web Site.

To go to the location where the error occurred so you can fix it, double-click the error in the Error
List. To cycle through the errors and the code where the error occurs, click an error in the Error list
and press F8 to go to the next error.

Logic Errors

Logic errors are often harder to find because they compile fine but only happen during the execution
of your code. Consider the following buggy example:

VB.NET

Dim fromAddress As String = “you@yourprovider.com”
Dim toAddress As String = EmailAddress.Text
myMessage.From = New MailAddress(toAddress)
myMessage.To.Add(New MailAddress(fromAddress))

C#

string fromAddress = “you@yourprovider.com”;
string toAddress = EmailAddress.Text;
myMessage.From = new MailAddress(toAddress);
myMessage.To.Add(new MailAddress(fromAddress));

502211c18.indd 657 2/19/10 9:58:44 AM

658  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

Although it’s easy to see what the problem is in this example (the To and From addresses are mixed
up), it may be harder to find in a file with 250 lines of code. Additionally, because the compiler hap-
pily accepts your mistake, you won’t notice the error until you see a message in your Inbox that you
thought you sent to your visitors.

The best way to track down and solve logic errors is using the built-in debugging capabilities of
VWD. You get an in-depth look at these tools later in the chapter.

Runtime Errors

Runtime errors occur at runtime, which makes them incredibly difficult to track. Imagine you have
a site that contains a bug that’s hidden somewhere in a page. You haven’t found it yet, but one of
your visitors did and she gets a nasty error message (more on those later) instead. What can you
do? Probably not much, because there’s a fair chance your visitor won’t even inform you about the
mistake.

So, it’s important to have a good error handling strategy in place that enables you to avoid errors
when possible, and that handles them gracefully and optionally logs relevant information for you when
they occur.

The following section deals with detecting and handling errors, or exceptions in .NET parlance;
later in this chapter, you learn how to log errors and shield your users from ugly pages with detailed
exception messages.

Catching and Handling Exceptions
Normally, when serious exceptions occur, the user is presented with an error message. For example, if
you try to send a message to a mail server that isn’t up and running, or doesn’t allow you to connect
to it, you’ll get an Exception type that provides details about the error. By default, this exception
bubbles up all the way to the user interface where it’s presented as a so-called Yellow Screen of
Death, a reference to Windows’ “Blue Screen of Death” that you get when Windows crashes. You
see a real example of this error in the next exercise.

Obviously, it’s a lot better if you can anticipate the exception and write some code that prevents it
from appearing in the user interface. You could, for example, display a nicely formatted message to
users instead, informing them the message could not be sent at this moment.

Fortunately, support for these kinds of scenarios is integrated deeply in the .NET programming
languages such as C# and Visual Basic .NET. In these languages, you can make use of Try Catch
Finally blocks (try catch finally in C#) where code that could potentially throw an exception
is wrapped in a Try block.

When an exception occurs, the remainder of the code in the Try block is skipped and some code in a
Catch block can be run to deal with the error. You can have multiple Catch blocks that all deal with
specific exceptions, but only one will fire, as you see in a later exercise.

A Try or a Catch block can be followed by a Finally block. Code in a Finally block is always fired,
regardless of whether an exception occurred and as such is an ideal location for some clean-up code.

502211c18.indd 658 2/19/10 9:58:44 AM

Exception Handling  ❘  659

Both Catch and Finally blocks are optional, although you always need at least one of them.

The code in the following example tries to send an e‑mail and then sets the Text property of a
Label to the value of the variable userMessage. The userMessage variable is assigned a value in
either the Try block (when the code executed successfully) or in the Catch block (when an error
occurred). Either way, this userMessage is always assigned to the Label in the Finally block:

VB.NET

Dim userMessage As String = String.Empty
Try
 mySmtpClient.Send(myMessage)
 userMessage = “Message sent”
Catch ex As Exception
 userMessage = “An unknown error occurred.”
Finally
 Message.Text = userMessage
End Try

C#

string userMessage = string.Empty;
try
{
 mySmtpClient.Send(myMessage);
 userMessage = “Message sent”;
}
catch (Exception ex)
{
 userMessage = “An unknown error occurred.”;
}
finally
{
 Message.Text = userMessage;
}

In this code example, the Catch block is set up to handle an exception of type System.Exception,
the base class of all exceptions in the .NET Framework. This exception is sent to (or caught by) the
Catch block in the ex variable. Because this example doesn’t use the ex variable, you could leave it
out altogether:

VB.NET

Catch
 userMessage = “An unknown error occurred.”
End Try

C#

catch
{
 userMessage = “An unknown error occurred.”;
}

502211c18.indd 659 2/19/10 9:58:44 AM

660  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

The ability to specify an Exception type is useful when you think your code can encounter more
than one exception. In that case, you can have multiple Catch blocks for different Exception types.
The following code is able to handle a specific SmtpException that may occur during the mail send-
ing operation, while it’s also capable of catching all other exceptions using its generic Catch block:

VB.NET

Try
 mySmtpClient.Send(myMessage)
Catch smtpException As SmtpException
 Message.Text = “Sorry, an error occurred while sending your message.”
Catch ex As Exception
 ‘ Something else went wrong.
End Try

C#

try
{
 mySmtpClient.Send(myMessage);
}
catch (SmtpException smtpException)
{
 Message.Text = “Sorry, an error occurred while sending your message.”;
}
catch (Exception ex)
{
 // Something else went wrong.
}

The order of the exception handling blocks is important. .NET scans the list of Catch blocks from
top to bottom and only fires the code in the first block that matches a specific type of exception.
In the preceding example, when an SmtpException occurs (which is a subclass of Exception) it
will be caught by the Catch block that handles exceptions of type SmtpException. Although an
SmtpException is also an Exception, the code in the last Catch block won’t be fired anymore
because only the first matching Catch block is handled. Therefore, if you reverse the order of the
catch blocks in this example, the more generic Exception block would be executed, and the code in
the SmtpException block would never run.

In the following exercise you see how to use Try and Catch in your code.

Handling ExceptionsTry It Out	

In this Try It Out you see how to write exception-handling code to catch problems with incorrect e‑mail
addresses. This is quite a common problem because users often enter an incorrect e‑mail address. For
example, they may forget the at symbol (@) or enter a comma instead of a period. When trying to send
an e‑mail with an invalid From or To address your code will crash if you don’t take the proper precau-
tions. You’ll try out the Try Catch code in a separate page in the Demos folder so you can closely watch
its behavior. When you understand how it works, you’ll modify the ContactForm.ascx user control
and incorporate the exception handling code there. The reason the code is not applied to the user

502211c18.indd 660 2/19/10 9:58:44 AM

Exception Handling  ❘  661

control directly is because it uses an Ajax UpdatePanel that shields users from the dirty details of an
exception by default.

	1.	 Create a new file in the Demos folder and call it ExceptionHandling.aspx. Base the page on your
custom template and set its Title to Exception Handling Demo.

	2.	 Add a Label control to the main content area and set its ID to Message.

	3.	 Switch to the Code Behind and add either an Imports or a using statement for the System.Net
.Mail namespace to the top of the file:

VB.NET

Imports System.Net.Mail

C#

using System.Net.Mail;

	4.	 Switch to Design View and set up an event handler for the Load event of the page by double-
clicking the read-only area of the page. Add the following code to the event handler. Notice how
this code is almost identical to the code you added in the ContactForm.ascx user control, so you
can save yourself some typing by copying parts of the code from that file. Notice how the From
address is invalid because it doesn’t contain an at symbol (@). This is done deliberately to trigger
an exception.

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim myMessage As MailMessage = New MailMessage()
 myMessage.Subject = “Exception Handling Test”
 myMessage.Body = “Test message body”

 myMessage.From = New MailAddress(“you.yourprovider.com“)
 myMessage.To.Add(New MailAddress(“you@yourprovider.com“))

 Dim mySmtpClient As New SmtpClient()
 mySmtpClient.Send(myMessage)
 Message.Text = “Message sent”
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 MailMessage myMessage = new MailMessage();
 myMessage.Subject = “Exception Handling Test”;
 myMessage.Body = “Test message body”;

 myMessage.From = new MailAddress(“you.yourprovider.com“);
 myMessage.To.Add(new MailAddress(“you@yourprovider.com“));

 SmtpClient mySmtpClient = new SmtpClient();
 mySmtpClient.Send(myMessage);
 Message.Text = “Message sent”;
}

502211c18.indd 661 2/19/10 9:58:44 AM

662  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

Don’t forget to change the two e‑mail addresses to your own, and don’t forget to introduce a mis-
take in at least one of them. Refer to Chapter 9 to learn more about setting up the web.config file
for sending e-mail.

	5.	 Press Ctrl+F5 to open up the site in your browser. You should see the “Yellow Screen of Death”
with the error message, displayed in Figure 18-2.

Figure 18-2

Note that the Exception Details section tells you that a System.FormatException occurred.

	6.	 Go back to VWD and wrap the code that assigns the addresses and sends the message in a Try
Catch block:

VB.NET

Try
 myMessage.From = New MailAddress(“you.yourprovider.com“)
 myMessage.To.Add(New MailAddress(“you@yourprovider.com“))
 Dim mySmtpClient As New SmtpClient()
 mySmtpClient.Send(myMessage)
 Message.Text = “Message sent”
Catch
 Message.Text = “An error occurred while sending your e‑mail. Please try again.”
End Try

C#

try
{
 myMessage.From = new MailAddress(“you.yourprovider.com“);
 myMessage.To.Add(new MailAddress(“you@yourprovider.com“));
 SmtpClient mySmtpClient = new SmtpClient();
 mySmtpClient.Send(myMessage);
 Message.Text = “Message sent”;
}
catch
{
 Message.Text = “An error occurred while sending your e‑mail. Please try again.”;
}

502211c18.indd 662 2/19/10 9:58:45 AM

Exception Handling  ❘  663

Notice how the code still contains an invalid e‑mail address.

	7.	 Save your changes and request the page in your browser again. You should now see a user-friendly
error message, visible in Figure 18-3.

Figure 18-3

The exception that is thrown is now caught in the Catch block. Instead of getting an error page
with all the technical details of the exception, the user now gets a friendly message explaining
something went wrong.

	8.	 Go back to your code and fix the e‑mail address:

VB.NET

myMessage.From = New MailAddress(“you@yourprovider.com“)

C#

myMessage.From = new MailAddress(“you@yourprovider.com“);

	9.	 Save your changes and request the page again. You’ll now get a message indicating that the mes-
sage was sent successfully.

	10.	 Open ContactForm.ascx from the Controls folder, switch to its Code Behind, and wrap the code
that creates and sends the message in the following Try Catch block:

VB.NET

Try
 Dim myMessage As New MailMessage()
 ...
 System.Threading.Thread.Sleep(5000)
Catch
 Message.Text = “An error occurred while sending your e‑mail. Please try again.”
Finally
 Message.Visible = True
End Try

502211c18.indd 663 2/19/10 9:58:45 AM

664  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

C#

try
{
 MailMessage myMessage = new MailMessage();
 ...
 System.Threading.Thread.Sleep(5000);
}
catch
{
 Message.Text = “An error occurred while sending your e‑mail. Please try again.”;
}
finally
{
 Message.Visible = true;
}

Notice how the line that sets the Message control’s Visible property to True is now in a Finally
block. This way, the Label is made visible, regardless of whether an error occurred.

From now on, whenever an error occurs during the sending of the e‑mail, your users will get a
normal error message instead of the full error detail page that .NET displays by default.

How It Works

When an exception occurs at runtime, .NET checks if the code is wrapped in a Try Catch block. If
that’s the case, it scans the list of Catch blocks for an Exception type that matches the exception being
thrown. Only the first Catch block that matches the Exception is being called; all remaining Catch
blocks are ignored. Code in the Try block following the line that caused the exception is not executed
anymore.

In this exercise, the code was set up to handle the general Exception type. Because this type is the base
type of all exceptions, it will be fired for all exceptions, regardless of their type. As you learned before
the exercise, you can have multiple Catch blocks, each one dealing with a specific type of exception.

With these Try Catch Finally blocks you can write code that helps you deal with errors that you
think might happen in your code. It’s always a good practice to wrap code that might throw an error
in a Try Catch block so you can deal with it gracefully. Some examples of code that may throw an
exception include:

Sending e‑mail:➤➤ The mail server may be down, or you may not have the permissions to access it.

Accessing a database:➤➤ The server may be down, you may not have permissions, you may get
an error due to foreign key constraint violations as you saw in Chapter 15, and so on.

Trying to write an uploaded file to disk:➤➤ The disk may be full, you may not have the neces-
sary permissions to write to disk, or you are providing an invalid file name.

Although Try Catch blocks are great to avoid exceptions from bubbling up to the user interface,
you should use them with care, because they come at a cost. A Try Catch block is generally slower

502211c18.indd 664 2/19/10 9:58:45 AM

Exception Handling  ❘  665

than code without it, so you shouldn’t use a Try Catch block for errors you can avoid otherwise.
Consider the following example that divides two numbers:

VB.NET

Dim value1 As Integer = Convert.ToInt32(ValueBox1.Text)
Dim value2 As Integer = Convert.ToInt32(Value2Box.Text)
Try
 result = value1 / value2
 ResultLabel.Text = result.ToString()
Catch ex As DivideByZeroException
 ResultLabel.Text = “Sorry, division by zero is not possible.”
End Try

C#

int value1 = Convert.ToInt32(ValueBox1.Text);
int value2 = Convert.ToInt32(ValueBox2.Text);
try
{
 result = value1 / value2;
 ResultLabel.Text = result.ToString();
}
catch (DivideByZeroException ex)
{
 ResultLabel.Text = “Sorry, division by zero is not possible.”;
}

In this example, the code is set up to expect a DivideByZeroException. This exception is thrown
when value2 contains the value 0. Although at first it seems like a good idea to implement exception
handling here, it’s actually much better to write code that checks for this value before the division is
carried out, instead of letting an exception occur:

VB.NET

If (value2 <> 0) Then
 result = value1 / value2
 ResultLabel.Text = result.ToString()
Else
 ResultLabel.Text = “Sorry, division by zero is not possible.”
End If

C#

if (value2 != 0)
{
 result = value1 / value2;
 ResultLabel.Text = result.ToString();
}
else
{
 ResultLabel.Text = “Sorry, division by zero is not possible.”;
}

502211c18.indd 665 2/19/10 9:58:45 AM

666  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

Of course it would even be better if you had placed a CompareValidator on the page, making sure
that ValueBox2 could never contain the value zero. Chapter 9 explains how to use this control.

Although Try Catch blocks are useful to catch exceptions that you anticipate, what about errors
you don’t? How can you deal with unexpected errors? Because they are unexpected, you won’t
know when they occur, so it’s difficult to write code to handle them.

To solve this problem, the next section shows you how you can globally catch and log unhandled
exceptions and send information about them by e‑mail. This way, you know they occurred, giving
you, the page developer, a chance to fix them before they happen again.

Global Error Handling and Custom Error Pages
To shield your users from the technical details of the exception, you should provide them with a
user-friendly error page instead. Fortunately, ASP.NET enables you to define custom error pages:
ASPX pages that are shown to the user when an exception occurs. You can map different types of
errors (server errors, page not found errors, security problems, and so forth) to different pages.

You define the error page or pages you want to show in the customErrors element of the
web.config file. A typical element looks like this:

<customErrors mode=”On” defaultRedirect=”~/Errors/Error500.aspx”
 redirectMode=”ResponseRewrite”>
 <error statusCode=”404” redirect=”~/Errors/Error404.aspx” />
 <error statusCode=”500” redirect=”~/Errors/Error500.aspx” />
</customErrors>

The mode attribute determines whether or not a visitor to your site gets to see a detailed error page.
The attribute supports the following three values:

On➤➤ : Every visitor to your site always sees the custom error pages when an error occurs.

Off➤➤ : The custom error page is never shown and full error details are displayed on the page.

RemoteOnly➤➤ : The full error details are shown to local users (browsing the site from the same
machine as the site runs on), while all other users get to see the custom error page. This set-
ting allows you to see error messages on your site during development, while your users are
always presented with the custom error page.

Within the opening and closing tags of the customErrors element you define separate <error />
elements, one for each HTTP status code you want to support. The previous configuration defines
two custom pages: one that is shown when the requested page could not be found (a 404 status
code) and one that is shown when server errors occur (a 500 code).

For all other HTTP status codes you haven’t defined explicitly, the defaultRedirect attribute is
used to determine the custom error page.

The redirectMode attribute determines the way the new page is shown to the user and is discussed
later in this chapter.

Although custom error pages shield your users from the exception details, they don’t help in inform-
ing you that an exception occurred. All these pages do is hide the real error and show a page with

502211c18.indd 666 2/19/10 9:58:45 AM

Exception Handling  ❘  667

a custom error message instead. To be notified about these exceptions, you need to write some code
that looks at the exception and then sends you an e‑mail with the details. Alternatively, you could
write code that inserts the error details in a database, or writes them to a text file.

ASP.NET offers you a handy, central location to write code that is triggered when an exception occurs.
You write this code in a special event handler called Application_Error inside the Global.asax
file, a special file (note the .asax extension) that lets you write code that is triggered in response to
events that are applicable site-wide, such as the start of the application, or the start of a request for
a resource. Inside this event handler you can collect relevant data about the exception, stick it in an
e‑mail message, and send it to your own Inbox. This gives you detailed information about exceptions
that occur on your site, aiding in fixing the problem as soon as possible. You see how to write this
code in the next exercise.

Handling Exceptions Site WideTry It Out	

In this Try It Out you learn how to write code in the Global.asax file to send the exception message by
e‑mail. Additionally, you see how to create global error pages that are shown to your user in case of an
error.

	1.	 Right-click the web site in the Solution Explorer and choose Add New Item. In the list with tem-
plates, select Global Application Class. Leave its name set to Global.asax and click Add.

	2.	 At the top of the code of the file, right after the Application directive, add the following Import
statement. Note that when adding an Import statement in Markup View, both VB.NET and C#
use the keyword Import, rather than Imports and using that you normally use in Code Behind:

VB.NET

<%@ Application Language=”VB” %>
<%@ Import Namespace=”System.Net.Mail” %>

C#

<%@ Application Language=”C#” %>
<%@ Import Namespace=”System.Net.Mail” %>

	3.	 Inside the Application_Error handler that should already be present in the Global.asax file,
add the following highlighted code that is triggered whenever an unhandled exception occurs in
your site. If the handler isn’t there, make sure you type all the code from the following snippet,
including the parts that are not bolded:

VB.NET

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 If HttpContext.Current.Server.GetLastError() IsNot Nothing Then
 Dim myException As Exception =
 HttpContext.Current.Server.GetLastError().GetBaseException()
 Dim mailSubject As String = “Error in page “ & Request.Url.ToString()
 Dim message As String = String.Empty
 message &= “Message
” & myException.Message & “
”
 message &= “StackTrace
” &
 myException.StackTrace & “
”
 message &= “Query String
” &

502211c18.indd 667 2/19/10 9:58:45 AM

668  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

 Request.QueryString.ToString()& “
”
 Dim myMessage As MailMessage = New MailMessage(“you@yourprovider.com“,
 “you@yourprovider.com“, mailSubject, message)
 myMessage.IsBodyHtml = True
 Dim mySmtpClient As SmtpClient = New SmtpClient()
 mySmtpClient.Send(myMessage)
 End If
End Sub

C#

void Application_Error(object sender, EventArgs e)
{
 if (HttpContext.Current.Server.GetLastError() != null)
 {
 Exception myException =
 HttpContext.Current.Server.GetLastError().GetBaseException();
 string mailSubject = “Error in page “ + Request.Url.ToString();
 string message = string.Empty;
 message += “Message
” + myException.Message + “
”;
 message += “StackTrace
” + myException.StackTrace +
 “
”;
 message += “Query String
” +
 Request.QueryString.ToString() + “
”;
 MailMessage myMessage = new MailMessage(“you@yourprovider.com“,
 “you@yourprovider.com“, mailSubject, message);
 myMessage.IsBodyHtml = true;
 SmtpClient mySmtpClient = new SmtpClient();
 mySmtpClient.Send(myMessage);
 }
}

Don’t forget to change the two e‑mail addresses that are passed to the MailMessage’s constructor.
The first address represents the sender’s address, and the second one holds the recipient’s address.

	4.	 Save all your changes and close the Global.asax file.

	5.	 Next, open up the web.config file and as a direct child of <system.web> add the following
customErrors element:

<system.web>
 <customErrors mode=”On” defaultRedirect=”~/Errors/OtherErrors.aspx”
 redirectMode=”ResponseRewrite”>
 <error statusCode=”404” redirect=”~/Errors/Error404.aspx” />
 </customErrors>

Save and close the configuration file.

	6.	 Create a new folder in your web site and call it Errors.

	7.	 Inside this new folder, create two new Web Forms and call them Error404.aspx, and
OtherErrors.aspx respectively. Make sure both of them are based on your custom template so
they are using the main master page and inherit from BasePage. If you followed the exercises in
the previous chapter and now use Profile to store the user’s favorite theme, refer to the Common

502211c18.indd 668 2/19/10 9:58:45 AM

Exception Handling  ❘  669

Mistakes section at the end of this exercise to learn about the pitfalls of using the Master Page and
BasePage for your custom 404 error page.

	8.	 Set the Title of Error404.aspx to File Not Found. Inside the content placeholder for the main
content add the following markup:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” Runat=”Server”>
 <h1>File Not Found</h1>
 <p>The page you requested could not be found. Please check out the
 Homepage
 or choose a different page from the menu.</p>
 <p>The Planet Wrox Team</p>
</asp:Content>

	9.	 Switch to Design View, double-click the page to set up a Page_Load handler, and add the follow-
ing code to it:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Response.Status = “404 Not Found”
 Response.StatusCode = 404
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Response.Status = “404 Not Found”;
 Response.StatusCode = 404;
}

	10.	 Open the generic OtherErrors.aspx page, set its Title to An Error Occurred, and enter the
following content:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” Runat=”Server”>
 <h1>Un unknown error occurred</h1>
 <p>An error occurred in the page you requested. The error has been logged and
 we’ll fix it ASAP.</p>
 <p>The Planet Wrox Team</p>
</asp:Content>

Because this page will be used for all possible errors except a 404 error, there’s no point in setting
an explicit Status or StatusCode.

	11.	 Save the changes to all open files by pressing Ctrl+Shift+S and then close them. Right-click
Default.aspx in the Solution Explorer and choose View In Browser. Once the page has fin-
ished loading, request a nonexistent page like DefaultTest.aspx by changing the address bar
of the browser to something like http://localhost:1208/DefaultTest.aspx. Obviously,
the DefaultTest.aspx page does not exist, so you get an error. But instead of a detailed error
page, you should now get the error page you defined and created in this Try It Out, shown in
Figure 18-4.

502211c18.indd 669 2/19/10 9:58:45 AM

670  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

Figure 18-4

COMMON MISTAKES  ​If, instead of this error message, you get a generic “File
not found” exception page, check the syntax of the customErrors section in the
web.config file. Additionally, check that you can successfully request the actual
error pages ( Error404.aspx and OtherErrors.aspx ) by directly requesting them
in the browser. If they contain an error (for example, if you forgot to set the page
title) they cannot be used as custom error pages.

You also get the generic error page when you followed the exercises in the
preceding chapter and rewrote the preferred theme selector to use Profile.
Because of the way a 404 error is handled internally, you cannot use Profile in
the error page or the master page it’s based on. To work around this problem,
recreate the Error404.aspx page as a standard Web Form not using your
master page and BasePage and things should work fine. You could also set the
redirectMode attribute in the web.config to ResponseRedirect but from a
search engine optimization point of view this is not recommended.

Besides the error page in the browser, you should also get a message by e‑mail that provides more details
about the error. Figure 18-5 shows the message you get when you request a page that does not exist.

Figure 18-5

502211c18.indd 670 2/19/10 9:58:46 AM

Exception Handling  ❘  671

How It Works

Two important parts are worth examining in this exercise. The first part is the way the ASP.NET run-
time hides the Yellow Screen of Death with the error details from the user with the use of custom error
pages. This serves two purposes. First, it helps you protect potentially private data like passwords or
information about database connections that may end up in the error message. Second, it shields your
users from cryptic error messages they probably don’t understand anyway and gives you the chance to
display a good-looking error page instead that integrates with the site’s look and feel.

The only thing you need to do to make this work is enable custom errors in the web.config file and
provide one or more pages you want to display for the errors that may occur in your site. The configu-
ration element lets you set up different pages for different exceptions:

<customErrors mode=”On” defaultRedirect=”~/Errors/OtherErrors.aspx”
 redirectMode=”ResponseRewrite”>
 <error statusCode=”404” redirect=”~/Errors/Error404.aspx” />
</customErrors>

When .NET encounters a 404 exception (when you request a page that cannot be found), you are shown
the contents of the Error404.aspx page. The name and content of this page are completely up to you,
giving you the option to provide your own explanation to the user about what went wrong. Note that
this only works for file types that are registered with ASP.NET, like .aspx files. It won’t work out of the
box for .html files or images when you’re not using the Integrated Pipeline mode of IIS, Microsoft’s
web server. You see more about the Integrated Pipeline mode in the next chapter.

This exercise contains two key elements to improve Search Engine Optimization (SEO). First, notice
how the redirectMode is set to ResponseRewrite. The other option is ResponseRedirect. Remember
the difference between Server.Transfer and Response.Redirect from Chapter 7? These two set-
tings are based on the same principles. If you set redirectMode to ResponseRedirect, the browser
(and thus a search engine) is redirected to the error page. The error page then returns a 404 code so
the search engine thinks that the error page itself could not be found. If, however, you set the setting to
ResponseRewrite, the originally requested page results in a 404 error code while the contents of the
Error404.aspx page are streamed to the browser. This enables search engines to correctly update their
indexes. The only downside of the ResponseRewrite setting is that you can’t use Profile in the page
or a master page it is based on. As you saw earlier, the best work around is to create a page that is not
based on your custom template.

The second part that improves SEO is the code in the Code Behind of Error404.aspx. That code sets
the HTTP status code to 404, to indicate the page could not be found on the server. Without these two
lines of code, search engines won’t understand the page doesn’t exist and will keep trying to index it.

Notice that only the 404 error code is redirected to its own page. All other exceptions cause the
generic OtherErrors.aspx to be loaded. You can, however, add multiple <error /> elements to the
<customErrors> element, each one for a different status code. For a list of HTTP status codes, check
out this knowledge base article: http://support.microsoft.com/default.aspx/kb/943891.

502211c18.indd 671 2/19/10 9:58:46 AM

672  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

The other main part of this exercise is the code in Global.asax that fires when an unhandled exception
occurs. In that case, the event handler Application_Error is triggered. Within this handler, you can
retrieve the exception that occurred with this code:

VB.NET

If HttpContext.Current.Server.GetLastError() IsNot Nothing Then
 Dim myException As Exception =
 HttpContext.Current.Server.GetLastError().GetBaseException()

C#

if (HttpContext.Current.Server.GetLastError() != null)
{
 Exception myException =
 HttpContext.Current.Server.GetLastError().GetBaseException();

To get at the root exception that caused the problem in the first place, you need to call GetBaseException()
on the Exception that is returned by Server.GetLastError(). This Exception instance, stored in
the myException variable, then gives you access to useful properties such as Message and StackTrace.
In this exercise, the StackTrace displayed in the error e‑mail contains information that really isn’t of
any interest to you. However, with other exceptions, such as one thrown by an incorrect configuration
of the mail server or a division by zero exception, the StackTrace gives you information about the file
that generated the error, the method that caused it, and even the line number in the code, making it
easy to find the error and fix it.

The remainder of the code creates an e‑mail message with the error details. It also adds information
about the query string with this code:

VB.NET

message &= “Query String
” &
 Request.QueryString.ToString() & “
”

C#

message += “Query String
” +
 Request.QueryString.ToString() + “
”;

Knowledge of the query string helps in debugging a problem if values from the query string are used.
You could extend the code in Application_Error and add other useful information such as cookies
and form collections. For more information about accessing these kinds of collections, pick up a copy
of Professional ASP.NET 4 published by Wrox. Alternatively, look into ELMAH ​— ​the Error Logging
Modules and Handlers project at http://code.google.com/p/elmah/, an open source project run by
Atif Aziz that is aimed at catching and logging exceptions. The beauty of the ELMAH project is that
it’s extremely simple to integrate in your site (no programming required, you just need to add a few lines
of configuration code to your web.config file). I have been using it for most of my web projects in the
past couple of years, and it has helped me find many bugs that otherwise would have gone unnoticed.

502211c18.indd 672 2/19/10 9:58:46 AM

The Basics of Debugging  ❘  673

Although the ability to handle and log exceptions at runtime is useful, it’s of course better to prevent
them from happening in the first place. To write solid code, with as few bugs as possible, you need
good tools to help you understand the execution of your code so you can debug it. VWD comes with
excellent debugging tools that aid you in this process. You see what these tools are and how to use
them in the next section.

The Basics of Debugging

Debugging is the process of finding and fixing bugs in your code. Although that may sound easy, it
often isn’t. Some bugs are very obvious and easy to spot and thus easy to fix. Others are much harder
to find and require knowledge about the execution environment of your program. The debugging
tools that ship with Visual Web Developer help you understand this execution environment by giving
you direct access to the inner workings of your program or web page.

Debugging with VWD is like snapping your fingers to stop the time. When you do that, everything
halts, except for you, so you can walk around in your code, investigate variables, look into objects,
try out methods, and even execute new code. To tell VWD where to halt, you need to set one or
more breakpoints in your code. When the code under the breakpoint is about to be executed, VWD
stops the execution of the application (usually a web page, a user control, or code in the App_Code
folder) and then puts focus back on VWD so you can diagnose the code and its environment.

You set a breakpoint by pressing F9 on the line of code where you want execution to halt. Instead
of the F9 shortcut key, you can also click the margin of the code, where the big dot appears in
Figure 18-6, or you can choose Debug ➪ Toggle Breakpoint from the main menu. Pressing F9, click-
ing the same spot in the margin, or choosing the menu item again toggles the presence of the break-
point. To clear all breakpoints in your entire web site, press Ctrl+Shift+F9.

To give you an idea of how debugging works, and what it can do to help you, the following exercise
shows you the basic operations of debugging. Later parts of this chapter give you a detailed look at
the numerous debugging tools and windows that ship with VWD.

Debugging Your ApplicationTry It Out	

In this Try It Out you debug the Calculator page you created in a previous chapter. If you don’t have the
file, refer to Chapter 5 or download the code for this chapter from www.wrox.com. The debugging exer-
cises in this chapter assume you are using Internet Explorer as your browser. If you are using a different
default browser, such as Firefox or Opera, the debugging experience will be largely the same although
you may find that VWD does not always get the focus automatically while breaking into your code.

	1.	 Open the page CalculatorDemo.aspx from the Demos folder and switch to Code Behind.

502211c18.indd 673 2/19/10 9:58:46 AM

674  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

	2.	 Click the first line of code in the CalculateButton_Click handler that checks the length of the
text in the two TextBox controls. Then press F9 to set a breakpoint. The line gets highlighted, as
shown in Figure 18-6, and a colored dot appears in the margin of the Document Window.

Figure 18-6

	3.	 Press F5 (instead of Ctrl+F5 which you have been using so far) to open the web site in your browser
and start the debugging process. Alternatively, choose Debug ➪ Start Debugging from the main
menu. If you get the dialog box in Figure 18-7, click OK to have VWD modify the web.config file
for you.

Figure 18-7

Depending on your browser’s setup, you may be confronted with the dialog box shown in
Figure 18-8.

Figure 18-8

502211c18.indd 674 2/19/10 9:58:46 AM

The Basics of Debugging  ❘  675

You may get this dialog box if you’re running Internet Explorer 7 or earlier and you haven’t set up
IE to allow debugging client-side script, something you need in later exercises in this chapter. If
you get this dialog box, follow the instructions it displays and then click the Yes button when you
return to VWD. If you configured Internet Explorer according to the instructions, you won’t see
this dialog box again. Don’t worry if you don’t get this dialog box at all; you only get it when you
need to change something in your setup.

	4.	 The page should load normally, showing you the two TextBox controls, the DropDownList, and
the Button.

COMMON MISTAKES  ​If you get an error stating that the page title is not valid,
close your browser, return to VWD, give the page a title, save your changes,
and press F5 again.

Enter 5 in the first text box, 7 in the second, and then click the Calculate button. Instead of get-
ting the answer in your browser, you are now taken back to VWD. If you’re not taken back to
VWD directly, you may need to switch to it manually. You’ll see the taskbar icon of VWD flash
to get your attention.

	5.	 In VWD, the line with the breakpoint is now highlighted in yellow. Additionally, you see a yellow
icon in the document margin to indicate this line of code is about to be executed. However, before
it does, you get a chance to look at your controls, variables, and other elements that make up the
execution environment. To see the values you entered in the TextBox controls, hover your mouse
over the Text properties in the highlighted lines. You’ll see, as shown in Figure 18-9, a small tool-
tip appear that displays the value you entered.

Figure 18-9

	6.	 Hover your mouse over some of the variables in the code like result and value1. Note that you
won’t get a tooltip, because the code hasn’t reached the point where these variables are declared.
As far as the debugger is concerned, they don’t exist.

	7.	 To advance in the code, press F10. This steps over the selected line, executing it. Keep pressing F10
until the line that declares the value2 variable is highlighted. When you now hover your mouse
over value1, the tooltip appears, indicating that value1 now contains the value 5.0.

502211c18.indd 675 2/19/10 9:58:46 AM

676  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

	8.	 Hover your mouse over the SelectedValue property in the Select Case (in VB.NET) or switch
statement (in C#). Note that the tooltip shows you the value you selected in the drop-down list (the
plus symbol). Even if this line of code hasn’t been executed, the SelectedValue has been assigned
a value earlier so you can look at it here.

	9.	 Press F10 a few more times until you reach the line that
assigns a value to the ResultLabel control. Hover your
mouse over the result variable (you may need to high-
light the result variable first with your mouse if you are
using VB.NET) and note that it displays the number 12,
the outcome of the calculation, shown in Figure 18-10.

	10.	 Finally, press F5. By pressing this key, the code continues until it finds the next breakpoint. Because
you haven’t defined another breakpoint in your code, the remainder of the code in the Click event
handler is executed and the result is displayed in the page.

How It Works

Whenever you press Ctrl+F5 to view a page in a browser as you have done up until this chapter, nothing
special happens. VWD simply opens the browser, which then requests the page from the built-in web
server. However, when you press F5 instead, VWD gets in debugging mode and respects the break-
points you have set in your code. Whenever a breakpoint is hit, execution of the code is stopped so you
can look at the code and its execution environment that gives you access to variables, controls, methods,
and much more. Note that the code on the line with the breakpoint has not been executed at this point.
You need to step through it, using F10, F11, or F5, for example, to execute it.

Before you can debug your code, you need to configure the application to support it. You do this by set-
ting the debug attribute of the compilation element in web.config to true:

<compilation debug=”true”>

If you’re using Visual Basic, you may see two additional attributes on this element: strict and explicit.
By default, strict is set to false, which means Visual Basic will do silent casts and conversions for
you. The explicit attribute is set to true, which means you need to declare all your variables before
you can use them. For most scenarios, these defaults are fine.

Whenever you start debugging and the debug attribute of the <compilation /> is set to false, you get
the dialog box shown in Figure 18-7 offering to turn it on for you. To avoid the overhead this setting
brings, you should always set it to false on a production server.

In this exercise you also learned how to use the data tips, the small tooltip windows that appear when
you hover your mouse over selected variables. For simple types, such as an Integer or a String, all
you see is the variable’s value. For complex types, such as results returned from a LINQ query, you get
a much richer data tip, providing you with a lot more detail.

Useful as the debugging data tips may seem, they are only a small part of the rich debugging fea-
tures. In the next section you get an overview of all the debugging tools that ship with VWD.

Figure 18-10

502211c18.indd 676 2/19/10 9:58:47 AM

Tools Support for Debugging  ❘  677

Tools Support for Debugging

With a number of shortcut keys and menu items, VWD lets you move around the code that you
are debugging, giving you the option to execute code line by line or larger blocks of code at once.
Additionally, the IDE provides you with a lot of windows that enable you to diagnose and change
the execution environment, including the values of variables at runtime. You see how to move
around code first, which is followed by a discussion on the numerous debugging windows.

Moving around in Debugged Code
When your code has halted on a breakpoint, you can use a number of keyboard shortcuts to deter-
mine what to do next. The following table lists the most common shortcuts.

Key Description

F5 Press this key to start debugging, as demonstrated in the previous exercise. When

pressed during debugging, the code will continue until the next breakpoint is hit, or

until all code is finished executing.

F11 Press this key to execute the current line and step into a member that’s being

called if possible. You see how this works later.

F10 Press this key to execute the current line without stepping into the code that is

being called, unless that code itself contains a breakpoint.

Shift+F11 Press this key combination to complete the code in the current code block and

return to the code that initially called it.

Shift+F5 Press this key combination to stop debugging. This closes the browser and returns

you to VWD.

Ctrl+Shift+F5 Press this key combination to restart the debugging process.

In addition to these keyboard shortcuts, you can also use the Debugging toolbar shown in
Figure 18-11, which offers similar functionality.

Debug
Windows

Show Threads
in Source

Hexadecimal
Display

Step
Into

Step
Over

Step
Out

Start
Debugging

Stop
Debugging

Show Next Statement

Break All Restart

Figure 18-11

This toolbar should appear automatically when you start debugging, but if it doesn’t, right-click an
existing toolbar and choose Debug.

502211c18.indd 677 2/19/10 9:58:47 AM

678  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

While you are debugging your code in VWD, you have a number of debugging windows at your dis-
posal, which are discussed in the following section.

Debugging Windows
The numerous debugging windows enable you to watch the variables in your application and even
change them during runtime. Additionally, they provide you with information about where you are
in the application and what code was previously executed. All this information helps you understand
the execution flow of your application.

You access all the debugging windows through the Debug ➪ Windows menu option. Not all of them
are available in the Express edition of Visual Web Developer. Also, to access most of the windows,
your application must be in debug mode first. The next sections show you the different windows you
have available. In the exercise that follows, you get a chance to work with them so you understand
how to use them and why they are useful.

Watching Variables

Knowing the values of your variables is critical to understanding your application. To help you with
this, VWD offers three debugging windows that provide you with useful information. All these
windows support changing the value of your variables at runtime, enable you to use data tips to dig
deeper into the objects, and enable you to copy and paste data so you can reuse it somewhere else.

The Watch Window

This is probably the most important window for you to keep an eye on. It enables you to watch all
your variables and dig into them. Figure 18-12 shows the Watch window that is currently watching
the value1 variable used in the Calculator page while the value2 variable is being added to the list.

Figure 18-12

You can add your variables to the Watch window in a few different ways. First of all, you can click
the Watch window once and then start typing a variable name. You can then press Ctrl+Space to
bring up the IntelliSense list, making it easy to complete the variable’s name. Alternatively, you can
right-click a variable in the Document Window and choose Expression: ‘VariableName’ ➪ Add
Watch. Depending on your version of Visual Web Developer, the Add Watch menu option may be
available directly on the right-click menu of the Document Window. And finally, you can highlight a
variable in the Document Window and then drag it into the Watch window.

When your variables are in the Watch window, you can change their values to influence the execu-
tion of your code. For example, you could change the value of the value1 variable to a different

502211c18.indd 678 2/19/10 9:58:47 AM

Tools Support for Debugging  ❘  679

number, changing the outcome of the calculation. To change a value, double-click it in the Value
column of the Watch window. Alternatively, right-click the watched variable and choose Edit Value.

Besides showing variables’ values, you can also use
the Watch window to execute code. For example,
you could call ToString() on the value1 variable
to see what its string representation looks like. To
do this, double-click the variable name in the Watch
window so it becomes editable and then add
.ToString() as shown in Figure 18-13.

You are not limited to calling ToString in the Watch window. Any expression that has a result can
be executed here. However, the Immediate window, discussed later, is much more appropriate for
executing code on the fly.

Besides the Watch window, the Autos and Locals windows are available. They work more or less the
same as the Watch window.

The Autos Window

The Autos window is available only in the commercial versions of Visual Studio and not in the
Express edition. Because it’s so similar to the Watch window, this isn’t really a problem. The Autos
window shows the variables used by the current and previous code statements and is updated auto-
matically as you step through the code.

The Locals Window

The Locals window is also similar to the Watch and Autos windows, but the Locals window shows
all variables that are currently in scope (can be “reached”) by the code that is currently executing.
This is a useful window, because it shows you all relevant variables without requiring you to add
them manually.

Other Windows

Besides windows to watch variables, VWD has a few other useful windows available.

The Breakpoints Window

The Breakpoints window gives you an overview of all breakpoints you have set in code throughout
your entire web site. Unfortunately, this window is not available in the Express edition, so you have
to find breakpoints manually by looking at the actual code.

Call Stack Window

The Call Stack window provides you with information about the order in which your code has been
executed or called. Each call from one piece of code into another is placed on a stack of calls that
you can navigate. It looks a bit cryptic at first, but once you understand how it works, it enables you
to jump through your code quite easily. Figure 18-14 shows the Call Stack window inside the Add
method of the Calculator class.

Figure 18-13

502211c18.indd 679 2/19/10 9:58:47 AM

680  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

Figure 18-14

In the highlighted line you can see that Calculator.Add is the currently active code. Right below
it you see CalculateButton_Click, the event handler in the Calculator page that called the Add
method. Double-clicking a line in the Call Stack window takes you to the appropriate code location.

Immediate Window

The last interesting debugging window is the Immediate window. This window lets you execute
code as if you had written it in a page. You can use this window to test expressions, see what values
a function returns, and so on. For example, when you are in debug mode, you can enter the follow-
ing command in the Immediate window:

VB.NET

? New Calculator().Add(3, 4)

C#

? new Calculator().Add(3, 4);

The question mark is used to output to the Immediate window. The code then instantiates a new
Calculator instance and directly passes the values 3 and 4 to its Add method. The code will be
executed and the Add method returns 7, which is then printed in the Immediate window.

This window is great for quickly testing out code. Instead of writing code you want to test in a page,
you can type it directly in the Immediate window and see its output.

In the following Try It Out, you see these debugging windows at work.

Extensive DebuggingTry It Out	

In this exercise you look at all the debugging windows that have been discussed earlier. Because a lot
of windows and options are available, you won’t see a detailed discussion of every step in the process.
Instead, you’re encouraged to experiment. Try adding more variables to the Watch window, type your
own code in the Immediate window, and so on. Experimenting is the best way to discover the large
number of debugging capabilities in VWD.

	1.	 Open the Code Behind of CalculatorDemo.aspx again and press Ctrl+Shift+F9 to clear all previ-
ously set breakpoints. Click Yes to confirm the deletion.

	2.	 Click the line that declares the variable value1 and press F9 to set a breakpoint. Your Document
Window should look similar to Figure 18-15, which shows the Document Window for the C#
project.

502211c18.indd 680 2/19/10 9:58:47 AM

Tools Support for Debugging  ❘  681

Figure 18-15

	3.	 Press F5 or choose Debug ➪ Start Debugging from the main menu to start debugging the application.
Enter the number 5 in the first text box, ensure that the plus sign is selected in the drop-down list, and
enter 7 in the second text box. Then click the Calculate button and VWD breaks at the breakpoint you
set in the previous step. If you aren’t taken there automatically, switch back to VWD manually.

	4.	 Hover your mouse over the OperatorList variable that is used a few lines below the current
breakpoint and notice how VWD displays a data tip with a plus (+) symbol in front of it. This
means you can expand the item to get detailed information about the variable. Figure 18-16 dis-
plays the expanded data tip.

Figure 18-16

If you are using VB.NET, you may need to double-click the OperatorList variable in the
Document Window first to select it, and then hover your mouse over it.

Note that you can expand other items (like the DropDownList control’s base class) to get at other
relevant data. If you’re using C#, go ahead and expand the base item. Once you do that, you’ll
see properties such as its SelectedValue, which is set to “+” if you didn’t change it in step 3. In
VB.NET, you should see this property in the main list directly.

	5.	 Right-click ValueBox1 in the code at the top that checks the length of the text in the TextBox con-
trols and choose Expression: ‘ValueBox1’ ➪ Add Watch. Again, your Add Watch option may be
located directly on the right-click menu. The variable is added to the Watch window where you can
expand it similar to how you expanded the data tip. Expand the item and you’ll see, for example,
that the Text property is set to “5”.

	6.	 Double-click the value “5” for the Text property, change it to “12” (including the quotes), and
press Enter.

	7.	 Open the Locals window (choose Debug ➪ Windows ➪ Locals if the window isn’t visible yet.)
Press F10 to execute the line under the breakpoint. This gets the value from ValueBox1, converts

502211c18.indd 681 2/19/10 9:58:48 AM

682  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

it to a double, and assigns it to value1. Look at the value1 variable in the Locals window (see
Figure 18-17). It now contains 12.0, the value you assigned to the Text property of the text box in
the previous step, now converted to a double.

Figure 18-17

Note that the value of the value1 variable has changed color as well. This means that the item
has recently been changed. Also note that because all of this is happening at the server during a
postback, the browser is unmodified, and the text box still shows the value 5. Only when the page
has finished rendering to the browser will you see the new value show up.

In Figure 18-17 you also see the other variables that are currently in scope, such as result,
myCalculator, and this (Me in Visual Basic) that contains a reference to the page that is cur-
rently being executed.

	8.	 Press F10 once more so value2 is updated as well. The color of the value of the value2 variable
has changed to red to indicate it has changed, while value1’s value is black again. This makes it
easy to see what variables are modified by the last statement.

	9.	 Press F10 until you reach the line that calls the Add
method on the Calculator class. Instead of pressing
F10 to execute that line, press F11. This steps into the
Add method so you can see how it performs the calcula-
tion. Inside the Add method, you can hover over the
method’s arguments to see their values, as demonstrated
in Figure 18-18.

	10.	 Choose Debug ➪ Windows ➪ Call Stack to bring up the Call Stack window (or press Ctrl+Alt+C)
and note that the Add method was called by the CalculateButton’s Click handler, shown in
Figure 18-19.

Figure 18-19

	11.	 Double-click the second line in the Call Stack window and you’ll be taken back to the Calculator
page. Note that this doesn’t execute any code; all it does is show you the relevant code. Double-
click the first line and you’ll be taken to the Add method code again.

Figure 18-18

502211c18.indd 682 2/19/10 9:58:48 AM

Tools Support for Debugging  ❘  683

	12.	 Press Shift+F11 to step out of the Add method and return to the calling code in the Calculator page.
If you take another look at the Call Stack window you’ll see the line for the Add method has disap-
peared from the call stack.

	13.	 Open the Immediate window (choose Debug ➪ Windows ➪ Immediate) to test out some code. In
the window that appeared, type the following and press Enter:

VB.NET

? New Calculator().Multiply(4, 12)

C#

? new Calculator().Multiply(4, 12);

The Immediate window displays the outcome of
the calculation, as shown in Figure 18-20.

	14.	 Finally, press F5. This executes the remainder of the code in the page. The focus will be put on
the browser again, which now displays the outcome of the calculation in the Label control. If
everything turned out as planned, you should see the number 19: the sum of 12 (the new value you
entered for ValueBox1.Text in step 6), and 7 (that you entered in step 3).

How It Works

As demonstrated in a previous Try It Out exercise, when you put a breakpoint in your code, execution
is halted as soon as the line with the breakpoint is about to be executed. From there, you can jump
around in your code, investigate variables, and execute statements. In this exercise you saw how to step
in and over code using the F10 and F11 shortcut keys. You usually use F10 to execute a line if you’re
not interested in the underlying code that is being called. You use F11 if you want to see the code that is
being executed, as you saw how to do with the Add method.

The data tips and Watch and Locals windows are invaluable tools in examining and changing variables
and values. For example, even though you entered 5 in the first text box in the browser, you were able
to change that value to 12 during debugging. Any changes you make while debugging are propagated to
the rest of the code that still needs to be executed.

The Immediate window lets you try out small snippets of code. This can be useful to try out some
ideas, without the need to write it in the code window and debug it. In this exercise, you wrote some
code that created a new Calculator instance, called the Multiply method, and outputted the value
using the question mark.

VB.NET

? New Calculator().Multiply(4, 12)

C#

? new Calculator().Multiply(4, 12);

Figure 18-20

502211c18.indd 683 2/19/10 9:58:48 AM

684  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

Besides debugging code at the server, VWD comes with excellent support for debugging client-side
JavaScript as well.

Debugging Client-Side Script

So far, you have used the debugging tools to debug ASPX pages and Code Behind. However, that’s
not all there is to it. Visual Studio 2010 also has great support for debugging client-side JavaScript.
Debugging client-side JavaScript requires that you use Internet Explorer and won’t work correctly
with other browsers like Firefox or Opera. The cool thing about debugging client-side JavaScript in
VWD is that you already know how to do it. You can use the same familiar tools that you have seen
in this chapter to debug both server-side and client-side code.

The JavaScript that is eventually used by the page in the web browser can come from a lot of differ-
ent sources. You can have JavaScript in external script files, embedded in the page, in a master page,
and even server controls can emit their own JavaScript. This makes it difficult sometimes to break
in the right code, because you don’t always know where it comes from. Fortunately, VWD has a
great solution for this; it lets you set breakpoints in the final HTML being displayed in the browser.
To show you in what file you’re adding breakpoints or what code you are debugging, VWD updates
the Solution Explorer and displays a list of all files containing client-side script that you can step
through as soon as you are in debug mode. Breakpoints you set in these files during debugging are
preserved when possible, making debugging a smooth experience.

The easiest way to learn the new client-side JavaScript debugging possibilities is by trying them out,
so the next exercise dives right in and shows you how to debug the web service test page that you
created in Chapter 10.

Debugging JavaScript in Internet ExplorerTry It Out	

You need to use Microsoft Internet Explorer to carry out the following exercise because most of the fea-
tures shown in this Try It Out only work with that browser. If Internet Explorer is currently not your
default browser in VWD, right-click a page in the Solution Explorer and choose Browse With. Select
Internet Explorer in the Browsers list and choose Set as Default. You can click Cancel to close the dia-
log box and VWD still remembers your default browser setting. When you’re done with this exercise,
you can switch back to your favorite browser using the exact same steps.

	1.	 Open the file NameService.cs or NameService.vb from the App_Code folder. Locate the
HelloWorld web method and set a breakpoint on the first and only line of code in the method
that returns the personalized greeting. Close the file.

	2.	 Open WebServices.aspx from the Demos folder and switch to Markup View. Locate the
HelloWorld JavaScript method, click the line that declares the yourName variable, and press
F9 to set a breakpoint, visible in Figure 18-21.

	3.	 Press F5 to start debugging. The page will load in the browser and you get a text box and two but-
tons. Enter your name in the text box and click the Say Hello button. As soon as you click it, focus
is put back on Visual Studio, and the code halts in the JavaScript code block.

502211c18.indd 684 2/19/10 9:58:48 AM

Debugging Client-Side Script  ❘  685

Figure 18-21

COMMON MISTAKES  ​If your client-side JavaScript breakpoint doesn’t get hit,
close your browser to stop debugging, type the word debugger before the line
you set the breakpoint on and press F5 again. VWD does not always correctly
debug your client-side JavaScript breakpoints but it works fine when using the
debugger keyword:

 debugger
 var yourName = $get(‘YourName’).value;
 NameService.HelloWorld(yourName, HelloWorldCallback);

	4.	 Press F10 to execute the highlighted line (you need to press it twice if you’re using the debugger
keyword) and assign the name you entered to the yourName variable. Then hover your mouse over
that variable and you’ll see a data tip appear.

	5.	 Open the other debugging windows and notice how they all behave identically to what you saw
before. You can add JavaScript variables to the Watch window to look at their values, enter
JavaScript in the Immediate window for evaluation, and so on. Also note that the Solution
Explorer has changed, showing the active client-side files containing script right above the web
project (see Figure 18-22).

Figure 18-22

502211c18.indd 685 2/19/10 9:58:48 AM

686  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

	6.	 To look inside these documents, you can double-click them under the Windows Internet Explorer
node that has appeared in the Solution Explorer. The file WebServices.aspx should already be
open in the Document Window. At first, the file may look like before. But if you look closely, you
can see that this is no longer the original source file with ASP.NET controls mixed up with other
markup, but the final HTML rendered in the browser. To warn you that you are looking at the
final file, and not the original source, VWD has added the text [dynamic] and a lock icon to the
tab for the file above the Document Window, shown in Figure 18-23.

Figure 18-23

What’s really nice about this is that even though you are looking at a runtime file, VWD is still
able to relate this runtime file with the original source. This means you can set breakpoints in the
runtime file, and they’ll be remembered in the original source so they are available for the next
debugging session.

	7.	 To see how this works, set a breakpoint on the line with the alert statement in the HelloWorldCallback
handler. Once the code returns from the web service that is being called in this exercise, you’ll
return to this handler again, so you can investigate the value returned by the service.

	8.	 Press F5 to continue executing code. The name you entered in the text box is retrieved and then
sent into the HelloWorld method of the service. Because you added a breakpoint there in step 1,
the code should stop again, enabling you to look at the variable yourName passed to the web method.
Although this exercise itself is pretty simple, a lot of magic just happened under the hood. You
stepped from some client-side code running in the browser into code running in a web service at the
server, all from the same IDE.

	9.	 Press F5 again and you’ll be taken back from the server-side web service into the client-side code
where you can see the result of the web service in the HelloWorldCallback handler.

	10.	 Press F5 once more. The code will complete and shows a JavaScript alert window with a greeting
containing your name, just as it did in Chapter 10.

	11.	 Close your browser, go back to VWD again, and open the file WebServices.aspx by double-clicking
it in the Solution Explorer. This opens the original source file, and not the dynamic version you
saw in step 6 of this exercise. Locate the HelloWorldCallback handler in the WebServices.aspx
file. Note that the breakpoint you set in step 7 has been persisted.

502211c18.indd 686 2/19/10 9:58:48 AM

Tracing Your ASP.NET Web Pages  ❘  687

How It Works

There are a few interesting points to take away from this exercise. First of all, you should understand
the notion of dynamic files, or runtime files. These files are the final result from your ASPX pages and
give you insight in the final HTML, CSS, and JavaScript that ends up in the browser. This is a great
help, because it gives you a total view of all relevant content. Remember, the final markup displayed in
the browser comes from a variety of resources, including master pages, content pages, external CSS and
JavaScript files, and from the various server controls that live in your page. The ability to look at the
combined result from a single location makes it easy to see how everything fits together.

Another important point to remember from this exercise is how the IDE offers you fully integrated
debugging features, from the client-side code in the user interface, all the way up into the server. To
make it easy to set breakpoints, VWD doesn’t restrict you to adding them in pages at design time only;
instead it also enables you to set them in the dynamic runtime files. When you stop debugging, VWD
tracks the new breakpoints for you, finds out to what source file they belong, and adds them there again
for you, so they are available for the next debugging session.

Although you may not realize it because everything is taking place on the same computer and in the
same IDE, you are crossing many boundaries when debugging like this. First, VWD enables you to
debug client-side script in the browser, so you can hook into that even before any data is sent to the
server. When you press F5 in step 8, the code continues and sends the value to the server where it was
used in the NameService’s HelloWorld method. Once that server-side web method is done, execution
returns to the client again, enabling you to break on the alert statement that shows the message from
the web service.

For some reason, debugging client-side JavaScript in VWD 2010 doesn’t always work. If you’re encoun-
tering issues, remember the debugger keyword. Just add it before the line you want to break on and
VWD will halt execution when it encounters this keyword. Don’t forget to remove the debugger key-
word again if you’re done with debugging.

Useful as debugging may be during the development of your site, it lacks the capability to investigate
the behavior of your site while it’s running in production. Fortunately, ASP.NET has a solution for
that as well: tracing.

Tracing Your ASP.NET Web Pages

Without tracing, finding out the values of variables, objects, the execution path your code follows,
and so on at runtime is problematic at best. You would probably add a Label control to the page,
and then write information to it like this:

VB.NET

Dim value2 As Double = Convert.ToDouble(ValueBox2.Text)
DebugLabel.Text &= “The value of value2 = “ & value2.ToString() & “
”

C#

double value2 = Convert.ToDouble(ValueBox2.Text);
DebugLabel.Text += “The value of value2 = “ + value2.ToString() + “
”;

502211c18.indd 687 2/19/10 9:58:48 AM

688  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

Although this certainly works, it’s quite cumbersome. First, you need to write a lot of code to make
this work. Secondly, you end up with an ugly Label control in your page that you shouldn’t forget
to remove when you’re done doing your debugging or tracing. And finally, when you’re ready, you
should remove all the code that sets the DebugLabel label. You could take the easy way out by set-
ting the Label control’s Visible property to False, but you would still take the performance hit of
assigning the text to the Label control.

Tracing in ASP.NET solves all of these problems. It lets your pages, controls, and code write infor-
mation to a central location, called the trace, which can then be shown in the browser. Tracing
is built into the ASP.NET Framework, which means you can use it without any manual coding.
Additionally, you can add your own information to the trace. In the following section you see how
to use the built-in tracing capabilities, giving you a wealth of information about your page. In a later
exercise you see how to add your own information to the trace.

Using the Standard Tracing Capabilities
Without much work, you can get a lot of good information about the way your pages execute. All
you need to do is enable tracing for your pages. You can do this at the page level or at the applica-
tion level. With tracing enabled at the page level, you can choose one or more specific pages you
want to trace. Application-level tracing is useful if you want to look at multiple pages at the same
time. This may help you, for example, to find slow pages in your web site.

Tracing with Individual Pages

To enable tracing in a page, you need to set its Trace attribute in the Page directive to True:

<%@ Page Trace=”True” %>

When you run a trace-enabled page, you get a long list of details at the bottom of the page.
Figure 18-24 shows the ASP.NET Trace for the calculator demo page you have been working
with in this chapter.

The trace provides a lot of details about your current page. At the top you find a summary of the
request details, including the current date and time, the method used to retrieve this page (GET or
POST), and the status code (status 200 in Figure 18-24, to indicate success).

Below that you see the Trace Information section. The ASP.NET Page class writes to the trace when
you enable it. This is similar to the demo page you wrote in Chapter 15 that wrote to a Label con-
trol from the numerous events triggered during the page’s life cycle.

By default, the data is sorted by time, putting the events in the order in which they occurred. You
can also sort them on the category (more on categories in the section that deals with adding your
own information to the trace) by changing the TraceMode from SortByTime to SortByCategory:

<%@ Page Trace=”true” TraceMode=”SortByCategory” %>

A little further down the page (not visible in Figure 18-24) you see the control tree, which presents a
hierarchical view of the controls in your page and their size.

502211c18.indd 688 2/19/10 9:58:49 AM

Tracing Your ASP.NET Web Pages  ❘  689

Figure 18-24

Below the control tree you see the details for a number of important collections, including the Query
String, Cookies, Form, Headers, and Server Variables. Additionally, you see information you may
have stored in Session or Application state. Being able to see these collections can be a great aid in
figuring out a problem. For example, if you have a page that is supposed to read from a cookie, but
that crashes as soon as the page loads, you can look at the Cookies collection and see if the page
receives the data you expect. These collections are invaluable tools in understanding the execution
of your page and can really aid in finding and fixing bugs in your code.

Page-level tracing means you need to enable tracing on every page you want to trace. It also means
that you need to disable it on every page after you’re done. Because this can be cumbersome in a
large site, ASP.NET also enables you to trace the entire application.

Tracing the Entire Web Site

You can enable tracing for the entire web site by changing trace settings in the web.config file. You
do this by creating a <trace /> element under <system.web>. The following table lists the most
important attributes that the <trace /> element takes.

Attribute Description

enabled Determines whether or not tracing is enabled for the application. By default,

tracing is disabled, so you need to set this attribute to True explicitly.

traceMode Determines the order in which items are sorted in the trace output. It works

identically to the TraceMode attribute of the Page directive.

continues

502211c18.indd 689 2/19/10 9:58:49 AM

690  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

Attribute Description

requestLimit Determines the number of trace requests that ASP.NET keeps available.

pageOutput Specifies whether the trace information is displayed on the page. When set to

False (the default) you can only access the tracing information using Trace.

axd, which is discussed later.

localOnly Specifies whether the special Trace.axd handler is accessible from the local

host only. From a security point of view, you’re best off to leave this set to True,

which means the trace is not available to outside users.

mostRecent Determines whether old trace records are discarded when the number of trace

requests hits the requestLimit. When set to False, tracing is disabled auto‑

matically when the requestLimit is hit.

When you have enabled tracing, you have two ways to read the trace information. When you have
set pageOutput to True, the trace information is appended to each page, similar to what you saw
with page-level tracing.

However, to make tracing less obtrusive, you can disable pageOutput and then request tracing
information using a special file called Trace.axd. This is a virtual file, which means you won’t find
it in your web site when you go looking for it. However, the ASP.NET runtime knows it should pro-
vide you with tracing information when you request this special page. Although the file is virtual,
you can still protect it using ASP.NET’s URL security by adding a <location /> element to the
main web.config file as you’ve done with other file and folders.

You see how this works in the following exercise.

Enabling Tracing for the Entire SiteTry It Out	

In this Try It Out you see how to enable site-wide tracing. First, you make a few changes to the web.
config file. You then browse your site, filling the trace log with your page requests. Finally, you request
the special Trace.axd page to see the available trace log information.

	1.	 Open web.config and locate the opening <system.web> tag. As a direct child of that element, add
the following configuration information to enable tracing:

<system.web>
 <trace mostRecent=”true” enabled=”true” requestLimit=”100” pageOutput=”false”
 localOnly=”true” />

This enables the trace, but doesn’t add its output to the page. Instead you need to request the
special Trace.axd page to see the trace information. Additionally, you make your system a little
more secure by only allowing requests for the trace information from the local machine. Save and
close web.config.

	2.	 Right-click Default.aspx in the Solution Explorer and choose View in Browser.

(continued)

502211c18.indd 690 2/19/10 9:58:49 AM

Tracing Your ASP.NET Web Pages  ❘  691

	3.	 Click around the site, opening pages, changing the theme, filling in the contact form, and so on.

	4.	 After you have requested at least five pages, change the address bar of your browser as follows so it
requests the special Trace.axd page:

http://localhost:49394/Trace.axd

Your port number may be different, but it’s important that you request the page Trace.axd on
localhost. Note that this address assumes you configured the site with / as the Virtual Path as you
learned how to do in Chapter 7. If you haven’t done that, select the web site in the Solution Explorer,
open its Properties Grid, and set Virtual Path to /. Then restart this exercise at step 2 again. You
should get a page similar to Figure 18-25. If the page is empty, press Ctrl+F5 to refresh it.

Figure 18-25

	5.	 The list of traces is sorted based on time, from oldest to newest. Click the View Details link you see
in Figure 18-25 for an ASPX page. You get a page similar to the one shown in Figure 18-24.

How It Works

The ability to see trace information for pages that have been requested is extremely valuable. The infor-
mation can help you understand the flow of information from and to a web page. For example, the
trace information for the Contact.aspx page also shows the information that users have entered in the
text box controls on the page. To see what this information looks like, click the View Details link for
an item you want to zoom in on.

Although the information that ASP.NET traces for you automatically is extremely useful, you’re not
limited to just this information. You can also add your own information to the Trace log.

Adding Your Own Information to the Trace
Adding your own data to the trace is useful if, for example, you want to see the value of a variable,
or want to find out if a specific event fires, and when it fires exactly.

502211c18.indd 691 2/19/10 9:58:49 AM

692  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

You can add information to the trace by using the Trace class. This class exposes two useful meth-
ods: Write and Warn. Both do pretty much the same thing: they add information to the trace that
you can optionally put in a category you can make up yourself. The only difference between Write
and Warn is that messages written by Warn appear in red. You could use the Warn method for unex-
pected situations because the message will draw more attention.

In the following exercise you see how simple it is to add your own information to the trace using the
Warn and Write methods.

Adding Trace Data to Your PagesTry It Out	

In this Try It Out you add some custom information to the ASP.NET trace. You use the Write method to
write out trace information in a normal page execution, and use the Warn method for unexpected scenarios.

	1.	 Open CalculatorDemo.aspx, switch to its Code Behind, and locate the Click handler for the
Calculate button.

	2.	 Right before the Select Case (VB.NET) or switch statement (C#), add the following Trace.
Write call:

VB.NET

Trace.Write(String.Format(“Performing the calculation with the {0} operator”,
 OperatorList.SelectedValue))
Select Case OperatorList.SelectedValue

C#

Trace.Write(string.Format(“Performing the calculation with the {0} operator”,
 OperatorList.SelectedValue));
switch (OperatorList.SelectedValue)

	3.	 Near the bottom of the event handler, modify the Else statement for the check that ensures that
both TextBox controls contain a value:

VB.NET

Else
 Result.Text = String.Empty
 Trace.Warn(“Custom Category”,
 “TextBox controls are empty; time to add Validation controls?”)
End If

C#

else
{
 Result.Text = string.Empty;
 Trace.Warn(“Custom Category”,
 “TextBox controls are empty; time to add Validation controls?”);
}

	4.	 Enable tracing for this page explicitly. You can do this by setting the Trace attribute of the Page
directive in Markup View:

<%@ Page Title=”Calculator Demo” ... Trace=”true” %>

502211c18.indd 692 2/19/10 9:58:49 AM

Tracing Your ASP.NET Web Pages  ❘  693

	5.	 Save all your changes and request the Calculator page in the browser by pressing Ctrl+F5. Enter
two numbers and click the Calculate button. Note that your custom information is added to the
trace, between the Begin Raise PostBackEvent and End Raise PostBackEvent trace entries.
Note also that the Category is missing.

	6.	 Clear the text from both TextBox controls in the browser and click the Calculate button again.
The trace information should now be easier to spot because of its different color and own category
name, as shown in Figure 18-26.

Figure 18-26

	7.	 Go back to VWD once more and disable tracing. You need to change this at the page level (remove the
Trace attribute from the Page directive of the Calculator page) and at the site level in web.config by
setting the enabled attribute to false. Save all your changes and request the Calculator page again.
Note that the page still functions correctly, but no longer outputs the trace information.

How It Works

The Write and Warn methods of the Trace class enable you to write additional information to the
trace. The ASP.NET runtime keeps track of the information and displays it together with the rest
of the trace info, either directly at the bottom of the page in the browser with page-level tracing, or
through the special Trace.axd page you saw earlier.

The Write and Warn methods each have three overloads. The first one (shown only with Write in the
previous example) accepts a single string that is displayed in the Message column. The second overload
also accepts a category name as demonstrated with the Warn method. The final overload, not shown in
the Try It Out exercise, also accepts an Exception object whose message will be added to the trace out-
put. This is useful to trace the information of an exception in a Catch block.

502211c18.indd 693 2/19/10 9:58:49 AM

694  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

Tracing and Performance
Although it may seem that leaving Warn and Write statements in your code on your production sys-
tem may hurt performance, this isn’t the case. Because you can disable tracing in the web.config file
by setting the enabled property of the trace element to false, you effectively eliminate the perfor-
mance overhead of tracing.

A Security Warning
Tracing can be very useful, but leaving trace information in your production environment can lead to
information disclosure. Therefore, you should always either disable tracing by setting its enabled attri-
bute in web.config to false, or at least by setting the localOnly attribute to true. In Chapter 19 you
learn a trick that enables you to make this change for all sites on your production server, making it
easy to block access to the trace functionality.

Practical Debugging Tips

The following list provides some practical tips to help you debug your application:

Never leave ➤➤ debug=”true” in the web.config file in a production environment. Always set
it to false to improve performance. In Chapter 19 you see an even better solution to ensure
this setting is never set to true on a production server.

Try to avoid ➤➤ swallowing exceptions in a Catch block. You may be tempted to wrap your
code in a Try/Catch block and then leave the entire Catch block empty. Although this
certainly avoids exceptions showing up in the user interface, it makes debugging extremely
difficult. Because you are no longer aware a problem occurs, you also cannot write code to
prevent the error from happening in the first place. The general rule here is: Catch errors that
you can handle successfully, for example by displaying a message to the user. If you can’t
handle the exception in your code, let it bubble up and log it in the Application_Error
event handler so you know that the exception occurred.

If you need to re-throw an exception in a ➤➤ Catch block, don’t use Throw ex (throw ex in C#),
but use Throw (throw in C#) only. When you use Throw ex, you make it difficult to track the
path the code has followed before the exception occurred. Here’s the code showing both options:

VB.NET

Try
 ...
Catch ex As Exception
 ‘ Do something with the error, such as logging it
 Throw ex ‘ Bad example; you lose track of the source of the exception
 Throw ‘ Good example; forwards the exception and maintains the call stack
End Try

C#

try
{
 ...
}
catch (Exception ex)
{

502211c18.indd 694 2/19/10 9:58:49 AM

Summary  ❘  695

 // Do something with the error, such as logging it
 throw ex; // Bad example; you lose track of the source of the exception
 throw; // Good example; forwards the exception and maintains the call stack
}

Try to avoid exception handling when possible. As you saw in this chapter, it’s much better (and ➤➤

faster) to simply avoid an exception in the first place. For example, the DivideByZeroException
exception can easily be avoided by checking for a value of zero before carrying out the division.

Be as explicit as possible with the ➤➤ Exception types you catch in Try / Catch blocks. Try to
avoid catching generic Exception types and set up multiple, explicit Catch blocks for each
specific type you anticipate.

Summary

No matter how carefully you program, your site is likely to contain some bugs or throw exceptions
at runtime. To minimize these exceptions and build a site that runs as smoothly as possible, you can
do a number of things.

First of all, you can use exception-handling techniques, where you write code that is able to catch
exceptions that you foresee and handle them appropriately.

To help you write code with as few bugs as possible, VWD offers you a great set of debugging tools.
The ability to break into your code and analyze and change the execution environment from client-
side code all the way into the server is a great aid in your bug-slashing adventures.

Even if you have debugged your application thoroughly, there’s still a chance your site may have issues
in production, whether they are related to performance, logic errors, or other unexpected reasons. In
those cases, you can use the ASP.NET tracing facilities that let you track information about running
pages. Analyzing this trace information can bring you a long way in fixing the underlying issues.

Now that your web site is complete and hopefully bug-free, the next step is to put it online. You see
how to deploy your ASP.NET web site in the next chapter.

Exercises	

	1.	 What’s the difference between debugging and tracing?

	2.	 Imagine you have some code that could potentially throw an exception. For example, you try to

send an e‑mail message to a mail server, or write a file to disk while you’re not sure you have the

right permissions to do so. What kind of exception-handling strategy would you use to avoid the

exception from being displayed in the browser? What code would you need?

	3.	 You’re taking over a web site that has been built by another developer who had never heard of

exception handling. Your client is complaining about the quality of the site and the large number

of “Yellow Screens of Death” that users see. Besides analyzing the code for the entire application,

what would be a quick solution to get information about the errors and the locations where they

occur? And how can you shield the site’s users from the dirty details of the exception messages?

Answers to Exercises can be found in Appendix A.

502211c18.indd 695 2/19/10 9:58:50 AM

696  ❘  Chapter 18   Exception Handling, Debugging, and Tracing

What You Learned in This Chapter⊲⊲

Breakpoint A marker you can set in your code to indicate where you want the debugger

to halt at runtime

Data tips Tooltips that present simple or rich data about variables during debugging

Debugging The process of finding and fixing bugs in your code

Exception The .NET term for an error that may occur in your code

Exception handling A methodology to identify and handle errors that occur at runtime

Global.asax A central file that is used to handle various application-scoped events such

as Application_Start, Application_Error and more

Stack trace A visual representation of the current stack of code calls

Trace Enables ASP.NET controls and your own custom code to write information to

a central log location at runtime

502211c18.indd 696 2/19/10 9:58:50 AM

Deploying Your Web Site

What You Will Learn in This Chapter:

How to ease the deployment process through simple changes to ➤➤

your code and configuration

How to prepare your site for deployment by creating a copy using ➤➤

Visual Web Developer’s built-in copy tools

How to install and configure a web server and your web site on your ➤➤

target machine

How to avoid common errors you may get when deploying a site ➤➤

How to copy data stored in your SQL Server 2008 databases to the ➤➤

target server

Congratulations! The fact that you’re reading this chapter probably means you now have a
full-featured, database-driven ASP.NET web site that is ready for release into the wild. It’s an
exciting time for you and your project. Pretty soon your application will be used and judged
by your target audience.

To make your web site accessible to users world-wide, you need to publish it to a production
server that is connected to the Internet. What kind of server this is and where it is located
depends on your own requirements and budget. You can host the site on a home server in
your attic with a private Internet connection (as I do with http://imar.spaanjaars.com) or
you can host it with an external (and often commercial) party with a direct connection to the
Internet backbone.

Either way, some work needs to be done to get your site from its development location at
C:\BegASPNET\Site to a location where it’s accessible over the Internet.

19

502211c19.indd 697 2/19/10 9:58:36 AM

698  ❘  Chapter 19   Deploying Your Web Site

This chapter deals with a few topics related to successfully deploying your web site. You learn about
the process from preparing your site in the development environment to actually running and testing
it at your production server.

The chapter then ends with a list of things you need to take care of when deploying your site. You
can use this checklist to help you make sure you configure your production site in the most secure
and optimal way.

Preparing Your Web Site for Deployment

When you’re working on the first edition of your web site in a development environment, managing
the site and its source code is pretty straightforward. You have only a single version of the site’s
source, making it easy to maintain. However, as soon as you put your site in production, you now
have two versions of it: one running in the production environment and the one you use for develop-
ment. This makes it difficult to keep things synchronized. For example, you probably use a different
database and connection string in your production environment. You’re also likely to use different
e‑mail addresses for the e‑mail that is sent by the site. Finally, you may want to disable sending the
error e‑mails from the Global.asax files in a development environment. If you make all of these
changes in the code directly when you put your site live, there’s a fair chance that you’ll overwrite
some settings during the next update, which can lead to unwanted results.

This section shows you how to make managing different versions of the same web site a little easier.
You see how to move some of the hardcoded settings, such as e‑mail addresses, to the web.config
file. The code in your application then reads these values at runtime. The only difference between
your development and production environments is then a single configuration file, making it easy to
have different settings in both environments.

Avoiding Hardcoded Settings
So far the pages and user controls you have built use some hardcoded settings for things like e‑mail
addresses. For example, ContactForm.ascx, the user control that sends out an e‑mail, uses the
following code to set the recipient and sender information:

VB.NET

myMessage.From = New MailAddress(“you@yourprovider.com“, “Sender Name“)
myMessage.To.Add(New MailAddress(“you@yourprovider.com“, “Receiver Name“))

C#

myMessage.From = New MailAddress(“you@yourprovider.com“, “Sender Name“);
myMessage.To.Add(New MailAddress(“you@yourprovider.com“, “Receiver Name“));

Hardcoding settings in this manner makes it difficult to give them different values in different envi-
ronments. Every time you want to roll out your site to production, you need to make sure you’re not
accidentally overwriting settings you changed for the production environment.

Fortunately, ASP.NET comes with a great solution to avoid these kinds of problems: the web.config file,
expression syntax, and the WebConfigurationManager class you use to read from web.config.

502211c19.indd 698 2/19/10 9:58:36 AM

Preparing Your Web Site for Deployment  ❘  699

The web.config File
You’ve used the web.config file a number of times in this book to store information about connec-
tion strings, membership, roles and profile information, and more. What you haven’t seen yet is the
<appSettings> element that enables you to store data in a key/value pair using <add> elements.
The <appSettings> element enables you to store simple information, such as an e‑mail address, and
retrieve that value by its key. For example, to store an e‑mail address, you can add the following to
the web.config file:

<appSettings>
 <add key=”FromAddress” value=”webmaster@planetwrox.com” />
</appSettings>

The <appSettings> element is placed outside the <system.web> element in the web.config file, yet
still within the parent <configuration> element.

Obviously, you need a way to access the data in <appSettings> at runtime. You can do this in
a couple of ways, including expression syntax and the WebConfigurationManager class, both of
which are discussed next.

Expression Syntax
Expression syntax enables you to bind control properties to resources, such as those found in the
<appSettings> element in web.config, connection strings, localization resource files and various
routing settings used in URL rewrite scenarios. To display data from the <appSettings> element,
you use the following syntax where AppSettingKeyName refers to a key you define in web.config:

<%$ AppSettings:AppSettingKeyName %>

For example, to display a copyright notice on your pages in a Literal control, you can add the fol-
lowing setting to web.config:

<add key=”Copyright” value=”Copyright by Wrox” />

You can then display this text in a Literal control like this:

<asp:Literal ID=”Copyright” runat=”server” Text=”<%$ AppSettings:Copyright %>” />

To make it even easier to set properties like Text as in the
preceding example, VWD comes with the Expression
Editor. To access this dialog box, select a control in
Design or Markup View, open its Properties Grid, and
click the ellipsis for the (Expressions) item, shown in
Figure 19-1. You may find that the (Expressions) item
does not always show up when in Markup View. If that’s
the case, switch to Split View or Design View first.

Figure 19-1

502211c19.indd 699 2/19/10 9:58:36 AM

700  ❘  Chapter 19   Deploying Your Web Site

The Expressions dialog box opens, enabling you to bind control properties to expressions. VWD
limits the list of properties of the control to those that can be bound using an expression. To bind
the Text property of the Literal control to an application setting, first click Text on the left side
of the dialog box, choose AppSettings from the Expression Type drop-down list on the right, and
finally, choose the right AppSetting from the drop-down list in the Expression Properties section.
Figure 19-2 shows the complete Expressions dialog box for a Literal control used to display the
copyright text.

Figure 19-2

When you click OK, VWD modifies the Text property of the Literal so it contains a reference to
the correct application setting.

Getting values from the web.config using expression syntax is useful, but may not cover all your
needs. Therefore, it’s good to know you can retrieve the values programmatically as well. To do this,
you can use the WebConfigurationManager class.

The WebConfigurationManager Class
The WebConfigurationManager class from the System.Web.Configuration namespace provides
access to data that is stored in configuration files. It has special support for the appSettings and
connectionStrings elements of the web.config file, enabling you to retrieve data from those sec-
tions with a single line of code. The following snippet shows you how to retrieve the FromAddress
value you saw earlier from the appSettings element:

VB.NET

Imports System.Web.Configuration
...
Dim fromAddress As String = WebConfigurationManager.AppSettings.Get(“FromAddress”)

C#

using System.Web.Configuration;
...
string fromAddress = WebConfigurationManager.AppSettings.Get(“FromAddress”);

502211c19.indd 700 2/19/10 9:58:36 AM

Preparing Your Web Site for Deployment  ❘  701

The Get method always returns data as a string, so you’ll need to convert it to a proper type if
you’re expecting anything other than a string. For example, if you have stored a Boolean value in
web.config like this:

<add key=”SendMailOnError” value=”true” />

you need to use the following code to retrieve and convert the value:

VB.NET

Dim sendMail As Boolean =
 Convert.ToBoolean(WebConfigurationManager.AppSettings.Get(“SendMailOnError”))

C#

bool sendMail =
 Convert.ToBoolean(WebConfigurationManager.AppSettings.Get(“SendMailOnError”));

Although you can access the WebConfigurationManager class in the Code Behind of your Web
Forms and user controls directly (provided you have imported the System.Web.Configuration
namespace), I prefer to create static, read-only properties in a custom configuration class that
accesses the web.config file to get the values. You see how to do this in the following exercise.

Moving Application Settings to web.configTry It Out	

In this Try It Out you create a class with a few properties that get their values from the web.config
file. You then use the properties of this class in your code to replace the hardcoded values that were
used earlier.

	1.	 Inside the App_Code folder, create a new class file and call it AppConfiguration.vb or
AppConfiguration.cs. In C#, remove the constructor code, shown in the following code block:

public AppConfiguration()
{
 //
 // TODO: Add constructor logic here
 //
}

Because the class is going to have static properties exclusively, you don’t need the constructor.

	2.	 At the top of the class file, add an Imports/using statement for the System.Web.Configuration
namespace:

VB.NET

Imports System.Web.Configuration

C#

using System.Web.Configuration;

	3.	 Add a new Shared (static in C#), read-only property to this class that returns the FromAddress
from the web.config file. Recall from Chapter 5 that a Shared/static member (like a method or
a property) operates on the class itself, and not on an instance of that class.

502211c19.indd 701 2/19/10 9:58:37 AM

702  ❘  Chapter 19   Deploying Your Web Site

VB.NET

Public Class AppConfiguration
 Public Shared ReadOnly Property FromAddress() As String
 Get
 Dim result As String =
 WebConfigurationManager.AppSettings.Get(“FromAddress”)
 If Not String.IsNullOrEmpty(result) Then
 Return result
 End If
 Throw New Exception(“AppSetting FromAddress not found in web.config file.”)
 End Get
 End Property
End Class

C#

public class AppConfiguration
{
 public static string FromAddress
 {
 get
 {
 string result = WebConfigurationManager.AppSettings.Get(“FromAddress”);
 if (!string.IsNullOrEmpty(result))
 {
 return result;
 }
 throw new Exception(“AppSetting FromAddress not found in web.config file.”);
 }
 }
}

	4.	 Repeat the previous step, but this time create the following three properties by creating a copy of
FromAddress:

FromName➤➤

ToAddress➤➤

ToName➤➤

Don’t forget to rename all three occurrences of FromAddress into the new property name.

	5.	 Still inside the AppConfiguration class, create a Boolean property called SendMailOnError:

VB.NET

Public Shared ReadOnly Property SendMailOnError() As Boolean
 Get
 Dim result As String =
 WebConfigurationManager.AppSettings.Get(“SendMailOnError”)
 If Not String.IsNullOrEmpty(result) Then
 Return Convert.ToBoolean(result)
 End If

502211c19.indd 702 2/19/10 9:58:37 AM

Preparing Your Web Site for Deployment  ❘  703

 Throw New Exception(
 “AppSetting SendMailOnError not found in web.config file.”)
 End Get
End Property

C#

public static bool SendMailOnError
{
 get
 {
 string result = WebConfigurationManager.AppSettings.Get(“SendMailOnError”);
 if (!string.IsNullOrEmpty(result))
 {
 return Convert.ToBoolean(result);
 }
 throw new Exception(
 “AppSetting SendMailOnError not found in web.config file.”);
 }
}

	6.	 When you’re ready with the five properties, save and close the AppConfiguration file.

	7.	 Open the Code Behind of ContactForm.ascx in the Controls folder and locate the code that
sets the From and To addresses and replace the hardcoded values with their AppConfiguration
counterparts:

VB.NET

myMessage.From = New MailAddress(AppConfiguration.FromAddress,
 AppConfiguration.FromName)
myMessage.To.Add(New MailAddress(AppConfiguration.ToAddress,
 AppConfiguration.ToName))

C#

myMessage.From = new MailAddress(AppConfiguration.FromAddress,
 AppConfiguration.FromName);
myMessage.To.Add(new MailAddress(AppConfiguration.ToAddress,
 AppConfiguration.ToName));

Notice how IntelliSense helps you pick the correct property of your AppConfiguration class.

	8.	 Save your changes and close the file.

	9.	 Open the Global.asax file and wrap the entire code in Application_Error in an If check that
ensures that SendMailOnError is set to True. Additionally, change the hardcoded e‑mail addresses
to use the ToAddress and ToName from the AppConfiguration class instead:

VB.NET

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 If AppConfiguration.SendMailOnError Then
 If HttpContext.Current.Server.GetLastError() IsNot Nothing Then
 ...
 Dim myMessage As MailMessage = New MailMessage(AppConfiguration.FromAddress,
 AppConfiguration.ToAddress, mailSubject, message)
 ...

502211c19.indd 703 2/19/10 9:58:37 AM

704  ❘  Chapter 19   Deploying Your Web Site

 End If
 End If
End Sub

C#

void Application_Error(object sender, EventArgs e)
{
 if (AppConfiguration.SendMailOnError)
 {
 if (HttpContext.Current.Server.GetLastError() != null)
 {
 ...
 MailMessage myMessage = new MailMessage(AppConfiguration.FromAddress,
 AppConfiguration.ToAddress, mailSubject, message);
 ...

 }
 }
}

	10.	 Open web.config and add the following <appSettings> element as a direct child of the main
<configuration> element. Change the e‑mail address for FromAddress and ToAddress to
your own:

<configuration>
 <appSettings>
 <add key=”FromAddress” value=”webmaster@planetwrox.com” />
 <add key=”FromName” value=”Planet Wrox” />
 <add key=”ToAddress” value=”webmaster@planetwrox.com” />
 <add key=”ToName” value=”Planet Wrox” />
 <add key=”SendMailOnError” value=”true” />
 </appSettings>
 ...

	11.	 Save all your changes and press Ctrl+F5 to open the home page in your browser. Go to the Contact
page and fill in the contact form. You should receive an e‑mail at the address you specified in step 10.

	12.	 Request a nonexistent page in your browser. For example, change the page name in the address in
the browser’s address bar to DefaultTest.aspx. You should receive a “File Not Found” message
and an e‑mail with the exception details, just as in the preceding chapter.

	13.	 Go back to Visual Web Developer, open web.config, and change the setting for
SendMailOnError from true to false:

 <add key=”SendMailOnError” value=”false” />

	14.	 Save your changes, and again request a page that doesn’t exist. Because you changed the
SendMailOnError setting, you shouldn’t get an e‑mail with the exception details.

502211c19.indd 704 2/19/10 9:58:37 AM

Preparing Your Web Site for Deployment  ❘  705

How It Works

The properties of the AppConfiguration class look in the web.config file for the requested application
settings. When the setting is not defined or does not contain a value, each property throws an excep-
tion. This is useful to detect missing application settings at an early stage. Instead of silently returning
an empty value, you now get an exception that reminds you to add the required application setting.

At runtime, the code accesses these properties like this:

VB.NET

myMessage.From = New MailAddress(AppConfiguration.FromAddress,
 AppConfiguration.FromName)

C#

myMessage.From = new MailAddress(AppConfiguration.FromAddress,
 AppConfiguration.FromName);

Because the properties have been defined as Shared (static in C#), you can access them directly on the
AppConfiguration class, without the need to create a new instance of AppConfiguration first.

Although you could access the <appSettings> element in web.config directly in the code (for example,
you could use WebConfigurationManager.AppSettings.Get(“FromAddress”) to get the e‑mail address
in ContactForm.ascx directly), it’s better to wrap the <appSettings> elements in shared properties in
their own class. This solution gives you IntelliSense on the AppConfiguration class, making it easy to
see what configuration properties are available. It also enables you to write centralized code that throws
exceptions when the required application settings cannot be found or that supplies sensible defaults.
Notice how the properties only throw an exception when a valid value cannot be returned. If you access
web.config directly in your own code, you would need to check for valid values every time you access a
setting.

The same principle is used for the SendMailOnError setting. When an exception occurs at runtime,
the code in Application_Error now consults the SendMailOnError property. This property in turn
checks the <appSettings> element of web.config to determine if an error message should be e‑mailed.
Because the SendMailOnError property is a Boolean, the code uses Convert.ToBoolean to convert the
string returned from the web.config file into a Boolean.

By storing values in web.config instead of hardcoding them, your site becomes easier to maintain and
deploy. When you go live, all you need to do is create a copy of web.config for your production envi-
ronment and change a few settings.

With the hardcoded application settings moved to the central web.config file, the next step in the
deployment process is creating a copy of your web site.

502211c19.indd 705 2/19/10 9:58:37 AM

706  ❘  Chapter 19   Deploying Your Web Site

Copying Your Web Site

During development of your site you use the built-in web server that ships with Visual Web
Developer. Although this server is great for local development, you can’t use it in a production envi-
ronment, because it only listens to requests coming from localhost. To put your site in production,
you need to deploy it to a machine that runs IIS (Internet Information Services), Microsoft’s profes-
sional web server. In this section you see how to prepare your site so it can be run under IIS. Later in
this chapter you see how to install and configure IIS.

To deploy your web site to a production server, the deployment targets shown in the following table
are available, right from within VWD.

Deployment Option Description

File system Enables you to create a copy of the site on the local file system of your

development machine or a networked machine. This option is useful if you

want to move the files manually to your production server later.

Local IIS Enables you to create a copy of your site that will run under your local IIS

installation.

FTP Site Enables you to send the files that make up your web application to a

remote server directly using FTP.

Remote Site Enables you to send the files that make up your web application to a remote

IIS server. For this option to work, the remote server needs to have the

Front Page Server Extensions installed. Check out the documentation that

comes with IIS or consult the administrator of your remote server for more

help with this option.

If you are using a commercial version of Visual Studio, you can access these four deployment
options from the two main ways of deployment that VWD offers: Copy Web Site and Publish
Web Site. If you’re using the free Express edition, you can only use Copy Web Site.

NOTE  ​At the very beginning of this book you learned about the differences
between Web Site Projects (WSP) and Web Application Projects (WAP). For this
book, I have chosen to use the WSP model because it’s easier to work with for
beginners and supports a few features not available to WAPs (such as Profile
and the dynamic App_Code folder). Unfortunately, there is one major feature
that WAP supports and WSP doesn’t: web packaging. This is a mechanism to
create a setup package of your entire web site so it can easily be deployed to a
production server, taking the differences in configuration between the develop-
ment and production machines into account. For more information about Web
Packaging in WAPs, check out the list of links on deployment at the VWD Team
blog via http://tinyurl.com/WebDeploymentOverview.

502211c19.indd 706 2/19/10 9:58:37 AM

Copying Your Web Site  ❘  707

Creating a Simple Copy of Your Web Site
The Copy Web Site command simply creates a copy of your
site using any of the four transportation options. This is a
great way to quickly copy your site to another location,
including your production server or even to a portable
media device like a USB stick that you can take with you.
You can access the Copy Web Site option from the Solution
Explorer’s toolbar shown in Figure 19-3 or from the main
Website menu.

Before you create a copy of your web site, it’s a good idea to check the state of your web site. You
should do a full recompile where VWD compiles all the code and pages in your web site. This helps
you detect any problems in your web site before you deploy it to a production environment.

Deploying a site is also a good moment to do some housekeeping. To avoid slowing down the
deployment process and to keep your site as lean and clean as possible, you should delete the files
from your web site that you don’t need in production.

In the next exercise you see how to use the Copy Web Site command to create a copy of the entire
Planet Wrox project. In a later exercise you use this copy again when you configure IIS for your pro-
duction web site.

Using the Copy Web Site OptionTry It Out	

In this Try It Out you use the Copy Web Site option together with the Local File System option to create
a copy of the site. The other three transportation options (FTP, Local IIS, and Remote IIS) work simi-
larly. The biggest difference with these options is that they ask you for details about the destination, such
as a username and password, or the IIS web site you want to use. With the copy you create in this exercise,
you can manually configure an IIS web site, something you see how to do later in this chapter.

	1.	 Close all open files in Visual Web Developer and then choose Build ➪ Rebuild Web Site from the
main menu. Doing so forces VWD to recompile the entire site even if it already had compiled some
parts of it. VWD lists any problems your site may have in the Error List. To verify your site is error
free, open the Error List (choose View ➪ Error List from the main menu) and make sure you don’t
have any compile errors. Fix any errors you may have in your site. If you’re using C# you’ll get
a warning about unreachable code in ContactForm.ascx. You can either ignore the warning or
remove the reference to the jQuery file that you added there to enable IntelliSense.

	2.	 When the Error List is empty, choose Website ➪ Copy Web Site or click the Copy Web Site icon on
the Solution Explorer’s toolbar shown in Figure 19-3.

	3.	 At the top of the dialog box, click the Connect button to bring up a dialog box that lets you choose
the destination location for your site.

At the left side of the dialog box, make sure that File System is selected. Then on the right side,
locate the folder C:\BegASPNET, click it once to select it, and then click the Create New Folder
button; the button with the yellow folder icon at the top-right corner of the dialog box. Type
Release and press Enter to apply the new name. Figure 19-4 shows the final dialog box.

Properties

Refresh Copy Web Site

ASP.NET Configuration

Nest Related Files

Figure 19-3

502211c19.indd 707 2/19/10 9:58:38 AM

708  ❘  Chapter 19   Deploying Your Web Site

Figure 19-4

Finally, click Open to choose C:\BegASPNET\Release as the destination location for your copy
operation.

	4.	 In the Copy Web Site dialog box, put focus on the list at the left by clicking a file or folder and
then press Ctrl+A to select all files in the Source Web Site list.

	5.	 Click the Synchronize Selected Files button (the one with the two arrows facing opposite direc-
tions) between the two lists, visible in Figure 19-5. This starts the synchronization process. Because
the folder displayed on the right side is empty, all files from the left list are copied to the right.
When copying is complete, your dialog box should look like Figure 19-5.

Figure 19-5

502211c19.indd 708 2/19/10 9:58:38 AM

Copying Your Web Site  ❘  709

	6.	 Next, open a Windows Explorer window and browse to C:\BegASPNET\Release. Verify that all
relevant files that make up your site are there.

How It Works

The Copy Web Site option simply creates a copy of all files that make up your site. It can create a copy
of the site at different locations, including the local file system, an FTP server, and an IIS server. In this
exercise, you created a copy at a local hard drive. The first two buttons with blue arrows between the
two file lists in Figure 19-5 enable you to copy files from the source to the remote location or vice versa.
The third button, with the two arrows, enables you to synchronize, rather than just copy over the files.
When you create a copy on your local system this may not seem like a big deal, but when you’re creat-
ing the copy over a slow FTP connection, you’ll be glad this tool only uploads new and changed files,
and leaves unmodified files untouched.

In this exercise you opted to copy the files to the local system. This is a great way to create a copy that
is detached from the development environment that can be run on your local machine. You can, of
course copy the same set of files to another machine using an FTP program, a USB stick, and so on.
Also, if you host your site externally, your hosting provider may offer a web-based interface to upload
these files to its server.

The detached local copy enables you to make modifications to a few files first (like web.config) and
then upload everything to your host.

Besides copying a web site, the commercial versions of Visual Studio also support publishing your
web site.

Publishing Your Web Site
The Publish Web Site command, only available in the commercial versions of Visual Studio and
not in the Express editions, is similar to the Copy Web Site option in that it creates a copy of the
web site you can use for deployment. However, it’s different in that it allows you to precompile the
application, which means all the code in the Code Behind of your ASPX pages, controls, code files
in App_Code, and so on are compiled into .NET assemblies; files with a .dll extension in the bin
folder of your site. The main benefits of precompiling are source protection (others with access to
the server can’t look into your source) and an increased performance the very first time a page is
requested. Pages that are not precompiled are compiled on the fly when they are requested the first
time, which takes a little bit of time. Remember that regular visitors to your site will never be able
to see the source of your application. All they’ll be able to see is the final HTML that gets sent to the
browser.

The Publish Web Site command is available from the Build menu and brings up the dialog box
shown in Figure 19-6.

502211c19.indd 709 2/19/10 9:58:38 AM

710  ❘  Chapter 19   Deploying Your Web Site

Figure 19-6

Clicking the ellipsis at the end of the target location brings up the same dialog box shown in
Figure 19-4, enabling you to choose a target location. When the option Allow This Precompiled Site
to Be Updateable is selected, VWD compiles all your VB.NET and C# code into .NET assemblies
and places them in a bin folder that it creates at the root of your site. It leaves the markup in ASPX
and ASCX files alone. However, with this option turned off, all the markup code is compiled into
.dll files as well. The actual files still need to be deployed to the server, but their content has been
replaced with placeholder text: “This is a marker file generated by the precompilation tool, and
should not be deleted!” When the page is requested by a browser, the ASP.NET runtime finds the
appropriate content in the assemblies in the bin folder and serves its content as if it were a normal
page. This latter option is especially great if you want to prevent other people with access to your
server from altering your site after it has been deployed. Because all the source and markup is com-
piled into .dll files, there is no way to change it on the server anymore, other than uploading a new
set of published files.

Copying or publishing your web site to a new folder on your local system is only one step of the deploy-
ment process. The next part is configuring the web server so it knows where to look for your files.

Running Your Site under IIS

Up until now, you’ve been using the built-in web server that ships with Visual Web Developer to
debug and test your application. However, because requests to this server are limited to those com-
ing from the localhost to minimize security implications, you’ll need to use IIS, which comes with
most major Windows versions. In order to have your web site run under IIS, you need to perform
the following steps:

	 1.	 Install and configure IIS.

	 2.	 Install and configure the .NET Framework 4.

	 3.	 Configure security settings.

502211c19.indd 710 2/19/10 9:58:38 AM

Running Your Site under IIS  ❘  711

Depending on the current state of your system, some of these actions are optional. In the following
sections you see how to carry out these steps.

NOTE  ​Installing and configuring a web server can be a complex task. There
are many factors to take into account, including your operating system, its con-
figuration, the account you use to log on to your machine, the final SQL Server
you’re going to use and more. Don’t panic if you get stuck. Instead, visit the IIS
Web site at www.iis.net for detailed walkthroughs or come over to this book’s
own discussion forum at http://p2p.wrox.com where you’ll find fellow pro-
grammers (including me) that will help you succeed.

Installing and Configuring the Web Server
Although IIS ships with most Windows versions, it’s not installed by default, so you need to install
it first. You also need to make sure that your version of Windows supports IIS. Although the Starter
and Home Basic versions of Windows Vista and Windows 7 ship with some parts of IIS, you can’t
run ASP.NET pages on them, so you need at least the Home Premium edition. On the server-based
versions of Windows, IIS is fully supported.

NOTE  ​Even though IIS is supported on consumer versions of Windows such
as Windows Vista and Windows 7 it doesn’t mean these operating systems are
the best choices for hosting your web site. You typically use these versions of
Windows for local development and testing, whereas the server versions of
Windows (Windows Server 2003 and Windows Server 2008) are used for host-
ing production web sites.

To install and configure IIS on your Windows machine, you need to be logged on as an Administrator.
If the account you use to log on to your machine does not have administrative privileges, you need
to ask your administrator to install and configure IIS for you.

In addition to installing IIS, you’ll also see how to create and configure the web site in IIS. Because
of the way security works under Windows, your site probably won’t work immediately after you
configure IIS unless you change some of the security settings under Windows. You see how to do
this in the section “Understanding Security in IIS” and the Try It Out entitled “Configuring the File
System.”

You’ll be able to test out your IIS settings more easily if you already have SQL Server 2008 Express
installed. This is the case if you follow along the following exercises on the same machine that is run-
ning VWD. Otherwise, you can download the free Express edition of SQL Server using the Web Platform
Installer, available from www.microsoft.com/web. If you have a different version of SQL Server,
or have SQL Server on a remote machine, pay special attention to the section “Moving Data to a
Remote Server” in this chapter and to Appendix B.

502211c19.indd 711 2/19/10 9:58:39 AM

712  ❘  Chapter 19   Deploying Your Web Site

Making Sure IIS Is Installed

In this section, you see how to make sure that IIS is installed on recent Windows versions: Windows
Vista, Windows 7 and Windows Server 2008 (the first edition and the recent R2 release). The pro-
cedure to check this and to install IIS is different for each version of Windows, so the following
sections guide you through the different options. You should pick the one that matches your operat-
ing system. For a lot more information about IIS, including help with installing IIS on versions of
Windows not discussed here, check out the official IIS web site at www.iis.net.

NOTE  ​Microsoft has created a tool called the Web Platform Installer (WPI)
which enables you to install IIS, SQL Server, VWD 2010 and much more using a
single installer. It’s a great tool to quickly set up a new development or produc-
tion server, with all the tools and services you need for ASP.NET development
and deployment. You can find out more about this tool here: www.microsoft
.com/web. If you use WPI you can skip most of the following instructions on
installing IIS and ASP.NET. Just make sure you install at least IIS, ASP.NET and
SQL Server 2008. To better understand what steps are involved in installing
and configuring your operating system, you can follow the individual steps
described in the following sections. Once you have some experience with this
process, you can use the WPI for new installations.

Windows Vista and Windows 7

You install IIS through the Programs and Features
section, which you can access through the Control
Panel or by clicking Start, typing appwiz.cpl in the
Search box, and pressing Enter. When you’re in the
Programs and Features screen, click the link Turn
Windows Features On Or Off to bring up the Windows
Features dialog box, shown in Figure 19-7.

Click the Internet Information Services item to select
it. This also selects some of its required subfeatures.
Then expand Internet Information Services ➪ World
Wide Web Services ➪ Application Development
Features and select at least ASP.NET. This causes
some of the other Development features to be selected
as well. Refer to the IIS documentation for help on the
other, optional components.

Finally, click OK and Windows installs the requested features for you. You can proceed with config-
uring ASP.NET in the section “Installing and Configuring ASP.NET.”

Windows Server 2008 / Windows Server 2008 R2

You install IIS through the Programs and Features section, accessible through the Control Panel
or by clicking Start and typing appwiz.cpl in the Search box. When you’re in the Programs and

Figure 19-7

502211c19.indd 712 2/19/10 9:58:39 AM

Running Your Site under IIS  ❘  713

Features screen, click the link Turn Windows Features On Or Off to bring up the Server Manager,
shown in Figure 19-8.

Figure 19-8

Right-click the Roles item in the tree on the left and choose Add Roles (you may need to wait until
the Roles panel is finished loading). Follow the on-screen instructions and install the role Web
Server (IIS). When you get to the screen where you can choose the various Role Services, make sure
you at least select ASP.NET under the Application Development node, as shown in Figure 19-9. This
in turn selects a number of other features that are required by ASP.NET.

Figure 19-9

502211c19.indd 713 2/19/10 9:58:39 AM

714  ❘  Chapter 19   Deploying Your Web Site

Continue the Roles Wizard by clicking Next until Windows starts installing the required files for
the selected roles. When everything is ready, you may need to reboot your computer. When you log
back in, IIS is ready for use.

When IIS is installed successfully, you need to make sure you have the Microsoft .NET Framework
version 4 installed.

Installing and Configuring ASP.NET
If you installed Visual Web Developer 2010 (any edition) on your target machine, you already have
the .NET Framework 4 installed. Otherwise, you need to download it from the Microsoft site at
http://msdn.microsoft.com/en-us/netframework. Follow the Download or Install link or use
the search option and search for “download .NET framework 4.” Make sure you download the full
version of the .NET 4 Framework and not an earlier version or the Client Profile package. After you
have downloaded the .NET Framework, run the installer and follow the on-screen instructions.

If you already had the .NET Framework 4 on your machine and installed IIS afterward, you need to
tell IIS about the existence of the framework. Normally, this is done during installation of the .NET
Framework. If you installed IIS later, you need to do this manually. To register ASP.NET in IIS fol-
low these steps:

	 1.	 Open a command prompt in Administrative mode. To do this, click Start, type cmd in the search
box, and press Ctrl+Shift+Enter to start the command prompt with elevated permissions. When
you confirm the action, the command prompt will open normally.

	 2.	 Navigate to the .NET Framework version 4 folder by entering the following command and
pressing enter:

cd \Windows\Microsoft.NET\Framework\v4.0.30128

Note that the actual version number following v4.0 may be slightly different on your
machine. Also, if you are using a 64 bit version of Windows, the Framework folder is called
Framework64. Use Windows Explorer to find out the correct folder before you enter it at the
command prompt.

	 3.	 Type aspnet_regiis -i and press Enter again.

After a while you should get a message that ASP.NET 4 was registered with IIS successfully.

Now that IIS and the .NET Framework have been installed and configured correctly, the next step
is to configure your web site under IIS. You see how to do this in the next Try It Out exercise. After
the Try It Out, you learn more about configuring security permissions for your system.

Configuring a Site with Windows Vista, Windows 7, or Server 2008Try It Out	

In this exercise you see how to configure the standard “Default Web Site” that ships with IIS. Although
it’s possible to create more than one site under IIS on Windows Vista, Windows 7, and Windows Server
2008, this option is not discussed here. Contact your system administrator or read the help that comes
with IIS to learn more about creating multiple web sites under IIS. Most of the steps in Windows 7 are
identical to those in Windows Vista and Windows Server 2008. However, the screens you see in the

502211c19.indd 714 2/19/10 9:58:39 AM

Running Your Site under IIS  ❘  715

following exercise are taken in Windows 7 and are slightly different on the other operating systems. If
you’re doing this exercise on a machine other than the one you used to build the Planet Wrox site on, be
sure to copy the BegASPNET folder to the root of the C drive of the target machine. Also make sure this
machine has access to SQL Server 2008, installed either locally or on another remote machine.

	1.	 Open the Internet Information Services (IIS) Manager. You find this item in the Administrative
Tools section of the Control Panel which you can access through its System and Security cat-
egory (called System and Maintenance on Windows Vista and the first release of Server 2008).
Alternatively, click Start, type inetmgr in the Search box, and press Enter.

	2.	 Expand the tree on the left until you see Application Pools and the Default Web Site, as shown in
Figure 19-10.

Figure 19-10

	3.	 Click the Application Pools item and confirm you have an entry called ASP.NET v4.0 that uses v4.0
as the .NET Framework Version and that has its Managed Pipeline Mode set to Integrated. If you
don’t have this item, click Add Application Pool in the Actions panel on the right and create a new
application pool called ASP.NET v4.0 using the .NET Framework version 4.0 with Integrated as
the Managed Pipeline mode.

	4.	 Select the ASP.NET v4.0 application pool (whether it was already there or not) and click Advanced
Settings. Locate the property called Identity and ensure it is set to Network Service (Windows Vista
and the initial release of Windows Server 2008) or ApplicationPoolIdentity (Windows 7 and Windows
Server 2008 R2.) If it’s not, choose the correct item from the list of options. You use this identity
later when configuring security. In the same dialog, set the Load User Profile option to True if you’re
using Windows 7 or Server 2008. Click OK to close the Advanced Settings dialog.

	5.	 Click the Default Web Site item to select it and click Advanced Settings in the Actions pane on the
right of Figure 19-10.

502211c19.indd 715 2/19/10 9:58:39 AM

716  ❘  Chapter 19   Deploying Your Web Site

	6.	 In the Advanced Settings dialog box, click the Physical Path property, click the ellipsis to open up a
folder browser, select the folder C:\BegASPNET\Release, and click OK to confirm the path.

	7.	 In the same dialog, click Application Pool, then click the ellipses, choose the Application Pool
from step 3, labeled ASP.NET v4.0 and click OK. Click OK again to close the Advanced Settings
dialog box.

	8.	 Next you need to make sure that IIS is configured to use a sensible default document; the document
that is served when you request a folder name or the root of the site. The Planet Wrox site uses
Default.aspx, which is the most common default document name for ASP.NET web sites. To
check this, double-click the Default Document option in the IIS Features list (below the items you
see in Figure 19-10). Then make sure that Default.aspx is present and at the beginning of the list.
If the item is not there, add it manually. For Windows Vista, simply type the document name in the
File Name(s) list and click Apply. For Windows 7 or Server 2008, click the Add link in the Actions
panel to add it and use the Move Up links to move it to the top of the list. Your dialog should look
similar to Figure 19-11 (if Default.aspx was already in the list, its Entry Type is set to Inherited
instead of Local).

Figure 19-11

	9.	 You can now close the Internet Information Services Manager, because the site is configured cor-
rectly as far as IIS is concerned. However, it still won’t run correctly because you need to configure
security permissions on the file system, as you see later.

How It Works

Each new IIS installation has a Default Web Site, the site that listens to http://localhost by default.
In this exercise, you configured this default web site to run Planet Wrox, but you can also create a whole
new site that can run side by side with other web sites. You pointed the root of the site to the Release
folder that contains your web site. With that mapping set up, IIS is able to see what files to serve when
you request a URL like http://localhost. It means that a URL like http://localhost/Login.aspx
is mapped to the physical file at C:\BegASPNET\Release\Login.aspx. You also assigned the web site

502211c19.indd 716 2/19/10 9:58:39 AM

Running Your Site under IIS  ❘  717

an application pool — an IIS mechanism to isolate and configure one or more IIS web sites in one fell
swoop. Two web sites running in different application pools do not affect each other in case of a prob-
lem such as a crash. In this exercise you selected an application pool that uses the .NET 4 Framework
and uses the Integrated Pipeline mode. In this mode, IIS and ASP.NET are tightly integrated which
means you can use ASP.NET features (such as Forms Authentication you saw in Chapter 16) in stan-
dard IIS functionality such as serving static files. For more information about this mode, check out the
official IIS web site via http://tinyurl.com/IntegratedPipelineMode.

At the end of the exercise you configured a default document, the file that is served when you request
a URL without an explicit file name, like http://localhost/ or http://localhost/Reviews/. By
configuring Default.aspx as the default document, IIS will try to find and serve a file by that name.

The final thing you need to do to make sure your site runs on your local IIS installation is configure
the security settings. This is discussed in the following two sections.

Understanding Security in IIS
Because of the seamless integration of the built-in web server in Visual Web Developer 2010, you
may not realize what happens under the hood, and what security settings are in effect when you
browse pages in your site. In order to use resources in your site, such as ASPX files, Code Behind
files, the database in the App_Data folder, and the images in your site, your web server needs per-
missions from Windows to access those resources. This means that you need to configure Windows
and grant access to those resources to the account that the web server uses. But what exactly is that
account? The specific account that needs permission depends on a number of factors, including the
version of Windows, whether you run your site under IIS or with the built-in web server, and on a
number of settings within IIS.

In most cases, however, there are only two scenarios to consider: using the built-in web server or
using IIS as your web server.

In the former case, the account that the built-in web server uses is the account you use to log on
to your Windows machine. This account is usually something like DomainName\UserName or
MachineName\UserName. Logged in with this account on Windows, you start up VWD 2010, which
in turn starts up the built-in web server. This means that the entire web server runs with your cre-
dentials. Because it’s likely you’re an Administrator or a power user on your local Windows machine
and have permissions to access all files that make up your site, things probably worked fine so far
without any changes to the security settings.

In the latter case, where IIS is used, things are quite different. By default, an ASP.NET application
under IIS runs with a special account created when you installed IIS. This account is called Network
Service on Windows Vista, and the original release of Windows Server 2008 and it is called
ApplicationPoolIdentity on Windows 7 and Windows Server 2008 R2.

You won’t find the ApplicationPoolIdentity user account on your system directly, as it depends on
the name of the configured application pool.

502211c19.indd 717 2/19/10 9:58:39 AM

718  ❘  Chapter 19   Deploying Your Web Site

Because the Application Pool you saw earlier runs in Integrated Pipeline mode, you only need to
configure a single user account. If you are running in Classic Mode (which isn’t necessary for the
PlanetWrox web site) you also need to configure another account called IUSR. This account is used
by IIS to serve non-ASP.NET content such as HTML files and images. Consult the IIS documenta-
tion for more information about Classic Mode and the IUSR account.

After you have determined the account that you need to configure, the final step is to configure the
file system.

NTFS Settings for Planet Wrox
Regardless of the account you are using, you’ll need to make changes to the Windows file system,
so the web server is allowed to access your resources. This is only necessary when your hard drive is
formatted using NTFS and not with FAT or FAT32, the older Microsoft file systems. You see how to
determine the type of your drive in an exercise later in this section.

To successfully configure your NTFS file system for the Planet Wrox web site, you need to grant the
following permissions to the web server accounts that you determined in the previous section:

Folder Name Permissions Explanation

Release

(Located at

C:\BegASPNET\)

List folder contents

Read

The web server account needs to be able to

read all the files and folders that make up the

web site. Child folders, like Reviews, need to

be set up to inherit these settings.

App_Data

GigPics

(both located at

C:\BegASPNET\)

Modify

List folder contents

Read

Write

The web server account needs to be able

to read from and write to the Microsoft SQL

Server 2008 databases in the App_Data

folder. It also needs to be able to save the

uploaded images in the GigPics folder.

If you came here from Chapter 12 to learn how to configure NTFS for the App_Data folder you can
ignore the Release folder that was created earlier in this chapter. Instead, grant Modify permissions
for your own account to the App_Data folder of your site as per the instructions in the next exercise.

In the following exercise you learn how to configure the security settings for these folders.

Configuring the File SystemTry It Out	

In this Try It Out you see how to configure the file system for the Planet Wrox web site. The exercise
shows you screenshots from Windows 7, but the other flavors of Windows have similar screens. Search
Windows help for “security NTFS” or contact your administrator if you’re having problems carrying
out the following steps.

	1.	 Start by opening a Windows Explorer and then locate your C drive. Right-click it and choose
Properties. Verify that under File System you have NTFS. If you see the older FAT or FAT32

502211c19.indd 718 2/19/10 9:58:40 AM

Running Your Site under IIS  ❘  719

file systems you can skip this entire Try It Out, because FAT doesn’t support changing security
settings. Close the Properties dialog.

	2.	 In the same Windows Explorer window, browse to the Release folder at C:\BegASPNET\Release,
visible in Figure 19-12.

Figure 19-12

	3.	 Right-click the Release folder, choose Properties, and switch to the Security tab (see
Figure 19-13).

	4.	 By default, the Release folder inherits its settings from its parent folder (C:\BegASPNET), which
in turn gets its settings from the root of your C drive. To break this inheritance chain, click the
Advanced button to open the Advanced Security Settings dialog box. Then for Windows 7 and
Windows Server 2008 R2 click the Change Permissions button and for Windows Vista and Windows
Server 2008, click the Edit button on the Advanced Security Settings dialog to turn this screen into
Edit mode. You should get a screen similar to Figure 19-14.

Figure 19-13 Figure 19-14

502211c19.indd 719 2/19/10 9:58:40 AM

720  ❘  Chapter 19   Deploying Your Web Site

	5.	 Clear the Include Inheritable Permissions From This Object’s Parent option and click OK. You’ll
get a dialog box that asks you if you want to Add (Windows 7 and Server 2008 R2) or Copy (Vista
and Server 2008) or Remove the existing settings. Choose Add or Copy and then close all dialog
boxes until you’re back in the Release Properties dialog box visible in Figure 19-13.

	6.	 The next step is adding accounts. Click the Edit button visible in Figure 19-13, and then click the
Add button. Type the name of the web server account which depends on the version of Windows
you are using. If your account is the ApplicationPoolIdentity, enter IIS AppPool\ASP.NET v4.0
as the account name. Otherwise, enter Network Service. Click OK to add the account.

With the account selected in the Group or User Names
list, ensure that only List Folder Contents and Read are
selected. Your dialog box should end up similar to
Figure 19-15.

	7.	 Close all open dialog boxes except for the Release
Properties dialog box shown in Figure 19-13.

	8.	 Click the Advanced button to open the Advanced Security
Settings dialog box again. For Windows 7 and Server
2008 R2, click the Change Permissions button and for
Windows Vista or Windows Server 2008, click the Edit
button in the Advanced Security Settings dialog box to
put it in Edit mode. Select the second check box you see
in Figure 19-14. This forces Windows to apply the same
security settings to all sub files and folders, replacing all
existing settings. Click OK and then confirm the changes
that will be made. Finally, close all remaining open dia-
log boxes.

	9.	 Back in Windows Explorer, right-click App_Data from the Release folder, open its Properties
dialog and then its Security tab, and edit the permissions for the web server account you added in
step 6 by adding Modify permissions (Write, Read & Execute get selected automatically as well).
You need to click the Edit button first to bring the Properties dialog box in editable mode. Repeat
this step for the GigPics folder.

	10.	 If you are using IIS on the same machine that has SQL Server 2008 Express, you’re pretty much
done now and your web site should be ready for action. If you’re using a different database server,
look at the section “Moving Data to a Remote Server” later in this chapter and look at Appendix
B that explains how to configure a different SQL Server. To check if the site works, open a browser
and go to http://localhost. You should see the Planet Wrox web site appear. To verify that
everything is in order, browse through the site by requesting pages from the main menu, filling in
the contact form, creating a new Album, uploading pictures, and so on. If you get an error, refer to
the section “Troubleshooting Web Server Errors.”

Figure 19-15

502211c19.indd 720 2/19/10 9:58:40 AM

Running Your Site under IIS  ❘  721

NOTE  ​If you still can’t make it work, try configuring the file system for the
Everyone group. Although, from a security point of view, this is absolutely not
the recommended group to use in a production environment, it may help you in
finding out whether it’s a security issue. If it works for the Everyone account, it’s
indeed security-related, so you need to make sure you configured the correct
accounts. Don’t forget to remove the Everyone account later again.

How It Works

On a standard Windows system, all files and folders are protected using the Windows NTFS file system.
To ensure proper operation of your web site you need to grant the account used by the web server the
necessary permissions to the files and folders of your web site. For most files and folders, Read per-
mission is enough. However, for two folders you need to change the permissions. Both App_Data and
GigPics are written to at runtime so you need to grant Modify and Write permissions to these folders.

Troubleshooting Web Server Errors
When you try to access your site in a web browser, you may run into a number of problems. The
first thing you need to do to get helpful error messages is to change the <customErrors> sec-
tion in web.config from On to Off or RemoteOnly. This makes it easier to see what’s going on.
Additionally, you may want to check out the Windows Event Viewer (type eventvwr from the Start
Menu) for more details about errors and hints how to solve them.

This section lists the most common problems and provides a fix for them. You should realize a large
number of possible reasons exist for the errors you may get, so it’s impossible to cover them all here.
If you run into a problem you can’t solve, turn to this book’s forum at the Wrox community site at
http://p2p.wrox.com. You’ll find many helping hands (including mine) that understand your prob-
lem and can help you find a solution for it.

It is an error to use a section registered as allowDefinition=‘MachineToApplication’ beyond ➤➤

application level: You get this error when your web site is not at the root of the web server,
or you haven’t configured the folder as a separate application. Given the current configuration
for the Planet Wrox site, you get this error when, for example, you map your site in IIS to
C:\BegASPNET and then browse to http://localhost/Release. To fix this error, make sure
that the root of your IIS web site points to the folder that contains your main web.config
file; C:\BegASPNET\Release in this case. You get the same error when you open an incorrect
folder in VWD. For example, when you open C:\BegASPNET and then browse to http://
localhost/Site. Instead, open C:\BegASPNET\Site as the web site in VWD. You may also
run into this error if a subfolder in your site contains a web.config file that tries to override
settings that are meant to be defined at the root of the site only; for example, if you have a
<membership /> element in the web.config file of the Management folder.

HTTP Error 401.3–Unauthorized:➤➤ You get this error when the account used by the web server
does not have permission to read the files on disk. To fix this problem, refer to the Try It Out
entitled “Configuring the File System” earlier in this chapter and configure the correct permissions.

502211c19.indd 721 2/19/10 9:58:40 AM

722  ❘  Chapter 19   Deploying Your Web Site

Failed to update database “C:\BEGASPNET\RELEASE\APP_DATA\ASPNETDB.MDF” ➤➤

because the database is read-only: You get this error when either the database files have been
marked as read-only, or if the account used by the web server is not allowed to write to the
database files. In the former case, open the file’s Properties in Windows Explorer and verify
that the Read Only check box is cleared. In the latter case, ensure that the account used by
ASP.NET has at least Modify permissions on the App_Data folder.

HTTP Error 403.14–Forbidden:➤➤ Although this error seems to suggest a problem with NTFS
permissions at first, it’s often caused by an incorrect or missing default document. If you
get this error, ensure that the site or folder you are accessing contains a document called
Default.aspx and that you configured that document name as a default document in IIS.

HTTP Error 404.0–Not Found:➤➤ You get this error when you try to request a file or folder
that doesn’t exist, such as http://localhost/DoesNotExist or http://localhost/
DoesNotExist.gif.

An error has occurred while establishing a connection to the server. When connecting to SQL ➤➤

Server 2008, this failure may be caused by the fact that under the default settings SQL Server
does not allow remote connections. (provider: Named Pipes Provider, error: 40–Could not
open a connection to SQL Server). Alternatively you may get the error: A network-related
or instance-specific error occurred while establishing a connection to SQL Server. The server
was not found or was not accessible. Verify that the instance name is correct and that SQL
Server is configured to allow remote connections. (provider: SQL Network Interfaces, error:
26 - Error Locating Server/Instance Specified): You can get these errors for a number of rea-
sons. Although the error message mentions SQL Server 2008 explicitly, you can also get the
same error for SQL Server 2005. Usually, this error is caused by problems reaching the con-
figured database server. You can get it when you misspelled the server’s name in a connection
string, the server is down, or the server can only be reached from the local machine and is
not accessible over the network. To make sure that SQL Server is running correctly, open the
Services section of the Administrative Tools (that you find in the Control Panel). Then look
under SQL Server and verify that SQL Server is started. Appendix B explains SQL Server
security in more detail and provides solutions to these problems.

Failed to generate a user instance of SQL Server due to failure in retrieving the user’s local ➤➤

application data path. Please make sure the user has a local user profile on the computer. The
connection will be closed: You can get this error when using Windows 7 or Windows Server
2008 R2 when you forgot to enable the “Load User Profile” option discussed in the Try It
Out titled “Configuring a Site with Windows Vista, Windows 7, or Server 2008”.

HTTP Error 500.21 - Internal Server Error Handler “PageHandlerFactory-Integrated” has a ➤➤

bad module “ManagedPipelineHandler” in its module list Detailed Error Information: You
get this error on Windows 7 or Windows Server 2008 when ASP.NET is not registered with
IIS. Refer to the section labeled “Installing and Configuring ASP.NET” to learn how to use
aspnet_regiis to fix this issue.

Runtime Error Description: An application error occurred on the server. The current cus-➤➤

tom error settings for this application prevent the details of the application error from being
viewed. Details: To enable the details of this specific error message to be viewable on the
local server machine, please create a <customErrors> tag within a “web.config” configuration

502211c19.indd 722 2/19/10 9:58:40 AM

Moving Data to a Remote Server  ❘  723

file located in the root directory of the current web application. This <customErrors> tag
should then have its “mode” attribute set to “RemoteOnly”. To enable the details to be
viewable on remote machines, please set “mode” to “Off”: You may get this error when a
runtime error occurs, and the web.config does not contain a <customErrors> element.
However, you may also get the same error when the web.config file itself contains an error,
for example when you forgot to close an element. To fix this latter category of errors, open
the file in VWD and it will provide you with more details about the error.

Could not load type ‘System.ServiceModel.Activation.HttpModule’ from assembly ‘System.➤➤

ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089’: You
get this error when IIS is configured to run an earlier version of .NET. To fix this problem,
run aspnet_regiis -i from the ASP.NET 4 Framework folder in a command prompt as
explained earlier.

When you are deploying to a machine that also has SQL Server 2008 Express edition installed, you
are done with the deployment process now. However, if you’re dealing with a different SQL Server,
the only thing that’s left to do is to make sure your new site has the required data. You see how to
do this next.

Moving Data to a Remote Server

Releasing a site to IIS on your local machine is pretty straightforward. You simply copy the data to
a new location, configure IIS, change a few security settings, and that’s it. Because the site continues
to use SQL Server 2008 Express edition, it will run fine.

If you need to move your site to an external server or host, things are not so easy. Although copy-
ing the files that make up your site is usually extremely simple using an FTP program, copying data
from your SQL Server 2008 database to your host is quite often a bit trickier. This is because most
web hosts don’t support SQL Server 2008 Express edition, so you can’t just simply copy the .mdf
files to the App_Data folder at your remote host. Instead, these hosts often offer the full versions of
SQL Server, which you can access either with a web-based management tool or with tools such as
SQL Server Management Studio for SQL Server 2005 and 2008.

To make it easy to transfer data from your local SQL Server 2008 database into a SQL Server data-
base of your web host, Microsoft created the Database Publishing Wizard.

Using the Database Publishing Wizard
The Database Publishing Wizard enables you to create a .sql script that contains all the information
required to recreate your database and its data at a remote server. Recreating this data is a two-step
process:

	 1.	 Create a .sql script from your local SQL Server database.

	 2.	 Send this script to your host and execute it there.

502211c19.indd 723 2/19/10 9:58:40 AM

724  ❘  Chapter 19   Deploying Your Web Site

The first step is described in detail in the next exercise. I won’t show you how to run the script at
your host because this is different from host to host. Instead, I will give you some general pointers so
you know what to look for with your host.

Exporting the Planet Wrox DatabaseTry It Out	

You can access the Database Publishing Wizard from the Database Explorer window (the Server
Explorer in paid versions of Visual Studio). Once you have completed the wizard, you’ll have a .sql file
that contains all the necessary SQL code to recreate the database at a different server.

	1.	 With the Planet Wrox project loaded in VWD, choose View ➪ Database Explorer (or View ➪
Server Explorer).

	2.	 Right-click the PlanetWrox.mdf database and choose Publish to Provider to invoke the Database
Publishing Wizard. If you get a welcome screen, click Next. Ensure that your database is selected
and that Script All Objects in the Database is selected, and then click Next. The dialog box shown
in Figure 19-16 appears.

Figure 19-16

	3.	 In this screen, you can choose between two options. The first enables you to create a text file with
the necessary SQL statements, and the second option enables you to talk to your shared hosting
provider over the Internet directly. If your host supports this, they can give you the necessary infor-
mation to set up a Provider here. For now, choose Script to File and click the Next button.

	4.	 In the step that follows, accept all defaults shown in Figure 19-17 and click Next once more.

	5.	 Click Finish and the wizard generates the SQL script for you in your Documents folder. Open the
file in Notepad and look at the SQL statements it contains. Although most of it probably looks
like gibberish to you, it can be used as is to recreate the database on a compatible SQL Server 2008
database.

502211c19.indd 724 2/19/10 9:58:40 AM

Moving Data to a Remote Server  ❘  725

Figure 19-17

	How It Works

The contents of a database can be separated in two categories: the structure of the database and the
actual data. When the Database Publishing Wizard runs, it investigates the structure of your database
first and creates SQL CREATE statements for all the items it finds in your database, such as the tables
you created in earlier chapters. It then creates INSERT statements that recreate all records such as
Reviews, Genres, and even users in the target database. By clearing the Script All Objects check box at
the beginning of the wizard, you can selectively choose parts of your database, enabling you to script
only a few tables, for example.

At the end, the wizard assembles all the SQL statements and saves them to a single .sql file. This file is
now ready to be run at your host to recreate the database.

Recreating the Database
Although every host has its own rules and procedures when it comes to providing access to their
SQL Server, they can be grouped in three categories.

First, some hosts don’t give you remote access to their database and require you to submit a .sql
file so they can execute it for you. In this case, you don’t have to do anything other than send the file
and wait for the host to create your database.

NOTE  ​For detailed information about hosting your site with an external hosting
party, check out the tutorials in the hosting section of the official ASP.NET site
at www.asp.net/learn/hosting.

502211c19.indd 725 2/19/10 9:58:41 AM

726  ❘  Chapter 19   Deploying Your Web Site

The second category contains the hosts that allow you to execute SQL statements through a web
interface. You typically log in to your online control panel and then execute the SQL statements
created by the Database Publishing Wizard, either by uploading the file or by pasting its contents
in a text area in a web page. Regardless of the method, you then end up with a database that you
can access from your application. How this works exactly is different with each host, so consult the
hosting service’s help or support system for more information. Some known issues exist with web-
based database management tools from some providers, resulting in errors when you try to run the
generated SQL file. Although the file itself is technically valid, the tool may still run into issues with
it. If that’s the case, contact your host for help on resolving the issue.

The final category contains hosts that allow you to connect to their SQL Server over the Internet.
This enables you to use tools like SQL Server Management Studio to connect to the database at your
host right from your desktop and execute the SQL scripts remotely.

The SQL Server Management Studio also has a free Express edition that you can download from the
Microsoft site (http://www.microsoft.com/express/database/). This tool works pretty much
the same as its commercial counterpart that ships with the paid versions of SQL Server 2008 and is
an invaluable tool for anyone working with SQL Server databases.

After your database is recreated at your target server, you need to reconfigure your ASP.NET
application to use the new database by changing the connection strings in your web site. For this
to work, you need to modify three connection strings: the PlanetWroxConnectionString1 and
PlanetWroxEntities you created in an earlier chapter, and the LocalSqlServer connection string
that the ASP.NET Application Services use by default. The easiest way to accomplish this is to clear
the old connection string using <clear /> and then add a new one. How your connection string must
look depends on the database you are using and its configuration. For many examples of proper connec-
tion strings, check out www.connectionstrings.com. The following snippet provides a simple example
that reconfigures your application to use a database server called DatabaseServer. This example shows
a connection string for a SQL Server that requires you log in with a username and password (in your
configuration file, each connection string should be on a single line):

<connectionStrings>
 <clear />
 <add name="PlanetWroxConnectionString1" connectionString="Data
 Source=DatabaseServer;Initial Catalog=PlanetWrox;User Id=YourUserName;
 Password=YourPassword;" providerName="System.Data.SqlClient"/>
 <add name="PlanetWroxEntities" connectionString="metadata=res://*
 /App_Code.PlanetWrox.csdl|res://*/App_Code.PlanetWrox.ssdl|res://*
 /App_Code.PlanetWrox.msl;provider=System.Data.SqlClient;
 provider connection string="Data Source=DatabaseServer;
 Initial Catalog=PlanetWrox;User Id=YourUserName;Password=YourPassword;
 MultipleActiveResultSets=True""
 providerName="System.Data.EntityClient"/>
 <add name="LocalSqlServer" connectionString="Data
 Source=DatabaseServer;Initial Catalog=ASPNETDB;User Id=YourUserName;
 Password=YourPassword;"providerName="System.Data.SqlClient"/>
</connectionStrings>

This points all three connection strings for the PlanetWrox database with the Reviews and Albums
tables and the ASPNETDB database that contains Membership, Roles, and Profile information to a
different SQL Server. The <clear /> element is used to remove any previously declared connection
string, giving you the chance to add the LocalSqlServer item again with a different connection

502211c19.indd 726 2/19/10 9:58:41 AM

The Deployment Checklist  ❘  727

string. Consult Appendix B for more information about configuring your ASP.NET application and
SQL Server to operate with each other. Appendix B also explains how you can incorporate the data
of the ASPNETDB database into your own, which is useful if your host charges you extra for each
separate database.

At this stage, you’re pretty much done configuring your newly created web site. Congratulations!
However, before you relax and start enjoying your new web site, read the following checklist that
helps you secure your site and improve its performance.

The Deployment Checklist

Instead of ending this chapter with general tips about deployment, this section gives you a practical
list of things to check when you’re ready to put your web site in production:

Make sure you don’t have debugging enabled in the ➤➤ web.config file. This causes unnecessary
overhead and decreases performance of your web site as code executes slower and important
files cannot be cached by the browser. To ensure debugging is disabled, open the web.config
file you are using for your production environment, and verify that debug is set to false:

<compilation debug=”false”>

Make sure you have turned on custom errors by setting the ➤➤ mode attribute of the customEr-
rors element in web.config to either On or RemoteOnly. In the first case, everyone sees your
custom error pages, and in the second case, only users local to the web server can see the
error details. Never leave the mode set to Off, because doing so can lead to information dis-
closure. The following snippet shows a safe configuration of the customErrors element:

<customErrors mode=”On” defaultRedirect=”~/Errors/OtherErrors.aspx”>
 Optional <error /> elements go here
</customErrors>

Disable tracing, or at least limit the trace information to users coming from the local ➤➤

machine. The following <trace /> element from web.config blocks tracing for users
coming from machines other than the web server itself. Additionally, it stops the trace
information from appearing in the page:

<trace mostRecent=”true” enabled=”true” requestLimit=”1000”
 pageOutput=”false” localOnly=”true”/>

Consider setting the ➤➤ retail attribute of the deployment element in machine.config to
true:

<configuration>
 <system.web>
 <deployment retail=”true”/>
 </system.web>
</configuration>

This section is used to indicate that the server hosts production-ready versions of your sites
and for all sites on the server changes all three previous items to a secure setting: debugging
and tracing are disabled, and error messages are only accessible to local users.

502211c19.indd 727 2/19/10 9:58:41 AM

728  ❘  Chapter 19   Deploying Your Web Site

To make this change, you need to be logged in as an Administrator on your system. Also, be
sure to make a backup copy of the file first. Because it serves as the root configuration file
for all your ASP.NET web sites, you don’t want to mess up this file.

Scan your site for important files that may contain sensitive information (like Word or text ➤➤

documents) and either exclude them from the release version or consider moving them to the
App_Data folder. Files in that folder cannot be accessed directly. However, your own code
can still access the files as you saw in Chapter 9.

Make sure you turn on error logging. With the error logging code you created in the previous ➤➤

chapter, you are notified whenever an error occurs, enabling you to proactively keep an eye
on your server, fixing errors before they get a chance to happen again.

If you are using themes in your site, make sure you remove either the ➤➤ theme or the
styleSheetTheme attribute from the <pages> element in web.config. The Planet Wrox
web site uses themes, but you added the styleSheetTheme attribute to enable design-time
support in Visual Web Developer. On your production server all you need is this:

<pages theme=”Monochrome”>
 ...
</pages>

This way, the page won’t include the same style sheet twice.

What’s Next

Now that you have finished your first ASP.NET web site, I am sure you are looking forward to cre-
ating your next site. The Planet Wrox site can serve as a basis for new sites you will build. You prob-
ably won’t use any of its pages in your site directly, but hopefully this book and the Planet Wrox
web site inspired you enough to build a new web site on your own.

Because this book is aimed at beginners, I haven’t been able to provide you with a lot of in-depth
information on some important topics. Most subjects that have their own chapter in this book easily
warrant an entire book on their own. For example, topics like CSS, AJAX, and LINQ are so exten-
sive that Wrox has published many books about them. Now that you’ve mastered the basics of these
technologies, you can dig deeper into them using the following books in the Wrox Professional series:

Professional CSS: Cascading Style Sheets for Web Design, 2nd Edition➤➤
(ISBN: 978-0-470-17708-2)

Professional ASP.NET 2.0 Design: CSS, Themes, and Master Pages➤➤
(ISBN: 978-0-470-12448-2)

Professional AJAX 3.5➤➤ (ISBN: 978-0-470-39217-1)

Professional ASP.NET 4 in C# and VB➤➤ (ISBN: 978-0-470-50220-4)

Professional LINQ➤➤ (ISBN: 978-0-470-04181-9)

Professional IIS 7➤➤ (ISBN: 978-0-470-09782-3)

502211c19.indd 728 2/19/10 9:58:41 AM

Summary  ❘  729

Of course the Web is also a good place for more information. The following URLs may be helpful in
your search for more information about ASP.NET and its related technologies:

http://p2p.wrox.com➤➤ : The public discussion forum from Wrox where you can go for all
your programming-related questions. This book has its own category on that site, enabling
you to ask targeted questions. I am a frequent visitor of these forums and I’ll do my best to
answer each question you may have about this book.

http://imar.spaanjaars.com➤➤ : My own web site where I keep you up to date about various
web programming-related topics.

http://www.asp.net➤➤ : The Microsoft community site for ASP.NET technology. Go here for
news on ASP.NET, additional downloads, and tutorials.

http://msdn.microsoft.com/asp.net➤➤ : The official home for ASP.NET at the Microsoft
developers web site that gives you a wealth of information on ASP.NET.

Summary

Obviously, deployment is an important action at the end of the development cycle of your new web
site. However, it’s unlikely that you only deploy your site once. As soon as you release the first ver-
sion of your site, you’ll think of other new and cool features you want to add, making the develop-
ment of your site a never-ending story. To accommodate for this, you need to make your site easy to
deploy.

One way to do this is by moving hardcoded configuration settings to the web.config file, giving you a
single location to change parameters for the site in your development and production environments.

When you’re ready to roll out your site, it’s a good idea to create a copy of your site and clean that
up before you send the files to your target server. Copying and then publishing a site is a breeze with
the Copy Web Site and Publish Web Site commands.

Because you will deploy your site against IIS, you need to understand some important settings of
this web server. In this chapter you saw how to configure the default web site and make some config-
uration changes. Because of the way security works in Windows and IIS, you also need to configure
your hard drive so that the accounts used by the web server can read the files in your site, and write
to specific folders such as App_Data and GigPics.

The chapter closed with a short discussion of the Database Publishing Wizard, a tool that enables
you to create a scripted copy of your database that you can use to restore your database on a remote
server. Appendix B digs deeper into configuring and connecting to remote database servers.

Exercises	

There are no exercises in this chapter, because the Planet Wrox site is now completely finished.
However, your biggest challenge starts now: building web sites with the knowledge you gained from
this book. If you ever build a site with the information from this book and want to share it with me,
please contact me through my web site at http://imar.spaanjaars.com. Have fun!

502211c19.indd 729 2/19/10 9:58:41 AM

730  ❘  Chapter 19   Deploying Your Web Site

What You Learned in This Chapter⊲⊲

.NET Assembly A file with a .dll extension that contains executable and callable

.NET code

Application Pool A mechanism to isolate (one or more) web sites in IIS to give them

their own set of resources

Database Publishing Wizard A tool integrated with VWD to export data from a SQL Server data-

base to flat files or to a remote database

Deployment The process of releasing a web site from your development envi-

ronment to the production environment

Expression syntax A technique that enables you to bind control properties to different

resources, such as application settings defined in web.config

IIS Internet Information Services — Microsoft’s web server for the

Windows platform

Integrated Pipeline mode With Integrated Pipeline mode turned on for an application pool in

IIS, ASP.NET and IIS are tightly integrated together, enabling you to

use ASP.NET techniques for non-.NET resources such as static files

Precompilation The process of compiling a web application into a set of .dll files

which can be deployed to a production server. Without precompila-

tion, the ASP.NET files are compiled on the fly the first time they are

requested

WebConfigurationManager
class

Provides access to data that is stored in configuration files

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

502211c19.indd 730 2/19/10 9:58:41 AM

Exercise Answers

Chapter 1

Exercise 1 Solution
The markup of a page in VWD contains the raw and unprocessed source for the page, including
the HTML, ASP.NET Server Controls, and programming code. The web server then processes
the page and sends out the final HTML to the browser. In the browser this HTML is then
used to render the user interface.

Exercise 2 Solution
XHTML and HTML are related because XHTML is a version of HTML rewritten with XML
rules. While HTML is much more relaxed, XHTML forces the programmer to write code that
conforms to XML rules, such as correct capitalization, closed tags, and attributes that are
enclosed in quotes.

Exercise 3 Solution
The easiest way to store HTML fragments that you use often is to select them in the Document
Window and then drag them to a free space on the Toolbox. When the item is added, you can
rename it to give it a more meaningful name. Now you can simply double-click an item or
drag it from the Toolbox into your page whenever you need it.

A

502211bapp01.indd 731 2/19/10 10:08:39 AM

732  ❘  Appendix A   Exercise Answers

Exercise 4 Solution
There are a number of ways to reset part of the customization changes you may have made,
including:

Resetting the Window layout by choosing Window ➤➤ ➪ Reset Window Layout.

Resetting the Toolbox by right-clicking it and choosing Reset Toolbox.➤➤

Resetting all settings of VWD using Tools ➤➤ ➪ Settings ➪ Import and Export Settings or
Tools ➪ Import and Export Settings, depending on your version of VWD.

Exercise 5 Solution
To change the property of a control on a page, you can click the control in Design or Markup View
and then use the Properties Grid (which you can bring up by pressing F4) to change the value of the
property. Alternatively, you can change the property directly in Markup View.

Chapter 2

Exercise 1 Solution
A number of files fall in the Web Files category, including .aspx files (Web Forms that end up as pages
in the web browser), .html files (that contain static HTML for your site), .css files that contain
Cascading Style Sheets information and .config files that contain configuration information for the
web site. Refer to the table with the different file types in Chapter 2 for a complete list of files.

Exercise 2 Solution
When you want to make a piece of text both bold and italicized you need to select the text and then
click the Bold button in the Formatting toolbar. Next you need to click the Italic button. The final
HTML code in the page should look like this:

Welcome to Planet Wrox

Exercise 3 Solution
The first way is using the Solution Explorer. Right-click your project, choose Add Existing Item and
then browse for the item(s) you want to add.

Secondly, you can drag and drop files from Windows Explorer or from your desktop directly into a
VWD project.

As a third alternative, you could put the files directly in the project’s folder using Windows Explorer.
For example, files you add to the folder C:\BegASPNET\Site become part of your web site automati-
cally. If you don’t see the new files appear in VWD directly, click the Refresh icon on the Solution
Explorer toolbar.

502211bapp01.indd 732 2/19/10 10:08:39 AM

Chapter 3  ❘  733

Exercise 4 Solution
In VWD, you have three different views on your code: Design View, Markup View (also referred to
as Source View or Code View), and Split View. The first gives you an impression of how your web
page is going to look in the browser, while the second view shows you the raw markup. Split View
enables you to see both views at the same time.

VWD also has different views for other files. For example, programming code for an ASPX page is
generally referred to as the Code Behind view or simply the Code Behind.

Chapter 3

Exercise 1 Solution
The biggest benefit of an external style sheet is the fact that it can be applied to the entire site.
Simply by changing a single rule in that file, you can influence all pages in your site that make use
of that rule. With embedded or inline styles, you need to manually change all the files in your site.
External style sheets also make it much easier to reuse a certain style with many different elements
in your site. Simply create a class or an ID selector and reuse them wherever you see fit.

Exercise 2 Solution
The rule can look like this:

h1
{
 font-family: Arial;
 color: Blue;
 font-size: 18px;
 border-top: 1px solid blue;
 border-left: 1px solid blue;
}

Note another shorthand version of the border property. This one looks similar to the border prop-
erty you saw earlier in this chapter that allowed you to set the size, style, and color of the border at
once. In this rule, border-top and border-left are used to change the left and top borders only;
the other two directions, the bottom and right border, are not affected by this rule.

Exercise 3 Solution
The second declaration is more reusable in your site because it denotes a Class selector as opposed to
an ID selector. The latter can only be used once in a single page by an element that has a matching
id attribute: MainContent in this example. The Class selector BoxWithBorders, on the other hand,
can be used by multiple elements in a single page, as you are allowed to apply an identical class
attribute to multiple elements in a page.

502211bapp01.indd 733 2/19/10 10:08:39 AM

734  ❘  Appendix A   Exercise Answers

Exercise 4 Solution
VWD lets you attach a style sheet in the following ways:

Type in the required ➤➤ <link> element in the <head> of the page in Markup View directly.

Drag a CSS file from the Solution Explorer into the ➤➤ <head> section of a page in Markup View.

Drag a CSS file from the Solution Explorer and drop it onto the page in Design View.➤➤

Use the main menu Format ➤➤ ➪ Attach Style Sheet and then browse to your CSS file.

Use the Manage Styles or Apply Styles windows and click the Attach Style Sheet link.➤➤

Chapter 4

Exercise 1 Solution
The mechanism that enables controls to maintain their state is called View State.

Exercise 2 Solution
The ASP.NET run time stores the values for the controls in a hidden field called __VIEWSTATE. This
hidden field is sent with each postback to the server, where it’s unpacked and then used to repopulate
the controls in the page with their previous values.

Exercise 3 Solution
The DropDownList only allows a user to make a single selection whereas the ListBox allows for
multiple selections. In addition, the DropDownList only shows one item in the list when it’s not
expanded, while the ListBox is capable of displaying multiple items simultaneously.

Exercise 4 Solution
In order to have a CheckBox control submit back to the server when you select or clear it in the
browser, you need to set the AutoPostBack property to True:

<asp:CheckBox ID=”CheckBox1” runat=”server” AutoPostBack=”True” />

Exercise 5 Solution
Many of the ASP.NET Server Controls let you change colors using properties like BackColor and
ForeColor. Additionally, you can use BorderColor, BorderStyle, and BorderWidth to change the
border around a control in the browser. Finally, to affect the size of the control, you need to set its
Height and Width properties.

502211bapp01.indd 734 2/19/10 10:08:39 AM

Chapter 5  ❘  735

Exercise 6 Solution
Instead of setting individual styles, you’re much better off setting the CssClass property that points
to a rule set. This way, your pages become easier to maintain, as style-related information is stored
in a single place: in the style sheet. At the same time, your page loads faster as not all the style infor-
mation is sent for each control on each request. Instead, the browser reads in the style sheet once
and keeps a locally cached copy.

Chapter 5

Exercise 1 Solution
Both the Byte and the SByte data types are designed to hold small, numeric values. Both of them
take up exactly the same amount of computer memory, so you’re probably best off using the Byte
data type. Because it doesn’t allow you to store negative numbers, it’s clear from the start that it can
only contain a number between 0 and 255. However, it’s much better not to store someone’s age, but
the date of birth instead. That way, you can always extract the age from the date of birth by com-
paring it with today’s date. Because the date of birth is a fixed point in time, it will always reflect
someone’s age correctly without the need to annually update it.

Exercise 2 Solution
This piece of code toggles the visibility of the DeleteButton control. It uses both the assignment
operator and the negation operator. First, the negation operator is applied to the current value of
Visible. When that value is currently True, the Not (! in C#) operator turns it into False and vice
versa. This result is then assigned back to the Visible property. So, where the button was previously
hidden, it is now visible. Where it was visible before, it’s now made invisible.

Exercise 3 Solution
To create a specialized version of Person, you need to create a second class that inherits the Person
class and extend its behavior by adding the StudentId property.

VB.NET

Public Class Student
 Inherits Person
 Public Property StudentId As String
End Class

C#

public class Student : Person
{
 public string StudentId { get; set; }
}

502211bapp01.indd 735 2/19/10 10:08:39 AM

736  ❘  Appendix A   Exercise Answers

Chapter 6

Exercise 1 Solution
The ContentPlaceHolder element should be placed in the master page. It defines a region that con-
tent pages can fill in. The Content control should be placed in a content page that is based on the mas-
ter page. It is used to supply the content for the ContentPlaceHolder element that it is connected to.

Exercise 2 Solution
To link a Content control to its ContentPlaceHolder in the master page, you need to set the
ContentPlaceHolderID:

<asp:Content ID=”Content1” ContentPlaceHolderID=”IdOfContentPlaceHolder”
 Runat=”Server”>
</asp:Content>

Exercise 3 Solution
There are a few ways to do this. First, you can create a named skin with a different CSS class in the
same skin file.

<asp:Button runat=”server” SkinID=”RedButton” CssClass=”RedButton” />

You then hook up the control you want to change to this named skin using the SkinID attribute:

<asp:Button ID=”Button1” runat=”server” Text=”Button” SkinID=”RedButton” />

Alternatively, you can disable theming on the Button control and give it a different CSS class
directly in the ASPX page:

<asp:Button ID=”Button1” runat=”server” EnableTheming=”False”
 CssClass=”RedButton” Text=”Button” />

In both solutions, you need a CSS class that sets the background color:

.RedButton
{
 background-color: Red;
}

Exercise 4 Solution
A StyleSheetTheme is applied early in the page’s life cycle. This gives controls in the ASPX page the
opportunity to override settings they initially got from the StyleSheetTheme. This means that the
StyleSheetTheme just suggests the look and feel of controls, giving the individual controls the abil-
ity to override that look. A Theme on the other hand overrides any settings applied by the controls.
This allows you as a page developer to enforce the look and feel of controls in your site with the
settings from the theme. If you still need to change individual controls, you can disable theming by
setting EnableTheming to False.

502211bapp01.indd 736 2/19/10 10:08:39 AM

Chapter 7  ❘  737

Exercise 5 Solution
There are three ways to set the Theme property in an ASP.NET 4 web site. The first option is to set
the property directly in the @ Page directive so it applies to that page only:

<%@ Page Language=”C#” Theme=”Monochrome” %>

To apply a theme to all pages in your site, you set the theme attribute of the <pages> element in the
web.config file:

<pages theme=”Monochrome”>

The final option you have is to set the theme programmatically. You have to do this in the PreInit
event of the Page class, which you can handle in individual pages in your site or at a central location
using the BasePage class as you did in Chapter 6.

Exercise 6 Solution
A base page allows you to centralize behavior for all the pages in your site. Instead of recoding the
same functionality over and over again in every page, you move this code to the base page so all
ASPX pages can use it. When you implement the theme switcher, all you have to do is write some
code in the central BasePage class. All pages in your site that inherit from this BasePage class then
correctly set the selected theme, without the need for any additional code.

Chapter 7

Exercise 1 Solution
To change the background color of items in the TreeView control you can use the NodeStyle ele-
ment as follows:

<asp:TreeView ID=”TreeView1” runat=”server”
 DataSourceID=”SiteMapDataSource1” ShowExpandCollapse=”False”>
 <NodeStyle BackColor=”White” />
 ...
</asp:TreeView>

Instead of setting the BackColor property (which results in an inline style), you’re better off setting
the CssClass property:

 <NodeStyle CssClass=”TreeViewNodeStyle” />

You then need to create a separate class in your CSS file:

.TreeViewNodeStyle
{
 background-color: White;
}

This way, it’s easier to manage the styling from a central location.

502211bapp01.indd 737 2/19/10 10:08:40 AM

738  ❘  Appendix A   Exercise Answers

Exercise 2 Solution
To redirect a user to another page programmatically, you can use Response.Redirect,
Response.RedirectPermanent, and Server.Transfer. The first two options send a redirect
instruction to the browser and are thus considered client-side redirects. Server.Transfer, on the
other hand, takes place at the server, enabling you to serve a different page without affecting the user’s
address bar.

Exercise 3 Solution
To display a TreeView that doesn’t have the ability to expand or collapse nodes, you need to set the
ShowExpandCollapse property of the TreeView to False.

Chapter 8

Exercise 1 Solution
A standard property uses a normal backing variable to store its value, whereas a View State prop-
erty uses the ViewState collection for this. A normal property is reset on each postback, whereas a
View State property is able to maintain its value. This advantage of the View State property comes
at a cost, however. Storing the value in View State adds to the size of the page, both during the
request and the response. A normal property doesn’t have this disadvantage. You should carefully
consider what you store in View State to minimize the page size.

Exercise 2 Solution
To make the property maintain its state across postbacks, you need to turn it into a View State
property. The required code is almost identical to that of the NavigateUrl, but it uses the Direction
data type instead of a string. You need to remove the automatic property and replace it with the
following code:

VB.NET

Public Property DisplayDirection() As Direction
 Get
 Dim _displayDirection As Object = ViewState(“DisplayDirection”)
 If _displayDirection IsNot Nothing Then
 Return CType(_displayDirection, Direction)
 Else
 Return Direction.Vertical ‘ Not found in View State; return a default value
 End If
 End Get
 Set(ByVal Value As Direction)
 ViewState(“DisplayDirection”) = Value
 End Set
End Property

C#

public Direction DisplayDirection
{

502211bapp01.indd 738 2/19/10 10:08:40 AM

Chapter 9  ❘  739

 get
 {
 object _displayDirection = ViewState[“DisplayDirection”];
 if (_displayDirection != null)
 {
 return (Direction)_displayDirection;
 }
 else
 {
 return Direction.Vertical; // Not found in View State; return a default value
 }
 }
 set
 {
 ViewState[“DisplayDirection”] = value;
 }
}

Exercise 3 Solution
Using a custom data type like the Direction enumeration has two benefits over using numeric or
string data types. Because of the way IntelliSense helps you select the right item, you don’t have
to memorize magic numbers or strings like 0 or 1. Additionally, the compiler helps you check the
spelling, so if you type Direction.Vrtical instead of Direction.Vertical you get an error at
development time.

Chapter 9

Exercise 1 Solution
First, you need to write a property in the Code Behind of the user control, similar to the
DisplayDirection property you created in the previous chapter for the Banner control. This
property could look like this:

VB.NET

Public Property PageDescription As String

C#

public string PageDescription { get; set; }

You then need to modify the control declaration. For example, in Contact.aspx, you can modify
the control like this:

<uc1:ContactForm ID=”ContactForm1” runat=”server”
 PageDescription=”Contact Page”/>

502211bapp01.indd 739 2/19/10 10:08:40 AM

740  ❘  Appendix A   Exercise Answers

Note that the PageDescription property contains a short description of the containing page.
Obviously, you can put whatever text you see fit to describe the page in the property.

Finally, you need to add the PageDescription to the subject or body of the e‑mail message. The
following code snippet shows you how to extend the subject with the value of this new property:

VB.NET

myMessage.Subject = “Response from web site. Page: “ & PageDescription
myMessage.From = New MailAddress(“you@yourprovider.com”, “Sender Name”)

C#

myMessage.Subject = “Response from web site. Page: “ + PageDescription;
myMessage.From = new MailAddress(“you@yourprovider.com”, “Sender Name”);

From now on, this custom page description is added to the subject of the mail message.

Exercise 2 Solution
If you don’t inspect the IsValid property, your system is vulnerable to invalid data. Users can disable
JavaScript in their browser and submit invalid data directly into your page. By checking the IsValid
property you can tell whether or not it’s safe to continue with the submitted data.

Exercise 3 Solution
The From property of the MailMessage class is of type MailAddress, meaning that you can directly
assign a single instance of this class to it. Because you can potentially have more than one recipient,
the To property is a collection of MailAddress objects, and so you need to use its Add method to
add instances of MailAddress to the To property.

Exercise 4 Solution
To call a client-side validation function, you need to set the ClientValidationFunction property
of the CustomValidator like this:

<asp:CustomValidator ID=”CustomValidator1” runat=”server”
 ClientValidationFunction=”FunctionName” >*</asp:CustomValidator>

The client function that you need to add to the markup of the page must have the following
signature:

function FunctionName(source, args)
{}

The source argument contains a reference to the actual CustomValidator control in the client-
side HTML code. The args argument provides context information about the data and allows you
to indicate whether or not the data is valid. The names of the arguments don’t have to be source
and args; however, when using these names, the client-side function looks as close to its server-side
counterpart as possible. Another common naming scheme, used for almost all other event handlers
in ASP.NET, is to use sender and e, respectively.

502211bapp01.indd 740 2/19/10 10:08:40 AM

Chapter 10  ❘  741

Exercise 5 Solution
To tell the validation mechanism whether the data you checked is valid, you set the IsValid property
of the args argument in your custom validation method. This applies to both client- and server-side
code. The following snippet shows how this is done in the client-side validation method for the
ContactForm.ascx control:

if (phoneHome.value != ‘’ || phoneBusiness.value !=’’)
{
 args.IsValid = true;
}
else
{
 args.IsValid = false;
}

Chapter 10

Exercise 1 Solution
The ScriptManager control is a required component in almost all Ajax-related operations. It takes
care of registering client-side JavaScript files, handles interaction with web services defined in your
web site, and it’s responsible for the partial page updates. You usually place the ScriptManager
directly in a content page if you think you need Ajax capabilities on only a handful of pages. However,
you can also place the ScriptManager in a master page so it becomes available throughout the
entire site.

When you have the ScriptManager in the master page you can use the ScriptManagerProxy to
register individual web services or script files on content pages. Because you can have only one
ScriptManager in a page, you can’t add another one in a content page that uses your master page
with the ScriptManager. The ScriptManagerProxy serves as a bridge between the content page and
the ScriptManager, giving you great flexibility as to where you register your services.

Exercise 2 Solution
You can let your users know a partial page update is in progress by adding an UpdateProgress con-
trol to the page. You connect this control to an UpdatePanel using its AssociatedUpdatePanelID.
Inside the <ProgressTemplate> you define whatever markup you see fit to inform your user an
update is in progress. A typical <ProgressTemplate> contains an animated icon, some text, or both.

Exercise 3 Solution
To create a script-callable web service, you first need to add a web service file to your site using
the Add New Item dialog box. The web service you create inherits from System.Web.Services
.WebService, the base class that defines the default behavior for all web services.

502211bapp01.indd 741 2/19/10 10:08:40 AM

742  ❘  Appendix A   Exercise Answers

When you create the web service, you need to add the ScriptService attribute to it:

VB.NET

<System.Web.Script.Services.ScriptService()> _
<WebService(Namespace:=”http://tempuri.org/”)> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class NameService
 Inherits System.Web.Services.WebService

C#

[System.Web.Script.Services.ScriptService]
public class NameService : System.Web.Services.WebService

Finally, you need to decorate each method within this class that you want exposed as a web method
with the WebMethod attribute:

VB.NET

<WebMethod()>
Public Function HelloWorld(ByVal yourName As String) As String

C#

[WebMethod]
public string HelloWorld(string yourName)

Exercise 4 Solution
To expose and use a page method you need to carry out the following steps:

	 1.	 Set EnablePageMethods on the ScriptManager to True.

	 2.	 Define a static (Shared in VB.NET) method in your page and apply the WebMethod
attribute like this:

VB.NET

<WebMethod()>
Public Shared Function HelloWorld(ByVal yourName As String) As String
 ...
End Function

C#

[WebMethod]
public static string HelloWorld(string yourName) { ... }

	 3.	 You call the method in JavaScript through the PageMethods object and define a callback
method to handle the result of the method:

PageMethods.HelloWorld(‘Some Value’, HelloWorldCallback);

502211bapp01.indd 742 2/19/10 10:08:40 AM

Chapter 11  ❘  743

Chapter 11

Exercise 1 Solution
To accomplish this, you first need to set the ClientIDMode of VerticalPanel to Static. This
makes it easier to work with the client IDs of the controls inside the panel:

<asp:Panel ID=”VerticalPanel” runat=”server” ClientIDMode=”Static”>

Then you need to add a span element just below VerticalPanel with the text Hide Banner. The
style attribute changes the mouse cursor into a hand so users understand the text is clickable when
they hover over it. You need to add a runat attribute and a server-side ID so you can hide the link in
the Code Behind. Because making the link server side will change the client ID, you also need to set
the ClientIDMode to Static. You should end up with this span element:

Hide Banner

In a script block below the last panel you need to add the following code:

<script type=”text/javascript”>
 $(function()
 {
 $(‘#HideBanner’).bind(‘click’, function()
 {
 $('#VerticalPanel').slideToggle();
 if ($(this).css(‘display’) == ‘block’)
 {
 $(‘#HideBanner’)[0].innerText = ‘Hide Banner’;
 }
 else
 {
 $(‘#HideBanner’)[0].innerText = ‘Show Banner’;
 }
 });
 });
</script>

This code dynamically binds some code to the click event of the span element found by using
$(‘#HideBanner’). Then inside the handler for the click, the code finds the whole panel (#VerticalPanel)
and calls slideToggle, which hides items in the matched set when they are visible and shows them when
they aren’t. The if check then uses the css method on the HideBanner span (now referred to with the
this keyword) and asks for its display property. When it is block it means the banner is visible, and
thus the text must be Hide Banner. Otherwise, the text is set to Show Banner.

Finally, you need to hide the link when the banner is in horizontal mode:

VB

Case Direction.Horizontal
 HorizontalPanel.Visible = True
 HorizontalLink.HRef = NavigateUrl
 HideBanner.Visible = False

502211bapp01.indd 743 2/19/10 10:08:40 AM

744  ❘  Appendix A   Exercise Answers

C#

case Direction.Horizontal:
 HorizontalPanel.Visible = true;
 HorizontalLink.HRef = NavigateUrl;
 HideBanner.Visible = false;
 break;

Exercise 2 Solution
The slideUp method hides elements by slowly decreasing their height. slideDown shows hidden
elements instead by doing the reverse: slowly increasing the height of an element until it’s fully visible.
Both methods accept, among other arguments, a speed parameter that either accepts a fixed value
(slow, normal, or fast) or a number specifying the speed of the animation in milliseconds.

Exercise 3 Solution
jQuery’s document ready function fires when the page is finished loading in the browser, only during
the initial request. The pageLoad method fires both when the page first loads and after an asynchro-
nous postback, for example when using an UpdatePanel. This difference enables you to choose the
desired behavior. Need to fire some code on initial load and after a postback? Choose pageLoad.
Otherwise, choose jQuery’s document ready function.

Chapter 12

Exercise 1 Solution
The DELETE statement fails because there is a relationship between the Id of the Genre table and the
GenreId of the Review table. As long as this relationship is in effect, you cannot delete genres that
still have reviews attached to them. To be able to delete the requested genre, you need to delete the
associated reviews first, or assign them to a different genre using an UPDATE statement. Exercise 4
shows you how you can accomplish this.

Exercise 2 Solution
The relationship between the Genre and Review tables is a one-way relationship. The relationship
enforces that the GenreId assigned to a review must exist as an Id in the Genre table. At the same
time, it blocks you from deleting genres that have reviews attached to them. However, the relation-
ship doesn’t stop you from deleting records from the Review table.

Exercise 3 Solution
To delete reviews with an Id of 100 or less, you need the following SQL statement:

DELETE FROM Review WHERE Id <= 100

Exercise 4 Solution
Before you can delete the genre, you need to reassign the existing reviews to a new genre first. You
can do this with the following UPDATE statement:

UPDATE Review SET GenreId = 11 WHERE GenreId = 4

502211bapp01.indd 744 2/19/10 10:08:40 AM

Chapter 13  ❘  745

This assigns the GenreId of 11 to all reviews that previously had their GenreId set to 4. This in turn
means that the genre with an Id of 4 no longer has any reviews attached to it, so you can remove the
genre with the following SQL statement:

DELETE FROM Genre WHERE Id = 4

Exercise 5 Solution
To update the name you need to execute an UPDATE statement. To limit the number of affected records
to just the Rock genre, you need to use a WHERE clause. You can use the WHERE clause to filter the records
based on the genre’s Id or on its Name. The following SQL statements are functionally equivalent:

UPDATE Genre SET Name = ‘Punk Rock’ WHERE Id = 7
UPDATE Genre SET Name = ‘Punk Rock’ WHERE Name = ‘Rock’

This code assumes that the current Rock genre has an Id of 7.

Chapter 13

Exercise 1 Solution
The best control for this scenario is the GridView control. It’s easy to set up and has built-in support
for paging, updating, and deleting of data. Together with a DetailsView control you can offer your
users all four CRUD operations. To connect to your database you need to use a SqlDataSource
control. Chapter 14 provides you with alternatives for both the GridView and the SqlDataSource.

Exercise 2 Solution
For a simple, unordered list, you’re probably best off using a Repeater control hooked up to a
SqlDataSource control. The biggest benefit of the Repeater control is that it emits no HTML code
of its own, enabling you to control the final markup. A downside of the control is that it doesn’t sup-
port editing or deletion of data, which isn’t a problem if all you need to do is present the data in a
list. Chapter 14 shows you how to use the Repeater control.

Exercise 3 Solution
A BoundField is directly tied to a column in your data source and offers only limited ways to cus-
tomize its appearance. The TemplateField, on the other hand, gives you full control over the way
the field is rendered. As such, it’s an ideal field for more complex scenarios — for example, when you
want to add validation controls to the page, or if you want to let the user work with a different con-
trol, like a DropDownList instead of the default TextBox.

Exercise 4 Solution
You should always store your connection strings in the web.config file. This file has an element called
<connectionStrings> that is designed specifically for storing connection strings. By storing them in
web.config, you make it very easy to find your connection strings and modify them. If you store them
at the page level, you have to search through your entire project for the relevant connection strings.

502211bapp01.indd 745 2/19/10 10:08:40 AM

746  ❘  Appendix A   Exercise Answers

You can access the connection strings using expression binding syntax. For example, to set the
connection string in a SqlDataSource, you can use code like this:

ConnectionString=”<%$ ConnectionStrings:PlanetWroxConnectionString1 %>”

For this code to work, you need a connection string similar to this in your web.config file:

<connectionStrings>
 <add name=”PlanetWroxConnectionString1” connectionString=”Data
 Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\PlanetWrox.mdf;
 Integrated Security=True;Connect Timeout=30;User Instance=True”
 providerName=”System.Data.SqlClient” />
</connectionStrings>

Chapter 14

Exercise 1 Solution
To get the 10 most recent reviews from the system, your query needs two important LINQ con-
structs: first it needs an Order By (orderby in C#) clause to order the list in descending order. It
then needs the Take method to take the first 10 reviews from that result set:

VB.NET

Using myEntities As New PlanetWroxEntities()
 Dim recentReviews = (
 From myReview In myEntities.Reviews
 Order By myReview.CreateDateTime Descending
 Select New With {myReview.Title, myReview.Genre.Name}
).Take(10)

 GridView1.DataSource = recentReviews
 GridView1.DataBind()
End Using

C#

using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
{
 var recentReviews = (from myReview in myEntities.Reviews
 orderby myReview.CreateDateTime descending
 select new { myReview.Title, myReview.Genre.Name }).Take(10);

 GridView1.DataSource = recentReviews;
 GridView1.DataBind();
}

This code also uses the New keyword (new in C#) to create a new, anonymous type that only con-
tains the review’s title and the genre’s name.

502211bapp01.indd 746 2/19/10 10:08:41 AM

Chapter 14  ❘  747

Exercise 2 Solution
The biggest benefit of the ListView control is that it combines the strengths of those other data
controls. Just like the GridView control, the ListView control makes it easy to display data in a grid
format that users can edit from within the grid. Additionally, the ListView control enables you to
insert new records, behavior that is found in controls like DetailsView and FormView but not in
GridView.

Finally, the ListView control gives you full control over the markup that gets sent to the browser,
an important feature that only the Repeater control gives you out of the box.

Exercise 3 Solution
First you would need to change the Default.aspx page in the PhotoAlbums folder so it links each
thumbnail to a details page and passes the ID of the picture to this new page. In the <ItemTemplate>
of the ListView control in Default.aspx, add this HyperLink control around the Image control
that was already there:

<asp:HyperLink ID=”HyperLink1” runat=”server”
 NavigateUrl=’<%# “PictureDetails.aspx?Id=” + Eval(“Id”).ToString() %>’>
<asp:Image ID=”Image1” runat=”server” ImageUrl=’<%# Eval(“ImageUrl”) %>’
 ToolTip=’<%# Eval(“ToolTip”) %>’ />
</asp:HyperLink>

Note that the NavigateUrl is built up from the static text PictureDetails.aspx?Id= and the ID
of the picture in the database.

Then create a new page called PictureDetails.aspx page and add an Image control in the
markup:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent” Runat=”Server”>
 <asp:Image ID=”Image1” runat=”server” />
</asp:Content>

Finally, you need to execute the following LINQ query in the Load event of the page in the Code
Behind to set the ImageUrl:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim pictureId As Integer = Convert.ToInt32(Request.QueryString.Get(“Id”))
 Using myEntities As New PlanetWroxEntities()
 Dim imageUrl As String = (From picture In myEntities.Pictures
 Where picture.Id = pictureId
 Select picture).Single().ImageUrl
 Image1.ImageUrl = imageUrl
 End Using
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{

502211bapp01.indd 747 2/19/10 10:08:41 AM

748  ❘  Appendix A   Exercise Answers

 int pictureId = Convert.ToInt32(Request.QueryString.Get(“Id”));
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 string imageUrl = (from picture in myEntities.Pictures
 where picture.Id == pictureId
 select picture).Single().ImageUrl;
 Image1.ImageUrl = imageUrl;
 }
}

This code gets the ID of the picture from the query string first and then feeds it to the LINQ query.
The Single method is used to retrieve a single picture from the Picture table whose ImageUrl is
then used to display the image in the browser.

Exercise 4 Solution
The best location to delete the image from disk is in the EntityDataSource control’s Deleted event
that fires after the item has been deleted from the database. Inside a handler for this event you get
a reference to the Picture that has been deleted, find its ImageUrl, convert the URL to a physical
location, and delete the image. To implement this, follow these steps:

	 1.	 Open ManagePhotoAbum.aspx from the root of the site in Design View, select the
EntityDataSource control, open its Properties Grid, and switch to the Events tab.

	 2.	 Double-click the Deleted event and in Code Behind add the following code to the handler
that VWD added for you on the Events tab of the Properties Grid for the ListView control:

VB.NET

Dim myPicture As Picture = CType(e.Entity, Picture)
Dim fileName As Strin	 g = Server.MapPath(myPicture.ImageUrl)
System.IO.File.Delete(fileName)

C#

Picture myPicture = e.Entity as Picture;
string fileName = Server.MapPath(myPicture.ImageUrl);
System.IO.File.Delete(fileName);

	 3.	 Add ImageUrl to the list of DataKeyNames of the ListView control:

<asp:ListView ID=”ListView1” ... DataKeyNames=”Id,ImageUrl” ...>

This code first finds a reference to the Picture using e.Entity. It then grabs its virtual ImageUrl,
converts it to a physical path, and then uses the Delete method of the File class to get rid of the
file on disk. Because the entire image is constructed from View State and not requested from EF, you
need to store the ImageUrl in the DataKeyNames property. This adds it to View State so it round-
trips to the browser and is available in the Deleted event.

502211bapp01.indd 748 2/19/10 10:08:41 AM

Chapter 15  ❘  749

Exercise 5 Solution
To only display genres that have at least one review, all you need to do is filter out empty genres
using Where with a Count method like this:

VB.NET

Dim allGenres = From genre In myEntities.Genres
 Order By genre.Name
 Where genre.Reviews.Count() > 0
 Select New With {genre.Name, genre.Reviews}

C#

var allGenres = from genre in myEntities.Genres
 orderby genre.Name
 where genre.Reviews.Count() > 0
 select new { genre.Name, genre.Reviews };

Chapter 15

Exercise 1 Solution
The Load event of the Page always fires before user-triggered events such as a Button control’s Click.

Exercise 2 Solution
To preselect the correct item in the drop-down list after a user has inserted or edited a review, you
need to make two modifications. First, you need to change the Redirect statement in the page
AddEditReviewHandCoded.aspx so it includes the ID of the genre:

VB.NET

Response.Redirect(String.Format(“Reviews.aspx?GenreId={0}”,
 GenreList.SelectedValue))

C#

Response.Redirect(string.Format(“Reviews.aspx?GenreId={0}”,
 GenreList.SelectedValue));

Using String.Format makes this code a bit easier to read as opposed to plain string concatenation
using the ampersand (&) in VB.NET and the plus (+) in C#.

If you now insert or edit a new review, you’ll see that the ID of the genre is passed back to the Reviews
.aspx page. On that page, you can use that ID to preselect the correct item in the DropDownList con-
trol, which you can accomplish with the following code in the Page_Load method:

VB.NET

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Not Page.IsPostBack Then
 Dim genreId As String = Request.QueryString.Get(“GenreId”)

502211bapp01.indd 749 2/19/10 10:08:41 AM

750  ❘  Appendix A   Exercise Answers

 If Not String.IsNullOrEmpty(genreId) Then
 DropDownList1.DataBind()
 Dim myItem As ListItem = DropDownList1.Items.FindByValue(genreId)
 If myItem IsNot Nothing Then
 myItem.Selected = True
 End If
 End If
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 string genreId = Request.QueryString.Get(“GenreId”);
 if (!string.IsNullOrEmpty(genreId))
 {
 DropDownList1.DataBind();
 ListItem myItem = DropDownList1.Items.FindByValue(genreId);
 if (myItem != null)
 {
 myItem.Selected = true;
 }
 }
 }
}

Only when the page loads from a new request (and not from a postback) does this code fire. The
code then tries to find a GenreId in the query string. If it can find it, it tries to find an item with that
requested value in the DropDownList. Because the DropDownList control hasn’t been data bound
yet it doesn’t contain any items. Therefore, you need to call DataBind() first. This gets the genres
from the database using EF and puts them in the DropDownList. Once that’s done and the item is
found in the Items collection, it’s made the active item by setting its Selected property to true. The
SqlDataSource control watches this DropDownList so when the data source gets its reviews, it does
so for the correct genre.

Exercise 3 Solution
The various data-bound controls can raise exceptions that you can handle in their event handlers.
Once you have dealt with the exception appropriately, you need to set the ExceptionHandled prop-
erty of the e argument to True. The following code snippet shows how a Label control is updated
with an error message. The ExceptionHandled is then set to stop the Exception from getting
passed on into the user interface where it would otherwise result in a “Yellow Screen Of Death.”

VB.NET

Protected Sub SqlDataSource1_Deleted(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.SqlDataSourceStatusEventArgs) _
 Handles SqlDataSource1.Deleted

502211bapp01.indd 750 2/19/10 10:08:41 AM

Chapter 16  ❘  751

 If e.Exception IsNot Nothing Then
 ErrorMessage.Text = “We’re sorry, but something went terribly wrong while “ &
 “deleting your genre.”
 e.ExceptionHandled = True
 End If
End Sub

C#

protected void SqlDataSource1_Deleted(object sender, SqlDataSourceStatusEventArgs
e)
{
 if (e.Exception != null)
 {
 ErrorMessage.Text = @”We’re sorry, but something went terribly wrong while
 deleting your genre.”;
 e.ExceptionHandled = true;
 }
}

Chapter 16

Exercise 1 Solution
Authentication is all about proving your identity to a system like a web site. After you have been
authenticated, authorization then determines what you can and cannot do in the system.

Exercise 2 Solution
To expand the access to the Management folder for John and all users in the Editors role, you need to
expand the current roles attribute to include Editors, and add an additional allow element with its
users attribute set to John:

<system.web>
 <authorization>
 <allow roles=”Managers, Editors” />
 <allow users=”John” />
 <deny users=”*” />
 </authorization>
</system.web>

The roles attribute allows you to specify multiple roles separated by a comma. In order to grant the
John account access you need to add an additional allow element and then fill in John’s name in the
users attribute.

From a maintainability perspective, it would be a lot better to add John to the Managers or Editors
role if possible. However, you may end up giving John more rights than you want (he could then
access anything that a Manager or an Editor could access). Generally, it’s best to manage users
through roles as much as possible, but it’s good to know that you can grant individual accounts
the necessary rights as well (or explicitly take those rights away using a deny element).

502211bapp01.indd 751 2/19/10 10:08:41 AM

752  ❘  Appendix A   Exercise Answers

Exercise 3 Solution
If you want to redirect all users to the same page, all you need to set is the DestinationPageUrl:

<asp:Login ID=”Login1” runat=”server” DestinationPageUrl=”~/MyProfile.aspx”>

When a user is logged in successfully, she’s taken to MyProfile.aspx automatically.

Exercise 4 Solution
The LoginStatus simply displays a simple text that indicates whether or not the user is logged in.
By default the text that is displayed is Login when the user is currently not logged in, and Logout
when the user is already logged in. Clicking the link either sends the user to the default Login page,
or logs the user out.

The LoginView is somewhat similar in that it displays different content depending on whether the
user is currently logged in. However, because the control is completely template driven, you can fully
control the content that is displayed. To enable you to differentiate between different user roles, you
can use the RoleGroups element to set up templates that are only shown to users in specific roles.

Chapter 17

Exercise 1 Solution
You would implement the favorite theme as a String property and call it FavoriteTheme. To ensure
that you always have a valid theme, you could also set a default value. Finally, you should make the
property accessible to anonymous users. Your final profile property could end up like this:

<add name=”FavoriteTheme” defaultValue=”Monochrome” allowAnonymous=”true” />

To support anonymous profiles, you need to explicitly enable them by adding an
<anonymousIdentification> element as a direct child of <system.web> in the web.config file:

<system.web>
 <anonymousIdentification enabled=”true” cookieName=”PlanetWroxAnonymous” />

Exercise 2 Solution
Given the syntax you saw in the question, you could now access the new property and use it to
change the current theme in the BasePage:

VB.NET

Private Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.PreInit
 Dim myProfile As ProfileCommon =
 CType(HttpContext.Current.Profile, ProfileCommon)

502211bapp01.indd 752 2/19/10 10:08:41 AM

Chapter 17  ❘  753

 If Not String.IsNullOrEmpty(myProfile.FavoriteTheme) Then
 Page.Theme = myProfile.FavoriteTheme
 End If
End Sub

C#

private void BasePage_PreInit(object sender, EventArgs e)
{
 ProfileCommon myProfile = (ProfileCommon) HttpContext.Current.Profile;
 if (!string.IsNullOrEmpty(myProfile.FavoriteTheme))
 {
 Page.Theme = myProfile.FavoriteTheme;
 }
}

Exercise 3 Solution
To finalize the theme selector using Profile, you also need to change the code in the master page
Frontend.master. Instead of storing the user-selected theme in a cookie, you should now store it in
Profile. Change the code in Page_Load as follows:

VB.NET

If Not Page.IsPostBack Then
 Dim selectedTheme As String = Page.Theme
 If Not String.IsNullOrEmpty(Profile.FavoriteTheme) Then
 selectedTheme = Profile.FavoriteTheme
 End If
 If ThemeList.Items.FindByValue(selectedTheme) IsNot Nothing Then
 ThemeList.Items.FindByValue(selectedTheme).Selected = True
 End If
End If
Select Case Page.Theme.ToLower()

C#

if (!Page.IsPostBack)
{
 string selectedTheme = Page.Theme;
 if (!string.IsNullOrEmpty(Profile.FavoriteTheme))
 {
 selectedTheme = Profile.FavoriteTheme;
 }
 if (ThemeList.Items.FindByValue(selectedTheme) != null)
 {
 ThemeList.Items.FindByValue(selectedTheme).Selected = true;
 }
}
switch (Page.Theme.ToLower())

502211bapp01.indd 753 2/19/10 10:08:41 AM

754  ❘  Appendix A   Exercise Answers

You can then simplify the code in lstPreferredTheme_SelectedIndexChanged in the master page to:

VB.NET

Protected Sub ThemeList_SelectedIndexChanged(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles ThemeList.SelectedIndexChanged
 Profile.FavoriteTheme = ThemeList.SelectedValue
 Response.Redirect(Request.Url.ToString())
End Sub

C#

protected void ThemeList_SelectedIndexChanged(object sender, EventArgs e)
{
 Profile.FavoriteTheme = ThemeList.SelectedValue;
 Response.Redirect(Request.Url.ToString());
}

To enable Profile for anonymous users, you need to enable anonymous identification with the fol-
lowing element in web.config, directly under <system.web>:

<anonymousIdentification enabled=”true” cookieName=”PlanetWroxAnonymous” />

Chapter 18

Exercise 1 Solution
Debugging is the process of watching your code execute in the development environment, investigat-
ing variables and looking into objects in order to understand the execution path of your code, look-
ing for bugs with the aim to fix them. Debugging usually takes place at development time in your
Visual Web Developer IDE.

Tracing, on the other hand, provides you with information on the runtime execution of your code. As
discussed in this chapter, you can use tracing to get information about events that fire and the order
in which they fire. Additionally, you can add your own information to the trace. Because disabling
tracing through configuration greatly minimizes the performance overhead associated with it, you can
leave your trace calls in the code, making it easy to disable and enable tracing whenever you need it.

Exercise 2 Solution
The best way to stop a possible exception from ending up in the user interface is to wrap your code
in a Try/Catch block. That way you can display an error message to the user in case something goes
wrong. Your code could end up looking like this:

VB.NET

Try
 ‘ Execute code here to send an e‑mail or write to a file.
Catch ex As Exception
 ErrorMessage.Text =
 “Something went wrong while executing the requested operation”
End Try

502211bapp01.indd 754 2/19/10 10:08:41 AM

Chapter 18  ❘  755

C#

try
{
 // Execute code here to send an e‑mail or write to a file.
}
catch (Exception ex)
{
 ErrorMessage.Text =
 “Something went wrong while executing the requested operation”;
}

Exercise 3 Solution
To understand which exceptions occur in the site and find out where they occur (that is, what
pages or code files are causing the exceptions) you can log all exceptions using some code in the
Application_Error event handler. The exception details you can intercept in this method should
help you understand the cause of the exception, which in turn should help finding a fix for it.

To prevent your users from seeing the “Yellow Screen of Death” error messages, you need to use
custom error pages. You should create a simple Web Form that tells the user something went wrong.
To tell the ASP.NET runtime to show the contents of that file instead of the error message, you need
the following element in your web.config:

<customErrors mode=”On” defaultRedirect=”~/Errors/AllOtherErrors.aspx”
 redirectMode=”ResponseRewrite”>
 <error statusCode=”500” redirect=”~/Errors/Error500.aspx” />
</customErrors>

This element sets up a special page for error code 500 that occurs when your code crashes unexpect-
edly. When other exceptions occur, such as a “Page not found” error, users are sent to the more
generic AllOtherErrors.aspx page.

502211bapp01.indd 755 2/19/10 10:08:42 AM

502211bapp01.indd 756 2/19/10 10:08:42 AM

Configuring SQL Server 2008

So far, the exercises in the book assume that you are using Microsoft SQL Server 2008
Express edition as the database for the Planet Wrox project. SQL Server 2008 Express edition
is great for development because it’s free, relatively lightweight, and easy to use. However, in
a production environment it doesn’t always cut it because it is limited in terms of processor
and memory usage and database size. In cases where the Express edition is not enough, you
need to look at its bigger brothers: the commercial versions of SQL Server 2008, such as the
Standard or Enterprise Editions. In this appendix you will learn about security in SQL Server
2008, how to enable your SQL Server 2008 database and your ASP.NET 4 application to
work together, and how to obtain and use SQL Server Management Studio Express, a free tool
from Microsoft that lets you manage your database.

Although this appendix doesn’t discuss SQL Server 2000 or 2005, you’ll find that most of the
concepts apply to these older versions of SQL Server as well. In fact, you can even use SQL
Server 2008 Management Studio Express to manage your SQL Server 2000 and 2005 data-
bases. The Appendix shows screen shots of an Express edition of SQL Server, but the exact
same principles apply to the commercial versions of SQL Server.

In addition to configuring your SQL Server and ASP.NET 4 application to work together, this
appendix also shows you how to configure a SQL Server database to support the ASP.NET 4
application services. This is necessary if you want your application to use your own, custom
database instead of the aspnetdb.mdf database that is generated for you automatically.

Configuring SQL Server 2008

Before you can configure your database, you need to be aware of the various security concepts
that are inevitably associated with databases and web applications. In Chapter 19 you learned
how the different computer accounts used by the web server play a big role when configuring
security settings for the file system, and that’s no different when connecting to SQL Server. In
the following section, you get a quick primer on the different ways to connect to SQL Server.

B

502211bapp02.indd 757 2/19/10 10:08:18 AM

758  ❘  Appendix B   Configuring SQL Server 2008

In the section that follows you see how to attach your .mdf database files to SQL Server followed by
a discussion of configuring your application and database so they can talk to each other.

Terminology and Concepts
When you connect to a SQL Server database, SQL Server needs to know who you are, so it can enforce
the correct access policies on the objects like tables in the database. SQL Server 2008 supports two
different authentication mechanisms: SQL Server Authentication and Windows Authentication (often
called Integrated Security). Both come with a few advantages of their own and require you to write
different connection strings to connect to SQL Server. In the following section you see the two most
common connection strings, but you’re advised to visit www.connectionstrings.com for an extensive
list of possible connection strings.

SQL Server Authentication

With SQL Server Authentication, SQL Server takes care of user management. You manage the users
for your SQL Server database with Microsoft SQL Server Management Studio, either the Express
edition (which you’ll see how to obtain and use a little later in this appendix) or the full versions
that ship with the commercial versions of SQL Server 2008.

To connect your web application to a SQL Server 2008 installation that requires you to use SQL
Server authentication, you need to pass a user name and password in the connection string of your
application. A typical connection string looks like this:

Data Source=ServerName;Initial Catalog=DatabaseName;
 User Id=UserName;Password=Password;

In this case the Data Source addresses an unnamed instance of SQL Server: the SQL server is
addressed by its machine name alone. Recall from Chapter 13 that it’s also possible to install SQL
Server as a named instance. With a named instance, the name of the server is followed by a back
slash (\) and the name of a particular SQL Server instance. For example:

Data Source=ServerName\InstanceName;Initial Catalog=DatabaseName;
 User Id=UserName;Password=Password;

SQL Server authentication is often used when you need to connect to a remote SQL Server over the
Internet as Windows authentication, discussed next, is not supported in that scenario.

Windows Authentication

With Windows Authentication, the Windows OS takes care of user management. All interaction
with the database is done in the context of the calling user so the database knows who’s accessing
the system. You still need to map a Windows account to a SQL Server account so SQL Server can
determine whether the account has sufficient permissions. I’ll show you how to do this later.

A typical connection string using Windows Authentication looks like this:

Data Source=ServerName;Initial Catalog=DatabaseName;Trusted_Connection=True

Instead of specifying a user name and password you add Trusted_Connection=True to the con-
nection string to indicate you want to connect to the server with the user context of the calling user.
You may also come across the setting Integrated Security=True which has the same effect.

502211bapp02.indd 758 2/19/10 10:08:18 AM

Configuring SQL Server 2008  ❘  759

Since both authentication methods eventually do the same thing (they enable you to connect to SQL
Server), you may wonder which one of the two you should use.

Choosing between Windows and Server Authentication

In general, it’s recommended to use Windows authentication. The fact that you don’t need to use a
password in the connection string means your application will be a bit safer. You don’t need to send
the password over the wire, and it’s also not stored in a configuration file for your application.

However, SQL Server Authentication is a bit easier to set up. Since you specify the user name and
password explicitly, you don’t need to know the final user account that your application runs under.

Later in this appendix you see how to use both authentication mechanisms to connect to your database.
However, you need to look at something else first: the tools used to manage SQL Server.

Using SQL Server Management Studio
You use SQL Server Management Studio to manage your databases. It enables you to attach and
detach databases to your SQL Server; create new database objects like tables in existing databases;
select, create, edit and delete data; and much more. If you are using a commercial version of SQL
Server 2008, you already have access to SQL Server Management Studio, as it comes bundled with
the database engine. If you are using the free Express edition of SQL Server, you need to download
SQL Server Management Studio Express first. This Express edition of the database management
tool is similar to its commercial counterpart and it enables you to carry out most if not all of your
database management tasks.

Obtaining and Installing SQL Server Management Studio Express

You can download SQL Server Management Studio Express from the following page at the Microsoft
site: www.microsoft.com/express/database/. Alternatively, you can go to the main downloads
page at www.microsoft.com/downloads and search for “SQL Server 2008 Management Studio
Express.” Make sure you download and install the 2008 version of Management Studio, and not
the older 2005 version. As a final alternative, you can use the Web Platform Installer as explained
in Chapter 19.

After you have downloaded the Management Studio
setup file, run the installer and follow the on-screen
instructions. When asked for the Installation Type,
choose Perform a New Installation of SQL Server
2008. This option enables you to choose Management
Tools as a component to install later in the Setup
Wizard. After installation is finished, you can start up
SQL Server Management Studio from the Start Menu.
You’ll be presented with a screen similar to Figure B-1
that enables you to select a SQL Server instance you
want to log in to.

Figure B-1

502211bapp02.indd 759 2/19/10 10:08:18 AM

760  ❘  Appendix B   Configuring SQL Server 2008

If not already preselected in the Server Name drop-down list, enter the name of the SQL Server instance
you want to connect to. If you’re connecting to a local Express installation, enter .\SqlExpress.
Otherwise, enter the name of the database server and the Instance name if used. Depending on the
database server you are connecting to, you can log in with Windows Authentication using your current
Windows account or you can choose SQL Server Authentication from the Authentication drop-down
list and enter a user name and password. After you log in, you get a screen similar to Figure B-2 that
enables you to manage your SQL Server instance.

Figure B-2

If you are having trouble connecting to a remote SQL Server (for example, an instance of SQL Server
that is not on the same physical server as the one you’re running Management Studio on), you may
need to enable SQL Server for remote connections first. This is discussed next.

Enabling Remote Connections in SQL Server
When working with SQL Server 2008, you may receive the following error: An error has occurred
while establishing a connection to the server. When connecting to SQL Server 2008, this failure
may be caused by the fact that under the default settings SQL Server does not allow remote connec-
tions. Alternatively, you may get a more generic error stating that the server was not found or not
accessible.

Although you may also get this error when the database server is down or not responding, you also
get this error when SQL Server is not configured for remote connections. In a default installation,
SQL Server only allows local applications to connect and blocks remote connections automatically.
To resolve this, and grant remote systems access to the server as well, follow these steps:

	 1.	 Open the SQL Server Configuration Manager from the Microsoft SQL Server 2008 Start
menu item. Depending on the version of SQL Server you’re using, this item may be located
under the Configuration Tools submenu.

	 2.	 In the window that appears, expand SQL Server Network Configuration, locate your
instance of SQL Server and click it to display the list with available protocols. Figure B-3
shows the list for a SQL Server instance called SQLEXPRESS.

502211bapp02.indd 760 2/19/10 10:08:19 AM

Configuring SQL Server 2008  ❘  761

Figure B-3

	 3.	 In the list with protocols on the right, right-click Named Pipes and choose Enable if its status
is currently set to Disabled.

	 4.	 Repeat the previous step, but now enable TCP/IP.

	 5.	 Restart SQL Server. You can do this by right-clicking the server in the Object Explorer of
SQL Server Management Studio (shown in Figure B-2) and choosing Restart. If you get an
error about security permissions, you may need to reboot your computer instead.

SQL Server now allows incoming connections from remote machines. However, before you can
actually use your databases, you need to attach them to SQL Server first. This is described in the
following section.

NOTE  ​If you have trouble connecting to SQL Server, make sure that SQL Server
is installed and running. To verify this, open the Control Panel and then open
the Administrative Tools section found in the System and Security category
(called System and Maintenance on Windows Vista). Next, open the Services
item and then verify that the SQL Server instance you are connecting to is run-
ning. If you installed SQL Server Express on your local machine, the service is
called SQL Server (Express).

Attaching Databases to SQL Server

SQL Server Express enables you to work with database files in two ways: you can either attach them
at run-time using a special attribute in the connection string, or you can attach them using tools
such as Management Studio before you start using the database.

You’ve been using the first option in all database-related chapters so far. The Planet Wrox connec-
tion string you used looks like this:

<add name=”PlanetWroxConnectionString1” connectionString=”Data Source=.\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\PlanetWrox.mdf;Trusted_Connection=True;
 User Instance=True” providerName=”System.Data.SqlClient” />

502211bapp02.indd 761 2/19/10 10:08:19 AM

762  ❘  Appendix B   Configuring SQL Server 2008

This connection string points to a database called PlanetWrox.mdf located in the web site’s
App_Data folder (determined by |DataDirectory|). The connection string instructs SQL Server
to attach this database file to SQL Server on the fly when it’s used. When the database is no longer
needed, it is detached again. It also instructs the server to use a User Instance which is a SQL Server
feature to allow accounts with low privileges to still run SQL Server and attach databases to it on
the fly.

This is a great solution for local development because it enables you to easily use SQL Server data-
bases, create and use new ones, and move them around from project to project. However, with a
production database this option isn’t good enough and you need to attach the database to SQL
Server first. The following steps explain how to attach the PlanetWrox.mdf and the aspnetdb.mdf
databases to an instance of SQL Server in case you have the need. You can follow the exact same
steps if you want to use SQL Server Management Studio to perform maintenance tasks on a SQL
Server database that you cannot do in VWD (managing users and roles, for example).

	 1.	 Create a folder that will hold your new database, such as C:\Data\SqlServer.

	 2.	 Move the files PlanetWrox.mdf and aspnetdb.mdf and their associated .ldf files from the
web site’s App_Data folder at C:\BegASPNET\Release to this new folder.

	 3.	 Enable Modify permissions on the folder where the database resides (C:\Data\SqlServer)
for the account used by SQL Server (which is the Network Service account by default) and for
your own account. Chapter 19 explains how to set these permissions.

	 4.	 Open SQL Server 2008 Management Studio (any version will do) and log into your SQL
Server instance you want to attach the database to. Depending on your security settings, you
may have to run this process as an administrator. To do this, right-click the Management
Studio menu item in the Windows Start Menu and choose Run as Administrator. Regardless
of how you started SQL Server Management Studio, you should see a screen similar to
Figure B-2.

	 5.	 Right-click the Databases node shown in Figure B-2 and choose Attach.

	 6.	 In the dialog box that follows, click the Add button and then select the PlanetWrox.mdf file
you moved to C:\Data\SqlServer in step 2.

	 7.	 Click the value in the Attach As column to make it editable and type PlanetWrox as the new
name that will be given to the database. Once you’re done, your dialog box should look like
Figure B-4.

	 8.	 Click OK to attach the database to SQL Server. If you get an error, make sure your own
account (or the Users group you are part of) and the Network Service account both have
Modify permissions on the C:\Data\SqlServer folder and the .mdf files this folder
contains.

	 9.	 Your database is now accessible under the Databases node of Management Studio’s Object
Explorer. If you expand the Databases element and then look into your database you should
see familiar items like tables that you also saw in the Database Explorer in Visual Web
Developer earlier in the book. Figure B-5 shows the attached database and its tables.

	10.	 Repeat steps 5 through 8, but now attach the aspnetdb.mdf database. In step 7 type
aspnetdb as the new name for the database.

502211bapp02.indd 762 2/19/10 10:08:19 AM

Configuring SQL Server 2008  ❘  763

Figure B-4

Figure B-5

At this stage, only administrative accounts (Windows administrators or the built-in SQL Server
administrative account called SA) have access to the database. In order to have the Planet Wrox web
site work with these two databases, you need to configure both SQL Server security and your web
site. You see how to do this next.

502211bapp02.indd 763 2/19/10 10:08:19 AM

764  ❘  Appendix B   Configuring SQL Server 2008

Connecting Your Application to SQL Server 2008
In the following section, I’ll show you how to connect to SQL Server from two different but com-
mon scenarios: using SQL Server Authentication and using Windows Authentication when IIS and
SQL Server are on the same server. For both scenarios you’ll see how to configure SQL Server, the
Planet Wrox web site, and if necessary, your Windows accounts.

You’re likely to use the first scenario when dealing with an external hosting company that hosts
your site. When web hosts offer SQL Server, they often use SQL Server Authentication and as such
require you to pass a user name and password to the database server.

The second scenario is useful if you host the site yourself and have both SQL Server 2008 and IIS
on the same machine.

More advanced scenarios, such as using Windows Authentication with IIS and SQL Server on two dif-
ferent machines, are beyond the scope of this appendix. For more information about configuring and
securing SQL Server, get yourself a copy of Beginning Microsoft SQL Server 2008 Administration
(Wrox, ISBN: 978-0-470-44091-9) or Professional Microsoft SQL Server 2008 Administration (Wrox,
ISBN: 978-0-470-24796-9).

Scenario 1 — Using SQL Server Authentication

From a configuration point of view, this is probably the easiest scenario to configure: all you need to
do is make sure that your SQL Server installation supports SQL Server authentication, create a user
in SQL Server, and then use that account in the connection string of the Planet Wrox web site. To do
this, follow these steps:

	 1.	 In SQL Server Management Studio, right-click the server name in the Object Explorer shown
in Figure B-2, choose Properties, and switch to the Security category. The dialog box shown
in Figure B-6 appears.

	 2.	 If not already selected, choose the SQL Server and Windows Authentication Mode item at
the top of the screen. Before you click OK, click the Help item at the top of the screen and
read a bit more about SQL and Windows Authentication, and determine if you really need
SQL Server Authentication. Windows Authentication is more secure than SQL Server authen-
tication, so you’re advised to use that option whenever possible.

	 3.	 Restart SQL Server. You can do this by right-clicking the server in the Object Explorer and
choosing Restart. If you get an error about security permissions, you may need to reboot
your computer instead.

	 4.	 Back in SQL Server’s Management Studio’s Object Explorer, expand the server’s Security
node visible in Figure B-2. Make sure you choose the one directly under your server name, and
not the one belonging to a specific database. Right-click on Logins and choose New Login.

	 5.	 Type a Login name, then select the SQL Server Authentication option, and type a password.
In this and the following examples, I’ll use PlanetWroxUser as the user name, and Pa$$w0rD
(with a zero instead of the letter o) as the password.

	 6.	 Clear the Enforce Password Expiration option. This also disables User Must Change
Password at Next Login. Your dialog box should end up looking like the one in Figure B-7.

502211bapp02.indd 764 2/19/10 10:08:19 AM

Configuring SQL Server 2008  ❘  765

If you want to learn more about the individual settings on this screen, click the Help button
at the top of the screen.

	 7.	 Click OK to create the new account.

Figure B-6

Figure B-7

502211bapp02.indd 765 2/19/10 10:08:19 AM

766  ❘  Appendix B   Configuring SQL Server 2008

With the account created, the next step is to give this new account the proper permissions to your
database:

	 1.	 On the Object Explorer, expand Databases, then the PlanetWrox database, followed by the
Security node. Finally, right-click the Users node, and choose New User.

	 2.	 In the User Name text box, type PlanetWroxUser.

	 3.	 In the Login Name text box, type PlanetWroxUser again. Alternatively, click the ellipsis but-
ton, then click Browse, and select the user from the list that has appeared.

	 4.	 At the bottom of the screen, you see a box labeled Database Role Membership. In this box,
you can choose a number of roles that you can grant to your new user. The rule here is: give
users as little permissions as possible. A good choice is db_datareader and db_datawriter that
allows the account to both read from and write to tables in the database, so check these two
options, visible in Figure B-8.

Figure B-8

NOTE  ​Check out SQL Server’s Books Online for more information about the
various roles.

502211bapp02.indd 766 2/19/10 10:08:20 AM

Configuring SQL Server 2008  ❘  767

	 5.	 If you want to set fine-grained security options for your database objects, click the
Securables option you see in the left-hand part of Figure B-8. This dialog box enables you
to determine permissions for the user account on objects in your database like tables, views,
and stored procedures. For the Planet Wrox web site, you don’t need to make any changes
in this dialog box.

	 6.	 Finally, click OK to assign the PlanetWroxUser account to the db_datareader and
db_datawriter roles.

	 7.	 Repeat all preceding steps, but now configure the aspnetdb database that you attached ear-
lier. When you get to step 4, select all the roles that start with aspnet_. These are the roles
that are used by the ASP.NET application services and grant the new user account just
enough permissions to support the various application services like Membership and Roles.
There’s no need to select any of the other roles.

	 8.	 You can close SQL Server Management Studio for the moment as you’re done with it.

Now that SQL Server and your user accounts are configured correctly, the final phase is to configure
the web site to use this new user account.

	 1.	 Open the web.config file of the deployed Planet Wrox application from the C:\BegASPNET\
Release folder.

	 2.	 Modify the <connectionStrings> element as follows:

<connectionStrings>
 <clear />
 <add name=”PlanetWroxConnectionString1” connectionString=”Data Source=ServerName;
 Initial Catalog=PlanetWrox;User ID=PlanetWroxUser;password=Pa$$w0rD”
 providerName=”System.Data.SqlClient”
 />
 <add name=”PlanetWroxEntities” connectionString=”
 metadata=res://*/App_Code.PlanetWrox.csdl|res://*/App_Code.PlanetWrox.ssdl|res
 ://*/App_Code.PlanetWrox.msl;provider=System.Data.SqlClient;provider connection
 string="Data Source=ServerName;Initial Catalog=PlanetWrox;
 User ID=PlanetWroxUser;password=Pa$$w0rD;MultipleActiveResultSets=True"”
 providerName=”System.Data.EntityClient”
 />
 <add name=”LocalSqlServer” connectionString=”Data Source=ServerName;
 Initial Catalog=aspnetdb;User ID=PlanetWroxUser;password=Pa$$w0rD”
 providerName=”System.Data.SqlClient”
 />
</connectionStrings>

In your configuration file, each connection string should be on a single line. Don’t forget
to replace the value ServerName in the Data Source attributes with a valid server
name. Depending on your server and configuration, this could be as simple as (local)
or .\SqlExpress to point to a SQL Server on the local machine, DatabaseServer to point
to a server called DatabaseServer on the network, or something like DatabaseServer\
Sql2008 that points to a named instance called Sql2008 on a machine called DatabaseServer.
You need to add the LocalSqlServer connection string if you didn’t add it in Chapter 19.

502211bapp02.indd 767 2/19/10 10:08:20 AM

768  ❘  Appendix B   Configuring SQL Server 2008

	 3.	 Save the changes and then open the site by starting your browser and going to http://
localhost. Everything should still work but the site now no longer uses the databases in the
App_Data folder, but uses the SQL Server you defined in your connection strings instead.

If you get an error when browsing to the site on your local host, you may need to turn off
custom errors in web.config (for security reasons, set it to RemoteOnly instead of to Off)
to see the actual error message. Possible reasons for an error include an incorrect user name,
password or server name in the connection string, and an incorrectly configured database
role membership for the PlanetWroxUser account.

Scenario 2 — Using Windows Authentication with IIS and the Database on
the Same Machine

This is a common scenario, especially when you’re running your site on a local machine that you
control yourself. Both the web server (either IIS or the built-in development web server) and SQL
Server run on the same physical machine. This scenario makes it easy to use Windows Authentication
because both the web server and SQL Server can use the same Windows account. To configure your
server for this scenario, follow these steps:

	 1.	 Determine the account used by your web server. Refer to Chapter 19 for precise details on
how to do this, but you’re likely to need the Network Service or the ApplicationPoolIdentity
account (called IIS AppPool\ASP.NET v4.0 by default). I am using the account IIS AppPool\
ASP.NET v4.0 in the remainder of this section.

	 2.	 Next, you need to map this Windows account to a SQL Server account. To do this, open
SQL Server Management Studio and log in to your SQL Server instance. Expand the Security
node for the server (and not of an individual database), as shown in Figure B-2. Then right-
click Logins and choose New Login.

	 3.	 In the Login name box, enter NT Authority\Network Service or IIS AppPool\ASP.NET
v4.0 depending on the account you’re configuring and click OK to add the new Login.

With the account created, the next step is to give this new account the proper permissions to your
database.

	 1.	 Open the Security node of the PlanetWrox database and then expand the Users node, right-
click it, and choose New User.

	 2.	 In the User name text box, type Network Service or ASP.NET v4.0 depending on the account
name you configured earlier).

	 3.	 For the Login name text box, click the ellipsis button and then click Browse so you can select
a user name. Choose the account you configured earlier and click OK twice.

	 4.	 At the bottom of the screen, you see a box labeled Database role membership. In this box,
you can choose a number of roles that you can grant to your new user. The rule here is: give
users as little permissions as possible. A good choice is db_datareader and db_datawriter that
allows the account to both read from and write to tables in the database, so check these two
options, shown in Figure B-9.

502211bapp02.indd 768 2/19/10 10:08:20 AM

Configuring SQL Server 2008  ❘  769

NOTE  ​Check out SQL Server’s Books Online for more information about the
various roles.

Figure B-9

	 5.	 If you want to set fine-grained security options for your database objects, click the Securables
option visible in Figure B-9. This dialog box enables you to determine permissions for the user
account on objects in your database like tables, views, and stored procedures. For the Planet
Wrox web site, you don’t need to make any changes in this dialog box.

	 6.	 Finally, click OK to assign the account to the db_datareader and db_datawriter roles.

	 7.	 Repeat steps 1–6, but now configure the aspnetdb database that you attached earlier. When
you get to step 4, select all the roles that start with aspnet_. These are the roles that are used
by the ASP.NET application services and grant the new user account just enough permissions
to support the various application services like Membership and Roles.

502211bapp02.indd 769 2/19/10 10:08:20 AM

770  ❘  Appendix B   Configuring SQL Server 2008

Now that SQL Server and your user accounts are configured correctly, the final step is to configure
the web site to use this new user account.

	 1.	 Open the web.config file of the PlanetWrox application from the C:\BegASPNET\Release
folder.

	 2.	 Modify the <connectionStrings> element so it ends up like this:

<connectionStrings>
 <clear />
 <add name=”PlanetWroxConnectionString1” connectionString=”Data Source=ServerName;
 Initial Catalog=PlanetWrox;Trusted_Connection=True”
 providerName=”System.Data.SqlClient”
 />
 <add name=”PlanetWroxEntities” connectionString=”
 metadata=res://*/App_Code.PlanetWrox.csdl|res://*/App_Code.PlanetWrox.ssdl|res
 ://*/App_Code.PlanetWrox.msl;provider=System.Data.SqlClient;provider connection
 string="Data Source=ServerName;Initial Catalog=PlanetWrox;
 Trusted_Connection=True;MultipleActiveResultSets=True"”
 providerName=”System.Data.EntityClient”
 />
 <add name=”LocalSqlServer” connectionString=”Data Source=ServerName;
 Initial Catalog=aspnetdb;Trusted_Connection=True”
 providerName=”System.Data.SqlClient”
 />
</connectionStrings>

In your configuration file, each connection string should be on a single line. Don’t forget
to replace the value ServerName in the Data Source attributes with a valid server name.
Depending on your server and configuration, this could be as simple as (local) or .\
SqlExpress to point to a SQL Server on the local machine, DatabaseServer to point to a
server on the network called DatabaseServer or something like DatabaseServer\Sql2008
that points to a named instance called Sql2008 on a machine called DatabaseServer. You
need to add the LocalSqlServer connection string if you didn’t add it in Chapter 19.

	 3.	 Save the changes and then open the site by starting your browser and going to http://
localhost (or the address you configured in Chapter 19). Everything should still work as
expected, but the site now no longer uses the databases in the App_Data folder, but it uses
the SQL Server defined in your connection strings instead through Windows Authentication,
as identified by the Trusted_Connection=True attribute in the connection string.

If you get an error when browsing to the site, you may need to turn off custom errors in the
web.config file (or set it to RemoteOnly) to see the actual error message. Possible reasons
for the error are an incorrect server name in the connection string and an incorrectly config-
ured database role membership for the configured account.

Once you find out the correct account and have configured SQL Server correctly, using Windows
Authentication isn’t that hard. In fact, your connection string now becomes a little easier and more
secure, as you don’t need to store a user name and password in it anymore.

502211bapp02.indd 770 2/19/10 10:08:20 AM

Configuring Application Services  ❘  771

Configuring Application Services

Earlier in this book you learned that the ASP.NET application services make use of a SQL Server
2008 database that is accessed by using a connection string called LocalSqlServer. The application
services then ensure that a new database called aspnetdb.mdf is created in your web site’s App_Data
folder the very first time you use one of the application services like Membership or Profile.

What if you don’t want to use the default aspnetdb.mdf database but rather one of your own?
Or what if you’d rather not rely on a local SQL Server Express database to be created for you, and
instead want to get your membership, role, and profile data from your own, dedicated server?

In such cases, you need to reconfigure your application (through the web.config file) and tell it where
your database is located. There are two ways to accomplish this: overriding the LocalSqlServer con-
nection string, and overriding the settings for the various application services. However, before you
look at these two options, you need to know how you can prepare a custom database for the
ASP.NET application services.

Configuring Your Database for the Application Services
When the aspnetdb database is created for you in the App_Data folder, it already contains a num-
ber of objects like tables and stored procedures (snippets of SQL code that can be executed at the
server). If you want to use your own database instead of the default one, you need to prepare your
database for the application services first. The Microsoft .NET Framework ships with a handy tool
designed specifically for this task. You find this tool, called aspnet_regsql.exe, in the following
location:

%windir%\Microsoft.NET\Framework\v4.0.30128

If you have a newer version of the .NET Framework, the number following v4.0 may be slightly
different and if you’re using a 64 Bit version of Windows the parent folder is called Framework64.
You should type %windir% exactly as shown here in the address bar of Windows Explorer and
it will automatically expand to your Windows folder. To execute the tool, simply double-click
aspnet_regsql.exe in the folder. This starts the ASP.NET SQL Server Setup Wizard. Click Next
twice to reach the screen that enables you to select a SQL Server and a database (see Figure B-10).

Enter the name of your database server (for example .\SqlExpress for your local SQL Server
Express edition) and then select a database (such as PlanetWrox) from the drop-down list in the
bottom half of the screen. If you don’t see your database listed, you may need to attach it first.
Attaching databases is described earlier in this appendix.

Once you have selected your database, click Next twice and the tool creates the necessary objects in
your database. You can click Finish to close the Wizard as you’re done with it.

502211bapp02.indd 771 2/19/10 10:08:20 AM

772  ❘  Appendix B   Configuring SQL Server 2008

Figure B-10

The GUI version of the tool that you just saw adds support for all application services in one fell
swoop. If you want to control what gets created exactly, open up a command window, navigate to
%windir%\Microsoft.NET\Framework\v4.0.30128, type aspnet_regsql /?, and then press Enter
to get a (long) list of options. Again, your exact framework folder may be called slightly different.
Scroll up in the option list to see all the available possibilities. At the very least you need to define
the following options to add support for an application service:

-S:➤➤ Enables you to set the SQL Server name.

-E:➤➤ Indicates you want to use Windows Authentication to connect to SQL Server.

-A:➤➤ This option must be followed by one or more letters to indicate support for the different
application services, like m for Membership, r for the Role manager, and p for Profile.

-d:➤➤ Defines the name of the database that must be configured. If you leave out this name, the
tool uses the default aspnetdb database.

To execute a command that creates support for Membership, the Role manager, and Profile against
a local SQL Server instance called SqlExpress in the database PlanetWrox, you need to execute the
following command:

aspnet_regsql -S .\SqlExpress -E -A mrp -d PlanetWrox

After a while you get a message indicating that the requested services were configured successfully.

Whether you used the wizard or the command line interface, from now on the database you config-
ured can be used for ASP.NET application services.

502211bapp02.indd 772 2/19/10 10:08:20 AM

Configuring Application Services  ❘  773

Overriding the LocalSqlServer Connection String
This is the easiest and quickest path to using a different database. All you need to do is overwrite the
LocalSqlServer connection string and have it point to your new database. You already saw what
this connection string looked like earlier in this appendix and in Chapter 19, but here it is again so
you can see how it works:

<connectionStrings>
 <clear />
 ...
 <add name=”LocalSqlServer” connectionString=”Data Source=.\SQLEXPRESS;
 Initial Catalog=aspnetdb;Trusted_Connection=True”
 providerName=”System.Data.SqlClient”
 />
</connectionStrings>

Note that the <connectionStrings> element contains a <clear /> element. This element is used to
clear out all previously defined connection strings, including the LocalSqlServer connection string
defined in machine.config. The configuration file then defines a new connection string with the
same name, but with a different connection string. In this example the connection string points to
an attached database called aspnetdb on a local SQL Express named instance. When the application
services need to connect to SQL Server, they find the connection string LocalSqlServer, which then
enables them to connect to the SQL Server that you have defined. You should substitute aspnetdb
with the name of your own database when you added support for the application services to that
database, as explained in the previous section.

Overriding the LocalSqlServer connection string is a quick solution to have your ASP.NET web
application use a different server. All you need to do is assign a valid Data Source and Initial
Catalog. However, this solution brings two disadvantages. First, it feels a bit awkward to have a
connection string called LocalSqlServer pointing to a remote server. Secondly, this option doesn’t
allow you to completely override the settings for the configured provider. You can avoid both prob-
lems by reconfiguring the application services in web.config as you’ll see how to do next.

Overriding the Settings of the Application Services
Overriding the settings of the different providers in the web.config file gives you the most flex-
ibility. Not only does it enable you to point the various application services to a new database con-
nection, it also enables you to change the other settings that each provider supports. To override the
settings for the Planet Wrox application, you need to give each configured provider (Membership,
Role Manager, and Profile) its own <provider> setting. The file machine.config, located at
%windir%\Microsoft.NET\Framework\v4.0.30128\Config gives you an example of how the dif-
ferent providers need to look. Remember, your exact path may look slightly different.

If you want to override all three providers for the Planet Wrox application so they use the standard
PlanetWroxConnectionString1 instead of the default LocalSqlServer, you need to add the fol-
lowing configuration information to the web.config file. When you add these settings, make sure
you overwrite all current settings that are already present in the file. In order for this to work you

502211bapp02.indd 773 2/19/10 10:08:21 AM

774  ❘  Appendix B   Configuring SQL Server 2008

need to configure the PlanetWrox database for the application services using aspnet_regsql.exe
as explained earlier.

<membership>
 <providers>
 <clear />
 <add name=”AspNetSqlMembershipProvider”
 type=”System.Web.Security.SqlMembershipProvider, System.Web, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 connectionStringName=”PlanetWroxConnectionString1”
 enablePasswordRetrieval=”false”
 enablePasswordReset=”true”
 requiresQuestionAndAnswer=”false”
 applicationName=”/”
 requiresUniqueEmail=”false”
 passwordFormat=”Hashed”
 maxInvalidPasswordAttempts=”5”
 minRequiredPasswordLength=”6”
 minRequiredNonalphanumericCharacters=”1”
 passwordAttemptWindow=”10”
 passwordStrengthRegularExpression=”“
 />
 </providers>
</membership>

<profile>
 <providers>
 <clear />
 <add name=”AspNetSqlProfileProvider”
 connectionStringName=”PlanetWroxConnectionString1”
 applicationName=”/”
 type=”System.Web.Profile.SqlProfileProvider, System.Web, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 />
 </providers>
 <properties>
 <add name=”FirstName”/>
 <add name=”LastName”/>
 <add name=”DateOfBirth” type=”System.DateTime”/>
 <add name=”Bio”/>
 <add name=”FavoriteGenres”
 type=”System.Collections.Generic.List`1[System.Int32]”/>
 </properties>
</profile>

<roleManager enabled=”true”>
 <providers>
 <clear />
 <add name=”AspNetSqlRoleProvider”
 connectionStringName=”PlanetWroxConnectionString1”
 applicationName=”/”
 type=”System.Web.Security.SqlRoleProvider, System.Web, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 />
 </providers>
</roleManager>

502211bapp02.indd 774 2/19/10 10:08:21 AM

Configuring Application Services  ❘  775

Each application service has a <providers> section that enables you to define one or more providers
for the service. The <clear /> element is used once again to remove any previously defined provider
from the configuration hierarchy. Each provider is then added again using an <add /> element. Note
that each configuration section uses connectionStringName=”PlanetWroxConnectionString1” to
point to the custom connection string defined in the same web.config file. Also note that you can
change any of the other settings that the provider supports.

All the provider configuration settings have an attribute called applicationName which is set to
/. This is the name that each application uses to look in the database for the requested users, roles,
and so on. You can make up another name if you like, but it’s important that all configured provid-
ers use the same applicationName or they’ll end up looking for the wrong information. Without a
matching applicationName, the services won’t be able to relate records from one service to another.
This in turn leads to a mismatch among users, roles, and their profile in the database.

With these reconfigured application services, you no longer need the LocalSqlServer connection
string you may have added to web.config earlier in this appendix or in Chapter 19.

After you have saved the modified web.config, your site should continue to run as normal.
However, the application services now make use of the PlanetWrox database, instead of a separate
aspnetdb database.

502211bapp02.indd 775 2/19/10 10:08:21 AM

502211bapp02.indd 776 2/19/10 10:08:21 AM

777

Index

Symbols
!, 158
!=, 155
#, 37, 73, 88, 324, 327, 386
##, 324, 327
%, 152
&, 156, 158
&&, 158
*, 152
+, 152, 156
-, 152
/, 152
=, 155, 409
==, 155
^, 152
|, 158
||, 158
‹=, 155, 409
‹›, 155, 409
›, 155, 409
›=, 155, 409

A
‹a›, 11, 60–62, 240
absolute URLs, 244, 269
abstract classes, 191
Access Key Highlighter plugin, 561
access keys, 577
access modifiers, 171, 184, 191–192

internal (Friend), 192
Private, 184, 191, 192
Protected, 192
Public, 171, 191, 192

Access Rules, 605, 608
AccessDataSource control, 435. See also

SqlDataSource control
AccessKey, 111
active item tracking, 384

Active Server Pages. See ASP
Add New Item dialog box, 200, 201, 218, 233, 272,

274, 341, 347, 741
Add Style Rule window, 87–90
addClass, 382, 383
AddEditReview.aspx, 459, 470, 473

creating, 460–464
new version, 555–565

addHandler, 354, 357, 360, 361, 383
ADO.NET

Entity Data Model, 44, 481, 528, 575, 641
LINQ to ADO.NET and, 479–480

ADO.NET Entity Framework. See Entity Framework
AdRotator control, 125
advanced data topics, 529–577
Advanced Security Settings dialog box, 719, 720
Advanced Settings dialog box, 715, 716
Advanced SQL Generation Options dialog box, 454
AJAX (ASP.NET AJAX), 2, 331–365

benefits of, 333
client data binding, 363
client-side Library, 333, 360, 361–362, 372, 394
Control Toolkit, 362
extensions, 127–128
interoperability and, 331
introduction, 332–334
jQuery and, 331
Master Page, 341
Membership and Role Services, 363
online information, 363
Page methods, 358–360, 365
pageLoad method, 393, 394, 395, 401, 744
parts of, 333
Professional ASP.NET 3.5 AJAX, 333, 338,

362, 728
ScriptManager control, 338–340, 364, 365

contact form and, 341–344
properties, 339–340
UpdatePanel and, 338
web services and, 351–352

502211bindex.indd 777 2/19/10 10:07:47 AM

778

AJAX – ASP.NET web sites

ScriptManagerProxy, 334, 346, 352, 353, 354, 355,
358, 364, 365, 741

purpose of, 352
web services and, 352–358

server controls, 333–346
Timer control, 345–346, 364
tips for, 363
UpdatePanel control, 334–338, 364, 365

caveats, 338
contact form and, 341–344
flicker-free pages with, 334–338
properties, 337–338
ScriptManager and, 338

UpdateProgress control, 340–344, 364, 365
contact form and, 341–344
properties, 340

Ajax (Asynchronous JavaScript And XML), 128, 331,
332, 365

All.aspx, 509, 568, 572, 573, 620, 636
AllByGenre.aspx, 247, 255, 493, 636, 639, 640, 652
AllowCustomErrorsRedirect, 339
AlternateText, 296
‹AlternatingItemTemplate›, 503
AlternatingRowStyle, 532
Alt+Letter, 560
AND, 158, 409
AndAlso, 158
angle brackets, 7, 8, 9, 10, 14, 31, 69, 180, 347
animate(), 391
animating contact form, 392–396
anonymous identification, 645–647, 653
anonymous types, 491–496, 528
AnonymousTemplate, 588
ANSI 92 SQL standard, 405
answers. See exercises/answers
App_Code folder, 172–176
AppConfiguration, 701, 702, 703, 704, 705
AppendAllText, 323
Application Mapping, 9
application pools, 715, 716, 717, 730
application services (ASP.NET). See also Profile

configuring, 771–775
defined, 618
introduction, 581–582
overriding settings of, 773–775
ScriptManager control and, 338

applicationName, 599, 600, 602, 774, 775
Apply Styles window, 87, 98–101, 103, 204, 734

App_Themes folder, 218, 219, 220, 221, 222, 224,
342, 535, 536

arithmetic operators, 152–154
arrays, 146–148

collections v., 148–149
as keyword, 146, 570, 574
asp: prefix, 14, 106
ASP (classic ASP, Active Server Pages), 1, 106, 129, 132,

139, 346
ASP.NET 2.0 Instant Results (Spaanjaars, ISBN: 978-

0-471-74951-6), 526, 604
ASP.NET 4

AJAX, 331–365
books

Beginning ASP.NET MVC 1.0, 35
Professional ASP.NET 2.0 Design: CSS,

Themes, and Master Pages, 86, 728
Professional ASP.NET 3.5 AJAX, 333, 338,

362, 728
Professional ASP.NET 3.5 Security,

Membership, and Role Management with
C# and VB, 613

Professional ASP.NET 4 in C# and VB, 125,
126, 132, 351, 363, 436, 505, 555, 565,
566, 568, 576, 604, 672, 728

earlier versions
ASP.NET 1.0, 1–2, 581
ASP.NET 2.0, 2, 86, 127, 128, 198, 249, 526,

581, 604, 728
ASP.NET 3.5, 2, 333, 338, 434, 613

event-driven environment, 192
history, 1–2
introduction, 9–15
markup, 14–15. See also server controls
Profile feature, 619–653
server controls. See server controls
user controls, 271–296

ASP.NET application services. See application services
ASP.NET page life cycle, 208–210, 238

control life cycle and, 540–545
data control events and, 545–549

ASP.NET pages. See ASPX pages
ASP.NET runtime, 10
ASP.NET SQL Server Setup Wizard, 771
ASP.NET state engine, 128–135, 136
ASP.NET styles, 530–539, 577
ASP.NET Web Service (template), 36
ASP.NET Web Site (template), 36
ASP.NET web sites. See Planet Wrox; web sites

AJAX (ASP.NET AJAX) (continued)

502211bindex.indd 778 2/19/10 10:07:48 AM

779

ASP.NET WebParts – Breakpoints Window

ASP.NET WebParts, 128
aspnetdb.mdf database, 585, 607, 626, 722, 726, 757,

762, 767, 769, 770, 771, 772, 773, 775
aspnet_regsql.exe, 771, 772, 773
.aspx files. See Web Forms
ASPX pages (ASP.NET pages), 8. See also consistency;

Web Forms
page life cycle, 208–210, 238
user controls v., 271, 272

assemblies (.NET), 176, 177, 179, 216, 709, 710, 730
assignment operators, 152
AssociatedControlID, 556, 561, 567, 629, 631
AssociatedUpdatePanelID, 340
Asynchronous JavaScript And XML. See Ajax
AsyncPostBackErrorMessage, 339
@ Register directive, 276, 279, 280, 296
Attachment class, 317
Attention class, 75, 102, 396
[attribute], 381
attributes, 31, 347, 365. See also specific attributes

HTML, 12
ID, 106
media, 84
Runat, 106, 110, 111, 126
Src, 276
style, 12, 60, 85, 99, 101, 104, 112, 235, 508, 523,

534, 743
TagName, 276
TagPrefix, 276
ValidateRequest, 316

[attribute=value], 381
authentication

defined, 580, 618
Forms authentication, 617, 717
SQL Server Authentication, 758, 759, 764–768
third-party, 617
Windows Authentication, 758–759, 768–770

authorization, 580–581, 618
authorization rules, 580
Auto Format feature, 532–533
AutoID (ClientIDMode), 282
automatic paging, 434
automatic properties, 185, 285, 286, 623, 738
AutoPostBack property, 115, 119, 120, 227, 229, 447,

451, 521, 524, 734
Autos Window, 679, 680–684
Average (operator), 488–489
avoiding

hardcoded settings, 698
inline style sheets, 112

B
‹b›, 11
back tick (`), 624
BackColor, 111
background-color (CSS property), 75
background-image (CSS property), 75
backing variables, 183, 184, 185, 186, 189, 191, 738
backslash, 214, 323, 445
Banner control

creating, 273–276
horizontal banner and, 283–288
master page and, 277–279
NavigateUrl and, 288–293
registration of, 279–280

base page, 208–218, 237, 238, 256, 319, 737
creating, 210–214
modifying, 231–232
reusable page templates and, 214–218

Beginning ASP.NET MVC 1.0, 35
Beginning CSS: Cascading Style Sheets for Web Design,

Second Edition, 76, 86
Beginning Microsoft SQL Server 2008

Administration, 764
Beginning Microsoft SQL Server 2008

Programming, 415
Beginning Microsoft Visual Basic 2010, 140
Beginning Microsoft Visual C# 2010, 140
Beginning Regular Expressions, 306
Beginning Web Programming with HTML, XHTML,

and CSS, 2nd Edition, 14
BETWEEN, 410
bigint, 422
bind method, 382, 383, 384, 390, 393
black boxes, 191
Blue Screen of Death, 658
blueprints, classes as, 145, 182, 196
‹body›, 11
Books Online, 766, 769
bool/Boolean (data types), 143, 145, 155, 168, 169, 248,

264, 361, 409, 492, 616, 621, 705
border (CSS property), 75, 78–79
BorderColor, 111, 531
BorderStyle, 111, 531
BorderWidth, 111, 531
BoundField, 453
Box Model, CSS, 78–79, 94, 104
breadcrumb trail, 127, 246, 261–263, 269, 270
breakpoints, 673, 674, 675, 676, 677, 679, 680, 681,

683, 684, 685, 686, 687, 696
Breakpoints Window, 679, 680–684

502211bindex.indd 779 2/19/10 10:07:48 AM

780

browsers – client-side script

browsers
Firefox, 48, 82, 91, 92, 117, 274, 300, 337, 351, 560,

673, 684
Google Chrome, 48, 92, 252, 300, 312, 510
Internet Explorer, 7, 19, 48, 91, 92, 262, 274, 300,

332, 337, 351, 673, 675
debugging JavaScript in, 684–687
Planet Wrox and, 48

Opera, 48, 92, 255, 300, 560, 673, 684
Safari, 48, 92, 300, 354, 517

Bug Base chapter, 604. See also ASP.NET 2.0 Instant
Results

bulleted lists, 12, 57, 59, 60, 218, 496, 503, 507,
512, 522

BulletedList, 113, 114, 493, 495, 496, 639
:button, 381
Button control

exercise, 107–109
named skin for, 235–236
skins for, 234–235
state engine and, 129–133
UpdatePanel and, 334–338

Button1_Click, 193
ButtonField, 453
ByRef, 171
byte/Byte (data types), 143
ByVal, 171

C
Cache API, 566, 570–575
cache invalidation, 577
caching, 565–575, 577

with data source controls, 568
output caching, 567–568, 577
pitfalls with, 565–566
programmatic caching, 568–570
types of, 566–575

calculator (web-based), 163–166
optimizing, 173–176

Calculator class
creating, 173–176
static methods and, 358

Calendar control, 125, 129–133
Call Stack Window, 679–684
Cascading Style Sheets. See CSS
casting, 145–146
catching exceptions, 658–666
Catch/Try Finally blocks, 658, 660, 662, 663, 664, 665,

666, 694, 754
CDN (Content Delivery Network), 369
chain, inheritance, 213, 719

chaining, 375, 384, 390, 396, 402
ChangePassword, 596–599
char/Char (data types), 141, 144, 421, 422
Chart control, 436
:checkbox, 381
CheckBoxField, 453
CheckBoxList, 113, 114, 115, 116, 117, 137, 632, 633,

634, 636
exercise, 115–117

checklist, deployment, 698, 727–728
Chiaretta, Simone, 35
ChildrenAsTriggers, 337
Chrome (Google Chrome), 48, 92, 252, 300, 312, 510
class(es), 182–183

abstract, 191
Attachment, 317
Attention, 75, 102, 396
as blueprints, 145, 182, 196
Calculator class

creating, 173–176
static methods and, 358

Convert, 145
CssClass, 111, 233, 234, 235, 236, 248, 257, 304, 531
defined, 196
event arguments, 193
File, 322–328, 330

methods, 323
MailAddress, 317, 322, 740
MailMessage, 317, 321, 322, 325, 327
Object, 144, 189, 190, 191
Page, 177
ProfileCommon, 626, 648, 650, 651
properties. See properties
removeClass, 382, 383
Review, 480, 491, 570
SmtpClient, 317, 320, 329, 662
toggleClass, 382, 383
WebConfigurationManager, 700–705

class selector, 73–74, 90, 98, 104, 258, 281, 376,
378, 733

classic ASP, 1, 106, 129, 132, 139, 346. See also ASP.
NET 4

‹clear /›, 601, 603, 726, 767, 770, 773, 774, 775
client data binding, 363
client IDs, 281
ClientID, 110, 281, 314
ClientIDMode, 110, 207, 281, 282, 314, 386, 435,

517, 743
client-side ASP.NET AJAX Library, 333, 360, 361–362,

372, 394
client-side JavaScript framework, 331, 346, 362, 364,

401, 402
client-side script, debugging, 684–687

502211bindex.indd 780 2/19/10 10:07:48 AM

781

client-side validation – controls

client-side validation, 300, 311–316, 330. See also
server-side validation

CustomValidator and, 311, 313, 314, 315
ValidationSummary and, 311, 312, 313
warning on, 300

Code Behind, 10, 49–54, 62, 64, 68, 179, 200
code files, 43
code organization, 170–181. See also comments;

functions; namespaces; subroutines
code reuse. See reuse
code snippets, 25, 62, 68
CodeFiles, 173
CollapseImageToolTip, 257
CollapseImageUrl, 257
collection initializers, 151
collections, 148–149

arrays v., 148–149
defined, 148, 196

collisions, name, 176
colon, Inherits keyword and, 177, 189
color (CSS property), 75
combining selectors, 74–75
CommandField, 453
comments, 142, 179–181, 194
CompareValidator, 306–307

properties, 306–307
TextBox controls and, 307

comparison operators, 154–156, 409
compile errors, 656–657
CompositeScript, 340
concatenation operators, 156–157
conditions. See decisions/conditions
Connect Timeout, 446
connecting pages. See links
connection strings. See also SQL Server Authentication;

Windows Authentication
defined, 475
LocalSqlServer, 585, 599, 600, 602, 608, 626, 726,

767, 770, 771, 773, 775
parts of, 445–446
PlanetWroxConnectionString1, 445, 448, 481,

726, 773
in web.config, 445–446, 473

connectionStringName, 600
consistency (in web pages), 197–238

base page, 208–218, 237, 238, 256, 319, 737
creating, 210–214
reusable page templates and, 214–218

master pages, 198–207, 238
caveats, 206
content pages and, 198, 201–207, 238
DropDownList and, 227–231

nesting, 206, 207
user controls and, 276–279

skins, 232–236
themes, 218–232, 238

applying, 220–223
creating, 219
defined, 218
extending, 224–226
StyleSheetTheme, 219, 220, 221, 222, 223, 231,

237, 250, 251, 277, 728, 736
switching, 226–232
Theme property, 219, 237, 260, 737
types of, 219

themes and, 218–232
tips for, 236

constructors, 187–189
object initializers and, 189
overloaded, 188, 189, 317

contact form (ContactForm.ascx)
animating, 392–396
creating, 301–303
extending, 307–310
flicker-free pages and, 341–344
sending e‑mail from, 323–328
watermark and, 386–390
Watermark plugin and, 397–400

container controls, 118–124, 137
:contains (text), 381
Content Delivery Network (CDN), 369
content pages, 198, 201–207, 238. See also master pages

user controls and, 276–279
ContentPlaceHolder, 201, 202, 205, 206, 207, 237, 250,

264, 335, 374, 377, 437, 537, 538, 736
ContentTemplate, 338
ContextTypeName, 497
ContinueDestinationPageUrl, 592
Control Toolkit (AJAX), 362
ControlParameter, 446
controls. See also data controls; server controls; specific

controls
login controls, 127, 582–599, 617, 618

ChangePassword, 596–599
CreateUserWizard, 592–596, 617
PasswordRecovery, 596–599, 617
working with, 590–592

navigation controls, 127, 245–263
architecture of, 245
Menu control, 245, 248–257, 269, 270
SiteMapPath control, 261–263, 269, 270
TreeView control, 105, 127, 236, 257–261,

269, 270
Web.sitemap and, 246–248

502211bindex.indd 781 2/19/10 10:07:48 AM

782

controls – CustomValidator

user controls (ASP.NET), 271–296
ASPX pages v., 271, 272
caveats, 280–282
content page and, 276–279
creating, 272–276
encapsulation and, 272, 295
introduction, 272–282
logic added to, 282–294
master page and, 276–279
site-wide registration of, 279–280
tips for, 294

validation controls, 127, 299–316, 330
benefit of, 329
CompareValidator, 306–307
contact form and, 307–310
CustomValidator, 303, 311, 313, 314, 315
ErrorMessage property, 304, 305, 328
properties of, 304–305
RangeValidator, 300, 305–306
RegularExpressionValidator, 306
RequiredFieldValidator, 300–303
standard, 303–316
Text property, 304, 305, 328
using, 300–303
ValidationSummary, 299, 305, 311, 312, 313

ControlToCompare, 306
ControlToValidate, 304
Convert class, 145
converting data types, 144–146
CookieParameter, 446
cookies, 227, 238
Copy (File class), 323
Copy Web Site option, 706, 707–709, 729
Count (operator), 488–489
CreateUserText, 587
CreateUserUrl, 587
CreateUserWizard, 592–596, 617

confirmation e‑mail and, 593–596
properties, 592–593

creating data, 417. See also CRUD
Cross Page PostBacks, 132
CRUD (create, read, update, delete), 407–421, 431, 432.

See also DELETE; INSERT; SELECT; UPDATE
css(name), 382
css(name, value), 382
css(properties), 382–383
CSS (Cascading Style Sheets), 65–104. See also style

sheets
adding to pages, 84–86

books
Beginning CSS: Cascading Style Sheets for Web

Design, Second Edition, 76, 86
Beginning Web Programming with HTML,

XHTML, and CSS, 2nd Edition, 14
Professional ASP.NET 2.0 Design: CSS,

Themes, and Master Pages, 86, 728
Professional CSS: Cascading Style Sheets for

Web Design, 2nd Edition, 728
Box Model, 78–79, 94, 104
declarations, 71, 104
exercise, 68–71
formatting and, 66–67
HTML formatting v., 66–67
introduction, 68–86
jQuery and, 382–383
Planet Wrox home page and, 79–84
properties, 75–76

shorthand versions, 77–78
reasons for using, 66–67
selectors, 71, 72–75, 104

class, 73–74, 90, 98, 104, 258, 281, 376,
378, 733

element, 104, 376, 378
grouping/combining, 74–75
ID, 73, 80, 87, 98, 281, 375, 378, 386, 733
universal, 73, 104, 375

tips for, 102
values, 76–77
VWD and, 87–101

CSS Properties Grid, 87, 95, 96, 97, 102
CssClass, 111, 233, 234, 235, 236, 248, 257, 304, 531
CssDemo.aspx, 68, 70, 74
Ctrl+F4, 275, 418
Ctrl+F5, 7
Ctrl+S, 20, 203, 275, 424, 425, 428, 624
Ctrl+Shift+B, 625
Ctrl+Shift+Enter, 714
Ctrl+Shift+F, 22
Ctrl+Shift+F5, 677
Ctrl+Shift+F9, 673, 680
Ctrl+Shift+H, 22, 212
custom error pages, 666–673
customizing

data controls (appearance), 452–459
DetailsView, 464–472
Document Window, 25
GridView columns, 453–459
IDE, 22–27, 30
ListView templates, 515–520
toolbars, 25–26

CustomValidator, 303, 311, 313, 314, 315

controls (continued)

502211bindex.indd 782 2/19/10 10:07:48 AM

783

DarkGrey – datetime2

D
DarkGrey, creating, 220–223
data. See also databases; validation

added to traces, 691–693
advanced topics, 529–578
anonymous types and, 491–496, 528
caching. See caching
deleting data, 418. See also CRUD; GridView

ListView control and, 505–514
WHERE clause (SQL) and, 408–410, 431

displaying/updating, 433–476
filtering data

data controls and, 446–452
WHERE clause and, 408–410, 431

SQL and
creating, 417
deleting, 418
filtering, 408–410, 431
joining, 414–417
ordering, 410
reading, 408–417
retrieving/manipulating, 407
sample database and, 418–421
selecting, 408, 411–414
updating, 418
working with, 405–407

stale, 566, 577
tips for, 575–576
updating data, 418. See also CRUD; displaying/

updating data
DetailsView and, 459–473
GridView and, 437–442
UPDATE and, 408, 417, 418, 419, 420, 421,

431, 440, 442, 462, 562, 744, 745
user input

importance of, 298–299, 329
never trust user input, 299
validation of, 297–330

data access code, hand-coding, 554–565
data controls, 127, 433–475. See also server controls

Chart control, 436
customizing appearance of, 452–459
data source controls, 435–436, 474, 475

caching with, 568
handling errors in, 550–554

data-bound controls, 434–435, 474, 475
columns/fields, configuration of, 453–459
formatting, 530–539
list controls, 434–435

filtering data and, 446–452
life cycle, 459–460, 540–545
LINQ queries and, 496–526
markup and, 554

data files, 43–44
data model mapping, to object model, 481–486
data source, 435
Data Source Configuration Wizard dialog box, 499
data source controls, 435–436, 474, 475

caching with, 568
handling errors in, 550–554

data tips (tooltip windows), 676, 678, 683, 696
data types, 141–146. See also specific data types

arrays and, 146–149
casting, 145–146
converting, 144–146
non-standard, Profile feature and, 623–624
in SQL Server, 421–422

data validation. See validation
Database Explorer, 18
Database Publishing Wizard, 723–725
databases (relational)

aspnetdb.mdf database, 585, 607, 626, 722, 726, 757,
762, 767, 769, 770, 771, 772, 773, 775

attaching to SQL server, 761–763
recreating, 725–727

databases (relational databases), 403–432. See also SQL
Server 2008

defined, 404–405, 432
sample database, 406–407, 418–421
tables, 421–430, 432

defined, 404
tips for, 430
types of, 405

data-binding expression syntax, 445, 475
DataBindings dialog box, 468
data-bound controls

columns/fields, configuration of, 453–459
formatting, 530–539
list controls, 434–435

DataFormatString, 456, 457, 458
DataPager, 173, 434, 435, 477, 496, 520–526, 527

defined, 434, 435
ListView control and, 521–526

DataSource, 435, 495, 496
DataSourceID, 248, 441, 450, 486, 504
Date (data type), 143, 305, 306, 361
date (SQL data type), 421
datetime, 421
datetime2, 421

502211bindex.indd 783 2/19/10 10:07:48 AM

784

debugging – dynamic data

debugging, 673–687, 696
basics, 673–676
breakpoints and, 673, 674, 675, 676, 677, 679, 680,

681, 683, 684, 685, 686, 687, 696
client-side script, 684–687
Firebug and, 337
JavaScript, in Internet Explorer, 684–687
keyboard shortcuts for, 677
moving around in, 677–678
tips for, 694–695
tools for, 677–684

debugging windows, 678–684
Autos Window, 679, 680–684
Breakpoints Window, 679, 680–684
Call Stack Window, 679–684
Immediate Window, 680–684
Locals Window, 679, 680–684
Watch Window, 678–684

decimal/Decimal (data types), 143, 421
decisions/conditions, 151, 159–166
declarations (CSS), 71, 104
default documents, 244–245
DELETE, 418, 420, 421, 429, 431, 440, 454, 462,

553, 744
Delete (File class), 323
DeleteParameters, 475
deleting data, 418. See also CRUD; GridView

ListView control and, 505–514
WHERE clause (SQL) and, 408–410, 431

deliveryMethod, 317, 318, 320, 328, 594
deployment (web site deployment), 697–730

avoiding hardcoded settings, 698
checklist, 698, 727–728
Copy Web Site option and, 706, 707–709, 729
expression syntax and, 699–700
IIS and, 706
options for, 706
preparation for, 698–705
Publish Web Site option and, 706, 709–710, 729
web.config file and, 699, 701–705
WebConfigurationManager class and, 700–705

Design View, 18, 19, 20, 48, 64
designers

Entities Designer, 481, 482, 484, 575
HTML Designer, 48
object-relational designer (EF), 484
Query Designer, 411, 414, 416, 419, 420, 429
Table Designer, 423–426

designing Web pages. See CSS
DestinationPageUrl, 587
DetailsView

customizing, 464–472
FormView v., 435
inserting data with, 442–444, 459–473

managing data with, 460–464
updating data with, 459–473

developer profiles, 16
dialog box

Add New Item, 200, 201, 218, 233, 272, 274, 341,
347, 741

Advanced Security Settings, 719, 720
Advanced Settings, 715, 716
Advanced SQL Generation Options, 454
Data Source Configuration Wizard, 499
DataBindings, 468
Fields, 455, 458, 464
Installation Options, 4, 5
ListItem Collection Editor, 115, 118, 126, 447
Modify Style, 80, 82, 88, 89, 92
New Web Site, 5, 19, 34, 35
Open Web Site, 39
Release Properties, 720
Styles, 98. See also Apply Styles window
VWD Options dialog box, 27, 30, 233, 234

DirectCast, 145, 146
DisableCreatedUser, 592
DisappearAfter, 248
display (CSS property), 75
Display property (validation controls), 304
DisplayAfter, 340
DisplayDirection, 285, 286, 287, 288, 289, 291, 292,

295, 739
displaying/updating data, 433–476

tips for, 473
DisplayRememberMe, 587
‹div›, 12
DOCTYPE, 14
document object model. See DOM
document ready function (jQuery), 371, 372, 374, 388,

393, 394, 395, 401, 744
Document Window, 18–19

customizing, 25
Document! X, 181
$(document).ready function(). See document ready

function
documents, default, 244–245
Dojo, 368
$ method, 374, 375, 376. See also jQuery
DOM (document object model)

defined, 374
jQuery and, 374, 382–390, 402

double hash symbols (##), 324, 327
double/Double (data types), 143, 144, 145, 146, 165
DropDownList, 113

exercise, 114–115
GridView and, 47–450
master page and, 227–231

dynamic data, 126, 297, 568

502211bindex.indd 784 2/19/10 10:07:48 AM

785

Dynamic Data Web Sites – exception handling

Dynamic Data Web Sites, 2, 37, 128
dynamic files, 9, 686, 687
dynamically switching themes, 226–232
DynamicEnableDefaultPopOutImage, 248
DynamicLayout, 340

E
each (method), 385, 388, 389
‹EditItemTemplate›, 504
EditRowStyle, 532
EF. See Entity Framework
effects (jQuery), 391–396
element selector, 104, 376, 378
elements (HTML), 10–12
Else block (else), 160–161
else if ladder, 161
ElseIf, 161
e‑mail

CreateUserWizard and, 593–596
creating, 319–322
exception handling and, 660–666
sending

from control form, 323–328
from web site, 317–322

embedded style sheets, 84, 85–86, 104
exercise, 92–97
inline/external style sheets v., 85–86
‹style› element and, 73, 80, 87, 98, 281, 375, 378,

386, 733
Empty Web Site (template), 36
EmptyDataRowStyle, 533
‹EmptyDataTemplate›, 504
‹EmptyItemTemplate›, 504
EnableCdn, 339
EnableClientScript, 304
Enabled (server control property), 111
EnableDelete, 497
EnableInsert, 497
EnablePageMethods, 339
EnablePartialRendering, 339
enablePasswordReset, 600
enablePasswordRetrieval, 600
EnableSsl property, 320, 594, 595
EnableUpdate, 497
EnableViewState, 131, 133, 134, 135, 233, 551
encapsulation, 131, 184, 191, 272, 294, 295, 549, 582

defined, 184, 196
properties and, 184
user controls and, 272, 295

EndRequest, 627, 653
endsWith, 361

Entities Designer, 481, 482, 484, 575
Entity Data Model file (ADO.NET), 44, 481, 528,

575, 641
Entity Framework (EF, ADO.NET Entity Framework),

2, 477–478, 480–528
introduction, 480–481
object-relational designer, 484
Programming Entity Framework Second Edition, 565
tips for, 526–527

entity sets, 528
EntityDataSource, 436, 528

application, 497–503. See also Gig Pics section
properties, 497
strong typing and, 502

EntitySetName, 497
enumerations (enums), 77, 283, 284, 285, 295, 504,

548, 739
enums. See enumerations
:eq (index), 380
equals operator (=), 409
Error List, 21
ErrorMessage property (validation controls), 304,

305, 328
errors. See also exceptions

compile, 656–657
custom error pages, 666–673
logic, 657–658
runtime, 658
syntax, 656–657
web server, 721–723

escaping, 214, 318, 323
Eval, 471, 495, 514, 639
:even, 380
event arguments class, 193
event handlers, 192, 193
event handling, 539–554

DataView and, 464–472
jQuery and, 383–385, 402
postback event handling phase, 209

event wiring syntax, 193
EventArgs, 193, 194, 550
event-driven environment, 192
events, 192–194
Events tab, 123, 137, 193, 227, 468, 500, 509, 534, 541,

546, 551, 594, 614, 642, 748
Everyone account, 721
Evjen, Bill, 333, 338, 362
exception handling, 656–673, 696

data source controls and, 550–554
e‑mail addresses and, 660–666
global, 666–673
site wide, 667–673

502211bindex.indd 785 2/19/10 10:07:48 AM

786

Exception property – Font

Exception property, 550, 553, 577
ExceptionHandled, 550, 551, 552, 553, 750
exceptions, 577

catching, 658–666
compile errors, 656–657
defined, 696
logic errors, 657–658
runtime errors, 658
swallowing, 694
syntax errors, 656–657
Try Catch Finally blocks, 658, 660, 662, 663, 664,

665, 666, 694, 754
Yellow Screen of Death, 554, 658, 662, 670, 695,

750, 755
execution path, 656, 687, 754
exercises/answers. See also specific exercises

chapter 1, 30, 731–732
chapter 2, 63, 732–733
chapter 3, 103, 733–734
chapter 4, 136, 734–735
chapter 5, 195, 735
chapter 6, 237, 736–737
chapter 7, 269, 737–738
chapter 8, 295, 738–739
chapter 9, 329, 739–741
chapter 10, 364, 741–742
chapter 11, 401, 743–744
chapter 12, 431, 744–745
chapter 13, 474, 745–746
chapter 14, 527, 746–748
chapter 15, 576, 749–750
chapter 16, 617, 751
chapter 17, 652, 752–753
chapter 18, 695, 754–755

Exists (File class), 323
ExpandDepth, 257
ExpandImageToolTip, 257
ExpandImageUrl, 257
Export Template feature, 215, 236
Express edition. See SQL Server 2008; Visual Web

Developer 2010
expression syntax, 445, 475, 698, 699–700, 730
Ext JS, 368
eXtensible Markup Language. See XML
extensions, AJAX, 127–128
external style sheets, 84, 85–86, 104, 112

exercises
attaching new style sheet to document, 90–92
creating new styles in style sheets, 87–90

inline/embedded style sheets v., 85–86
‹link› element and, 82, 84, 201, 221, 222, 240, 734

external web services, 351

F
F2 shortcut key, 482, 499
F4 shortcut key, 18, 108, 123, 130, 227, 243, 247, 251,

302, 443, 449, 468, 482, 491, 541, 643, 732
F5 shortcut key, 380, 674, 675, 676, 677, 681, 683, 684,

685, 686, 687
F7 shortcut key, 259, 319, 456, 649
F8 shortcut key, 657
F9 shortcut key, 673, 674, 680, 684
F10 shortcut key, 675, 676, 677, 681, 682, 683, 685
F11 shortcut key, 676, 677, 682, 683
fadeIn(), 391
fadeOut(), 391
fadeTo(), 391
feedback, to users, 340–344
Fields dialog box, 455, 458, 464
:file, 381
File class, 322–328, 330

methods, 323
File ÞNew Project, 35, 38
File ÞNew Web Site, 19, 34, 35, 38, 42, 242
file system (deployment option), 706
files/file types (ASP.NET web sites), 40–47, 64. See also

databases; JavaScript; master pages; Web Forms
adding existing files, 44–47
code files, 43
data files, 43–44
organizing, 46
special file types, 47
web files, 41–43

FileUpload control, 125
filtering data

data controls and, 446–452
WHERE clause and, 408–410, 431

filters (jQuery), 379–382, 401, 402
advanced, 381–382
basic, 379–381

Finally/Try Catch blocks, 658, 660, 662, 663, 664, 665,
666, 694, 754

Find Results window, 22
Firebug, 337
Firefox, 48, 82, 91, 92, 117, 274, 300, 337, 351, 560,

673, 684
:first, 380
First (operator), 490–491
first web site creation, 5–9
FirstOrDefault, 490
flicker-free pages, 333, 334–344
float (CSS property), 75, 82, 513
float (data type), 143, 153, 422
Font (server control property), 111, 531

502211bindex.indd 786 2/19/10 10:07:49 AM

787

font family – hexadecimal

font family, 54
font properties (CSS)

font-family, 75
font-size, 75
font-style, 75
font-weight, 75

font size, 54
FooterStyle, 533
For Each loop, 168
For loop, 166–168
foreach loop, 168
ForeColor, 111, 531
foreign key, 426, 427, 432, 482, 562
foreign key constraint error, 553, 554, 577
Foreign Key Table, 427, 498
‹form›, 11
‹form› element, 79, 131, 199, 437
Format menu, 57–60, 62
format method, 361
formatting. See also CSS

CSS and, 66–67
data-bound controls, 530–539
HTML and, 66–67

Formatting toolbar, 54–57, 61, 62, 70, 90, 732
FormParameter, 447
Forms authentication, 617, 717
FormView, 434, 435, 459, 747. See also DetailsView
forward slashes, 11, 180, 224, 241, 242, 244, 247, 611
Framework64, 714, 771
Friend (access modifier), 192
From clause, 487–488
FTP site (deployment option), 706
functions, 170–176

code reuse and, 176
parameterized, 170
subs v., 170
tips for, 194

G
generics, 150–151

back tick (`) and, 624
collection initializers and, 151
List type and, 150, 151, 623
Professional .NET 2.0 Generics, 151

Genre table, 405, 411
joining data and, 414–417
for Planet Wrox, 423–430
selecting data and, 411–414

GET, 131, 137, 298, 332, 688

Get block, 183
Gig Pics section, 28

building, 497–503
ListView control and

customizing templates, 515–520
DataPager, 521–526
inserting/deleting data, 505–514

global error handling, 666–673
Global.asax, 646, 653, 667, 668, 672, 696, 698, 703
Golding, Todd, 151
Google Chrome, 48, 92, 252, 300, 312, 510
Google Code, 369
greater than (›), 155, 409
greater than or equal (›=), 155, 409
Greeting Cards chapter, 526. See also ASP.NET 2.0

Instant Results
GridView, 105

columns, customizing, 453–459
DropDownList and, 447–450
skins and, 233, 236
SqlDataSource control and, 436–442
styles and, 533–535

grouping selectors, 74–75
grouping/combining selectors, 74–75, 376–377
‹GroupSeparatorTemplate›, 504
‹GroupTemplate›, 504
:gt (index), 380

H
Haidar, Bilal, 613
hand-coding data access code, 554–565
Handler Mapping, 9
Handles keyword, 52, 116, 193, 213, 313, 345
handling events. See event handling
handling exceptions. See exception handling
hard refresh, 222
hardcoded settings, avoidance of, 698
:has (element), 381
hasClass, 382
hash symbol (#), 37, 73, 88, 324, 327, 386
hashing, 599, 600
Hashtable, 149
‹head›, 11
:header, 380
height

CSS property, 76
server control property, 111, 532

“Hello World” web service, 348–351
hexadecimal, 76, 77, 80, 677

502211bindex.indd 787 2/19/10 10:07:49 AM

788

:hidden – IntelliSense

:hidden, 381
HiddenField control, 125
hide(), 391
horizontal banner, 283–288. See also Banner control
HorizontalAlign, 532
:hover, 89, 90, 92, 254, 256
‹html›, 11
HTML (HyperText Markup Language), 10–14, 31

attributes, 12
Beginning Web Programming with HTML, XHTML,

and CSS, 2nd Edition, 14
controls, 126–127
elements, 10–12
formatting and, 66–67. See also CSS
tables, 57–60
tags, 10–12
XHTML v., 13–14, 731

HTML Designer, 48
HTTP (HyperText Transfer Protocol), 9, 31
Hungarian Notation, 142
Hyperlink control, 60, 240
HyperLinkField, 453
HyperText Markup Language. See HTML
HyperText Transfer Protocol. See HTTP

I
‹i›, 11
ID attribute, 106
ID selector, 73, 80, 87, 98, 281, 375, 378, 386, 733
IDE (VWD integrated development environment),

15–27, 31
customizing, 22–27, 30
Database Explorer, 18
developer profiles, 16
Document Window, 18–19
main menu, 16
Properties Grid, 18
restoring/resetting, 26–27
Solution Explorer, 17
Start Page, 19
toolbar area, 16–17
Toolbox, 17

identity, security and, 580
identity columns, 422–426, 432
If statement, 159–160
IIS (Internet Information Services)

deployment and, 706
installing/configuring, 711–714
Network Service and, 446, 715, 717, 720, 762, 768
Professional IIS 7, 728
roles and, 604

security in, 717–718
web site running under, 710–718
Windows Authentication and, 768–770

IL (Intermediate Language), 140
:image, 381
image (data type), 422
Image control, 125
ImageButton, 125
ImageField, 453
ImageMap control, 125
images, added to themes, 224–226
‹img›, 11
Immediate Window, 680–684
Imports keyword, 178
IncludeStyleBlock, 249
informational windows (VWD), 21–22
Inherit (ClientIDMode), 282
inheritance, 189–191, 195, 208, 213, 719
inheritance chain, 213, 719
Inherits keyword, 177, 189
initializers

collection, 151
object, 189

inline code, 49–54, 62, 64, 68, 179, 200
inline comments, 179–180
inline style sheets, 85–86, 104, 112

avoidance of, 112
embedded/external style sheets v., 85–86
exercise, 92–97

INNER JOIN, 414, 415, 416
Innovasys, 181
:input, 381
‹input›, 11
INSERT, 408, 417, 418, 419, 420, 426, 431, 440, 444,

454, 462, 502, 562, 725
inserting data, ListView control and, 505–514
inserting data, with DetailsView, 442–444, 459–473
InsertItemPosition, 504
‹InsertItemTemplate›, 504
InsertParameters, 475
Installation Options dialog box, 4, 5
instances, 175, 182

named, 445, 475, 758, 767, 770, 773
unnamed, 758

instantiating, 182
abstract classes and, 191
arrays, 147
definition of, 182, 196
Person instance, 189

int, 422
integrated development environment. See IDE
Integrated Pipeline mode, 717, 718, 730
IntelliSense, 12, 50, 51

502211bindex.indd 788 2/19/10 10:07:49 AM

789

Intermediate Language – keys

Intermediate Language (IL), 140
internal (access modifier), 192
Internet Explorer, 7, 19, 48, 91, 92, 262, 274, 300, 332,

337, 351, 673, 675
debugging JavaScript in, 684–687
Planet Wrox and, 48

Internet Information Services. See IIS
interoperability

ASP.NET AJAX and, 331
CTS and, 143
SQL and, 405

int/Integer, 141, 142, 143
Is/is (comparison operators), 155
IsUserInRole, 613–616
IsValid, 304
ItemDeleted, 460
ItemDeleting, 460
ItemInserted, 460
ItemInserting, 460
ItemPlaceholderID, 504
‹ItemSeparatorTemplate›, 504
‹ItemTemplate›, 503
ItemUpdated, 460
ItemUpdating, 460
iteration, 148. See also loops

J
JavaScript, 10, 18, 31. See also Ajax; jQuery

debugging, in Internet Explorer, 684–687
framework, 331, 346, 362, 364, 401, 402
limitations of, 367
Professional JavaScript for Web Developers, 2nd

Edition, 303
strongly typing and, 362

JOIN, 414–417, 431, 432
joining data, 414–417
jQuery, 367–402

Access Key Highlighter plugin, 561
AJAX and, 331
chaining and, 375, 384, 390, 396, 402
core functionality, 374
CSS methods and, 382–383
demo page, 379–380
document ready function, 371, 372, 374, 388, 393,

394, 395, 401, 744
$ method, 374, 375, 376
DOM and, 374, 382–390, 402
effects, 391–396
event handling and, 383–385
events, 373
extensibility, 396–400

filters, 379–382, 401, 402
advanced, 381–382
basic, 379–381

introduction, 368–373
location (in web site) for, 368–369
master pages and, 370–373
matched set, 374, 375, 377, 380, 382, 383, 384, 385,

388, 389, 390, 396, 402, 743
mistakes with, 386
online information, 400
plugins, 396–400, 402

Access Key Highlighter plugin, 561
Watermark plugin, 397–400

selectors, 375–378, 402
syntax, 373–382
tips for, 400
versions, 368

K
keyboard shortcuts

Alt+Letter, 560
Ctrl+F4, 275, 418
Ctrl+F5, 7
Ctrl+S, 20, 203, 275, 424, 425, 428, 624
Ctrl+Shift+B, 625
Ctrl+Shift+Enter, 714
Ctrl+Shift+F, 22
Ctrl+Shift+F5, 677
Ctrl+Shift+F9, 673, 680
Ctrl+Shift+H, 22, 212
customizing, 26
debugging, 677
F2, 482, 499
F4, 18, 108, 123, 130, 227, 243, 247, 251, 302, 443,

449, 468, 482, 491, 541, 643, 732
F5, 380, 674, 675, 676, 677, 681, 683, 684, 685,

686, 687
F7, 259, 319, 456, 649
F8, 657
F9, 673, 674, 680, 684
F10, 675, 676, 677, 681, 682, 683, 685
F11, 676, 677, 682, 683
Shift+Alt+Letter, 560
Shift+Esc, 560
Shift+F11, 677, 683

keys
foreign key, 426, 427, 432, 482, 562
foreign key constraint error, 553, 554, 577
Foreign Key Table, 427, 498
Primary Key Table, 427, 498
primary keys, 422–426

502211bindex.indd 789 2/19/10 10:07:49 AM

790

keywords – LoginName

keywords. See also specific keywords
as, 146, 570, 574
Handles, 52, 116, 193, 213, 313, 345
Imports, 178
Me, 214, 682
MetaKeywords, 577
New, 176, 182, 187, 188, 358, 491, 527, 746
Preserve, 148
ref, 172
Select/select, 487
Then, 160
this, 214, 682
TryCast, 146, 546, 574
using, 178
var, 486, 491

Klein, Scott, 37

L
Label control

exercise, 49, 53, 54, 107–109
state engine and, 129–133
UpdatePanel and, 334–338

language-integrated query. See LINQ
:last, 380
Last (operator), 490–491
LastOrDefault, 490
‹LayoutTemplate›, 503
lazy loading, 485, 528
LEFT OUTER JOIN, 415, 545, 547
Lerman, Julia, 565
less than (‹), 155, 409
less than or equal to (‹=), 155, 409
‹li›, 12
libraries. See also jQuery

client-side AJAX Library, 333, 360, 361–362, 372, 394
JavaScript, 367–368

life cycle
data controls life cycle, 459–460, 540–545
page life cycle (ASP.NET), 208–210, 238

control life cycle and, 540–545
data control events and, 545–549

LIKE, 410
‹link› element, 82, 84, 201, 221, 222, 240, 734
LinkButton, 125
links, 60–62, 63. See also Hyperlink control

‹a› and, 60–62, 240
breadcrumb trail and, 127, 246, 261–263, 269, 270

LINQ (language-integrated query)
introduction, 478–479
.NET Framework and, 478

queries
anonymous types and, 493–496
data controls and, 496–526
operators, 487–491
syntax, 487–496

tips for, 526–527
LINQ to ADO.NET, 479–480
LINQ to DataSet, 479
LINQ to Entities, 479, 481–487
LINQ to Objects, 479
LINQ to SQL, 479, 480. See also Entity Framework
LINQ to XML, 479
LinqDataSource, 436, 568
Linux, 346
list controls

ASP.NET server controls, 113–118, 137
data-bound controls, 434–435

ListItem Collection Editor, 115, 118, 126, 447
lists. See also specific lists

bulleted, 12, 57, 59, 60, 218, 496, 503, 507, 512, 522
ordered, 12, 60, 434
unordered, 60, 249, 434

ListView control, 435
DataPager and, 521–526
inserting/deleting data, 505–514
properties, 504
templates, 503–504

customizing, 515–520
Literal control, 125
load phase, 209
local IIS (deployment option), 706
Localize control, 125
Locals Window, 679, 680–684
LocalSqlServer connection string, 585, 599, 600, 602,

608, 626, 726, 767, 770, 771, 773, 775
LoggedInTemplate, 588
logic, added to use controls, 282–294
logic errors, 657–658
logical operators, 157–159, 409–410
Login (login control), 587–588, 617

properties, 587–588
login controls, 127, 582–599, 617, 618

ChangePassword, 596–599
CreateUserWizard, 592–596, 617

confirmation e‑mail and, 593–596
properties, 592–593

PasswordRecovery, 596–599, 617
working with, 590–592

Login page, 583–587
LoginCreatedUser, 592
LoginName, 590–592

502211bindex.indd 790 2/19/10 10:07:49 AM

791

LoginStatus – named skins

LoginStatus, 589–590
LoginView, 588–589
long/Long (data types), 143
loops, 151, 166–170
:lt (index), 380

M
machine.config, 178, 296
MailAddress class, 317, 322, 740
MailDefinition, 593
MailMessage class, 317, 321, 322, 325, 327
main menu, 16
Manage Styles window, 17, 87, 90–92, 99–101, 103, 734
Managed Pipeline Mode, 715
ManagedPipelineHandler, 722
Management folder (Planet Wrox), 437–442

blocking access to, 608–612
Management Studio (SQL Server), 759–760

attaching databases to SQL Server, 761–763
manipulating/retrieving data, 407–421
margin (CSS property), 76, 78–79
markup, 8, 63. See also HTML; server controls; user

controls
adding, 54–60
ASP.NET, 14–15
data controls and, 554

Markup View, 18, 19, 20, 24, 25, 48, 49, 54
master pages, 198–207, 238

AJAX, 341
caveats, 206
content pages and, 198, 201–207, 238
DropDownList and, 227–231
jQuery added to, 370–373
nesting, 206, 207
user controls and, 276–279

matched set, 374, 375, 377, 380, 382, 383, 384, 385,
388, 389, 390, 396, 402, 743

Max, 488–489
MaximumDynamicDisplayLevels, 248
MaximumValue, 305
maxInvalidPasswordAttempts, 600
Me keyword, 214, 682
media attribute, 84
Membership and Role Services (AJAX), 363
membership configuration (Planet Wrox), 601–603
membership provider, 582, 586, 587, 601, 603, 617, 618
Menu control, 245, 248–257, 269, 270

creating basic version of, 249–253
properties, 248–249
styling, 253–257

MetaDescription, 577
MetaKeywords, 577
methods, 186–187. See also functions; subroutines

bind, 382, 383, 384, 390, 393
CSS, jQuery and, 382–383
defined, 170, 196
deliveryMethod, 317, 318, 320, 328, 594
$ method, 374, 375, 376. See also jQuery
each method, 385, 388, 389
EnablePageMethods, 339
File class, 323
format method, 361
Page methods, 358–360, 365
pageLoad, 393, 394, 395, 401, 744. See also document

ready function
parent, 385, 387, 388, 389, 401
parse, 361
prev method, 385, 387, 388, 389, 401
properties v., 186
Replace method, 327, 330
signature and, 171, 187, 188, 192, 360, 740
String.Format, 327, 350, 749
validation, 311, 312, 313

Microsoft Passport, 586, 617
Microsoft Visual Web Developer. See Visual Web

Developer 2010
MicrosoftAjaxMode, 339
Microsoft.Word.Document, 177
Min, 488–489
MinimumValue, 305
minRequiredNonalphanumericCharacters, 600
minRequiredPasswordLength, 600
Mod, 152
Model View Controller (MVC), 35, 368
Modify permissions, 406, 718, 720, 722, 762
Modify Style dialog box, 80, 82, 88, 89, 92
Monochrome theme, creating, 220–223
Move (File class), 323
Mozilla Firefox, 48, 82, 91, 92, 117, 274, 300, 337, 351,

560, 673, 684
MultiView control, 118, 119
MVC (Model View Controller), 35, 368
MVC 2 Web Application, 35
myEntities, 484, 487

N
name collisions, 176
named instance, 445, 475, 758, 767, 770, 773
named skins, 235–236, 238

502211bindex.indd 791 2/19/10 10:07:49 AM

792

namespaces – operators

namespaces, 144, 176–179
defined, 196
Microsoft.Word.Document, 177
PlanetWroxModel, 483, 494, 509, 557, 571, 634,

638, 642
System, 177, 178
System.Collections.Generic, 623, 624
System.IO, 322, 519
System.Linq, 478, 479
System.Net.Mail, 317, 319, 321, 329, 330, 594,

661, 667
System.Web.Configuration, 700, 701
System.Web.UI, 177, 213
System.Web.UI.WebControls, 177, 178, 531

naming
CSS classes, 102
data controls, 473
folders, 268
variables, 142, 194

naming container, 281
NavigateUrl, 240, 288–293, 295, 458, 639, 747
navigation controls, 127, 245–263

architecture of, 245
Menu control, 245, 248–257, 269, 270

creating basic version of, 249–253
properties, 248–249
styling, 253–257

SiteMapPath control, 261–263, 269, 270
breadcrumb and, 261–263
properties, 261

TreeView control, 105, 127, 257–261, 269, 270
navigation system and, 258–261
properties, 257
skins and, 236

Web.sitemap and, 246–248
navigation system, 239–270

default documents and, 244–245
programmatic redirection, 263–268
structure and, 239, 268
tips for, 268
TreeView control and, 258–261
URLs and, 240–244, 269

Nayyeri, Keyvan, 35
nchar, 421
nested

BulletedList, 493
elements, 14
master pages, 206, 207
Repeater, 637, 639
single/double quotes, 13

.NET assemblies, 176, 177, 179, 216, 709, 710, 730

.NET Framework. See also ASP.NET 4
data types, 141. See also data types
history, 1–2, 30
IL, 140
LINQ and. See LINQ
runtime, 10, 140

Network Service, 446, 715, 717, 720, 762, 768
never trust user input, 299
New keyword, 176, 182, 187, 188, 358, 491, 527, 746
New Web Site dialog box, 5, 19, 34, 35
non-standard data types, 623–624
NOT, 158
not equals (‹›), 155, 409
ntext / text, 422
NTFS settings, for Planet Wrox, 718–721
nvarchar, 422

O
Object class, 144, 189, 190, 191
object initializers, 189
object model, data model mapped to, 481–486
object oriented (OO) programming, 181–194

defined, 181, 196
encapsulation, 131, 184, 191, 272, 294, 295, 549, 582

defined, 184, 196
properties and, 184

inheritance, 189–191, 195, 208, 213, 719
terminology, 182–194

ObjectContext, 484, 487, 497
ObjectDataSource, 435, 436, 473
object-relational designer (EF), 484
objects, 182
:odd, 380
‹ol›, 12
one-way algorithm, 600
one-way data binding expression, 459, 471
one-way relationship, 744
OnMigrateAnonymous, 646, 647, 653
OO programming. See object oriented programming
Open Web Site dialog box, 39
Opera, 48, 92, 255, 300, 560, 673, 684
operator precedence, 154
Operator property (CompareValidator), 306
operators, 151, 152–159

arithmetic, 152–154
assignment, 152
comparison, 154–156, 409
concatenation, 156–157
logical, 157–159, 409–410
query operators, 487–491

502211bindex.indd 792 2/19/10 10:07:49 AM

793

Options dialog box – PlanetWroxConnectionString1

Options dialog box
Advanced SQL Generation Options dialog box, 454
Installation Options dialog box, 4, 5
VWD, 27, 30, 233, 234

OR, 158, 409
ORDER BY, 408, 410, 413, 414, 419, 420, 431, 450,

466, 489
Order By (operator), 488
OrderBy, 497
orderby, 488
ordered lists, 12, 60, 434
ordering data, 410
OrElse, 158
organizing code, 170–181. See also comments;

functions; namespaces; subroutines
Orientation property, 249, 251, 257
output caching, 567–568, 577
Output window, 21
overloaded constructors, 188, 189, 317
overriding, 190–191, 196

application services settings, 773–775
LocalSqlServer connection string, 773

P
padding (CSS property), 76, 78–79
Page class, 177
page directive, 134, 135, 198
page initialization (phase), 209
page life cycle (ASP.NET), 208–210, 238

control life cycle and, 540–545
data control events and, 545–549

Page methods, 358–360, 365
page request (phase), 209
page templates, 214–218
pageLoad method, 393, 394, 395, 401, 744. See also

document ready function
PagerStyle, 533
paging controls, 435. See also DataPager; ListView
Panel control, 118

exercise, 119–120
parameter list, 171, 468
Parameter value, 447
parameterized functions/subs, 170
parent method, 385, 387, 388, 389, 401
parse method, 361
Passport, Microsoft, 586, 617
:password, 381
passwordAttemptWindow, 601
passwordFormat, 600
PasswordRecovery, 596–599, 617

PasswordRecoveryText, 587
PasswordRecoveryUrl, 587
passwordStrengthRegularExpression, 601
PathDirection, 261
PathSeparator, 261
performance

tracing and, 694
View State and, 134–135, 136

permanent redirect, 263–264, 269, 270
permissions, 580

defined, 618
Modify permissions, 406, 718, 720, 722, 762

personalization. See also Profile
defined, 620, 653
tips for, 651

personalized content, 619. See also Profile
photo album. See Gig Pics section
PHP, 106, 128, 129, 132, 139, 346, 357
pipeline

control pipeline, 539
Integrated Pipeline mode, 717, 718, 730
Managed Pipeline Mode, 715
ManagedPipelineHandler, 722

PlaceHolder control, 118
Planet Wrox (sample site)

contact form (ContactForm.ascx)
animating, 392–396
creating, 301–303
extending, 307–310
flicker-free pages and, 341–344
sending e‑mail from, 323–328
watermark and, 386–390
Watermark plugin and, 397–400

deployment and. See deployment
features, 28
Gig Pics section, 28

building, 497–503
ListView control and, 505–526

home page, 28
CSS and, 79–84

Internet Explorer and, 48
Login page, 583–587
Management section, 437–442

blocking access to, 608–612
membership configuration, 601–603
My Profile page, 28, 29
NTFS settings for, 718–721
online running example, 29
source code, 29
tables for, 423–430
web site creation, 38–40

PlanetWroxConnectionString1, 445, 448, 481, 726, 773

502211bindex.indd 793 2/19/10 10:07:49 AM

794

PlanetWroxModel – properties

PlanetWroxModel, 483, 494, 509, 557, 571, 634,
638, 642

plugins (jQuery), 396–400, 402
Access Key Highlighter plugin, 561
Watermark plugin, 397–400

POST, 131, 137, 298, 332, 688
postback event handling phase, 209
postbacks, 20, 21, 109, 120, 125, 128, 131, 137, 738
PostBacks, Cross Page, 132
practical tips. See tips/suggestions
precedence, operator, 154
precompilation, 709, 710, 730
Predictable (ClientIDMode), 282
PreferredTheme, 228, 229, 230, 231, 232
PreInit, 209, 226, 231, 232, 540, 652, 737
Preserve keyword, 148
prev method, 385, 387, 388, 389, 401
Primary Key Table, 427, 498
primary keys, 422–426
primitive types, 143
privacy statement, 227
Private, 184, 191, 192
Professional ADO.NET 2, 555
Professional ASP.NET 2.0 Design: CSS, Themes, and

Master Pages, 86, 728
Professional ASP.NET 3.5 AJAX, 333, 338, 362, 728
Professional ASP.NET 3.5 Security, Membership, and

Role Management with C# and VB, 613
Professional ASP.NET 4 in C# and VB, 125, 126, 132,

351, 363, 436, 505, 555, 565, 566, 568, 576, 604,
672, 728

Professional CSS: Cascading Style Sheets for Web
Design, 2nd Edition, 728

Professional IIS 7, 728
Professional JavaScript for Web Developers, 2nd

Edition, 303
Professional LINQ, 728
Professional Microsoft SQL Server 2008

Administration, 764
Professional .NET 2.0 Generics, 151
Professional Search Engine Optimization with ASP.

NET: A Developer’s Guide to SEO, 575
Professional WCF Programming: .NET Development

with the Windows Communication Foundation, 37
Professional Web Parts and Custom Controls with ASP.

NET 2.0, 128
Profile (ASP.NET Profile), 619–653

anonymous identification and, 645–647, 653
configuring, 621–627
non-standard data types and, 623–624
other users and, 648–650
Reviews folder and, 636–641

simple profile properties, 621–622
storing genre preferences in, 632–636
storing user data in, 628–632
understanding, 620–621
using, 627–645
WAPs and, 621
WSPs and, 621

profile creation, 624–627
profile groups, 621, 622, 653
Profile provider, 582, 626, 627, 651, 653
ProfileCommon class, 626, 648, 650, 651
ProfileParameter, 447
programmatic caching, 568–570
programmatic redirection, 263–268

permanent, 263–264, 269, 270
Response.Redirect, 263–266, 269
Response.RedirectPermanent, 263–264, 269
server-side, 266–268, 270
Server.Transfer, 263, 266–268, 269
temporary, 264, 270

programming, 139–196. See also object oriented
programming

Beginning Microsoft Visual Basic 2010, 140
Beginning Microsoft Visual C# 2010, 140
tips for, 194

Programming Entity Framework Second Edition
(Lerman), 480, 565

‹ProgressTemplate›, 340
project templates, 35–37, 64
project types, 34–35, 64. See also Web Application

Projects; Web Site Projects
properties, 183–186. See also specific properties

automatic, 185, 285, 286, 623, 738
CSS, 75–76

shorthand versions, 77–78
defined, 196
encapsulation and, 184
EntityDataSource, 497
ListView control, 504
Login, 587–588
Menu control, 248–249
methods v., 186
read-only, 186
of server controls, 110–112
SiteMapPath control, 261
of styles, 531–532
TreeView, 257
UpdatePanel, 337–338
UpdateProgress, 340
of validation controls, 304–305
View State, 288–293, 296
write-only, 186

502211bindex.indd 794 2/19/10 10:07:50 AM

795

Properties Grid – Role Manager

Properties Grid, 18
Protected, 192
Prototype (JavaScript library), 367
provider model, 582, 618

membership provider, 582, 586, 587, 601, 603,
617, 618

Profile provider, 582, 626, 627, 651, 653
role provider, 582, 613

‹providers›, 599, 601, 603, 773, 774, 775
pseudo class selectors, 90, 256

:hover, 89, 90, 92, 254, 256
:visited, 89, 90, 92

Public, 171, 191, 192
Publish Web Site option, 706, 709–710, 729

Q
queries (LINQ)

anonymous types and, 493–496
data controls and, 496–526
operators, 487–491
syntax, 487–496

Query Designer, 411, 414, 416, 419, 420, 429
QueryStringParameter, 447

R
:radio, 381
RadioButtonList, 113
range variables, 487, 528
RangeValidator, 300, 305–306
ReadAllText (File class), 323
reading data, 408–417. See also CRUD
ReadOnly, 186, 443, 500, 540
read-only properties, 186
rearranging windows, 22–23
recreating database (deployment), 725–727
red green blue. See RGB value
redirects, 263–268

permanent, 263–264, 269, 270
Response.Redirect, 263–266, 269
Response.RedirectPermanent, 263–264, 269
server-side, 266–268, 270
Server.Transfer, 263, 266–268, 269
temporary, 264, 270

ref keyword, 172
refresh, hard, 222
registration, of user controls, 279–280
regular expressions, 330

Beginning Regular Expressions, 306
VWD and, 306

RegularExpressionValidator, 306
relational databases. See databases
relationships, between tables, 426–430, 432
relative URLs, 240–244, 269

root-based, 241
in server controls, 241–242

Release Properties dialog box, 720
RememberMeSet, 587
remote connections, SQL Server and, 760–763
remote site (deployment option), 706
removeClass, 382, 383
renaming. See naming
RenderCurrentNodeAsLink, 261
rendering phase, 209
RenderingMode, 249, 260
RenderMode property, 338
RenderOuterTable, 435
Repeater control, 433, 434, 459, 493, 495, 496, 503,

527, 530, 533, 572, 637, 639, 640, 745, 747
Replace method, 327, 330
request validation, 316
request/response relationship, 9
RequiredFieldValidator, 300

declaring, 300
using, 301–303

RequireEmail, 593
requiresQuestionAndAnswer, 600
requiresUniqueEmail, 600
:reset, 381
Resig, John, 368
Response.Redirect, 263–266, 269
Response.RedirectPermanent, 263–264, 269
response/request relationship, 9
retrieving/manipulating data, 407–421
reuse. See also master pages; skins; templates; themes;

user controls
functions and, 176
generics and, 150
subs and, 176

Review class, 480, 491, 570
Review table, 405, 411

joining data and, 414–417
for Planet Wrox, 423–430
selecting data and, 411–414

Reviews folder, 241, 254
All.aspx, 509, 568, 572, 573, 620, 636
AllByGenre.aspx, 247, 255, 493, 636, 639, 640, 652
Profile feature and, 636–641

RGB (red green blue) value, 76, 77
RIGHT OUTER JOIN, 415
Role Manager, 603–616, 618

configuring, 603–604
WSAT tool and, 604–608, 617

502211bindex.indd 795 2/19/10 10:07:50 AM

796

role provider – server controls

role provider, 582, 613
RoleGroups, 589
roles

IIS and, 604
IsUserInRole and, 613–616
programmatic checking of, 612–616
WSAT and, 604–608

root-based relative URLs, 241
RowDataBound, 545–549
RowStyle, 532, 533
rule sets (rules), 71, 102, 104
Runat attribute, 106, 110, 111, 126
runtime errors, 658
runtime files, 9, 686, 687

S
Safari, 48, 92, 300, 354, 517
sample database, 406–407, 418–421
sample web site. See Planet Wrox
Sandcastle, 181
Sanford, J., 86, 728
sbyte/SByte, 144, 735
Scriptaculous, 367
ScriptManager, 338–340, 364, 365

contact form and, 341–344
properties, 339–340
UpdatePanel and, 338
web services and, 351–352

ScriptManagerProxy, 334, 346, 352, 353, 354, 355,
358, 364, 365, 741

purpose of, 352
web services and, 352–358

Scripts property (ScriptManager control), 339
security, 579–618

authentication
defined, 580, 618
Forms authentication, 617, 717
SQL Server Authentication, 758, 759, 764–768
third-party, 617
Windows Authentication, 758–759, 768–770

authorization, 580–581, 618
authorization rules, 580
connection strings and, 446
identity and, 580
IIS and, 717–718
importance of, 616
introduction, 580–581
tips for, 616–617
tracing and, 694

SELECT, 408, 409, 410, 411, 412, 413, 414, 416, 418,
419, 420, 426, 431, 452

‹select›, 11
SELECT *, 408, 412, 416, 430, 452, 458
Select Case statement, 161–166
Select property (EntityDataSource), 497
SelectedIndexChanged, 209, 227, 228, 229, 544, 753
‹SelectedItemTemplate›, 503
SelectedRowStyle, 532
selecting data, 408, 411–414
selectors

class, 73–74, 90, 98, 104, 258, 281, 376, 378, 733
CSS, 71, 72–75, 104

class, 73–74, 90, 98, 104, 258, 281, 376,
378, 733

element, 104, 376, 378
grouping/combining, 74–75
ID, 73, 80, 87, 98, 281, 375, 378, 386, 733
universal, 73, 104, 375

element, 104, 376, 378
grouping/combining, 74–75, 376–377
ID, 73, 80, 87, 98, 281, 375, 378, 386, 733
jQuery, 375–378, 402
universal, 73, 104, 375

SelectParameters, 475
Select/select (keywords), 487
SendEmailMessage(), 168, 169, 171, 180
sending e‑mail (from web site), 317–322
server controls (AJAX), 333–346

ScriptManager, 338–340, 364, 365
contact form and, 341–344
properties, 339–340
UpdatePanel and, 338
web services and, 351–352

ScriptManagerProxy, 334, 346, 352, 353, 354, 355,
358, 364, 365, 741

purpose of, 352
web services and, 352–358

Timer control, 345–346, 364
UpdatePanel, 334–338, 364, 365

caveats, 338
contact form and, 341–344
flicker-free pages with, 334–338
properties, 337–338
ScriptManager and, 338

UpdateProgress, 340–344, 364, 365
contact form and, 341–344
properties, 340

server controls (ASP.NET), 10, 14–15, 105–137. See also
data controls

defining, in your pages, 110
introduction, 106–110
online information, 124
properties of, 110–112
relative URLs in, 241–242

502211bindex.indd 796 2/19/10 10:07:50 AM

797

server-side redirects – SQL Server membership provider

Standard, 113–127, 137
tips for, 135
types of, 113–128
View State and, 133
working with, 107–110

server-side redirects, 266–268, 270
server-side validation, 300, 311–328, 330

client-side validation v., 300
CustomValidator and, 311, 313, 314, 315
ValidationSummary and, 311, 312, 313

Server.Transfer, 263, 266–268, 269
Services property (ScriptManager), 340
SessionParameter, 447
Set block, 183
SetFocusOnError, 304
Shift+Alt+Letter, 560
Shift+Esc, 560
Shift+F11, 677, 683
shortcut keys. See keyboard shortcuts
shorthand versions (CSS properties), 77–78
short/Short (data types), 143
show(), 391
ShowExpandCollapse, 257
ShowLines, 257
ShowToolTips, 261
Sign up page, 583–587
signature, 171, 187, 188, 192, 360, 740
Silverlight 1.0 Web Site (template), 37
simple controls, 113
simple profile properties, 621–622
Single (data type), 143. See also float
Single (operator), 489–490
single item controls, 435
SingleOrDefault, 489–490
site wide exception handling, 667–673
SiteMapDataSource, 246, 248, 251, 252, 258, 260, 270,

435, 568
SiteMapPath control, 261–263, 269, 270

breadcrumb and, 261–263
properties, 261

site-wide registration, of user controls, 279–280
SkinID, 235, 236, 238, 736
skins, 232–236

Button control and, 234–235
creating, 233–234
disabling, 236
GridView and, 233, 236
named, 235–236, 238
styles/themes and, 535–539
TreeView and, 236

Skip (operator), 489
SkipWhile, 489
slideDown, 377, 378, 391, 393, 401, 743

slideToggle(), 391
slideUp, 378, 391, 393, 394, 395, 743
smallint, 422
Smart Tasks panel, 114–115, 137
SMTP server, 330
SmtpClient class, 317, 320, 329, 662
SmtpException, 660
Solution Explorer, 17
SortedAscendingCellStyle, 533
SortedAscendingHeaderStyle, 533
SortedDescendingCellStyle, 533
SortedDescendingHeaderStyle, 533
Source View, 18, 48, 733
Spaanjaars, Imar, 526, 604
‹span›, 12
SpecifiedPickupDirectory, 318, 321, 328, 594
Split View, 48, 54, 64, 70, 272, 699, 733
SQL (Structured Query Language)

data and
creating, 417
deleting, 418
filtering, 408–410
joining, 414–417
ordering, 410
reading, 408–417
retrieving/manipulating, 407
sample database and, 418–421
selecting, 408, 411–414
updating, 418
working with, 405–407

defined, 403, 405
SQL Server 2008

attaching databases to, 761–763
books

Beginning Microsoft SQL Server 2008
Administration, 764

Beginning Microsoft SQL Server 2008
Programming, 415

Professional Microsoft SQL Server 2008
Administration, 764

Books Online, 766, 769
configuration, 407, 757–775
connecting application to

using SQL Server Authentication, 764–768
using Windows Authentication, 768–770

data types in, 421–422
Express edition, 405, 757
remote connections enabled in, 760–763

SQL Server Authentication, 758, 759, 764–768. See also
Windows Authentication

SQL Server Management Studio. See Management
Studio

SQL Server membership provider, 582

502211bindex.indd 797 2/19/10 10:07:50 AM

798

SQL Server profile provider – System.Boolean

SQL Server profile provider, 582
SQL Server role provider, 582
SqlDataSource control, 436, 474

AccessDataSource v., 435
GridView and, 436–442
limitations of, 473

square brackets, 147, 171, 293, 347, 408, 442, 624
Src attribute, 276
SSL, 318, 320, 330, 594

EnableSsl property and, 320, 594, 595
SendingMail event and, 594, 595–596, 598
SmtpClient and, 320, 662

stack trace, 696
stale data, 566, 577
Standard controls, 113–126

container controls, 118–124, 137
HTML controls v., 126–127
list controls. See list controls
simple controls, 113

standard validation controls, 303–316
Start Page, 19
start phase, 209
startsWith, 361
state, 128–129. See also View State
state engine (ASP.NET), 128–135, 136
stateless, 128–129
statements, 151–170. See also decisions/conditions;

loops; operators
Static (ClientIDMode), 282
static methods, 358
static text, 10
StaticEnableDefaultPopOutImage, 248, 251
StepType, 122, 124
storing (in Profile feature)

genre preferences, 632–636
user data, 628–632

String.Format method, 327, 350, 749
string/String data type, 144
strong typing, 528. See also Entity Framework

allReviews and, 486
ArrayList and, 149
defined, 486
EF and, 528
EntityDataSource and, 502
JavaScript and, 362
ObjectDataSource and, 473
Picture object, 512
ProfileCommon and, 626
Review class, 480, 491, 570
Single/SingleOrDefault operators and, 489
type inference and, 528

Structured Query Language. See SQL

style attributes, 12, 60, 85, 99, 101, 104, 112, 235, 508,
523, 534, 743

Style Builder, 83, 87, 103
‹style› element, 73, 80, 87, 98, 281, 375, 378, 386, 733
Style Sheet toolbar, 87
style sheets

defined, 72
embedded, 84, 85–86, 104

exercise, 92–97
inline/external style sheets v., 85–86
‹style› element and, 73, 80, 87, 98, 281, 375,

378, 386, 733
external, 84, 85–86, 104, 112

attaching new style sheet to document, 90–92
creating new styles in style sheets, 87–90
inline/embedded style sheets v., 85–86
‹link› element and, 82, 84, 201, 221, 222,

240, 734
inline, 85–86, 104, 112

avoidance of, 112
embedded/external style sheets v., 85–86
exercise, 92–97

styles (ASP.NET), 530–539, 577
applying, 533–535
Auto Format feature and, 532–533
GridView and, 533–535
introduction, 531–535
properties of, 531–532
themes/skins and, 535–539

Styles dialog box, 98. See also Apply Styles window
StyleSheetTheme, 219, 220, 221, 222, 223, 231, 237,

250, 251, 277, 728, 736
styling, Menu control, 253–257
:submit, 381
subroutines (subs), 170–176

code reuse and, 176
functions v., 170
parameterized, 170
tips for, 194

subs. See subroutines
Substitute control, 125
suggestions. See tips/suggestions
Sum, 488–489
swallowing exceptions, 694
switches, 161–166
switching themes, 226–232
syntax

errors, 656–657
expression syntax, 699–700
jQuery syntax, 373–382
query syntax, 487–496

System namespace, 177, 178
System.Boolean, 143, 421, 622

502211bindex.indd 798 2/19/10 10:07:50 AM

799

System.Byte – tips/suggestions

System.Byte, 143, 283, 295, 422
System.Char, 144
System.Collections.Generic, 623, 624
System.DateTime, 143, 144, 145, 421, 622
System.Decimal, 143, 421
System.Double, 143, 177, 422
System.Int16, 143, 144, 422
System.Int32, 143, 422
System.Int64, 143, 422
System.IO namespace, 322, 519
System.Linq, 478, 479
System.Net.Mail namespace, 317, 319, 321, 329, 330,

594, 661, 667
System.Object, 144, 182, 189
System.SByte, 144
System.Single, 143
System.String, 144, 421, 422, 621, 622, 626
System.UInt16, 144
System.UInt32, 144
System.UInt64, 144
System.Web.Configuration, 700, 701
System.Web.UI, 177, 213
System.Web.UI.Page, 177, 178, 191, 207–208, 210, 211,

212, 215
System.Web.UI.WebControls, 177, 178, 531

T
TabIndex, 111
‹table›, 12
table control, 126
Table Designer, 423–426
Table menu, 57–60, 62
TableDemo.aspx, 57, 61, 62
tables

database, 421–430, 432
defined, 404
for Planet Wrox, 423–430
relationships between, 426–430, 432

HTML, 57–60
TagName attribute, 276
TagPrefix attribute, 276
tags, 10–12, 31
Take (operator), 489
TakeWhile, 489
‹td›, 12
TemplateField, 453
templates. See also base page

ListView templates, 503–504
customizing, 515–520

page templates, 214–218

project/web site templates, 35–37, 64
temporary redirect, 264, 270
terminology, OO programming, 182–194
:text, 381
text / ntext, 422
Text property (validation controls), 304, 305, 328
‹textarea›, 11
TextBox control

CompareValidator and, 307
exercise, 107–109
inline styles and, 112
state engine and, 128

themes, 218–232, 238
applying, 220–223
creating, 219
defined, 218
extending, 224–226
images added to, 224–226
skins and, 232–236
StyleSheetTheme, 219, 220, 221, 222, 223, 231, 237,

250, 251, 277, 728, 736
styles/skins and, 535–539
switching, 226–232
Theme property, 219, 237, 260, 737
types of, 219

Then (keyword), 160
third-party authentication, 617
this (keyword), 214, 682
Throw ex, 694, 695
Timer control, 345–346, 364
tinyint, 422
tips/suggestions

ASP.NET AJAX, 363
comments, 194
consistent pages, 236
CSS, 102
data, 575–576
data tips (tooltip windows), 676, 678, 683, 696
databases, 430
debugging, 694–695
deployment checklist, 727–728
displaying/updating data, 473
Entity Framework, 526–527
functions, 194
jQuery, 400
LINQ, 526–527
navigation, 268
personalization, 651
programming, 194
security, 616–617
SEO, 575

502211bindex.indd 799 2/19/10 10:07:50 AM

800

tips/suggestions – using keyword

server controls, 135
subrutines, 194
user controls, 294
validation of user input, 328
VWD, 29–30
Web Forms, 62–63

‹title›, 11
toggle(), 391
toggleClass, 382, 383
toolbars, 16–17

customizing, 25–26
Toolbox, 17

modifying, 23–25
resetting, 27

ToolTip, 111
ToString(), 144–145
‹tr›, 12
tracing, 687–694, 696

data added to, 691–693
with individual pages, 688–689
performance and, 694
security and, 694
for web site, 689–691

Transact SQL (T-SQL), 406. See also SQL
TreeView control, 105, 127, 257–261, 269, 270

navigation system and, 258–261
properties, 257
skins and, 236

Triggers property, 337
trim, 361
trimEnd, 361
trimStart, 361
troubleshooting web server errors, 721–723
Try Catch Finally blocks, 658, 660, 662, 663, 664, 665,

666, 694, 754
TryCast, 146, 546, 570, 574
T-SQL (Transact SQL), 406. See also SQL
type inference, 528
Type property

CompareValidator, 306
RangeValidator, 305

type safe, 150
Type selector, 73

U
‹u›, 11
uint/UInteger, 144
‹ul›, 12
ulong/ULong, 144

Uniform Resource Locators. See URLs
uniqueidentifier, 422
universal selector, 73, 104, 375
unload phase, 209
unnamed instance, 758
unordered lists, 60, 249, 434
UPDATE, 408, 417, 418, 419, 420, 421, 431, 440, 442,

462, 562, 744, 745
UpdateMode property, 338
UpdatePanel, 334–338, 364, 365. See also

ScriptManager
caveats, 338
contact form and, 341–344
flicker-free pages with, 334–338
properties, 337–338
ScriptManager and, 338

UpdateParameters, 475
UpdateProgress, 340–344, 364, 365

contact form and, 341–344
properties, 340

updating data, 418. See also CRUD; displaying/updating
data

DetailsView and, 459–473
GridView and, 437–442
UPDATE and, 408, 417, 418, 419, 420, 421, 431, 440,

442, 462, 562, 744, 745
upper bound, 147, 148, 410
URLs (Uniform Resource Locators), 240–244, 269
user controls (ASP.NET), 271–296

ASPX pages v., 271, 272
caveats, 280–282
content page and, 276–279
creating, 272–276
encapsulation and, 272, 295
introduction, 272–282
logic added to, 282–294
master page and, 276–279
site-wide registration of, 279–280
tips for, 294

User Instance, 445, 585, 722, 746, 761, 762
users. See also security

feedback to, 340–344
Profile feature and, 628–632, 648–650
user input. See also validation

importance of, 298–299, 329
never trust user input, 299
validation of, 297–330

WSAT and, 604–608
ushort/UShort, 144
using keyword, 178

tips/suggestions (continued)

502211bindex.indd 800 2/19/10 10:07:50 AM

801

ValidateRequest attribute – VWD

V
ValidateRequest attribute, 316
validation (of user input), 297–330

client-side, 300, 311–316, 330
CustomValidator and, 311, 313, 314, 315
ValidationSummary and, 311, 312, 313
warning on, 300

request validation, 316
server-side, 300, 311–328, 330

client-side validation v., 300
CustomValidator and, 311, 313, 314, 315
ValidationSummary and, 311, 312, 313

tips for, 328
validation controls, 127, 299–316, 330

benefit of, 329
CompareValidator, 306–307

properties, 306–307
TextBox controls and, 307

contact form and, 307–310
CustomValidator, 303, 311, 313, 314, 315
ErrorMessage property, 304, 305, 328
properties of, 304–305
RangeValidator, 300, 305–306

properties, 305
RegularExpressionValidator, 306
RequiredFieldValidator, 300

declaring, 300
using, 301–303

standard, 303–316
Text property, 304, 305, 328
using, 300–303
ValidationSummary, 299

ErrorMessage and, 305
Text property and, 305
validation methods and, 311, 312, 313

validation methods, 311, 312, 313
validation phase, 209
ValidationGroup, 304
ValidationSummary, 299

ErrorMessage and, 305
Text property and, 305
validation methods and, 311, 312, 313

value parameter, 184, 185
values (CSS), 76–77
ValueToCompare, 307
var keyword, 486, 491
varchar, 422
variables

backing variables, 183, 184, 185, 186, 189, 191, 738
data types and, 141–146
declaring, 141–142
names for, 142, 194

range variables, 528
ranges for, 143–144

VerticalAlign, 532
Vieira, Robert, 415
View State, 133, 137

considerations, 294
performance and, 134–135, 136
properties, 288–293, 296
server controls and, 133
turning off, 134–135, 137
Wizard control and, 124

views (Web Forms), 47–49. See also specific views
_VIEWSTATE, 132, 133, 134, 137, 292, 336, 734
ViewState collection, 296
ViewStateMode, 134–135
virtual path, 327, 498, 691
Virtual Path property, 224, 242–244
visibility (CSS property), 76
Visible (server control property), 111
VisibleWhenLoggedIn, 587
:visited, 89, 90, 92
Visual Aids, 48, 58, 277
Visual Studio 2005, 2, 34, 35
Visual Studio 2010, 2, 3, 4, 15, 18, 31, 41, 217, 436,

684. See also Visual Web Developer 2010
Visual Web Developer 2010 (VWD), 2–5, 31

CSS in, 87–101
downloading, 3
IDE, 15–27, 31

customizing, 22–27, 30
Database Explorer, 18
developer profiles, 16
Document Window, 18–19
main menu, 16
Properties Grid, 18
restoring/resetting, 26–27
Solution Explorer, 17
Start Page, 19
toolbar area, 16–17
Toolbox, 17

installing (Express version), 3–5
Options dialog box, 27, 30, 233, 234
Table Designer, 423–426
tips for, 29–30
Visual Studio 2010 and, 2, 3, 4, 15, 18, 41, 217,

436, 684
web service creation, 347–351
web site creation, 5–9

Vogel, Peter, 128
vsdoc file, 370, 372, 373, 393
VWD. See Visual Web Developer 2010

502211bindex.indd 801 2/19/10 10:07:50 AM

802

W3C – Wrox

W
W3C (World Wide Web Consortium), 12, 14, 68
WAPs. See Web Application Projects
Watch Window, 678–684
Watermark plugin, 397–400
watermarking, 386–390, 402
Watt, Andrew, 306
WCF Service (template), 37
Web Application Projects (WAPs), 35

App_Code folder and, 173
File ÞNew Project and, 35, 38
Profile feature and, 621
web packaging and, 706
WSPs v., 706

web applications
application services and, 581–582
configuring, 599–603
roles and, 608–612

web files, 41–43
Web Forms (.aspx files), 47–63

Code Behind and, 10, 49–54, 62, 64, 68, 179, 200
inline code and, 49–54, 62, 64, 68, 179, 200
tips for, 62–63
views on, 47–49

web packaging, 706
web pages. See ASPX pages; consistency; page life cycle
web server errors, 721–723
web services, 346–358, 365

configuring, 351
creating, 347–351
defined, 346–347
external, 351
“Hello World,” 348–351
ScriptManager and, 351–352
ScriptManagerProxy and, 352–358
using, 351–358

Web Site Administration Tool (WSAT), 604–608, 617
Web Site Projects (WSPs), 34–35

App-Code folder and, 173
File ÞNew Web Site and, 19, 34, 35, 38, 42, 242
Profile feature and, 621
WAPs v., 706

web site templates, 35–37, 64
web sites (ASP.NET). See also Planet Wrox

creation, 34–40
deployment. See deployment
files/file types, 40–47. See also Web Forms

adding existing files, 44–47
code files, 43
data files, 43–44

organizing, 46
special file types, 47
web files, 41–43

first, 5–9
opening, 39–40
Planet Wrox, 38–40
tracing for, 689–691

web-based calculator. See calculator
web.config file

connection strings stored in, 445–446, 473
deployment and, 699, 701–705
registering user controls in, 279–280

WebConfigurationManager class, 700–705
WebParts, 128
Web.sitemap, 246–248
Where clause (LINQ), 488
WHERE clause (SQL), 408–410, 431
Where property (EntityDataSource), 497
While loop, 168–170
width

CSS property, 76
server control property, 111, 532

windows. See debugging windows; specific windows
Windows Authentication, 758–759, 768–770

IIS and, 768–770
SQL Server Authentication v., 759

wiring syntax, 193
Wizard control, 118, 119, 120–121

exercise, 121–124
state engine and, 128
View State and, 124

World Wide Web Consortium (W3C), 12, 14, 68
Wrap, 532
WriteAllText (File class), 323
WriteOnly, 186
write-only properties, 186
Wrox

ASP.NET 2.0 Instant Results, 526, 604
Beginning CSS: Cascading Style Sheets for Web

Design, Second Edition, 76, 86
Beginning Microsoft SQL Server 2008

Administration, 764
Beginning Microsoft SQL Server 2008

Programming, 415
Beginning Microsoft Visual Basic 2010, 140
Beginning Microsoft Visual C# 2010, 140
Beginning Regular Expressions, 306
Beginning Web Programming with HTML, XHTML,

and CSS, 2nd Edition, 14
Professional ADO.NET 2, 555

502211bindex.indd 802 2/19/10 10:07:51 AM

803

WSAT – zero-based

Professional ASP.NET 2.0 Design: CSS, Themes, and
Master Pages, 86, 728

Professional ASP.NET 3.5 AJAX, 333, 338, 362, 728
Professional ASP.NET 3.5 Security, Membership, and

Role Management with C# and VB, 613
Professional ASP.NET 4 in C# and VB, 125, 126,

132, 351, 363, 436, 505, 555, 565, 566, 568, 576,
604, 672, 728

Professional CSS: Cascading Style Sheets for Web
Design, 2nd Edition, 728

Professional IIS 7, 728
Professional JavaScript for Web Developers, 2nd

Edition, 303
Professional LINQ, 728
Professional Microsoft SQL Server 2008

Administration, 764
Professional .NET 2.0 Generics, 151
Professional Search Engine Optimization with ASP.

NET: A Developer’s Guide to SEO, 575
Professional WCF Programming: .NET Development

with the Windows Communication
Foundation, 37

Professional Web Parts and Custom Controls with
ASP.NET 2.0, 128

Programming Entity Framework Second Edition, 565
WSAT (Web Site Administration Tool), 604–608, 617

X
XHTML, 13–14, 15, 31. See also HTML

Beginning Web Programming with HTML, XHTML,
and CSS, 2nd Edition, 14

defined, 13–14, 31
HTML v., 13–14, 731
XML control and, 126

XML (eXtensible Markup Language). See also Ajax
comments, 180–181
LINQ to XML and, 479
XML control, 126

XmlDataSource, 435

Y
Yellow Screen of Death, 554, 658, 662, 670, 695,

750, 755
York, Richard, 76

Z
Zakas, Nicholas C., 303
zero-based

arrays, 147, 167
index, 114, 147
string indexing, 185

502211bindex.indd 803 2/19/10 10:07:51 AM

Programmer to ProgrammerTM

Take your library
wherever you go.

Now you can access complete Wrox books online, wherever
you happen to be! Every diagram, description, screen capture,
and code sample is available with your subscription to the
Wrox Reference Library. For answers when and where you need
them, go to wrox.books24x7.com and subscribe today!

• ASP.NET
• C#/C++
• Database
• Java
• Mac
• Microsoft Office
• .NET

• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

49099_wrox_bob_k_as.indd 1 11/10/09 9:12:15 AM
502211badvert.indd 804 2/19/10 10:09:00 AM

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Beginning Visual C# 2010
ISBN: 978-0-470-50226-6
Using this book, you will first cover the fundamentals such as variables, flow control, and object-oriented programming and
gradually build your skills for Web and Windows programming, Windows forms, and data access. Step-by-step directions walk
you through processes and invite you to “Try it Out,” at every stage. By the end, you’ll be able to write useful programming code
following the steps you’ve learned in this thorough, practical book. If you’ve always wanted to master Visual C# programming, this
book is the perfect one-stop resource.

Professional ASP.NET 4: in C# and VB
ISBN: 978-0-470-50220-4
Written by three highly recognized and regarded ASP.NET experts, this book provides all-encompassing coverage on ASP.NET 4 and
offers a unique approach of featuring examples in both C# and VB, as is the incomparable coverage of core ASP.NET. After a
fast-paced refresher on essentials such as server controls, the book delves into expert coverage of all the latest capabilities of
ASP.NET 4. You’ll learn site navigation, personalization, membership, role management, security, and more.

Professional C# 4 and .NET 4
ISBN: 978-0-470-50225-9
After a quick refresher on C# basics, the author dream team moves on to provide you with details of language and
framework with C#, working in Visual Studio 2010 with C#, and more. With this book, you’ll quickly get up to date on
all the newest capabilities of C# 4.

Professional Visual Basic 2010 and .NET 4
ISBN: 978-0-470-50224-2
If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this
is your guide. You’ll explore all the new features of Visual Basic 2010 as well as all the essential functions that you need, including
.NET features such as LINQ to SQL, LINQ to XML, WCF, and more. Plus, you’ll examine exception handling and debugging, Visual
Studio features, and ASP.NET web programming.

Professional Visual Studio 2010
ISBN: 978-0-470-54865-3
Written by an author team of veteran programmers and developers, this book gets you quickly up to speed on what you can expect from
Visual Studio 2010. Packed with helpful examples, this comprehensive guide examines the features of Visual Studio 2010, and walks you
through every facet of the Integrated Development Environment (IDE), from common tasks and functions to its powerful tools.

Visual Basic 2010 Programmer’s Reference
ISBN: 978-0-470-49983-2
Visual Basic 2010s Programmer’s Reference is a language tutorial and a reference guide to the 2010 release of Visual Basic.
The tutorial provides basic material suitable for beginners but also includes in-depth content for more advanced developers.

Visual Studio 2010 and .NET 4 Six-in-One
ISBN: 978-0-470-49948-1
This comprehensive resource offers a single resource for all you need to know to get productive with .NET 4. It reviews all the important
features of .NET 4, including .NET charting and ASP.NET charting, ASP.NET dynamic data and jQuery, and F#. The coverage is divided
into six distinctive parts for easy navigation and offers a practical approach and complete examples.

WPF Programmer’s Reference: Windows Presentation Foundation with C# 2010 and .NET 4
ISBN: 978-0-470-47722-9
Written by a leading expert on Microsoft graphics programming, this richly illustrated book provides an introduction to WPF
development and explains fundamental WPF concepts. It is packed with helpful examples and progresses through a range of topics
that gradually increase in their complexity.

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Beginning

ASP.NET 4
in C# and VB

Imar Spaanjaars

Spaanjaars

 $44.99 USA
 $53.99 CANWeb Development/ASP.NET

Build rich web sites with
the latest version of ASP.NET

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters, and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

ASP.NET is the part of the .NET Framework that enables you to
build rich, dynamic web sites. The latest version—ASP.NET 4—boasts
numerous improvements to the previous iteration, including Web
Forms enhancements and jQuery support. This step-by-step book
walks you through building rich web sites with ASP.NET 4 and is
packed with in-depth examples in both C# and VB. With hands-on
exercises that take you right into the action, you’ll learn how to build web
sites firsthand while you get a good look at what goes on behind
the scenes when you view an ASP.NET 4 page in your browser.

Beginning ASP.NET 4:

• Demonstrates how to build ASP.NET 4 web pages

• Explains adding features with pre-built server controls

• Reviews working with the development tools to create ASP.NET web sites

• Shares techniques for creating consistent-looking web sites

• Teaches you how to implement jQuery and AJAX techniques in your
web sites

• Shows you how to work with databases and the Microsoft® ADO.NET
Entity Framework

• Addresses securing and personalizing your site

• Investigates exception handling, debugging, and tracing pages

Imar Spaanjaars is a Microsoft ASP.NET MVP and runs his own company called
De Vier Koeden in the Netherlands, specializing in Internet and intranet applications
built with Microsoft technologies like ASP.NET 4. He is the author or coauthor of
several books, including ASP.NET 2.0 Instant Results and Beginning ASP.NET 3.5
in C# and VB, and is one of the top contributors to the Wrox Community
Forum at p2p.wrox.com.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

BeginningA
SP.N

ET 4

in C# and VB

Foreword by Vishal R. Joshi, Lead Program Manager, Microsoft Web Platform & Tools

	Beginning ASP.NET 4: in C# and VB
	About the Author
	Contents
	Foreword
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Try It Out Conventions
	How It Works
	Source Code
	Errata
	p2p. wrox. com

	Chapter 1: Getting Started with ASP.NET 4
	Microsoft Visual Web Developer
	Creating Your First ASP.NET 4 Web Site
	An Introduction to ASP.NET 4
	A Tour of the IDE
	Customizing the IDE
	The Sample Application
	Practical Tips on Visual Web Developer
	Summary

	Chapter 2: Building an ASP.NET Web Site
	Creating Web Sites with VWD 2010
	Working with Files in Your Web Site
	Working with Web Forms
	Practical Tips on Working with Web Forms
	Summary

	Chapter 3: Designing Your Web Pages
	Why Do You Need CSS?
	An Introduction to CSS
	Working with CSS in Visual Web Developer
	Practical Tips on Working with CSS
	Summary

	Chapter 4: Working with ASP.NET Server Controls
	Introduction to Server Controls
	A Closer Look at ASP.NET Server Controls
	Types of Controls
	The ASP.NET State Engine
	Practical Tips on Working with Controls
	Summary

	Chapter 5: Programming Your ASP.NET Web Pages
	Introduction to Programming
	Data Types and Variables
	Statements
	Organizing Code
	Object Orientation Basics
	Practical Tips on Programming
	Summary

	Chapter 6: Creating Consistent Looking Web Sites
	Consistent Page Layout with Master Pages
	Using a Centralized Base Page
	Themes
	Skins
	Practical Tips on Creating Consistent Pages
	Summary

	Chapter 7: Navigation
	Different Ways to Move Around Your Site
	Using the Navigation Controls
	Programmatic Redirection
	Practical Tips on Navigation
	Summary

	Chapter 8: User Controls
	Introduction to User Controls
	Adding Logic to Your User Controls
	Practical Tips on User Controls
	Summary

	Chapter 9: Validating User Input
	Gathering Data from the User
	Processing Data at the Server
	Practical Tips on Validating Data
	Summary

	Chapter 10: ASP.NET AJAX
	Introducing AJAX
	Using ASP.NET AJAX in Your Projects
	Using Web Services and Page Methods in AJAX Web Sites
	Practical AJAX Tips
	Summary

	Chapter 11: jQuery
	An Introduction to jQuery
	jQuery Syntax
	Modifying the DOM with jQuery
	Effects with jQuery
	jQuery and Extensibility
	Practical Tips on jQuery
	Summary

	Chapter 12: Introducing Databases
	What Is a Database?
	Different Kinds of Relational Databases
	Using SQL to Work with Database Data
	Retrieving and Manipulating Data with SQL
	Creating Your Own Tables
	Practical Database Tips
	Summary

	Chapter 13: Displaying and Updating Data
	Data Controls
	Data Source and Data-bound Controls Working Together
	Customizing the Appearance of the Data Controls
	Updating and Inserting Data
	Practical Tips for Displaying and Updating Data
	Summary

	Chapter 14: LINQ and the ADO.NET Entity Framework
	Introducing LINQ
	Introducing the ADO.NET Entity Framework
	Mapping Your Data Model to an Object Model
	Introducing Query Syntax
	Using Server Controls with LINQ Queries
	Practical LINQ and ADO.NET Entity Framework Tips
	Summary

	Chapter 15: Working with Data — Advanced Topics
	Formatting Your Controls Using Styles
	Handling Events
	Hand-Coding Data Access Code
	Caching
	Practical Data Tips
	Summary

	Chapter 16: Security in Your ASP.NET 4 Web Site
	Introducing Security
	Introducing the Login Controls
	The Role Manager
	Practical Security Tips
	Summary

	Chapter 17: Personalizing Web Sites
	Understanding Profile
	Other Ways of Dealing with Profile
	Practical Personalization Tips
	Summary

	Chapter 18: Exception Handling, Debugging, and Tracing
	Exception Handling
	The Basics of Debugging
	Tools Support for Debugging
	Debugging Client-Side Script
	Tracing Your ASP.NET Web Pages
	Practical Debugging Tips
	Summary

	Chapter 19: Deploying Your Web Site
	Preparing Your Web Site for Deployment
	Copying Your Web Site
	Running Your Site under IIS
	Moving Data to a Remote Server
	The Deployment Checklist
	What’s Next
	Summary

	Appendix A: Exercise Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18

	Appendix B: Configuring SQL Server 2008
	Configuring SQL Server 2008
	Configuring Application Services

	Index

