

Head First C#
by Andrew Stellman and Jennifer Greene

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Series Editor: Brett D. McLaughlin

Design Editor: Louise Barr

Cover Designers: Louise Barr, Steve Fehler

Production Editor: Sanders Kleinfeld

Proofreader: Colleen Gorman

Indexer: Julie Hawks

Page Viewers: Quentin the whippet and Tequila the pomeranian

Printing History:
November 2007: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First C#, and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic and Visual C# are registered
trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.

ISBN-10: 0-596-51482-4

ISBN-13: 978-0-596-51482-2

[M]

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on C#. � You’re sitting around trying to learn something, but

your brain keeps telling you all that learning isn’t important. Your brain’s saying,

“Better leave room for more important things, like which wild animals to avoid and

whether nude archery is a bad idea.” So how do you trick your brain into thinking

that your life really depends on learning C#?

Intro

Who is this book for?	 xxx

We know what you’re thinking	 xxxi

Metacognition	 xxxiii

Bend your brain into submission	 xxxv

What you need for this book	 xxxvi

Read me	 xxxii

The technical review team	 xxxiv

Acknowledgments	 xxxv

 	 Intro	 xxix

1	 Get productive with C#: Visual Applications, in 10 minutes or less	 1

2	 It’s All Just Code: Under the hood	 43

3	 Objects Get Oriented: Making code make sense	 85

4	 Types and References: It’s 10:00. Do you know where your data is?	 123

 	 C# Lab 1: A Day at the Races	 163

5	 Encapsulation: Keep your privates… private	 173

6	 Inheritance: Your object’s family tree	 205

7	 Interfaces and abstract classes: Making classes keep their promises	 251

8	 enums and collections: Storing lots of data	 309

 	 C# Lab 2: The Quest	 363

9	 Reading and writing files: Save the byte array, save the world	 385

10	 Exception handling: Putting Out Fires Gets Old	 439

11	 events and delegates: What Your Code Does When You’re Not Looking	 483

12	 Review and preview: Knowledge, Power, and Building Cool Stuff	 515

13	 Controls and graphics: Make it pretty	 563

14	 Captain Amazing: The Death of the Object	 621

15	 LINQ: Get control of your data	 653

 	 C# Lab 3: Invaders	 681

table of contents

x

Visual Applications, in 10 minutes or less1 Want to build great programs really fast?
With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to focus on getting your work done, rather than remembering which method

parameter was for the name for a button, and which one was for its label.

Sound appealing? Turn the page, and let’s get programming.

get productive with C#

Why you should learn C# 2

C# and the Visual Studio IDE make lots of things easy 3

Help the CEO go paperless 4

Get to know your users’ needs before you startbuilding your program 5

Here’s what you’re going to build 6

What you do in Visual Studio… 8

What Visual Studio does for you… 8

Develop the user interface 12

Visual Studio, behind the scenes 14

Add to the auto-generated code 15

You can already run your application 16

We need a database to store our information 18

Creating the table for the Contact List 20

The blanks on contact card are columns in our People table 22

Finish building the table 25

Diagram your data so your application can access it 26

Insert your card data into the database 28

Connect your form to your database objects with a data source 30

Add database-driven controls to your form 32

Good apps are intuitive to use 34

How to turn YOUR application into EVERYONE’S application 37

Give your users the application 38

You’re NOT done: test your installation 39

You built a complete data-driven application 40

table of contents

xi

Under the Hood
You’re a programmer, not just an IDE-user.
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

it’s all just code

2
When you’re doing this… 44

…the IDE does this 45

Where programs come from 46

The IDE helps you code 48

When you change things in the IDE, you’re also changing your code 50

Anatomy of a program 52

Your program knows where to start 54

You can change your program’s entry point 56

Two classes can be in the same namespace 61

Your programs use variables to work with data 62

C# uses familiar math symbols 64

Loops perform an action over and over again 65

Time to start coding 66

if/else statements make decisions 67

Set up conditions and see if they’re true 68

table of contents

xii

3 Making Code Make Sense
Every program you write solves a problem.
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

objects get oriented

new Navigator()

new
 Na

vig
ato

r()

new Navigator()

ne

How Mike thinks about his problems 86

How Mike’s car navigation system thinks about his problems 87

Mike’s Navigator class has methods to set and modify routes 88

Use what you’ve learned to build a simple application 89

Mike gets an idea 90

Mike can use objects to solve his problem 91

You use a class to build an object 92

When you create a new object from a class,
it’s called an instance of that class 93

A better solution… brought to you by objects! 94

An instance uses fields to keep track of things 98

Let’s create some instances! 99

Thanks for the memory 100

What’s on your program’s mind 101

You can use class and method names to make your code intuitive 102

Give your classes a natural structure 104

Class diagrams help you organize your classes so they make sense 106

Build a class to work with some guys 110

Create a project for your guys 111

Build a form to interact with the guys 112

There’s an even easier way to initialize objects 115

A few ideas for designing intuitive classes 116

table of contents

xiii

4 It’s 10:00. Do you know where your data is?
Data type, database, Lieutenant Commander Data…
it’s all important stuff. �Without data, your programs are useless. You

need information from your users, and you use that to look up or produce new

information, to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you’ll learn the

ins and outs of C#’s data types, how to work with data in your program, and even

figure out a few dirty secrets about objects (psstt… objects are data, too).

types and references

The variable’s type determines what kind of data it can store	 124

A variable is like a data to-go cup	 126

10 pounds of data in a 5 pound bag	 127

Even when a number is the right size,
you can’t just assign it to any variable	 128

When you cast a value that’s too big, C# will adjust it automatically	 129

C# does some casting automatically	 130

When you call a method, the variables must
match the types of the parameters	 131

Combining = with an operator 	 136

Objects are variables, too	 137

Refer to your objects with reference variables	 138

References are like labels for your object	 139

If there aren’t any more references, your object gets garbage collected	140

Multiple references and their side effects	 142

Two references means TWO ways to change an object’s data	 147

A special case: arrays	 148

Arrays can contain a bunch of reference variables, too	 149

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!	 150

Objects use references to talk to each other	 152

Where no object has gone before	 153

fido

Luck
y

fido
Luck

y

table of contents

xiv

table of contentsof contentsoftable of contentsof contentsoftable of contentsof contentsof

Joe, Bob, and Al love going to the track, but they’re
tired of losing all their money. They need you to build a
simulator for them so they can figure out winners before
they lay their money down. And, if you do a good job,
they’ll cut you in on their profits.

C# Lab 1
A Day at the Races

The Spec: Build a Racetrack Simulator 164

The Finished Product 172

table of contents

xv

5 Keep your privates… private

Ever wished for a little more privacy?
Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal, or paging through your bank statements, good objects

don’t let other objects go poking around their properties. In this chapter, you’re going

to learn about the power of encapsulation. You’ll make your object’s data private,

add methods to protect how that data is accessed.

encapsulation

Kathleen is an event planner 174

What does the estimator do? 175

Kathleen’s Test Drive 180

Each option should be calculated individually 182

It’s easy to accidentally misuse your objects 184

Encapsulation means keeping some of the data in a class private 185

Use encapsulation to control access to your class’s methods and fields 186

But is the realName field REALLY protected? 187

Private fields and methods can only be accessed from inside the class 188

A few ideas for encapsulating classes 191

Encapsulation keeps your data pristine 192

Properties make encapsulation easier 193

Build an application to test the Farmer class 194

Use automatic properties to finish the class 195

What if we want to change the feed multiplier? 196

Use a constructor to initialize private fields 197

table of contents

xvi

6 Your object’s family tree
Sometimes you DO want to be just like your parents.
Ever run across an object that almost does exactly what you want your object to do?

Found yourself wishing that if you could just change a few things, that object would

be perfect? Well that’s just one reason that inheritance is one of the most powerful

concepts and techniques in the C# language. Before you’re through this chapter, you’ll

learn how to subclass an object to get its behavior, but keep the flexibility to make

changes to that behavior. You’ll avoid duplicate code, model the real world more

closely, and end up with code that’s easier to maintain.

inheritance

Kathleen does birthday parties, too 206

We need a BirthdayParty class 207

One more thing... can you add a $100 fee for parties over 12? 213

When your classes use inheritance,
you only need to write your code once 214

Build up your class model by starting general
and getting more specific 215

How would you design a zoo simulator? 216

Use inheritance to avoid duplicate code in subclasses 217

Different animals make different noises 218

Think about how to group the animals 219

Create the class hierarchy 220

Every subclass extends its base class 221

Use a colon to inherit from a base class 222

We know that inheritance adds the base class fields,
properties, and methods to the subclass... 225

A subclass can override methods to change or
replace methods it inherited 226

Any place where you can use a base class,
you can use one of its subclasses instead 227

A subclass can access its base class using the base keyword 232

When a base class has a constructor, your subclass needs one too 233

Now you’re ready to finish the job for Kathleen! 234

Build a beehive management system 239

First you’ll build the basic system 240

Use inheritance to extend the bee management system 245

table of contents

xvii

7 Making classes keep their promises

Actions speak louder than words.
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great

responsibility, and any class that implements an interface must promise to fulfill all of

its obligations... or the compiler will break their kneecaps, see?

interfaces and abstract classes

Let’s get back to bee-sics 252

We can use inheritance to create classes for different types of bees 253

An interface tells a class that it must implement
certain methods and properties 254

Use the interface keyword to define an interface 255

Get a little practice using interfaces 256

Now you can create an instance of NectarStinger that does both jobs 257

Classes that implement interfaces have to include ALL of
the interface’s methods 258

You can’t instantiate an interface, but you can reference an interface 260

Interface references work just like object references 261

You can find out if a class implements a certain interface with “is” 262

Interfaces can inherit from other interfaces 263

The RoboBee 4000 can do a worker bee’s job
without using valuable honey 264

is tells you what an object implements,
as tells the compiler how to treat your object 265

A CoffeeMaker is also an Appliance 266

Upcasting works with both objects and interfaces 267

Downcasting lets you turn your appliance back into a coffee maker 268

Upcasting and downcasting work with interfaces, too 269

There’s more than just public and private 273

Access modifiers change scope 274

Some classes should never be instantiated 277

An abstract class is like a cross between a class and an interface 278

Some classes should never be instantiated 280

An abstract method doesn’t have a body 281

Polymorphism means that one object can take many different forms 289

table of contents

xviii

8 Storing lots of data
When it rains, it pours.�
In the real world, you don’t get to handle your data in tiny little bits and pieces.

No, your data’s going to come at you in loads, piles and bunches. You’ll need

some pretty powerful tools to organize all of it, and that’s where collections

come in. They let you store, sort and manage all the data that your programs

need to pore through. That way you can think about writing programs to work

with your data, and let the collections worry about keeping track of it for you.

enums and collections

Strings don’t always work for storing categories of data	 310

Enums let you enumerate a set of valid values	 311

Enums let you represent numbers with names	 312

We could use an array to create a deck of cards...	 315

Arrays are hard to work with	 316

Lists make it easy to store collections of... anything	 317

Lists are more flexible than arrays	 318

Lists shrink and grow dynamically	 321

List objects can store any type	 322

Collection initializers work just like object initializers	 326

Let’s create a list of Ducks	 327

Lists are easy, but SORTING can be tricky	 328

Two ways to sort your ducks	 329

Use IComparer to tell your List how to sort	 330

Create an instance of your comparer object	 331

IComparer can do complex comparisons	 332

Use a dictionary to store keys and values	 335

The Dictionary Functionality Rundown	 336

Your key and value can be different types, too	 337

You can build your own overloaded methods	 343

And yet MORE collection types...	 355

A queue is FIFO — First In, First Out	 356

A stack is LIFO — Last In, First Out	 357

poof!

table of contents

xix

 contents contents contents

C# Lab 2
The Quest

Your job is to build an adventure game where a mighty
adventurer is on a quest to defeat level after level of
deadly enemies. You’ll build a turn-based system, which
means the player makes one move and then the enemies
make one move. The player can move or attack, and then
each enemy gets a chance to move and attack. The game
keeps going until the player either defeats all the enemies
on all seven levels or dies.

The spec: build an adventure game 364

The fun’s just beginning! 484

table of contents

xx

9 Save the byte array, save the world
Sometimes it pays to be a little persistent.�
So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that’s not always enough, especially when you’re

dealing with important information. You need to be able to save your work. In

this chapter, we’ll look at how to write data to a file, and then how to read that

information back in from a file. You’ll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

reading and writing files

69 117 114 101 107 97 33

C# uses streams to read and write data	 386

Different streams read and write different things	 387

A FileStream writes bytes to a file	 388

Reading and writing takes two objects	 393

Data can go through more than one stream	 394

Use built-in objects to pop up standard dialog boxes	 397

Dialog boxes are objects, too	 399

Use the built-in File and Directory classes to
work with files and directories	 400

Use File Dialogs to open and save files	 403

IDisposable makes sure your objects are disposed properly	 405

Avoid file system errors with using statements	 406

Writing files usually involves making a lot of decisions	 412

Use a switch statement to choose the right option	 413

Add an overloaded Deck() constructor that reads
a deck of cards in from a file	 415

What happens to an object when it’s serialized?	 417

But what exactly IS an object’s state? What needs to be saved?	 418

When an object is serialized, all of the objects it refers to
get serialized too...	 419

Serialization lets you read or write a whole object all at once	 420

If you want your class to be serializable,
mark it with the [Serializable] attribute	 421

.NET converts text to Unicode automatically	 425

C# can use byte arrays to move data around	 426

Use a BinaryWriter to write binary data	 427

You can read and write serialized files manually, too	 429

StreamReader and StreamWriter will do just fine	 433

table of contents

xxi

10 Putting out fires gets old
Programmers aren’t meant to be firefighters.�
You’ve worked your tail off, waded through technical manuals and a few engaging

Head First books, and you’ve reached the pinnacle of your profession: master

programmer. But you’re still getting pages from work because your program

crashes, or doesn’t behave like it’s supposed to. Nothing pulls you out of

the programming groove like having to fix a strange bug . . . but with exception

handling, you can write code to deal with problems that come up. Better yet, you

can even react to those problems, and keep things running.

exception handling

Brian needs his excuses to be mobile	 440

When your program throws an exception,
.NET generates an Exception object.	 444

Brian’s code did something unexpected	 446

All exception objects inherit from Exception	 448

The debugger helps you track down and
prevent exceptions in your code	 449

Use the IDE’s debugger to ferret out exactly
what went wrong in the excuse manager	 450

Uh-oh—the code’s still got problems...	 453

Handle exceptions with try and catch	 455

What happens when a method you want to call is risky?	 456

Use the debugger to follow the try/catch flow	 458

If you have code that ALWAYS should run, use a finally block	 460

Use the Exception object to get information about the problem	 465

Use more than one catch block to handle multiple types of exceptions	466

One class throws an exception, another class catches the exception	 467

Bees need an OutOfHoney exception	 468

An easy way to avoid a lot of problems:
using gives you try and finally for free	 471

Exception avoidance: implement IDisposable
to do your own clean up	 472

The worst catch block EVER: comments	 474

Temporary solutions are okay (temporarily)	 475

A few simple ideas for exception handling	 476

Brian finally gets his vacation...	 481

table of contents

xxii

11 What your code does when you’re not looking
events and delegates

Your objects are starting to think for themselves.�
You can’t always control what your objects are doing. Sometimes things... happen. And

when they do, you want your objects to be smart enough to respond to anything that

pops up. And that’s what events are all about. One object publishes an event, other

objects subscibe, and everyone works together to keep things moving. Which is great,

until you’ve got too many objects responding to the same event. And that’s when

callbacks will come in handy.

Ever wish your objects could think for themselves?	 484

But how does an object KNOW to respond?	 484

When an EVENT occurs... objects listen	 485

One object raises its event, others listen for it...	 486

Then, the other objects handle the event	 487

Connecting the dots	 488

The IDE creates event handlers for you automatically	 492

The forms you’ve been building all use events	 498

Connecting event senders with event receivers	 500

A delegate STANDS IN for an actual method	 501

Delegates in action	 502

Any object can subscribe to a public event...	 505

Use a callback instead of an event to hook up
exactly one object to a delegate	 507

Callbacks use delegates, but NOT events	 508

table of contents

xxiii

12 Knowledge, power, and building cool stuff
review and preview

Learning’s no good until you BUILD something.
Until you’ve actually written working code, it’s hard to be sure if you really get some

of the tougher concepts in C#. In this chapter, we’re going to learn about some new

odds and ends: timers and dealing with collections using LINQ (to name a couple).

We’re also going to build phase I of a really complex application, and make sure

you’ve got a good handle on what you’ve already learned from earlier chapters. So

buckle up... it’s time to build some cool software.

You’ve come a long way, baby 516

We’ve also become beekeepers 517

The beehive simulator architecture 518

Building the beehive simulator 519

Life and death of a flower 523

Now we need a Bee class 524

Filling out the Hive class 532

The hive’s Go() method 533

We’re ready for the World 534

We’re building a turn-based system 535

Giving the bees behavior 542

The main form tells the world to Go() 544

We can use World to get statistics 545

Timers fire events over and over again 546

The timer’s using a delegate behind the scenes 547

Let’s work with groups of bees 554

A collection collects... DATA 555

LINQ makes working with data in collections and databases easy 557

table of contents

xxiv

13 Make it pretty
controls and graphics

Sometimes you have to take graphics into your own hands.
We’ve spent a lot of time on relying on controls to handle everything visual in our

applications. But sometimes that’s not enough—like when you want to animate a picture.

And once you get into animation, you’ll end up creating your own controls for your .NET

programs, maybe adding a little double buffering, and even drawing directly onto your

forms. It all begins with the Graphics object, Bitmaps, and a determination to not accept

the graphics status quo.

You’ve been using controls all along to interact with your programs 564

Form controls are just objects 565

Add a renderer to your architecture 568

Controls are well-suited for visual display elements 570

Build your first animated control 573

Your controls need to dispose their controls, too! 577

A UserControl is an easy way to build a control 578

Add the hive and field forms to the project 582

Build the Renderer 583

Let’s take a closer look at those performance issues 590

You resized your Bitmaps using a Graphics object 592

Your image resources are stored in Bitmap objects 593

Use System.Drawing to TAKE CONTROL of graphics yourself 594

A 30-second tour of GDI+ graphics 595

Use graphics to draw a picture on a form 596

Graphics can fix our transparency problem... 601

Use the Paint event to make your graphics stick 602

A closer look at how forms and controls repaint themselves 605

Double buffering makes animation look a lot smoother 608

Double buffering is built into forms and controls 609

Use a Graphics object and an event handler for printing 614

PrintDocument works with the print dialog and
print preview window objects 615

table of contents

xxv

14 CAPTAIN AMAZING
THE DEATH

OF THE OBJECT

Captain Amazing, Objectville’s most amazing object
 pursues his arch-nemesis...	 622

Your last chance to DO something... your object’s finalizer	 628

When EXACTLY does a finalizer run?	 629

Dispose() works with using, finalizers work with garbage collection	 630

Finalizers can’t depend on stability	 632

Make an object serialize itself in its Dispose()	 633

Meanwhile, on the streets of Objectville...	 636

A struct looks like an object...	 637

..but isn’t on the heap	 637

Values get copied, references get assigned	 638

Structs are value types; objects are reference types	 639

The stack vs. the heap: more on memory	 641

Captain Amazing... not so much	 645

Extension methods add new behavior to EXISTING classes	 646

Extending a fundamental type: string	 648

table of contents

xxvi

15 Get control of your data
LINQ

It’s a data-driven world... you better know how to live in it.�
Gone are the days when you could program for days, even weeks, without dealing with

loads of data. But today, everything is about data. In fact, you’ll often have to work

with data from more than one place... and in more than one format. Databases, XML,

collections from other programs... it’s all part of the job of a good C# programmer. And

that’s where LINQ comes in. LINQ not only lets you query data in a simple, intuitive way,

but it lets you group data, and merge data from different data sources.

An easy project...	 654

...but the data’s all over the place	 655

LINQ can pull data from multiple sources	 656

.NET collections are already set up for LINQ	 657

LINQ makes queries easy	 658

LINQ is simple, but your queries don’t have to be	 659

LINQ is versatile	 662

LINQ can combine your results into groups	 667

Combine Jimmy’s values into groups	 668

Use join to combine two collections into one query	 671

Jimmy saved a bunch of dough	 672

Connect LINQ to a SQL database	 674

Use a join query to connect Starbuzz and Objectville	 678

table of contents

xxvii

C# Lab 3
Invaders

 contents contents contents

In this lab you’ll pay homage to one of the most popular,
revered and replicated icons in video game history, a
game that needs no further introduction. It’s time to
build Invaders.

The grandfather of video games 682

And yet there’s more to do... 701

xxviixxviixxvii

table of contents

xxviii

i The top 5 things we wanted to include
in this book

leftovers

The fun’s just beginning!
We’ve shown you a lot of great tools to build some really powerful software with C#. But

there’s no way that we could include every single tool, technology or technique in this

book—there just aren’t enough pages. We had to make some really tough choices about

what to include and what to leave out. Here are some of the topics that didn’t make the

cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

#1 LINQ to XML 704

#2 Refactoring 706

#3 Some of our favorite Toolbox components 708

#4 Console Applications 710

5 Windows Presentation Framework 712

Did you know that C# and the .NET Framework can... 714

148 Chapter 4

pick an object out of a line-up

A special case: arrays

int[] heights;

heights = new int[7];

heights[0] = 68;

heights[1] = 70;

heights[2] = 63;

heights[3] = 60;

heights[4] = 58;

heights[5] = 72;

heights[6] = 74;

name The type
of each
element in
the array.

Notice that the array is an object,
even though the 7 elements are
primitives variables.

7 int variables

heights[]

In memory, the array

is stored as one ch
unk

of memory, even though

there are multiple int

variables within it.

If you have to keep track of a lot of data of the same type, like a list of heights
or a group of dogs, you can do it in an array – like you used when you made
the sandwich menus for Sloppy Joe. What makes an array special is that it’s a
group of variables that’s treated as one object. An array gives you a way of
storing and changing more than one piece of data without having to keep track
of each variable individually. When you create an array, you declare it just like
any other variable, with a name and a type:

You declare an array by
specifying its type, followed
by square brackets.

Use each element in an array like
it is a normal variable
Here’s an example of code that declares and fills up an
array – and what’s happening on the heap when you do it.
The first element in the array has an index of zero.

You could combine the declaration of the myArray variable with its initialization – just like any other variable. Then it’d look like this:bool[] myArray = new bool[15];

You use the new keyword to create an array because it’s an object. So an array variable is a kind of reference variable. This line sets the value of the fifth
element of myArray to true. It’s the
fifth one because the first is myArray[0],
the second is myArray[1], etc.

This array has 15
elements within it.

You
reference
these by
index, but
each one
works
essentially
like a normal
int variable.

 int int int int int int int

bool[] myArray;

myArray = new bool[15];

myArray[4] = true;

anikin
Typewritten Text

you are here  149

types and references

Dog Obj
e c

t

Dog Obj
e c

t

You can create an array of object references just like you create
an array of numbers or strings. Arrays don’t care what the type of
variable is that it stores; it’s up to you. So you can have an array of
ints, or an array of Duck objects, with no problem.

Here’s code that creates an array of 7 Dog variables. The line that
initializes the array only creates reference variables. Since there are
only two new Dog() lines, only two actual instances of the Dog
class) are created.

 Dog[] dogs = new Dog[7];

 dogs[5] = new Dog();

 dogs[0] = new Dog();

Arrays can contain a bunch of
reference variables, too

This line declares a
dogs variable to hold an
array of references to
Dog objects, and then
creates a 7-element
array.

These two lines create new instances of Dog() and put them at indexes 0 and 5.

When you set or
retrieve an element
from an array, the
number inside the
brackets is called
the index. The first
element in the array
has an index of zero.

All of the elements in the array are
references. The array itself is an object.

7 Dog variables

The first line of code only
created the array, not the
instances. The array is a
list of seven Dog reference
variables.

 Dog Dog Dog Dog Dog Dog Dog

this is a new chapter 173

encapsulation5

private

Ever wished for a little more privacy? 
Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don’t let other objects go poking around their fields. In this chapter, you’re going to

learn about the power of encapsulation. You’ll make your object’s data private,

and add methods to protect how that data is accessed.

Ever wished for a little more privacy? 
Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don’t let other objects go poking around their fields. In this chapter, you’re going to

learn about the power of encapsulation. You’ll make your object’s data private,

and add methods to protect how that data is accessed.

No peeking!

Keep your privates...

174    Chapter 5

Kathleen is an event planner

kathleen needs your help

She’s been planning dinner parties for
her clients and she’s doing really well.
But lately she’s been having a hard time
responding to clients fast enough with an
estimate for her services.

When a new client calls Kathleen to do a party, she needs to find
out the number of guests, what kind of drinks to serve, and what
decorations she should buy. Then she uses a pretty complicated
calculation to figure out the total cost, based on a flow chart she’s
been using for years. The bad news is that it takes her a long time
to work through her chart, and while she’s estimating, her potential
clients are checking out other event planners.

It’s up to you to build her a C#-driven event estimator and save
her business. Imagine the party she’ll throw you when you succeed!

Kathleen would rather spend
her time planning events, not
planning estimates.

you are here 4    175

encapsulation

What does the estimator do?
Kathleen runs down some of the basics of her system
for figuring out the costs of an event. Here’s part of
what she came up with:

Kathleen’s Party Planning Program—Cost Estimate for a Dinner Party

For each person on the guest list there’s a $25 food charge.

Clients have a choice when it comes to drinks. Most parties serve alcohol, which

costs $20 per person. But they can also choose to have a party without alcohol.

Kathleen calls that the “Healthy Option,” and it only costs $5 per person to have

soda and juice instead of alcohol. Choosing the Healthy Option is a lot easier for

her, so she gives the client a 5% discount on the entire party, too.

There are two options for the cost of decorations. If a client goes with the

normal decorations, it’s $7.50 per person with a $30 decorating fee. A client can

also upgrade the party decorations to the “Fancy Option”—that costs $15 per

person with a $50 one-time decorating fee.

•

•

•

Number of
people.
Food ($25 per
person)

Healthy
Option?

Alcohol
($20 per
person)

Fancy
decorations?

Juice and soda
($5 per person +

5% discount on
total cost)

Fancy
Decorations
($15 per person

+$50 decorating
fee)

Normal
Decorations
($7.50 per
person +$30
decorating fee)

Yes

No

Yes

No

Here’s another look at this same set of costs, broken
down into a little flow chart to help you see how it works:

Some of these choices involve a change to the final price of the event, as well as individual per-person costs.

While most choices affect the cost for each guest, there are also one-time fees to figure in.

176    Chapter 5

v

DinnerParty

NumberOfPeople
CostOfBeveragesPerPerson
CostOfDecorations

SetHealthyOption()
CalculateCostOfDecorations()
CalculateCost()

Create a new Windows Application project and add a class file to it called
DinnerParty.cs, and build the DinnerParty class using the class diagram
to the left. It’s got three methods: CalculateCostOfDecorations(),
SetHealthyOption(), and CalculateCost(). For the fields, use
decimal for the two costs, int for the number of people, and bool to
keep track of whether or not the healthy option was selected. Make sure
you add an M after every literal you assign to a decimal value (10.0M).

11

Add this code to your form:

DinnerParty dinnerParty;
public Form1() {
 InitializeComponent();
 dinnerParty = new DinnerParty() { NumberOfPeople = 5 };
 dinnerParty.SetHealthyOption(false);
 dinnerParty.CalculateCostOfDecorations(true);
 DisplayDinnerPartyCost();
}

44

Flip back to the previous page to be sure you’ve got all of the logic right for
the methods. Only one of them returns a value (a decimal)—the other
two are void. The CalculateCostOfDecorations() method figures
out the cost of decorations for the number of people attending the party.
Use the CalculateCost() method to figure out the total cost by adding
up the cost of the decorations to the cost of drinks and food per person. If
the client wants the Healthy Option, you can apply the discount inside the
CalculateCost()method after you’ve figured out the total cost.

33

This is just a label with the Text Property set to “”, the BorderStyle
property set to Fixed3D, and the AutoSize property set to false.

Here’s the class di
agram for

the DinnerParty class
you’ll

need to create.

Set the default
value to 5. The
minimum should be
1 and the maximum
should be 20.

Build a program to solve Kathleen’s party estimating problem.

Here’s what the form
should look like. Use
the NumericUpDown
control’s properties to set
the maximum number
of people to 20, the
minimum to 1, and the
default to 5. Get rid of the
maximize and minimize
buttons, too.

55

This is just a label with the Text Property set to “”, the BorderStyle

Here’s a useful C# tool. Since the cost of food won’t be changed by the
program, you can declare it as a constant, which is like a variable except
that its value can never be changed. Here’s the declaration to use:

public const int CostOfFoodPerPerson = 25;

22

The SetHealthyOption() method uses a bool parameter (healthyOption) to update the CostOfBeveragesPerPerson field based on whether or not the client wants the healthy option.

okay, no problem

You don’t need to add “using System.Windows.Forms;” to your DinnerParty class, because it doesn’t use MessageBox.Show(), Point, or anything else from that .NET Framework namespace.

The Fancy
decorations box
should have Checked
set to true.

You’ll declare the dinnerParty field in
the form, and then add these four lines
below InitializeComponent().

you are here 4    177

encapsulation

v

Instead of using a button to calculate the costs, this form will update the cost label
automatically as soon as you use a checkbox or the NumericUpDown control. The first
thing you need to do is create a method in the form that displays the cost.

Add this method to Form1(). It’ll get called when the NumericUpDown control is clicked:

private void DisplayDinnerPartyCost()
{
 decimal Cost = dinnerParty.CalculateCost(checkBox2.Checked);
 costLabel.Text = Cost.ToString(“c”);
}

66

Double-click on the Fancy Decorations checkbox on the form and make
sure that it first calls CalculateCostOfDecorations(), and then
DisplayDinnerPartyCost(). Next, double-click the Healthy Option
checkbox and make sure that it calls the SetHealthyOption() method in the
DinnerParty class and then calls the DisplayDinnerPartyCost() method.

88

Now hook up the NumericUpDown field to the NumberOfPeople variable you
created in the DinnerParty class and display the cost in the form. Double-click on the
NumericUpDown control—the IDE will add an event handler to your code. That’s
a method that gets run every time the control is changed. It’ll reset the number of
people in the party. Fill it in like this:

private void numericUpDown1_ValueChanged(
 object sender, EventArgs e)
{
 dinnerParty.NumberOfPeople = (int) numericUpDown1.Value;
 DisplayDinnerPartyCost();
}

Uh-oh—there’s a problem with this code. Can you spot it? Don’t worry if you
don’t see it just yet. We’ll dig into it in just a couple of minutes!

77

This method will
get called by all of
the other methods
you create on the
form. It’s how you
update the cost
label with the right
value whenever
anything changes.

These are just two-line methods. The first line will call the method you created in the class to figure out the costs and the second will display the total cost on the form.

The value you send from the form to the
method will be fancyBox.Checked. That will
be passed as a boolean parameter to the
method in the class.

Add this method to the form—it’ll recalculate the cost of the party and put it in the Cost label.

Change the name of the
lablel that displays the cost
to costLabel.

This is true if the
checkbox for the Healthy
Option is checked.

When you
double‑click
on a button in
the IDE to add
code that gets
run when the
button is clicked, that’s an event
handler too.

You need to cast numericUpDown.Value to
an int because it’s a Decimal property.

Passing “c” to ToString() tells it to format the cost as a currency value. If you’re in a country that uses dollars, it’ll add a dollar sign.

178    Chapter 5

wv

exercise solution

public class DinnerParty {
 const int CostOfFoodPerPerson = 25;
 public int NumberOfPeople;
 public decimal CostOfBeveragesPerPerson;
 public decimal CostOfDecorations = 0;

 public void SetHealthyOption(bool healthyOption) {
 if (healthyOption) {
 CostOfBeveragesPerPerson = 5.00M;
 } else {
 CostOfBeveragesPerPerson = 20.00M;
 }
 }

 public void CalculateCostOfDecorations(bool fancy) {
 if (fancy)
 {
 CostOfDecorations = (NumberOfPeople * 15.00M) + 50M;
 } else {
 CostOfDecorations = (NumberOfPeople * 7.50M) + 30M;
 }
 }
 public decimal CalculateCost(bool healthyOption) {
 decimal totalCost = CostOfDecorations +
 ((CostOfBeveragesPerPerson + CostOfFoodPerPerson)
 * NumberOfPeople);

 if (healthyOption) {
 return totalCost * .95M;
 } else {
 return totalCost;
 }
 }
}

 Here’s the code that goes into DinnerParty.cs.

This applies the 5% discount to
the overall event cost if the
non‑alcoholic option was chosen.

Using a constant for CostOfFoodPerPerson
ensures the value can’t be changed. It also
makes the code easier to read—it’s clear that
this value never changes.

When the form first creates
the object, it uses the initializer to set NumberOfPeople. Then
it calls SetHealthyOption() and CalculateCostOfDecorations() to set the other fields.

We used “if (Fancy)” instead of
typing “if (Fancy == true)” because
the if statement always checks if the
condition is true.

We used parentheses to make sure the
math works out properly.

you are here 4    179

encapsulation

wv

public partial class Form1 : Form {
 DinnerParty dinnerParty;
 public Form1() {
 InitializeComponent();
 dinnerParty = new DinnerParty() { NumberOfPeople = 5 };
 dinnerParty.CalculateCostOfDecorations(fancyBox.Checked);
 dinnerParty.SetHealthyOption(healthyBox.Checked);
 DisplayDinnerPartyCost();
 }

 private void fancyBox_CheckedChanged(object sender, EventArgs e) {
 dinnerParty.CalculateCostOfDecorations(fancyBox.Checked);
 DisplayDinnerPartyCost();
 }

 private void healthyBox_CheckedChanged(object sender, EventArgs e) {
 dinnerParty.SetHealthyOption(healthyBox.Checked);
 DisplayDinnerPartyCost();
 }

 private void numericUpDown1_ValueChanged(object sender, EventArgs e) {
 dinnerParty.NumberOfPeople = (int)numericUpDown1.Value;
 DisplayDinnerPartyCost();
 }

 private void DisplayDinnerPartyCost() {
 decimal Cost = dinnerParty.CalculateCost(healthyBox.Checked);
 costLabel.Text = Cost.ToString(“c”);
 }
}

Changes to the checkboxes on the form set
the healthyOption and Fancy booleans to
true or false in the SetHealthyOption() and
CalculateCostOfDecorations() methods.

We call DisplayDinnerPartyCost to
initialize the label that shows the
cost as soon as the form’s loaded.

We had you use a decimal for the prices because it’s designed for monetary values. Just make
sure you always put an “M” after every literal—so if you want to store $35.26, make sure you
write 35.26M.

We named our checkboxes “healthyBox”
and “fancyBox” so you could see what’s
going on in their event handler methods.

The new dinner party cost needs to be
recalculated and displayed any time the number
changes or the checkboxes are checked.

you are here      179

String formatting
You’ve already seen how you can convert any variable to a string using its ToString() method. If you pass “c” to ToString(), it converts it to the local currency. You can also pass it “f3” to format it with as a decimal number with three decimal places, “0” (that’s a zero) to convert to a whole number, “0%” for a whole number percentage, and “n” to display it as a number with a comma separator for thousands. Take a minute and see how each of these looks in your program!

180    Chapter 5

Kathleen’s Test Drive

something’s gone terribly wrong

This rocks!
Estimating is about to

get a whole lot easier.

Rob (on phone): Hi Kathleen. How are the arrangements
for my dinner party going?

Kathleen: Just great. We were out looking at decorations this
morning and I think you’ll love the way the party’s going to
look.

Rob: That’s awesome. Listen, we just got a call from my wife’s
aunt. She and her husband are going to be visiting for the next
couple of weeks. Can you tell me what it does to the estimate
to move from 10 to 12 people on the guest list?

Kathleen: Sure! I’ll have that for you in just one minute.

Kathleen: OK. It looks like the total cost for the dinner will
go from $575 to $665.

Rob: Only $90 difference? That sounds like a great deal! What
if we decide to cut the fancy decorations? What’s the cost then?

Changing the Number of
People value from 10 to 12
and hitting enter shows $665
as the total cost. Hmm, that
seems a little low...

Rob’s one of Kathleen’s
favorite clients. She did hi

s
wedding last year, and now
she’s planning an important
dinner party for him.

you are here 4    181

encapsulation

Kathleen: Um, it looks like... um, $660.

Rob: $660? I thought the decorations were $15 per person. Did you change your
pricing or something? If it’s only $5 difference, we might as well go with the Fancy
Decorations. I’ve gotta tell you though, this pricing is confusing.

Kathleen: We just had this new program written to do the estimation for us.
But it looks like there might be a problem. Just one second while I add the fancy
decorations back to the bill.

Kathleen: Rob, I think there’s been a mistake. It looks like the cost with the fancy
decorations just shot up to $770. That does seem to make more sense. But I am
beginning not to trust this application. I’m going to send it back for some bug fixes
and work up your estimate by hand. Can I get back to you tomorrow?

Rob: I am not paying $770 just to add two people to the party. The price you
quoted me before was a lot more reasonable. I’ll pay you the $665 you quoted me in
the first place, but I just can’t go higher than that!

When you turn the Fancy
Decorations back on, the
number shoots up to $770.
These numbers are just wrong.

Turning off the Fancy Decorations checkbox only reduces the amount by $5. That can’t be right!

Why do you think the numbers are coming out wrong every time Kathleen makes a change?

182    Chapter 5

wasn’t expecting that

Each option should be calculated individually
Even though we made sure to calculate all of the amounts according
to what Kathleen said, we didn’t think about what would happen when
people made changes to just one of the options on the form.

When you launch the program, the form sets the number of people to 5
and Fancy Decorations to true. It leaves Healthy Option unchecked and
it calculates the cost of the dinner party as $350. Here’s how it comes up
with the initial total cost:

5 people.

$20 per person for drinks

$25 per person for food

$15 per person for decorations
plus $50 fee.

Total cost of drinks = $100

Total cost of food = $125

Total cost of Decorations = $125

$100 + $125 + 125 = $350

When you change the number of guests, the application should
recalculate the total estimate the same way. But it doesn’t:

10 people.

$20 per person for drinks

$25 per person for food

$15 per person for decorations
plus $50 fee.

Total cost of drinks = $200

Total cost of food = $250

Total cost of Decorations = $200

$200 + $250+ 200 = $650

So far, so good.

The program is adding the old cost of
decorations up with the new cost of
food and drink.
It’s doing $200 + $250 + $125= $575.

This is the total we should get. But we’re not...

New food and drink cost. Old decorations.

 Don’t worry!
This one
wasn’t your
fault.

We built a nasty little bug into
the code we gave you to show
you just how easy it is to have
problems with how objects use
each others’ fields... and just how
hard those problems are to spot.

you are here 4    183

encapsulation

The Problem Up Close

Take a look at the method that handles changes to the value in the numericUpDown
control. It sets the value from the field to the NumberofPeople variable and then
calls the DisplayDinnerPartyCost() method. Then it counts on that method
to handle recalculating all the individual new costs.

private void numericUpDown1_ValueChanged(
 object sender, EventArgs e) {

 dinnerParty.NumberOfPeople = (int)numericUpDown1.Value;

 DisplayDinnerPartyCost();

}

public void CalculateCostOfDecorations(bool Fancy) {

 if (Fancy) {

 CostOfDecorations = (NumberOfPeople * 15.00M) + 50M;

 } else {

 CostOfDecorations = (NumberOfPeople * 7.50M) + 30M;

 }

}

So, when you make a change to the value in the NumberofPeople field,
this method never gets called:

This line sets the value
of NumberofPeople
in this instance of
DinnerParty to the
value in the form.

This method calls the CalculateCost() method, but not
the CalculateCostofDecorations() method.

People won’t always use your programs in
exactly the way you expect.
Luckily, C# gives you a powerful tool to make sure your
program always works correctly—even when people do
things you never thought of. It’s called encapsulation
and it’s a really helpful technique for working with objects.

Hold on! I assumed Kathleen would
always set all three options at once!

This variable is set to $125 from when the
form first called it and, since this method
doesn’t get called again, it doesn’t change.

That’s why the number corrects itself when you turn
fancy decorations back on. Clicking the checkbox makes
the program run CalculateCostOf Decorations() again.

184    Chapter 5

It’s easy to accidentally misuse your objects
Kathleen ran into problems because her form ignored the
convenient CalculateCostOfDecorations() method that
you set up and instead went directly to the fields in the DinnerParty
class. So even though your DinnerParty class worked just fine, the
form called it in an unexpected way... and that caused problems.

NumberOfPeople = 10;

CalculateCostOfDecorations(
false);

 Form

How the DinnerParty class expected to be called
The DinnerParty class gave the form a perfectly good method to calculate the
total cost of decorations. All it had to do was set the number of people and then
call CalculateCostOfDecorations(), and then CalculateCost()
will return the correct cost.

11

Even though the form didn’t set up the party properly, CalculateCost() still returned a number... and there was no way for Kathleen to know that the number was wrong.

CalculateCost() returns $650

How the DinnerParty class was actually called
The form set the number of people, but just called the CalculateCost()
method without first recalculating the cost of the decorations. That threw off
the whole calculation, and Kathleen ended up giving Rob the wrong price.

22

NumberOfPeople = 10;

CalculateCost() returns $350

protect your objects

DinnerParty
ob

je
ct

 Form

DinnerParty
ob

je
ct

you are here 4    185

encapsulation

Encapsulation means keeping some of
the data in a class private
There’s an easy way to avoid this kind of problem: make sure that there’s only one
way to use your class. Luckily, C# makes it easy to do that by letting you declare
some of your fields as private. So far, you’ve only seen public fields. If you’ve
got an object with a public field, any other object can read or change that field.
But if you make it a private field, then that field can only be accessed from
inside that object (or by another object of the same class).

en-cap-su-la-ted, adj.
enclosed by a protective coating
or membrane. The divers were fully
encapsulated by their submersible,
and could only enter and exit through
the airlock.

public class DinnerParty {

 private int numberOfPeople;

 ...

 public void SetPartyOptions(int people, bool fancy) {

 numberOfPeople = people;

 CalculateCostOfDecorations(fancy);

 }

 public void GetNumberOfPeople() {

 return numberOfPeople;

 }

If you want to make a field private, all you need to do is use the private keyword when you declare it. That tells C# that if you’ve got an instance of DinnerParty, its numberOfPeople field can only be read and written by that instance. Other objects won’t even know it’s there.

Other objects still need a way to set the

number of people for the dinner party.
 One

good way to give them access to it is to

add methods to set or get the number of

people. That way you can make sure that the

CalculateCostOfDe
corations()

method gets run every time the number of

people is changed. That’ll take care of that

pesky bug.

By making the field that holds the number
of party guests private, we only give the
form one way to tell the DinnerParty class
how many people are at the party—and
we can make sure the cost of decorations
is recalculated properly. When you make
some data private and then write code to
use that data, it’s called encapsulation.

Use your laziness to your own benefit—if you leave off the “private” or “public”, then C# will just assume that your field is private.

186    Chapter 5

Use encapsulation to control access to your
class’s methods and fields
When you make all of your fields and methods public, any other class
can access them. Everything your class does and knows about becomes
an open book for every other class in your program... and you just saw
how that can cause your program to behave in ways you never expected.
Encapsulation lets you control what you share and what you keep private
inside your class. Let’s see how this works:

SecretAgent

Alias
RealName
Password

AgentGreeting()

Super-spy Herb Jones is defending life, liberty, and the pursuit of
happiness as an undercover agent in the USSR. His ciaAgent object is an
instance of the SecretAgent class.

11

Agent Jones has a plan to help him evade the enemy KGB agents. He
added an AgentGreeting() method that takes a password as its
parameter. If he doesn’t get the right password, he’ll only reveal his
alias, Dash Martin.

22

Seems like a foolproof way to protect the agent’s identity, right? As
long as the agent object that calls it doesn’t have a the right password,
the agent’s name is safe.

33

AgentGreeting(“the jeep is
parked outside”)

The ciaAgent object is an
instance of the SecretAgent
class, while kgbAgent is an
instance of EnemyAgent.

“Dash Martin”

spy versus spy

The KGB only gets the alias of the CIA agent. Perfect. Right?

The KGB agent uses the wrong
password in his greeting.

EnemyAgent

Borscht
Vodka

ContactComarades()
OverthrowCapitalists()

RealName: “Herb Jones”

Alias: “Dash Martin”

Password: “the crow flies at midnight” ciaAgent



 kgbAgent

 ciaAgent



you are here 4    187

encapsulation

public string RealName;Setting your variables
public means they can be
accessed, and even changed,
from outside the class.

string name = ciaAgent.Real
Name;

Agent Jones can use private fields to keep the his identity secret from
enemy spy objects. Once he declares the realName field as private, the
only way to get to it is by calling methods that have access to the
private parts of the class. So the KGB agent is foiled!

private string realName;

Keeping your fields and methods private makes sure no outside
code is going to make changes to the values you’re using when you don’t expect it.

You’d also want to make sure that the field

that stores the password is private, otherwise

the enemy agent can get to it.

He left the field public...
Why go through all of
the trouble to guess his
password? I can just get
his name directly!

But is the realName field REALLY protected?
So as long as the KGB doesn’t know any CIA agent passwords, the
CIA’s real names are safe. Right? But what about the field declaration
for the realName field:

Setting your variables as public means they can be accessed, and even changed, from outside the class.

There’s no need to call any
method. The realName field is
wide open for everyone to see!

Just replace public with private, and boom, your fields are now hidden from the world.

 kgbAgent

 ciaAgent



The kgbAgent object can’t access the ciaAgent’s private fields because they’re instances of different classes.

188    Chapter 5

Q: Okay, so I need to access private data
through public methods. But what happens if the
class with the private field doesn’t give me a way
to get at that data, but my object needs to use it?

A: Then you can’t access the data from outside the
object. When you’re writing a class, you should always
make sure that you give other objects some way to
get at the data they need. Private fields are a very
important part of encapsulation, but they’re only part
of the story. Writing a class with good encapsulation
means giving a sensible, easy-to-use way for other
objects to get the data they need, without giving them
access to hijack data your class needs.

Q: Why would I ever want to keep a field with no
way for another class to access?

A: Sometimes a class needs to keep track of
information that is necessary for it to operate, but
which no other object really needs to see. Here’s an
example. When computers generate random numbers,
they use special values called seeds. You don’t need
to know how they work, but every instance of

Random actually contains an array of several dozen
numbers that it uses to make sure that Next()
always gives you a random number. If you create an
instance of Random, you won’t be able to see that
array. That’s because you don’t need it—but if you
had access to it, you might be able to put values in it
that would cause it to give non-random values. So the
seeds have been completely encapsulated from you.

Q: Hey, I just noticed that all of the event
handlers I’ve been using have the private
keyword. Why are they private?

A: Because C# forms are set up so that only the
controls on the forms can trigger event handlers.
When you put the private keyword in front of
any method, then that method can only be used from
inside your class. When the IDE adds an event handler
method to your program, it declares it as private so
other forms or objects can’t get to it. But there’s no rule
that says that an event handler must be private. In fact,
you can check this out for yourself—double-click on a
button, then change its event handler declaration to
public. The code will still compile and run.

Private fields and methods can only be
accessed from inside the class
There’s only one way that an object can get at the data stored inside another
object’s private fields: by using the public fields and methods that return the data.
But while KGB and MI5 agents need to use the AgentGreeting() method, friendly
spies can see everything—any class can see private fields in other instances
of the same class.

keeping secrets

AgentGreeting(“the crow fli
es at midnight”)

Now that the fields are private,
this is pretty much the only
way the mi5Agent can get the
ciaAgent’s real name.

“Herb Jones”

mi5gent is an instance of the BritishAgent class, so it doesn’t have access to ciaAgent’s private fields either.

The only
way that
one object
can get to
data stored
in a private
field inside
another
object is by
using public
methods
that return
the data.

 mi5Agent

 ciaAgent


Only another
ciaAgent object can see them.

you are here 4    189

encapsulation

Here’s a class with some private fields. Circle the statements
below that won’t compile if they’re run from outside the
class using an instance of the object called mySuperChef.

public class SuperChef
{
	 public string cookieRecipe;
	 private string secretIngredient;
	 private const int loyalCustomerOrderAmount = 60;
	 public int Temperature;
	 private string ingredientSupplier;

	 public string GetRecipe (int orderAmount)
 	 {
		 if (orderAmount >= loyalCustomerOrderAmount)
		 {
			 return cookieRecipe + “ ” + secretIngredient;
		 }
		 else
		 {
			 return cookieRecipe;
		 }
 }
}

1. string ovenTemp = mySuperChef.Temperature;

2. string supplier = mySuperChef.ingredientSupplier;

3. int loyalCustomerOrderAmount = 94;

4. mySuperChef.secretIngredient = “cardamom”;

5. mySuperChef.cookieRecipe = “get 3 eggs, 2 1/2 cup flour, 1 tsp salt,
 1 tsp vanilla and 1.5 cups sugar and mix them together. Bake for 10
 minutes at 375. Yum!”;

6. string recipe = mySuperChef.GetRecipe(56);

7. After running all of the lines that will compile above, what’s the value of recipe?

190    Chapter 5

public class SuperChef
{
	 public string cookieRecipe;
	 private string secretIngredient;
	 private const int loyalCustomerOrderAmount = 60;
	 public int Temperature;
	 private string ingredientSupplier;

	 public string GetRecipe (int orderAmount)
 	 {
		 if (orderAmount >= loyalCustomerOrderAmount)
		 {
			 return cookieRecipe + “ and the secret ingredient is “
			 + secretIngredient;
		 }
		 else
		 {
			 return cookieRecipe;
		 }
 }
}

1. string ovenTemp = mySuperChef.Temperature;

2. string supplier = mySuperChef.ingredientSupplier;

3. int loyalCustomerOrderAmount = 54;

4. mySuperChef.secretIngredient = “cardamom”;

5. mySuperChef.cookieRecipe = “Get 3 eggs, 2 1/2 cup flour, 1 tsp salt,
 1 tsp vanilla and 1.5 cups sugar and mix them together. Bake for 10
 minutes at 375. Yum!”;

6. string recipe = mySuperChef.GetRecipe(56);

7. After running all of the lines that will compile above, what’s the value of recipe?

good ideas for easy encapsulation

This is a private constant.
Its value can’t be changed,
and it can’t be accessed
outside of this class.

The only way to get the secret
ingredient is to order a whole
lot of cookies. Outside code
can’t access this field directly.

“Get 3 eggs, 2 1/2 cup flour, 1 tsp salt, 1 tsp vanilla and 1.5 cups sugar and mix them together.
Bake for 10 minutes at 375. Yum!”

Here’s a class with some private fields. Circle the statements
below that won’t compile if they’re run from outside the
class using an instance of the object called mySuperChef.

#1 doesn’t compile because you can’t just assign an int to a string.

#2 and #4 don’t compile
because ingredientSupplier and
secretIngredient are private.

Even though you created a local variable called loyalCustomerAmount and set it to 54, that didn’t change the object’s loyalCustomerAmount value, which is still 60—so it won’t print the secret ingredient.

you are here 4    191

encapsulation

± Think about ways the fields can be misused.
What can go wrong if they’re not set properly?

± Is everything in your class public?
If your class has nothing but public fields and methods, you probably
need to spend a little more time thinking about encapsulation.

± What fields require some processing or calculation to
happen when they’re set?
Those are prime candidates for encapsulation. If someone writes
a method later that changes the value in any one of them, it could
cause problems for the work your program is trying to do.

A few ideas for encapsulating classes

± Only make fields and methods public if you need to.
If you don’t have a reason to declare something public, don’t. You could
make things really messy for yourself by making all of the fields in your
program public—but don’t just go making everything private, either.
Spending a little time up front thinking about which fields really need to
be public and which don’t can save you a lot of time later.

The cost of decorations
needs to be figured out first.
Once you know that, you can just add

it up with the cost of the food and
drink to get the total cost.

192    Chapter 5

Encapsulation keeps your data pristine
Sometimes the value in a field changes as your program does
what it’s supposed to do. If you don’t explicitly tell your program
to reset the value, you can do your calculations using the old
one. When this is the case, you want to have your program
execute some statements any time a field is changed—like
having Kathleen’s program recalculate the cost every time
you change the number of people. We can avoid the problem
by encapsulating the data using private fields. We’ll provide a
method to get the value of the field, and another method to set
the field and do all the necessary calculations.

get it, set it, got it, good

class Farmer
{
	 private int numberOfCows;
}

public const int FeedMultiplier = 30;
public int GetNumberOfCows()
{
	 return numberOfCows;
}

public void SetNumberOfCows(int newNumberOfCows)
{
	 numberOfCows = newNumberOfCows;
	 BagsOfFeed = numberOfCows * FeedMultiplier;
}

When you create a form to let a user enter the number of cows into a numeric field,
you need to be able to change the value in the numberOfCows field. To do that, you
can create a method that returns the value of the field to the form object.

We’d better make this field private
so nobody can change it without also
changing bagsOfFeed—if they get
out of sync, that’ll create bugs!

We’ll add a method to give
other classes a way to get
the number of cows.

And here’s a method to set the
number of cows that makes sure
the BagsOfFeed field is changed
too. Now there’s no way for the
two to get out of sync.

A quick example of encapsulation
A Farmer class uses a field to store the number of cows, and
multiplies it by a number to figure out how many bags of cattle
feed are needed to feed the cows:

 T
hese acco

mplish
 the sa

me thing!

We used camelCase for the private fields
and PascalCase for the public ones.

The farmer
needs 30 bags
of feed for
each cow.

you are here 4    193

encapsulation

private int numberOfCows;

public int NumberOfCows
{

 get
 {
 return numberOfCows;
 }

 set
 {
 numberOfCows = value;
 BagsOfFeed = numberOfCows * FeedMultiplier;
 }

}

C# has special kinds of methods that make it easy to encapsulate your data. You
can use properties, methods that are executed every time a field is called to set
or return the value of the field, which is called a backing field.

Properties make encapsulation easier

We’ll rename the private field to numberOfCows
(notice the lowercase “n”). This will become the
backing field for the NumberOfCows property.

You use properties by combining them with a normal field declaration. Here’s the declaration for NumberOfCows.
This is a get accessor. It’s a method that’s run any time
the NumberOfCows field is read. It has a return value
that matches the type of the variable—in this case it
returns the value of the private numberOfCows field.

This is a set accessor that’s called every time the NumberOfCows field is set. Even though the method doesn’t look like it has any parameters, it actually has one called value that contains whatever value the field was set to.

 T
hese acco

mplish
 the sa

me thing!

private void button1_Click(object sender, EventArgs e) {

	 Farmer myFarmer = new Farmer();

	 myFarmer.NumberOfCows = 10;

	 int howManyBags = myFarmer.BagsOfFeed;

	 myFarmer.NumberOfCows = 20;

	 howManyBags = myFarmer.BagsOfFeed;

}

You use get and set accessors exactly like fields. Here’s code for a button that sets the
numbers of cows and then gets the bags of feed:

When this line sets
NumberOfCows to 10, the
set accessor sets the
private numberOfCows field and then updates the public BagsOfFeed field.

Even though the code treats NumberOfCows like
a field, it runs the set accessor, passing it 20.
And when it queries the BagsOfFeed field it runs
the get accessor, which returns 300.

Since the NumberOfCows set accessor updated BagsOfFeed, now you can get its value.

194    Chapter 5

Build an application to test the Farmer class
Create a new Windows Forms application that we can use to test the Farmer
class and see properties in action. We’ll use the Console.WriteLine()
method to write the results to the output window in the IDE.

Do this
Add the Farmer class to your project:

public class Farmer {
 public int BagsOfFeed;
 public const int FeedMultiplier = 30;

 private int numberOfCows;
 public int NumberOfCows {
 (add the get and set accessors from the previous page)
 }
}

11

Here’s the form for the code. It uses Console.WriteLine() to send its output to the Output
window (which you can bring up by selecting “Output” from the View menu). You can pass several
parameters to WriteLine()—the first one is the string to write. If you include “{0}” inside the
string, then WriteLine() replaces it with the first parameter. It replaces “{1}” with the second
parameter, “{2}” with the third, etc.

public partial class Form1 : Form {
 Farmer farmer;
 public Form1() {
 InitializeComponent();
 farmer = new Farmer() { NumberOfCows = 15 };
 }
 private void numericUpDown1_ValueChanged(object sender, EventArgs e) {
 farmer.NumberOfCows = (int)numericUpDown1.Value;
 }
 private void calculate_Click(object sender, EventArgs e) {
 Console.WriteLine(“I need {0} bags of feed for {1} cows”,
 farmer.BagsOfFeed, farmer.NumberOfCows);
 }
}

33

Build this form:22

Set the NumericUpDown control’s Value to 15, its Minimum to 5, and its
Maximum to 300.

Name this button Calculate—it
uses the public Farmer data to
write a line to the output.

WriteLine() replaces “{0}” with value in
the first parameter, and “{1}” with the
second parameter.

Use the Console.WriteLine()
method to send a line of text
to the IDE’s Output window.

private property (no tresspassing)

you are here 4    195

encapsulation

	 							

Automatic
properties
are a C# 3.0
feature.

If	you’re			still	
using	Visual	
Studio	2005	
and	C#	2.0,	
this	code	won’t	
work.	We	highly	
recommend	that	
you	use	Visual	
Studio	2008	
Express.	You	
can	download	it	
for	free!

Use automatic properties to finish the class
It looks like the Cow Calculator works really well. Give it a shot—run it and click
the button. Then change the number of cows to 30 and click it again. Do the same
for 5 cows and then 20 cows. Here’s what your Output window should look like:

But there’s a problem with the class. Add a button to the form that executes this statement:

 farmer.BagsOfFeed = 5;

Now run your program again. It works fine until you press the new button. But press
that button and then press the Calculate button again. Now your ouput tells you that
you need 5 bags of feed—no matter how many cows you have!

Fully encapsulate the Farmer class
The problem is that your class isn’t fully encapsulated. You used properties to
encapsulate NumberOfCows, but BagsOfFeed is still public. This is a common problem.
In fact, it’s so common that C# has a way of automatically fixing it. Just change the
public BagsOfFeed field to an automatic property. And the IDE makes it really easy
for you to add automatic properties. Here’s how:

Remove the BagsOfFeed field from the Farmer class. Put your cursor where the field used to be,
and then type prop and press the tab key twice. The IDE will add this line to your code:

 public int MyProperty { get; set; }

11

Press the tab key—the cursor jumps to MyProperty. Change its name to BagsOfFeed:

 public int BagsOfFeed { get; set; }

Now you’ve got a property instead of a field. When C# sees this, it works exactly the same as if you
used a backing field (like the private numberOfCows behind the public NumberOfCows property).

22

That hasn’t fixed our problem yet. But there’s an easy fix—just make it a read-only property:

 public int BagsOfFeed { get; private set; }

Try to rebuild your code—you’ll get an error on the line in the button that sets BagsOfFeed telling
you that the set accessor is private. Now your Farmer class is better encapsulated!

33

The prop-tab-tab code snippet
adds an automatic property to
your code.

196    Chapter 5

set it up

What if we want to change the feed multiplier?
We built the Cow Calculator to use a const for the feed multiplier. But what if we want
to use the same Farmer class in different programs that need different feed multipliers?
You’ve seen how you poor encapsulation can cause problems when you make fields
in one class too accessible to other classes. That’s why you should only make fields
and methods public if you need to. Since the Cow Calculator never updates
FeedMultiplier, there’s no need to allow any other class to set it. So let’s change it
to a read-only automatic property.

Remove this line from your program:

	 public const int FeedMultiplier = 30;

Use prop-tab-tab to add a read-only automatic property:

	 public int FeedMultiplier { get; private set; }

11

Go ahead and make that change to your code. Then run it. Uh-oh—something’s wrong!
BagsOfFeed always returns 0 bags!

Wait, that make sense. FeedMultiplier never got initialized. It starts out with the
default value of zero and never changes. When it’s multiplied by the number of cows, it still
gives you zero. So add an object initializer:

public Form1() {
 InitializeComponent();
 farmer = new Farmer() { NumberOfCows = 15, FeedMultiplier = 30 };

Uh-oh—the program won’t compile! You should get this error:

22

You can only initialize public fields and properties inside an object initializer.
So how can you make sure your object gets initialized properly if some of
the fields that need to be initialized are private?

Do this!

This automatic property acts just
like an int field. It has a public get,
which means any other class can
read the value of FeedMultiplier.
But since its set is private, that
makes it read-only—it can only be
set by an instance of Farmer.

you are here 4    197

encapsulation

Use a constructor to initialize private fields
If you need to initialize your object, but some of the fields that need to be initialized are private,
then an object initializer just won’t do. Luckily, there’s a special method that you can add to any
class called a constructor. If a class has a constructor, then that constructor is the very first
thing that gets executed when the class is created with the new statement. You can pass
parameters to the constructor to give it values that need to be initialized. But the constructor
does not have a return value, because you don’t actually call it directly. You pass its
parameters to the new statement. And you already know that new returns the object—so
there’s no way for a constructor to return anything.

private int feedMultiplier;

public Farmer(int numberOfCows, int feedMultiplier) {

 this.feedMultiplier = feedMultiplier;

 NumberOfCows = numberOfCows;

}

public Form1() {

 InitializeComponent();

 farmer = new Farmer(15, 30);

}

Add a constructor to your Farmer class
This constructor only has two lines, but there’s a lot going on here. So let’s take it step by step.
We already know that we need the number of cows and a feed multiplier for the class, so we’ll
add them as parameters to the constructor. We’ll change feedMultiplier from a const to
an int. We’ll need a value for it, so let’s make sure it gets passed into the constructor. We’ll use
the constructor to set the number of cows, too..

11

Now change the form so that it uses the constructor
The only thing you need to do now is change the form so that the new statement that
creates the Farmer object uses the constructor instead of an object initializer.

22

Notice how
there’s no “void”
or “int” or
another type
after “public”.
That’s because
constructors
don’t have a
return value.

The first thing we’ll do is set the feed multiplier, because it needs to be set before we can call the NumberOfCows set accessor.If we just set the private numberOfCows field, the NumberOfCows set accessor
would never be called. Setting NumberOfCows makes sure it’s called.

You already know that the
form is an object. Well, it’s got
a constructor too! That’s what
this method is—notice how it’s
named Form1 (like the class)
and it doesn’t have a return
value.

All you have to do to
add a constructor
to a class is add a
method that has the
same name as the
class and no return
value.

Here’s where the new statement calls the constructor. It looks just

like any other new statement, except that it has parameters that

it passes into the constructor method. When you type it in, watch

for the IntelliSense pop-up—it looks just like any other method.

This is the error
you’ll get if your
constructor
takes parameters
but your new
doesn’t have any.

We’ll change
feedMultiplier
from a const to
an int field.

Since we changed FeedMultiplier from a public const to a private int field, we changed its name so it starts with a lowercase “f”. That’s a pretty standard naming convention you’ll see throughout the book.

198    Chapter 5

Q: Is it possible to have a constructor without any
parameters?

A: Yes. It’s actually very common for a class to have a
constructor without a parameter. In fact, you’ve already seen an
example of it—your form’s constructor. Look inside a newly
added Windows form and find its constructor’s declaration:

public Form1() {
 InitializeComponent();
}

That’s the constructor for your form object. It doesn’t take
any parameters, but it does have to do a lot. Take a minute
and open up Form1.Designer.cs. Find the
InitializeComponent() method by clicking on the plus
symbol next to “Windows Form Designer generated code”.

That method initializes all of the controls on the form and sets
all of their properties. If you drag a new control onto your form
in the IDE’s form designer and set some of its properties in the
Properties window, you’ll see those changes reflected inside the
InitializeComponent() method.

The InitializeComponent() method is called inside
the form’s constructor so that the controls all get initialized as
soon as the form object is created. (Remember, every form that
gets displayed is just another object that happens to use methods
that the .NET Framework provides in the System.Windows.Forms
namespace to display windows, buttons and other controls.)

	 When a method’s parameter
has the same name as a
field, then it masks the
field.

Did you notice how the
constructor’s numberOfCows parameter
looks just like the backing field behind the
NumberOfCows property? If you wanted to use
to the backing field in of the constructor, you’d
use “this.”—numberOfCows refers to the
parameter, and this.numberOfCows is how
you’d access the private field.

Constructors
 Way Up Close

private int feedMultiplier;

public Farmer(int numberOfCows, int feedMultiplier) {

 this.feedMultiplier = feedMultiplier;

 NumberOfCows = numberOfCows;

}

Let’s take a closer look at the Farmer constructor so we can get a good sense
of what’s really going on.

This constructor has two parameters, which work just like
ordinary parameters. The first one gives the number of cows,
and the second one is the feed multiplier.

We need to set the feed multiplier first,
because the second statement calls the
NumberOfCows set accessor, which needs
feedMultiplier to have a value in order to
set BagsOfFeed.We need a way to differentiate the field called

feedMultiplier from the parameter with the
same name. That’s where the “this.” keyword
comes in really handy.

Constructors don’t
return anything, so

there’s no return type.

Since “this” is always a reference to the current object, this.feedMultiplier
refers to the field. If you leave “this” off, then feedMultiplier refers
to the parameter. So the first line in the constructor sets the private
feedMultiplier field equal to the second parameter of the constructor.

constructors deconstructed

you are here 4    199

encapsulation

Q: Why would I need complicated
logic in a get or set accessor? Isn’t it just
a way of creating a field?

A: Because sometimes you know that
every time you set a field, you’ll have to do
some calculation or perform some action.
Think about Kathleen’s problem—she
ran into trouble because the form didn’t
run the method to recalculate the cost of
the decorations after setting the number
of people in the DinnerParty class. If we
replaced the field with a set accessor, then
we could make sure that the set accessor
recalculates the cost of the decorations. (In
fact, you’re about to do exactly that in just a
couple of pages!)

Q: Wait a minute—so what’s the
difference between a method and a get or
set accessor?

A: There is none! Get and set accessors
are a special kind of method—one that looks
just like a field to other objects, and called
whenever that field is set. Get accessors
always return a value that’s the same type
as the field, and set accessors always take
exactly one parameter called value
whose type is the same as the field. Oh,
and by the way, you can just say “property”
instead of “get and set accessor”.

Q: So you can have ANY kind of
statement in a property?

A: Absolutely. Anything you can do in a
method, you can do in a property. They can
call other methods, access other fields, even
create objects and instances. But they only
get called when a field gets accessed, so it
doesn’t make sense to have any statements

in them that don’t have to do with getting or
setting the field.

Q: If a set accessor always takes a
parameter called value, why doesn’t its
declaration have parentheses with “int
value” in them, like you’d have with
any other method that takes a parameter
called value?

A: Because C# was built to keep you from
having to type in extra information that the
compiler doesn’t need. The parameter gets
declared without you having to explicitly type
it in, which doesn’t sound like much when
you’re only typing one or two—but when you
have to type a few hundred, it can be a real
time saver (not to mention a bug preventer).

Every set accessor always has exactly one
parameter called value, and the type of
that parameter always matches the type of
the field. C# has all the information it needs
about the type and parameter as soon as
you type “set {”. So there’s no need for
you to type any more, and the C# compiler
isn’t going to make you type more than you
have to.

Q:Wait, a sec—is that why I don’t add
a return value to my constructor?

A: Exactly! Your constructor doesn’t have
a return value because every constructor
is always void. It would be redundant to
make you type “void” at the beginning of
each constructor, so you don’t have to.

Q: Can I have a get without a set or a
set without a get?

A: Yes! When you have a get accessor
but no set, you create a read-only field. For
example, the SecretAgent class might have
a ReadOnly field for the name:

string name = “Dash Martin”;
public string Name {
 get { return name; }
}

And if you create a property with a set
accessor but no get, then your field can only
be written, but not read. The SecretAgent
class could use that for a Password field that
other spies could write to but not see:

public string Password {
 set {
 if (value == secretCode) {
 name = “Herb Jones”;
 }
}

Both of those techniques can come in really
handy when you’re doing encapsulation.

Properties (get and
set accessors) are
a special kind of
method that’s only
run when another
class reads or
writes a property.

200    Chapter 5

Take a look at the get and set accessors here. The Form that is using
this class has a new instance of CableBill called thisMonth and calls
the GetThisMonthsBill () method with a button click. Write down the
value of the amountOwed variable after the code below executed.

public class CableBill {
 private int rentalFee;
 public CableBill(int rentalFee) {
 this.rentalFee = rentalFee;
 discount = false;
 }

 private int payPerViewDiscount;
 private bool discount;
 public bool Discount {
 set {
 discount = value;
 if (discount)
 payPerViewDiscount = 2;
 else
 payPerViewDiscount = 0;
 }
 }

 public int CalculateAmount(int payPerViewMoviesOrdered) {
 return (rentalFee - payPerViewDiscount) * payPerViewMoviesOrdered;
 }
}

 1. CableBill january = new CableBill(4);
 MessageBox.Show(january.CalculateAmount(7).ToString()); 	

 2. CableBill february = new CableBill(7);
 february.payPerViewDiscount = 1;
 MessageBox.Show(february.CalculateAmount(3).ToString());	

 3. CableBill march = new CableBill(9);
 march.Discount = true;
 MessageBox.Show(march.CalculateAmount(6).ToString());

what’s in a name?

What’s the value of
amountOwed?

What’s the value of
amountOwed?

What’s the value of
amountOwed?

you are here 4    201

encapsulation

Q: I noticed that you used uppercase
names for some fields but lowercase
ones for others. Does that matter?

A: Yes—it matters to you. But it doesn’t
matter to the compiler. C# doesn’t care what
you name your variables, but if you choose
weird names then it makes your code hard
to read. Sometimes it can get confusing
when you have variables that are named the
same, except one starts with an uppercase

letter and the other starts with a lowercase
one.
Here are a few tips about variable names
to help you keep it straight. They’re not
hard-and-fast rules—the compiler doesn’t
care whether a variable is uppercase or
lowercase—but they’re good suggestions to
help make your code easier to read.
1. When you declare a private field, it should
be in camelCase and start with a lowercase
letter. (It’s called camelCase because it
starts with a lowercase letter and additional
words are uppercase, so they resemble
humps on a camel.)

2. Public properties and methods are in
PascalCase (they start with an uppercase
letter).
3. Parameters to methods should be in
camelCase.

4. Some methods, especially constructors,
will have parameters with the same names
as fields. When this happens, the parameter
masks the field, which means statements
in the method that use the name end up
referring to the parameter, not the field. Use
the this keyword to fix the problem—add
it to the variable to tell the compiler you’re
talking about the field, not the parameter.

This code has problems. Write down what you think is wrong with
the code, and what you’d change.

class GumballMachine {
	 private int gumballs;

	 private int price;
	 public int Price
	 {
	 get
	 {
		 return price;
	 }
	 }

	 public GumballMachine(int gumballs, int price)
	 {
		 gumballs = this.gumballs;
		 price = Price;
	 }

	 public string DispenseOneGumball(int price, int coinsInserted)
	 {
		 if (this.coinsInserted >= price) { // check the field
			 gumballs -= 1;
			 return “Here’s your gumball”;
		 } else {
			 return “Please insert more coins”;
		 }
	 }
}

202    Chapter 5

 1. CableBill january = new CableBill(4);
 MessageBox.Show(january.CalculateAmount(7).ToString()); 	

 2. CableBill february = new CableBill(7);
 february.payPerViewDiscount = 1;
 MessageBox.Show(february.CalculateAmount(3).ToString());	

 3. CableBill march = new CableBill(9);
 march.Discount = true;
 MessageBox.Show(march.CalculateAmount(6).ToString());

This code has problems. Write down what you think is wrong with
the code, and what you’d change.

encapsulation prevents bugs

What’s the value of
amountOwed?

What’s the value of
amountOwed?

What’s the value of
amountOwed?

28

won’t compile

42

	 public GumballMachine(int gumballs, int price)
	 {
		 gumballs = this.gumballs;
		 price = Price;
	 }

	 public string DispenseOneGumball(int price, int coinsInserted)
	 {
		 if (this.coinsInserted >= price) { // check the field
			 gumballs -= 1;
			 return “Here’s your gumball”;
		 } else {
			 return “Please insert more coins”;
		 }
	 }

The “this” keyword
is on a parameter,
where it doesn’t
belong. It should be
on price, because
that field is masked
by a parameter.

This parameter masks the
private field called Price, and
the comment says the method is
supposed to be checking the value
of the price backing field.

The “this” keyword is on the wrong
“gumballs”. this.gumballs refers to

the property, while gumballs refers to

the parameter.

Lowercase price refers to the parameter to the constructor, not the field. This line sets the PARAMETER to the value returned by the Price get accessor, but Price hasn’t even been set yet! So it doesn’t do anything useful. If you change the constructor’s parameter to uppercase Price, this line will work properly.

Write down the value of the amountOwed variable after the code
below executed.

you are here 4    203

encapsulation

If we make sure that the cost of the decorations is recalculated every time the number of people is updated, then CalculateCost() will always return the right amount.

How to fix the Dinner Party calculator
If we want to fix the DinnerParty class, we’ll need a way to make sure that the
CalculateCostOfDecorations() method gets called every time that NumberOfPeople changes.

11

NumberOfPeople = 10;

CalculateCost() returns $650

 Form

DinnerParty
ob

je
ctCalculatecostOfDecor

ations()

We need to recalculate the decoration cost
every time the number of people changes.

Use what you’ve learned about properties and constructors to fix Kathleen’s Party Planner
program.

Add properties and a constructor
All you need to do to fix Kathleen’s problem is make sure the DinnerParty class is well-
encapsulated. You’ll start by changing NumberOfPeople to a property that always calls
CalculateCostOfDecorations() any time it’s called. Then you’ll add a constructor that makes
sure the instance is initialized properly. Finally, you’ll change the form so it uses the new
constructor. If you do this right, that’s the only change you’ll need to make to the form.

You’ll need to create a new property for NumberOfPeople that has a set accessor
which calls CalculateCostOfDecorations(). It’ll need a backing field called
numberOfPeople.

The NumberOfPeople set accessor needs to have a value to pass as the parameter to
the CalculateCostOfDecorations() method. So add a private bool field called
fancyDecorations that you set every time CalculateCostOfDecorations() is
called.

Add a constructor that sets up the class. It needs to take three parameters for the Number
of People, Healthy Option, and Fancy Decorations. The form currently calls two methods
when it initializes the DinnerParty object—move them into the constructor.
dinnerParty.CalculateCostOfDecorations(fancyBox.Checked);
dinnerParty.SetHealthyOption(healthyBox.Checked);

Here’s the constructor for the form—everything else in the form stays the same:
public Form1() {
 InitializeComponent();
 dinnerParty = new DinnerParty((int)numericUpDown1.Value,
 healthyBox.Checked, fancyBox.Checked);
 DisplayDinnerPartyCost();
}

≥

≥

≥

≥

22

204    Chapter 5

public class DinnerParty {
 const int CostOfFoodPerPerson = 25;

 private int numberOfPeople;
 public int NumberOfPeople {
 get { return numberOfPeople; }
 set {
 numberOfPeople = value;
 CalculateCostOfDecorations(fancyDecorations);
 }
 }
 private bool fancyDecorations;

 public decimal CostOfBeveragesPerPerson;
 public decimal CostOfDecorations = 0;

 public DinnerParty(int numberOfPeople, bool healthyOption, bool fancyDecorations) {
 this.NumberOfPeople = numberOfPeople;
 this.fancyDecorations = fancyDecorations;
 SetHealthyOption(healthyOption);
 CalculateCostOfDecorations(fancyDecorations);
 }

 public void SetHealthyOption(bool healthyOption) {
 if (healthyOption) {
 CostOfBeveragesPerPerson = 5.00M;
 } else {
 CostOfBeveragesPerPerson = 20.00M;
 }
 }

 public void CalculateCostOfDecorations(bool fancy) {
 fancyDecorations = fancy;
 if (fancy) {
 CostOfDecorations = (NumberOfPeople * 15.00M) + 50M;
 } else {
 CostOfDecorations = (NumberOfPeople * 7.50M) + 30M;
 }
 }

 public decimal CalculateCost(bool healthyOption) {
 decimal totalCost = CostOfDecorations
 + ((CostOfBeveragesPerPerson + CostOfFoodPerPerson) * NumberOfPeople);

 if (healthyOption) {
 return totalCost * .95M;
 } else {
 return totalCost;
 }
 }
}

exercise solution

Use what you’ve learned about properties and constructors to fix Kathleen’s Party Planner
program.

Now that numberOfPeople is private, there’s no way for the form to change it without also recalculating the cost of the decorations. That’ll fix the bug that almost cost Kathleen one of her best clients!

By using a property, you can make sure that the cost of decorations is recalculated every time the number of people changes.

Be careful how you
use “this.”. Make sure
you put it in front of
NumberOfPeople so that it
calls the set accessor.

And you’ll need to
put it in front of
“fancyDecorations”
because the
fancyDecorations
parameter masks
the private field
with the same
name.

Make sure you store the fancy decorations in a field so the NumberOfPeople set accessor can use it.

252    Chapter 7

Let’s get back to bee-sics
The General Bee-namics corporation wants to make the
Beehive Management System you created in the last chapter
into a full-blown Hive Simulator. Here’s an overview of the
specification for the new version of the program:

General Bee-namics Hive Simulator

To better represent life in the hive, we’ll need to add specialized

capabilities to the worker bees.

All bees consume honey and have a weight.

Queens assign work, monitor shift reports, and tell workers to

work the next shift.

All worker bees work shifts.

Sting patrol bees will need to be able to sharpen their stingers,

look for enemies, and sting them.

Nectar collector bees are responsible for finding flowers,

gathering nectar and then returning to the hive.

•

•

•

•

•

The bees in the new hive simulator will still consume honey in
the same way they did before. The queen still needs to be able
to assign work to the workers and see the shift reports that
tell who’s doing what. The workers work shifts just like they
did before, too, it’s just that the jobs they are doing have been
elaborated a little bit.

The Bee and Worker classes don’t look like they’ll change much. We can extend the classes we already have to handle these new features.

Looks like we’ll need to be able to store different data for the worker bees depending on the job they do.

worker bees, unite!

Lots of things are still the same

you are here  253

interfaces and abstract classes

We can use inheritance to create
classes for different types of bees
Here’s a class hierarchy with Worker and Queen classes that
inherit from Bee, and Worker has subclasses NectarCollector
and StingPatrol.

Worker
Job
ShiftsToWork
ShiftsWorked
ShiftsLeft

DoThisJob()
WorkOneShift()

Bee
Weight

HoneyConsumption()

StingPatrol
StingerLength
EnemyAlert

SharpenStinger()
LookForEnemies()
Sting()

NectarCollector
Nectar

FindFlowers()
GatherNectar()
ReturnToHive()

Queen
Worker[]
ShiftNumber

AssignWork()
WorkTheNextShift()
HoneyConsumption()

What happens if you have a bee that
needs to sting and collect nectar?

class StingPatrol : Worker
{ int StingerLength;
 bool enemyAlert;
 public bool SharpenStinger (int Length)
 {...}
 public bool LookForEnemies(){...}
 public void Sting(string Enemy){...}
}

class NectarCollector : Worker
{
 int Nectar;
 public void FindFlowers (){...}
 public void GatherNectar(){...}
 public void ReturnToHive(){...}
}

This is what the new
subclasses will look like.

Here’s where information about the weight and honey consumption is stored.

And these classes hold the information particular to each job.

Here’s where all of the information about working shifts is kept.

StingPatrol and NectarCollector inherit from the Worker class.

Remember how the queen needed extra honey? Here’s where we overrode her HoneyConsumption() method.

254    Chapter 7

NectarCollan
 o

bj
ec

t
NectalCollar

 o
bj

ec
t

An interface tells a class that it must implement
certain methods and properties
A class can only inherit from one other class. So creating two separate subclasses for
the StingPatrol and NectarCollector bees won’t help us if we have a bee
that can do both jobs.

You use an
interface to
require a class
to include all
of the methods
and properties
listed inside the
interface—if
it doesn’t, the
compiler will
throw an error.

interfaces for jobs

The queen’s DefendTheHive() method can only tell
StingPatrol objects to keep the hive safe. She’d love to train
the other bees to use their stingers, but she doesn’t have
any way to command them to attack:

There are NectarCollector objects that know how to collect nectar from flowers, and
instances of StingPatrol that can sharpen their stingers and patrol for enemies. But even
if the queen could teach the NectarCollector to defend the hive by adding methods like
SharpenStinger() and LookForEnemies() to its class definition, she still couldn’t pass it
into her DefendTheHive() method. Maybe she could use two different methods:

I wish you guys
could help defend
the hive. Queen objec

t
public class Queen {
 private void DefendTheHive(StingPatrol patroller) { ... }
}

private void DefendTheHive(StingPatrol patroller);
private void AlternateDefendTheHive(NectarCollector patroller);

Even if the queen adds sting patrol methods
to a NectarCollector object, she still can’t
pass it to her DefendTheHive() method
because it expects a StingPatrol reference.
She can’t just set a StingPatrol reference
equal to a NectarCollector object.

But that’s not a particularly good solution. Both of those methods
would be identical, because they’d call the same methods in the
objects passed to them. The only difference is that one method would
take a StingPatrol, and the other would take a NectarCollector that
happens to have the methods necessary for patrolling the hive. And
you already know how painful it is to maintain two identical methods.

Luckily, C# gives us interfaces to handle situations like that.
Interfaces let you define a bunch of methods that a class must have.

An interface requires that a class has certain methods, and the way
that it does that is that it makes the compiler throw errors if it
doesn’t find all the methods required by the interface in every class
that implements it. Those methods can be coded directly in the class,
or they can be inherited from a base class. The interface doesn’t care
how the methods or properties get there, as long as they’re there
when the code is compiled.

She could add a second method called
AlternateDefendTheHive() that takes a
NectarCollector reference instead, but that would
be cumbersome and difficult to work with.

Plus, the DefendTheHive() and
AlternateDefendTheHive() methods would be identical
except for the type of the parameter. If she wanted
to teach the BabyBeeCare or Maintenance objects to
defend the hive, she’d need to keep adding new methods.
What a mess!

you are here  255

interfaces and abstract classes

Queen objec
t

public interface IStingPatrol
{
 int AlertLevel { get;}
 int StingerLength { get; set;}
 bool LookForEnemies();
 int SharpenStinger(int Length);
}

public interface INectarCollector
{
 void FindFlowers();
 void GatherNectar();
 void ReturnToHive();
}

You declare an
interface like this:

Everything inside an

interface is meant to

be actually used ins
ide

another class. So a
ll of the

methods in an interf
ace are

automatically public.

Interfaces don’t store data. So they don’t have fields... but they can have properties.

You don’t write the code for t
he

methods in the inter
face, just their

names. You write the code in th
e class

that implements it.

Any class that implements this method must have all of these methods and properties, or the program won’t compile.

Everything in a
public interface
is automatically
public, because
you’ll use it to
define the public
methods and
properties of
any class that
implements it.

public interface IStingPatrol Any class that

Interface names start with I
Whenever you create an interface, you should make
its name start with an uppercase I. There’s no rule

that says you need to do it, but it makes your code

a lot easier to understand. You can see for yourself

just how much easier that can make your life. Just
go into the IDE to any blank line inside any method

and type “I”—IntelliSense shows .NET interfaces.

Use the interface keyword to define an interface

Adding an interface to your program is a lot like adding a class,
except you never write any methods. You just define the methods’
return type and parameters, but instead of a block of statements
inside curly brackets you just end the line with a semicolon.

Interfaces do not store data, so you can’t add any fields. But you can
add definitions for properties. The reason is that get and set accessors are
just methods, and interfaces are all about forcing classes to have certain
methods with specific names, types and parameters. So if you want
your interface to require a field with a certain name and type, just use a
 property instead—it’ll accomplish the same thing.

Any class that implements
this interface will need a
SharpenStinger() method that
takes an int parameter.

Now that I know you can
defend the hive, we‛ll all be
a lot safer!

So how does this help the queen? Now she can make one single method that takes any
object that knows how to defend the hive:

private void DefendTheHive(IStingPatrol patroller)

This gives the queen a single method that can take a StingPatrol,
NectarStinger, and any other bee that knows how to defend the hive—it
doesn’t matter which class she passes to the method. As long as it implements
IStingPatrol, the DefendTheHive() is guaranteed that the object has the
methods and properties it needs to defend the hive.

Since this takes an
IStingPatrol reference, you
can pass it ANY object that
implements IStingPatrol.

256    Chapter 7

Q: I still don’t quite get how interfaces improve
the beehive code. You’ll still need to add a
NectarStinger class, and it’ll still have duplicate
code…right?

A: Interfaces aren’t about preventing you from
duplicating code. They’re about letting you use one class in
more than one situation. The goal is to create one worker
bee class that can do two different jobs. You’ll still need
to create classes for them—that’s not the point. The point
of the interfaces is that now you’ve got a way to have a
class that does any number of jobs. Let’s say you have
a PatrolTheHive() method that takes a StingPatrol object
and a CollectNectar() method that takes a NectarCollector
object. But you don’t want StingPatrol to inherit from
NectarCollector or vice versa—each class has public
methods and properties that the other one shouldn’t have.
Now take a minute and try to think of a way to create one
single class whose instances could be passed to both
methods. Seriously, put the book down, take a minute and
try to think up a way! How do you do it?

Interfaces fix that problem. Now you can create an
IStingPatrol reference—and that reference can point to
any object that implements IStingPatrol, no matter what
the actual class is. It can point to a StingPatrol, or a
NectarStinger, or even a totally unrelated object. If you’ve
got an IStingPatrol reference pointing to an object, then you
know you can use all of the methods and properties that are
part of the IStingPatrol interface, regardless of the actual
type of the object.

But the interface is only part of the solution. You’ll still
need to create a new class that implements the interface,
because it doesn’t actually come with any code. Interfaces
aren’t about avoiding the creation of extra classes or
avoiding duplicate code. They’re about making one class
that can do more than one job without relying on inheritance,
because inheritance brings along a lot of extra baggage—
you’ll have to inherit every method, property and field, not
just the ones that have to do with the specific job.

Can you think of ways that you could still avoid duplicating
code while using an interface? You could create a separate
class called Stinger or Proboscis to contain the code that’s
specific to stinging or collecting nectar. NectarStinger and
NectarCollector could both create a private instance of
Proboscis, and any time they need to collect nectar, they’d
call its methods and set its properties.

class NectarStinger : Worker, INectarCollector,
IStingPatrol {
 public int AlertLevel {
 get { return alertLevel; }
 }

 public int StingerLength {
 get { return stingerLength; }
 set {
 stingerLength = value;
 }
 }

 public bool LookForEnemies() {...}
 public int SharpenStinger(int Length)

 {...}
 public void FindFlowers() {...}
 public void GatherNectar() {...}
 public void ReturnToHive() {...}
}

You implement an interface with a colon
operator, just like you inherit.

You can use
more than one
interface if you
separate them
with commas.

Every method
in the interface
has a method
in the class.
Otherwise it
wouldn’t compile.

When you create a NectarStinger object, it
will be able to do the the job of both a
NectarCollector and a StingPatrol worker bee.

This class inherits from Worker and
implements INectarCollector and
IStingPatrol.

The NectarStinger
sets the backing
field for the
AlertLevel
property in its
LookForEnemies()
method.

When you’ve got a class that implements an interface, it acts just like
any other class. You can instantiate it with new and use its methods:

 NectarStinger bobTheBee = new NectarStinger();

 bobTheBee.LookForEnemies();

 bobTheBee.FindFlowers();

Now you can create an instance of
NectarStinger that does both jobs
You use the colon operator to declare an interface, just like you do for
inheritance. It works like this: the first thing after the colon is the class
it inherits from, followed by a list of interfaces -- unless it doesn’t inherit
from a class, in which case it’s just a list of interfaces (in no particular
order).

The bee retracts its stinger when there are no enemies around, so the backing field changes its value over time.

a little bit nectarcollector and a little bit stingpatrol

you are here  257

interfaces and abstract classes

Classes that implement interfaces have to
include ALL of the interface’s methods
Implementing an interface means that you have to have a method in the class
for each and every property and method that’s declared in the interface—if it
doesn’t have every one of them, it won’t compile. If a class implements more
than one interface, then it needs to include all of the properties and methods in
each of the interfaces it implements. But don’t take our word for it... Do this!

Create a new application and add a new class file called IStingPatrol.cs
Instead of adding a class, type in the IStingPatrol interface on the previous page.

11

Add a Bee class to the project
Don’t add any properties or methods yet. Just have it implement IStingPatrol:

public class Bee : IStingPatrol {

22

Try to compile the program
Select “Rebuild” from the Build menu. Uh-oh—the compiler won’t let you do it:

33

Add the methods and properties to the Bee class
Add a LookForEnemies method and a SharpenStinger method—they don’t have to
do anything, they just need to compile. Then add a get accessor for an int called AlertLevel
and get and set accessors for an int called StingerLength. Now the program will compile!

44

You’ll see one of these
“does not implement” errors
for every member of
IStingPatrol that’s not
implemented in the class.
The compiler really wants
you to implement every
method in the interface.

this is the index   717

Index

Symbols
!= operator 68

&& operator 68, 77

*= operator 64, 136

* operator 64

+= operator 64

+ operator 64
casting 129

-= operator 136

- operator 64

// (slashes) 66

/ operator 64

< operator 68

== operator 67, 68

= operator 64, 67

> operator 68

@ in front of filenames 389, 401

\n 15, 66, 401

\t 401

|| operator 68

A
abstract classes 278–285

Fireside Chat 284–285
usefulness 279–280

abstraction as principle of OOP 288

abstract keyword 281

abstract methods 278, 281

access modifiers 273–274
internal 273
private 273

protected 273
protected versus private or public 276
public 273
scope 274
sealed 273

Adventure Game program (see labs, #2 The Quest)

Albahari, Joe 706

allocate, defined 405

allocated resources 405

Anatomy of a program 52–53
.NET Framework 52
classes 52, 53
methods 52, 53
namespaces 52
parameters 53
statements 53
using lines 52

Anatomy of a query 660

AND operator 68

animal inheritance program 216–222

animation 566–567
building control 573
double buffering 608–613

AppendAllText() method 400

Appliance project 266–270
Appliance class 266
downcasting 268

interfaces 269
upcasting 267

interfaces 269
application design (see design)

applications
compiling 47
console 710–711
debugging 47

718    index

the index

applications (continued)
deploying 37, 38
running 36
running in IDE 36

architecture 531

args parameter 711

arrays 148–149, 262
deck of cards 315–316
finding length 149
versus Lists 318–320, 325

assemblies 273

attributes 421

B
BackColor property 51

BackgroundWorker 708

backing field 193, 198

Baseball Simulator project 484–501
callbacks 507–509
Fan class 494–497
Pitcher class 494–497
subscription and public events 505

base classes 214, 217
colon (:) 222
constructors 233
extending 221
subclasses accessing with base keyword 232
upcasting 267
using subclasses instead 227

base keyword 232, 275

Beehive Simulator project 239–249, 252–265
adding new form 544
AnimateBees() method 613
animating with controls 566–567

building control 573–575
images 574–575
timer 575

Bee class 524–525
Go() method 533–535, 542–543

BeeControl 574–579

animating bees on form 580–581
creating button to add to form 576
creating from UserControl 578
disposing 577
implementation 579
ResizeCells method 591

BeeState enum 525–527
Bitmap class 593
building form 241
building Worker and Queen classes 241
class hierarchy with Worker and Queen classes 253
collection of bees 555
Color.Transparent 589
creating Bee class 246
DateTime class 548
Dictionary objects 569
double buffering 609–613
drawing picture on form 596–597
encapsulation 537
extending through inheritance 245–249
fixing transparency problems 601
Flower class 520–522
for loops 537
forms

adding hive and field 582
clearing out all controls 583
FieldForm 586–587
FormBorderStyle property 582
HiveForm 586–587
Location property 582
Reset button 587

Graphics object 592
Hive class 529–530

adding methods 532–533
exceptions 539
updates 540–541

honey production 246
interfaces 254–263

inheritance 263
references 260–261

making Queen class inherit from Bee class 247
making Worker class inherit from Bee class 247
NectarHarvested variable 523
number of bees 533
object model 518

you are here 4    719

the index

OutOfHoneyException 468
overview of what’s to be added 519
Paint event handler 602
performance issues 589–591
Point object 539
printing 616–619

code for the Print button 619
event handler for the Document’s PrintPage

event 618
PrintTableRow() method 618

read-only automatic properties 523
RemoveAllControls() method 583
removing dead flowers and retired bees 537
Renderer 568–569
Renderer class 583–585

DrawBees() 584
DrawFlowers() 584
GetBeeControl() 585
MoveBeeFromFieldToHive() 585
MoveBeeFromHiveToField() 585
RemoveRetiredBeesAndDeadFlowers() 585
ResizeImage method 591

resizing images 592–593
Show() method 587
timers 546

adding to program 548
disposing 577
events and delegates 547
Render() method 583

ToolStrip control, adding Open, Save, and Print 559
updating form to instantiate bees 247
using World to get statistics 545
World class 534–535

 code 536
behavior 12

Behind the Scenes
how forms and controls repaint themselves 605
LINQ using extension methods 657
The stack vs. the heap: more on memory 641
Unicode 424
visual components 576

binary and decimal, converting between 125

binary files 424
comparing 429
hex dump 431
working with 431
writing 427

BinaryFormatter 420
Deserialize() method 420, 423
Serializable attribute 423
SerializationException 454

BinaryReader 428

BinaryWriter 427

Birthday Party project 206–214
BirthdayParty.CalculateCost() 213
BirthdayParty class 207
CakeWriting method 212
CalculateCost() method 212
inheriting from Party class 234–238

Bitmap class 593

blank space 66

boilerplate code 44

bool type 63, 64, 124, 126

bound 32

boxed objects and structs 642, 644

boxed struct 645

breakpoints 450
knowing where to put 452

BringToFront() method 581

Brush object 606

Build menu 47

Build Solution 47

built-in features 55

Bullet Points
delegates 509
event handlers 509
exception handling 471
LINQ query statements 664
Lists 322

720    index

the index

Bullet Points (continued)
reference variables 154
statements 73
try/catch blocks 471
types 154

buttons 44
adding code to interact with objects 113
adding to form 51, 112
BackColor property 51
Name property 51
Size property 51
Text property 51

byte arrays 401
moving text around in 426

byte order mark 434

byte type 124, 126

C
C#

what you can do with 714
what you get with Visual Studio and 2
why you should learn 2

C# 3.0
automatic properties 195
object initializers 115

Calculator program 474–475
temporary solution 475

callbacks 507
versus events 510

call stack 453

camelCase 201

Candy Control System 102–108

capitalization 201

Captain Amazing 622–626, 635, 636, 645, 651

casting 128–130
+ operator 129
automatic 130
wrapping numbers 129

catch blocks 455, 457
followed by (Exception) 460
following in debugger 458–459
multiple 466
with no specified exceptions 462

chaining 491, 499

Character Map 424, 425

char type 125, 126

checkbox 75

class diagrams 90, 104, 106
moving up, not down 231
private fields and types 240

classes 52, 53, 73
abstract (see abstract classes)
adding 56
collection 317
concrete 278
copying 90
creating example 111
curly braces 66
declaration 54
defining 66
designing intuitive classes 116
finding out if class implements specific interface 262
instances (see instances)
internal 273
looking for common 219
members 273
message about adding components to my class 579
MessageBox 56
multiple in same namespace 61
naming 102–103
natural structure 104
never instantiated 277
organizing 106
partial (see partial classes)
private 273
protected 273
public 273
sealed 273
serializable 421

you are here 4    721

the index

similarities between 116
static 97
subscribing 489
using to build objects 92
versus structs 644
why some should never be instantiated 280
you can’t inherit from 647

class hierarchy 215, 220
Hive Simulator 253

Clone class
implementing IDisposable 630, 631

CLR (Common Language Runtime) 47, 153

code
avoiding duplication 217
blocks 73
boilerplate 44
copying 90
looking at auto-generated 15
renaming things in code 707
repeating 213
similar 214
unwanted code from IDE 11
using IDE to help write code 48–49

collection initializers 326–327

collections 317, 555
Dictionary (see dictionaries)
generic 325
LINQ 556–558
List (see lists)
performing calculations on 662
Queue (see queues)
Stack (see stack)
using join to combine two collections into one query

671, 672
versus tables 661

colon (:) 222

colon operator 256

Color.Transparent 589

colors 76

columns 20

command-line arguments 711

comments 66

CompareTo() method 329

compiler 47

compiler errors
interfaces 254
troubleshooting 49

compiling application 36, 47

compound operators 136

concatenation 130

concrete classes 278

conditional expressions, consolidating 707

conditional operators 68–70

conditional tests 68–70, 73

configuration files 37

Console.WriteLine() method 194

console applications 710–711

console window, debugging in 711

constructors 197, 198, 199
base class 233
building new with switch statement 415
exceptions in 459
overloaded 313
subclasses 233

ContactDB.mdf 18, 29, 31

ContactDBDataSet 31, 32

ContactDBDataSet.Designer.cs 31

ContainsKey() method 581

controls
adding code 564
altering reexisting 587
animating Behive simulator 566–567
as objects 565
bound to database 32
clearing out all on forms 583
custom 564

animation 573
disposable objects 577

database-driven 32–33
disposing 577, 579

722    index

the index

controls (continued)
how forms and controls repaint themselves 605
redrawing themselves 602
removing 564
visual display elements 570

Controls collection 565

count ++ 64

count -- 64

count = 64

Create() method 400

CreateDirectory() method 400

CryptoStream 394

curly braces 66, 73

curly brackets 58, 111
single-line blocks 212

D
data

pulling data from multiple sources 656
storing categories of 310

database-driven controls 32–33

database diagram 26
saving 27

Database Explorer 18, 675

databases 3
adding table 20
adding to project 18
connecting forms to 17, 30

(see also data source)
connecting LINQ to SQL database 674–675
entering data 28–29
LINQ 673
LINQ querying SQL database 677
multiple tables 26
SQL 18, 19
SQL Server Express 7

data source
adding new 30
configuring 31
database-driven controls 32

Data Source Configuration Wizard 18

data storage 7

data types 20
generic 325

DateTime class 548

debugger
Break All button 449
Bullet Points 471
catch blocks

followed by (Exception) 460
following flow 458–459
multiple 466
with no specified exceptions 462

Continue button 449
exploring delegates 503
finally block 460
knowing where to put breakpoints 452
Restart button 449
Show next statement button 449
Step into button 449
Step Into command 450
Step out button 449
Step over button 449
try blocks 458–459
unhandled exception window 452
uses for 457
Watch window 449, 457

running methods in 452
(see also exception handling)

debugging 16, 47, 449
console window 711
Excuse Management program 450–451

Debug menu 47

decimal and binary, converting between 125

you are here 4    723

the index

decimal type 125, 126

declaration 54

delay 76, 79

delegates
Bullet Points 509
defined 501
exploring in debugger 503
hooking up to one event 507–509
in action 502–503
multiple events 499

Delete() method 400

deploying application 37, 38

deployment package 7

design 531
intuitive applications 34–35
intuitive classes 116
making code intuitive with class and method names

102–103
professional looking applications 35
user’s needs 5

destructor 628

dialog boxes 398–400
as objects 399
customized 401
popping up 397

DialogResult 397–399
excuse management program 410

dictionaries 335–337
Add() method 335
adding or removing items 336
ContainsKey() 335
getting list of keys 336
getting list of values 336
keys 335
keys and values 337
looking up values using keys 336
renderer 580

Dictionary objects 569

Dinner Party Planning project 174–185
CalculateCostOfDecorations() method 184
cost estimate 175

DinnerParty class
class diagram 176
exercise solution 178–179

fixing calculator 203–204
inheriting from Party class 234–238
numericUpDown control 183
recalculating new individual costs 183

directories
creating new 400
deleting 400
getting list of files 400

Dispose() method 406, 577
finalizers 632, 634
making object serialize in 633
using statement 630–632

DivideByZero error 443

DivideByZeroException 443, 448

dividing any number by zero 443

DogCompetition class 312

double buffering 608–613

double type 125, 126

downcasting 268, 269
failure 270

E
encapsulation 183–204, 435, 644

as principle of OOP 288
automatic properties 195
better 276
defined 185
example 192
ideas for 191
properties 193
Renderer 568

entry point 55, 58, 231
changing 56

enumeration 310–311

enums 311–315
big numbers 312
representing numbers with names 312
versus Lists 325

724    index

the index

equal signs 67

error handling 462

Error List 49, 58

errors
avoiding file system errors with using statements 406
compiler errors and interfaces 254
DivideByZero 443
invalid arguments 131
You must rebuild your project for the changes to show

up in any open designers. 579

escape sequence 66

EventHandler 488, 491
using methods that do match others defined by Even-

tHandler 491

event handlers 177, 188, 485
adding 491
automatic 492–493
Bullet Points 509
excuse management program 408
hooking up 498
how they work 486–487
printing 614
returning something other than void 491
types of 491

event keyword 488

events
callbacks 507–509
connecting senders with receivers 500
defined 485
delegates 499
forms 498
how they work 486–487
naming methods when raising events 490
raising 490
raising events with no handlers 490
reference variables 500
subscription and public events 505
versus callbacks 510
(see also event handlers)

exception, defined 444

exception handling 439–482
Bullet Points 471
catch block 455, 457
catching specific exception types 473
DivideByZeroException 443, 448
dividing any number by zero 443
exceptions in constructors 459
exceptions versus unhandled exceptions 462
Excuse Management program 477–478
FileNotFoundException 462
finalizers 635
FormatException 448
handling, not burying 474
handling versus fixing 475
IDisposable interface 472
IndexOutOfRangeException 448
IOException 460
NullReferenceException 443
OverFlowException 448
program stopping with exceptions 462
SerializationException 453, 460
simple ideas for 476
specifying particular kinds of exceptions 462
spotting exceptions 445
throwing and catching exceptions 467
try block 455, 457
unexpected input 456
unhandled exceptions 452
using exceptions to find bugs 447
using statement 471
why there are so many exceptions 445
(see also debugger)

Exception objects 444, 445
inheriting from Exception class 448
Message property 466
using to get information about the problem 465

Excuse Management project 407–411
binary files with serialized objects 436
building the form 408
code problems 453
debugging 450–451

Random Excuse button 461

you are here 4    725

the index

DialogResult 410
event handlers 408
exception handling 477–478
Folder button 408
Random Excuse button 411
Save As dialog 410
solution 410–411
unexpected user behavior 446–447
using debugger to follow try/catch flow 458–459

executable file 47

executing application 36

Exists() method 400

Expand Tables 28

extension methods 646, 647
LINQ 657
strings 648

F
Farmer class 192–198

constructors 197
fully encapsulating 195
testing 194–195

features 3
built-in 55

fields 98
backing field 193
initializing public fields 196
interfaces 255
lining up 34
masking 198
method’s parameter has same name as a field 198
private 185–188

constructors 197
declaring 201

public 191
versus methods 98
versus properties 276
with no access 188

File.Create() 429

File.OpenWrite() 429

File.ReadAllBytes() 425, 426, 434

File.ReadAllLines() 434

File.ReadAllText() 434

File.WriteAllBytes() 425, 426, 434

File.WriteAllLines() 434

File.WriteAllText() 434

File class
Close() method 434
ReadAllText() method 403
static methods 434
versus FileInfo class 434
WriteAllText() method 403

FileDialogs 403

FileInfo class 400
versus File class 434

filenames, @ in front of 389

FileNotFoundException 462

files
appending text to 400
finding out if exists 400
get information about 400
reading from or writing to 400

(see also streams)
where Visual Studio stores them 16
writing 412

FileStreams 387, 388
BinaryWriter 427
StreamWriter 389
versus StreamReader and StreamWriter 434

FileSystemWatcher 709

Filter property 398

finalizers 628
Dispose() method 632, 634
exceptions 635
fields and methods 635
garbage collection 629–631
references 632
stability 632
when they run 629

finally block 460

726    index

the index

Fireside Chats
abstract classes 284–285
Dispose() method and finalizers 634

Five Minute Mystery
The Case of the Golden Crustacean 506

mystery solved 511
flickering images 607

float type 124, 126
assigning 129

foreach loop (lists) 321, 358

for loops 65, 69

Form1.cs 8

Form1.Designer.cs 8, 45, 50
changing control properties 12

Form1.resx 14

Form1 form, programs without 231

FormatException 448

FormBorderStyle property 582

Form Designer 3

forms
adding buttons 112
adding method 113
adding variables 112
as objects 152–153
connecting to databases 17, 30

(see also data source)
CreateGraphics() method 594
database-driven controls 32
events 498
how forms and controls repaint themselves 605
OnPaint method 605
Paint event 605
PaintEventArgs 605
redrawing themselves 602
Refresh() method 605
(see also Beehive Simulator project, forms)

frames versus turns 549

from clause 664, 667

FromImage() 606

G
garbage collection 140, 153, 635

finalizers 629–631

GDI+ 594–595

generic collections 325, 355

generic data types 325

get accessor 193, 199
interfaces with get accessor without set accssor 259

GetFiles() method 400

GetLastAccessTime() method 400

GetLastWriteTime() method 400

Go To Definition 405

GPS navigation system 87

graphical user interface (see GUI)

graphics
drawing picture on form 596–597
how forms and controls repaint themselves 605
Rectangle 597
using keyword 606

Graphics object 592, 594, 606
CreateGraphics() method 595
DrawBee() method 601
DrawCircle() method 595
DrawString() method 595
FillCircle() method 595
Invalidate() controls 605
Paint event handler 602
printing 614
Update() method 605

green arrow button 16

GroupBox control 207, 606

group keyword 667, 668

GUI (Graphical User Interface) 94
labs, #1 A Day at the Races 170

guys (Two Guys project) 110–115, 117–118
building form

adding a method 113
adding buttons 112

you are here 4    727

the index

adding code to interact with objects 113
adding variables 112, 113

creating Guy class and two instances 110
sample code 111

GZipStreams 387

H
heap 100, 101

garbage collection 140
structs 637
versus stack 641

Hebrew letters 425

hex dump 431
StreamReader and StreamWriter 433
using file streams to build hex dumper 432

hexadecimal 431
working with 432

hierarchy 215
defined 221

I
IClown interface 258

access modifiers 274–275
extending 271–272

IComparable interface 329

IComparer interface 330
complex comparisons 332
creating instance 331
multiple classes 331
SortBy field 332

IDE
auto-generated code 73
behind the scenes 14
buttons 44
changing names of files 11
changing things in 50
compiler errors, troubleshooting 49
creating new projects 8
Error List 49
green arrow 16

helping users code 48–49
importing images 14
making changes in 45
New Project window 8
Properties window 44
renaming things in code 707
Reset Window Layout command 11
running program in 36
SQL statements 19
stored procedures 19
unwanted code 11
using tabs to switch between open files 48
visual tools 73
what it does in typical application 44–45
what the IDE automates 2
where data is stored 29
Windows Forms Application project 44
XAML 713

IDE toolbar
green arrow button 16
Save icon 15
Stop Debugging button 16

IDisposable interface 405, 473, 630
avoiding exceptions 472

IDs
auto-generated 21
unique 20

if/else statements 67

if statements 131

images
drawing picture on form 596–597
fixing transparency problems 601
flickering 607
performance issues 590
Rectangle 597
resizing 592–593, 606
TrackBars to zoom an image in and out 603–604

images, importing 14

index (arrays) 148–149

IndexOutOfRangeException 448

infinite loops 71

728    index

the index

inherit, defined 215

inheritance 213–250
as principle of OOP 288
avoiding duplication of code 217
classes you can’t inherit from 647
class hierarchy, Hive Simulator 253
class that contains entry point 231
looking for common classes 219
multiple 286
passing instance of subclass 231
subclasses 225–226
(see also interfaces)

InitialDirectory propery 398

initialization 115

InitializeComponent() method 198

installation, testing 39

instances 93
creating 94

example 111
heap 101
static keyword 99

defined 93
fields 98
keeping track of things 98
non-static methods 97

instantiation, interfaces 260

int 63

integers, using in code 137

IntelliSense window 577, 595
CreateGraphics() method 606

interface keyword 255

interfaces 254–276
colon operator 256
compiler errors 254
containing statements 270
downcasting 269
easy way to implement 270
example code 258
fields 255

finding out if class implements specific interface 262
get accessor without a set accssor 259
implementing 257–258
inheriting from other interfaces 263
is keyword 262, 265
like contracts 270
naming 254
new keyword 260
object references versus interface references 276
properties 255
public 255
public void method 259
references 260–261

why use 276
upcasting 269
void method 258
why use 270, 276

internal access modifier 273

int type 124, 126, 127
assigning value 137
declaring 137

invalid arguments error 131

IOException 460

is keyword 262, 265

J
join clause 671, 672, 677, 678

L
labels 75

lining up 34

labels for objects (see reference variables)

labs
#1 A Day at the Races

application architecture 168
Bet class 167
Bet object 169
Betting Parlor groupbox 171
dogs array 168

you are here 4    729

the index

finished executable 172
Greyhound class 166
Greyhound object initializer 166
GUI 170
Guy class 167
Guy object 169
guys array 168
PictureBox control 166, 168, 170
RadioButton controls 168
this keyword 167

#2 The Quest 363–384
Bat subclass 377
BluePotion class 380
Bow subclass 379
Enemy class 376
Enemy subclasses 377
form, bringing it all together 381–383
form, building 366–367
form, UpdateCharacters() method 382
Game class 370–371
Ghost subclass 377
Ghoul subclass 377
IPotion interface 380
Mace subclass 379
Mover class 372–373
Mover class source code 373
Player class 374
Player class Attack() method 375
Player class Move() method 375
RedPotion class 380
Sword subclass 379
using objects 368–369
Weapon class 378

#3 Invaders 681–702
additions 701
animation timer 687
architecture 684–685
designing the form 686–690
Form object 684
Game class 692
Game class, filling out 694
Game class methods 693
Game object 684–685
Game object’s Draw() method 691
gameOver event 689
game timer 689, 690

graphics 691
Invader class 696
Invader class methods 697
KeyDown and KeyUp events 688
LINQ 695
movements 683
Paint event handler 691
PlayerShip class 698
PlayerShip object 685
Shot objects 699
Stars class 700
Stars object 685
types of invaders 683

line break 15, 66

LINQ (Langauge INtegrated Query) 556–558
101 LINQ Samples 663
combining results into groups 667, 668
connecting to SQL database 674–675
databases 673
extension methods 657
from clause 664, 667
Invaders lab 695
modifying items 662
.NET collections 657
orderby clause 664, 667
performing calculations on collections 662
pulling data from multiple sources 656
queries 658, 663
querying SQL database 677
query statements 664
scouring comic collections 659
select clause 664
Take statement 664
to XML 704–705

reading RSS feed 705
using join to combine two collections into one query

671, 672
versus SQL 661
where clause 664

LINQPad 679

lists 317–334
Bullet Points 322
CompareTo() method 329

730    index

the index

lists (continued)
converting from stacks or queues 358
creating new 325
dynamically shrinking and growing 321
foreach loop 321
IComparable interface 329
IComparer interface 330

complex comparisons 332
creating instance 331
multiple classes 331

Sort() method 328
sorting 328–329
storing types 322
things you can do with 318
versus arrays 318–320, 325
versus enums 325

literals 125

Location property 582

logical operators 68

long type 124, 126

loops 65, 69
infinite 71
nested 77

lowercasing 201

M
Main() method 54, 55

masking fields 198

Math class 66

Maximize and Minimize buttons 35

MaximizeBox property 35

members (class) 273

memory 100

MemoryStreams 387

message about adding components to my class 579

MessageBox 56

methods 15, 52, 53
abstract 278, 281
adding for form 113

calling specific 221
curly braces 66
declaration 54
defining 66
entry point 54, 55
extension (see extension methods)
extracting 706
implementing interfaces 257–258
Main() 54, 55
naming 102–103
objects 92
overloaded (see overloaded methods)
overriding 218, 226
parameter has same name as a field 198
private 187–188
public 191

accessing private fields 188
capitalization 201

return values 88
set and get accessors 199
Show() 56
static (see static methods)
variables matching types of parameters 131
versus fields 98
with no return value 197

MinimizeBox property 35

multiple inheritance 286

N
Name property 51

namespaces 46, 52, 55
multiple classes in same 61
reserved 73

Navigation project 86–98

nested loops 77

.NET collections, LINQ 657

.NET Database Objects 6

.NET Framework 46
colors 76
Random class 150–151

you are here 4    731

the index

tools 52
what you can do with 714

.NET Visual Objects 6, 17

NetworkStreams 387

new keyword 91
interfaces 260

No Dumb Questions
@ in front of filenames 401
\n 15, 401
\t 401
Beehive Simulator project

BeeControl 579
for loops 537
Go() methods 533
Hive class exceptions 539
NectarHarvested variable 523
number of bees 533
Point object 539
read-only automatic properties 523
removing dead flowers and retired bees 537
Show() method 587

BirthdayParty class 207
boxed objects and structs 644
byte order mark 434
capitalization 201
catch block 457

with no specified exceptions 462
chaining 491
changing names of files generated by IDE 11
changing types 154
class diagrams, moving up, not down 231
classes 73

versus structs 644
Close() method 434
closing streams 401
columns 20
constructors 198, 199
controls, altering reexisting 587
converting strings to byte array 401
creating new Lists 325
curly brackets 58
customized dialog boxes 401
data types 20

debugger 457
Watch window 457

easy way to implement interfaces 270
encapsulation 188, 276
entry point 58, 231
error handling 462
Error List 58
errors, You must rebuild your project for the changes

to show up in any open designers. 579
EventHandler 491
event handlers 188

adding 491
returning something other than void 491
types of 491

events versus callbacks 510
Exception object 445
exceptions versus unhandled exceptions 462
extension methods 647
fields with no access 188
File class versus FileInfo class 434
FileStreams versus StreamReader

and StreamWriter 434
finalizers

exceptions 635
using fields and methods 635

forms as objects 153
frames versus turns 549
from clause 664
FromImage() 606
garbage collection 153, 635
generic collections 325
generic data types 325
get accessor 199
graphics, using keyword 606
Graphics object 606
guys (Two Guys project) 114
IDE

auto-generated code 73
where data is stored 29

IDE toolbar
green arrow 16
Reset Window Layout command 11
Stop Debugging button 16

732    index

the index

No Dumb Questions (continued)
IDisposable interface 473
instances, non-static methods 97
interface references, why use 276
interfaces

containing statements 270
like contracts 270
why use 276

join clause 677
knowing where to put breakpoints 452
line break 15
LINQ 663
LINQ querying SQL database 677
Lists versus arrays 325
Lists versus enums 325
message about adding components to my class 579
method 15
namespaces, reserved 73
new projects, Visual Studio 2008 11
null keyword 153
object references versus interface references 276
OpenFileDialog, changing properties 579
overloaded constructors 313
partial classes 73
patterns, callbacks 510
Point 644
private data 188
program stopping with exceptions 462
programs without Form1 form 231
properties

statements 199
versus fields 276

protected versus private or public 276
record data 29
reference variables, how they work 154
resizing images 606
select clause 664
select new clause 677
set accessor 199
setting structs equal to another 644
specifying particular kinds of exceptions 462
spotting exceptions 445
stack 644

static and non-static methods 97
static methods, when to use 97
StreamReader 401
StreamWriter 401
subclasses

and base classes 222
passing instance of 231

this variable 154
try/finally block 473
try block 457
unhandled exceptions 452
unhandled exception window 452
Unicode 434
unique IDs 20
unwanted code from IDE 11
upcasting, but not downcasting 270
UserControl 606
using methods that do match others defined

by EventHandler 491
using statement 473
using this keyword to raise event 491
virtual methods 231
Visual Studio Express 11
Watch window, running methods in 452
why there are so many exceptions 445
why use interfaces 270

null keyword 153

NullReferenceException 443

NumericUpDown control 89

O
object initializers 115, 196, 197

object oriented programming (OOP) 288

object references, versus interface references 276

Object Relational Designer window 675

objects 91
accessing fields inside object 185
accidently misusing 184
assigning value 137
as variables 137

you are here 4    733

the index

boxed 642
building from classes 92
declaring 137
encapsulation (see encapsulation)
event arguments 488
finalizers (see finalizers)
garbage collection 140
instances (see instances)
knowing when to respond 484
null keyword 153
reading entire with serialization 420
references 261
reference variables (see reference variables)
setting equal to value type 642
states 418
talking to other objects 152
versus structs 639

object type 125

Objectville Paper Co. logo 13

OOP (object oriented programming) 288

OpenFileDialog 579
changing properties 579
initialFolder property 403

OpenFileDialog control 398, 403

OpenRead() method 400

OpenWrite() method 400

operators 64
compound 136

orderby clause 664, 667

OR operator 68, 410

Oven class 266

OverFlowException 448

overloaded constructors 313
excuse management program 408

overloaded methods 343

override keyword 226

overriding methods 218

P
PaintEventArgs 605

Paint event handler 602

parameters 53, 88, 89
capitalization 201
same name as a field 198

partial classes 45, 50, 53, 59–61, 73, 78

PascalCase 201

patterns
callbacks 508, 510

Pen object 606

PerformanceCounter 709

performance issues
Beehive Simulator project 589–591
images 590

PictureBox control 12
adding to form 50
double-clicking 15
labs, #1 A Day at the Races 166, 168, 170
transparent background 589
Zoom mode 13

PictureBox control 217

Point 581, 644

polymorphism 289
as principle of OOP 288

popping up dialog boxes 397

primary key 20–24, 27

Primary Key button 20

PrintDocument object 614–615

printing
Beehive Simulator project 616–619
Graphics object and event handler 614

PrintPage event handler 615

private access modifier 258, 273

734    index

the index

private fields 185–188
constructors 197
declaring 201

private methods 187–188

Problem Up Close, recalculating new
individual costs 183

Program.cs 8, 54

programs (see applications)

properties 98
automatic 195
encapsulation 193
initializing public properties 196
interfaces 255
public, capitalization 201
read-only 195, 196
statements 199
versus fields 276

Properties window 35, 44

protected access modifier 273

protected keyword 275

public access modifier 273

public fields 191
initializing 196

public methods 191
accessing private fields 188
capitalization 201

public properties
capitalization 201
initializing 196

public void method 259

publish/ folder 38

Publish Contacts 37

Publish Wizard 37

Q
queries 19

anatomy of 660
editing with LINQPad 679

LINQ 658, 663
using join to combine two collections into one

query 671
queues 355

converting to lists 358
enqueuing and dequeuing 356
foreach loop 358

R
Racetrack Simulator (see labs, #1 A Day at the Races)

Random class 150–151

randomizing results 150–151

read-only properties 195, 196

record data 29

refactoring 706–707

references
interfaces 260–261
objects 261
versus values 638

reference variables 138–140, 500
garbage collection 140
how they work 154
multiple 139
multiple references and their side effects 142
multiple references and unintentional changes 147
objects talking to other objects 152

Refresh() method 605

RemoveAllControls() method 583

render, defined 568

Renderer class 568–569, 583–585
animating bees on form 580–581
dictionaries 580
ResizeImage method 591

reserved words 154

Reset Window Layout command 11

Resource Designer 582

resource files 14

result += 64

you are here 4    735

the index

result = 64

return statements 88

return type 88

return values 53, 88

risky code 456–473

RoboBee class 264

robust, defined 454

RSS feed, LINQ to XML 705

S
SaveFileDialog control 399, 403

Title property 403

Save icon 15

sbyte type 124

scope 274

sealed access modifier 273

select new clause 671, 672, 675–679

select statement 664

semicolons 66

serialization 416–425
making classes serializable 421
making object serialize in Dispose() method 633
object states 418
reading and writing serialized files 429
reading entire object 420
serializing and deserializing deck of cards 422–423
serializing objects out to file 424
what happens to objects 417, 419

SerializationException 453, 460
BinaryFormatter 454

Server Explorer 18

Service-Based Database 18

set accessor 193, 199
interfaces with get accessor without set accssor 259

Setup executable 37

short type 124, 126, 127

Show() method 56

ShowDialog() method 397, 399

similar behaviors 214

similar code 214

Size property 51

slashes (//) 66

Sloppy Joe’s Random Menu Item project 150–151

solution (.sln) file 46

Solution Explorer 18, 46, 48

Sort() method 328

SortBy field 332

source code files 46

Spy project 186–188

SQL (Structured Query Language) 19
connecting LINQ to SQL database 674–675
LINQ querying SQL database 677
versus LINQ 661

SQL databases 18, 19

SQL Server Express
database 7
file 29

stack 355, 644
converting to lists 358
foreach loop 358
popping items off 357
versus heap 641

Starbuzz Coffee project 654–656
join clause 678–679

Start Debugging 47

statements 19, 53, 73

static keyword 97
creating instances 99

static methods 97
when to use 97

static void Main() 55

Step out button 449

736    index

the index

Step over button 449

Stop Debugging button 16

stored procedures 19

Stream object 386

StreamReader 393, 401
hex dump 433
versus FileStreams 434

streams 386
chaining 394
closing 401
different types 387
Dispose() method 406
forgetting to close 388
serializing objects 423
things you can do with 387
using file streams to build hex dumper 432
using statements 406
writing text to files 389

StreamWriter 389–393, 401
[0] and [1] 401
hex dump 433
versus FileStreams 434
Write() and WriteLine() methods 389

String.IsNullOrEmpty() 240

string literals 389, 401

strings 63
converting to byte array 401
extension methods 648
formatting 179
storing categories of data 310

string type 124, 126
concatenation 130
converting 130

structs 637
boxed 642, 645
Point 644
setting one equal to another 640, 644
versus classes 644
versus objects 639

Structured Query Language (see SQL)

subclasses 214, 221
accessing base class with base keyword 232
constructors 233
inheriting from base class 222
modifying 225–226
overriding methods 226
passing instance of 231
upcasting 267
using instead of base classes 227

subscription
how it works 486–487
public events 505
subscribing classes 489

switch statements 413–415
building new constructors with 415

syntax 66

System.Drawing 594

System.Windows.Forms 46, 89, 111

System.Windows.Forms.Control 576

System namespace, Math class 66

T
TabControl 207

Table grid 28

tables
adding columns 20
adding to database 20
finish building 25
multiple 26
saving 25
versus collections 661

Take statement 664

testing installation 39

Textbox control 89

Text property 51
changing 34

The Problem Up Close, recalculating new
individual costs 183

you are here 4    737

the index

this keyword 201, 274
labs, #1 A Day at the Races 167
using to raise event 491

this variable 154

Timer 579

timer 575, 583
disposing 577

timers 546, 548
events and delegates 547

Title property 399

Toolbox components 708–709
BackgroundWorker 708
FileSystemWatcher 709
PerformanceCounter 709

Toolbox controls, easier way to build 578

ToString() method 130, 179

TrackBars to zoom an image in and out 603–604

try/finally block 473

try blocks 455, 457
following in debugger 458–459

turns versus frames 549

types
object 125
(see also value types)

U
uint type 124

ulong type 124

unexpected input 456

unhandled exceptions 452
versus exceptions 462

Unicode 424, 434
converting text to 425

unique IDs 20

unwanted code from IDE 11

upcasting 267, 269
but not downcasting 270

Up Close, access modifiers 274–275

uppercasing 201

user’s needs 5

UserControl 578, 606

user interface 3
developing 12

ushort type 124

using keyword, graphics 606

using lines 52

using statements 406, 473
Dispose() 630
exception handling 471

V
values versus references 638

value types 124, 154
bool (see bool type)
byte (see byte type)
casting 128–130
changing 154
char (see char type)
decimal (see decimal type)
double (see double type)
float (see float type)
int (see int type)
long (see long type)
sbyte 124
short (see short type)
string (see string type)
uint 124
ulong 124
ushort 124
variables matching types of parameters 131

variables 62, 73, 126
adding to form 112
assigning 128
assigning values 63
declaring 66
matching types of parameters 131

738    index

the index

variables (continued)
naming 136
reference (see reference variables)
value types (see types)

var keyword 658

vertical bars 410

virtual keyword 226

virtual machines 47, 153

virtual methods 231

visual components 576

visual display elements 570

Visual Studio, what you get with C# and 2

Visual Studio 2008, new projects 11

Visual Studio 2008 Express 11
downloading xxxvi
setting up xxxvi

Visual Studio Integrated Development Environment (see
IDE)

void method
interfaces 258
public 259

void return type 88, 103, 113

W
Watch it!

= operator versus == operator 67
automatic properties 195
destructors and finalizers 628
event handlers, hooking up 498
exceptions in constructors 459
LINQ 658
LINQ queries 663
method’s parameter has same name as a field 198
object initializers 115

raising events with no handlers 490
SerializationException 454
Server Explorer versus Database Explorer 18
things looking different in your IDE 8
writing to files 429

where clause 664

while loops 65, 69, 73

white space 66

Windows calculator 125

Windows Forms Application project 44, 66

Windows installer 7

Windows Presentation Framework (WPF) 712–713

Write() method 401

WriteLine() method 401

X
XAML (Extensible Application Markup Language) 713

XML, LINQ to XML 704–705
reading RSS feed 705

Y
yesNo = 64

Z
zooming, TrackBars to zoom an image in and out

603–604

Zoo Simulator project 216–222
class hierarchy 220
extending base class 221
inheriting from base class 221
overriding methods 218

	Head First C#
	Table of Contents
	Intro
	1 Get productive with C#: Visual Applications, in 10 minutes or less
	2 It’s All Just Code: Under the hood
	3 Objects Get Oriented: Making code make sense
	4 Types and References: It’s 10:00. Do you know where your data is?
	5 Encapsulation: Keep your privates… private
	6 Inheritance: Your object’s family tree
	7 Interfaces and abstract classes: Making classes keep their promises
	8 enums and collections: Storing lots of data
	9 Reading and writing files: Save the byte array, save the world
	10 Exception handling: Putting Out Fires Gets Old
	11 events and delegates: What Your Code Does When You’re Not Looking
	12 Review and preview: Knowledge, Power, and Building Cool Stuff
	13 Controls and graphics: Make it pretty
	14 Captain Amazing: The Death of the Object
	15 LINQ: Get control of your data

