O'REILLY ' Rk S

Programming C#, 2"! Edition

Jesse Liberty
Publisher: O'Reilly
Second Edition February 2002

ISBN: 0-596-00309-9, 648 pages

The first part of Programming C#, 2nd Edition introduces C# fundamentals, then goes on to
explain the development of desktop and Internet applications, including Windows Forms,
ADO.NET, ASP.NET (including Web Forms), and Web Services. Next, this book gets to the
heart of the .NET Framework, focusing on attributes and reflection, remoting, threads and
synchronization, streams, and finally, it illustrates how to interoperate with COM objects.

Table of Contents

Preface e e e 1
About This BoOK i ittt ittt e e e e e 1
How the Book Is Organizedttt nenennennnnn 1
Who This Book Is Fort e et et eeee e 4
C# Versus Visual Basic NET ittt ieennn 4
CHVErsuS Java . .. oottt ittt it e et e e e e 4
CH Versus Gt ot e e e it e ettt e e e 5
Conventions Used in This Book 5
N0 0] 070) o R 5
We'd Like to Hear from You ittt it it eeeeenns 6
Acknowledgments e e e e e e 7

I: The C# Languagettt tenneeenneeennenennenns 8

1. C# and the NET Framework 9
1.1 The NET Platformttt ittt ettt et eeeeeennns 9
1.2 The NET Frameworkttt tiennnn. 10
1.3 Compilationand the MSIL i ittt 11
1A The CHLANGUAZE . . v o vttt et e ettt et e et et e e eeeeeeeeeeneennens 12

2. Getting Started: "Hello World" 14
2.1 Classes, Objects, and Types . .« o v oot it i ittt ettt eeeeennns 14
2.2 Developing "Hello World" i i i e, 20
2.3 Using the Visual Studio .NET Debugger0uitieenennn.. 23

3. C# Language Fundamentals, 26
0 R0 1 R 26
3.2 Variables and Constantsottt ittt it e e e 30
3.3 EXPIESSIONS & v v v vttt e et ettt e et et e et et 36
3.4 WhiteSPaCe . & v v v vttt ittt e et et et e e et e eeeeeeeeeeeeenns 36
35 Statementso e e e e e e e et 37
3.0 OPEIatOrS & v v v vttt e ittt e e ettt et e 51
3.7 INAMESPACES « ¢ v v e v e e ettt e e et e e et e ea e e e te e 59
3.8 Preprocessor DIreCtives . o v v v vt v ittt et e e e e e e e e e e 60

4.Classesand Objectsttt initenneeenneeennenns 64
4.1 Defining Classes . .. oot v it ittt ettt et e e ettt eeeeennennns 64
4.2 Creating ObJeCtS .« v v v v vttt it e et e et e e e e et 69
4.3 Using Static MemDbeTS ot vttt it ettt et et et e e eeeeeeeenns 74
4.4 Destroying ObJeCtS . v v v v v vttt it e et et e et et 78
4.5 Passing Parameterst i ittt ittt e e et 81
4.6 Overloading Methods and Constructorsuiieeneenenn.. 86
4.7 Encapsulating Data with Propertieso, 88
48 Readonly Fieldsottt ettt et e eeeeenns 91

5. Inheritance and Polymorphism L., 93
5.1 Specialization and Generalizationttt 93
52 Inheritanceot it ittt e e e e et et 95
53 Polymorphismttt e e e e e et 99
5.4 ADStract Classes . v v v v vt ittt ettt et e et e et 104
5.5 The Root of all Classes: Object oo v it ittt it it et e eeeeenn 108
5.6 Boxing and UnboXing TYPes . . . v v v v vttt ittt ettt et et e eeeeeeennn 109

5.7 Nesting Classes . v oot v ittt ettt e et et e eee e eeeeeeeeneenns 111

6. Operator Overloading it iiennennnnn 114

6.1 Using the operator Keyword 114
6.2 Supporting Other NET Languages oot i ittt ittt it eeeeeennnn 115
6.3 Creating Useful Operatorsottt iiittenneeenneeennennn 115
6.4 Logical Pairsttt e e e e e e e 115
6.5 The Equals Operator v ot ittt ittt ittt ettt e eeeeeeeenennn 115
6.6 Conversion OPETatorS . . . v v v v et vttt et et e e e et teeaeeeeneseeneens 116
T SHUCES . .o e e e e e e 123
7.1 Defining Structs . ..o v vttt ittt et e e e e e et 123
7.2 Creating SIIUCES & v v v v vttt e ettt e et e ettt e et eeeaeeeeneseeneens 125
8. Interfaces e 130
8.1 Implementing an Interfacettt ennennn 130
8.2 Accessing Interface Methodsttt 138
8.3 Overriding Interface Implementationsttt nne... 143
8.4 Explicit Interface Implementation0t iene... 147
9. Arrays, Indexers, and Collections 156
LT Ny £ 156
9.2 The foreach Statement ittt ittt e e 160
0.3 INdeXers . o oo v ittt it e e e e e e e et 173
9.4 Collection Interfaceso vttt ittt it ittt eeeeeeennnnn 181
0.5 Array ListS . v v v ittt ittt i e e e e e e e et e e 186
0.0 QUEUES .« v vttt ittt ettt et e et e et e e e 196
0.7 SHACKS i it i e e e e et e 198
0.8 DICLIONAIIES . & v v o vt et ettt et e e e e e e et e et ettt 201
10. Strings and Regular Expressions 208
TO.1 SHINES ottt ettt e e e et e e et e ettt e ettt 208
10.2 Regular EXpPressions . .. cvv v e vt n et et eeeeeeeeeeneeneenennens 222
11. Handling Exceptionsttt tenneeennnns 233
11.1 Throwing and Catching Exceptionsttt 233
11.2 EXCeption ObJectS « v v v v vttt ittt e ettt ettt e eeeeeeeeneanens 242
11.3 Custom EXCeptionso v i ittt ittt ittt ettt e eeeeennns 245
11.4 Rethrowing EXCeptions iiitiiiitintteeeeenneeennnns 247
12. Delegates and Events0ttt enneeennnns 251
121 Delegates . .o v vttt ittt et e e e e e e et e e 251
0 A L 270
II: Programming with C# ittt 279
13. Building Windows Applications 280
13.1 Creating a Simple Windows Form 281
13.2 Creating a Windows Form Applicationot eneeen... 292
13.3 XML Documentation COMmMENtSso v vt v v vt v et eeeeeeneeennnns 314

13.4 Deploying an Applicationttt ittt ettt 316

14. Accessing Data with ADO.NET i, 326

14.1 Relational Databases and SQL ittt it it e 326
14.2 The ADO.NET Object Model00iiiiiiiiiininnennennnn. 329
14.3 Getting Started with ADO.NET ittt it i e 331
14.4 Using OLE DB Managed Providerscuitiieenennennnn. 335
14.5 Working with Data-Bound Controlst ... 337
14.6 Changing Database Recordsciitiiiiiiinnennennnn. 348
147 ADONET and XML oottt ittt et e ettt eeeaen 363
15. Programming Web Applicationswith Web Forms 364
15.1 Understanding Web Formsttt inennnn. 364
152 CreatingaWeb Form ittt it it eeeeen 367
153 Adding Controls ittt e e e e e e e 370
154 Data Bindingttt ettt 372
15.5 Responding to Postback Eventst iienenn... 380
156 ASPNET and CHot ittt e e e e e et eeeeaenn 381
16. Programming Web Services i, 382
16.1 SOAP, WSDL, and DiSCOVETY . « v v v v vttt et ettt et e e eeeeeeennnns 382
16.2 Building a Web Serviceo i i ittt ittt ettt 383
16.3 Creating the ProXyttt ittt ittt eieeeeennns 389
III: Introduction to Web Services it iiiiennnnn. 394
17. Assemblies and Versioning i, 395
0 S S 1< 395
Y (< - T - - 395
17.3 Security Boundary ittt ittt et 395
L7 4 VerSIONING « v v vt ittt ettt e ettt e ettt e eeeneeeeneeeaeeeennns 396
I7.5 Manifests . .o v vt ittt ittt e e e ettt e 396
17.6 Multi-Module Assembliest iitnn e teeeeneenennennnns 398
17.7 Private Assemblies u v vt i ittt ettt ittt et 406
17.8 Shared Assemblies v vttt ittt et e et 406
18. Attributes and Reflection 412
R N 3 9 o] 412
18.2 Intrinsic Atributes v v ittt ittt e i e e e et 412
18.3 Custom AHIIDULES . . v v v vttt ittt e et e e ettt e e 414
184 Reflectiont i ittt i ettt ettt et 418
18.5 Reflection Emitottt it ittt ieeeeennns 428
19. Marshaling and Remoting i iiiennn.. 451
19.1 Application Domainso vttt ittt ettt e et e 452
20 1) 411« 461
193 ReMOtING . v v v ittt ittt ettt e et ettt ettt ettt 463
20. Threads and Synchronization 0. u... 473
201 Threads . .o oottt et ettt et e et e et e et et e e e 473
20.2 Synchronizationttt int et nneteeneeeneeeeneeeennns 481

20.3 Race Conditions and Deadlocks v v vttt ittt e e e e e e e 491

225 IR 5 <Y1 1 1 1= 493

21.1 Files and Directorieso v v vt vttt ittt e et e e e eeeeeeennnns 493
21.2 Reading and Writing Datattt enennennnnn 503
213 Asynchronous I/Oo ittt e e e e e 509
214 Network /O . . oo e e e e e e e e 514
21.5 Web Streams . . .o v ittt et e e e e e e e e e 531
21.6 Serialization . . . vt vttt it e et e e e e ettt 534
21.7 Isolated StOrageo v it vttt ittt e et e e et e 542
22. Programming .NET and COM it tenneennnn 545
22.1 Importing ActiveX Controlsot ii ittt ittt 545
22.2 Importing COM COMPONENLS . o v v v v vt v e e e et e e et e eeeeeeneeennss 552
22.3 Exporting NET Componentsc.ouuiiieeeneeennneennnns 560
224 P/INVOKE . v ittt e e e e e e e ettt e e 562
22 5 POINEETS v vttt et e e e e e e e e e e e e e et 565
GloSSary . .. e e e e e e e e e 570

Programming C#, 2nd Edition

Preface

Every 10 years or so a new approach to programming hits like a tsunami. In the early 1980s,
the new technologies were Unix, which could be run on a desktop, and a powerful new
language called C, developed by AT&T. The early 90s brought Windows and C++. Each of
these developments represented a sea change in the way you approached programming. Now,
NET and C# are the next wave, and this book is intended to help you ride it.

Microsoft has 'bet the company' on .NET. When a company of their size and influence spends
billions of dollars and reorganizes its entire corporate structure to support a new platform, it is
reasonable for programmers to take notice. It turns out that .NET represents a major change in
the way you'll think about programming. It is, in short, a new development platform designed
to facilitate object-oriented Internet development. The programming language of choice for
this object-oriented Internet-centric platform is C#, which builds on the lessons learned from
C (high performance), C++ (object-oriented structure), Java (garbage collected, high
security), and Visual Basic (rapid development) to create a new language ideally suited for
developing component-based n-tier distributed web applications.

About This Book

This book is a tutorial, both on C# and on writing .NET applications with C#. If you are
already proficient in a programming language, you may be able to skim a number of the early
chapters, but be sure to read through Chapter 1, which provides an overview of the language
and the .NET platform. If you are new to programming, you'll want to read the book as the
King of Hearts instructed the White Rabbit: "Begin at the beginning, and go on till you come
to the end: then stop.'

How the Book Is Organized

Part I focuses on the details of the language. Part II details how to write .NET programs, and
Part III describes how to use C# with the NET Common Language Runtime library.

Part |, The C# Language
Chapter 1, introduces you to the C# language and the .NET platform.

Chapter 2 demonstrates a simple program to provide a context for what follows, and
introduces you to the Visual Studio IDE and a number of C# language concepts.

Chapter 3, presents the basics of the language, from built-in datatypes to keywords.
Classes define new types and allow the programmer to extend the language so that you can
better model the problem you're trying to solve. Chapter 4, explains the components that form

the heart and soul of C#.

Classes can be complex representations and abstractions of things in the real world.
Chapter 5, discusses how classes relate and interact.

! Alice's Adventures in Wonderland by Lewis Carroll.

Programming C#, 2nd Edition

Chapter 6, teaches you how to add operators to your user-defined types.

Chapter 7 and Chapter 8 introduce Structs and Interfaces, respectively, both close cousins to
classes. Structs are lightweight objects that are more restricted than classes, and that make
fewer demands on the operating system and on memory. Interfaces are contracts; they
describe how a class will work so that other programmers can interact with your objects in
well-defined ways.

Object-oriented programs often create a great many objects. It is often convenient to group
these objects and manipulate them together, and C# provides extensive support for
collections. Chapter 9, explores the collection classes provided by the Framework Class
Library and how to create your own collection types as well.

Chapter 10 discusses how you can use C# to manipulate text Strings and Regular
Expressions. Most Windows and web programs interact with the user, and strings play a vital
role in the user interface.

Chapter 11, explains how to deal with exceptions, which provide an object-oriented
mechanism for handling life's little emergencies.

Both Windows and web applications are event-driven. In C#, events are first-class members
of the language. Chapter 12, focuses on how events are managed, and how delegates (object-
oriented type-safe callback mechanisms) are used to support event handling.

Part Il, Programming with C#

This section and the next will be of interest to all readers, no matter how much experience you
may already have with other programming languages. These sections explore the details of
the .NET platform.

Part II details how to write .NET programs: both desktop applications with Windows Forms
and web applications with Web Forms. In addition, Part IT describes database interactivity and
how to create web services.

On top of this infrastructure sits a high-level abstraction of the operating system, designed to
facilitate object-oriented software development. This top tier includes ASP.NET and
Windows Forms. ASP.NET includes both Web Forms, for rapid development of web
applications, and web services, for creating web objects with no user interface.

C# provides a Rapid Application Development (RAD) model similar to that previously
available only in Visual Basic. Chapter 13, describes how to use this RAD model to create
professional-quality Windows programs using the Windows Forms development
environment.

Whether intended for the Web or for the desktop, most applications depend on the
manipulation and management of large amounts of data. Chapter 14, explains the ADO.NET
layer of the .NET Framework and explains how to interact with Microsoft SQL Server and
other data providers.

Programming C#, 2nd Edition

Chapter 15 combines the RAD techniques demonstrated in Chapter 13 with the data
techniques from Chapter 14 to demonstrate Building Web Applications with Web Forms.

Not all applications have a user interface. Chapter 16 focuses on the second half of ASP.NET
technology: Web Services. A web service is a distributed application that provides
functionality via standard web protocols, most commonly XML and HTTP.

Part lll, The CLR and the .NET Framework

A runtime is an environment in which programs are executed. The Common Language
Runtime (CLR) is the heart of .NET. It includes a data-typing system which is enforced
throughout the platform and which is common to all languages developed for .NET. The CLR
is responsible for processes such as memory management and reference counting of objects.

Another key feature of the NET CLR is garbage collection. Unlike with traditional C/C++
programming, in C# the developer is not responsible for destroying objects. Endless hours
spent searching for memory leaks are a thing of the past; the CLR cleans up after you when
your objects are no longer in use. The CLR's garbage collector checks the heap for
unreferenced objects and frees the memory used by these objects.

The .NET platform and class library extends upward into the middle-level platform, where
you find an infrastructure of supporting classes, including types for interprocess
communication, XML, threading, I/O, security, diagnostics, and so on. The middle tier also
includes the data-access components collectively referred to as ADO.NET, which are
discussed in Chapter 14.

Part III of this book discusses the relationship of C# to the Common Language Runtime and
the Framework Class Library.

Chapter 17, distinguishes between private and public assemblies and describes how
assemblies are created and managed. In .NET, an assembly is a collection of files that appears
to the user to be a single DLL or executable. An assembly is the basic unit of reuse,
versioning, security, and deployment.

NET assemblies include extensive metadata about classes, methods, properties, events, and
so forth. This metadata is compiled into the program and retrieved programmatically through
reflection. Chapter 18, explores how to add metadata to your code, how to create custom
attributes, and how to access this metadata through reflection. It goes on to discuss dynamic
invocation, in which methods are invoked with late (runtime) binding, and ends with a
demonstration of reflection emit, an advanced technique for building self-modifying code.

The .NET Framework was designed to support web-based and distributed applications.
Components created in C# may reside within other processes on the same machine or on other
machines across the network or across the Internet. Marshaling is the technique of interacting
with objects that aren't really there, while remoting comprises techniques for communicating
with such objects. Chapter 19, elaborates.

The Framework Class Library provides extensive support for asynchronous I/O and other
classes that make explicit manipulation of threads unnecessary. However, C# does provide
extensive support for Threads and Synchronization, discussed in Chapter 20.

Programming C#, 2nd Edition

Chapter 21 discusses Streams, a mechanism not only for interacting with the user but also for
retrieving data across the Internet. This chapter includes full coverage of C# support for
serialization: the ability to write an object graph to disk and read it back again.

Chapter 22, explores interoperability -- the ability to interact with COM components created
outside the managed environment of the .NET Framework. It is possible to call components
from C# applications into COM and to call components from COM into C#. Chapter 22
describes how this is done.

The book concludes with an appendix of Glossary.

Who This Book Is For

Programming C#, Second Edition was written for programmers who want to develop
applications for the .NET platform. No doubt, many of you already have experience in C++,
Java, or Visual Basic (VB). Other readers may have experience with other programming
languages, and some readers may have no specific programming experience but perhaps have
been working with HTML and other web technologies. This book is written for all of you,
though if you have no programming experience at all, you may find some of it tough going.

C# Versus Visual Basic .NET

The premise of the .NET Framework is that all languages are created equal. To paraphrase
George Orwell, however, some languages are more equal than others. C# is an excellent
language for .NET development. You will find it is an extremely versatile, robust and well-
designed language. It is also currently the language most often used in articles and tutorials
about .NET programming.

It is likely that many VB programmers will choose to learn C#, rather than upgrading their
skills to VB.NET. This would not be surprising because the transition from VB6 to VB.NET
is, arguably, nearly as difficult as from VB6 to C# -- and, whether it's fair or not, historically,
C-family programmers have had higher earning potential than VB programmers. As a
practical matter, VB programmers have never gotten the respect or compensation they
deserve, and C# offers a wonderful chance to make a potentially lucrative transition.

In any case, if you do have VB experience, welcome! This book was designed with you in
mind too, and I've tried to make the conversion easy.

C# Versus Java

Java Programmers may look at C# with a mixture of trepidation, glee, and resentment. It has
been suggested that C# is somehow a "rip-off" of Java. I won't comment on the religious war
between Microsoft and the "anyone but Microsoft" crowd except to acknowledge that C#
certainly learned a great deal from Java. But then Java learned a great deal from C++, which
owed its syntax to C, which in turn was built on lessons learned in other languages. We all
stand on the shoulders of giants.

C# offers an easy transition for Java programmers; the syntax is very similar and the
semantics are familiar and comfortable. Java programmers will probably want to focus on the
differences between Java and C# in order to use the C# language effectively. I've tried to

Programming C#, 2nd Edition

provide a series of markers along the way (see the notes to Java programmers within the
chapters).

C# Versus C++

While it is possible to program in .NET with C++, it isn't easy or natural. Frankly, having
worked for ten years as a C++ programmer and written a dozen books on the subject, I'd
rather have my teeth drilled than work with managed C++. Perhaps it is just that C# is so
much friendlier. In any case, once I saw C#, I never looked back.

Be careful, though; there are a number of small traps along the way, and I've been careful to

mark these with flashing lights and yellow cones. You'll find notes for C++ programmers
throughout the book.

Conventions Used in This Book
The following font conventions are used in this book:
Italic is used for:
e Pathnames, filenames, and program names.
o Internet addresses, such as domain names and URLs.
e New terms where they are defined.
Constant Width is used for:
o Command lines and options that should be typed verbatim.
e Names and keywords in program examples, including method names, variable names,

and class names.

Constant Width Italic is used for replaceable items, such as variables or optional
elements, within syntax lines or code.

Constant Width Bold is used for emphasis within program code.

Pay special attention to notes set apart from the text with the following icons:

- This is a tip. It contains useful supplementary information about the
. topic at hand.

wh

This is a warning. It helps you solve and avoid annoying problems.

=

Support

As part of my responsibilities as author, I provide ongoing support for my books through my
web site:

Programming C#, 2nd Edition

http.//www.LibertyAssociates.com

You can also obtain the source code for all of the examples in Programming C# at my site
You will find access to a book-support discussion group with a section set aside for questions
about C#. Before you post a question, however, please check the FAQ (Frequently Asked
Questions) and the errata file. If you check these files and still have a question, then please go
ahead and post to the discussion center.

The most effective way to get help is to ask a very precise question or even to create a very
small program that illustrates your area of concern or confusion. You may also want to check
the various newsgroups and discussion centers on the Internet. Microsoft offers a wide array
of newsgroups, and Developmentor (http://www.develop.com/) has a wonderful .NET email
discussion list, as does Charles Carroll at http://www.asplists.com/.

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but you
may find that features have changed (or even that we have made mistakes!). Please let us
know about any errors you find, as well as your suggestions for future editions, by writing to:
O'Reilly & Associates, Inc.

005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for the book, where we list examples and any plans for future editions.
You can access this information at:

http://www.oreilly.com/catalog/progcsharp2
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com/

For more information about this book and others, as well as additional technical articles and
discussion on the C# and the .NET Framework, see the O'Reilly & Associates web site:

http://www.oreilly.com/
and the O'Reilly .NET DevCenter:

http://www.oreillynet.com/dotnet/

Programming C#, 2nd Edition

Acknowledgments

To ensure that Programming C# is accurate, complete and targeted at the needs and interests
of professional programmers, I enlisted the help of some of the brightest programmers I
know, including Donald Xie, Dan Hurwitz, Seth Weiss, Sue Lynch, Cliff Gerald, and Tom
Petr. Jim Culbert not only reviewed the book and made extensive suggestions, but continually
pointed me back at the practical needs of working programmers. Jim's contributions to this
book cannot be overstated.

Mike Woodring of Developmentor taught me more about the CLR in a week than I could
have learned on my own in six months. A number of folks at Microsoft and O'Reilly helped
me wrestle with the twin beasts of C# and .NET, including (but not limited to) Eric
Gunnerson, Rob Howard, Piet Obermeyer, Jonathan Hawkins, Peter Drayton, Brad Merrill,
and Ben Albahari. Susan Warren may be one of the most amazing programmers I've ever met;
her help and guidance is deeply appreciated.

John Osborn signed me to O'Reilly, for which I will forever be in his debt. Valerie Quercia,
Brian McDonald, Jeff Holcomb, Claire Cloutier, and Tatiana Diaz helped make this book
better than what I'd written. Rob Romano created a number of the illustrations and improved
the others. Tim O'Reilly provided support and resources, and I'm grateful.

Many readers have written to point out typos and minor errors in the first edition. Their effort
is very much appreciated, with special thanks to Sol Bick, Brian Cassel, Steve Charbonneau,
Randy Eastwood, Andy Gaskall, Bob Kline, Jason Mauss, Mark Phillips, Christian
Rodriguez, David Solum, Erwing Steininger, Steve Thomson, Greg Torrance, and Ted Volk.
We've worked hard to fix all of these errors in this second edition. We've scoured the book to
ensure that no new errors were added, and that all of the code compiles and runs properly with
the latest release edition of Visual Studio .NET. That said, if you do find errors, please check
the errata on my web site (http://www.libertyassociates.com/) and if your error is new, please
send me email at jliberty@libertyassociates.com.

Finally, a special thank you to Brian Jepson, who is responsible both for the enhanced quality
of the second edition and for its timeliness. He has gone above and beyond in this effort and I
very much appreciate it.

Programming C#, 2nd Edition

Part I: The C# Language

Programming C#, 2nd Edition

Chapter 1. C# and the .NET Framework

The goal of C# is to provide a simple, safe, modern, object-oriented, Internet-centric,
high-performance language for .NET development. C# is a new language, but it draws on the
lessons learned over the past three decades. In much the way that you can see in young
children the features and personalities of their parents and grandparents, you can easily see in
C# the influence of Java, C++, Visual Basic (VB), and other languages.

The focus of this book is the C# language and its use as a tool for programming on the .NET
platform. In my primers on C++,' I advocate learning the language first, without regard to
Windows or Unix programming. With C# that approach would be pointless. You learn C#
specifically to create .NET applications; pretending otherwise would miss the point of the
language. Thus, this book does not consider C# in a vacuum but places the language firmly in
the context of Microsoft's .NET platform and in the development of desktop and Internet
applications.

This chapter introduces both the C# language and the .NET platform, including the .NET
Framework.

1.1 The .NET Platform

When Microsoft announced C# in July 2000, its unveiling was part of a much larger event:
the announcement of the .NET platform. The .NET platform is, in essence, a new
development framework that provides a fresh application programming interface (API) to the
services and APIs of classic Windows operating systems (especially the Windows 2000
family), while bringing together a number of disparate technologies that emerged from
Microsoft during the late 1990s. Among the latter are COM+ component services, the ASP
web development framework, a commitment to XML and object-oriented design, support for
new web services protocols such as SOAP, WSDL, and UDDI, and a focus on the Internet, all
integrated within the DNA architecture.

Microsoft says it is devoting 80% of its research and development budget to .NET and its
associated technologies. The results of this commitment to date are impressive. For one thing,
the scope of .NET is huge. The platform consists of four separate product groups:

e A set of languages, including C# and Visual Basic .NET; a set of development tools,
including Visual Studio .NET; a comprehensive class library for building web services
and web and Windows applications; as well as the Common Language Runtime (CLR)
to execute objects built within this framework.

e A set of NET Enterprise Servers, formerly known as SQL Server 2000, Exchange
2000, BizTalk 2000, and so on, that provide specialized functionality for relational
data storage, email, B2B commerce, etc.

e An offering of commercial web services, called .NET My Services; for a fee,
developers can use these services in building applications that require knowledge of
user identity, etc.

e New .NET-enabled non-PC devices, from cell phones to game boxes.

! See Sams Teach Yourself C++ in 21 Days, also by Jesse Liberty.

Programming C#, 2nd Edition

1.2 The .NET Framework

Microsoft .NET supports not only language independence, but also language integration. This
means that you can inherit from classes, catch exceptions, and take advantage of
polymorphism across different languages. The .NET Framework makes this possible with a
specification called the Common Type System (CTS) that all .NET components must obey.
For example, everything in .NET is an object of a specific class that derives from the root
class called system.0bject. The CTS supports the general concept of classes, interfaces,
delegates (which support callbacks), reference types, and value types.

Additionally, .NET includes a Common Language Specification (CLS), which provides a
series of basic rules that are required for language integration. The CLS determines the
minimum requirements for being a .NET language. Compilers that conform to the CLS create
objects that can interoperate with one another. The entire Framework Class Library (FCL) can
be used by any language that conforms to the CLS.

The .NET Framework sits on top of the operating system, which can be any flavor of
Windows,” and consists of a number of components. Currently, the NET Framework consists
of:

e Four official languages: C#, VB.NET, Managed C++, and JScript .NET
e The Common Language Runtime (CLR), an object-oriented platform for Windows
and web development that all these languages share

e A number of related class libraries, collectively known as the Framework Class
Library (FCL).

Figure 1-1 breaks down the .NET Framework into its system architectural components.

Figure 1-1. .NET Framework architecture
NET Framework ‘

Web Services Web Forms Windows Forms

Data and XML dasses
(ADQNET, SOL, KSLT XPath, XML efe.)

: Framework Base Classes
' (16} string, net, security, threading, text, reflaction, collections, etc.)

Common Language Runtime
(debug, exception, fype checking, JIT compifers)

Windows Platform

The most important component of the .NET Framework is the CLR, which provides
the environment in which programs are executed. The CLR includes a virtual machine,
analogous in many ways to the Java virtual machine. At a high level, the CLR activates

2
Because of the architecture of the CLR, the operating system can be potentially any variety of Unix or another operating system altogether.

10

Programming C#, 2nd Edition

objects, performs security checks on them, lays them out in memory, executes them, and
garbage-collects them. (The Common Type System is also part of the CLR.)

In Figure 1-1, the layer on top of the CLR is a set of framework base classes, followed by an
additional layer of data and XML classes, plus another layer of classes intended for web
services, Web Forms, and Windows Forms. Collectively, these classes are known as the
Framework Class Library (FCL), one of the largest class libraries in history and one that
provides an object-oriented API to all the functionality that the .NET platform encapsulates.
With more than 4,000 classes, the FCL facilitates rapid development of desktop, client/server,
and other web services and applications.

The set of framework base classes, the lowest level of the FCL, is similar to the set of classes
in Java. These classes support rudimentary input and output, string manipulation, security
management, network communication, thread management, text manipulation, reflection and
collections functionality, etc.

Above this level is a tier of classes that extend the base classes to support data management
and XML manipulation. The data classes support persistent management of data that is
maintained on backend databases. These classes include the Structured Query Language
(SQL) classes to let you manipulate persistent data stores through a standard SQL interface.
Additionally, a set of classes called ADO.NET allows you to manipulate persistent data. The
NET Framework also supports a number of classes to let you manipulate XML data and
perform XML searching and translations.

Extending the framework base classes and the data and XML classes is a tier of classes geared
toward building applications using three different technologies: Web Services, Web Forms,
and Windows Forms. Web services include a number of classes that support the development
of lightweight distributed components, which will work even in the face of firewalls and NAT
software. Because web services employ standard HTTP and SOAP as underlying
communications protocols, these components support plug-and-play across cyberspace.

Web Forms and Windows Forms allow you to apply Rapid Application Development
techniques to building web and Windows applications. Simply drag and drop controls onto
your form, double-click a control, and write the code to respond to the associated event.

For a more detailed description of the .NET Framework, see .NET Framework Essentials, by
Thuan Thai and Hoag Lam (published by O'Reilly & Associates, 2001).

1.3 Compilation and the MSIL

In .NET, programs are not compiled into executable files; they are compiled into Microsoft
Intermediate Language (MSIL) files, which the CLR then executes. The MSIL (often
shortened to IL) files that C# produces are identical to the IL files that other .NET languages
produce; the platform is language-agnostic. A key fact about the CLR is that it is common; the
same runtime supports development in C# as well as in VB.NET.

C# code is compiled into IL when you build your project. The IL is saved in a file on disk.
When you run your program, the IL is compiled again, using the Just In Time (JIT) compiler
(a process often called JIT'ing). The result is machine code, executed by the machine's
processor.

11

Programming C#, 2nd Edition

The standard JIT compiler runs on demand. When a method is called, the JIT compiler
analyzes the IL and produces highly efficient machine code, which runs very fast. The JIT
compiler is smart enough to recognize when the code has already been compiled, so as the
application runs, compilation happens only as needed. As .NET applications run, they tend to
become faster and faster, as the already compiled code is reused.

The CLS means that all .NET languages produce very similar IL code. As a result, objects
created in one language can be accessed and derived from another. Thus it is possible to
create a base class in VB.NET and derive from it in C#.

1.4 The C# Language

The C# language is disarmingly simple, with only about 80 keywords and a dozen built-in
datatypes, but C# is highly expressive when it comes to implementing modern programming
concepts. C# includes all the support for structured, component-based, object-oriented
programming that one expects of a modern language built on the shoulders of C++ and Java.

The C# language was developed by a small team led by two distinguished Microsoft
engineers, Anders Hejlsberg and Scott Wiltamuth. Hejlsberg is also known for creating Turbo
Pascal, a popular language for PC programming, and for leading the team that designed
Borland Delphi, one of the first successful integrated development environments for
client/server programming.

At the heart of any object-oriented language is its support for defining and working with
classes. Classes define new types, allowing you to extend the language to better model the
problem you are trying to solve. C# contains keywords for declaring new classes and their
methods and properties, and for implementing encapsulation, inheritance, and polymorphism,
the three pillars of object-oriented programming.

In C# everything pertaining to a class declaration is found in the declaration itself. C# class
definitions do not require separate header files or Interface Definition Language (IDL) files.
Moreover, C# supports a new XML style of inline documentation that greatly simplifies the
creation of online and print reference documentation for an application.

C# also supports interfaces, a means of making a contract with a class for services that the
interface stipulates. In C#, a class can inherit from only a single parent, but a class can
implement multiple interfaces. When it implements an interface, a C# class in effect promises
to provide the functionality the interface specifies.

C# also provides support for structs, a concept whose meaning has changed significantly from
C++. In C#, a struct is a restricted, lightweight type that, when instantiated, makes fewer
demands on the operating system and on memory than a conventional class does. A struct
can't inherit from a class or be inherited from, but a struct can implement an interface.

C# provides component-oriented features, such as properties, events, and declarative
constructs (called attributes). Component-oriented programming is supported by the CLR's
support for storing metadata with the code for the class. The metadata describes the class,
including its methods and properties, as well as its security needs and other attributes, such as
whether it can be serialized; the code contains the logic necessary to carry out its functions. A
compiled class is thus a self-contained unit; therefore, a hosting environment that knows how

12

Programming C#, 2nd Edition

to read a class' metadata and code needs no other information to make use of it. Using C# and
the CLR, it is possible to add custom metadata to a class by creating custom attributes.
Likewise, it is possible to read class metadata using CLR types that support reflection.

An assembly is a collection of files that appear to the programmer to be a single dynamic link
library (DLL) or executable (EXE). In .NET, an assembly is the basic unit of reuse,
versioning, security, and deployment. The CLR provides a number of classes for manipulating
assemblies.

A final note about C# is that it also provides support for directly accessing memory using C++

style pointers and keywords for bracketing such operations as unsafe, and for warning the
CLR garbage collector not to collect objects referenced by pointers until they are released.

13

Programming C#, 2nd Edition

Chapter 2. Getting Started: "Hello World"

It is a time-honored tradition to start a programming book with a "Hello World" program. In
this chapter, we create, compile, and run a simple "Hello World" program written in C#.
The analysis of this brief program will introduce key features of the C# language.

Example 2-1 illustrates the fundamental elements of a very elementary C# program.
Example 2-1. A simple "Hello World" program in C#

class HelloWorld
{

static void Main()

{
// Use the system console object
System.Console.WriteLine ("Hello World");

}

Compiling and running Helloworld displays the words "Hello World" at the console. Let's
take a closer look at this simple program.

2.1 Classes, Objects, and Types

The essence of object-oriented programming is the creation of new types. A fype represents a
thing. Sometimes the thing is abstract, such as a data table or a thread; sometimes it is more
tangible, such as a button in a window. A type defines the thing's general properties and
behaviors.

If your program uses three instances of a button type in a window -- say, an OK, a Cancel,
and a Help button -- each instance will share certain properties and behaviors. Each, for
example, will have a size (though it might differ from that of its companions), a position
(though again, it will almost certainly differ in its position from the others), and a text label
(e.g., "OK", "Cancel," and "Help"). Likewise, all three buttons will have common behaviors,
such as the ability to be drawn, activated, pressed, and so forth. Thus, the details might differ
among the individual buttons, but they are all of the same type.

As in many object-oriented programming languages, in C# a type is defined by a class, while
the individual instances of that class are known as objects. Later chapters explain that there
are other types in C# besides classes, including enums, structs, and delegates, but for now the
focus is on classes.

The "Hello World" program declares a single type: the HellowWworld class. To define a C#
type, you declare it as a class using the class keyword, give it a name -- in this case,
HelloWorld -- and then define its properties and behaviors. The property and behavior
definitions of a C# class must be enclosed by open and closed braces ({}).

o C++ programmers take note: there is no semicolon after the closing
s brace.
[TL 0

(15N

14

Programming C#, 2nd Edition

2.1.1 Methods

A class has both properties and behaviors. Behaviors are defined with member methods;
properties are discussed in Chapter 3.

A method is a function owned by your class. In fact, member methods are sometimes called
member functions. The member methods define what your class can do or how it behaves.
Typically, methods are given action names, such as WriteLine () or AddNumbers (). In the
case shown here, however, the class method has a special name, Main (), which doesn't
describe an action but does designate to the Common Language Runtime (CLR) that this is
the main, or first method, for your class.

Unlike C++, Main is capitalized in C# and can return int or void.

The CLR calls Main() when your program starts. Main()is the entry point for your
program, and every C# program must have a Main () method.'

Method declarations are a contract between the creator of the method and the consumer (user)
of the method. It is likely that the creator and consumer of the method will be the same
programmer, but this does not have to be so; it is possible that one member of a development
team will create the method and another programmer will use it.

To declare a method, you specify a return value type followed by a name. Method
declarations also require parentheses, whether the method accepts parameters or not. For
example:

int myMethod (int size);

declares a method named myMethod that takes one parameter: an integer which will be
referred to within the method as size. My method returns an integer value. The return value
type tells the consumer of the method what kind of data the method will return when it
finishes running.

Some methods do not return a value at all; these are said to return void, which is specified by
the void keyword. For example:

void myVoidMethod();

declares a method that returns void and takes no parameters. In C# you must always declare a
return type or void.

2.1.2 Comments

A C# program can also contain comments. Take a look at the first line after the opening
brace:

// Use the system console object

! It is technically possible to have multiple Main () methods in C#; in that case you use the /main command-line switch to tell C# which class
contains the Main () method that should serve as the entry point to the program.

15

Programming C#, 2nd Edition

The text begins with two forward slash marks (//). These designate a comment. A comment is
a note to the programmer and does not affect how the program runs. C# supports three types
of comments.

The first type, just shown, indicates that all text to the right of the comment mark is to be
considered a comment, until the end of that line. This is known as a C++ style comment.

The second type of comment, known as a C-Style comment , begins with an open comment
mark (/*) and ends with a closed comment mark (*/). This allows comments to span more
than one line without having to have // characters at the beginning of each comment line, as
shown in Example 2-2.

Example 2-2. lllustrating multiline comments

class Hello

{

static void Main()
{
/* Use the system console object
as explained in the text in chapter 2 */
System.Console.WritelLine ("Hello World");

}

It is possible to nest C++ style comments within C-style comments. For this reason, it is
common to use C++ style comments whenever possible, and to reserve the C-style comments
for "commenting-out" blocks of code.

The third and final type of comment that C# supports is used to associate external XML-based
documentation with your code, and is illustrated in Chapter 13.

2.1.3 Console Applications

"Hello World" is an example of a comnsole program. A console application has no user
interface (UI); there are no list boxes, buttons, windows, and so forth. Text input and output is
handled through the standard console (typically a command or DOS window on your PC).
Sticking to console applications for now helps simplify the early examples in this book, and
keeps the focus on the language itself. In later chapters, we'll turn our attention to Windows
and web applications, and at that time we'll focus on the Visual Studio .NET UI design tools.

All that the Mmain () method does in this simple example is write the text "Hello World" to
the monitor. The monitor is managed by an object named Console. This Console object has a
method writeLine () that takes a string (a set of characters) and writes it to the standard
output. When you run this program, a command or DOS screen will pop up on your computer
monitor and display the words "Hello World."

You invoke a method with the dot operator (.). Thus, to call the console object's

WriteLine ()method, you write Console.WriteLine(...), filling in the string to be
printed.

16

Programming C#, 2nd Edition

2.1.4 Namespaces

Console is only one of a tremendous number of useful types that are part of the .NET
Framework Class Library (FCL). Each class has a name, and thus the FCL contains thousands
of names, such as ArrayList, Hashtable, FileDialog, DataException, EventArgs, and So
on. There are hundreds, thousands, even tens of thousands of names.

This presents a problem. No developer can possibly memorize all the names that the .NET
Framework uses, and sooner or later you are likely to create an object and give it a name that
has already been used. What will happen if you develop your own Hashtable class, only to
discover that it conflicts with the Hashtable class that NET provides? Remember, each class
in C# must have a unique name.

You certainly could rename your Hashtable class mySpecialHashtable, for example, but
that is a losing battle. New Hashtable types are likely to be developed, and distinguishing
between their type names and yours would be a nightmare.

The solution to this problem is to create a namespace. A namespace restricts a name's scope,
making it meaningful only within the defined namespace.

Assume that I tell you that Jim is an engineer. The word "engineer" is used for many things in
English, and can cause confusion. Does he design buildings? Write software? Run a train?

In English I might clarify by saying "he's a scientist," or "he's a train engineer." A C#
programmer could tell you that Jim is a science.engineer rather than a train.engineer.
The namespace (in this case, science or train) restricts the scope of the word that follows. It
creates a "space" in which that name is meaningful.

Further, it might happen that Jim is not just any kind of science.engineer. Perhaps Jim
graduated from MIT with a degree in software engineering, not civil engineering (are civil
engineers especially polite?). Thus, the object that is Jim might be defined more specifically
as a science.software.engineer. This classification implies that the namespace software
is meaningful within the namespace science, and that engineer in this context is meaningful
within the namespace software. If later you learn that Charlotte is
a transportation.train.engineer, you will not be confused as to what kind of engineer
she is. The two uses of engineer can coexist, each within its own namespace.

Similarly, if it turns out that .NET has a Hashtable class within its System.Collections
namespace, and that [have also «created a Hashtable class within a
ProgCSharp.DataStructures namespace, there is no conflict because each exists in its own
namespace.

In Example 2-1, the console object's name is restricted to the system namespace by using the
code:

System.Console.WriteLine();

17

Programming C#, 2nd Edition

2.1.5 The Dot Operator (.)

In Example 2-1, the dot operator (.) is used both to access a method (and data) in a class (in
this case, the method writeLine ()), and to restrict the class name to a specific namespace
(in this case, to locate console within the system namespace). This works well because in
both cases we are "drilling down" to find the exact thing we want. The top level is the system
namespace (which contains all the system objects that the Framework provides); the console
type exists within that namespace, and the writeLine () method is a member function of the
Console type.

In many cases, namespaces are divided into subspaces. For example, the system namespace
contains a number of subnamespaces such as Configuration , Collections, Data, and so
forth, while the collections namespace itself is divided into multiple subnamespaces.

Namespaces can help you organize and compartmentalize your types. When you write a
complex C# program, you might want to create your own namespace hierarchy, and there is
no limit to how deep this hierarchy can be. The goal of namespaces is to help you divide and
conquer the complexity of your object hierarchy.

2.1.6 The using Keyword

Rather than writing the word system before console, you could specify that you will be
using types from the system namespace by writing the statement:

using System;
at the top of the listing, as shown in Example 2-3.
Example 2-3. The using keyword

using System;
class Hello

{

static void Main()

{
//Console from the System namespace
Console.WritelLine ("Hello World") ;

Notice the using System statement is placed before the Hel1loworld class definition.
Although you can designate that you are using the system namespace, unlike with some

languages you cannot designate that you are using the system.Console object. Example 2-4
will not compile.

18

Programming C#, 2nd Edition

Example 2-4. Code that does not compile (not legal C#)

using System.Console;
class Hello

{

static void Main()

{

//Console from the System namespace
WriteLine ("Hello World"):;

This generates the compile error:

error CS0138: A using namespace directive can only be applied to
namespaces; 'System.
Console' is a class not a namespace

The using keyword can save a great deal of typing, but it can undermine the advantages of
namespaces by polluting the namespace with many undifferentiated names. A common
solution is to use the using keyword with the built-in namespaces and with your own
corporate namespaces, but perhaps not with third-party components.

2.1.7 Case Sensitivity

C# is case-sensitive, which means that writeLine is not the same as WriteLine, which in
turn is not the same as WRITELINE. Unfortunately, unlike in Visual Basic (VB), the C#
development environment will not fix your case mistakes; if you write the same word twice
with different cases, you might introduce a tricky-to-find bug into your program.

To prevent such a time-wasting and energy-depleting mistake, you should develop
conventions for naming your variables, functions, constants, and so forth. The convention in
this book is to name variables with camel notation (e.g., somevariableName), and to name
functions, constants, and properties with Pascal notation (e.g., SomeFunction).

o The only difference between camel and Pascal notation is that in Pascal
s notation, names begin with an uppercase letter.
W os.
[N

2.1.8 The static Keyword

The Main () method shown in Example 2-1 has one more designation. Just before the return
type declaration void (which, you will remember, indicates that the method does not return a
value) you'll find the keyword static:

static void Main()
The static keyword indicates that you can invoke Main () without first creating an object

of type Hello. This somewhat complex issue will be considered in much greater detail in
subsequent chapters. One of the problems with learning a new computer language is you must

19

Programming C#, 2nd Edition

use some of the advanced features before you fully understand them. For now, you can treat
the declaration of the Main () method as tantamount to magic.

2.2 Developing "Hello World"

There are at least two ways to enter, compile, and run the programs in this book: use the
Visual Studio .NET Integrated Development Environment (IDE), or use a text editor and a
command-line compiler (along with some additional command-line tools to be introduced
later).

Although you can develop software outside Visual Studio .NET, the IDE provides enormous
advantages. These include indentation support, Intellisense word completion, color coding,
and integration with the help files. Most important, the IDE includes a powerful debugger and
a wealth of other tools.

Although this book tacitly assumes that you'll be using Visual Studio .NET, the tutorials focus
more on the language and the platform than on the tools. You can copy all the examples into a
text editor such as Windows Notepad or Emacs, save them as text files, and compile them
with the C# command-line compiler that is distributed with the .NET Framework SDK. Note
that some examples in later chapters use Visual Studio .NET tools for creating Windows
Forms and Web Forms, but even these you can write by hand in Notepad if you are
determined to do things the hard way.

2.2.1 Editing "Hello World"

To create the "Hello World" program in the IDE, select Visual Studio .NET from your Start
menu or a desktop icon, and then choose File —New aProject from the menu toolbar.
This will invoke the New Project window (if you are using Visual Studio for the first time, the
New Project window might appear without further prompting). Figure 2-1 shows the New
Project window.

Figure 2-1. Creating a C# console application in Visual Studio .NET

x|

Project Types: Templates: EEI
__1 Visual Basic Projects |

3 Wisusl C# Projects _‘3 j‘f? ".EIJ

] Wisual C+4 Projects

] Setup and Deployment Projects ASP.MET Web ASPNET Web Web Control
v | Cther Pro Application Service Library
] ¥isual Studio Solokions w e
= £ ﬂJ f I
Consale windows Emply Project
Application Servite |
& project For creating a command-ine application
Mame: | Hellowitorld
Location: 1- C\Doouments and SettingshAdministratoriMy Ducmenlﬂ Browss, .. |

Project will be created at ..\ AdministraboryMy DocumentsiYisual Shudio ProjecksiHaliofiorld.

FMore oK | concae | Hep |

20

Programming C#, 2nd Edition

To open your application, select Visual C# Projects in the Project Type window and select
Console Application in the Templates window. You can now enter a name for the project and
select a directory in which to store your files. Click OK, and a new window will appear in
which you can enter the code in Example 2-1, as shown in Figure 2-2.

Figure 2-2. The editor opened to your new project

=|0] =
Pl [s Eroect fuid Cehug ook Yindow Heo
- =i N A ¥ Debug v) ~R2ER T,
Trala: L Tleasd.0 QO coision Ecploesr ot 8 |
St birg e e =] |yl o) =
e iy Bpanes, Y g St Sekeworkf (] probsi]
R i : al o LA el
. . vl B
HellokorLa ok
] dmserblsinfo. o
ol
las31
[STATECww
Msinirtring[] wrgaj = =
: . T £) A
Fregartan ¥
Tleeziin Fis Pgstes -
)% [m
=]
il fcian Canple
Curszans Tool
ass Capsars ool fism
IR TI ~ . bl =
Y S gl |] | L P Hame g |, 0%
Tk, L o 01 il Ervin Lieks: 3y (il Es e | [3]
o Deeritah
Ak in il
| :
Fomnch:

Notice that Visual Studio .NET creates a namespace based on the project name you've
provided (Helloworld), and adds a using System statement because nearly every program
you write will need types from the system namespace.

Visual Studio .NET creates a class named class1, which you are free to rename. When you
rename the class, be sure to rename the file as well (Class!.cs). To reproduce Example 2-1,
for instance, change the name of Class1 to HellowWorld, and rename the Class/.cs file (listed
in the Solution Explorer window) to HelloWorld.cs.

Finally, Visual Studio .NET creates a program skeleton, complete with a Tobo comment to get
you started. To reproduce Example 2-1, remove the arguments (string[] args) and
comments from the Main() method. Then copy the following two lines into the body of
Main ():

// Use the system console object
System.Console.WritelLine ("Hello World");

If you are not using Visual Studio .NET, open Notepad, type in the code from Example 2-1,
and save the file as a text file named Hello.cs.

2.2.2 Compiling and Running "Hello World"

There are many ways to compile and run the "Hello World" program from within Visual
Studio .NET. Typically you can accomplish every task by choosing commands from the

21

Programming C#, 2nd Edition

Visual Studio .NET menu toolbar, by using buttons, and, in many cases, by using key-
combination shortcuts.

For example, to compile the "Hello World" program, press Ctrl-Shift-B or choose Build —2
Build Solution. As an alternative, you can click the Build button on the Build button bar
(you may need to right-click on the toolbar to add the Build button bar). The Build button
icon is shown in Figure 2-3.

Figure 2-3. Build button icon

To run the "Hello World" program without the debugger, you can press Ctrl-F5 on your
keyboard, choose pDebug —PStart Without Debugging from the IDE menu toolbar, or press
the Start Without Debugging button on the IDE Build toolbar, as shown in Figure 2-4 (you
may need to customize your toolbar to make this button available). You can run the program
without first explicitly building it; depending on how your options are set (Tools —2Options)
the IDE will save the file, build it, and run it, possibly asking you for permission at each step.

Figure 2-4. Start without debugging button

-

- I strongly recommend that you spend some time exploring the Visual
o Studio .NET development environment. This is your principal tool as a
"4 NET developer, and you want to learn to use it well. Time invested up

front in getting comfortable with Visual Studio .NET will pay for itself
many times over in the coming months. Go ahead, put the book down
and look at it. I'll wait for you.

Use the following steps to compile and run the "Hello World" program using the C#
command-line compiler:

1. Save Example 2-1 as the filekello.cs.
2. Open a command window (Start —?Run and type in cmd) .
3. rrom the command line, enter:

csc /debug hello.cs

This step will build the executable (EXE) file. If the program contains errors, the
compiler will report them in the command window. The /debug command-line switch
inserts symbols in the code so you can run the EXE under a debugger or see line
numbers in stack traces. (You'll get a stack trace if your program generates an error
that you do not handle.)

4. To run the program, enter:

Hello

22

Programming C#, 2nd Edition

You should see the venerable words "Hello World" appear in your command window.

Just In Time Compilation

Compiling Hello.cs using csc creates an executable (EXE) file. Keep in mind,
however, that the .exe file contains op-codes written in Microsoft Intermediate
Language (MSIL), which is introduced in Chapter 1.

Interestingly, if you had written this application in VB.NET or any other language
compliant with the .NET Common Language Specification, you would have
compiled it into the same MSIL. By design, Intermediate Language (IL) code
created from different languages is virtually indistinguishable; this is the point of
having a common language specification in the first place.

In addition to producing the IL code (which is similar in spirit to Java's byte-code),
the compiler creates a read-only segment of the .exe file in which it inserts a
standard Win32 executable header. The compiler designates an entry point within
the read-only segment; the operating system loader jumps to that entry point when
you run the program, just as it would for any Windows program.

The operating system cannot execute the IL code, however, and that entry point does
nothing but jump to the .NET Just In Time (JIT) compiler (also introduced in
Chapter 1). The JIT produces native CPU instructions, as you might find in a normal
.exe. The key feature of a JIT compiler, however, is that functions are compiled only
as they are used, Just In Time for execution.

2.3 Using the Visual Studio .NET Debugger

Arguably, the single most important tool in any development environment is the debugger.
The Visual Studio debugger is very powerful, and it will be well worth whatever time you put
into learning how to use it well. That said, the fundamentals of debugging are very simple.
The three key skills are:

e How to set a breakpoint and how to run to that breakpoint
e How to step into and over method calls
e How to examine and modify the value of variables, member data, and so forth

This chapter does not reiterate the entire debugger documentation, but these skills are so
fundamental that it does provide a crash (pardon the expression) course.

The debugger can accomplish the same thing in many ways -- typically via menu choices,

buttons, and so forth. The simplest way to set a breakpoint is to click in the lefthand margin.
The IDE will mark your breakpoint with a red dot, as shown in Figure 2-5.

23

Programming C#, 2nd Edition

Figure 2-5. A breakpoint

(int 1 = 0O:di € 3: i+H

L] winarray[i] .raviindow() ;
k
1
- Discussing the debugger requires code examples. The code shown here
o g is from Chapter 5, and you are not expected to understand how it works
" 4 yet (though if you program in C++ or Java, you'll probably understand
the gist of it).

To run the debugger you can choose Debug->start or just press F5. The program will
compile and run to the breakpoint, at which time it will stop and a yellow arrow will indicate
the next statement for execution, as in Figure 2-6.

Figure 2-6. The breakpoint hit

fint 4 = 024 < 3: i++)

o winArcay[i] .Prawilindow(] ;

After you've hit your breakpoint it is easy to examine the values of various objects. For
example, you can find the value of the variable i just by putting the cursor over it and waiting
a moment, as shown in Figure 2-7.
Figure 2-7. Showing a value

[imt L o= Dpi < 3; i+4)

i *
winkrray[i] . brawWindow() ;
H

The debugger IDE also provides a number of very useful windows, such as a Locals window
that displays the values of all the local variables (see Figure 2-8).

Figure 2-8. Locals window

=
Name Walue Type J
i] ink
[£] win {wetincdow} Windowe
[H b {LiskBiooc) ListBax
[& {Button} Button
windirray {Lengt=3} sfndow]
=

El Ed Lacals | 24

Intrinsic types such as integers simply show their value (see i earlier), but objects show their
type and have a plus (+) sign. You can expand these objects to see their internal data, as
shown in Figure 2-9. You'll learn more about objects and their internal data in upcoming
chapters.

24

Programming C#, 2nd Edition

Figure 2-9. Locals window object expanded

Name Value Tyvpe __I
i 0 ink
‘indiows
Systam, Object {Weindow] Sarsbam. C
mTop 1 ink
miLeft z ink
Ib {ListBooc ListBoy
b {Eustton} Button
winGrEy {Length=3} wafindow(]
El m Locals ,F';l

You can step into the next method by pressing F11. Doing so steps into the brawwindow ()
method of the windowC1lass, as shown in Figure 2-10.

Figure 2-10. Stepping into a method

public wvirtual wvold DrawWindow()
{

Console.Vriteline ("Window: drawing Window ac (0}, {117,
[me mTop, mlefe)
H
rotected int mTop:
rotected i1nt mpleft:

pubblic class ListBox : Window

.. e o]
Hame Value Trpe =
Left 2 it
mlop 1 int
iz IWindo Wirdow
Spshem. Object Wil Sysbem, Objact
mTop 1 nt
mleft 4 nt
Do [l B

You can see that the next execution statement 1S nOW WriteLine in DrawWindow (). The
autos window has updated to show the current state of the objects.

There is much more to learn about the debugger, but this brief introduction should get you
started. You can answer many programming questions by writing short demonstration
programs and examining them in the debugger. A good debugger is, in some ways, the single
most powerful teaching tool for a programming language.

25

Programming C#, 2nd Edition

Chapter 3. C# Language Fundamentals

Chapter 2 demonstrates a very simple C# program. Nonetheless, there is sufficient complexity
in creating even that little program that some of the pertinent details had to be skipped over.
The current chapter illuminates these details by delving more deeply into the syntax and
structure of the C# language itself.

This chapter discusses the type system in C#, drawing a distinction between built-in types
(int, bool, etc.) versus user-defined types (types you create as classes and interfaces).
The chapter also covers programming fundamentals such as how to create and use variables
and constants. It then goes on to introduce enumerations, strings, identifiers, expressions, and
statements.

The second part of the chapter explains and demonstrates the use of branching, using the if,
switch, while, do...while, for, and foreach statements. Also discussed are operators,
including the assignment, logical, relational, and mathematical operators. This is followed by
an introduction to namespaces and a short tutorial on the C# precompiler.

Although C# is principally concerned with the creation and manipulation of objects, it is best
to start with the fundamental building blocks: the elements from which objects are created.
These include the built-in types that are an intrinsic part of the C# language as well as the
syntactic elements of C#.

3.1 Types

C# is a strongly typed language. In a strongly typed language you must declare the type of
each object you create (e.g., integers, floats, strings, windows, buttons, etc.) and the compiler
will help you prevent bugs by enforcing that only data of the right type is assigned to those
objects. The type of an object signals to the compiler the size of that object (e.g., int indicates
an object of 4 bytes) and its capabilities (e.g., buttons can be drawn, pressed, and so forth).

Like C++ and Java, C# divides types into two sets: intrinsic (built-in) types that the language
offers and user-defined types that the programmer defines.

C# also divides the set of types into two other categories: value types and reference types.'
The principal difference between value and reference types is the manner in which their
values are stored in memory. A value type holds its actual value in memory allocated on the
stack (or it is allocated as part of a larger reference type object). The address of a reference
type variable sits on the stack, but the actual object is stored on the heap.

If you have a very large object, putting it on the heap has many advantages. Chapter 4
discusses the various advantages and disadvantages of working with reference types; the
current chapter focuses on the intrinsic value types available in C#.

C# also supports C++ style pointer types, but these are rarely used, and only when working
with unmanaged code. Unmanaged code is created outside of the .NET platform, such as
COM objects. Working with COM objects is discussed in Chapter 22.

! All the intrinsic types are value types except for Object (discussed in Chapter 5) and String (discussed in Chapter 10). All user-defined types
are reference types except for structs (discussed in Chapter 7).

26

Programming C#, 2nd Edition

3.1.1 Working with Built-in Types

The C# language offers the usual cornucopia of intrinsic (built-in) types one expects in a
modern language, each of which maps to an underlying type supported by the .NET Common
Language Specification (CLS). Mapping the C# primitive types to the underlying .NET type
ensures that objects created in C# can be used interchangeably with objects created in any
other language compliant with the .NET CLS, such as VB.NET.

Each type has a specific and unchanging size. Unlike with C++, a C# int is always 4 bytes
because it maps to an 1nt32 in the .NET CLS. Table 3-1 lists the built-in value types offered
by C#.

Table 3-1. C# built-in value types
Size (in.NET

Type bytes) type Description
byte 1 Byte Unsigned (values 0-255).
char 2 Char Unicode characters.
bool 1 Boolean|trueor false.
sbyte |1 SByte |Signed (values -128 to 127).
short |2 Intl6 |Signed (short) (values -32,768 to 32,767).
ushort |2 UIntl6 Unsigned (short) (values 0 to 65,535).
int 4 Int32 Signed integer values between -2,147,483,648 and 2,147,483,647.
uint 4 UInt32 |Unsigned integer values between 0 and 4,294,967,295.
. Floating point number. Holds the values from approximately +/-1.5 * 10 to
tloat |4 Single approximate +/-3.4 * 10°® with 7 significant figures.
Double-precision floating point; holds the values from approximately +/-5.0 *
double |8 bouble 107°%* to approximate +/-1.8 * 10°*® with 15-16 significant figures.
. . Fixed-precision up to 28 digits and the position of the decimal point. This is
decimal)l2 becimal typically used in financial calculations. Requires the suffix "m" or "M."
Signed integers ranging from-9,223,372,036,854,775,808 to
tong 8 Into% 19 223,372,036,854,775.807.
ulong |8 UInt64 Unsigned integers ranging from 0 to Oxfffffffiftee.
- C and C++ programmers take note: Boolean variables can only have
. the values true or false. Integer values do not equate to Boolean
~ 4 values in C# and there is no implicit conversion.

In addition to these primitive types, C# has two other value types: enum (considered later in
this chapter) and struct (see Chapter 4). Chapter 4 also discusses other subtleties of value
types, such as forcing value types to act as reference types through a process known as
boxing, and that value types do not "inherit."

27

Programming C#, 2nd Edition

The Stack and the Heap

A stack is a data structure used to store items on a last-in first-out basis (like a stack
of dishes at the buffet line in a restaurant). The stack refers to an area of memory
supported by the processor, on which the local variables are stored.

In C#, value types (e.g., integers) are allocated on the stack -- an area of memory is
set aside for their value, and this area is referred to by the name of the variable.

Reference types (e.g., objects) are allocated on the heap. When an object is allocated
on the heap its address is returned, and that address is assigned to a reference.

The garbage collector destroys objects on the stack sometime after the stack frame
they are declared within ends. Typically a stack frame is defined by a function.
Thus, if you declare a local variable within a function (as explained later in this
chapter) the object will be marked for garbage collection after the function ends.

Objects on the heap are garbage collected sometime after the final reference to them
is destroyed.

3.1.1.1 Choosing a built-in type

Typically you decide which size integer to use (short, int, or long) based on the magnitude
of the value you want to store. For example, a ushort can only hold values from 0 through
65,535, while a uint can hold values from 0 through 4,294,967,295.

That said, memory is fairly cheap, and programmer time is increasingly expensive; most of
the time you'll simply declare your variables to be of type int, unless there is a good reason
to do otherwise.

The signed types are the numeric types of choice of most programmers unless the
programmer has a good reason to use an unsigned value.

Although you might be tempted to use an unsigned short to double the positive values of a
signed short (moving the maximum positive value from 32,767 up to 65,535), it is easier and
preferable to use a signed integer (with a maximum value of 2,147,483,647).

It is better to use an unsigned variable when the fact that the value must be positive is an
inherent characteristic of the data. For example, if you had a variable to hold a person's age,
you would use an unsigned int because an age cannot be negative.

Float, double, and decimal offer varying degrees of size and precision. For most small
fractional numbers, float is fine. Note that the compiler assumes that any number with a
decimal point is a double unless you tell it otherwise. To assign a literal f1oat, follow the
number with the letter f. (Assigning values to literals is discussed in detail later in this
chapter.)

float someFloat = 57f;

28

Programming C#, 2nd Edition

The char type represents a Unicode character. char literals can be simple, Unicode, or escape
characters enclosed by single quote marks. For example, 2 is a simple character while \u0041
is a Unicode character. Escape characters are special two-character tokens in which the first
character is a backslash. For example, \t is a horizontal tab. The common escape characters
are shown in Table 3-2.

Table 3-2. Common escape characters

Char Meaning

\! Single quote
\" Double quote
AN\ Backslash

\O Null

\a Alert

\b Backspace

\f Form feed

\n Newline

\r Carriage return
\t Horizontal tab
\v Vertical tab

3.1.1.2 Converting built-in types

Objects of one type can be converted into objects of another type either implicitly or
explicitly. Implicit conversions happen automatically; the compiler takes care of it for you.
Explicit conversions happen when you "cast" a value to a different type. The semantics of an
explicit conversion are "Hey! Compiler! I know what I'm doing." This is sometimes called
"hitting it with the big hammer" and can be very useful or very painful, depending on whether
your thumb is in the way of the nail.

Implicit conversions happen automatically and are guaranteed not to lose information. For
example, you can implicitly cast from a short int (2 bytes) to an int (4 bytes). No matter
what value is in the short, it is not lost when converting to an int:

short x = 5;
int y = x; // implicit conversion

If you convert the other way, however, you certainly can lose information. If the value in the
int 1s greater than 32,767, it will be truncated in the conversion. The compiler will not
perform an implicit conversion from int to short:

short x;
int y = 500;
x =vy; // won't compile

You must explicitly convert using the cast operator:

short x;
int y = 500;
x = (short) y; // OK

29

Programming C#, 2nd Edition

All of the intrinsic types define their own conversion rules. At times it is convenient to define
conversion rules for your user-defined types, as discussed in Chapter 5.

3.2 Variables and Constants

A variable is a storage location with a type. In the preceding examples, both x and y are
variables. Variables can have values assigned to them, and those values can be changed
programmatically.

WriteLine()

The .NET Framework provides a useful method for writing output to the screen.
The details of this method, System.Console.WriteLine (), will become clearer as
we progress through the book, but the fundamentals are straightforward. Call
the method as shown in Example 3-1, passing in a string that you want printed to
the console (the screen) and, optionally, parameters that will be substituted. In
the following example:

System.Console.WritelLine ("After assignment, myInt: {0}", myInt);

the string "After assignment, myInt:" is printed as is, followed by the value in
the variable myInt. The location of the substitution parameter {0} specifies where
the value of the first output variable, myInt, will be displayed -- in this case at the
end of the string. We see a great deal more about writeLine () in coming chapters.

Create a variable by declaring its type and then giving it a name. You can initialize the
variable when you declare it, and you can assign a new value to that variable at any time,
changing the value held in the variable. This is illustrated in Example 3-1.

Example 3-1. Initializing and assigning a value to a variable

class Values

{

static void Main()
{
int myInt = 7;
System.Console.WriteLine ("Initialized, myInt: {O0}",
myInt);
myInt = 5;
System.Console.WritelLine ("After assignment, myInt: {0}",
myInt) ;

}
Output:

Initialized, myInt: 7
After assignment, myInt: 5

Here we initialize the variable myInt to the value 7, display that value, reassign the variable
with the value 5, and display it again.

30

Programming C#, 2nd Edition

3.2.1 Definite Assignment

C# requires definite assignment; that is, variables must be initialized or assigned to, before
they are used. To test this rule, change the line that initializes myInt in Example 3-1 to:

int myInt;
and save the revised program shown in Example 3-2.

Example 3-2. Using an uninitialized variable

class Values

{

static void Main()
{
int myInt;
System.Console.WriteLine
("Uninitialized, myInt: {0}",myInt);
myInt = 5;
System.Console.WritelLine ("Assigned, myInt: {0}", myInt);

When you try to compile this listing, the C# compiler will display the following error
message:

3.1.cs(6,55): error CS0165: Use of unassigned local
variable 'myInt'

It is not legal to use an uninitialized variable in C#. Example 3-2 is not legal.

So, does this mean you must initialize every variable in a program? In fact, no. You don't
actually need to initialize a variable, but you must assign a value to it before you attempt to
use it. Example 3-3 illustrates a correct program.

Example 3-3. Assigning without initializing

class Values

{

static void Main()
{
int myInt;
myInt = 7;
System.Console.WritelLine ("Assigned, myInt: {0}", myInt);
myInt = 5;
System.Console.WriteLine ("Reassigned, myInt: {0}", myInt);

3.2.2 Constants

A constant 1s a variable whose value cannot be changed. Variables are a powerful tool, but
there are times when you want to manipulate a defined value, one whose value you want to
ensure remains constant. For example, you might need to work with the Fahrenheit freezing
and boiling points of water in a program simulating a chemistry experiment. Your program

31

Programming C#, 2nd Edition

will be clearer if you name the variables that store the values FreezingPoint and
BoilingPoint, but you do not want to permit their values to be reassigned. How do you
prevent reassignment? The answer is to use a constant.

Constants come in three flavors: literals, symbolic constants, and enumerations. In this
assignment:

x = 32;

the value 32 is a literal constant. The value of 32 is always 32. You can't assign a new value to
32; you can't make 32 represent the value 99 no matter how you might try.

Symbolic constants assign a name to a constant value. You declare a symbolic constant using
the const keyword and the following syntax:

const type identifier = value;,

A constant must be initialized when it is declared, and once initialized it cannot be altered.
For example:

const int FreezingPoint = 32;

In this declaration, 32 is a literal constant and FreezingPoint is a symbolic constant of type
int. Example 3-4 illustrates the use of symbolic constants.

Example 3-4. Using symbolic constants

class Values

{

static void Main()

{
const int FreezingPoint = 32; // degrees Farenheit
const int BoilingPoint = 212;

System.Console.WritelLine ("Freezing point of water: {0}",
FreezingPoint);

System.Console.WritelLine ("Boiling point of water: {0}",
BoilingPoint);

//BoilingPoint = 21;

Example 3-4 creates two symbolic integer constants: FreezingPoint and BoilingPoint. As
a matter of style, constant names are written in Pascal notation, but this is certainly not
required by the language.

These constants serve the same purpose of always using the /iteral values 32 and 212 for the
freezing and boiling points of water in expressions that require them, but because these
constants have names they convey far more meaning. Also, if you decide to switch this
program to Celsius, you can reinitialize these constants at compile time, to 0 and 100,
respectively; all the rest of the code ought to continue to work.

32

Programming C#, 2nd Edition

To prove to yourself that the constant cannot be reassigned, try uncommenting the last line of
the program (shown in bold). When you recompile you should receive this error:

error CS0131: The left-hand side of an assignment must be
a variable, property or indexer

3.2.3 Enumerations

Enumerations provide a powerful alternative to constants. An enumeration is a distinct value
type, consisting of a set of named constants (called the enumerator list).

In Example 3-4, you created two related constants:

const int FreezingPoint = 32;
const int BoilingPoint = 212;

You might wish to add a number of other useful constants as well to this list, such as:

const int LightJacketWeather = 60;
const int SwimmingWeather = 72;
const int WickedCold = 0;

This process is somewhat cumbersome, and there is no logical connection among these
various constants. C# provides the enumeration to solve these problems:

enum Temperatures

{
WickedCold = 0,
FreezingPoint = 32,
LightJacketWeather = 60,
SwimmingWeather = 72,
BoilingPoint = 212,

Every enumeration has an underlying type, which can be any integral type (integer, short,
long, etc.) except for char. The technical definition of an enumeration is:

[attributes] [modifiers] enum Iidentifier
[: base-type] { enumerator-1ist };

The optional attributes and modifiers are considered later in this book. For now, let's focus on
the rest of this declaration. An enumeration begins with the keyword enum, which is generally
followed by an identifier, such as:

enum Temperatures

The base type is the underlying type for the enumeration. If you leave out this optional value
(and often you will) it defaults to int, but you are free to use any of the integral types (e.g.,
ushort, long) except for char. For example, the following fragment declares an enumeration
of unsigned integers (uint):

33

Programming C#, 2nd Edition

enum ServingSizes :uint
{

Small = 1,

Regular = 2,

Large = 3

Notice that an enum declaration ends with the enumerator list. The enumerator list contains the
constant assignments for the enumeration, each separated by a comma.

Example 3-5 rewrites Example 3-4 to use an enumeration.

Example 3-5. Using enumerations to simplify your code

class Values

{

enum Temperatures

{
WickedCold = O,
FreezingPoint = 32,
LightJacketWeather = 60,
SwimmingWeather = 72,
BoilingPoint = 212,

}

static void Main()

{

System.Console.WritelLine ("Freezing point of water: {0}",
(int) Temperatures.FreezingPoint);

System.Console.WritelLine ("Boiling point of water: {0}",
(int) Temperatures.BoilingPoint);

As you can see, an enum must be qualified by its enumtype (e.g.,
Temperatures.WickedCold). By default, an enumeration value is displayed using its
symbolic name (such as BoilingPoint Or FreezingPoint). When you want to display the
value of an enumerated constant, you must cast the constant to its underlying type (int). The
integer value is passed to WriteLine, and that value is displayed.

Each constant in an enumeration corresponds to a numerical value -- in this case, an integer. If
you don't specifically set it otherwise, the enumeration begins at 0 and each subsequent value
counts up from the previous.

If you create the following enumeration:

enum SomeValues
{
First,
Second,
Third = 20,
Fourth

34

Programming C#, 2nd Edition

the value of First will be 0, Second will be 1, Third will be 20, and Fourth will be 21.

Enums are formal types; therefore an explicit conversion is required to convert between an
enum type and an integral type.

- C++ programmers take note: C#'s use of enums is subtly different from
o C++, which restricts assignment to an enum type from an integer but
~ 42 allows an enum to be promoted to an integer for assignment of an enum

to an integer.

3.2.4 Strings

It is nearly impossible to write a C# program without creating strings. A string object holds a
string of characters.

You declare a string variable using the string keyword much as you would create an
instance of any object:

string myString;

A string literal is created by placing double quotes around a string of letters:
"Hello World"

It is common to initialize a string variable with a string literal:

string myString = "Hello World";

Strings are covered in much greater detail in Chapter 10.

3.2.5 Identifiers

Identifiers are names that programmers choose for their types, methods, variables, constants,
objects, and so forth. An identifier must begin with a letter or an underscore.

The Microsoft naming conventions suggest using camel notation (initial lowercase such as
someName) for variable names and Pascal notation (initial uppercase such as SomeOtherName)
for method names and most other identifiers.

- Microsoft no longer recommends using Hungarian notation (e.g.,
o iSomeInteger) or underscores (€.g., SOME VALUE).
B G o

Identifiers cannot clash with keywords. Thus, you cannot create a variable named int or
class. In addition, identifiers are case-sensitive, so C# treats myvariable and Myvariable as
two different variable names.

35

Programming C#, 2nd Edition

3.3 Expressions

Statements that evaluate to a value are called expressions. You may be surprised how many
statements do evaluate to a value. For example, an assignment such as:

myVariable = 57;
is an expression; it evaluates to the value assigned, which, in this case, is 57.

Note that the preceding statement assigns the value 57 to the variable myvariable. The
assignment operator (=) does not test equality; rather it causes whatever is on the right side
(57) to be assigned to whatever is on the left side (myvariable). All of the C# operators
(including assignment and equality) are discussed later in this chapter (see "Operators").

Because myvariable = 57 is an expression that evaluates to 57, it can be used as part of
another assignment operator, such as:

mySecondVariable = myVariable = 57;

What happens in this statement is that the literal value 57 is assigned to the variable
myVariable. The value of that assignment (57) is then assigned to the second variable,
mySecondvariable. Thus, the value 57 is assigned to both variables. You can thus initialize
any number of variables to the same value with one statement:

3.4 Whitespace

In the C# language, spaces, tabs, and newlines are considered to be " whitespace" (so named
because you see only the white of the underlying "page"). Extra whitespace is generally
ignored in C# statements. Thus, you can write:

myVariable = 5;

or:

myVariable = 5;
and the compiler will treat the two statements as identical.

The exception to this rule is that whitespace within strings is not ignored. If you write:

Console.WritelLine ("Hello World")
each space between "Hello" and "World" is treated as another character in the string.

Most of the time the use of whitespace is intuitive. The key is to use whitespace to make the
program more readable to the programmer; the compiler is indifferent.

However, there are instances in which the use of whitespace is quite significant. Although the
expression:

36

Programming C#, 2nd Edition

int x = 5;

1s the same as:

int x=5;

it is not the same as:
intx=5;

The compiler knows that the whitespace on either side of the assignment operator is extra, but
the whitespace between the type declaration int and the variable name x is not extra, and is
required. This is not surprising; the whitespace allows the compiler to parse the keyword int
rather than some unknown term intx. You are free to add as much or as little whitespace
between int and x as you care to, but there must be at least one whitespace character
(typically a space or tab).

o Visual Basic programmers take note: in C# the end-of-line has no

ol special significance; statements are ended with semicolons, not newline

" ¢ characters. There is no line-continuation character because none is
needed.

3.5 Statements

In C# a complete program instruction is called a statement. Programs consist of sequences of
C# statements. Each statement must end with a semicolon (;). For example:

int x; // a statement
x = 23; // another statement
int v = x; // yet another statement

C# statements are evaluated in order. The compiler starts at the beginning of a statement list
and makes its way to the bottom. This would be entirely straightforward, and terribly limiting,
were it not for branching. There are two types of branches in a C# program: unconditional
branching and conditional branching.

Program flow is also affected by looping and iteration statements, which are signaled by the
keywords for , while, do, in, and foreach. Iteration is discussed later in this chapter. For
now, let's consider some of the more basic methods of conditional and unconditional
branching.

3.5.1 Unconditional Branching Statements

An unconditional branch is created in one of two ways. The first way is by invoking a
method. When the compiler encounters the name of a method, it stops execution in the current
method and branches to the newly "called" method. When that method returns a value,
execution picks up in the original method on the line just below the method call. Example 3-6
illustrates.

37

Programming C#, 2nd Edition

Example 3-6. Calling a method

using System;
class Functions
{
static void Main()

{

Console.WriteLine ("In Main! Calling SomeMethod()...");
SomeMethod () ;
Console.WriteLine ("Back in Main().");

}
static void SomeMethod()

{

Console.WritelLine ("Greetings from SomeMethod!");
}
}

Output:

In Main! Calling SomeMethod()...
Greetings from SomeMethod!
Back in Main().

Program flow begins in Main () and proceeds until someMethod () is invoked (invoking a
method is sometimes referred to as "calling" the method). At that point program flow
branches to the method. When the method completes, program flow resumes at the next line
after the call to that method.

The second way to create an unconditional branch is with one of the unconditional branch
keywords: goto, break, continue, return, or throw. Additional information about the first
four jump statements is provided later in this chapter, in Section 3.5.2.3, Section 3.5.3.1, and
Section 3.5.3.6. The final statement, throw, is discussed in Chapter 11.

3.5.2 Conditional Branching Statements

A conditional branch is created by a conditional statement, which is signaled by keywords
such as if, else, or switch. A conditional branch occurs only if the condition expression
evaluates true.

3.5.2.1 If...else statements

If...else statements branch based on a condition. The condition is an expression, tested in
the head of the if statement. If the condition evaluates true, the statement (or block of
statements) in the body of the i f statement is executed.

If statements may contain an optional else statement. The e1se statement is executed only if
the expression in the head of the it statement evaluates false:

if (expression)
statementl
[else
statement?2 |

38

Programming C#, 2nd Edition

This is the kind of description of the if statement you are likely to find in your compiler
documentation. It shows you that the if statement takes a Boolean expression (an expression
that evaluates true or false) in parentheses, and executes statementl if the expression
evaluates true. Note that statement1 can actually be a block of statements within braces.

You can also see that the else statement is optional, as it is enclosed in square brackets.
Although this gives you the syntax of an if statement, an illustration will make its use clear.
Example 3-7 illustrates.

Example 3-7. If ... else statements

using System;
class Values
{
static void Main()

{

int valueOne 10;
int valueTwo = 20;

if (valueOne > valueTwo)
{
Console.WriteLine (
"ValueOne: {0} larger than ValueTwo: {1}",
valueOne, valueTwo);
}
else
{
Console.WriteLine (
"ValueTwo: {0} larger than ValueOne: {1}",
valueTwo, valueOne) ;

}
valueOne = 30; // set valueOne higher

if (valueOne > valueTwo)
{
valueTwo = valueOne++;
Console.WriteLine ("\nSetting valueTwo to valueOne value, ");
Console.WriteLine ("and incrementing ValueOne.\n");
Console.WriteLine ("ValueOne: {0} ValueTwo: {1}",
valueOne, valueTwo) ;
}
else
{
valueOne = valueTwo;
Console.WritelLine ("Setting them equal. ");
Console.WriteLine ("ValueOne: {0} ValueTwo: {1}",
valueOne, valueTwo) ;

In Example 3-7, the first i f statement tests whether valueone is greater than valueTwo. The
relational operators such as greater than (>), less than (<), and equal to (==) are fairly intuitive
to use.

39

Programming C#, 2nd Edition

The test of whether valueone is greater than valueTwo evaluates false (because valueone is
10 and valueTwo is 20, so valueOne is not greater than valueTwo). The else statement is
invoked, printing the statement:

ValueTwo: 20 is larger than ValueOne: 10

The second if statement evaluates true and all the statements in the if block are evaluated,
causing two lines to print:

Setting valueTwo to valueOne value,
and incrementing ValueOne.

ValueOne: 31 ValueTwo: 30

Statement Blocks

You can substitute a statement block anyplace that C# expects a statement.
A statement block is a set of statements surrounded by braces.

Thus, where you might write:

if (someCondition)
someStatement;

you can instead write:

if (someCondition)

{
statementOne;
statementTwo;
statementThree;

3.5.2.2 Nested if statements

It is possible, and not uncommon, to nest if statements to handle complex conditions. For
example, suppose you need to write a program to evaluate the temperature, and specifically to
return the following types of information:

o If the temperature is 32 degrees or lower, the program should warn you about ice on
the road.

o If the temperature is exactly 32 degrees, the program should tell you that there may be
ice patches.

o If the temperature is higher than 32 degrees, the program should assure you that there
is no ice.

There are many good ways to write this program. Example 3-8 illustrates one approach, using
nested if statements.

40

Programming C#, 2nd Edition

Example 3-8. Nested if statements

using System;
class Values

{

static void Main()

{
int temp = 32;

if (temp <= 32)
{

Console.WriteLine ("Warning! Ice on road!");
if (temp == 32)
{

Console.WriteLine (
"Temp exactly freezing, beware of water.");

}

else

{
Console.WriteLine ("Watch for black ice! Temp: {0}", temp);

}

The logic of Example 3-8 is that it tests whether the temperature is less than or equal to 32. If
so, it prints a warning:

if (temp <= 32)
{

Console.WriteLine ("Warning! Ice on road!");

The program then checks whether the temp is equal to 32 degrees. If so, it prints one message;
if not, the temp must be less than 32 and the program prints the second message. Notice that
this second if statement is nested within the first if, so the logic of the e1se is "since it has
been established that the temp is less than or equal to 32, and it isn't equal to 32, it must be
less than 32."

41

Programming C#, 2nd Edition

All Operators Are Not Created Equal

A closer examination of the second if statement in Example 3-8 reveals a common
potential problem. This if statement tests whether the temperature is equal to 32:

if (temp == 32)

In C and C++, there is an inherent danger in this kind of statement. It's not
uncommon for novice programmers to use the assignment operator rather than the
equals operator, instead creating the statement:

if (temp = 32)

This mistake would be difficult to notice, and the result would be that 32 was
assigned to temp, and 32 would be returned as the value of the assignment
statement. Because any nonzero value evaluates to true in C and C++, the if
statement would return true. The side effect would be that temp would be assigned a
value of 32 whether or not it originally had that value. This is a common bug that
could easily be overlooked -- if the developers of C# had not anticipated it!

C# solves this problem by requiring that if statements accept only Boolean values.
The 32 returned by the assignment is not Boolean (it is an integer) and, in C#, there
1S no automatic conversion from 32 to true. Thus, this bug would be caught at
compile time, which is a very good thing, and a significant improvement over C++ -
- at the small cost of not allowing implicit conversions from integers to Booleans!

3.5.2.3 Switch statements: an alternative to nested ifs

Nested if statements are hard to read, hard to get right, and hard to debug. When you have a
complex set of choices to make, the switch statement is a more powerful alternative. The
logic of a switch statement is "pick a matching value and act accordingly."

switch (expression)

{

case constant-expression :
statement
jump-statement

[default: statement |

As you can see, like an if statement, the expression is put in parentheses in the head of the
switch statement. Each case statement then requires a constant expression; that is, a literal or
symbolic constant or an enumeration.

If a case is matched, the statement (or block of statements) associated with that case is
executed. This must be followed by a jump statement. Typically, the jump statement is break,
which transfers execution out of the switch. An alternative is a goto statement, typically used
to jump into another case, as illustrated in Example 3-9.

42

Example 3-9. The switch statement
using System;

class Values

{

static void Main()

{

const int Democrat = 0;

const int LiberalRepublican = 1;
const int Republican = 2;

const int Libertarian = 3;

const int NewlLeft = 4;

const int Progressive = 5;

int myChoice = Libertarian;

switch (myChoice)

{

case Democrat:

Programming C#, 2nd Edition

Console.WritelLine ("You voted Democratic.\n");

break;

case LiberalRepublican: // fall through

//Console.WriteLine (

//"Liberal Republicans vote Republican\n");

case Republican:

Console.WriteLine ("You voted Republican.\n");

break;
case NewlLeft:

Console.WriteLine ("NewLeft is now Progressive");

goto case Progressive;
case Progressive:

Console.WriteLine ("You voted Progressive.\n");

break;
case Libertarian:

Console.WriteLine ("Libertarians are voting Republican");

goto case Republican;

default:
Console.WriteLine ("You did not pick a valid choice.\n");
break;
}
Console.WriteLine ("Thank you for voting.");

In this whimsical example, we create constants for various political parties. We then assign
one value (Libertarian) to the variable myChoice and switch on that value. If myChoice is
equal to Democrat, we print out a statement. Notice that this case ends with break. Break is a
jump statement that takes us out of the switch statement and down to the first line after the

switch, on which we print "Thank you for voting."

The value LiberalRepublican has no statement under it, and it "falls through" to the next
statement: Republican. If the value is LiberalRepublican Or Republican, the Republican
statements execute. You can only "fall through" in this way if there is no body within the
statement. If you uncomment the writeLine under LiberalRepublican, this program will

not compile.

43

Programming C#, 2nd Edition

o C and C++ programmers take note: you cannot fall through to the next
a3 1. case if the case statement is not empty. Thus, you can write the
~ " following:

case 1: // fall through ok
case 2:

In this example, case 1 is empty. You cannot, however, write the
following:

case 1:
TakeSomeAction();
// fall through not OK
case 2:

Here case 1 has a statement in it, and you cannot fall through. If you
want case 1 to fall through to case 2, you must explicitly use goto:

case 1:

TakeSomeAction();

goto case 2; // explicit fall through
case 2:

If you do need a statement but you then want to execute another case, you can use the goto
statement, as shown in the NewLeft case:

goto case Progressive;

It is not required that the goto take you to the case immediately following. In the next
instance, the Libertarian choice also has a goto, but this time it jumps all the way back up
to the Republican case. Because our value was set to Libertarian, this is just what occurs.
We print out the Libertarian statement, go to the Republican case, print that statement, and
then hit the break, taking us out of the switch and down to the final statement. The output for
all of this is:

Libertarians are voting Republican
You voted Republican.

Thank you for voting.
Note the default case, excerpted from Example 3-9:

default:
Console.WriteLine (
"You did not pick a valid choice.\n");

If none of the cases matches, the default case will be invoked, warning the user of the
mistake.

44

Programming C#, 2nd Edition

3.5.2.4 Switch on string statements

In the previous example, the switch value was an integral constant. C# offers the ability to
switch on a string, allowing you to write:

case "Libertarian":
If the strings match, the case statement is entered.
3.5.3 Iteration Statements

C# provides an extensive suite of iteration statements, including for, while and do...while
loops, as well as foreach loops (new to the C family but familiar to VB programmers). In
addition, C# supports the goto, break , continue, and return jump statements.

3.5.3.1 The goto statement

The goto statement is the seed from which all other iteration statements have been
germinated. Unfortunately, it is a semolina seed, producer of spaghetti code and endless
confusion. Most experienced programmers properly shun the goto statement, but in the
interest of completeness, here's how you use it:

1. Create a label.
2. goto that label.

The label is an identifier followed by a colon. The goto command is typically tied to a
condition, as illustrated in Example 3-10.

Example 3-10. Using goto

using System;
public class Tester

{

public static int Main()

{

int 1 = 0;
repeat: // the label
Console.WriteLine ("i: {0}",1);
i++;
if (1 < 10)
goto repeat; // the dastardly deed
return 0;

If you were to try to draw the flow of control in a program that makes extensive use of goto
statements, the resulting morass of intersecting and overlapping lines looks like a plate of
spaghetti; hence the term "spaghetti code." It was this phenomenon that led to the creation of
alternatives, such as the while loop. Many programmers feel that using goto in anything
other than a trivial example creates confusion and difficult-to-maintain code.

45

Programming C#, 2nd Edition

3.5.3.2 The while loop
The semantics of the while loop are "while this condition is true, do this work."

The syntax is:

while (expression) statement

As usual, an expression is any statement that returns a value. while statements require an
expression that evaluates to a Boolean (true /false) value, and that statement can, of course,
be a block of statements. Example 3-11 updates Example 3-10, using a while loop.

Example 3-11. Using a while loop

using System;
public class Tester

{

public static int Main()

{
int 1 = 0;
while (1 < 10)
{

Console.WriteLine ("i: {0}"™,1);
i++;

return 0;

The code in Example 3-11 produces results identical to the code in Example 3-10, but the
logic is a bit clearer. The while statement is nicely self-contained, and it reads like an English
sentence: "while i is less than 10, print this message and increment i."

Notice that the while loop tests the value of i before entering the loop. This ensures that the
loop will not run if the condition tested is false; thus if i is initialized to 11, the loop will
never run.

3.5.3.3 The do ... while loop

There are times when a while loop might not serve your purpose. In certain situations, you
might want to reverse the semantics from "run while this is true" to the subtly different "do
this while this condition remains true." In other words, take the action, and then, after the
action is completed, check the condition. For this you will use the do. . .while loop.

do statement while expression

An expression is any statement that returns a value. An example of the do...while loop is
shown in Example 3-12.

46

Programming C#, 2nd Edition

Example 3-12. The do...while loop

using System;
public class Tester

{

public static int Main()
{

int 1 = 11;

do

{

Console.WriteLine ("i: {0}"™,1);
i++;

} while (i < 10);

return 0;

Here i is initialized to 11 and the while test fails, but only after the body of the loop has run
once.

3.5.3.4 The for loop

A careful examination of the while loop in Example 3-11 reveals a pattern often seen in
iterative statements: initialize a variable (i = 0), test the variable (i < 10), execute a series of
statements, and increment the variable (i++). The for loop allows you to combine all these
steps in a single loop statement:

for ([initializers]; [expression]; [iterators]) statement

The for loop is illustrated in Example 3-13.
Example 3-13. The for loop

using System;
public class Tester

{

public static int Main()

{
for (int i=0;1i<100;i++)
{

Console.Write ("{0} ", 1i);

if (1%10 == 0)
{
Console.WriteLine ("\t{O0}", 1);
}
}

return 0;

47

Programming C#, 2nd Edition

Output:
0 0
12345678910 10

11 12 13 14 15 16 17 18 19 20 20
21 22 23 24 25 26 27 28 29 30 30
31 32 33 34 35 36 37 38 39 40 40
41 42 43 44 45 46 47 48 49 50 50
51 52 53 54 55 56 57 58 59 60 60
61 62 63 64 65 66 67 68 69 70 70
71 72 73 74 75 76 77 78 79 80 80
81 82 83 84 85 86 87 88 89 90 90
91 92 93 94 95 96 97 98 99

This for loop makes use of the modulus operator described later in this chapter. The value of
i is printed until i is a multiple of 10.

if (1%10 == 0)

A tab is then printed, followed by the value. Thus the tens (20, 30, 40, etc.) are called out on
the right side of the output.

The individual values are printed using Console.Write, which is much like writeLine but
which does not enter a newline character, allowing the subsequent writes to occur on the same
line.

A few quick points to notice: in a for loop the condition is tested before the statements are
executed. Thus, in the example, i is initialized to zero, then it is tested to see if it is less than
100. Because 1 < 100 returns true, the statements within the for loop are executed. After the
execution, i is incremented (i++).

Note that the variable i is scoped to within the for loop (that is, the variable i is visible only
within the for loop). Example 3-14 will not compile.

Example 3-14. Scope of variables declared in a for loop

using System;
public class Tester

{

public static int Main()

{
for (int i=0; 1i<100; i++)
{

Console.Write ("{0} ", 1);

if (1%10 ==)
{
Console.WriteLine ("\t{0}", 1);
}
}

Console.WriteLine ("\n Final value of i: {0}", 1i);
return 0;

48

Programming C#, 2nd Edition

The line shown in bold fails, as the variable i is not available outside the scope of the for
loop itself.

Whitespace and Braces

There is much controversy about the use of whitespace in programming. For
example, this for loop:

for (int 1i=0;1i<100;1i++)
{
if (1%10 == 0)
{
Console.WriteLine ("\t{0}", 1);

}
}

could well be written with more space between the operators:

for (int 1 = 0; 1 < 100; i++)
{
if (1 % 10 == 0)

Console.WriteLine ("\t{0}", 1);

}

Much of this is a matter of personal taste. Although I find whitespace can make code
more readable, too much space can cause confusion. In this book, I tend to compress
the whitespace to save room on the printed page.

3.5.3.5 The foreach statement

The foreach statement is new to the C family of languages; it is used for looping through the
elements of an array or a collection. Discussion of this incredibly useful statement is deferred
until Chapter 9.

3.5.3.6 The continue and break statements

There are times when you would like to restart a loop without executing the remaining
statements in the loop. The continue statement causes the loop to return to the top and
continue executing.

The obverse side of that coin is the ability to break out of a loop and immediately end all
further work within the loop. For this purpose the break statement exists.

oF Break and continue create multiple exit points and make for hard-to-
a2 understand, and thus hard-to-maintain, code. Use them with some care.
B G o

Example 3-15 illustrates the mechanics of continue and break. This code, suggested to me
by one of my technical reviewers, Donald Xie, is intended to create a traffic signal processing

49

Programming C#, 2nd Edition

system. The signals are simulated by entering numerals and uppercase characters from the

keyboard, using Console.ReadLine, which reads a line of text from the keyboard.

The algorithm is simple: receipt of a 0 (zero) means normal conditions, and no further action
is required except to log the event. (In this case, the program simply writes a message to the
console; a real application might enter a timestamped record in a database.) On receipt of an
Abort signal (here simulated with an uppercase "A"), the problem is logged and the process is
ended. Finally, for any other event, an alarm is raised, perhaps notifying the police. (Note that
this sample does not actually notify the police, though it does print out a harrowing message

to the console.) If the signal is "X," the alarm is raised but the while loop is also terminated.

Example 3-15. Using continue and break

using System;
public class Tester

{
public

{
str
whi

{

}

static int Main()

ing signal = "0"; // initialize to neutral
le (signal != "X") // X indicates stop
Console.Write ("Enter a signal: ");

signal = Console.ReadLine();

// do some work here, no matter what signal you
// receive
Console.WriteLine ("Received: {0}", signal);

if (signal == "A")

{
// faulty - abort signal processing
// Log the problem and abort.
Console.WritelLine ("Fault! Abort\n");
break;

if (signal == "0")

// normal traffic condition

// log and continue on
Console.WriteLine ("All is well.\n");
continue;

}

// Problem. Take action and then log the problem

// and then continue on
Console.WriteLine ("{0} -- raise alarm!\n",
signal) ;

return 0;

}

Output:

Enter a signal: O

Received:

0

All is well.

50

Programming C#, 2nd Edition

Enter a signal: B
Received: B
B -- raise alarm!

Enter a signal: A
Received: A
Fault! Abort

Press any key to continue

The point of this exercise is that when the a signal is received, the action in the if statement
is taken and then the program breaks out of the loop, without raising the alarm. When the
signal is 0, it is also undesirable to raise the alarm, so the program continues from the top of
the loop.

3.6 Operators

An operator is a symbol that causes C# to take an action. The C# primitive types (e.g., int)
support a number of operators such as assignment, increment, and so forth. Their use is highly
intuitive, with the possible exception of the assignment operator (=) and the equality operator
(==), which are often confused.

3.6.1 The Assignment Operator (=)

Section 3.3, earlier in this chapter, demonstrates the use of the assignment operator. This
symbol causes the operand on the left side of the operator to have its value changed to
whatever is on the right side of the operator.

3.6.2 Mathematical Operators

C# uses five mathematical operators, four for standard calculations and a fifth to return the
remainder in integer division. The following sections consider the use of these operators.

3.6.2.1 Simple arithmetical operators (+, -, *, /)

C# offers operators for simple arithmetic: the addition (+), subtraction (-), multiplication (*),
and division (/) operators work as you might expect, with the possible exception of integer
division.

When you divide two integers, C# divides like a child in fourth grade: it throws away any
fractional remainder. Thus, dividing 17 by 4 will return the value 4 (17/4 = 4, with a
remainder of 1). C# provides a special operator (modulus (%), which is described in the next
section) to retrieve the remainder.

Note, however, that C# does return fractional answers when you divide floats, doubles, and
decimals.

3.6.2.2 The modulus operator (%) to return remainders

To find the remainder in integer division, use the modulus operator ($). For example, the
statement 17%4 returns 1 (the remainder after integer division).

51

Programming C#, 2nd Edition

The modulus operator turns out to be more useful than you might at first imagine. When you
perform modulus n on a number that is a multiple of », the result is zero. Thus 80%10 = 0
because 80 is an even multiple of 10. This fact allows you to set up loops in which you take
an action every nth time through the loop, by testing a counter to see if %n is equal to zero.
This strategy comes in handy in the use of the for loop, as described earlier in this chapter.
The effects of division on integers, floats, doubles, and decimals is illustrated in
Example 3-16.

Example 3-16. Division and modulus

using System;
class Values
{
static void Main()
{
int i1, 12;
float f1, £2;
double dl1, d2;
decimal decl, dec2;

i1 = 17;
i2 = 4;

f1 = 17f£;
f2 = 4f;
dl = 17;
d2 = 4;
decl = 17;
dec?2 = 4;

Console.WriteLine ("Integer:\t{0}\nfloat:\t\t{1}",
i1/i2, £f1/£2);

Console.WritelLine ("double:\t\t{0}\ndecimal:\t{1}",
dl/d2, decl/dec2);

Console.WritelLine ("\nModulus:\t{0}", 11%i2);

}

Output:

Integer: 4
float: 4.25
double: 4.25
decimal: 4.25
Modulus: 1

Now consider this line from Example 3-16:

Console.WriteLine ("Integer:\t{0}\nfloat:\t\t{1}\n",
i1l/i2, f1/£2);

It begins with a call to Console.Writeline, passing in this partial string:
"Integer:\t{0}\n
This will print the characters Integer:, followed by a tab (\t), followed by the first

parameter ({0}), followed by a newline character (\n). The next string snippet:

52

Programming C#, 2nd Edition

float:\t\t{1l}\n

is very similar. It prints float:, followed by two tabs (to ensure alignment), the contents of
the second parameter ({1}), and then another newline. Notice the subsequent line, as well:

Console.WriteLine ("\nModulus:\t{0}", 1i1%i2);

This time the string begins with a newline character, which causes a line to be skipped just
before the string Modulus: is printed. You can see this effect in the output.

3.6.3 Increment and Decrement Operators

A common requirement is to add a value to a variable, subtract a value from a variable, or
otherwise change the mathematical value, and then to assign that new value back to the same
variable. You might even want to assign the result to another variable altogether. The
following two sections discuss these cases respectively.

3.6.3.1 Calculate and reassign operators

Suppose you want to increment the mysalary variable by 5000. You can do this by writing:

mySalary = mySalary + 5000;

The addition happens before the assignment, and it is perfectly legal to assign the result back
to the original variable. Thus, after this operation completes, mysalary will have been
incremented by 5000. You can perform this kind of assignment with any mathematical
operator:

mySalary = mySalary * 5000;
mySalary = mySalary - 5000;

and so forth.

The need to increment and decrement variables is so common that C# includes special
operators for self-assignment. Among these operators are += , -=, *=, /=, and %=, which,
respectively, combine addition, subtraction, multiplication, division, and modulus with self-
assignment. Thus, you can alternatively write the previous examples as:

mySalary += 5000;
mySalary *= 5000;
mySalary -= 5000;

The effect of this is to increment mysalary by 5000, multiply mysalary by 5000, and
subtract 5000 from the mysalary variable, respectively.

Because incrementing and decrementing by 1 is a very common need, C# (like C and C++
before it) also provides two special operators. To increment by 1, use the ++ operator, and to

decrement by 1, use the -- operator.

Thus, if you want to increment the variable myage by 1 you can write:

53

Programming C#, 2nd Edition

myAge++;
3.6.3.2 The prefix and postfix operators

To complicate matters further, you might want to increment a variable and assign the results
to a second variable:

firstValue = secondValue++;

The question arises: do you want to assign before you increment the value or after? In other
words, if secondvalue starts out with the value 10, do you want to end with both
firstvalue and secondvalue equal to 11, or do you want firstvalue to be equal to 10 (the
original value) and secondvalue to be equal to 11?

C# (again, like C and C++) offer two flavors of the increment and decrement operators:
prefix and postfix. Thus you can write:

firstvValue = secondValue++; // postfix

which will assign first, and then increment (firstvalue=10, secondvalue=11). You can also
write:

firstValue = ++secondValue; // prefix
which will increment first, and then assign (firstvalue=11, secondvalue=11).

It is important to understand the different effects of prefix and postfix, as illustrated in
Example 3-17.

Example 3-17. lllustrating prefix versus postfix increment

using System;
class Values
{
static void Main()
{
int valueOne = 10;
int valueTwo;
valueTwo = valueOne++;
Console.WritelLine ("After postfix: {0}, {1}", wvalueOne,

valueTwo) ;
valueOne = 20;
valueTwo = ++valueOne;
Console.WritelLine ("After prefix: {0}, {1}", valueOne,
valueTwo) ;
}
}
Output:

After postfix: 11, 10
After prefix: 21, 21

54

Programming C#, 2nd Edition

3.6.4 Relational Operators

Relational operators are used to compare two values, and then return a Boolean (true or
false). The greater-than operator (>), for example, returns true if the value on the left of the
operator is greater than the value on the right. Thus, 5 > 2 returns the value true, while 2 >
5 returns the value false.

The relational operators for C# are shown in Table 3-3. This table assumes two variables:
bigvalue and smallvalue, in which bigvalue has been assigned the value 100 and

smallvalue the value 50.

Table 3-3. C# relational operators (assumes bigValue = 100 and smallValue = 50)

Name Operator Given this statement: The expression evaluates to:

bigValue == 100 true
Equals ==

bigValue == 80 false

bigValue != 100 false
Not equals 1=

bigValue != 80 true
Greater than > bigValue > smallValue true

bigValue >= smallValue true
Greater than or equals >=

smallValue >= bigValue false
Less than < bigValue < smallValue false

smallValue <= bigValue true
Less than or equals <=

bigValue <= smallValue false

Each of these relational operators acts as you might expect. However, take note of the equals
operator (==), which is created by typing two equal signs (=) in a row (i.e., without any space
between them); the C# compiler treats the pair as a single operator.

The C# equality operator (==) tests for equality between the objects on either side of the
operator. This operator evaluates to a Boolean value (true or false). Thus, the statement:

myX == 5;

evaluates to true if and only if myx is a variable whose value is 5.

- It is not uncommon to confuse the assignment operator (=) with the
° . . equals operator (==). The latter has two equal signs, the former only
4 one.

3.6.5 Use of Logical Operators with Conditionals

1f statements (discussed earlier in this chapter) test whether a condition is true. Often you
will want to test whether two conditions are both true, or whether only one is true, or none is
true. C# provides a set of logical operators for this, as shown in Table 3-4. This table assumes
two variables, x and y, in which x has the value 5 and y the value 7.

55

Programming C#, 2nd Edition

Table 3-4. C# logical operators (assumes x =5,y =7)

Name |Operator Given this statement The expression evaluates to |Logic

and |&& (x == 3) && (y == 7) |false Both must be true

or I (x == 3) || (y == 17) |true Either or both must be true
not |! ! (x == 3) true Expression must be false

The and operator tests whether two statements are both true. The first line in Table 3-4
includes an example that illustrates the use of the and operator:

(x == 3) && (y == 17)
The entire expression evaluates false because one side (x == 3) is false.

With the or operator, either or both sides must be true; the expression is false only if both
sides are false. So, in the case of the example in Table 3-4:

(x == 3) Il (y ==17)
the entire expression evaluates true because one side (y==7) is true.

With a not operator, the statement is true if the expression is false, and vice versa. So, in the
accompanying example:

the entire expression is true because the tested expression (x==3) is false. (The logic is "it is
true that it is not true that x is equal to 3.")

56

Programming C#, 2nd Edition

Short-Circuit Evaluation

Consider the following code snippet:

int x = 8;
if ((x == 8) || (y == 12))

The if statement here is a bit complicated. The entire i f statement is in parentheses,
as are all if statements in C#. Thus, everything within the outer set of parentheses
must evaluate true for the i f statement to be true.

Within the outer parentheses are two expressions (x==8) and (y==12), which are
separated by an or operator (| |). Because x is 8, the first term (x==8) evaluates true.
There is no need to evaluate the second term (y==12). It doesn't matter whether y is
12, the entire expression will be true. Similarly, consider this snippet:

int x = 8;
if ((x == 5) && (y == 12))

Again, there is no need to evaluate the second term. Because the first term is false,
the and must fail. (Remember, for an and statement to evaluate true, both tested
expressions must evaluate true.)

In cases such as these, the C# compiler will short-circuit the evaluation; the second
test will never be performed.

3.6.6 Operator Precedence

The compiler must know the order in which to evaluate a series of operators. For example, if |
write:

myVariable = 5 + 7 * 3;

there are three operators for the compiler to evaluate (=, +, and *). It could, for example,
operate left to right, which would assign the value 5 to myvariable, then add 7 to the 5 (12)
and multiply by 3 (36) -- but of course then it would throw that 36 away. This is clearly not
what is intended.

The rules of precedence tell the compiler which operators to evaluate first. As is the case in
algebra, multiplication has higher precedence than addition, so 5+7*3 is equal to 26 rather
than 36. Both addition and multiplication have higher precedence than assignment, so the
compiler will do the math, and then assign the result (26) to myvariable only after the math
is completed.

In C#, parentheses are also used to change the order of precedence much as they are in
algebra. Thus, you can change the result by writing:

myVariable = (5+7) * 3;

57

Programming C#, 2nd Edition

Grouping the elements of the assignment in this way causes the compiler to add 5+7, multiply
the result by 3, and then assign that value (36) to myvariable. Table 3-5 summarizes operator
precedence in C#.

Category
Primary

Unary
Multiplicative
Additive

Shift
Relational
Equality
Logical AND
Logical XOR
Logical OR

Conditional AND
Conditional OR

Conditional
Assignment

Table 3-5. Operator precedence

Operators

(x) xX.y x>y f(x) a[x] x++

checked unchecked stackalloc
+ -1 ~+x - x (T)x *x &x

*1%

+ -

<< >>

<><=>=]sas

== |=

&

A

|
&&

?:

=*= /== 4= = <<=>>= &="= ‘:

x-- new typeof sizeof

In some complex equations you might need to nest your parentheses to ensure the proper
order of operations. Let's assume I want to know how many seconds my family wastes each
morning. It turns out that the adults spend 20 minutes over coffee each morning and 10
minutes reading the newspaper. The children waste 30 minutes dawdling and 10 minutes

arguing.

Here's my algorithm:

(((minDrinkingCoffee
((minDawdling + minArguing)

Although this works,

variables:

wastedByEachAdult = minDrinkingCoffee +

* numChildren))

+ minReadingNewspaper)* numAdults) +
* secondsPerMinute.

it is hard to read and hard to get right. It's much easier to use interim

minReadingNewspaper;

wastedByAllAdults = wastedByEachAdult * numAdults;
wastedByEachKid = minDawdling + minArguing;
wastedByAllKids = wastedByEachKid * numChildren;

wastedByFamily = wastedByAllAdults + wastedByAllKids;

totalSeconds

= wastedByFamily * 60;

The latter example uses many more interim variables, but it is far easier to read, understand,
and (most important) debug. As you step through this program in your debugger, you can see
the interim values and make sure they are correct.

3.6.7 The Ternary Operator

Although most operators require one term (e.g., myvaluet++) or two terms (e.g., a+b), there is
one operator that has three: the ternary operator (2:).

58

Programming C#, 2nd Edition

cond-expr ? exprl : expr2

This operator evaluates a conditional expression (an expression that returns a value of type
bool), and then invokes either expressionl if the value returned from the conditional
expression is true, or expression2 if the value returned is false. The logic is "if this is true,

do the first; otherwise do the second." Example 3-18 illustrates.

Example 3-18. The ternary operator

using System;
class Values

{

static void Main()

{
int valueOne = 10;
int valueTwo = 20;
int maxValue = valueOne > valueTwo ? valueOne : valueTwo;

Console.WriteLine ("ValueOne: {0}, valueTwo: {1}, maxValue: {2}"
valueOne, valueTwo, maxValue);

}
Output:

ValueOne: 10, valueTwo: 20, maxValue: 20

In Example 3-18, the ternary operator is being used to test whether valueone is greater than
valueTwo. If so, the value of valueone is assigned to the integer variable maxvalue;

otherwise the value of valueTwo is assigned to maxvalue.

3.7 Namespaces

Chapter 2 discusses the reasons for introducing namespaces into the C# language (e.g.,
avoiding name collisions when using libraries from multiple vendors). In addition to using the
namespaces provided by the .NET Framework or other vendors, you are free to create your
own. You do this by using the namespace keyword, followed by the name you wish to create.

Enclose the objects for that namespace within braces, as illustrated in Example 3-19.
Example 3-19. Creating namespaces

namespace Programming C Sharp
{ using System;
public class Tester
{ public static int Main()
{ for (int i=0;1<10;i++)
{ Console.WriteLine ("i: {O0}",1);

}

return 0;

59

Programming C#, 2nd Edition

Example 3-19 creates a namespace called Programming C Sharp, and also specifies a
Tester class, which lives within that namespace. You can alternatively choose to nest your
namespaces, as needed, by declaring one within another. You might do so to segment your
code, creating objects within a nested namespace whose names are protected from the outer
namespace, as illustrated in Example 3-20.

Example 3-20. Nesting namespaces

namespace Programming C Sharp

{

namespace Programming C Sharp Test

{
using System;
public class Tester

{

public static int Main()
{
for (int i=0;i<10;i++)
{
Console.WriteLine ("i: {O0}",1);
}

return 0;

The Tester object now declared within the Programming C Sharp Test namespace is:

Programming C Sharp.Programming C Sharp Test.Tester

This name would not conflict with another Tester object in any other namespace, including
the outer namespace pProgramming C Sharp.

3.8 Preprocessor Directives

In the examples you've seen so far, you've compiled your entire program whenever you
compiled any of it. At times, however, you might want to compile only parts of your program
-- for example, depending on whether you are debugging or building your production code.
Before your code is compiled, another program called the preprocessor runs and prepares
your program for the compiler. The preprocessor examines your code for special preprocessor
directives, all of which begin with the pound sign (#). These directives allow you to define
identifiers and then test for their existence.

3.8.1 Defining Identifiers

#define DEBUG defines a preprocessor identifier, DEBUG. Although other preprocessor
directives can come anywhere in your code, identifiers must be defined before any other code,

including using statements.

You can test whether DEBUG has been defined with the #i £ statement. Thus, you can write:

60

Programming C#, 2nd Edition

#define DEBUG

//... some normal code - not affected by preprocessor
#if DEBUG
// code to include if debugging
#else
// code to include if not debugging
#endif
//... some normal code - not affected by preprocessor

When the preprocessor runs, it sees the #define statement and records the identifier DERUG.
The preprocessor skips over your normal C# code and then finds the #if - #else - #endif
block.

The #if statement tests for the identifier bEBUG, which does exist, and so the code between
#if and #else is compiled into your program -- but the code between #else and #endif is
not compiled. That code does not appear in your assembly at all; it is as if it were left out of
your source code.

Had the #if statement failed -- that is, if you had tested for an identifier that did not exist --
the code between #if and #else would not be compiled, but the code between #else and
#endif would be compiled.

o Any code not surrounded by #if - #endif is not affected by the
= 4 . breprocessor and is compiled into your program.
[y

3.8.2 Undefining Identifiers

Undefine an identifier with #undef. The preprocessor works its way through the code from
top to bottom, so the identifier is defined from the #define statement until the #undef
statement, or until the program ends. Thus if you write:

#define DEBUG
#1f DEBUG
// this code will be compiled
#endif
#undef DEBUG
#if DEBUG

// this code will not be compiled
#endif

the first #if will succeed (DEBUG is defined), but the second will fail (pDERUG has been
undefined).

61

Programming C#, 2nd Edition

3.8.3 #if, #elif, #else, and #endif

There is no switch statement for the preprocessor, but the #e1if and #else directives
provide great flexibility. The #elif directive allows the else-if logic of "if DEBUG then
action one, else if TEST then action two, else action three":

#1if DEBUG
// compile this code if debug is defined
#elif TEST
// compile this code if debug is not defined
// but TEST is defined
felse
// compile this code if neither DEBUG nor TEST
// is defined
fendif

In this example the preprocessor first tests to see if the identifier bEBUG is defined. If it is, the
code between #if and #elif will be compiled, and the rest of the code until #endif, will not
be compiled.

If (and only if) DEBUG is not defined, the preprocessor next checks to see if TEST is defined.
Note that the preprocessor will not check for TEsST unless DEBUG is not defined. If TEST is
defined, the code between the #e1if and the #else directives will be compiled. If it turns out
that neither DERUG nor TEST is defined, the code between the #eclse and the #endif
statements will be compiled.

3.8.4 #region

The #region preprocessor directive marks an area of text with a comment. The principal use
of this preprocessor directive is to allow tools such as Visual Studio .NET to mark off areas of
code and collapse them in the editor with only the region's comment showing.

For example, when you create a Windows application (covered in Chapter 13), Visual Studio
NET creates a region for code generated by the designer. When the region is expanded it
looks like Figure 3-1. (Note: I've added the rectangle and highlighting to make it easier to find
the region.)

62

Programming C#, 2nd Edition

Figure 3-1. Expanding the Visual Studio .NET code region

public override wvoid Di=poss ()

baze Dispose():
if(componenta !'= null)
componenta. Piapoae () ;
H

/_ fregion Windows Form Designe=r generated code \

private void InitializeComponent (]

{
chis.components = new Jystem. Cowmponentfiodel . Containes ()2
chiz.Slze = new Svacew.Draving.Size (300,300)
chiz.Texc "FoEmL";

1

#e=ndregion

I | f

You can see the region marked by the #region and #endregion preprocessor directives.
When the region is collapsed, however, all you see is the region comment (Windows Form
Designer generated code), as shown in Figure 3-2.

Figure 3-2. Code region is collapsed

2 Helchhincawrs Forml . =] [z =]

punlic ocwerride wvoid Dispo=e ()

base,Dispose ()2
LE [components != null)
componentd . Mapoae ()

[STAThrend]
atatic void Maini)
1

Application. Run(new Forwd ()}
1

Ml

1]

63

Programming C#, 2nd Edition

Chapter 4. Classes and Objects

Chapter 3 discusses the myriad primitive types built into the C# language, such as int, long,
and char. The heart and soul of C#, however, is the ability to create new, complex,
programmer-defined types that map cleanly to the objects that make up the problem you are
trying to solve.

It is this ability to create new types that characterizes an object-oriented language. Specify
new types in C# by declaring and defining classes. You can also define types with interfaces,
as you will see in Chapter 8. Instances of a class are called objects. Objects are created in
memory when your program executes.

The difference between a class and an object is the same as the difference between the
concept of a Dog and the particular dog who is sitting at your feet as you read this. You can't
play fetch with the definition of a Dog, only with an instance.

A Dog class describes what dogs are like: they have weight, height, eye color, hair color,
disposition, and so forth. They also have actions they can take, such as eat, walk, bark, and
sleep. A particular dog (such as my dog Milo) has a specific weight (62 pounds), height (22
inches), eye color (black), hair color (yellow), disposition (angelic), and so forth. He is
capable of all the actions of any dog (though if you knew him you might imagine that eating
is the only method he implements).

The huge advantage of classes in object-oriented programming is that they encapsulate the
characteristics and capabilities of an entity in a single, self-contained and self-sustaining unit
of code. When you want to sort the contents of an instance of a Windows list box control, for
example, tell the list box to sort itself. How it does so is of no concern; that it does so is all
you need to know. Encapsulation, along with polymorphism and inheritance, is one of three
cardinal principles of object-oriented programming.

An old programming joke asks, how many object-oriented programmers does it take to
change a light bulb? Answer: none, you just tell the light bulb to change itself. (Alternate
answer: none, Microsoft has changed the standard to darkness.)

This chapter explains the C# language features that are used to specify new classes. The
elements of a class -- its behaviors and properties -- are known collectively as its class
members. This chapter will show how methods are used to define the behaviors of the class,
and how the state of the class is maintained in member variables (often called fields). In
addition, this chapter introduces properties, which act like methods to the creator of the class
but look like fields to clients of the class.

4.1 Defining Classes

To define a new type or class, first declare it, and then define its methods and fields. Declare a
class using the c1ass keyword. The complete syntax is as follows:

[attributes] [access-modifiers] class identifier |[:base-class]
{class-body}

64

Programming C#, 2nd Edition

Attributes are covered in Chapter 8; access modifiers are discussed in the next section.
(Typically, your classes will use the keyword public as an access modifier.) The identifier
is the name of the class that you provide. The optional base-class is discussed in Chapter 5.
The member definitions that make up the ciass-body are enclosed by open and closed curly
braces ({}).

- C++ programmers take note: a C# class definition does not end with a
o g semicolon, though if you add one, the program will still compile.
i £

In C#, everything happens within a class. For instance, some of the examples in Chapter 3
make use of a class named Tester:

public class Tester

{

public static int Main()
{
/...
}
}

So far, we've not instantiated any instances of that class; that is, we haven't created any
Tester objects. What is the difference between a class and an instance of that class? To
answer that question, start with the distinction between the #ype int and a variable of type
int. Thus, while you would write:

int myInteger = 5;
you would not write:
int = 5;

You can't assign a value to a type; instead, you assign the value to an object of that type (in
this case, a variable of type int).

When you declare a new class, you define the properties of all objects of that class, as well as
their behaviors. For example, if you are creating a windowing environment, you might want
to create screen widgets, more commonly known as controls in Windows programming, to
simplify user interaction with your application. One control of interest might be a list box,
which is very useful for presenting a list of choices to the user and enabling the user to select
from the list.

List boxes have a variety of characteristics -- for example, height, width, location, and text
color. Programmers have also come to expect certain behaviors of list boxes: they can be
opened, closed, sorted, and so on.

Object-oriented programming allows you to create a new type, ListBox, which encapsulates
these characteristics and capabilities. Such a class might have member variables named
height, width, location, and text color, and member methods named sort (), add(),

remove (), €tC.

65

Programming C#, 2nd Edition

You can't assign data to the ListBox type. Instead you must first create an object of that type,
as in the following code snippet:

ListBox myListBox;
Once you create an instance of ListBox, you can assign data to its fields.

Now consider a class to keep track of and display the time of day. The internal state of the
class must be able to represent the current year, month, date, hour, minute, and second. You
probably would also like the class to display the time in a variety of formats. You might

implement such a class by defining a single method and six variables, as shown in Example 4-
1.

Example 4-1. Simple Time class
using System;

public class Time

{
// public methods
public void DisplayCurrentTime ()

{
Console.WriteLine (
"stub for DisplayCurrentTime");

// private variables
int Year;

int Month;

int Date;

int Hour;

int Minute;

int Second;

}

public class Tester

{

static void Main()

{
Time t = new Time();
t.DisplayCurrentTime();

The only method declared within the Time class definition is the method
DisplayCurrentTime (). The body of the method is defined within the class definition
itself. Unlike other languages (such as C++), C# does not require that methods be declared
before they are defined, nor does the language support placing its declarations into one file
and code into another. (C# has no header files.) All C# methods are defined inline as shown in
Example 4-1 with DisplayCurrentTime ().

The DisplayCurrentTime () method is defined to return void; that is, it will not return a
value to a method that invokes it. For now, the body of this method has been "stubbed out."

66

Programming C#, 2nd Edition

The Time class definition ends with the declaration of a number of member variables: vear,
Month, Date, Hour, Minute, and Second.

After the closing brace, a second class, Tester, is defined. Tester contains our now familiar
Main() method. In Main(), an instance of Time is created and its address is assigned to
object t. Because t 1is an instance of Time, Main() can make use of the
DisplayCurrentTime () method available with objects of that type and call it to display the
time:

t.DisplayCurrentTime ();
4.1.1 Access Modifiers

An access modifier determines which class methods -- including methods of other classes --
can see and use a member variable or method within a class. Table 4-1 summarizes the C#
access modifiers.

Table 4-1. Access modifiers
Access Modifier |Restrictions
public No restrictions. Members marked public are visible to any method of any class.
private The members in class A that are marked private are accessible only to methods of class A.

The members in class A that are marked protected are accessible to methods of class A

rotected
P and also to methods of classes derived from class A.

The members in class A that are marked internal are accessible to methods of any class in

internal
A's assembly.

The members in class A that are marked protected internal are accessible to methods
protected of class A, to methods of classes derived from class A, and also to any class in A's assembly.
internal This is effectively protected OR internal (There is no concept of protected AND

internal.)

It is generally desirable to designate the member variables of a class as private. This means
that only member methods of that class can access their value. Because private is the default
accessibility level, you do not need to make it explicit, but I recommend that you do so. Thus,
in Example 4-1, the declarations of member variables should have been written as follows:

// private variables
private int Year;
private int Month;
private int Date;
private int Hour;
private int Minute;
private int Second;

Class Tester and method DisplayCurrentTime () are both declared public so that any
other class can make use of them.

- It is good programming practice to explicitly set the accessibility of all
o g methods and members of your class. Although you can rely on the fact
" 4+ that class members are declared private by default, making their

access explicit indicates a conscious decision and is self-documenting.

67

Programming C#, 2nd Edition

4.1.2 Method Arguments

Methods can take any number of parameters.' The parameter list follows the method name
and is encased in parentheses, with each parameter preceded by its type. For example, the
following declaration defines a method named MyMethod, which returns void (that is, which
returns no value at all) and which takes two parameters: an int and a button:

void MyMethod (int firstParam, button secondParam)

{
//
}

Within the body of the method, the parameters act as local variables, as if you had declared
them in the body of the method and initialized them with the values passed in. Example 4-2
illustrates how you pass values into a method -- in this case, values of type int and float.

Example 4-2. Passing values into SomeMethod()
using System;

public class MyClass
{

public void SomeMethod(int firstParam, float secondParam)

{
Console.WriteLine (
"Here are the parameters received: {0}, {1}",
firstParam, secondParam) ;

}

public class Tester

{

static void Main()
{
int howManyPeople = 5;
float pi = 3.14f%;
MyClass mc = new MyClass();
mc.SomeMethod (howManyPeople, pi);

The method SomeMethod() takes an int and a float and displays them using
Console.WriteLine (). The parameters, which are named firstParam and secondpParam,
are treated as local variables within someMethod ().

In the calling method (Main), two local variables (howManyPeople and pi) are created and
initialized. These variables are passed as the parameters to SomeMethod(). The compiler
maps howManyPeople to firstParam and pi to secondParam, based on their relative
positions in the parameter list.

1 . L . ..
The terms "argument" and "parameter" are often used interchangeably, though some programmers insist on differentiating between the argument
declaration and the parameters passed in when the method is invoked.

68

Programming C#, 2nd Edition

4.2 Creating Objects

In Chapter 3, a distinction is drawn between value types and reference types. The primitive
C# types (int, char, etc.) are value types, and are created on the stack. Objects, however, are
reference types, and are created on the heap, using the keyword new, as in the following:

Time t = new Time();

t does not actually contain the value for the Time object; it contains the address of that
(unnamed) object that is created on the heap. t itself is just a reference to that object.

4.2.1 Constructors

In Example 4-1, notice that the statement that creates the Time object looks as though it is
invoking a method:

Time t = new Time();

In fact, a method is invoked whenever you instantiate an object. This method is called a
constructor, and you must either define one as part of your class definition or let the Common
Language Runtime (CLR) provide one on your behalf. The job of a constructor is to create the
object specified by a class and to put it into a valid state. Before the constructor runs, the
object is undifferentiated memory; after the constructor completes, the memory holds a valid
instance of the class type.

The Time class of Example 4-1 does not define a constructor. If a constructor is not declared,
the compiler provides one for you. The default constructor creates the object but takes no
other action. Member variables are initialized to innocuous values (integers to 0, strings to the
empty string, etc.). Table 4-2 lists the default values assigned to primitive types.

Table 4-2. Primitive types and their default values

Type Default Value
numeric (int, long, etc.) 0

bool false

char '"\0' (null)
enum 0
reference null

Typically, you'll want to define your own constructor and provide it with arguments so that
the constructor can set the initial state for your object. In Example 4-1, assume that you want
to pass in the current year, month, date, and so forth, so that the object is created with
meaningful data.

To define a constructor, declare a method whose name is the same as the class in which it is
declared. Constructors have no return type and are typically declared public. If there are
arguments to pass, define an argument list just as you would for any other method. Example
4-3 declares a constructor for the Time class that accepts a single argument, an object of type
DateTime.

69

Programming C#, 2nd Edition

Example 4-3. Declaring a constructor

public class Time

{
// public accessor methods
public void DisplayCurrentTime ()

{
System.Console.WriteLine ("{0}/{1}/{2} {3}:{4}:{5}",
Month, Date, Year, Hour, Minute, Second):;

}

// constructor
public Time (System.DateTime dt)
{

Year = dt.Year;
Month = dt.Month;
Date = dt.Day;

Hour = dt.Hour;
Minute = dt.Minute;
Second = dt.Second;

// private member variables
int Year;

int Month;

int Date;

int Hour;

int Minute;

int Second;

}

public class Tester

{

static void Main()

{

System.DateTime currentTime = System.DateTime.Now;
Time t = new Time (currentTime) ;
t.DisplayCurrentTime();

}

Output:
11/16/2005 16:21:40

In this example, the constructor takes a DateTime object and initializes all the member
variables based on values in that object. When the constructor finishes, the Time object exists
and the values have been initialized. When DisplayCurrentTime () 1S called in Main(),
the values are displayed.

Try commenting out one of the assignments and running the program again. You'll find that
the member variable is initialized by the compiler to 0. Integer member variables are set to 0
if you don't otherwise assign them. Remember, value types (e.g., integers) cannot be
uninitialized; if you don't tell the constructor what to do, it will try for something innocuous.

70

Programming C#, 2nd Edition

In Example 4-3, the DateTime object is created in the Main() method of Tester. This
object, supplied by the system library, offers a number of public values -- Year, Month, Day,
Hour, Minute, and Second -- that correspond directly to the private member variables of our
Time object. In addition, the pateTime object offers a static member method, Now, which
returns a reference to an instance of a bateTime object initialized with the current time.

Examine the highlighted line in Main (), where the DateTime object is created by calling the
static method Now (). Now () creates a DateTime object on the heap and returns a reference
to it.

That reference is assigned to currentTime, which is declared to be a reference to a DateTime
object. Then currentTime is passed as a parameter to the Time constructor. The Time
constructor parameter, dt, is also a reference to a bateTime object; in fact dt now refers to
the same DateTime object as currentTime does. Thus, the Time constructor has access to the
public member variables of the bateTime object that was created in Tester.Main().

The reason that the pateTime object referred to in the Time constructor is the same object
referred to in Main() is that objects are reference types. Thus, when you pass one as a
parameter it is passed by reference -- that is, the pointer is passed and no copy of the object is
made.

4.2.2 Initializers

It is possible to initialize the values of member variables in an initializer, instead of having to
do so in every constructor. Create an initializer by assigning an initial value to a class
member:

private int Second = 30; // initializer

Assume that the semantics of our Time object are such that no matter what time is set, the
seconds are always initialized to 30. We might rewrite our Time class to use an initializer so
that no matter which constructor is called, the value of second is always initialized, either
explicitly by the constructor or implicitly by the initializer, as shown in Example 4-4.

Example 4-4. Using an initializer

public class Time
{
// public accessor methods
public void DisplayCurrentTime ()
{
System.DateTime now = System.DateTime.Now;
System.Console.WriteLine (
"\nDebug\t: {0}/{1}/{2} {3}:{4}:{5}",
now.Month, now.Day , now.Year, now.Hour,
now.Minute, now.Second);

System.Console.WriteLine ("Time\t: {0}/{1}/{2} {3}:{4}:{5}",
Month, Date, Year, Hour, Minute, Second);

71

Programming C#, 2nd Edition

// constructors
public Time (System.DateTime dt)
{

Year = dt.Year;

Month = dt.Month;

Date = dt.Day;

Hour = dt.Hour;

Minute = dt.Minute;

Second = dt.Second; //explicit assignment

}

public Time (int Year, int Month, int Date,
int Hour, int Minute)

{

this.Year = Year;
this.Month = Month;
this.Date = Date;
this.Hour = Hour;
this.Minute = Minute;

}

// private member variables

private int Year;

private int Month;

private int Date;

private int Hour;

private int Minute;

private int Second = 30; // initializer

}

public class Tester

{

static void Main()

{

System.DateTime currentTime = System.DateTime.Now;
Time t = new Time (currentTime) ;
t.DisplayCurrentTime();

Time t2 = new Time (2005,11,18,11,45);
t2.DisplayCurrentTime ();

}

Output:

Debug : 11/27/2005 7:52:54
Time : 11/27/2005 7:52:54
Debug : 11/27/2005 7:52:54
Time : 11/18/2005 11:45:30

If you do not provide a specific initializer, the constructor will initialize each integer member
variable to zero (0). In the case shown, however, the second member is initialized to 30:

private int Second = 30; // initializer

If a value is not passed in for second, its value will be set to 30 when t2 is created:

72

Programming C#, 2nd Edition

Time t2 = new Time (2005,11,18,11,45);
t2.DisplayCurrentTime ();

However, if a value is assigned to Second, as is done in the constructor (which takes a
DateTime object, shown in bold), that value overrides the initialized value.

The first time through the program we call the constructor that takes a DateTime object, and
the seconds are initialized to 54. The second time through we explicitly set the time to 11:45
(not setting the seconds) and the initializer takes over.

If the program did not have an initializer and did not otherwise assign a value to second, the
value would be initialized by the compiler to zero.

4.2.3 Copy Constructors

A copy constructor creates a new object by copying variables from an existing object of the
same type. For example, you might want to pass a Time object to a Time constructor so that
the new Time object has the same values as the old one.

C# does not provide a copy constructor, so if you want one you must provide it yourself. Such
a constructor copies the elements from the original object into the new one:

public Time (Time existingTimeObject)
{
Year = existingTimeObject.Year;
Month = existingTimeObject.Month;

Date = existingTimeObject.Date;
Hour = existingTimeObject.Hour;
Minute = existingTimeObject.Minute;

Second = existingTimeObject.Second;

A copy constructor is invoked by instantiating an object of type Time and passing it the name
of the Time object to be copied:

Time t3 = new Time (t2);

Here an existingTimeObject (t2) is passed as a parameter to the copy constructor which
will create a new Time object (t3).

4.2.4 The this Keyword

The keyword this refers to the current instance of an object. The this reference (sometimes
referred to as a this pointer’) is a hidden pointer to every nonstatic method of a class. Each
method can refer to the other methods and variables of that object by way of the this
reference.

There are three ways in which the this reference is typically used. The first way is to qualify
instance members otherwise hidden by parameters, as in the following:

2 A pointer is a variable that holds the address of an object in memory. C# does not use pointers with managed objects.

73

Programming C#, 2nd Edition

public void SomeMethod (int hour)
{

this.hour = hour;

}

In this example, SomeMethod () takes a parameter (hour) with the same name as a member
variable of the class. The this reference is used to resolve the name ambiguity. While
this.hour refers to the member variable, hour refers to the parameter.

The argument in favor of this style is that you pick the right variable name and then use it
both for the parameter and for the member variable. The counter argument is that using the
same name for both the parameter and the member variable can be confusing.

The second use of the this reference is to pass the current object as a parameter to another
method. For instance, the following code:

public void FirstMethod (OtherClass otherObject)

{
otherObject.SecondMethod (this) ;

}

establishes two classes, one with the method FirstMethod(); the second is OtherClass,
with its method secondMethod (). Inside FirstMethod, we'd like to invoke SecondMethod,
passing in the current object for further processing.

The third use of this is with indexers, covered in Chapter 9.
4.3 Using Static Members

The properties and methods of a class can be either instance members or static members.
Instance members are associated with instances of a type, while static members are
considered to be part of the class. You access a static member through the name of the class in
which it is declared. For example, suppose you have a class named Button and have
instantiated objects of that class named btnUpdate and btnDelete. Suppose as well that the
Button class has a static method someMethod (). To access the static method you write:

Button.SomeMethod () ;

rather than writing:

btnUpdate.SomeMethod () ;

In C# it is not legal to access a static method or member variable through an instance, and
trying to do so will generate a compiler error (C++ programmers, take note).

Some languages distinguish between class methods and other (global) methods that are
available outside the context of any class. In C# there are no global methods, only class
methods, but you can achieve an analogous result by defining static methods within your
class.

74

Programming C#, 2nd Edition

Static methods act more or less like global methods, in that you can invoke them without
actually having an instance of the object at hand. The advantage of static methods over global,
however, is that the name is scoped to the class in which it occurs, and thus you do not clutter
up the global namespace with myriad function names. This can help manage highly complex
programs, and the name of the class acts very much like a namespace for the static methods
within it.

- Resist the temptation to create a single class in your program in which

a . you stash all your miscellaneous methods. It is possible but not

" 4+ desirable and undermines the encapsulation of an object-oriented
design.

4.3.1 Invoking Static Methods

The Main () method is static. Static methods are said to operate on the class, rather than on
an instance of the class. They do not have a this reference, as there is no instance to point to.

Static methods cannot directly access nonstatic members. For Main() to call a nonstatic
method, it must instantiate an object. Consider Example 4-2, reproduced here for your
convenience.

using System;

public class MyClass
{

public void SomeMethod (int firstParam, float secondParam)

{
Console.WriteLine (
"Here are the parameters received: {0}, {1}",
firstParam, secondParam);

}

public class Tester

{

static void Main()
{
int howManyPeople = 5;
float pi = 3.14f;
MyClass mc = new MyClass();
mc . SomeMethod (howManyPeople, pi);

SomeMethod () 18 a nonstatic method of Myclass. For Main () to access this method, it must
first instantiate an object of type MyClass and then invoke the method through that object.

4.3.2 Using Static Constructors

If your class declares a static constructor, you will be guaranteed that the static constructor
will run before any instance of your class is created.

75

Programming C#, 2nd Edition

i

. You are not able to control exactly when a static constructor will run,
a2 but you do know that it will be after the start of your program and

- before the first instance is created. Because of this you cannot assume
(or determine) whether an instance is being created.

e

For example, you might add the following static constructor to Time:

static Time ()

{

Name = "Time";

}

Notice that there is no access modifier (e.g., public) before the static constructor. Access
modifiers are not allowed on static constructors. In addition, because this is a static member
method, you cannot access nonstatic member variables, and so Name must be declared a static
member variable:

private static string Name;

The final change is to add a line to DisplayCurrentTime (), as in the following:

public void DisplayCurrentTime ()
{

System.Console.WriteLine ("Name: {0}", Name);
System.Console.WriteLine ("{0}/{1}/{2} {3}:{4}:{5}",
Month, Date, Year, Hour, Minute, Second);

When all these changes are made, the output is:

Name: Time
11/27/2005 7:52:54
Name: Time
11/18/2005 11:45:30

(Your output will vary depending on the date and time you run this code.)

Although this code works, it is not necessary to create a static constructor to accomplish this
goal. You could, instead, use an initializer:

private static string Name = "Time";

which accomplishes the same thing. Static constructors are useful, however, for set-up work
that cannot be accomplished with an initializer and that needs to be done only once.

For example, assume you have an unmanaged bit of code in a legacy dll. You want to provide
a class wrapper for this code. You can call load library in your static constructor and initialize
the jump table in the static constructor. Handling legacy code and interoperating with
unmanaged code is discussed in Chapter 22.

76

Programming C#, 2nd Edition

4.3.3 Using Private Constructors

In C# there are no global methods or constants. You might find yourself creating small utility
classes that exist only to hold static members. Setting aside whether this is a good design or
not, if you create such a class you will not want any instances created. You can prevent any
instances from being created by creating a default constructor (one with no parameters),
which does nothing, and which is marked private. With no public constructors, it will not be
possible to create an instance of your class.?

4.3.4 Using Static Fields

A common use of static member variables is to keep track of the number of instances that
currently exist for your class. Example 4-5 illustrates.

Example 4-5. Using static fields for instance counting

using System;

public class Cat
{

public Cat()
{
instances++;

}

public static void HowManyCats()
{
Console.WriteLine ("{0} cats adopted",
instances) ;
}
private static int instances = 0;

}

public class Tester
{
static void Main()
{
Cat.HowManyCats();
Cat frisky = new Cat();
Cat.HowManyCats ()
Cat whiskers = new Cat();
Cat.HowManyCats();

Output:

0 cats adopted
1 cats adopted
2 cats adopted

You can create a public static method that calls the constructor and creates an instance of your class. Typically you might use this idiom to ensure
that only one instance of your class ever exists. This is known as the Singleton design pattern, as described in the seminal work Design Patterns by
Gamma, et al. (Addison Wesley, 1995).

77

Programming C#, 2nd Edition

The cat class has been stripped to its absolute essentials. A static member variable called
instances is created and initialized to zero. Note that the static member is considered part of
the class, not a member of an instance, and so it cannot be initialized by the compiler on
creation of an instance. Thus, an explicit initializer is required for static member variables.
When additional instances of cats are created (in a constructor), the count is incremented.

Static Methods to Access Static Fields

It is undesirable to make member data public. This applies to static member
variables as well. One solution is to make the static member private, as we've done
here with instances. We have created a public accessor method, HowManyCats (),
to provide access to this private member.

4.4 Destroying Objects

Since C# provides garbage collection, you never need to explicitly destroy your objects.
However, if your object controls unmanaged resources, you will need to explicitly free those
resources when you are done with them. Implicit control over unmanaged resources is
provided by a destructor, which will be called by the garbage collector when your object is
destroyed.

The destructor should only release resources that your object holds on to, and should not
reference other objects. Note that if you have only managed references you do not need to and
should not implement a destructor; you want this only for handling unmanaged resources.
Because there is some cost to having a destructor, you ought to implement this only on
methods that require it (that is, methods that consume valuable unmanaged resources).

Never call an object's destructor directly. The garbage collector will call it for you.

How Destructors Work

The garbage collector maintains a list of objects that have a destructor. This list is
updated every time such an object is created or destroyed.

When an object on this list is first collected, it is placed on a queue with other
objects waiting to be destroyed. After the destructor executes, the garbage collector
then collects the object and updates the queue, as well as its list of destructible
objects.

4.4.1 The C# Destructor

C#'s destructor looks, syntactically, much like a C++ destructor, but it behaves quite
differently. Declare a C# destructor with a tilde as follows:

~MyClass () {}

In C#, however, this syntax is simply a shortcut for declaring a Finalize () method that
chains up to its base class. Thus, when you write:

78

Programming C#, 2nd Edition

~MyClass ()

{
// do work here

}

the C# compiler translates it to:

protected override void Finalize()
{
try
{
// do work here.

}
finally

{

base.Finalize();

}

4.4.2 Destructors Versus Dispose

It is not legal to call a destructor explicitly. Your destructor will be called by the garbage
collector. If you do handle precious unmanaged resources (such as file handles) that you want
to close and dispose of as quickly as possible, you ought to implement the IDisposable
interface. (You will learn more about interfaces in Chapter 8.) The IDisposable interface
requires its implementers to define one method, named pispose(), to perform whatever
cleanup you consider to be crucial. The availability of bispose () is a way for your clients to
say "don't wait for the destructor to be called, do it right now."

If you provide a Dispose () method, you should stop the garbage collector from calling your
object's destructor. To do so, call the static method GC. SuppressFinalize (), passing in the
this pointer for your object. Your destructor can then call your Dispose () method. Thus,
you might write:

using System;
class Testing : IDisposable
{
bool is disposed = false;
protected virtual void Dispose (bool disposing)
{
if (!is_disposed) // only dispose once!
{
if (disposing)
{
Console.WriteLine ("Not in destructor, OK to reference other
objects");
}
// perform cleanup for this object
Console.WriteLine ("Disposing...");
}
this.is disposed = true;

}

79

Programming C#, 2nd Edition

public void Dispose()

{
Dispose (true) ;
// tell the GC not to finalize
GC.SuppressFinalize (this);

}

~Testing ()
{
Dispose (false);
Console.WritelLine ("In destructor.");
}
}

4.4.3 Implementing the Close Method

For some objects, you'd rather have your clients call the close () method. (For example,
Close makes more sense than Dispose() for file objects.) You can implement this by
creating a private Dispose() method and a public close() method and having your

Close () method invoke Dispose().
4.4.4 The using Statement

Because you cannot be certain that your user will call pispose() reliably, and because
finalization is nondeterministic (i.e., you can't control when the GC will run), C# provides a
using statement that ensures that pispose () will be called at the earliest possible time. The
idiom is to declare that objects you are using and then to create a scope for these objects with
curly braces. When the close brace is reached, the pispose () method will be called on the
object automatically, as illustrated in Example 4-6.

Example 4-6. The using construct

using System.Drawing;
class Tester

{

public static void Main()

{ using (Font theFont = new Font ("Arial", 10.0f))
{ // use theFont
} // compiler will call Dispose on theFont
Font anotherFont = new Font ("Courier",12.0f);
using (anotherFont)
{

// use anotherFont

} // compiler calls Dispose on anotherFont

80

Programming C#, 2nd Edition

In the first part of this example, the Font object is created within the using statement. When
the using statement ends, Dispose () is called on the Font object.

In the second part of the example, a Font object is created outside of the using statement.
When we decide to use that font, we put it inside the using statement; when that statement
ends, Dispose () is called once again.

The using statement also protects you against unanticipated exceptions. No matter how
control leaves the using statement, Dispose () is called. It is as if there were an implicit try-
catch-finally block. (See Section 11.2 in Chapter 11 for details.)

4.5 Passing Parameters

By default, value types are passed into methods by value (see Section 4.1.2, earlier in this
chapter). This means that when a value object is passed to a method, a temporary copy of the
object is created within that method. Once the method completes, the copy is discarded.
Although passing by value is the normal case, there are times when you will want to pass
value objects by reference. C# provides the ref parameter modifier for passing value objects
into a method by reference and the out modifier for those cases in which you want to pass in
a ref variable without first initializing it. C# also supports the params modifier, which allows
a method to accept a variable number of parameters. The params keyword is discussed in
Chapter 9.

4.5.1 Passing by Reference

Methods can return only a single value (though that value can be a collection of values). Let's
return to the Time class and add a GetTime () method, which returns the hour, minutes, and
seconds.

Because we cannot return three values, perhaps we can pass in three parameters, let the
method modify the parameters, and examine the result in the calling method. Example 4-7
shows a first attempt at this.

Example 4-7. Returning values in parameters

public class Time

{
// public accessor methods
public void DisplayCurrentTime ()

{
System.Console.WriteLine ("{0}/{1}/{2} {3}:{4}:{5}",
Month, Date, Year, Hour, Minute, Second);

}

public int GetHour ()
{

return Hour;

}

81

Programming C#, 2nd Edition

public void GetTime(int h, int m, int s)

{
h = Hour;
m = Minute;
s = Second;
}

// constructor
public Time (System.DateTime dt)

{

Year = dt.Year;
Month = dt.Month;
Date = dt.Day;

Hour = dt.Hour;
Minute = dt.Minute;
Second = dt.Second;

}

// private member variables
private int Year;

private int Month;

private int Date;

private int Hour;

private int Minute;

private int Second;

}

public class Tester
{
static void Main()
{
System.DateTime currentTime = System.DateTime.Now;
Time t = new Time (currentTime) ;
t.DisplayCurrentTime ();

int theHour = 0;
int theMinute = 0;
int theSecond = 0;

t.GetTime (theHour,

System.Console.WritelLine ("Current time:

theHour,

theMinute,

theMinute,

theSecond) ;
{Or:{1}:{2}",
theSecond) ;

Output:

11/17/2005 13:41:18
Current time: 0:0:0

Notice that the "Current time" in the output is 0:0: 0. Clearly, this first attempt did not work.
The problem is with the parameters. We pass in three integer parameters to GetTime (), and
we modify the parameters in GetTime (), but when the values are accessed back in Main(),
they are unchanged. This is because integers are value types, and so are passed by value; a
copy is made in GetTime (). What we need is to pass these values by reference.

82

Programming C#, 2nd Edition
Two small changes are required. First, change the parameters of the GetTime method to
indicate that the parameters are ref (reference) parameters:

public void GetTime (ref int h, ref int m, ref int s)

{

h = Hour;
m = Minute;
s = Second;

Second, modify the call to GetTime () to pass the arguments as references as well:

t.GetTime (ref theHour, ref theMinute, ref theSecond);

If you leave out the second step of marking the arguments with the keyword ref, the compiler
will complain that the argument cannot be converted from an int to a ref int.

The results now show the correct time. By declaring these parameters to be ref parameters,
you instruct the compiler to pass them by reference. Instead of a copy being made, the
parameter in GetTime () is a reference to the same variable (theHour) that is created in
Main (). When you change these values in GetTime (), the change is reflected in Main ().

Keep in mind that ref parameters are references to the actual original value -- it is as if you
said "here, work on this one." Conversely, value parameters are copies -- it is as if you said
"here, work on one just like this."

4.5.2 Passing Out Parameters with Definite Assignment

C# imposes definite assignment , which requires that all variables be assigned a value before
they are used. In Example 4-7, if you don't initialize theHour, theMinute, and theSecond
before you pass them as parameters to GetTime (), the compiler will complain. Yet the
initialization that is done merely sets their values to 0 before they are passed to the method:

int theHour = 0;

int theMinute = 0;

int theSecond = 0;

t.GetTime (ref theHour, ref theMinute, ref theSecond):;

It seems silly to initialize these values because you immediately pass them by reference into
GetTime where they'll be changed, but if you don't, the following compiler errors are
reported:

Use of unassigned local variable 'theHour'
Use of unassigned local variable 'theMinute'
Use of unassigned local variable 'theSecond'

C# provides the out parameter modifier for this situation. The out modifier removes the
requirement that a reference parameter be initialized. The parameters to GetTime(), for
example, provide no information to the method; they are simply a mechanism for getting
information out of it. Thus, by marking all three as out parameters, you eliminate the need to
initialize them outside the method. Within the called method, the out parameters must be

83

Programming C#, 2nd Edition
assigned a value before the method returns. Here are the altered parameter declarations for
GetTime ():

public void GetTime (out int h, out int m, out int s)

{

h = Hour;
m = Minute;
s = Second;

and here 1s the new invocation of the method in Main ():

t.GetTime (out theHour, out theMinute, out theSecond):;

To summarize, value types are passed into methods by value. Ref parameters are used to pass
value types into a method by reference. This allows you to retrieve their modified value in the
calling method. out parameters are used only to return information from a method.
Example 4-8 rewrites Example 4-7 to use all three.

Example 4-8. Using in, out, and ref parameters

public class Time
{
// public accessor methods
public void DisplayCurrentTime ()
{
System.Console.WriteLine ("{0}/{1}/{2} {3}:{4}:{5}",
Month, Date, Year, Hour, Minute, Second);

}

public int GetHour ()
{
return Hour;

}

public void SetTime(int hr, out int min, ref int sec)
{
// if the passed in time is >= 30
// increment the minute and set second to 0
// otherwise leave both alone
if (sec >= 30)
{
Minute++;
Second = 0;
}

Hour = hr; // set to value passed in
// pass the minute and second back out

min = Minute;
sec = Second;

84

}

{

// constructor

public Time (System.DateTime dt)

{

Year = dt.Year;
Month = dt.Month;
Date = dt.Day;

Hour = dt.Hour;
Minute = dt.Minute;
Second dt.Second;

}

// private member variables
private int Year;

private int Month;

private int Date;

private int Hour;

private int Minute;

private int Second;

public class Tester

static void Main()

{

System.DateTime currentTime
Time t = new Time (currentTime) ;

t.DisplayCurrentTime();

int theHour = 3;
int theMinute;
int theSecond = 20;

t.SetTime (theHour, out theMinute,

Programming C#, 2nd Edition

System.DateTime.Now;

ref theSecond);

System.Console.WriteLine (
"the Minute is now: {0} and {1} seconds",
theMinute, theSecond);

theSecond = 40;

t.SetTime (theHour, out theMinute, ref theSecond);

System.Console.WritelLine ("the Minute is now: " +
"{0} and {1} seconds",

theMinute, theSecond);

Output:

11/17/2005 14:6:24

the Minute is now: 6 and 24 seconds
the Minute is now: 7 and 0 seconds

SetTime is a bit contrived, but it illustrates the three types of parameters. theHour is passed
in as a value parameter; its entire job is to set the member variable Hour, and no value is

returned using this parameter.

85

Programming C#, 2nd Edition

The ref parameter thesecond is used to set a value in the method. If theSecond is greater
than or equal to 30, the member variable second is reset to 0 and the member variable Minute
is incremented.

Finally, theMinute is passed into the method only to return the value of the member variable
Minute, and thus is marked as an out parameter.

It makes perfect sense that theHour and theSecond must be initialized; their values are
needed and used. It is not necessary to initialize theMinute, as it iS an out parameter that
exists only to return a value. What at first appeared to be arbitrary and capricious rules now
makes sense; values are only required to be initialized when their initial value is meaningful.

4.6 Overloading Methods and Constructors

Often you'll want to have more than one function with the same name. The most common
example of this is to have more than one constructor. In the examples shown so far, the
constructor has taken a single parameter: a DateTime object. It would be convenient to be
able to set new Time objects to an arbitrary time by passing in year, month, date, hour,
minute, and second values. It would be even more convenient if some clients could use one
constructor, and other clients could use the other constructor. Function overloading provides
for exactly these contingencies.

The signature of a method is defined by its name and its parameter list. Two methods differ in
their signatures if they have different names or different parameter lists. Parameter lists can
differ by having different numbers or types of parameters. For example, in the following code
the first method differs from the second in the number of parameters, and the second differs
from the third in the types of parameters:

void myMethod (int pl);
void myMethod (int pl, int p2);
void myMethod (int pl, string sl);

A class can have any number of methods, as long as each one's signature differs from that of
all the others.

Example 4-9 illustrates our Time class with two constructors, one which takes a DateTime
object, and the other which takes six integers.

Example 4-9. Overloading the constructor

public class Time

{
// public accessor methods
public void DisplayCurrentTime ()

{
System.Console.WriteLine ("{0}/{1}/{2} {3}:{4}:{5}",
Month, Date, Year, Hour, Minute, Second);

86

Programming C#, 2nd Edition

// constructors
public Time (System.DateTime dt)
{

Year = dt.Year;
Month = dt.Month;
Date = dt.Day;
Hour = dt.Hour;
Minute = dt.Minute;
Second = dt.Second;

public Time (int Year, int Month, int Date,
int Hour, int Minute, int Second)

{

this.Year = Year;
this.Month = Month;
this.Date = Date;
this.Hour = Hour;
this.Minute = Minute;
this.Second = Second;

}

// private member variables
private int Year;

private int Month;

private int Date;

private int Hour;

private int Minute;

private int Second;

}

public class Tester

{

static void Main()

{

System.DateTime currentTime = System.DateTime.Now;

Time t = new Time (currentTime) ;
t.DisplayCurrentTime ();

Time t2 = new Time (2005,11,18,11,03,30);
t2.DisplayCurrentTime() ;

As you can see, the Time class in Example 4-9 has two constructors. If a function's signature
consisted only of the function name, the compiler would not know which constructors to call
when constructing t1 and t2. However, because the signature includes the function argument
types, the compiler is able to match the constructor call for t+1 with the constructor whose
signature requires a DateTime object. Likewise, the compiler is able to associate the t2
constructor call with the constructor method whose signature specifies six integer arguments.

When you overload a method, you must change the signature (i.e., the name, number, or type

of the parameters). You are free, as well, to change the return type, but this is optional.
Changing only the return type does not overload the method, and creating two methods with

87

Programming C#, 2nd Edition

the same signature but differing return types will generate a compile error. This is illustrated
in Example 4-10:

Example 4-10. Varying the return type on overloaded methods

public class Tester

{

private int Triple(int wval)

{

return 3 * val;

}

private long Triple (long val)
{

return 3 * val;

}

public void Test()
{
int x = 5;
int y = Triple(x);
System.Console.WriteLine ("x: {0} vy: {1}", x, Vy);

long 1x = 10;
long ly = Triple(1x);
System.Console.WriteLine("1x: {0} ly: {1}", 1lx, ly);

}

static void Main()

{
Tester t = new Tester();
t.Test ();

In this example, the Tester class overloads the Triple () method, one to take an integer, the
other to take a long. The return type for the two Triple () methods varies. Although this is
not required, it is very convenient in this case.

4.7 Encapsulating Data with Properties

Properties allow clients to access class state as if they were accessing member fields directly,
while actually implementing that access through a class method.

This is ideal. The client wants direct access to the state of the object and does not want to
work with methods. The class designer, however, wants to hide the internal state of his class
in class members, and provide indirect access through a method.

By decoupling the class state from the method that accesses that state, the designer is free to
change the internal state of the object as needed. When the Time class is first created, the Hour
value might be stored as a member variable. When the class is redesigned, the Hour value
might be computed, or retrieved from a database. If the client had direct access to the original
Hour member variable, the change to computing the value would break the client. By
decoupling and forcing the client to go through a method (or property), the Time class can
change how it manages its internal state without breaking client code.

88

Programming C#, 2nd Edition

Properties meet both goals: they provide a simple interface to the client, appearing to be a
member variable. They are implemented as methods, however, providing the data hiding
required by good object-oriented design, as illustrated in Example 4-11.

Example 4-11. Using a property

public class Time

{

}

// public accessor methods
public void DisplayCurrentTime ()

{

System.Console.WriteLine (
"Time\t: {0}/{1}/{2} {3}:{4}:{5}",
month, date, year, hour, minute, second);

// constructors
public Time (System.DateTime dt)
{

year = dt.Year;
month = dt.Month;
date = dt.Day;
hour = dt.Hour;
minute = dt.Minute;
second = dt.Second;

// create a property
public int Hour
{

get

{

return hour;

hour = value;

}

// private member variables
private int year;

private int month;

private int date;

private int hour;

private int minute;

private int second;

public class Tester

{

static void Main()

{

System.DateTime currentTime = System.DateTime.Now;
Time t = new Time (currentTime) ;
t.DisplayCurrentTime();

89

Programming C#, 2nd Edition

int theHour = t.Hour;

System.Console.WriteLine ("\nRetrieved the hour: {0}\n",
theHour) ;

theHour++;

t.Hour = theHour;

System.Console.WriteLine ("Updated the hour: {0}\n", theHour);

To declare a property, write the property type and name followed by a pair of braces. Within
the braces you may declare get and set accessors. Neither of these has explicit parameters,
though the set () method has an implicit parameter value as shown next.

In Example 4-11, Hour is a property. Its declaration creates two accessors: get and set.

public int Hour
{

get

{

return hour;

hour = value;

Each accessor has an accessor-body that does the work of retrieving and setting the property
value. The property value might be stored in a database (in which case the accessor-body
would do whatever work is needed to interact with the database), or it might just be stored in a
private member variable:

private int hour;
4.7.1 The get Accessor

The body of the get accessor is similar to a class method that returns an object of the type of
the property. In the example, the accessor for Hour is similar to a method that returns an int.
It returns the value of the private member variable in which the value of the property has been
stored:

get
{

return hour;

}

In this example, a local int member variable is returned, but you could just as easily retrieve
an integer value from a database, or compute it on the fly.

Whenever you reference the property (other than to assign to it), the get accessor is invoked
to read the value of the property:

Time t = new Time (currentTime) ;
int theHour = t.Hour;

90

Programming C#, 2nd Edition

In this example, the value of the Time object's Hour property is retrieved, invoking the get
accessor to extract the property, which is then assigned to a local variable.

4.7.2 The set Accessor

The set accessor sets the value of a property and is similar to a method that returns void.
When you define a set accessor you must use the value keyword to represent the argument
whose value is passed to and stored by the property.

set

{

hour = value;

}

Here, again, a private member variable is used to store the value of the property, but the set
accessor could write to a database or update other member variables as needed.

When you assign a value to the property the set accessor is automatically invoked, and the
implicit parameter value is set to the value you assign:

theHour++;
t.Hour = theHour;

The advantage of this approach is that the client can interact with the properties directly,
without sacrificing the data hiding and encapsulation sacrosanct in good object-oriented
design.

4.8 Readonly Fields

You might want to create a version of the Time class that is responsible for providing public
static values representing the current time and date. Example 4-12 illustrates a simple
approach to this problem.

Example 4-12. Using static public constants

public class RightNow
{
static RightNow()

{
System.DateTime dt = System.DateTime.Now;

Year = dt.Year;
Month = dt.Month;
Date = dt.Day;
Hour = dt.Hour;
Minute = dt.Minute;
Second = dt.Second;

// public member variables
public static int Year;
public static int Month;
public static int Date;
public static int Hour;
public static int Minute;

91

Programming C#, 2nd Edition

public static int Second;

}

public class Tester

{

static void Main()

{

System.Console.WritelLine ("This year: {0}",

RightNow.Year.ToString());
RightNow.Year = 2006;
System.Console.WritelLine ("This year: {0}",

RightNow.Year.ToString());

}
Output:

This year: 2005
This year: 2006

This works well enough, until someone comes along and changes one of these values. As the
example shows, the RightNow.vear value can be changed, for example, to 2003. This is
clearly not what we'd like.

We'd like to mark the static values as constant, but that is not possible because we don't
initialize them until the static constructor is executed. C# provides the keyword readonly for
exactly this purpose. If you change the class member variable declarations as follows:

public static readonly int Year;
public static readonly int Month;
public static readonly int Date;
public static readonly int Hour;
public static readonly int Minute;
public static readonly int Second;

then comment out the reassignment in Main ():

// RightNow.Year = 2006; // error!

the program will compile and run as intended.

92

Programming C#, 2nd Edition

Chapter 5. Inheritance and Polymorphism

The previous chapter demonstrates how to create new types by declaring classes. The current
chapter explores the relationship among objects in the real world and how to model these
relationships in your code. This chapter focuses on specialization, which is implemented in
C# through inheritance. This chapter also explains how instances of more specialized classes
can be treated as if they were instances of more general classes, a process known as
polymorphism. This chapter ends with a consideration of sealed classes, which cannot be
specialized, as well as abstract classes, which exist only to be specialized, and a discussion of
the root of all classes, the class object.

5.1 Specialization and Generalization

Classes and their instances (objects) do not exist in a vacuum but rather in a network of
interdependencies and relationships, just as we, as social animals, live in a world of
relationships and categories.

The is-a relationship is one of specialization . When we say that a Dog is-a mammal, we
mean that the dog is a specialized kind of mammal. It has all the characteristics of any
mammal (it bears live young, nurses with milk, has hair), but it specializes these
characteristics to the familiar characteristics of canine domesticus. A Cat is also a mammal.
As such we expect it to share certain characteristics with the dog that are generalized in
Mammal, but to differ in those characteristics that are specialized in Cat.

The specialization and generalization relationships are both reciprocal and hierarchical. They
are reciprocal because specialization is the obverse side of the coin from generalization. Thus,
Dog and Cat specialize Mammal, and Mammal generalizes from Dog and Cat.

These relationships are hierarchical because they create a relationship tree, with specialized
types branching off from more generalized types. As you move up the hierarchy you achieve
greater generalization. You move up toward Mammal to generalize that Dogs and Cats and
Horses all bear live young. As you move down the hierarchy you specialize. Thus, the Cat
specializes Mammal in having claws (a characteristic) and purring (a behavior).

Similarly, when you say that ListBox and Button are windows, you indicate that there are
characteristics and behaviors of windows that you expect to find in both of these types. In
other words, window generalizes the shared characteristics of both ListBox and Button,
while each specializes its own particular characteristics and behaviors.

93

Programming C#, 2nd Edition

About the Unified Modeling Language

The Unified Modeling Language (UML) is a standardized "language" for describing
a system or business. The part of the UML that is useful for the purposes of this
chapter is the set of diagrams used to document the relationships among classes.

In the UML, classes are represented as boxes. The name of the class appears at
the top of the box, and (optionally) methods and members can be listed in
the sections within the box.

In the UML, you model these relationships as shown in Figure 5-1. Note that
the arrow points from the more specialized class up to the more general class.

Figure 5-1. An is-a relationship

Window

-

Button List box

It is common to note that two classes share functionality, and then to factor out these
commonalities into a shared base class. This provides you with greater reuse of common code
and easier-to-maintain code.

For example, suppose you started out creating a series of objects as illustrated in Figure 5-2.

Figure 5-2. Deriving from Window

Window

Radio button Chedk box Command List box

After working with RadioButtons, CheckBoxes, and Command buttons for a while, you
realize that they share certain characteristics and behaviors that are more specialized than
wWwindow but more general than any of the three. You might factor these common traits and
behaviors into a common base class, Button, and rearrange your inheritance hierarchy as
shown in Figure 5-3. This is an example of how generalization is used in object-oriented
development.

94

Programming C#, 2nd Edition

Figure 5-3. A more factored hierarchy

Window

Radio button Chedk box Command List box

This UML diagram depicts the relationship between the factored classes and shows that both
ListBox and Button derive from window, and that Button is in turn specialized into
CheckBox and Command. Finally, RadioButton derives from CheckBox. You can thus say that
RadioButton IS @ CheckBox, which in turn is a Button, and that Buttons are Windows.

This is not the only, or even necessarily the best, organization for these objects, but it is a
reasonable starting point for understanding how these types (classes) relate to one another.

e Actually, although this might reflect how some widget hierarchies are
o organized, I am very skeptical of any system in which the model does
" 4 not reflect how I perceive reality. When I find myself saying that a

RadioButton 1S a CheckBox, | have to think long and hard about
whether that makes sense. I suppose a RadioButton is a kind of
checkbox. It is a checkbox that supports the idiom of mutually exclusive
choices. That said, it is a bit of a stretch and might be a sign of a shaky
design.

5.2 Inheritance

In C#, the specialization relationship is typically implemented using inheritance. This is not
the only way to implement specialization, but it is the most common and most natural way to
implement this relationship.

Saying that ListBox inherits from (or derives from) window indicates that it specializes
Window. Window 1S referred to as the base class, and ListBox is referred to as the derived
class. That is, ListBox derives its characteristics and behaviors from window and then
specializes to its own particular needs.

5.2.1 Implementing Inheritance

In C#, you create a derived class by adding a colon after the name of the derived class,
followed by the name of the base class:

public class ListBox : Window

This code declares a new class, ListBox, that derives from window. You can read the colon as
"derives from."

95

Programming C#, 2nd Edition

The derived class inherits all the members of the base class, both member variables and
methods. The derived class is free to implement its own version of a base class method. It
does so by marking the new method with the keyword new. (The new keyword is also
discussed in Section 5.3.3, later in this chapter.) This indicates that the derived class has

intentionally hidden and replaced the base class method, as used in Example 5-1.

Example 5-1. Using a derived class

using System;

public class Window

{

}

// constructor takes two integers to
// fix location on the console
public Window (int top, int left)
{

this.top = top;

this.left = left;
}

// simulates drawing the window
public void DrawWindow ()
{
Console.WriteLine ("Drawing Window at {0}, {1}",
top, left);
}

// these members are private and thus invisible
// to derived class methods; we'll examine this
// later in the chapter

private int top;

private int left;

// ListBox derives from Window
public class ListBox : Window

{

// constructor adds a parameter
public ListBox(
int top,
int left,
string theContents) :
base (top, left) // call base constructor

{

mListBoxContents = theContents;

}

// a new version (note keyword) because in the
// derived method we change the behavior
public new void DrawWindow ()

{

base.DrawWindow(); // invoke the base method
Console.WritelLine ("Writing string to the listbox: {0}",
mListBoxContents) ;

}

private string mListBoxContents; // new member variable

96

Programming C#, 2nd Edition

public class Tester

{

public static void Main()

{
// create a base instance
Window w = new Window (5,10);
w.DrawWindow () ;

// create a derived instance
ListBox 1lb = new ListBox (20,30, "Hello world");
lb.DrawWindow () ;

}
Output:

Drawing Window at 5, 10
Drawing Window at 20, 30
Writing string to the listbox: Hello world

Example 5-1 starts with the declaration of the base class window. This class implements a
constructor and a simple DrawWindow method. There are two private member variables, top
and left.

5.2.2 Calling Base Class Constructors

In Example 5-1, the new class ListBox derives from window and has its own constructor,
which takes three parameters. The ListBox constructor invokes the constructor of its parent
by placing a colon (:) after the parameter list and then invoking the base class with the
keyword base:

public ListBox (
int theTop,
int theleft,
string theContents) :

base (theTop, theLeft) // call base constructor

Because classes cannot inherit constructors, a derived class must implement its own
constructor and can only make use of the constructor of its base class by calling it explicitly.

Also notice in Example 5-1 that ListBox implements a new version of DrawWindow () :
public new void DrawWindow ()

The keyword new indicates that the programmer is intentionally creating a new version of this
method in the derived class.

If the base class has an accessible default constructor, the derived constructor is not required
to invoke the base constructor explicitly; instead, the default constructor is called implicitly.
However, if the base class does not have a default constructor, every derived constructor must
explicitly invoke one of the base class constructors using the base keyword.

97

Programming C#, 2nd Edition

o As discussed in Chapter 4, if you do not declare a constructor of any
s kind, the compiler will create a default constructor for you. Whether
[L .

d you write it yourself or you use the one provided "by default" by the

compiler, a default constructor is one that takes no parameters. Note,
however, that once you do create a constructor of any kind (with or
without parameters) the compiler does not create a default constructor
for you.

5.2.3 Calling Base Class Methods

In Example 5-1, the prawwindow () method of ListBox hides and replaces the base class
method. When you call bprawwindow() on an object of type ListBox, it 1is
ListBox.DrawWindow () that will be invoked, not Wwindow.DrawWindow (). Note, however,
that ListBox.DrawWindow () can invoke the DrawWwindow () method of its base class with
the code:

base.DrawWindow(); // invoke the base method
(The keyword base identifies the base class for the current object.)
5.2.4 Controlling Access

The visibility of a class and its members can be restricted through the use of access modifiers,
such as public, private, protected, internal, and protected internal. (See Chapter 4
for a discussion of access modifiers.)

As you've seen, public allows a member to be accessed by the member methods of other
classes, while private indicates that the member is visible only to member methods of its
own class. The protected keyword extends visibility to methods of derived classes, while
internal extends visibility to methods of any class in the same assembly.'

The internal protected keyword pair allows access to members of the same assembly
(internal) or derived classes (protected). You can think of this designation as internal or
protected.

Classes as well as their members can be designated with any of these accessibility levels. If a
class member has a different access designation than the class, the more restricted access
applies. Thus, if you define a class, myClass, as follows:

public class myClass

{
//

protected int myValue;

the accessibility for myvalue is protected even though the class itself is public. A public class
is one that is visible to any other class that wishes to interact with it. Occasionally, classes are

! An assembly (discussed in Chapter 1), is the unit of sharing and reuse in the Common Language Runtime (a logical DLL). Typically, an assembly is
a collection of physical files, held in a single directory, which includes all the resources (bitmaps, .gif files, etc.) required for an executable, along with
the Intermediate Language (IL) and metadata for that program.

98

Programming C#, 2nd Edition

created that exist only to help other classes in an assembly, and these classes might be marked
internal rather than public.

5.3 Polymorphism

There are two powerful aspects to inheritance. One is code reuse. When you create a ListBox
class, you're able to reuse some of the logic in the base (window) class.

What is arguably more powerful, however, is the second aspect of inheritance: polymorphism.
Poly means many and morph means form. Thus, polymorphism refers to being able to use
many forms of a type without regard to the details.

When the phone company sends your phone a ring signal, it does not know what type of
phone is on the other end of the line. You might have an old-fashioned Western Electric
phone that energizes a motor to ring a bell, or you might have an electronic phone that plays
digital music.

As far as the phone company is concerned, it knows only about the "base type" phone and
expects that any "instance" of this type knows how to ring. When the phone company tells
your phone to ring, it simply expects the phone to "do the right thing." Thus, the phone
company treats your phone polymorphically.

5.3.1 Creating Polymorphic Types

Because a ListBox is-a Window and a Button is-a Window, we expect to be able to use either
of these types in situations that call for a window. For example, a form might want to keep a
collection of all the instances of window it manages so that when the form is opened, it can tell
each of its windows to draw itself. For this operation, the form does not want to know which
elements are list boxes and which are buttons; it just wants to tick through its collection and
tell each to "draw." In short, the form wants to treat all its window objects polymorphically.

5.3.2 Creating Polymorphic Methods

To create a method that supports polymorphism, you need only mark it as virtual in its base
class. For example, to indicate that the method Drawwindow() of class window in
Example 5-1 is polymorphic, simply add the keyword virtual to its declaration, as follows:

public virtual void DrawWindow ()
Now each derived class is free to implement its own version of DrawWindow (). To do so,
simply override the base class virtual method by using the keyword override in the derived

class method definition, and then add the new code for that overridden method.

In the following excerpt from Example 5-2 (which appears later in this section), ListBox
derives from window and implements its own version of DrawWindow ():

99

Programming C#, 2nd Edition

public override void DrawWindow ()

{

base.DrawWindow(); // invoke the base method
Console.WritelLine ("Writing string to the listbox: {0}",
listBoxContents) ;

The keyword override tells the compiler that this class has intentionally overridden how
DrawWindow () works. Similarly, you'll override this method in another class, Button, also
derived from window.

In the body of Example 5-2, you'll first create three objects, a window, a ListBox, and a
Button. You'll then call brawwindow () on each:

Window win = new Window(1l,2);

ListBox 1lb = new ListBox(3,4,"Stand alone list box");
Button b = new Button(5,6);

win.DrawWindow () ;

lb.DrawWindow () ;

b.DrawWindow () ;

This works much as you might expect. The correct brawiWindow () object is called for each.
So far, nothing polymorphic has been done. The real magic starts when you create an array of
Window objects. Because a ListBox is-a Window, you are free to place a ListBox into a
Window array. You can also place a Button into an array of window objects because a Button
is also a window:

Window[] winArray = new Window[3];

winArray[0] = new Window(1l,2);

winArray[l] = new ListBox(3,4,"List box in array");
winArray[2] = new Button(5,6);

What happens when you call brawiWindow () on each of these objects?

for (int 1 = 0;1i < 3; i++)
{

winArray[i].DrawWindow ();

}

All the compiler knows is that it has three window objects and that you've called brawwindow (
) on each. If you had not marked DrawWindow as virtual, Window's DrawWindow () method
would be called three times. However, because you did mark brawWindow () as virtual and
because the derived classes override that method, when you call brawWindow () on the array,
the compiler determines the runtime type of the actual objects (a window, a ListBox and a
Button) and calls the right method on each. This is the essence of polymorphism. The
complete code for this example is shown in Example 5-2.

100

Programming C#, 2nd Edition

A

i
-
"\i_ r

Ty

This listing uses an array, which is a collection of objects of the same
type. Access the members of the array with the index operator:

// set the value of the element
// at offset 5
MyArray[5] = 7;

The first element in any array is at index 0. The use of the array in this
example should be fairly intuitive. Arrays are explained in detail in
Chapter 9.

Example 5-2. Using virtual methods

using System;

public class Window

{

// constructor takes two integers to
// fix location on the console
public Window (int top, int left)

{

this.top = top;
this.left = left;

}

// simulates drawing the window
public virtual void DrawWindow ()

{

Console.WritelLine ("Window: drawing Window at {0}, {1}",
top, left);

}

// these members are protected and thus visible
// to derived class methods. We'll examine this
// later in the chapter

protected int top;

protected int left;

}

// ListBox derives from Window
public class ListBox : Window

{

// constructor adds a parameter
public ListBox (
int top,
int left,
string contents):
base (top, left) // call base constructor

listBoxContents = contents;

101

// an overridden version (note keyword) because in the

// derived method we change the behavior
public override void DrawWindow()

{

base.DrawWindow(); // invoke the base method

Console.WritelLine ("Writing string to the listbox:

listBoxContents) ;

}

private string listBoxContents; // new member variable

}

public class Button : Window
{
public Button (
int top,
int left):
base (top, left)
{
}

// an overridden version (note keyword) because in the

// derived method we change the behavior
public override void DrawWindow()

{

Console.WriteLine ("Drawing a button at {0}, {1}\n",

top, left);

}

public class Tester
{
static void Main()
{
Window win = new Window(1l,2);
ListBox 1lb
Button b = new Button(5,6);
win.DrawWindow () ;
lb.DrawWindow () ;
b.DrawWindow () ;

Window[] winArray = new Window[3];

winArray[0] = new Window(1l,2);

winArray[l] = new ListBox(3,4,"List box in array");
winArray[2] = new Button(5,6);

for (int 1 = 0;1 < 3; i++)
{

winArray[i] .DrawWindow () ;

}

Output:

Window: drawing Window at 1, 2

Window: drawing Window at 3, 4

Writing string to the listbox: Stand alone list box
Drawing a button at 5, 6

Window: drawing Window at 1, 2

new ListBox(3,4,"Stand alone list box");

Programming C#, 2nd Edition

102

Programming C#, 2nd Edition

Window: drawing Window at 3, 4
Writing string to the listbox: List box in array
Drawing a button at 5, 6

Note that throughout this example, we've marked the new overridden methods with the
keyword override:

public override void DrawWindow()

The compiler now knows to use the overridden method when treating these objects
polymorphically. The compiler is responsible for tracking the real type of the object and for
handling the "late binding" so that it is ListBox.DrawWindow () that is called when the
window reference really points to a ListBox object.

o C++ programmers take note: you must explicitly mark the declaration
o of any method that overrides a virtual method with the keyword
" override.

5.3.3 Versioning with the new and override Keywords

In C#, the programmer's decision to override a virtual method is made explicit with the
override keyword. This helps you release new versions of your code; changes to the base
class will not break existing code in the derived classes. The requirement to use the keyword
override helps prevent that problem.

Here's how: assume for a moment that the window base class of the previous example was
written by Company A. Suppose also that the ListBox and RadioButton classes were written
by programmers from Company B using a purchased copy of the Company A window class as
a base. The programmers in Company B have little or no control over the design of the
window class, including future changes that Company A might choose to make.

Now suppose that one of the programmers for Company B decides to add a sort () method
to ListBox:

public class ListBox : Window

{
public virtual void Sort() {...}

}

This presents no problems until Company A, the author of window, releases Version 2 of its
window class, and it turns out that the programmers in Company A have also added a sort ()
method to their public class window:

public class Window

{
//
public virtual void Sort() {...}

In other object-oriented languages (such as C++), the new virtual sort () method in window
would now act as a base method for the virtual sort () method in ListBox. The compiler

103

Programming C#, 2nd Edition

would call the sort () method in ListBox when you intend to call the sort () in Wwindow.
In Java, if the sort () in window has a different return type, the class loader would consider
the sort () in ListBox to be an invalid override and would fail to load.

C# prevents this confusion. In C#, a virtual function is always considered to be the root of
virtual dispatch; that is, once C# finds a virtual method, it looks no further up the inheritance
hierarchy. If a new virtual sort () function is introduced into Wwindow, the runtime behavior
of ListBox is unchanged.

When 1istBox is compiled again, however, the compiler generates a warning:

...\classl.cs(54,24): warning CS0114: 'ListBox.Sort()' hides
inherited member 'Window.Sort()'.

To make the current member override that implementation,

add the override keyword. Otherwise add the new keyword.

To remove the warning, the programmer must indicate what he intends. He can mark the
ListBox Sort () method new, to indicate that it is not an override of the virtual method in

Window:

public class ListBox : Window

{

public new virtual void Sort() {...}

This action removes the warning. If, on the other hand, the programmer does want to override
the method in window, he need only use the override keyword to make that intention
explicit:

public class ListBox : Window

{

public override void Sort() {...}

, To avoid this warning, it might be tempting to add the keyword new to

— all your virtual methods. This is a bad idea. When new appears in the
code, it ought to document the versioning of code. It points a potential
client to the base class to see what it is that you are not overriding.
Using new scattershot undermines this documentation. Further, the
warning exists to help identify a real issue.

5.4 Abstract Classes

Every subclass of window should implement its own DrawWindow () method -- but nothing
requires that it do so. To require subclasses to implement a method of their base, you need to
designate that method as abstract.

An abstract method has no implementation. It creates a method name and signature that must

be implemented in all derived classes. Furthermore, making one or more methods of any class
abstract has the side effect of making the class abstract.

104

Programming C#, 2nd Edition

Abstract classes establish a base for derived classes, but it is not legal to instantiate an object
of an abstract class. Once you declare a method to be abstract, you prohibit the creation of any
instances of that class.

Thus, if you were to designate DrawWindow () as abstract in the window class, you could
derive from window, but you could not create any window objects. Each derived class would
have to implement Drawwindow (). If the derived class failed to implement the abstract
method, that class would also be abstract, and again no instances would be possible.

Designating a method as abstract is accomplished by placing the keyword abstract at the
beginning of the method definition, as follows:

abstract public void DrawWindow() ;
(Because the method can have no implementation, there are no braces; only a semicolon.)

If one or more methods are abstract, the class definition must also be marked abstract, as in
the following:

abstract public class Window

Example 5-3 illustrates the creation of an abstract window class and an abstract DrawWindow (
) method.

Example 5-3. Using an abstract method and class
using System;

abstract public class Window
{
// constructor takes two integers to
// fix location on the console
public Window (int top, int left)
{
this.top = top;
this.left = left;
}

// simulates drawing the window
// notice: no implementation
abstract public void DrawWindow() ;

protected int top;
protected int left;

}

// ListBox derives from Window
public class ListBox : Window
{
// constructor adds a parameter
public ListBox (
int top,
int left,
string contents):
base (top, left) // call base constructor

105

listBoxContents =

}

Programming C#, 2nd Edition

contents;

// an overridden version implementing the

// abstract method

public override void DrawWindow()

{

Console.WriteLine

("Writing string to the listbox: {0}",

listBoxContents) ;

}

private string listBoxContents; // new member variable

}

public class Button : Window

{
public Button (
int top,
int left):
base (top, left)
{
}

// implement the abstract method

public override void

{

DrawWindow ()

Console.Writeline ("Drawing a button at {0}, {1}\n",

top, left);

}

public class Tester
{
static void Main()
{
Window[] winArray
winArray[0] = new
winArray[l] = new
winArrayl[2] new

= new Window[3];
ListBox(1l,2,"First List Box");
ListBox (3,4, "Second List Box");
Button (5,6);

for (int 1 = 0;1i < 3; i++4)

{

winArray[i] .DrawWindow () ;

}

In Example 5-3, the window class has been declared abstract and therefore cannot be
instantiated. If you replace the first array member:

winArray[0]

with this code:

new ListBox(1l,2,"First List Box");

winArray[0] = new Window(1l,2);

106

Programming C#, 2nd Edition

the program will generate the following error:

Cannot create an instance of the abstract class or interface 'Window'

You can instantiate the ListBox and Button objects because these classes override the
abstract method, thus making the classes concrete (i.e., not abstract).

5.4.1 Limitations of Abstract

Although designating Drawwindow() as abstract does force all the derived classes to
implement the method, this is a very limited solution to the problem. If we derived a class
from ListBox (e.g., DropDownListBox), nothing forces that derived class to implement its
own DrawWindow () method.

- C++ programmers take note: in C# it is not possible for
#3 4. Window.DrawWindow() to provide an implementation, so we cannot
~ 4 take advantage of the common DrawWindow() routines that might

otherwise be shared by the derived classes.

Finally, abstract classes should not just be an implementation trick; they should represent the
idea of an abstraction that establishes a "contract" for all derived classes. In other words,
abstract classes describe the public methods of the classes that will implement the abstraction.

The idea of an abstract window class ought to lay out the common characteristics and
behaviors of all windows, even if we never intend to instantiate the abstraction window itself.

The idea of an abstract class is implied in the word "abstract." It serves to implement the
abstraction "Window" that will be manifest in the various concrete instances of Window, such
as browser window, frame, button, list box, drop-down, and so forth. The abstract class
establishes what a window is, even though we never intend to create a "Window" per se. An
alternative to using abstract is to define an interface, as described in Chapter 8.

5.4.2 Sealed Class

The obverse side of the design coin from abstract is sealed. Although an abstract class is
intended to be derived from and to provide a template for its subclasses to follow, a sealed
class does not allow classes to derive from it at all. Placed before the class declaration, the
sealed keyword precludes derivation. Classes are most often marked sealed to prevent
accidental inheritance.

If the declaration of window in Example 5-3 is changed from abstract to sealed
(eliminating the abstract keyword from the DrawwWindow() declaration as well), the
program will fail to compile. If you try to build this project, the compiler will return the
following error message:

'ListBox' cannot inherit from sealed class 'Window'

among many other complaints (such as that you cannot create a new protected member in a
sealed class).

107

Programming C#, 2nd Edition

5.5 The Root of all Classes: Object

All C# classes, of any type, are treated as if they ultimately derive from System.Object.
Interestingly, this includes value types!

A base class is the immediate "parent" of a derived class. A derived class can be the base to
further derived classes, creating an inheritance "tree" or hierarchy. A root class is the topmost
class in an inheritance hierarchy. In C#, the root class is object. The nomenclature is a bit
confusing until you imagine an upside-down tree, with the root on top and the derived classes
below. Thus, the base class is considered to be "above" the derived class.

Object provides a number of methods that subclasses can and do override. These include
Equals () to determine if two objects are the same, GetType (), which returns the type of
the object (discussed in Chapter 8), and Tostring(), which returns a string to represent the
current object (discussed in Chapter 10). Table 5-1 summarizes the methods of object.

Table 5-1. The methods of Object

Method What it does

Equals() Evaluates whether two objects are equivalent.

GetHashCode () Allows objects to provide their own hash function for use in collections (see
Chapter 9).

GetType () Provides access to the type object (see Chapter 18).

ToString () Provides a string representation of the object.

Finalize() Cleans up nonmemory resources; implemented by a destructor (see Chapter 4).

Memb iseCl . . .

) emberwiseClone (Creates copies of the object; should never be implemented by your type.

ReferenceEquals (

: Evaluates whether two objects refer to the same instance.

Example 5-4 illustrates the use of the Tostring () method inherited from object, as well as
the fact that primitive datatypes such as int can be treated as if they inherit from object.

Example 5-4. Inheriting from Object

using System;

public class SomeClass

{

public SomeClass (int wval)

{

value = val;

}

public override string ToString()

{

return value.ToString();

}

private int value;

108

Programming C#, 2nd Edition

public class Tester

{

static void Main()

{

int 1 = 5;
Console.WriteLine ("The value of i is: {0}", i.ToString());
SomeClass s = new SomeClass (7);
Console.WriteLine ("The value of s is {0}", s.ToString());
}
}
Output:

The value of i is: 5
The value of s is 7

The documentation for Object.ToString () reveals its signature:
public virtual string ToString();

It is a public virtual method that returns a string and that takes no parameters. All the built-in
types, such as int, derive from object and so can invoke object's methods.

Example 5-4 overrides the virtual function for someclass, which is the usual case, so that the
class' Tostring() method will return a meaningful value. If you comment out the
overridden function, the base method will be invoked, which will change the output to:

The value of s is SomeClass

Thus, the default behavior is to return a string with the name of the class itself.

Classes do not need to explicitly declare that they derive from object; the inheritance is
implicit.

5.6 Boxing and Unboxing Types

Boxing and unboxing are the processes that enable value types (e.g., integers) to be treated as
reference types (objects). The value is "boxed" inside an object, and subsequently "unboxed"
back to a value type. It is this process that allowed us to call the Tostring () method on the
integer in Example 5-4.

5.6.1 Boxing Is Implicit

Boxing is an implicit conversion of a value type to the type object. Boxing a value allocates

an instance of Object and copies the value into the new object instance, as shown in
Figure 5-4.

109

Programming C#, 2nd Edition

Figure 5-4. Boxing reference types

O thhe stk (i ehe heap
i

123
nti=123;

a i baxed)

123 —» int
aobject o=i; 123

Boxing is implicit when you provide a value type where a reference is expected and the value
is implicitly boxed. For example, if you assign a primitive type such as an integer to a variable
of type object (which is legal because int derives from oObject), the value is boxed, as
shown here:

using System;
class Boxing

{

public static void Main()

{
int 1 = 123;
Console.WriteLine ("The object wvalue = {0}", 1);

Console.WriteLine () expects an object, not an integer. To accommodate the method, the
integer type is automatically boxed by the CLR, and Tostring() is called on the resulting
object. This feature allows you to create methods that take an object as a parameter; no matter
what is passed in (reference or value type) the method will work.

5.6.2 Unboxing Must Be Explicit

To return the boxed object back to a value type, you must explicitly unbox it. You should
accomplish this in two steps:

1. Make sure the object instance is a boxed value of the given value type.
2. Copy the value from the instance to the value-type variable.

Figure 5-5 illustrates unboxing.

110

Figure 5-5. Boxing and then unboxing
O thhe stagk
i

123
inti=123;

123 —&——»

abject o=i
i

123
int j=tint] u;

Programming C#, 2nd Edition

For the unboxing to succeed, the object being unboxed must be a reference to an object that
was created by boxing a value of the given type. Boxing and unboxing are illustrated in

Example 5-5.
Example 5-5. Boxing and unboxing

using System;
public class UnboxingTest
{
public static void Main()

{
int 1 = 123;

//Boxing
object o = i;

// unboxing (must be explict)
int 37 = (int) o;

Console.WriteLine("j: {0}", 7J);

Example 5-5 creates an integer i and implicitly boxes it when it is assigned to the object o.
The value is then explicitly unboxed and assigned to a new int whose value is displayed.

Typically, you will wrap an unbox operation in a try block, as explained in Chapter 11. If the
object being unboxed is null or a reference to an object of a different type, an

InvalidCastException 1S thrown.

5.7 Nesting Classes

Classes have members, and it is entirely possible for the member of a class to be another user-
defined type. Thus, a Button class might have a member of type Location, and a Location
class might contain members of type point. Finally, Point might contain members of type

int.

At times, the contained class might exist only to serve the outer class, and there might be no
reason for it to be otherwise visible. (In short, the contained class acts as a helper class.) You

111

Programming C#, 2nd Edition

can define the helper class within the definition of the outer class. The contained, inner class
is called a nested class, and the class that contains it is called, simply, the outerclass.

Nested classes have the advantage of access to all the members of the outer class. A method
of a nested class can access private members of the outer class.

In addition, the nested class can be hidden from all other classes -- that is, it can be private to
the outer class.

Finally, a nested class that is public is accessed within the scope of the outer class. If outer is
the outer class, and Nested is the (public) inner class, refer to Nested as Outer.Nested, with
the outer class acting (more or less) as a namespace or scope.

o Java programmers take note: nested classes are roughly equivalent to
3 4 static inner classes; there is no C# equivalent to Java's nonstatic inner
" 4+ classes.

Example 5-6 features a nested class of Fraction named Fractionartist. The job of
FractionArtist is to render the fraction on the console. In this example, the rendering is
handled by a pair of simple writeLine () statements.

Example 5-6. Using a nested class

using System;
using System.Text;

public class Fraction
{
public Fraction(int numerator, int denominator)
{
this.numerator=numerator;
this.denominator=denominator;

}

public override string ToString()
{
return String.Format ("{0}/{1}",
numerator, denominator);

}

internal class FractionArtist
{
public void Draw (Fraction f)
{
Console.WriteLine ("Drawing the numerator: {0}",
f .numerator) ;
Console.WritelLine ("Drawing the denominator: {0}",
f.denominator) ;
}
}

private int numerator;
private int denominator;

112

Programming C#, 2nd Edition

public class Tester

{

static void Main()

{

Fraction fl1 = new Fraction(3,4);
Console.WriteLine ("f1: {0}", fl.ToString());
Fraction.FractionArtist fa = new Fraction.FractionArtist();

fa.Draw (f1l);

The nested class is shown in bold. The FractionArtist class provides only a single member,
the praw () method. What is particularly interesting is that braw () has access to the private
data members f.numerator and f.denominator, to which it would not have had access if it
were not a nested class.

Notice in Main () that to declare an instance of this nested class, you must specify the type
name of the outer class:

Fraction.FractionArtist fa = new Fraction.FractionArtist();

FractionArtist is scoped to within the Fraction class.

113

Programming C#, 2nd Edition

Chapter 6. Operator Overloading

It is a design goal of C# that user-defined classes have all the functionality of built-in types.
For example, suppose you have defined a type to represent fractions. Ensuring that this class
has all the functionality of the built-in types means that you must be able to perform
arithmetic on instances of your fractions (e.g., add two fractions, multiply, etc.) and convert
fractions to and from built-in types such as integer (int). You could, of course, implement
methods for each of these operations and invoke them by writing statements such as:

Fraction theSum = firstFraction.Add (secondFraction);

Although this will work, it is ugly and not how the built-in types are used. It would be much
better to write:

Fraction theSum = firstFraction + secondFraction;

Statements like this are intuitive and consistent with how built-in types, such as int, are
added.

In this chapter you will learn techniques for adding standard operators to your user-defined
types. You will also learn how to add conversion operators so that your user-defined types can
be implicitly and explicitly converted to other types.

6.1 Using the operator Keyword

In C#, operators are static methods whose return values represent the result of an operation
and whose parameters are the operands. When you create an operator for a class you say you
have "overloaded" that operator, much as you might overload any member method. Thus, to
overload the addition operator (+) you would write:

public static Fraction operator+(Fraction lhs, Fraction rhs)

It is my convention to name the parameters 1hs and rhs. The parameter name 1hs stands for
"lefthand side" and reminds me that the first parameter represents the lefthand side of the
operation. Similarly, rhs stands for "righthand side."

The C# syntax for overloading an operator is to write the word operator followed by the
operator to overload. The operator keyword is a method modifier. Thus, to overload the
addition operator (+), write operator+.

When you write:

Fraction theSum = firstFraction + secondFraction;

the overloaded + operator is invoked, with the first Fraction passed as the first argument, and
the second Fraction passed as the second argument. When the compiler sees the expression:

firstFraction + secondFraction

it translates that expression into:

114

Programming C#, 2nd Edition

Fraction.operator+ (firstFraction, secondFraction)

The result is that a new Fraction is returned, which in this case is assigned to the Fraction
object named theSum.

e C++ programmers take note: it is not possible to create nonstatic
s} operators, and thus binary operators must take two operands.

L

6.2 Supporting Other .NET Languages

C# provides the ability to overload operators for your classes, even though this is not, strictly
speaking, in the Common Language Specification (CLS). Other .NET languages, such as
VB.NET, might not support operator overloading, and it is important to ensure that your class
supports the alternative methods that these other languages might call to create the same
effect.

Thus, if you overload the addition operator (+), you might also want to provide an add ()
method that does the same work. Operator overloading ought to be a syntactic shortcut, not
the only path for your objects to accomplish a given task.

6.3 Creating Useful Operators

Operator overloading can make your code more intuitive and enable it to act more like
the built-in types. It can also make your code unmanageable, complex, and obtuse if you
break the common idiom for the use of operators. Resist the temptation to use operators in
new and idiosyncratic ways.

For example, although it might be tempting to overload the increment operator (++) on
an employee class to invoke a method incrementing the employee's pay level, this can create
tremendous confusion for clients of your class. It is best to use operator overloading
sparingly, and only when its meaning is clear and consistent with how the built-in classes
operate.

6.4 Logical Pairs

It is quite common to overload the equals operator (==) to test whether two objects are equal
(however equality might be defined for your object). C# insists that if you overload the equals
operator, you must also overload the not-equals operator (!=). Similarly, the less-than (<) and
greater-than (>) operators must be paired, as must the less-than or equals (<=) and greater-than
or equals (>=) operators.

6.5 The Equals Operator
If you overload the equals operator (==), it is recommended that you also override the virtual
Equals () method provided by object and route its functionality back to the equals

operator. This allows your class to be polymorphic and provides compatibility with other
NET languages that do not overload operators (but do support method overloading). The FCL

115

Programming C#, 2nd Edition

classes will not use the overloaded operators but will expect your classes to implement the
underlying methods. Thus, for example, ArrayList expects you to implement Equals ().

The object class implements the Equals () method with this signature:

public override bool Equals (object o)

By overriding this method, you allow your Fraction class to act polymorphically with all
other objects. Inside the body of Equals(), you will need to ensure that you are comparing
with another Fraction, and if so you can pass the implementation along to the equals
operator definition that you've written.

public override bool Equals (object o)
{

if (! (o is Fraction))

{

return false;

}

return this == (Fraction) o;

The is operator is used to check whether the runtime type of an object is compatible with the
operand (in this case, Fraction). Thus o is Fraction will evaluate true if o is in fact a type
compatible with Fraction.

6.6 Conversion Operators

C# converts int to long implicitly, and allows you to convert long to int explicitly. The
conversion from int to long is implicit because you know that any int will fit into the
memory representation of a 1ong. The reverse operation, from long to int, must be explicit
(using a cast) because it is possible to lose information in the conversion:

int myInt = 5;

long myLong;

myLong = myInt; // implicit
myInt = (int) myLong; // explicit

You must have the same functionality for your fractions. Given an int, you can support an
implicit conversion to a fraction because any whole value is equal to that value over 1 (e.g.,
15==15/1).

Given a fraction, you might want to provide an explicit conversion back to an integer,
understanding that some value might be lost. Thus, you might convert 9/4 to the integer
value 2.

The keyword implicit is used when the conversion is guaranteed to succeed and no
information will be lost; otherwise explicit is used.

Example 6-1 illustrates how you might implement implicit and explicit conversions, and some
of the operators of the Fraction class. (Although I've used Console.WriteLine to print
messages illustrating which method we're entering, the better way to pursue this kind of trace
is with the debugger. You can place a breakpoint on each of the test statements, and then step

116

Programming C#, 2nd Edition

into the code, watching the invocation of the constructors as they occur.) When you compile
this example, it will generate some warnings because GetHashCode () is not implemented
(see Chapter 9).

Example 6-1. Defining conversions and operators for the fraction class operators

using System;

public class Fraction
{
public Fraction (int numerator, int denominator)
{
Console.WriteLine ("In Fraction Constructor (int, int)");
this.numerator=numerator;
this.denominator=denominator;

}

public Fraction (int wholeNumber)

{
Console.WriteLine ("In Fraction Constructor (int)");
numerator = wholeNumber;
denominator = 1;

}

public static implicit operator Fraction(int thelInt)

{
System.Console.WritelLine("In implicit conversion to Fraction");
return new Fraction (theInt) ;

}

public static explicit operator int(Fraction theFraction)

{

System.Console.WriteLine("In explicit conversion to int");
return theFraction.numerator /
theFraction.denominator;

}

public static bool operator==(Fraction lhs, Fraction rhs)

{
Console.WritelLine ("In operator ==");
if (lhs.denominator == rhs.denominator &&
lhs.numerator == rhs.numerator)

return true;

}
// code here to handle unlike fractions
return false;

}
public static bool operator !=(Fraction lhs, Fraction rhs)
{

Console.WriteLine ("In operator !=");

return ! (lhs==rhs);

117

Programming C#, 2nd Edition

public override bool Equals (object o)

{ Console.WriteLine ("In method Equals");
if (! (o is Fraction))
{ return false;
ieturn this == (Fraction) o;

}

public static Fraction operator+ (Fraction lhs, Fraction rhs)
{
Console.WriteLine ("In operator+");
if (lhs.denominator == rhs.denominator)
{
return new Fraction (lhs.numerator+rhs.numerator,
lhs.denominator) ;

}

// simplistic solution for unlike fractions

// 1/2 + 3/4 == (1*4) + (3*2) / (2*4) == 10/8
int firstProduct = lhs.numerator * rhs.denominator;
int secondProduct = rhs.numerator * lhs.denominator;

return new Fraction (
firstProduct + secondProduct,
lhs.denominator * rhs.denominator

) ;
}

public override string ToString()

{

String s = numerator.ToString() + "/" +
denominator.ToString();
return s;

}

private int numerator;
private int denominator;

public class Tester

{

static void Main()

{

Fraction fl = new Fraction(3,4);
Console.WriteLine ("f1l: {0}", fl.ToString());
Fraction f2 = new Fraction(2,4);
Console.WriteLine ("£f2: {0}", f2.ToString());

Fraction f£3 = f1 + £2;
Console.WriteLine ("fl + f2 = £3: {0}", f£3.ToString());

Fraction f4 = £3 + 5;
Console.WriteLine ("f3 + 5 = f4: {0}", f4.ToString());

118

Programming C#, 2nd Edition

Fraction f5 = new Fraction(2,4);
if (f5 == £2)
{
Console.WriteLine ("F5: {0} == F2: {1}",

£f5.ToString(),
f2.ToString());

The Fraction class begins with two constructors. One takes a numerator and denominator,
the other takes a whole number. The constructors are followed by the declaration of two
conversion operators. The first conversion operator changes an integer into a Fraction:

public static implicit operator Fraction(int thelnt)

{

return new Fraction (thelInt);

}

This conversion is marked implicit because any whole number (int) can be converted to a
Fraction by setting the numerator to the int and the denominator to 1. Delegate this
responsibility to the constructor that takes an int.

The second conversion operator is for the explicit conversion of Fractions into integers:

public static explicit operator int (Fraction theFraction)

{
return theFraction.numerator /
theFraction.denominator;

Because this example uses integer division, it will truncate the value. Thus, if the fraction is
15/16, the resulting integer value will be 1. A more sophisticated conversion operator might
accomplish rounding.

The conversion operators are followed by the equals operator (==) and the not equals operator
('=). Remember that if you implement one of these equals operators, you must implement
the other.

You have defined value equality for a Fraction such that the numerators and denominators
must match. For this exercise, 3/4 and 6/8 are not considered equal. Again, a more
sophisticated implementation would reduce these fractions and notice the equality.

Include an override of the object class' Equals () method so that your Fraction objects can
be treated polymorphically with any other object. Your implementation is to delegate
the evaluation of equality to the equality operator.

A Fraction class would, no doubt, implement all the arithmetic operators (addition,
subtraction, multiplication, division). To keep the illustration simple, implement only
addition, and even here you simplify greatly. Check to see if the denominators are the same; if
s0, add the following numerators:

119

Programming C#, 2nd Edition

public static Fraction operator+ (Fraction lhs, Fraction rhs)

{

if (lhs.denominator == rhs.denominator)

{
return new Fraction (lhs.numerator+rhs.numerator,
lhs.denominator) ;

If the denominators are not the same, cross multiply:

int firstProduct = lhs.numerator * rhs.denominator;
int secondProduct = rhs.numerator * lhs.denominator;
return new Fraction (

firstProduct + secondProduct,

lhs.denominator * rhs.denominator

This code is best understood with an example. If you were adding 1/2 and 3/4, you can
multiply the first numerator (1) by the second denominator (4) and store the result (4) in
firstProduct. You can also multiply the second numerator (3) by the first denominator (2)
and store that result (6) in secondProduct. You add these products (6+4) to a sum of 10,
which is the numerator for the answer. You then multiply the two denominators (2*4) to
generate the new denominator (8). The resulting fraction (10/8) is the correct answer.'

Finally, to enable debugging of the new Fraction class, the code is written so that Fraction
is able to return its value as a string in the format numerator/denominator:

public override string ToString()

{

String s = numerator.ToString() + "/" +
denominator.ToString();
return s;
}
Create a new string object by calling the Tostring() method on numerator. Since
numerator is an int, and ints are value types, the call to the Tostring () method causes the
compiler to implicitly box the integer (creating an object) and calls Tostring() on that

object, returning a string representation of the numerator. Concatenate the string "/" and then
concatenate the string that results from calling Tostring () on the denominator.

With your Fraction class in hand, you're ready to test. Your first tests create simple
fractions, 3/4 and 2/4:

Fraction fl = new Fraction(3,4);
Console.WriteLine ("f1l: {0}", fl.ToString());
Fraction f2 = new Fraction(2,4);
Console.WriteLine ("f2: {0}", f2.ToString());

The output from this is what you would expect -- the invocation of the constructors and the
value printed in WriteLine:

! To recap: 1/2=4/8, 3/4=6/8, 4/8+6/8=10/8. The example does not reduce the fraction, to keep it simple.

120

Programming C#, 2nd Edition

In Fraction Constructor (int, int)

fl: 3/4
In Fraction Constructor (int, int)
f2: 2/4

The next line in Main () invokes the static operator+. The purpose of this operator is to add
two fractions and return the sum in a new fraction:

Fraction f£3 = f1 + £2;
Console.WriteLine ("fl + f2 = £3: {0}", f£3.ToString());

Examining the output reveals how operator+ works:

In operator+
In Fraction Constructor(int, int)
fl1 + £f2 = £3: 5/4

The operator+ is invoked, and then the constructor for £3, taking the two int values
representing the numerator and denominator of the resulting new fraction.

The next test in Main () adds an int to the Fraction £3 and assigns the resulting value to
anew Fraction, £4:

Fraction f4 = £3 + 5;
Console.WriteLine ("f3 + 5: {0}", f4.ToString());

The output shows the steps for the various conversions:

In implicit conversion to Fraction
In Fraction Constructor (int)

In operator+

In Fraction Constructor (int, int)
f3 + 5 = f4: 25/4

Notice that the implicit conversion operator was invoked to convert 5 to a fraction. In the
return statement from the implicit conversion operator, the Fraction constructor was called,
creating the fraction 5/1. This new fraction was then passed along with Fraction £3 to
operator+, and the sum was passed to the constructor for £4.

In our final test, a new fraction (£5) is created. Test whether it is equal to £2. If so, print their
values:

Fraction f5 = new Fraction(2,4);
if (f5 == £2)
{
Console.WriteLine ("F5: {0} == F2: {1}",

f5.ToString(),
f2.ToString());

The output shows the creation of £5, and then the invocation of the overloaded equals
operator:

121

Programming C#, 2nd Edition

In Fraction Constructor (int, int)
In operator ==
F5: 2/4 == F2: 2/4

122

Programming C#, 2nd Edition

Chapter 7. Structs

A struct is a simple user-defined type, a lightweight alternative to classes. Structs are similar
to classes in that they may contain constructors, properties, methods, fields, operators, nested
types and indexers (see Chapter 9).

There are also significant differences between classes and structs. For instance, structs don't
support inheritance or destructors. More important, although a class is a reference type,
a struct is a value type. (See Chapter 3 for more information about classes and types.) Thus,
structs are useful for representing objects that do not require reference semantics.

The consensus view is that you ought to use structs only for types that are small, simple, and
similar in their behavior and characteristics to built-in types.

Structs are somewhat more efficient in their use of memory in arrays (see Chapter 9).
However, they can be less efficient when used in collections. Collections expect references,
and structs must be boxed. There is overhead in boxing and unboxing, and classes might be
more efficient in large collections.

In this chapter, you will learn how to define and work with structs and how to use
constructors to initialize their values.

7.1 Defining Structs

The syntax for declaring a struct is almost identical to that for a class:

[attributes] [access-modifiers] struct identifier [:interface-list]
{ struct-members }

Example 7-1 illustrates the definition of a struct. Location represents a point on a two-
dimensional surface. Notice that the struct Location is declared exactly as a class would be,
except for the use of the keyword struct. Also notice that the Location constructor takes
two integers and assigns their value to the instance members, x and y. The x and y coordinates
of Location are declared as properties.

Example 7-1. Creating a struct
using System;

public struct Location

{

public Location(int xCoordinate, int yCoordinate)

{
xVal = xCoordinate;
yVal = yCoordinate;

123

Programming C#, 2nd Edition

public int x

{
get
{

return xVal;

xVal = value;

public int y
{

get

{

return yVal;

yvVal = value;

public override string ToString()
{

return (String.Format ("{0}, {1}", xVal,yVal));
}

private int xVal;
private int yVal;
}

public class Tester
{
public void myFunc (Location loc)
{
loc.x = 50;
loc.y = 100;
Console.WriteLine ("Locl location: {0}", loc):;
}
static void Main()
{
Location locl = new Location (200,300);
Console.WriteLine ("Locl location: {0}", locl);
Tester t = new Tester();
t.myFunc (locl);
Console.WriteLine ("Locl location: {0}", locl);
}

}
Output

Locl location: 200, 300
In MyFunc loc: 50, 100
Locl location: 200, 300

Unlike classes, structs do not support inheritance. They implicitly derive from object (as do

all types in C#, including the built-in types) but cannot inherit from any other class or struct.
Structs are also implicitly sealed (that is, no class or struct can derive from a struct). Like

124

Programming C#, 2nd Edition

classes, however, structs can implement multiple interfaces. Additional differences include
the following:

No destructor or custom default constructor

Structs cannot have destructors, nor can they have a custom parameterless (default)
constructor. If you do not supply a constructor, your struct will in effect be provided
with a default constructor that will zero all the data members or set them to default
values appropriate to their type (see Table 4-2). If you supply any constructor, you
must initialize all the fields in the struct.

No initialization
You cannot initialize an instance field in a struct. Thus, it is illegal to write:

private int xVal = 50;
private int yVal 100;

though that would have been fine had this been a class.

Structs are designed to be simple and lightweight. While private member data promotes data
hiding and encapsulation, some programmers feel it is overkill for structs. They make the
member data public, thus simplifying the implementation of the struct. Other programmers
feel that properties provide a clean and simple interface, and that good programming practice
demands data hiding even with simple lightweight objects. Whichever you choose is a matter
of design philosophy; the language supports either approach.

7.2 Creating Structs
Create an instance of a struct by using the new keyword in an assignment statement, just as

you would for a class. In Example 7-1, the Tester class creates an instance of Location as
follows:

Location locl = new Location (200,300);
Here the new instance is named loc1 and is passed two values, 200 and 300.
7.2.1 Structs as Value Types

The definition of the Tester class in Example 7-1 includes a Location object (1oc1) created
with the values 200 and 300. This line of code calls the Location constructor:

Location locl = new Location (200,300);

Then writeLine () is called:

Console.WriteLine ("Locl location: {0}", locl);

WriteLine () 1S expecting an object, but, of course, Location is a struct (a value type). The

compiler automatically boxes the struct (as it would any value type), and it is the boxed object
that is passed to WriteLine (). ToString() is called on the boxed object, and because the

125

Programming C#, 2nd Edition
struct (implicitly) inherits from object, it is able to respond polymorphically, overriding the
method just as any other object might:

Locl location: 200, 300

Structs are value objects, however, and when passed to a function, they are passed by value --
as seen in the next line of code -- in which the 1oc1 object is passed to the myFunc()
method:

t.myFunc(locl);

In myFunc new values are assigned to x and y, and these new values are printed out:

Locl location: 50, 100

When you return to the calling function (Main()) and call writeLine () again, the values
are unchanged:

Locl location: 200, 300

The struct was passed as a value object, and a copy was made in myFunc. Try this experiment:
change the declaration to class:

public class Location

and run the test again. Here is the output:

Locl location: 200, 300
In MyFunc loc: 50, 100
Locl location: 50, 100

This time the Location object has reference semantics. Thus, when the values are changed in
myFunc (), they are changed on the actual object back in Main ().

7.2.2 Calling the Default Constructor

As mentioned earlier, if you do not create a constructor, an implicit default constructor is
called by the compiler. We can see this if we comment out the constructor:

/* public Location(int xCoordinate, int yCoordinate)

{

xVal = xCoordinate;
yVal = yCoordinate;
}
*/
and replace the first line in Main () with one that creates an instance of Location without

passing values:

// Location locl = new Location(200,300);
Location locl = new Location();

126

Programming C#, 2nd Edition
Because there is now no constructor at all, the implicit default constructor is called. The
output looks like this:

Locl location: 0, O
In MyFunc loc: 50, 100
Locl location: 0, O

The default constructor has initialized the member variables to zero.

o C++ programmers take note: in C#, the new keyword does not always
#3 4. create objects on the heap. Classes are created on the heap, and structs
— 4" are created on the stack. Also, when new is omitted (as you will see in

the next section), a constructor is never called. Because C# requires
definite assignment, you must explicitly initialize all the member
variables before using the struct.

7.2.3 Creating Structs Without new

Because 1oc1 is a struct (not a class), it is created on the stack. Thus, in Example 7-1, when
the new operator is called:

Location locl = new Location (200,300);
the resulting Location object is created on the stack.

The new operator calls the Location constructor. However, unlike with a class, it is possible
to create a struct without using new at all. This is consistent with how built-in type variables
(such as int) are defined, and is illustrated in Example 7-2.

- A caveat: [am demonstrating how to create a struct without using new

@ because it differentiates C# from C++, and also differentiates how C#
treats classes versus structs. That said, however, creating structs without
the keyword new brings little advantage and can create programs that
are harder to understand, more error prone, and more difficult to
maintain! Proceed at your own risk.

Example 7-2. Creating a struct without using new
using System;

public struct Location

{

public Location(int xCoordinate, int yCoordinate)

{
xVal = xCoordinate;
yVal = yCoordinate;

127

Programming C#, 2nd Edition

public int x

{
get
{

return xVal;

xVal = value;

public int y
{

get

{

return yVal;

yvVal = value;

public override string ToString()

{
return (String.Format ("{0}, {1}", xVal,yVal));

}

public int xVal;
public int yVal;
}

public class Tester

{

static void Main()

{

Location locl; // no call to the constructor
locl.xVal = 75; // initialize the members
locl.yVal = 225;

Console.WritelLine (locl) ;

In Example 7-2 you initialize the local variables directly, before calling a method of 10c1 and
before passing the object to WriteLine():

locl.xVal = 75;
locl.yVal 225;

If you were to comment out one of the assignments and recompile:

static void Main()

{
Location locl;
locl.xVal = 75;

// locl.yval = 225;
Console.WriteLine (locl);

128

Programming C#, 2nd Edition

you would get a compiler error:

Use of unassigned local variable 'locl'

Once you assign all the values, you can access the values through the properties x and y:

static void Main()

{

Location locl;

locl.xVal = 75; // assign member variable
locl.yVal = 225; // assign member variable
locl.x = 300; // use property
locl.y = 400; // use property

Console.WriteLine (locl);

Be careful about using properties. Although these allow you to support encapsulation by
making the actual values private, the properties themselves are actually member methods, and
you cannot call a member method until you initialize all the member variables.

129

Programming C#, 2nd Edition

Chapter 8. Interfaces

An interface is a contract that guarantees to a client how a class or struct will behave. When
aclass implements an interface, it tells any potential client "I guarantee I'll support
the methods, properties, events, and indexers of the named interface." (See Chapter 4 for
information about methods and properties; see Chapter 12 for info about events, and see
Chapter 9 for coverage of indexers.)

An interface offers an alternative to an abstract class for creating contracts among classes and
their clients. These contracts are made manifest using the interface keyword, which
declares a reference type that encapsulates the contract.

Syntactically, an interface is like a class that has only abstract methods. An abstract class
serves as the base class for a family of derived classes, while interfaces are meant to be mixed
in with other inheritance trees.

When a class implements an interface, it must implement all the methods of that interface; in
effect the class says "I agree to fulfill the contract defined by this interface."

Inheriting from an abstract class implements the is-a relationship, introduced in Chapter 5.
Implementing an interface defines a different relationship that we've not seen until now: the
implements relationship. These two relationships are subtly different. A car is a vehicle, but it
might implement the CanBeBoughtWithABigLoan capability (as can a house, for example).

Mix Ins

In Somerville, Massachusetts, there was, at one time, an ice cream parlor where you
could have candies and other goodies "mixed in" with your chosen ice cream flavor.
This seemed like a good metaphor to some of the object-oriented pioneers from
nearby MIT who were working on the fortuitously named SCOOPS programming
language. They appropriated the term "mix in" for classes that mixed in additional
capabilities. These mix-in or capability classes served much the same role as
interfaces do in C#.

In this chapter, you will learn how to create, implement, and use interfaces. You'll learn how
to implement multiple interfaces and how to combine and extend interfaces, as well as how to
test whether a class has implemented an interface.

8.1 Implementing an Interface

The syntax for defining an interface is as follows:

[attributes] [access—-modifier]| interface iInterface-name [: base-list]
{interface-body }

Don't worry about attributes for now; they're covered in Chapter 18.

Access modifiers, including public, private, protected, internal, and protected
internal, are discussed in Chapter 4.

130

Programming C#, 2nd Edition

The interface keyword is followed by the name of the interface. It is common (but not
required) to begin the name of your interface with a capital 1 (thus, IStorable, ICloneable,
IClaudius, etc.).

The base-1ist lists the interfaces that this interface extends (as described in Section 8.1.1,
later in this chapter).

The interface-body is the implementation of the interface, as described next.

Suppose you wish to create an interface that describes the methods and properties a class
needs to be stored to and retrieved from a database or other storage such as a file. You decide
to call this interface Istorable.

In this interface you might specify two methods: read () and write (), which appear in the
interface-body:

interface IStorable

{
void Read();
void Write (object);

The purpose of an interface is to define the capabilities that you want to have available in a
class.

For example, you might create a class, Document. It turns out that Document types can be
stored in a database, so you decide to have Document implement the Istorable interface.

To do so, use the same syntax as if the new Document class were inheriting from Istorable -
- a colon (:), followed by the interface name:

public class Document : IStorable

{
public void Read() {...}
public void Write (object obj) {...}
//

It is now your responsibility, as the author of the bocument class, to provide a meaningful
implementation of the Istorable methods. Having designated Document as implementing
IStorable, you must implement all the 1storable methods, or you will generate an error
when you compile. This is illustrated in Example 8-1, in which the Document class
implements the Istorable interface.

131

Programming C#, 2nd Edition

Example 8-1. Using a simple interface

using System;

// declare the interface
interface IStorable

{

}

// no access modifiers, methods are public
// no implementation

void Read();

void Write (object obj) ;

int Status { get; set; }

// create a class which implements the IStorable interface
public class Document : IStorable

{

public Document (string s)

{

Console.WriteLine ("Creating document with: {0}", s);

}

// implement the Read method
public void Read()
{

Console.WriteLine (
"Implementing the Read Method for IStorable");

}

// implement the Write method
public void Write (object o)
{

Console.WritelLine (

"Implementing the Write Method for IStorable");

}
// implement the property
public int Status
{

get

{

return status;

}

set

{

status = value;
}
}

// store the value for the property
private int status = 0;

132

Programming C#, 2nd Edition

// Take our interface out for a spin
public class Tester

{

static void Main()

{
// access the methods in the Document object
Document doc = new Document ("Test Document");
doc.Status = -1;
doc.Read();
Console.WriteLine ("Document Status: {0}", doc.Status):;

}
Output:

Creating document with: Test Document
Implementing the Read Method for IStorable
Document Status: -1

Example 8-1 defines a simple interface, Istorable, with two methods, Read () and write (
), and a property, Status, of type integer. Notice that the property declaration does not
provide an implementation for get () and set (), but simply designates that there is a get (
) and a set ():

int Status { get; set; }

Notice also that the Istorable method declarations do not include access modifiers (e.g.,
public, protected, internal, private). In fact, providing an access modifier generates a
compile error. Interface methods are implicitly public because an interface is a contract
meant to be used by other classes. You cannot create an instance of an interface; instead you
instantiate a class that implements the interface.

The class implementing the interface must fulfill the contract exactly and completely.
Document must provide both a read() and a write() method and the status property.
How it fulfills these requirements, however, is entirely up to the Document class. Although
ISstorable dictates that Document must have a status property, it does not know or care
whether Document stores the actual status as a member variable or looks it up in a database.
The details are up to the implementing class.

8.1.1 Implementing More Than One Interface

Classes can implement more than one interface. For example, if your bocument class can be
stored and it also can be compressed, you might choose to implement both the 1storable and
ICompressible interfaces. To do so, change the declaration (in the base-list) to indicate that
both interfaces are implemented, separating the two interfaces with commas:

public class Document : IStorable, ICompressible

Having done this, the Document class must also implement the methods specified by the
ICompressible interface (which is declared in Example 8-2):

133

Programming C#, 2nd Edition

public void Compress()

{

Console.WritelLine ("Implementing the Compress Method");

}

public void Decompress()
{
Console.WritelLine ("Implementing the Decompress Method");

}
8.1.2 Extending Interfaces

It is possible to extend an existing interface to add new methods or members, or to modify
how existing members work. For example, you might extend ICompressible with a new
interface, TLoggedCompressible, which extends the original interface with methods to keep
track of the bytes saved:

interface ILoggedCompressible : ICompressible

{
void LogSavedBytes();

}

Classes are now free to implement either ICompressible oOr ILoggedCompressible,
depending on whether they need the additional functionality. If a class does implement
ILoggedCompressible, it must implement all the methods of both TLoggedCompressible
and Icompressible. Objects of that type can be cast either to TLoggedCompressible or to
ICompressible.

8.1.3 Combining Interfaces

Similarly, you can create new interfaces by combining existing interfaces, and, optionally,
adding new methods or properties. For example, you might decide to create
IStorableCompressible. This interface would combine the methods of each of the other
two interfaces, but would also add a new method to store the original size of the
precompressed item:

interface IStorableCompressible : IStoreable, ILoggedCompressible

{
void LogOriginalSize();

}
Example 8-2 illustrates extending and combining interfaces.

Example 8-2. Extending and combining interfaces
using System;

interface IStorable

{
void Read();
void Write (object obj);
int Status { get; set; }

134

Programming C#, 2nd Edition

// here's the new interface
interface ICompressible

{
void Compress();
void Decompress();

}

// Extend the interface
interface ILoggedCompressible : ICompressible
{
void LogSavedBytes();
}

// Combine Interfaces
interface IStorableCompressible : IStorable, ILoggedCompressible

{
void LogOriginalSize();

}

// yet another interface
interface IEncryptable
{
void Encrypt();
void Decrypt();
}

public class Document : IStorableCompressible, IEncryptable
{

// the document constructor

public Document (string s)

{

Console.WritelLine ("Creating document with: {0}", s);
}

// implement IStorable
public void Read()
{
Console.WriteLine (
"Implementing the Read Method for IStorable");
}

public void Write (object o)
{
Console.WriteLine (
"Implementing the Write Method for IStorable");
}

public int Status
{

get

{

return status;

}

set

{

status = value;

}

135

// implement ICompressible
public void Compress()

{

}

Console.Writeline ("Implementing

public void Decompress()

{

}

Console.Writeline ("Implementing

// implement ILoggedCompressible
public void LogSavedBytes()

{

}

Console.WriteLine ("Implementing

// implement IStorableCompressible
public void LogOriginalSize()

{

}

Console.WriteLine ("Implementing

// implement IEncryptable
public void Encrypt()

{

Programming C#, 2nd Edition

Compress") ;

Decompress") ;

LogSavedBytes") ;

LogOriginalSize");

Console.WritelLine ("Implementing Encrypt");
}
public void Decrypt()
{ Console.WriteLine ("Implementing Decrypt");

}

// hold the data for IStorable's Status property
private int status = 0;

}

public class Tester

{

static void Main()

{

// create a document object
Document doc =

// cast the document to the various
IStorable isDoc = doc as IStorable;
if (isDoc != null)
{

isDoc.Read();
}
else

Console.WritelLine ("IStorable not

new Document ("Test Document");

interfaces

supported") ;

136

Programming C#, 2nd Edition

ICompressible icDoc = doc as ICompressible;
if (icDoc != null)
{

icDoc.Compress();

}

else

Console.WritelLine ("Compressible not supported");

ILoggedCompressible ilcDoc = doc as ILoggedCompressible;

if (ilcDoc != null)

{
ilcDoc.LogSavedBytes ();
ilcDoc.Compress();
// ilcDoc.Read();

}

else

Console.WritelLine ("LoggedCompressible not supported");

IStorableCompressible isc = doc as IStorableCompressible;

if (isc !'= null)

{

isc.LogOriginalSize(); // IStorableCompressible

isc.LogSavedBytes(); // ILoggedCompressible
isc.Compress(); // ICompressible
isc.Read(); // IStorable

}

else

{

Console.WriteLine ("StorableCompressible not supported");

}

IEncryptable ie = doc as IEncryptable;
if (ie != null)
{
ie.Encrypt ();
}
else
Console.WritelLine ("Encryptable not supported");

Output:

Creating document with: Test Document
Implementing the Read Method for IStorable
Implementing Compress

Implementing LogSavedBytes

Implementing Compress

Implementing LogOriginalSize

Implementing LogSavedBytes

Implementing Compress

Implementing the Read Method for IStorable
Implementing Encrypt

Example 8-2 starts by implementing the Istorable interface and the ICompressible
interface. The latter is extended to ILoggedCompressible and then the two are combined into

IStorableCompressible. Finally, the example adds a new interface, TEncryptable.

137

Programming C#, 2nd Edition

The Tester program creates a new Document object and then casts it to the various interfaces.
When the object is cast to TLoggedCompressible, you can use the interface to call methods
on Icompressible because ILoggedCompressible extends (and thus subsumes) the methods
from the base interface:

ILoggedCompressible ilcDoc = doc as ILoggedCompressible;
if (ilcDoc != null)
{

ilcDoc.LogSavedBytes ();

ilcDoc.Compress();

// ilcDoc.Read();

You cannot call Read(), however, because that is a method of IStorable, an unrelated
interface. And if you uncomment out the call to read (), you will receive a compiler error.

If you cast to IStorableCompressible (wWhich combines the extended interface with the
Storable interface), you can then call methods of IstorableCompressible,
Icompressible, and IStorable:

IStorableCompressible isc = doc as IStorableCompressible
if (isc != null)
{
isc.LogOriginalSize(); // IStorableCompressible
isc.LogSavedBytes (); // ILoggedCompressible
isc.Compress(); // ICompressible
isc.Read(); // IStorable

8.2 Accessing Interface Methods

You can access the members of the Istorable interface as if they were members of the
Document class:

Document doc = new Document ("Test Document");
doc.status = -1;
doc.Read();

You can also create an instance of the interface by casting the document to the interface type,
and then use that interface to access the methods:

IStorable isDoc = (IStorable) doc;
isDoc.status = 0;
isDoc.Read();

In this case, in Main() you know that Document is in fact an IStorable, SO you can take
advantage of that knowledge.

138

Programming C#, 2nd Edition

o As stated earlier, you cannot instantiate an interface directly. That is,
a you cannot say:
i £
IStorable isDoc = new IStorable();

You can, however, create an instance of the implementing class, as in
the following:

Document doc = new Document ("Test Document");

You can then create an instance of the interface by casting
the implementing object to the interface type, which in this case is
IStorable:

IStorable isDoc = (IStorable) doc;
You can combine these steps by writing:

IStorable isDoc =
(IStorable) new Document ("Test Document");

In general, it is a better design decision to access the interface methods through an interface
reference. Thus, it is better to use isDoc.Read(), than doc.Read(), in the previous
example. Access through an interface allows you to treat the interface polymorphically. In
other words, you can have two or more classes implement the interface, and then by accessing
these classes only through the interface, you can ignore their real runtime type and treat them
interchangeably. See Chapter 5 for more information about polymorphism.

8.2.1 Casting to an Interface

In many cases, you don't know in advance that an object supports a particular interface. Given
a collection of objects, you might not know whether a particular object supports Istorable
or ICompressible or both. You can just cast to the interfaces:

Document doc = new Document ("Test Document");

IStorable isDoc = (IStorable) doc;
isDoc.Read();

ICompressible icDoc = (ICompressible) doc;
icDoc.Compress();

If it turns out that Document implements only the Tstorable interface:

public class Document : IStorable

the cast to TCompressible would still compile because TCompressible is a valid interface.
However, because of the illegal cast, when the program is run an exception will be thrown:

An exception of type System.InvalidCastException was thrown.

139

Programming C#, 2nd Edition

Exceptions are covered in detail in Chapter 11.
8.2.2 The is Operator

You would like to be able to ask the object if it supports the interface, in order to then invoke
the appropriate methods. In C# there are two ways to accomplish this. The first method is to
use the is operator. The form of the is operator is:

expression 1is type

The is operator evaluates true if the expression (which must be a reference type) can be
safely cast to type without throwing an exception. Example 8-3 illustrates the use of the is
operator to test whether a Document implements the Istorable and ICompressible
interfaces.

Example 8-3. Using the is operator

using System;

interface IStorable

{
void Read();
void Write (object obj);
int Status { get; set; }

}

// here's the new interface
interface ICompressible
{

void Compress();

void Decompress();

}

// Document implements IStorable
public class Document : IStorable

{

public Document (string s)

{
Console.WriteLine (
"Creating document with: {0}", s);

}

// IStorable.Read
public void Read()
{

Console.WriteLine (
"Implementing the Read Method for IStorable");
}

// IStorable.Write
public void Write (object o)
{

Console.WriteLine (
"Implementing the Write Method for IStorable");

140

Programming C#, 2nd Edition

// IStorable.Status
public int Status

{
get
{

return status;

}

set

{

status = value;
}
}

private int status = 0;

}

public class Tester

{

static void Main()

{

Document doc = new Document ("Test Document");

// only cast if it is safe
if (doc is IStorable)

{
IStorable isDoc = (IStorable) doc;

isDoc.Read() ;
// this test will fail
if (doc is ICompressible)

ICompressible icDoc = (ICompressible) doc;
icDoc.Compress() ;

Example 8-3 differs from Example 8-2 in that Document no longer implements the
ICompressible interface. Main() now determines whether the cast is legal (sometimes
referred to as safe) by evaluating the following i £ clause:

if (doc 1is IStorable)

This is clean and nearly self-documenting. The i £ statement tells you that the cast will happen
only if the object is of the right interface type.

Unfortunately, this use of the is operator turns out to be inefficient. To understand why, you

need to dip into the MSIL code that this generates. Here is a small excerpt (note that the line
numbers are in hexadecimal notation):

141

Programming C#, 2nd Edition

IL 0023: isinst ICompressible

IL 0028: Dbrfalse.s IL 0039

IL 00Z2a: 1dloc.O0

IL 002b: castclass ICompressible

IL 0030: stloc.2

IL 0031: 1dloc.2

IL 0032: callvirt instance void ICompressible::Compress()

What is most important here is the test for 1Compressible on line 23. The keyword isinst
is the MSIL code for the is operator. It tests to see if the object (doc) is in fact of the right
type. Having passed this test we continue on to line 2b, in which castclass is called.
Unfortunately, castclass also tests the type of the object. In effect, the test is done twice. A
more efficient solution is to use the as operator.

8.2.3 The as Operator

The as operator combines the is and cast operations by testing first to see whether a cast is
valid (i.e., whether an is test would return true) and then completing the cast when it is. If
the cast is not valid (i.e., if an is test would return false), the as operator returns null.

o &

e The keyword nul1 represents a null reference -- one that does not refer
o+ j. toany object.
158

Using the as operator eliminates the need to handle cast exceptions. At the same time you
avoid the overhead of checking the cast twice. For these reasons, it is optimal to cast
interfaces using as.

The form of the as operator is:

expression as type

The following code adapts the test code from Example 8-3, using the as operator and testing
for null:

static void Main()
{
Document doc = new Document ("Test Document");
IStorable isDoc = doc as IStorable;
if (isDoc != null)
isDoc.Read();
else
Console.WriteLine ("IStorable not supported");

ICompressible icDoc = doc as ICompressible;
if (icDoc != null)
icDoc.Compress();
else
Console.WritelLine ("Compressible not supported");

A quick look at the comparable MSIL code shows that the following version is in fact more
efficient:

142

Programming C#, 2nd Edition

IL 0023: 1isinst ICompressible

IL 0028: stloc.2

IL 0029: 1ldloc.Z2

IL 002a: brfalse.s IL 0034

IL 002c: 1ldloc.2

IL 002d: callvirt instance void ICompressible::Compress()

8.2.4 The is Operator Versus the as Operator

If your design pattern is to test the object to see if it is of the type you need, and if so you will
immediately cast it, the as operator is more efficient. At times, however, you might want to
test the type of an operator but not cast it immediately. Perhaps you want to test it but not cast
it at all; you simply want to add it to a list if it fulfills the right interface. In that case, the is
operator will be a better choice.

8.2.5 Interface Versus Abstract Class

Interfaces are very similar to abstract classes. In fact, you could change the declaration of
Istorable to be an abstract class:

abstract class Storable

{
abstract public void Read();
abstract public void Write();

}

Document could now inherit from Storable, and there would not be much difference from
using the interface.

Suppose, however, that you purchase a List class from a third-party vendor whose
capabilities you wish to combine with those specified by storable? In C++ you could create
a StorableList class and inherit from both List and storable. But in C# you're stuck; you
can't inherit from both the storable abstract class and also the List class because C# does
not allow multiple inheritance with classes.

However, C# does allow you to implement any number of interfaces and derive from one base
class. Thus, by making storable an interface, you can inherit from the List class and also
from IStorable, as StorableList does in the following example:

public class StorablelList : List, IStorable

{
// List methods here

public void Read() {...}
public void Write (object obj) {...}
//

8.3 Overriding Interface Implementations

An implementing class is free to mark any or all of the methods that implement the interface
as virtual. Derived classes can override or provide new implementations. For example,
a Document class might implement the Istorable interface and mark the read() and
Write () methods as virtual. The Document might Read () and write () its contents to

143

Programming C#, 2nd Edition

a File type. The developer might later derive new types from Document, such as a Note or
EmailMessage type, and he might decide that Note will read and write to a database rather
than to a file.

Example 8-4 strips down the complexity of Example 8-3 and illustrates overriding
an interface implementation. The rRead () method is marked as virtual and implemented by
Document. Read () 1s then overridden in a Note type that derives from Document.

Example 8-4. Overriding an interface implementation

using System;

interface IStorable
{
void Read():;
void Write();

}

// Simplify Document to implement only IStorable
public class Document : IStorable
{

// the document constructor

public Document (string s)

{

Console.WriteLine (
"Creating document with: {0}", s);

}

// Make read virtual
public virtual void Read()
{
Console.WriteLine (
"Document Read Method for IStorable"):;
}

// NB: Not virtual!
public void Write()
{

Console.WriteLine (
"Document Write Method for IStorable");

}

// Derive from Document
public class Note : Document
{
public Note(string s):
base (s)
{
Console.WriteLine (
"Creating note with: {0}", s);

144

// override the Read method
public override void Read()

{

}

Console.WriteLine (
"Overriding the Read method for Note!");

// implement my own Write method
public new void Write()

{

}

Console.WriteLine (
"Implementing the Write method for Note!");

public class Tester

{

static void Main()

{

}

// create a document object

Document theNote = new Note ("Test Note");

IStorable isNote = theNote as IStorable;
if (isNote != null)
{

isNote.Read();

isNote.Write();

}
Console.WriteLine ("\n");

// direct call to the methods
theNote.Read();
theNote.Write();

Console.WriteLine ("\n");

// create a note object
Note note2 = new Note ("Second Test");
IStorable isNote2 = note2 as IStorable;
if (isNote != null)
{

isNote2.Read();

isNote2.Write ();

}
Console.WriteLine ("\n");
// directly call the methods

note2.Read();
note2.Write();

Output

Creating document with: Test Note
Creating note with: Test Note
Overriding the Read method for Note!
Document Write Method for IStorable

Programming C#, 2nd Edition

145

Programming C#, 2nd Edition

Overriding the Read method for Note!
Document Write Method for IStorable

Creating document with: Second Test
Creating note with: Second Test

Overriding the Read method for Note!
Document Write Method for IStorable

Overriding the Read method for Note!
Implementing the Write method for Note!

In this example, Document implements a simplified Istorable interface (simplified to make
the example clearer):

interface IStorable

{
void Read():;
void Write();

The designer of Document has opted to make the Read () method virtual but not to make the
Write () method virtual:

public virtual void Read()
In a real-world application, you would almost certainly mark both as virtual, but I've
differentiated them to demonstrate that the developer is free to pick and choose which

methods are made virtual.

The new class Note derives from Document:

public class Note : Document
It is not necessary for Note to override rRead (), but it is free to do so and has in fact done so
here:

public override void Read()
In Tester, the Read and write methods are called in four ways:

Through the base class reference to a derived object

Through an interface created from the base class reference to the derived object
Through a derived object

Through an interface created from the derived object

b s

To accomplish the first two calls, a Document (base class) reference is created, and the
address of a new Note (derived) object created on the heap is assigned to the Document
reference:

Document theNote = new Note ("Test Note"):;

An interface reference is created and the as operator is used to cast the Document to the
Istorable reference:

146

Programming C#, 2nd Edition

IStorable isNote = theNote as IStorable;

You then invoke the Read() and write() methods through that interface. The output
reveals that the read () method is responded to polymorphically and the write () method
is not, just as we would expect:

Overriding the Read method for Note!
Document Write Method for IStorable

The Read () and Wwrite () methods are then called directly on the object itself:

theNote.Read();
theNote.Write ();

and once again you see the polymorphic implementation has worked:

Overriding the Read method for Note!
Document Write Method for IStorable

In both cases, the Read () method of Note is called and the write () method of Document is
called.

To prove to yourself that this is a result of the overriding method, next create a second Note
object, this time assigning its address to a reference to a Note. This will be used to illustrate
the final cases (i.e., a call through a derived object and a call through an interface created
from the derived object):

Note note2 = new Note ("Second Test");

Once again, when you cast to a reference, the overridden Read () method is called. When,
however, methods are called directly on the Note object:

note2.Read();
note2 .Write();

the output reflects that you've called a Note and not an overridden Document:

Overriding the Read method for Note!
Implementing the Write method for Note!

8.4 Explicit Interface Implementation

In the implementation shown so far, the implementing class (in this case, Document) creates a
member method with the same signature and return type as the method detailed in the
interface. It is not necessary to explicitly state that this is an implementation of an interface;
this is understood by the compiler implicitly.

What happens, however, if the class implements two interfaces, each of which has a method
with the same signature? Example 8-5 creates two interfaces: IStorable and 1Talk. The
latter implements a Read () method that reads a book aloud. Unfortunately, this conflicts
with the Read () method in IStorable.

147

Programming C#, 2nd Edition

Because both Istorable and ITalk have a Read() method, the implementing Document
class must use explicit implementation for at least one of the methods. With explicit
implementation, the implementing class (Document) explicitly identifies the interface for the
method:

void ITalk.Read()
This resolves the conflict, but it does create a series of interesting side effects.

First, there is no need to use explicit implementation with the other method of Ta1k:

public void Talk()
Because there is no conflict, this can be declared as usual.

More importantly, the explicit implementation method cannot have an access modifier:

void ITalk.Read()
This method is implicitly public.

In fact, a method declared through explicit implementation cannot be declared with the
abstract, virtual, override, or new modifiers.

Most important, you cannot access the explicitly implemented method through the object
itself. When you write:

theDoc.Read();

the compiler assumes you mean the implicitly implemented interface for 1storable. The
only way to access an explicitly implemented interface is through a cast to an interface:

ITalk itDoc = theDoc as ITalk;
if (itDoc != null)

{
itDoc.Read();

}
Explicit implementation is demonstrated in Example 8-5.
Example 8-5. Explicit implementation

using System;

interface IStorable

{
void Read();
void Write();

148

interface ITalk
{
void Talk();
void Read():;
}

// Modify Document to implement IStorable and ITalk
public class Document : IStorable, ITalk
{

// the document constructor

public Document (string s)

{

Programming C#, 2nd Edition

Console.WritelLine ("Creating document with: {0}", s);

}

// Make read virtual
public virtual void Read()

{

Console.WriteLine ("Implementing IStorable.Read");

}

public void Write()
{

Console.WriteLine ("Implementing IStorable.Write");

}

void ITalk.Read()
{

Console.WriteLine ("Implementing ITalk.Read");

}

public void Talk()

{
Console.WriteLine ("Implementing ITalk.Talk");

}

public class Tester

{

static void Main()

{

// create a document object

Document theDoc = new Document ("Test Document");

IStorable isDoc = theDoc as IStorable;
if (isDoc != null)
{

isDoc.Read();

}

ITalk itDoc = theDoc as ITalk;
if (itDoc != null)
{
itDoc.Read();
}

149

Programming C#, 2nd Edition

theDoc.Read();
theDoc.Talk();

}
Output:

Creating document with: Test Document
Implementing IStorable.Read
Implementing ITalk.Read

Implementing IStorable.Read
Implementing ITalk.Talk

8.4.1 Selectively Exposing Interface Methods

A class designer can take advantage of the fact that when an interface is implemented through
explicit implementation, the interface is not visible to clients of the implementing class except
through casting.

Suppose the semantics of your Document object dictate that it implement the Istorable
interface, but you do not want the Read() and write() methods to be part of the public
interface of your Document. You can use explicit implementation to ensure that they are not
available except through casting. This allows you to preserve the semantics of your Document
class while still having it implement Istorable. If your client wants an object that
implements the Istorable interface, it can make an explicit cast, but when using your
document as a Document, the semantics will not include Read () and Write().

In fact, you can select which methods to make visible through explicit implementation so that
you can expose some implementing methods as part of Document but not others. In
Example 8-5, the Document object exposes the Talk () method as a method of Document,
but the Talk.Read () method can be obtained only through a cast. Even if Istorable did
not have a rRead method, you might choose to make read () explicitly implemented so that
you do not expose Read () as a method of Document.

Note that because explicit interface implementation prevents the use of the virtual keyword,
a derived class would be forced to reimplement the method. Thus, if Note derived from
Document, it would be forced to reimplement Talk.Read() because the Document
implementation of Talk.Read () could not be virtual.

8.4.2 Member Hiding

It is possible for an interface member to become hidden. For example, suppose you have an
interface 1Base that has a property p:

interface IBase

{
int P { get; set; }

}

150

Programming C#, 2nd Edition

Suppose you derive from that interface a new interface, 1berived, which hides the property p
with a new method p():

interface IDerived : IBase

{

new int P();

}

Setting aside whether this is a good idea, you have now hidden the property p in the base
interface. An implementation of this derived interface will require at least one explicit
interface member. You can use explicit implementation for either the base property or the
derived method, or you can use explicit implementation for both. Thus, any of the following
three versions would be legal:

class myClass : IDerived

{
// explicit implementation for the base property
int IBase.P { get {...} }

// implicit implementation of the derived method
public int P() {...}
}

class myClass : IDerived

{
// implicit implementation for the base property
public int P { get {...} }

// explicit implementation of the derived method
int IDerived.P() {...}
}

class myClass : IDerived

{
// explicit implementation for the base property
int IBase.P { get {...} }

// explicit implementation of the derived method
int IDerived.P() {...}

8.4.3 Accessing Sealed Classes and Value Types

Generally, it is preferable to access the methods of an interface through an interface cast. The
exception is with value types (e.g., structs) or with sealed classes. In that case, it is preferable
to invoke the interface method through the object.

When you implement an interface in a struct, you are implementing it in a value type. When
you cast to an interface reference, there is an implicit boxing of the object. Unfortunately,
when you use that interface to modify the object, it is the boxed object, not the original value
object, that is modified. Further, if you change the value type, the boxed type will remain
unchanged. Example 8-6 creates a struct that implements IStorable and illustrates the
impact of implicit boxing when you cast the struct to an interface reference.

151

Example 8-6. References on value types
using System;

// declare a simple interface
interface IStorable
{

void Read();

int Status { get;set;}

}

// Implement through a struct
public struct myStruct : IStorable
{

public void Read()
{
Console.WriteLine (
"Implementing IStorable.Read");
}

public int Status
{

get

{

return status;

set
{
status = value;
}
}

private int status;

}

public class Tester

{

static void Main()
{
// create a myStruct object
myStruct theStruct = new myStruct();
theStruct.Status = -1; // initialize
Console.WriteLine (
"theStruct.Status: {0}", theStruct.Status);

// Change the value
theStruct.Status = 2;
Console.WriteLine ("Changed object.");
Console.WriteLine (
"theStruct.Status: {0}", theStruct.Status);

// cast to an IStorable
// implicit box to a reference type
IStorable isTemp = (IStorable) theStruct;

Programming C#, 2nd Edition

152

Programming C#, 2nd Edition

// set the value through the interface reference

isTemp.Status = 4;

Console.WriteLine ("Changed interface.");

Console.WriteLine ("theStruct.Status: {0}, isTemp: {1}",
theStruct.Status, isTemp.Status);

// Change the value again

theStruct.Status = 6;

Console.WritelLine ("Changed object.");

Console.WriteLine ("theStruct.Status: {0}, isTemp: {1}",
theStruct.Status, isTemp.Status);

Output:

theStruct.Status: -1

Changed object.
theStruct.Status: 2

Changed interface.
theStruct.Status: 2, isTemp: 4
Changed object.
theStruct.Status: 6, isTemp: 4

In Example 8-6, the Istorable interface has a method (Read) and a property (status).

This interface is implemented by the struct named myStruct:

public struct myStruct : IStorable

The interesting code is in Tester. Start by creating an instance of the structure and initializing
its property to -1. The status value is then printed:

myStruct theStruct = new myStruct();
theStruct.status = -1; // initialize
Console.WriteLine (

"theStruct.Status: {0}", theStruct.status);

The output from this shows that the status was set properly:

theStruct.Status: -1

Next access the property to change the status, again through the value object itself:

// Change the value
theStruct.status = 2;
Console.WriteLine ("Changed object.");
Console.WriteLine (
"theStruct.Status: {0}", theStruct.status);

The output shows the change:

Changed object.
theStruct.Status: 2

153

Programming C#, 2nd Edition

No surprises so far. At this point, create a reference to the Istorable interface. This causes
an implicit boxing of the value object thestruct. Then use that interface to change the status
value to 4:

// cast to an IStorable
// implicit box to a reference type
IStorable isTemp = (IStorable) theStruct;

// set the value through the interface reference

isTemp.status = 4;

Console.WriteLine ("Changed interface.");

Console.WritelLine ("theStruct.Status: {0}, isTemp: {1}",
theStruct.status, isTemp.status);

Here the output can be a bit surprising:

Changed interface.
theStruct.Status: 2, isTemp: 4

Aha! The object to which the interface reference points has been changed to a status value of
4, but the struct value object is unchanged. Even more interesting, when you access the
method through the object itself:

// Change the value again

theStruct.status = 6;

Console.WritelLine ("Changed object.");

Console.WriteLine ("theStruct.Status: {0}, isTemp: {1}",
theStruct.status, isTemp.status);

the output reveals that the value object has been changed, but the boxed reference value for
the interface reference has not:

Changed object.
theStruct.Status: 6, isTemp: 4

A quick look at the MSIL code (Example 8-7) reveals what is going on under the hood:

Example 8-7. MSIL code resulting from Example 8-6

.method private hidebysig static void Main() cil managed
{

.entrypoint

// Code size 187 (0xbb)

.maxstack 4

.locals init ([0] wvaluetype myStruct theStruct,
[1] class IStorable isTemp)

IL 0000: 1dloca.s theStruct

IL 0002: initobj myStruct

IL 0008: 1dloca.s theStruct

IL 000a: 1dc.id4.ml

IL 000b: call instance void myStruct::set Status(int32)

IL 0010: ldstr "theStruct.Status: {0}"

IL 0015: 1ldloca.s theStruct

IL 0017: call instance int32 myStruct::get_Status()

IL 00lc: box [mscorlib]System.Int32

IL 0021: «call void [mscorlib]System.Console::WritelLine (string,
object)

154

Programming C#, 2nd Edition

IL 0026: 1dloca.s theStruct

IL 0028: 1dc.id.2

IL 0029: call instance void myStruct::set Status (int32)

IL 002e: 1ldstr "Changed object."

IL 0033: call void [mscorlib]System.Console::WriteLine (string)

IL 0038: ldstr "theStruct.Status: {0}"

IL 003d: 1ldloca.s theStruct

IL 003f: call instance int32 myStruct::get Status()

IL 0044: box [mscorlib]System.Int32

IL 0049: call void [mscorlib]System.Console::WritelLine (string,
object)

IL 004e: 1dloc.O0

IL 004f: Dbox myStruct

IL 0054: stloc.l

IL 0055: 1dloc.1

IL 0056: 1ldc.i4.4

IL 0057: callvirt instance void IStorable::set_Status(int32)

IL 005c: 1ldstr "Changed interface."

IL 0061l: call void [mscorlib]System.Console::WritelLine (string)

IL 0066: 1ldstr "theStruct.Status: {0}, isTemp: {1}"

IL 006b: 1ldloca.s theStruct

IL 006d: call instance int32 myStruct::get Status()

IL 0072: Dbox [mscorlib]System.Int32

IL 0077: 1ldloc.1l

IL 0078: callvirt instance int32 IStorable::get Status()

IL 007d: box [mscorlib]System.Int32

IL 0082: call void [mscorlib]System.Console::WriteLine (string,
object,
object)

IL 0087: 1ldloca.s theStruct

IL 0089: 1dc.i4d.6

IL 008a: call instance void myStruct::set Status (int32)

IL 008f: 1ldstr "Changed object."

IL 0094: call void [mscorlib]System.Console::WritelLine (string)

IL 0099: 1ldstr "theStruct.Status: {0}, isTemp: {1}"

IL 00%e: 1ldloca.s theStruct

IL 00a0: call instance int32 myStruct::get Status()

IL 00a5: box [mscorlib]System.Int32

IL OOaa: 1ldloc.l

IL OOab: callvirt instance int32 IStorable::get Status()

IL 00b0: box [mscorlib]System.Int32

IL 00b5: call void [mscorlib]System.Console::WriteLine (string,
object,
object)

IL OOba: ret

} // end of method Tester::Main

On line 11:000b, set Status() was called on the value object. We see the second call on
line 1. 0017. Notice that the calls to writeLine () cause boxing of the integer value status
so that the Getstring () method can be called.

The key line is 1_004f (highlighted) where the struct itself is boxed. It is that boxing that
creates a reference type for the interface reference. Notice on line 11 0057 that this time

IStorable::set Status is called rather than mystruct::set Status.

The design guideline is if you are implementing an interface with a value type, be sure to
access the interface members through the object rather than through an interface reference.

155

Programming C#, 2nd Edition

Chapter 9. Arrays, Indexers, and Collections

The .NET Framework provides a rich suite of collection classes, including Array, ArrayList,
NameValueCollection, StringCollection, Queue, Stack, and BitArray.

The simplest collection is the Array, the only collection type for which C# provides built-in
support. In this chapter you will learn to work with single, multidimensional, and jagged
arrays. You will also be introduced to indexers, a bit of C# syntactic sugar that makes it easier
to access class properties, as though the class were indexed like an array.

The .NET Framework provides a number of interfaces, such as IEnumerable and
ICollection, whose implementation provides you with standard ways to interact with
collections. In this chapter you will see how to work with the most essential of these.
The chapter concludes with a tour of commonly used .NET collections, including ArrayList,
Hashtable, Queue, and stack.

9.1 Arrays

An array is an indexed collection of objects, all of the same type. C# arrays are somewhat
different from arrays in C++ and other languages, because they are objects. This provides
them with useful methods and properties.

C# provides native syntax for the declaration of Array objects. What is actually created,
however, is an object of type System.aArray. Arrays in C# thus provide you with the best of
both worlds: easy-to-use C-style syntax underpinned with an actual class definition so that
instances of an array have access to the methods and properties of system.Array. These
appear in Table 9-1.

Table 9-1. System.Array methods and properties
Method or property |Description

BinarySearch () Overloaded public static method that searches a one-dimensional sorted array.

Clear () Public static method that sets a range of elements in the array either to zero or to a null
reference.

Copy () Overloaded public static method that copies a section of one array to another array.

CreateInstance () |Overloaded public static method that instantiates a new instance of an array.
Overloaded public static method that returns the index (offset) of the first instance of

IndexOf () . . .

a value in a one-dimensional array.

Overloaded public static method that returns the index of the last instance of a value in
LastIndexOf () . .

a one-dimensional array.

Overloaded public static method that reverses the order of the elements in a one-
Reverse () . .

dimensional array.
Sort () Overloaded public static method that sorts the values in a one-dimensional array.
IsFixedSize Public property that returns a value indicating whether the array has a fixed size.
IsReadOnly Public property that returns a Boolean value indicating whether the array is read-only.
IsSynchronized |Public property that returns a Boolean value indicating whether the array is thread-safe.
Length Public property that returns the length of the array.
Rank Public property that returns the number of dimensions of the array.
SyncRoot Public property that returns an object that can be used to synchronize access to

the array.

156

Programming C#, 2nd Edition

GetEnumerator () |Public method that returns an IEnumerator.
GetLength () Public method that returns the length of the specified dimension in the array.
GetLowerBound () |Public method that returns the lower boundary of the specified dimension of the array.

GetUpperBound () |Public method that returns the upper boundary of the specified dimension of the array.

Initializes all values in a value type array by calling the default constructor for each

Initialize()
value.

SetValue () Overloaded public method that sets the specified array elements to a value.

9.1.1 Declaring Arrays

Declare a C# array with the following syntax:

typell]l array-name;

For example:

int[] myIntArray;

The square brackets (1) tell the C# compiler that you are declaring an array, and the type
specifies the type of the elements it will contain. In the previous example, myIntArray is an
array of integers.

Instantiate an array using the new keyword. For example:

myIntArray = new int[5];

This declaration sets aside memory for an array holding five integers.

o Visual Basic programmers take note: the first element is always 0; there
o is no way to set the upper or lower bounds, and you cannot change the
~ % size (redim) of the array.

It is important to distinguish between the array itself (which is a collection of elements) and
the elements of the array. myIntarray is the array; its elements are the five integers it holds.
C# arrays are reference types, created on the heap. Thus, myIntarray is allocated on the heap.
The elements of an array are allocated based on their type. Integers are value types, and so the
elements in myIntarray will be value types, not boxed integers. An array of reference types
will contain nothing but references to the elements, which are themselves created on the heap.

9.1.2 Understanding Default Values

When you create an array of value types each element initially contains the default value for
the type stored in the array (see Table 4-2). The declaration:

myIntArray = new int[5];

creates an array of five integers, each of whose value is set to 0, which is the default value for
integer types.

157

Programming C#, 2nd Edition

Unlike with arrays of value types, the reference types in an array are not initialized to their
default value. Instead, they are initialized to null. If you attempt to access an element in an
array of reference types before you have specifically initialized them, you will generate an
exception.

Assume you have created a Button class. Declare an array of Button objects with the
following statement:

Button[] myButtonArray;

and instantiate the actual array like this:

myButtonArray = new Button[3];

You can shorten this to:

Button[] myButtonArray = new Button[3];

Unlike with the earlier integer example, this statement does not create an array with
references to three Button objects. Instead, this creates the array myButtonArray with three
null references. To use this array, you must first construct and assign the Button objects for
each reference in the array. You can construct the objects in a loop that adds them one by one
to the array.

9.1.3 Accessing Array Elements

Access the elements of an array using the index operator ([]). Arrays are zero-based, which
means that the index of the first element is always zero -- in this case, myarray[0].

As explained previously, arrays are objects, and thus have properties. One of the more useful
of these is Length, which tells you how many objects are in an array. Array objects can be
indexed from 0 to Length-1. That is, if there are five elements in an array, their indices are
0,1,2,3,4.

Example 9-1 illustrates the array concepts covered so far. In this example a class named
Tester creates an array of Employees and an array of integers, populates the Employee array,
and then prints the values of both.

Example 9-1. Working with an array

namespace Programming CSharp

{

using System;

// a simple class to store in the array
public class Employee
{

// a simple class to store in the array

public Employee (int empID)

{

this.empID = empID;
}

158

public override string ToString()

{

}

return empID.ToString();

private int empID;

}

public class Tester

{

static void Main()

{

Output:

~N o U1 O O O OO

int[] intArray;

Employee[] empArray;
intArray = new int[5];
empArray = new Employee[3];

// populate the array
for (int i = 0;i<empArray.Length;i++)
{

empArray[i] = new Employee (i+5);

}

for (int i = 0;i<intArray.Length;i++)
{

Console.WritelLine (intArray[i].ToString());

}

for (int i = 0;i<empArray.Length;i++)
{

Console.WritelLine (empArray[i].ToString());

}

Programming C#, 2nd Edition

The example starts with the definition of an Employee class that implements a constructor that

takes a single integer parameter. The ToString(

overridden to print the value of the Employee object's employee ID.

) method inherited from object 1is

The test method declares and then instantiates a pair of arrays. The integer array is
automatically filled with integers whose value is set to zero. The Employee array contents
must be constructed by hand.

Finally, the contents of the arrays are printed to ensure that they are filled as intended. The
five integers print their value first, followed by the three Employee objects.

159

Programming C#, 2nd Edition

9.2 The foreach Statement

The foreach looping statement is new to the C family of languages, though it is already well
known to VB programmers. The foreach statement allows you to iterate through all the items
in an array or other collection, examining each item in turn. The syntax for the foreach
statement is:

foreach (type identifier in expression) statement

Thus, you might update Example 9-1 to replace the for statements that iterate over the
contents of the array with foreach statements, as shown in Example 9-2.

Example 9-2. Using foreach

namespace Programming CSharp

{

using System;

// a simple class to store in the array
public class Employee
{
// a simple class to store in the array
public Employee (int empID)
{
this.empID = emplD;
}
public override string ToString()
{
return empID.ToString();
}
private int empID;
}
public class Tester
{
static void Main()
{
int[] intArray;
Employee[] empArray;
intArray = new int[5];
empArray = new Employee[3];

// populate the array
for (int i1 = 0;i<empArray.Length;i++)
{

empArray[i] = new Employee (i+5);

}

foreach (int i in intArray)

{

Console.WriteLine (i.ToString())

}

foreach (Employee e in empArray)

{

Console.WriteLine (e.ToString());

}

160

Programming C#, 2nd Edition

The output for Example 9-2 is identical to Example 9-1. However, rather than creating a for
statement that measures the size of the array and uses a temporary counting variable as an
index into the array as in the following, we try another approach:

for (int 1 = 0; 1 < empArray.Length; i++)
{

Console.WriteLine (empArray([i].ToString());

}

We iterate over the array with the foreach loop, which automatically extracts the next item
from within the array and assigns it to the temporary object you've created in the head of the
statement.

foreach (Employee e in empArray)

{

Console.WriteLine (e.ToString());

}

The object extracted from the array is of the appropriate type; thus, you may call any public
method on that object.

9.2.1 Initializing Array Elements

It is possible to initialize the contents of an array at the time it is instantiated by providing a
list of values delimited by curly brackets ({}). C# provides a longer and a shorter syntax:

int[] myIntArray new int[5] { 2, 4, 6, 8, 10 }
int[] myIntArray = { 2, 4, 6, 8, 10 }

There is no practical difference between these two statements, and most programmers will use
the shorter syntax because we are, by nature, lazy. We are so lazy we'll work all day to save a
few minutes doing a task -- which isn't so crazy if we're going to do that task hundreds of
times!

9.2.2 The params Keyword

You can create a method that displays any number of integers to the console by passing in an
array of integers and then iterating over the array with a foreach loop. The params keyword
allows you to pass in a variable number of parameters without necessarily explicitly creating
the array.

In the next example, you create a method, bisplayvals (), which takes a variable number of
integer arguments:

public void DisplayVals (params int[] intVals)
The method itself can treat the array as if an integer array were explicitly created and passed

in as a parameter. You are free to iterate over the array as you would over any other array of
integers:

161

Programming C#, 2nd Edition

foreach (int i in intVals)

{
Console.WriteLine ("DisplayVals {0}",1i);

}

The calling method, however, need not explicitly create an array; it can simply pass in
integers, and the compiler will assemble the parameters into an array for the Displayvals ()
method:

t.DisplayVals(5,6,7,8);

You are free to pass in an array if you prefer:

int [] explicitArray = new int[5] {1,2,3,4,5};
t.DisplayVals (explicitArray);

Example 9-3 provides the complete source code illustrating the params keyword.

Example 9-3. Using the params keyword

namespace Programming CSharp

{

using System;

public class Tester
{
static void Main()
{
Tester t = new Tester();
t.DisplayVals(5,6,7,8);
int [] explicitArray = new int[5] {1,2,3,4,5};
t.DisplayVals (explicitArray) ;
}

public void DisplayVals (params int[] intVals)
{
foreach (int i in intVals)
{
Console.WriteLine ("DisplayVals {0}",1i);
}

}
Output:

DisplayVals
DisplayVals
DisplayVals
DisplayVals
DisplayVals
DisplayVals
DisplayVals
DisplayVals
DisplayVals

grd W NP o Jo Ol

162

Programming C#, 2nd Edition

9.2.3 Multidimensional Arrays

Arrays can be thought of as long rows of slots into which values can be placed. Once you
have a picture of a row of slots, imagine 10 rows, one on top of another. This is the classic
two-dimensional array of rows and columns. The rows run across the array and the columns
run up and down the array.

A third dimension is possible, but somewhat harder to imagine. Make your arrays three-
dimensional, with new rows stacked atop the old two-dimensional array. OK, now imagine
four dimensions. Now imagine 10.

Those of you who are not string-theory physicists have probably given up, as have L.
Multidimensional arrays are useful, however, even if you can't quite picture what they would
look like.

C# supports two types of multidimensional arrays: rectangular and jagged. In a rectangular
array, every row is the same length. A jagged array, however, is an array of arrays, each of
which can be a different length.

9.2.3.1 Rectangular arrays

A rectangular array is an array of two (or more) dimensions. In the classic two-dimensional
array, the first dimension is the number of rows and the second dimension is the number of
columns.

To declare a two-dimensional array, use the following syntax:

type [,] array-name

For example, to declare and instantiate a two-dimensional rectangular array named
myRectangularArray that contains two rows and three columns of integers, you would write:

int [,] myRectangularArray = new int[2,3];

Example 9-4 declares, instantiates, initializes, and prints the contents of a two-dimensional
array. In this example, a for loop is used to initialize the elements of the array.

Example 9-4. Rectangular arrays

namespace Programming CSharp

{

using System;

public class Tester
{
static void Main()
{
const int rows = 4;
const int columns = 3;
// declare a 4x3 integer array
int[,] rectangularArray = new int[rows, columns];

163

Programming C#, 2nd Edition

// populate the array

for (int i = 0;1 < rows;i++)
{
for (int j = 0;j<columns;j++)
{
rectangularArray([i,j] = i+3;

}
}

// report the contents of the array

for (int i = 0;1i < rows;i++)
{
for (int j = 0;j<columns;j++)
{
Console.WritelLine ("rectangularArray[{0}, {1}] = {2}",

i,3j,rectangularArray([i,jl);

}
Output:

rectangularArray
rectangularArray
rectangularArray
rectangularArray
rectangularArray
rectangularArray
rectangularArray
rectangularArray
rectangularArray
rectangularArray
rectangularArray
rectangularArray

I
OB WD WNDWNREDNRE O

In this example, you declare a pair of constant values:

const int rows = 4;
const int columns = 3;

which are then used to dimension the array:

int[,] rectangularArray = new int[rows, columns];

Notice the syntax. The brackets in the int [,] declaration indicate that the type is an array of
integers, and the comma indicates the array has two dimensions (two commas would indicate
three dimensions, and so on). The actual instantiation of rectangularArray with new
int [rows, columns] sets the size of each dimension. Here the declaration and instantiation
have been combined.

The program fills the rectangle with a pair of for loops, iterating through each column in each
row. Thus, the first element filled is rectangularArray(0,0], followed by
rectangularArray([0,1], and rectangularArray[0,2]. Once this is done, the program
moves on to the next rows: rectangularArray[l,0], rectangularArray([l,1],
rectangularArray(1,2], and so forth, until all the columns in all the rows are filled.

164

Programming C#, 2nd Edition

Just as you can initialize a one-dimensional array using bracketed lists of values, you can
initialize a two-dimensional array using similar syntax. Example 9-5 declares a two-
dimensional array (rectangularArray), initializes its elements using bracketed lists of
values, and then prints out the contents.

Example 9-5. Initializing a multidimensional array

namespace Programming CSharp

{

using System;

public class Tester
{
static void Main()
{
const int rows = 4;
const int columns = 3;
// imply a 4x3 array
int[,] rectangularArray =
{
{0,1,2}, {3,4,5}, {6,7,8}, {9,10,11}
}s

for (int i = 0;i < rows;i++)
{
for (int j = 0;j<columns;j++)
{
Console.WritelLine ("rectangularArray[{0}, {1}] = {2}",
i,j,rectangularArrayl[i,Jl);

}

Output:
rectangularArrayrectangularArray[0,0] = 0
rectangularArrayrectangularArray([0,1] = 1
rectangularArrayrectangularArray([0,2] = 2
rectangularArrayrectangularArray[1l,0] = 3
rectangularArrayrectangularArray[1l,1] = 4
rectangularArrayrectangularArray([1l,2] = 5
rectangularArrayrectangularArray([2,0] = 6
rectangularArrayrectangularArray([2,1] = 7
rectangularArrayrectangularArray[2,2] = 8
rectangularArrayrectangularArray([3,0] = 9
rectangularArrayrectangularArray[3,1] = 10
rectangularArrayrectangularArray[3,2] = 11

The preceding example is very similar to Example 9-4, but this time you imply the exact
dimensions of the array by how you initialize it:

int[,] rectangularArrayrectangularArray =

{
{0,1,2}, {3,4,5}, {6,7,8}, {9,10,11}
i

165

Programming C#, 2nd Edition

Assigning values in four bracketed lists, each consisting of three elements, implies a 4 x 3
array.

Had you written this as:

int[,] rectangularArrayrectangularArray =

{
{0,1,2,3}, {4,5,6,7}, {8,9,10,11}
}i

you would instead have implied a 3 x 4 array.

You can see that the C# compiler understands the implications of your clustering, as it is able
to access the objects with the appropriate offsets, as illustrated in the output.

You might guess that this is a 12-element array, and that you can just as easily access an
element at rectangularArray[0,3] as at rectangularArray([1, 0], but if you try you will
run right into an exception:

Exception occurred: System.IndexOutOfRangeException:
Index was outside the bounds of the array.

at Programming CSharp.Tester.Main() in
csharp\programming csharp\listing0703.cs:1ine 23

C# arrays are smart and they keep track of their bounds. When you imply a 4 x 3 array, you
must treat it as such.

9.2.3.2 Jagged arrays

A jagged array is an array of arrays. It is called "jagged" because each of the rows need not
be the same size as all the others, and thus a graphical representation of the array would not be
square.

When you create a jagged array, you declare the number of rows in your array. Each row will

hold an array, which can be of any length. These arrays must each be declared. You can then
fill in the values for the elements in these "inner" arrays.

In a jagged array, each dimension is a one-dimensional array. To declare a jagged array, use
the following syntax, where the number of brackets indicates the number of dimensions of the
array:

type [1 []...

For example, you would declare a two-dimensional jagged array of integers named
myJaggedArray as follows:

int [] [] myJaggedArray;
Access the fifth element of the third array by writing myJaggedarray[2][4].

Example 9-6 creates a jagged array named myJaggedArray, initializes its elements, and then
prints their content. To save space, the program takes advantage of the fact that integer array

166

Programming C#, 2nd Edition

elements are automatically initialized to zero, and it initializes the values of only some of the

elements.

Example 9-6. Working with a jagged array

namespace Programming CSharp

{

using System;

public class Tester

{

static void Main()

{

const int rows = 4;

// declare the jagged array as 4 rows high
int[][] jaggedArray = new int[rows][];

// the first row has 5 elements
jaggedArray[0] = new int[5];

// a row with 2 elements
jaggedArray([l] = new int[2];

// a row with 3 elements
jaggedArray[2] = new int[3];

// the last row has 5 elements

jaggedArray([3] = new int[5];
// Fill some (but not all) elements of the rows
jaggedArray[0] [3] = 15;
jaggedArray[1l][1] = 12;
jaggedArray([2][1] = 9;
jaggedArray([2][2] = 99;
jaggedArray[3][0] = 10;
jaggedArray[3][1] = 11;
jaggedArray([3]1[2] = 12;
jaggedArray([3]1[3] = 13;
jaggedArray([3]1[4] = 14;

for (int 1 = 0;1i < 5; i++4)
{
Console.WritelLine ("jaggedArray[0] [{0}] = {1}",
i,jaggedArray([0][i]);
}

for (int 1 = 0;1i < 2; i++4)

{

Console.WriteLine ("jaggedArray[1][{0}] {1y,
i,jaggedArray[1l][i]);

}

for (int 1 = 0;1 < 3; i++)
{

Console.WritelLine ("jaggedArray[2][{0}] {1y,

i,JjaggedArray[2] [i]);

167

Programming C#, 2nd Edition

for (int 1 = 0;1i < 5; i++)
{
Console.WritelLine ("jaggedArray[3]1[{0}] = {1}",
i,jaggedArray[3][i]);

}

Output:
jaggedArray[0][0] = 0
jaggedArray[0][1] = 0
jaggedArray[0][2] = O
jaggedArray[0] [3] = 15
jaggedArray[0][4] = 0
jaggedArray[1][0] = 0
jaggedArray([l][1] = 12
jaggedArray[2][0] = O
jaggedArray[2][1] = 9
jaggedArray([2][2] = 99
jaggedArray[3]1[0] = 10
jaggedArray([3][1] = 11
jaggedArray[3][2] = 12
jaggedArray[3][3] = 13
jaggedArray([3][4] = 14

In this example, a jagged array is created with four rows:

int[][] jaggedArray = new int[rows][];

Notice that the second dimension is not specified. This is set by creating a new array for each
row. Each of these arrays can have a different size:

// the first row has 5 elements
jaggedArray[0] = new int[5];

// a row with 2 elements
jaggedArray([l] = new int[2];

// a row with 3 elements
jaggedArray[2] = new int[3];

// the last row has 5 elements
jaggedArray([3] = new int[5];

Once an array is specified for each row, you need only populate the various members of each
array and then print out their contents to ensure that all went as expected.

Notice that when you accessed the members of the rectangular array, you put the indexes all
within one set of square brackets:

rectangularArrayrectangularArray[i,]

while with a jagged array you need a pair of brackets:

jaggedArray[3] [1]

168

Programming C#, 2nd Edition

You can keep this straight by thinking of the first as a single array of more than one
dimension and the jagged array as an array of arrays.

9.2.4 Array Conversions

Conversion is possible between arrays if their dimensions are equal and if a conversion is
possible between the element types. An implicit conversion can occur if the elements can be
implicitly converted; otherwise an explicit conversion is required.

If an array contains references to reference objects, a conversion is possible to an array of
base elements. Example 9-7 illustrates the conversion of an array of user-defined Employee
types to an array of objects.

Example 9-7. Converting arrays

namespace Programming CSharp

{

using System;

// create an object we can
// store in the array
public class Employee
{
// a simple class to store in the array
public Employee (int empID)
{
this.empID = emplD;
}
public override string ToString()
{
return empID.ToString();
}
private int empID;

}

public class Tester
{
// this method takes an array of objects
// we'll pass in an array of Employees
// and then an array of strings
// the conversion is implicit since both Employee
// and string derive (ultimately) from object
public static void PrintArray(object[] theArray)
{
Console.WritelLine ("Contents of the Array {0}",
theArray.ToString());

// walk through the array and print
// the values.

foreach (object obj in theArray)

{

Console.WriteLine ("Value: {0}", obj);

}

169

Programming C#, 2nd Edition

static void Main()

{
// make an array of Employee objects
Employee[] myEmployeeArray = new Employee[3];

// initialize each Employee's value
for (int 1 = 0;1 < 3;i++)
{
myEmployeeArray[i] = new Employee (i+5);
}

// display the values
PrintArray (myEmployeeArray) ;

// create an array of two strings
string[] array =
{
"hello", "world"
}i

// print the value of the strings
PrintArray(array);

Output:

Contents of the Array Programming CSharp.Employee[]

Value: 5
Value: 6
Value: 7

Contents of the Array System.String[]
Value: hello
Value: world

Example 9-7 begins by creating a simple Employee class, as seen earlier in the chapter.
The Tester class now contains a new static method PrintArray(), which takes as
a parameter a one-dimensional array of objects:

public static void PrintArray(object[] theArray)

Object is the implicit base class of every object in the .NET Framework,. and so is
the implicit base class of both string and Employee.

The printArray() method takes two actions. First, it calls the Tostring() method on
the array itself:

Console.WritelLine ("Contents of the Array {0}",
theArray.ToString());

System.Array overrides the Tostring () method to your advantage, printing an identifying
name of the array:

Contents of the Array Programming CSharp. Employee []
Contents of the Array System.String[]

170

Programming C#, 2nd Edition

PrintArray() then goes on to call Tostring() on each element in the array it receives as
a parameter. Because Tostring() is a virtual method in the base class object, it is
guaranteed to be available in every derived class. You have overridden this method
appropriately in Employee so the code works properly. Calling Tostring() on a String
object might not be necessary, but it is harmless and it allows you to treat these objects
polymorphically.

9.2.5 System.Array

The array class has a number of useful methods that extend the capabilities of arrays and
make them smarter than arrays seen in other languages (see Table 9-1 earlier in this chapter).
Two useful static methods of Array are sort () and Reverse (). These are fully supported
for the built-in C# types such as string. Making them work with your own classes is a bit
trickier, as you must implement the IComparable interface (see Section 9.5.1 later in this
chapter). Example 9-8 demonstrates the use of these two methods to manipulate Sstring
objects.

Example 9-8. Using Array.Sort and Array.Reverse

namespace Programming CSharp

{

using System;

public class Tester
{ public static void PrintMyArray(object[] theArray)
{ foreach (object obj in theArray)
{ Console.WriteLine ("Value: {0}", obj);

}

Console.WriteLine ("\n");

}

static void Main()
{
String[] myArray =
{
"Whol" "is"’ "John"’ "Galt"
}i

PrintMyArray (myArray) ;
Array.Reverse (myArray) ;
PrintMyArray (myArray) ;

String[] myOtherArray =

{
"We", "Hold", "These", "Truths",
"TO", "Be"’ "Self"’ "Evident"’

}i
PrintMyArray (myOtherArray) ;

Array.Sort (myOtherArray) ;
PrintMyArray (myOtherArray) ;

171

Programming C#, 2nd Edition

Output:

Value: Who
Value: is
Value: John
Value: Galt

Value: Galt
Value: John
Value: 1is
Value: Who

Value: We
Value: Hold
Value: These
Value: Truths
Value: To
Value: Be
Value: Self
Value: Evident

Value: Be
Value: Evident
Value: Hold
Value: Self
Value: These
Value: To
Value: Truths
Value: We

The example begins by creating myarray, an array of strings with the words:

"Who", "is", "John", "Galt"

This array is printed, and then passed to the Array.Reverse () method, where it is printed
again to see that the array itself has been reversed:

Value: Galt
Value: John
Value: is
Value: Who

Similarly, the example creates a second array, myotherArray, containing the words:

"We", "Hold", "These", "Truths",
"TO", "Be", "Self", "Evident",

This is passed to the Array.sSort() method. Then aArray.sort() happily sorts them
alphabetically:

Value: Be
Value: Evident
Value: Hold
Value: Self
Value: These

Value: To
Value: Truths
Value: We

172

Programming C#, 2nd Edition

9.3 Indexers

There are times when it is desirable to access a collection within a class as though the class
itself were an array. For example, suppose you create a list box control named myListBox that
contains a list of strings stored in a one-dimensional array, a private member variable named
myStrings. A list box control contains member properties and methods in addition to its array
of strings. However, it would be convenient to be able to access the list box array with an
index, just as if the list box were an array. For example, such a property would permit
statements like the following:

string theFirstString = myListBox[0];
string thelastString = myListBox[Length-11];

An indexer is a C# construct that allows you to access collections contained by a class using
the familiar [] syntax of arrays. An indexer is a special kind of property and includes get ()
and set () methods to specify its behavior.

You declare an indexer property within a class using the following syntax:

type this [type argument] {get; set;}

The return type determines the type of object that will be returned by the indexer, while the
type argument specifies what kind of argument will be used to index into the collection that
contains the target objects. Although it is common to use integers as index values, you can
index a collection on other types as well, including strings. You can even provide an indexer
with multiple parameters to create a multidimensional array!

The this keyword is a reference to the object in which the indexer appears. As with a normal
property, you also must define get () and set() methods, which determine how the
requested object is retrieved from or assigned to its collection.

Example 9-9 declares a list box control (ListBoxTest), which contains a simple array
(myStrings) and a simple indexer for accessing its contents.

i &

e C++ programmers take note: the indexer serves much the same purpose
@). as overloading the C++ index operator ([1). The index operator cannot
~ %' be overloaded in C#, which provides the indexer in its place.

Example 9-9. Using a simple indexer

namespace Programming CSharp

{

using System;

// a simplified ListBox control
public class ListBoxTest
{
// initialize the list box with strings
public ListBoxTest (params string[] initialStrings)
{
// allocate space for the strings
strings = new String[256];

173

Programming C#, 2nd Edition

// copy the strings passed in to the constructor
foreach (string s in initialStrings)
{
strings[ctr++] = s;
}
}

// add a single string to the end of the list box
public void Add(string theString)
{
if (ctr >= strings.Length)
{
// handle bad index
}
else
strings[ctr++] = theString;
}

// allow array-like access
public string this[int index]
{
get
{
if (index < 0 || index >= strings.Length)
{
// handle bad index

}

return strings[index];

set

{
// add only through the add method

if (index >= ctr)
{

// handle error

}
else
strings[index] = value;

}

// publish how many strings you hold
public int GetNumEntries()
{

return ctr;

}

private string[] strings;
private int ctr = 0;

}

public class Tester
{
static void Main()

{

// create a new list box and initialize
ListBoxTest 1lbt =
new ListBoxTest ("Hello", "World"):;

174

Programming C#, 2nd Edition

// add a few strings
1bt.Add ("Who") ;
lbt.Add ("Is");
1bt.Add ("John") ;
lbt.Add ("Galt");

// test the access
string subst = "Universe";
1bt[1] = subst;

// access all the strings
for (int i = 0;i<lbt.GetNumEntries();i++)

{
Console.WriteLine ("1lbt[{0}]: {1}",4i,1bt[i]);

Output

1bt[0]: Hello
1bt[1]: Universe
1bt[2]: Who
1bt[3]: Is
1bt[4]: John
1bt[5]: Galt

To keep Example 9-9 simple, strip the list box control down to the few features we care about.
The listing ignores everything having to do with being a user control and focuses only on the
list of strings the list box maintains and methods for manipulating them. In a real application,
of course, these are a small fraction of the total methods of a list box, whose principal job is to
display the strings and enable user choice.

The first thing to notice is the two private members:

private string[] strings;
private int ctr = 0;

In this program, the list box maintains a simple array of strings: strings. Again, in a real list
box you might use a more complex and dynamic container, such as a hash table (described
later in this chapter). The member variable ctr will keep track of how many strings have been
added to this array.

Initialize the array in the constructor with the statement:
strings = new String[256];

The remainder of the constructor adds the parameters to the array. Again, for simplicity,
simply add new strings to the array in the order received.

o Because you cannot know how many strings will be added, use the
o keyword params, as described earlier in this chapter.

175

Programming C#, 2nd Edition

The add() method of ListBoxTest does nothing more than append a new string to the
internal array.

The key method of ListBoxTest, however, is the indexer. An indexer is unnamed, so use the
this keyword:

public string this[int index]

The syntax of the indexer is very similar to that for properties. There is either a get ()
method, a set () method, or both. In the case shown, the get () method endeavors to
implement rudimentary bounds checking, and assuming the index requested is acceptable, it
returns the value requested:

get
{
if (index < 0 || index >= strings.Length)
{
// handle bad index

}

return strings[index];

The set () method checks to make sure that the index you are setting already has a value in
the list box. If not, it treats the set as an error (new elements can only be added using add with
this approach). The set accessor takes advantage of the implicit parameter value that
represents whatever is assigned using the index operator:

set

{

if (index >= ctr)
{

// handle error
}
else
strings[index] = value;

}
Thus, if you write:

1lbt [5] = "Hello World"

the compiler will call the indexer set () method on your object and pass in the string Hello
World as an implicit parameter named value.

9.3.1 Indexers and Assignment

In Example 9-9, you cannot assign to an index that does not have a value. Thus, if you write:

1bt [10] = "wow!";

you would trigger the error handler in the set () method, which would note that the index
you've passed in (10) is larger than the counter (6).

176

Programming C#, 2nd Edition

Of course, you can use the set () method for assignment; you simply have to handle the
indexes you receive. To do so, you might change the set () method to check the Length of
the buffer rather than the current value of counter. If a value was entered for an index that
did not yet have a value, you would update ctr:

set

{
// add only through the add method
if (index >= strings.Length)
{

// handle error

}

else

{
strings[index] = value;
if (ctr < index+1)

ctr = index+1;

This allows you to create a "sparse" array in which you can assign to offset 10 without ever
having assigned to offset 9. Thus, if you now write:

1bt[10] = "wow!";

the output would be:

1bt[0]: Hello
1lbt[1]: Universe
1bt[2]: Who
1bt[3]: Is
1bt[4]: John
1bt[5]: Galt
1bt[6]:

1bt [7]

1bt [8]

1bt[9]:

1bt[10]: wow!

In Main(), you create an instance of the ListBoxTest class named 1bt and pass in two

strings as parameters:

ListBoxTest lbt = new ListBoxTest ("Hello", "World");

Then call add () to add four more strings:

// add a few strings
1bt.Add ("Who") ;

1lbt.Add ("Is");
1bt.Add ("John") ;
1lbt.Add ("Galt") ;

Before examining the values, modify the second value (at index 1):

string subst = "Universe";
1bt[1] = subst;

177

Programming C#, 2nd Edition

Finally, display each value in a loop:

for (int i = 0;i<lbt.GetNumEntries();i++)

{
Console.WriteLine ("1bt[{0}]: {1}",1i,1lbt([i]);

}
9.3.2 Indexing on Other Values

C# does not require that you always use an integer value as the index to a collection. When
you create a custom collection class and create your indexer, you are free to create indexers
that index on strings and other types. In fact, the index value can be overloaded so that a given
collection can be indexed, for example, by an integer value or by a string value, depending on
the needs of the client.

In the case of our list box, we might want to be able to index into the list box based on a
string. Example 9-10 illustrates a string index. The indexer calls findstring(), which is a
helper method that returns a record based on the value of the string provided. Notice that the
overloaded indexer and the indexer from Example 9-9 are able to coexist.

Example 9-10. Overloading an index

namespace Programming CSharp

{

using System;

// a simplified ListBox control
public class ListBoxTest
{
// initialize the list box with strings
public ListBoxTest (params string[] initialStrings)
{
// allocate space for the strings
strings = new String[256];

// copy the strings passed in to the constructor
foreach (string s in initialStrings)
{
strings[ctr++] = s;
}
}

// add a single string to the end of the list box
public void Add(string theString)
{

strings[ctr] = theString;

ctr++;

178

Programming C#, 2nd Edition

// allow array-like access
public string this[int index]
{
get
{
if (index < 0 || index >= strings.Length)
{
// handle bad index

}

return strings[index];

strings[index] = value;

}

private int findString(string searchString)

{

for (int 1 = 0;i<strings.Length;i++)
{
if (strings[i].StartsWith(searchString))
{
return 1i;
}
}
return -1;

}
// index on string
public string this[string index]
{
get
{
if (index.Length == 0)

{
// handle bad index

}

return this[findString(index)];

strings[findString(index)] = value;

// publish how many strings you hold
public int GetNumEntries()

{

return ctr;

}

private string[] strings;
private int ctr = 0;

179

Programming C#, 2nd Edition

public class Tester
{
static void Main()
{
// create a new list box and initialize
ListBoxTest lbt =
new ListBoxTest ("Hello", "World"):;

// add a few strings
1bt.Add ("Who") ;

1lbt.Add ("Is");
1lbt.Add ("John") ;
1lbt.Add ("Galt") ;

// test the access

string subst = "Universe";
1lbt[1] = subst;

1bt["Hel"] = "GoodBye";

// lbt["xyz"] = "oops";

// access all the strings
for (int i1 = 0;i<lbt.GetNumEntries();i++)

{
Console.WriteLine ("1lbt[{0}]: {1}",4i,1bt[i]);

} // end for
} // end main
} // end tester

} // end namespace
Output
1bt[0]: GoodBye
1bt[1]: Universe
1bt[2]: Who
1bt[3]: Is
1bt[4]: John
1bt[5]: Galt

Example 9-10 is identical to Example 9-9 except for the addition of an overloaded indexer,
which can match a string, and the method findstring, created to support that index.

The findstring method simply iterates through the strings held in mystrings until it finds a
string that starts with the target string we use in the index. If found, it returns the index of that
string; otherwise it returns the value -1.

We see in Main () that the user passes in a string segment to the index, just as was done with
an integer:

1bt["Hel"] = "GoodBye";
This calls the overloaded index, which does some rudimentary error checking (in this case,

making sure the string passed in has at least one letter) and then passes the value (Hel) to
findString. It gets back an index and uses that index to index into myStrings:

return this[findString (index)];

The set value works in the same way:

180

Programming C#, 2nd Edition

myStrings|[findString(index)] = value;
- The careful reader will note that if the string does not match, a value of
@we 1 is returned, which is then used as an index into myStrings. This
2 action then generates an exception
(System.NullReferenceException), as you can see by

uncommenting the following line in Main:
1lbt["xyz"] = "oops";

The proper handling of not finding a string is, as they say, left as an
exercise for the reader. You might consider displaying an error message
or otherwise allowing the user to recover from the error.

9.4 Collection Interfaces

The .NET Framework provides standard interfaces for enumerating, comparing, and creating
collections. The key collection interfaces are listed in Table 9-2.

Table 9-2. Collection interfaces

Interface Purpose

IEnumerable Enumerates through a collection using a foreach statement.

ICollection Impbnwnwdbyaﬂcoﬂmn@nsu)WDVMetheCopyTo(.)1ndhmiasweﬂas
the Count, IsSynchronized, and SyncRoot properties.

IComparer Compares two objects held in a collection so that the collection can be sorted.

IList Used by array-indexable collections.

IDictionary Used for key/value-based collections such as Hashtable and SortedList.

Allows enumeration with foreach of a collection that supports

IDictionaryEnumerator))
IDictionary.

9.4.1 The IEnumerable Interface

You can support the foreach statement in ListBoxTest by implementing the IEnumerable
interface. TEnumerable has only one method, GetEnumerator (), whose job is to return a
specialized implementation of TEnumerator. Thus, the semantics of an Enumerable class are
that it can provide an Enumerator:

public IEnumerator GetEnumerator ()

{

return (IEnumerator) new ListBoxEnumerator (this);

}

The Enumerator must implement the TEnumerator methods and properties. These can be
implemented either directly by the container class (in this case, ListBoxTest) or by a
separate class. The latter approach is generally preferred because it encapsulates this
responsibility in the Enumerator class rather than cluttering up the container.

181

Programming C#, 2nd Edition

Because the Enumerator class is specific to the container class (that is, because
ListBoxEnumerator must know a lot about ListBoxTest) you will make it a private
implementation, contained within ListBoxTest.

Notice that the method passes the current ListBoxTest object (this) to the enumerator,
which will allow the enumerator to enumerate this particular ListBoxTest object.

The class to implement the Enumerator is implemented here as ListBoxEnumerator, which
is a private class defined within ListBoxTest. Its work is fairly straightforward. It must
implement the public instance property Current and two public instance methods, MoveNext (
) andReset().

The ListBoxTest to be enumerated is passed in as an argument to the constructor, where it is
assigned to the member variable 1bt. The constructor also sets the member variable index to
-1, indicating that you have not yet begun to enumerate the object:

public ListBoxEnumerator (ListBoxTest 1bt)

{
this.lbt = 1lbt;

index = -1;

The MoveNext () method increments the index and then checks to ensure that you've not run
past the end of the object you're enumerating. If you have, the program returns false;
otherwise it returns true:

public bool MoveNext ()
{

index++;

if (index >= 1lbt.strings.Length)
return false;

else
return true;

The IEnumerator method rReset () does nothing but reset the index to -1.

The property current is implemented to return the current string. This is an arbitrary
decision; in other classes current will have whatever meaning the designer decides is
appropriate. However defined, every enumerator must be able to return the current member,
as accessing the current member is what enumerators are for:

public object Current

{
get
{

return (lbt[index]) ;

}

That's all there is to it: the call to foreach fetches the enumerator and uses it to enumerate
over the array. Because foreach will display every string -- whether or not you've added a

182

Programming C#, 2nd Edition

meaningful value -- change the initialization of strings to 8 to keep the display manageable,

as shown in Example 9-11.

Example 9-11. Making a ListBox an enumerable class

namespace Programming CSharp
{

using System;

using System.Collections;

// a simplified ListBox control
public class ListBoxTest : IEnumerable

{

// private implementation of ListBoxEnumerator
private class ListBoxEnumerator : IEnumerator

{

// public within the private implementation

// thus, private within ListBoxTest
public ListBoxEnumerator (ListBoxTest 1lbt)
{

this.lbt = 1bt;

index = -1;

}

// Increment the index and make sure the
// value is wvalid
public bool MoveNext()
{
index++;
if (index >= lbt.strings.Length)
return false;
else
return true;

}

public void Reset()
{
index = -1;

}

// Current property defined as the
// last string added to the listbox
public object Current
{

get

{

return (lbt[index]) ;

}

}

private ListBoxTest 1lbt;
private int index;

}

// Enumerable classes can return an enumerator

public IEnumerator GetEnumerator()

{

return (IEnumerator) new ListBoxEnumerator (this);

}

183

Programming C#, 2nd Edition

// initialize the list box with strings
public ListBoxTest (params string[] initialStrings)
{

// allocate space for the strings

strings = new Stringl[8];

// copy the strings passed in to the constructor
foreach (string s in initialStrings)
{
strings[ctr++] = s;
}
}

// add a single string to the end of the list box
public void Add(string theString)
{

strings[ctr] = theString;

ctr++;

}

// allow array-like access
public string this[int index]
{
get
{
if (index < 0 || index >= strings.Length)
{
// handle bad index

}

return strings[index];

strings[index] = value;

}

// publish how many strings you hold
public int GetNumEntries()
{

return ctr;

}

private string[] strings;
private int ctr = 0;

}

public class Tester
{
static void Main()
{
// create a new list box and initialize
ListBoxTest lbt =
new ListBoxTest ("Hello", "World"):;

// add a few strings
1bt.Add ("Who") ;
1bt.Add ("Is") ;
1lbt.Add ("John") ;
1bt.Add ("Galt") ;

184

Programming C#, 2nd Edition

// test the access
string subst = "Universe";
1lbt[1] = subst;

// access all the strings
foreach (string s in 1lbt)

{

Console.WriteLine ("Value: {0}", s):

}

}
Output:

Value: Hello
Value: Universe
Value: Who
Value: Is
Value: John
Value: Galt
Value:

Value:

The program begins in Main (), creating a new ListBoxTest object and passing two strings
to the constructor. When the object is created, an array of strings is created with enough
room for eight strings. Four more strings are added using the Add method, and the second
string is updated, just as in the previous example.

The big change in this version of the program is that a foreach loop is called, retrieving each
string in the list box. The foreach loop automatically uses the IEnumerable interface,
invoking GetEnumerator (). This gets back the ListBoxEnumerator whose constructor is
called, thus initializing the index to -1.

The foreach loop then invokes MoveNext (), which immediately increments the index to 0
and returns true. The foreach then uses the current property to get back the current string.
The current property invokes the list box's indexer, getting back the string stored at index 0.
This string is assigned to the variable s defined in the foreach loop and that string is
displayed on the console. The foreach loop repeats these steps (MoveNext (), Current,
display) until all the strings in the list box have been displayed.

9.4.2 The ICollection Interface

Another key interface for arrays, and for all the collections provided by the .NET Framework,
IS ICollection. ICollection provides four properties: Count, IsSynchronized, and
SyncRoot. ICollection provides one public method as well, copyTo(). We look at the
CopyTo () method later in this chapter. The property used most often is Count, which returns
the number of elements in the collection:

For (int i = 0;i<myIntArray.Count;i++)
{

VA
}

185

Programming C#, 2nd Edition

Here you are using the count property of myIntarray to determine how many objects are in
it so that you can print their values.

9.4.3 The IComparer and IComparable Interfaces

The 1Comparer interface provides the compare () method, by which any two items in a
collection can be ordered. You can implement Icomparer in helper classes that you pass to
overloaded methods such as Array.Sort (Array a, IComparer c). The IComparable
interface is similar, but it defines compare () on the object to be compared rather than on a
helper class.

The compare () method is typically implemented by calling the CompareTo method of one of
the objects. compareTo is a method of all objects that implement TComparable. If you want to
create classes that can be sorted within a collection, you will need to implement
IComparable.

The .NET Framework provides a comparer class that implements IComparer and provides a
default case-sensitive implementation. You'll see how to create your own implementations of
IComparer and IComparable in the next section on ArrayLists.

9.5 Array Lists

The classic problem with the array type is its fixed size. If you do not know in advance how
many objects an array will hold, you run the risk of declaring either too small an array (and
running out of room) or too large an array (and wasting memory).

Your program might be asking the user for input, or gathering input from a web site. As it
finds objects (strings, books, values, etc.), you will add them to the array, but you have no
idea how many objects you'll collect in any given session. The classic fixed-size array is not a
good choice, as you can't predict how large an array you'll need.

The ArrayList class is an array whose size is dynamically increased as required.
ArrayLists provide a number of useful methods and properties for their manipulation. Some
of the most important are shown in Table 9-3.

Table 9-3. ArrayList methods and properties
Method or property Purpose
Adapter () Public static method that creates an ArrayList wrapper for an IList object.

Overloaded public static method that returns a list object as a wrapper. The list is of fixed

FixedSize . .
® ize () size; elements can be modified but not added or removed.

Overloaded public static method that returns a list class as a wrapper, allowing read-only

ReadOnly ()
access.
Public static method that returns an ArrayList whose elements are copies of
Repeat () .
the specified value.
Synchronized () |Overloaded public static method that returns a list wrapper that is thread-safe.
Capacity Property to get or set the number of elements the ArrayList can contain.
Count Property to get the number of elements currently in the array.
IsFixedSize Property to get to find out if the ArrayList is of fixed size.
IsReadOnly Property to get to find out if the ArrayList is read-only.

186

IsSynchronized

Item()

SyncRoot
Add ()

AddRange ()

BinarySearch ()

Clear ()
Clone ()
Contains ()

CopyTo ()

GetEnumerator ()

GetRange ()
IndexOf ()
Insert ()

InsertRange ()
LastIndexOf ()

Remove ()
RemoveAt ()
RemoveRange ()
Reverse ()
SetRange ()
Sort ()
ToArray ()

TrimToSize ()

Programming C#, 2nd Edition

Property to get to find out if the ArrayList is thread-safe.

Gets or sets the element at the specified index. This is the indexer for the ArrayList
class.

Public property that returns an object that can be used to synchronize access to
the ArrayList.

Public method to add an object to the ArrayList.

Public method that adds the elements of an ICollection to the end of
the ArrayList.

Overloaded public method that uses a binary search to locate a specific element in
asorted ArrayList.

Removes all elements from the ArrayList.

Creates a shallow copy.

Determines if an element is in the ArrayList.

Overloaded public method that copies an ArrayList to a one-dimensional array.
Overloaded public method that returns an enumerator to iterate an ArrayList.
Copies a range of elements to a new ArrayList.

Overloaded public method that returns the index of the first occurrence of a value.
Inserts an element into ArrayList.

Inserts the elements of a collection into the ArrayList.

Overloaded public method that returns the index of the last occurrence of a value in
the ArrayList.

Removes the first occurrence of a specific object.

Removes the element at the specified index.

Removes a range of elements.

Reverses the order of elements in the ArrayList.

Copies the elements of a collection over a range of elements in the ArrayList.
Sorts the ArrayList.

Copies the elements of the ArrayList to a new array.

Sets the capacity to the actual number of elements in the ArrayList.

When you create an ArrayList, you do not define how many objects it will contain. Add to
the ArrayList using the add() method, and the list takes care of its own internal
bookkeeping, as illustrated in Example 9-12.

Example 9-12. Working with an ArrayList

namespace Programming CSharp

{

using System;
using System.Collections;

// a simple class to store in the array
public class Employee

{

public Employee (int emplID)

{

this.empID = emplD;

}

187

Programming C#, 2nd Edition

public override string ToString()
{
return empID.ToString();

}
public int EmpID
{

get

{

return emplID;

set
{
empID = value;
}
}

private int empID;
}
public class Tester

{

static void Main()

{

Arraylist empArray new ArrayList();
ArraylList intArray = new Arraylist();

// populate the array

for (int i = 0;i<5;i++)

{
empArray .Add (new Employee (i+100)) ;
intArray.Add (i*5) ;

}

// print all the contents
for (int 1 = 0;i<intArray.Count;i++)
{
Console.Write ("{0} ", intArray[i].ToString());
}

Console.WriteLine ("\n");

// print all the contents of the Employee array
for (int i = 0;i<empArray.Count;i++)
{

Console.Write("{0} ", empArray[i].ToString());
}

Console.WriteLine ("\n");
Console.WritelLine ("empArray.Capacity: {0}",
empArray.Capacity) ;

}

Output:
0 5 10 15 20

100 101 102 103 104
empArray.Capacity: 16

With an array class, you define how many objects the array will hold. If you try to add more
than that, the Array class will throw an exception. With an arrayList, you do not declare

188

Programming C#, 2nd Edition

how many objects the Arrayrist will hold. The ArrayList has a property, capacity, which
is the number of elements the ArrayList is capable of storing:

public int Capcity {virtual get; virtual set; }

The default capacity is 16. When you add the 17th element, the capacity is automatically
doubled to 32. If you change the for loop to:

for (int 1 = 0;1i<17;1i++)
the output looks like this:

0 510 15 20 25 30 35 40 45 50 55 60 65 70 75 80
56 78 9 10 11 12 13 14 15 16 17 18 19 20 21
empArray.Capacity: 32

You can manually set the capacity to any number equal to or greater than the count. If you set
it to a number less than the count, the program will throw an exception of type
ArgumentOutOfRangeException.

9.5.1 Implementing IComparable

Like all collections, the ArrayList implements the sort () method, which allows you to
sort any objects that implement IComparable. In the next example, you'll modify the
Employee object to implement IComparable:

public class Employee : IComparable

To implement the TComparable interface, the Employee object must provide a CompareTo ()
method:

public int CompareTo (Object rhs)

{
Employee r = (Employee) rhs;
return this.empID.CompareTo (r.emplID);

The compareTo() method takes an object as a parameter; the Employee object must
compare itself to this object and return -1 if it is smaller than the object, 1 if it is greater than
the object, and o if it is equal to the object. It is up to Employee to determine what smaller
than, greater than, and equal to mean. For example, cast the object to an Employee and
then delegate the comparison to the emp1d member. The empTd member is an int and uses the
default compareTo () method for integer types, which will do an integer comparison of the
two values.

- Because int derives from object, it has methods, including the
#3 J. method comparero(). Thus int is an object to which you may
~ 4" delegate the responsibility of comparison.

189

Programming C#, 2nd Edition

You are now ready to sort the array list of employees, empList. To see if the sort is working,
you'll need to add integers and Employee instances to their respective arrays with random
values. To create the random values, you'll instantiate an object of class Random; to generate
the random values you'll call the Next () method on the Random object, which returns a
pseudorandom number. The Next () method is overloaded; one version allows you to pass in
an integer that represents the largest random number you want. In this case, you'll pass in the
value 10 to generate a random number between 0 and 10:

Random r = new Random() ;
r.Next (10) ;

Example 9-13 creates an integer array and an Employee array, populates them both with
random numbers, and prints their values. It then sorts both arrays and prints the new values.

Example 9-13. Sorting an integer and an employee array

namespace Programming CSharp
{

using System;

using System.Collections;

// a simple class to store in the array
public class Employee : IComparable
{
public Employee (int empID)
{
this.empID = emplD;
}

public override string ToString()
{

return empID.ToString();
}

// Comparer delegates back to Employee
// Employee uses the integer's default
// CompareTo method
public int CompareTo (Object rhs)

{
Employee r = (Employee) rhs;
return this.empID.CompareTo (r.empID) ;

}

private int empID;
}
public class Tester
{
static void Main()
{
Arraylist empArray = new ArrayList();
ArrayList intArray new ArrayList();

// generate random numbers for
// both the integers and the
// employee id's

Random r = new Random();

190

Programming C#, 2nd Edition

// populate the array
for (int i = 0;i<5;i++)

{
// add a random employee id
empArray.Add (new Employee (r.Next(10)+100)) ;
// add a random integer
intArray.Add (r.Next (10)) ;
}
// display all the contents of the int array
for (int i = 0;i<intArray.Count;i++)
{
Console.Write("{0} ", intArray[i].ToString());

}

Console.WriteLine ("\n");

// display all the contents of the Employee array
for (int 1 = 0;i<empArray.Count;i++)
{

Console.Write ("{0} ", empArray[i].ToString());
}

Console.WriteLine ("\n") ;

// sort and display the int array
intArray.Sort ();
for (int i = 0;i<intArray.Count;i++)
{
Console.Write("{0} ", intArray[i].ToString());
}

Console.WriteLine ("\n");

// sort and display the employee array
//Employee.EmployeeComparer ¢ = Employee.GetComparer();
//empArray.Sort (c);

empArray.Sort(),

// display all the contents of the Employee array
for (int 1 = 0;i<empArray.Count;i++)
{

Console.Write ("{0} ", empArray[i].ToString());

}

Console.WriteLine ("\n");

}

Output:

8 57 33
105 103 102 104 106
33578
102 103 104 105 106

The output shows that the integer array and Employee array were generated with random
numbers. When sorted, the display shows the values have been ordered properly.

191

Programming C#, 2nd Edition

9.5.2 Implementing IComparer

When you call sort () onthe arrayList the default implementation of TComparer is called,
which uses QuickSort to call the TComparable implementation of CompareTo() on each
element in the ArrayList.

You are free to create your own implementation of TComparer, which you might want to do if
you need control over how the sort is accomplished. For example, in the next example, you
will add a second field to Employee, yearsofSve. You want to be able to sort the Employee
objects in the ArrayList on either field, empID or yearsofsve.

To accomplish this, you will create a custom implementation of IComparer, which you will
pass to the sort() method of ArrayrList. This IComparer class, EmployeeComparer,
knows about Employee objects and knows how to sort them.

EmployeeComparer has a property, WhichComparison, of type

Employee.EmployeeComparer.ComparisonType:

public Employee.EmployeeComparer.ComparisonType
WhichComparison

{
get
{

return whichComparison;

set

{

whichComparison=value;

}

ComparisonType 1S an enumeration with two values, empID or yearsofsvc (indicating that
you want to sort by employee ID or years of service, respectively):

public enum ComparisonType

{
EmpID,
Yrs

}s

Before invoking sort(), you will create an instance of EmployeeComparer and set its
ComparisionType property:

Employee.EmployeeComparer ¢ = Employee.GetComparer();
c.WhichComparison=Employee.EmployeeComparer.ComparisonType.EmpID;
empArray.Sort(c);

When you invoke sort() the ArrayList will call the compare method on the
EmployeeComparer, Which in turn will delegate the comparison to the
Employee.CompareTo () method, passing in its WhichComparison property.

192

Programming C#, 2nd Edition

public int Compare (object lhs, object rhs)
{

Employee 1 (Employee) lhs;
Employee r = (Employee) rhs;
return 1.CompareTo (r,WhichComparison) ;

The Employee object must implement a custom version of CompareTo(), which takes the
comparison and compares the objects accordingly:

public int CompareTo (
Employee rhs,
Employee.EmployeeComparer.ComparisonType which)

switch (which)
{
case Employee.EmployeeComparer.ComparisonType.EmpID:
return this.empID.CompareTo (rhs.empID);
case Employee.EmployeeComparer.ComparisonType.Yrs:
return this.yearsOfSvc.CompareTo (rhs.yearsOfSve);

}

return 0;

The complete source for this example is shown in Example 9-14. The integer array has been
removed to simplify the example, and the output of the employee's Tostring() method
enhanced to enable you to see the effects of the sort.

Example 9-14. Sorting an array by employees' IDs and years of service

namespace Programming CSharp
{

using System;

using System.Collections;

// a simple class to store in the array
public class Employee : IComparable
{
public Employee (int empID)
{
this.empID = empID;
}

public Employee (int empID, int yearsOfSvc)
{

this.empID = emplID;

this.yearsOfSvc = yearsOfSvc;

}

public override string ToString()
{
return "ID: " + empID.ToString() +
". Years of Svc: " + yearsOfSvc.ToString()

193

Programming C#, 2nd Edition

// static method to get a Comparer object
public static EmployeeComparer GetComparer()
{

return new Employee.EmployeeComparer() ;

}

// Comparer delegates back to Employee
// Employee uses the integer's default
// CompareTo method
public int CompareTo (Object rhs)
{

Employee r = (Employee) rhs;

return this.empID.CompareTo (r.emplID) ;

}

// Special implementation to be called by custom comparer
public int CompareTo (

Employee rhs,

Employee.EmployeeComparer.ComparisonType which)

switch (which)
{
case Employee.EmployeeComparer.ComparisonType.EmpID:
return this.empID.CompareTo (rhs.empID) ;
case Employee.EmployeeComparer.ComparisonType.Yrs:
return this.yearsOfSvc.CompareTo (rhs.yearsOfSvc) ;

}

return O;

}

// nested class which implements IComparer
public class EmployeeComparer : IComparer
{
// enumeration of comparsion types
public enum ComparisonType
{
EmpID,
Yrs

};

// Tell the Employee objects to compare themselves
public int Compare (object lhs, object rhs)
{

Employee 1 (Employee) lhs;
Employee r = (Employee) rhs;
return 1l.CompareTo (r,WhichComparison) ;

}

public Employee.EmployeeComparer.ComparisonType
WhichComparison

{
get
{

return whichComparison;

set

{

whichComparison=value;

}

194

Programming C#, 2nd Edition

// private state variable
private Employee.EmployeeComparer.ComparisonType
whichComparison;
}
private int empID;
private int yearsOfSvec = 1;

}

public class Tester
{
static void Main()

{

ArraylList empArray = new ArrayList();

// generate random numbers for
// both the integers and the
// employee id's

Random r = new Random() ;

// populate the array
for (int i = 0;1i<5;1i++)
{
// add a random employee id
empArray .Add (
new Employee (
r.Next (10)+100,r.Next (20)
)
)
}

// display all the contents of the Employee array
for (int i = 0;i<empArray.Count;i++)
{

Console.Write ("\n{0} ", empArray[i].ToString());
}

Console.WriteLine ("\n");

// sort and display the employee array
Employee.EmployeeComparer c = Employee.GetComparer();
c.WhichComparison=Employee.EmployeeComparer.ComparisonType.EmpID;
empArray.Sort(c) ;
// display all the contents of the Employee array
for (int 1 = 0;i<empArray.Count;i++)
{
Console.Write ("\n{0} ", empArray[i].ToString());
}

Console.WriteLine ("\n");

c.WhichComparison=Employee.EmployeeComparer.ComparisonType.Yrs;
empArray.Sort(c) ;
for (int i = 0;i<empArray.Count;i++)
{
Console.Write ("\n{0} ", empArray[i].ToString());
}

Console.WriteLine ("\n");

195

Programming C#, 2nd Edition

Output:

ID: 103. Years of Svc: 11
ID: 108. Years of Svc: 15
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 5
ID: 102. Years of Svc: O

ID: 102. Years of Svec: O
ID: 103. Years of Svc: 11
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 15
ID: 108. Years of Svc: 5

ID: 102. Years of Svc: O
ID: 108. Years of Svc: 5
ID: 103. Years of Svc: 11
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 15

The first block of output shows the Employee objects as they are added to the arrayList. The
employee ID values and the years of service are in random order. The second block shows the
results of sorting by the employee ID, and the third block shows the results of sorting by years
of service.

9.6 Queues

A queue represents a first-in, first-out (FIFO) collection. The classic analogy is to a line (or
queue if you are British) at a ticket window. The first person in line ought to be the first
person to come off the line to buy a ticket.

A queue is a good collection to use when you are managing a limited resource. For example,
you might want to send messages to a resource that can only handle one message at a time.
You would then create a message queue so that you can say to your clients: "Your message is
important to us. Messages are handled in the order in which they are received."

The Queue class has a number of member methods and properties, as shown in Table 9-4.

Table 9-4. Queue methods and properties
Method or property Purpose
Synchronized () |Public static method that returns a Queue wrapper that is thread-safe.
Count Public property that gets the number of elements in the Queue
IsSynchronized |Public property to get a value indicating if the Queue is synchronized.

SyncRoot Public property that returns an object that can be used to synchronize access to

the Queue.
Clear () Removes all objects from the Queue
Clone () Creates a shallow copy.
Contains () Determines if an element is in the Queue
CopyTo () Copies the Queue elements to an existing one-dimensional array.
Dequeue () Removes and returns the object at the beginning of the Queue.
Enqueue () Adds an object to the end of the Queue.

GetEnumerator () Returns an enumerator for the Queue

196

Programming C#, 2nd Edition

Peek () Returns the object at the beginning of the Queue without removing it.
ToArray () Copies the elements to a new array.

Add elements to your queue with the Enqueue command and take them off the queue with
Dequeue Of by using an enumerator. Example 9-15 illustrates.

Example 9-15. Working with a queue

namespace Programming CSharp
{

using System;

using System.Collections;

public class Tester

{

static void Main()

{

Queue intQueuee = new Queue();

// populate the array
for (int i = 0;i<5;1i++)
{
intQueuee.Enqueue (i*5) ;

}

// Display the Queue.
Console.Write("intQueuee values:\t");
PrintValues (intQueuee);

// Remove an element from the queue.
Console.WriteLine (
"\n (Dequeue) \t{0}", intQueuee.Dequeue());

// Display the Queue.
Console.Write("intQueuee values:\t");
PrintValues (intQueuee);

// Remove another element from the queue.
Console.WriteLine (
"\n (Dequeue) \t{0}", intQueuee.Dequeue());

// Display the Queue.
Console.Write("intQueuee values:\t");
PrintValues (intQueuee);

// View the first element in the
// Queue but do not remove.
Console.WriteLine (

"\n (Peek) \t{0}", intQueuee.Peek()):;

// Display the Queue.

Console.Write("intQueuee values:\t");
PrintValues (intQueuee);

197

Programming C#, 2nd Edition

public static void PrintValues(IEnumerable myCollection)

{

IEnumerator myEnumerator =

myCollection.GetEnumerator();
while (myEnumerator.MoveNext())
Console.Write("{0} ",myEnumerator.Current);

Console.WriteLine ();

Output:

intQueuee values: 0 5 10 15 20
(Dequeue) 0

intQueuee values: 5 10 15 20
(Dequeue) 5

intQueuee values: 10 15 20
(Peek) 10

intQueuee values: 10 15 20

In this example the ArrayList is replaced by a gueue. I've dispensed with the Employee class
to save room, but of course you can Enqueue user-defined objects as well.

The output shows that queuing objects adds them to the Queue, and calls to Dequeue return
the object and also remove them from the gueue. The Queue class also provides a peek ()
method that allows you to see, but not remove, the first element.

Because the gueue class is enumerable, you can pass it to the Printvalues method, which is
provided as an IEnumerable interface. The conversion is implicit. In the Printvalues
method you call GetEnumerator, which you will remember is the single method of all
IEnumerable classes. This returns an IEnumerator, which you then use to enumerate all the
objects in the collection.

9.7 Stacks

A stack is a last-in, first-out (LIFO) collection, like a stack of dishes at a buffet table, or a
stack of coins on your desk. Add a dish on top, which is the first dish you take off the stack.

The principal methods for adding to and removing from a stack are push and pop (); Stack
also offers a peek () method, very much like Queue. The significant methods and properties
for stack are shown in Table 9-5.

Table 9-5. Stack methods and properties
Method or property Purpose
Synchronized () |Public static method that returns a thread-safe Stack wrapper.
Count Public property that gets the number of elements in the Stack.
IsSynchronized |Public property that gets a value indicating if the Stack is synchronized.

198

SyncRoot

Programming C#, 2nd Edition

Public property that returns an object that can be used to synchronize access to

the Stack.
Clear () Removes all objects from the Stack
Clone () Creates a shallow copy.
Contains () Determines if an element is in the Stack
CopyTo () Copies the Stack elements to an existing one-dimensional array.

GetEnumerator () Returns an enumerator for the Stack.

Peek () Returns the object at the top of the Stack without removing it.

Pop () Removes and returns the object at the top of the Stack.

Push () Inserts an object at the top of the Stack.

ToArray () Copies the elements to a new array.

The ArrayList, Queue, and Stack types contain overloaded CopyTo() and ToArray()

methods for copying their elements to an array. In the case of a stack, the CopyTo () method
will copy its elements to an existing one-dimensional array, overwriting the contents of the
array beginning at the index you specify. The ToArray () method returns a new array with
the contents of the stack's elements. Example 9-16 illustrates.

Example 9-16. Working with a Stack

namespace Programming CSharp

{

using System;
using System.Collections;

public class Tester

{

static void Main()

{

Stack intStack = new Stack();

// populate the array
for (int i = 0;i<8;i++)
{

intStack.Push (i*5) ;

}

// Display the Stack.
Console.Write("intStack wvalues:\t");
PrintValues (intStack);

// Remove an element from the stack.
Console.WriteLine ("\n (Pop)\t{0}",
intStack.Pop());

// Display the Stack.
Console.Write("intStack values:\t");
PrintValues (intStack);

// Remove another element from the stack.
Console.WriteLine("\n (Pop)\t{0}",
intStack.Pop());

// Display the Stack.

Console.Write("intStack values:\t");
PrintValues (intStack);

199

Programming C#, 2nd Edition

// View the first element in the

// Stack but do not remove.

Console.WriteLine ("\n (Peek) \t{0}",
intStack.Peek());

// Display the Stack.
Console.Write("intStack wvalues:\t");
PrintValues (intStack);

// declare an array object which will

// hold 12 integers

Array targetArray=Array.CreatelInstance (
typeof (int), 12);

targetArray.SetValue(100, ;
targetArray.SetValue (200, ;
targetArray.SetValue(300, ;
targetArray.SetValue (400,

o N

(
(
(
(
targetArray.SetValue (500,
(
(
(
(

O J o U1 dbd WP O
~

targetArray.SetValue (600, ;
targetArray.SetValue (700, ;
targetArray.SetValue(800, ;
targetArray.SetValue(900, ;

// Display the values of the target Array instance.
Console.WriteLine("\nTarget array: ")
PrintValues (targetArray);

// Copy the entire source Stack to the
// target Array instance, starting at index 6.
intStack.CopyTo(targetArray, 6);

// Display the values of the target Array instance.
Console.WriteLine("\nTarget array after copy: ");
PrintValues (targetArray);

// Copy the entire source Stack
// to a new standard array.
Object[] myArray = intStack.ToArray():;

// Display the values of the new standard array.
Console.WriteLine("\nThe new array:");
PrintValues (myArray);

}

public static void PrintValues (
IEnumerable myCollection)

{

System.Collections.IEnumerator enumerator =

myCollection.GetEnumerator ();
while (enumerator.MoveNext ())

Console.Write("{0} ",enumerator.Current);
Console.WriteLine();

200

Programming C#, 2nd Edition

Output:

intStack values: 35 30 25 20 15 10 5 O
(Pop) 35

intStack values: 30 25 20 15 10 5 O
(Pop) 30

intStack values: 25 20 15 10 5 O

(Peek) 25

intStack values: 25 20 15 10 5 O

Target array:
100 200 300 400 500 600 700 800 900 O O O

Target array after copy:
100 200 300 400 500 600 25 20 15 10 5 O

The new array:
25 20 15 10 5 O

25

The output reflects that the items pushed onto the stack were popped in reverse order. In fact,
the entire stack is stored in reverse order to reflect its LIFO nature.

Example 9-16 uses the array class that serves as the base class for all arrays. The example
creates an array of 12 integers by calling the static method of createInstance(). This
method takes two arguments: a type (in this case, int) and a number representing the size of
the array.

The array is populated with the setvalue () method which takes two arguments: the object
to add and the offset at which to add it.

The effect of copyTo() can be seen by examining the target array before and after calling
CopyTo (). The array elements are overwritten beginning with the index specified (6).

Notice also that the Toarray() method is designed to return an array of objects, and so
myArray 18 declared appropriately:

Object[] myArray = intStack.ToArray();
9.8 Dictionaries

A dictionary is a collection that associates a key to a value. A language dictionary, such as
Webster's, associates a word (the key) with its definition (the value).

To see the value of dictionaries, start by imagining that you want to keep a list of the state
capitals. One approach might be to put them in an array:

string[] stateCapitals = new string[50];

201

Programming C#, 2nd Edition

The statecapitals array will hold 50 state capitals. Each capital is accessed as an offset into
the array. For example, to access the capital for Arkansas, you need to know that Arkansas is
the fourth state in alphabetical order:

string capitalOfArkansas = stateCapitals[3];

It is inconvenient, however, to access state capitals using array notation. After all, if [need the
capital for Massachusetts, there is no easy way for me to determine that Massachusetts is the
21* state alphabetically.

It would be far more convenient to store the capital with the state name. A dictionaryallows
you to store a value (in this case, the capital) with a key (in this case, the name of the state).

A NET Framework dictionary can associate any kind of key (string, integer, object, etc.) with
any kind of value (string, integer, object, etc.). Typically, of course, the key is fairly short, the
value fairly complex.

The most important attributes of a good dictionary are that it is easy to add values and it is
quick to retrieve values. Some dictionaries are faster at adding new values, and others are
optimized for retrieval. One example of a dictionary type is the hashtable.

9.8.1 Hashtables

A hashtable is a dictionaryoptimized for fast retrieval. The principal methods and properties
of Hashtable are summarized in Table 9-6.

Table 9-6. Hashtable methods and properties

Method or property

Purpose
Public static method that returns a Hashtable wrapper that is thread-safe (see

Synchronized
Y 0 Chapter 20).
Count Public property that gets the number of elements in the Hashtable.
IsReadOnly Public property that gets a value indicating if the Hashtable is read-only.
IsSynchronized Public property that gets a value indicating if the Hashtable is synchronized.
Item() The indexer for the Hashtable.
Public property that gets an ICollection containing the keys in
Keys . .
the Hashtable. (See also Values, later in this table.)
SyncRoot Public property that returns an object that can be used to synchronize access to
the Hashtable.
Public property that gets an ICollection containing the values in
Values .. .
the Hashtable. (See also Keys, earlier in this table.)
Add () Adds an entry with a specified Key and Value.
Clear () Removes all objects from the Hashtable.
Clone () Creates a shallow copy.
Contai . .
on-ains () Determines whether the Hashtable has a specified key.
ContainsKey ()
ContainsValue () Determines whether the Hashtable has a specified value.
CopyTo () Copies the Hashtable elements to an existing one-dimensional array.
GetEnumerator () Returns an enumerator for the Hashtable.

202

Programming C#, 2nd Edition

Implements ISerializable and returns the data needed to serialize

GetObjectData ()
the Hashtable.

Implements ISerializable and raises the deserialization event when

OnDeserialization () s
the deserialization is complete.

Remove () Removes the entry with the specified Key.

In a Hashtable, each value is stored in a "bucket." The bucket is numbered, much like an
offset into an array.

Because the key may not be an integer, it must be possible to translate the key (e.g.,
"Massachusetts") into a bucket number. Each key must provide a GetHashCode () method
that will accomplish this magic.

Remember that everything in C# derives from object. The object class provides a virtual
method GetHashCode (), which the derived types are free to inherit as is or to override.

A trivial implementation of a GetHashCode () function for a string might simply add up
the Unicode values of each character in the string and then use the modulus operator to return
a value between 0 and the number of buckets in the Hashtable. It is not necessary to write
such a method for the string type, however, as the CLR provides one for you.

When you insert the values (the state capitals) into the Hashtable, the Hashtable calls
GetHashCode () on each key provided. This method returns an int, which identifies the
bucket into which the state capital is placed.

It is possible, of course, for more than one key to return the same bucket number. This is
called a collision. There are a number of ways to handle a collision. The most common
solution, and the one adopted by the CLR, is simply to have each bucket maintain an ordered
list of values.

When you retrieve a value from the Hashtable, you provide a key. Once again the
Hashtable calls GetHashCode() on the key and uses the returned int to find the
appropriate bucket. If there is only one value, it is returned. If there is more than one value, a
binary search of the bucket's contents is performed. Because there are few values, this search
is typically very fast.

203

Programming C#, 2nd Edition

Load Factor

Hash functions that minimize collisions typically do so at the expense of making
less efficient use of their storage. Hash function designers trade off minimizing
collisions, maximizing efficient memory usage, and algorithmic speed.

Every CLR Hashtable has a load factor that determines the maximum ratio of
entries to buckets. Using a smaller load factor will speed up performance but use
more memory. The default factor is 1.0, which Microsoft says provides the optimum
balance between speed and size, but you can specify the load factor you want when
you instantiate the Hashtable.

As entries are added to the Hashtable, the actual load increases until it matches the
load factor specified for the table. When the load factor is reached, the Hashtable
automatically increases the number of buckets to the smallest prime number larger
than twice the current number of buckets.

If your Hashtable had only one bucket, searching for a key would be a simple
binary search and you wouldn't need the Hashtable at all. If, however, you have
more than one bucket, the procedure is to hash the key, find the associated bucket,
and then search that bucket. If there is only one key in that bucket, searching the
bucket is very fast.

With lots of keys you can spend your time working through the hash to find the right
bucket or searching through the bucket to find the right key. That is the tradeoff
captured by the LoadFactor.

The key in a Hashtable can be a primitive type, or it can be an instance of a user-defined
type (an object). Objects used as keys for a Hashtable must implement GetHashCode () as
well as Equals. In most cases, you can simply use the inherited implementation from object.

9.8.2 IDictionary

Hash tables are dictionaries because they implement the 1IDictionary interface.
IDictionary provides a public property Ttem. The Item property retrieves a value with the
specified key. In C#, the declaration for the Ttem property is:

object this[object key]
{get; set;}

The 1tem property is implemented in C# with the index operator ([]). Thus, you access items
in any Dictionary object using the offset syntax, as you would with an array.

Example 9-17 demonstrates adding items to a Hashtable and then retrieving them with the
Item property.

204

Programming C#, 2nd Edition

Example 9-17. The Item property as offset operators

namespace Programming CSharp

{
using System;
using System.Collections;

public class Tester

{

static void Main()

{

// Create and initialize a new Hashtable.
Hashtable hashTable = new Hashtable();
hashTable.Add ("000440312", "Jesse Liberty");
hashTable.Add ("000123933", "Stacey Liberty");
hashTable.Add ("000145938", "John Galt");
hashTable.Add ("000773394", "Ayn Rand");

// access a particular item
Console.WriteLine ("myHashTable [\"000145938\"]: {0}",
hashTable["000145938"]) ;

}

Output:

hashTable["000145938"]: John Galt

Example 9-17 begins by instantiating a new Hashtable. We use the simplest constructor
accepting the default initial capacity and load factor (see the sidebar, Load Factor), the default
hash code provider, and the default comparer.

We then add four key/value pairs. In this example, the social security number is tied to the
person's full name. (Note that the social security numbers here are intentionally bogus.)

Once the items are added, we access the third item using its key.
9.8.3 The Keys and Values Collections

Dictionary collections provide two additional properties: Keys and values. Keys retrieves
an ICollection object with all the keys in the Hashtable, as Values retrieves an
ICollection object with all the values. Example 9-18 illustrates.

Example 9-18. Keys and Values collections

namespace Programming CSharp

{
using System;
using System.Collections;

public class Tester

{

static void Main()

{

// Create and initialize a new Hashtable.
Hashtable hashTable = new Hashtable();

205

Programming C#, 2nd Edition

hashTable.Add
hashTable.Add
hashTable.Add
hashTable.Add

"000440312", "George Washington");
"000123933", "Abraham Lincoln");
"000145938", "John Galt");
"000773394", "Ayn Rand");

—~ e~~~

// get the keys from the hashTable
ICollection keys = hashTable.Keys;

// get the values
ICollection values = hashTable.Values;

// iterate over the keys ICollection
foreach(string key in keys)

{
Console.WriteLine ("{0} ", key);

}

// iterate over the values collection
foreach (string val in values)

{

Console.WriteLine ("{0} ", wval);

}

}
}
Output:

000440312
000123933
000773394
000145938

George Washington
Abraham Lincoln
Ayn Rand

John Galt

Although the order of the keys collection is not guaranteed, it is guaranteed to be the same
order as returned in the values collection.

9.8.4 IDictionaryEnumerator Interface

IDictionary objects also support the foreachconstruct by implementing the
GetEnumerator method, which returns an IDictionaryEnumerator.

The IDictionaryEnumerator is used to enumerate through any IDictionary object. It

provides properties to access both the key and value for each item in the dictionary.
Example 9-19 illustrates.

206

Programming C#, 2nd Edition

Example 9-19. Using the IDictionaryEnumerator interface

namespace Programming CSharp
{

using System;

using System.Collections;

public class Tester

{

static void Main()

{
// Create and initialize a new Hashtable.
Hashtable hashTable = new Hashtable();
hashTable.Add ("000440312", "George Washington");
hashTable.Add ("000123933", "Abraham Lincoln");
hashTable.Add ("000145938", "John Galt");
hashTable.Add ("000773394", "Ayn Rand");

// Display the properties and values of the Hashtable.

Console.WritelLine("hashTable");
Console.WriteLine(" Count: {0}", hashTable.Count);
Console.WriteLine(" Keys and Values:");

PrintKeysAndValues (hashTable);
}

public static void PrintKeysAndValues (Hashtable table)
{
IDictionaryEnumerator enumerator = table.GetEnumerator();
while (enumerator.MoveNext ())
Console.WriteLine ("\t{0}:\t{1}",
enumerator.Key, enumerator.Value);

Console.WriteLine();
}
}
}
Output:
hashTable
Count: 4
Keys and Values:
000440312: George Washington
000123933: Abraham Lincoln
000773394: Ayn Rand
000145938: John Galt

207

Programming C#, 2nd Edition

Chapter 10. Strings and Regular Expressions

There was a time when people thought of computers exclusively as manipulating numeric
values. Early computers were first used to calculate missile trajectories, and programming
was taught in the math department of major universities.

Today, most programs are concerned more with strings of characters than with strings of
numbers. Typically these strings are used for word processing, document manipulation, and
creation of web pages.

C# provides built-in support for a fully functional string type. More importantly, C# treats
strings as objects that encapsulate all the manipulation, sorting, and searching methods
normally applied to strings of characters.

Complex string manipulation and pattern matching is aided by the use of regular expressions.
C# combines the power and complexity of regular expression syntax, originally found only in
string manipulation languages such as awk and Perl, with a fully object-oriented design.

In this chapter, you will learn to work with the C# string type and the .NET Framework
System.String class that it aliases. You will see how to extract substrings, manipulate and
concatenate strings, and build new strings with the stringBuilder class. In addition, you
will learn how to use the RegEx class to match strings based on complex regular expressions.

10.1 Strings

C# treats strings as first-class types that are flexible, powerful, and easy to use. Each string
object is an immutable sequence of Unicode characters. In other words, methods that appear
to change the string actually return a modified copy; the original string remains intact.

When you declare a C# string using the string keyword, you are in fact declaring the object
to be of the type system.String, one of the built-in types provided by the .NET Framework
Class Library. A C# string type is a System.String type, and we will use the names
interchangeably throughout the chapter.

The declaration of the System.String class is:

public sealed class String :
IComparable, ICloneable, IConvertible, IEnumerable

This declaration reveals that the class is sealed, meaning that it is not possible to derive from
the string class. The class also implements four system interfaces -- IComparable,
ICloneable, IConvertible, and IEnumerable -- which dictate functionality that
System. String shares with other classes in the NET Framework.

As seen in Chapter 9, the 1comparable interface is implemented by types whose values can

be ordered. Strings, for example, can be alphabetized; any given string can be compared with
another string to determine which should come first in an ordered list. IComparable classes

208

Programming C#, 2nd Edition

implement the CompareTo method. TEnumerable, also discussed in Chapter 9, lets you use
the foreach construct to enumerate a string as a collection of chars.

ICloneable objects can create new instances with the same value as the original instance. In
this case, it is possible to clone a string to produce a new string with the same values
(characters) as the original. TCloneable classes implement the clone () method.

IConvertible classes provide methods to facilitate conversion to other primitive types such
as ToInt32(), ToDouble(), ToDecimal (), €tcC.

10.1.1 Creating Strings

The most common way to create a string is to assign a quoted string of characters, known as a
string literal, to a user-defined variable of type string:

string newString = "This is a string literal";

Quoted strings can include escape characters, such as "\n" or "\t," which begin with a
backslash character (\) and are used to indicate where line breaks or tabs are to appear.
Because the backslash is itself used in some command-line syntaxes, such as URLs or
directory paths, in a quoted string the backslash must be preceded by another backslash.

Strings can also be created using verbatim string literals, which start with the (@) symbol. This
tells the string constructor that the string should be used verbatim, even if it spans multiple
lines or includes escape characters. In a verbatim string literal, backslashes and the characters
that follow them are simply considered additional characters of the string. Thus, the following
two definitions are equivalent:

string literalOne = "\\\\MySystem\\MyDirectory\\ProgrammingC#.cs";
string verbatimLiteralOne = @"\\MySystem\MyDirectory\ProgrammingC#.cs";

In the first line, a nonverbatim string literal is used, and so the backslash characters (\) must
be escaped. This means it must be preceded by a second backslash character. In the second
line, a verbatim literal string is used, so the extra backslash is not needed. A second example
illustrates multiline verbatim strings:

string literalTwo = "Line One\nLine Two";
string verbatimLiteralTwo = @"Line One
Line Two";

Again, these declarations are interchangeable. Which one you use is a matter of convenience
and personal style.

10.1.2 The ToString Method

Another common way to create a string is to call the Tostring () method on an object and
assign the result to a string variable. All the built-in types override this method to simplify the
task of converting a value (often a numeric value) to a string representation of that value. In
the following example, the Tostring () method of an integer type is called to store its value
in a string:

209

Programming C#, 2nd Edition

int myInteger = 5;
string integerString = myInteger.ToString();

The call to myInteger.ToString() returns a String object, which is then assigned to
integerString.

The .NET string class provides a wealth of overloaded constructors that support a variety of
techniques for assigning string values to string types. Some of these constructors enable you
to create a string by passing in a character array or character pointer. Passing in a character
array as a parameter to the constructor of the string creates a CLR-compliant new instance
of a string. Passing in a character pointer creates a noncompliant, "unsafe" instance.

10.1.3 Manipulating Strings

The string class provides a host of methods for comparing, searching, and manipulating
strings, as shown in Table 10-1.

Method or field
Empty

Compare ()

CompareOrdinal ()

Concat ()

Copy ()
Equals ()

Format ()
Intern ()

IsInterned()
Join ()

Chars
Length
Clone ()
CompareTo ()
CopyTo ()
EndsWith ()
Equals ()

Insert ()

LastIndexOf ()

PadLeft ()

PadRight ()

Remove ()
Split ()
StartsWith ()
Substring ()

Table 10-1. Methods and fields for the string class
Explanation
Public static field that represents the empty string.
Overloaded public static method that compares two strings.

Overloaded public static method that compares two strings without regard to local or
culture.

Overloaded public static method that creates a new string from one or more strings.
Public static method that creates a new string by copying another.

Overloaded public static and instance methods that determines if two strings have
the same value.

Overloaded public static method that formats a string using a format specification.
Public static method that returns a reference to the specified instance of a string.
Public static method that returns a reference for the string.

Overloaded public static method that concatenates a specified string between each
element of a string array.

The string indexer.

The number of characters in the instance.

Returns the string.

Compares this string with another.

Copies the specified number of characters to an array of Unicode characters.
Indicates whether the specified string matches the end of this string.
Determines if two strings have the same value.

Returns a new string with the specified string inserted.

Reports the index of the last occurrence of a specified character or string within
the string.

Right-aligns the characters in the string, padding to the left with spaces or a specified
character.

Left-aligns the characters in the string, padding to the right with spaces or a specified
character.

Deletes the specified number of characters.

Returns the substrings delimited by the specified characters in a string array.
Indicates if the string starts with the specified characters.

Retrieves a substring.

210

ToCharArray () Copies the characters from the string to a character array.

ToLower () Returns a copy of the string in lowercase.

ToUpper () Returns a copy of the string in uppercase.

Trim () Remoyes all occurrences of a set of specified characters from beginning and end of
the string.

TrimEnd () Behaves like Trim, but only at the end.

TrimStart () Behaves like Trim, but only at the start.

Example 10-1 illustrates the use of some of these methods, including Compare (
Concat () (and the overloaded + operator), Copy (

Programming C#, 2nd Edition

EndsWith(), and IndexOf ().

Example 10-1. Working with strings

namespace Programming CSharp

{

using System;

public class StringTester

{

static void Main()

{

// create some strings to work with

string sl = "abcd";

string s2 = "ABCD";

string s3 @"Liberty Associates, Inc.
provides custom .NET development,
on-site Training and Consulting";

int result; // hold the results of comparisons

// compare two strings, case sensitive
result = string.Compare(sl, s2);
Console.WriteLine (
"compare sl: {0}, s2: {1}, result: {2}\n",
sl, s2, result);

// overloaded compare, takes boolean "ignore case"

// (true = ignore case)

result = string.Compare(sl,s2, true);

Console.WriteLine ("compare insensitivel\n");

Console.WriteLine ("s4: {0}, s2: {1}, result: {2}\n",
sl, s2, result);

// concatenation method
string s6 = string.Concat(sl,s2);
Console.WriteLine (

"s6 concatenated from sl and s2: {0}", s6);

// use the overloaded operator
string s7 = sl + s2;
Console.WriteLine (
"s7 concatenated from sl + s2: {0}", s7);

// the string copy method
string s8 = string.Copy(s7);
Console.WriteLine (

"s8 copied from s7: {0}", s8);

) (and the = operator), Insert (

)s
)s

211

Programming C#, 2nd Edition

// use the overloaded operator
string s9 = s8;
Console.WriteLine ("s9 = s8: {0}", s9);

// three ways to compare.
Console.WriteLine (

"\nDoes s9.Equals(s8)?: {0}",

s9.Equals (s8));
Console.WriteLine (

"Does Equals(s9,s8)72: {0}",

string.Equals (s9,s8));
Console.WriteLine (

"Does s9==s87?: {0}", s9 == s8);

// Two useful properties: the index and the length
Console.WriteLine (
"\nString s9 is {0} characters long. ",
s9.Length) ;
Console.WriteLine (
"The 5th character is {1}\n",
s9.Length, s9[41);

// test whether a string ends with a set of characters
Console.WriteLine ("s3:{0}\nEnds with Training?: {1}\n",
s3,
s3.EndsWith ("Training"));
Console.WriteLine (
"Ends with Consulting?: {0}",
s3.EndsWith ("Consulting"));

// return the index of the substring
Console.WriteLine (

"\nThe first occurrence of Training ");
Console.WriteLine ("in s3 is {0}\n",
s3.Index0Of ("Training")) ;

// insert the word excellent before "training"
string s10 = s3.Insert (101, "excellent ");
Console.WriteLine ("s10: {0}\n",s10);

// you can combine the two as follows:
string sll = s3.Insert(s3.IndexOf ("Training"),

"excellent ");
Console.WriteLine ("sl1l: {0}\n",sll);

Output

compare sl: abcd, s2: ABCD, result: -1
compare insensitive

s4: abcd, s2: ABCD, result: O

s6 concatenated from sl and s2: abcdABCD
s7 concatenated from sl + s2: abcdABCD

s8 copied from s7: abcdABCD
s9 = s8: abcdABCD

212

Programming C#, 2nd Edition

Does s9.Equals(s8)?: True
Does Equals(s9,s8)?: True
Does s9==s8?: True

String s9 is 8 characters long.
The 5th character is A

s3:Liberty Associates, Inc.
provides custom .NET development,
on-site Training and Consulting
Ends with Training?: False

Ends with Consulting?: True

The first occurrence of Training
in s3 is 101

s10: Liberty Associates, Inc.
provides custom .NET development,
on-site excellent Training and Consulting

sll: Liberty Associates, Inc.

provides custom .NET development,
on-site excellent Training and Consulting

Example 10-1 begins by declaring three strings:

string sl "abcd";

string s2 "ABCD";

string s3 = @"Liberty Associates, Inc.
provides custom .NET development,
on-site Training and Consulting";

The first two are string literals, and the third is a verbatim string literal. We begin by
comparing s1 to s2. The compare method is a public static method of string, and it is
overloaded. The first overloaded version takes two strings and compares them:

// compare two strings, case sensitive

result = string.Compare(sl, s2);

Console.WriteLine ("compare sl: {0}, s2: {1}, result: {2}\n",
sl, s2, result);

This is a case-sensitive comparison and returns different values, depending on the results of
the comparison:

e A negative integer, if the first string is less than the second string

e 0, if the strings are equal
e A positive integer, if the first string is greater than the second string

In this case, the output properly indicates that s1 is "less than" s2. In Unicode (as in ASCII), a
lowercase letter has a smaller value than an uppercase letter:

compare sl: abcd, s2: ABCD, result: -1

The second comparison uses an overloaded version of compare that takes a third, Boolean
parameter, whose value determines whether case should be ignored in the comparison. If the

213

Programming C#, 2nd Edition

value of this "ignore case" parameter is true, the comparison is made without regard to case,
as in the following:

result = string.Compare(sl,s2, true);
Console.WriteLine ("compare insensitivel\n");
Console.WriteLine ("s4: {0}, s2: {1}, result: {2}\n", sl, s2, result);

o &

e The result is written with two WwriteLine statements to keep the lines
@4 short enough to print properly in this book.
v

This time the case is ignored and the result is 0, indicating that the two strings are identical
(without regard to case):

compare insensitive

s4: abcd, s2: ABCD, result: 0

Example 10-1 then concatenates some strings. There are a couple of ways to accomplish this.
You can use the concat () method, which is a static public method of string:

string s6 = string.Concat(sl,s2);

or you can simply use the overloaded concatenation (+) operator:
string s7 = sl + s2;

In both cases, the output reflects that the concatenation was successful:

s6 concatenated from sl and s2: abcdABCD
s7 concatenated from sl + s2: abcdABCD

Similarly, creating a new copy of a string can be accomplished in two ways. First, you can use
the static copy method:

string s8 = string.Copy(s7);

Otherwise, for convenience, you might instead use the overloaded assignment operator (=),
which will implicitly make a copy:

string s9 = s8;
Once again, the output reflects that each method has worked:

s8 copied from s7: abcdABCD
s9 = s8: abcdABCD

The .NET string class provides three ways to test for the equality of two strings. First, you
can use the overloaded Equals () method and ask s9 directly whether s8 is of equal value:

Console.WriteLine ("\nDoes s9.Equals(s8)?2: {0}",
s9.Equals(s8));

214

Programming C#, 2nd Edition

A second technique is to pass both strings to string's static method Equals ():

Console.WriteLine ("Does Equals(s9,s8)?: {0}",
string.Equals (s9,s8));

A final method is to use the overloaded equality operator (==) of string:

Console.WriteLine ("Does s9==s8?: {0}", s9 == s8);

In each of these cases, the returned result is a Boolean value, as shown in the output:

Does s9.Equals(s8)?: True
Does Equals(s9,s8)?: True
Does s9==s87?: True

The equality operator is the most natural when you have two string objects. However, some
languages, such as VB.NET, do not support operator overloading, so be sure to override the
Equals instance method as well.

The next several lines in Example 10-1 use the index operator ([]1) to find a particular
character within a string, and use the Length property to return the length of the entire string:

Console.WriteLine ("\nString s9 is {0} characters long.,
s9.Length) ;

Console.WriteLine ("The 5th character is {1}\n",
s9.Length, s9[4]);

Here's the output:

String s9 is 8 characters long.
The 5th character is A

The Endswith () method asks a string whether a substring is found at the end of the string.
Thus, you might ask first s3 if it ends with Training (which it does not) and then if it ends
with consulting (which it does):

// test whether a string ends with a set of characters

Console.WriteLine ("s3:{0}\nEnds with Training?: {1}\n",
s3, s3.EndsWith("Training™));

Console.WritelLine ("Ends with Consulting?: {0}",
s3.EndsWith ("Consulting"));

The output reflects that the first test fails and the second succeeds:

s3:Liberty Associates, Inc.
provides custom .NET development,
on-site Training and Consulting
Ends with Training?: False
Ends with Consulting?: True

The Index0f () method locates a substring within our string, and the Insert () method
inserts a new substring into a copy of the original string.

The following code locates the first occurrence of Training in s3:

215

Programming C#, 2nd Edition

Console.WriteLine ("\nThe first occurrence of Training ");
Console.WriteLine ("in s3 is {0}\n",
s3.IndexOf ("Training"));

The output indicates that the offset is 101:

The first occurrence of Training
in s3 is 101

You can then use that value to insert the word excellent, followed by a space, into that
string. Actually the insertion is into a copy of the string returned by the Insert () method
and assigned to s10:

string s10 = s3.Insert(101,"excellent");
Console.WriteLine ("s10: {0}\n",s10);

Here's the output:

s10: Liberty Associates, Inc.
provides custom .NET development,
on-site excellent Training and Consulting

Finally, you can combine these operations to make a more efficient insertion statement:

string sll1l = s3.Insert(s3.IndexOf ("Training"), "excellent ");
Console.WriteLine ("s1l: {0}\n",sl1ll);

with the identical output:

sll: Liberty Associates, Inc.
provides custom .NET development,
on-site excellent Training and Consulting

10.1.4 Finding Substrings

The string type provides an overloaded substring method for extracting substrings from
within strings. Both versions take an index indicating where to begin the extraction, and one
of the two versions takes a second index to indicate where to end the search. The substring
method is illustrated in Example 10-2.

Example 10-2. Using the Substring() method

namespace Programming CSharp

{
using System;
using System.Text;

public class StringTester

{

static void Main()

{
// create some strings to work with
string sl = "One Two Three Four";

int ix;

216

Programming C#, 2nd Edition

// get the index of the last space
ix=sl.LastIndexOf (" ");

// get the last word.
string s2 = sl.Substring(ix+1);

// set sl to the substring starting at 0

// and ending at ix (the start of the last word
// thus sl has one two three

sl = sl.Substring(0,ix);

// find the last space in sl (after two)
ix = sl.LastIndexQOf (" ");

// set s3 to the substring starting at

// ix, the space after "two" plus one more
// thus s3 = "three"

string s3 = sl.Substring(ix+1);

// reset sl to the substring starting at 0
// and ending at ix, thus the string "one two"
sl = sl.Substring(0,ix);

// reset ix to the space between
// "one" and "two"
ix = sl.LastIndexOf (" ");

// set s4 to the substring starting one
// space after ix, thus the substring "two"
string s4 = sl.Substring(ix+1);

// reset sl to the substring starting at 0
// and ending at ix, thus "one"
sl = sl.Substring(0,ix);

// set ix to the last space, but there is
// none so ix now = -1
ix = sl.LastIndexOf (" ");

// set s5 to the substring at one past

// the last space. there was no last space
// so this sets s5 to the substring starting
// at zero

string s5 = sl.Substring(ix+1);

Console.WriteLine ("s2: {0}\ns3: {1}",s2,s3);
Console.WriteLine ("s4: {0}\ns5: {1}\n",s4,s5);

Console.WriteLine ("sl: {0}\n",sl);
}
}

}
Output:
s2: Four
s3: Three
s4: Two
s5: One
sl: One

217

Programming C#, 2nd Edition

Example 10-2 is not an elegant solution to the problem of extracting words from a string, but
it is a good first approximation and it illustrates a useful technique. The example begins by
creating a string, s1:

string sl = "One Two Three Four";

Then ix is assigned the value of the last space in the string:

ix=sl.LastIndexOf (" ");

Then the substring that begins one space later is assigned to the new string, s2:
string s2 = sl.Substring(ix+1);

This extracts from x1+1 to the end of the line, assigning to s2 the value Four.

The next step is to remove the word Four from s1. You can do this by assigning to s1 the
substring of s1, which begins at 0 and ends at ix:

sl = sl.Substring(0,ix);

Reassign ix to the last (remaining) space, which points you to the beginning of the word
Three, which we then extract into string s3. Continue like this until s4 and s5 are populated
s4 and s5. Finally, print the results:

s2: Four
s3: Three
sd: Two
s5: One
sl: One

This isn't elegant, but it worked and it illustrates the use of substring. This is not unlike
using pointer arithmetic in C++, but without using pointers and unsafe code.

10.1.5 Splitting Strings
A more effective solution to the problem illustrated in Example 10-2 is to use the split()
method of string, whose job is to parse a string into substrings. To use Split(), pass in an

array of delimiters (characters that will indicate a split in the words) and the method returns
an array of substrings. Example 10-3 illustrates:

218

Programming C#, 2nd Edition

Example 10-3. Using the Split() method

namespace Programming CSharp
{

using System;

using System.Text;

public class StringTester
{
static void Main()
{
// create some strings to work with
string sl = "One,Two,Three Liberty Associates, Inc.";

// constants for the space and comma characters
const char Space = ;
const char Comma , '

// array of delimiters to split the sentence with
char[] delimiters = new char(]
{
Space,
Comma

b

string output = "";
int ctr = 1;

// split the string and then iterate over the
// resulting array of strings
foreach (string subString in sl.Split(delimiters))
{
output += ctr++;
output += ": ";
output += subString;
output += "\n";
}

Console.WriteLine (output) ;

}

Output:

1: One

2: Two

3: Three

4: Liberty

5: Associates
6:

7: Inc.

You start by creating a string to parse:

string sl = "One,Two,Three Liberty Associates, Inc.";

The delimiters are set to the space and comma characters. You then call sp1it on this string,
and pass the results to the foreach loop:

219

Programming C#, 2nd Edition

foreach (string subString in sl.Split(delimiters))

Start by initializing output to an empty string and then build up the output string in four steps.
Concatenate the value of ctr. Next add the colon, then the substring returned by split, then
the newline. With each concatenation a new copy of the string is made, and all four steps are
repeated for each substring found by spilit. This repeated copying of string is terribly
inefficient.

The problem is that the string type is not designed for this kind of operation. What you want is
to create a new string by appending a formatted string each time through the loop. The class
you need is StringBuilder.

10.1.6 Manipulating Dynamic Strings

The system.Text.StringBuilder class is used for creating and modifying strings.
Semantically, it is the encapsulation of a constructor for a string. The important members of

StringBuilder are summarized in Table 10-2.

Table 10-2. StringBuilder methods

Method Explanation
. Retrieves or assigns the number of characters the StringBuilder is capable of
Capacity R
holding.
Chars The indexer.
Length Retrieves or assigns the length of the StringBuilder.
MaxCapacity Retrieves the maximum capacity of the StringBuilder.
Append () Overloaded public method that appends a typed object to the end of the current
PP StringBuilder.
Overloaded public method that replaces format specifiers with the formatted value of
AppendFormat () .
an object.
EnsureCapacity () Ensures the current StringBuilder has a capacity at least as large as the specified
value.
Insert () Overloaded public method that inserts an object at the specified position.
Remove () Removes the specified characters.
Overloaded public method that replaces all instances of specified characters with new
Replace ()

characters.
Unlike string, StringBuider is mutable; when you modify a stringBuilder, you modify

the actual string, not a copy. Example 10-4 replaces the string object in Example 10-3 with a
StringBuilder object.

220

Programming C#, 2nd Edition

Example 10-4. Using a StringBuilder

namespace Programming CSharp
{

using System;

using System.Text;

public class StringTester
{
static void Main()
{
// create some strings to work with
string sl = "One,Two,Three Liberty Associates, Inc.";

// constants for the space and comma characters
const char Space = ' ';
const char Comma ',y

// array of delimiters to split the sentence with
char[] delimiters = new char(]
{

Space,

Comma

b

// use a StringBuilder class to build the

// output string

StringBuilder output = new StringBuilder();
int ctr = 1;

// split the string and then iterate over the
// resulting array of strings
foreach (string subString in sl.Split(delimiters))
{
// AppendFormat appends a formatted string
output.AppendFormat ("{0}: {1}\n",ctr++,subString);
}

Console.WriteLine (output) ;

Only the last part of the program is modified. Rather than using the concatenation operator to
modify the string, use the AppendFormat method of StringBuilder to append new,
formatted strings as you create them. This is much easier and far more efficient. The output is
identical:

1: One

2: Two

3: Three

4: Liberty

5: Associates
6:

7: Inc.

221

Programming C#, 2nd Edition

Delimiter Limitations

Because you passed in delimiters of both comma and space, the space after the
comma between "Associates" and "Inc." is returned as a word, numbered 6 as
shown. That is not what you want. To eliminate this you need to tell split to match a
comma (as between One, Two, and Three), or a space (as between Liberty and
Associates), or a comma followed by a space. It is that last bit that is tricky and
requires that you use a regular expression.

10.2 Regular Expressions

Regular expressions are a powerful language for describing and manipulating text. A regular
expression is applied to a string -- that is, to a set of characters. Often that string is an entire
text document.

The result of applying a regular expression to a string is either to return a substring, or to
return a new string representing a modification of some part of the original string. Remember
that strings are immutable and so cannot be changed by the regular expression.

By applying a properly constructed regular expression to the following string:

One, Two, Three Liberty Associates, Inc.

you can return any or all of its substrings (e.g., Liberty or one), or modified versions of its
substrings (e.g., LIBeRtY or OnE). What the regular expression does is determined by the
syntax of the regular expression itself.

A regular expression consists of two types of characters: literals and metacharacters. A literal
is a character you wish to match in the target string. A metacharacter is a special symbol that
acts as a command to the regular expression parser. The parser is the engine responsible for
understanding the regular expression. For example, if you create a regular expression:

~"(From|To|Subject|Date) :

nmn

this will match any substring with the letters "From," "To,
those letters start a new line (*) and end with a colon (:).

Subject," or "Date," so long as

The caret (») in this case indicates to the regular expression parser that the string you're
searching for must begin a new line. The letters "From" and "To" are literals, and the
metacharacters left and right parentheses ((,)) and vertical bar (|) are all used to group sets
of literals and indicate that any of the choices should match. (Note that ~ is a metacharacter as
well, used to indicate the start of the line.)

Thus you would read this line:

~"(From|To|Subject|Date) :

as follows: "match any string that begins a new line followed by any of the four literal strings
From, To, Subject, or Date followed by a colon."

222

Programming C#, 2nd Edition

oA

A full explanation of regular expressions is beyond the scope of this

<
=

i

wh

book, but all the regular expressions used in the examples are explained.

e

For a complete understanding of regular expressions, I highly
recommend Mastering Regular Expressions by Jeffrey E. F. Friedl
(published by O'Reilly & Associates, Inc.).

10.2.1 Using Regular Expressions: Regex

The NET

Framework provides an object-oriented approach to regular expression matching

and replacement.

o

il w

uh

C#'s regular expressions are based on Perl5 regexp, including lazy
quantifiers (??, *?, +?, {n,m}?), positive and negative look ahead, and
d+ conditional evaluation.

The Base Class Library namespace System.Text.RegularExpressions is the home to all
the .NET Framework objects associated with regular expressions. The central class for regular
expression support is Regex, which represents an immutable, compiled regular expression.
Although instances of rRegex can be created, the class also provides a number of useful static
methods. The use of Regex is illustrated in Example 10-5.

Example 10-5. Using the Regex class for regular expressions

namespace Programming CSharp

{
using
using
using

System;
System.Text;
System.Text.RegularExpressions;

public class Tester

{

static void Main()

{

Output:
1: One
2: Two
3: Three

string sl =

"One, Two, Three Liberty Associates, Inc.";
Regex theRegex = new Regex(" [, [,");
StringBuilder sBuilder = new StringBuilder();
int id = 1;

foreach (string subString in theRegex.Split(sl))
{
sBuilder.AppendFormat (
"{0}: {1}\n", id++, subString);
}

Console.WriteLine ("{0}", sBuilder):;

223

Programming C#, 2nd Edition

4: Liberty
5: Associates
6: Inc.

Example 10-5 begins by creating a string, s1, that is identical to the string used in
Example 10-4.

string sl = "One,Two,Three Liberty Associates, Inc.";

It also creates a regular expression, which will be used to search that string:

Regex theRegex = new Regex (" [, 1|, ")’

One of the overloaded constructors for rRegex takes a regular expression string as its
parameter. This is a bit confusing. In the context of a C# program, which is the regular
expression? Is it the text passed in to the constructor, or the Regex object itself? It is true that
the text string passed to the constructor is a regular expression in the traditional sense of the
term. From an object-oriented C# point of view, however, the argument to the constructor is
just a string of characters; it is theRegex that is the regular expression object.

The rest of the program proceeds like the earlier Example 10-4, except that rather than calling
Split() on string sl, the split() method of Regex is called. Regex.Split() acts in
much the same way as string.split (), returning an array of strings as a result of matching
the regular expression pattern within therRegex.

Regex.Split () is overloaded. The simplest version is called on an instance of rRegex, as
shown in Example 10-5. There is also a static version of this method, which takes a string to
search and the pattern to search with, as illustrated in Example 10-6.

Example 10-6. Using static Regex.Split()

namespace Programming CSharp
{
using System;
using System.Text;
using System.Text.RegularExpressions;

public class Tester
{
static void Main()
{
string sl =
"One, Two, Three Liberty Associates, Inc.";

StringBuilder sBuilder = new StringBuilder();
int id = 1;
foreach (string subStr in Regex.Split(sl," |, [|,™))

{
sBuilder.AppendFormat ("{0}: {1}\n", id++, subStr);

}

Console.WriteLine ("{0}", sBuilder):;

224

Programming C#, 2nd Edition

Example 10-6 is identical to Example 10-5, except that the latter example does not instantiate
an object of type Regex. Instead, Example 10-6 uses the static version of split (), which
takes two arguments: a string to search for and a regular expression string that represents the
pattern to match.

The instance method of sp1it () is also overloaded with versions that limit the number of
times the split will occur and also determine the position within the target string where the
search will begin.

10.2.2 Using Regex Match Collections

Two additional classes in the .NET rRegularExpressions namespace allow you to search a
string repeatedly, and to return the results in a collection. The collection returned is of type
MatchCollection, which consists of zero or more Match objects. Two important properties
of a Match object are its length and its value, each of which can be read as illustrated in
Example 10-7.

Example 10-7. Using MatchCollection and Match

namespace Programming CSharp

{
using System;
using System.Text.RegularExpressions;

class Test

{

public static void Main()

{

string stringl = "This is a test string";

// find any nonwhitespace followed by whitespace
Regex theReg = new Regex (@" (\S+)\s");

// get the collection of matches
MatchCollection theMatches =
theReg.Matches (stringl) ;

// iterate through the collection
foreach (Match theMatch in theMatches)
{
Console.WriteLine (
"theMatch.Length: {0}", theMatch.Length);

if (theMatch.Length != 0)

{
Console.WriteLine ("theMatch: {0}",
theMatch.ToString());

225

Programming C#, 2nd Edition

Output:

theMatch.Length: 5
theMatch: This
theMatch.Length: 3
theMatch: is
theMatch.Length: 2
theMatch: a
theMatch.Length: 5
theMatch: test

Example 10-7 creates a simple string to search:

string stringl = "This is a test string";

and a trivial regular expression to search it:

Regex theReg = new Regex (@" (\S+)\s");

The string \s finds nonwhitespace, and the plus sign indicates one or more. The string \s

(note lowercase) indicates whitespace. Thus, together, this string looks for any nonwhitespace
characters followed by whitespace.

. Remember the at (@) symbol before the string creates a verbatim string,
s which avoids the necessity of escaping the backslash (\) character.
D 1Y
(]

The output shows that the first four words were found. The final word was not found because
it is not followed by a space. If you insert a space after the word string and before the
closing quote marks, this program will find that word as well.

The 1length property is the length of the captured substring, and is discussed in
Section 10.2.4, later in this chapter.

10.2.3 Using Regex Groups
It is often convenient to group subexpression matches together so that you can parse out

pieces of the matching string. For example, you might want to match on IP addresses and
group all IP addresses found anywhere within the string.

o IP addresses are used to locate computers on a network, and typically
o have the form x.x.x.x, where x is generally any digit between 0 and 255
" g+ (such as 192.168.0.1).

The Group class allows you to create groups of matches based on regular expression syntax,
and represents the results from a single grouping expression.

A grouping expression names a group and provides a regular expression; any substring

matching the regular expression will be added to the group. For example, to create an ip
group you might write:

226

Programming C#, 2nd Edition

@M (2<ip>(\dI\.)+)\s"

The Match class derives from Group, and has a collection called "Groups" that contains all the
groups your Match finds.

Creation and use of the Groups collection and Group classes is illustrated in Example 10-8.

Example 10-8. Using the Group class

namespace Programming CSharp

{
using System;
using System.Text.RegularExpressions;

class Test

{

public static void Main()

{

string stringl = "04:03:27 127.0.0.0 LibertyAssociates.com";
// group time = one or more digits or colons followed by space
Regex theReg = new Regex (@" (?<time> (\d|\:)+)\s" +

// ip address = one or more digits or dots followed by space
@ (2<ip>(\d|\.)+)\s" +

// site = one or more characters

@ (?<site>\sS+)");

// get the collection of matches
MatchCollection theMatches = theReg.Matches (stringl);

// iterate through the collection
foreach (Match theMatch in theMatches)

{
if (theMatch.Length != 0)

{

Console.WriteLine ("\ntheMatch: {0}",
theMatch.ToString());

Console.WriteLine ("time: {0}",
theMatch.Groups["time"]) ;

Console.WriteLine ("ip: {0}",
theMatch.Groups ["ip"]);

Console.WriteLine ("site: {0}",
theMatch.Groups["site"]);

Again, Example 10-8 begins by creating a string to search:

string stringl = "04:03:27 127.0.0.0 LibertyAssociates.com";

This string might be one of many recorded in a web server log file or produced as the result of
a search of the database. In this simple example, there are three columns: one for the time of
the log entry, one for an IP address, and one for the site, each separated by spaces. Of course,
in a real example solving a real-life problem, you might need to do more complex searches
and choose to use other delimiters and more complex searches.

227

Programming C#, 2nd Edition

In Example 10-8, we want to create a single Regex object to search strings of this type and
break them into three groups: time, ip address, and site. The regular expression string is
fairly simple, so the example is easy to understand (however, keep in mind that in a real
search, you would probably only use a part of the source string rather than the entire source
string, as shown here:)

// group time = one or more digits or colons

// followed by space

Regex theReg = new Regex (@" (?<time>(\d|\:)+)\s" +
// ip address = one or more digits or dots

// followed by space

@" (?<ip>(\dI\.)+)\s" +

// site = one or more characters

@M (?<site>\S+)");

Let's focus on the characters that create the group:

(?<time>

The parentheses create a group. Everything between the opening parenthesis (just before the
question mark) and the closing parenthesis (in this case, after the + sign) is a single unnamed

group.

(@" (?2<time>(\d|\:)+)

The string 2<time> names that group time, and the group is associated with the matching
text, which is the regular expression (\d|\:)+)\s". This regular expression can be
interpreted as "one or more digits or colons followed by a space."

Similarly, the string 2<ip> names the ip group, and ?<site> names the site group. As
Example 10-7 does, Example 10-8 asks for a collection of all the matches:

MatchCollection theMatches = theReg.Matches (stringl);
Example 10-8 iterates through the Matches collection, finding each Match object.

If the Length of the Match is greater than 0, a Match was found; it prints the entire match:

Console.WriteLine ("\ntheMatch: {0}",
theMatch.ToString());

Here's the output:

theMatch: 04:03:27 127.0.0.0 LibertyAssociates.com

It then gets the "time" group from the Match's Groups collection and prints that value:

Console.WriteLine ("time: {0}",
theMatch.Groups["time"]) ;

This produces the output:

time: 04:03:27

228

Programming C#, 2nd Edition

The code then obtains ip and site groups:

Console.WriteLine ("ip: {O}",
theMatch.Groups["ip"]) ;
Console.WriteLine ("site: {0}",

theMatch.Groups|["site"]);

This produces the output:

ip: 127.0.0.0
site: LibertyAssociates.com

In Example 10-8, the Matches collection has only one Match. It is possible, however, to
match more than one expression within a string. To see this, modify stringl in Example 10-
8 to provide several 1ogFile entries instead of one, as follows:

string stringl = "04:03:27 127.0.0.0 LibertyAssociates.com " +
"04:03:28 127.0.0.0 foo.com " +
"04:03:29 127.0.0.0 bar.com " ;

This creates three matches in the MatchCollection, called theMatches. Here's the resulting
output:

theMatch: 04:03:27 127.0.0.0 LibertyAssociates.com
time: 04:03:27

ip: 127.0.0.0

site: LibertyAssociates.com

theMatch: 04:03:28 127.0.0.0 foo.com
time: 04:03:28
ip: 127.0.0.0
site: foo.com

theMatch: 04:03:29 127.0.0.0 bar.com
time: 04:03:29

ip: 127.0.0.0
site: bar.com

In this example, theMatches contains three Match objects. Each time through the outer
foreach loop we find the next Match in the collection and display its contents:

foreach (Match theMatch in theMatches)

For each of the Match items found, you can print out the entire match, various groups, or both.
10.2.4 Using CaptureCollection

Each time a Regex object matches a subexpression, a Capture instance is created and added

to a captureCollection collection. Each capture object represents a single capture. Each
group has its own capture collection of the matches for the subexpression associated with the

group.

229

Programming C#, 2nd Edition

A key property of the capture object is its length, which is the length of the captured
substring. When you ask Match for its length, it is Capture.Length that you retrieve because
Match derives from Group, which in turn derives from capture.

o &

e The regular expression inheritance scheme in .NET allows Match to
#s 4. include in its interface the methods and properties of these parent
i £

classes. In a sense, a Group is-a capture: it is a capture that encapsulates
the idea of grouping subexpressions. A Match, in turn, is-a Group: it is
the encapsulation of all the groups of subexpressions making up the
entire match for this regular expression. (See Chapter 5 for more about
the is-a relationship and other relationships.)

Typically, you will find only a single Capture in a CaptureCollection, but that need not be
so. Consider what would happen if you were parsing a string in which the company name
might occur in either of two positions. To group these together in a single match, create the
?<company> group in two places in your regular expression pattern:

Regex theReg = new Regex (@" (?<time> (\d|\:)+)\s" +
@" (?<company>\S+)\s" +
@ (2<ip>(\d|\.)+)\s" +
@" (?<company>\S+)\s") ;

This regular expression group captures any matching string of characters that follows time,
and also any matching string of characters that follows ip. Given this regular expression, you
are ready to parse the following string:

string stringl = "04:03:27 Jesse 0.0.0.127 Liberty ";

The string includes names in both the positions specified. Here is the result:

theMatch: 04:03:27 Jesse 0.0.0.127 Liberty
time: 04:03:27

ip: 0.0.0.127

Company: Liberty

What happened? Why is the Company group showing Liberty? Where is the first term, which
also matched? The answer is that the second term overwrote the first. The group, however,
has captured both. Its captures collection can demonstrate, as illustrated in Example 10-9.

Example 10-9. Examining the capture collection

namespace Programming CSharp
{
using System;
using System.Text.RegularExpressions;

class Test
{
public static void Main()
{
// the string to parse
// note that names appear in both
// searchable positions

230

Programming C#, 2nd Edition

string stringl =
"04:03:27 Jesse 0.0.0.127 Liberty ";

// regular expression which groups company twice
Regex theReg = new Regex (@" (?<time> (\d|\:)+)\s" +
@" (?<company>\S+)\s" +
@ (2<ip>(\d|\.)+)\s" +
@" (?<company>\S+)\s") ;

// get the collection of matches
MatchCollection theMatches =
theReg.Matches (stringl) ;

// iterate through the collection
foreach (Match theMatch in theMatches)
{
if (theMatch.Length != 0)
{
Console.WriteLine ("theMatch: {0}",
theMatch.ToString());
Console.WriteLine ("time: {0}",
theMatch.Groups["time"]) ;
Console.WriteLine ("ip: {0}",
theMatch.Groups["ip"]) ;
Console.WriteLine ("Company: {0}",
theMatch.Groups["company"]) ;

// iterate over the captures collection

// in the company group within the

// groups collection in the match

foreach (Capture cap in
theMatch.Groups|["company"] .Captures)

{
Console.WriteLine("cap: {0}",cap.ToString())

}

}

Output:

theMatch: 04:03:27 Jesse 0.0.0.127 Liberty
time: 04:03:27

ip: 0.0.0.127

Company: Liberty

cap: Jesse

cap: Liberty

The code in bold iterates through the captures collection for the company group.

foreach (Capture cap in
theMatch.Groups|["company"] .Captures)

Let's review how this line is parsed. The compiler begins by finding the collection that it will
iterate over. theMatch is an object that has a collection named Groups. The Groups collection
has an indexer that takes a string and returns a single Group object. Thus, the following line
returns a single Group object:

231

Programming C#, 2nd Edition

theMatch.Groups ["company"]

The Group object has a collection named captures. Thus, the following line returns a
captures collection for the Group stored at Groups ["company"] within the theMatch object:

theMatch.Groups["company"] .Captures

The foreach loop iterates over the captures collection, extracting each element in turn and
assigning it to the local variable cap, which is of type capture. You can see from the output
that there are two capture elements: Jesse and Liberty. The second one overwrites the first
in the group, and so the displayed value is just Liberty. However, by examining the
captures collection, you can find both values that were captured.

232

Programming C#, 2nd Edition

Chapter 11. Handling Exceptions

C#, like many object-oriented languages, handles errors and abnormal conditions with
exceptions. An exception is an object that encapsulates information about an unusual program
occurrence.

It is important to distinguish between bugs, errors, and exceptions. A bug is a programmer
mistake that should be fixed before the code is shipped. Exceptions are not a protection
against bugs. Although a bug might cause an exception to be thrown, you should not rely on
exceptions to handle your bugs. Rather, you should fix the bug.

An error is caused by user action. For example, the user might enter a number where a letter
is expected. Once again, an error might cause an exception, but you can prevent that by
catching errors with validation code. Whenever possible, errors should be anticipated and
prevented.

Even if you remove all bugs and anticipate all user errors, you will still run into predictable
but unpreventable problems, such as running out of memory or attempting to open a file that
no longer exists. You cannot prevent exceptions, but you can handle them so that they do not
bring down your program.

When your program encounters an exceptional circumstance, such as running out of memory,
it throws (or "raises") an exception. When an exception is thrown, execution of the current
function halts and the stack is unwound until an appropriate exception handler is found.

This means that if the currently running function does not handle the exception, the current
function will terminate and the calling function will get a chance to handle the exception. If
none of the calling functions handles it, the exception will ultimately be handled by the CLR,
which will abruptly terminate your program.

An exception handler is a block of code designed to handle the exception you've thrown.
Exception handlers are implemented as catch statements. Ideally, if the exception is caught
and handled, the program can fix the problem and continue. Even if your program can't
continue, by catching the exception you have an opportunity to print a meaningful error
message and terminate gracefully.

If there is code in your function that must run regardless of whether an exception is
encountered (e.g., to release resources you've allocated), you can place that code ina finally
block, where it is certain to run, even in the presence of exceptions.

11.1 Throwing and Catching Exceptions
In C#, you can throw only objects of type system.Exception, or objects derived from that
type. The CLR system namespace includes a number of exception types that can be used by

your program. These exception types include ArgumentNullException,
InvalidCastException, and OverflowException, as well as many others.

233

Programming C#, 2nd Edition

11.1.1 The throw Statement

To signal an abnormal condition in a C# class, you throw an exception. To do this, use the
keyword throw. This line of code creates a new instance of System.Exception and then
throws it:

throw new System.Exception();

Throwing an exception immediately halts execution while the CLR searches for an exception
handler. If an exception handler cannot be found in the current method, the runtime unwinds
the stack, popping up through the calling methods until a handler is found. If the runtime
returns all the way through Main() without finding a handler, it terminates the program.
Example 11-1 illustrates.

Example 11-1. Throwing an exception

namespace Programming CSharp

{

using System;

public class Test

{

public static void Main()

{
Console.WriteLine ("Enter Main..."):;
Test t = new Test();
t.Funcl();
Console.WritelLine ("Exit Main...");

}

public void Funcl()
{

Console.WritelLine ("Enter Funcl...");
Func2 ();
Console.WritelLine ("Exit Funcl...");

}

public void Func2()
{

Console.WriteLine ("Enter Func2...");
throw new System.Exception();
Console.WritelLine ("Exit Func2...");

}

Output:

Enter Main...
Enter Funcl...
Enter Func?2...

Exception occurred: System.Exception: An exception of type
System.Exception was thrown.
at Programming CSharp.Test.Func2()

in ...exceptionsOl.cs:1line 26
at Programming CSharp.Test.Funcl()
in ...exceptionsOl.cs:1line 20

234

Programming C#, 2nd Edition

at Programming CSharp.Test.Main()
in ...exceptionsOl.cs:line 12

This simple example writes to the console as it enters and exits each method. Main () creates
an instance of type Test and call Funcl (). After printing out the Enter Funcl message,
Funcl () immediately calls Func2 (). Func2 () prints out the first message and throws an
object of type system.Exception.

Execution immediately stops, and the CLR looks to see if there is a handler in Func2().
There is not, and so the runtime unwinds the stack (never printing the exit statement) to
Funcl (). Again, there is no handler, and the runtime unwinds the stack back to Main().
With no exception handler there, the default handler is called, which prints the error message.

11.1.2 The catch Statement
In C#, an exception handler is called a catch block and is created with the catch keyword.

In Example 11-2, the throw statement is executed within a try block, and a catch block is
used to announce that the error has been handled.

Example 11-2. Catching an exception

namespace Programming CSharp

{

using System;

public class Test

{

public static void Main()

{

Console.WritelLine ("Enter Main...");
Test t = new Test();

t.Funcl();

Console.WritelLine ("Exit Main...");

}

public void Funcl ()
{

Console.WriteLine ("Enter Funcl...");
Func2 ();
Console.WritelLine ("Exit Funcl...");

}

public void Func2()
{

Console.WritelLine ("Enter Func2...");

try

{
Console.WriteLine ("Entering try block...");
throw new System.Exception();
Console.WritelLine ("Exiting try block...");

235

Programming C#, 2nd Edition

catch

{
Console.WriteLine (
"Exception caught and handled.");

}

Console.WritelLine ("Exit Func2...");

}
Output:

Enter Main...

Enter Funcl...

Enter Func2...

Entering try block...
Exception caught and handled.
Exit Func2...

Exit Funcl...

Exit Main...

Example 11-2 is identical to Example 11-1 except that now the program includes a try/catch
block. You would typically put the try block around a potentially "dangerous" statement,
such as accessing a file, allocating memory, and so forth.

Following the try statement is a generic catch statement. The catch statement in
Example 11-2 is generic because you haven't specified what kind of exceptions to catch. In
this case, the statement will catch any exceptions that are thrown. Using catch statements to
catch specific types of exceptions is discussed later in this chapter.

11.1.2.1 Taking corrective action

In Example 11-2, the catch statement simply reports that the exception has been caught and
handled. In a real-world example, you might take corrective action to fix the problem that
caused an exception to be thrown. For example, if the user is trying to open a read-only file,
you might invoke a method that allows the user to change the attributes of the file. If the
program has run out of memory, you might give the user an opportunity to close other
applications. If all else fails, the catch block can print an error message so that the user
knows what went wrong.

11.1.2.2 Unwinding the call stack

Examine the output of Example 11-2 carefully. You see the code enter Main(), Funcl(),
Func2 (), and the try block. You never see it exit the try block, though it does exit
Func2 (), Funcl (), and Main (). What happened?

When the exception is thrown, execution halts immediately and is handed to the catch block.
It never returns to the original code path. It never gets to the line that prints the exit
statement for the try block. The catch block handles the error, and then execution falls
through to the code following catch.

Without catch the call stack unwinds, but with catch it does not unwind as a result of the
exception. The exception is now handled; there are no more problems and the program

236

Programming C#, 2nd Edition

continues. This becomes a bit clearer if you move the try/catch blocks up to Funcl (), as

shown in Example 11-3.
Example 11-3. Catch in a calling function

namespace Programming CSharp

{

using System;

public class Test
{
public static void Main()
{
Console.WriteLine ("Enter Main...
Test t = new Test();
t.Funcl();

Console.WriteLine ("Exit Main...");

}

public void Funcl()
{

Console.WriteLine ("Enter Funcl..

¥

try
{
Console.WriteLine ("Entering try block...");
Func2();
Console.WritelLine ("Exiting try block...");
}
catch
{

Console.WriteLine (

"Exception caught and handled.");

}

Console.WriteLine ("Exit Funcl...

}

public void Func2()
{

Console.WriteLine ("Enter Func2...

throw new System.Exception();
Console.WriteLine ("Exit Func2...

Output:

Enter Main...

Enter Funcl...

Entering try block...

Enter Func2...

Exception caught and handled.
Exit Funcl...

Exit Main...

This time the exception is not handled in Func2 (

") ;

); it is handled in Funcl(). When

Func2 () is called, it prints the Enter statement and then throws an exception. Execution

237

Programming C#, 2nd Edition

halts and the runtime looks for a handler, but there isn't one. The stack unwinds, and the
runtime finds a handler in Funcl (). The catch statement is called, and execution resumes
immediately following the catch statement, printing the Exit statement for Funci() and
then for Main ().

Make sure you are comfortable with why the Exiting Try Block statement and the Exit
Func?2 statement are not printed. This is a classic case where putting the code into a debugger
and then stepping through it can make things very clear.

11.1.2.3 Creating dedicated catch statements

So far, you've been working only with generic catch statements. You can create dedicated
catch statements that handle only some exceptions and not others, based on the type of
exception thrown. Example 11-4 illustrates how to specify which exception you'd like to
handle.

Example 11-4. Specifying the exception to catch

namespace Programming CSharp

{

using System;

public class Test
{
public static void Main()
{
Test t = new Test();
t.TestFunc();
}

// try to divide two numbers
// handle possible exceptions
public void TestFunc()
{
try
{
double a = 5;
double b = 0;
Console.WriteLine ("{0} / {1} = {2}",
a, b, DoDivide(a,b));
}

// most derived exception type first
catch (System.DivideByZeroException)
{
Console.WriteLine (
"DivideByZeroException caught!");

}

catch (System.ArithmeticException)
{

Console.WriteLine (
"ArithmeticException caught!");

238

Programming C#, 2nd Edition

// generic exception type last
catch

{
Console.WriteLine (
"Unknown exception caught");

}

// do the division if legal
public double DoDivide (double a, double b)

{

if (b == 0)
throw new System.DivideByZeroException();
if (a == 0)

throw new System.ArithmeticException();
return a/b;

}
Output:

DivideByZeroException caught!

In this example, the Dobivide () method will not let you divide zero by another number, nor
will it let you divide a number by zero. It throws an instance of DivideByZeroException if
you try to divide by zero. If you try to divide zero by another number, there is no appropriate
exception -- dividing zero by another number is a legal mathematical operation and shouldn't
throw an exception at all. For the sake of this example, assume you don't want to allow
division by zero; you will throw an ArithmeticException.

When the exception is thrown, the runtime examines each exception handler in order and
matches the first one it can. When you run this with a=5 and b=7, the output is:

5/ 7 =0.7142857142857143

As you'd expect, no exception is thrown. However, when you change the value of a to 0, the
output is:

ArithmeticException caught!

The exception is thrown, and the runtime examines the first exception,
DivideByZeroException. Because this does not match, it goes on to the next handler,
ArithmeticException, which does match.

In a final pass through, suppose you change a to 7 and b to 0. This throws the

DivideByZeroException.

239

Programming C#, 2nd Edition

i You have to be particularly careful with the order of the catch
43 J. statements, because the DivideByZeroException 1S derived from
i B

ArithmeticException. If you reverse the catch statements,
the DivideByZeroException will match the ArithmeticException
handler and the exception will never get to
the pivideByZeroException handler. In fact, if their order is reversed,
it will be impossible for anmy exception to reach
the DivideByZeroException handler. The compiler will recognize that
the DivideByZeroException handler cannot be reached and will report
a compile error!

It is possible to distribute your try/catch statements, catching some specific exceptions in
one function and more generic exceptions in higher, calling functions. Your design goals
should dictate the exact design.

Assume you have a method A that calls another method B, which in turn calls method C.
Method C calls method D, which then calls method E. Method E is deep in your code;
methods B and A are higher up. If you anticipate that method E might throw an exception,
you should create a try/catch block deep in your code to catch that exception as close as
possible to the place where the problem arises. You might also want to create more general
exception handlers higher up in the code in case unanticipated exceptions slip by.

11.1.3 The finally Statement

In some instances, throwing an exception and unwinding the stack can create a problem. For
example, if you have opened a file or otherwise committed a resource, you might need an
opportunity to close the file or flush the buffer.

= In CH#, this is less of a problem than in other languages, such as C++,
o g because the garbage collection prevents the exception from causing a
" 4 memory leak.

In the event, however, that there is some action you must take regardless of whether an
exception is thrown, such as closing a file, you have two strategies to choose from. One
approach is to enclose the dangerous action in a try block and then to close the file in both
the catch and try blocks. However, this is an ugly duplication of code, and it's error prone.
C# provides a better alternative in the finally block.

The code in the finally block is guaranteed to be executed regardless of whether an
exception is thrown. The TestFunc () method in Example 11-5 simulates opening a file as
its first action. The method undertakes some mathematical operations, and the file is closed. It
is possible that some time between opening and closing the file an exception will be thrown.
If this were to occur, it would be possible for the file to remain open. The developer knows
that no matter what happens, at the end of this method the file should be closed, so the file
close function call is moved to a finally block, where it will be executed regardless of
whether an exception is thrown.

240

Example 11-5. Using a finally block

namespace Programming CSharp

{

using System;

public class Test

{

public static void Main()
{
Test t = new Test();
t.TestFunc();
}

// try to divide two numbers
// handle possible exceptions
public void TestFunc()
{
try
{
Console.WriteLine ("Open file here");
double a = 5;
double b = 0;
Console.WriteLine ("{0} / {1} = {2}",
a, b, DoDivide(a,b));
Console.WritelLine (

"This line may or may not print");

}

// most derived exception type first
catch (System.DivideByZeroException)
{
Console.WriteLine (
"DivideByZeroException caught!");
}
catch

{

Console.WriteLine ("Unknown exception caught");

}
finally

{

Programming C#, 2nd Edition

Console.WriteLine ("Close file here.");

}
}

// do the division if legal
public double DoDivide (double a, double b)

{
if (b == 0)

throw new System.DivideByZeroException (

if (a == 0)
throw new System.ArithmeticException (
return a/b;

)7

);

241

Programming C#, 2nd Edition

Output:

Open file here
DivideByZeroException caught!
Close file here.

Output when b = 12:

Open file here

5/ 12 = 0.416666666666667
This line may or may not print
Close file here.

In this example, one of the catch blocks has been eliminated to save space and a finally
block has been added. Whether or not an exception is thrown, the finally block is executed,
and so in both output examples you see the message: Close file here.

e A finally block can be created with or without catch blocks, but a
a3 J. finally block requires a try block to execute. It is an error to exit a
%% finally block with break, continue, return, Or goto.

11.2 Exception Objects

So far you've been using the exception as a sentinel -- that is, the presence of the exception
signals the errors -- but you haven't touched or examined the Exception object itself. The
System.Exception object provides a number of useful methods and properties. The Message
property provides information about the exception, such as why it was thrown. The Message
property is read-only; the code throwing the exception can set the Message property as an
argument to the exception constructor.

The HelpLink property provides a link to the help file associated with the exception. This
property is read/write.

The stackTrace property is read-only and is set by the runtime. In Example 11-6, the
Exception.HelpLink property is set and retrieved to provide information to the user about
the DivideByZeroException. The stackTrace property of the exception is used to provide a
stack trace for the error statement. A stack trace displays the call stack : the series of method
calls that lead to the method in which the exception was thrown.

Example 11-6. Working with an exception object

namespace Programming CSharp

{

using System;

public class Test

{

public static void Main()

{
Test t = new Test();
t.TestFunc();

242

Programming C#, 2nd Edition

// try to divide two numbers
// handle possible exceptions
public void TestFunc()

{

}

try
{
Console.WriteLine ("Open file here");
double a = 12;
double b = 0;
Console.WriteLine ("{0} / {1} = {2}",
a, b, DoDivide(a,b));
Console.WriteLine (
"This line may or may not print");

}

// most derived exception type first
catch (System.DivideByZeroException e)
{

Console.WriteLine (
"\nDivideByZeroException! Msg: {0}",
e.Message) ;

Console.WriteLine (

"\nHelpLink: {0}", e.HelpLink);

Console.WriteLine (

"\nHere's a stack trace: {0}\n",
e.StackTrace) ;

}

catch

{

Console.WriteLine (

"Unknown exception caught");
}
finally
{
Console.WriteLine (
"Close file here.");

// do the division if legal
public double DoDivide (double a, double b)

{

if (b == 0)
{

DivideByZeroException e =

new DivideByZeroException();
e.HelplLink =
"http://www.libertyassociates.com";
throw e;
}
if (a == 0)
throw new ArithmeticException();

return a/b;

243

Programming C#, 2nd Edition

Output:

Open file here

DivideByZeroException! Msg: Attempted to divide by zero.

HelpLink: http://www.libertyassociates.com

Here's a stack trace:

at Programming CSharp.Test.DoDivide (Double a, Double Db)
in c:\...exception06.cs:1ine 56

at Programming CSharp.Test.TestFunc()

in...exception06.cs:1line 22

Close file here.

In the output, the stack trace lists the methods in the reverse order in which they were called;
that is, it shows that the error occurred in Dobivide (), which was called by TestFunc().
When methods are deeply nested, the stack trace can help you understand the order of method
calls.

In this example, rather than simply throwing a DivideByZzeroException, you create a new
instance of the exception:

DivideByZeroException e = new DivideByZeroException();

You do not pass in a custom message, and so the default message will be printed:

DivideByZeroException! Msg: Attempted to divide by zero.

You can modify this line of code to pass in a default message:

new DivideByZeroException (
"You tried to divide by zero which is not meaningful");

In this case, the output message will reflect the custom message:

DivideByZeroException! Msg:
You tried to divide by zero which is not
meaningful

Before throwing the exception, set the He1pLink property:

e.HelpLink = "http://www.libertyassociates.com";

When this exception is caught, the program prints the message and the HelpLink:

catch (System.DivideByZeroException e)
{
Console.WriteLine ("\nDivideByZeroException! Msg: {0}",
e.Message) ;
Console.WriteLine ("\nHelpLink: {0}", e.HelpLink);

This allows you to provide useful information to the user. In addition, it prints the
StackTrace by getting the stackTrace property of the exception object:

244

Programming C#, 2nd Edition

Console.WritelLine ("\nHere's a stack trace: {0}\n",
e.StackTrace) ;

The output of this call reflects a full stackTrace leading to the moment the exception was
thrown:

Here's a stack trace:

at Programming CSharp.Test.DoDivide (Double a, Double b)
in c:\...exception06.cs:1line 56

at Programming CSharp.Test.TestFunc()
in...exceptionO6.cs:1line 22

Note that I've shortened the pathnames, so your printout might look a little different.
11.3 Custom Exceptions

The intrinsic exception types the CLR provides, coupled with the custom messages shown in
the previous example, will often be all you need to provide extensive information to a catch
block when an exception is thrown. There will be times, however, when you want to provide
more extensive information or need special capabilities in your exception. It is a trivial matter
to create your own custom exception class; the only restriction is that it must derive (directly
or indirectly) from System.ApplicationException. Example 11-7 illustrates the creation of
a custom exception.

Example 11-7. Creating a custom exception

namespace Programming CSharp

{

using System;

public class MyCustomException
System.ApplicationException
{
public MyCustomException(string message) :
base (message)

{

}
}

public class Test
{
public static void Main()
{
Test t = new Test();
t.TestFunc();
}

// try to divide two numbers
// handle possible exceptions
public void TestFunc()
{
try
{
Console.WriteLine ("Open file here");
double a = 0;
double b = 5;

245

Programming C#, 2nd Edition

Console.WriteLine ("{0} / {1} = {2}",
a, b, DoDivide(a,b));
Console.WriteLine (
"This line may or may not print");

}

// most derived exception type first
catch (System.DivideByZeroException e)
{

Console.WriteLine (
"\nDivideByZeroException! Msg: {0}",
e.Message) ;

Console.WriteLine (

"\nHelpLink: {0}\n", e.HelpLink);
}
catch (MyCustomException e)
{

Console.WriteLine (
"\nMyCustomException! Msg: {0}",
e.Message) ;

Console.WriteLine (

"\nHelpLink: {0}\n", e.HelpLink);
}
catch
{
Console.WriteLine (
"Unknown exception caught");
}
finally
{

Console.WritelLine ("Close file here.");

}
}

// do the division if legal
public double DoDivide (double a, double b)
{

if (b == 0)

{

DivideByZeroException e =

new DivideByZeroException();
e.HelpLink=

"http://www.libertyassociates.com";
throw e;

if (a == 0)

MyCustomException e =
new MyCustomException (
"Can't have zero divisor");
e.HelpLink =
"http://www.libertyassociates.com/NoZeroDivisor.htm";
throw e;

}

return a/b;

246

Programming C#, 2nd Edition

MyCustomException 1S derived from System.ApplicationException and consists of
nothing more than a constructor that takes a string message that it passes to its base class, as
described in Chapter 4. In this case, the advantage of creating this custom exception class is
that it better reflects the particular design of the Test class, in which it is not legal to have a
zero divisor. Using the ArithmeticException rather than a custom exception would work as
well, but it might confuse other programmers because a zero divisor wouldn't normally be
considered an arithmetic error.

11.4 Rethrowing Exceptions

You might want your catch block to take some initial corrective action and then rethrow the
exception to an outer try block (in a calling function). It might rethrow the same exception,
or it might throw a different one. If it throws a different one, it may want to embed the
original exception inside the new one so that the calling method can understand the exception
history. The InnerException property of the new exception retrieves the original exception.

Because the InnerException is also an exception, it too might have an inner exception.
Thus, an entire chain of exceptions can be nested one within the other, much like Ukrainian
dolls are contained one within the other. Example 11-8 illustrates.

Example 11-8. Rethrowing and inner exceptions

namespace Programming CSharp

{

using System;

public class MyCustomException : System.ApplicationException

{
public MyCustomException (
string message,Exception inner):
base (message, inner)

}

public class Test

{

public static void Main()

{
Test t = new Test();
t.TestFunc();

}

public void TestFunc()
{

try

{

DangerousFuncl ();

}

247

Programming C#, 2nd Edition

// if you catch a custom exception
// print the exception history
catch (MyCustomException e)
{
Console.WriteLine ("\n{0}", e.Message);
Console.WriteLine (
"Retrieving exception history...");
Exception inner =
e.InnerException;
while (inner != null)
{
Console.WriteLine (
"{0}",inner.Message) ;
inner =
inner.InnerException;

public void DangerousFuncl ()
{
try
{
DangerousFunc2();

}

// if you catch any exception here
// throw a custom exception
catch (System.Exception e)
{

MyCustomException ex =

new MyCustomException (
"E3 - Custom Exception Situation!",e);
throw ex;

public void DangerousFunc2 ()
{
try
{
DangerousFunc3();

}

// 1if you catch a DivideByZeroException take some
// corrective action and then throw a general exception
catch (System.DivideByZeroException e)
{

Exception ex =

new Exception (
"E2 - Func2 caught divide by zero",e);
throw ex;

}

public void DangerousFunc3()
{

try

{

DangerousFuncéd ();

248

Programming C#, 2nd Edition

catch (System.ArithmeticException)

{

throw;

}

catch (System.Exception)

{
Console.WriteLine (
"Exception handled here.");

}

public void DangerousFunc4 ()

{

throw new DivideByZeroException ("El - DivideByZero Exception");

}

Output:

E3 - Custom Exception Situation!
Retrieving exception history...
E2 - Func2 caught divide by zero
E1l - DivideByZeroException

Because this code has been stripped to the essentials, the output might leave you scratching
your head. The best way to see how this code works is to use the debugger to step through it.

Begin by calling bangerousFuncl () in a try block:

try
{

DangerousFuncl ();

}

DangerousFuncl ()CaHSDangerousFunc2(),WﬂﬂdlcaﬂsDangerousFunc3(),Wdﬂchin
turn calls DangerousFunc4 (). All these calls are in their own try blocks. At the end,
DangerousFunc4 () throws a DivideByZeroException. System.DivideByZeroException
normally has its own error message, but you are free to pass in a custom message. Here, to
make it easier to identify the sequence of events, the custom message E1 -
DivideByZeroException is passed in.

The exception thrown in DangerousFunc4() is caught in the catch block in
DangerousFunc3 (). The logic in DangerousFunc3 () is that if any ArithmeticException
is caught (such as DivideByZeroException), it takes no action; it just rethrows the
exception:

catch (System.ArithmeticException)

{

throw;

}

The syntax to rethrow the exact same exception (without modifying it) is just the word throw.

249

Programming C#, 2nd Edition

The exception is thus rethrown to DangerousFunc2(), which catches it, takes some
corrective action, and throws a new exception of type Exception. In the constructor to that
new exception, DangerousFunc2() passes in a custom message (E2 - Func2 caught
divide by zero) and the original exception. Thus, the original exception (E1) becomes the
InnerException for the new exception (E2). DangerousFunc2 () then throws this new E2
exception to DangerousFuncl ().

DangerousFuncl () catches the exception, does some work, and creates a new exception of
type MyCustomException. It passes a new string (E3 - Custom Exception Situation!) to
the constructor as well as the exception it just caught (E2). Remember, the exception it just
caught is the exception with a DivideByZeroException (E1) as its inner exception. At this
point, you have an exception of type MyCustomException (E3), with an inner exception of
type Exception (E2), which in turn has an inner exception of type
DivideByZeroException (E1). All this is then thrown to the test function, where it is
caught.

When the catch function runs, it prints the message:
E3 - Custom Exception Situation!

and then drills down through the layers of inner exceptions, printing their messages:

while (inner != null)

{
Console.WriteLine ("{0}", inner.Message) ;
inner = inner.InnerException;

The output reflects the chain of exceptions thrown and caught:

Retrieving exception history...
E2 - Func2 caught divide by zero
El - DivideByZero Exception

250

Programming C#, 2nd Edition

Chapter 12. Delegates and Events

When a head of state dies, the president of the United States typically does not have time to
attend the funeral personally. Instead, he dispatches a delegate. Often this delegate is the vice
president, but sometimes the VP is unavailable and the president must send someone else,
such as the secretary of state or even the first lady. He doesn't want to "hardwire" his
delegated authority to a single person; he might delegate this responsibility to anyone who is
able to execute the correct international protocol.

The president defines in advance what authority will be delegated (attend the funeral), what
parameters will be passed (condolences, kind words), and what value he hopes to get back
(good will). He then assigns a particular person to that delegated responsibility at "runtime" as
the course of his presidency progresses.

In programming, you are often faced with situations where you need to execute a particular
action, but you don't know in advance which method, or even which object, you'll want to call
upon to execute that action. For example, a button might know that it must notify some object
when it is pushed, but it might not know which object or objects need to be notified. Rather
than wiring the button to a particular object, you will connect the button to a delegate and
then resolve that delegate to a particular method when the program executes.

In the early, dark, and primitive days of computing, a program would begin execution and
then proceed through its steps until it completed. If the user was involved, the interaction was
strictly controlled and limited to filling in fields.

Today's Graphical User Interface (GUI) programming model requires a different approach,
known as event-driven programming. A modern program presents the user interface and waits
for the user to take an action. The user might take many different actions, such as choosing
among menu selections, pushing buttons, updating text fields, clicking icons, and so forth.
Each action causes an event to be raised. Other events can be raised without direct user action,
such as events that correspond to timer ticks of the internal clock, email being received, file-
copy operations completing, etc.

An event is the encapsulation of the idea that "something happened" to which the program
must respond. Events and delegates are tightly coupled concepts because flexible event
handling requires that the response to the event be dispatched to the appropriate event handler.
An event handler is typically implemented in C# as a delegate.

Delegates are also used as callbacks so that one class can say to another "do this work and
when you're done, let me know." This second usage will be covered in detail in Chapter 21.
Delegates can also be used to specify methods that will only become known at runtime. This
topic is developed in the following sections.

12.1 Delegates
In C#, delegates are first-class objects, fully supported by the language. Technically, a

delegate is a reference type used to encapsulate a method with a specific signature and return
type. You can encapsulate any matching method in that delegate. (In C++ and many other

251

Programming C#, 2nd Edition

languages, you can accomplish this requirement with function pointers and pointers to
member functions. Unlike function pointers, delegates are object-oriented and type-safe.)

A delegate is created with the delegate keyword, followed by a return type and the signature
of the methods that can be delegated to it, as in the following:

public delegate int WhichIsFirst (object objl, object obj2);

This declaration defines a delegate named whichIsFirst, which will encapsulate any method
that takes two objects as parameters and returns an int.

Once the delegate is defined, you can encapsulate a member method with that delegate by
instantiating the delegate, 1.e., passing in a method that matches the return type and signature.

12.1.1 Using Delegates to Specify Methods at Runtime

Delegates specify the kinds of methods that can handle events and implement callbacks in
your applications. They can also specify static and instance methods that won't be known until
runtime.

Suppose, for example, that you want to create a simple container class called a pair that can
hold and sort any two objects passed to it. You can't know in advance what kind of objects a
pair will hold, but by creating methods within those objects to which the sorting task can be
delegated, you can delegate responsibility for determining their order to the objects
themselves.

Different objects will sort differently; for example, a Pair of counter objects might sort in
numeric order, while a pair of Buttons might sort alphabetically by their name. As the
author of the pair class, you want the objects in the pair to have the responsibility of knowing
which should be first and which should be second. To accomplish this, insist that the objects
to be stored in the pair provide a method that tells you how to sort the objects.

Define the method you require by creating a delegate that defines the signature and return
type of the method the object (e.g., Button) must provide to allow the pair to determine
which object should be first and which should be second.

The pair class defines a delegate, whichIsFirst. The sort method will take a parameter, an
instance of whichIsFirst. When the pair needs to know how to order its objects it will
invoke the delegate passing in its two objects as parameters. The responsibility for deciding
which of the two objects comes first is delegated to the method encapsulated by the delegate.

To test the delegate, create two classes: a Dog class and a student class. Dogs and students
have little in common, except they both implement methods that can be encapsulated by
WhichComesFirst; thus both Dog objects and student objects are eligible to be held within
pair objects.

In the test program, create a couple of students and a couple of Dogs, and store them each in
a pair. You will then create delegate objects to encapsulate their respective methods that
match the delegate signature and return type, and ask the pair objects to sort the bog and
student objects. Let's take this step by step.

252

Programming C#, 2nd Edition

Begin by creating a pair constructor that takes two objects and stashes them away in a
private array:

public class Pair

{

// two objects, added in order received
public Pair (object firstObject, object secondObject)

{
thePair[0] = firstObject;
thePair[1l] = secondObject;

}
// hold both objects
private object[]thePair = new object[2];

Next, you override ToString () to obtain the string value of the two objects:

public override string ToString()

{
return thePair [0].ToString() + ", "™ + thePair[1l].ToString();

}

You now have two objects in your pair and you can print out their values. You're ready to
sort them and print the results of the sort. You can't know in advance what kind of objects you
will have, so you would like to delegate the responsibility of deciding which object comes
first in the sorted pair to the objects themselves. Thus, you require that each object stored in
a pair implement a method to return which of the two comes first. The method will take two
objects (of whatever type) and return an enumerated value: theFirstComesFirst if the first
object comes first, and theSecondComesFirst if the second does.

These required methods will be encapsulated by the delegate whichIsFirst that you define
within the pair class:

public delegate comparison
WhichIsFirst (object objl, object obj2);

The return value is of type comparison, the enumeration.

public enum comparison

{
theFirstComesFirst = 1,
theSecondComesFirst = 2

Any static method that takes two objects and returns a comparison can be encapsulated by
this delegate at runtime.

You can now define the sort method for the pair class:

253

Programming C#, 2nd Edition

public void Sort (WhichIsFirst theDelegatedFunc)
{
if (theDelegatedFunc (thePair[0],thePair[l]) ==
comparison.theSecondComesFirst)
{
object temp = thePair([0];
thePair[0] thePair[1l];
thePair[l] = temp;

This method takes a parameter: a delegate of type whichIsFirst named theDelegatedFunc.
The sort () method delegates responsibility for deciding which of the two objects in the
pair comes first to the method encapsulated by that delegate. It invokes the delegated method
in the body of the sort () method and examines the return value, which will be one of the
two enumerated values of comparsion.

If the value returned is theSecondComesFirst, the objects within the pair are swapped;
otherwise no action is taken.

Notice that theDelegatedFunc is the name of the parameter to represent the method
encapsulated by the delegate. You can assign any method (with the appropriate return value
and signature) to this parameter. It is as if you had a method that took an int as a parameter:

int SomeMethod (int myParam) {//...}

The parameter name is myParam, but you can pass in any int value or variable. Similarly the
parameter name in the delegate example is theDelegatedFunc, but you can pass in any
method that meets the return value and signature defined by the delegate whichIsFirst.

Imagine you are sorting students by name. Write a method that returns theFirstComesFirst
if the first student's name comes first, and returns theSecondComesFirst if the second
student's name does. If you pass in "Amy, Beth," the method returns theFirstComesFirst,
and if you pass in "Beth, Amy," it returns theSecondComesFirst. If you get back
theSecondComesFirst, the sort method reverses the items in its array, setting Amy to the
first position and Beth to the second.

Now add one more method, Reversesort, which will put the items into the array in reverse
order:

public void ReverseSort (WhichIsFirst theDelegatedFunc)
{
if (theDelegatedFunc (thePair[0], thePair[l]) ==
comparison.theFirstComesFirst)

{
object temp = thePair([0];

thePair[0] = thePair[1l];
thePair[l] = temp;
}
}
The logic here is identical to the sort (), except that this method performs the swap if the

delegated method says that the first item comes first. Because the delegated function thinks

254

Programming C#, 2nd Edition

the first item comes first, and this is a reverse sort, the result you want is for the second item
to come first. This time if you pass in "Amy, Beth," the delegated function returns
theFirstComesFirst (i.e., Amy should come first). However, because this is a reverse sort it
swaps the values, setting Beth first. This allows you to use the same delegated function as you
used with sort, without forcing the object to support a function that returns the reverse sorted
value.

Now all you need are some objects to sort. You'll create two absurdly simple classes: student
and Dog. Assign Student objects a name at creation:

public class Student
{

public Student (string name)

{

this.name = name;

}

The student class requires two methods, one to override Tostring() and the other to be
encapsulated as the delegated method.

Student must override ToString() so that the ToString() method in Pair, which
invokes Tostring () on the contained objects, will work properly; the implementation does
nothing more than return the student's name (which is already a string object):

public override string ToString()

{

return name;

}

It must also implement a method to which pPair.sort () can delegate the responsibility of
determining which of two objects comes first:

return (String.Compare(sl.name, s2.name) < 0 ?
comparison.theFirstComesFirst :
comparison.theSecondComesFirst) ;

String.Compare() is a .NET Framework method on the string class that compares two
strings and returns less than zero if the first is smaller, greater than zero if the second is
smaller, and zero if they are the same. This method is discussed in some detail in Chapter 10.
Notice that the logic here returns theFirstComesFirst only if the first string is smaller; if
they are the same or the second is larger, this method returns thesecondComesFirst.

Notice that the whichStudentComesFirst () method takes two objects as parameters and
returns a comparison. This qualifies it to be a Pair.whichIsFirst delegated method, whose

signature and return value it matches.

The second class is Dog. For our purposes, Dog objects will be sorted by weight, lighter dogs
before heavier. Here's the complete declaration of Dog:

255

Programming C#, 2nd Edition

public class Dog
{
public Dog(int weight)
{
this.weight=weight;
}

// dogs are ordered by weight
public static comparison WhichDogComesFirst (
Object o0l, Object 02)
{
Dog dl = (Dog) ol;
Dog d2 = (Dog) o02;
return dl.weight > d2.weight *?
comparison.theSecondComesFirst
comparison.theFirstComesFirst;
}
public override string ToString()
{

return weight.ToString();

}

private int weight;

Notice that the Dog class also overrides Tostring and implements a static method with the
correct signature for the delegate. Notice also that the bog and student delegate methods do
not have the same name. They do not need to have the same name, as they will be assigned to
the delegate dynamically at runtime.

= You can call your delegated method names anything you like, but
.~ creating parallel names (e.g., WhichDogComesFirst and
~ 4% WhichStudentComesFirst) makes the code easier to read, understand,

and maintain.

Example 12-1 is the complete program, which illustrates how the delegate methods are
invoked.

Example 12-1. Working with delegates

namespace Programming CSharp

{

using System;

public enum comparison

{

theFirstComesFirst = 1,
theSecondComesFirst = 2

}

// a simple collection to hold 2 items
public class Pair

{
// the delegate declaration

public delegate comparison
WhichIsFirst (object objl, object obj2);

256

}

// passed in constructor take two objects,

// added in order received
public Pair(
object firstObject,
object secondObject)

thePair[0] firstObject;
thePair[l] = secondObject;

}

// public method which orders the two objects
// by whatever criteria the object likes!

public void Sort(

WhichIsFirst theDelegatedFunc)

{

if (theDelegatedFunc (thePair[0],thePair[1l])
== comparison.theSecondComesFirst)

object temp = thePair[0];
thePair[0] = thePair[l];

thePair[1] temp;

}

// public method which orders the two objects
// by the reverse of whatever criteria the object

public void ReverseSort (

WhichIsFirst theDelegatedFunc)

{

if (theDelegatedFunc (thePair[0],thePair([1])
comparison.theFirstComesFirst)

object temp = thePair[0];
thePair[0] = thePair[1l];

thePair[1l] = temp;

}

// ask the two objects to give their string value
public override string ToString(

{

return thePair[0].ToString

+ thePair[1l].ToString(

// private array to hold the two objects
private object[] thePair = new object[2];

public class Dog

{

public Dog(int weight)
{

this.weight=weight;
}

Programming C#, 2nd Edition

likes!

257

Programming C#, 2nd Edition

// dogs are ordered by weight
public static comparison WhichDogComesFirst (
Object o0l, Object o02)
{
Dog dl = (Dog) ol;
Dog d2 = (Dog) 02;
return dl.weight > d2.weight ?
comparison.theSecondComesFirst
comparison.theFirstComesFirst;
}
public override string ToString()
{
return weight.ToString();
}
private int weight;

}

public class Student
{
public Student (string name)
{
this.name = name;

}

// students are ordered alphabetically
public static comparison
WhichStudentComesFirst (Object ol, Object 02)
{
Student sl = (Student) ol;
Student s2 = (Student) o02;
return (String.Compare(sl.name, s2.name) < 0 ?
comparison.theFirstComesFirst
comparison.theSecondComesFirst) ;

}

public override string ToString()
{
return name;
}
private string name;

}

public class Test
{
public static void Main()
{
// create two students and two dogs
// and add them to Pair objects
Student Jesse = new Student ("Jesse"):;
Student Stacey = new Student ("Stacey");
Dog Milo = new Dog (65);
Dog Fred = new Dog(l2);

Pair studentPair = new Pair (Jesse, Stacey);
Pair dogPair = new Pair(Milo, Fred);
Console.WritelLine ("studentPair\t\t\t: {0}",

studentPair.ToString());
Console.WriteLine ("dogPair\t\t\t\t: {0}",
dogPair.ToString());

258

Programming C#, 2nd Edition

// Instantiate the delegates

Pair.WhichIsFirst theStudentDelegate =
new Pair.WhichIsFirst(
Student.WhichStudentComesFirst) ;

Pair.WhichIsFirst theDogDelegate =
new Pair.WhichIsFirst(
Dog.WhichDogComesFirst) ;

// sort using the delegates

studentPair.Sort (theStudentDelegate) ;

Console.WritelLine ("After Sort studentPair\t\t: {0}",
studentPair.ToString());

studentPair.ReverseSort (theStudentDelegate) ;

Console.WritelLine ("After ReverseSort studentPair\t: {0}",
studentPair.ToString());

dogPair.Sort (theDogDelegate) ;

Console.WriteLine ("After Sort dogPair\t\t: {0}",
dogPair.ToString());

dogPair.ReverseSort (theDogDelegate) ;

Console.WriteLine ("After ReverseSort dogPair\t: {0}",
dogPair.ToString());

Output:
studentPair Jesse, Stacey
dogPair 65, 12

After Sort studentPair
After ReverseSort studentPair

Jesse, Stacey
Stacey, Jesse

After Sort dogPair : 12, 65

After ReverseSort dogPair

65, 12

The Test program creates two student objects and two Dog objects and then adds them to
pair containers. The student constructor takes a string for the student's name and the dog
constructor takes an int for the dog's weight.

Student Jesse = new Student ("Jesse");
Student Stacey = new Student ("Stacey");

Dog Milo
Dog Fred

= new Dog (65);
= new Dog(12);

Pair studentPair = new Pair (Jesse, Stacey);

Pair dogPair = new Pair(Milo, Fred);

Console.WritelLine ("studentPair\t\t\t: {0}",
studentPair.ToString());

Console.WriteLine ("dogPair\t\t\t\t: {0}",
dogPair.ToString());

It then prints the contents of the two pair containers to see the order of the objects. The
output looks like this:

studentPair

dogPair

Jesse, Stacey
65, 12

259

Programming C#, 2nd Edition

As expected, the objects are in the order in which they were added to the pair containers. We
next instantiate two delegate objects:

Pair.WhichIsFirst theStudentDelegate =
new Pair.WhichIsFirst (
Student.WhichStudentComesFirst) ;

Pair.WhichIsFirst theDogDelegate =
new Pair.WhichIsFirst(
Dog.WhichDogComesFirst) ;

The first delegate, thestudentDelegate, is created by passing in the appropriate static
method from the student class. The second delegate, theDogDelegate, is passed a static
method from the pog class.

The delegates are now objects that can be passed to methods. Pass the delegates first to the
sort method of the pair object, and then to the Reversesort method. The results are printed
to the console:

After Sort studentPair : Jesse, Stacey
After ReverseSort studentPair : Stacey, Jesse
After Sort dogPair : 12, 65
After ReverseSort dogPair : 65, 12

12.1.2 Static Delegates

A disadvantage of Example 12-1 is that it forces the calling class, in this case Test, to
instantiate the delegates it needs in order to sort the objects in a Pair. It would be nice to get
the delegate from the student or Dog class. You can do this by giving each class its own
static delegate. Thus, you can modify student to add the following:

public static readonly Pair.WhichIsFirst OrderStudents =
new Pair.WhichIsFirst (Student.WhichStudentComesFirst);

This creates a static, readonly delegate named OrderStudents.

. Marking orderStudents readonly denotes that once this static field is
o created, it will not be modified.
i £

You can create a similar delegate within pDog:

public static readonly Pair.WhichIsFirst OrderDogs =
new Pair.WhichIsFirst (Dog. WhichDogComesFirst) ;

These are now static fields of their respective classes. Each is prewired to the appropriate
method within the class. You can invoke delegates without declaring a local delegate instance.
Just pass in the static delegate of the class:

studentPair.Sort (Student.OrderStudents) ;
Console.WritelLine ("After Sort studentPair\t\t: {0}",
studentPair.ToString());

260

Programming C#, 2nd Edition

studentPair.ReverseSort (Student.OrderStudents) ;
Console.WriteLine ("After ReverseSort studentPair\t: {0}",
studentPair.ToString());

dogPair.Sort (Dog.OrderDogs) ;
Console.WriteLine ("After Sort dogPair\t\t: {0}",
dogPair.ToString());

dogPair.ReverseSort (Dog.OrderDogs) ;
Console.WriteLine ("After ReverseSort dogPair\t: {0}",
dogPair.ToString());

The output from these changes is identical to the previous example.
12.1.3 Delegates as Properties

The problem with static delegates is that they must be instantiated -- whether or not they are
ever used -- as with student and Dog in the previous example. You can improve these classes
by changing the static delegate fields to properties.

For student, take out the declaration:

public static readonly Pair.WhichIsFirst OrderStudents =
new Pair.WhichIsFirst (Student.WhichStudentComesFirst);

and replace it with the following:

public static Pair.WhichIsFirst OrderStudents

{
get
{

return new Pair.WhichIsFirst (WhichStudentComesFirst);

}

Similarly, replace the pDog static field with:

public static Pair.WhichIsFirst OrderDogs

{
get
{

return new Pair.WhichIsFirst (WhichDogComesFirst) ;

}

- The assignment of the delegates is unchanged:
s
Wi .
g studentPair.Sort (Student.OrderStudents) ;

dogPair.Sort (Dog.OrderDogs) ;

When the orderstudent property is accessed, the delegate is created:

return new Pair.WhichIsFirst (WhichStudentComesFirst);

261

Programming C#, 2nd Edition

The key advantage is that the delegate is not created until it is requested. This allows the test
class to determine when it needs a delegate but still allows the details of the creation of the
delegate to be the responsibility of the student (or Dog) class.

12.1.4 Setting Order of Execution with Arrays of Delegates

Delegates can help you create a system in which the user can dynamically decide on the order
of operations. Suppose you have an image processing system in which an image can be
manipulated in a number of well-defined ways, such as blurring, sharpening, rotating,
filtering, and so forth. Assume, as well, that the order in which these effects are applied to the
image is important. The user wishes to choose from a menu of effects, applying all that he
likes, and then telling the image processor to run the effects, one after the other in the order
that he has specified.

You can create delegates for each operation and add them to an ordered collection, such as an
array, in the order you'd like them to execute. Once all the delegates are created and added to
the collection, simply iterate over the array, invoking each delegated method in turn.

Begin by creating a class Image to represent the image that will be processed by the

ImageProcessor:

public class Image

{
public Image()

{

Console.WriteLine ("An image created");
}
}

You can imagine that this stands in for a .gif or .jpeg file or other image.

The ImageProcessor then declares a delegate. You can of course define your delegate to
return any type and take any parameters you like. For this example you'll define the delegate
to encapsulate any method that returns void and takes no arguments:

public delegate void DoEffect();

The ImageProcessor then declares a number of methods, each of which processes an image
and each of which matches the return type and signature of the delegate:

public static void Blur()
{

Console.WritelLine ("Blurring image");

}

public static void Filter()
{

Console.WritelLine ("Filtering image");

}

public static void Sharpen()
{

Console.WritelLine ("Sharpening image");

}

262

Programming C#, 2nd Edition

public static void Rotate()
{

Console.WritelLine ("Rotating image");

}

o In a production environment these methods would be very complicated,
s and they'd actually do the work of blurring, filtering, sharpening, and
R B .

' rotating the image.

The ImageProcessor class needs an array to hold the delegates that the user picks, a variable
to hold the running total of how many effects are in the array, and of course a variable for the
image itself:

DoEffect[] arrayOfEffects;
Image image;
int numEffectsRegistered = 0;

The ImageProcessor also needs a method to add delegates to the array:

public void AddToEffects (DoEffect theEffect)

{
if (numEffectsRegistered >= 10)

{

throw new Exception ("Too many members in array");

}
arrayOfEffects[numEffectsRegistered++] = theEffect;

It needs another method to actually call each method in turn:

public void ProcessImages()
{
for (int 1 = 0;1 < numkEffectsRegistered;i++)
{
arrayOfEffects[1i] ();
}

Finally, you need only declare the static delegates that the client can call, hooking them to the
processing methods:

public DoEffect BlurEffect = new DoEffect (Blur);
public DoEffect SharpenEffect = new DoEffect (Sharpen);
public DoEffect FilterEffect = new DoEffect (Filter);
public DoEffect RotateEffect = new DoEffect (Rotate);

- In a production environment in which you might have dozens of effects,
“r). you might choose to make these properties rather than static methods.
" 4+ That would save creating the effects unless they are needed, at the cost

of making the program slightly more complicated.

263

Programming C#, 2nd Edition

The client code would normally have an interactive user-interface component, but you
simulate that by choosing the effects, adding them to the array, and then -calling
ProcessImage, as shown in Example 12-2.

Example 12-2. Using an array of delegates

namespace Programming CSharp

{

using System;

// the image which we'll manipulate
public class Image

{

}

public Image()
{

Console.WriteLine ("An image created");

}

public class ImageProcessor

{

// declare the delegate
public delegate void DoEffect();

// create various static delegates tied to member methods
public DoEffect BlurEffect =
new DoEffect (Blur);
public DoEffect SharpenEffect =
new DoEffect (Sharpen) ;
public DoEffect FilterEffect
new DoEffect (Filter);
public DoEffect RotateEffect =
new DoEffect (Rotate);

// the constructor initializes the image and the array
public ImageProcessor (Image image)
{
this.image = image;
arrayOfEffects = new DoEffect[10];
}

// in a production environment we'd use a more
// flexible collection.
public void AddToEffects (DoEffect theEffect)
{
if (numEffectsRegistered >= 10)
{
throw new Exception (
"Too many members in array");
}
arrayOfEffects[numEffectsRegistered++]
= theEffect;

}

// the image processing methods...
public static void Blur()
{

Console.WritelLine ("Blurring image");

}

264

Programming C#, 2nd Edition

public static void Filter()
{
Console.WritelLine ("Filtering image");

}

public static void Sharpen()
{
Console.WritelLine ("Sharpening image");

}

public static void Rotate()
{
Console.WritelLine ("Rotating image");

}

public void ProcessImages()
{
for (int 1 = 0;1 < numkEffectsRegistered;i++)
{
arrayOfEffects[i] ()
}
}

// private member variables...
private DoEffect[] arrayOfEffects;
private Image image;

private int numEffectsRegistered = 0;

}

// test driver
public class Test
{
public static void Main()

{

Image thelImage = new Image();

// no ui to keep things simple, just pick the
// methods to invoke, add them in the required
// order, and then call on the image processor to
// run them in the order added.
ImageProcessor theProc =

new ImageProcessor (thelImage);
theProc.AddToEffects (theProc.BlurEffect);
theProc.AddToEffects (theProc.FilterEffect)
theProc.AddToEffects (theProc.RotatekEffect)
theProc.AddToEffects (theProc.SharpenkEffect
theProc.ProcessImages();

’

)7

}
Output:

An image created
Blurring image
Filtering image
Rotating image
Sharpening image

265

Programming C#, 2nd Edition

In the Test class of Example 12-2, the TmageProcessor is instantiated and effects are added.
If the user chooses to blur the image before filtering it, it is a simple matter to add the
delegates to the array in the appropriate order. Similarly, any given operation can be repeated
as often as the user desires, just by adding more delegates to the collection.

You can imagine displaying the order of operations in a list box that might allow the user to
reorder the methods, moving them up and down the list at will. As the operations are
reordered, you need only change their sort order in the collection. You might even decide to
capture the order of operations to a database and then load them dynamically, instantiating
delegates as dictated by the records you've stored in the database.

Delegates provide the flexibility to determine dynamically which methods will be called, in
what order, and how often.

12.1.5 Multicasting

At times it is desirable to multicast , or call two implementing methods through a single
delegate. This becomes particularly important when handling events (discussed later in this
chapter).

The goal is to have a single delegate that invokes more than one method. This is different
from having a collection of delegates, each of which invokes a single method. In the previous
example, the collection was used to order the various delegates. It was possible to add a single
delegate to the collection more than once and to use the collection to reorder the delegates to
control their order of invocation.

With multicasting, you create a single delegate that will call multiple encapsulated methods.
For example, when a button is pressed, you might want to take more than one action. You
could implement this by giving the button a collection of delegates, but it is cleaner and easier
to create a single multicast delegate.

- You can use multicasting with delegates that return a value (that is, they
s 4 have a non-void return type). However, you'll only get one return value:
"4+ the return value of the delegate that was invoked last.

Two delegates can be combined with the addition operator (+). The result is a new multicast
delegate that invokes both of the original implementing methods. For example, assuming
wWriter and Logger are delegates, the following line will combine them and produce a new
multicast delegate named myMulticastDelegate:

myMulticastDelegate = Writer + Logger;

You can add delegates to a multicast delegate using the plus-equals (+=) operator. This
operator adds the delegate on the right side of the operator to the multicast delegate on the
left. For example, assuming Transmitter and myMulticastDelegate are delegates, the
fbHO“dnglhK3addSTransmittertolnyMulticastDelegate:

myMulticastDelegate += Transmitter;

266

Programming C#, 2nd Edition

To see how multicast delegates are created and used, let's walk through a complete example.
In Example 12-3, you create a class called MyCclasswithDelegate, which defines a delegate
that takes a string as a parameter and returns void:

public delegate void StringDelegate(string s);

You then define a class called MyImplementingClass, which has three methods, all of which
return void and take a string as a parameter: WriteString, LogString, and
TransmitString. The first writes the string to standard output, the second simulates writing
to a log file, and the third simulates transmitting the string across the Internet. You instantiate
the delegates to invoke the appropriate methods:

Writer ("String passed to Writer\n");
Logger ("String passed to Logger\n");
Transmitter ("String passed to Transmitter\n");

To see how to combine delegates, create another belegate instance:

MyClassWithDelegate.StringDelegate myMulticastDelegate;

Assign to it the result of "adding" two existing delegates:

myMulticastDelegate = Writer + Logger;

Add an additional delegate to this delegate using the += operator:

myMulticastDelegate += Transmitter;

Finally, selectively remove delegates using the -= operator:
DelegateCollector -= Logger;
Example 12-3. Combining delegates

namespace Programming CSharp

{

using System;

public class MyClassWithDelegate

{
// the delegate declaration
public delegate void StringDelegate (string s);

}

public class MyImplementingClass
{

public static void WriteString(string s)

{
Console.WriteLine ("Writing string {0}", s);

}

267

Programming C#, 2nd Edition

public static void LogString(string s)

{

}

Console.WritelLine ("Logging string {0}", s);

public static void TransmitString(string s)

{

}

}

Console.WritelLine ("Transmitting string {0}", s);

public class Test

{

public static void Main()

{

// define three StringDelegate objects
MyClassWithDelegate.StringDelegate
Writer, Logger, Transmitter;

// define another StringDelegate

// to act as the multicast delegate

MyClassWithDelegate.StringDelegate
myMulticastDelegate;

// Instantiate the first three delegates,

// passing in methods to encapsulate

Writer = new MyClassWithDelegate.StringDelegate (
MyImplementingClass.WriteString);

Logger = new MyClassWithDelegate.StringDelegate (
MyImplementingClass.LogString) ;

Transmitter =
new MyClassWithDelegate.StringDelegate (
MyImplementingClass.TransmitString) ;

// Invoke the Writer delegate method
Writer ("String passed to Writer\n");

// Invoke the Logger delegate method
Logger ("String passed to Logger\n");

// Invoke the Transmitter delegate method
Transmitter ("String passed to Transmitter\n");

// Tell the user you are about to combine
// two delegates into the multicast delegate
Console.WriteLine (

"myMulticastDelegate = Writer + Logger");

// combine the two delegates, the result is
// assigned to myMulticast Delegate
myMulticastDelegate = Writer + Logger;

// Call the delegated methods, two methods
// will be invoked
myMulticastDelegate (

"First string passed to Collector");

268

Programming C#, 2nd Edition

// Tell the user you are about to add
// a third delegate to the multicast
Console.WriteLine (

"\nmyMulticastDelegate += Transmitter");

// add the third delegate
myMulticastDelegate += Transmitter;

// invoke the three delegated methods
myMulticastDelegate (
"Second string passed to Collector");

// tell the user you are about to remove

// the logger delegate

Console.WriteLine (
"\nmyMulticastDelegate -= Logger");

// remove the logger delegate
myMulticastDelegate -= Logger;

// invoke the two remaining
// delegated methods
myMulticastDelegate (

"Third string passed to Collector");

Output:

Writing string String passed to Writer

Logging string String passed to Logger
Transmitting string String passed to Transmitter

myMulticastDelegate = Writer + Logger
Writing string First string passed to Collector
Logging string First string passed to Collector

myMulticastDelegate += Transmitter

Writing string Second string passed to Collector
Logging string Second string passed to Collector
Transmitting string Second string passed to Collector

myMulticastDelegate -= Logger
Writing string Third string passed to Collector
Transmitting string Third string passed to Collector

In the test portion of Example 12-3, the delegate instances are defined and the first three
(Writer, Logger, and Transmitter) are invoked. The fourth delegate,
myMulticastDelegate, is then assigned the combination of the first two and it is invoked,
causing both delegated methods to be called. The third delegate is added, and when
myMulticastDelegate is invoked, all three delegated methods are called. Finally, Logger is
removed; when myMulticastDelegate is invoked, only the two remaining methods are
called.

269

Programming C#, 2nd Edition

The power of multicast delegates is best understood in terms of events, discussed in the next
section. When an event such as a button press occurs, an associated multicast delegate can
invoke a series of event-handler methods that will respond to the event.

12.2 Events

Graphical user interfaces (GUIs), Windows, and web browsers (such as Microsoft), require
that programs respond to events. An event might be a button push, a menu selection, the
completion of a file transfer, and so forth. In short, something happens and you must respond
to it. You cannot predict the order in which events will arise. The system is quiescent until the
event, and then it springs into action to handle the event.

In a GUI environment, any number of widgets can raise an event. For example, when you
click a button, it might raise the c1ick event. When you add to a drop-down list, it might raise
a ListChanged event.

Other classes will be interested in responding to these events. How they respond is not of
interest to the class raising the event. The button says "I was clicked," and the responding
classes react appropriately.

12.2.1 Publishing and Subscribing

In C#, any object can publish a set of events to which other classes can subscribe. When the
publishing class raises an event, all the subscribed classes are notified.

- This design implements the Publish/Subscribe (Observer) Pattern
s 4 described in the seminal work "Design Patterns," by Gamma, et al.
" 4 (Addison Wesley, 1995). Gamma describes the intent of this pattern,

"Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated
automatically."

With this mechanism, your object can say "Here are things I can notify you about," and other
classes might sign up, saying "Yes, let me know when that happens." For example, a button
might notify any number of interested observers when it is clicked. The button is called the
publisher because the button publishes the click event and the other classes are the
subscribers because they subscribe to the c1ick event.

12.2.2 Events and Delegates
Events in C# are implemented with delegates. The publishing class defines a delegate that the
subscribing classes must implement. When the event is raised, the subscribing class's methods

are invoked through the delegate.

A method that handles an event is called an event handler . You can declare your event
handlers as you would any other delegate.

By convention, event handlers in the .NET Framework return void and take two parameters.
The first parameter is the source of the event; that is, the publishing object. The second

270

Programming C#, 2nd Edition

parameter is an object derived from EventArgs. It is recommended that your event handlers
follow this design pattern.

EventArgs 1S the base class for all event data. Other than its constructor, the EventArgs class
inherits all its methods from object, though it does add a public static field empty, which
represents an event with no state (to allow for the efficient use of events with no state). The
EventArgs derived class contains information about the event.

Events are properties of the class publishing the event. The keyword event controls how the
event property is accessed by the subscribing classes. The event keyword is designed to
maintain the publish/subscribe idiom.

Suppose you want to create a Clock class that uses events to notify potential subscribers
whenever the local time changes value by one second. Call this event onsecondChange.
Declare the event and its event-handler delegate type as follows:

[attributes] [modifiers] event type
member-name

For example:

public event SecondChangeHandler OnSecondChange;

This example has no attributes (attributes are covered in Chapter 8). The modifier can be
abstract , new, override, static, virtual, or one of the four access modifiers -- in this
case, public.

The modifier is followed by the keyword event.

The type is the delegate to which you want to associate the event -- in this case,
SecondChangeHandler

The member name is the name of the event, in this case onsecondChange. It is customary to
begin events with the word on.

Altogether, this declaration states that onsecondChange is an event that is implemented by a
delegate of type secondChangeHandler.

The declaration for the secondChangeHandler delegate is:

public delegate void SecondChangeHandler (
object clock,
TimeInfoEventArgs timeInformation

)7
This declares the delegate. As stated earlier, by convention an event handler returns void and

takes two parameters: the source of the event (in this case clock) and an object derived from
EventArgs -- in this case, TimeInfoEventArgs. TimeInfoEventArgs is defined as follows:

271

Programming C#, 2nd Edition

public class TimeInfoEventArgs : EventArgs

{

public TimeInfoEventArgs (int hour, int minute, int second)

{

}

this.hour = hour;
this.minute = minute;
this.second second;

public readonly int hour;
public readonly int minute;
public readonly int second;

The TimeInfoEventArgs object will have information about the current hour, minute, and
second. It defines a constructor and three public, read-only integer variables.

In addition to a delegate and an event, a Clock has three member variables: hour, minute,
and second, as well as a single method, Run ():

public void Run{()

{

for(;;)

{

// sleep 10 milliseconds
Thread.Sleep (10);

// get the current time
System.DateTime dt = System.DateTime.Now;

// 1if the second has changed
// notify the subscribers
if (dt.Second != second)
{

// create the TimeInfoEventArgs object

// to pass to the subscriber

TimeInfoEventArgs timeInformation =

new TimeInfoEventArgs (dt.Hour,dt.Minute,dt.Second);

// 1f anyone has subscribed, notify them
if (OnSecondChange != null)
{
OnSecondChange (this, timeInformation) ;
}
}

// update the state
this.second = dt.Second;
this.minute = dt.Minute;
this.hour = dt.Hour;

Run creates an infinite for loop that periodically checks the system time. If the time has
changed from the clock object's current time, it notifies all its subscribers and then updates its
own state.

The first step is to sleep for 10 milliseconds:

272

Programming C#, 2nd Edition

Thread.Sleep (10);

This makes use of a static method of the Thread class from the System.Threading
namespace, which is covered in some detail in Chapter 20. The call to sieep() prevents the
loop from running so tightly that little else on the computer gets done.

After sleeping for 10 milliseconds, the method checks the current time:

System.DateTime dt = System.DateTime.Now;

About every 100 times it checks, the second will have incremented. The method notices that
change and notifies its subscribers. To do so, it first creates a new TimeInfoEventArgs
object:

if (dt.Second != second)

{
// create the TimeInfoEventArgs object
// to pass to the subscriber
TimeInfoEventArgs timeInformation =
new TimeInfoEventArgs (dt.Hour,dt.Minute,dt.Second);

It then notifies the subscribers by firing the onSecondChange event:

// 1f anyone has subscribed, notify them
if (OnSecondChange != null)
{

OnSecondChange (this, timeInformation) ;

}

If an event has no subscribers registered, it will evaluate to nu11. The test above checks that
the value is not nul1, ensuring that there are subscribers before calling onSecondChange.

You will remember that onSecondChange takes two arguments: the source of the event and
the object derived from Eventargs. In the snippet, you see that the clock's this reference is
passed because the clock is the source of the event. The second parameter is the
TimeInfoEventArgs object. timeInformation is created on the line above.

Raising the event will invoke whatever methods have been registered with the clock class
through the delegate. We examine this in a moment.

Once the event is raised, update the state of the clock class:

this.second = dt.Second;
this.minute = dt.Minute;
this.hour = dt.Hour;

- Note that no attempt has been made to make this code thread safe.
o Thread safety and synchronization are discussed in Chapter 20.
B G &

273

Programming C#, 2nd Edition

All that is left is to create classes that can subscribe to this event. You'll create two. Your first
will be the pisplayClock class. The job of pisplayClock is not to keep track of time, but
rather to display the current time to the console.

The example simplifies this class down to two methods. The first is a helper method named
Subscribe. Subscribe's job is to subscribe to the clock's onsecondChange event. The
second method is the event handler TimeHasChanged:

public class DisplayClock
{
public void Subscribe (Clock theClock)
{
theClock.OnSecondChange +=
new Clock.SecondChangeHandler (TimeHasChanged) ;

}

public void TimeHasChanged (
object theClock, TimeInfoEventArgs ti)
{
Console.WriteLine ("Current Time: {O0}:{1}:{2}",
ti.hour.ToString(),
ti.minute.ToString(),
ti.second.ToString());

When the first method, subscribe, is invoked, it creates a new SecondChangeHandler
delegate, passing in its event-handler method TimeHasChanged. It then registers that delegate
with the onsecondchange event of Clock

Create a second class that will also respond to this event, LogCurrentTime. This class would
normally log the event to a file, but for our demonstration purposes, it will log to the standard

console:

public class LogCurrentTime
{
public void Subscribe (Clock theClock)
{
theClock.OnSecondChange +=
new Clock.SecondChangeHandler (WriteLogEntry) ;

}

// this method should write to a file
// we write to the console to see the effect
// this object keeps no state
public void WriteLogEntry (
object theClock, TimeInfoEventArgs ti)
{
Console.WriteLine ("Logging to file: {0}:{1}:{2}",
ti.hour.ToString(),
ti.minute.ToString(),
ti.second.ToString());

Although in this example these two classes are very similar, in a production program any
number of disparate classes might subscribe to an event.

274

Programming C#, 2nd Edition

Notice that events are added using the += operator. This allows new events to be added to the
Clock object's OnsecondChange event without destroying the events already registered. When
LogCurrentTime subscribes to the onsecondChange event, you do not want the event to lose
track of the fact that pisplayClock has already subscribed.

All that remains is to create a Clock class and the DisplayClock class, and tell the latter to
subscribe to the event. Then create a LogCurrentTime class and tell it to subscribe as well.
Finally, tell the c1ock to run. All this is shown in Example 12-4.

Example 12-4. Working with events

namespace Programming CSharp
{

using System;

using System.Threading;

// a class to hold the information about the event
// in this case it will hold only information
// available in the clock class, but could hold
// additional state information
public class TimeInfoEventArgs : EventArgs
{
public TimeInfoEventArgs (int hour, int minute, int second)
{
this.hour = hour;
this.minute = minute;
this.second = second;
}
public readonly int hour;
public readonly int minute;
public readonly int second;

}

// our subject -- it is this class that other classes
// will observe. This class publishes one event:
// OnSecondChange. The observers subscribe to that event
public class Clock
{
// the delegate the subscribers must implement
public delegate void SecondChangeHandler
(
object clock,
TimeInfoEventArgs timeInformation

) ;

// the event we publish
public event SecondChangeHandler OnSecondChange;

// set the clock running
// it will raise an event for each new second
public void Run()
{
for(; ;)
{
// sleep 10 milliseconds
Thread.Sleep (10);

275

}

}
}

Programming C#, 2nd Edition

// get the current time
System.DateTime dt = System.DateTime.Now;

// 1if the second has changed
// notify the subscribers
if (dt.Second != second)
{
// create the TimeInfoEventArgs object
// to pass to the subscriber
TimeInfoEventArgs timeInformation =
new TimeInfoEventArgs (
dt.Hour,dt.Minute, dt.Second) ;

// 1f anyone has subscribed, notify them
if (OnSecondChange != null)
{
OnSecondChange (
this, timeInformation) ;

}

// update the state
this.second = dt.Second;
this.minute = dt.Minute;
this.hour = dt.Hour;

private int hour;
private int minute;
private int second;

// an observer. DisplayClock subscribes to the
// clock's events. The job of DisplayClock is
// to display the current time

public class DisplayClock

{

// given a clock, subscribe to
// 1its SecondChangeHandler event
public void Subscribe (Clock theClock)

{

theClock.OnSecondChange +=

}

new Clock.SecondChangeHandler (TimeHasChanged) ;

// the method that implements the
// delegated functionality
public void TimeHasChanged (
object theClock, TimeInfoEventArgs ti)

{

Console.WriteLine ("Current Time: {O0}:{1}:{2}",

ti.hour.ToString(),
ti.minute.ToString(),
ti.second.ToString());

276

Programming C#, 2nd Edition

// a second subscriber whose job is to write to a file
public class LogCurrentTime

{

public void Subscribe (Clock theClock)

{

}

theClock.OnSecondChange +=
new Clock.SecondChangeHandler (WriteLogEntry) ;

// this method should write to a file

// we write to the console to see the effect
// this object keeps no state

public void WriteLogEntry (

{

}

object theClock, TimeInfoEventArgs ti)

Console.WriteLine ("Logging to file: {0}:{1}:{2}",

ti.hour.ToString(),
ti.minute.ToString(),
ti.second.ToString());

public class Test

{

public static void Main()

{

}
Output:

Current
Logging
Current
Logging
Current
Logging
Current
Logging
Current
Logging

// create a new clock
Clock theClock = new Clock();

// create the display and tell it to
// subscribe to the clock just created
DisplayClock dc = new DisplayClock();
dc.Subscribe (theClock) ;

// create a Log object and tell it

// to subscribe to the clock
LogCurrentTime lct = new LogCurrentTime();
lct.Subscribe (theClock) ;

// Get the clock started
theClock.Run();

Time: 14:53:56

to file: 14:53:56
Time: 14:53:57

to file: 14:53:57
Time: 14:53:58

to file: 14:53:58
Time: 14:53:59

to file: 14:53:59
Time: 14:54:0

to file: 14:54:0

The net effect of this code is to create two classes, DisplayClock and LogCurrentTime. Both
of these subscribe to a third class event (Clock.0OnSecondChange).

277

Programming C#, 2nd Edition

12.2.3 Decoupling Publishers from Subscribers

The clock class could simply print the time rather than raising an event, so why bother with
the indirection of using delegates? The advantage of the publish/subscribe idiom is that any
number of classes can be notified when an event is raised. The subscribing classes do not need
to know how the clock works, and the cl1ock does not need to know what they are going to
do in response to the event. Similarly, a button can publish an onclick event, and any number
of unrelated objects can subscribe to that event, receiving notification when the button is
clicked.

The publisher and the subscribers are decoupled by the delegate. This is highly desirable as it
makes for more flexible and robust code. The clock can change how it detects time without
breaking any of the subscribing classes. The subscribing classes can change how they respond
to time changes without breaking the ciock. The two classes spin independently of one
another, which makes for code that is easier to maintain.

278

Programming C#, 2nd Edition

Part ll: Programming with C#

279

Programming C#, 2nd Edition

Chapter 13. Building Windows Applications

The previous chapters have used console applications to demonstrate C# and the Common
Language Runtime. Although console applications can be implemented simply, it is time to
turn your attention to the reason you're learning the C# language in the first place: building
Windows and web applications.

In the early days of Windows computing, an application ran on a desktop, in splendid
isolation. Over time, developers found it beneficial to spread their applications across
a network, with the user interface on one computer and a database on another. This division of
responsibilities or partitioning of an application came to be called two-tier or client-server
application development. Later three-tier or n-tier approaches emerged as developers began to
use web servers to host business objects that could handle the database access on behalf of
clients.

When the Web first came along, there was a clear distinction between Windows applications
and web applications. Windows applications ran on the desktop or a local area network
(LAN), and web applications ran on a distant server and were accessed by a browser. This
distinction is now being blurred as Windows applications reach out to the Web for services.
Many new applications consist of logic running on a client, a database server, and remote
third-party computers located on the Web. Traditional desktop applications such as Excel or
Outlook are now able to integrate data retrieved through web connections seamlessly, and
web applications can distribute some of their processing to client-side components.

The primary remaining distinction between a Windows application and a web application
might be this: who owns the user interface? Will your application use a browser to display its
user interface, or will the UI be built into the executable running on the desktop?

There are enormous advantages to web applications, starting with the obvious: they can be
accessed from any browser that can connect to the server. In addition, updates can be made at
the server, without the need to distribute new dynamic link libraries (DLLs) to your
customers.

On the other hand, if your application derives no benefit from being on the Web, you might
find that you can achieve greater control over the look and feel of your application or that you
can achieve better performance by building a desktop application.

NET offers closely related, but distinguishable, suites of tools for building Windows or web
applications. Both are based on forms, with the premise that many applications have user
interfaces centered on interacting with the user through forms and controls, such as buttons,
list boxes, text, and so forth.

The tools for creating web applications are called Web Forms and are considered in

Chapter 15. The tools for creating Windows applications are called Windows Forms and are
the subject of this chapter.

280

Programming C#, 2nd Edition

o It is my prediction that the distinction between Web Forms and
o Windows Forms is temporary. There is such obvious similarity between
_ 4 these two approaches that I'd be very surprised if the next version of

NET didn't merge these two tools into one unified development
environment.

In the following pages, you will learn how to create a simple Windows Form using either a
text editor such as Notepad or the Design tool in Visual Studio .NET. Next you will build a
more complex Windows application using Visual Studio, the Windows Forms framework,
and a number of C# programming techniques you learned in earlier chapters. The chapter
concludes with a brief introduction to Documentation Comments, a new XML-facilitated
means to document applications, and an introduction to the deployment of .NET applications.

13.1 Creating a Simple Windows Form

A Windows Form is a tool for building a Windows application. The .NET Framework offers
extensive support for Windows application development, the centerpiece of which is the
Windows Forms framework. Not surprisingly, Windows Forms use the metaphor of a form.
This idea was borrowed from the wildly successful Visual Basic (VB) environment and
supports Rapid Application Development (RAD). Arguably, C# is the first development
environment to marry the RAD tools of Visual Basic with the object-oriented and high-
performance characteristics of a C-family language.

13.1.1 Using Notepad

Visual Studio .NET provides a rich set of drag-and-drop tools for working with Windows
Forms. It is possible to build a Windows application without using the Visual Studio
Integrated Development Environment (IDE), but it is far more painful and takes a lot longer.

However, just to prove the point, you'll use Notepad to create a simple Windows Form
application that displays text in a window and implements a Cancel button. The application
display is shown in Figure 13-1.

Figure 13-1. The hand-drawn Windows Form

Bhcile World =] E3

Helo ‘Waorld!

Cancsl

You start by adding a using statement for the Windows Forms namespace:

using System.Windows.Forms;

The key to creating a Windows Form application is to derive your form from
System.Windows.Forms.Form: .

public class HandDrawnClass : Form

281

Programming C#, 2nd Edition

The Form object represents any window displayed in your application. You can use the Form
class to create standard windows, as well as floating windows, tools, dialog boxes, and so
forth. Microsoft apparently chose to call this a form rather than a window to emphasize that
most windows now have an interactive component that includes controls for interacting with
users.

All the Windows widgets you'll need (labels, buttons, list boxes, etc.) are found within the
wWindows.Forms namespace. In the IDE, you'll be able to drag and drop these objects onto a
designer, but for now you'll declare them right in your program code.

To get started, declare the two widgets you need, a label to hold the Hel1o world text, and a
button to exit the application:

private System.Windows.Forms.Label 1blOutput;
private System.Windows.Forms.Button btnCancel;

You're now ready to instantiate these objects, which is done in the Form's constructor:

this.lblOutput = new System.Windows.Forms.Label();
this.btnCancel = new System.Windows.Forms.Button();

Next you can set the Form's title text to Hello World:

this.Text = "Hello World";
- Note that the preceding statements appear in your form's constructor,
43} HandDrawnClass, and so the this keyword refers to the form itself.
B G &

Set the label's location, text, and size:

1blOutput.Location = new System.Drawing.Point (16, 24);
1blOutput.Text = "Hello World!";
1blOutput.Size = new System.Drawing.Size (216, 24);

The location is expressed as a System.Drawing.Point object, whose constructor takes a
horizontal and vertical position. The size is set with a size object, whose constructor
takes a pair of integers that represent the width and height of the object.

i &

. The .NET Framework provides the system.Drawing namespace, which
«s | encapsulates the Win32 GDI+ graphics functions. Much of the .NET

- Framework Class Library (FCL) consists of classes that encapsulate
Win32 methods as objects.

Next, do the same for the button object, setting its location, size, and text:

btnCancel.Location = new System.Drawing.Point (150,200);
btnCancel.Size = new System.Drawing.Size (112, 32);
btnCancel.Text = "&Cancel";

282

Programming C#, 2nd Edition

The button also needs an event handler. As described in Chapter 12, events (in this case the
cancel button-click event) are implemented using delegates. The publishing class (Button)
defines a delegate (System.EventHandler) that the subscribing class (your form) must
implement.

The delegated method can have any name but must return void and take two parameters: an
object (sender) and a systemEventArgs object, typically named e:

protected void btnCancel Click (
object sender, System.EventArgs e)

{
/...
}

Register your event-handler method in two steps. First, create a new System.EventHandler
delegate, passing in the name of your method as a parameter:

new System.EventHandler (this.btnCancel Click);
Then add that delegate to the button's click event-handler list with the += operator.

The following line combines these steps into one:

btnCancel.Click +=
new System.EventHandler (this.btnCancel Click);

Now you must set up the form's dimensions. The form property AutoScaleBaseSize sets the
base size used at display time to compute the scaling factor for the form. The clientsize
property sets the size of the form's client area, which is the size of the form excluding borders
and titlebar. (When you use the designer, these values are provided for you interactively.):

this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
this.ClientSize = new System.Drawing.Size (300, 300);

Finally, remember to add the widgets to the form:

this.Controls.Add (this.btnCancel);
this.Controls.Add (this.lblOutput);

Having registered the event handler, you must supply the implementation. For this example,
clicking Cancel will exit the application, using the static method Exit () of the Application
class:

protected void btnCancel Click (
object sender, System.EventArgs e)

{
Application.Exit ();

}

That's it; you just need an entry point to invoke the constructor on the form:

283

public static void Main()

{

Application.Run (new HandDrawnClass (

}

));

Programming C#, 2nd Edition

The complete source is shown in Example 13-1. When you run this application, the window is
opened and the text is displayed. Pressing Cancel closes the application.

Example 13-1. Creating a hand-drawn Windows Form

using System;
using System.Windows.Forms;

namespace ProgCSharp

{

public class HandDrawnClass

{

// a label to display Hello World
private System.Windows.Forms.Label

1blOutput;

// a cancel button

Form

private System.Windows.Forms.Button

btnCancel;

public HandDrawnClass()
{
// create the objects
this.lblOutput =

new System.Windows.Forms.Label ();

this.btnCancel =

new System.Windows.Forms.Button (

// set the form's title

this.Text = "Hello World";
// set up the output label
1blOutput.Location =

new System.Drawing.Point (16, 24);
1blOutput.Text = "Hello World!";

1blOutput.Size =
new System.Drawing.Si

// set up the cancel but
btnCancel.Location =

new System.Drawing.Po
btnCancel.Size =

new System.Drawing.Si
btnCancel.Text = "&Cance

ze (216, 24);

ton

int

ze (112, 32);

l";

// set up the event handler

btnCancel.Click +=
new System.EventHandl

// Add the controls and set the client area

this.AutoScaleBaseSize =
new System.Drawing.Si
this.ClientSize =
new System.Drawing.Si

(150,200) ;

er (this.btnCancel Click);

ze (5,

ze (300,

13);

this.Controls.Add (this.btnCancel);

300);

284

Programming C#, 2nd Edition

this.Controls.Add (this.lblOutput) ;

}

// handle the cancel event
protected void btnCancel Click (
object sender, System.EventArgs e)

{
Application.Exit();

}

// Run the app
public static void Main()

{

Application.Run (new HandDrawnClass());

}

13.1.2 Using the Visual Studio .Net Designer

Although hand coding is always great fun, it is also a lot of work, and the result in the
previous example is not as elegant as most programmers would expect. The Visual Studio
IDE provides a design tool for Windows Forms that is much easier to use.

To begin work on a new Windows application, first open Visual Studio and choose New
Project. In the New Project window, create a new C# Windows application and name it
ProgCSharpWindowsForm, as shown in Figure 13-2.

Figure 13-2. Creating a Windows Form application

x|
Project Types: Templates: m £
1 Wizual Basic Projects e s e -
4 Wisusl C# Projects _ﬂJ i i m
] Visual C+-4 Projects _ Windows ClessLibrary Windows
I Setup and Deployment Projects Application Contral Library
+] Cther Projects
) Visual Studio Solutions ﬁ : ﬁ *jﬂ”“
= = L
ASP.MET Web ASPNET Web Web Conbral
Application Service Library __,J
-
& project For cresting an application with & Windows user inberface
fiame: I ProgCSharphyindowsFarm
Location: I C\Doouments and SettingstAdministratoriMy Dooumen ﬂ Browes, .. 1
Prodect will be created at .. \My Documants\Visual Shudio Projects\ProgZSharpindowsForm.
Fhiore s TR e |

Visual Studio responds by creating a Windows Form application, and, best of all, putting you
into a design environment, as shown in Figure 13-3.

285

Programming C#, 2nd Edition

Figure 13-3. The design environment

3% ProgCSharpWindowsForm - Microsoft Visual C# NET [design] - Formi.cs [Designd

File

=l g

Ly

i

Tt TN

Edt ‘Wiew Project

Toclbos
Daka
Componenks
Windows Forms
& Ponter
A Label

A LinkLabel
k] Button
abl TetBoe
= MainMenu
W Cheddox

i+ RadoButton
1]

(GroUpSon
| PichureBion
{1 Panel
] DataGrid
=3 ListBox
£ ChedeedlistBox
T4 ComboBox
S27 Listwiew
HE TreeView
] TabContral
1 DateTimeRicker
T monthCalendar

Build Delwsgy Data Format Tools Window Help
j Debug -

e

. itz

The Design window displays a blank Windows Form (Form1). A Toolbox window is also
available, with a selection of Windows widgets and controls. If the Toolbox is not displayed,
try clicking the word "Toolbox," or select View —2>Toolbox on the Visual Studio menu. You
can also use the keyboard shortcut Ctrl-Alt-X to display the Toolbox. With the Toolbox
displayed, you can drag a label and a button directly onto the form, as shown in Figure 13-4.

286

Figure 13-4. The Windows Form development environment

Programming C#, 2nd Edition

0 ProgCsharp'Wird Faorrm - *licrosoft Wesual C NET [design] - Fosmnd.i 5:'“’:_:'_'_ =10 x|
Fie Edt Wew Froject Eukd Debug Data Toos ‘Window Hep
e R = B B A L R b Debug - S
£ey Tookax LI ¢ Pmge Imt.u[nm]"l 1 I 2 || Sohation Explocer - ProgCfheep,, B =
{ Data IR e i
3 Compmmis Srmemi e S O =10] x| e Sckucion ProgharsiandowsFor
E brnfonws Forar TR Dot i - :J ProgCsharpWindowsTorm
T M porker . Hello World * i Rafarances
b R R R) appin
) C 27 Asparbbdebo o
A UrkLabel n oA o = romiics
s Button i
oo e e M S R R B R R T B T
it Tl Bt e soaiii
F Checkbox 1
B Rk | MR R ciaoiii
7 Grouptox i
a Pictursfion i
et | GETEEE G o T
1 " Gis Expher | 2 Clazs Wi
"] Dsterirad
[oot 0]
| Listhio [e T meg i
= labell Syctem windowue, Forme Labe =
£ rechedisgion L
43 ombabos =18 # [
T [2
Hr Trewwiens BachkCok [conma
5] TabSonitred el St il Mirm
Cursor Tefak
™ DabaTurlicka ety B
P] Mt sbennclar B Font Arial, L5.TS5pt, 1
4 Y Hocrolia Foodow W convrodTest
5 WacolEw Trvua g [reore
Y Tives Trnanadbon PRI |
& Tent
ﬁ ?m:_l Trie test contaired in he conbal
ptmard Ringg -
Geanerdl [Properties: | @ Zoramiziise
Ready

Before proceeding, take a look around. The Toolbox is filled with controls that you can add to
your Windows Form application. In the upper-right corner you should see the Solution
Explorer, which is a window that displays all the files in your projects. In the lower-right
corner is the Properties window, which displays all the properties of the currently selected
item. In Figure 13-4, the label (1abel1) is selected, and the Properties window displays its
properties.

You can use the Properties window to set the static properties of the various controls. For
example, to add text to labell, you can type the words "Hello World" into the box to the
right of its Text property. If you want to change the font for the lettering in the Helloworld
label, click the Font property shown in the lower-right corner of Figure 13-5. (You can
provide text in the same way for your button (button1) by selecting it in the Property window
and typing the word "Cancel" into its Text property.)

287

Programming C#, 2nd Edition

Figure 13-5. Modifying the font

7% FrisgiCSlian 1o]
B [t Yew Projct fuld [ebug Dgts ook Wndow Hel
@0 AnE - e . 3mR

i, Toodbo B W chuifuge Formlas [Design]® * || Solubon Evplorar - ProgCShamp,.. @ ®
| b _— ; 23 B &
§ | Componants - Fan ; sl . =101 x| (3 Zoluvon Prog=Sharvwindos o 1

Hochen Fme = LR = G progrsharpwindowsform
5|k Fonte - Helle World e : i = o] Peferences

A ke g o... : 1al] App.ikn
A Linidabel IR =B L1 =
| Budton
[ati TectBee
& Heirbiary
F CheckEaz
= Pachofudion
GreugBas -

Fhaabsy v Jert Forl il Sm X
ﬂh_‘ e — [pad E [=] Tlﬂ
5 L e———]
e LBz iiiiiiizi §i) ComgSonsMS & m_ 16|
23 Chachwdiistboe ﬁ. ET';“' W iﬁﬂdllk {18 ‘:"'T""h:.l
TH Comboioy i} Imnack |

1

] -
T) Lucids Console = al

ke

P Actamtdyinfoce
[l Formi.cs

B Trestiew Eflicis Sarpl rerrcd

] TebConkred ™ Sikmout

T DateTwePiceer [Undsdne AaBbWZz L

T MonthCalerdar 12t sty

A4 HeooBa Soppt onitroiTect

: WerrolEar (AT —— ;I L]

{5 T .

+|-r Sl by

T ComanlipDown o,

Cligbasnd 2ing -

Garmral [Fropert s | £
Rizady

b inithe

Any one of these steps is much easier than modifying these properties in code (though that is
certainly still possible).

Once you have the form laid out the way you want, all that remains is to create an event
handler for the Cancel button. Double-clicking the Cancel button will create the event
handler, register it, and put you on the code-behind page (the page that holds the source code
for this form), in which you can enter the event-handling logic, as shown in Figure 13-6.

288

Programming C#, 2nd Edition

Figure 13-6. After double-clicking the Cancel button

0 Prosg? Shaipsndos dems - Micresslt Sioisl [ATT [dreaign] - Toemn o™ =t}
e BR See Bawil B Qebg Bl Wedise e
= L = B £ - b Dabug - w i
1 iR iF + NN,
By Tomlss [Foeralas® | Selfion Exploeer reytthap, B
:bh"‘l""\': * ¢ oeypC tharp Srwosa oo Forl =] [i¥tuticel_Crdckid: mrar SabanSanitrmal - 1
| Smarad 2 Scheon Progsibws Mrdowabor |
& Forie 20 = L e gl s p e e
{ Dimpnmsq dizporizg | - R
) o] Acpia
= Asmard il s

12| dimpoaing) | Porvdcn
t |compozanta = zull]

compazente. Dispase i1

e
o Eeplones | 2
Frapuime 3 x
|
*] ;" I Propertea | 18
Fomarchy Le g Coll 1 oy (1]
The cursor is already in place; you have only to enter the one line of code:
Application.Exit();
- In the IDE, the cursor flashes, making it very easy to see where the code
ar . goes. For most readers, the cursor probably will not flash in this book.
i £

Visual Studio .NET generates all the code necessary to create and initialize the components.
The complete source code is shown in Example 13-2, including the one line of code you
provided (shown in bold in this example) to handle the Cancel button-click event.

Example 13-2. Source code generated by the IDE

using System;

using System.Drawing;

using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace ProgCSharpWindowsForm
{
/// <summary>
/// Summary description for Forml.
/// </summary>
public class Forml : System.Windows.Forms.Form
{
private System.Windows.Forms.Label 1lblOutput;
private System.Windows.Forms.Button btnCancel;

289

Programming C#, 2nd Edition

/// <summary>

/// Required designer variable.

/// </summary>

private System.ComponentModel.Container components = null;

public Forml ()
{

//

// Required for Windows Form Designer support
//

InitializeComponent ();

//

// TODO: Add any constructor code
// after InitializeComponent call
//

}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{
if(disposing)
{
if (components != null)
{
components.Dispose();
}
}
base.Dispose(disposing);

}

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

private void InitializeComponent ()

{

this.lblOutput = new System.Windows.Forms.Label();
this.btnCancel = new System.Windows.Forms.Button();
this.SuspendLayout ();

//

// 1lblOutput

//

this.lblOutput.Font = new System.Drawing.Font ("Arial", 15.75F,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, ((System.Byte) (0)));

this.lblOutput.Location = new System.Drawing.Point (24, 16);

this.lblOutput.Name = "1lblOutput";

this.lblOutput.Size = new System.Drawing.Size (136, 48);

this.lblOutput.TabIndex = 0;

this.lblOutput.Text = "Hello World";

//

// btnCancel

//

this.btnCancel.Location = new System.Drawing.Point (192, 208);
this.btnCancel.Name = "btnCancel";

this.btnCancel.TabIndex = 1;

this.btnCancel.Text = "Cancel";

290

Programming C#, 2nd Edition

this.btnCancel.Click += new System.EventHandler (
this.btnCancel Click);

//

// Forml

//

this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);

this.ClientSize = new System.Drawing.Size (292, 273);

this.Controls.AddRange (new System.Windows.Forms.Control[] {
this.btnCancel, this.lblOutput});

this.Name = "Forml";

this.Text = "Forml";

this.Resumelayout (false) ;

}

#endregion

/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{
Application.Run(new Forml ());

}

private void btnCancel Click(object sender, System.EventArgs e)

{
Application.Exit();

}

o &

- Some of the code in this listing has been reformatted to fit the printed
%, g

There is quite a bit of code in this listing that didn't appear in Example 13-1, though most of it
is not terribly important. When Visual Studio creates the application, it must add some
boilerplate code that is not essential for this simple application.

A careful examination reveals that the essentials are the same, but there are some key
differences worth examining. The listing starts with special comment marks:

/// <summary>
/// Summary description for Forml.
/// </summary>

These marks are used for creating documentation; they are explained in detail later in this
chapter.

The form derives from System.Windows.Forms.Form as did our earlier example. The
widgets are defined as in the previous example:

291

Programming C#, 2nd Edition

public class Forml : System.Windows.Forms.Form

{
private System.Windows.Forms.Label lblOutput;
private System.Windows.Forms.Button btnCancel;

The designer creates a private container variable for its own use:

private System.ComponentModel.Container components = null;

In this and in every Windows Form application generated by Visual Studio .NET, the
constructor calls a private method, TnitializeComponent (). This is used to define and set
the properties of all the controls. The properties are set based on the values you've chosen (or
on the default values you've left alone) in the designer. The InitializeComponent ()
method is marked with a comment that you should not modify the contents of this method;
making changes to this method might confuse the designer.

This program will behave exactly as your earlier hand-crafted application did.

13.2 Creating a Windows Form Application

To see how Windows Forms can be used to create a more realistic Windows application, in
this section you'll build a utility named FileCopier that copies all files from a group of
directories selected by the user to a single target directory or device, such as a floppy or
backup hard drive on the company network. Although you won't implement every possible
feature, you can imagine programming this application so that you can mark dozens of files
and have them copied to multiple disks, packing them as tightly as possible. You might even
extend the application to compress the files. The true goal of this example is for you to
exercise many of the C# skills learned in earlier chapters and to explore the windows.Forms
namespace.

For the purposes of this example and to keep the code simple, focus on the user interface and

the steps needed to wire up its various controls. The final application UI is shown in
Figure 13-7.

292

Programming C#, 2nd Edition

Figure 13-7. The FileCopier user interface

Source Files: Target Directory:

ElalT a]| [avemp
| = Oc
| = [Documents and Seltngs AN
- D.n'-'idrrimllalul
¥ Dcm‘ﬁuc
+ [Cookies
+ [Deskiop
+ DF:wu:uulfs
= [y Documents
i D FineFrint liles oo
+ O My Documents
+ [My Pictures
= O My'webs
& inage:
O _rivate
+ [0 vizual Shudio Projects
[Stait Meru
+ OJvVSweblaches
CIHTUSER DT
O reuses dat LOG

[riusetiri -

temg
A
Dr:h
FA
H

+ =+

Cleas b Dvenite i exids Copy

Delete

Cancel

The user interface for FilecCopier consists of the following controls:

o Labels: Source Files and Target Directory

e Buttons: Clear, Copy, Delete, and Cancel

e An Overwrite if exists checkbox

e A text box displaying the path of the selected target directory

o Two large tree view controls, one for available source directories and one for available
target devices and directories

The goal is to allow the user to check files (or entire directories) in the left tree view (source).
If the user presses the Copy button, the files checked on the left side will be copied to the
Target Directory specified in the right-hand control. If the user presses Delete, the checked
files will be deleted.

The rest of this chapter implements a number of FileCopier features in order to demonstrate
the fundamental features of Windows Forms.

13.2.1 Creating the Basic Ul Form

The first task is to open a new project named FileCopier. The IDE puts you into the
Designer, in which you can drag widgets onto the form. You can expand the form to the size
you want. Drag, drop, and set the Name properties of labels (1blSource, 1blTarget,
lblStatus), buttons (btnClear, btnCopy, btnDelete, btnCancel), a checkbox

293

Programming C#, 2nd Edition

(chkOverwrite), a textbox (txtTargetDir), and tree view controls (tvwSource,
tvwTargetDir) from the Toolbox onto your form until it looks more or less like the one
shown in Figure 13-8.

You want checkboxes next to the directories and files in the source selection window but not
in the target (where only one directory will be chosen). Set the checkBoxes property on
the left Treeview control, tvwSource, to true, and set the property on the right-hand
TreeView control, tvwTargetDir, to false. To do so, click each control in turn and adjust
the values in the Properties window.

Figure 13-8. Creating the form in the designer

= ~[o{ M
D it pee Propo i sy D@ Jod Yndoa dep
v e = - M X ¥ Ceme ok e g ol e
Ty Vwdker LI Formil s [Desmn] Sab b Explormn - FileZapier 9 x
Duitn o a]
ST 4 208 2] o ki Fleap [posd)
e b v, o e
K o . i . 7 il Pekerorens
T .hn-unl:u Filas .I.-i.rgﬂllllmmnr_r | fpca
] Asomabiy b
Y, unbisbel B riis
i Do
& Tesifion
K Foen
P chedcs
& Racklifian
" Groulicn
&l Prbiratios
7 Pl
1] Dtard o " o Schulion Fxgirer [27
ol Uashas -
£] Guchoctsfes = -
2 combasce Formil Syaber. Wiedoews, Farra. Pan = |
" Lk 1 m
E: Tiewten oAbl el 2
B
]
Bk ok] canhiad
i 7 T . 3 s gercragl | e
7] Fortt ol gaa | T Ut marts g (s trtank
#H Hoalr R v el B rori Horoecll Sares
B Eoita e I Prw ok | TR
T SR [T
e Hight T el e
'__:‘_"In Cacsl PO i i e T
¥ e il -
[IF e e I} = . Rl 0 Con A 1 e corial
= Trmiew
= Basardiu b
Wopael - B rrocartian [B
Eandy

Once this is done, double-click the Cancel button to create its event handler -- when you
double-click a control, Visual Studio .NET creates an event handler for that object. One
particular event is the target event, and Visual Studio .NET opens that event's event handler:

protected void btnCancel Click (object sender, System.EventArgs e)

{
Application.Exit ();

}

You can set many different events for the Treeview control. Do so programmatically by
clicking the Events button in the Properties window. From there you can create new handlers,
just by filling in a new event-handler method name. Visual Studio .NET will register the event
handler and open the editor for the code, where it will create the header and put the cursor in
an empty method body.

So much for the easy part. Visual Studio .NET will generate code to set up the form and
initialize all the controls, but it won't fill the Treeview controls. That you must do by hand.

294

Programming C#, 2nd Edition

13.2.2 Populating the TreeView Controls

The two Treeview controls work identically, except that the left control, tvwSource, lists the
directories and files, whereas the right control, tvwTargetDir, lists only directories. The
CheckBoxes property on tvwSource is set to true, and on tvwTargetDir it is set to false.
Also, although tvwsource will allow multiselect, which is the default for Treeview controls,
you will enforce single selection for tvwTargetDir.

You'll factor the common code for both Treeview controls into a shared method
FillDirectoryTree and pass in the control with a flag indicating whether to get the files.
You'll call this method from the Form's constructor, once for each of the two controls:

FillDirectoryTree (tvwSource, true);
FillDirectoryTree (tvwTargetDir, false);

The FillDirectoryTree implementation names the Treeview parameter tvw. This will
represent the source Treeview and the destination Treeview in turn. You'll need some classes
from system.I0, so add a using System.IO; statement at the top of Forml.cs. Next, add
the method declaration to Forml.cs:

private void FillDirectoryTree (TreeView tvw, bool isSource)

13.2.2.1 TreeNode objects

The Treeview control has a property, Nodes, which gets a TreeNodeCollection object. The
TreeNodeCollection is a collection of TreeNode objects, each of which represents a node in
the tree. Start by emptying that collection:

tvw.Nodes.Clear();

You are ready to fill the Treeview's Nodes collection by recursing through the directories of
all the drives. First, get all the logical drives on the system. To do so, call a static method of
the Environment object, GetLogicalDrives(). The Environment class provides
information about and access to the current platform environment. You can use the
Environment object to get the machine name, OS version, system directory, and so forth,
from the computer on which you are running your program.

string[] strDrives = Environment.GetLogicalDrives();

GetLogicalDrives () returns an array of strings, each of which represents the root directory
of one of the logical drives. You will iterate over that collection, adding nodes to the
TreeView control as you go.

foreach (string rootDirectoryName in strDrives)

{
You should process each drive within the foreach loop. You can add these two lines to limit

the search to a particular drive (this is good if you have several large drives or some network
drives):

295

Programming C#, 2nd Edition

if (rootDirectoryName != @"C:\")
continue;

The very first thing you need to determine is whether the drive is ready. My hack for that is to
get the list of top-level directories from the drive by calling GetDirectories() on a
DirectoryInfo object I created for the root directory:

DirectoryInfo dir = new DirectoryInfo (rootDirectoryName) ;
dir.GetDirectories();

The DirectoryInfo class exposes instance methods for creating, moving, and enumerating
through directories, their files, and their subdirectories. The DirectoryInfo class is covered
in detail in Chapter 21.

The GetDirectories() method returns a list of directories, but throw this list away. You
are calling it here only to generate an exception if the drive is not ready.

Wrap the call in a try block and take no action in the catch block. The effect is that if an
exception is thrown, the drive is skipped. Once you know that the drive is ready, create a
TreeNode to hold the root directory of the drive and add that node to the Treeview control:

TreeNode ndRoot = new TreeNode (rootDirectoryName) ;
tvw.Nodes.Add (ndRoot) ;

You now want to recurse through the directories, so you call into a new routine,
GetSubDirectoryNodes (), passing in the root node, the name of the root directory, and the
flag indicating whether you want files:

if (isSource)
{
GetSubDirectoryNodes (ndRoot, ndRoot.Text, true);

}

else

{
GetSubDirectoryNodes (ndRoot, ndRoot.Text, false);

}

You are probably wondering why you need to pass in ndroot . Text if you're already passing
in ndroot. Patience; you will see why this is needed when you recurse back into
GetSubDirectoryNodes. You are now finished with FillDirectoryTree(). See
Example 13-3 for a complete listing of this method.

13.2.2.2 Recursing through the subdirectories

GetSubDirectoryNodes () begins by once again calling GetDirectories(), this time
stashing away the resulting array of DirectoryInfo objects:

private void GetSubDirectoryNodes (
TreeNode parentNode, string fullName, bool getFileNames)
{
DirectoryInfo dir = new DirectoryInfo (fullName) ;
DirectoryInfo[] dirSubs = dir.GetDirectories();

296

Programming C#, 2nd Edition

Notice that the node passed in is named parentNode. The current level of nodes will be
considered children to the node passed in. This is how you map the directory structure to the
hierarchy of the tree view.

Iterate over each subdirectory, skipping any that are marked Hidden:

foreach (DirectoryInfo dirSub in dirSubs)
{
if ((dirSub.Attributes &
FileAttributes.Hidden) != 0)
{

continue;

}

FileAttributes 1S an enum; other possible values include Archive, Compressed,
Directory, Encrypted, Hidden, Normal, ReadOnly, €tC.

. The property dirsSub.Attributes is the bit pattern of the current
o g attributes of the directory. If you logically AND that value with the bit

% pattern FileAttributes.Hidden, a bit is set if the file has the hidden
attribute; otherwise all the bits are cleared. You can check for any
hidden bit by testing whether the resulting int is other than zero.

Create a TreeNode with the directory name and add it to the Nodes collection of the node
passed in to the method (parentNode):

TreeNode subNode = new TreeNode (dirSub.Name) ;
parentNode.Nodes.Add (subNode) ;

Now recurse back into the GetSubDirectoryNodes () method, passing in the node you just
created as the new parent, the full path as the full name of the parent, and the flag:

GetSubDirectoryNodes (subNode,dirSub.FullName,getFileNames) ;

. Notice that the call to the TreeNode constructor uses the Name property
a“ of the DirectoryInfo object, while the call to
— 4% GetSubDirectoryNodes() uses the FullName property. If your

directory is c:\WinNT\Media\Sounds, the FullName property will
return the full path, while the Name property will return just sounds.
Pass in only the name to the node because that is what you want
displayed in the tree view. Pass in the full name with path to the
GetSubDirectoryNodes () method so that the method can locate all
the subdirectories on the disk. This answers the question asked earlier as
to why you need to pass in the root node's name the first time you call
this method; what is passed in is not the name of the node, it is the full
path to the directory represented by the node!

297

Programming C#, 2nd Edition

13.2.2.3 Getting the files in the directory

Once you've recursed through the subdirectories, it is time to get the files for the directory if
the getFileNames flag is true. To do so, call the GetFiles() method on the
DirectoryInfo object. An array of FileInfo objects is returned:

if (getFileNames)

{
// Get any files for this node.
FileInfo[] files = dir.GetFiles();

The rFileInfo class (covered in Chapter 21) provides instance methods for manipulating files.

You can now iterate over this collection, accessing the Name property of the FileInfo object
and passing that name to the constructor of a TreeNode, which you then add to the parent
node's Nodes collection (thus creating a child node). There is no recursion this time because
files do not have subdirectories:

foreach (FileInfo file in files)

{

TreeNode fileNode = new TreeNode (file.Name) ;
parentNode.Nodes.Add (fileNode) ;
}

That's all it takes to fill the two tree views. See Example 13-3 for a complete listing of this
method.

- If you found any of this confusing, I highly recommend putting the code
o into your debugger and stepping through the recursion; you can watch
" 4% the Treeview build its nodes.

13.2.3 Handling TreeView Events

You must handle a number of events in this example. First, the user might click Cancel, Copy,
Clear, or Delete. Second, the user might click one of the checkboxes in the left Treeview or
one of the nodes in the right Treeview.

Let's consider the clicks on the Treeviews first, as they are the more interesting, and
potentially the more challenging.

13.2.3.1 Clicking the source TreeView

There are two Treeview objects, each with its own event handler. Consider the source
TreeView object first. The user checks the files and directories he wants to copy from. Each
time the user clicks a file or directory, a number of events are raised. The event you must
handle is AfterCheck.

To do so, implement a custom event-handler method you will create and name

tvwSource AfterCheck (). Visual Studio .NET will wire this to the event handler, or if you
are not using the integrated development environment, you must do so yourself.

298

Programming C#, 2nd Edition

tvwSource.AfterCheck +=
new System.Windows.Forms.TreeViewEventHandler
(this.tvwSource AfterCheck);

The implementation of AftercCheck() delegates the work to a recursable method named
SetCheck () that you'll also write. To add the AfterCheck event, select the tvwSource
control, click the Events icon in the Properties window, then double-click on AfterCheck.
This will add the event, wire it up, and place you in the code editor where you can add the
body of the method:

private void tvwSource AfterCheck (
object sender, System.Windows.Forms.TreeViewEventArgs e)

{
SetCheck (e.Node, e.Node.Checked) ;

}

The event handler passes in the sender object and an object of type TreeviewEventArgs. It
turns out that you can get the node from this TreeviewEventArgs object (e). Call setCheck (
), passing in the node and the state of whether the node has been checked.

Each node has a Nodes property, which gets a TreeNodeCollection containing all the
subnodes. setCheck () recurses through the current node's Nodes collection, setting each
subnode's check mark to match that of the node that was checked. In other words, when you
check a directory, all its files and subdirectories are checked, recursively, all the way down.

It's Turtles, All the Way Down

Here's my favorite story on recursion: it happened that a famous Darwinist was
telling a story about primitive creation myths. "Some peoples," he said, "believe the
world rests on the back of a great turtle. Of course, that raises the question: on what
does the turtle rest?"

An elderly woman from the back of the room stood up and said, "Very clever,
Sonny, but it's turtles, all the way down."

For each TreeNode in the Nodes collection, check to see if it is a leaf. A node is a leaf if its
own Nodes collection has a count of zero. If it is a leaf, set its check property to whatever was
passed in as a parameter. If it is not a leaf, recurse.

private void SetCheck (TreeNode node, bool check)

{
// find all the child nodes from this node
foreach (TreeNode n in node.Nodes)

{
n.Checked = check; // check the node

// 1f this is a node in the tree, recurse
if (n.Nodes.Count != 0)

{
SetCheck (n, check) ;

}

299

Programming C#, 2nd Edition

This propagates the check mark (or clears the check mark) down through the entire structure.
In this way, the user can indicate that he wants to select all the files in all the subdirectories by
clicking a single directory.

13.2.3.2 Clicking the target TreeView

The event handler for the target Treeview is somewhat trickier. The event itself is
AfterSelect. (Remember that the target Treeview does not have checkboxes.) This time,
you want to take the one directory chosen and put its full path into the text box at the upper-
left corner of the form.

To do so, you must work your way up through the nodes, finding the name of each parent
directory and building the full path:

private void tvwTargetDir AfterSelect (
object sender, System.Windows.Forms.TreeViewEventArgs e)

{

string theFullPath = GetParentString(e.Node) ;

We'll look at GetParentstring() in just a moment. Once you have the full path, you must
lop off the backslash (if any) on the end and then you can fill the text box:

if (theFullPath.EndsWith ("\\"))

{
theFullPath =

theFullPath.Substring (0, theFullPath.Length-1);
}

txtTargetDir.Text = theFullPath;,

The GetParentstring() method takes a node and returns a string with the full path. To do
so, it recurses upward through the path, adding the backslash after any node that is not a leaf:

private string GetParentString(TreeNode node)

{

if (node.Parent == null)

{

return node.Text;

}

else

{

return GetParentString(node.Parent) + node.Text +

(node .Nodes.Count == 2T s "M\A\");
}
}
- The conditional operator (?) is the only ternary operator in C# (a ternary
#3 4. operator takes three terms). The logic is "test whether
C f'

node.Nodes.Count is zero; if so return the value before the colon (in
this case an empty string). Otherwise return the value after the colon (in
this case a backslash)."

The recursion stops when there is no parent; that is, when you hit the root directory.

300

Programming C#, 2nd Edition

13.2.3.3 Handling the Clear button event

Given the setCheck () method developed earlier, handling the Clear button's click event is
trivial:

protected void btnClear Click (object sender, System.EventArgs e)
{

foreach (TreeNode node in tvwSource.Nodes)

{
SetCheck (node, false);

}

Just call the setcheck () method on the root nodes and tell them to recursively uncheck all
their contained nodes.

13.2.4 Implementing the Copy Button Event

Now that you can check the files and pick the target directory, you're ready to handle the
Copy button-click event. The very first thing you need to do is to get a list of which files were
selected. What you want is an array of FileInfo objects, but you have no idea how many
objects will be in the list. That is a perfect job for arrayList. Delegate responsibility for
filling the list to a method called GetFileList ():

private void btnCopy Click (
object sender, System.EventArgs e)

{
ArrayList filelist = GetFileList();

Let's pick that method apart before returning to the event handler.

13.2.4.1 Getting the selected files

Start by instantiating a new ArrayList object to hold the strings representing the names of all
the files selected:

private ArrayList GetFilelList()
{

ArrayList fileNames = new ArrayList();

To get the selected filenames, you can walk through the source Treeview control:

foreach (TreeNode theNode in tvwSource.Nodes)

{
GetCheckedFiles (theNode, fileNames);

}

To see how this works, step into the GetCheckedFiles() method. This method is pretty
simple: it examines the node it was handed. If that node has no children (node.Nodes.Count
== 0), it is a leaf. If that leaf is checked, get the full path (by calling GetParentString() on
the node) and add it to the ArrayList passed in as a parameter:

301

Programming C#, 2nd Edition

private void GetCheckedFiles (TreeNode node, ArrayList fileNames)

{

if (node.Nodes.Count == 0)

{
if (node.Checked)

{
string fullPath = GetParentString(node);

fileNames.Add (fullPath) ;

If the node is not a leaf, recurse down the tree, finding the child nodes:

else

{

foreach (TreeNode n in node.Nodes)

{
GetCheckedFiles (n, fileNames) ;

}

This will return the ArrayList filled with all the filenames. Back in GetFileList (), use
this ArrayList of filenames to create a second ArrayList, this time to hold the actual
FileInfo objects:

ArrayList filelist = new ArraylList();

Notice that once again you do not tell the arrayList constructor what kind of object it will
hold. This is one of the advantages of a rooted type-system: the collection only needs to know
that it has some kind of object; because all types are derived from object, the list can hold
FileInfo objects as easily as it can hold string objects.

You can now iterate through the filenames in arrayList, picking out each name and
instantiating a FileInfo object with it. You can detect if it is a file or a directory by calling
the Exists property, which will return false if the File object you created is actually a
directory. If it is a File, you can add it to the new ArrayList:

foreach (string fileName in fileNames)

{

FileInfo file = new FileInfo (fileName) ;

if (file.Exists)
{
fileList.Add (file);

}
}

13.2.4.2 Sorting the list of selected files

You want to work your way through the list of selected files in large to small order so that you
can pack the target disk as tightly as possible. You must therefore sort the ArrayrList. You
can call its sort () method, but how will it know how to sort File objects? Remember, the
ArrayList has no special knowledge about its contents.

302

Programming C#, 2nd Edition

To solve this, you must pass in an IComparer interface. We'll create a class called
FileComparer that will implement this interface and that will know how to sort FileInfo
objects:

public class FileComparer : IComparer

{

This class has only one method, compare (), which takes two objects as arguments:

public int Compare (object fl, object f2)
{

The normal approach is to return 1 if the first object (£1) is larger than the second (£2), to
return -1 if the opposite is true, and to return 0 if they are equal. In this case, however, you
want the list sorted from big to small, so you should reverse the return values.

. Since this is the only use of this compare method, it is reasonable to put
«3)} this special knowledge that the sort is from big to small right into the

%' compare method itself. The alternative is to sort small to big, and have
the cal1ing method reverse the results, as you saw in Example 12-1.

To test the length of the FileInfo object, you must cast the object parameters to FileInfo
objects (which is safe, as you know this method will never receive anything else):

FileInfo filel = (FileInfo) f1;
FileInfo file2 = (FileInfo) £f2;
if (filel.Length > file2.Length)
{

return -1;
}
if (filel.Length < file2.Length)
{

return 1;

}

return 0;

- In a production program, you might want to test the type of the object
s 4 and perhaps handle the exception if the object is not of the expected
~ 4 type.
Returning to GetFileList (), you were about to instantiate the IComparer reference and

pass it to the sort () method of fileList:

IComparer comparer = (IComparer) new FileComparer();
filelList.Sort (comparer) ;

That done, you can return fileList to the calling method:

return fileList;

303

Programming C#, 2nd Edition

The calling method was btnCopy Click. Remember you went off to GetFileList() in
the first line of the event handler!

protected void btnCopy Click (object sender, System.EventArgs e)

{
ArraylList filelList = GetFilelList();

At this point you've returned with a sorted list of File objects, each representing a file
selected in the source Treeview.

You can now iterate through the list, copying the files and updating the UI:

foreach (FileInfo file in fileList)
{
try
{
lblStatus.Text = "Copying " +
txtTargetDir.Text + "\\" +
file.Name + "...";
Application.DoEvents ();

file.CopyTo (txtTargetDir.Text + "\\" +
file.Name, chkOverwrite.Checked) ;

}

catch (Exception ex)

{

MessageBox.Show (ex.Message) ;
}

}
1lblStatus.Text = "Done.";

Application.DoEvents();

As you go, write the progress to the 1b1status label and call Application.DoEvents() to
give the Ul an opportunity to redraw. Then call copyTo () on the file, passing in the target
directory obtained from the text field, and a Boolean flag indicating whether the file should be
overwritten if it already exists.

You'll notice that the flag you pass in is the value of the chkoverwrite checkbox. The
Checked property evaluates true if the checkbox is checked and fa1se if not.

The copy is wrapped in a try block because you can anticipate any number of things going
wrong when copying files. For now, handle all exceptions by popping up a dialog box with
the error, but you might want to take corrective action in a commercial application.

That's it; you've implemented file copying!

13.2.5 Handling the Delete Button Event

The code to handle the delete event is even simpler. The very first thing you do is ask the user
if she is sure she wants to delete the files:

304

Programming C#, 2nd Edition

protected void btnDelete Click
(object sender, System.EventArgs e)

{

System.Windows.Forms.DialogResult result =
MessageBox.Show (

"Are you quite sure?", // msg
"Delete Files", // caption
MessageBoxButtons.OKCancel, // buttons
MessageBoxIcon.Exclamation, // icons

MessageBoxDefaultButton.Button2); // default button

You can use the MessageBox static show() method, passing in the message you want to
display, the title "Delete Files" as a string, and flags.

e MessageBox.OKCancel asks for two buttons: ok and cancel.

e MessageBox.IconExclamation indicates that you want to display an exclamation
mark icon.

e MessageBox.DefaultButton.Button2 sets the second button (Cancel) as the default
choice.

When the wuser chooses Ok or cancel, the result is passed back as a
System.Windows.Forms.DialogResult enumerated value. You can test this value to see if
the user pressed OK:

if (result == System.Windows.Forms.DialogResult.OK)
{

If so, you can get the list of fileNames and iterate through it, deleting each as you go:

ArraylList fileNames = GetFilelList();

foreach (FileInfo file in fileNames)
{
try

{
lblStatus.Text = "Deleting " +

txtTargetDir.Text + "\\" +
file.Name + "...";
Application.DoEvents();

file.Delete();
}

catch (Exception ex)

{

MessageBox.Show (ex.Message) ;
}
}
1blStatus.Text = "Done.";
Application.DoEvents();

This code is identical to the copy code, except that the method that is called on the file is
Delete().

Example 13-3 provides the commented source code for this example.

305

Programming C#, 2nd Edition

i

. To save space, this example shows only the custom methods and leaves
“s 4. out the declarations of the windows.Forms objects as well as the
~ 4 boilerplate code produced by Visual Studio .NET. As explained in the

preface, you can download the complete source code from my web site,
http://www libertyassociates.com/.

Example 13-3. File copier source code

using System;

using System.Drawing;

using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

using System.IO;

/// <remarks>
/// File Copier - WinForms demonstration program
/77 (c) Copyright 2001 Liberty Associates, Inc.
/// </remarks>
namespace FileCopier
{
/// <summary>
/// Form demonstrating Windows Forms implementation
/// </summary>
public class Forml : System.Windows.Forms.Form

{
// < declarations of Windows widgets cut here >

/// <summary>

/// Required designer variable.

/// </summary>

private System.ComponentModel.Container components = null;

/// <summary>
/77 internal class which knows how to compare
/// two files we want to sort large to small,
/// so reverse the normal return values.
/// </summary>
public class FileComparer : IComparer
{
public int Compare (object fl, object f2)
{
FileInfo filel = (FileInfo) f1;
FileInfo file2 = (FileInfo) f£2;
if (filel.Length > file2.Length)
{
return -1;
}
if (filel.Length < file2.Length)
{
return 1;

}

return 0;

306

Programming C#, 2nd Edition

public Forml ()

{

}

//

// Required for Windows Form Designer support
//

InitializeComponent ();

// fill the source and target directory trees
FillDirectoryTree (tvwSource, true);
FillDirectoryTree (tvwTargetDir, false);

/// <summary>

/// Fill the directory tree for either the Source or
/// Target TreeView.

/// </summary>

private void FillDirectoryTree (

{

TreeView tvw, bool isSource)

// Populate tvwSource, the Source TreeView,
// with the contents of

// the local hard drive.

// First clear all the nodes.
tvw.Nodes.Clear();

// Get the logical drives and put them into the

// root nodes. Fill an array with all the

// logical drives on the machine.

string[] strDrives =
Environment.GetLogicalDrives ();

// Iterate through the drives, adding them to the tree.
// Use a try/catch block, so if a drive is not ready,
// e.g. an empty floppy or CD,
// it will not be added to the tree.
foreach (string rootDirectoryName in strDrives)
{

if (rootDirectoryName != @"C:\")

continue;
try
{

// Fill an array with all the first level
// subdirectories. If the drive is
// not ready, this will throw an exception.
DirectoryInfo dir =

new DirectoryInfo(rootDirectoryName) ;
dir.GetDirectories();

TreeNode ndRoot = new TreeNode (rootDirectoryName) ;

// Add a node for each root directory.
tvw.Nodes.Add (ndRoot) ;

307

o/

/17
/77
/77
/17
/77
/17
/77
/77
/77
/17

Programming C#, 2nd Edition

// Add subdirectory nodes.

// If Treeview is the source,
// then also get the filenames.
if (isSource)

GetSubDirectoryNodes (
ndRoot, ndRoot.Text, true);
}
else
{
GetSubDirectoryNodes (
ndRoot, ndRoot.Text, false);
}
}
// Catch any errors such as
// Drive not ready.
catch (Exception e)
{
MessageBox.Show (e.Message) ;
}
}

close for FillSourceDirectoryTree
<summary>
Gets all the subdirectories below the

passed in directory node.

Adds to the directory tree.

The parameters passed in are the parent node

for this subdirectory,

the full path name of this subdirectory,

and a Boolean to indicate

whether or not to get the files in the subdirectory.
</summary>

private void GetSubDirectoryNodes (

{

TreeNode parentNode, string fullName, bool getFileNames)

DirectoryInfo dir = new DirectoryInfo (fullName) ;
DirectoryInfo[] dirSubs = dir.GetDirectories();

// Add a child node for each subdirectory.
foreach (DirectoryInfo dirSub in dirSubs)

{

// do not show hidden folders

if ((dirSub.Attributes & FileAttributes.Hidden)
= 0)

{
continue;

}

/// <summary>

/7 Each directory contains the full path.
/77 We need to split it on the backslashes,
/17 and only use

/77 the last node in the tree.

/17 Need to double the backslash since it
/// is normally

/7 an escape character

/// </summary>
TreeNode subNode = new TreeNode (dirSub.Name) ;
parentNode.Nodes.Add (subNode) ;

308

Programming C#, 2nd Edition

// Call GetSubDirectoryNodes recursively.
GetSubDirectoryNodes (
subNode, dirSub.FullName,getFileNames) ;

}

if (getFileNames)

{
// Get any files for this node.
FileInfo[] files = dir.GetFiles();

// After placing the nodes,
// now place the files in that subdirectory.
foreach (FileInfo file in files)
{
TreeNode fileNode = new TreeNode (file.Name) ;
parentNode.Nodes.Add (fileNode) ;

// < boilerplate code cut here >

/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{
Application.Run (new Forml());

}

/// <summary>

/17 Create an ordered list of all
/17 the selected files, copy to the
/77 target directory

/// </summary>

private void btnCopy Click(object sender,
System.EventArgs e)

{
// get the list
ArrayList filelist = GetFileList();

// copy the files
foreach (FileInfo file in filelist)
{
try
{
// update the label to show progress
1blStatus.Text = "Copying " + txtTargetDir.Text +
"\\" + file.Name + "...";
Application.DoEvents();

// copy the file to its destination location

file.CopyTo (txtTargetDir.Text + "\\" +
file.Name, chkOverwrite.Checked) ;

309

Programming C#, 2nd Edition

catch (Exception ex)

{
// you may want to do more than
// just show the message
MessageBox.Show (ex.Message) ;

}

}
1blStatus.Text = "Done.";
Application.DoEvents();

}

/// <summary>
/// on cancel, exit
/// </summary>
private void btnCancel Click(object sender, System.EventArgs e)
{
Application.Exit();
}

/// <summary>
/17 Tell the root of each tree to uncheck
/17 all the nodes below
/// </summary>
private void btnClear Click(object sender, System.EventArgs e)
{
// get the top most node for each drive
// and tell it to clear recursively
foreach (TreeNode node in tvwSource.Nodes)
{
SetCheck (node, false);
}
}

/// <summary>

/// check that the user does want to delete

/17 Make a list and delete each in turn

/// </summary>

private void btnDelete Click(object sender, System.EventArgs e)

{
// ask them if they are sure
System.Windows.Forms.DialogResult result =

MessageBox.Show (

"Are you quite sure?", // msg
"Delete Files", // caption
MessageBoxButtons.OKCancel, // buttons
MessageBoxIcon.Exclamation, // icons

MessageBoxDefaultButton.Button2); // default button

// if they are sure...
if (result == System.Windows.Forms.DialogResult.OK)
{

// iterate through the list and delete them.

// get the list of selected files

ArrayList fileNames = GetFilelList();

310

Programming C#, 2nd Edition

foreach (FileInfo file in fileNames)

{

try
{
// update the label to show progress
1blStatus.Text = "Deleting " +
txtTargetDir.Text + "\\" +
file.Name + "...";

Application.DoEvents();

// Danger Will Robinson!
file.Delete();
}

catch (Exception ex)

{

// you may want to do more than
// just show the message
MessageBox.Show (ex.Message) ;

}

}
1blStatus.Text = "Done.";
Application.DoEvents();

}

/// <summary>
/77 Get the full path of the chosen directory
/// copy it to txtTargetDir
/// </summary>
private void tvwTargetDir AfterSelect (
object sender,
System.Windows.Forms.TreeViewEventArgs e)

// get the full path for the selected directory
string theFullPath = GetParentString(e.Node) ;

// if it is not a leaf, it will end with a back slash
// remove the backslash
if (theFullPath.EndsWith ("\\"))

{
theFullPath =

theFullPath.Substring (0, theFullPath.Length-1);

}
// insert the path in the text box

txtTargetDir.Text = theFullPath;
}

/// <summary>

/// Mark each node below the current

/7 one with the current value of checked

/// </summary>

private void tvwSource AfterCheck (object sender,
System.Windows.Forms.TreeViewEventArgs e)

{
// Call a recursible method.
// e.node is the node which was checked by the user.
// The state of the check mark is already
// changed by the time you get here.
// Therefore, we want to pass along

311

Programming C#, 2nd Edition

// the state of e.node.Checked.
SetCheck (e.Node, e.Node.Checked) ;
}

/// <summary>

/// recursively set or clear check marks

/// </summary>

private void SetCheck (TreeNode node, bool check)

{
// find all the child nodes from this node

foreach (TreeNode n in node.Nodes)

{
n.Checked = check; // check the node

// if this is a node in the tree, recurse
if (n.Nodes.Count != 0)
{
SetCheck (n, check) ;
}

}

/// <summary>

/17 Given a node and an array list
/17 fill the list with the names of
/17 all the checked files

/// </summary>
// Fill the ArraylList with the full paths of
// all the files checked
private void GetCheckedFiles (TreeNode node,
ArrayList fileNames)
{
// if this is a leaf...
if (node.Nodes.Count == 0)
{
// 1f the node was checked...
if (node.Checked)
{
// get the full path and add it to the arrayList
string fullPath = GetParentString (node);
fileNames.Add (fullPath) ;

}

else // if this node is not a leaf
{
// 1if this node is not a leaf
foreach (TreeNode n in node.Nodes)
{
GetCheckedFiles (n, fileNames) ;

}

312

Programming C#, 2nd Edition

/// <summary>
/77 Given a node, return the
/17 full path name
/// </summary>
private string GetParentString (TreeNode node)
{
// 1f this is the root node (c:\) return the text
if (node.Parent == null)
{
return node.Text;
}
else
{
// recurse up and get the path then
// add this node and a slash
// 1f this node is the leaf, don't add the slash
return GetParentString(node.Parent) + node.Text +
(node.Nodes.Count == AR AN

}

/// <summary>

/7 shared by delete and copy
/17 creates an ordered list of all
/17 the selected files

/// </summary>

private ArrayList GetFileList()

{
// create an unsorted array list of the full file names
ArrayList fileNames = new ArrayList();

// £ill the fileNames ArrayList with the
// full path of each file to copy
foreach (TreeNode theNode in tvwSource.Nodes)
{
GetCheckedFiles (theNode, fileNames);
}

// Create a list to hold the FileInfo objects
ArrayList filelList = new ArrayList();

// for each of the file names we have in our unsorted list
// 1f the name corresponds to a file (and not a directory)
// add it to the file 1list
foreach (string fileName in fileNames)
{

// create a file with the name

FileInfo file = new FileInfo (fileName) ;

// see if it exists on the disk

// this fails if it was a directory

if (file.Exists)

{
// both the key and the value are the file
// would it be easier to have an empty value?
filelList.Add (file);

313

Programming C#, 2nd Edition

// Create an instance of the IComparer interface
IComparer comparer = (IComparer) new FileComparer();

// pass the comparer to the sort method so that the list
// 1s sorted by the compare method of comparer.

13.3 XML Documentation Comments

C# supports a new Documentation Comment style, with three slash marks (///). You can see
these comments sprinkled throughout Example 13-3. The Visual Studio .NET editor
recognizes these comments and helps format them properly.

The C# compiler processes these comments into an XML file. You can create this file by
using the /doc command-line switch. For example, you might compile the program in
Example 13-3 with this command line:

csc Forml.cs /doc:XMLDoc.XML

You can accomplish this same operation in Visual Studio .NET by clicking the FileCopier
project icon in the Solution Explorer window, selecting View eProperty Pages on the Visual
Studio menu, and then clicking the Configuration Properties folder. Within the Configuration
Properties folder, click the Build property page and type in a name for the XML
Documentation File property to specify a name for the XML file you want to produce.

Either approach produces the file xMLDoc.xML with your comments in XML format. An
excerpt of the file that will be produced for the Filecopier application of the previous
section is shown in Example 13-4.

Example 13-4. The XML output (excerpt) for file copy

<?xml version="1.0"?>
<doc>
<assembly>
<name>FileCopier</name>
</assembly>
<members>
<member name="T:FileCopier.Forml">
<summary>
Form demonstrating Windows Forms implementation
</summary>
</member>
<member name="F:FileCopier.Forml.components">
<summary>
Required designer variable.
</summary>
</member>
<member name="F:FileCopier.Forml.tvwTargetDir">
<summary>
Tree view of potential target directories
</summary>
</member>

314

Programming C#, 2nd Edition

<member name="F:FileCopier.Forml.tvwSource">
<summary>
Tree view of source directories
includes check boxes for checking
chosen files or directories
</summary>
</member>
<member name="F:FileCopier.Forml.txtTargetDir">

The file is quite long, and although it can be read by humans, it is not especially useful in that
format. You could, however, write an XSLT file to translate the XML into HTML, or you
could read the XML document into a database of documentation.

One of the simplest things to do with the documentation comments in your source code is to
allow Visual Studio to generate a Code Comment Web Report. You choose this from the
Tools menu (Tools —>Build Comment Web Pages. . .), and the IDE does the rest. The result
is a set of HTML files that you can view from within the IDE or from a browser, as shown in
Figure 13-9.

Figure 13-9. Code comment web report

Eif o
[\ » Code Comment Web Report

Saltian | Progeck
T FileCopier.Foarm1 Class
) Pttty glisg Wisdams Farims ondem en sl o

Aotess: Fuble

Bean Clagses: Fom

Aagired s varatls
Trae i of (oterml tanget drsotonies

Trae vher of SoARGe Snemenss ndiudes chedh bores Tor cheteisg thopen Sl o
drectanms

Trae v af palental barget drectosies
Lab=al diplind progress wbes peng o daletng ks

IT ehwicka d, by cogrng we'll sveranle aaistng filkes

Whan prasied, set ol dhed baced IS S0urda e v D e
Shiks the apphb catian

Diedehes the seleched fles

Cophes the seleched fies ta the target din iy

irbama clags which knsse Bow to compars bao Alee pa past to cort lamge to emall, @0
reverse the noriial return valued

Fill tha diractory iree for it the Soumss o Tared Traeiiee.
dens A0 the subdosories Below the passed i Breomey node AdDs T T deemiry e
Tte paramerters pavesd m ot the parerk nede far thin sub=drectory, ©a Sl path neme af

this fubdirectary, 2nd a Bosleas o indicate whether or not to et me Sleg s the
wbdiractary.

Every member preceded by a documentation comment is included in the XML file via a
<member> tag added by the compiler, along with a name attribute that identifies the member.
You can also make use of predefined tags to increase the richness of the generated
documentation. For example, you can add <see> comments to reference another member in
the class or <exception> to document exception classes. A detailed discussion of XML
Documentation Comments is beyond the scope of this book, but a complete listing of
available tags can be found in the C# Programmers Reference that is included with Visual
Studio.

315

Programming C#, 2nd Edition

13.4 Deploying an Application

Now that the application works, how do you deploy it? The good news is that in .NET there is
no Registry to fuss with; you could, in fact, just copy the assembly to a new machine.

For example, you can compile the program in Example 13-3 into an assembly named
FileCopier.exe. You can then copy that file to a new machine and double-click it. Presto! It
works. No muss, no fuss.

13.4.1 Deployment Projects

For larger commercial applications, this simple approach might not be enough, sweet as it is.
Customers would like you to install the files in the appropriate directories, set up shortcuts,
and so forth.

Visual Studio provides extensive help for deployment. The process is to add a setup and
Deployment project to your application project. For example, assuming you are in the
FileCopier project, choose Add Project —>New Project from the File menu and choose
Setup and Deployment Projects. You should see the dialog box shown in Figure 13-10.

Figure 13-10. The New Project dialog box

|
Project Types: Templates: |E 5_1
| Visusl Basic Projecks = 5 -|

1 Wisusl C# Projects = =2y -

1 Visual C++ Prajects Setup Project Wish Sshup Merge Module
4 Setup and Deployment Projects Froject Project

+] Cther Projects . @

Setup Wizard Cab Project

Create & Cab project bo which files can be added,

[darme: I FleCoplerCabProject

Location: I CiiDocuments and SettingsiadministratoriMy Documentsivisual Sh ﬂ Browvess, ..

Privect will be created at Ci.. . \My Documents\Visua Shudio Projecks|FleCopierCabProject,

]| DR R)

You have a variety of choices here. For a Windows project such as this one, your choices
include:

Cab Project

Much like a ZIP file, this compresses a number of small files into an easy-to-use (and
easy-to-transport) package. This option can be combined with the others.

316

Programming C#, 2nd Edition

Merge Module
If you have more than one project that use files in common, this option helps you
make intermediate merge modules. You can then integrate these modules into the
other deployment projects.
Setup Project
This creates a setup file that automatically installs your files and resources.
Setup Wizard
Helps create one of the other types.
Remote Deploy Wizard
Helps create an installer project that can be deployed automatically.
Web Setup Project
Helps deploy a web-based project.
You would create a Cab Project first if you had many small ancillary files that had to be
distributed with your application (for example, if you had .html files, .gif files, or other
resources included with your program).
To see how this works, use the menu choice File =?Add Project —>New Project and choose
and name a Setup and Deployment Project, selecting CAB File. When you name the project
(for example, FileCopierCabProject) and click OK, you'll see that the project has been

added to your group (as shown in Figure 13-11).

Figure 13-11. The Cab project added to your group

Solution Explofer - FleCoplerca,., B X

:-',,:. Solution ‘FleCopier” (2 projects)
= _,J FileCopier
¥ = Refarsnces
] Appuico
2] AszemblyInfo.cs
=] Formi.cs
il=CapierCabPraject

&l

a 3 Sobution Explorer E Wie

Right-clicking the project brings up a context menu. Choose Add, and you have two choices:
Project Output. . . and File. . .. The latter allows you to add any arbitrary file to the Cab. The
former offers a menu of its own, as shown in Figure 13-12.

317

Programming C#, 2nd Edition

Figure 13-12. Project Output menu

x|

Provject: |Fi:Cq:\il:r _‘:J

Documentation Fles

Loeakzed razaurces

Doedoug Symibols

Conkent Fles

Source Files

o iz i
Configuration: [[ﬂ.l:th-'e} ﬂ
Description:

Contans the DL or EXE buit by the project. =

ok | cacel | hew |

Here you can choose to add sets of files to your Cab collection. The Primary output is the
target assembly for the selected project. The other files are optional elements of the selected
project that you might or might not want to distribute.

In this case, select Primary Output. The choice is reflected in the Solution Explorer, as shown
in Figure 13-13.

Figure 13-13. The modified project

ﬂ Solution FikCopier' (7 projects)
- [T FileCopier
#- |:2] References
=F] Assemblyinfo.cs
#¥] FileCoper.cs
= [FleCoplercabprogect
(2] Primary pubpak from FieCogier |

‘| | 3

" (o saltie,.. [%2 . &

You can now build this project, and the result is a .cab file (see the Visual Studio Output
window to find out where the .cab was created). You can examine this file with WinZip, as
shown in Figure 13-14. If you do not have WinZip, you can use the expand utility (-D lists the

contents of a .cab file):

318

Programming C#, 2nd Edition

Figure 13-14. The Cab file contents

Sulution Explorer - FileCopierSetu £
HyPLms o
3 Solution FlleCopier' (3 projects)
= 5/ FileCopier

+ =y References
1] App.ico
1] assamblylrfo.cs
=) Forml.cs
=
= £ Detel ek Buid
= d Rehuild . e

=2 Prims Irdise i)
- @ rscope] Ve b & gl syen
'_-'I'. Primz Add v & Regstry
O File Types
-';L| User Interface
« : ¥ Remove -_J Custom Sctions
w Rename I"j Launch Condtiarns

L Properties

C:\...\FileCopierCabProject\Debug>expand -D FileCopierCabProject.CAB
Microsoft (R) File Expansion Utility Version 5.1.2600.0

Copyright (C) Microsoft Corp 1990-1999. All rights reserved.
filecopiercabproject.cab: OSDBF.OSD

filecopiercabproject.cab: FileCopier.exe

2 files total.

You see the executable file you expect, along with another file, Osd8c0.0sd (the name of this
file may vary). Opening this file reveals that it is an XML description of the .cab file itself, as
shown in Example 13-5.

Example 13-5. The .cab file description file

<?XML version="1.0" ENCODING='UTF-8'?>
<!DOCTYPE SOFTPKG SYSTEM
"http://www.microsoft.com/standards/osd/osd.dtd">
<?XML: :namespace href="http://www.microsoft.com/standards/osd/msicd.dtd"
as="MSICD"?>
<SOFTPKG NAME="FileCopierCabProject" VERSION="1,0,0,0">
<TITLE> FileCopierCabProject </TITLE>
<MSICD: :NATIVECODE>
<CODE NAME="FileCopier">
<IMPLEMENTATION>
<CODEBASE FILENAME="FileCopier.exe">
</CODEBASE>
</IMPLEMENTATION>
</CODE>
</MSICD: :NATIVECODE>
</SOFTPKG>

13.4.2 Setup Project

To create a Setup package, add another project, choosing Setup Project. This project type is
very flexible; it allows all of your setup options to be bundled in an MSI installation file.

319

Programming C#, 2nd Edition

If you right-click the project and select Add, you see additional options in the pop-up menu.
In addition to Project Output and File, you now find Merge Module and Component. As you
did with the Cab project, use the Add option to add the Primary output to the Setup Project.

Merge Modules are mix-and-match pieces that can later be added to a full Setup project.

Component allows you to add .NET components that your distribution might need but which
might not be on the target machine.

The user interface for customizing Setup consists of a split pane whose contents are

determined by the View menu. Access the View menu by right-clicking the project itself, as
shown in Figure 13-15.

Figure 13-15. The View menu

PR e =
3 Solution FileCopier' (3 projecks)
= [T FileCopier
+- =2 References
] Assemtlyinfo.cs

] FileCoper.cs
o P
+;_| Dete 5] Buld
[;jJ E;E:j‘m"': rebuild =)
Eermy Degoy =
. iaw [| L File System
Ay b |4 Regstry
3 File Types
F9 User Interface
Tl Custom Actions
* Remove A Launch Condtions
Rename
Properties

As you make selections from the View menu, the panes in the IDE change to reflect your
choices and to offer you options.

For example, if you choose File System, the IDE opens a split-pane viewer, with a directory
tree on the left and the details on the right. Clicking the Application Folder shows the file
you've already added (the primary output), as shown in Figure 13-16.

Figure 13-16. The Application Folder

Sletopier | Formlocs [Desgr] | Fornl cs | File System (FierSetupProject) | I b x
E) File System on Targat Machine Name | Type
ad (2 Primary output From FileCopisr (Acive) Output

sl User's Deskbop
s User's Programs Menu

You are free to add or delete files. Right-clicking in the detail window brings up a context
menu, as shown in Figure 13-17.

320

Programming C#, 2nd Edition

Figure 13-17. Context menu within the File Detail window

| an Pl Folder
| Create Mew Shortcut | Project Cutput,.,, '
i rr |

View b Fie... ;
fissemibiy... {

You can see there is great flexibility here to add precisely those files you want.
13.4.3 Deployment Locations

The folder into which your files will be loaded (the Application Folder) is determined by the
Default Location. The Properties window for the Application Folder describes the Default
Location as [ProgramFilesFolder]\[Manufacturer]\[Product Name].

ProgramFilesFolder refers to the program files folder on the target machine. The
Manufacturer and the Product Name are properties of the project. If you click the Project and
examine its properties, you see that the IDE has made some good guesses, as shown in
Figure 13-18.

Figure 13-18. Setup project properties

I FleCopierSelmpPropecl Cepboamend Progecl Propes ban

= [E][=] =
Sk RRTO0r AEToon {Mona
Eathor Thesfauslt Zoenpearey Mame
Dissiriphion
Dot iact Mease T Tris Lol e sion Trug
Keywords
Lo ke sl Eraghsh (Urelend Stales)
Manufachuner Thesf sl Crenipasny Mo
Manufachureri i

ProafuchC o JEFFFFERS-00C | 7-4E A | B Ba-FCNeF 080568}
Frocictilame FileCnpier SetupProject
Femonefrevious¥iersions: Falon

Sanrchifath

Subject

SuppartPhans

SuppoitLv

Tie FleCoper SetupFrofact

UgeraieCide JFECIEERD- 1206 JECN-BECS-ZFAISIMP DBEL
‘rErsion 1.0.0

You can easily modify these properties. For example, you can modify the property
Manufacturer to change the folder in which the product will be stored under Program Files.

13.4.3.1 Creating a shortcut

If you want the install program to create a shortcut on the user's desktop, you can right-click
the Primary Output file in the Application Folder, then create the shortcut and drag it to the
user's Desktop, as shown in Figure 13-19.

321

Programming C#, 2nd Edition

Figure 13-19. Create a shortcut on the user's desktop

) File System on Target Machine
ad Applcation Folder
s User's Deskiop
s User's Programs Menu

_| Type [
Crubpak
Create shortcuk to Primary aukbput from FlieCopler (Active)

Dependencies
ExchudeFibar
CRppts

Cut

¥ Dolete
S5 Properties Window

13.4.3.2 Entries in My Documents

You can add items to the My Documents folder on the user's machine. First, right-click on
File System on Target Machine, then choose Add Special Folder —>User's Personal Data
Folder. You can then place items in the User's Personal Data Folder.

13.4.3.3 Shortcuts in the Start menu

In addition to adding a shortcut to the desktop, you might want to create a folder within the
Start 9Pr0grams menu. To do so, click the User's Program Menu folder, right-click in the
right pane, and choose Add Folder. Within that folder, you can add the Primary Output, either
by dragging or by right-clicking and choosing Add.

13.4.4 Adding Special Folders
In addition to the four folders provided for you (Application Folder, User's Desktop, User's

Personal Data Folder, User's Program Menu), there are a host of additional options. Right-
click the File System On Target Machine folder to get the menu, as shown in Figure 13-20.

322

Programming C#, 2nd Edition

Figure 13-20. Custom folder menu

anl | Fomt oo File System (Fi.erSetupProject)
I

=] fdd Special Folder » Common Files Folder | SR

s Uses's Deskiop Eonts Foldar
s User's Programs Menu

Pragram Files Folder
System Folder
User's dpolication Data Faolder

User's Fayoribes Folder
User's Persona Data Folder

User's Send To Menu

User's Stark Manu

User's Startup Folder

User's Template Folder
‘Windows Folder

Globial fssembly Cache Foldsr

Custom Folder
1

Here you can add folders for fonts, add items to the user's Favorites Folder, and so forth. Most
of these are self-explanatory.

13.4.5 Other View Windows

So far, you've looked only at the File System folders from the original View menu (pictured
in Figure 13-15).

13.4.5.1 Making changes to the Registry

The Registry window (right-click on FileCopierSetupProject, and select Registry from the
View menu) allows you to tell Setup to make adjustments to the user's Registry files, as
shown in Figure 13-21. Click any folder in this list to edit the associated properties in the
Properties window.

Figure 13-21. Setting up the Registry

"Fregstry on Target Machine
] HKEY_CLASSES_ROGT
-] HKEY CURRENT LUSER
=] Software
] [Manufackurer]
=) HEEY _LOCAL _MEaCHINE
=] Software
1 [Marwfacturer]
| HEKEY_USERS
I UserMaching Hive

, Careful! There is nothing more dangerous than touching the Registry. In
— most .NET applications this will not be needed because .NET-managed
applications do not use the Registry.

323

Programming C#, 2nd Edition

13.4.5.2 Registering file types

The File Types choice on the View menu allows you to associate application-specific file
types on the user's machine. You can also set the action to take with these files.

13.4.5.3 Managing the Ul during Setup

The View/User Interface selection lets you take direct control over the text and graphics
shown during each step of the Setup process. The workflow of Setup is shown as a tree, as
shown in Figure 13-22.

Figure 13-22. Setup workflow

=
= Skart
=] Welome
=l Installation Folder
= Confirm Installstion
=l Progress
- =p End
=] Fnished
& Administrative Install
= Bp stant
=] Wekome
=] Installation Fokder
=] Confirm Inskallation
= aﬁmﬁ
= Progress
- = End

= Finished

When you click a step in the process, the properties for that form are displayed. For example,
clicking the Welcome form under Install/Start displays the properties shown in Figure 13-23.

Figure 13-23. The Welcome form

| Welcome User Interface Calog Properties

 [5]8] =
BanneBitmap (Dosfaudth
CopyrightWarring WARNING: This compuber program i probacted by copyright by and intarnational tresties. Unauthorized
\weloomeText The installer will guide vou through the: steps required Ba ingtal [Producdtfidame] on vour computer,

The properties offer you the opportunity to change the Banner Bitmap and the text displayed
in the opening dialog box. You can add dialog boxes that Microsoft provides, or import your
own dialog boxes into the process.

13.4.5.4 Other View choices
If the workflow does not provide sufficient control, you can choose the Custom Options

choice from the View menu. You can also specify Launch conditions for the Setup process
itself.

324

Programming C#, 2nd Edition

13.4.6 Building the Setup Project

Once you've made all your choices and set all the options, choose Configuration Manager
from the Build menu and make sure your Setup Project is included in the current
configuration. Next, you can build the Setup project. The result is a single Setup file
(FileCopierSetupProject.msi) that can be distributed to your customers.

325

Programming C#, 2nd Edition

Chapter 14. Accessing Data with ADO.NET

Many real-world applications need to interact with a database. The .NET Framework provides
a rich set of objects to manage database interaction; these classes are collectively referred to
as ADO.NET.

ADO.NET looks very similar to ADO, its predecessor. The key difference is that ADO.NET
is a disconnected data architecture. In a disconnected architecture, data is retrieved from
a database and cached on your local machine. You manipulate the data on your local
computer and connect to the database only when you wish to alter records or acquire new
data.

There are significant advantages to disconnecting your data architecture from your database.
The biggest advantage is that you avoid many of the problems associated with connected data
objects that do not scale very well. Database connections are resource-intensive, and it is
difficult to have thousands (or hundreds of thousands) of simultaneous continuous
connections. A disconnected architecture is resource-frugal.

ADO.NET connects to the database to retrieve data, and connects again to update data when
you've made changes. Most applications spend most of their time simply reading through data
and displaying it; ADO.NET provides a disconnected subset of the data for your use while
reading and displaying.

Disconnected data objects work in a mode similar to that of the Web. All web sessions are
disconnected, and state is not preserved between web page requests. A disconnected data
architecture makes for a cleaner marriage with the Web.

14.1 Relational Databases and SQL

Although one can certainly write an entire book on relational databases, and another on SQL,
the essentials of these technologies are not hard to understand. A database is a repository of
data. A relational database organizes your data into tables. Consider the Northwind database
provided with Microsoft SQL Server 7, SQL Server 2000, and all versions of Microsoft
Access.

14.1.1 Tables, Records, and Columns

The Northwind database describes a fictional company buying and selling food products.
The data for Northwind is divided into 13 tables, including Customers, Employees, Orders,
Order Details, Products, and so forth.

Every table in a relational database is organized into rows, where each row represents a single
record. The rows are organized into columns. All the rows in a table have the same column
structure. For example, the Orders table has these columns: OrderID, CustomerID,
EmployeeID, OrderDate, €tC.

For any given order, you need to know the customer's name, address, contact name, and so

forth. You could store that information with each order, but that would be very inefficient.
Instead, we use a second table called Customers, in which each row represents a single

326

Programming C#, 2nd Edition

customer. In the Customers table is a column for the customeriD. Each customer has a
unique ID, and that field is marked as the primary key for that table. A primary key is the
column or combination of columns that uniquely identifies a record in a given table.

The Orders table uses the customerID as a foreign key. A foreign key is a column (or
combination of columns) that is a primary (or otherwise unique) key from a different table.
The Orders table uses the customerID (the primary key used in the Customers table) to
identify which customer has placed the order. To determine the address for the order, you can
use the customerID to look up the customer record in the Customers table.

This use of foreign keys is particularly helpful in representing one-to-many or many-to-one
relationships between tables. By separating information into tables that are linked by foreign
keys, you avoid having to repeat information in records. A single customer, for example, can
have multiple orders, but it is inefficient to place the same customer information (name,
phone number, credit limit, and so on) in every order record. The process of removing
redundant information from your records and shifting it to separate tables is called
normalization.

14.1.2 Normalization

Normalization not only makes your use of the database more efficient, but also it reduces the
likelihood of data corruption. If you kept the customer's name both in the Customers table and
also in the Orders table, you would run the risk that a change in one table might not be
reflected in the other. Thus, if you changed the customer's address in the Customers table, that
change might not be reflected in every row in the Orders table (and a lot of work would be
necessary to make sure that it was reflected). By keeping only the customer1D in Orders, you
are free to change the address in Customers, and the change is automatically reflected for each
order.

Just as C# programmers want the compiler to catch bugs at compile time rather than at
runtime, database programmers want the database to help them avoid data corruption. The
compiler helps avoid bugs in C# by enforcing the rules of the language; for example, you
can't use a variable you've not defined. SQL Server and other modern relational databases
avoid bugs by enforcing constraints that you request. For example, the Customers database
marks the CustomerID as a primary key. This creates a primary key constraint in the database,
which ensures that each customer1D is unique. If you were to enter a customer named Liberty
Associates, Inc. with the customer1D of LIBE, and then tried to add Liberty Mutual Funds
with a customerID of LIBE, the database would reject the second record because of the
primary key constraint.

14.1.3 Declarative Referential Integrity

Relational databases use Declarative Referential Integrity (DRI) to establish constraints on
the relationships among the various tables. For example, you might declare a constraint on the
Orders table that dictates that no order can have a CustomerID unless that customerID
represents a valid record in Customers. This helps avoid two types of mistakes. First, you
cannot enter a record with an invalid customerID. Second, you cannot delete a Customer
record if that CustomerID is used in any order. The integrity of your data and their
relationships are thus protected.

327

Programming C#, 2nd Edition

14.1.4 SQL

The most popular language for querying and manipulating databases is SQL, usually
pronounced "sequel." SQL is a declarative language, as opposed to a procedural language,
and it can take a while to get used to working with a declarative language when you are used
to languages such as C#.

The heart of SQL is the query. A query is a statement that returns a set of records from the
database.

For example, you might like to see all the CompanyNames and CustomerIDs of every record in
the Customers table in which the customer's address is in London. To do so, write:

Select CustomerID, CompanyName from Customers where city = 'London'

This returns the following six records as output:

CustomerID CompanyName

AROUT Around the Horn
BSBEV B's Beverages

CONSH Consolidated Holdings
EASTC Eastern Connection
NORTS North/South

SEVES Seven Seas Imports

SQL is capable of much more powerful queries. For example, suppose the Northwinds
manager would like to know what products were purchased in July of 1996 by the customer
"Vins et alcools Chevalier." This turns out to be somewhat complicated. The Order Details
table knows the product1D for all the products in any given order. The Orders table knows
which customerIDs are associated with an order. The Customers table knows the
CcustomerID for a customer, and the Products table knows the Product name for the
pProductID. How do you tie all this together? Here's the query:

select 0.0rderID, productName

from [Order Details] od

join orders o on 0.0rderID = od.OrderID

join products p on p.ProductID = od.ProductID

join customers c on o.CustomerID = c.CustomerID

where c.CompanyName = 'Vins et alcools Chevalier'

and orderDate >= '7/1/1996' and orderDate <= '7/31/1996'

This asks the database to get the order1D and the product name from the relevant tables.
First, look at Order Details (which we've called od for short), then join that with the Orders
table for every record in which the order1D in the Order Details table is the same as the
orderID in the Orders table.

When you join two tables, you can say either "Get every record that exists in either table"
(this is called an outer join), or you can say, as I've done here, "Get only those records that
exist in both tables" (called an inner join). That is, an inner join states to get only the records
in Orders that match the records in Order Details by having the same value in the order1D
field (on o.0rderid = od.Orderid).

328

Programming C#, 2nd Edition

. SQL joins are inner joins by default. Writing join orders is the same as
a2 writing inner join orders.

wh

The SQL statement goes on to ask the database to create an inner join with Products, getting
every row in which the Product 1D in the Products table is the same as the Product1D in the
Order Details table.

Then create an inner join with customers for those rows where the customerID is the same in
both the Orders table and the Customer table.

Finally, tell the database to constrain the results to only those rows in which the companyName
is the one you want, and the dates are in July.

The collection of constraints finds only three records that match:

OrderID ProductName

10248 Queso Cabrales

10248 Singaporean Hokkien Fried Mee
10248 Mozzarella di Giovanni

This output shows that there was only one order (10248) in which the customer had the right
ID and in which the date of the order was July 1996. That order produced three records in the
Order Details table, and using the product IDs in these three records, we got the product
names from the Products table.

You can use SQL not only for searching for and retrieving data, but also for creating,
updating, and deleting tables and generally managing and manipulating both the content and
the structure of the database.

For a full explanation of SQL and tips on how to put it to best use, I recommend Transact
SOL Programming, by Kline, Gould, and Zanevsky (O'Reilly & Associates, 1999).

14.2 The ADO.NET Object Model

The ADO.NET object model is rich, but at its heart it is a fairly straightforward set of classes.
The most important of these is the pataset. The Dataset represents a subset of the entire
database, cached on your machine without a continuous connection to the database.

Periodically, you'll reconnect the pataset to its parent database, update the database with
changes you've made to the pataset, and update the pataset with changes in the database
made by other processes.

This is highly efficient, but to be effective the pataset must be a robust subset of the
database, capturing not just a few rows from a single table, but also a set of tables with all the
metadata necessary to represent the relationships and constraints of the original database. This
is, not surprisingly, what ADO.NET provides.

329

Programming C#, 2nd Edition

The pataset is composed of DataTable objects as well as DataRelation objects. These are
accessed as properties of the Dataset object. The Tables property returns a
DataTableCollection, which in turn contains all the bataTable objects.

14.2.1 DataTables and DataColumns

The pataTable can be created programmatically or as a result of a query against the database.
The pataTable has a number of public properties, including the columns collection, which
returns the DataColumnCollection object, which in turn consists of DataColumn objects.
Each patacolumn object represents a column in a table.

14.2.2 DataRelations

In addition to the Tables collection, the Dataset has a Relations property, which returns a
DataRelationCollection consisting of DataRelation objects. Each DataRelation
represents a relationship between two tables through patacolumn objects. For example, in the
Northwind database the Customers table is in a relationship with the Orders table through the
CustomerID column.

The nature of the relationship is one-to-many, or parent-to-child. For any given order, there
will be exactly one customer, but any given customer might be represented in any number of
orders.

14.2.3 Rows

DataTable's Rows collection returns a set of rows for any given table. Use this collection to
examine the results of queries against the database, iterating through the rows to examine each
record in turn. Programmers experienced with ADO are often confused by the absence of the
RecordSet With its moveNext and movePrevious commands. With ADO.NET, you do not
iterate through the pataset; instead, access the table you need, and then you can iterate
through the rRows collection, typically with a foreach loop. You'll see this in the first example
in this chapter.

14.2.4 Data Adapter

The pataset is an abstraction of a relational database. ADO.NET uses a DataAdapter as a
bridge between the Dataset and the data source, which is the underlying database.
DataAdapter provides the Fi11 () method to retrieve data from the database and populate
the Dataset.

14.2.5 DBCommand and DBConnection

The DBConnection object represents a connection to a data source. This connection can be
shared among different command objects. The DBCommand object allows you to send a
command (typically a SQL statement or a stored procedure) to the database. Often these
objects are implicitly created when you create your Dataset, but you can explicitly access
these objects, as you'll see in a subsequent example.

330

Programming C#, 2nd Edition

14.2.6 The DataAdapter Object

Rather than tie the pataset object too closely to your database architecture, ADO.NET uses a
DataAdapter object to mediate between the Dataset object and the database. This decouples
the pataset from the database and allows a single DataSet to represent more than one
database or other data source.

14.3 Getting Started with ADO.NET

Enough theory! Let's write some code and see how this works. Working with ADO.NET can
be complex, but for many queries, the model is surprisingly simple.

In this example, create a simple Windows Form, with a single list box in it called
1bCustomers. Populate this list box with bits of information from the Customers table in the
Northwind database.

Begin by creating a Dataadapter object:

SglDataAdapter DataAdapter =
new SglDataAdapter (
commandString, connectionString);

The two parameters are commandString and connectionString. The commandString 1S
the SQL statement that will generate the data you want in your DataSet:

string commandString =
"Select CompanyName, ContactName from Customers";

The connectionstring is whatever string is needed to connect to the database. In my case,
I'm running SQL Server on my development machine where I have left the system
administrator (sa) password blank (I know, I know, not a good idea. I'll fix it by the time this
book is released. Honest.):

string connectionString =
"server=localhost; uid=sa; pwd=; database=northwind";

If you do not have SQL Server installed, select Samples and Quickstart Tutorials from
the Microsoft .NET Framework SDK program group. A web page appears, giving you the
option to install the .NET Framework Samples Database, which includes an installation of
SQL Server. After you install the samples database, set up the QuickStarts (this will create
the northwind sample database). To use this database, you need this connection string:

"server=(local) \\NetSDK; Trusted Connection=yes; database=northwind"

With the pataadapter in hand, you're ready to create the pataset and fill it with the data
that you obtain from the SQL select statement:

DataSet DataSet = new DataSet ();
DataAdapter.Fill (DataSet, "Customers") ;

331

Programming C#, 2nd Edition

That's it. You now have a pataset, and you can query, manipulate, and otherwise manage the
data. The pataset has a collection of tables; you care only about the first one because you've
retrieved only a single record:

DataTable dataTable = DataSet.Tables[0];

You can extract the rows you've retrieved with the SQL statement and add the data to the list
box:

foreach (DataRow dataRow in dataTable.Rows)
{
1bCustomers.Items.Add (
dataRow["CompanyName"] +
" (" + dataRow["ContactName"] + ")");

The list box is filled with the company name and contact name from the table in the database,
according to the SQL statement we passed in. Example 14-1 contains the complete source for
this example.

Example 14-1. Working with ADO.NET

using System;

using System.Drawing;

using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

using System.Data.SglClient;

namespace ProgrammingCSharpWinForm

{

public class ADOForml : System.Windows.Forms.Form

{
private System.ComponentModel.Container components;
private System.Windows.Forms.ListBox lbCustomers;

public ADOForml ()
{

InitializeComponent ();

// connect to my local server, northwind db
string connectionString = "server=(local) \\NetSDK;" +
"Trusted Connection=yes; database=northwind";

// get records from the customers table
string commandString =
"Select CompanyName, ContactName from Customers";

// create the data set command object
// and the DataSet

SglDataAdapter DataAdapter =

new SqglDataAdapter (

commandString, connectionString) ;

DataSet DataSet = new DataSet();

332

Programming C#, 2nd Edition

// £ill the data set object
DataAdapter.Fill (DataSet, "Customers") ;

// Get the one table from the DataSet
DataTable dataTable = DataSet.Tables[0];

// for each row in the table, display the info
foreach (DataRow dataRow in dataTable.Rows)
{
lbCustomers.Items.Add (
dataRow|["CompanyName"] +
" (" + dataRow["ContactName"] + ")");

}

protected override void Dispose (bool disposing)
{
if (disposing)
{
if (components == null)
{
components.Dispose();
}
}
base.Dispose (disposing) ;

}

private void InitializeComponent ()

{
this.components =

new System.ComponentModel.Container ();

this.lbCustomers = new System.Windows.Forms.ListBox ();
1bCustomers.Location = new System.Drawing.Point (48, 24);
1bCustomers.Size = new System.Drawing.Size (368, 160);
1bCustomers.TabIndex = 0;
this.Text = "ADOFrml";
this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
this.ClientSize = new System.Drawing.Size (464, 273);
this.Controls.Add (this.lbCustomers) ;

public static void Main(string[] args)

{
Application.Run (new ADOForml ());

}

With just a few lines of code, you have extracted a set of data from the database and displayed
it in the list box, as shown in Figure 14-1.

333

Programming C#, 2nd Edition

Figure 14-1. Output from Example 14-1

Cachus Comidas para lievar [Paticio Simpaon) ﬂ
Centio comercaal Moctesuma [Francizco Chang)

Chiop-zuey Chiness [vang Wang)

Coméicio Mineinn [Pedo Alonza)

Corsobdated Holdngs [Elzabeth Brown)

Deachenbla Delikstessen [Sven Ottleb]

D monde erntier [Janine Latiune]

Easten Connechon [Ann Devon)

Einzt Handel [Roland Mendsd]

Famila fiquibaldo [dia Cie)

FIS5A Fabnca Inter. Salchechas 5.A. [Dhego Fosl]

Felies goumandes [Matne Rancé] ﬂ

The eight lines of code accomplish the following tasks:

e Create the string for the connection:

string connectionString = "server=(local)\\NetSDK;" +
"Trusted Connection=yes; database=northwind";

e Create the string for the select statement:

string commandString =
"Select CompanyName, ContactName from Customers";

e Create the Dataadapter and pass in the selection and connection strings:

SglDataAdapter DataAdapter = new SqglDataAdapter (
commandString, connectionString);

e C(reate a new DataSet object:

DataSet DataSet = new DataSet ();

e Fill the pataset from the Customers table using the bataadapter:

DataAdapter.Fill (DataSet, "Customers") ;

e Extract the DataTable from the Dataset:

DataTable dataTable = DataSet.Tables[0];

e Use the pDataTable to fill the list box:

foreach (DataRow dataRow in dataTable.Rows)

{
1bCustomers.Items.Add (
dataRow["CompanyName"] +
" (" + dataRow["ContactName"] + ")");

334

Programming C#, 2nd Edition

14.4 Using OLE DB Managed Providers

The previous example used one of the two managed providers currently available with
ADO.NET: the SQL Server Managed Provider and OLE DB Managed Provider. The SQL
Server Managed Provider is optimized for SQL Server and is restricted to working with SQL
Server databases. The more general solution is the OLE DB Managed Provider, which will
connect to any OLE DB provider, including Access.

You can rewrite Example 14-1 to work with the Northwind database using Access rather than
SQL Server with just a few small changes. First, you need to change the connection string:

string connectionString =
"provider=Microsoft.JET.OLEDB.4.0; "
+ "data source = c:\\nwind.mdb";

This query connects to the Northwind database on C drive. (Your exact path might be
different.)

Next, change the DataAdapter object to an ADODataAdapter rather than a SqlbataAdapter:

OleDbDataAdapter DataAdapter =
new OleDbDataAdapter (commandString, connectionString);

Also be sure to add a using statement for the 01eDb namespace:

using System.Data.0leDb;

This design pattern continues throughout the two Managed Providers; for every object whose
class name begins with "Sql," there is a corresponding class beginning with "OleDb."
Example 14-2 illustrates the complete OLE DB version of Example 14-1.

Example 14-2. Using the ADO Managed Provider

using System;

using System.Drawing;

using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

using System.Data.OleDb;

namespace ProgrammingCSharpWinForm

{

public class ADOForml : System.Windows.Forms.Form

{
private System.ComponentModel.Container components;
private System.Windows.Forms.ListBox lbCustomers;

public ADOForml ()
{

InitializeComponent ();

335

Programming C#, 2nd Edition

// connect to Northwind Access database

string connectionString =
"provider=Microsoft.JET.OLEDB.4.0; "
+ "data source = c:\\nwind.mdb";

// get records from the customers table
string commandString =
"Select CompanyName, ContactName from Customers";

// create the data set command object
// and the DataSet

OleDbDataAdapter DataAdapter =

new OleDbDataAdapter (

commandString, connectionString) ;

DataSet DataSet = new DataSet():;

// f£ill the data set object
DataAdapter.Fill (DataSet, "Customers") ;

// Get the one table from the DataSet
DataTable dataTable = DataSet.Tables[0];

// for each row in the table, display the info
foreach (DataRow dataRow in dataTable.Rows)
{
1bCustomers.Items.Add (
dataRow["CompanyName"] +
" (" + dataRow["ContactName"] + ")");

}

protected override void Dispose(bool disposing)
{
if (disposing)
{
if (components == null)
{
components.Dispose();
}
}
base.Dispose (disposing) ;

}

private void InitializeComponent ()

{
this.components =

new System.ComponentModel.Container ();

this.lbCustomers = new System.Windows.Forms.ListBox ();
1bCustomers.Location = new System.Drawing.Point (48, 24);
lbCustomers.Size = new System.Drawing.Size (368, 160);
1bCustomers.TabIndex = 0;
this.Text = "ADOFrml";
this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
this.ClientSize = new System.Drawing.Size (464, 273);
this.Controls.Add (this.lbCustomers);

336

Programming C#, 2nd Edition

public static void Main(string[] args)

{
Application.Run (new ADOForml ());

}
}

The output from this is identical to that from the previous example, as shown in Figure 14-2.

Figure 14-2. Using the ADO Managed Provider

Cachuz Comidas para ey ar [Patnco Simpson) ﬂ
| Cenbin comercial Moctzzuma [Francisos Chang)
| Chop-suey Chinese [r'ang Wang)
| Coméicio Mineino [Pedo Afonzo)
| Coreobdated Holdngs [Elzabath Brown)
| Drachenbhat Delikstesren [Swen Otleb)
[monde erties [Janne Labune|
| Eastern Conrection [fnn Deworn)
| Ernzt Hande! [Roland Mended)
Famiia Saquibaldo [bna Cuz)
| FISS4 Fabnca Inter. Salchichas 54, [Deego Floel]
Foles goumandes [Maitine Rancé) ﬂ

The OLE DB Managed Provider is more general than the SQL Managed Provider and can, in
fact, be used to connect to SQL Server as well as to any other OLE DB object. Because the
SQL Server Provider is optimized for SQL Server, it will be more efficient to use the SQL
Server-specific provider when working with SQL Server. In time, any number of specialized
managed providers will be available.

14.5 Working with Data-Bound Controls

ADO.NET provides good support for "data-bound" objects; that is, objects that can be tied to
a particular data set, such as one retrieved from a database by ADO.NET.

A simple example of a data-bound control is the pataGrid control provided with both
Windows Forms and Web Forms.

14.5.1 Populating a DataGrid

In its simplest use, a DataGrid is easy to implement. Once again, first create a Dataset and
then fill it from the Customers table of the Northwind database, but this time, rather than
iterating through the rows of the data set and writing the output to a list box, you can simply
bind the Customers table in your data set to a DataGrid control.

To illustrate, alter Example 14-1 by deleting the list box from the form you created in the
previous example and replace it with a bataGrid. The default name provided by the Visual
Studio design tool is DataGridl, but let's change it to CustomerDataGrid. After the data set
is created and filled, bind the pataGrid through its Datasource property:

CustomerDataGrid.DataSource=
DataSet.Tables["Customers"] .DefaultView;

Example 14-3 provides the complete source code for this example.

337

Programming C#, 2nd Edition

Example 14-3. Using a DataGrid control

using
using
using
using
using
using
using

System;
System.Drawing;
System.Collections;
System.ComponentModel;
System.Windows.Forms;
System.Data;
System.Data.SglClient;

namespace ProgrammingCSharpWindows.Form

{

public class ADOForm3 : System.Windows.Forms.Form

{

private System.ComponentModel.Container
components;

private System.Windows.Forms.DataGrid
CustomerDataGrid;

public ADOForm3()
{

InitializeComponent ();

// set up connection and command strings
string connectionString = "server=(local)\\NetSDK;" +
"Trusted Connection=yes; database=northwind";
string commandString =
"Select CompanyName, ContactName, ContactTitle, "
+ "Phone, Fax from Customers";

// create a data set and fill it
SglDataAdapter DataAdapter =

new SglDataAdapter (commandString, connectionString);
DataSet DataSet = new DataSet ();
DataAdapter.Fill (DataSet, "Customers") ;

// bind the DataSet to the grid
CustomerDataGrid.DataSource=
DataSet.Tables["Customers"] .DefaultView;

}

protected override void Dispose (bool disposing)
{
if (disposing)
{
if (components == null)
{
components.Dispose();
}
}

base.Dispose (disposing) ;

private void InitializeComponent()
{
this.components =
new System.ComponentModel.Container ();
this.CustomerDataGrid =
new System.Windows.Forms.DataGrid ();
CustomerDataGrid.BeginInit ();

338

Programming C#, 2nd Edition

CustomerDataGrid.Location =

new System.Drawing.Point (8, 24);
CustomerDataGrid.Size =

new System.Drawing.Size (656, 224);
CustomerDataGrid.DataMember = "";
CustomerDataGrid.TabIndex = 0;
CustomerDataGrid.Navigate +=

new System.Windows.Forms.NavigateEventHandler

(this.dataGridl Navigate);
this.Text = "Using the Data Grid";
this.AutoScaleBaseSize =

new System.Drawing.Size (5, 13);
this.ClientSize = new System.Drawing.Size (672, 273);
this.Controls.Add (this.CustomerDataGrid);
CustomerDataGrid.EndInit ();

}

protected void dataGridl Navigate
(object sender, System.Windows.Forms.NavigateEventArgs ne)

{
}

public static void Main(string[] args)

{
Application.Run (new ADOForm3());

}

The code is embarrassingly easy to implement and the results are quite impressive, as shown
in Figure 14-3. Notice that every field in the record is represented by a column in
the pataGrid, and that the titles of the columns are the names of the fields. All of this is
the default behavior of the patacrid.

Figure 14-3. Using the DataGrid

Busing the Data Grid =l E3 |

CompangMam | ContactName ContaciTile | Phone Fau
B's Bavesages Victona Achw Sales Repres (171 555121 [nul)
Cactus Comd Palncio Simps Ssles Agent [1] 1355555 (1] 1354852
Cenbio comer Framcisco Ch Maiketing Ma [5) 5655-3392 (5] 9557293

Chop-zwey Ch Yang'Wang Ownes M52.076545 [nul]

Coméicio Min Pedio Alonso
Corolidated Elzabeth Bio
Crachenbha O Swen Ottish
[monde ent Janine Labne
Eastein Comn Ann Devon
Einzt Handel Aoaland Mend
Famila Argub Ana Cruz

Sales Azzocia [11) 5557647
Sales Repres [171) 555-228
Ordes Adminiz 0241039123
Civuaries 4067 8888
Seles Agent [171] 555-023
Sales Manage TETH-3425
Markahng Azz [11] b55.9857

[ruih]

0241053428
40.67.89.99
(1718 555-337
TEVS-326
[ruil]

339

Programming C#, 2nd Edition

14.5.2 Customizing the DataSet

It is possible to control precisely every aspect of creating the pataset, rather than using the
default settings. In the previous examples, when you created the pataset you passed in a
commandString and a connectionString:

SglDataAdapter DataAdapter =
new SglDataAdapter (commandString, connectionString);

These were assigned internally to a SglCommand object and a SglConnection object,
respectively. You can instead explicitly create these objects to gain finer control over their
properties.

In this next example, you'll give the class four new class members:

private System.Data.SglClient.SglConnection myConnection;
private System.Data.DataSet myDataSet;

private System.Data.SglClient.SglCommand myCommand;
private System.Data.SglClient.SglDataAdapter DataAdapter;

The connection is created by instantiating a SglConnection object with the connection string:

string connectionString = "server=(local)\\NetSDK;" +
"Trusted Connection=yes; database=northwind";
myConnection = new System.Data.Sgl.SglConnection (connectionString);

and then it is opened explicitly:

myConnection.Open();

By hanging on to this connection, you can reuse it (as you'll see in a subsequent example) and
you can also use its transaction support if needed.

Next, explicitly create the bataset object and set one of its properties:

myDataSet = new System.Data.DataSet();
myDataSet.CaseSensitive=true;

Setting CaseSensitive to true indicates that string comparisons within pataTable objects
are case-sensitive.

Next, explicitly create the sglCommand object and give that new command object the
connection object and the text for the command:

myCommand = new System.Data.SglClient.SglCommand()
myCommand.Connection=myConnection;
myCommand.CommandText = "Select * from Customers";

Finally, create the sqlpataAdapter object and assign to it the SqlCcommand object you just

established. Then tell the pataset how to map the table columns, using the table you're
searching, and instruct the sgqlDataadapter to fill the pataset object:

340

Programming C#, 2nd Edition

DataAdapter = new System.Data.SglClient.SglDataAdapter();
DataAdapter.SelectCommand= myCommand;
DataAdapter.TableMappings.Add ("Table", "Customers") ;
DataAdapter.Fill (myDataSet) ;

That done, you're ready to fill the pataGrid:

dataGridl.DataSource=
myDataSet.Tables["Customers"] .DefaultView;

(This time I've used the default name for the bataGrid.)

Example 14-4 provides the complete source code.

Example 14-4. Customizing a Dataset

namespace ProgrammingCSharpWindows.Form

{
using
using
using
using
using
using
using

System;
System.Drawing;
System.Collections;
System.ComponentModel;
System.Windows.Forms;
System.Data;
System.Data.SglClient;

public class ADOForml : System.Windows.Forms.Form

{

private System.ComponentModel.Container components;
private System.Windows.Forms.DataGrid dataGridl;

//

private System.Data.ADO.ADOConnection myConnection;

private System.Data.SglClient.SglConnection myConnection;
private System.Data.DataSet myDataSet;

private System.Data.SglClient.SglCommand myCommand;
private System.Data.SglClient.SglDataAdapter DataAdapter;

public ADOForml ()

{

InitializeComponent ();

// create the connection object and open it

string connectionString = "server=(local)\\NetSDK;" +
"Trusted Connection=yes; database=northwind";
myConnection = new

System.Data.SglClient.SglConnection (connectionString);
myConnection.Open();

// create the DataSet and set a property
myDataSet = new System.Data.DataSet();
myDataSet.CaseSensitive=true;

// create the SglCommand object and assign the

// connection and the select statement

myCommand = new System.Data.SglClient.SglCommand();
myCommand.Connection=myConnection;
myCommand.CommandText = "Select * from Customers";

341

Programming C#, 2nd Edition

// create the DataAdapter object and pass in the

// SQL Command object and establish the table mappings
DataAdapter = new System.Data.SglClient.SglDataAdapter();
DataAdapter.SelectCommand= myCommand;
DataAdapter.TableMappings.Add ("Table", "Customers") ;

// Tell the DataAdapter object to fill the DataSet
DataAdapter.Fill (myDataSet) ;

// display it in the grid
dataGridl.DataSource=
myDataSet.Tables["Customers"] .DefaultView;

}

protected override void Dispose(bool disposing)
{
if (disposing)
{
if (components == null)
{
components.Dispose();
}
}
base.Dispose (disposing) ;

}

private void InitializeComponent ()

{
this.components = new System.ComponentModel.Container ();
this.dataGridl = new System.Windows.Forms.DataGrid ();
dataGridl.BeginInit ();
dataGridl.Location = new System.Drawing.Point (24, 32);
dataGridl.Size = new System.Drawing.Size (480, 408);

dataGridl.DataMember = "";
dataGridl.TabIndex = 0;
this.Text = "Using the Data Grid";

this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
this.ClientSize = new System.Drawing.Size (536, 501);
this.Controls.Add (this.dataGridl);
dataGridl.EndInit ();

}

public static void Main(string[] args)

{
Application.Run (new ADOForml ());

}

The result of this is shown in Figure 14-4. Now that you have this control, you are in a
position to get much fancier in your use of the grid.

342

Programming C#, 2nd Edition

Figure 14-4. Taking direct control of the DataGrid

Busing the Data Grid i=1 E3 |

CompanyMam | Contacthame ContaciTile | Phone Fau -
B's Bevesages Victona Ashes Sales Fepres [171] 555121 jrul]

Cachus Comd Palrcio Simpe Sales dgent (1) 1355665 (1] 1354852

Cenbio comer Francisco Ch Maikebng Ma [5) B55-3392 [5] 5557293
Chiopezwey Ch Yang'Wang Owne 452076545 [rul]

Comercio Min Pedia Atanzo Sales Azsoca [11] 555 TE47 [nul)

Corgoldated Elzabeth Bro Sales Repres (171) 555228 (171) 285919
Crachenbls O Sven Ottliek Order Adminiz 0241-033123 0247023428

[monde ent Janine Labren Cwnes 40E7 8282 406709499

Essten Corn AnnDevan Ssles Agend [171) 555023 171] 555-337

Emnst Handel Roland Mend Sales Manage TETS-3425 TE/S-3426

Famila Argub Ana Cniz Markahng Azz [11] 5553857 [nul) ;l

14.5.3 Combining Data Tables

With the work you've done so far, it is easy now to build a grid that reflects the relationship
between two or more tables. For example, you might like to examine all the orders that each
customer has placed over some period of time.

Relational databases are built on the idea that one table relates to other tables. The
relationship between Orders and Customers is that every order includes a customer1D, which
is a foreign key in Orders and a primary key in Customers. Thus, you have a one-to-many
relationship, in which one customer can have many orders, but each order has exactly one
customer. You'd like to be able to display this relationship in the grid.

ADO.NET makes this fairly easy, and you can build on the previous example. This time, you
want to represent two tables, Customers and Orders, rather than just the Customers table. To
do so, you need only a single pataset object and a single Connection object, but you need
two SglCommand objects and two SglDataAdapter objects.

After you create the sqlpataadapter for Customers, just as you did in the previous example,
go on to create a second command and adapter for Orders:

myCommand?2 = new System.Data.SglClient.SglCommand();
DataAdapter2 = new System.Data.SglClient.SglDataAdapter();
myCommand?2.Connection = myConnection;

myCommand2 .CommandText = "SELECT * FROM Orders";

Notice that Dataadapter2 can reuse the same connection as used by the earlier batardapter
object. The new commandText is different, of course, because you are searching a different
table.

Next, associate the second sglDatandapter object with this new command and map its table
to Orders. You can then fill the pataset with the second table:

DataAdapter2.SelectCommand = myCommand?2;
DataAdapter2.TableMappings.Add ("Table", "Orders");
DataAdapter2.Fill (myDataSet) ;

343

Programming C#, 2nd Edition

You now have a single pataset with two tables. You can display either or both of the tables,
but in this example you'll do more. There is a relationship between these tables, and you want
to display that relationship. Unfortunately, the pataset is ignorant of the relationship, unless
you explicitly create a DataRelation object and add it to the pataset.

Start by declaring an object of type DataRelation:

System.Data.DataRelation dataRelation;

This relation will represent the relationship in the database between customers.CustomerID
and Orders.CustomerID. To model this, you need a pair of bataColumn objects:

System.Data.DataColumn dataColumnl;
System.Data.DataColumn dataColumn2;

Each pataColumn must be assigned a column in the table within the pataset:

dataColumnl =
myDataSet.Tables["Customers"].Columns|["CustomerID"];

dataColumn2 =
myDataSet.Tables["Orders"].Columns["CustomerID"];

You're now ready to create the batarRelation object, passing into the constructor the name of
the relationship and the two DatacColumn objects:

dataRelation =
new System.Data.DataRelation ("CustomersToOrders",
dataColumnl, dataColumn2) ;

You can now add that relation to the Dataset:

myDataSet.Relations.Add (dataRelation) ;

Next, create a DataViewManager object that provides a view of the pataset for the
DataGrid, and set the DataGrid.DataSource property to that view:

DataViewManager DataSetView =
myDataSet.DefaultViewManager;
dataGridl.DataSource = DataSetView;

Finally, because the pataGrid now has more than one table, you must tell the grid which

table is the "parent" table, or the one table to which many other tables can relate. Do this by
setting the DataMember property as shown:

dataGridl.DataMember= "Customers";

Example 14-5 provides the complete source for this process.

344

Programming C#, 2nd Edition

Example 14-5. Using a DataGrid with two tables

using
using
using
using
using
using

System;
System.Drawing;
System.Collections;
System.ComponentModel;
System.Windows.Forms;
System.Data;

namespace ProgrammingCSharpWindows.Form

{

using System.Data.SglClient;

public class ADOForml : System.Windows.Forms.Form

{

private System.ComponentModel.Container components;
private System.Windows.Forms.DataGrid dataGridl;

// private System.Data.ADO.ADOConnection myConnection;
private System.Data.SglClient.SglConnection myConnection;
private System.Data.DataSet myDataSet;

private System.Data.SglClient.SglCommand myCommand;
private System.Data.SglClient.SglCommand myCommand?2;
private System.Data.SglClient.SglDataAdapter DataAdapter;
private System.Data.SqglClient.SglDataAdapter DataAdapter2;

public ADOForml ()

InitializeComponent ();

// create the connection

string connectionString = "server=(local)\\NetSDK;" +
"Trusted Connection=yes; database=northwind";
myConnection = new

System.Data.SglClient.SglConnection (connectionString);
myConnection.Open();

// create the data set
myDataSet = new System.Data.DataSet();
myDataSet.CaseSensitive=true;

// set up the command and DataSet command for the first table
myCommand = new System.Data.SglClient.SglCommand();
myCommand.Connection=myConnection;

myCommand.CommandText = "Select * from Customers";
DataAdapter = new System.Data.SglClient.SglDataAdapter();
DataAdapter.SelectCommand= myCommand;
DataAdapter.TableMappings.Add ("Table", "Customers") ;
DataAdapter.Fill (myDataSet) ;

// set up the command and DataSet command for the second table
myCommand?2 = new System.Data.SglClient.SglCommand();
DataAdapter2 = new System.Data.SglClient.SglDataAdapter();

myCommand? .Connection = myConnection;
myCommand?2.CommandText = "SELECT * FROM Orders";
DataAdapter2.SelectCommand = myCommand?2;
DataAdapter2.TableMappings.Add ("Table", "Orders");

DataAdapter2.Fill (myDataSet) ;

345

Programming C#, 2nd Edition

// establish the relationship between the tables
System.Data.DataRelation dataRelation;
System.Data.DataColumn dataColumnl;
System.Data.DataColumn dataColumn2;

dataColumnl =
myDataSet.Tables["Customers"].Columns["CustomerID"];
dataColumn2 =
myDataSet.Tables["Orders"].Columns["CustomerID"];
dataRelation =

new System.Data.DataRelation (
"CustomersToOrders",
dataColumnl,

dataColumn2) ;

// add the relation object to the data set
myDataSet.Relations.Add(dataRelation);

// set up the grid's view and member data and display it

DataViewManager DataSetView =
myDataSet.DefaultViewManager;

dataGridl.DataSource = DataSetView;

dataGridl.DataMember= "Customers";

}

protected override void Dispose(bool disposing)
{
if (disposing)
{
if (components == null)
{
components.Dispose();
}
}
base.Dispose (disposing) ;

}

private void InitializeComponent()

{

this.components = new System.ComponentModel.Container ();
this.dataGridl = new System.Windows.Forms.DataGrid ();
dataGridl.BeginInit ();

//Q@this.TrayHeight = 0;

//@this.TrayLargelIcon = false;

//@this.TrayAutoArrange = true;

dataGridl.Location = new System.Drawing.Point (24, 32);
dataGridl.Size = new System.Drawing.Size (480, 408);

dataGridl.DataMember = "";
dataGridl.TabIndex = 0;
this.Text = "Multiple Tables";

this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
this.ClientSize = new System.Drawing.Size (536, 501);
this.Controls.Add (this.dataGridl);
dataGridl.EndInit ();

}

public static void Main(string[] args)

{
Application.Run (new ADOForml ());

}

346

Programming C#, 2nd Edition

The result is impressive. Figure 14-5 shows the grid with one customer chosen.
The CustomersToOrders link is open under customer ID cacTu.

Figure 14-5. All the customers, with a CustomersToOrders link open

Bruitiple Tables (O] =]

CugtomeslD | Comparg®lam Contacitlame | ConbactTille | Addiess Ciby -
B BOMNAFP Bon app’ Lauremce Lebi Owiner 12wz des B Marzeidls
 MEATTM™ Bottorn-Dolar Elzabeth Line Accownbng M 22 Toawazee Trawasse
@ BSBEY B's Beverager Victona Ashw Sales Aepes Fauntieoy Cr London
& B CACTU Cacluz Comid Pabico Simps Sakes dgert Cenilo 333 B ussos &
B CENTC Cenlio camer Francisco Ch Marketing Ma Sieras de Gi Mésico D,
@ CHOPS Chopezuey Ch ‘fang'wang Owner Hauptzh. 23 Bemn
! OO i Comércio M Pedro Aforso Sales Assooia Av, dos Luzia Sao Pauc
B CONSH Consolidsted Elizabeth Bro Sales Repes Berkeley Gaed Londen
B DRACD Diracherblut D Sven Otlieb Order Admink: Walzerseg 21 Aachen
@ DUsOn [monde ent Janine Labeun Owner E7.rue des 0 Mantes
@ EASTC Easlem Conn AnnDeven Sales dgent 35 Eing Geor London
B ERNSH Eret Handel Roland Mend Sales Manage Eichgasze & Giaz
@ Famis Familia Arqub Asiz Cruz Marketing Asz Fua Oids, 52 Sao Padc
|| F1554 FISSA Faone DiegoRoel Accountng M OF Maorslzaza Madnd
B FOLIG Fobes gouma Maitine Ranc Assistant Sale 184, chaussé Lile
@ FOLED Fol ochifaH Maia Laizzon Owner Bleargatan 24 Bracke
[FRANE Frarkenvesza Pater Franken Marketing Ma Barines Platz Munchen
B3| FRAMR Framce restay Camme Schmd Maketing Ma 54, rus Royal Mantes
B FRANS Franchi 5. pA. Paolo decoti Sales Aepre: Via Monle Bia Taino
. miFnAR Eims Bamatha | an Bodione ©alar Mansna s daem Lichoa o
‘| [N

Clicking the link opens all the orders for that customer, as shown in Figure 14-6.

Figure 14-6. All the orders for the chosen customer

T

4 Lustomers: o . CACTU ame: Cactus Cormdas para levar 3
DidelD | CustomedD ' EmplopesiD | OrderDate Requiredliate | Shippedliste

» [EE CACTU B A2N|T ORIINET wANET

e CacTU] 12ATNET 14 ey
10219 CACTU 2 177450 24N e 1ARA DA
10581 CACTU 4 TR INATE AT

e CACTU 7 FIONEWE F2NE|E A130E8

111054 CACTU g ARAME SRR (rdl

#

4 3

347

Programming C#, 2nd Edition

14.6 Changing Database Records

So far, you've retrieved data from a database, but you haven't manipulated its records in
any way. Using ADO.NET, it is of course possible to add records, change an existing record,
or delete a record altogether.

In a typical implementation, you might work your way through the following steps:

1. Fill the tables for your pataset using a stored procedure or SQL.

2. Display the data in various DataTable objects within your Dataset by either binding
to a control or looping through the rows in the tables.

3. Change data in individual pataTable objects by adding, modifying, or deleting
DataRow Objects.

4. Invoke the GetChanges () method to create a second Dataset that features only the
changes to the data.

5. Check for errors in the second newly created pataset by examining the HasErrors
property. If there are errors, check the HasErrors property of each DataTable in the
DataSet. If the table has errors, invoke the GetErrors () method of the pataTable
and get back an array of DataRow objects with errors. On each row you can examine
the RowError property for specific information about the error, which you can then

resolve.
6. Merge the second pata set with the first.
7. Call the update() method on the pDataAdapter object and pass in the second

(changed) pataset.
8. Invoke the acceptcChanges () method on the DatasSet, or invoke RejectChanges ()
to cancel the changes.

This process gives you very fine control over the update to your data as well as an opportunity
to fix any data that would otherwise cause an error.

In the following example, you'll create a dialog box that displays the contents of the Customer
table in Northwinds. The goal is to test updating a record, adding a new record, and deleting a
record. As always, I'll keep the code as simple as possible, which means eliminating many of
the error-checking and exception-handling routines you might expect in a production
program.

Figure 14-7 shows the somewhat crude but useful form I've built to experiment with these
features of ADO.NET.

348

Programming C#, 2nd Edition

Figure 14-7. The ADO update form

‘W rustomers Update Form [_ [Of =]

Blondesddsl pre & fis [Frédéngus Citesux) :J
Bolido Comidas preparadas [Martin Sommen)

Bon app’ [Lawence Lebihen)

Bottom Dollar Markets [Eizabeth Lincolk)

B's Beverages [Viclana dshwaorth)

Cactuz: Comidas para levar [Patncio Simpson)

Cerfio comescial Moctezuma [Francizco Chang) ﬂ
Mew Customer Name: | Delate
Eme b} e
Company Mame I City I
Contact Mame l Zip l
Contact Tile | Fhaone |

Presz Mew, Update o Deleta

This form consists of a list box (1bCustomers), a button for Update (btnUpdate), an
associated text box (txtCustomerName), and a Delete button (btnbelete). There is also a set
of eight text fields that are used in conjunction with the New button (btnNew). These text
fields represent eight of the fields in the Customers table in the Northwind database. There is
also a label (1b1Message) that you can use for writing messages to the user (it currently says
Press New, Update, or Delete).

14.6.1 Accessing the Data

First, create the DataAdapter object and the Dataset as private member variables, along with
the pataTable:

private SglDataAdapter dataAdapter;
private DataSet dataSet;
private DataTable dataTable;

This enables you to refer to these objects from various member methods. Start by creating
strings for the connection and the command that will get you the table you need:

string connectionString = "server=(local)\\NetSDK;" +
"Trusted Connection=yes; database=northwind";
string commandString = "Select * from Customers";

These strings are passed as parameters to the SqlDataAdapter constructor:

dataAdapter =
new SglDataAdapter (commandString, connectionString);

A DataAdapter may have four SQL commands associated with it. Right now, we have only

one: datahAdapter.SelectCommand. The InitializeCommands() method creates the
rmnahﬁng three: InsertCommand, UpdateCommand, and DeleteCommand.
InitializeCommands() uses the Addparms method to associate a column in each SQL

command with the columns in the modified rows:

349

Programming C#, 2nd Edition

private void AddParms (SglCommand cmd, params string[] cols) {
// Add each parameter
foreach (String column in cols) {
cmd.Parameters.Add (
"@" + column, SglDbType.Char, 0, column);

InitializeCommands() creates each SQL command in turn, using placeholders that
correspond to the column argument passed to AddParm():

private void InitializeCommands()

{

// Reuse the SelectCommand's Connection.
SglConnection connection =
(SglConnection) dataAdapter.SelectCommand.Connection;

// Create an explicit, reusable insert command
dataAdapter.InsertCommand = connection.CreateCommand();
dataAdapter.InsertCommand.CommandText =

"Insert into customers " +
" (CustomerId, CompanyName, ContactName, ContactTitle, " +
" Address, City, PostalCode, Phone) " +
"values (@CustomerId, @CompanyName, @ContactName, " +

" @ContactTitle, @Address, @City, @PostalCode, @Phone)";
AddParms (dataAdapter.InsertCommand,

"CustomerId", "CompanyName", "ContactName", "ContactTitle",

"Address", "City", "PostalCode", "Phone");

// Create an explicit update command
dataAdapter.UpdateCommand = connection.CreateCommand();

dataAdapter.UpdateCommand.CommandText = "update Customers " +
"set CompanyName = (@CompanyName where CustomerID = @CustomerId";
AddParms (dataAdapter.UpdateCommand, "CompanyName", "CustomerID");

// Create an explicit delete command

dataAdapter.DeleteCommand = connection.CreateCommand();
dataAdapter.DeleteCommand.CommandText =
"delete from customers where customerID = @CustomerId";

AddParms (dataAdapter.DeleteCommand, "CustomerID");

The patandapter uses these three commands to modify the table when you invoke Update (
)

Back in the constructor, you can now create the bDataset and fill it with the sq1DataAdapter
object you've just created:

dataSet = new DataSet();
dataAdapter.Fill (DataSet, "Customers") ;

Display the table contents by calling the PopulateLB() method, which is a private method
that fills the list box from the contents of the single table in the pataset:

350

Programming C#, 2nd Edition

dataTable = dataSet.Tables[0];
1bCustomers.Items.Clear();
foreach (DataRow dataRow in dataTable.Rows)

{
1bCustomers.Items.Add (
dataRow["CompanyName"] +
" (" + dataRow["ContactName"] + ")");

14.6.2 Updating a Record

The form is now displayed, and you're ready to update a record. Highlight a record and fill in
a new customer name in the topmost text field. When you press Update, read the resulting
name and put it into the chosen record.

The first task is to get the specific row the user wants to change:

DataRow targetRow = dataTable.Rows[lbCustomers.SelectedIndex];

Declare a new object of type pataRow and initialize it with a reference to the specific row in
the DataTable's Rows collection that corresponds to the selected item in the list box.
Remember that pataTable was declared as a member variable and initialized in the
PopulateLB() method shown in the previous section.

You can now display the name of the company you're going to update:

1blMessage.Text = "Updating " + targetRow["CompanyName"];
Application.DoEvents();

- The call to the static method DoEvents() of the Application class
«3) causes the application to process Windows messages and paint the
%' screen with the message. If you were to leave this line out, the current

thread would dominate the processor and the messages would not be
printed until the button handler completes its work.

Call BeginEdit () on the DataRow to put the row into editing mode. This suspends events on
the row so that you could, if you chose, edit a number of rows at once without triggering
validation rules (there are no validation rules in this example). It is good form to bracket
changes on bataRows with calls to BeginEdit () and EndEdit ():

targetRow.BeginEdit ();
targetRow["CompanyName"] = txtCustomerName.Text;
targetRow.EndEdit ();

The actual edit is to the column CompanyName within the targetRow object, which is set to
the text value of the text control txtCustomerName. The net effect is that the companyName

field in the row is set to whatever the user put into that text box.

Notice that the column you want is indexed within the row by the name of that column. In this
case, the name will match the name that is used in the database, but this is not required. When

351

Programming C#, 2nd Edition

you created the pataSet, you could have used the TableMappings () method to change the
names of the columns.

Having edited the column, you are ready to check to make sure there are no errors. First,
extract all the changes made to the pataset (in this case, there will be only one change) using
the GetChanges() method, passing in a DataRowState enumeration to indicate that you
want only those rows that have been modified. GetChanges () returns a new DataSet object:

DataSet dataSetChanged =
dataSet.GetChanges (DataRowState.Modified) ;

Now you can check for errors. To simplify the code, I've included a flag to indicate that all is
OK. If you find any errors, rather than trying to fix them, just set the flag to false and don't
make the updates:

bool okayFlag = true;
if (dataSetChanged.HasErrors)

{
okayFlag = false;
string msg = "Error in row with customer ID ";

foreach (DataTable theTable in dataSetChanged.Tables)
{
if (theTable.HasErrors)

{

DataRow[] errorRows = theTable.GetErrors();

foreach (DataRow theRow in errorRows)

{
msg = msg + theRow["CustomerID"];
}
}
}
1blMessage.Text = msg;

First test to see whether the new data record set has any errors by checking the HasErrors
property. If HasErrors 1S true, there are errors; set the Boolean okayFlag to false, and then
go on to discover where the error lies. To do so, iterate through all the tables in the new
database (in this case, there is only one); if a table has errors, you'll get an array of all the
rows in that table with errors (shown here as the errorRows array).

Then iterate through the array of rows with errors, handling each in turn. In this case, you just
update the message on the dialog box; however, in a production environment you might
interact with the user to fix the problem.

If the okayFlag is still true after testing HasErrors, there were no errors and you are ready
to update the database:

if (okayFlag)
{
dataAdapter.Update (dataSetChanged, "Customers") ;

352

Programming C#, 2nd Edition
This causes the pataAdapter object to create the necessary command text to update the
database. Next, update the message:

1blMessage.Text = "Updated " + targetRow|["CompanyName"];
Application.DoEvents();

You now must tell the pataset to accept the changes and then repopulate the list box from
the Dataset:

dataSet.AcceptChanges();
PopulatelB();

If okayFlag is false, there are errors; in this example, we'd just reject the changes:

else
dataSet.RejectChanges();

14.6.3 Deleting a Record

The code for handling the Delete button is even simpler. First, get the target row:

DataRow targetRow =
dataTable.Rows[1lbCustomers.SelectedIndex];

and form the delete message:
string msg = targetRow["CompanyName"] + " deleted. ";

You don't want to show the message until the row is deleted, but you need to get it now
because after you delete the row it will be too late!

You're now ready to mark the row for deletion:

targetRow.Delete();

o &

o Calling AcceptChanges () on the pDataset causes AcceptChanges ()
4. to be called on each table within the pDataset. This in turn causes
%% AcceptChanges () to be called on each row in those tables. Thus the

one call to dataSet.AcceptChanges() cascades down through all the
contained tables and rows.

Next, you need to call update () and AcceptChanges(), and then refresh the list box.
However, if this operation fails, the row will still be marked for deletion. If you then try to
issue a legitimate command, such as an insertion, update, or another deletion, the
DataAdapter will try to commit the erroneous deletion again, and the whole batch will fail
because of that delete. In order to avert this situation, wrap the remaining operations in a try
block and call RejectChanges () if they fail:

353

Programming C#, 2nd Edition

// update the database

try

{
dataAdapter.Update (dataSet, "Customers") ;
dataSet.AcceptChanges();
// repopulate the list box without the deleted record
PopulatelB();

// inform the user
1blMessage.Text = msg;
Application.DoEvents();

}

catch (SglException ex)

{
dataSet.RejectChanges();
MessageBox.Show (ex.Message) ;

}

- Deleting records from the Customers database might cause an exception
o g if the record deleted is constrained by database integrity rules. For
"4+ example, if a customer has orders in the Orders table, you cannot delete

the customer until you delete the orders. To solve this, the following
example will create new Customer records that you can then delete at
will.

14.6.4 Creating New Records

To create a new record, the user will fill in the fields and press the New button. This will fire
the btnNew Click event, which is tied to the btnNew C1lick event handling method:

btnNew.Click += new System.EventHandler (this.btnNew Click);

In the event handler, call bataTable.NewRow (), which asks the table for a new DataRow
object:

DataRow newRow = dataTable.NewRow();

This is very elegant because the new row that the pataTable produces has all the necessary
DataColumns for this table. You can just fill in the columns you care about, taking the text
from the user interface (UI):

newRow ["CustomerID"] = txtCompanyID.Text;
newRow ["CompanyName"] = txtCompanyName.Text;
newRow ["ContactName"] = txtContactName.Text;
newRow ["ContactTitle"] = txtContactTitle.Text;
newRow ["Address"] = txtAddress.Text;

newRow ["City"] = txtCity.Text;

newRow ["PostalCode"] = txtZip.Text;

newRow ["Phone"] = txtPhone.Text;

Now that the row is fully populated, just add it back to the table:

dataTable.Rows.Add (newRow) ;

354

Programming C#, 2nd Edition

The table resides within the pataset, so all you have to do is tell the pataadapter object to
update the database with the pataset and accept the changes:

dataAdapter.Update (dataSet, "Customers") ;
dataSet.AcceptChanges();

Next, update the user interface:

lblMessage.Text = "Updated!"™;
Application.DoEvents();

You can now repopulate the list box with your new added row and clear the text fields so that
you're ready for another new record:

PopulatelB();
ClearFields();

ClearFields () is a private method that simply sets all the text fields to empty strings. That
method and the entire program are shown in Example 14-6.

Example 14-6. Updating, deleting, and adding records

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Data.SglClient;

namespace ProgrammingCSharpWindows.Form

{

public class ADOForml : System.Windows.Forms.Form
{

private System.ComponentModel.Container components;
private System.Windows.Forms.Label label9;
private System.Windows.Forms.TextBox txtPhone;
private System.Windows.Forms.Label labelS8;
private System.Windows.Forms.TextBox txtContactTitle;
private System.Windows.Forms.Label label7;
private System.Windows.Forms.TextBox txtZip;
private System.Windows.Forms.Label label6;
private System.Windows.Forms.TextBox txtCity;
private System.Windows.Forms.Label label5;
private System.Windows.Forms.TextBox txtAddress;
private System.Windows.Forms.Label label4;
private System.Windows.Forms.TextBox txtContactName;
private System.Windows.Forms.Label label3;
private System.Windows.Forms.TextBox txtCompanyName;
private System.Windows.Forms.Label label2;
private System.Windows.Forms.TextBox txtCompanyID;
private System.Windows.Forms.Label labell;
private System.Windows.Forms.Button btnNew;
private System.Windows.Forms.TextBox txtCustomerName;
private System.Windows.Forms.Button btnUpdate;
private System.Windows.Forms.Label lblMessage;
private System.Windows.Forms.Button btnDelete;
private System.Windows.Forms.ListBox lbCustomers;

355

Programming C#, 2nd Edition

// the DataSet, DataAdapter, and DataTable are members
// so that we can access them from any member method.
private SglDataAdapter dataAdapter;

private DataSet dataSet;

private DataTable dataTable;

public ADOForml ()
{

InitializeComponent ();

string connectionString = "server=(local)\\NetSDK;" +

"Trusted Connection=yes; database=northwind";
string commandString = "Select * from Customers";
dataAdapter =

new SglDataAdapter (commandString, connectionString);
InitializeCommands ();

dataSet = new DataSet();
dataAdapter.Fill (dataSet, "Customers") ;
PopulatelB();

private void AddParms (SqlCommand cmd, params string[] cols)
// Add each parameter
foreach (String column in cols) {
cmd.Parameters.Add (
"@" 4+ column, SglDbType.Char, 0, column);

}

private void InitializeCommands()
{
// Reuse the SelectCommand's Connection.
SglConnection connection =
(SglConnection) dataAdapter.SelectCommand.Connection;

// Create an explicit, reusable insert command
dataAdapter.InsertCommand = connection.CreateCommand();
dataAdapter.InsertCommand.CommandText =

"Insert into customers " +
" (CustomerId, CompanyName, ContactName, ContactTitle,
" Address, City, PostalCode, Phone) " +
"values (@CustomerId, @CompanyName, @ContactName, " +

" @ContactTitle, @Address, @City, @PostalCode, @Phone)";

AddParms (dataAdapter.InsertCommand,

"CustomerId", "CompanyName", "ContactName", "ContactTitle",

"Address", "City", "PostalCode", "Phone");

// Create an explicit update command
dataAdapter.UpdateCommand = connection.CreateCommand();

dataAdapter.UpdateCommand.CommandText = "update Customers " +

"set CompanyName = (@CompanyName where CustomerID = @CustomerId";
AddParms (dataAdapter.UpdateCommand, "CompanyName", "CustomerID");

// Create an explicit delete command
dataAdapter.DeleteCommand = connection.CreateCommand();
dataAdapter.DeleteCommand.CommandText =

"delete from customers where customerID = @CustomerId";

AddParms (dataAdapter.DeleteCommand, "CustomerID");

356

Programming C#, 2nd Edition

// £ill the list box with columns from the Customers table
private void PopulatelB()
{
dataTable = dataSet.Tables[0];
lbCustomers.Items.Clear();
foreach (DataRow dataRow in dataTable.Rows)
{
1bCustomers.Items.Add (
dataRow["CompanyName"] + " (" +
dataRow ["ContactName”"] + ")");

protected override void Dispose(bool disposing)
{
if (disposing)
{
if (components == null)
{

components.Dispose();

}
base.Dispose (disposing) ;

}

private void InitializeComponent()
{
this.components = new System.ComponentModel.Container ();
this.txtCustomerName = new System.Windows.Forms.TextBox ();
this.txtCity = new System.Windows.Forms.TextBox ();
this.txtCompanyID = new System.Windows.Forms.TextBox ();
this.lblMessage = new System.Windows.Forms.Label ();
this.btnUpdate = new System.Windows.Forms.Button ();
this.txtContactName = new System.Windows.Forms.TextBox ();
this.txtZip = new System.Windows.Forms.TextBox ();
this.btnDelete = new System.Windows.Forms.Button ();
this.txtContactTitle = new System.Windows.Forms.TextBox ();
this.txtAddress = new System.Windows.Forms.TextBox ();
this.txtCompanyName = new System.Windows.Forms.TextBox ();
this.label5 = new System.Windows.Forms.Label ();
this.label6 = new System.Windows.Forms.Label (
this.label7 = new System.Windows.Forms.Label (
(
(

)
)7
)7
)

’

this.label8 = new System.Windows.Forms.Label
this.label9 = new System.Windows.Forms.Label
this.labeld4d = new System.Windows.Forms.Label ();
this.lbCustomers = new System.Windows.Forms.ListBox ();
this.txtPhone = new System.Windows.Forms.TextBox ();
this.btnNew = new System.Windows.Forms.Button ();

this.labell = new System.Windows.Forms.Label ();

this.label?2 new System.Windows.Forms.Label ();

this.label3 = new System.Windows.Forms.Label ();
//@this.TrayHeight = 0;

//@this.TrayLargelIcon = false;

//@this.TrayAutoArrange = true;

txtCustomerName.Location = new System.Drawing.Point (256, 120);
txtCustomerName.TabIndex = 4;

txtCustomerName.Size = new System.Drawing.Size (160, 20);
txtCity.Location = new System.Drawing.Point (384, 245);
txtCity.TabIndex = 15;

txtCity.Size = new System.Drawing.Size (160, 20);

357

Programming C#, 2nd Edition

txtCompanyID.Location = new System.Drawing.Point (136, 216);
txtCompanyID.TabIndex 7;
txtCompanyID.Size = new System.Drawing.Size (160, 20);
1blMessage.Location = new System.Drawing.Point (32, 368);
1blMessage.Text = "Press New, Update or Delete";
1lblMessage.Size = new System.Drawing.Size (416, 48);
1blMessage.TabIndex = 1;
btnUpdate.Location = new System.Drawing.Point (32, 120);
btnUpdate.Size = new System.Drawing.Size (75, 23);
btnUpdate.TabIndex = 0;
btnUpdate.Text = "Update";
btnUpdate.Click +=

new System.EventHandler (this.btnUpdate Click);
txtContactName.Location = new System.Drawing.Point (136, 274);
txtContactName.TabIndex = 11;
txtContactName.Size = new System.Drawing.Size (160, 20);
txtZip.Location = new System.Drawing.Point (384, 274);
txtZip.TabIndex 17;
txtZip.Size = new System.Drawing.Size (160, 20);
btnDelete.Location = new System.Drawing.Point (472, 120);
btnDelete.Size = new System.Drawing.Size (75, 23);
btnDelete.TabIndex = 2;
btnDelete.Text = "Delete";
btnDelete.Click +=

new System.EventHandler (this.btnDelete Click);
txtContactTitle.Location = new System.Drawing.Point (136, 303);
txtContactTitle.TabIndex = 12;
txtContactTitle.Size = new System.Drawing.Size (160, 20);
txtAddress.Location = new System.Drawing.Point (384, 216);
txtAddress.TabIndex = 13;
txtAddress.Size = new System.Drawing.Size (160, 20);
txtCompanyName.Location = new System.Drawing.Point (136, 245);
txtCompanyName.TabIndex = 9;
txtCompanyName.Size = new System.Drawing.Size (160, 20);
label5.Location = new System.Drawing.Point (320, 252);
label5.Text = "City";
label5.Size = new System.Drawing.Size (48, 16);
label5.TabIndex = 14;
label6.Location = new System.Drawing.Point (320, 284);
label6.Text = "Zip";
label6.Size = new System.Drawing.Size (40, 16);
label6.TabIndex = 16;
label7.Location = new System.Drawing.Point (40, 312);
label7.Text = "Contact Title";
label7.Size = new System.Drawing.Size (88, 16);
label7.TabIndex = 28;
label8.Location = new System.Drawing.Point (320, 312);
label8.Text = "Phone";
label8.Size = new System.Drawing.Size (56, 16);
label8.TabIndex = 20;
label9.Location = new System.Drawing.Point (120, 120);
label9.Text = "New Customer Name:";
label9.Size = new System.Drawing.Size (120, 24);
label9.TabIndex = 22;
labeld.Location = new System.Drawing.Point (320, 224);
labeld.Text = "Address";
labeld4.Size = new System.Drawing.Size (56, 16);
labeld.TabIndex = 26;
1bCustomers.Location = new System.Drawing.Point (32, 16);
1bCustomers.Size = new System.Drawing.Size (512, 95);
1lbCustomers.TabIndex = 3;

358

}

txtPhone.Location =
txtPhone.TabIndex
txtPhone.Size = new System.Drawing.Size (160,
(472,

btnNew

btnNew.
btnNew.
btnNew.
btnNew.

labell
labell
labell
labell
label?2
label?2
label?2
label?2
label3
label3
label3
label3

18;

Location = new System.Drawing.Point
Size = new System.Drawing.Size (75,
TabIndex = 25;
Text = "New";

Click += new System.EventHandler (this.btnNew Click);
.Location = new System.Drawing.Point
.Text = "Company ID";

.Size = new System.Drawing.Size (88,
.TabIndex = 6;

.Location = new System.Drawing.Point
.Text = "Company Name";

.Size = new System.Drawing.Size (88,
.TabIndex = 8;

.Location = new System.Drawing.Point
.Text = "Contact Name";

.Size = new System.Drawing.Size (88,
.TabIndex = 10;

this.Text = "Customers Update Form";

this.AutoScaleBaseSize = new System.Drawing.Size

new System.Drawing.Point

Programming C#, 2nd Edition

23);

(40,

16);

(40,

16);

(40,

16);

this.ClientSize = new System.Drawing.Size (584,
this.Controls.Add (this.label?9);

this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (this.label3);
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (
this.Controls.Add (

this.txtPhone) ;
this.label8);
this.txtContactTitle);
this.label?7);
this.txtZip);
this.labelo6) ;
this.txtCity);
this.label));
this.txtAddress) ;
this.labeld);
this.txtContactName) ;

this.txtCompanyName) ;
this.label2);
this.txtCompanyID) ;
this.labell);
this.btnNew) ;
this.txtCustomerName) ;
this.btnUpdate) ;
this.lblMessage) ;
this.btnDelete);
this.lbCustomers) ;

// handle the new button click

protected void btnNew Click (object sender,

{

// create a new row, populate it

DataRow newRow = dataTable.NewRow() ;

newRow ["CustomerID"] = txtCompanyID.Text;
newRow ["CompanyName"] = txtCompanyName.Text;
newRow ["ContactName"] = txtContactName.Text;
newRow ["ContactTitle"] = txtContactTitle.Text;
newRow ["Address"] = txtAddress.Text;
newRow ["City"] = txtCity.Text;

newRow ["PostalCode"] = txtZip.Text;

newRow ["Phone"] = txtPhone.Text;

(384,

20) ;
336);

224) ;

252);

284) ;

(5,
421);

System.EventArgs e)

303);

359

// add the new row to the table
dataTable.Rows.Add (newRow) ;

// update the database

try

{
dataAdapter.Update (dataSet, "Customers") ;
dataSet.AcceptChanges();

// inform the user
1blMessage.Text = "Updated!";
Application.DoEvents();

// repopulate the list box
PopulatelB();
// clear all the text fields
ClearFields();

}

catch (SglException ex)

{
dataSet.RejectChanges();
MessageBox.Show (ex.Message) ;

}

}

// set all the text fields to empty strings
private void ClearFields()

{

ww.,
’

txtCompanyID.Text =
txtCompanyName.Text = "";
txtContactName.Text = "";
txtContactTitle.Text = "";
txtAddress.Text = "";
txtCity.Text = "";
txtZip.Text = "";
txtPhone.Text = "";

}

// handle the update button click

protected void btnUpdate Click (object sender, System.EventArgs e)

{
// get the selected row

DataRow targetRow = dataTable.Rows[lbCustomers.SelectedIndex];

// inform the user

1blMessage.Text = "Updating " + targetRow["CompanyName"];

Application.DoEvents();

// edit the row
targetRow.BeginEdit ();

targetRow["CompanyName"] = txtCustomerName.Text;

targetRow.EndEdit ();

// get each row that changed
DataSet dataSetChanged =
dataSet.GetChanges (DataRowState.Modified) ;

Programming C#, 2nd Edition

360

}

//

Programming C#, 2nd Edition

test to make sure all the changed rows are without errors

bool okayFlag = true;

if
{

}

(dataSetChanged.HasErrors)

okayFlag = false;
string msg = "Error in row with customer ID ";

// examine each table in the changed DataSet
foreach (DataTable theTable in dataSetChanged.Tables)
{
// if any table has errors, find out which rows
if (theTable.HasErrors)
{
// get the rows with errors
DataRow[] errorRows = theTable.GetErrors();

// iterate through the errors and correct
// (in our case, just identify)
foreach (DataRow theRow in errorRows)
{
msg = msg + theRow["CustomerID"];
}
}

}
1blMessage.Text = msg;

if we have no errors
(okayFlag)

// update the database
dataAdapter.Update (dataSetChanged, "Customers") ;

// inform the user
1blMessage.Text = "Updated " + targetRow["CompanyName"];
Application.DoEvents();

// accept the changes and repopulate the list box
dataSet.AcceptChanges();
PopulatelB();

else // if we had errors, reject the changes

dataSet.RejectChanges();

// handle the delete button click

protected void btnDelete Click (object sender,

{

// get the selected row

DataRow targetRow = dataTable.Rows[lbCustomers.SelectedIndex];

// prepare message for user

string msg = targetRow["CompanyName"] + " deleted. ";

w

// delete the selected row
targetRow.Delete ();

System.EventArgs e)

361

Programming C#, 2nd Edition

// update the database

try

{
dataAdapter.Update (dataSet, "Customers") ;
dataSet.AcceptChanges();
// repopulate the list box without the deleted record
PopulatelB();

// inform the user
1blMessage.Text = msg;
Application.DoEvents();

}
catch (SglException ex)

{
dataSet.RejectChanges();
MessageBox.Show (ex.Message) ;

}
}

public static void Main(string[] args)

{
Application.Run (new ADOForml ());

}

Figure 14-8 shows the filled-out form just before pressing the New button and Figure 14-9
shows the form immediately after adding the new record.

Figure 14-8. Getting ready to add a new record

/W customers Update Form [[Of %]

GROSELLAF estaurante (Manuel Pereirg) ﬂ
Hanan Camwas [Mano Pontes)

HILARIOH Abagtos [Catlo: Heméndez)

Hurgry Copote Impoet Stooe [voshi Latimer]

Huswgry Ol &l-Miaghl Grocers [Palricia Meokenna)

|zbard Tradeg [Halen Bannalt)

Firighch Ezzen [Phiip Cramer) ﬂ
Upsclabes t Mew Customer Mame: [Delate
Compary (D |LiBE Address 1100 Main Street
Comperw Mame |Libsry Associztes, Inc. Cits R e
R [Jesse Libey Zip [GEEE]
Contact Tils |Presicent Phone 5176551212
Mew

Presz Mew, Update o Delate

362

Programming C#, 2nd Edition

Figure 14-9. After adding the new record

Diie WWandeinde Fuh [Rita Miiber) ﬂ
Warban Heskku [Pk ko Koskitalo)

W elington Importadoa (Paula Paerte)

wWhite Clover Markets [Fail Jablonski)

wilmnan Eala [Math Eattunen]

‘Wlski Zajazd [Zbyszek Peshzerevscz) j
Lizerly Associzstes, Inc. [Jesee Libamy) it

Lipedate [Mew Customer Name: | Dielate

Compaw D | R
Compary Mame | Cily I
Contact Wame | Zip |
Contact Titke I Fhone I

Note that the new record is appended to the end of the list and the text fields are cleared.

14.7 ADO.NET and XML

In this chapter, I have demonstrated the kinds of data access that users have come to expect
from ADO and shown how the new ADO.NET data access framework provides such support
through its class libraries. I would be remiss, however, if I failed to mention that ADO.NET
also provides complete support for XML. Most interesting is its support for presenting the
contents of a data set as either a collection of tables, as we have explored in this chapter, or as
an XML document.

The tight integration of ADO.NET and XML and its applications are beyond the scope of this
book, but complete information can be found in the .NET Framework SDK Reference.

363

Programming C#, 2nd Edition

Chapter 15. Programming Web Applications with
Web Forms

Rather than writing traditional Windows desktop and client-server applications, more and
more developers are now writing web-based applications, even when their software is for
desktop use. There are many obvious advantages. For one, you do not have to create as much
of the user interface; you can let Internet Explorer and Netscape Navigator handle a lot of it
for you. Another, perhaps bigger advantage is that distribution of revisions is faster, easier,
and less expensive. When I worked at an online network that predated the Web, we estimated
our cost of distribution for each upgrade at $1 million per diskette (remember diskettes?).
Web applications have virtually zero distribution cost. The third advantage of web
applications is distributed processing. With a web-based application, it is far easier to provide
server-side processing. The Web provides standardized protocols (e.g., HTTP, HTML, and
XML) to facilitate building n-tier applications.

The NET technology for building web applications (and dynamic web sites) is ASP.NET,
which provides a rich collection of types for building web applications in its System.Web and
System.Web.UI namespaces. In this chapter, the focus is on where ASP.NET and C#
programming intersect: the creation of Web Forms. (For coverage of ASP.NET alone, see my
upcoming book, Programming ASP.NET, O'Reilly, 2002.)

Web Forms bring Rapid Application Development (RAD) techniques (such as those used in
Windows Forms) to the development of web applications. As with Windows Forms, drag and
drop controls onto a form and write the supporting code either inline or in code-behind pages.
With Web Forms, however, the application is deployed to a web server, and users interact
with the application through a standard browser.

15.1 Understanding Web Forms

Web Forms implement a programming model in which web pages are dynamically generated
on a web server for delivery to a browser over the Internet. They are, in some ways, the
successor to ASP pages, and they marry ASP technology with traditional programming.

With Web Forms, you create an HTML page with static content, and you write C# code to
generate dynamic content. The C# code runs on the server, and the data produced is integrated
with your static HTML to create the web page. What is sent to the browser is standard HTML.

Web Forms are designed to run on any browser, with the server rendering the correct
browser-compliant HTML. You can do the programming for the logic of the Web Form in
any .NET language. I will of course use C#, which is arguably the language of choice, though
some ASP developers who have used VBScript might opt for VB.NET.

Just as with Windows Forms, you can create Web Forms in Notepad (or another editor of
your choice) rather than in Visual Studio. Many developers will choose to do so, but Visual
Studio makes the process of designing and testing Web Forms much easier.

Web Forms divide the user interface into two parts: the visual part or user interface (UI), and

the logic that lies behind it. This is very similar to developing Windows Forms as shown in
Chapter 14, but with Web Forms the UI page and the code are in separate files.

364

Programming C#, 2nd Edition

The UI page is stored in a file with the extension .aspx. The logic (code) for that page can be
stored in a separate code-behind C# source file. When you run the form, the code-behind class
file runs and dynamically creates the HTML sent to the client browser. This code makes use
of the rich Web Forms types found in the System.web and System.Web.UI namespaces of the
NET Framework Class Library (FCL).

With Visual Studio, Web Forms programming couldn't be simpler: open a form, drag some
controls onto it, and write the code to handle events. Presto! You've written a web application.

On the other hand, even with Visual Studio writing a robust and complete web application can
be a daunting task. Web Forms offer a very rich UI; the number and complexity of web
controls have greatly multiplied in recent years, and user expectations about the look and feel
of web applications have risen accordingly.

In addition, web applications are inherently distributed. Typically, the client will not be in the
same building as the server. For most web applications, you must take network latency,
bandwidth, and network server performance into account when creating the UI; a round trip
from client to host might take a few seconds.

15.1.1 Web Form Events

Web Forms are event-driven. An event is an object that encapsulates the idea that "something
happened." An event is generated (or raised) when the user presses a button, or selects from a
list box, or otherwise interacts with the Ul. Events can also be generated by the system
starting or finishing work. For example, open a file for reading, and the system raises an event
when the file has been read into memory.

The method that responds to the event is called the event handler. Event handlers are written
in C# in the code-behind page and are associated with controls in the HTML page through
control attributes.

Event handlers are delegates (see Chapter 12). By convention, ASP.NET event handlers
return void and take two parameters. The first parameter represents the object raising the
event. The second, called the event argument , contains information specific to the event, if
any. For most events, the event argument is of type EventArgs, which does not expose any
properties. For some controls, the event argument might be of a type derived from EventArgs
that can expose properties specific to that event type.

In web applications, most events are typically handled on the server and, therefore, require a
round trip. ASP.NET only supports a limited set of events, such as button clicks and text
changes. These are events that the user might expect to cause a significant change, as opposed
to Windows events (such as mouse-over) that might happen many times during a single user-
driven task.

15.1.1.1 Postback versus non-postback events
Postback events are those that cause the form to be posted back to the server immediately.
These include click type events, such as the Button Click event. In contrast, many events

(typically change events) are considered non-postback in that the form is not posted back to
the server immediately. Instead, these events are cached by the control until the next time that

365

Programming C#, 2nd Edition

a postback event occurs. You can force controls with non-postback events to behave in a
postback manner by setting their AutoPostBack property to true.

15.1.1.2 State

A web application's State is the current value of all the controls and variables for the current
user in the current session. The Web is inherently a "stateless" environment. This means that
every post to the server loses the state from previous posts, unless the developer takes great
pains to preserve this session knowledge. ASP.NET, however, provides support for
maintaining the state of a user's session.

Whenever a page is posted to the server, it is re-created by the server from scratch before it is
returned to the browser. ASP.NET provides a mechanism that automatically maintains state
for server controls. Thus, if you provide a list and the user has made a selection, that selection
is preserved after the page is posted back to the server and redrawn on the client.

15.1.2 Web Form Life Cycle

Every request for a page made from a web server causes a chain of events at the server. These
events, from beginning to end, constitute the /ife cycle of the page and all its components. The
life cycle begins with a request for the page, which causes the server to load it. When the
request is complete, the page is unloaded. From one end of the life cycle to the other, the goal
is to render appropriate HTML output back to the requesting browser. The life cycle of a page
is marked by the following events, each of which you can handle yourself or leave to default
handling by the ASP.NET server:

Initialize

Initialize is the first phase in the life cycle for any page or control. It is here that any
settings needed for the duration of the incoming request are initialized.

Load ViewState

The viewstate property of the control is populated. The viewstate information
comes from a hidden variable on the control, used to persist the state across round
trips to the server. The input string from this hidden variable is parsed by the page
framework, and the viewstate property is set. This can be modified via the
Loadviewstate () method. This allows ASP.NET to manage the state of your
control across page loads so that each control is not reset to its default state each time
the page is posted.

Process Postback Data
During this phase, the data sent to the server in the posting is processed. If any of this

data results in a requirement to update the viewState, that update is performed via the
LoadPostData () method.

366

Programming C#, 2nd Edition

Load

CreateChildControls() is called, if necessary, to create and initialize server
controls in the control tree. State is restored, and the form controls show client-side
data. You can modify the load phase by handling the L.oad event with the onLoad
method.

Send Postback Change Modifications

If there are any state changes between the current state and the previous state, change
events are raised via the RaisePostDataChangedEvent () method.

Handle Postback Events
The client-side event that caused the postback is handled.
PreRender

This is the phase just before the output is rendered to the browser. It is essentially your
last chance to modify the output prior to rendering using the onpPreRender()
method.

Save State

Near the beginning of the life cycle, the persisted view state was loaded from the
hidden variable. Now it is saved back to the hidden variable, persisting as a string
object that will complete the round trip to the client. You can override this using the
SaveViewState () method.

Render

This is where the output to be sent back to the client browser is generated. You can
override it using the Render method. CreatechildControls() is called, if
necessary, to create and initialize server controls in the control tree.

Dispose

This is the last phase of the life cycle. It gives you an opportunity to do any final
cleanup and release references to any expensive resources, such as database
connections. You can modify it using the bispose () method.

15.2 Creating a Web Form

To create the simple Web Form that will be used in the next example, start up Visual Studio
.NET and open a New Project named ProgrammingCSharpWeb. Select the Visual C# Projects
folder (because C# is your language of choice), select ASP.NET Web Application as the
project type, and type in its name, ProgrammingCSharpWeb. Visual Studio .NET will display
http://localhost/ as the default location, as shown in Figure 15-1.

367

Programming C#, 2nd Edition

Figure 15-1. Creating a project in the New Project window of Visual Studio .NET

kd
Prodect Types: Templates: Eﬁ
] Wisual Basic Projects e e -
_i Wisusl C# Projects = c§ =lp e
&1 Wisual S Projects ‘Windows Zonsole Class Library
] Wisual FoxPro Projecks application Spplcation
] Setup and Deploymant Projects .
* |_] Cither Projects o)
G 1.1 4
1 Visual Studio Solutions ;L 8 Lef
Wirrdaws Windows Wb
Control Library Service Appliczton

7]

Creabe & C# \Web Form.

ama: | ProgrammingCSharpWieb

Location: I hittpe: fihocalhost ﬂ Browss, ..

Prodect will be created at betpsjflocabostFrogrammingZSharpweb,

F More 0. 4 | Cancsl | Help |

Visual Studio places nearly all the files it creates for the project in a folder within your local
machine's default web site -- for example, c:\Inetpub\wwwroot\ProgrammingCSharpWeb.

= In Visual Studio .NET, a solution is a set of projects; each project will
«r | create a dynamic link library (DLL) or an executable (EXE). All
"4+ projects are created in the context of a solution, and solutions are

managed by .s/n and .suo files.

The solution files and other Visual Studio-specific files are stored in <drive>\Documents and
Settings\<user name>\My Documents\Visual Studio Projects (where <drive> and
<user name> are specific to your machine).

- You must have IIS and the FrontPage Server extensions installed on
#3 4. your computer to use Web Forms. To configure the FrontPage Server
"4+ extensions, open the Internet Service Manager and right-click the web

site. Select All Tasks 9Conﬁgure Server Extensions. For further
information, please check http://www.microsoft.com/.

When the application is created, Visual Studio places a number of files in your project. The
Web Form itself is stored in a file named WebForml.aspx. This file will contain only HTML.
A second, equally important file, WebForm.aspx.cs, stores the C# associated with your form;
this is the code-behind file.

Notice that the code-behind file does not appear in the Solution Explorer. To see the code-
behind (.cs) file, you must place the cursor within Visual Studio .NET, right-click the form,
and choose "View Code" in the pop-up menu. You can now tab back and forth between the
form itself, WebForm1.aspx, and the C# code-behind file, WebForml.aspx.cs. When viewing
the form, WebForml.aspx, you can choose between Design mode and HTML mode by

368

Programming C#, 2nd Edition

clicking the tabs at the bottom of the Editor window. Design mode lets you drag controls onto
your form; HTML mode allows you to view and edit the HTML code directly.

Let's take a closer look at the .aspx and code-behind files that Visual Studio creates. Start by
renaming WebForml.aspx to HelloWeb.aspx. To do this, close WebForml.aspx, and then
right-click its name in the Solution Explorer. Choose Rename and enter the name
HelloWeb.aspx. After you rename it, open HelloWeb.aspx and view the code; you will find
that the code-behind file has been renamed as well to HelloWeb.aspx.cs.

When you create a new Web Form application, Visual Studio .NET will generate a bit of
boilerplate code to get you started, as shown in Example 15-1.

Example 15-1. Wizard-generated code for a Web Form

<%@ Page language="c#"
Codebehind="HelloWeb.aspx.cs"
AutoEventWireup="false"
Inherits="ProgrammingCSharpWeb.WebForml" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DID HTML 4.0 Transitional//EN" >
<html>
<head>
<title>WebForml</title>
<meta name="GENERATOR"
Content="Microsoft Visual Studio 7.0">
<meta name="CODE LANGUAGE" Content="C#">
<meta name="vs defaultClientScript" content="JavaScript">
<meta name="vs targetSchema"
content="http://schemas.microsoft.com/intellisense/ie5">
</head>
<body MS POSITIONING="GridLayout">

<form id="Forml" method="post" runat="server">
</form>

</body>
</html>

What you see is typical boilerplate HTML except for the first line, which contains the
following ASP.NET code:

<%@ Page language="c#"
Codebehind="HelloWeb.aspx.cs"
AutoEventWireup="false"
Inherits="ProgrammingCSharpWeb.WebForml" %>

The 1anguage attribute indicates that the language used on the code-behind page is C#. The
Codebehind attribute designates that the filename of that page is HelloWeb.cs, and the
Inherits attribute indicates that this page derives from WebForml. WebForml is a class
declared in HelloWeb.cs.

public class WebForml : System.Web.UI.Page

369

Programming C#, 2nd Edition

As the C# code makes clear, webForml inherits from System.Web.UI.Page, wWhich is the
class that defines the properties, methods, and events common to all server-side pages.

Returning to the HTML view of HelloWeb.aspx, you see that a form has been specified in the
body of the page using the standard HTML form tag:

<form id="Forml" method="post" runat="server">

Web Forms assumes that you need at least one form to manage the user interaction, and
creates one when you open a project. The attribute runat="server" is the key to the server-
side magic. Any tag that includes this attribute is considered a server-side control to be
executed by the ASP.NET framework on the server.

Having created an empty Web Form, the first thing you might want to do is add some text to
the page. By switching to HTML view, you can add script and HTML directly to the file just
as you could with classic ASP. Adding the following line to the body segment of the HTML
page will cause it to display a greeting and the current local time:

Hello World! It is now <% = DateTime.Now.ToString() %>

The <% and %> marks work just as they did in classic ASP, indicating that code falls between
them (in this case, C#). The = sign immediately following the opening tag causes ASP.NET to
display the value, just like a call to Response.Write (). You could just as easily write the
line as:

Hello World! It is now
<% Response.Write (DateTime.Now.ToString()); %>

Run the page by pressing Ctrl-F5 (or save it and navigate to it in your browser). You should
see the string printed to the browser, as in Figure 15-2.

Figure 15-2. Output generated by the HelloWorld.aspx file

(B el world Hi=E

Helo ‘woild!

Cancel

15.3 Adding Controls

You can add server-side controls to a Web Form in two ways: manually (by writing HTML
into the HTML page), or by dragging controls from the toolbox to the Design page. For
example, suppose you want to use buttons to let the user choose one of three Shippers
provided in the Northwinds database. You could write the following HTML into the <form>
element in the HTML window:

370

Programming C#, 2nd Edition

<asp:RadioButton GroupName="Shipper" id="Airborne"

text = "Airborne Express" Checked="True" runat="server">
</asp:RadioButton>
<asp:RadioButton GroupName="Shipper" id="UPS"

text = "United Parcel Service" runat="server">
</asp:RadioButton>
<asp:RadioButton GroupName="Shipper" id="Federal"

text = "Federal Express" runat="server">
</asp:RadioButton>

The asp tags declare server-side ASP.NET controls that are replaced with normal HTML
when the server processes the page. When you run the application, the browser displays three
radio buttons in a button group; pressing one will deselect the others.

You can create the same effect more easily by dragging three buttons from the Visual Studio
toolbox onto the Form, as illustrated in Figure 15-3.

Figure 15-3. Dragging buttons onto the Web Form

‘¥ WebForm1 - Microsolt Yisual C2.NET [design] - WebForml aspu®
Fie Edit Yiew Froject Buid [ebug Format Table [rsert Frames Tools Window Hebp

id-u-=280 ¥ @ - -] ¢ Debug - oH sertCakien

{1 moo|® BB - Tigies | @ e w0

o =P webForml.aspe* |

s Daka .

owebrams |l

2 *PIJHCT B
T R R
Rbl TextBox R - R - B Ooooiiiiiiiiiiiiiiiiiiin
P R o O [RadioButtenl] - ccccoiiiiiiiiiiiiiiiiiiil
4] LinkBathon il O R
._N:i]mageﬂl.ttm LTI
immm S
ol | oo
23 Lt T
Sosseid [T
] atalit S S S S S S S S
EREpEﬂtEr L
¥ Cheddo R RS
R S : : : Sl
£Z RadaButonlst RS RS RS
% FadioButton ' : ' Cooliiiiin
ol e R EEEE IS EEEEEEESEEEHEEEEE R RS
{1 Pand N L o o . o o s
-] PlaceHolder SRR SRR
] calendar il N
= Adratator O
= T S :
Companerts il I S
T oo :

E::::d o |]_ Design [HTML

You can add controls to a page in one of two modes. The default mode is GridLayout. When
you add controls in GridLayout, they are arranged in the browser using absolute positioning
(x and y coordinates).

371

Programming C#, 2nd Edition

The alternative mode is FlowLayout. With FlowLayout, the controls are added to the form
from top to bottom, as in a Microsoft Word document. To change from Grid to Layout or
back, change the pageLayout property of the document in Visual Studio .NET.

Web Forms offer two types of server-side controls. The first is server-side HTML controls,
also called Web Controls. These are standard HTML controls that you tag with the attribute

runat=Server.

The alternative to Web Controls is ASP.NET Server Controls, also called ASP Controls. ASP
Controls have been designed to replace the standard HTML controls. ASP Controls provide a
more consistent object model and more consistently named attributes. For example, with
HTML controls, there are myriad different ways to handle input:

<input type = "radio">
<input type="checkbox">
<input type="button">
<input type="text">
<textarea>

Each of these behaves differently and takes different attributes. The ASP Controls try to
normalize the set of controls, using attributes consistently throughout the ASP control object
model. The ASP Controls that correspond to the preceding HTML server-side controls are:

<asp:RadioButton>
<asp:CheckBox>
<asp:Button>
<asp:TextBox rows="1">
<asp:TextBox rows="5">

The remainder of this chapter focuses on ASP Controls.
15.4 Data Binding

Various technologies have offered programmers the opportunity to bind controls to data so
that as the data is modified, the controls respond automatically. As Rocky used to say to
Bullwinkle, "But that trick never works." Bound controls often provided only limited control
over their look and feel, and performance was usually pretty terrible. The ASP.NET designers
set out to solve these problems and provide a suite of robust data-bound controls, which
simplify display and modification of data, sacrificing neither performance nor control over
the UL

In the previous section, you hardcoded radio buttons onto a form, one for each of three
Shippers in the Northwinds database. That can't be the best way to do it; if you change
the Shippers in the database, you have to go back and rewire the controls. This section shows
how you can create these controls dynamically and then bind them to data in the database.

You might want to create the radio buttons based on data in the database because you can't
know at design time what text the buttons will have, or even how many buttons you'll need.
To accomplish this, use a RadioButtonList. RadioButtonList is a control that allows you
to create radio buttons programatically; you provide the name and values for the buttons, and
ASP.NET takes care of the plumbing.

372

Programming C#, 2nd Edition

Delete the radio buttons already on the form, and drag and drop a RadioButtonList in their
place. Once it is there, you can use the Properties window to rename it to rb11.

15.4.1 Setting Initial Properties

Web Forms programming is event-based; you write your code to respond to various events.
Typically, the events you're responding to are user-initiated. For example, when the user
clicks a button, a Button-Click event is generated.

The most important initial event is the Page Load event, which is fired every time a Web
Form is loaded. When the page is loaded, you want to fill the radio buttons with values from
the database. For example, if you are creating a purchase form, you might create one radio
button for each possible shipping method, such as UPS, FedEx, and so forth. You should
therefore put your code into the page Load method to create the buttons.

You only want to load these values into the radio buttons the first time the page is loaded. If
the user clicks a button or takes another action that sends the page back to the server, you do
not want to retrieve the values again when the page is reloaded.

ASP.NET can differentiate the first time the page is displayed from subsequent displays after
a client postback of the page to the server. Every Web Form page has the property
IsPostBack, which will be true if the page is being loaded in response to a client postback,
and false if it is being loaded for the first time.

You can check the value of 1spPostBack. If it is false, you know that this is the first time the
page is being displayed, and it's therefore time to get the values out of the database:

protected void Page Load(object sender, EventArgs e)

{
if (!IsPostBack)

/... 1}

The arguments to the page Load method are the normal arguments for events, as discussed in
Chapter 12.

15.4.2 Connecting to the Database

The code for making the connection to the database and filling a data set will look very
familiar; it is almost identical to what you saw in Chapter 14. There is no difference in
creating a data set for Web Forms and creating a data set for Windows Forms.

Start by declaring the member variables you need:

private System.Data.SglClient.SglConnection myConnection;
private System.Data.DataSet myDataSet;

private System.Data.SglClient.SglCommand myCommand;
private System.Data.SglClient.SglDataAdapter dataAdapter;

373

Programming C#, 2nd Edition

As in Chapter 14, use the Structured Query Language (SQL) versions of sqlConnection and
dataAdapter. Create the connectionString for the Northwinds database, and use that to
instantiate and open the sQL.Connection object:

string connectionString = "server=(local)\\NetSDK;" +
"Trusted Connection=yes; database=northwind";
myConnection =

new System.Data.SglClient.SglConnection (connectionString);
myConnection.Open();

Create the data set and set it to handle case-sensitive queries:

myDataSet = new System.Data.DataSet();
myDataSet.CaseSensitive=true;

Next, create the sqlcommand object and assign it the connection object and the select
statement, which are needed to get the shipperID and company name identifying each
potential shipper. Use the name as the text for the radio button and the shipperID as the
value:

myCommand = new System.Data.SglClient.SglCommand();
myCommand.Connection=myConnection;
myCommand.CommandText = "Select ShipperID, CompanyName from Shippers";

Now create the dataAdapter object, set its SelectCommand property with your command
object, and add the shippers table to its table mappings:

dataAdapter = new System.Data.SglClient.SglDataAdapter();
dataAdapter.SelectCommand= myCommand;
dataAdapter.TableMappings.Add ("Table", "Shippers") ;

Finally, fill the dataadapter with the results of the query:

dataAdapter.Fill (myDataSet) ;

This is all virtually identical to what you saw in Chapter 14. This time, however, you're going
to bind this data to the RadioButtonList you created earlier.

The first step is to set the properties on the RadioButtonList object. The first property of
interest tells the RadioButtonList how to flow the radio buttons on the page:

rbll.RepeatlLayout =
System.Web.UI.WebControls.RepeatLayout.Flow;

Flow is one of the two possible values in the RepeatLayout enumeration. The other is Table,
which displays the radio buttons using a tabular layout. Next you must tell the
RadioButtonList which values from the data set are to be used for display (the
DataTextField) and which is the value to be returned when selected by the user (the
DataValueField):

rbll.DataTextField = "CompanyName";
rbll.DataValueField = "ShipperID";

374

Programming C#, 2nd Edition
The final steps are to tell the RadioButtonList which view of the data to use. For this
example, use the default view of the Shippers table within the dataset:
rbll.DataSource = myDataSet.Tables["Shippers"].DefaultView;
With that done, you're ready to bind the RadioButtonList to the dataset:
rbll.DataBind ();

Finally, you should ensure that one of the radio buttons is selected, so select the first:

rbll.Items[0].Selected = true;

This statement accesses the Items collection within the RadioButtonList, chooses the first
item (the first radio button), and sets its selected property to true.

When you run the program and navigate to the page in your browser, the buttons will be
displayed, as shown in Figure 15-4.

Figure 15-4. RadioButtonList

T http:/ Mocalhost /ProgrammingCSharpWeb /HelloWeb.asps - Microsoft Tnbernet Explorer
Filz Edt Wiew Favorites Took Help

D 1] Al | Dsesch [GiFavorkes fHstory | Y= Zh =]

Address |i£| hittp: MlocalhostfProgramming CSharpWebfHelloweb, aspx

Helle "Warldl Ttis now 2001-02-15T1313:52

& Speedy Express
" Thited Fackage

" Federal Shipping

If you examine the page source, you will not find a RadioButtonList. Instead, standard
HTML radio buttons have been created, and each has been given a shared ID. This allows the
browser to treat them as a group. Their labels have been created, and each radio button and its
label have been wrapped in a tag:

<input id="rbll 0" type="radio" name="rbll"
value="1" checked="checked" />

<label for="rbll 0">Speedy Express</label>

 B

<!-- remaining buttons omitted for brevity -->

This HTML is generated by the server by combining the RadioButtonList you added to
your HTML with the processing of the code-behind page. When the page is loaded, the
Page Load() method is called and the data adapter is filled. When you assign the
rbll.DataTextField to CompanyName and the rbll.DataValueField to shipperID and
assign the rb11.DataSource to the Shipper's table default view, you prepare the radio button
list to generate the buttons. When you call pataBind, the radio buttons are created from the
data in the data source.

375

Programming C#, 2nd Edition

By adding just a few more controls, you can create a complete form with which users can
interact. You will do this by adding a more appropriate greeting ("Welcome to NorthWind"),
a text box to accept the name of the user, two new buttons (Order and Cancel), and text that
provides feedback to the user. Figure 15-5 shows the finished form.

Figure 15-5. The form

/ZJ hetp:/ Mlacalhost /ProgeammingCsharpWeh,/Helloweb.asps - .. [Wl[=] B3
Fle Edt Wew Favartes Toals Help n
o [£} QSearch [§JFavorbtes {#Hibory = ®
Address | 2] hitp: {flocahost FrogrammingCsharpebjrelowel *| @G0 | Links
Wele ome to MorthWind
Tour Iames: |
& Speedy Express
Shipper: T United Fackage
" Federal Shipping
Circler E Cancel |
Please choose the shipper
Ie
&] [ore i=F Local intranet

This form will not win any awards for design, but its use will illustrate a number of key points
about Web Forms.

- I've never known a developer who didn't think he could design a
o g perfectly fine Ul. At the same time, I never knew one who actually
" 4+ could. UI design is one of those skills (such as teaching) that we all

think we can do, but only a few very talented folks are good at it. As a
developer, I know my limitations; I write the code, someone else lays it
out on the page.

Example 15-2 is the complete HTML for the .aspx file.
Example 15-2. The .aspx file

<%@ Page language="c#"
Codebehind="HelloWeb.aspx.cs"
AutoEventWireup="false"
Inherits="ProgrammingCSharpWeb.WebForml" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
<HEAD>
<title>WebForml</title>
<meta name="GENERATOR"
Content="Microsoft Visual Studio 7.0">
<meta name="CODE LANGUAGE" Content="C#">

376

Programming C#, 2nd Edition

<meta name="vs defaultClientScript"
content="JavaScript">
<meta name="vs targetSchema"
content="http://schemas.microsoft.com/intellisense/ie5">
</HEAD>

<body MS POSITIONING="GridLayout">
<form id="Forml" method="post" runat="server">

<asp:Label id="Labell"
style="Z-INDEX: 101; LEFT: 20px; POSITION: absolute; TOP: 28px"
runat="server">Welcome to NorthWind.</asp:Label>

<asp:Label id="Label2"
style="Z-INDEX: 102; LEFT: 20px; POSITION: absolute; TOP: 67px"
runat="server">Your Name:</asp:Label>

<asp:Label id="Label3"
style="Z-INDEX: 103; LEFT: 20px; POSITION: absolute; TOP: 134px"
runat="server">Shipper:</asp:Label>

<asp:Label id="lblFeedBack"
style="Z-INDEX: 104; LEFT: 20px; POSITION: absolute; TOP: 241px"
runat="server">Please choose the shipper.</asp:Label>

<asp:Button id="Order"
style="Z-INDEX: 105; LEFT: 20px; POSITION: absolute; TOP: 197px"
runat="server" Text="Order"></asp:Button>

<asp:Button id="Cancel"
style="Z-INDEX: 106; LEFT: 128px; POSITION: absolute; TOP: 197px"
runat="server" Text="Cancel"></asp:Button>

<asp:TextBox id="txtName"
style="Z-INDEX: 107; LEFT: 128px; POSITION: absolute; TOP: 64px"
runat="server"></asp:TextBox>

<asp:RadioButtonList id="rbll"
style="Z-INDEX: 108; LEFT: 112px; POSITION: absolute; TOP: 130px"
runat="server"></asp:RadioButtonList>

</form>
</body>

</HTML>

The <asp:Button> controls will be converted into a standard HTML <input> tag. Again, the
advantage of using ASP controls is that they provide a more consistent object model for the
programmer and yet they generate standard HTML that every browser can display. Because
they are marked with the runat=server attribute as well as given an id attribute, you can
access these buttons programmatically in server-side code if you choose to do so.
Example 15-3 is the complete code-behind page to support this HTML.

377

Programming C#, 2nd Edition

Example 15-3. The code-behind page supporting the HTML

using
using
using
using
using
using
using
using
using
using

System

System.
System.
System.
System.
System.
System.
System.

System

System.

Collections;
ComponentModel;
Data;

Drawing;

Web;
Web.SessionState;
Web.UI;
.Web.UI.WebControls;
Web.UI.HtmlControls;

namespace ProgrammingCSharpWeb

{

// page constructor
public class WebForml : System.Web.UI.Page

{

prot
prot
prot
prot
prot
prot
prot
prot

priv
priv
priv
priv

priv

{

ected System.Web.UI.WebControls.Label Labell;

ected System.Web.UI.WebControls.Label Label2;

ected System.Web.UI.WebControls.Label Label3;

ected System.Web.UI.WebControls.Label 1lblFeedBack;
ected System.Web.UI.WebControls.Button Order;

ected System.Web.UI.WebControls.Button Cancel;

ected System.Web.UI.WebControls.TextBox txtName;
ected System.Web.UI.WebControls.RadioButtonList rbll;

ate System.Data.SglClient.SglConnection myConnection;
ate System.Data.DataSet myDataSet;

ate System.Data.SqglClient.SglCommand myCommand;

ate System.Data.SglClient.SglDataAdapter dataAdapter;

ate void Page Load(object sender, System.EventArgs e)

// the first time we load the page, get the data and
// set the radio buttons
if (!IsPostBack)
{
string connectionString = "server=(local)\\NetSDK;" +
"Trusted Connection=yes; database=northwind";
myConnection = new System.Data.SglClient.SglConnection (
connectionString);
myConnection.Open();

// create the data set and set a property
myDataSet = new System.Data.DataSet():;
myDataSet.CaseSensitive=true;

// create the SglCommand object and assign the
// connection and the select statement
myCommand = new System.Data.SglClient.SglCommand();
myCommand.Connection=myConnection;
myCommand.CommandText =

"Select ShipperID, CompanyName from Shippers";

// create the dataAdapter object and pass in the

// SglCommand object and establish the data mappings
dataAdapter = new System.Data.SglClient.SglDataAdapter (
dataAdapter.SelectCommand= myCommand;
dataAdapter.TableMappings.Add ("Table", "Shippers") ;

)7

378

Programming C#, 2nd Edition

// Tell the dataAdapter object to fill the dataSet
dataAdapter.Fill (myDataSet) ;

// set up the properties for the RadioButtonList
rbll.RepeatlLayout =
System.Web.UI.WebControls.RepeatLayout.Flow;
rbll.DataTextField = "CompanyName";
rbll.DataValueField = "ShipperID";

// set the data source and bind to i
rbll.DataSource = myDataSet.Tables["Shippers"].DefaultView;
rbll.DataBind();

// select the first button
rbll.Items[0].Selected = true;

}

#region Web Form Designer generated code
override protected void OnInit (EventArgs e)
{

//

// CODEGEN: This call is required by

// the ASP.NET Web Form Designer.

//

InitializeComponent ();

base.OnInit (e);

}

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent ()

{
this.Order.Click += new System.EventHandler (this.Order Click);
this.Load += new System.EventHandler (this.Page Load) ;

}

#endregion

private void Order Click(object sender, System.EventArgs e)
{
// create the message by getting
// the values from the controls
string msg;
msg = "Thank you " + txtName.Text +". You chose " ;
// iterate over the radio buttons
for (int i = 0;i<rbll.Items.Count;i++)
{
// if it is selected, add it to the msg.
if (rbll.Items[i].Selected)
{
msg = msg + rbll.Items[i].Text;
1blFeedBack.Text = msg;
} // end if selected
} // end for loop
} // end Order Click
// end class WebForml
// end namespace ProgrammingCSharpWeb

379

Programming C#, 2nd Edition

15.5 Responding to Postback Events

The <asp:button> objects automatically postback when clicked. You need not write any
code to handle that event unless you want to do something more than postback to the server.
If you take no other action, the page will simply be re-sent to the client.

Normally, when a page is redrawn, each control is redrawn from scratch. The Web is
stateless, and if you want to manage the state of a control (e.g., redraw the user's text in the
text box), you must do so yourself. In classic ASP, the programmer was responsible for
managing this state, but ASP.NET provides some assistance. When the page is posted, a
hidden element named viewstate is automatically added to the page:

<input type="hidden" name="_ VIEWSTATE"
value="YTB6LTISMTE3ODEIN19hMHpfaHolejF4X2Ewel90ejVONXhfYTB6YTBOYTB6aHpSZXB1
YXRMYX1vdX
RfU31zdGVtL1d1lYi5VSS5XZWJIDb250cm9scy5SZXBl1YXRMYX1vdAXR6VGFibGVAX0RhAGEWYWx17Z
UZpZWxkX1N
0aXBwZXJJRFIEYXRhVGVceHRGaWVsZFIDb21wYWS55TmFtZXhfX3hfYTB6YTBOYXpTcGV1ZHkgRV
x4cHJ1c3NE

MVIO4X2F6VWSpdGVKIFBhY2thZ2VEM1 94X2F6RmVkZXJhbCBTaGlwcGluzl18zX3hfeF94X3hfX3h
4X3h4X3hfX

3hcdDUwX1N5¢c3R1bS5TdHIpbmc=al15204ed" />

This element represents the state of the form (the values are already chosen by the user).
When the page is redrawn on the client, ASP.NET uses the view state to return the controls to
their previous state.

When the user clicks the Order button, the page is posted and the event handler assigned to
that button is invoked:

public void Order Click (object sender, System.EventArgs e)
{
string msg;
msg = "Thank you " + txtName.Text +". You chose " ;
for (int i = 0;i<rbll.Items.Count;i++)
{
if (rbll.Items[i].Selected)
{
msg = msg + rbll.Items[i].Text;
1blFeedBack.Text = msg;

i &

e The easiest way to create the event handler is to double-click the Order
o button in Design mode in Visual Studio .NET. This will cause Visual
; Studio to add the event to the InitializeComponent method:

Order.Click += new System.EventHandler
(this.Order Click);

It will also create a skeleton order Click event-handler method for
you. Alternatively, you can do this all by hand.

380

Programming C#, 2nd Edition

This event handler creates a message based on the name you enter and the shipper you
choose, and puts that message into the Feedback label. When the form first comes up, it looks
like Figure 15-5. If I fill in my name, pick United Parcel Service, and press Order, the form
will be submitted and then redisplayed. The result is shown in Figure 15-6.

Figure 15-6. Page posted after the user clicks Order

’E hitp:/ flocalhost /ProgrammingCSharpWeb /Helloweb.aspx - . [l[=] E3
File Edit Wew Favortes Tools Help n
= Back - _J J -3 Dhsearch [EfFavorites © #History -

Address Iiﬂ locahast Frogr nminiﬁhapwwﬂtlb'ﬁch.usptj &G0 | Links
=
TWelcome to MorthWind
Tour Name |Jesza Liba by
T Speedy Express
Shipper & Umnted Package
© Federal Shipping
Order Cancel
Tharle you Jesse Liberty. Tou chose TTited Package N
£] Done (EF Local intranst

The form automatically remembers the state of the radio button and text controls (this is what
the viewsTATE field is for) and that the event handler has been called and run on the server;

the label is updated accordingly.

- ASP programmers take note: there is no code in the .aspx file nor in the

@l o file to manage the state. Nowhere do you stash away the state of the

" radio buttons or the text field; all this is managed automatically for you
by ASP.NET.

15.6 ASP.NET and C#

There is a great deal to learn about ASP.NET, but much of it is language-independent.
ASP.NET offers a rich suite of controls and related tools, including tools to validate data,
display dates, present advertisements, interact with the user, and so forth. Most of these

require no coding whatsoever.

The role of the C# programmer in ASP.NET development is in writing the event handlers that
respond to user interaction. Many of the event handlers will either add data to a database or

retrieve data and make it available to the controls.

381

Programming C#, 2nd Edition

Chapter 16. Programming Web Services

.NET Web Services expand on the concept of distributed processing to build components
whose methods can be invoked across the Internet. These components can be built in any
NET language, and they communicate using open protocols that are platform-independent.

For example, a stock exchange server might provide a web service method that takes a stock
ticker symbol as a parameter and returns a quote. An application might combine that service
with another service from a different company that also takes a stock symbol but that returns
background data about the company. The application developer can concentrate on adding
value to these services, rather than duplicating the same service for his own application.

The list of web services that might be useful to developers and end users seems boundless.
A bookstore might provide a web service that takes an ISBN and returns the price and
availability of a title. A hotel's web service might take a date range and number of guests and
return a reservation. Another web service might take a telephone number and return a name
and address. Yet another might provide information about the weather or shuttle launches.

Microsoft has announced a number of commercial .NET services as part of its .NET My
Services initiative. Among these are its Passport service for identifying and authenticating
users (see http://www.passport.com/), as well as services for managing storage, notification,
appointments, and a host of other applications. These services, as well as the ones you write,
can be integrated with your applications just like any other business object.

In such a world, a single application might draw on and stitch together the services of
hundreds of small web services distributed all over the world. This takes the Web to an
entirely new dimension: not only is information retrieved and exchanged, but also methods
are invoked and applications are executed.

16.1 SOAP, WSDL, and Discovery

What is needed to make web services possible is a simple, universally accepted protocol for
exposing, finding, and invoking web service functions. In 1999, Simple Object Access
Protocol (SOAP) was proposed to the World Wide Web Consortium. SOAP has the
advantages of being based on XML and of using standard Internet communications protocols.

SOAP is a lightweight, message-based protocol built on XML, HTTP, and SMTP. Two other
protocols are desirable, but not required, for a client to use a SOAP-enabled web service: a
description of the methods provided by a particular service that can be understood and acted
upon by clients, and a description of all such services available at a particular site or URL.
The first of these is provided in .NET by the Web Service Description Language (WSDL)
protocol, jointly developed by Microsoft, IBM, and others. Two other protocols have been
proposed for discovery: UDDI, a joint effort by a number of companies including IBM and
Microsoft, and Discovery, a proprietary offering from Microsoft.

WSDL is an XML schema used to describe the available methods -- the interface -- of a web
service. Discovery enables applications to locate and interrogate web service descriptions,
a preliminary step for accessing a web service. It is through the discovery process that web
service clients learn that a service exists, what its capabilities are, and how to properly interact

382

Programming C#, 2nd Edition

with it. A Discovery (.disco) file provides information to help browsers determine the URLs
at any web site at which web services are available. When a server receives a request for
a .disco file, it generates a list of some or all of the URLs at that site that provide web
services.

16.1.1 Server-side Support

The plumbing necessary to discover and invoke web services is integrated into the .NET
Framework and provided by classes within the system.wWeb.Services namespace. Creating a
web service requires no special programming on your part; you need only write the
implementing code, add the [webMethod] attribute, and let the server do the rest. You can
read about attributes in detail in Chapter 18.

16.1.2 Client-side Support

You make use of a web service by writing client code that acts as though it were
communicating directly with the host server by means of a URL. However, in reality, the
client interacts with a proxy. The job of the proxy is to represent the server on the client
machine, to bundle client requests into SOAP messages that are sent on to the server, and to
retrieve the responses that contain the result. Proxies and the details of dealing with objects on
other machines are covered in detail in Chapter 19.

16.2 Building a Web Service

To illustrate the techniques used to implement a web service in C# using the services classes
of the .NET Framework, build a simple calculator and then make use of its functions over the
Web.

Begin by specifying the web service. To do so, define a class that inherits from
System.Web.Services.WebService. The easiest way to create this class is to open Visual
Studio and create a new C# Web Service project. The default name that Visual Studio
provides is WebServicel, but you might want to choose something more appropriate.

Visual Studio .NET creates a skeleton web service and even provides a Web Service example
method for you to replace with your own code, as shown in Example 16-1.

Example 16-1. Skeleton web class generated by Visual Studio .NET

using System;

using System.Collections;
using System.ComponentModel;
using System.Data;

using System.Diagnostics;
using System.Web;

using System.Web.Services;

namespace WSCalc
{
/// <summary>
/// Summary description for Servicel.
/// </summary>
public class Servicel : System.Web.Services.WebService

{

383

Programming C#, 2nd Edition

public Servicel()

{
//CODEGEN: This call is required by
// the ASP.NET Web Services Designer
InitializeComponent ();

}
#region Component Designer generated code

//Required by the Web Services Designer
private IContainer components = null;

/// <summary>

/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

private void InitializeComponent()

{

}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{

if (disposing && components != null)

{

components.Dispose();
}
base.Dispose (disposing) ;

}

#endregion

// WEB SERVICE EXAMPLE

// The HelloWorld() example service

// returns the string Hello World

// To build, uncomment the following lines
// then save and build the project

// To test this web service, press F5

// [WebMethod]

// public string HelloWorld()

// {

// return "Hello World";

// }

}

Create five methods: Add(), Sub(), Mult(), Div(), and Pow(). Each takes two

parameters of type double, performs the requested operation, and then returns a value of the
same type. For example, here is the code for raising a number to some specified power:

384

Programming C#, 2nd Edition

public double Pow(double x, double vy)
{

double retvVal = x;

for (int 1 = 0;1 < y-1;1i++)

{

retvVal *= x;

}

return retVal;

To expose each method as a web service, you simply add the [webMethod] attribute before
each method declaration (attributes are discussed in Chapter 18):

[WebMethod]

You are not required to expose all the methods of your class as web services. You can pick
and choose, adding the [WebMethod] attribute only to those methods you want to expose.

That's all you need to do; .NET takes care of the rest.

WSDL and Namespaces

Your web service will use a Web Service Description Language (WSDL) XML
document to describe the web-callable end points. Within any WSDL document, an
XML namespace must be used to ensure that the end points have unique names. The
default XML namespace is http://tempuri.org, but you will want to modify this
before making your web service publicly available.

You can change the XML namespace by using the webservice attribute:

[WebService (Namespace=
"http://www.LibertyAssociates.com/webServices/")]

You can read about attributes in detail in Chapter 8.

Example 16-2 shows the complete source code for the Calculator web service:
Example 16-2. Calculator web service program

using System;

using System.Collections;
using System.ComponentModel;
using System.Data;

using System.Diagnostics;
using System.Web;

using System.Web.Services;

namespace WSCalc

{
[WebService (Namespace="http://www.libertyAssociates.com/webServices/")]
public class Servicel : System.Web.Services.WebService

{

public Servicel()

{

385

Programming C#, 2nd Edition

//CODEGEN: This call is required by the
//ASP.NET Web Services Designer
InitializeComponent ();

}
#region Component Designer generated code

//Required by the Web Services Designer
private IContainer components = null;

/// <summary>

/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

private void InitializeComponent ()

{

}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{

if (disposing && components != null)

{

components.Dispose();
}
base.Dispose (disposing) ;

}
#endregion

[WebMethod]
public double Add(double x, double vy)
{

return x+y;

}

[WebMethod]
public double Sub(double x, double y)
{
return x-y;
}
[WebMethod]
public double Mult (double x, double vy)
{
return x*y;
}
[WebMethod]
public double Div(double x, double vy)
{
return x/y;

}

386

}

[

Programming C#, 2nd Edition

WebMethod]

public double Pow(double x, double vy)

{

double retvVal = x;
for (int 1 = 0;1 < y-1;1i++)
{

retvVal *= x;

}

return retVal;

When you build this project with Visual Studio .NET, a DLL is created in the appropriate
subdirectory of your Internet server (e.g., c:\InetPub\wwwroot\WSCalc). A quick check of
that directory reveals that a .vsdisco file has also been added.

e There is nothing magical about using Visual Studio .NET; you can
«» | create your server in Notepad if you like. Visual Studio .NET simply
" 4+ saves you the work of creating the directories, creating the .vsdisco file,

and so forth. Visual Studio .NET is particularly helpful when creating

the client files, as you'll see shortly.

16.2.1 Testing Your Web Service

If you open a browser to your web service's URL (or invoke the browser by running the
program in Visual Studio .NET), you get an automatically generated, server-side web page
that describes the web service, as shown in Figure 16-1. Test pages such as this offer a good
way to test your web service. (The next section illuminates the seeming hocus-pocus that

produces these pages.)

Figure 16-1. The web service web page

A Service] Wels Servicg - Microsoll Tnkernel Explorer

Fle Edi Mew Favorbes Tods Help [|
2 2] 3 [Cresondbyr DAoewch [GiFwoies 3 D4 S8 o =] B
Address |2 bty (liocashist fuatforms RS s Sarion] s =] e

B]
Servicel

Thie following operations ars supported. For & forma defnibon, please review the Seryvice Descriphion

‘l w fided | ﬂ_‘

2t Local infrares

Clicking a method brings you to a page that describes the method and allows you to invoke it
by typing in parameters and pressing the Invoke button. Figure 16-2 illustrates.

387

Programming C#, 2nd Edition

Figure 16-2. Test page for a web service method

E Spervece] Web !-zrw:lr'h_- Fhorosoft Inbermet Explorer

R Edt Yew Favrles Toos el | = |
sk » = - () 1] A [Cresondew @seawch wjFawetes 3 2h- b o o B
Adcreas |E| =iy fincahost! skl e WS CakeSarvics 1 e Topespoms ﬂ oG

Click for & complete bst of operations,

pow
Test

Ta biat, elick tha Trvake hittan,

Parsmater Waiin
xi |

i |

Invake

SOAR -
1| 3

] Dore (25 Local infranet

If you type 3 into the first value field and 4 into the second field, you will have asked the web
service to raise 3 to the fourth power. The result is an XML page describing the output, as
shown in Figure 16-3.

Figure 16-3. XML output for a web service method

; http: Slocalbost ‘webFforms S'WSCalc /Service | asmspow s =18y =4 - F‘ﬁnnmﬂ Internet Enplorer
Fie Edt Wew Favodes Took Help : El
< =% - 2 (8] Y| [FPersonalBar i%earch [§jFroies (5 _j- =] == B3
sddress [Fetp: | oz abwostivebF oms WS CakiSarvios] asoypow? =386y =4 =] P
=
< Tmml wersic 1 ncoding="utf-B
2083136 0ol
[
£] Dona {2 Loval inkranat

Notice that the URL encodes the parameters of 3 and 4, and the output XML shows the result
of 81 (3*3*3*3 = 81).

16.2.2 Viewing the WSDL Contract
A lot of work is being done for you automatically. HTML pages describing your web service
and its methods are generated, and these pages include links to pages in which the methods

can be tested. How is this done?

As noted earlier, the web service is described in WSDL. You can see the WSDL document by
appending 2wspL to the web service URL, like this:

http://localhost/WSCalc/Servicel.asmx?wsdl

The browser displays the WSDL document, as shown in Figure 16-4.

388

Programming C#, 2nd Edition

Figure 16-4. Sample WSDL output for calculator web service

-5 hitp)/ Tocalhast fwebfonms "WSCalc Service Lasmitwsd| - Microsolt Internet Explorer

Fie FEdt View Favorkss Tooe Help ’* n
Jufack = 2 3 4 [Cresnslbar Joesch [ofFaoiss 4| e op Of =] B
Address |§] it ocalbwst s or s WSl Seric el asnim v j I

http:/ fwivew liberty Assocaites . com/webServices/

="qualifiad i qualifled

http:/ fwevw libertyAssocaites.com/webServices /"

=" dld
1 1 o s douhle
="1 re="1 ="y po="s:double

AddResponse

1 1 “SddResult
s:double” [
& Done LR Local infraret

The details of the WSDL document are beyond the scope of this book, but you can see that
each method is fully described in a structured XML format. This is the information used by
SOAP to allow the client browser to invoke your web service methods on the server.

16.3 Creating the Proxy

Before you can create a client application to interact with the calculator web service, you must
first create a proxy class. Once again, you can do this by hand, but that would be hard work.
The folks at Microsoft have provided a tool called wsd1 that generates the source code for the
proxy based on the information in the WSDL file.

To create the proxy, enter wsdl at the Windows command-line prompt, followed by the path
to the WSDL contract. For example, you might enter:

wsdl http://localhost/WSCalc/servicel.asmx?wsdl
The result is the creation of a C# client file named Servicel.cs, an excerpt of which appears in

Example 16-3. You must add the namespace wscalc because you'll need it when you build
your client (the tool does not insert it for you).

389

Programming C#, 2nd Edition

Example 16-3. Sample client code to access the calculator web service

using System.Xml.Serialization;
using System;

using System.Web.Services.Protocols;
using System.Web.Services;

namespace WSCalc
{

[System.Web.Services.WebServiceBindingAttribute (
Name="ServicelSoap",
Namespace="http://www.libertyAssociates.com/webServices/")]

public class Servicel

System.Web.Services.Protocols.SoapHttpClientProtocol
{

public Servicel()
{
this.Url =
"http://localhost/WSCalc/servicel.asmx";
}

[System.Web.Services.Protocols.SoapDocumentMethodAttribute (
"http://www.libertyAssociates.com/webServices/Add",
RequestNamespace=

"http://www.libertyAssociates.com/webServices/",
ResponseNamespace=
"http://www.libertyAssociates.com/webServices/",
Use=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle=
System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
public System.Double Add(System.Double x, System.Double vy)

{

object[] results = this.Invoke ("Add", new object[] {x,v});
return ((System.Double) (results[0]));

}

public System.IAsyncResult
BeginAdd (System.Double x, System.Double vy,
System.AsyncCallback callback, object asyncState)

return this.BeginInvoke ("Add", new object[] {x,
v}, callback, asyncState);
}

public System.Double EndAdd(System.IAsyncResult asyncResult)
{

object[] results = this.EndInvoke (asyncResult);

return ((System.Double) (results[0]));

This complex code is produced by the WSDL tool to build the proxy DLL you will need when
you build your client. The file uses attributes extensively (see Chapter 8), but with your
working knowledge of C# you can extrapolate at least how some of it works.

The file starts by declaring the servicel class that derives from the class

SoapHttpClientProtocol, which occurs in the namespace called
System.Web.Services.Protocols:

390

Programming C#, 2nd Edition

public class Servicel
System.Web.Services.Protocols.SoapHttpClientProtocol

The constructor sets the URL property inherited from SoapHttpClientProtocol to the URL
of the .asmx page you created earlier.

The add () method is declared with a host of attributes that provide the SOAP goo to make
the remote invocation work.

The WSDL application has also provided asynchronous support for your methods. For
example, for the add () method, it also created Beginadd () and Endadd(). This allows
you to interact with a web service without performance penalties.

To build the proxy, place the code generated by WSDL into a C# Library project in Visual
Studio .NET and then build the project to generate a DLL. Be sure to write down the location
of that DLL, as you will need it when you build the client application.

To test the web service, create a very simple C# Console application. The only trick is that in
your client code you need to add a reference to the proxy DLL just created. Once that is done,
you can instantiate the web service, just like any locally available object:

WSCalc.Servicel theWebSvc =
new WSCalc.Servicel();

You can then invoke the pow () method as if it were a method on a locally available object:

for (int i = 2;i<10; i++)
for (int j = 1;3 <10;3j++)
{
Console.WriteLine (
"{0} to the power of {1} = {2}", i, 3,
theWebSvec.Pow (i, J));

This simple loop creates a table of the powers of the numbers 2 through 9, displaying for each
the powers 1 through 9. The complete source code and an excerpt of the output is shown in
Example 16-4.

Example 16-4. A client program to test the calculator web service

using System;

// driver program to test the web service
public class Tester
{
public static void Main()
{
Tester t = new Tester();
t.Run();
}

public void Run{()
{
int varl = 5;
int var2 =

|
~J

391

Programming C#, 2nd Edition

// instantiate the web service proxy
WSCalc.Servicel theWebSvc =
new WSCalc.Servicel();

// call the add method
Console.WriteLine ("{0} + {1} = {2}", varl, var2,
theWebSvc.Add (varl, wvar2));

// build a table by repeatedly calling the pow method
for (int i = 2;i<10; i++)
for (int j = 1;3 <10;3j++)
{
Console.WriteLine ("{0} to the power of {1} = {2}", i, 3,
theWebSvc.Pow (i, J));

}

Output (excerpt):

5+ 7 =12

2 to the power of 1 = 2

2 to the power of 2 = 4

2 to the power of 3 = 8

2 to the power of 4 = 16

2 to the power of 5 = 32

2 to the power of 6 = 64

2 to the power of 7 = 128
2 to the power of 8 = 256
2 to the power of 9 = 512
3 to the power of 1 = 3

3 to the power of 2 = 9

3 to the power of 3 = 27

3 to the power of 4 = 81

3 to the power of 5 = 243
3 to the power of 6 = 729
3 to the power of 7 = 2187
3 to the power of 8 = 6561
3 to the power of 9 = 19683

Your calculator service is now more available than you might have imagined (depending on
your security settings) through the web protocols of HTTP-Get, HTTP-Post, or SOAP. Your
client uses the SOAP protocol, but you could certainly create a client that would use HTTP-
Get:

http://localhost/WSCalc/Servicel.asmx/Add?x=23&y=22

In fact, if you put that URL into your browser, the browser will respond with the following
answer:

<?xml version="1.0" encoding="utf-8"?>
<double xmlns="http://www.libertyAssociates.com/webServices/">45</double>

The key advantage SOAP has over HTTP-Get and HTTP-Post is that SOAP can support a
rich set of datatypes, including all of the C# intrinsic types (int, double, etc.), as well as
enums, classes, structs, and ADO.NET DataSets, and arrays of any of these types.

392

Programming C#, 2nd Edition

Also, while HTTP-Get and HTTP-Post protocols are restricted to name/value pairs of
primitive types and enums, SOAP's rich XML grammar offers a more robust alternative for
data exchange.

393

Programming C#, 2nd Edition

Part lll: Introduction to Web Services

394

Programming C#, 2nd Edition

Chapter 17. Assemblies and Versioning

The basic unit of .NET programming is the assembly. An assembly is a collection of files that
appears to the user to be a single dynamic link library (DLL) or executable (EXE). DLLs are
collections of classes and methods that are linked into your running program only when they
are needed.

Assemblies are the .NET unit of reuse, versioning, security, and deployment. This chapter
discusses assemblies in detail, including the architecture and contents of assemblies, private
assemblies, and shared assemblies.

In addition to the object code for the application, assemblies contain resources such as .gif’
files, type definitions for each class you define, as well as metadata about the code and data.
Metadata is explored in detail in Chapter 18.

17.1 PE Files

On disk, assemblies are Portable Executable (PE) files. PE files are not new. The format of a
NET PE file is exactly the same as a normal Windows PE file. PE files are implemented as
DLLs or EXEs. Logically (as opposed to physically), assemblies consist of one or more
modules. Note, however, that an assembly must have exactly one entry point -- DLLMain,
WinMain, Or Main. DLLMain is the entry point for DLLs, winMain is the entry point for
Windows applications, and Main is the entry point for DOS and Console applications.

Modules are created as DLLs and are the constituent pieces of assemblies. Standing alone,
modules cannot be executed; they must be combined into assemblies to be useful.

Deploy and reuse the entire contents of an assembly as a unit. Assemblies are loaded on
demand and will not be loaded if not needed.

17.2 Metadata

Metadata is information stored in the assembly that describes the types and methods of the
assembly and provides other useful information about the assembly. Assemblies are said to be
self-describing because the metadata fully describes the contents of each module. Metadata is
discussed in detail in Chapter 18.

17.3 Security Boundary

Assemblies form security boundaries as well as type boundaries. That is, an assembly is the
scope boundary for the types it contains, and types cannot cross assemblies. You can, of
course, refer to types across assembly boundaries by adding a reference to the required
assembly, either in the Integrated Development Environment (IDE) or on the command line,
at compile time. What you cannot do is have the definition of a type span two assemblies.

395

Programming C#, 2nd Edition

17.4 Versioning

Each assembly has a version number, and versions cannot transcend the boundary of the
assembly. That is, a version can refer only to the contents of a single assembly. All types and
resources within the assembly change versions together.

17.5 Manifests

As part of its metadata, every assembly has a manifest. This describes what is in the assembly,
including identification information (name, version, etc.), a list of the types and resources in
the assembly, a map to connect public types with the implementing code, and a list of
assemblies referenced by this assembly.

Even the simplest program has a manifest. You can examine that manifest using ILDasm,
which is provided as part of your development environment. When you open it in ILDasm, the
EXE program created by Example 12-3 looks like Figure 17-1.

Figure 17-1. ILDasm of Example 12-3

F C\Documents and Settings’ Administrator My ... =] B
File View Help

C-ADecuments and SetingshAdminisratce\ My Documentzhisus
MAMIFEST

= W Programmireg_CSharp
= BE MyOlazswWithDelegate
clazz publc auto ansi betorsfieldiit
+ [StingDelegate
21 choe: wondl]
= BE MylmplementingClass
clazs public aulo srsi belorefeldnil
2 chos : wend()
ol LogSting - void{string)
A TrearsmilSting | voidzlmg)
=l WhiteSiing ; woid#iing)
+ JE Test
1 | b
:[nmhh.' FrogrammngCShap -

#

Notice the manifest (second line from the top). Double-clicking the manifest opens a Manifest
window, as shown in Figure 17-2.

396

Programming C#, 2nd Edition

Figure 17-2. The Manifest window

cassenhly exbern m=corlib g |
[=l

.publickeytoksn = (E? 74 5C G4 19 34 ED 89) RN
mer 1:0-2411-0

¥
.az=embly FrogrammingCSharp

.custon instance woid [mscorlib]System Reflection AssemblyKevHamedttribute::.
custon instance wold [mecorlib]Systen Reflection AssemblylevFiledttribute: .
ouston instance void [nscorl:b]Systes Reflection AsserblylelaySignidtiribute:
.custon instance wold [nscorlib]Svstem Reilection. hssenblyTrademarkattribute:
custon instance void [nscorl:b]Systex Refle=ction AssenblyCopyrightiAttribute:
.cnston ingtance wold [necorlib]Svstes Reflection . hdssemblvProductittribute::.
ccuston instance woid [nscorli:b]Systes Refl=ction AssenblyConpanydttribute: @
.ouston instance void [nscorlib]Svetes Reflection AssemblvConfigurationdttrib
.custon instance void [nscorl:k]Systean Reflesction hAssenblylescripticnhttribut
.custon ingtance woid [nscorlib]Systes Reflection AssemblyTitleAttribute:: ct
F# ——— The following custon attribute iz added autcmatically. do not unconnen
A4 custom ainstance void [mecorlib]Systewm. Diagnostics. Debuggabledttribute:: .
e

‘hask algoriths O=x00008004
wer 1:0:535:28584

}

.module ProgramminglSharp.exe

< HWID: {220DF4E4-SF73-449B-99DA-9998E299F3BB}
czubsysten 0x00000O003

Lile aligoment 512

.ecorflags 0xd0000001

Inage basze: O0x03400000

1] I f

This file serves as a map of the contents of the assembly. You can see in the first line the
reference to the mscorlib assembly, which is referenced by this and every .NET application.
The mscorlib assembly is the core library assembly for .NET and is available on every .NET
platform.

The next assembly line is a reference to the assembly from Example 12-3. You can also see
that this assembly consists of a single module. You can ignore the rest of the metadata for
now.

17.5.1 Modules in the Manifest

Assemblies can consist of more than one module. In such a case, the manifest includes a hash
code identifying each module to ensure that when the program executes, only the proper
version of each module is loaded. If you have multiple versions of a given module on your
machine, the hash code ensures that your program will load properly.

The hash is a numeric representation of the code for the module, and if the code is changed,
the hash will not match.

17.5.2 Module Manifests

Each module has a manifest of its own that is separate from the assembly manifest. The
module manifest lists the assemblies referenced by that particular module. In addition, if the
module declares any types, these are listed in the manifest along with the code to implement
the module. A module can also contain resources, such as the images needed by that module.
17.5.3 Other Required Assemblies

The assembly manifest also contains references to other required assemblies. Each such

reference includes the name of the other assembly, the version number and required culture,

397

Programming C#, 2nd Edition

and optionally, the other assembly's originator. The originator is a digital signature for the
developer or company that provided the other assembly.

o Culture is an object representing the language and national display
o characteristics for the person using your program. It is culture that
" 4+ determines, for example, whether dates are in month/date/year format or

date/month/year format.

17.6 Multi-Module Assemblies

A single-module assembly has a single file that can be an EXE or DLL file. This single
module contains all the types and implementations for the application. The assembly manifest
is embedded within this module.

A multi-module assembly consists of multiple files (zero or one EXE and zero or more DLL
files, though you must have at least one EXE or DLL). The assembly manifest in this case can
reside in a standalone file, or it can be embedded in one of the modules. When the assembly is
referenced, the runtime loads the file containing the manifest and then loads the required
modules as needed.

17.6.1 Benefiting from Multi-Module Assemblies

Multi-module assemblies have advantages for real-world programs, especially if they are
developed by multiple developers or are very large.

Imagine that 25 developers are working on a single project. If they were to create a single-
module assembly to build and test the application, all 25 programmers would have to check in
their latest code simultaneously, and the entire mammoth application would be built. That
creates a logistical nightmare.

If they each build their own modules, however, the program can be built with the latest
available module from each programmer. This relieves the logistics problems; each module
can be checked in when it is ready.

Perhaps more importantly, multiple modules make it easier to deploy and to maintain large
programs. Imagine that each of the 25 developers builds a separate module, each in its own
DLL. The person responsible for building the application would then create a 26™ module
with the manifest for the entire assembly. These 26 files can be deployed to the end user. The
end user then need only load the one module with the manifest, and he can ignore the other
25. The manifest will identify which of the 25 modules has each method, and the appropriate
modules will be loaded as methods are invoked. This will be transparent to the user.

As modules are updated, the programmers need only to send the updated modules (and a
module with an updated manifest). Additional modules can be added and existing modules
can be deleted; the end user continues to load only the one module with the manifest.

In addition, it is entirely likely that not all 25 modules will need to be loaded into the

program. By breaking the program into 25 modules, the loader can load only those parts of
the program that are needed. This makes it easy to shunt aside code that is only rarely needed

398

Programming C#, 2nd Edition

into its own module, which might not be loaded at all in the normal course of events.
Although this was the theory behind DLLs all along, .NET accomplishes this without "DLL
Hell," a monumental achievement described later in this chapter.

17.6.2 Building a Multi-Module Assembly

To demonstrate the use of multi-module assemblies, the following example creates a couple
of very simple modules that you can then combine into a single assembly. The first module is
a Fraction class. This simple class will allow you to create and manipulate common
fractions. Example 17-1 illustrates.

Example 17-1. The Fraction class

namespace ProgCS

{

using System;

public class Fraction

{

public Fraction(int numerator, int denominator)

{
this.numerator = numerator;
this.denominator = denominator;

}

public Fraction Add(Fraction rhs)
{

if (rhs.denominator != this.denominator)

{

throw new ArgumentException (
"Denominators must match");

}

return new Fraction (
this.numerator + rhs.numerator,
this.denominator) ;

}

public override string ToString()

{

return numerator + "/" + denominator;

}

private int numerator;
private int denominator;

Notice that the Fraction class is in the ProgCcs namespace. The full name for the class is
ProgCS.Fraction.

The Fraction class takes two values in its constructor: a numerator and a denominator.
There is also an add() method, which takes a second Fraction and returns the sum,
assuming the two share a common denominator. This class is simplistic, but it will
demonstrate the functionality necessary for this example.

399

Programming C#, 2nd Edition

The second class is the myCalc class, which stands in for a robust calculator. Example 17-2
illustrates.

Example 17-2. The Calculator

namespace ProgCS

{

using System;

public class myCalc

{
public int Add(int wvall, int wval2)
{

return vall + val2;

}
public int Mult (int wvall, int wval2)

{

return vall * val2;

}

Once again, myCalc is a very stripped-down class to keep things simple. Notice that calc is
also in the ProgCs namespace.

This is sufficient to create an assembly. Use an AssemblyInfo.cs file to add some metadata to
the assembly. The use of metadata is covered in Chapter 19.

. You can write your own Assemblylnfo.cs file, but the simplest approach
o is to let Visual Studio generate one for you automatically.
B G o

Visual Studio creates single-module assemblies by default. You can create a multi-module
resource with the /addModules command line. The easiest way to compile and build a multi-
module assembly is with a makefile, which you can create with Notepad or any text editor.

= If you are unfamiliar with makefiles, don't worry; this is the only
.~ example that needs a makefile, and that is only to get around the

' current limitation of Visual Studio creating only single-module
assemblies. If necessary, you can just use the makefile as offered
without fully understanding every line.

Example 17-3 shows the complete makefile (which is explained in detail immediately
afterward). To run this example, put the makefile (with the name 'makefile') in a directory
together with a copy of Calc.cs, Fraction.cs, and Assemblylnfo.cs. Start up a .NET command
window and cd to that directory. Invoke nmake without any command switchs. You will find
the SharedAssembly.dll in the \bin subdirectory.

400

Programming C#, 2nd Edition

Example 17-3. The complete makefile for a multi-module assembly

ASSEMBLY= MySharedAssembly.dll

BIN=.\bin
SRC=.
DEST=.\bin

CSC=csc /nologo /debug+ /d:DEBUG /d:TRACE

MODULETARGET=/t :module
LIBTARGET=/t:library
EXETARGET=/t:exe

REFERENCES=System.dll

MODULES=$ (DEST) \Fraction.dll $(DEST)\Calc.dll
METADATA=S$ (SRC) \AssemblyInfo.cs

all: $(DEST)\MySharedAssembly.dll

Assembly metadata placed in same module as manifest
$(DEST) \$ (ASSEMBLY) : $ (METADATA) $ (MODULES) $(DEST)
$(CSC) S$(LIBTARGET) /addmodule:$ (MODULES: =;) /out:$Q@ $%s

Add Calc.dll module to this dependency list
S (DEST)\Calc.dll: Calc.cs $(DEST)
$(CSC) $(MODULETARGET) /r:$(REFERENCES: =;) /out:$Q@ %s

Add Fraction
S (DEST) \Fraction.dll: Fraction.cs $ (DEST)
S (CSC) $ (MODULETARGET) /r:$(REFERENCES: =;) /out:$@Q $%s

S (DEST) ::
'if !EXISTS ($(DEST))

mkdir $ (DEST)
lendif

The makefile begins by defining the assembly you want to build:
ASSEMBLY= MySharedAssembly.dll

It then defines the directories you'll use, putting the output in a bin directory beneath the
current directory and retrieving the source code from the current directory:

BIN=.\bin
SRC=.
DEST=.\bin

Build the assembly as follows:

$ (DEST) \$ (ASSEMBLY) : $ (METADATA) $ (MODULES) $ (DEST)
$(CSC) S$(LIBTARGET) /addmodule:$ (MODULES: =;) /out:$Q@ %s

This places the assembly (MySharedAssembly.dll) in the destination directory (bin). It tells

nmake (the program that executes the makefile) that the assembly consists of the metadata
and the modules, and it provides the command line required to build the assembly.

401

Programming C#, 2nd Edition

The metadata is defined earlier as:

METADATA=S$ (SRC) \AssemblyInfo.cs

The modules are defined as the two DLLs:

MODULES=$ (DEST) \Fraction.dll $(DEST)\Calc.dll

The compile line builds the library and adds the modules, putting the output into the assembly
file MySharedAssembly.dll:

S (DEST) \$ (ASSEMBLY) : $ (METADATA) $ (MODULES) $ (DEST)
$(CSC) $(LIBTARGET) /addmodule:$ (MODULES: =;) /out:$Q %s

To accomplish this, nmake needs to know how to make the modules. Start by telling nmake
how to create calc.dll. You need the calc.cs source file for this; tell nmake on the command
line to build that DLL:

S (DEST)\Calc.dll: Calc.cs $(DEST)
S (CSC) $ (MODULETARGET) /r:S$(REFERENCES: =;) /out:$Q@ $%s

Then do the same thing for fraction.dll:

$(DEST) \Fraction.dll: Fraction.cs $ (DEST)
$(CSC) $ (MODULETARGET) /r:$(REFERENCES: =;) /out:$Q@ %s

The result of running nmake on this makefile is to create three DLLs: fraction.dll, calc.dll,
and MySharedAssembly.dll. 1f you open MySharedAssembly.dll with 11.Dasm, you'll find that
it consists of nothing but a manifest, as shown in Figure 17-3.

Figure 17-3. MySharedAssembly.dll

F C2\ProgCSharpbintMySharcdAssembly.d... =] E3
Fim Wiew Help 3

s

CiFroglShaphbirihsShamddzzembh di
MAMIFEST

. asvembly MySharedbszembly -

ER| 2

If you examine the manifest, you see the metadata for the libraries you created, as shown in
Figure 17-4.

402

Figure 17-4. The manifest for MySharedAssembly

I_asseﬂ:lv axtern mmoorllh

ED a9
hash = (5B E3 5Sa ED HI:I A3 12 50 @A AZ 25 DD 48 17 28 4F e & I
S

pablickesiokan = (BF TA 5C 56 19)
ZN 57 EA 07
wver 1:0:21411:0

;._-!EEUF.L].}' HrSheredhzszenbly

#Af eme Tha [ollowing casboa altribulbe iz added aulceeticelly. &9 not uscchmenl —————

B custon instance vold [mscorlib]System Insgnostics Debuggsblehttributs:: cioribool

o4 booly = & 41 040 01
cuxtom ipmtance void [mzcorlik]Systes Beflection, dsseshlyHeylesehtiribube - ciorisbring) = ¢ OL 00
caston ipstance woid [Escorlib]Sestes Beflactiom. Aoseshl pHegFilsdteributs:: ptoxistring) = (OL 00
eusian ingtasnss void [asearlib]Sysiea. Fel lest 1. AsseablyDelaySigrattribube ! stas(lssl) = { 01 OO0
caston ipstance wid [mscorlib]Sestes. Feflect: hz=eablyTrademarkhtiribnte: - ctoristripgl = ¢ 01 0
caston iestance woid [Escorlib]Sestem. Eetlec assenblyCopyrightatiribute: ctor(strieg) = ¢ OL 0
caxkom instancAa vwoid [azcarliblSystea Faflac hEmEab]l yPreducthtiribiuta grariEbring) = Ol 00
custom ipstance wold [mscorlib|Sestem, Beflec dzsenblvCompanvhtsributs: ctoristring) = { 0L 00
castos iestancs vold [Esenrlib]Spstes. Fsf lse hssanblyConf iguestiomibiribots: @ otor{steing] =

i [m=EcoTrlib]Systes
oid [mscorlib]Spstem

imstance

cHskom

| fulm Fractzom dll
hssh = ([E ER
| Fi 44
|- file Calc.dll
hash = (92 1C 30 AB 27
'EC 47 1D D]

f_-:.a.-:- =xt=rn public [:-:gC"‘ Fresctiom

fale Fracizocas dll
class 2000002

mylalo

s5 extern public Progls.

fale Calz dll
class Gxd2008002

| nodule MySharedissenbly dll

o HRID: fFeDecyq0-Ella-465a-a%2B-E2al
| sabeyatea OxO0000003

{fule aslisnp=pt 512

| coxf laga 0=00000001

o Tmage bame Ox0F440000

Feflec
Retleotuion

20 F3 6B 55 OF 34 04 50

P EX 0D FE 50 b 94 SE BC

4

4C 83 02 o

CRBEDGER»

dssenblyDescriptacnit tribute
bssesblyTatledtbrabuts:

EE CD L 4 ' K0
DX

Programming C#, 2nd Edition

cioristrieg] = | 01

ctori{string) = (01 0 00

You first see an external assembly for the core library (mscorlib), followed by the two
]nOdukm,ProgCS.FractionandProgCS.myCalQ

You now have an assembly that consists of three DLL files: MySharedAssembly.dll with the
manifest, and Calc.dll and Fraction.dll with the types and implementation needed.

17.6.2.1 Testing the assembly

To use these modules, you need to create a driver program that will load in the modules as
needed. Example 17-4 illustrates. Save this program as 7Test.cs in the same directory as the

other modules.
Example 17-4. A module test driver

namespace Programming CSharp

{

using System;

public class Test

{
// main will not load the

static void Main()

{
Test t = new Test();
t.UseCS();
t.UseFraction();

}

shared assembly

403

Programming C#, 2nd Edition

// calling this loads the myCalc assembly
// and the mySharedAssembly assembly as well
public void UseCS{()
{
ProgCS.myCalc calc = new ProgCS.myCalc();
Console.WriteLine ("3+5 = {0}\n3*5 = {1}",
calc.Add(3,5), calc.Mult(3,5)):;
}

// calling this adds the Fraction assembly

public void UseFraction()

{
ProgCS.Fraction fracl = new ProgCS.Fraction(3,5);
ProgCS.Fraction frac? new ProgCS.Fraction(1l,5);
ProgCS.Fraction frac3 = fracl.Add(frac2);
Console.WriteLine ("{0} + {1} = {2}",

fracl, frac2, frac3);

}

Output:
345 = 8
3*5 =15

3/5 + 1/5 = 4/5

For the purposes of this demonstration, it is important not to put any code in Main() that
depends on your modules. You do not want the modules loaded when Main () loads, and so
no Fraction or Calc objects are placed in Main (). When you call into UseFraction and
UseCalc, you'll be able to see that the modules are individually loaded.

17.6.2.2 Loading the assembly

An assembly is loaded into its application by the AssemblyResolver through a process called
probing. The assembly resolver is called by the .NET Framework automatically; you do not
call it explicitly. Its job is to resolve the assembly name to an EXE program and load your
program.

With a private assembly, the AssemblyResolver looks only in the application load directory
and its subdirectories -- that is, the directory in which you invoked your application.

- The three DLLs produced earlier must be in the directory in which
s 4 Example 17-4 executes or in a subdirectory of that directory.

Put a break point on the second line in Main, as shown in Figure 17-5.

404

Programming C#, 2nd Edition

Figure 17-5. A break point in Main()

|':"§ Programeming_CSharp, Test j |_¢¢r-1u'n;’;.

namespace Progranmming CSharp
i{

using Iystem:
pualic claszs Teat
{
s will & load the =hars ga==mh
static void Hain()
{
ﬂ Test & = new Test():
t.UseCsi]:

t.UzeFractioni];

Execute to the break point and open the Modules window. Only two modules are loaded, as
shown in Figure 17-6.

Figure 17-6. Only two modules loaded

Hama | Address | Path | Crdes | ‘ersion | Program |
ﬂ mecorb.dl 60660 B e airmtimicrosaft et framewoddy,.. 1 1.0,2726.2 [2230] Sha...
%] shared@ssem... 00M00000-00408000 Ci\ProgZsharpiSharedfssemblylbing,, 2 1.0,535.29... [2280] 5ha...
1] I
i Testas
Programimning_CSharp. Test j |]
nam=space Programming CZharp
i
naihi SyItetm!
public class Test
i
skstic void Msin)
{
(s} Test t = new Teat():
. UmecS():
t.UseFraction():
1

o If you did not develop Test.cs as part of a Visual Studio .NET solution,
.) put a call to system.Diagnostics.Debugger.Launch() just before
i

the second line in Main. This lets you choose which debugger to use.
(Make sure you compile Test.cs with the /debug and
/r:MySharedAssembly.dl11 options.)

Step into the first method call and watch the modules window. As soon as you step into
UseCs, the Assemblyloader recognizes that it needs an assembly from
MySharedAssembly.DIl. The DLL is loaded, and from that assembly's manifest the

AssemblyLoader finds that it needs Calc.dll, which is loaded as well, as shown in
Figure 17-7.

405

Programming C#, 2nd Edition

Figure 17-7. Modules loaded on demand

Modules
Mama | Addrass | Path | Crdar | Wersion | Program
ﬂ mscorlib.dl SOGE0000-6CEZC000 cywinrtimicrosoft. netframeworkiv, .. 1 1.0,2728.2 [2z80] Sha...
%] Sharedfssem,.. 00400000004 0E000 CH\ProgisharplGharedfssembhbin... 2 1.0,535.20,,, [2#80] Sha...
%] mypsharedass... 0301 0000-0301 B000 ciyprogesherp|sharedassemblylbinid.., 3 1.0,535.29,,, [2280] Sha...
%] cale.dl 0300000~ 5056000 ciiprogesherp|sharedassembhylbinid... 4 [2za0] Sha...
+| |
Test.cs

|<>gPrugannirn;_C5haur.-.Test j | QUseCs)

¥

P oicl UaeCs(]

{
L ProgC8.myCalc calc = new ProglS.myCalc () :

Conzole,.Uriceline ("I+5 = (0}1Wn3%5 = {11,
calc,Add (3, 5], calc.Mult (3,5]]:
11

When you step into Fraction, the final DLL is loaded. The advantage of multi-module
assemblies is that a module is loaded only when it is needed.

17.7 Private Assemblies

Assemblies come in two flavors: private and shared . Private assemblies are intended to be
used by only one application; shared assemblies are intended to be shared among many
applications.

All the assemblies you've built so far are private. By default, when you compile a C#
application, a private assembly is created. The files for a private assembly are all kept in the
same folder (or in a tree of subfolders). This tree of folders is isolated from the rest of the
system, as nothing other than the one application depends on it, and you can redeploy this
application to another machine just by copying the folder and its subfolders.

A private assembly can have any name you choose. It does not matter if that name clashes
with assemblies in another application; the names are local only to a single application.

In the past, DLLs were installed on a machine and an entry was made in the Windows
Registry. It was difficult to avoid corrupting the Registry, and reinstalling the program on

another machine was nontrivial. With assemblies, all of that goes away. With private
assemblies, installing is as simple as copying the files to the appropriate directory. Period.

17.8 Shared Assemblies

You can create assemblies that can be shared by other applications. You might want to do this
if you have written a generic control or a class that might be used by other developers. If you
want to share your assembly, it must meet certain stringent requirements.

First, your assembly must have a strong name. Strong names are globally unique.

406

Programming C#, 2nd Edition

- No one else can generate the same strong name as you because an
. . assembly generated with one private key is guaranteed to have a
_ 4 different name than any assembly generated with another private key.

Second, your shared assembly must be protected against newer versions trampling over it, and
so it must have version control.

Finally, to share your assembly, place it in the Global Assembly Cache (GAC) (pronounced
GACK). This is an area of the filesystem set aside by the Common Language Runtime (CLR)
to hold shared assemblies.

17.8.1 The End of DLL Hell

Assemblies mark the end of DLL Hell. Remember this scenario: you install Application A on
your machine, and it loads a number of DLLs into your Windows directory. It works great for
months. You then install Application B on your machine, and suddenly, unexpectedly,
Application A breaks. Application B is in no way related to Application A. So what
happened? It turns out, you later learn, that Application B replaced a DLL that Application A
needed, and suddenly Application A begins to stagger about, blind and senseless.

When DLLs were invented, disk space was at a premium and reusing DLLs seemed like a
good idea. The theory was that DLLs would be backward-compatible, so automatically
upgrading to the new DLL would be painless and safe. As my old boss Pat Johnson used to
say, "In theory, theory and practice are the same. But in practice, they never are."

When the new DLL was added to the computer, the old application, which was happily
minding its own business in another corner of your machine, suddenly linked to a DLL that
was incompatible with its expectations and hey! Presto! It went into the dance of death. This
phenomenon led customers to be justifiably leery of installing new software, or even of
upgrading existing programs, and it is one of the reasons Windows machines are perceived to
be unstable. With assemblies, this entire nightmare goes away.

17.8.2 Versions

S hared assemblies in .NET are uniquely identified by their names and their versions. The
GAC allows for "side-by-side" versions in which an older version of an assembly is available
alongside a newer version. This allows particular applications to say "give me the newest" or
"give me the latest build of Version 2," or even "give me only the version I was built with."

o Side-by-side versioning applies only to items in the GAC. Private
o assemblies do not need this feature and do not have it.
i B

A version number for an assembly might look like this: 1:0:2204:21 (four numbers,
separated by colons). The first two numbers (1:0) are the major and minor version. The third
number (2204) is the build, and the fourth (21) is the revision.

407

Programming C#, 2nd Edition

When two assemblies have different major or minor numbers, they are considered to be
incompatible. When they have different build numbers, they might or might not be
compatible, and when they have different revision numbers, they are considered definitely
compatible with each other.

Revision numbers are intended for bug fixes. If you fix a bug and are prepared to certify that
your DLL is fully backward-compatible with the existing version, you should increment the
revision. When an application loads an assembly, it specifies the major and minor version that
it wants, and the AssemblyResolverfinds the highest build and revision numbers.

17.8.3 Strong Names
In order to use a shared assembly, you must meet three requirements:

e You need to be able to specify the exact assembly you want to load. Therefore, you
need a globally unique name for the shared assembly.

e You need to ensure that the assembly has not been tampered with. That is, you need a
digital signature for the assembly when it is built.

e You need to ensure that the assembly you are loading is the one authored by the actual
creator of the assembly. You therefore need to record the identity of the originator.

All these requirements are met by strong names. Strong names must be globally unique and
use public key encryption to ensure that the assembly hasn't been tampered with and was
written by the creator. A strong name is a string of hexadecimal digits and is not meant to be
human-readable.

To create a strong name, a public-private key pair is generated for the assembly. A hash is
taken of the names and contents of the files in the assembly. The hash is then encrypted with
the private key for the assembly and placed in the manifest. This is known as signing the
assembly. The public key is incorporated into the strong name of the assembly.

Public Key Encryption

Strong names are based on public key encryption technology. The essence of public
key encryption is that your data is encoded with a complex mathematical formula
that returns two keys. Data encrypted with the first key can only be decrypted with
the second. Data encrypted with the second key can only be decrypted with the first.

Distribute your first key as a public key that anyone can have. Keep your second key
as a private key that no one but you can have access to.

The reciprocal relationship between the keys allows anyone to encrypt data with
your public key, and then you can decrypt it with your private key. No one else has
access to the data once it is encrypted, including the person who encrypted it.

Similarly, you can encrypt data with your private key, and then anyone can decrypt

that data with your public key. Although this makes the data freely available, it
ensures that only you could have created it. This is called a digital signature .

408

Programming C#, 2nd Edition

When an application loads the assembly, the CLR uses the public key to decode the hash of
the files in the assembly to ensure that they have not been tampered with. This also protects
against name clashes.

You can create a strong name with the sn utility:

sn -k c:\myStrongName.snk

The -x flag indicates that you want a new key pair written to the specified file. You can call
the file anything you like. Remember, a strong name is a string of hexadecimal digits and is
not meant to be human-readable.

You can associate this strong name with your assembly by using an attribute:

using System.Runtime.CompilerServices;
[assembly: AssemblyKeyFile ("c:\myStrongName.key")]

Attributes are covered in detail in Chapter 8. For now, you can just put this code at the top of
your file to associate the strong name you generated with your assembly.

17.8.4 The Global Assembly Cache

Once you've created your strong name and associated it with your assembly, all that remains
is to place the assembly in the GAC, which is a reserved system directory. You can do that
with the gacutil utility:

gacutil /i MySharedAssembly.dll

Or you can open your File Explorer and drag your assembly into the GAC. To see the GAC,
open the File Explorer and navigate to %SystemRoot%\assembly; Explorer turns into a GAC
utility.

17.8.5 Building a Shared Assembly

The best way to understand shared assemblies is to build one. Let's return to the earlier multi-
module project (see Examples 17-1 through 17-4) and navigate to the directory that contains
the files calc.cs and fraction.cs.

Try this experiment: locate the bin directory for the driver program and make sure that you
do not have a local copy of the MySharedassembly DLL files.

e The referenced assembly (MySharedassembly) should have its
il w
“ 4. CopyLocal property set to false

158

Run the program. It should fail with an exception saying it cannot load the assembly:

409

Programming C#, 2nd Edition

Unhandled Exception: System.IO.FileNotFoundException: File or assembly name
MySharedAssembly, or one of its dependencies, was not found.
File name: "MySharedAssembly"

at Programming CSharp.Test.UseCS()

at Programming CSharp.Test.Main()

Now copy the DLLs into the driver program's directory tree, run it again, and this time you
should find that it works fine.

Let's make the MySharedassembly into a shared assembly. This is done in two steps. First,
create a strong name for the assembly, and then you put the assembly into the GAC.

17.8.5.1 Step 1: Create a strong name
Create a key pair by opening a command window and entering:

sn -k keyFile.snk

Now open the AssemblyInfo.cs file in the project for the MySharedAssembly.dll and modify
this line:

[assembly: AssemblyKeyFile ("")]
as follows:

[assembly: AssemblyKeyFile (".\\keyFile.snk")]

This sets the key file for the assembly. Rebuild with the same make file as earlier, and then
open the resulting DLL in 11Dasm and open the manifest. You should see a public key, as
shown in Figure 17-8.

Figure 17-8. The originator in the manifest of MySharedAssembly.dll

publickey = (00 24 00 00 04 80 00 00 94 00 00 0O 06 02 00 DQ L
00 24 o0 00 52 53 41 31 00 04 00 00 01 00 01 00 S8 REAL.

11 13 %5 3C 41 19 8B 41 28 2% EA &F DE BC &2 04 o Cl ALY

BB 22 BD 4F A% E1 FS &7 2C 2D E2 43 CF C3 68 dE S0 W, -G hH
F7 C7 72 EO0 55 94 085 11 EA 66 30 F& D4 22 DB OD d .U 41
EE Db &k 0D &D 58 23 10 E9 75 DE BF OC EZ 2A EB AOone o mECL L w. -,
04 19 D% 1 Be BO CF DS CB Eb 5C LB 43 08 0D EY 4 XC

20 8F %B DC 2% AC 46 A3 CD Fh 87 3C F3 22 74 B4 o~ R - -
E3 47 B4 AD 55 73 3IE 0D AD 1D CO A2 FA 15 14 AJ SN T TR o
BE 17 D1 AC F3 A3 7& FB 59 BC 3A4 16 CE AR 34 C5) »~ = ¥.: 4

By adding the strong name, you have signed this assembly (your exact values will be
different). You now need to get the strong name from the DLL. To do this, navigate to the
directory with the DLL and enter the following at a command prompt:

sn -T MySharedAssembly.dll

i

e Note that sn is case-sensitive. Do not write sn -t.

XY
wh oL

The response should be something like this:

410

Programming C#, 2nd Edition

Public key token is 01fad8e0f0941a4d
This value is an abbreviated version of the assembly's public key, called the public key token .

Remove the DLLs from the test program's directory structure and run it again. It should fail

again. Although you've given this assembly a strong name, you've not yet registered it in the
GAC.

17.8.5.2 Step 2: Put the shared assembly in the GAC

The next step is to drag the library into the GAC. To do so, open an Explorer window and
navigate to the %SystemRoot% directory. When you double-click the Assembly subdirectory,
Explorer will turn into a GAC viewer.

You can drag and drop into the GAC viewer, or you can invoke this command-line utility:

Gacutil /i mySharedAssembly.dll

In either case, be sure to check that your assembly was loaded into the GAC, and that the
originator value shown in the GAC viewer matches the value you got back from sn:

Public key token is 01fad8e0f0941a4d
This is illustrated in Figure 17-9.

Figure 17-9. The GAC

Gobal Assembly Mame | Tvpe | ¥ersion | Culture | Puslic Kev Token
1) Microsalt. Vsa 7.0.9158.0 bOGFSFFFL 1dS0a3s
1:a:,|r-'b:r.;.-:ur't.'.r;a FDolr4o boEFsF7FL 145043
4] Microsaft. Ysa, vh, CodeDOMProressor 7000 bOZFEFFL1d50a3a
& msakinkercp 1,0.0.0 B26aaeh FESE26a0
o e 1.0.2411.0 bOEFSFFF1 1450538
sifimecoeib Frelk 1.0.2411.0 bFraSch61954e069
1) MyShareddssembly 1.0.535, 20377 ASHRIF0102e0cd 73

Once this is done, you have a shared assembly that can be accessed by any client. Refresh the
client by building it again and look at its manifest, as shown in Figure 17-10.

Figure 17-10. The manifest

|.assembly extern HySharedi=senbly

publickevtoken = (45 92 9F 01 02 E0 C4 73)
ver 1:0:535:29377
|3

There's MySharedassembly, listed as an external assembly, and the public key now matches
the value shown in the GAC. Very nice, time to try it.

Close 11pasm and compile and run your code. It should work fine, even though there are no
DLLs for this library in its immediate path. You have just created and used a shared assembly.

411

Programming C#, 2nd Edition

Chapter 18. Attributes and Reflection

Throughout this book, I have emphasized that a .NET application contains code, data, and
metadata. Metadata is information about the data -- that is, information about the types, code,
assembly, and so forth -- stored along with your program. This chapter explores how some of
that metadata is created and used.

Attributes are a mechanism for adding metadata, such as compiler instructions and other data
about your data, methods, and classes, to the program itself. Attributes are inserted into
the metadata and are visible through /LDasm and other metadata-reading tools.

Reflection is the process by which a program can read its own metadata. A program is said to
reflect on itself, extracting metadata from its assembly and using that metadata either to
inform the user or to modify its own behavior.

18.1 Attributes

An attribute is an object that represents data you want to associate with an element in your
program. The element to which you attach an attribute is referred to as the target of that
attribute. For example, the attribute:

[NoIDispatch]

is associated with a class or an interface to indicate that the target class should derive from
IUnknown rather than IDispatch when exporting to COM. COM interface programming is
discussed in detail in Chapter 22.

In Chapter 17, you saw this attribute:
[assembly: AssemblyKeyFile ("c:\\myStrongName.key")]

This inserts metadata into the assembly to designate the program's st rongName.

18.2 Intrinsic Attributes

Attributes come in two flavors: intrinsic and custom . Intrinsic attributes are supplied as part
of the Common Language Runtime (CLR), and they are integrated into .NET. Custom
attributes are attributes you create for your own purposes.

Most programmers will use only intrinsic attributes, though custom attributes can be a
powerful tool when combined with reflection, described later in this chapter.

18.2.1 Attribute Targets

If you search through the CLR, you'll find a great many attributes. Some attributes are applied
to an assembly, others to a class or interface, and some, such as [WebMethod], are applied to
class members. These are called the attribute targets. Possible attribute targets are detailed in
Table 18-1.

412

Programming C#, 2nd Edition

Table 18-1. Possible attribute targets
Member name |Usage

Applied to any of the following elements: assembly, class, constructor, delegate, enum, event,
field, interface, method, module, parameter, property, return value, or struct

Assembly Applied to the assembly itself

All

Class Applied to instances of the class
Constructor|Applied to a given constructor
Delegate Applied to the delegated method

Enum Applied to an enumeration
Event Applied to an event
Field Applied to a field
Interface | Applied to an interface
Method Applied to a method
Module Applied to a single module

Parameter |Applied to a parameter of a method

Property Applied to a property (both get and set, if implemented)
ReturnValue Applied to a return value

Struct Applied to a struct

18.2.2 Applying Attributes

Apply attributes to their targets by placing them in square brackets immediately before the
target item. You can combine attributes by stacking one on top of another:

[assembly: AssemblyDelaySign (false)]
[assembly: AssemblyKeyFile (".\\keyFile.snk")]

This can also be done by separating the attributes with commas:

[assembly: AssemblyDelaySign (false),
assembly: AssemblyKeyFile (".\\keyFile.snk")]

i &

e You must place assembly attributes after all using statements and
“ . before any code.
15

Many intrinsic attributes are used for interoperating with COM, as discussed in detail in
Chapter 22. You've already seen use of one attribute ([WebMethod]) in Chapter 16. You'll see
other attributes, such as the [serializable] attribute, used in the discussion of serialization
in Chapter 19.

The system.Runtime namespace offers a number of intrinsic attributes, including attributes
for assemblies (such as the keyname attribute), for configuration (such as debug to indicate
the debug build), and for version attributes.

You can organize the intrinsic attributes by how they are used. The principal intrinsic
attributes are those used for COM, those used to modify the Interface Definition Language
(IDL) file from within a source-code file, those used by the ATL Server classes, and those
used by the Visual C++ compiler.

413

Programming C#, 2nd Edition

Perhaps the attribute you are most likely to use in your everyday C# programming (if you are
not interacting with COM) is [Serializable]. As you'll see in Chapter 19, all you need to
do to ensure that your class can be serialized to disk or to the Internet is add the
[Serializable] attribute to the class:

[Serializable]
class MySerializableClass

The attribute tag is put in square brackets immediately before its target -- in this case, the
class declaration.

The key fact about intrinsic attributes is that you know when you need them; the task will
dictate their use.

18.3 Custom Attributes

You are free to create your own custom attributes and use them at runtime as you see fit.
Suppose, for example, that your development organization wants to keep track of bug fixes.
You already keep a database of all your bugs, but you'd like to tie your bug reports to specific
fixes in the code.

You might add comments to your code along the lines of:

// Bug 323 fixed by Jesse Liberty 1/1/2005.

This would make it easy to see in your source code, but there is no enforced connection to
Bug 323 in the database. A custom attribute might be just what you need. You would replace
your comment with something like this:

[BugFixAttribute (323, "Jesse Liberty","1/1/2005",
Comment="0ff by one error")]

You could then write a program to read through the metadata to find these bug-fix notations
and update the database. The attribute would serve the purposes of a comment, but would also
allow you to retrieve the information programmatically through tools you'd create.

18.3.1 Declaring an Attribute

Attributes, like most things in C#, are embodied in classes. To create a custom attribute,
derive your new custom attribute class from System.Attribute:

public class BugFixAttribute : System.Attribute

You need to tell the compiler which kinds of elements this attribute can be used with (the
attribute target). Specify this with (what else?) an attribute:

[AttributeUsage (AttributeTargets.Class |
AttributeTargets.Constructor |
AttributeTargets.Field |
AttributeTargets.Method |
AttributeTargets.Property,
AllowMultiple = true)]

414

Programming C#, 2nd Edition

AttributeUsage is an attribute applied to attributes: a meta-attribute. It provides, if you will,
meta-metadata -- that is, data about the metadata. For the AttributeUsage attribute
constructor, you pass two arguments. The first argument is a set of flags that indicate the
target -- in this case, the class and its constructor, fields, methods, and properties. The second
argument is a flag that indicates whether a given element might receive more than one such
attribute. In this example, AllowMultiple is set to true, indicating that class members can
have more than one BugFixAttribute assigned.

18.3.2 Naming an Attribute

The new custom attribute in this example is named BugFixattribute. The convention is to
append the word Attribute to your attribute name. The compiler supports this by allowing
you to call the attribute with the shorter version of the name. Thus, you can write:

[BugFix (123, "Jesse Liberty", "01/01/05", Comment="Off by one")]

The compiler will first look for an attribute named BugFix and, if it does not find that, will
then look for BugFixAttribute.

18.3.3 Constructing an Attribute

Every attribute must have at least one constructor. Attributes take two types of parameters:
positional and named. In the BugFix example, the programmer's name and the date are
positional parameters, and comment is a named parameter. Positional parameters are passed in
through the constructor and must be passed in the order declared in the constructor:

public BugFixAttribute (int bugID, string programmer,
string date)

{
this.bugID = buglD;
this.programmer = programmer;
this.date = date;

Named parameters are implemented as properties:

public string Comment
{

get

{

return comment;

}

set

{

comment = value;

}

It is common to create read-only properties for the positional parameters:

415

Programming C#, 2nd Edition

public int BugID
{
get
{
return buglID;
}

18.3.4 Using an Attribute

Once you have defined an attribute, you can put it to work by placing it immediately before
its target. To test the BugFixAttribute of the preceding example, the following program
creates a simple class named MyMath and gives it two functions. Assign BugFixAttributes
to the class to record its code-maintenance history:

[BugFixAttribute (121, "Jesse Liberty","01/03/05")]

[BugFixAttribute (107, "Jesse Liberty","01/04/05",
Comment="Fixed off by one errors")]

public class MyMath

These attributes will be stored with the metadata. Example 18-1 shows the complete program.

Example 18-1. Working with custom attributes

namespace Programming CSharp
{

using System;

using System.Reflection;

// create custom attribute to be assigned to class members
[AttributeUsage (AttributeTargets.Class |
AttributeTargets.Constructor |
AttributeTargets.Field |
AttributeTargets.Method |
AttributeTargets.Property,
AllowMultiple = true)]
public class BugFixAttribute : System.Attribute
{
// attribute constructor for
// positional parameters
public BugFixAttribute
(int buglID,
string programmer,
string date)

this.bugID = buglD;
this.programmer = programmer;
this.date = date;

}

// accessor
public int BugID
{
get
{
return buglID;
}

416

// property for named parameter
public string Comment
{
get
{
return comment;
}
set
{
comment = value;
}
}

// accessor
public string Date
{
get
{
return date;
}
}

// accessor
public string Programmer
{
get
{
return programmer;
}
}

// private member data
private int bugIb;
private string comment;
private string date;
private string programmer;

[BugFixAttribute (121, "Jesse Liberty","01/03/05")]
[BugFixAttribute (107, "Jesse Liberty","01/04/05",
Comment="Fixed off by one errors")]

public class MyMath

public double DoFuncl (double paraml)

{

return paraml + DoFunc?2 (paraml) ;

}

public double DoFunc2 (double paraml)

{

return paraml / 3;

}

Programming C#, 2nd Edition

J/ F*F*¥x**kk*kx g53ign the attributes to the class **¥xx*x**x

417

Programming C#, 2nd Edition

public class Tester

{

public static void Main()

{
MyMath mm = new MyMath();
Console.WriteLine ("Calling DoFunc(7). Result: {0}",

mm.DoFuncl (7)) ;

}
Output:

Calling DoFunc (7). Result: 9.3333333333333333
As you can see, the attributes had absolutely no impact on the output. In fact, for the moment,
you have only my word that the attributes exist at all. A quick look at the metadata using

ILDasm does reveal that the attributes are in place, however, as shown in Figure 18-1. You'll
see how to get at this metadata and use it in your program in the next section.

Figure 18-1. The metadata in the assembly

ChDocuments and Setiings admnidraior My Documnents\Wisual 5hudio ProgctssFirst Rounsdh ey
MAMNIFEST
= @ Puogramming_CSharp
BE BugFrettinibute
= BE MyMath
claze public aulo snsi belorefeldni
custom irstance wod Programming_CSharp BugFimdtirbules: | choaint32, |
.cugham insdance void Pregramming_C5 harp BugF isetinbiute: cledlnl32, ..
- etod ; woid()
] DoFunc] flostBA[lozEd)
2 DoFunc? - flostEd[floed)
= BE Teater
-clazs public auta ansi betorsheldnit
2 choe: woud()
1 Main: vaoid(]
i *

{ammbi_,l Secondl estipp

4] L Bt

18.4 Reflection

For the attributes in the metadata to be useful, you need a way to access them -- ideally during
runtime. The classes in the Reflection namespace, along with the System.Type and
System.TypedReference classes, provide support for examining and interacting with the

metadata.

Reflection is generally used for any of four tasks:

Viewing metadata

This might be used by tools and utilities that wish to display metadata.

418

Programming C#, 2nd Edition

Performing type discovery

This allows you to examine the types in an assembly and interact with or instantiate
those types. This can be useful in creating custom scripts. For example, you might
want to allow your users to interact with your program using a script language, such as
JavaScript, or a scripting language you create yourself.

Late binding to methods and properties

This allows the programmer to invoke properties and methods on objects dynamically
instantiated based on type discovery. This is also known as dynamic invocation.

Creating types at runtime (Reflection Emit)

The ultimate use of reflection is to create new types at runtime and then to use those
types to perform tasks. You might do this when a custom class, created at runtime,
will run significantly faster than more generic code created at compile time. An
example is offered later in this chapter.

18.4.1 Viewing MetaData

In this section, you will use the C# Reflection support to read the metadata in the MmyMath
class.

Start by initializing an object of the type Memberinfo. This object, in the
System.Reflection namespace, is provided to discover the attributes of a member and to
provide access to the metadata:

System.Reflection.MemberInfo inf = typeof (MyMath);

Call the typeof operator on the MyMath type, which returns an object of type Type, which
derives from MemberInfo.

- The Type class is the root of the reflection classes. Type encapsulates a
%3 4. representation of the type of an object. The Type class is the primary
v

way to access metadata. Type derives from MemberInfo and
encapsulates information about the members of a class (e.g., methods,
properties, fields, events, etc.).

The next step is to call GetCustomattributes on this MemberInfo object, passing in the type
of the attribute you want to find. You get back an array of objects, each of type
BugFixAttribute:

object[] attributes;
attributes =
inf.GetCustomAttributes (typeof (BugFixAttribute), false);

You can now iterate through this array, printing out the properties of the BugFixAttribute
object. Example 18-2 replaces the Tester class from Example 18-1.

419

Programming C#, 2nd Edition

Example 18-2. Using reflection

public static void Main()

{
MyMath mm = new MyMath();

Console.WriteLine ("Calling DoFunc (7). Result: {0}",
mm.DoFuncl (7)) ;

// get the member information and use it to
// retrieve the custom attributes
System.Reflection.MemberInfo inf = typeof (MyMath) ;
object[] attributes;
attributes =
inf.GetCustomAttributes (
typeof (BugFixAttribute), false);

// iterate through the attributes, retrieving the
// properties
foreach (Object attribute in attributes)

{
BugFixAttribute bfa = (BugFixAttribute) attribute;

Console.WriteLine ("\nBugID: {0}", bfa.BuglD);
Console.WritelLine ("Programmer: {0}", bfa.Programmer) ;
Console.WriteLine ("Date: {0}", bfa.Date);
Console.WriteLine ("Comment: {0}", bfa.Comment);

}

Output:
Calling DoFunc (7). Result: 9.3333333333333333

BugID: 121

Programmer: Jesse Liberty
Date: 01/03/05

Comment:

BugID: 107

Programmer: Jesse Liberty

Date: 01/04/05

Comment: Fixed off by one errors

When you put this replacement code into Example 18-1 and run it, you can see the metadata
printed as you'd expect.

18.4.2 Type Discovery

You can use reflection to explore and examine the contents of an assembly. You can find the
types associated with a module; the methods, fields, properties, and events associated with a
type, as well as the signatures of each of the type's methods; the interfaces supported by the
type; and the type's base class.

To start, load an assembly dynamically with the Assembly.Load static method. The
Assembly class encapsulates the actual assembly itself, for purposes of reflection. The
signature for the Load method is:

public static Assembly.Load (AssemblyName)

420

Programming C#, 2nd Edition

For the next example, pass in the Core Library to the Load method. MsCorLib.d11 has the
core classes of the .NET Framework:

Assembly a = Assembly.Load("Mscorlib.d1l1l");

Once the assembly is loaded, you can call GetTypes () to return an array of Type objects.
The Type object is the heart of reflection. Type represents type declarations (classes,
interfaces, arrays, values, and enumerations):

Typel[] types = a.GetTypes();

The assembly returns an array of types that you can display in a foreach loop, as shown in
Example 18-3. Because this listing uses the Type class, you will want to add a using
statement for the system.Reflection namespace.

Example 18-3. Reflecting on an assembly

namespace Programming CSharp
{

using System;

using System.Reflection;

public class Tester
{
public static void Main()
{
// what is in the assembly
Assembly a = Assembly.Load("Mscorlib.dll");
Typel[] types = a.GetTypes();
foreach (Type t in types)
{
Console.WriteLine ("Type is {0}", t);
}
Console.WriteLine (
"{0} types found", types.Length);

The output from this would fill many pages. Here is a short excerpt:

Type 1s System.TypeCode

Type 1s System.Security.Util.StringExpressionSet

Type 1is System.Runtime.InteropServices.COMException
Type 1s System.Runtime.InteropServices.SEHException
Type 1s System.Reflection.TargetParameterCountException
Type is System.Text.UTF7Encoding

Type is System.Text.UTF7Encoding+Decoder

Type 1s System.Text.UTF7Encoding+Encoder

Type 1s System.Arglterator

1426 types found

This example obtained an array filled with the types from the Core Library and printed them
one by one. The array contained 1,426 entries on my machine.

421

Programming C#, 2nd Edition

18.4.3 Reflecting on a Type

You can reflect on a single type in the mscorlib assembly as well. To do so, extract a type
from the assembly with the GetType () method, as shown in Example 18-4.

Example 18-4. Reflecting on a type

namespace Programming CSharp

{
using System;
using System.Reflection;

public class Tester

{

public static void Main()

{

// examine a single object
Type theType =
Type.GetType (
"System.Reflection.Assembly") ;
Console.WriteLine (
"\nSingle Type is {0}\n", theType);

}
Output:

Single Type is System.Reflection.Assembly
18.4.3.1 Finding all type members

You can ask the assembly type for all its members using the GetMembers () method of the
Type class, which lists all the methods, properties, and fields, as shown in Example 18-5.

Example 18-5. Reflecting on the members of a type

namespace Programming CSharp
{

using System;

using System.Reflection;

public class Tester
{
public static void Main()
{
// examine a single object
Type theType =
Type.GetType (
"System.Reflection.Assembly") ;
Console.WriteLine (
"\nSingle Type is {0}\n", theType);

422

Programming C#, 2nd Edition

// get all the members

MemberInfo[] mbrInfoArray =
theType.GetMembers ();

foreach (MemberInfo mbrInfo in mbrInfoArray)

{
Console.WriteLine ("{0} is a {1}",
mbrInfo, mbrInfo.MemberType)

Once again the output is quite lengthy, but within the output you see fields, methods,
constructors, and properties, as shown in this excerpt:

Boolean IsDefined(System.Type, Boolean) is a Method

System.Object[] GetCustomAttributes (Boolean) is a Method
System.Object[] GetCustomAttributes (System.Type, Boolean) is a Method
System.Security.Policy.Evidence get Evidence() is a Method
System.String get Location() is a Method

18.4.3.2 Finding type methods

You might want to focus on methods only, excluding the fields, properties, and so forth. To
do so, remove the call to GetMembers ():

MemberInfo[] mbrInfoArray =
theType.GetMembers (BindingFlags.LookupAll) ;

and add a call to GetMethods ():

mbrInfoArray = theType.GetMethods();

The output now is nothing but the methods:

Output (excerpt):

Boolean Equals (System.Object) is a Method
System.String ToString() is a Method
System.String CreateQualifiedName (
System.String, System.String) is a Method
Boolean get GlobalAssemblyCache() is a Method

18.4.3.3 Finding particular type members
Finally, to narrow it down even further, you can use the FindMembers method to find
particular members of the type. For example, you can narrow your search to methods whose

names begin with the letters Get.

To narrow the search, use the FindMembers method, which takes four parameters:
MemberTypes,BindingFlags,MemberFilter,andobject

423

Programming C#, 2nd Edition

MemberTypes

A MemberTypes object that indicates the type of the member to search for. These
include All, Constructor, Custom, Event, Field, Method, Nestedtype, Property,
and TypeInfo. You will also use the MemberTypes.Method to find a method.

BindingFlags

An enumeration that controls the way searches are conducted by reflection. There are
a great many BindingFlag Vahws,inchuhng IgnoreCase, Instance, Public,
Static, and so forth.

MemberFilter

A delegate (see Chapter 12) that is used to filter the list of members in the
MemberInfo array of objects. The filter you'll use is Type.FilterName, a field of the
Type class used for filtering on a name.

Object

A string value that will be used by the filter. In this case you'll pass in "Get*" to match
only those methods that begin with the letters Get.

The complete listing for filtering on these methods is shown in Example 18-6.
Example 18-6. Finding particular members

namespace Programming CSharp
{

using System;

using System.Reflection;

public class Tester
{
public static void Main()
{
// examine a single object
Type theType = Type.GetType (
"System.Reflection.Assembly") ;

// just members which are methods beginning with Get
MemberInfo[] mbrInfoArray =
theType.FindMembers (MemberTypes.Method,

BindingFlags.Public |

BindingFlags.Static |

BindingFlags.NonPublic |

BindingFlags.Instance |

BindingFlags.DeclaredOnly,

Type.FilterName, "Get*");

424

Programming C#, 2nd Edition

foreach (MemberInfo mbrInfo in mbrInfoArray)

{
Console.WriteLine ("{0} is a {1}",
mbrInfo, mbrInfo.MemberType) ;

}
Output (excerpt):

System.Type[] GetTypes() is a Method

System.Type[] GetExportedTypes() is a Method

System.Type GetType (System.String, Boolean) is a Method
System.Type GetType (System.String) is a Method
System.Reflection.AssemblyName GetName (Boolean) is a Method
System.Reflection.AssemblyName GetName() is a Method

18.4.4 Late Binding

Once you have discovered a method, it's possible to invoke it using reflection. For example,

you might like to invoke the cos () method of system.Math, which returns the cosine of an
angle.
- You could, of course, call cos() in the normal course of your code,
«s 4. but reflection allows you to bind to that method at runtime. This is
& called late-binding and offers the flexibility of choosing at runtime

which object you will bind to and invoking it programmatically. This
can be useful when creating a custom script to be run by the user or
when working with objects that might not be available at compile time.
For example, by using late-binding, your program can interact with the
spellchecker or other components of a running commercial word
processing program such as Microsoft Word.

To invoke cos (), you will first get the Type information for the System.Math class:

Type theMathType = Type.GetType ("System.Math") ;

With that type information, you could dynamically load an instance of a class by using a static
method of the Activator class. Since cos () is static, you don't need to construct an instance
of system.Math (and you can't, since System.Math has no public constructor).

The activator class contains four methods, all static, which you can use to create objects

locally or remotely, or to obtain references to existing objects. The four methods are
CreateComInstanceFrom,CreatelnstanceFrom,GetObject,andwjreateInstanceZ

CreateComInstanceFrom

Used to create instances of COM objects.

425

Programming C#, 2nd Edition

CreatelInstanceFrom
Used to create a reference to an object from a particular assembly and type name.
GetObject

Used when marshaling objects. Marshaling is discussed in detail in Chapter 19.

Createlnstance
Used to create local or remote instances of an object.

For example:

Object theObj = Activator.CreatelInstance (someType) ;

Back to the cos() example, you now have one object in hand: a Type object named
theMathType, wWhich you created by calling GetType.

Before you can invoke a method on the object, you must get the method you need from the
Type object, theMathType. To do so, you'll call GetMethod(), and you'll pass in the
signature of the cos method.

The signature, you will remember, is the name of the method (cos) and its parameter types. In
the case of cos (), there is only one parameter: a double. However, Type.GetMethod takes
two parameters. The first represents the name of the method you want, and the second
represents the parameters. The name is passed as a string; the parameters are passed as an
array of types:

MethodInfo CosinelInfo =
theMathType.GetMethod ("Cos",paramTypes) ;

Before calling GetMethod, you must prepare the array of types:

Typel[] paramTypes = new Typel[ll];
paramTypes[0]= Type.GetType ("System.Double") ;

This code declares the array of Type objects and then fills the first element (paramTypes[01)
with a Type representing a double. Obtain the type representing a double by calling the static
method Type.GetType (), and passing in the string "System.Double™".

You now have an object of type MethodInfo on which you can invoke the method. To do so,
you must pass in the object to invoke the method on and the actual value of the parameters,
again in an array. Since this is a static method, pass in theMathType. (If Cos() was an
instance method, you could use theOb7 instead of theMathType.)

Object[] parameters = new Object[l];
parameters[0] = 45 * (Math.PI/180); // 45 degrees in radians
Object returnVal = CosineInfo.Invoke (theMathType,parameters);

426

Programming C#, 2nd Edition

i

. Note that you've created two arrays. The first, paramTypes, holds the
#3 1. type of the parameters. The second, parameters, holds the actual value.
i B

If the method had taken two arguments, you'd have declared these
arrays to hold two values. If the method did not take any values, you
still would create the array, but you would give it a size of zero!

Typel[] paramTypes = new Type[0];

Odd as this looks, it is correct.

Example 18-7 illustrates dynamically calling the cos () method.
Example 18-7. Dynamically invoking a method

namespace Programming CSharp
{

using System;

using System.Reflection;

public class Tester
{
public static void Main()
{
Type theMathType = Type.GetType ("System.Math") ;
// Since System.Math has no public constructor, this
// would throw an exception.
//Object theObj =
// Activator.CreateInstance (theMathType) ;

// array with one member
Typel[] paramTypes = new Typel[l];
paramTypes[0]= Type.GetType ("System.Double") ;

// Get method info for Cos()
MethodInfo CosineInfo =
theMathType.GetMethod ("Cos",paramTypes) ;

// fill an array with the actual parameters
Object[] parameters = new Object[1l];
parameters[0] = 45 * (Math.PI/180); // 45 degrees in radians
Object returnval =

CosineInfo.Invoke (theMathType, parameters) ;
Console.WriteLine (

"The cosine of a 45 degree angle {0}",

returnVal) ;

That was a lot of work just to invoke a single method. The power, however, is that you can
use reflection to discover an assembly on the user's machine, to query what methods are
available, and to invoke one of those members dynamically!

427

Programming C#, 2nd Edition

18.5 Reflection Emit

So far we've seen reflection used for three purposes: viewing metadata, type discovery, and
dynamic invocation. You might use these techniques when building tools (such as a
development environment) or when processing scripts. The most powerful use of reflection,
however, is with reflection emit.

Reflection emit supports the dynamic creation of new types at runtime. You can define an
assembly to run dynamically or to save itself to disk, and you can define modules and new
types with methods that you can then invoke.

o The use of dynamic invocation and reflection emit should be considered
a2] an advanced topic. Most developers will never have need to use
~ 4+ reflection emit. This demonstration is based on an example provided at

the Microsoft Author's Summit, Fall 2000.

To understand the power of reflection emit, you must first consider a slightly more
complicated example of dynamic invocation.

Problems can have general solutions that are relatively slow and specific solutions that are
fast. To keep things manageably simple, consider a Dosum() method, which provides the
sum of a string of integers from 1...n, where n will be supplied by the user.

Thus, Dosum (3) is equal to 1+2+3, or 6. Dosum (10) is 55. Writing this in C# is very simple:

public int DoSuml (int n)

{
int result = 0;
for(int i = 1;i <= n; i++)
{

result += 1i;

}

return result;

}

The method simply loops, adding the requisite number. If you pass in 3, the method adds 1 +
2 + 3 and returns an answer of 6.

With large numbers, and when run many times, this might be a bit slow. Given the value 20,
this method would be considerably faster if you removed the loop:

public int DoSum2()

{
return 1+2+3+4+5+6+7+8+9+10+11+12+13+414+15+16+17+18+19+20;

}
DoSum2 runs more quickly than posum1 does. How much more quickly? To find out, you'll

need to put a timer on both methods. To do so, use a DateTime object to mark the start time
and a TimeSpan object to compute the elapsed time.

428

Programming C#, 2nd Edition

For this experiment, you need to create two Dosum () methods; the first will use the loop and
the second will not. Call each 1,000,000 times. (Computers are very fast, so to see a
difference you have to work hard!) Then compare the times. Example 18-8 illustrates the
entire test program.

Example 18-8. Comparing loop to brute force

namespace Programming CSharp
{
using System;
using System.Diagnostics;
using System.Threading;

public class MyMath
{

// sum numbers with a loop
public int DoSum(int n)

{
int result = 0;
for(int 1 = 1; 1 <= n; 1i++)
{
result += 1i;

}

return result;

}

// brute force by hand
public int DoSum2 ()

{
return 1+2+3+4+5+6+7+8+9+10+11
+12+13+14+15+16+17+18+19+20;

}

public class TestDriver

{

public static void Main()

{
const int val = 20; // val to sum

// 1,000,000 iterations
const int iterations = 1000000;

// hold the answer
int result = 0;

MyMath m = new MyMath();

// mark the start time
DateTime startTime = DateTime.Now;

// run the experiment
for (int i = 0;1i < iterations;i++)
{

result = m.DoSum(val) ;

}

429

Programming C#, 2nd Edition

// mark the elapsed time
TimeSpan elapsed =
DateTime.Now - startTime;

// display the results
Console.WriteLine (
"Loop: Sum of ({0}) = {1}i",
val, result):;
Console.WriteLine (
"The elapsed time in milliseconds is: " +
elapsed.TotalMilliseconds.ToString());

// mark a new start time
startTime = DateTime.Now;

// run the experiment
for (int i = 0;1 < iterations;i++)
{

result = m.DoSum2 ();

}

// mark the new elapsed time
elapsed = DateTime.Now - startTime;

// display the results
Console.WriteLine (
"Brute Force: Sum of ({0}) = {1}",
val, result):;
Console.WriteLine (
"The elapsed time in milliseconds is: " +
elapsed.TotalMilliseconds) ;

}

Output:

Loop: Sum of (20) = 210

The elapsed time in milliseconds is: 187.5
Brute Force: Sum of (20) = 210

The elapsed time in milliseconds is: 31.25

As you can see, both methods returned the same answer (one million times!), but the brute-
force method was six times faster.

Is there a way to avoid the loop and still provide a general solution? In traditional
programming, the answer would be no, but with reflection you do have one other option. You
can, at runtime, take the value the user wants (20, in this case) and write out to disk a class
that implements the brute-force solution. You can then use dynamic invocation to invoke that
method.

There are at least three ways to achieve this result, each increasingly elegant. The third,

reflection emit, is the best, but a close look at two other techniques is instructive. If you are
pressed for time, you might wish to jump ahead to Section 18.5.3, later in this chapter.

430

Programming C#, 2nd Edition

18.5.1 Dynamic Invocation with InvokeMember()

The first approach will be to dynamically create a class named BruteForceSums at runtime.
The BruteForcesums class will contain a method, Computesum(), that implements the
brute-force approach. You'll write that class to disk, compile it, and then use dynamic
invocation to invoke its brute-force method by means of the InvokeMember () method of the
Type class. The key point is that BruteForceSums.cs won't exist until you run the program.
You'll create it when you need it and supply its arguments then.

To accomplish this, you'll create a new class named ReflectionTest. The job of the
ReflectionTest class is to create the BruteForcesums class, write it to disk, and compile it.
ReflectionTest has only two methods: DoSum and GenerateCode.

ReflectionTest.DoSum is a public method that returns the sum, given a value. That is, if you
pass in 10, it returns the sum of 1+2+3+4+5+6+7+8+9+10. It does this by creating the
BruteForceSums class and delegating the job to its Computesum method.

ReflectionTest has two private fields:

Type theType = null;
object theClass = null;

The first is an object of type Type, which you use to load your class from disk; the second is
an object of type object, which you use to dynamically invoke the Computesums () method
of the BruteForcesums class you'll create.

The driver program instantiates an instance of ReflectionTest and calls its Dosum method,
passing in the value. For this version of the program, the value is increased to 200.

The posum method checks whether theType is null; if it is, the class has not been created yet.
Dosum calls the helper method GeneratecCode to generate the code for the BruteForceSums
class and the class's Computesums method. GenerateCode then writes this newly created code
to a .cs file on disk and runs the compiler to turn it into an assembly on disk. Once this is
completed, Dosum can call the method using reflection.

Once the class and method are created, load the assembly from disk and assign the class type
information to theType -- DoSum can use that to invoke the method dynamically to get the

correct answer.

You begin by creating a constant for the value to which you'll sum:

const int val = 200;
Each time you compute a sum, it will be the sum of the values 1 to 200.

Before you create the dynamic class, you need to go back and re-create MyMath:

MyMath m = new MyMath();

Give MyMath a method DosumLooping, much as you did in the previous example:

431

Programming C#, 2nd Edition

public int DoSumLooping (int initialval)
{

int result = 0;

for(int 1 = 1;1i <=initialVal;i++)

{

result += 1i;

}

return result;

This serves as a benchmark against which you can compare the performance of the brute-
force method.

Now you're ready to create the dynamic class and compare its performance with the looping
version. First, instantiate an object of type ReflectionTest and invoke the bosum () method
on that object:

ReflectionTest t = new ReflectionTest();
result = t.DoSum(val);

ReflectionTest.DoSum checks to see if its Type field, theType, is null. If it is, you haven't
yet created and compiled the BruteForcesums class and must do so now:

if (theType == null)
{

GenerateCode (theValue) ;

}

The GenerateCode method takes the value (in this case, 200) as a parameter to know how
many values to add.

GenerateCode begins by creating a file on disk. The details of file I/O will be covered in
Chapter 21. For now, I'll walk you through this quickly. First, call the static method
File.Open, and pass in the filename and a flag indicating that you want to create the file.
File.Open returns a Stream object:

string fileName = "BruteForceSums";
Stream s = File.Open(fileName + ".cs", FileMode.Create);

Once you have the stream, you can create a StreamWriter so that you can write into that
file:

StreamWriter wrtr = new StreamWriter(s);

You can now use the WriteLine methods of StreamWriter to write lines of text into the file.
Begin the new file with a comment:

wrtr.WriteLine ("// Dynamically created BruteForceSums class");

This writes the text:

// Dynamically created BruteForceSums class

432

Programming C#, 2nd Edition

to the file you've just created (BruteForceSums.cs). Next, write out the class declaration:

string className = "BruteForceSums";
wrtr.WriteLine ("class {0}", className) ;
wrtr.WriteLine ("{");

Within the braces of the class, create the computeSum method:

wrtr.WriteLine
wrtr.WritelLine
wrtr.WriteLine
wrtr.WriteLine

"\tpublic double ComputeSum()");
"\NE{");

"\t// Brute force sum method");
"\t// For value = {0}", theval);

—~ e~~~

Now it is time to write out the addition statements. When you are done, you want the file to
have this line:

return 0+1+2+3+4+5+6+7+8+9...

continuing up to value (in this case, 200):

wrtr.Write ("\treturn 0");
for (int i = 1;i<=theVal;i++)
{
wrtr.Write("+ {0}",1);
}

Notice how this works. What will be written to the file is:

\treturn 0+ 1+ 2+ 3+...
The initial \t causes the code to be indented in the source file.

When the loop completes, end the return statement with a semicolon and then close the
method and the class:

wrtr.WriteLine (";");
wrtr.WriteLine ("\t}");
wrtr.WriteLine ("}");

Close the streamwriter and the stream, thus closing the file:

wrtr.Close();
s.Close();

When this runs, the BruteForceSums.cs file will be written to disk. It will look like this:

// Dynamically created BruteForceSums class
class BruteForceSums
{

public double ComputeSum()

{

// Brute force sum method

// For value = 200

return 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+
11+ 124 13+ 144+ 15+ 1o+ 17+ 18+ 19+ 20+ 21+

433

Programming C#, 2nd Edition

22+ 234+ 24+ 254 26+ 27+ 28+ 29+ 30+ 31+ 32+
33+ 34+ 35+ 36+ 37+ 38+ 39+ 40+ 41+ 42+ 43+
44+ 45+ 464+ 47+ 48+ 49+ 50+ 51+ 52+ 53+ 54+
55+ 56+ 57+ 58+ 59+ 60+ o6l+ 62+ 63+ 64+ 65+
66+ 67+ 68+ 69+ 70+ 71+ T2+ T3+ 74+ 75+ To+
77+ 78+ 79+ 80+ 81+ 82+ 83+ 84+ 85+ 86+ 87+
88+ 89+ 90+ 91+ 92+ 93+ 94+ 95+ 96+ 97+ 98+
99+ 100+ 101+ 102+ 103+ 104+ 105+ 106+ 107+
108+ 109+ 110+ 111+ 112+ 113+ 114+ 115+ 1lo+
117+ 118+ 119+ 120+ 121+ 122+ 123+ 124+ 125+
126+ 127+ 128+ 129+ 130+ 131+ 132+ 133+ 134+
135+ 136+ 137+ 138+ 139+ 140+ 141+ 142+ 143+
144+ 145+ 146+ 147+ 148+ 149+ 150+ 151+ 152+
153+ 154+ 155+ 156+ 157+ 158+ 159+ 160+ 161+
162+ 163+ 164+ 165+ 166+ 167+ 168+ 169+ 170+
171+ 172+ 173+ 174+ 1754+ 176+ 177+ 178+ 179+
180+ 181+ 182+ 183+ 184+ 185+ 186+ 187+ 188+
189+ 190+ 191+ 192+ 193+ 194+ 195+ 196+ 197+
198+ 199+ 200;

This accomplishes the goal of dynamically creating a class with a method that finds the sum
through brute force.

The only remaining task is to build the file and then use the method. To build the file, you
must start a new process (processes are explained in some detail in Chapter 20). The best way
to launch this process is with a ProcessstartInfo structure that will hold the command line.
Instantiate a ProcessStartInfo and set its filename to cmd.exe:

ProcessStartInfo psi = new ProcessStartInfo();
psi.FileName = "cmd.exe";

You need to pass in the string you want to invoke at the command line. The
ProcessStartInfo.Arguments property specifies the command-line arguments to use when
starting the program. The command-line argument to the cmd.exe program will be /c to tell
cmd.exe to exit after it executes the command, and then the command for cmd.exe. The
command for cmd.exe is the command-line compiler:

string compileString = "/c {0}csc /optimize+ ";
compileString += " /target:library ";
compileString += "{1l}.cs > compile.out";

The string compilestring will invoke the C# compiler (csc), telling it to optimize the code
(after all, you're doing this to gain performance) and to build a dynamic link library (DLL)
file (/target:library). Redirect the output of the compile to a file named compile.out so that
you can examine it if there are errors.

Combine compileString with the filename, using the static method Format of the string
class, and assign the combined string to psi.Arguments. The first placeholder, {0}, holds
the location of the compiler (%4SystemRoot%\Microsoft. NET\Framework\<version>), and the
second placeholder, {1}, holds the source code filename:

434

Programming C#, 2nd Edition

string frameworkDir =
RuntimeEnvironment.GetRuntimeDirectory();
psi.Arguments = String.Format (compileString, frameworkDir, fileName) ;

The effect of all this is to set the Arguments property of the processStartInfo object psi
to:

/c csc /optimize+ /target:library
BruteForceSums.cs > compile.out

Before invoking cmd.exe, set the WindowStyle property of psi to Minimized so that when
the command executes, the window does not flicker onto and then off of the user's display:

psi.WindowStyle = ProcessWindowStyle.Minimized;

You are now ready to start the cmd.exe process -- wait until it finishes before proceeding with
the rest of the GenerateCode method:

Process proc = Process.Start (psi);
proc.WaitForExit ();

Once the process is done, you can get the assembly; from the assembly, you can get the class
you've created. Finally, you can ask that class for its type and assign that to your theType
member variable:

Assembly a = Assembly.LoadFrom(fileName + ".dl1l");
theClass = a.CreatelInstance (className) ;
theType = a.GetType (className) ;

You can now delete the .cs file you generated:

File.Delete (fileName + ".cs");

You've now filled theType, and you're ready to return to Dosum to invoke the ComputeSum
method dynamically. The Type object has a method InvokeMember (), which can be used to
invoke a member of the class described by the Type object. The InvokeMember method is
overloaded; the version you'll use takes five arguments:

public object InvokeMember (
string name ,

BindingFlags invokeAttr ,
Binder binder ,

object target ,

object [] args

name

The name of the method you wish to invoke.

435

Programming C#, 2nd Edition

invokeAttr

A bit mask of BindingFlags that specify how the search of the object is conducted. In
this case, you'll use the InvokeMethod flag OR'd with the pefault flag. These are the
standard flags for invoking a method dynamically.

binder

Used to assist in type conversions. By passing in nul1, you'll specify that you want the
default binder.

target

The object on which you'll invoke the method. In this case, you'll pass in theClass,
which is the class you just created from the assembly you just built.

args
An array of arguments to pass to the method you're invoking.

The complete invocation of InvokeMember looks like this:

object[] arguments = new object[0];
object retVal =
theType.InvokeMember ("ComputeSum",
BindingFlags.Default |
BindingFlags.InvokeMethod,
null,
theClass,
arguments) ;
return (double) retVal;

The result of invoking this method is assigned to the local variable retval, which is then
returned, as a double, to the driver program. The complete listing is shown in Example 18-9.

Example 18-9. Dynamic invocation with Type and InvokeMethod()

namespace Programming CSharp
{
using System;
using System.Diagnostics;
using System.IO;
using System.Reflection;
using System.Runtime.InteropServices; // provides RuntimeEnvironment

// used to benchmark the looping approach
public class MyMath
{

// sum numbers with a loop
public int DoSumLooping (int initialval)

{

int result = 0;

436

}

Programming C#, 2nd Edition

for(int 1 = 1;1i <=initialVal;i++)

{

result += 1i;

}

return result;

// responsible for creating the BruteForceSums
// class and compiling it and invoking the

// DoSums method dynamically

public class ReflectionTest

{

// the public method called by the driver
public double DoSum(int theValue)

{

}

// 1f you don't have a reference
// to the dynamically created class
// create it
if (theType == null)
{
GenerateCode (thevalue) ;

}

// with the reference to the dynamically
// created class you can invoke the method
object[] arguments = new object[0];
object retval =
theType. InvokeMember ("ComputeSum",
BindingFlags.Default |
BindingFlags.InvokeMethod,
null,
theClass,
arguments) ;
return (double) retVal;

// generate the code and compile it
private void GenerateCode (int theval)

{

// open the file for writing
string fileName = "BruteForceSums";
Stream s =

File.Open(fileName + ".cs", FileMode.Create);
StreamWriter wrtr = new StreamWriter(s);
wrtr.Writeline (

"// Dynamically created BruteForceSums class");

// create the class

string className = "BruteForceSums";
wrtr.WriteLine ("class {0}", className) ;
wrtr.WriteLine ("{");

// create the method

wrtr.WriteLine ("\tpublic double ComputeSum()");
wrtr.WriteLine ("\t{");

wrtr.WriteLine ("\t// Brute force sum method");
wrtr.WriteLine ("\t// For value = {0}", theval);

437

}

}

Programming C#, 2nd Edition

// write the brute force additions
wrtr.Write ("\treturn 0");
for (int i = 1;i<=theVal;i++)
{
wrtr.Write("+ {0}",1);

}

wrtr.WriteLine(";"); // finish method
wrtr.WriteLine ("\t}"); // end method
wrtr.WriteLine ("} ") ; // end class

// close the writer and the stream
wrtr.Close();
s.Close();

// Build the file
ProcessStartInfo psi =

new ProcessStartInfo();
psi.FileName = "cmd.exe";
string compileString = "/c {0}csc /optimize+ ";
compileString += "/target:library ";
compileString += "{1l}.cs > compile.out";

string frameworkDir =
RuntimeEnvironment.GetRuntimeDirectory();
psi.Arguments =
String.Format (compileString, frameworkDir, fileName) ;
psi.WindowStyle = ProcessWindowStyle.Minimized;

Process proc = Process.Start(psi);
proc.WaitForExit (2000) ;

// Open the file, and get a
// pointer to the method info
Assembly a =

Assembly.LoadFrom(fileName + ".d11");
theClass = a.CreatelInstance (className) ;
theType = a.GetType (className) ;
// File.Delete (fileName + ".cs"); // clean up

Type theType = null;
object theClass = null;

public class TestDriver

{

public static void Main()

{

const int wval = 200; // 1..200
const int iterations = 100000;
double result = 0;

// run the benchmark
MyMath m = new MyMath();
DateTime startTime = DateTime.Now;
for (int i = 0;1i < iterations;i++)
{
result = m.DoSumLooping(val) ;
}
TimeSpan elapsed =
DateTime.Now - startTime;

438

Programming C#, 2nd Edition

Console.WriteLine (
"Sum of ({0}) =
Console.WriteLine (
"Looping. Elapsed milliseconds: " +
elapsed.TotalMilliseconds +
" for {0} iterations", iterations):;

{1}",val, result);

// run our reflection alternative

ReflectionTest t = new ReflectionTest();
startTime = DateTime.Now;
for (int i = 0;1i < iterations;i++)
{
result = t.DoSum(val);

}

elapsed = DateTime.Now - startTime;
Console.WriteLine (

"Sum of ({0}) = {1}",val, result):;
Console.WriteLine (
"Brute Force. Elapsed milliseconds: " +

elapsed.TotalMilliseconds +
" for {0} iterations", iterations):;

}

Output:

Sum of (200) = 20100

Looping. Elapsed milliseconds:
78.125 for 100000 iterations

Sum of (200) = 20100

Brute Force. Elapsed milliseconds:
3843.75 for 100000 iterations

Notice that the dynamically invoked method is far slower than the loop. This is not a surprise;
writing the file to disk, compiling it, reading it from disk, and invoking the method all bring
significant overhead. You accomplished your goal, but it was a pyrrhic victory .

18.5.2 Dynamic Invocation with Interfaces

It turns out that dynamic invocation is particularly slow. You want to maintain the general
approach of writing the class at runtime and compiling it on the fly. But rather than using
dynamic invocation, you'd just like to call the method. One way to speed things up is to use an
interface to call the computesums () method directly.

To accomplish this, you need to change ReflectionTest.DoSum() from:

public double DoSum(int theValue)
{
if (theType == null)
{
GenerateCode (thevValue) ;
}

object[] arguments = new object[0];

439

Programming C#, 2nd Edition

object retval =
theType.InvokeMember ("ComputeSum",
BindingFlags.Default | BindingFlags.InvokeMethod,
null,
theFunction,
arguments) ;

return (double) retvVal;

to the following:

public double DoSum(int theValue)
{

if (theComputer == null)

{

GenerateCode (theValue) ;

}

return (theComputer.ComputeSum());

In this example, theComputer is an interface to an object of type BruteForceSums. It must be
an interface and not an object because when you compile this program, theComputer won't
yet exist; you'll create it dynamically.

Remove the declarations for thetype and theClass and replace them with:

IComputer theComputer = null;

This declares theComputer to be an Icomputer interface. At the top of your program, declare
the interface:

public interface IComputer

{
double ComputeSum();

}

When you create the BruteForcesum class, you must make it implement IComputer:

wrtr.WriteLine (
"class {0} : Programming CSharp.IComputer ",
className) ;

Save your program in a project file named Reflection, and modify compileString in
GenerateCode as follows:

string compileString = "/c csc /optimize+ ";
compileString += "/r:\"Reflection.exe\" ";
compileString += "/target:library ";
compileString += "{0}.cs > compile.out";

The compile string will need to reference the ReflectionTest program itself (Reflection.exe) so
that the dynamically called compiler will know where to find the declaration of TComputer.

440

Programming C#, 2nd Edition

After you build the assembly, you will no longer assign the instance to theClass and then get
the type for theType, as these variables are gone. Instead, you will assign the instance to the
interface IComputer:

theComputer = (IComputer) a.CreatelInstance (className) ;

Use the interface to invoke the method directly in Dosum:

return (theComputer.ComputeSum());

Example 18-10 is the complete source code.
Example 18-10. Dynamic invocation with interfaces

namespace Programming CSharp
{
using System;
using System.Diagnostics;
using System.IO;
using System.Reflection;
using System.Runtime.InteropServices; // provides RuntimeEnvironment

// used to benchmark the looping approach
public class MyMath
{
// sum numbers with a loop
public int DoSumLooping(int initialvVal)
{
int result = 0;
for(int 1 = 1;1i <=initialVal;i++)
{
result += 1i;

}

return result;

}

public interface IComputer
{

double ComputeSum() ;
}

// responsible for creating the BruteForceSums
// class and compiling it and invoking the
// DoSums method dynamically
public class ReflectionTest
{
// the public method called by the driver
public double DoSum(int theValue)
{
if (theComputer == null)
{
GenerateCode (theValue) ;

}

return (theComputer.ComputeSum());

441

Programming C#, 2nd Edition

// generate the code and compile it
private void GenerateCode (int theVval)
{
// open the file for writing
string fileName = "BruteForceSums";
Stream s =
File.Open(fileName + ".cs", FileMode.Create);
StreamWriter wrtr = new StreamWriter (s);
wrtr.WriteLine (
"// Dynamically created BruteForceSums class");

// create the class

string className = "BruteForceSums";
wrtr.WriteLine (
"class {0} : Programming CSharp.IComputer ",

className) ;
wrtr.WriteLine (" {");

// create the method
wrtr.WriteLine ("\tpublic double ComputeSum()");
wrtr.WriteLine ("\t{");
wrtr.WriteLine ("\t// Brute force sum method"):;
wrtr.WriteLine ("\t// For value = {0}", theval);
// write the brute force additions
wrtr.Write ("\treturn 0");
for (int i = 1;i<=theVal;i++)
{
wrtr.Write("+ {0}",1);
}

wrtr.WriteLine (";"); // finish method
wrtr.WriteLine ("\t}"); // end method
wrtr.WriteLine ("} ") ; // end class

// close the writer and the stream
wrtr.Close();
s.Close();

// Build the file
ProcessStartInfo psi =

new ProcessStartInfo();
psi.FileName = "cmd.exe";
string compileString = "/c {O}csc /optimize+ ";
compileString += "/r:\"Reflection.exe\" ";

compileString += "/target:library ";
compileString += "{l}.cs > compile.out";

string frameworkDir =
RuntimeEnvironment.GetRuntimeDirectory();
psi.Arguments =
String.Format (compileString, frameworkDir, fileName) ;

psi.WindowStyle = ProcessWindowStyle.Minimized;
Process proc = Process.Start(psi);
proc.WaitForExit (); // wait at most 2 seconds

442

Programming C#, 2nd Edition

// Open the file, and get a
// pointer to the method info

Assembly a =
Assembly.LoadFrom(fileName + ".d1l1l");
theComputer = (IComputer) a.CreateInstance (className) ;

File.Delete(fileName + ".cs"); // clean up
}
IComputer theComputer = null;
}

public class TestDriver
{
public static void Main()
{
const int val = 200; // 1..200
const int iterations = 1000000;
double result = 0;

// run the benchmark
MyMath m = new MyMath();
DateTime startTime = DateTime.Now;
for (int i = 0;1i < iterations;i++)
{
result = m.DoSumLooping(val);
}
TimeSpan elapsed =
DateTime.Now - startTime;
Console.WriteLine (
"Sum of ({0}) =
Console.WriteLine (
"Looping. Elapsed milliseconds: " +
elapsed.TotalMilliseconds +
" for {0} iterations", iterations);

{1}",val, result);

// run our reflection alternative

ReflectionTest t = new ReflectionTest();
startTime = DateTime.Now;
for (int i = 0;i < iterations;i++)
{
result = t.DoSum(val);

}

elapsed = DateTime.Now - startTime;
Console.WriteLine (

"Sum of ({0}) = {1}",val, result);
Console.WriteLine (
"Brute Force. Elapsed milliseconds: " +

elapsed.TotalMilliseconds +
" for {0} iterations", iterations);

}

Output:

Sum of (200) = 20100

Looping. Elapsed milliseconds:
951.368 for 1000000 iterations
Sum of (200) = 20100

Brute Force. Elapsed milliseconds:
530.7632 for 1000000 iterations

443

Programming C#, 2nd Edition

This output is much more satisfying; our dynamically created brute-force method now runs
twice as fast as the loop does. But you can do a lot better than that by using reflection emit.

18.5.3 Dynamic Invocation with Reflection Emit

So far you've created an assembly on the fly by writing its source code to disk and then
compiling that source code. You then dynamically invoked the method you wanted to use
from that assembly, which was compiled on disk. That brings a lot of overhead, and what
have you accomplished? When you're done with writing the file to disk, you have source code
you can compile; when you're done compiling, you have IL (Intermediate Language) op codes
on disk that you can ask the .NET Framework to run.

Reflection emit allows you to skip a few steps and just "emit" the op codes directly. This is
writing assembly code directly from your C# program and then invoking the result. It just
doesn't get any cooler than that.

You start much as you did in the previous examples. Create a constant for the number to add
to (200) and the number of iterations (1,000,000). You then re-create the myMath class as a
benchmark.

Once again you have a ReflectionTest class, and once again you call boSum, passing in the
value:

ReflectionTest t = new ReflectionTest();
result =