THE EXPERT’S VOICE® IN .NET

Pro
ASP.NET 4
in G# 2010

FOURTH EDITION

Matthew MacDonald, Adam Freeman,
and Mario Szpuszta

Apress’

Pro ASP.NET 4 in C# 2010

Fourth Edition

Matthew MacDonald, Adam Freeman,
and Mario Szpuszta

Apress-

Pro ASP.NET in C# 2010, Fourth Edition
Copyright © 2010 by Matthew MacDonald, Adam Freeman, and Mario Szpuszta

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright the publisher.

ISBN-13 (pbk): 978-1-4302-2529-4
ISBN-13 (electronic): 978-1-4302-2530-0
Printed and bound in the United States of America987654321

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Ewan Buckingham

Technical Reviewers: Fabio Claudio Ferracchiati and Todd Meister

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Anne Collett

Copy Editors: Ralph Moore, Katie Stence, Kim Wimpsett

Compositor: Mary Sudul

Indexer: Kevin Broccoli

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

Contents at a Glance

Contents.......ccuvvmrismmmssmnm s s ——————————————————_——_——_—_—— v
About the AUROKccccciemimimnmsssnnssssss s s nn s annn s annnnnns XXXii
About the Technical REVIEWETccussmsssssmsmsssnsssssnsssssanssssansssssnsssssnsssssnsssssnnsnss XXXiii
INtroduction..........cccinimmnimnnnens s ————————— XXXiv
Part 1: Core CONCepPtS.......cccumvemmmsmsmssssmsmsmssmsmssssmssssssssnssssnssssssssnsns snsmsnsnssnmssnnnsnnnsnnns 1
Chapter 1: Introducing ASP.NET.......cccounmmmmmmmmmmmmmssssssssssnmmmssssssssssssssssssssssssssnnnnns 3
Chapter 2: Visual Studio........csvcesmvsmmsmsmmsssmsssmsssmmssssssssnssssss s sssss s ssssssnsmssnsnss 21
Chapter 3: Web FOrmsS.........cccvvmmismmsssmmsssmsssmssssmssssssssnssssnsssssssssssssnsssnssssnsassnsnss 77
Chapter 4: Server Controls.........cccouusemmmmssmsmssnsmsssssssssssssssnsssssnsssssnsssssnsssssnssnssns 129
Chapter 5: ASP.NET Applicationscccuussssmmmmmmmmmmmsssssssssssssssssssssssssssssnsssssssssnns 183
Chapter 6: State Managementcccinnnmmmmmmmnsssnmmmssssnmmmsssssnmssssssnesssnn 235
Part 2: Data ACCESScvverrrmsssssmmsssmsssmssssmssssssssssnssnssssssnsssnssssmsssnnsnsns snsnssnnnsnnnsnnss 275
Chapter 7: ADO.NET Fundamentalscccusmmmmssmsmsssnsmsssssssssnsssssssssssnsssssnssnsns 277
Chapter 8: Data Components and the DataSet...........ccccccimmnnsemnmmnssssnnnmnssssnnn 321
Chapter 9: Data Bindingoccceemmmmmmrmmsssssssssssmmsmssssssssssssssssssesssssssssssssnsssssssssnns 353
Chapter 10: Rich Data Controls..........c.cuscemmssmsmmssnsmsssnsssssnsssssnsssssssssssnsssssnssnsnns 403
Chapter 11: Caching and Asynchronous Pagesccouseemmmmsssssnsmsssssssssssssnnsnns 477
Chapter 12: Files and Streams..........ccousmmmssmsmssssmsssssssssssssssssssssssssssssssssnssnssns 527
Chapter 13: LINQcccuusmmmmsnmmmmssnsmsssssmsssssmsssssssssssssssnsssssnsssssnsssssnnssssnnssssnnsnnsns 563
Chapter 14: XML........ccouscmmmmssmmmmssssmmssssmsssssmsssssssssssssssssssssnsssssasssssnnssssnnssssnnsnnsns 617

Part 3: Building ASP.NET WehSItes........ccouusummmmsanmmmssnsmsssnsssssnsssssnsssssnsssssnsssssnnsnssns 679

Chapter 15: User Controls..........cccsmsesmssssmsssmmsssmssssmssssmssssssssnssssnssssssssnssssnsnsnnas 681
Chapter 16: Themes and Master Pagesccciumummmmmmsssnnnmmssssssssssssssssssssssnnnnns 703
Chapter 17: Website Navigation.........cccosremmmmmmnmnnmnnnsssssssmmmmmsmssssssssssssessnnns 735
Chapter 18: Website Deployment..........ccccuscmmmmmnsmmmmmmmsssnmmmssssmsssssssssmssssssns 791
Part 4: SECUNItY.......ccouusmmmmssmmmsssnnssssnnsssssnsssssnsssssnsssssnssssansnsssnssssansssssnnsnssnnsnssnnnnnsns 833
Chapter 19: The ASP.NET Security Modelcccoinnmmmmmmmmmmnnmsssssssssssnsssmsssnnes 835
Chapter 20: Forms Authentication...........cccuccmmnsmmmmsesmmssesmssssmsssssssssssssssnnes 851
Chapter 21: Membership......oceeeeemmmmmmmmmsssssssmmmmmsmsssssssssssemssssssssssnssensnnn 877
Chapter 22: Windows Authentication............cccousmmnnmmmmssesmmssnsssssssmssssssssssssnnnes 933
Chapter 23: Authorization and RoOIESccccsmssemmssmsmsssssssssssssssssssssssssssnsssssns 963
Chapter 24: Profilesccousmmmmsmsmssssmsssssmsssssssssssssssssssssssssssasssssnssssssssnssnssnnsns 995
Chapter 25: Cryptography.....ccccccmmusssssnmmssssssnmssssssssssssssnsnssssssnnsssssssnsnsssssnnnnss 1029
Chapter 26: Custom Membership Providerscccovusummmmmssssnssmmssssssnssssssssns 1061
Part 5: Advanced User Interface...........cccuummimmmssmmsssmsssmssssmsssmssssmssssssssnssssnsnsnnes 1099
Chapter 27: Custom Server Controls...........covemmvssmmssmssssmssssmssssssssssssnsssssansas 1101
Chapter 28: Graphics, GDI+, and Chartingc.cccemmmmsmsnmmssssnssmssssssssesssssnsns 1135
Chapter 29: JavaScript and Ajax TeChniqUesccccuusssmsnmsssssnssssssssssnsssssnnnnss 1179
Chapter 30: ASP.NET AJAX.....ccccusummsnmssansssansssnsssansssassssnsssansssnssssnsssansssnsssnness 1239
Chapter 31: Portals with Web Part Pages.........cccunmmmmmmmmmmmmmmmsssssssssnsnsssssssnnns 1303
Chapter 32: MVCccccccemmmssmsmmssnsmsssssmsssnsssssnsssssnsssssnsssssnssnssnnssssnnsnssnnssssnnnnns 1363
Chapter 33: Dynamic Datacccovumsmmmmmmmsssnnnmmssssssnmsssssssnssssssssssssssnssnsssssnnnnns 1397
Chapter 34: Silverlightccccemmiiiiinnnns - 1437

Contents

Contents at @ GIANCE...........ccvvcermismmssmis s ——————— il
About the AUROFcccciieminimnmsinnsssssssss s s nn s nn s nnnnnnnns XXXii
About the Technical REVIEWETccussmsssssmsmsssnsssssssssssanssssansssssnsssssnsssssnsssssnnsnss XXXiii
INtroduction..........cccinimmnimnnnens s ————————— XXXiv
Part 1: Core CONCepPtS........ccmvmmmmmmmsssmmsmsmssssmsssssssssssssnsnssnssssssssnsms snsmsnsnssnsmssnnnsnnnnnnss 1
Chapter 1: Introducing ASP.NET..........ccccccmmmsmmmmssmmmmssssmmmssssmsssssmsssssssssssssssnssnssnnss 3
The Seven Pillars of ASP.NET ... 3
#1: ASP.NET Is Integrated with the .NET Framework ... 3

#2: ASP.NET Is Compiled, Not Interpreted..........cocvrverernienninni e sss s 4

#3: ASP.NET IS MUIIIANGUAGEceeerereeeerereecerisee s se s ss s sn s e 6

#4: ASP.NET Is Hosted by the Common Language RUntime............coooeinnnencnenseseseseseesesesne s 8

#5: ASP.NET IS ODJECE-0riENteU.......ccvueecrcrciiiiieeeesss s 9

#6: ASP.NET SUPPOIS @ll BIOWSEIS.....ccccereierreririerese s e sss s e s e s e s e sssssssessssessssessssssnssanaes 11

#7: ASP.NET Is Easy to Deploy and CONFIQUIEcccoueecrererencrininecsese e e se s 11

The Evolution 0f ASP.NET ... 12
L] o e U o i OO SR 12
ASP.NET 2.0t ie e ses s se s s s s e e b s d e g e A e e e R e e R A et Re e R e e R e e e ae R as 12
L] o 1 I T8 OO RR 13
] o 1 I OSSR 16
ST o 1 P 18

n
o
3
3
QO
3
= |

CONTENTS

Chapter 2: Visual Studio.........svcessvsmmsmsmmsssmsssmsssmmssssssssnsss s s s s ssssssnsmssnsnss 21
Introducing Visual Studio..........cccvricnrin s ————— 21
Websites and Web Projects ... 22
Creating @ ProjectleSs WEDSILE........c..ccceererecre s 23
DeSigNINg @ WED PAQE.......coouieerereceeeiecc et se s e e se s e e n e 28
The Visual STUdio IDE............ooinenr s 35
R 0] 0T T] 1] 37
DOCUMENT WINAOWoviiiiiiir e 38
L0100 38
Error List @nd Task LiSt.........covriemnnninsss s s 39
SBIVEE EXPIOTEN ... 41
The Code EdItorccceiirmmniniinsis s 42
Adding ASSEMDBIY REfEIENCEScovruiuecrereeee e se s se s e s sn s esnnnns 43
IntelliSense and OULINING........coonn e 46
Visual Studio 2010 IMProVeMENTS ..o 50
The Code MOEL..........cccoiirmiiirr s 56
How Code-Behind Files Are Connected t0 Pages ... 59
How Control Tags Are Connected 10 Page Variablescccoereenerenencne s 60
How Events Are Connected to Event HaNdIErs ... 61
WED ProjECES.....ccucireriiriieirs s 63
Creating @ WeDh PrOJECT ...ttt 64
Migrating a Website from a Previous Version of Visual Studio............cccorreienennnescnennneseneseeseseseene 66
Visual Studio Debugging.......c.ccccvvririrsmrserssses s 68
SiNgGle-SteP DEDUGGING......ceu et n e 69
Variable WatChes ..o 72
Advanced BreaKpoiNtS..........covermrisinininississ s 74
The Web Development HEIPer ... 74
SUMMANY ... re s e s e e saesaessesse s e s e s s e s s e saensesaesaeeaeesenrenreseenaesnenassnnnnensnnnnnnans 76
Chapter 3: Web FOrmsS.........cccvsmmismmsssmmsssmsssmssssmssssssssnsssssssssssssnssssnsssssnssnsassnsnss 77
Page PrOCESSINGccceierereressessesses s s s e e e s e e e s sr e e nn s sn e sn e nn s nnennsnnnnnnnans 78
1 o 1 78

CONTENTS

Dynamic USer INTEIfACEccvvvviriiii e 80
The ASP.NET EVENE IMOTEI ...t e e sp e n e 81
Automatic POSTDACKSccvviireiiriiris 82
L L TP 84
XHTIML COMPIIANCE......cueitierreereresierese st se s ses st s et s s s e s re e s b s b et e R e e Re s e s s sae e s Reae e e e nenrnis 88
Client-Side CONTIOL IDS ..o e e e s e se s e s e nn s 94
Web Forms Processing Stages.........cccvvrrrnnnersinsessessesssssss s s s s s s s e s s ssssnssnnnes 97
Page Framework Initialization ... 98
User Code INtIaliZation..........cooeinin e 99
ValidAION.......coce e —————— 99
EVent HANAING. ..o 100
Automatic Data Binding ... 100
01 101
A Page FIOW EXAMPIEceerriiiiniiriiitsis s 101
The Page As @ Control CoNtainer ... 104
Showing the CONErOl TIEEcccciecccriiiiiii s 104
The Page HEader ... s 109
Dynamic Control Creation ... 110
The Page Class ... 112
Session, Application, aNd CACKEcccceeverierierrirrerrer st see e s aenaenaenne s 112
REOUEST ...ttt 113
RESPONSE ...ttt 114
£ =] 1 N 118
LT N 121
LI L 121
Accessing the HTTP Context in ANOther Class...........ccueniiiiiissssssessssssesssesssesesens 127
O T1 1 1 128

Chapter 4: Server Controls........cccccvcmnsssssmsmmmmnmsmmssssssssssssssssssssssssssssssessssssssssss 129

Types 0f Server CONtrolS.........ccvcvcereersersirsesses s sn e sn e 129
The Server Control HIErarchy ... 130
HTML Server CONtrolSccceieinemsinsmsesnssisssse s s sasssnens 132
The HIMICONTIOI CIaSSccvvierereririiiissssssssssssss s 133

vii

viii

CONTENTS

The HtMICONtaINErCONTrOl CIASScoueceerereeee et se e s 133
The HIMIINPUICONTIOL ClASScueeeerercerieieeese e sa e sn s et 134
The HTML Server Control CIASSES ... sssssasssasasaes 134
Setting Style Attributes and Other Properties..........c.covvvnnnnnnnnnnns s 136
Programmatically Creating Server CONtrolSccovvreniienniennncneses s s sss s sessessssenes 137
Handling Server-Side EVENTS..........c.covrnnnnn s 139
WED CONEIOIS ...t s 142
The WebControl BaSe ClaSS.......c.cuurereremsrmnsmsnsssssssssssssssssssss s ss s 143
Basic Web CONtrol CIAaSSES ... 145
] 3 147
ENUMETALIONSoveii e 147
07010 148
FONTS...ctiect s ——————————— 148
FOCUS ..ottt e 150
The Default BULON..........ociiiss s 151
SCrOllADIE PANCIS.......cciiiiiiiiiii s 152
Handling Web Control EVENES ... s 153
The LiSt CONTIOIS.......cccereicirinee s 156
The Selectable List CONTrOIScocvverernnniniis s 157
The BulletedLiSt CONtIOl ... 161
Input Validation CONtrols............ccvinnnnnns s 162
The Validation CONTrOIS.........ci i 163
The Validation ProCESSuverririmsisssisssssssssssssss s 164
The BaseValidator CIass ... 165
The RequiredFieldValidator CONtrol ... 167
The RangeValidator CONTrol.........c.cuverrennnssssssss s 167
The CompareValidator CONtrol...........cocvvrri s 168
The RegularExpressionValidator CONtrol ... 168
The CustomValidator CONTIOL ... s 171
The ValidationSummary Control ... 172
Using the Validators ProgrammatiCallyc.cocoeecerrieicnnncrrreeressec s 174
Validation GrOUPS........ceveieieirisrsisssssssss e 175

CONTENTS

RICh CONEIOIS.....c.e e 177
The AdROLALOr CONTIOLcoceeeeece e sa e e s n et e 178
The Calendar CONTIOL..........cccoreeeeeereeeee e e e e se s e e s e ne et nes 180

SUMMANY ..o sae e e e s e s s e ae s a e sa e s s e s e s e a e naenn e sr e s e s e nr e s e nnenannnnnrnnnnnnnnns 182

Chapter 5: ASP.NET Applicationscccccoumsmmmmssmsmsssnsmsssssssssssssssssssssssssssnssnnns 183

Anatomy of an ASP.NET Application.........cccverercrcrsscsser s ses e 183
The Application DOMAIN.........ccciieieeirierirsere e e b e s e b e p e e e 184
APPICAION LIfEIME......cecceececeeee ettt 185
APPICAION UPAALES......oeiecceeercce et n et s 186
Application DireCtory STIUCIUIEco.oeieeieeeee e 186

The global.asax Application Filec.ccocvervrcrcsces s 187
APPICALION EVENTS ..ottt s se s e e e ne et s 189
Demonstrating Application EVENS..........cocoiiiincnnsense e 191

ASP.NET Configuration ..o s 192
The machine.config File ... 193
The WeD.CONFIG File ... s 195
KSYSTBIMLWEDS .t 199
<SYSTBM.WEDSEIVEISoierere et 200
<APPSEHINGSS .t e e e p e naea 201
<CONNECLIONSTINGS>....ccierereri e —————————————— 202
Reading and Writing Configuration Sections Programmatically.............cccovoeieiennnencnennncncneneccnenas 203
The Website Administration TOOI (WAT)ccoueuieecrereerereeeee e e 206
Extending the Configuration File STrUCIUrE...........ccoomrmieieeee s 207
Encrypting Configuration SECHONScccoriieinrrece e 211

B | 0 T 10 T 213
Creating @ COMPONENT ... e 214
Using a Component Through the App_Code DIr€CtOrYccovceererereienerereeseresesese s 215
Using @ Component Through the Bin Dir€Ctory ... 216

Extending the HTTP Pipeling.......ccocvcrcrcrcscrrrsrir s 219
I ol a0 219
Creating a Custom HTTP HANMIErcccviiiiisss s 221
Configuring @ Custom HTTP HANMIETcccomomieeeeeeccereee et 222

CONTENTS

Using Configuration-Free HTTP HaNIErSccococeeririeicnineeescrieeee e 223
Creating an Advanced HTTP HandIer ... 223
Creating an HTTP Handler for Non-HTML Content............couviinnsssnsesssssesesesesesesenens 226

Lo I S T 1T 229
Creating @ Custom HTTP MOTUIEccecereeererriciestnesis et se s s ss s se s sa s sre e nnne 231
1T 12 S SSS 234
Chapter 6: State Managementccommimmmee s ————— 235
ASP.NET State Management...........ccocvvnmnmmsmss s 236
VIEW SEALE.....cccriccricr i ————— 238
A View State EXAMPIE......cv i 239
Storing ODJEctS iN VIEW STaLeccceereeeeeeceeee e 241
ASSESSING VIEW SEALEceeereieiiieriri s 243
Selectively Disabling VIEW STALEccceeriecre e 244
VieW STate SECUILYovieieiriirrrr s 246
Transferring Information Between Pages........c.ccccvvrverrerinsssissessesses s ses e e sennas 247
LI 00T 4] (4o S 248
CroSS=Page POSTINGccceuceeereruecereresee e se e se s e se s se s e s e sesp e e sn e neenan 249
1010 {1 256
SESSION SEALE......ccreiriirr i —————————— 258
SESSION ArCHITECIUNE ... ————— 258
USING SESSION STALE......cccieieririreri i —————————— 259
Configuring SESSION STALEc.cocrereiei et se s e e se e ne s 261
Securing SESSION StAL ... —————— 268
Application State..........cccvcrcririnrrrr i ——————— 269
Static Application Variables...........covviirnninncrr e 271
SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 273
Part 2: Data ACCESScoummmmmimmmmmms s ————————— 275
Chapter 7: ADO.NET Fundamentalscccusmmmmssmsmsssnsmsssssssssnsssssssssssnsssssnssnsns 277
The ADO.NET ArchiteCUreccvverermiiinirisisi s 278

ADO.NET Data PrOVIAEISccvurereresrisssssssssssssssssssssssssssssssssssssss sttt 278

CONTENTS

Standardization in ADO.NET ...t se s se s se s sa s e sn s e 280
Fundamental ADO.NET CI@SSEScccouinnerinmnnsmsssisse s 281
The ConNection ClASS ... s 283
CONNECLION STFNGS ...coeieeeece et a e e s e e esp e e e enan 283
Testing @ CONNECLION ..o 286
ConNECtion POOKING........cuvviereriririnii e 287
The Command and DataReader Classes..........courermmnemmmssmnsssnessssssssssesssseesens 289
COMMANG BASICS.....cvvvirirriiiiriiniis s 290
The DataReader Class ... 291
The ExecuteReader() Method and the DataReadercovorenirinnncrnnssnesne s 292
The ExecuteScalar() MEtNOM..........coco it 298
The ExecuteNonQUEry() METNOM ...t e 298
01T (10 I T N 299
Using Parameterized COMMANGS ... 303
Calling STOred PrOCEUUIEScocierieiicrer ettt e st a e st b e e e s sr e e nnne 304
TranSACLIONSocereici et ———— 307
Transactions and ASP.NET ApPliCatioNS..........ccovverennennicnnes s se e sessessssessssessesesnas 307
1SOIAON LEVEIScvveriir e 312
21T L] 101 LN 314
Provider-Agnostic COde ... 315
Creating the FACTONY ..ot 316
Create ODJects With FACIONY ...t 317
A Query with Provider-AgnoStic COUEccorererereriercrereee e se s se s sene s 318
O T1 3 1 319

Chapter 8: Data Components and the DataSet...........cc.ccccnnmnnnemnmmmnssnnnnnnsssnnnnnn 321

Building a Data Access COmMPONENL...........ccocvcrercrrsser s 321
The Data PaCKage..........cucueeermicririicinc s s 323
THE StOred PrOCEAUIESocvurererererirsrsss s 324
The Data ULility ClassS.........cuurriiririssssssssssss s 325
Testing the Database COMPONENt..........cccviiiii 331

Disconnected Data...........ccccocvreinmnninn s ——— 333
Web Applications and the DataSet ... 334

[Bs.

CONTENTS

DI (=T L0 335
The DataSet ... —————————— 335
The DataAdapter ClIass ... 337

Filling @ DAtASELcciii 338

Working with Multiple Tables and Relationships...........cccconninn s 340

Searching for SPECIfiC ROWS ... 343

Using the DataSet in @ Data ACCESS ClaSS........c.currirererininin s 344

Data Bindingcccocciiiiiii 345
The DataVieW CIaSS ... s 345

Sorting With @ DAtaVIEW ... s 346

Filtering with @ DAtaView ... 348

Advanced Filtering with RelationShips ... 350

Calculated COIUMNS........ciuir e 350
SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 352

Chapter 9: Data Binding.........cccsmssmmsmsmssssmssssmsssmssssmssssmssssssssnssssnssssssssnsassnsnsnnns 353
Basic Data Binding.........c.cooverrinnninisnissssssss s 354

SiNGIE-VaIUE BINAINGccoueeerererccre e e sas e s e e sne e se s e nn et nes 354

Other TYPES Of EXPrESSIONSccceevereriereiirisie st st s st s e se e e sa s sae e st sesae e st s e snesnnns 356

Repeated-Value BindiNgc..cococererecrerneine e se s se s se s se s se s e e sns s snsnas 360
Data Source CONtrolS.........ccovieeremsinsisss s 368

The Page Life Cycle with Data Binding...........cccouvnnnniisssssssssssssssssssseeses 369
The SQIDAtASOUICEcceveerriiirisei s 370

SEIECHING RECOIUS......cucuiiciiiiiiisisi e 3

Parameterized COMMANGScoverereierenennnr e 374

L T0 0 = 0 £ 379

UPAAtiNg RECOIASc.civeeeeererece ettt se e esp e ne s 379

DEleting RECOIASovvviiirirriiiiiss e e 384

INSErtING RECOTUS ...cvvieeie it 384

Disadvantages of the SQIDAtaSOUICE ... 385
The 0bjectDataSOUrCe ... 386

SIECHING RECOIUS......cucuiciiiiiiiiii bbb 387

CONTENTS

UPdAting RECOITSccvererereieririniii e 392
Updating with @ Data ODJECL ..o 393
The Limits of the Data Source Controls ... 397
THE PrODIBM ..ottt e 398
Adding the EXIra [EMS ..o 399
Handling the Extra Options with the SqIDataSource ... e 399
Handling the Extra Options with the ObjectDataSourcec.oeeerreeeerncercrene e 400
SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 401
Chapter 10: Rich Data Controls..........c.cuscemmssmsmmssnsmsssnsssssnsssssnsssssssssssnsssssnssnsnns 403
THE GHAVIBW...c.ciucereicirisee e 404
Defining COIUMNS ... 404
Formatting the GridVIEW ... 408
FOrmatting FIeltS.........ccoceeeeeecee et e 409
3T 1L 410
Formatting-SpecifiCc ValUES ... 414
GridView ROW Selection...........ccvrvinirimnsnniss s s 416
Using Selection to Create a Master-Details FOrm...........ccov s 418
The SelectedIindexChanged EVENt ... 420
Using a Data Field As @ Select BULLON ... 421
Sorting the GHAVIEWcceiiniiiisii s 422
Sorting with the SQIDAtASOUICE ... ————— 422
Sorting with the ODjeCtDAIASOUICEccoerereee e 423
Sorting and SEIECHONcciiiici i ——————————— 425
AAVANCEU SOMING ... 425
Paging the GrdVIEW ... 427
AULOMALIC PAGINGcveerueererieeeesereeee e ses e e se s se s e e s e e s s e e s R s e s se e ensne et nes 427
Paging and SEIECHON..........cccoiieerereci e 429
Custom Pagination with the ObjectDataSourCe...........ccoerureeererece e 429
CuStOMIZING The PAGEK BAFcccoiruieerereeeire e se e e se s se e nn s 432
GridView TemPIates.........ccovrieniriisi s 433
Using MUltiple TEMPIAES ..o e e n e 435

CONTENTS

Editing Templates in Visual STUd0cccovvrrnnnnn s 436
Binding 10 @ MEtNOd ..o 437
Handling Events in @ TEMPIALE ... 439
Editing with @ TEMPIALE.......cciirir 440
Client IDS in TEMPIALESc.cceeeerereerer e e ne s 447
THE LISTVIBW ...ttt s 447
61 (0117 0T 451
o 1o T TSRS 453
The DetailsView and FOrMVIEW ... 454
THE DELAIISVIBW ... 454
THE FOMMVIBW ... e 457
AdVANCE GIOS....c.cruiueereree s 459
Summaries in the GrHAVIBW ... 459
A Parent/Child View in @ Single TabIE ... 461
Editing a Field USing @ LOOKUP TaDIE........cccouieeererecrerese e se s se s 464
Serving Images from @ DAtabasecooreeerieer s 466
Detecting Concurrency CONFICES ..o 472
SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 476
Chapter 11: Caching and Asynchronous Pagescousmmmmsmmmmismissmsmnans 477
Understanding ASP.NET Caching........ccccooeeerereneresesress s sss s sss e sss s s e s senns 477
011101102 T 11 T SRS 478
Declarative Output CaChING........cvevereierrin e 479
Caching and the QUErY STMNG........cccorrircrere e nn s 480
Caching with Specific Query String Parameters...........ccoereerrrerre e 481
Custom Caching CONTIOL.......c.vverirerereriners e 481
Caching with the HttpCachEPOlICY ClaSscccrrerererreienirireieserere e se s se e 483
Post-Cache Substitution and Fragment Caching...........ccooeeererecnenenecne e 484
CaCNE ProfileS......cuivieieiiii e 487
Cache CONTIGUIALIONc.ceeierece et nn s 487
Output Caching EXIENSIDIITY.......cccou et 488
(D7 L ez 0 T 11 o 493

Adding Items 10 the CACNEccviiiirr s 494

CONTENTS

A Simple CACNE TEST.....c.viiiiir s 496
L0 [0 T o 10 498
Caching with the Data Source CONtrols............cocuvrinnn 498
Cache DependenCies ..o s 502
File and Cache Iltem Dependencies ... 502
Aggregate DEPENUEBNCIESccoeeureceererereierire s se e se e e s e s ne e s ne s 503
The Item Removed CallDACK ..o 504
Understanding SQL Cache Notifications ... 507
How Cache Notifications WOrK ... 508
Enabling NotificationS.........cov v 508
Creating the Cache DEPENUENCYcccoererueiecrereeecre e e s se s e se s nenan 509
Custom Cache Dependenciesuvuerermesersmssrssesssssess s s s 510
A Basic Custom Cache DEpendency.........c.cuvrrririsinismnisisisessesesessssssssssssssss s 510
A Custom Cache Dependency Using Message QUEUESc.covrermresmsmsmsmsssssssssssssssssssssssssssssssssssnns 512
ASYNCNIONOUS PAJEScoveirerririerrirseeses e sessaesses s ssessaessssssessne s e ssaessessaessessasssnssnnsns 514
Creating an ASYNCRIONOUS PAJE.........ccourueerirerece e 515
Querying Data in an ASYNCRIrONOUS PAQE........cccoieererereiririee e se s e senas 517
HaNAIiNG EITOIS......ocvvieii s 519
Using Caching with ASYNCHrONOUS TASKSccceeeeaererencrerenesesissee e se s e eens 522
Multiple Asynchronous Tasks and TIMEOULS ... s 524
SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 926
Chapter 12: Files and Streams...........ccousmmmmsmsmsssssmssssssssssssssssssssssnsssssssssssnsnnss D27
Working with the File System..........ccocrcrcrcrcr e 527
The Directory and File CIaSSEScuvrrrrmmnsssssssssssssss s 528
The Directorylnfo and FileInfo CIASSES ... 530
THE DriveINfO CIASS.......cuvuierrieiririssssssssssssssssss s 533
Working With ALHDULES ... ————— 534
Filter Files With WildCards ... 536
Retrieving File Version INfOrmation ... 537
THE PN CIASSvivieieiiiisisssssissss e 538

LI 1L] 01T S 541

xvi

CONTENTS

Reading and Writing Files with Streams............ccvvnnn s 546
TEXEFIIBS v s 547
BiNAry FilES ... 549
UPIOAAING FlES ...t se s e e s se s e m e e nnan 550
Making Files Safe for Multiple USErS.........ccconssssssss s 552
COMPIESSION......evriririrsscsiere s 557

SeNAlIZALIONccvcce e ———————————— 558

SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 561

Chapter 13: LINQcccuvsmmsmsmmssmssssmsmssssssnssssnssssssssnsnssnsmssssssnsnssnsnsnsnnsnsnssnsnsnnas 963

IO 7T 563
Deferred EXECULION ..o s 565
HOW LINQ WOTKS ...t 566
LINQ EXPIESSIONS.....eivierererereserssssssssssssssssssssssssssssssss st 567
LINQ Expressions “Under the HOOd™ ... 575

LINQ t0 DAtaSet.........cccvriiniriirirsisi s s s s 578
TYPEU DAASELSecvrereiiriririni 581
NUITVAIUBS.....civcit ittt 581

LINQ t0 ENHItIESceiecrricci e s s 581
Generating the Data MOdEl...........coovrrniin 582
The Data MOUE! CIASSEScvererererersrsisssnssssssssssssss s 583
Entity RelationShips ... 586
Querying StOred PrOCEAUIES........ccveierrierr sttt e e sa s sttt p e ne e ne 587
LINQ to Entities Queries “Under the HOOU” ... 589

Database OPerations ... ——— 595
LT g 595
UPAALES ...t 598
DBIBLES. ...ttt ——————————— 598
ManAQing CONCUITEINCY.......ccoururueererureeresseesesesseesessssesesessesesssesaese e sesse e e sesae e e sssss s sessessssssesssassssan 598
Handling Concurrency CONFICESccocouieireiiecee e 599

The EntityDataSource CONtrol..........c.cuvnmmnimnmssssnssss s 604
DiSPIAYING DALA.......coe et R e 604

CONTENTS

Getting Related Data............ovveveneieieienini s 609
Editing DALA.......cocviririi 610
ValidAION.......cececccc 611
Using the QueryExtender Control............ocoeoeeecencce e 612
Using @ SearchEXPreSSion ... 613
USING @ RANGEEXPIESSIONcviueueererecsereseese e ese s se e se s e se s se s e se e ae e e s anns e nnnnas 614
USING @ PrOPErYEXPIESSION......ucueererccrereeeeressse e se s e e e e se s e se e e e s e ne e nnnnas 614
USing @ MEtNOAEXPIESSIONcocverererereririrers s 615
O T1 3 1 616
Chapter 14: XML.......ccccumismmsmsmmssmssssssssssssssss s s ssssssssssssmssssssnsnssnsmssssnsnsnssnsnsnnns 617
When Does Using XML Make SENSE? ... sssssssssssesens 617
An Introduction 10 XML ..o 618
The Advantages Of XML ... 619
L =] T LT o 620
DL T T 4 o 621
DI To]1TcT FT 622
Stream-Based XML ProCeSSINgccvuerermsmsernnmnsssess s s sssssssssssssssssnens 624
WIItING XIML FIlES.....ucuiuiiiiiciiic s 624
Reading XML FilEScviiiririiiiiiss s s 628
IN-Memory XML ProCeSSING.......ccucerrersersersessessessessssssssesssssessssssssssssssssssssssssssssssssssssnnes 631
The XmIDOCUMENL ...ttt e s 632
The XPathNAVIgatorcviinnis s 636
The XDOCUMENT ...ttt bbb s 638
Searching XML CONtentcccvrmnennnnmnsmsss s s s s s 643
Searching With XmIDOCUMENT ... 644
Searching XmIDocument with XPath...........ccovrninnin s 646
Searching XDocument With LINQ.........cccuiiiiiiissss s 649
Validating XML CONtent............ccovinmiinn s 651
A BASIC SCNBMA......cocuieiiirii s 651
Validating with XmIDOCUMENTcoriii s 652
Validating with XDOCUMENT ..o 654

xvii

xviii

CONTENTS

Transforming XML CONtent ... 654
A BasSiC StYIESNEET ... ——————————————————— 655
Using XSICOMPiledTranSform ... 656
Using the Xml Control ... 657
Transforming XML with LINQ t0 XML........ccoovmnmiiisssssssssssssssssss s sssssssssssssssssess 658

XML Data Bindingcccvverermmnmmnmsns s s 660
Nonhierarchical BiNdiNg ... 660
USING XPAH ... ——————————— 662
NESEEA GIIUS ..vvvvrrrrcre e 665
Hierarchical Binding with the TreeVIEW ... s 667
LTI I 669
Binding to XML Content from Other SOUICES..........cuvrrrirni s 671
Updating XML Through the XmIDataSource ... 672

XML and the ADO.NET DataSet ... 672
Converting the DataSet t0 XIML.........c.cocvrrrrmnmn s s 673
Accessing @ DataSet AS XIML........cccviirinnire s st s e sss s st s sse s s sas e snenis 675

SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 678

Part 3: Building ASP.NET WebSites........ccussmmsmsmssmmsssmmsssmssssmssssssssssssnssssssnsnsassnsass 679
Chapter 15: User Controls...........cccmssesmsssmsssmmsssmssssmssssnssssssssnssssnssssssssnsnssnsnsnnns 681

User CONtrol BaSiCScccocvermmnersnissssesssssss s s s s s e 681
Creating @ Simple USer CONtIOl ... 682
Converting @ Page t0 @ USEr CONIOL..........ccocourueeierereescreseee e e se e s 684

Adding Code to a User Control...........cccovrnimnmmnmnnins s 684
Handling EVENTS.......cciiii s 684
LT 0T o o (0] 0 T<] T 3 685
USING CUSTOM ODJECESeceieiecee et nn s 688
AAING EVENTS.....cocvieieiis e 690
Exposing the INNer WEb CONIO] ... 694

Dynamically Loading User CONtrolsc.cccvvreereersensessssesses s ses s sesses e e 695
Portal FrameWOrKS ..o 695

CONTENTS

Partial Page Caching.........cccceeeerereressessessesse e e ssesssssesssnnes 699
VAPYBYCONTIOLttt se s e e e s e e e s e e e e se e e ne et nes 699
Sharing Cached CONTIOIS ... s 701

SUMMANY ..o sae e e e s e s s e ae s a e sa e s s e s e s e a e naenn e sr e s e s e nr e s e nnenannnnnrnnnnnnnnns 702

Chapter 16: Themes and Master Pagescoummmmmmmmmmsmsmssssen. 703

Cascading Style SNEEtLSccceeerererere e sr e 703
Creating @ STYIESNEET ... s 703
Applying STYIESNEET RUIEScvieeeeeeeee et e 706

1] T 3 709
Theme Folders and SKINS ... 709
Applying @ SIMPIE TREMEcoiirercr e s b e e s r s 711
Handling Theme CONfliCTS.......cov i 712
Creating Multiple Skins for the Same CONtrol ... 713
Skins with Templates and IMAGES..........covrrnrnnnnn 714
USING CSS iN @ THBIME ..o e 717
Applying Themes Through a Configuration File...........c.ooeonriiennnnecre s 717
Applying Themes DYNAMICAIIY.........ccoeeeeeriecre e 718

Standardizing Website Layout ..o 720

Master Page BasiCs ... s 720
A Simple MASEEr PAJE ..o 721
A Simple CONENt PAJE ..o 723
Default CONENT ..o ——————————— 725
Master Pages with Tables and CSS LaYOULcccorieinrrnicrerirceressee e 726
Master Pages and Relative Paths...........ccovnnnnn s 729
Applying Master Pages Through a Configuration File.............cccorreinirniescnnnecne e 730

Advanced Master Pages ... 730
Interacting with the Master Page Class........c.couerermrerrernee e senas 730
Dynamically Setting @ Master PAge.........ccocoeerrerininescerree e 732
NESHNG MASTE PAYEScoereruecerireci e se e e se s senp e ne s 732

SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 734

xix

CONTENTS

Chapter 17: Website Navigation...........cccmvsmmsmsmmssmmsssmsssmmsssmssssmssssssssssssnsnsnes 735
Pages With MUHIpIE VIEWS........cccvcrcrcrcercrsr s se s 736
The MUIIVIEW CONTIOL ... 736
The WIizard CONTIOL ..o 741
SItE MAPS ... ———————————— 751
Defining @ Site Mapc.ccii i ——————————— 752
Binding 10 @ Site MaD ... ———— 753
BreadCrumbs ... ——————————————— 754
Showing a Portion of the Site Map ... ————— 757
The Site Map ODJECES.......cviii s —————————— 760
Adding Custom Site Map INfOrmation............ccvrnn e 762
Creating a Custom SiteMapPrOVIder ... 763
SECUNLY THMIMING ..cveeieriecere e e r e e e s se e b e b e e R e e R sesaenne e ne e s 770
URL Mapping and ROULINGcccoeeerererenressesse e e e sse s ssesnssssssssssssssssssssssssssssssssnnnes 772
URL MAPPING ...t ses e e st sas e e st st e s bt st st d st se s et et sae e nnenans 772
URL ROULING ...vcviiriirisis s 773
The TreeView Control.........c.crinninn s 774
THE TIEENOTEceecitiricit e s 775
Populating Nodes 0N DEMANG ... s 778
TrEEVIBW SEYIESeeeeceei s 779
The Menu Control ... 783
MENU SEYIES ... 786
Menu TeMPIALES.......cviiirrrcc i —————————— 788
SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 789
Chapter 18: Website Deployment............cccuscmmmmmnnnmmmmmmsssnmmmssssmmssssssssmsssssnns 791
Installing and Configuring lIS..........ocoorrcrcr s s 791
INSTAIIING IS 7 ... 791
MANAGING IS 7 ...t se s se s e e e e e R e enan 793
Deploying @ WEDSILEccvcrcrirrrrrir s 795
Deploying Dy COPYING FIlES.......c.cocierieereeecine e se s nn s 796

UsSing Web DEpIOYMENT ... 801

CONTENTS

USING FTP DEPIOYMENT.........ooeeecererect e se e e se s p s ne s 809
Managing @ WebSIte ... s 817
Creating @ NEW Site.......ccciii e 817
Creating Virtual DIreCIOrIesSvvererererererisrninis s 818
Using the VirtualPathProVider ... 819
USiNG APPIICALION POOIScovieiceiereece e e p s nn s 823
Using Application Warm-Up........cccoicrnincnirenncre st se e ses e sas e s sessessssssnnns 826
Extending the Integrated Pipeling.........cccocverercrcrcscscr s 828
Creating the HanIEr ... 828
Deploying the HANIET ...t s 829
Configuring the HANAIET ... e 829
Testing the HANGIET ... 830
SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 831
L - 1 833
Chapter 19: The ASP.NET Security Modelccccsnvsrmsmsmsssmsnssmssssssnssssssnnsnnas 835
What It Means to Create Secure SOftWare............cocvvniinnncnnnees 835
Understanding Potential TRreats ... 835
Secure Coding GUIdBINES.........ccocieiiiiiiiii s 836
Understanding GatEKEEPEIS ..o 837
Understanding the Levels 0f SECUNitY.......ccccceeererererene e 838
AUTNENTICALIONeee s ——————————— 838
AUTNOTIZALION ... 839
Confidentiality and INTEGIITYcccoureeee e 840
PUIIING It Al TOGETNET ...t 841
Understanding Secure SOCKEtS LAYEr........ccccvververrreniernenies s sses e ssnessesssessens 842
Understanding CertifiCates ... 843
UNderstanding SSL ... 843
ConfiguIiNG SSL N TS 7.X ..ottt se s e s e nr s 845
3T 1 Uy 849

xxi

xxii

CONTENTS

Chapter 20: Forms Authentication...........cccuccmmmsmmmmsesmmssssmmsssmssssssssssssssassnnes 851
Introducing Forms Authentication ..o, 851
Why Use Forms Authentication?...........ouvviiiinssssss s 852
Why Would You Not Use Forms Authentication? ... 854
Why Not Implement Cookie Authentication YOUrSelf? ... 855
The Forms Authentication ClaSSES ... 856
Implementing Forms Authentication...........cccocvrcrcnrrcsc s 857
Configuring FOrms AUthentiCation...........ooccerieene e 857
Denying ACCESS t0 ANONYMOUS USEIScccoeruiueiaererecneresseeesesss e e e sesss e ssseses s e e ssssssssssssssssnens 861
Creating @ CuStOm LOGIN PAGEcccoeeeerurecre s se e se s se s sn s 862
Custom Credentials STOre...........cuv i 868
Persistent Cookies in FOrms Authentication..............o s 869
IS 7.x and Forms Authentication............ccccunernnnnnn e 871
SUMMEANY ..o sse e e e s e se s e aesaesr e s a e s e na e s e naesnesr e e e s e nrennennenannnenrennennnnns 876
Chapter 21: Membership......oceeeesmmmrmmmmsssssssmmmmmmmsssssssssssssessssssssssnsssessnnn 877
Introducing the ASP.NET Membership APL...........cccocrerrrnnrssssesses s ses s 877
Using the Membership API ... 880
Configuring FOrms AUthentiCation...........cooeeiieen e 882
Creating the Data STOre ... 883
Configuring Connection String and Membership Providercoooonnnncnrnescserneese e 890
Creating and AUthentiCating USEISccocecreruecnererecre e se e 893
Using the Security CONIIOIScccoeeeeeee e 897
L Te T 1 o 898
The LoginStatus CONIOL ..o 909
The LOGINVIEW CONTIOL..........cviiiiieiininsssssssss s 910
The PassWOrdReCOVErY CONTIOL........cccoceemmemsmiessssse s 911
The ChangePasswWord CONTIOL...........cocccceeimnmmsnsssesesss s 916
The CreateUSerWizard CONTrOL.........c.covrrrnenmnssss s 917
Configuring Membership in IS 7.X......coe e 922
Configuring Providers and USEIScccoruiecreruserenesessesesesse e e e e sss e s s s e ss s s sessessasssssas 922
Using the Membership API with Other Applications ..o e 924

CONTENTS

Using the Membership Classcccoeeerereienere e sse s sss s s sns s srs s snsnes 926
Retrieving Users from the STOre ... 927
Updating Users in the STOre.........coriinrcrcsrcr et sr e e 929
Creating and DEleting USEISccueeruerrieniiiresinesie e et s s e ssssssessssessssessesassessssessssssssssnns 930
Validating USEIS......cuvuieieieiiirisssiss s 931

O T1 3 1 931

Chapter 22: Windows Authentication............cccrvsmmismmssmssssmssmmsssnsssnsss s 933

Introducing Windows Authentication............ccccunnn s 933
Why Use Windows AuthentiCation? ... 933
Why Would You Not Use Windows Authentication?.............ccovnnnmnnnnnnnssssssssssnns 935
Mechanisms for Windows Authentication ... 935

Implementing Windows Authentication ... 942
CONFIGUITNG TS 7.X ettt sa e e e se e e s e e e ee s e e e nnas 942
CONFIGUITNG ASP.NET ...ttt se s e e e s e e s s e e s ne e e e s ne e nnenas 944
Deeper Into the IS 7.X PIPEIING ... 945
Denying AcCess 10 ANONYMOUS USEIS ... 948
Accessing Windows User INfOrmationconnnnnnnsssssssssssssesssssssssssssesssens 950

IMPEISONALION.......cceiriii e ————— 956
Impersonation and Delegation in WiNAOWS ..o 956
Configured IMPErsoNAtionc.vvvererernnn 958
Programmatic IMpersonation ..o s e 959

SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 962

Chapter 23: Authorization and RoIesScccusmmismmmssmmsmsmssssmsssmsssssssnsnssnsnsnns 963

URL AUENOFIZALION ...t s 963
AUthOriZation RUIES ..o 964

File AUThOFIZAtioN ..o ————— 970

Authorization Checks in Code...........corrrnmnnin s 970
Using the ISINROIE() METNOM.........ccou et 970
Using the PrincipalPermission Class ... 971

Using the Roles API for Role-Based Authorization.............ccovvennnnnnncnenssnenncens 974
Using the LoginView Control with ROIES ... 981

xxiii

XXiv

CONTENTS

Accessing Roles ProgrammatiCallycccooreecrerniencne e 981
Using the Roles APl with Windows Authentication............c.cocovnnnnnnnnnnnsssseseseseseseens 984
Authorization and RoI€S in IS 7.X ... 986
Authorization with ASP.NET R0IES in IS 7.Xcueuiiiiiiiiiiiiiiissssss s 989
Managing ASP.NET ROIES With [IS 7.Xcceeurureieerenecre et 991
SUMMEANY ... re e s e s e se s e s s s e sr e s a e s e s a e a e naesnesr e s e s e nrenn e s e e e nnennennnnnnnns 993
Chapter 24: Profilesccousmmmmsmsmssssmsssssmsssssssssssssssssssssssssssasssssnssssssssnssnssnnsns 995
Understanding Profiles ... s 995
Profile PErfOrmManCe. ... 996
How Profiles Store Data............ccousssssssss s 997
Profiles and Authentication ... ————— 998
Profiles vs. Custom Data COMPONENLS ..o s 998
Using the SQIProfileProvider ... 998
Creating the Profile TADIES ... 999
Configuring the PrOVIAE ...t e 1002
Defining Profile ProPerties. ... 1003
USing Profile PrOPerties. ... 1004
Profile Serialization ... ——————————— 1006
ProOfile GrOUPScvvrirr s e 1008
Profiles and Custom Data TYPES.......c.urrerrrnnininnss s 1008
TNE ProfileS APlceeeiicics s 1012
ANONYMOUS PrOfilESccvieieieiisicrsiis s 1015
Custom Profile Providers ... 1017
The Custom Profile Provider Classes..........ccusssssssssssssssssssssssssssseses 1018
Designing the FactoredProfileProVider ... 1020
Coding the FactoredProfileProVider ... 1021
Testing the FactoredProfileProVider ... 1025
SUMMEANY ..o se e e ae e sesae s e sa e resae s e s e s renaenaesaesaenrennenaennnnnennennnnnan 1028
Chapter 25: Cryptography.....ccccccmmmssssnmmssssssnmssssssssssssssnsnssssssnsssssssnnsnsssssnnnnss 1029
Encrypting Data: Confidentiality Matters...........cccocvvrirircscscs e 1029
The .NET Cryptography Namespaceccccveerverrersessessessessssssssesssssessessessesssssssssssnnns 1030

CONTENTS

Understanding the .NET Cryptography Classesccccceoeverersrssessnssnssnesessessessenens 1033
Symmetric Encryption AlgOrithmsccco i s 1035
ASYMMELiC ENCIYPHONoeieeeiee et e e e 1036
The Abstract ENCryption ClaSSES ... 1037
The ICryptoTransform INTErface..........ov i 1037
The CryptoStream ClaSS ... 1038

Encrypting Sensitive Data............cccvcrvrrensnsnssssses e 1039
MaNAQING SECTELS.....coviuiceeereeeire e e s e ee e eesae e e sae e e e ne e nenan 1039
Using Symmetric AIGOFTMScccou ittt s 1041
Using ASymmetric AIGOrthMmS ... 1047
Encrypting Sensitive Data in @ DAtabase...........cccoeereercrerecie e 1049

Encrypting the QUery String..........cccoiirninnr s 1054
Wrapping the QUErY SEHNG ... e 1054
Creating @ TEST PAQEccoiruiece et e e e e e 1057

SUMMEANY ..o se e e ae e sesae s e sa e resae s e s e s renaenaesaesaenrennenaennnnnennennnnnan 1059

Chapter 26: Custom Membership Providerscccovunsmmmmmssssnsnmmssssssnmsssssssns 1061

Architecture of Custom Providers...........cconncnnnnnns s 1061

Basic Steps for Creating Custom Providers...........ccovenmnnnennssennesnssesessesens 1063
Overall Design of the CUSIOM PrOVIAENcccouruieeereeecre e 1063
Designing and Implementing the CuStom STOre ..o 1065
Implementing the Provider CIASSESouirrrinerirece s e 1072
Using the CuStOmM Provider ClaSSES........coceurerurenererereeresssseese s eese s sese e e e sas s sessssese e sssssnennas 1092

SUMMEANY ..o se e e ae e sesae s e sa e resae s e s e s renaenaesaesaenrennenaennnnnennennnnnan 1097

Part 5: Advanced User Interface...........cccuummimmmsssmmssmmsssmssssmssssssssmssssssssnssssnsnsnnes 1099

Chapter 27: Custom Server Controls...........ccvemmismmsmsmmssmmssmmsssmsssmssssnsssnsansns 1101

Custom Server Control BasiCscuuerermnmmnnsisssssss s s 1101
Creating a Bare-Bones Custom CONtrol...........cccc s 1102
Using @ CuStOm CONTIOLcoorerenereneiinrini e s 1104
Custom Controls in the TOOIDOX........ccvvrrererererinmin e 1105
Creating a Web Control That Supports Style Properties..........ccoevvvrnnrnnninnnnnessserssesssesesesens 1108

XXVi

CONTENTS

The Rendering PrOCESS........covrririririsssssnsnsssssssssssssss st 1111
Dealing with Different BrOWSErS.........c.cvuinrmninnmsnssss s 1113
The HIMITEXIWHTET ... s 1113
Browser DELECHION ..o ———————— 1114
BrOWSEr PrOPEITIESvcvcvietcerisi e 1115
Overriding Browser TYpe DEteCHON...........ccccoerereirereererereere e 1117
Adaptive RENEIINGccvvveieieiirri s 1117
Control State and EVeNts ... 1119
VIEW STALE ... 1119
CONIOl SEALE ... ————————— 1121
Postback Data and Change EVENtS ... 1123
Triggering @ POSTDACK.........corureeererecre et 1125
Extending Existing Web ControlS.........cccvcrcrirsrcesses s sns e 1127
ComPOSIte CONTIOIScccveieierererii e 1127
DErived CONTIOIS ..o 1130
B3 1 3] 1 1133

Chapter 28: Graphics, GDI+, and Chartingccccccnmmnseemmmmssssssmnsssssssensssnnns 1139

The ImageMap CONtrol.........ccocvcrcercrcersrser e 1135
Creating HOSPOIS ... 1136
Handling HOtSPOL ClICKS.cuvvvviriiiriiiissss s s 1137
A CUSEOM HOESPOL......ocvieiiiectcrr bbb 1139

Drawing With GDI+ ..o 1141
K1 o] L0 L o 1141
Image Format and QUAlILYccocoreenericcr e e 1143
THE GraPRIiCS ClASS ...vvvivierereierirr s 1145
Using @ GraphicsPath ... ——————— 1148
PBNS ...t ——— 1149
BIUSHES ...ttt 1152

Embedding Dynamic Graphics in @ Web Page ... 1154
USing the PNG FOrMAL ... s 1155
Passing Information to Dynamic IMAQGESceeeeereruriererereere e 1155
Custom Controls That USE GDI+ ... 1158

CONTENTS

Using the Chart Control...........cccconninnni 1163
Creating @ BasiC Chart ... 1163
Populating @ Chart With Data............cv e 1170

SUMMEANY ..o s e sse e s ae e s e sas s e sr e s e ae s e s e s a e aesaesaesaennennenaennnnenrnnnnnnan 1178

Chapter 29: JavaScript and Ajax Techniquescoumnmminmnimnmmsns. 1179

JavaScript ESSentials...........ccovinnn 1179
The HTML Document Object Model ... 1180
Client-Side EVENTScvvriiiiiirrininini s 1181
T 1 0102 7 ¢ 1184
Manipulating HTML EIBMENTS........ccoriiinisssss s 1185
Debugging JAVASCIIPLcccoeieee ettt e nn s 1186

Basic JavaScript EXamPIES.........ccccvvrvrimrsensessss s sns s e nnnnas 1189
Creating @ JavaScript PAge PrOCESSOco.cceceererccerereneese s e e se e sess s ses s e s eneas 1190
Using JavaScript to Download Images ASYNCRIONOUSIYccceceerercnerereeereresseeseseseeseseseesesnnnas 1193
Rendering SCrPt BIOCKScvvrerererensniniissssi s s 1198

Script Injection AHACKS........ccoceeeere e 1199
Request Validation..............ccvrn s 1200
Disabling Request Validation............c.c s 1201
Extending Request Validation...........c.cocovrnrnnnnnssss s 1203

Custom Controls with JavaSCript...........cccormn 1205
POP-UD WINAOWS ...t sese st sas s ss s sas e sae e st s st s e st st s snssssnsssenis 1205
ROHOVEE BULLONS ...ttt e 1210

FrAMES. ...ttt ————————— 1213
Frame Navigation ... 1214
INHINE FIAMES.....uiic e e 1216

UNAerstanding AjaX........coceeeeerereresessessessessessessessesssssssssssesssssssssssssssssssssssssssssssssnnes 1217
The XMLHHPREqUEST ODJECT ... 1218
AN AJAX EXAMPIE.....cvivieiiiicrc s 1220

Using Ajax with Client CallDACKScccereeererrerrerreresessessesss s ssssss s s ssssnssnssssssseas 1224
Creating @ Client CallDACK ..o s 1225
Client Callbacks “Under the HOOU” ... 1231

XXVii

xxviii

CONTENTS

Client Callbacks in Custom CONtIOIS............cccviiiiis s 1232
SUMMEANY ... s s e se e s e s ae s e sa e s aesae s e s e s s e naenaesaesnennennenaennnnnenrnnnnnnan 1237
Chapter 30: ASP.NET AJAX.....c.useummssansssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnnssnsnnnnss 1239
Introducing ASP.NET AJAX.......oriirinss s s s 1239
ASP.NET AJAX on the Client: The Script LIDraries ... 1240
ASP.NET AJAX on the Server: The SCriptManager ... 1241
SerVer CallDACKS........cccvuiueirmreirine s 1242
Web Services in ASP.NET AJAX.......covrmmsssssssssssss s 1243
Placing a Web Method in @ PAGEcccou it 1250
ASP.NET AJAX ApPliCAtion SEIVICESccvverrererrirerirnesesesesesesss s sssesessessssessssesssssssessssessssassessssens 1252
ASP.NET AJAX Server CONtrolScccuveerememsssssssssssessssssssssssss s sssssssssssssssasnes 1259
Partial Rendering with the UpdatePanel..............ocovriin s 1260
Timed Refreshes With the TIMEr ... 1268
Time-Consuming Updates with UpdateProgress..........ococeeeeecrereeneressesese s 1269
Managing BroWSEr HISTOY ...t e 1272
Deeper into the Client LIDraries.........c.cmnnnsssessse s 1276
Understanding the Client Model ... 1276
Object-Oriented Programming in JAVASCIIPL.........ccoeoeeirereienerrecre e 1277
The Web-Page FrameworK..........coviins s s 1286
Control EXIENAErScccvuieermicirrneisi s s 1291
Installing the ASP.NET AJAX Control TOOIKit.........coovrereremininnnnnn s 1292
The AutoComMPIETEEXIENET ..o s 1294
The ASP.NET AJAX Control TOOIKILccccveeenmnmnmnenmmnsessemssssssssssssssssss s sssssasssssasees 1297
SUMMEANY ..o se e e ae e sesae s e sa e resae s e s e s renaenaesaesaenrennenaennnnnennennnnnan 1302
Chapter 31: Portals with Web Part Pages.........cccunmmmmmmmmmmmmmmmsssssssssnsnsssssssnnns 1303
Typical Portal PAgesc.ccocvcrircerirsirir s sn s se s snssnssnsnnsnns 1304
Basic Web Part Pages..........ccovimninn s 1305
Creating the Page DESIONcccorrecrererecre e se s se s e s sa s s se e nns e s 1306
WebPartManager and WebPartZone Controls ... 1307
Adding Web Parts 10 the PAgEccoeeererrciererecerese e 1309
CUSEOMIZING ThE PAGE........ceeeeeeeeereceirieeee st se e nnnan 1313

CONTENTS

Creating Web Parts ... 1316
Simple Web Part Tasks........c.covrrnnnnn s 1316
Developing Advanced Web Parts...........cons s 1325
WED Part EQITOrS ..ot 1335
Connecting Web PartS ... 1341
Custom Verbs and Web Parts ... 1350
User Controls and Advanced Web Parts ... 1351
Uploading Web Parts DyNamiCally...........cceeererureaererecsesesesesessee e s se e se s sesessssesennas 1354
AULhOFZING WED PAITS ...ttt s 1360
Final Tasks for Personalization..............ccccsssss e 1360

B3 1 3] 1 1361

Chapter 32: MVCcccucsmmsmmmsnssmsmsmsssnssssnsssssssssnssnsm s sssssssns snsmsssnn s sms snsmsnnnnan 1363

Choosing Between MVC and Web FOrms..........cccvvinnnnnninnnnsseesneens 1363

Creating a Basic MVC AppliCation..........cccoeeeverece s sns e e 1364
Creating the MOl ... 1365
Creating the CONIOIIEr ... 1365
Creating the INdeX VIEW.........cciiiii s 1366
Testing the (Incomplete) APPlCALION.oeeeereieeee s 1367
Completing the Controller and VIEWS ... 1368
Modifying the Site.MaSTEr File..........cccoerureireceeee e 1371

Extending the Basic MVC Applicationccceercernrsnsnssses s sns e e 1371
CONFIGUIING ROULINGccviueieeeeceeee e e e s se s e 1371
Adding Error HANAINGcooeoeeeeeeecene e se s ss e sss s sn s s ss s s s nes 1373
Adding AUthentication ... ——————————— 1374
Consolidating Data Store ACCESS.........u e 1375
Adding Support for Foreign Key CONSTraintscccoceecerrenenernenese e sessenes 1378

CUSTOMIZING VIBWS......ceruiriirrieirsnsiss s snsss s s s sasssssassenens 1378
MOGITYING ThE VIBW ...ttt s 1379
Adding VIEW Dataccccviiiiiiiiiissssssss s 1381

Adding t0 the MOodel...........cceiiiniir s ————— 1383

XXix

CONTENTS

Validating Data..........c.coovvninnnn s 1388
Performing Basic Validation ... 1388
Adding Validation ANNOTAtIONS...........cvveriini s 1390

USING ACHON RESUILS.......ccceicercrcircn s 1393
Returning JSON Data..........covrereminininin e 1394
Calling Another Controller MEthOG...........coveriinnirrnerr e e s 1395

SUMMEANY ... s s e se e s e s ae s e sa e s aesae s e s e s s e naenaesaesnennennenaennnnnenrnnnnnnan 1396

Chapter 33: Dynamic Data ... 1397

Creating a Dynamic Data Applicationcccceeeererecese s 1397
Creating the Dynamic Data Site..........ccccerreimrereicre e 1397
Exploring the DynamiC Data Sitecccoreierrncie st 1400

Understanding the Anatomy of a Dynamic Data Project...........c.coonrnicnnnicnenniennns 1403

Customizing a Dynamic Data Site..........ccccereeerereresesese e sns s sne s 1404
Customizing with TEMPIAESccvviii 1404
Customizing With ROULES ... 1414
Customizing with Metadata. ... 1423
Customizing ValidAtioncccoeeereiieeieccre e s 1430

31101 T Uy S 1435

Chapter 34: Silverlightccousmmmmmmmmsmmmmssmmsssmmsasmsassasssasssasssass 1437

Understanding Silverlight ... 1438
SiIlverlight VS. FIASH ... 1439
Silverlight System ReqUIrEMENTSc..oceeeririeire et e 1441

Creating a Silverlight SOIULION ... ———— 1442
Silverlight ComPilationcovrnnnrrn i —————————— 1443
L LT3 = 1L T 1445

Creating a Silverlight Project ... e 1449
Designing @ SIlVErlight PAGE........cco e 1450
UNderstanding XAML ..o 1454
SEttiNG ProPerties... ..o 1455
The XAML Code-BeRiNG...........covrrirminiisssssssssssss s 1456

Handling EVENTS.......cciiiii s 1457

CONTENTS

Browsing the Silverlight Class LIDraries ... 1459
I o | SRS 1460
LT 1 T T 1460
T2 o T 1466
ANIMALION. ... ———————————— 1471
ANIMALION BASICS ...v.vvvrrsrsrsssssssssssssss s 1471
Defining an ANIMAtioN ..o ——————————— 1472
The Storyboard CIASS..........ov i 1472
An Interactive Animation EXample...........covvinnsssssssss 1475
211 (0] 1 1 1479
Using Web Services with Silverlight ... 1483
Creating the Web SErVIiCe ... 1484
Adding @ Webh REfErenCecovrrriniisnsssss s 1484
Calling the WED SEIVICE........uvriiriirriiii e 1485
Configuring the Web ServiCe URL...........occeoreieerirecee e se s sn s senas 1487
Cross-Domain Web Service CallS ... 1488
SUMMEANY ..o se e e ae e sesae s e sa e resae s e s e s renaenaesaesaenrennenaennnnnennennnnnan 1489

T - V1!) |

xxxi

xxxii

About the Authors

Matthew MacDonald is an author, educator, and Microsoft MVP. He’s the
author of more than a dozen books about .NET programming, including Pro
Silverlight 3 in C# (Apress, 2009), Pro WPF in C# 2010 (Apress, 2010), and
Beginning ASP.NET 4 in C# 2010 (Apress, 2010). He lives in Toronto with his wife
and two daughters.

Adam Freeman is an experienced IT professional who has held senior positions
in a range of companies, most recently chief technology officer and chief
operating officer of a global bank. He has written several of books on Java and
.NET and has a long-term interest in all things parallel.

Mario Szpuszta works as an architect in the Developer and Platform group of
Microsoft Austria and helps software architects of top enterprise and web
customers with establishing new Microsoft technologies. For several years he has
been focusing on secure software development, web services and interoperability,
and the integration of Microsoft Office clients and servers in custom applications.
Mario speaks regularly at local and international conferences such as DevDays
and TechEd Europe Developers, and he has been a technical content owner of
TechEd Europe Developers in the past two years.

About the Technical Reviewers

Fabio Claudio Ferracchiati is a prolific writer on cutting-edge technologies. Fabio has contributed to
more than a dozen books on .NET, C#, Visual Basic, and ASP.NET. He is a .NET Microsoft Certified
Solution Developer (MCSD) and lives in Rome, Italy. You can read his blog at
http://www.ferracchiati.com.

Todd Meister has been using Microsoft technologies for more than ten years. He’s been a technical
editor on more than 50 books on topics ranging from SQL Server to the .NET Framework. Besides
technical editing, he is an assistant director for computing services at Ball State University in Muncie,
Indiana. He lives in central Indiana with his wife, Kimberly, and their four outstanding children.

xXxxiii

http://www.ferracchiati.com

Introduction

When .NET first appeared, it introduced a small avalanche of new technologies. There was a whole new
way to write web applications (ASP.NET), a whole new way to connect to databases (ADO.NET), new
typesafe languages (C# and VB .NET), and a managed runtime (the CLR). Not least among these new
technologies was Windows Forms, a library of classes for building Windows applications.

As you no doubt already know, ASP.NET is Microsoft’s next-generation technology for creating server-
side web applications. It’s built on the Microsoft .NET Framework, which is a cluster of closely related
technologies that revolutionize everything from database access to distributed applications. ASP.NET is
one of the most important components of the NET Framework—it’s the part that enables you to
develop high-performance web applications.

It’s not hard to get developers interested in ASP.NET. Without exaggeration, ASP.NET is the most
complete platform for web development that’s ever been put together. It far outclasses its predecessor,
ASP, which was designed as a quick-and-dirty set of tools for inserting dynamic content into ordinary
web pages. By contrast, ASP.NET is a full-blown platform for developing comprehensive, blisteringly fast
web applications.

In this book, you’ll learn everything you need to master ASP.NET 4. If you've programmed with a
previous version of ASP.NET, you can focus on new features such as ASP.NET MVC (Chapter 32),
ASP.NET Dynamic Data (Chapter 33), and Silverlight (Chapter 34). If you've never programmed with
ASP.NET, you'll find that this book provides a well-paced tour that leads you through all the
fundamentals, along with a backstage pass that lets you see how the ASP.NET internals really work. The
only requirement for this book is that you have a solid understanding of the C# language and the basics
of .NET. If you're a seasoned Java or C++ developer but you're new to C#, you may find it easier to start
with a book about .NET fundamentals, such as Pro C# 2010 and the .NET 4 Platform by Andrew Troelsen
(Apress, 2010).

What Does This Book Cover?

Here is a quick breakdown of what you'll find in this book:

Part 1: Core Concepts: You'll begin in Chapter 1 with a look at the overall ASP.NET platform, the
.NET Framework, and an overview of the changes that have taken place in ASP.NET 4. In Chapter 2
you'll branch out to learn the tools of the trade—namely, Visual Studio 2008. In Chapters 3, 4, 5, and
6 you'll learn the key parts of the ASP.NET infrastructure, such as the web-page model, application
configuration, and state management. As you learn these core concepts, you'll also take a low-level
look at how ASP.NET processes requests and manages the lifetime of your web applications. You'll
even learn how to extend the ASP.NET architecture.

Part 2: Data Access: This part tackles one of the core problem domains for all software
development—accessing and manipulating data. In Chapters 7 and 8 you’ll consider the
fundamentals of ADO.NET as they apply to web applications and learn how to design data access
components. In Chapters 9 and 10 you’ll learn about ASP.NET’s set of innovative data-bound
controls that let you format and present data without writing pages of code. Chapter 11 branches

XXXiV

INTRODUCTION

out into advanced caching strategies that ensure first-class performance. Finally, Chapters 12, 13,
and 14 move beyond the world of ADO.NET to show you how to work with files, LINQ, and XML
content.

Part 3: Building ASP.NET Websites: In this part you'll learn about essential techniques and features
for managing groups of web pages. You'll start simply with user controls in Chapter 15, which allow
you to reuse segments of the user interface. In Chapter 16 you'll consider themes (for styling
controls automatically) and master pages (for reusing a layout template across multiple pages).
Chapter 17 shows how you can use ASP.NET’s navigation model to let visitors surf from one page to
another. Finally, Chapter 18 describes deployment and the IIS web server software.

Part 4: Security: In this part, you'll look at ASP.NET’s rich complement of security features. You’ll
start with a high-level overview of security concepts in Chapter 19 and then learn the ins and outs of
forms authentication (Chapter 20) and the membership feature that works with it (Chapter 21). In
Chapter 22 you'll tackle Windows authentication, and in Chapter 23 you'll learn how to restrict
authenticated users with sophisticated authorization rules and use role-based security. In Chapter
24 you'll explore the profiles feature—a prebuilt solution for storing user-specific information; in
Chapter 25 you'll go one step further and learn how to protect the data you store in a database as
well as the information you send in a URL with encryption. Finally, Chapter 26 shows how you can
plug into the ASP.NET security model by designing a custom membership provider.

Part 5: Advanced User Interface: This part shows how you can extend web pages with advanced
techniques. In Chapters 27 you’ll get an introduction to custom controls. In Chapter 28 you'll
branch out to use GDI+ for handcrafted graphics. In Chapters 29 and 30, you'll consider how to use
JavaScript and Ajax techniques to make web pages more dynamic (by incorporating effects such as
text autocompletion and drag-and-drop) and more responsive (by reacting to client-side events and
seamlessly refreshing the web page). Finally, Chapter 31 explores ASP.NET’s Web Parts feature,
which allows you to easily create web portals.

Part 6: New Directions: In this part, you'll consider some of the most exciting innovations in
modern web development. In Chapter 32 you'll explore ASP.NET MVC, a new alternative to the
classic web forms model that gives developers complete control over HTML rendering and URL
structure. In Chapter 33 you'll consider ASP.NET Dynamic Data, which is the perfect solution for
quickly building applications that revolve around viewing and editing the information in a database.
Finally, in Chapter 34 you'll dive into the world of Silverlight, a Microsoft-built browser plug-in that
gives you the ability to bring rich graphics, animation, sound, and video to ordinary web pages on a
variety of browsers and operating systems.

Who Is This Book For?

This book is intended as a primer for professional developers who have a reasonable knowledge of
server-side web development. This book doesn’t provide an exhaustive look at every ingredient in the
.NET Framework—in fact, such a book would require twice as many pages. Instead, this book aims to
provide an intelligent introduction to ASP.NET for professional programmers who don’t want to rehash
the basics. Along the way, you'll focus on other corners of the .NET Framework that you'll need in order
to build professional web applications, including data access and XML. Using these features, you'll be
able to create next-generation websites with the best tools on hand today.

This book is also relentlessly practical. You won’t learn just about features; you'll also learn about
the real-world techniques that can take your website to the next level. Later chapters are dedicated to
cutting-edge topics such as custom controls, dynamic graphics, advanced security, and high-
performance data access, all with the goal of giving you everything you need to build professional web
applications.

To get the most from this book, you should be familiar with the syntax of the C# language and with
object-oriented concepts. You don’t need to have experience with a previous version of ASP.NET,

INTRODUCTION

because all the fundamentals are covered in this book. If you're an experienced Java or C++ developer
with no .NET experience, you should consider supplementing this book with an introduction to .NET,
such as Pro C# 2010 and the .NET 4 Platform by Andrew Troelsen (Apress, 2010).

What Do You Need to Use This Book?

To develop and test ASP.NET web applications, you need Visual Studio 2010. Although you could
theoretically write code by hand, the sheer tedium and the likelihood of error mean this approach is
never used in a professional environment. Additionally, if you plan to host ASP.NET websites, you'll
need to use a server-based version of Windows, such as Windows Server 2003 or Windows Server 2008.
You'll also need to install ITS (Internet Information Services), the web hosting software that’s part of the
Windows operating system. IIS is described in Chapter 18.

This book includes several examples that use sample databases that are included with SQL Server to
demonstrate data access code, security techniques, and other features. You can use any version of SQL
Server to try these examples, including SQL Server Express, which is included with some versions of
Visual Studio (and freely downloadable at http://www.microsoft.com/express/database). If you use
other relational database engines, the same concepts will apply, but you will need to modify the example
code.

Customer Support

We always value hearing from our readers, and we want to know what you think about this book—what
you liked, what you didn’t like, and what you think we can do better next time. You can send your
comments by e-mail to feedback@apress.com. Please be sure to mention the book title in your message.

Sample Code

To download the sample code, visit the Apress website at http://www.apress.com, and search for this
book. You can then download the sample code, which is compressed into a single ZIP file. Before you
use the code, you'll need to uncompress it using a utility such as WinZip. Code is arranged into separate
directories by chapter. Before using the code, refer to the accompanying readme.txt file for information
about other prerequisites and considerations.

Bonus Chapters

The Apress website also includes several additional chapters that you can download as PDFs. These
chapters include content that couldn’t be included in this book because of space limitations and isn’t
considered as important to ASP.NET web development. Here’s what you'll find:

Bonus Chapter 1, “Resources and Localization”: This chapter describes how to use resources and
localization in ASP.NET websites. It’s an essential chapter for developers who need to create
websites that can be viewed in multiple languages.

Bonus Chapter 2, “Design-Time Support”: This chapter describes how to add design-time support
to your own custom controls so that they behave nicely in the Visual Studio environment, take
charge of their own property serialization, and support advanced designer features such as smart
tags.

XXXVi

http://www.microsoft.com/express/database
mailto:feedback@apress.com
http://www.apress.com

INTRODUCTION

Note The bonus chapters are reprinted from the previous edition of this book. The information in these
chapters still applies to ASP.NET 4, because these features haven’t changed.

Errata

We’ve made every effort to make sure the text and the code contain no errors. However, no one is
perfect, and therefore mistakes do occur. If you find an error in the book, such as a spelling mistake or a
faulty piece of code, we would be grateful to hear about it. By sending in errata, you may save another
reader hours of frustration, and you’ll be helping us provide higher-quality information. Simply e-mail
the problem to support@apress.com, where your information will be checked and posted on the errata
page or used in subsequent editions of the book. You can view errata from the book’s detail page.

XXXVii

mailto:support@apress.com

PART 1
EEE

Core Concepts

Before you can code an ASP.NET website, you need to master a small set of fundamental skills. In this
part, you'll consider the .NET Framework, which supports every .NET application (Chapter 1), the Visual
Studio design tool that helps you build and test websites (Chapter 2), and the ASP.NET infrastructure
that makes websites work (Chapters 3, 4, 5, and 6).

Although these topics may seem like straightforward review for a professional ASP.NET developer,
there are some critically important finer points. Every serious ASP.NET developer needs to thoroughly
understand details such as the life cycle of web pages and web applications, the ASP.NET request
processing pipeline, state management, and the ASP.NET configuration model. Not only is this
understanding a key requirement for creating high-performance web applications, it’s also a necessary
skill if you want to extend the ASP.NET infrastructure—a topic you'll consider throughout the chapters
in this part.

CHAPTER 1

Introducing ASP.NET

When the first version of the .NET Framework was released nearly a decade ago, it was the start of a
radical new direction in software design. Inspired by the best of Java, COM, and the Web, and informed
by the mistakes and limitations of previous technologies, Microsoft set out to “hit the reset button” on
their development platform. The result was a set of surprisingly mature technologies that developers
could use to do everything from building a Windows application to executing a database query, and a
web-site-building tool known as ASP.NET.

Today, ASP.NET is as popular as ever, but it’s no longer quite as revolutionary. And, although the
basic functionality that sits at the heart of ASP.NET is—suprisingly—virtually the same as it was ten years
ago, Microsoft has added layers of new features and higher-level coding abstractions. It has also
introduced at least one new direction that competes with traditional ASP.NET programming, which is
called ASP.NET MVC.

In this introduction, you'll get a quick outline of the fundamentals of the ASP.NET platform and an
overview that explains how it has evolved into version 4. If you're new to ASP.NET, this chapter will
quickly get you up to speed. On the other hand, if you're a seasoned .NET developer, you have two
choices. Your first option is to read this chapter for a brisk review of where we are today. Alternatively,
you can skip to the section “The Evolution of ASP.NET” to preview what ASP.NET 4 has in store.

The Seven Pillars of ASP.NET

When ASP.NET was first released, there were seven key facts that differentiated it from previous
Microsoft products and competing platforms. If you're coming to ASP.NET from another web
development platform, or you're an old-hand .NET coder who has yet to try programming for the Web,
these sections will quickly give you a bit of ASP.NET insight.

#1: ASP.NET Is Integrated with the .NET Framework

The .NET Framework is divided into an almost painstaking collection of functional parts, with tens of
thousands of types (the .NET term for classes, structures, interfaces, and other core programming
ingredients). Before you can program any sort of .NET application, you need a basic understanding of
those parts—and an understanding of why things are organized the way they are.

The massive collection of functionality that the NET Framework provides is organized in a way that
traditional Windows programmers will see as a happy improvement. Each one of the thousands of
classes in the .NET Framework is grouped into a logical, hierarchical container called a namespace.
Different namespaces provide different features. Taken together, the NET namespaces offer
functionality for nearly every aspect of distributed development from message queuing to security. This
massive toolkit is called the class library.

CHAPTER 1 " INTRODUCING ASP.NET

Interestingly, the way you use the .NET Framework classes in ASP.NET is the same as the way you
use them in any other type of .NET application (including a stand-alone Windows application, a
Windows service, a command-line utility, and so on). Although there are Windows-specific and web-
specific classes for building user interfaces, the vast majority of the .NET Framework (including
everything from database access to multithreaded programming) is usable in any type of application. In
other words, .NET gives the same tools to web developers that it gives to rich client developers.

Tip One of the best resources for learning about new corners of the .NET Framework is the .NET Framework
class library reference, which is part of the MSDN Help library reference. If you have Visual Studio 2008
installed, you can view the MSDN Help library by clicking the Start button and choosing Programs » Microsoft
Visual Studio 2010 » Microsoft Visual Studio 2010 Documentation (the exact shortcut depends on your version
of Visual Studio). Or, you can find the most recent version of the class library reference online at
http://tinyurl.com/2d42w5e.

#2: ASP.NET Is Compiled, Not Interpreted

ASP.NET applications, like all .NET applications, are always compiled. In fact, it’s impossible to execute
C# or Visual Basic code without it being compiled first.

.NET applications actually go through two stages of compilation. In the first stage, the C# code you
write is compiled into an intermediate language called Microsoft Intermediate Language (MSIL), or just
IL. This first step is the fundamental reason that .NET can be language-interdependent. Essentially, all
.NET languages (including C#, Visual Basic, and many more) are compiled into virtually identical IL
code. This first compilation step may happen automatically when the page is first requested, or you can
perform it in advance (a process known as precompiling). The compiled file with IL code is an assembly.

The second level of compilation happens just before the page is actually executed. At this point, the
IL code is compiled into low-level native machine code. This stage is known as just-in-time (JIT)
compilation, and it takes place in the same way for all .NET applications (including Windows
applications, for example). Figure 1-1 shows this two-step compilation process.

.NET compilation is decoupled into two steps in order to offer developers the most convenience and
the best portability. Before a compiler can create low-level machine code, it needs to know what type of
operating system and hardware platform the application will run on (for example, 32-bit or 64-bit
Windows). By having two compile stages, you can create a compiled assembly with .NET code and still
distribute this to more than one platform.

http://tinyurl.com/2d42w5e

CHAPTER 1 " INTRODUCING ASP.NET

Code in VB .NET Code in C# Code in Another
.NET Language
[VB .NET Compiler J C# Compiler Appropriate Compiler
Y

IL (Intermediate
) Language) Code (

The Common
[Just-in-Time (JIT) Compiler] Language Runtime

Y

Code

v
=

Figure 1-1. Compilation in an ASP.NET web page

|
|
|
|
|
|
|
|
|
|
|
|
|
Native Machine :
|
|
|
|
|
|
|
|
|
|
|
|
|

Of course, JIT compilation probably wouldn’t be that useful if it needed to be performed every time
a user requested a web page from your site. Fortunately, ASP.NET applications don’t need to be
compiled every time a web page is requested. Instead, the IL code is created once and regenerated only
when the source is modified. Similarly, the native machine code files are cached in a system directory
that has a path like c:\Windows\Microsoft. NET\Framework\ [Version]\Temporary ASP.NET Files.

As you’'ll learn in Chapter 2, the actual point where your code is compiled to IL depends on how
you're creating and deploying your web application. If you're building a web project in Visual Studio, the
code is compiled to IL when you compile your project. But if you're building a lighter-weight projectless
website, the code for each page is compiled the first time you request that page. Either way, the code
goes through its second compilation step (from IL to machine code) the first time it’s executed.

ASP.NET also includes precompilation tools that you can use to compile your application right
down to machine code once you’ve deployed it to the production web server. This allows you to avoid
the overhead of first-time compilation when you deploy a finished application (and prevent other
people from tampering with your code). Precompilation is described in Chapter 18.

CHAPTER 1 " INTRODUCING ASP.NET

#3: ASP.NET Is Multilanguage

Though you'll probably opt to use one language over another when you develop an application, that
choice won't determine what you can accomplish with your web applications. That’s because no matter
what language you use, the code is compiled into IL.

IL is a stepping stone for every managed application. (A managed application is any application
that’s written for .NET and executes inside the managed environment of the CLR.) In a sense, IL is the
language of .NET, and it’s the only language that the CLR recognizes.

To understand IL, it helps to consider a simple example. Take a look at this code written in C#:

using System;
namespace HelloWorld
public class TestClass

static void Main(string[] args)

{
}

Console.WriteLine("Hello World");

This code shows the most basic application that’s possible in .NET—a simple command-line utility
that displays a single, predictable message on the console window.
Now look at it from a different perspective. Here’s the IL code for the Main() method:

.method private hidebysig static void Main(string[] args) cil managed

{
.entrypoint
// Code size 13 (oxd)
.maxstack 8
IL_0000: nop
IL_0001: ldstr "Hello World"
IL 0006: call void [mscorlib]System.Console: :WriteLine(string)
IL_oo0b: nop
IL_oooc: ret

} // end of method TestClass::Main

It’s easy enough to look at the IL for any compiled .NET application. You simply need to run the
IL Disassembler, which is installed with Visual Studio and the .NET SDK (software development kit).
Look for the file ildasm.exe in a directory like c:\Program Files\Microsoft SDKs\Windows\v7.0A\bin.
Run ildasm.exe, and then use the File » Open command, and select any DLL or EXE that was created
with .NET.

Tip For even more disassembling power, check out the remarkable (and free) Reflector tool at
http://www.red-gate.com/products/reflector. With the help of community-created add-ins, you can use
Reflector to diagram, analyze, and decompile the IL code in any assembly.

http://www.red-gate.com/products/reflector

CHAPTER 1 " INTRODUCING ASP.NET

If you're patient and a little logical, you can deconstruct the IL code fairly easily and figure out
what’s happening. The fact that IL is so easy to disassemble can raise privacy and code control issues,
but these issues usually aren’t of any concern to ASP.NET developers. That’s because all ASP.NET code is
stored and executed on the server. Because the client never receives the compiled code file, the client
has no opportunity to decompile it. If it is a concern, consider using an obfuscator that scrambles code
to try to make it more difficult to understand. (For example, an obfuscator might rename all variables to
have generic, meaningless names such asf__a_ 234.) Visual Studio includes a scaled-down version of
one popular obfuscator, called Dotfuscator.

The following code shows the same console application in Visual Basic code:

Imports System

Namespace HelloWorld
Public Class TestClass
Shared Sub Main(args() As String)
Console.WriteLine("Hello World")
End Sub
End Class

End Namespace

If you compile this application and look at the IL code, you'll find that it’s nearly identical to the IL
code generated from the C# version. Although different compilers can sometimes introduce their own
optimizations, as a general rule of thumb no .NET language outperforms any other .NET language,
because they all share the same common infrastructure. This infrastructure is formalized in the CLS
(Common Language Specification), which is described in the following sidebar, entitled “The Common
Language Specification.”

It’s worth noting that IL has been adopted as an Ecma and ISO standard. This adoption allows the
adoption of other common language frameworks on other platforms. The Mono project at
http://www.mono-project.comis the best example of such a project.

The Common Language Specification

The CLR expects all objects to adhere to a specific set of rules so that they can interact. The CLS is this set
of rules.

The CLS defines many laws that all languages must follow, such as primitive types, method overloading,
and so on. Any compiler that generates IL code to be executed in the CLR must adhere to all rules
governed within the CLS. The CLS gives developers, vendors, and software manufacturers the opportunity
to work within a common set of specifications for languages, compilers, and data types. You can find a list
of a large number of CLS-compliant languages at http://dotnetpowered.com/languages.aspx.

Given these criteria, the creation of a language compiler that generates true CLR-compliant code can be
complex. Nevertheless, compilers can exist for virtually any language, and chances are that there may
eventually be one for just about every language you’d ever want to use. Imagine—mainframe
programmers who loved COBOL in its heyday can now use their knowledge base to create web
applications!

http://www.mono-project.com
http://dotnetpowered.com/languages.aspx

CHAPTER 1 " INTRODUCING ASP.NET

#4: ASP.NET Is Hosted by the Common Language Runtime

Perhaps the most important aspect of the ASP.NET engine is that it runs inside the runtime environment
of the CLR. The whole of the .NET Framework—that is, all namespaces, applications, and classes—is
referred to as managed code. Though a full-blown investigation of the CLR is beyond the scope of this
chapter, some of the benefits are as follows:

Automatic memory management and garbage collection: Every time your application instantiates
areference-type object, the CLR allocates space on the managed heap for that object. However, you
never need to clear this memory manually. As soon as your reference to an object goes out of scope
(or your application ends), the object becomes available for garbage collection. The garbage
collector runs periodically inside the CLR, automatically reclaiming unused memory for
inaccessible objects. This model saves you from the low-level complexities of C++ memory handling
and from the quirkiness of COM reference counting.

Type safety: When you compile an application, .NET adds information to your assembly that
indicates details such as the available classes, their members, their data types, and so on. As a result,
other applications can use them without requiring additional support files, and the compiler can
verify that every call is valid at runtime. This extra layer of safety completely obliterates whole
categories of low-level errors.

Extensible metadata: The information about classes and members is only one of the types of
metadata that .NET stores in a compiled assembly. Metadata describes your code and allows you to
provide additional information to the runtime or other services. For example, this metadata might
tell a debugger how to trace your code, or it might tell Visual Studio how to display a custom control
at design time. You could also use metadata to enable other runtime services, such as transactions
or object pooling.

Structured error handling: .NET languages offer structured exception handling, which allows you to
organize your error-handling code logically and concisely. You can create separate blocks to deal
with different types of errors. You can also nest exception handlers multiple layers deep.

Multithreading: The CLR provides a pool of threads that various classes can use. For example, you
can call methods, read files, or communicate with web services asynchronously, without needing to
explicitly create new threads.

Figure 1-2 shows a high-level look at the CLR and the .NET Framework.

CHAPTER 1 " INTRODUCING ASP.NET

ADO.NET Web Forms Windows Forms
Data Access
XML) [File 1/0) [(And So On)

Core System Classes (Threading, Serialization, Reflection, Collections, And So On)

The .NET Class Library

Compiler and Loader

Code Verification and Optimization

Memory Management and Garbage Collection

Code Access Security

(Other Managed Code Services)

The Common Language Runtime

Figure 1-2. The CLR and the .NET Framework

TN NN Y
NN AN\ AN\ AN\

#5: ASP.NET Is Object-Oriented

ASP provides a relatively feeble object model. It provides a small set of objects; these objects are really
just a thin layer over the raw details of HTTP and HTML. On the other hand, ASP.NET is truly object-
oriented. Not only does your code have full access to all objects in the .NET Framework, but you can also
exploit all the conventions of an OOP (object-oriented programming) environment. For example, you
can create reusable classes, standardize code with interfaces, extend existing classes with inheritance,
and bundle useful functionality in a distributable, compiled component.

One of the best examples of object-oriented thinking in ASP.NET is found in server-based controls.
Server-based controls are the epitome of encapsulation. Developers can manipulate control objects
programmatically using code to customize their appearance, provide data to display, and even react to
events. The low-level HTML markup that these controls render is hidden away behind the scenes.
Instead of forcing the developer to write raw HTML manually, the control objects render themselves to
HTML just before the web server sends the page to the client. In this way, ASP.NET offers server controls
as a way to abstract the low-level details of HTML and HTTP programming.

10

CHAPTER 1 " INTRODUCING ASP.NET

Here’s a quick example with a standard HTML text box that you can define in an ASP.NET web page:

<input type="text" id="myText" runat="server" />

With the addition of the runat="server" attribute, this static piece of HTML becomes a fully
functional server-side control that you can manipulate in C# code. You can now work with events that it
generates, set attributes, and bind it to a data source.

For example, you can set the text of this box when the page first loads using the following C# code:

void Page_Load(object sender, EventArgs e)

myText.Value = "Hello World!";

Technically, this code sets the Value property of an HtmlInputText object. The end result is that a
string of text appears in a text box on the HTML page that’s rendered and sent to the client.

HTML Controls VS. Web Controls

When ASP.NET was first created, two schools of thought existed. Some ASP.NET developers were most
interested in server-side controls that matched the existing set of HTML controls exactly. This approach
allows you to create ASP.NET web-page interfaces in dedicated HTML editors, and it provides a quick
migration path for existing ASP pages. However, another set of ASP.NET developers saw the promise of
something more—rich server-side controls that didn’t just emulate individual HTML tags. These controls
might render their interface from dozens of distinct HTML elements while still providing a simple object-
based interface to the programmer. Using this model, developers could work with programmable menus,
calendars, data lists, validators, and so on.

After some deliberation, Microsoft decided to provide both models. You’ve already seen an example of
HTML server controls, which map directly to the basic set of HTML tags. Along with these are ASP.NET
web controls, which provide a higher level of abstraction and more functionality. In most cases, you'll use
HTML server-side controls for backward compatibility and quick migration, and use web controls for new
projects.

ASP.NET web control tags always start with the prefix asp: followed by the class name. For example, the
following snippet creates a text box and a check box:

<asp:TextBox id="myASPText" Text="Hello ASP.NET TextBox" runat="server" />
<asp:CheckBox id="myASPCheck" Text="My CheckBox" runat="server" />

Again, you can interact with these controls in your code, as follows:

myASPText.Text = "New text";
myASPCheck.Text = "Check me!";

Notice that the Value property you saw with the HTML control has been replaced with a Text property. The
HtmlinputText.Value property was named to match the underlying value attribute in the HTML <input> tag.
However, web controls don’t place the same emphasis on correlating with HTML syntax, so the more
descriptive property name Text is used instead.

The ASP.NET family of web controls includes complex rendered controls (such as the Calendar and
TreeView), along with more streamlined controls (such as TextBox, Label, and Button), which map closely
to existing HTML tags. In the latter case, the HTML server-side control and the ASP.NET web control
variants provide similar functionality, although the web controls tend to expose a more standardized,

CHAPTER 1 " INTRODUCING ASP.NET

streamlined interface. This makes the web controls easy to learn, and it also means they’re a natural fit for
Windows developers moving to the world of the Web, because many of the property names are similar to
the corresponding Windows controls.

#6: ASP.NET Supports all Browsers

One of the greatest challenges web developers face is the wide variety of browsers they need to support.
Different browsers, versions, and configurations differ in their support of XHTML, CSS, and JavaScript.
Web developers need to choose whether they should render their content according to the lowest
common denominator, and whether they should add ugly hacks to deal with well-known quirks on
popular browsers.

ASP.NET addresses this problem in a remarkably intelligent way. Although you can retrieve
information about the client browser and its capabilities in an ASP.NET page, ASP.NET actually
encourages developers to ignore these considerations and use a rich suite of web server controls. These
server controls render their markup adaptively by taking the client’s capabilities into account. One
example is ASP.NET’s validation controls, which use JavaScript and DHTML (Dynamic HTML) to
enhance their behavior if the client supports it. Another example is the set of Ajax-enabled controls,
which uses complex JavaScript routines that test browser versions and use carefully tested workarounds
to ensure consistent behavior. These features are optional, but they demonstrate how intelligent
controls can make the most of cutting-edge browsers without shutting out other clients. Best of all, you
don’t need any extra coding work to support both types of client.

#7: ASP.NET Is Easy to Deploy and Configure

One of the biggest headaches a web developer faces during a development cycle is deploying a
completed application to a production server. Not only do the web-page files, databases, and
components need to be transferred, but components need to be registered and a slew of configuration
settings need to be re-created. ASP.NET simplifies this process considerably.

Every installation of the .NET Framework provides the same core classes. As a result, deploying an
ASP.NET application is relatively simple. For no-frills deployment, you simply need to copy all the files
to a virtual directory on a production server (using an FTP program or even a command-line command
like XCOPY). As long as the host machine has the .NET Framework, there are no time-consuming
registration steps. Chapter 18 covers deployment in detail.

Distributing the components your application uses is just as easy. All you need to do is copy the
component assemblies along with your website files when you deploy your web application. Because all
the information about your component is stored directly in the assembly file metadata, there’s no need
to launch a registration program or modify the Windows registry. As long as you place these components
in the correct place (the Bin subdirectory of the web application directory), the ASP.NET engine
automatically detects them and makes them available to your web-page code. Try that with a traditional
COM component!

Configuration is another challenge with application deployment, particularly if you need to transfer
security information such as user accounts and user privileges. ASP.NET makes this deployment process
easier by minimizing the dependence on settings in IIS (Internet Information Services). Instead, most
ASP.NET settings are stored in a dedicated web.config file. The web.config file is placed in the same
directory as your web pages. It contains a hierarchical grouping of application settings stored in an easily
readable XML format that you can edit using nothing more than a text editor such as Notepad. When you
modify an application setting, ASP.NET notices that change and smoothly restarts the application in a new
application domain (keeping the existing application domain alive long enough to finish processing any
outstanding requests). The web.config file is never locked, so it can be updated at any time.

11

12

CHAPTER 1 " INTRODUCING ASP.NET

The Evolution of ASP.NET

When Microsoft released ASP.NET 1.0, even it didn'’t anticipate how enthusiastically the technology
would be adopted. ASP.NET quickly became the standard for developing web applications with
Microsoft technologies and a heavy-hitting competitor against all other web development platforms.
Since that time, ASP.NET has had several updates. The following sections explain how ASP.NET has
evolved over the years.

ASP.NET 1.0 and 1.1

When ASP.NET 1.0 first hit the scene, its core idea was a model of web page design called web forms. As
you'll see in the early chapters in this book, the web form model is simply an abstraction that models
your page as a combination of objects. When a browser requests a specific page, ASP.NET instantiates
the page object, and then creates objects for all the ASP.NET controls inside that page. The page and its
control go through a sequence of life-cycle events, and then—when the page processing is finished—
they render the final HTML and are released from memory. The bulk of ASP.NET programming is filling
in what happens in between.

ASP.NET 2.0

It’s a testament to the good design of ASP.NET 1.0 and 1.1 that few of the changes introduced in
ASP.NET 2.0 were fixes for existing features. Instead, ASP.NET 2.0 kept the same core abstraction (the
web form model) and concentrated on adding new, higher-level features. Some of the highlights include:

* Master pages: Master pages are reusable page templates. For example, you can
use a master page to ensure that every web page in your application has the same
header, footer, and navigation controls.

* Themes: Themes allow you to define a standardized set of appearance
characteristics for web controls. Once defined, you can apply these formatting
presets across your website for a consistent look.

* Navigation. ASP.NET’s navigation framework includes a mechanism for defining
site maps that describe the logical arrangement of pages in a website. It also
includes navigation controls (such as trees and breadcrumb-style links) that use
this information to let users move through the site.

* Security and membership: ASP.NET 2.0 added a slew of security-related features,
including automatic support for storing user credentials, a role-based
authorization feature, and prebuilt security controls for common tasks like logging
in, registering, and retrieving a forgotten password.

* Data source controls: The data source control model allows you to define how
your page interacts with a data source declaratively in your markup, rather than
having to write the equivalent data access code by hand. Best of all, this feature
doesn’t force you to abandon good component-based design—you can bind to a
custom data component just as easily as you bind directly to the database.

* Web parts: One common type of web application is the portal, which centralizes
different information using separate panes on a single web page. Web parts
provide a prebuilt portal framework complete with a flow-based layout,
configurable views, and even drag-and-drop support.

CHAPTER 1 " INTRODUCING ASP.NET

* Profiles: Profiles allow you to store user-specific information in a database
without writing any database code. Instead, ASP.NET takes care of the tedious
work of retrieving the profile data when it’s needed and saving the profile data
when it changes.

The Provider Model

Many of the features introduced in ASP.NET 2.0 work through an abstraction called the provider model.
The beauty of the provider model is that you can use the simple providers to build your page code. If your
requirements change, you don’t need to change a single page—instead, you simply need to create a
custom provider and update your website configuration.

For example, most serious developers will quickly realize that the default implementation of profiles is a
one-size-fits-all solution that probably won’t suit their needs. It doesn’t work if you need to use existing
database tables, store encrypted information, or customize how large amounts of data are cached to
improve performance. However, you can customize the profile feature to suit your needs by building your
own profile provider. This allows you to use the convenient profile features but still control the low-level
details. Of course, the drawback is that you're still responsible for some of the heavy lifting, but you gain
the flexibility and consistency of the profile model.

You'll learn how to use provider-based features and create your own providers throughout this book.

ASP.NET 3.5

Developers who are facing ASP.NET 3.5 for the first time are likely to wonder what happened to ASP.NET
3.0. Oddly enough, it doesn’t exist. Microsoft used the name .NET Framework 3.0 to release new
technologies—most notably, WPF (Windows Presentation Foundation), a slick new user interface
technology for building rich clients, WCF (Windows Communication Foundation), a technology for
building message-oriented services, and WF (Windows Workflow Foundation), a technology that allows
you to model a complex business process as a series of actions (optionally using a visual flowchart-like
designer). However, the .NET Framework 3.0 doesn’t include a new version of the CLR or ASP.NET.
Instead, the next release of ASP.NET was rolled into the .NET Framework 3.5.

Compared to ASP.NET 2.0, ASP.NET 3.5 is a more gradual evolution. Its new features are
concentrated in two areas: LINQ and Ajax, as described in the following sections.

LINQ

LINQ (Language Integrated Query) is a set of extensions for the C# and Visual Basic languages. It allows
you to write C# or Visual Basic code that manipulates in-memory data in much the same way you query
a database.

Technically, LINQ defines about 40 query operators, such as select, from, in, where, and orderby (in
C#). These operators allow you to code your query. However, there are various types of data on which
this query can be performed, and each type of data requires a separate flavor of LINQ.

The most fundamental LINQ flavor is LINQ to Objects, which allows you to take a collection of
objects and perform a query that extracts some of the details from some of the objects. LINQ to Objects
isn’t ASP.NET-specific. In other words, you can use it in a web page in exactly the same way that you use
it in any other type of .NET application.

Along with LINQ to Objects is LINQ to DataSet, which provides similar behavior for querying an in-
memory DataSet object, and LINQ to XML, which works on XML data. But one of the most interesting
flavors of LINQ is LINQ to Entities, which allows you to use the LINQ syntax to execute a query against a

13

14

CHAPTER 1 " INTRODUCING ASP.NET

relational database. Essentially, LINQ to Entities creates a properly parameterized SQL query based on
your code, and executes the query when you attempt to access the query results. You don’t need to write
any data access code or use the traditional ADO.NET objects.

LINQ to Objects, LINQ to DataSet, and LINQ to XML are features that complement ASP.NET, and
aren’t bound to it in any specific way. However, ASP.NET includes enhanced support for LINQ to
Entities, including a data source control that lets you perform a query through LINQ to Entities and bind
the results to a web control, with no extra code required. You'll take a look at LINQ to Objects, LINQ to
DataSet, and LINQ to Entities in Chapter 13. You'll consider LINQ to XML in Chapter 14.

Note If you programmed with ASP.NET 3.5, you may have used another technique to access relational
databases, called LINQ to SQL. Although LINQ to SQL is still supported (so you don’t need to rewrite existing
applications), it’s been largely replaced by LINQ to Entities. LINQ to Entities is far more flexible and supports more
types of data providers, while LINQ to SQL is limited to SQL Server only.

ASP.NET AJAX

Because traditional ASP.NET code does all its work on the web server, every time an action occurs in the
page the browser needs to post some data to the server, get a new copy of the page, and refresh the
display. This process, though fast, introduces a noticeable flicker. It also takes enough time that it isn’t
practical to respond to events that fire frequently, such as mouse movements or key presses.

Web developers work around these sorts of limitations using JavaScript, the only broadly supported
client-side scripting language. In ASP.NET, many of the most powerful controls use a healthy bit of
JavaScript. For example, the Menu control responds immediately as the user moves the mouse over
different subheadings. When you use the Menu control, your page doesn’t post back to the server until
the user clicks an item.

In traditional ASP.NET pages, developers use server controls such as Menu and gain the benefit of
the client-side script these controls emit. However, even with advanced controls, some postbacks are
unavoidable. For example, if you need to update the information on a portion of the page, the only way
to accomplish this in ordinary ASP.NET is to post the page back to the server and get an entirely new
HTML document. The solution works, but it isn’t seamless.

Restless web developers have responded to challenges like these by using more client-side code and
applying it in more advanced ways. One of the most talked about examples today is Ajax (Asynchronous
JavaScript and XML). Ajax is programming shorthand for a client-side technique that allows your page to
call the server and update its content without triggering a complete postback. Typically, an Ajax page
uses client-side script code to fire an asynchronous request behind the scenes. The server receives this
request, runs some code, and then returns the data your page needs (often as a block of XML markup).
Finally, the client-side code receives the new data and uses it to perform another action, such as
refreshing part of the page. Although Ajax is conceptually quite simple, it allows you to create pages that
work more like seamless, continuously running applications. Figure 1-3 illustrates the differences.

Normal Page Updates

with ASP.NET

Browser

Do Something —

Browser

Click triggers a
posthack

Do Something

ASP.NET

Server returns a
new HTML page
with the changes

|

Page Updates
with Ajax

Browser

LXML data that's used

Click triggers an

Do Something | |——— asynchronol

us call 1

ASP.NET

Server returns

to update the page

Figure 1-3. Ordinary server-side pages vs. Ajax

CHAPTER 1

INTRODUCING ASP.NET

Ajax and similar client-side scripting techniques are nothing new, but in recent years they’ve begun
to play an increasingly important role in web development. One of the reasons is that the
XMLHttpRequest object—the plumbing that’s required to support asynchronous client requests—is

now present in the majority of modern browsers, including the following:

Internet Explorer 5 and newer

Netscape 7 and newer
Opera 7.6 and newer
Safari 1.2 and newer

Firefox (any version)

Google Chrome (any version)

15

16

CHAPTER 1 " INTRODUCING ASP.NET

However, writing the client-side script in such a way that it’'s compatible with all browsers and
implementing all the required pieces (including the server-side code that handles the asynchronous
requests) can be a bit tricky. As you'll see in Chapter 29, ASP.NET provides a client callback feature that
handles some of the work. However, ASP.NET also includes a much more powerful abstraction layer
named ASP.NET AJAX, which extends ASP.NET with impressive Ajax-style features. You'll explore
ASP.NET AJAX in Chapter 30.

Note It’s generally accepted that Ajax isn’t written in all capitals, because the word is no longer treated as an
acronym. However, Microsoft chose to capitalize it when naming ASP.NET AJAX. For that reason, you’ll see two
capitalizations of Ajax in this book—Ajax when talking in general terms about the technology and philosophy of
Ajax, and AJAX when talking about ASP.NET AJAX, which is Microsoft’s specific implementation of these concepts.

ASP.NET 4

In its latest version, ASP.NET continues to plug in new enhancements and refinements. The most
significant ones include:

Consistent XHTML rendering; ASP.NET 3.5 made it possible to render ASP.NET web pages as
XHTML documents, but there were still a few issues to trip up unsuspecting developers. (For
example, you had to opt-in through a configuration file setting to get true, strict XHTML.) ASP.NET 4
smooths out the wrinkles and makes clean, quirk-free XHTML the standard. Chapter 3 covers the
details.

Updated browser detection: ASP.NET 4 ships with updated browser definition files, which means its
server-side rendering engine can recognize and provide properly targeted support to a wider range
of browsers. Better-supported browsers include Google Chrome, Internet Explorer 8, Firefox 3.5,
Opera 10, Safari 4, and the mobile browsers for the BlackBerry, IPhone, IPod, and Windows Mobile
operating system. You'll learn more about browser definitions in Chapter 27.

Session state compression: Microsoft added the System.IO.Compression namespace with gzip
support in .NET 2.0. Now, ASP.NET can use it to compress the data it passes to an out-of-processs
session state service. This technique makes sense in a fairly narrow set of circumstances, but if it
applies to you, the performance improvement is almost automatic. Chapter 6 explains how it works.

Opt-in view state. Rather than disabling view state selectively, per control, you can now turn it off
for an entire page and then opt-in when necessary. This allows you to easily slim down your page
size. Chapter 6 shows you how to use this feature.

Extensible caching: Caching is one of ASP.NET’s premiere features, but with the exception of SQL
Server cache dependencies, caching hasn’t seen any new features since .NET 1.0. With ASP.NET 4,
Microsoft finally begins exposing the caching extensibility points that will allow them (and other
developers) to use new types of cache storage, including distributed caching solutions such as
Windows Server AppFabric and memcached. Although these extra bits of infrastructure aren’t all
there yet, Chapter 11 shows how the model works.

The Chart control: For years, ASP.NET developers have been forced to master the GDI+ drawing
model or purchase a third-party control to create a respectable graph. Now, ASP.NET includes an
impressive Chart control that supports a range of beautifuly rendered two- and three-dimensional
graphs (including line, bar, curve, area, pie, doughnut, and point charts, complete with features like
error bars and Bollinger bands). You'll explore the Chart control in Chapter 28.

CHAPTER 1 " INTRODUCING ASP.NET

Revamped Visual Studio: Although the Visual Studio 2010 interface still follows the same basic
design, it’s been completely rebuilt using .NET and WPF (Windows Presentation Foundation). Along
the way, Microsoft managed to introduce a few frills, like the enhanced IntelliSense you’ll learn
about in Chapter 2, and the new visual designer that makes designing Silverlight content a breeze
(Chapter 34).

Routing: ASP.NET MVC includes support for meaningful, search-engine-friendly URLs. In ASP.NET
4, you can use the same routing technology to redirect web form requests. Chapter 17 demonstrates
this technique.

Better deployment tools: Visual Studio now allows you to create web packages, compressed files
that contain your application content and other details such as SQL Server database schemas and
IIS settings. Web packages also work in conjunction with a new web.config transformation feature
that allows you to cleanly separate the settings that apply to the test build of your application and
the ones that apply to the deployed instance. Finally, you can load and precompile a newly
deployed application more easily with the IIS application warm-up module. Chapter 18 has the
details on all these features.

Although these features are undeniably useful, the most impressive new additions to ASP.NET
development come from two separate add-ins: ASP.NET MVC and ASP.NET Dynamic Data. Both of
these features invite you to abandon part of the traditional ASP.NET development model for a different
approach, with a different set of benefits and drawbacks. In many ways, they represent the start of a new
direction in web application programming. But if either one fits your needs, it has the potential to
reduce your work dramatically.

ASP.NET MVC

ASP.NET MVC (which stands for Model-View-Controller) offers a dramatically different way to build web
pages than the standard web forms model. The core idea is that your application is separated into three
logical parts. The model includes the application-specific business code—for example, data-access logic
and validation rules. The view creates a suitable representation of the model by rendering it to HTML
pages. The controller coordinates the whole show, handling user interactions, updating the model, and
passing the information to the view.

The MVC pattern sidelines several traditional ASP.NET concepts, including web forms, web
controls, view state, postbacks, and session state. As a result, it forces developers to adopt a new way of
thinking (and accept a temporary drop in productivity). To some, the MVC pattern is cleaner and more
suited to the Web. To others, it’s extra effort with no clear payoff. But if any of the following points are
important to you, it’s worth at least considering ASP.NET MVC:

Test-driven development: Thanks to the clean separation of parts in an ASP.NET MVC application,
it’s easy to create unit tests that exercise it. With web forms, automated testing is tedious and often
impossible.

Control over HTML markup: With web forms, you program against a rich set of objects that take
care of state management and HTML rendering. With ASP.NET MVC, you inject content in a way
that’s more like data binding. While this means that complex formatted pages may take more work
to design, it also means that you have complete control over every markup detail. This control is
useful if you plan to write client-side JavaScript or use a third-party JavaScript library like jQuery.
(On the other hand, if you aren’t comfortable or interested in mucking around with HTML, web
forms is probably a better framework for your applications.)

Control over URLs: Although ASP.NET continues to give developers more control over URL routing,
ASP.NET MVC has the concept built-in. Controllers handle the mapping between URLs and your
application logic, which means it’s easy to use URL configurations such as /Products/List/Beverages
instead of /Products/List.aspx?category=Beverages. These clear, readable URLs make search-engine
optimization easier and more effective.

17

18

CHAPTER 1 " INTRODUCING ASP.NET

On the other hand, if you prefer to have rapid application design, a high-level model that manages
state for you, and a range of rich web controls, web forms will probably remain your first choice
development model.

Most of this book focuses on web forms, ASP.NET’s core model. You'll get an introduction to
ASP.NET MVC in Chapter 32. For much more information, you can visit the official ASP.NET MVC
website at http://www.asp.net/mvc, or refer to the excellent book Pro ASP.NET MVC Framework by
Steven Sanderson (Apress, 2009).

ASP.NET Dynamic Data

ASP.NET Dynamic Data is a scaffolding framework that allows you to quickly build a data-driven
application. When used in conjunction with LINQ to SQL or LINQ to Entities (as it almost always is),
Dynamic Data gives you an end-to-end solution that takes you from database schema to a full-fledged
web application with support for viewing, editing, inserting, and deleting records.

It’s important to realize that Dyanmic Data isn’t just a code and markup generation tool for
developers who are too lazy to build their own custom applications. Instead, it’s a template-based,
componentized, and thoroughly customizable framework that’s ideal for creating applications that are
all about data. In fact, Dynamic Data can be seen as a logical extension of the rich data controls that
ASP.NET already provides (like the GridView, DetailsView, and FormView). But instead of forcing you to
modify many different data controls on many different pages to get the effect you want, Dynamic Data
uses field-based templates that are defined once and shared everywhere. Combine this clean design with
new features—such as validation that’s based on the database schema and easier filtering based on
foreign key relationships—and you can see why Dynamic Data is a compelling approach for web
applications that focus on viewing and editing database records. You'll explore ASP.NET Dynamic Data
in Chapter 33.

Silverlight

Recently, there’s been a lot of excitement about Silverlight, a rapidly evolving Microsoft technology that
allows a variety of browsers on a variety of operating systems to run true .NET code. Silverlight works
through a browser plug-in, and provides a subset of the .NET Framework class library. This subset
includes a slimmed-down version of WPF, the technology that developers use to craft next-generation
Windows user interfaces.

So where does Silverlight fit into the ASP.NET world? Silverlight is all about client code—quite simply,
it allows you to create richer pages than you could with HTML, DHTML, and JavaScript alone. In many
ways, Silverlight duplicates the features and echoes the goals of Adobe Flash. By using Silverlight in a web
page, you can draw sophisticated 2D graphics, animate a scene, and play video and other media files.

Silverlight is perfect for creating a mini-applet, like a browser-hosted game. It’s also a good choice
for adding interactive media and animation to a website. However, Silverlight obviously isn’t a good
choice for tasks that require server-side code, such as performing a secure checkout in an e-commerce
shop, verifying user input, or interacting with a server-side database. And because Silverlight is still a
new, emerging technology, it’s too early to make assumptions about its rate of adoption. That means it’s
not a good choice to replace basic ingredients in a website with Silverlight content. For example,
although you can use Silverlight to create an animated button, this is a risky strategy. Users without the
Silverlight plug-in won’t be able to see your button or interact with it. (Of course, you could create more
than one front end for your web application, using Silverlight if it’s available or falling back on regular
ASP.NET controls if it’s not. However, this approach requires a significant amount of work.)

In many respects, Silverlight is a complementary technology to ASP.NET. ASP.NET 4 doesn’t
include any features that use Silverlight, but you can freely mix ASP.NET pages and Silverlight pages
on a website—or place Silverlight content in an ASP.NET page. It’s also possible that developers will
some day use ASP.NET web controls that render Silverlight content. Using these controls, you just
might gain the best of both worlds—the server-side programming model of ASP.NET and the rich

http://www.asp.net/mvc

CHAPTER 1 " INTRODUCING ASP.NET

interactivity of client-side Silverlight. In Chapter 34, you'll get a thorough introduction to Silverlight.
Or, for a comprehensive look that covers all the features of Silverlight consider Pro Silverlight 3 in C#

(Apress, 2010).

Summary

So far, you've just scratched the surface of the features and frills that are provided in ASP.NET and the
.NET Framework. You've taken a quick look at the high-level concepts you need to understand in order
to be a competent ASP.NET programmer. You've also previewed the new features that ASP.NET 4 offers.
As you continue through this book, you'll learn much more about the innovations and revolutions of
ASP.NET 4 and the .NET Framework.

19

CHAPTER 2

Visual Studio

With ASP.NET, you have several choices for developing web applications. If you're inclined (and don’t
mind the work), you can code every web page and class by hand using a bare-bones text editor. This
approach is appealingly straightforward but tedious and error-prone for anything other than a simple
page. Professional ASP.NET developers rarely go this route.

Instead, almost all large-scale ASP.NET websites are built using Visual Studio. This professional
development tool includes a rich set of design tools, including legendary debugging tools and
IntelliSense, which catches errors and offers suggestions as you type. Visual Studio also supports the
robust code-behind model, which separates the .NET code you write from the web-page markup tags.
To seal the deal, Visual Studio adds a built-in test web server that makes debugging websites easy.

In this chapter, you'll tour the Visual Studio IDE (Integrated Development Environment) and
consider the two ways you can create an ASP.NET web application in Visual Studio—either as a
straightforward website or as a web project. You'll also learn about the code model used for ASP.NET
web pages and the compilation process used for ASP.NET web applications. Finally, you'll take a quick
look at the Web Development Helper, a browser-based debugging tool that you can use in conjunction
with Visual Studio.

What’s New Although Visual Studio 2010 follows the same basic model as earlier versions, it gets a significant
facelift. In fact, Visual Studio 2010 has been completely rewritten using WPF (Microsoft’s .NET-based user-interface
technology), and the result is a cleaner, more modern interface. Most of the changes are in the details, such as
reduced on-screen clutter and streamlined IntelliSense (as described in the “Visual Studio 2010 Improvements”
section). But developers working with WPF or Silverlight (Chapter 34) get a long-awaited designer that lets them build
user interfaces by dragging and dropping controls from the Toolbox, just like in an ASP.NET page.

Introducing Visual Studio

Writing and compiling code by hand would be a tedious task for any developer. But the Visual Studio
IDE offers a slew of high-level features that go beyond basic code management. These are some of Visual
Studio’s advantages:

An integrated web server: To host an ASP.NET web application, you need web server software like
IIS, which waits for web requests and serves the appropriate pages. Setting up your web server isn’t
difficult, but it can be inconvenient. Thanks to the integrated development web server in Visual
Studio, you can run a website directly from the design environment. You also have the added

22

CHAPTER 2 I VISUAL STUDIO

security of knowing no external computer can run your test website, because the test server only
accepts connections from the local computer.

Multilanguage development: Visual Studio allows you to code in your language or languages of
choice using the same interface (IDE) at all times. Furthermore, Visual Studio allows you to create
web pages in different languages, but include them all in the same web site. There are only two
limitations: you can’t use more than one language in the same web page (which would create
obvious compilation problems), and you must use the projectless website model (not web projects).

Less code to write: Most applications require a fair bit of standard boilerplate code, and ASP.NET
web pages are no exception. For example, when you add a web control, attach event handlers, and
adjust formatting, a number of details need to be set in the page markup. With Visual Studio, these
details are set automatically.

Intuitive coding style: By default, Visual Studio formats your code as you type, indenting
automatically and using color-coding to distinguish elements such as comments. These minor
differences make code much more readable and less prone to error. You can even configure what
automatic formatting Visual Studio applies, which is great if you prefer different brace styles (such
as K&R style, which always puts the opening brace on the same line as the preceding declaration).

Tip To change the formatting options in Visual Studio, select Tools » Options, and then look at the groups
under the Text Editor » C# » Formatting section. You'll see a slew of options that control where curly braces
should be placed

Faster development time: Many of the features in Visual Studio are geared toward helping you get
your work done faster. Convenience features allow you to work quickly and efficiently, such as
IntelliSense (which flags errors and can suggest corrections), search-and-replace (which can hunt
for keywords in one file or an entire project), and automatic comment and uncomment features
(which can temporarily hide a block of code).

Debugging: The Visual Studio debugging tools are the best way to track down mysterious errors and
diagnose strange behavior. You can execute your code one line at a time, set intelligent breakpoints
that you can save for later use, and view current in-memory information at any time.

Visual Studio also has a wealth of features that you won’t see in this chapter, including project
management, integrated source code control, code refactoring, macros, and a rich extensibility model.
Furthermore, if you're using Visual Studio 2010 Team System you’ll gain advanced unit testing,
collaboration, and code versioning support (which is far beyond that available in simpler tools such as
Visual SourceSafe). Although Visual Studio Team System isn’t discussed in this chapter, you can learn
more from http://msdn.microsoft.com/teamsystem.

Websites and Web Projects

Somewhat confusingly, Visual Studio offers two ways to create an ASP.NET-powered web application:

* Project-based development: When you create a web project, Visual Studio
generates a .csproj project file (assuming you're coding in C#) that records the files
in your project and stores a few debugging settings. When you run a web project,
Visual Studio compiles all your code into a single assembly before launching your
web browser.

http://msdn.microsoft.com/teamsystem

CHAPTER 2 © VISUAL STUDIO

* Projectless development: An alternate approach is to create a simple website
without any project file. In this case, Visual Studio assumes that every file in the
website directory (and its subdirectories) is part of your web application. In this
scenario, Visual Studio doesn’t need to precompile your code. Instead, ASP.NET
compiles your website the first time you request a page. (Of course, you can use
precompilation to remove the first-request overhead for a deployed web
application. Chapter 18 explains how.)

The first .NET version of Visual Studio used the project model. Visual Studio 2005 removed the
project model in favor of projectless development. However, a small but significant group of developers
revolted. Realizing that there were specific scenarios that worked better with project-based
development, Microsoft released a download that added the project feature back to Visual Studio 2005.
Now, both options are supported in Visual Studio 2010.

In this chapter, you'll begin by creating the standard projectless website, which is the simpler, more
streamlined approach. Later in this chapter, you’ll learn what scenarios work better with project-based
development, and you’ll see how to create web projects.

Creating a Projectless Website

To get right to work and create a new web application, choose File » New » Web Site. Visual Studio will
show the New Web Site dialog box (see Figure 2-1).

1. Choose the 2. Choose the 3. Choose the
language version of .NET website template

4. Choose the
location

Figure 2-1. The New Web Site window

23

CHAPTER 2 I VISUAL STUDIO

To create a new website, you must choose the development language (at the left), the version of
.NET (at the top of the middle section), the website template (in the middle), and the location (at the
bottom). Then, once you've specified these details, click OK to create your website.

The following sections expand on each of these details.

The Hidden Solution File

Although projectless development simplifies life, the last vestiges of Visual Studio’s solution-based system
are still lurking behind the scenes.

When you create a web application, Visual Studio actually creates solution files (.sln and .suo) in a user-
specific directory like c:\Users\[UserName]\Documents\Visual Studio 2010\Projects\[WebsiteFolderName].
The solution files provide a few Visual Studio-specific features that aren’t directly related to ASP.NET, such
as debugging settings. For example, if you add a breakpoint to the code in a web page (as discussed in the
“Visual Studio Debugging” section later in this chapter), Visual Studio stores the breakpoint in the .suo file.
The next time you open the website, Visual Studio locates the matching solution files automatically.
Similarly, Visual Studio uses the solution files to keep track of the files that are currently open in the design
environment so that it can restore your view when you return to the website. This approach to solution
management is fragile—obviously, if you move the website from one location to another, you lose all this
information. However, because this information isn’t really all that important (think of it as a few project-
specific preferences), losing it isn’t a serious problem. The overall benefits of a projectless system are
usually worth the trade-off.

If you want a more permanent solution, you can save your solution files explicitly in a location of your
choosing. To do so, simply click the top item in the Solution Explorer (which represents your solution). For
example, if you open a folder named MyWebSite, the top item is named Solution 'MyWebSite'. Then,
choose File » Save [SolutionName] As. This technique is handy if you’ve created a solution that combines
multiple applications (for example, a projectless website and a class library component) and you want to
edit and debug them at the same time.

The Development Language

The language identifies the .NET programming language you'll use to code your website. The language
you choose is simply the default language for the project. This means you can explicitly add Visual Basic
web pages to a C# website, and vice versa.

The Framework Version

Older versions of Visual Studio were tightly coupled to specific versions of .NET. You used Visual Studio
.NET to create .NET 1.0 applications, Visual Studio .NET 2003 to create .NET 1.1 applications, and Visual
Studio 2005 to create .NET 2.0 applications.

Visual Studio 2008 removed this restriction with multitargeting, and Visual Studio 2010 continues the
trend. It allows you to create web applications that are designed to work with .NET 2.0, .NET 3.0, .NET 3.5,
or .NET 4. Typically, you'll choose the latest version that your web server supports. Later versions give you
access to more recent features, and all the samples that are included with this book target .NET 4.

Note Of course, there’s no reason that you can’t install multiple versions of .NET on the same web server and
configure different IIS virtual directories to use different versions of ASP.NET (as described in Chapter 18).

CHAPTER 2 © VISUAL STUDIO

To provide accurate multitargeting, Visual Studio 2010 includes reference assemblies for each version
of .NET. These assemblies include the metadata of every type, but none of the code that’s required to
implement it. That means Visual Studio 2010 can use the reference assembly to tailor its Intellisense and
error checking, ensuring that you aren’t able to use controls, classes, or members that aren’t available in
the version of .NET that you're targeting. It also uses this metadata to determine what controls should
appear in the toolbox, what members should appear in the Properties window and Object Browser, and
so on, ensuring that the entire IDE is limited to the version you've chosen.

You can also change the version of .NET that you're targeting after you've created your website. To
do that, follow these steps:

1. Choose Website » Start Options.
2. In the list on the left, choose the Build category.
3. Inthe Target Framework list, choose the version of .NET you want to target.

Note This process is slightly different in a web project. In a web project, you begin by double-clicking the
Properties node in the Solution Explorer. Then, choose the Application tab, which contains the Target Framework
list in which you can choose the version of .NET you want to target.

When you change the .NET version, Visual Studio modifies your web.config file quite significantly.
For example, the web.config file for a .NET 4 application is short and streamlined, because all of the
plumbing it needs is set up in the computer’s root web.config file. But the web.config file for a .NET 3.5
application needs a good deal of extra boilerplate to explicitly enable support for Ajax and C# 3.5
features. You'll dig deeper into the contents of the web.config file in Chapter 5.

The Template

Once you choose a language (in the list on the left), you'll see a list of all the templates that Visual Studio
provides for that language (in the large box in the center). The template determines what files your
website starts with.

Visual Studio supports several types of ASP.NET applications, but all of them are compiled and
executed in the same way. The only difference is the files that Visual Studio creates by default. For
example, if you create a WCF Service, Visual Studio generates a website that starts with a single WCF
service in it, rather than an ASP.NET web page.

Here’s a rundown of your template choices:

ASP.NET Web Site: This creates a full-featured ASP.NET website, with its basic infrastructure
already in place. This website includes a master page that defines the overall layout (with a header,
footer, and menu bar), and ready-made default.aspx and about.aspx pages. It also includes an
Accounts folder with pages for registration, login, and password changing, and a Scripts folder with
the jQuery library for client-side JavaScript.

ASP.NET Empty Web Site: This creates a nearly empty website. It includes a stripped-down
web.config configuration file, and nothing else. Of course, it’s easy to fill in the pieces you need as
you start coding.

Tip If you're relatively new to ASP.NET, start with the ASP.NET Empty Web Site option. Once you’ve read the
other chapters in this book and learned how to use such features as master pages and membership, you’ll be
ready to jump into the somewhat more convoluted ASP.NET Web Site template, if it suits your needs.

25

26

CHAPTER 2 I VISUAL STUDIO

ASP.NET Dynamic Data Entites Web Site: This creates an ASP.NET website that uses the ASP.NET
Dynamic Data feature described in Chapter 33. This website is designed to use the Entity Model to
access the back-end database, while the similarly named ASP.NET Dynamic Data LINQ to SQL Web
Site template uses the older LINQ to SQL approach.

WCEF Service: This creates a WCF service—a library of server-side methods that remote clients (for
example, Windows applications) can call. Although you won’t examine the WCF model in detail in
this book, you will create WCF services to provide server-side functionality for Silverlight pages in
Chapter 34.

ASP.NET Reports Web Site: This creates an ASP.NET website that uses the ReportView control and
SQL Server Reporting Services (a tool for generating database reports that can be viewed and
managed over the Web). The ASP.NET Crystal Reports Web Site template provides a similar service,
but it uses the competing Crystal Reports software.

Although most developers prefer to start with the ASP.NET Empty Web Site or ASP.NET Web Site
template and begin coding, there are still more specialized templates for specific types of web applications.
To view them, click the Online Templates heading on the far left of the New Web Site dialog box. There will
be a short delay while Visual Studio contacts the Microsoft web servers, after which it will add a list of
template subcategories, each with its own group of ready-made templates. For example, ASP.NET
developers can download a template to create a DotNetNuke website (which uses the popular DotNetNuke
portal framework) or an ASP.NET MVC website that uses OpenlID for user authentication.

The Location

The location specifies where the website files will be stored. Typically, you’ll choose File System and
then use a folder on the local computer or a network path. However, you can also edit a website directly
over HTTP or FTP (File Transfer Protocol). This is occasionally useful if you want to perform live website
edits on a remote web server. However, it also introduces additional overhead. Of course, you should
never edit a production web server directly because changes are automatic and irreversible. Instead,
limit your changes to test servers.

If you simply want to create your project in a folder on the file system, you may decide to type it into
the Location box by hand. But if you prefer to see all your options, and hunt for the right location, you
can click the Browse button, which shows the Choose Location dialog box (Figure 2-2).

Along the left side of Choose Location dialog box, you'll see four buttons that let you connect to
different types of locations:

File System: This is the easiest choice—you simply need to browse through a tree of drives and
directories or through the shares provided by other computers on the network. If you want to create
a new directory for your application, just click the Create New Folder icon above the top-right
corner of the directory tree. (You can also coax Visual Studio into creating a directory by adding a
new directory name to the end of your path.)

Local IIS: This choice allows you to browse the virtual directories made available through the IIS
web hosting software, assuming it’s running on the current computer. Chapter 18 describes virtual
directories in detail and shows you how to create them with IIS Manager. Impressively, you can also
create them without leaving Visual Studio. Just select the Default Web Site node and then click the
Create New Web Application icon at the top-right corner of the virtual directory tree.

Note There are two significant limitations to the Local IIS location type, First, you must have IIS 6 Management
Compatibility installed. (This is one of the optional subfeatures of IIS that you’ll see when you install it from the
Windows Features dialog box.) Second, you must choose to run Visual Studio as an administrator when you launch
it. (To do this, right-click the Visual Studio shortcut and choose Run As Administrator.)

CHAPTER 2

FTP Site: This option isn’t quite as convenient as browsing for a directory—instead, you’ll need to
enter all the connection information, including the FTP site, the port, the directory, a user name,

and a password before you can connect.

Remote Web Site: This option accesses a website at a specified URL (uniform resource locator)
using HTTP. For this to work, the web server must have the FrontPage Extensions installed. When
you connect, you'll be prompted for a user name and password.

N File System
@
File System

Select the folder you want to open.

= X
(2} Deskiop -
(L) My Documents
= 1§ My Computer
- 3% Floppy (A1)
[# <e» Applications (C:)
=) Documents (D:)
=) Code .
@) ADO.NET2
R AP e |
[#{) Chapter0z
[#{3) Chapter04
#-{Z3) Chapter0S
() Chapter0t
{3 Chaptero?
#{) Chapterog
[#{3) Chapter10
) Chapter11
() Chapter12
[#{) Chaoter14

Local 115

e

-
FTP Site

@

Remote Site

3

Folder: D:\CodelASP.NET ‘

Choose Location @@ Choose Location

on] Local Internet Information Server
0 Select the Web site you want to open.
File System

‘ 4 Local Web Servers A

B Yocrauk et e |
@ _private
{1 aspnet_client
[aspnet_webadmin
® 4§ AttachmentService
- bin
-4 Clickonceap
@ 4§ client
4 CurrencyConverterl
4§ T1SHelp
(1 images
4§ PortalCsvs
[Printers
[g Scripts
@ & server
® &g StoreCsvs =
4§ StorevBys
4§ TestAppSetup

 Localis

@

-
FTP Site

@

Remote Site

v

[[Juse Secure Sockets Layer

Choose Location

= FTP Site
oV
Server:
File System

‘ ftp.mysite.com

&5

Port:

QJ Directory:
 FPsite [WebRaot
ﬁﬂ [Ipassive Mode
Remote Site [J Anonymous Login
Username:
[user |
Password:

JS Passwords are sent across the network in plaintext (unencrypted text), making
them vulnerable to interception.

Choose Location

= Remote Site

()xl For the Web site location, enter the URL of a Web site configured with the FrontPage Server

File System Extensions.
Web site location:

ot { hitp:ffwaw.mysie.com

e, Hew Web Site...

-
@
| Remote te_

VISUAL STUDIO

Figure 2-2. Browsing to a website location

27

28

CHAPTER 2 I VISUAL STUDIO

Designing a Web Page

To start designing a web page, double-click the web page in the Solution Explorer. If you're using the
ASP.NET Empty Web Site template, start by creating a new page (right-click the website in the
Solution Explorer, choose Add New Item, and pick the Web Form template). A new page begins with
the bare minimum markup that it needs, but has no visible content, so it will appear like a blank page
in the designer.

Visual Studio gives you three ways to look at a web page: source view, design view, and split view.
You can choose the view you want by clicking one of the three buttons at the bottom of the web page
window (Source, Design, or Split). Source view shows the markup for your page (the HTML and ASP.NET
control tags). Design view shows a formatted view of what your page looks like in the web browser. Split
view combines the other two views so that you can see the markup for a page and a live preview at the
same time.

Note Technically, most ASP.NET pages are made up of XHTML, and all ASP.NET controls emit valid XHTML
unless configured otherwise. However, in this chapter we refer to web page markup as HTML, because it can use
HTML or the similar but more stringent XHTML standard. Chapter 3 has more information about ASP.NET’s support
for XHTML.

The easiest way to add an ASP.NET control to a page is to drag the control from the Toolbox on the
left. (The controls in the Toolbox are grouped in numerous categories based on their functions, but
you'll find basic ingredients in the Standard tab.) You can drag a control onto the visual design surface of
a page (using design view), or you can drop it in a specific position of your web page markup (using
source view). Either way, the result is the same. Alternatively, you can type in the control tag that you
need by hand in the source view. In this case, the design view won't be updated until you click in the
design portion of the window or press Ctrl+S to save the web page.

Once you've added a control, you can resize it and configure its properties in the Properties window.
Many developers prefer to lay out new web pages in design view, but switch to source view to rearrange
their controls or perform more detailed tweaking. The exception is with ordinary HTML markup—
although the Toolbox includes a tab of HTML elements, it’s usually easiest to type the tags you need by
hand, rather than dragging and dropping them one at a time.

Figure 2-3 shows a web page in split view, with the source markup in the top half and the graphical
surface in the bottom half.

CHAPTER 2 © VISUAL STUDIO

Default.aspx* - X
Client Objects & Events v (No Events) v
<3@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Li—|

<!DOCTYPE html PUBLIC "-//W3C//DID XHTML 1.0 Transitional//EN" "http://www “|

B <html xmln

hetp://www.w3.0rq/1999/xhtml ">
B <head ru "server"> =
| <title>Untitled Page</title>
</head>
<body>
H—j <form id="forml" runat="server">
E

abell" runat="server" Text="Label" />

Buttonl" runat="server" Text="Button" />

Label

Button

| 3 Design | O Split | & Source <body>
 [H

Figure 2-3. Editing a web page in split view

Tip If you have a widescreen monitor, you’ll probably prefer to have the split view use two side-by-side regions
(rather than a top and bottom region). Fortunately, it’s easy to configure Visual Studio to do so. Just select Tools »
Options, and then head to the HTML Designer »General section in the tree of settings. Finally, select the Split
Views Vertically option and click OK.

To configure a control, click once to select it, or choose it by name in the drop-down list at the top of
the Properties window. Then, modify the appropriate properties in the window, such as Text, ID, and
ForeColor. These settings are automatically translated to the corresponding ASP.NET control tag
attributes and define the initial appearance of your control. Visual Studio even provides special
“choosers” (technically known as UITypeEditors) that allow you to select extended properties. For
example, you can select a color from a drop-down list that shows you the color, and you can configure
the font from a standard font selection dialog box.

Absolute Positioning

To position a control on the page, you need to use all the usual tricks of HTML design, such as
paragraphs, line breaks, tables, and styles. Visual Studio assumes you want to position your elements
using flexible “flow” positioning, so content can grow and shrink dynamically without creating a layout
problem. However, you can also use absolute positioning mode (also known as grid layout) with the help
of the CSS standard. All you need to do is add an inline CSS style for your control that specifies absolute
positioning. Here’s an example that places a button exactly 100 pixels from the left edge of the page and
50 pixels from the top:

29

30

CHAPTER 2 I VISUAL STUDIO

<asp:Button id="cmd" style="POSITION: absolute; left: 100px; top: 50px;"
runat="server" ... />

Once you've made this change, you're free to drag the button around the window at will, and Visual
Studio will update the coordinates in the style correspondingly.

It rarely makes sense to position individual controls using absolute positioning. It doesn’t allow
your layout to adapt to different web browser window sizes, and it causes problems if the content in one
element expands, causing it to overlap another absolutely positioned element. It’s also a recipe for
inflexible layouts that are difficult to change in the future. However, you can use absolute positioning to
place entire containers, and then use flow content inside your container. For example, you could use
absolute positioning to keep a menu bar at the side, but use ordinary flow layout for the list of links
inside. The <div> container is a good choice for this purpose, because it has no built-in appearance
(although you can use style rules to apply a border, background color, and so on). The <div> is
essentially a floating box. In this example, it’s given a fixed 200 pixel width, and the height will expand to
fit the content inside.

<div style="POSITION: absolute; left: 100px; top: 50px; width:200px">
</div>

You can find some common examples of multicolumn layout that use CSS at
http://www.glish.com/css. You'll also learn more about styles in Chapter 16.

Smart Tags

Smart tags make it easier to configure complex controls. Smart tags aren’t offered for all controls, but
they are used for rich controls such as GridView, TreeView, and Calendar.

You'll know a smart tag is available if, when you select a control, you see a small arrow in the top-
right corner. If you click this arrow, a window will appear with links (and other controls) that trigger
higher-level tasks. For example, Figure 2-4 shows how you can use this technique to access Calendar
autoformatting. (Smart tags can include many more features, but the Calendar smart tag provides only a
single link.)

http://www.glish.com/css

CHAPTER 2 © VISUAL STUDIO

Default.aspx* |
|[Tasp:calendar#Calendari|
< August 2007 = E Common Calendar Tasks J

Sun Mon Tue Wed Thu Fri Sat %_ __________
295130731 1 2 3 4 ‘ €t control formatting properties

LS RO G AR L I
{8 KGR . e Vs Ui WA R
1970020 @1 220 230240 (18
2628 2R B30 ST
PR O OIS T A R

=)

< »

: O Split | @ Source El(form#forml)l‘ <asp:Ca|endar#Ca|endar1>] B

Figure 2-4. A smart tag for the Calendar control

Static HTML Tags

As you know, ASP.NET pages contain a mixture of ordinary HTML tags and ASP.NET controls. To add
HTML tags, you simply type them in or drag them from the HTML tab of the Toolbox.

Visual Studio provides a valuable style builder for formatting any static HTML element with CSS
style properties. To test it, add the <div> element from the HTML section of the Toolbox. The <div> will
appear on your page as a borderless panel. Then click to select the panel, and click the Style box in the
Properties window. An ellipsis (...) button will appear in the Style box. When you click it, the Modify

Style dialog box (shown in Figure 2-5) will appear, with options for configuring the colors, font, layout,
and border for the element.

31

32

CHAPTER 2 I VISUAL STUDIO

New Style M
Selector: |(inline style) E Dy ew style
Define in: rre nda URL: Bi
Category:
Block font-family: |Calibri B
Background font-size: |x-arge E] a2 text-decoration:
::;der font-eight: |bold E] [underline
o
Position font-style: [E] C f)ver L2
Layout [line-through
List font-variant: E [blink
Table text-transform: E [T none
color: [2008000 [[l
R el e e A s L e e T l
AaBbYyGglLlJj ‘
Description: font-size: x-arge; font-family: Calibri; font-weight: bold; color: #008000
[OK] [Cancel] [Apply]

Figure 2-5. Building HTML styles

When you create a new style in this way, it will be stored as an inline style, and recorded in the style
attribute of the element you’'re modifying. Alternatively, you can define a named style in the current
page (the default) or in a separate stylesheet. You’ll learn more about these techniques and Visual
Studio’s support for stylesheets in Chapter 16.

If you want to configure the HTML element as a server control so that you can handle events and

interact with it in code, you need to switch to source view and add the required runat="server" attribute
to the control tag.

HTML Tables

Visual Studio provides good design-time support for creating HTML tables. To try it, drag a table from
the HTML tab of the Toolbox. You'll start with a standard 3x3 table, but you can quickly transform it

using editing features that more closely resemble a word processor than a programming tool. Here are
some of the tricks you’ll want to use:

e To move from one cell to another in the table, press the Tab key or use the arrow
keys. The current cell is highlighted with a blue border. Inside each cell you can
type static HTML or drag and drop controls from the Toolbox. If you tab beyond
the final cell, Visual Studio adds a new row.

e To add new rows and columns, right-click inside a cell, and choose from one

of the many options in the Insert submenu to insert rows, columns, and
individual cells.

* Toresize a part of the table, just click one of the borders and drag.

CHAPTER 2 © VISUAL STUDIO

* Toformat a cell, right-click inside it, click the Style box in the Properties window,
and then click the ellipsis (...) button. This shows the same Modify Style dialog
box you saw in Figure 2-5.

* To work with several cells at once, hold down Ctrl while you click each cell. You
can then right-click to perform a batch formatting operation.

* Tomerge cells (for example, change two cells into one cell that spans two
columns), just select the cells, right-click, and choose Modify » Merge Cells.

With these conveniences, you might never need to resort to a design tool like Dreamweaver or
Expression Web.

Tip Modern web design practices discourage using tables for layout. Instead, most professional developers
favor CSS layout properties, which work equally well with Visual Studio. You’ll learn more about Visual Studio’s
support for CSS in Chapter 16.

Structuring HTML Markup

There are endless ways to format the same chunk of HTML. Nested tags can be indented, and long tags
are often broken over several lines for better readability. However, the exact amount of indentation and
the preferred line length vary from person to person.

Because of these variations, Visual Studio doesn’t enforce any formatting. Instead, it always
preserves the capitalization and indenting you use. The drawback is that it’s easy to be inconsistent and
create web pages that use widely different formatting conventions or have messily misaligned tags.

To help sort this out, Visual Studio offers an innovative feature that lets you define the formatting
rules you want to use and then apply them anywhere you want. To try this, switch to the source view for
a page. Now, highlight some haphazard HTML, right-click the selection, and choose Format Selection.
Visual Studio will automatically straighten out the selected HTML content, giving it the correct
capitalization, indenting, and line wrapping.

Of course, this raises an excellent question—namely, who determines what the correct formatting
settings are? Although Visual Studio starts with its own sensible defaults, you have the ability to fine-tune
them extensively. To do so, right-click anywhere in the HTML source view, and choose Formatting and
Validation. This shows the Options dialog box, positioned at the Text Editor » HTML » Formatting
group of settings (see Figure 2-6).

33

34

CHAPTER 2 I VISUAL STUDIO

Figure 2-6. Configuring HTML formatting settings

This section lets you control what capitalization settings are used and how long lines can be before
they have to wrap. By default, lines don’t wrap until they hit an eye-straining 80 characters, so many
developers choose to decrease this number. You can also control how attributes are quoted and set
whether Visual Studio should automatically add the matching closing tag when you add an opening tag.

Note The formatting rules are applied whenever you use the Format Selection command and whenever you add
HTML content by adding controls from the Toolbox in design view. If you type in your HTML by hand, Visual Studio
won’t apply the formatting to “correct” you.

If you’re even more ambitious, you can click the Tag Specific Options button to set formatting rules
that apply only to specific tags. For example, you can tell Visual Studio to add line breaks at the
beginning and end of a <div> tag. Or, you can tell Visual Studio to use different colors to highlight
specific tags, such as tags that you often need to locate in a hurry or tags you plan to avoid. (For example,
developers who are planning to move to a CSS-based layout might try avoiding <table> tags and use
color-coding to highlight them.)

Along with the formatting settings, the Options dialog box also has several useful settings in the
subgroups of the HTML group:

General: Lets you configure Visual Studio’s automatic statement completion, use automatic
wrapping, and turn on line numbers to help you locate hard-to-remember places in your pages.
Tabs: Lets you choose the number of spaces to insert when you press Tab.

Miscellaneous: Includes the handy Format HTML on Paste option, which isn’t enabled by default.

Switch this on, and your formatting rules are applied whenever you paste new content into the
source view.

CHAPTER 2

VISUAL STUDIO

Validation: Lets you set the browser or type of markup you're targeting (for example, HTML 4.01 or
XHTML 1.1). Depending on your choices, Visual Studio will flag violations, such as the use of
deprecated elements. (You can also change this option using the HTML Source Editing toolbar,
where the option appears as a drop-down list.)

As these settings show, Visual Studio is a great partner when adding ordinary HTML content to

ASP.NET pages.

The Visual Studio IDE

Now that you've created a basic website, it’s a good time to take a tour of the different parts of the Visual
Studio interface. Figure 2-7 identifies each part of the Visual Studio window, and Table 2-1 describes the
most commonly used windows.
If you don’t see a particular window, it’s easy enough to summon it into view. You can pick the most
common windows directly from the View window (for example, View-> Solution Explorer) and you can

find less common windows under the Other Windows submenu (for example, View->Other

Windows->Macro Explorer). Finally, you'll find windows that are used for debugging under the
Debug->Windows submenu.

Document
Window
(with the

source view

Toolbox shown)

Server
Explorer

Figure 2-7. The Visual Studio interface

Click here to

switch from

source view
to design view

Choose the Click here Refresh
level of to launch the
markup the Solution directory

validation application Explorer view

T

Error List
(other debugging
windows also
appear here
when you run
the application)

}

Click here to
show the event
handling code

for this page

—

The element
in the
current
position

L

Properties Window

Click here to launch
the ASPNET
configuration tool
(covered in Chapter 5)

Cllck here to start
deploying the
web application
(see Chapter 18)

Choose whether
code behind files
are nested under the
related .aspx page

Class View

Team Explorer

35

36

CHAPTER 2 I VISUAL STUDIO

Table 2-1. Common Visual Studio Windows

Window

Description

Solution Explorer

Toolbox

Server Explorer

Properties

Error List

Task List

Document

Macro Explorer

Class View

Team Explorer

Manage Styles and
Apply Styles

Lists the files and subfolders that are in the web application folder.

Shows ASP.NET’s built-in server controls and any third-party controls or
custom controls that you build yourself and add to the Toolbox. Controls can
be written in any language and used in any language.

Allows access to databases, system services, message queues, and other
server-side resources.

Allows you to configure the currently selected element, whether it’s a file in
the Solution Explorer or a control on the design surface of a web form.

Reports on errors that Visual Studio has detected in your code but that you
haven’t resolved yet.

Lists comments that start with a predefined moniker so that you can keep
track of portions of code that you want to change and also jump to the
appropriate position quickly. For example, you can flag areas that need
attention by creating a comment that starts with // HACK or // TODO.

Allows you to design a web page by dragging and dropping, and to edit the
code files you have within your Solution Explorer. Also supports non-
ASP.NET file types, such as static HTML and XML files.

Allows you to see all the macros you've created and execute them. Macros
are an advanced Visual Studio feature; they allow you to automate tedious or
time-consuming tasks, such as formatting code, creating backup copies of
files, arranging document windows, changing debugging settings, and so on.
Visual Studio exposes a rich extensibility model, and you can write a macro
using pure .NET code.

Shows a different view of your application, which is organized to show all the
classes you've created (and their methods, properties, and events).

Shows team projects and allows you to check files out through source
control so you can work on them. This window only appears if you've
installed the Visual Studio Team Suite edition.

Allows you to modify styles in a linked stylesheet and apply them to the
current web page. You'll see how these windows work in Chapter 16.

CHAPTER 2 © VISUAL STUDIO

Tip The Visual Studio interface is highly configurable. You can drag the various windows and dock them to the
sides of the main Visual Studio window. Also, some windows on the side automatically slide into and out of view
as you move your mouse. If you want to freeze these windows in place, just click the thumbtack icon in the top-
right corner of the appropriate window.

Solution Explorer

The Solution Explorer is, at its most basic, a visual filing system. It allows you to see the files that are in
the web application directory.

Table 2-2 lists some of the file types you're likely to see in an ASP.NET web application.

In addition, your web application can contain other resources that aren’t ASP.NET file types. For
example, your web application directory can hold image files, HTML files, or CSS files. These resources
might be used in one of your ASP.NET web pages, or they can be used independently.

Visual Studio distinguishes between different file types. When you right-click a file in the list, a
context menu appears with the menu options that apply for that file type. For example, if you right-click
a web page, you’ll have the option of building it and launching it in a browser window.

Using the Solution Explorer, you can rename, rearrange, and add files. All these options are just a
right-click away. To delete a file, just select it in the Solution Explorer and press the Delete key.

Table 2-2. ASP.NET File Types

File Description

Ends with .aspx These are ASP.NET web pages (the .NET equivalent of the .asp file in an
ASP application). They contain the user interface and, optionally, the
underlying application code. Users request or navigate directly to one of
these pages to start your web application.

Ends with .ascx These are ASP.NET user controls. User controls are similar to web pages,
except that they can’t be accessed directly. Instead, they must be hosted
inside an ASP.NET web page. User controls allow you to develop an
important piece of the user interface and reuse it in as many web forms
as you want without repetitive code.

Ends with .asmx or .svc These are ASP.NET web services. Web services work differently than web
pages, but they still share the same application resources, configuration
settings, and memory. However, ASP.NET web services are gradually
being phased out in favor of WCF (Windows Communication
Foundation) services, which were introduced with .NET 3.0 and have the
extension .svc. You'll use web services with ASP.NET AJAX in Chapter 30.

web.config This is the XML-based configuration file for your ASP.NET application. It
includes settings for customizing security, state management, memory
management, and much more. In a web project, you may have
variations of this file that ar used in different deployment scenarios (like
web.Debug.config, web.Release.config, and so on). This feature, called
web.config transformation, only applies to setup packages and is
explained in Chapter 18.

37

38

CHAPTER 2 I VISUAL STUDIO

File Description

global.asax This is the global application file. You can use this file to define global
variables and react to global events, such as when a web application first
starts (see Chapter 5 for a detailed discussion). Visual Studio doesn’t
create a global.asax file by default—you need to add it if it’s appropriate.

Ends with .cs These are code-behind files that contain C# code. They allow you to
separate the application from the user interface of a web page. The
code-behind model is introduced in this chapter and used extensively in
this book.

You can also add new files by right-clicking the Solution Explorer and selecting Add » Add New
Item. You can add various different types of files, including web forms, web services, and stand-alone
classes. You can also copy files that already exist elsewhere on your computer (or an accessible network
path) by selecting Add » Add Existing Item. Use Add » New Folder to create a new subdirectory inside
your web application. You can then drag web pages and other files into or out of this directory. Use the
Add ASP.NET Folder submenu to quickly insert one of the folders that has a specific meaning to
ASP.NET (such as the App_LocalResources and App_GlobalResources folders for globalization, or the
Theme folder for website-specific themes). ASP.NET recognizes these folders based on their names.

Visual Studio also checks for project management events such as when another process changes a
file in a project you currently have open. When this occurs, Visual Studio will notify you and give you the
option to refresh the file.

Document Window

The document window is the portion of Visual Studio that allows you to edit various types of files using
different designers. Each file type has a default editor. To learn a file’s default editor, simply right-click

that file in the Solution Explorer, and then select Open With from the pop-up menu. The default editor
will have the word Default alongside it.

Toolbox

The Toolbox works in conjunction with the document window. Its primary use is providing the controls
that you can drag onto the design surface of a web form. However, it also allows you to store code and
HTML snippets.

The content of the Toolbox depends on the current designer you're using as well as the project type.
For example, when designing a web page, you'll see the set of tabs described in Table 2-3. Each tab
contains a group of buttons. To view a tab, click the heading, and the buttons will slide into view.

Table 2-3. Toolbox Tabs for an ASP.NET Project

Tab Description

Standard This tab includes the rich web server controls that are the heart of ASP.NET’s web
form model.

Data These components allow you to connect to a database. This tab includes nonvisual

data source controls that you can drop onto a form and configure at design time
(without using any code) and data display controls such as grids.

CHAPTER 2 © VISUAL STUDIO

Tab Description

Validation These controls allow you to verify an associated input control against user-defined
rules. For example, you can specify that the input can’t be empty, that it must be a
number, that it must be greater than a certain value, and so on. Chapter 4 has more
details.

Navigation These controls are designed to display site maps and allow the user to navigate from
one page to another. You'll learn about the navigation controls in Chapter 17.

Login These controls provide prebuilt security solutions, such as login boxes and a wizard
for creating users. You'll learn about the login controls in Chapter 21.

WebParts This set of controls supports web parts, an ASP.NET model for building
componentized, highly configurable web portals. You'll learn about web parts in
Chapter 31.

AJAX These controls use ASP.NET AJAX techniques behind the scenes, allowing you to

Extensions refresh parts of the page without a full postback. They're discussed in Chapter 30.

Dynamic These controls are a part of ASP.NET Dynamic Data, an ASP.NET scaffolding system

Data for building data-driven websites using intelligent templates. Chapter 33 explores
Dynamic Data in detail.

Reporting This tab includes the ReportViewer control, which allows you to generate reports
from a database (much like the third-party package Crystal Reports). Although the
ReportViewer isn’t discussed in this book, you can learn more at
http://tinyurl.com/ycwypée.

HTML This tab allows you to drag and drop static HTML elements. If you want, you can also
use this tab to create server-side HTML controls—just drop a static HTML element
onto a page, switch to source view, and add the runat="server" attribute to the
control tag.

General This tab provides a repository for code snippets and control objects. Just drag and

drop them here, and pull them off when you need to use them later.

You can customize both the tabs and the items in each tab. To modify the tab groups, right-click a
tab heading, and select Rename Tab, Add Tab, or Delete Tab. To add an item to a tab, right-click the
blank space on a Toolbox tab, and click Choose Items. You can also drag items from one tab group to

another.

Error List and Task List

The Error List and Task List are two versions of the same window. The Error List catalogs error
information that’s generated by Visual Studio when it detects problematic code. The Task List shows a
similar view with to-do tasks and other code annotations you’re tracking. Each entry in the Error List and
Task List consists of a text description and, optionally, a link that leads you to a specific line of code
somewhere in your project.

39

http://tinyurl.com/ycwyp6e

40

CHAPTER 2 " VISUAL STUDIO

With the default Visual Studio settings, the Error List appears automatically whenever you build a
project that has errors (see Figure 2-8).

0 3 Errors _A 2 Warnlngs Q [1} Messages

Descnptlon Flle Llne Column

&)1 |c:\Documents and
SettingsiMatthew\Deskkop\ TT\Default.aspx.cs(15): error
(C51041: Identifier expected, 'int' is a keyword
@ 4 Identifier expected, 'int'is a keyword Default.aspx.cs
@ 5 Identifier expected Default.aspx.cs 15 13 C \,

Ty

Figure 2-8. Viewing build errors in a project

To see the Task List, choose View » Task List. Two types of tasks exist—user tasks and comments.
You can choose which you want to see from the drop-down list at the top of the Task List. User tasks are
entries you've specifically added to the Task List. You create these by clicking the Create User Task icon
(which looks like a clipboard with a check mark) in the Task List. You can give your task a basic
description, a priority, and a check mark to indicate when it’s complete.

Note As with breakpoints, any custom tasks you add by hand are stored in the hidden solution files. This makes
them fairly fragile—if you rename or move your project, these tasks will disappear without warning (or without
even a notification the next time you open the website).

The comment entries are more interesting because they’re added automatically and they link to a
specific line in your code. To try the comment feature, move somewhere in your code, and enter the
comment marker (//) followed by the word TODO (which is commonly referred to as a token tag). Now
type in some descriptive text:

// TODO: Replace this hard-coded value with a configuration file setting.
string fileName = @"c:\myfile.txt"

Because your comment uses the recognized token tag TODO, Visual Studio recognizes it and
automatically adds it to the Task List (as shown in Figure 2-9).

Task List - 1 task

Comments v

! Descnptlon S R S SRS R File Line -

. TODO: Replace this hard-coded value with a configuration file setting. Default.aspx.cs

Figure 2-9. Keeping track of tasks

CHAPTER 2 © VISUAL STUDIO

To move to the line of code, double-click the new task entry. Notice that if you remove the
comment, the task entry is automatically removed as well.

Three token tags are built-in: HACK, TODO, and UNDONE. However, you can add more. Simply
select Tools » Options. In the Options dialog box, navigate to the Environment » Task List tab. You'll
see a list of comment tokens, which you can modify, remove, and add to. Figure 2-10 shows this window
with a new ASP comment token that you could use to keep track of sections of code that have been
migrated from classic ASP pages.

Do)

Options

Environment
General
Add-in/Macros Security
AutoRecover
Documents
Find and Replace
Fonts and Colors

m

Task List options
[¥] Confirm deletion of tasks
[¥] Hide full file paths

Tokens

Token list:

Help Priority:
Import and Export Settings | HACK Normal v
International Settings [TODO
Keyboard } , ENDONE) Name:
Startup | + UnresolvedMergeConflict ASP
Task List ‘
Web Browser
Projects and Solutions
Source Control
Text Editor Add Delete J [Change }
Database Tools
Debuaaina R
[OK] [Cancel

Figure 2-10. Adding a new comment token

Tip Comment tags are not case-sensitive. For example, you can use TODO and todo interchangeably.

Server Explorer

The Server Explorer provides a tree that allows you to explore various types of services on the current
computer (and other servers on the network). It’s similar to the Computer Management administrative
tool. Typically, you'll use the Server Explorer to learn about available event logs, message queues,
performance counters, system services, and SQL Server databases on your computer.

The Server Explorer is particularly noteworthy because it doesn’t just provide a way for you to
browse server resources; it also allows you to interact with them. For example, you can create databases,
execute queries, and write stored procedures using the Server Explorer in much the same way that you
would using SQL Server Management Studio, the administrative utility that’s included with the full
version of SQL Server. To find out what you can do with a given item, right-click it. Figure 2-11 shows the
Server Explorer window listing the databases in a local SQL Server and allowing you to retrieve all the
records in the selected table.

41

42

CHAPTER 2 " VISUAL STUDIO

» WebSitel (8) - Microsoft Visual Studio L‘:'_\M
File Edit View Build Debug Data QueryDesigner Tools Test Window Help
DR A= - W A== N > (8 - 5| b Debug ~ NET [# processmodel v | E
H | = =i | Change Type~ | pa | (= | 7 p&] =
Server Explorer ~ & X | Customers: Query..thewm.Northwind) ~ X |[Solution Explorer - Solutio.. v & X
@j ﬂi g » CustomerlD CompanyName ContactName Cont * | [;El "
- [Data Connections Al ALFKI Alfreds Futterki.. Maria Anders Sales | 1‘ [Solution 'WebSitel (8)' (1 project]
2- & matthewm.Non.'thwind.dbo ANATR Ana Trujillo Em... Ana Trujllo = ;‘ﬂ C\...\WebSite1\
(- [Database Diagrams X X | 3 App_Data
& B3 Tables ANTON Antonio Moren... Antonio Moreno Ownej ‘ E :] Default.aspx
@ [Categories AROUT Around the Horn Thomas Hardy ~ Sales I’,‘) Default.aspx.cs
@ (5 CustomerCustomerDemo BERGS Berglunds snab... Christina Bergl... Order [web.config
@ :] CustomerDemographics BLAUS Blauer See Delik... Hanna Moos Sales |
9 j BLONP Blondesddsl pé... Frédérique Cite... Marke
@ Employees
@ [EmployeeTerritories BOLID Bélido Comida... Martin Sommer Owne
@ (2] Order Details | BONAP Bon app’ Laurence Lebih... Owne
@ [Orders |= BOTTM Bottom-Dollar ... Elizabeth Lincoln Accot
. ‘ &2 Proc'iucts | BSBEV B's Beverages Victoria Ashwor... Sales| ||
;: gz:g:;re‘rs ‘ CACTU Cactus Comida... Patricio Simpson Sales, Properties e
- (2] Suppliers | CENTC Centro comerci... Francisco Chang Marke | | Customers Table X
@ [Territories CHOPS Chop-suey Chi... Yang Wang Owne
(- [Views | COMMI Comércio Mine... Pedro Afonso Sales, (Name) Customers
ﬁ: g i:c:lrcejol’nrsocedures CONSH Consolidated H... Elizabeth Brown Sales| Approximate F 91
- [Synonyms DRACD Drachenblut De... Sven Ottlieb Order
@ 3 Types DUMON Du monde entier Janine Labrune Owne
(- [Assemblies EASTC Eastern Connec... Ann Devon Sales,
- L matthewm.pubs.dbo lennmes - s -+ ||| (Name)
- 54 Servers ~||I <l Ul | '
1 of9l | b b b
Ready

Figure 2-11. Querying data in a database table

The Code Editor

Many of Visual Studio’s handiest features appear when you start to write the code that supports your
user interface. To start coding, you need to switch to the code-behind view. To switch back and forth,
you can use two buttons that are placed just above the Solution Explorer window. The tooltips identify
these buttons as View Code and View Designer. When you switch to code view, you'll see the page class
for your web page. You'll learn more about code-behind later in this chapter.

ASP.NET is event-driven, and everything in your web-page code takes place in response to an event.
To create a simple event handler for the Button.Click event, double-click the button in design view.
Here’s a simple example that displays the current date and time in a label:

protected void Buttoni Click(object sender, EventArgs e)

Label1.Text = "Current time: " + DateTime.Now.ToLongTimeString();

To test this page, select Debug » Start Debugging from the menu. Because this is the first time
running any page in this application, Visual Studio will inform you that you need a configuration file that
specifically enables debugging, and will offer to change your current web.config file accordingly (see
Figure 2-12).

CHAPTER 2 © VISUAL STUDIO

Debugging Not Enabled

12l

What would you like to do?

© Modify the Web.config file to enable debugging.

site to a production environment.

(©) Run without debugging. (Equivalent to Ctrl+F5)

The page cannot be run in debug mode because debugging is not enabled in the Web.config file.

1\ Debugging should be disabled in the Web.config file before deploying the Web

oK l [Cancel

Figure 2-12. Modifying a web.config file automatically

Click OK to change the web.config configuration file. Visual Studio will then start the integrated test
web server and launch your default browser with the URL set to the current page that’s open in Visual
Studio. At this point, your request will be passed to ASP.NET, which will compile the page and execute it.

To test your event-handling logic, click the button on the page. The page will then be submitted to
ASP.NET, which will run your event-handling code and return a new HTML page with the data (as

shown in Figure 2-13).

2 WebForm1 - Microsoft Internet Explorer. Q@@

File Edit Vew Favorites Tools Help QBack v

Address -éj http:flocalhostfwebapplication3fWebForm1.aspx

B/
ll'

v

Current time: 2:10:55 P

&] Dane & Local intranet

Figure 2-13. Testing a simple web page

Adding Assembly References

By default, ASP.NET makes a small set of commonly used .NET assemblies available to all web pages.
These assemblies (listed in Table 2-4) are configured through a special machine-wide configuration file.
You don’t need to take any extra steps to use the classes in these assemblies.

43

44

CHAPTER 2 I VISUAL STUDIO

Table 2-4. Core Assemblies for ASP.NET Pages

Assembly

Description

mscorlib.dll, Microsoft.CSharp.dll,
and System.dll

System.Configuration.dll

System.Core.dll

System.Data.dll

System.Data.DataSetExtensions.dll

System.Drawing.dll

System.EnterpriseServices.dll

System.Web.dll

System.Web.ApplicationServices.dll

System.Web.DynamicData.dll

System.Web.Entity.dll

System.Web.Extensions.dll

System.Web.Services.dll

System.Xml.dll,
System.Xml.Ling.dll

Includes the core set of .NET data types, common exception
types, and numerous other fundamental building blocks for
.NET and the C# language.

Includes classes for reading and writing configuration
information in the web.config file, including your custom
settings.

Includes support for some of the core features that were
introduced with .NET 3.5, such as LINQ.

Includes the data container classes for ADO.NET, along with the
SQL Server data provider.

Includes support for LINQ to DataSet.

Includes classes representing colors, fonts, and shapes. Also
includes the GDI+ drawing logic you need to build graphics on
the fly.

Includes .NET classes for COM+ services such as transactions.
These are rarely used, as many of the classes have been
superseded by newer platform features.

Includes the core ASP.NET classes, including classes for building
web forms, managing state, handling security, and much more.

Includes some classes that were a part of the System.Web.dll
assembly in previous releases, but were moved because they
may also apply to desktop code. This allows developers to create
rich client applications that target the slimmed-down .NET 4
Client Profile, which includes this assembly but not
System.Web.dIL

Includes support for the ASP.NET Dynamic Data scaffolding
system.

Includes the EntityDataSource control, which allows you to plug
web forms into the LINQ to Entities feature.

Includes ASP.NET-specific support for the features that were
introduced with .NET 3.5, including LINQ and ASP.NET AJAX.

Includes classes for building web services—units of code that
can be remotely invoked over HTTP. This feature has largely
been replaced by WCF (Windows Communication Foundation).

Includes .NET classes for reading, writing, searching,
transforming, and validating XML, with or without LINQ to
XML.

CHAPTER 2 © VISUAL STUDIO

If you want to use additional features or a third-party component, you may need to import more
assemblies. For example, if you want to use an Oracle database, you need to add a reference to the
System.Data.OracleClient.dll assembly. To add a reference, select Website » Add Reference (or
Project » Add Reference in a web project). The Add Reference dialog box will appear, with a list of
registered .NET assemblies (see Figure 2-14).

Note Visual Studio 2010 has enhanced the Add Reference window to use asynchronous loading. As a result, it
appears much quicker and doesn’t freeze you out while it scans your system for assemblies. However, while these
assemblies are being added to the list, you may find it difficult to select the item you want before it “jumps” to a
new position.

Figure 2-14. Adding a reference

In the Add Reference dialog box, select the component you want to use. If you want to use a
component that isn’t listed here, you’ll need to click the Browse tab and select the DLL file from the
appropriate directory (or from another project in the same solution, using the Projects tab).

If you're working with a projectless website and you add a reference to another assembly, Visual
Studio modifies the web.config file to indicate the assembly you're using. Here’s an example of what you
might see after you add a reference to the System.Web.Routing.dll file:

45

46

CHAPTER 2 I VISUAL STUDIO

<compilation debug="true" targetFramework="4.0">
<assemblies>
<add assembly=
"System.lleb.Routing, Version=4.0.0.0, Culture=neutral,PublicKeyToken=31BF3856AD364E35" />
</assemblies>

</compilation>

If you're working with a web project, and you add a reference to another assembly, Visual Studio
doesn’t need to change the web.config file. That’s because Visual Studio is responsible for compiling the
code in a web project, not ASP.NET. Instead, Visual Studio makes a note of this reference in the .csproj
project file. The reference also appears in the Solution Explorer window under the References node. You
can review your references here, and remove any one by right-clicking it and choosing Remove.

If you add a reference to an assembly that isn’t stored in the GAC (global assembly cache), Visual
Studio will create a Bin subdirectory in your web application and copy the DLL into that directory. (This
happens regardless of whether you're using project-based or projectless development.) This step isn’t
required for assemblies in the GAC because they are shared with all the .NET applications on the
computer.

If you look at the code for a web-page class, you'll notice that Visual Studio imports just a few core
.NET namespaces. Here’s the code you'll see:

using System;

using System.Collections.Generic;
using System.lLing;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

Adding a reference isn’t the same as importing the namespace with the using statement. The using
statement allows you to use the classes in a namespace without typing the long, fully qualified class
names. However, if you're missing a reference, it doesn’t matter what using statements you include—the
classes won'’t be available. For example, if you import the System.Web.UI namespace, you can write
Page instead of System.Web.UIL.Page in your code. But if you haven’t added a reference to the
System.Web.dll assembly that contains these classes, you still won’t be able to access the classes in the
System.Web.UI namespace.

IntelliSense and Outlining

As you program with Visual Studio, you'll become familiar with its many time-saving conveniences. The
following sections outline the most important features you'll use (none of which is new in Visual Studio
2010).

Outlining

Outlining allows Visual Studio to “collapse” a subroutine, block structure, or region to a single line. It
allows you to see the code that interests you, while hiding unimportant code. To collapse a portion of
code, click the minus box next to the first line. Click the box again (which will now have a plus symbol) to
expand it (see Figure 2-15).

Default.aspx.cs

%
E using
| using
E using
E using
E using
E using
E using
E using
i-using

{

Systenm;
.Data;
Systen.
Systen.
Systen.
Systen.
Systen.
Systen.
Systen.

Systen

CHAPTER 2

SRRk

Configuration;

Weh;
Web.
Web.
Web.
Web.
Web.

Security;
UI:

UI
UI
UI

.WebhControls;
.WebControls.WebParts;
.HtmlControls;

Epublic partial class Default : Jystem.Web.UI.Page

protected void Page_Load(object sender, Eventirgs e)

Figure 2-15. Collapsing code

VISUAL STUDIO

You can collapse an entire code file so that it only shows definitions (such as the namespace and
class declarations, member variables and properties, method declarations, and so on), but hides all
other details (such as the code inside your methods and your namespace imports). To get this top-level
view of your code, right-click anywhere in the code window and choose Outlining » Collapse to
Definitions. To remove your outlining and expand all collapsed regions so you can see everything at
once, right-click in the code window and choose Outlining » Stop Outlining.

Member List

Visual Studio makes it easy for you to interact with controls and classes. When you type a period (.) after
a class or object name, Visual Studio pops up a list of available properties and methods (see Figure 2-16).
It uses a similar trick to provide a list of data types when you define a variable and to provide a list of

valid values when you assign a value to an enumeration.

47

48

CHAPTER 2 I VISUAL STUDIO

Default.aspx* Default.aspx.cs*

v"fj _Default

{

}

<l

Systen;
Systen.
Systen.
Systen.
Systen.
Systen.
Systen.
Systen.
Systen.

+ || 3¥Page_Load{object sender, EventArgs e)

Data;
Configuration;

Weh;
Web.
Web.
Web.
Web.
Web.

private void

Security;

UI:

UI.WebhControls:
UI.WebhControls.WebParts;
UI.HtmlControls;

ublic partial class Default : System.Web.UI.Page
protected void Page_Load(object sender, Eventirgs e)

if TextBoxl. Fcn:|

© Equals ~
© FindControl
¥ Focus

ﬁ} Font

B

© GetHashCode
© GetType
7 Hasattributes
© HasControls
8 Height v

Figure 2-16. IntelliSense at work

] ||| %

Visual Studio also provides a list of parameters and their data types when you call a method or
invoke a constructor. This information is presented in a tooltip below the code and is shown as you type.
Because the .NET class library heavily uses function overloading, these methods may have multiple
different versions. When they do, Visual Studio indicates the number of versions and allows you to see
the method definitions for each one by clicking the small up and down arrows in the tooltip. Each time
you click the arrow, the tooltip displays a different version of the overloaded method (see Figure 2-17).

Default.aspx* “Default.aspx.cs*

“t$ _Default

Systen;
Systen.
Systen.
Systen.
Systen.
Systen.
Systen.
Systen.
Systen.

V| |3¥Page_Load(object sender, EventArgs e)

Data;
Configuration;

Weh;
Web.
Web.
Web.
Web.
Web

Security;

UI:

UI.WebhControls:
UI.WebhControls.WebParts;

.UI.HtmlControls;

Fpublic partial class _Def:—ullt : Systenm.leb

{

{

Page.Validate (|

CHAPTER 2

=%

.UI.Page

protected void Page_Load(object sender, Eventirgs e)

Jon

atof2
Instructs

void Page.Yalidate ()

v validation controls included on the page to validate their assigned information.

private void MyMethod()|

Figure 2-17. IntelliSense with overloaded method

Error Underlining

One of the code editor’s most useful features is error underlining. Visual Studio is able to detect a variety
of error conditions, such as undefined variables, properties, or methods; invalid data type conversions;
and missing code elements. Rather than stopping you to alert you that a problem exists, the Visual
Studio editor quietly underlines the offending code. You can hover your mouse over an underlined error
to see a brief tooltip description of the problem (see Figure 2-18).

VISUAL STUDIO

49

50

CHAPTER 2 I VISUAL STUDIO

Default.aspx ~ Default.aspx.cs -

“i¢ _Default + || 3¥Page_Load{object sender, EventArgs e)

SR |*

Flusing Systemnm;

| using System.Data;

using System.Configuration;

using System.leb;

using Systewm.leb.Securitcy;

using System.Web.UI;

using Systewm.lWeb.UI.WebhControls;

using Systewm.lWeb.UI.WebControls.WebParts;
using Systewm.lWeb.UI.HtmlControls;

Epublic partial class Default : Jystem.Web.UI.Page
{

protected void Page_Load(object sender, Eventirgs e)
{

TextBox1l .m = "Hello.";
} [System.web.UI WebControls. TextBox' does not contain a definition for 'Tex|

private void MyMethod|

Figure 2-18. Highlighting errors at design time

Visual Studio won't flag your errors immediately. Instead, it will quickly scan through your code as
soon as you try to compile it and mark all the errors it finds. If your code contains at least one error,
Visual Studio will ask you whether it should continue. At this point, you’ll almost always decide to cancel
the operation and fix the problems Visual Studio has reported. (If you choose to continue, you'll actually
wind up using the last compiled version of your application because the .NET compilers can’t build an
application that has errors.)

Note You may find that as you fix errors and rebuild your project you discover more problems. That's because
Visual Studio doesn’t check for all types of errors at once. When you try to compile your application, Visual Studio
scans for basic problems such as unrecognized class names. If these problems exist, they can easily mask other
errors. On the other hand, if your code passes this basic level of inspection, Visual Studio checks for more subtle
problems such as trying to use an unassigned variable.

Visual Studio 2010 Improvements

The most remarkable change in Visual Studio 2010 is the behind-the-scenes architecture. In fact, despite
being rebuilt with WPF, Visual Studio 2010 keeps most of the conventions of its predecessors.

Fortunately, Microsoft did take the time to slip in some welcome refinements. The following
sections outline the most notable.

CHAPTER 2 © VISUAL STUDIO

IntelliSense Gets More Intelligent

Every modern version of Visual Studio has had the ability to fill in class and member names as you type.
For example, type the name of a text box, followed by a period and the letter “F” (as shown in Figure 2-
16), and you'll get suggestions such as Font and ForeColor. But in Visual Studio 2010, these automatic
suggestions become more helpful thanks to a new filtering feature.

Here’s how it works. As soon as you’ve typed in at least two letters of a class or member name, Visual
Studio filters the list of suggestions to show just those that match what you’'ve entered so far. That means
if you type “TextBox1.Fon”, you'll see the Font property but not ForeColor. By comparison, the
IntelliSense in previous versions of Visual Studio would show the entire member list, but simply move to
the matching position (Font) and highlight that member.

This minor change seems obvious in retrospect, and many developers won't even realize that a shift
has taken place. More useful is the way that filtering allows you to search inside a class or member name.
For example, if you type “TextBox1.Fon”, you'll match properties that start with “Fon” and properties
that have the letters “Fon” in them. For example, if you type “GridView1.Sort”, you'll see a list with the
members Sort, SortDirection, AllowSorting, EnableSortingAndPagingCallbacks, and so on, as shown in
Figure 2-19.

Figure 2-19. IntelliSense Filtering

This trick also works with class names. For example, if you type List when you begin declaring a new
variable, you'll see class names such as List<T>, ListBox, LinkedList<T>, IList<T>, and so on.

Another IntelliSense filtering trick lets you use capitals to pick out long member names that are
composed of several words. For example, type “GridView1.ES” to find all the members that incorporate a
word starting with E and a word starting with S. This includes EditRowStyle and EnableViewState. The
Visual Studio designers call this feature “Pascal case filtering.”

51

52

CHAPTER 2 I VISUAL STUDIO

At first glance, this trick seems a bit too cute to be truly practical, but it can cut down on keystrokes
when dealing with long member names. For example, you’ll probably appreciate typing
“GridView1.ESA” to bring up the EnableSortingAndPagingCallbacks property, as shown in Figure 2-20.

Figure 2-20. Quick Matching with Capital Letters

New Tools for Search and Navigation

One of the great challenges in a real-world project is navigating through tangled hierarchies of code. This
is particularly true in mature applications that have their own business frameworks, data management
components, and other libraries.

Visual Studio 2010 introduces several features that can help you find your way through the densest
thickets of code. One of the nicest features is a tiny frill called variable highlighting. To use this feature,
simply highlight a variable name. Visual Studio automatically highlights all occurences of that variable
using a lighter shade of grey (Figure 2-21).

CHAPTER 2 © VISUAL STUDIO

app_Code/Randor..ressionbuiderc: < [

“$ RandomNumberExpressionBuilder 'l ¥ GetCodeExpression(BoundPropertyEntry entry, object pars ~
if (!entry.Expression.Contains(”,")) <
{ -

throw new ArgumentException("Must include two numbers separated by a comma.™);

else

{

// Get the two numbers.
string[] numberi}; entry.Expression.Split(',");

m

if (numbers.Length != 2)

{
}

else

{

throw new ArgumentException("Only include two numbers.™); —

int lowerLimit, upperlLimit;

if (Int32.TryParse(numbers[@], out lowerLimit) &%
Int32.TryParse(numbers[1], out upperLimit))

I

1

// So far all the operations have been performed in
// normal code. That's because the two numbers are
// specified in the expression, and so they won't
// change each time the page is requested.
// However, the random number should be allowed to
100% ~ < | n | »

Figure 2-21. Highlighting a specific variable

The highlighting disappears when you click somewhere else with the mouse or press a key.
However, the highlighting doesn’t disappear if you simply scroll through your document with the
mouse, or if you use Ctrl+Shift+\V to jump to the next highlighted match or Ctrl+Shift+4 to jump to the
previous one.

The next nifty navigation feature is a new call hierarchy explorer that lets you look at any method,
quickly determine what methods call that method, and jump to their code. To access this feature, you
simply right-click the name of the method that interests you and choose View Call Hierarchy. Visual
Studio then opens a Call Hierarchy window that shows a tree of information (Figure 2-22). You can then
expand the “Calls To” node to find the incoming method calls (the methods that call this method), or the
“Calls From” node to find the outgoing method calls (the methods that this method calls). In Figure 2-22,
you can see that the WriteEmployeeList() method in a web page calls the GetEmployees() method in a
data component, which is currently being examined in the Call Hierarchy window. If you're viewing an
overridden method, you'll also see an Overrides category that allows you to find methods that override
or are overridden by this one.

53

54

CHAPTER 2 I VISUAL STUDIO

Figure 2-22. Navigating through the call hierarchy

Every time you right-click a method and choose View Call Hierarchy, it’s added as a new item in the
Call Hierarchy window. All the methods you add remain there until you explicitly remove them (by right-
clicking it and choosing Remove Root).

Note Once you’ve expanded a node in the Call Hierarchy window, its method list won’t be updated, even if you
change the code. To force it to update itself to take new changes into account, you must right-click the method
and choose Refresh.

You can jump to the code for any method by double-clicking it in the Call Hierarchy window. Or,
you can expand it and continue the search another level. If you find yourself lost several levels deep in
the call hierarchy, simply right-click the method that you're interested in and choose Add As New Root.
Visual Studio will add it as a new top-level item in the Call Hierarchy window.

CHAPTER 2 © VISUAL STUDIO

The last navigation feature is the new Navigation To window that acts as a sort of super-search
feature. To access this window, press Ctrl+, (hold down Ctrl and press the comma key). Then, begin
typing in the “Search terms” box.

The Navigate To searches asynchronously, so it begins adding matches as you type. To find its
matches, it compares the text you supply with the names of types, variables, and members in your
classes. It doesn’t search the actual code or the comments in your methods, and it ignores the code-
behind classes that sit behind your web pages altogether. For these reasons, the Navigate To window is
best for searching through the object model of a complex system—for example, hunting down a piece of
business logic in a multi-layered framework. Figure 2-23 shows how it can quickly find methods from a
data access class.

Figure 2-23. Searching with the Navigate To window

The Navigate To window has some clear advantages over ordinary searches. First, it ignores the
messy code details, which would return thousands of hits in a large project and bury the members you're
actually looking for. Second, it’s blindingly fast. Third, it also uses some of the IntelliSense filtering tricks
you learned about in the previous section. For example, when you type multiple search words separated
by a space (such as “customer get”), you'll find results that incorporate both words in any combination
(such as the members GetCustomers(), GetCustomerCount(), CustomerCommandGet, and so on). You
can also use a sequence of capital letters to find matches with words that use those letters, in that order
(so GCC matches the GetCustomerCount() and GetClientCache() methods). But the best way to get a feel
for this intuitive searching feature is to try it out for yourself on a large project.

55

56

CHAPTER 2 I VISUAL STUDIO

Draggable Document Windows

Visual Studio has always had a highly configurable user interface that supports a flexible (and sometimes
confusing) docking system. But Visual Studio2010 is the first version that allows you to take a document
window that shows your web page markup or code and drag it right out of the main window. In fact, a
simple drag of the mouse is all you need to free any tab, or bring it back into the fold (Figure 2-23).

This feature gives developers complete control over the arrangement of their code windows. But the
real purpose of it is to provide a better development experience on computers with multiple monitors. In
this situation, it makes sense to drag a code window from the main Visual Studio user interface to
another monitor.

Figure 2-24. Dragging document windows out of Visual Studio

The Code Model

So far, you've learned how to design simple web pages, and you've taken a tour of the Visual Studio
interface. But before you get to serious coding, it’s important to understand a little more about the
underpinnings of the ASP.NET code model. In this section, you’ll learn about your options for using
code to program a web page and how ASP.NET events wire up to your code.

Visual Studio supports two models for coding web pages:

Inline code: This model is the closest to traditional ASP. All the code and HTML markup is stored in
a single .aspx file. The code is embedded in one or more script blocks. However, even though the
code is in a script block, it doesn’t lose IntelliSense or debugging support, and it doesn’t need to be

CHAPTER 2 © VISUAL STUDIO

executed linearly from top to bottom (like classic ASP code). Instead, you'll still react to control
events and use subroutines. This model is handy because it keeps everything in one neat package,
and it’s popular for coding simple web pages.

Code-behind: This model separates each ASP.NET web page into two files: an .aspx markup file with
the HTML and control tags, and a .cs code file with the source code for the page (assuming you're
using C# as your web page programming language). This model provides better organization, and
separating the user interface from programmatic logic is keenly important when building complex

pages.

In Visual Studio, you have the freedom to use both approaches. When you add a new web page to
your website (using Website » Add New Item), the Place Code in a Separate File check box lets you
choose whether you want to use the code-behind model (see Figure 2-25). Visual Studio remembers
your previous setting for the next time you add a new page, but it's completely valid (albeit potentially
confusing) to mix both styles of pages in the same application.

This flexibility only applies to projectless development. If you've created a web project, you must
use the code-behind model—there’s no other choice. Furthermore, the code-behind model is subtly
different for the code-behind model that’s used in a projectless website, as you'll see shortly.

Figure 2-25. Choosing the code model

To better understand the difference between the inline code and code-behind models, it helps to
consider a simple page. The following example shows the markup for a page named
TestFormlInline.aspx, which displays the current time in a label and refreshes it whenever a button is
clicked. Here’s how the page looks with inline code:

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11.dtd">

<script runat="server">
protected void Buttoni Click(object sender, EventArgs e)

57

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

CHAPTER 2 I VISUAL STUDIO

Label1l.Text = "Current time: " + DateTime.Now.TolLongTimeString();

</script>
<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head runat="server">
<title>Test Page</title>

</head>
<body>
<form id="form1" runat="server"»
<div>
<asp:Label ID="Label1" runat="server" Text="Click Me!" />

<asp:Button ID="Button1" runat="server" OnClick="Button1_Click"
Text="Button" />
</div>
</form>
</body>
</html>

The following listings, TestFormCodeBehind.aspx and TestFormCodeBehind.aspx.cs, show how the
page is broken up into two pieces using the code-behind model. This is TestFormCodeBehind.aspx:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="TestFormCodeBehind.aspx.cs"
Inherits="TestFormCodeBehind"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Test Page</title>

</head>
<body>
<form id="form1" runat="server">
<div>
<asp:Label ID="Label1" runat="server" Text="Click Me!"></asp:Label>

<asp:Button ID="Button1" runat="server" OnClick="Button1_Click"
Text="Button" />
</div>
</form>
</body>
</html>

This is TestFormCodeBehind.aspx.cs:

using System;

using System.Data;

using System.Configuration;
using System.lLing;

using System.Web;

http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

CHAPTER 2 © VISUAL STUDIO

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class TestFormCodeBehind : System.Web.UI.Page

protected void Buttoni Click(object sender, EventArgs e)

Label1.Text = "Current time: " + DateTime.Now.ToLongTimeString();

The only real difference between the inline code example and the code-behind example is that the
page class is no longer implicit in the latter—instead it’s declared to contain all the page methods.

Overall, the code-behind model is preferred for complex pages. Although the inline code model is
slightly more compact for small pages, as your code and HTML grows it becomes much easier to deal
with both portions separately. The code-behind model is also conceptually cleaner, as it explicitly
indicates the class you've created and the namespaces you’ve imported. Finally, the code-behind model
introduces the possibility that a web designer may refine the markup in your pages without touching
your code. This book uses the code-behind model for all examples.

How Code-Behind Files Are Connected to Pages

Every .aspx page starts with a Page directive
. This Page directive specifies the language for the page, and it also tells ASP.NET where to find the
associated code (unless you're using inline code, in which case the code is contained in the same file).

You can specify where to find the associated code in several ways. In older versions of ASP.NET, it
was common to use the Src attribute to point to the source code file or the Inherits attribute to indicate a
compiled class name. However, both of these options have their idiosyncrasies. For example, with the
Inherits attribute, you're forced to always precompile your code, which is tedious (and can cause
problems in development teams, because the standard option is to compile every page into a single DLL
assembly). But the real problem is that both approaches force you to declare every web control you want
to use with a member variable. This adds a lot of boilerplate code.

You can solve the problem using a language feature called partial classes, which lets you split a
single class into multiple source code files. Essentially, the model is the same as before, but the control
declarations are shuffled into a separate file. You, the developer, never need to be distracted by this file—
instead you can just access your web-page controls by name. Keen eyes will have spotted the word
partial in the class declaration for your web-page code:

public partial class TestFormCodeBehind : System.Web.UI.Page
{...}

With this bit of infrastructure in place, the rest is easy. Your .aspx page uses the Inherits attribute to
indicate the class you're using, and the CodeFile attribute to indicate the file that contains your code-
behind, as shown here:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="TestFormCodeBehind.aspx.cs"
Inherits="TestFormCodeBehind"%>

59

60

CHAPTER 2 I VISUAL STUDIO

Notice that Visual Studio uses a slightly unusual naming syntax for the source code file. It has the
full name of the corresponding web page, complete with the .aspx extension, followed by the .cs
extension at the end. This is just a matter of convention, and it avoids a problem if you happen to create
two different code-behind file types (for example, a web page and a web service) with the same name.

How Control Tags Are Connected to Page Variables

When you request your web page in a browser, ASP.NET starts by finding the associated code file. Then,
it generates a variable declaration for each server control (each element that has the runat="server"
attribute).

For example, imagine you have a text box named txtInput:

<asp:TextBox id="txtInput" runat="server"/>

ASP.NET generates the following member variable declaration and merges it with your page class
using the magic of partial classes:

protected System.Web.UI.TextBox txtInput;

Of course, you won't see this declaration, because it’s part of the automatically generated code that
the .NET compiler creates. But you rely on it every time you write a line of code that refers to the txtInput
object (either to read or to write a property):

txtInput.Text = "Hello.";

To make sure this system works, you must keep both the .aspx markup file (with the control tags)
and the .cs file (with the source code) synchronized. If you edit control names in one piece using another
tool (such as a text editor), you'll break the link, and your code won'’t compile.

Incidentally, you'll notice that control variables are always declared with the protected accessibility
keyword. That’s because of the way ASP.NET uses inheritance in the web-page model. The following
layers are at work:

1. The Page class from the .NET class library defines the basic functionality that
allows a web page to host other controls, render itself to HTML, and provide
access to the traditional ASP-style objects such as Request, Response, and
Session.

2. Your code-behind class (for example, TestFormCodeBehind) inherits from the
Page class to acquire the basic set of ASP.NET web-page functionality.

3. When you compile your class, ASP.NET merges some extra code into your class
(using the magic of partial classes). This automatically generated code defines
all the controls on your page as protected variables so that you can access
them in your code.

4. The ASP.NET compiler creates one more class to represents the actual .aspx
page. This class inherits from your custom code-behind class (with the extra
bit of merged code). To name this class, ASP.NET adds _aspx to the name of
the code-behind class (for example, TestFormCodeBehind_aspx). This class
contains the code needed to initialize the page and its controls and spits out
the final rendered HTML. It’s also the class that ASP.NET instantiates when it
receives the page request.

Figure 2-26 diagrams this tangled relationship.

Base Page
Class

Inherits

Your Code-Behind
Class

Inherits

Automatically Generated
_aspx Class
(with Initialization Code)

Automatically Generated
Partial Class
(with Control Declarations)

Figure 2-26. How a page class is constructed

CHAPTER 2

VISUAL STUDIO

So, why are all the control variables and methods declared as protected? It’s because of the way
inheritance is used in this series of layers. Protected variables act like private variables, with a key
difference—they are accessible to derived classes. In other words, using protected variables in your
code-behind class (for example, TestFormCodeBehind) ensures that the variables are accessible in the
derived page class (TestFormCodeBehind_aspx). This allows ASP.NET to match your control variables to
the control tags and attach event handlers at runtime.

How Events Are Connected to Event Handlers

Most of the code in an ASP.NET web page is placed inside event handlers that react to web control
events. Using Visual Studio, you can add an event handler to your code in three ways:

Type it in by hand: In this case, you add the method directly to the page class. You must specify the
appropriate parameters so that the signature of the event handler exactly matches the signature of
the event you want to handle. You'll also need to edit the control tag so that it links the control to the
appropriate event handler, by adding an OnEventName attribute. (Alternatively, you can use
delegates to wire this up programmatically.)

Double-click a control in design view: In this case, Visual Studio will create an event handler for

that control’s default event (and adjust the control tag accordingly). For example, if you double-click

the page, it will create a Page.Load event handler. If you double-click a Button control, Visual Studio
will create an event handler for the Click event.

Choose the event from the Properties window: Just select the control, and click the lightning bolt in
the Properties window. You'll see a list of all the events provided by that control. Double-click in the
box next to the event you want to handle, and Visual Studio will automatically generate the event

handler in your page class and adjust the control tag.

61

62

CHAPTER 2 I VISUAL STUDIO

The second and third options are the most convenient. The third option is the most flexible,
because it allows you to select a method in the page class that you've already created. Just select the
event in the Properties window, and click the drop-down arrow at the right. You’ll see a list that includes
all the methods in your class that match the signature this event requires. You can then choose a method
from the list to connect it. Figure 2-27 shows an example where the Button.Click event is connected to
the Button_Click() method in your page class. The only limitation of this technique is that it works
exclusively with web controls, not server-side HTML controls.

Properties @

Buttonl System.Web.ULWebControls.Button ~

Click Button1_Click (=]
Command Page_Load

DataBinding
Disposed
Init

Load
PreRender
Unload

Click
Fires when the button is clicked.

Figure 2-27. Attaching an event handler

Visual Studio uses automatic event wire-up, as indicated in the Page directive. Automatic event
wire-up has two basic principles:

* All page event handlers are connected automatically based on the name of the
event handler. In other words, the Page_Load() method is automatically called
when the page loads.

e All control event handlers are connected using attributes in the control tag. The
attribute has the same name as the event, prefixed by the word On.

For example, if you want to handle the Click event of the Button control, you simply need to set the
OnClick attribute in the control tag with the name of the event handler you want to use. Here’s the
change you need:

<asp:Button id="cmdOK" OnClick="cmdOK_Click" runat="server">

ASP.NET controls always use this syntax. Remember, because ASP.NET must connect the event
handlers, the derived page class must be able to access the code-behind class. This means your event
handlers must be declared with the protected or public keyword. (Protected is preferred, because it
prevents other classes from seeing this method.)

Of course, if you're familiar with .NET events, you know there’s another approach to connect an
event handler. You can do it dynamically through code using delegates. Here’s an example:

cmdOK.Click += cmdOK_Click;

This approach is useful if you're creating controls on the fly. You'll see this technique in action in
Chapter 3.

CHAPTER 2 © VISUAL STUDIO

Web Projects

So far, you've seen how to create websites without any project files. The advantage of projectless
development is that it’s simple and straightforward. When you create a projectless website, you don’t
need to deploy any extra support files. Instead, every file in your web folder is automatically considered
part of the web application. (This model makes sense because every web page in a virtual directory is
independently accessible, whether or not you consider it an official part of your project.)

Projectless development remains popular for the following reasons:

Projectless development simplifies deployment: You simply need to copy all the files in the website
directory to the web server—there aren’t any project or debugging files to avoid.

Projectless development simplifies file management: If you want to remove a web page, you can
simply delete the associated files using the file management tool of your choice. If you want to add a
new page or move a page from one website to another, you simply need to copy the files—there’s no
need to go through Visual Studio or edit the project file. You can even author web pages with other
tools, because there’s no project file to maintain.

Projectless development simplifies team collaboration: Different people can work independently
on different web pages, without needing to lock the project files.

Projectless development simplifies debugging: When creating a web project, you must recompile
the entire application when you change a single page. With projectless development, each page is
compiled separately, and the page is only compiled when you request it for the first time.

Projectless development allows you to mix languages: Because each web page is compiled
separately, you're free to code your pages in different languages. In a web project, you'd be forced to
create separate web projects (which is trickier to manage) or separate class library projects.

That said, there are some more specialized reasons that might lead you to adopt project-based
development instead, or use web projects in specific scenarios. You’ll consider these in the next section.

Project-Based Development

When you create a web project, Visual Studio generates a number of extra files, including the .csproj and
.csproj.user project files and a .sln solution file. When you build your application, Visual Studio
generates temporary files, which it places in the Obj subdirectory, and one or more .pdb files (in the Bin
subdirectory) with debugging symbols. None of these files should be deployed to the web server when
your web application is complete. Furthermore, none of the C# source code files (files with the extension
.cs) should be deployed, because Visual Studio precompiles them into a DLL assembly.

Note At first glance, the precompilation of web projects seems like a big win—not only does it ensure pages
don’t need to be compiled the first time they’re requested, but it also allows you to avoid deploying your source
code to the web server. However, projectless websites can be compiled for deployment just as easily—you simply
need to use the precompilation tool you'll learn about in Chapter 18.

Project-based development has a dedicated following. The most significant advantages to web
projects are the following:

63

64

CHAPTER 2 I VISUAL STUDIO

The project development system is stricter than projectless development: This is because the
project file explicitly lists what files should be part of the project. This allows you to catch potential
errors (such as missing files) and even deliberate acts of sabotage (such as unwanted files added by
a malicious user).

Web projects allow for more flexible file management: One example is if you've created several
separate projects and placed them in subdirectories of the same virtual directory. In this case, the
projects are kept separate for development purposes but are in essence the same application for
deployment. With projectless development, there’s no way to keep the files in these subdirectories
separate.

Tip For the same reason, web projects can be more efficient if you're creating a web application that uses a
huge number of resource files—for example, a website that includes an Images subdirectory with thousands of
pictures. With projectless development, Visual Studio examines these files and adds them to the Solution Explorer,
because they’re a part of your website directory. But a web project avoids this extra overhead because you won’t
explicitly add the images to the list of files in your project.

Web projects allow for a customizable deployment process: Visual Studio project files work with
the web package feature, which gives you additional features for configuring the deployed version of
your application (as described in Chapter 18).

Web projects work better in some migration scenarios: Any web application created with Visual
Studio 2003 or earlier is a web project, because these versions of Visual Studio didn’t include the
projectless website feature. If you open one of these projects in Visual Studio 2010, Visual Studio
runs the migration wizard to convert the application to a Visual Studio 2010 web project.

Both projectless and project-based development give you all the same ASP.NET features. Both
approaches also offer the same performance. So which option is best when building a new ASP.NET
website? There are advocates for both approaches. Officially, Microsoft suggests you use the simpler
website model unless there’s a specific reason to use a web project—for example, you've developed a
custom MSBuild extension, you have a highly automated deployment process in place, you're migrating
an older website created in Visual Studio 2003, or you want to create multiple projects in one directory.

Note The downloadable examples for this book use projectless websites.

Creating a Web Project

To create a web project, choose File » New » Project to show the New Project dialog box (which looks
extremely similar to the New Web Site dialog box you considered earlier). In the Project Types tree,
browse to Visual C# » Web. Then choose ASP.NET Web Application.

When creating a web project, you supply a location, which can be a file path or a URL that points to
a local or remote IIS web server. You can change the version of the .NET Framework that you're targeting
using the list at the top of the window, as you can when creating a projectless website.

CHAPTER 2

VISUAL STUDIO

Although web projects and projectless websites have the same end result once they’re deployed to
the web server and compiled, there are some differences in the way they’re structured at design time.

These differences include the following:

* Compilation: As explained earlier, web projects are compiled by Visual Studio
(not ASP.NET) when you run them. The web page classes are combined into a
single assembly that has the name of the web project (like WebApplication1.dll),

which is then placed in the Bin folder.

* Code-behind: The web pages in a web project always use the code-behind model.
However, they include an extra file with the extension .aspx.designer.cs, which
includes the declarations for all the controls on the web page. This means if you
create a page named Default.aspx, you'll end up with a code-behind class in a file

named Default.aspx.cs and control declarations in a file named

Default.aspx.designer.cs (see Figure 2-28). At compile time, these two files will be
merged. In a projectless website, you never see a file with the control declarations,

because this part of the code is generated at compile time by ASP.NET.

* The Page directive: The web pages in a web project use a slightly different Page
directive. Instead of using the CodeFile attribute to indicate the file that has the
source code, they use the CodeBehind attribute. This difference is due to the fact
that Visual Studio performs the compilation instead of ASP.NET. ASP.NET checks

the CodeFile attribute, but Visual Studio uses the CodeBehind attribute.

* Assembly references: In a projectless website, all the assembly references are
recorded in the web.config file, so ASP.NET can use them when resolving
references at compile time. But the assembly references in a web project are
stored in a project file, which Visual Studio uses when it compiles the code. The

only exceptions are the references to the System.Core.dll and

System.Web.Extensions.dll assemblies, which contain all the features that are
specific to .NET 3.5. These references are defined in the web.config file because

they include classes that you need to specify new configuration settings.

Solution Explorer - Solution "WebApplicationl’ @

2| 2EEE R
[/ Solution 'WebApplicationl' (1 project)
= (£ WebApplicationl

(- =4 Properties

[+ [«a] References

3 App_Data
= :IDefauIt.aspx
%] Default.aspx.cs

b2] Default.aspx.designer.cs

% Web.config

Figure 2-28. The designer file with control declarations

65

66

CHAPTER 2 I VISUAL STUDIO

Note The code file with the control declarations isn’t available in a projectless web application. Instead, it's
generated behind the scenes the first time the application is compiled and executed. As a result, you never have
the chance to view this code.

Migrating a Website from a Previous Version of Visual Studio

If you have an existing ASP.NET web application created with an earlier version Visual Studio, you can
migrate it to the ASP.NET world with ease.

If you created a projectless website with an earlier version of Visual Studio, you use the File »
Open » Web Site command, just as you would with a website created in Visual Studio 2010. The first
time you open an old website in this way, you'll be asked if you want to adjust it to use ASP.NET 4 (see
Figure 2-29). If you choose Yes, the web.config file will be modified to target .NET 4, as described in
the “Multitargeting” section earlier in this chapter. If you choose No, your website will continue
targeting the version of ASP.NET that it was designed for. You can modify this detail at any time by
choosing Website » Start Options. Either way, you won'’t be asked again, because your preference is
recorded in the hidden solution file that’s stored in a user-specific Visual Studio directory.

Figure 2-29. Opening a projectless website that was created with Visual Studio 2008

If you created a web project with an earlier version of Visual Studio, you need to use the File »
Open » Project/Solution command. You also need to use this command if you created a solution that
contains a website. (For example, you might take this step when designing and debugging a website
along with a separately compiled component.) When you open an old project or solution, Visual
Studio begins the Conversion Wizard (see Figure 2-30). The Conversion Wizard is exceedingly simple.
It prompts you to choose whether to create a backup and, if so, where it should be placed. If this is
your only copy of the application, a backup is a good idea in case some aspects of your application
can’t be converted successfully. Otherwise, you can skip this option.

CHAPTER 2 © VISUAL STUDIO

Visual Studio Conversion Wizard @l&,‘

Welcome to the Visual Studio
\ Conversion Wizard

The solution or project you are opening was created in a previous
version of Visual Studio. It must be converted to the format used
by this version. After a solution or any of its projects has been
converted, it may no longer be possible to edit, build, or run in
previous versions.

Y

out automatically during the conversion. Be sure the correct
Source Control Plug-in is active, and no files are exclusively
checked out by other users.

£ g If the solution or project is under source control, it will be checked
3 a3

Click Next to proceed.

[Net>][Ensh][cance |

J

Figure 2-30. Importing a web project that was created with an older version of Visual Studio

When you click Finish, Visual Studio performs an in-place conversion. Any errors and warnings are
added to a conversion log, which you can display when the conversion is complete. If you're opening a
solution that contains a website, Visual Studio will also show the same window you saw earlier (Figure 2-
29), asking you if you want to update it.

When you update an ASP.NET 3.5 website, you end up with a modified web.config that contains
some content you may not want. Here’s the added content you're likely to find:

<?xml version="1.0"?>
<configuration>
<system.web>
<compilation debug="true" targetFramework="4.0">
</compilation>
<pages controlRenderingCompatibilityVersion="3.5" clientIDMode="AutoID" />

</system.web>

<system.codedom>
<compilers>
<compiler language="c#;cs;csharp" extension=".cs" ...>
<providerOption name="CompilerVersion" value="v4.0"/>
</compiler>
<compiler language="vb;vbs;visualbasic;vbscript" extension=".vb" ...>
<providerOption name="CompilerVersion" value="v4.0"/>
</compiler>
</compilers>
</system.codedom>

</configuration>

67

68

CHAPTER 2 I VISUAL STUDIO

The <pages> element tells ASP.NET to use the traditional page rendering (which has a few XHTML
quirks), and the traditional method for assigning client-side control IDs (which creates huge,
unpredictable names that are difficult to target with CSS rules or JavaScript). If you don’t need this level
of backward-compatibility, you can delete the <pages> element altogether. Chapter 3 has more
information about these settings.

The <system.codedom> section registers the C# and VB language compilers. (ASP.NET 3.5 needed
to take this step because it was deployed as an add-on to the core ASP.NET 2.0 engine rather than a
completely new, separate release.) Although Visual Studio isn’t intelligent enough to strip this
information out, you can remove the <system.codedom> section yourself, unless you've modified it to
register other, third-party language compilers.

Visual Studio Debugging

To debug a specific web page in Visual Studio, select that web page in the Solution Explorer, and click
the Start Debugging button on the toolbar. (If you are currently editing the web page you want to test,
you don’t need to select it at all—just click Start Debugging to launch it directly.)

What happens next depends on the location of your project. If your project is stored on a remote
web server or a local IIS virtual directory, Visual Studio simply launches your default browser and directs
you to the appropriate URL. If you've used a file system application, Visual Studio starts its integrated
web server on a dynamically selected port (which prevents it from conflicting with IIS, if it’s installed).
Then Visual Studio launches the default browser and passes it a URL that points to the local web server.
Either way, the real work—compiling the page and creating the page objects—is passed along to the
ASP.NET worker process.

The test server only runs while Visual Studio is running, and it only accepts requests from your
computer. When Visual Studio starts the integrated web server, it adds an icon for it in the system tray. If
you want to get a little bit of extra information about the test server, or you want to shut it down, simply
double-click the system tray icon.

Tip Visual Studio’s built-in web server allows you to retrieve a file listing. This means if you create a web
application named MyApp, you can make a request in the form of http://localhost:port/MyApp to see a list of
pages. Then, just click the page you want to test. This process assumes your web application doesn’t have a
default.aspx page—if it does, any requests for the website root automatically return this page.

The separation between Visual Studio, the web server, and ASP.NET allows for a few interesting
tricks. For example, while your browser window is open, you can still make changes to the code and tags
of your web pages. Once you’'ve completed your changes, just save the page, and click the Refresh button
in your browser to request it again. Although you’ll always be forced to restart the entire page to see the
results of any changes you make, it’s still more convenient than rebuilding your whole project.

Fixing and restarting a web page is handy, but what about when you need to track down an elusive
error? In these cases, you need Visual Studio’s debugging smarts, which are described in the next few
sections.

http://localhost:port/MyApp

CHAPTER 2 © VISUAL STUDIO

Note When you use the test web server, it runs all code using your user account. This is different from the
much more limited behavior you’ll see in IS, which uses a less-privileged account to ensure security. It's
important to understand the difference, because if your application accesses protected resources (such as the file
system, a database, the registry, or an event log), you’ll need to make sure you explicitly allow the IIS user. For
more information about IS and the hosting model, refer to Chapter 18.

Single-Step Debugging

Single-step debugging allows you to execute your code one line at a time. It’s incredibly easy to use. Just
follow these steps:

1.

Find a location in your code where you want to pause execution, and start
single-stepping (you can use any executable line of code but not a variable
declaration, comment, or blank line). Click in the margin next to the line code,
and a red breakpoint will appear (see Figure 2-31).

TestPage.aspx.cs® -

% TestPage v | |3¥Button!_Click{object sender, EventArgs)

> || x

Flusing Systemnm;

| using System.Data;

using System.Configuration;

using System.Collections;

using System.leb;

using Systewm.leb.Security;

using System.Web.UI;

using Systew.lWeb.UI.WebhControls;

using Systew.lWeb.UI.WebControls.WebParts;
using Systewm.lWeb.UI.HtmlControls;

Fpublic partial class TestPage : System.Web.UI.Page

protected void Page_Load(object sender, Eventirgs e)
{

}

=] protected void Buttonl Click(object sender, Eventirgs e)
{

decimal val;
0 if {decimal.TryParse (TextBoxl.Text, out wval))

val *= 2;
Labell.Text = val.To3tring():

Figure 2-31. Setting a breakpoint

69

70

CHAPTER 2 I VISUAL STUDIO

2. Now start your program as you would ordinarily. When the program reaches
your breakpoint, execution will pause, and you’ll be switched back to the
Visual Studio code window. The breakpoint statement won'’t be executed.

3. At this point, you have several options. You can execute the current line by
pressing F11. The following line in your code will be highlighted with a yellow
arrow, indicating that this is the next line that will be executed. You can
continue like this through your program, running one line at a time by
pressing F11 and following the code’s path of execution. Or, you can exit break
mode and resume running your code by pressing F5.

Note Instead of using shortcut keys such as F11 and F5, you can use the buttons in the Visual Studio Debug
toolbar. Alternatively, you can right-click the code window and choose an option from the context menu.

4. Whenever the code is in break mode, you can hover over variables to see their
current contents. This allows you to verify that variables contain the values you
expect (see Figure 2-32). If you hover over an object, you can drill down into all

the individual properties by clicking the small plus symbol to expand it (see
Figure 2-33).

TestPage.aspx.cs

v X
“14 TestPage vl v
e |
A
Fpublic partial class TestPage : System.Web.UI.Page
| «
: protected void Page_Load(object sender, Eventirgs e)
{
}
=] protected void Buttonl Click(object sender, Eventirgs e)
{
decinmal val,
° 4 val 84
r RIS
val *= 2;
Labell.Text = wval.ToString():
}
- }
-}
v
< >

Figure 2-32. Viewing variable contents in break mode

CHAPTER 2 © VISUAL STUDIO

TestPage.aspx.cs v

V% TestPage + || ¥Button1_Click{object sender, Eventargs e)

3 3] S

Fpublic partial class TestPage : System.Web.UI.Page

protected void Page_Load(object sender, Eventirgs e)
{

}

=] protected void Buttonl Click(object sender, Eventirgs e)
{
decinal val;
0 (TextBox1l.Text, out wval))
{ = o TextBoxl {System.\Web.ULWebControls. TextBox} |
val *= 2 " ® @ base {System.Web.UL\WebControls. TextBox}
Labell.Text = val.ToStr ﬁ}AumCDmpleteType None
} P AutoPostBack false
- } “ Causesvalidation false
-} S Columns 0
' MaxLength 0
5 Readonly false
PP Rows 0
S Text Qv "42"
% TextMode SingleLine
' validationGroup Qv
S Wrap true

[if$ Static members
¥ Non-Public members

< >

Figure 2-33. Viewing object properties in break mode

Tip You can even modify the values in a variable or property directly—just click inside the tooltip, and enter the
new value. This allows you to simulate scenarios that are difficult or time-consuming to re-create manually or to

test specific error conditions.

5. You can also use any of the commands listed in Table 2-5 while in break mode.
These commands are available from the context menu by right-clicking the
code window or by using the associated hot key.

You can switch your program into break mode at any point by clicking the pause button in the
toolbar or by selecting Debug » Break All.

71

72

CHAPTER 2 I VISUAL STUDIO

Table 2-5. Commands Available in Break Mode

Command (Hot Key)

Description

Step Into (F11)

Step Over (F10)

Step Out (Shift+F11)

Continue (F5)

Run to Cursor

Set Next Statement

Show Next Statement

Executes the currently highlighted line and then pauses. If the currently
highlighted line calls a method or property, execution will pause at the first
executable line inside the method or property (which is why this feature is
called stepping into).

The same as Step Into, except that it runs methods (or properties) as though
they are a single line. If you select the Step Over command while a method
call is highlighted, the entire method will be executed. Execution will pause at
the next executable statement in the current procedure.

Executes all the code in the current procedure and then pauses at the
statement that immediately follows the one that called this method or
property. In other words, this allows you to step “out” of the current
procedure in one large jump.

Resumes the program and continues to run it normally without pausing until
another breakpoint is reached.

Allows you to run all the code up to a specific line (where your cursor is
currently positioned). You can use this technique to skip a time-consuming
loop.

Allows you to change your program’s path of execution while debugging. It
causes your program to mark the current line (where your cursor is
positioned) as the current line for execution. When you resume execution,
this line will be executed, and the program will continue from that point. You
can use this technique to temporarily bypass troublemaking code, but it’s
easy to run into an error if you skip a required detail or leave your data in an
inconsistent state.

Moves focus to the line of code that is marked for execution. This line is
marked by a yellow arrow. The Show Next Statement command is useful if
you lose your place while editing.

Variable Watches

In some cases, you might want to track the status of a variable without switching into break mode
repeatedly. In this case, it's more useful to use the Locals, Autos, and Watch windows, which allow you
to track variables across an entire application. Table 2-6 describes these windows.

Table 2-6. Variable Tracking Windows

CHAPTER 2 © VISUAL STUDIO

Window Description

Locals

Autos

Watch

Automatically displays all the variables that are in scope in the current procedure. This
offers a quick summary of important variables.

Automatically displays variables that Visual Studio determines are important for the
current code statement. For example, this might include variables that are accessed or

changed in the previous line.

Displays variables you have added. Watches are saved with your project, so you can
continue tracking a variable later. To add a watch, right-click a variable in your code, and
select Add Watch; alternatively, double-click the last row in the Watch window, and type

in the variable name.

Each row in the Locals, Autos, and Watch windows provides information about the type or class of
the variable and its current value. If the variable holds an object instance, you can expand the variable
and see its private members and properties. For example, in the Locals window you'll see the this
variable, which is a reference to the current page object. If you click the plus symbol next to this, a full
list will appear that describes many page properties (and some system values), as shown in Figure 2-34.

MName Value Type
= @ this {ASP.TestPage_aspx} TestPage {ASP.TestPage
@ [ASP.TestPage_aspx {ASP.TestPage_aspi} ASP. TestPage_aspx
¢ base {ASP.TestPage_aspx} System.web,ULPage {A!
3 applicationinstance {System.Web.Httpapplication} System.Web. Httpapplica
4 Buttonl {Text = "Button"} System.web,ULWebCon
4 forml {System.Web.ULHtmIControls. HtmlForm} System.\Web,ULHtmICon
4 Labell {Text = "Label"} System.web,ULWebCon
73 Profile {System.Web.Profile.DefaultProfile} System.web.Profile.Defz
= 2 TextBoxl {System.Web.ULWebControls. TextBox} System.web,ULWebCon
¢ base {System.Web.ULWebControls. TextBox} System.web,ULWebCon
#F sutoCompleteTyp None System.web,ULWebCon
P autoPostBack false bool
“F CausesValidation false bool
P Colurmns 0 int
5 MaxLength 0 int
“f ReadOnly false bool
0 Rows 0 int
T e
5 Textivode SingleLine System.web,ULWebCon
% validationGroup " Q ~ string
= wrap true bool
f¢ Static members
@ Non-Public membe

~

v

Figure 2-34. Viewing the current page object in the Locals window

The Locals, Autos, and Watch windows allow you to change variables or properties while your
program is in break mode. Just double-click the current value in the Value column, and type in a new
value. If you are missing one of the watch windows, you can show it manually by selecting it from the

Debug » Windows submenu.

74

CHAPTER 2 I VISUAL STUDIO

Advanced Breakpoints

Choose Debug » Windows » Breakpoints to see a window that lists all the breakpoints in your current
project. The Breakpoints window provides a hit count, showing you the number of times a breakpoint
has been encountered (see Figure 2-35). You can jump to the corresponding location in code by double-
clicking a breakpoint. You can also use the Breakpoints window to disable a breakpoint without
removing it. That allows you to keep a breakpoint to use in testing later, without leaving it active.
Breakpoints are automatically saved with the solution file described earlier.

Breakpoints 3]
New v x 9 rS = ‘:E; Columns ~
MName Condition Hit: Count:

0 LR GER RS S ey - g 8 (no conditi... break always {currently 1)

O TestPage.aspx.cs, line 15 character 5 (no conditi... break always {currently 0)

Figure 2-35. The Breakpoints window

Visual Studio allows you to customize breakpoints so that they occur only if certain conditions are
true. To customize a breakpoint, right-click it, and choose one of the following options:

Location: Use this option to review the exact file and line where the breakpoint is placed.

Condition: Use this option to set an expression. You can choose to enable this breakpoint only
when this expression is true or when it has changed since the last time the breakpoint was hit.

Hit Count: Use this option to create a breakpoint that pauses only after a breakpoint has been hit a
certain number of times (for example, at least 20) or a specific multiple of times (for example, every
fifth time).

Filter: Use this option to enable a breakpoint for certain processes or threads. You’ll rarely use this
option in ASP.NET, because all web page code is executed by the ASP.NET worker process, which
uses a pool of threads.

When Hit: Use this option to set up an automatic action that will be performed every time the
breakpoint is hit. You have two handy options. Your first option is to print a message in the Debug
window, which allows you to monitor the progress of your code without cluttering it up with
Debug.Write() statements. This feature is known as tracepoints. Your second option is to run a
Visual Studio macro, which allows you to perform absolutely any action in the IDE.

The Web Development Helper

Another interesting tool that’s not tied to Visual Studio is the Web Development Helper, a free tool
created by Nikhil Kothari from the ASP.NET team. The central goal of the Web Development Helper is to
improve the debugging experience for ASP.NET developers by enhancing the ability of the browser to
participate in the debugging process. The Web Development Helper provides a few useful features:

* Itcanreport whether a page is in debug or tracing mode.

* Itcandisplay the view state information for a page.

CHAPTER 2 © VISUAL STUDIO

e Itcandisplay the trace information for a page (and hide it from the page, making
sure your layout isn’t cluttered).

* Itcan clear the cache or trigger an application restart.

* Itallows you to browse the HTML DOM (document object model)—in other
words, the tree of elements that make up the rendered HTML of the page.

* It can maintain a log of HTML requests, which information about what page was
requested, how long it took to receive it, and how large the HTML document was.

Many of these work with ASP.NET features that we haven’t covered yet. You'll use the Web
Development Helper with ASP.NET’s tracing feature in the next chapter.

The design of the Web Development Helper is quite interesting. Essentially, it’s built out of two
pieces:

* An HTTP module that runs on the web server and makes additional information
available to the client browser. (You'll learn about HTTP modules in Chapter 5.)

* Anunmanaged browser plug-in that communicates with the HTTP module and
displays the important information in a side panel in the browser (see Figure 2-
36). The browser plug-in is designed exclusively for Internet Explorer, but at least
one other developer has already created a Firefox version that works with the
same HTTP module.

& Untitled Page - Windows Internet Explorer @M
&9 () - [&] http://iocalnost54221/WebSitel /Defautt.aspx 4] x|
. [Yo " s " »
wWodRe ‘ @ Untitled Page ! ‘ (-} v (= v b Page v {C} Tools v
Labell

[Nikhil's Web De&elopmentHelpef THE R i ? : X ST 7 T
2] Tools ~ } Page v Script v+ HTTP ~ ASP.NET ~ ! Console: &y HTTP Logging ~ [¥] Enable Logging [A\ Alerts <
URL Status Timestamp Response Size Connection Time Show Details...
http:/flocalhost: 54221/ WebSite 1/ 200 8/1/2007 2:20:45PM 793 00:00:0180 *x
http:/flocalhost: 54221/ WebSite 1/Default.aspx 200 8/1/2007 2:20:55PM 793 00:00:0470 7 Clear
http: /flocalhost: 54221/WebSite 1/Default.aspx 200 8/1/2007 2:20:57 PM 793 00:00:0180 B
@ http:/jwvev.nikhilk
< T »
[€ Intemnet | Protected Mode: On #100% ~

Figure 2-36. The Web Development Helper

75

76

CHAPTER 2 I VISUAL STUDIO

To download the Web Development Helper, surf to http://projects.nikhilk.net/Projects/
WebDevHelper.aspx. There you can download a setup program that installs two DLLs. One is a .NET
assembly that provides the HTTP module (nStuff. WebDevHelper.Server.dll). The other is the browser
plug-in (WebDevHelper.dll). The setup program copies both files to the c:\Program Files\nStuff\Web
Development Helper directory, and it registers the browser plug-in with Internet Explorer. When the
setup is finished, it gives you the option to open a PDF document that has a short but detailed overview
of all the features of the Web Development Helper.

When you want to use this tool with a web application, you need to add a reference to the
nStuff. WebDevHelper.Server.dll assembly. You also need to modify the web.config file so it loads the
HTTP module, as shown here:

<configuration>
<system.web>
<httpModules>
<add name="DevInfo" type="nStuff.WebDevHelper.Server.DevInfoModule,
nStuff.WebDevHelper.Server, Version=0.5.0.0, Culture=neutral,
PublicKeyToken=8fcoe3af5abcbbc4" />
</httpModules>

</system.web>
</configuration>

Now, run one of the pages from this application. To actually switch on the browser plug-in, you
need to choose Tools » Web Development Helper from the Internet Explorer menu. When you click this
icon, a pane will appear at the bottom of the browser window. At the top of the pane are a series of drop-
down menus with a variety of options for examining ASP.NET pages. You'll see one example that uses
the Web Developer Helper in Chapter 3.

Summary

This chapter considered the role that Visual Studio can play in helping you develop your web
applications. At the same time that you explored its rich design-time environment, you also learned
about how it works behind the scenes with the code-behind model and how to extend it with time-
saving features such as macros. In the next two chapters, you'll jump into full-fledged ASP.NET coding
by examining web pages and server controls.

http://projects.nikhilk.net/Projects

CHAPTER 3

Web Forms

ASP.NET pages (officially known as web forms) are a vital part of an ASP.NET application. They provide
the actual output of a web application—the web pages that clients request and view in their browsers.

Essentially, web forms allow you to create a web application using the same control-based interface
as a Windows application. To run an ASP.NET web form, the ASP.NET engine reads the entire .aspx file,
generates the corresponding objects, and fires a series of events. You react to these events using
thoroughly object-oriented code.

This chapter provides in-depth coverage of web forms. You’ll learn how they work and how you can
use them to build simple pages. You'll also get an in-depth first look at the page-processing life cycle and
the ASP.NET server-side control model.

Web Forms Changes in ASP.NET 4

ASP.NET 4 introduces a few, mostly minor changes to the web forms model. Here they are, in the order
you’ll encounter them in this chapter:

Strict XHTML rendering: Although you could configure ASP.NET 3.5 to get strict
with XHTML, its default rendering had a few quirks. In ASP.NET 4, the last of these
has finally been removed, which means your web form pages will be 100 percent
XHTML-compliant (unless you break the rules of XHTML yourself). Read the
“XHTML Compliance” section for the full details.

Predictable client IDs: To ensure that every control gets a unique ID in the
rendered HTML, ASP.NET uses a long-winded name generation system.
Unfortunately, this complicates your life if you actually need to refer to one of
these IDs, such as in client-side JavaScript. ASP.NET 4 improves this situation by
allowing you to configure how the name generation system works in each page.
You’ll see how this works in the “Client-Side Control IDs” section.

New HtmlHead properties: You can now set the description and keywords
metatags through dedicated properties in the HtmlHead class. It's a minor change
that you’ll learn about in the section named “The Page Header.”

Permanent redirects: In its ongoing quest to provide better search engine
optimization, ASP.NET now allows you to redirect requests with the HTTP status
code 301, which signifies a permanent redirect. When search engine crawlers get
this message, they know to update their catalogs. To see how it works, read the
“Moving Between Pages” section.

77

78

CHAPTER 3 ' WEB FORMS

Not included in this list is a far more significant change: the introduction of a whole new programming
model, called ASP.NET MVC, that competes with traditional ASP.NET web forms. You'll explore ASP.NET
MVC in detail in Chapter 32.

Page Processing

One of the key goals of ASP.NET is to create a model that lets web developers rapidly develop web forms
in the same way that Windows developers can build made-to-measure windows in a desktop
application. Of course, web applications are very different from traditional rich client applications.
There are two key stumbling blocks:

Web applications execute on the server: For example, suppose you create a form that allows the
user to select a product record and update its information. The user performs these tasks in the
browser, but in order for you to perform the required operations (such as updating the database),
your code needs to run on the web server. ASP.NET handles this divide with a technique called
postback, which sends the page (and all user-supplied information) to the server when certain
actions are performed. Once ASP.NET receives the page, it can then fire the corresponding server-
side events to notify your code.

Web applications are stateless: In other words, once the page is rendered to HTML, your web-page
objects are destroyed and all client-specific information is discarded. This model lends itself well to
highly scalable, heavily trafficked applications, but it makes it difficult to create a seamless user
experience. ASP.NET includes several tools to help you bridge this gap; most notable is a persistence
mechanism called view state, which automatically embeds information about the page in a hidden
field in the rendered HTML.

In the following sections, you'll learn about both the postback and the view state features. Together,
these mechanisms help abstract the underlying HTML and HTTP details, allowing developers to work in
terms of objects and events.

HTML Forms

If you're familiar with HTML, you know that the simplest way to send client-side data to the server is
using a <form> tag. Inside the <form> tag, you can place other <input> tags to represent basic user
interface ingredients such as buttons, text boxes, list boxes, check boxes, and radio buttons.

For example, here’s an HTML page that contains two text boxes, two check boxes, and a submit
button, for a total of five <input> tags:

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Programmer Questionnaire</title>
</head>
<body>

<form method="post" action="page.aspx">

<div>
Enter your first name:
<input type="text" name="FirstName" />

Enter your last name:
<input type="text" name="LastName" />

You program with:

http://www.w3.org/1999/xhtml

CHAPTER 3 " WEB FORMS

 8
<input type="checkbox" name="CS" />C#

 8
<input type="checkbox" name="VB" />VB .NET

<input type="submit" value="Submit" id="OK" />
</div>
</form>
</body>

</html>

Figure 3-1 shows what this basic page looks like in a web browser.

& | Programmer Questionnaire - Microsoft Internet Explorer. Q@@
File Edit View Favorites Tools Help ¢)~ [5 ':,'

Address .;éj http:{flocalhost{TestWebfpage.aspx v |

Enter your first name: |Matthew

Enter your last name: | MacDonald "
You program with:

M C#
MVB NET

.”§] Done j My Computer

Figure 3-1. A simple HTML form

When the user clicks the submit button, the browser collects the current value of each control and
pastes it together in a long string. This string is then sent back to the page indicated in the <form> tag (in
this case, page.aspx) using an HTTP POST operation.

In this example, that means the web server might receive a request with this string of information:

FirstName=Matthew&LastName=MacDonald&CS=on&VB=on

The browser follows certain rules when constructing this string. Information is always sent as a
series of name/value pairs separated by the ampersand (&) character. Each name/value pair is split with
an equal (=) sign. Check boxes are left out unless they are checked, in which case the browser supplies
the text on for the value. For the complete lowdown on the HTML forms standard, which is supported in
every current browser, surf to http://www.w3.org/TR/REC-html40/interact/forms.html.

Virtually all server-side programming frameworks add a layer of abstraction over the raw form data.
They parse this string and expose it in a more useful way. For example, JSP, ASP, and ASP.NET all allow
you to retrieve the value of a form control using a thin object layer. In ASP and ASP.NET, you can look up

79

http://www.w3.org/TR/REC-html40/interact/forms.html

80

CHAPTER 3 ' WEB FORMS

values by name in the Request.Form collection. If you change the previous page into an ASP.NET web
form, you can use this approach with code like this:

string firstName = Request.Form["FirstName"];

This thin veneer over the actual POST message is helpful, but it’s still along way from a true object-
oriented framework. That’s why ASP.NET goes another step further. When a page is posted back to
ASP.NET, it extracts the values, populates the Form collection (for backward compatibility with ASP
code), and then configures the corresponding control objects. This means you can use the following
much more intuitive syntax to retrieve information in an ASP.NET web form:

string firstName = txtFirstName.Text;

This code also has the benefit of being typesafe. In other words, if you're retrieving the state of the
check box, you'll receive a Boolean true or false value, instead of a string with the word on. In this way,
developers are insulated from the quirks of HTML syntax.

Note In ASP.NET, all controls are placed inside a single <form> tag. This tag is marked with the runat="server"
attribute, which allows it to work on the server side. ASP.NET does not allow you to create web forms that contain
more than one server-side form tag, although it is possible to create a page that posts to another page using a
technique called cross-page posting, which is discussed in Chapter 6.

Dynamic User Interface

Clearly, the control model makes life easier for retrieving form information. What'’s even more
remarkable is how it simplifies your life when you need to add information to a page. Almost all web
control properties are readable and writable. This means you can set the Text property of a text box just
as easily as you can read it.

For example, consider what happens if you want to update a piece of text on a web page to reflect
some information the user has entered earlier. In classic ASP, you would need to find a convenient place
to insert a script block that would write the raw HTML. Here’s a snippet of ASP.NET code that uses this
technique to display a brightly colored welcome message:
string message = "Welcome " +

FirstName + " " + LastName + "";

Response.Write(message);
On the other hand, life is much neater when you define a Label control in ASP.NET:

<asp:Label id="1lblWelcome" runat="server" />

CHAPTER 3 " WEB FORMS

Now you can simply set its properties:

1blWelcome.Text = "Welcome " + FirstName +
1blWelcome.ForeColor = Color.Red;

+ LastName;

This code has several key advantages. First, it’s much easier to write (and to write without errors).
The savings seem fairly minor in this example, but it is much more dramatic when you consider a
complete ASP.NET page that needs to dynamically render complex blocks of HTML that contain links,
images, and styles.

Second, control-based code is also much easier to place inside a page. You can write your ASP.NET
code wherever the corresponding action takes place. On the other hand, in classic ASP you need to worry
about where the content appears on the page and arrange your script blocks code appropriately. If a
page has several dynamic regions, it can quickly become a tangled mess of script blocks that don’t show
any clear relation or organization.

A subtler but equally dramatic advantage of the control model is the way it hides the low-level
HTML details. Not only does this allow you to write code without learning all the idiosyncrasies of
HTML, but it also allows your pages to support a wider range of browsers. Because the control renders
itself, it has the ability to tailor its output to support different browsers or different flavors of HTML and
XHTML. Essentially, your code is no longer tightly coupled to the HTML standard.

The ASP.NET Event Model

Classic ASP uses a linear processing model. That means code on the page is processed from start to
finish and is executed in order. Because of this model, classic ASP developers need to write a
considerable amount of code even for simple pages. A classic example is a web page that has three
different submit buttons for three different operations. In this case, your script code has to carefully
distinguish which button was clicked when the page is submitted and then execute the right action using
conditional logic.

ASP.NET provides a refreshing change with its event-driven model. In this model, you add controls
to a web form and then decide what events you want to respond to. Each event handler is a discrete
method, which keeps the page code tidy and organized. This model is nothing new, but until the advent
of ASP.NET it has been the exclusive domain of windowed UI programming in rich client applications.

So, how do ASP.NET events work? It’s surprisingly straightforward. Here’s a brief outline:

1. Your page runs for the first time. ASP.NET creates page and control objects, the
initialization code executes, and then the page is rendered to HTML and
returned to the client. The page objects are also released from server memory.

2. Atsome point, the user does something that triggers a postback, such as
clicking a button. At this point, the page is submitted with all the form data.

3. ASP.NET intercepts the returned page and re-creates the page objects, taking
care to return them to the state they were in the last time the page was sent to
the client.

4. Next, ASP.NET checks what operation triggered the postback, and it raises the
appropriate events (such as Button.Click), which your code can react to.
Typically, at this point you'll perform some server-side operation (such as
updating a database or reading data from a file) and then modify the control
objects to display new information.

5. The modified page is rendered to HTML and returned to the client. The page
objects are released from memory. If another postback occurs, ASP.NET
repeats the process in steps 2 through 4.

81

82

CHAPTER 3 ' WEB FORMS

In other words, ASP.NET doesn’t just use the form data to configure the control objects for your
page. It also uses it to decide what events to fire. For example, if it notices the text in a text box has
changed since the last postback, it raises an event to notify your page. It’s up to you whether you want to
respond to this event.

Note Keep in mind that since HTTP is completely stateless, and all state made available by ASP.NET is
reconstituted, the event-driven model is really an emulation. ASP.NET performs quite a few tasks in the
background in order to support this model, as you’ll see in the following sections. The beauty of this concept is
that the beginner programmer doesn’t need to be familiar with the underpinnings of the system to take advantage
of server-side events.

Automatic Postbacks

Of course, one gap exists in the event system described so far. Windows developers have long been
accustomed to a rich event model that lets your code react to mouse movements, key presses, and the
minutest control interactions. But in ASP.NET, client actions happen on the client side, and server
processing takes place on the web server. This means a certain amount of overhead is always involved in
responding to an event. For this reason, events that fire rapidly (such as a mouse move event) are
completely impractical in the world of ASP.NET.

Note If you want to accomplish a certain Ul effect, you might handle rapid events such as mouse movements
with client-side JavaScript. Or, better yet, you might use a custom ASP.NET control that already has these smarts
built in, such as the ASP.NET AJAX controls you'll consider in Part 6. However, all your business code must
execute in the secure, feature-rich server environment.

If you're familiar with HTML forms, you know there is one basic way to submit a page—by clicking a
submit button. If you're using the standard HTML server controls in your .aspx web forms, this is still
your only option. However, once the page is posted back, ASP.NET can fire other events at the same time
(namely, events that indicate that the value in an input control has been changed).

Clearly, this isn’t enough to build a rich web form. Fortunately, ASP.NET web controls extend this
model with an automatic postback feature. With this feature, input controls can fire different events, and
your server-side code can respond immediately. For example, you can trigger a postback when the user
clicks a check box, changes the selection in a list, or changes the text in a text box and then moves to
another field. These events still aren’t as fine-grained as events in a Windows application, but they are a
significant step up from the submit button.

Automatic Postbacks “Under the Hood”

To use automatic postback, you simply need to set the AutoPostBack property of a web control to true
(the default is false, which ensures optimum performance if you don’t need to react to a change event).

CHAPTER 3 " WEB FORMS

When you do, ASP.NET uses the client-side abilities of JavaScript to bridge the gap between client-side
and server-side code.

Here’s how it works: if you create a web page that includes one or more web controls that are
configured to use AutoPostBack, ASP.NET adds a JavaScript function to the rendered HTML page named
__doPostBack(). When called, it triggers a postback, posting the page back to the web server with all the
form information.

ASP.NET also adds two hidden input fields that the __doPostBack() function uses to pass
information back to the server. This information consists of the ID of the control that raised the event
and any additional information that might be relevant. These fields are initially empty, as shown here:

<div class="aspNetHidden">
<input type="hidden" name="__EVENTTARGET" id="_ EVENTTARGET" value="" />
<input type="hidden" name="__EVENTARGUMENT" id="__ EVENTARGUMENT" value="" />

</div>

The __doPostBack() function has the responsibility for setting these values with the appropriate
information about the event and then submitting the form. A sample __doPostBack() function is
shown here:

<script type="text/javascript">
function _ doPostBack(eventTarget, eventArgument) {
if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
theForm._EVENTTARGET.value = eventTarget;
theForm._EVENTARGUMENT.value = eventArgument;
theForm.submit();

.

</script>

Remember, ASP.NET generates the __doPostBack() function automatically. This code grows
lengthier as you add more AutoPostBack controls to your page, because the event data must be set for
each control.

Finally, any control that has its AutoPostBack property set to true is connected to the
__doPostBack() function using the onclick or onchange attribute. These attributes indicate what action
the browser should take in response to the client-side JavaScript events onclick and onchange.

The following example shows the rendered HTML for a list control named IstCountry, which posts
back automatically. Whenever the user changes the selection in the list, the client-side onchange event
fires. The browser then calls the __doPostBack() function, which sends the page back to the server.

<select name="1stCountry" onchange=
"javascript:setTimeout (8#39;__doPostBack(\'1stCountry\8#39;,\8#39;\8#39;)8#39;, 0)">

In other words, ASP.NET automatically changes a client-side JavaScript event into a server-side
ASP.NET event, using the __doPostBack() function as an intermediary. If you're a seasoned ASP
developer, you may have manually created a solution like this for traditional ASP web pages. ASP.NET
handles these details for you automatically, simplifying life a great deal.

83

84

CHAPTER 3 ' WEB FORMS

Tip Remember, ASP.NET includes two control models: the bare-bones HTML server controls and the more fully
functional web controls. Automatic postback is available only with web controls.

View State

The final ingredient in the ASP.NET model is the view state mechanism. View state solves another
problem that occurs because of the stateless nature of HTTP—lost changes.

Every time your page is posted back to the server, ASP.NET receives all the information that the user
has entered in any <input> controls in the <form> tag. ASP.NET then loads the web page in its original
state (based on the layout and defaults you've defined in the .aspx file) and tweaks the page according to
this new information. The problem is that in a dynamic web form, your code might change a lot more.
For example, you might programmatically change the color of a heading, modify a piece of static text,
hide or show a panel of controls, or even bind a full table of data to a grid. All these actions change the
page from its initial state. However, none of them is reflected in the form data that’s posted back. That
means this information will be lost after every postback. Traditionally, statelessness has been overcome
with the use of simple cookies, session-based cookies, and various other workarounds. All of these
mechanisms require homemade (and sometimes painstaking) measures.

To deal with this limitation, ASP.NET has devised its own integrated state serialization mechanism.
Essentially, once your page code has finished running (and just before the final HTML is rendered and
sent to the client), ASP.NET examines all the properties of all the controls on your page. If any of these
properties has been changed from its initial state, ASP.NET makes a note of this information in a
name/value collection. Finally, ASP.NET takes all the information it has amassed and then serializes it as
a Base64 string. (A Base64 string ensures that there aren’t any special characters that wouldn’t be valid
HTML.) The final string is inserted in the <form> section of the page as a new hidden field.

The next time the page is posted back, ASP.NET follows these steps:

1. ASP.NET re-creates the page and control objects based on its defaults (as
defined in the .aspx file). Thus, the page has the same state that it had when it
was first requested.

2. Next, ASP.NET deserializes the view state information and updates all the
controls. This returns the page to the state it was in before it was sent to the
client the last time.

3. Finally, ASP.NET adjusts the page according to the posted back form data. For
example, if the client has entered new text in a text box or made a new
selection in a list box, that information will be in the Form collection and
ASP.NET will use it to tweak the corresponding controls. After this step, the
page reflects the current state as it appears to the user.

4. Now your event-handling code can get involved. ASP.NET triggers the
appropriate events, and your code can react to change the page, move to a new
page, or perform a completely different operation.

Using view state is a great solution because server resources can be freed after each request, thereby
allowing for scalability to support hundreds or thousands of requests without bogging the server down.
However, it still comes with a price. Because view state is stored in the page, it results in a larger total
page size. This affects the client doubly, because the client not only needs to receive a larger page, but
the client also needs to send the hidden view state data back to the server with the next postback. Thus,
it takes longer both to receive and post the page. For simple pages, this overhead is minimal, but if
you configure complex, data-heavy controls such as the GridView, the view state information can
grow to a size where it starts to exert a toll. In these cases, you can disable view state for a control by

CHAPTER 3 " WEB FORMS

setting its EnableViewState property to false. However, in this case you need to reinitialize the control
with each postback.

Note Even if you set EnableViewState to false, the control can still hold onto a smaller amount of view state
information that it deems critical for proper functioning. This privileged view state information is known as control
state, and it can never be disabled. However, in a well-designed control the size required for control state will be
significantly smaller than the size of the entire view state. You’ll see how it works when you design your own
custom controls in Chapter 27.

ASP.NET uses view state only with page and control properties. ASP.NET doesn’t take the same
steps with member variables and other data you might use. However, as you'll learn later in this book
(Chapter 6), you can place other types of data into view state and retrieve this information manually at a
later time.

Figure 3-2 provides an end-to-end look at page requests that puts all these concepts together.

Note It is absolutely essential to your success as an ASP.NET programmer to remember that the web form is
re-created with every round-trip. It does not persist or remain in memory longer than it takes to render a single
request.

85

CHAPTER 3 ' WEB FORMS

Request a URL (HTTP GET) ——»

Create web page
(based on the tags
in the .aspx file)

First Request

1
X Run your ﬂ
1 initialization code
L - &4 0000 ood
ooo oo
- ooo oo
I — - - - -|0000 ood
1 i ' |8ege 858
- 1 iali i
- —_— | 0= Vo Sena_llze_dyr]amlc \Booa oo
= i | information in view state | | 3252 080
1
| :
Client ~<————— Return the rendered HTML document :

Click a submit button
(or trigger _doPostBack()

through a JavaScript
event)

Post page to URL (HTTP POST)

Create web page
(based on the tags
in the .aspx file)

Deserialize and apply

the view state data
Run your
initialization code

Serialize dynamic
information in view state

0=

I
]
T

Client <«—————— Return the rendered HTML document

{ Postback Request }

Figure 3-2. ASP.NET page requests

View State “Under the Hood”

If you look at the rendered HTML for an ASP.NET page, you can easily find the hidden input field with
the view state information. The following example shows a page that uses a simple Label web control
and sets it with a dynamic “Hello, world” message:

<html>
<head>
<title>Hello World Page</title>
</head>
<body>
<form method="post" action="WebFormi.aspx" id="formi">

CHAPTER 3 " WEB FORMS

<div class="aspNetHidden">
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPDWUKLTE2MjY5MTY1NQ9kFgICAw9kFgICAQ8PFgIeBFR1eHQFDEh1bGxv
IFdvcmxkIWRkZPsbiNOyNAufEt70vNIbVYcGiHqf" />
</div>
<div>
<input type="submit" name="Button1" value="Button" id="Buttoni" />
Hello, world
</div>
</form>
</body>
</html>

The view state string isn’t human readable—it just looks like a series of random characters.
However, it’s important to note that a user who is willing to go to a little work can interpret this data
quite easily. Here’s a snippet of .NET code that does the job and writes the decoded information to a web

page:

// viewStateString contains the view state information.

// Convert the Base64 string to an ordinary array of bytes

// representing ASCII characters.

byte[] stringBytes = Convert.FromBase64String(viewStateString);

// Deserialize and display the string.
string decodedViewState = System.Text.Encoding.ASCII.GetString(stringBytes);

1bl.Text = decodedViewState;

In order to test this web page, you'll need to copy a view state string from an existing web page
(using the View Source command in your web browser). Or, you can retrieve the view state string for the
current web page using server-side code like this:

string viewStateString = Request[" VIEWSTATE"];

When you look at the decoded view state string, you’ll see something like this:

As you can see, the control text is clearly visible (along with some unprintable characters that render
as blank boxes). This means that, in its default implementation, view state isn’t a good place to store
sensitive information that the client shouldn’t be allowed to see—that sort of data should stay on the
server. Additionally, you shouldn’t make decisions based on view state that could compromise your
application if the client tampers with the view state data.

Tip You can also decode the view state information for a page using the Web Development Helper utility that
was introduced in Chapter 2.

Fortunately, it’s possible to tighten up view state security quite a bit. You can enable automatic hash
codes to prevent view state tampering, and you can even encrypt view state to prevent it from being

87

88

CHAPTER 3 ' WEB FORMS

decoded. These techniques raise hidden fields from a clumsy workaround to a much more robust and
respectable piece of infrastructure. You'll learn about both of these techniques in Chapter 6.

View State Chunking

The size of the hidden view state field has no limit. However, some proxy servers, firewalls, and mobile
browsers refuse to let pages through if they have hidden fields greater than a certain size. To circumvent
this problem, you can use view state chunking, which automatically divides view state into multiple
fields to ensure that no hidden field exceeds a size threshold you set.

To use view state, you simply need to set the maxPageStateFieldLength attribute of the <pages>
element in the web.config file. This specifies the maximum view state size, in bytes. Here’s an example
that caps view state at 1 KB:

<configuration>
<system.web>
<pages maxPageStateFieldlLength="1024" />

</system.web>
</configuration>

When you request a page that generates a view state larger than this, several hidden input fields will
be created:

<input type="hidden" name="__ VIEWSTATEFIELDCOUNT" value="3" />

<input type="hidden" name="__ VIEWSTATE" value="..." />
<input type="hidden" name="__ VIEWSTATE1" value="..." />
<input type="hidden" name="__ VIEWSTATE2" value="..." />

Remember, view state chunking is simply a mechanism for avoiding problems with certain proxies
(which is a relatively rare occurrence). View state chunking does not improve performance (and adds a
small amount of extra serialization overhead). As a matter of good design, you should strive to include as
little information in view state as possible, which ensures the best performance.

XHTML Compliance

The web controls in ASP.NET are compliant with the XHTML 1.1 standard. However, it’s still up to you to
make sure the rest of your page behaves by the rules. ASP.NET doesn’t take any steps to force XHTML
compliance onto your page.

Note XHTML support doesn’t add any functionality to your web pages that you wouldn’t have with HTML 4.01.
However, because XHTML is a stricter standard, it has a few benefits. For example, you can validate XHTML pages
to catch minor errors that could trip up certain browsers. Most important, XHTML pages are also valid XML
documents, which makes it easier for applications to read or analyze them programmatically and introduces the
possibility of future extensibility. The current consensus is that XHTML will replace HTML in the future. You can
learn more about XHTML by referring to the specification at http://www.w3.0rg/TR/xhtml11.

http://www.w3.org/TR/xhtml11

CHAPTER 3 " WEB FORMS

All the ASP.NET server controls render themselves using XHTML-compliant markup. That means
this markup follows the rules of XHTML, which include the following:

* Tagand attribute names must be in lowercase.

* All elements must be closed, either with a dedicated closing tag (<p></p>) or
using an empty tag that closes itself (
).

* All attribute values must be enclosed in single or double quotes (for example,
runat="server").

e Theid attribute must be used instead of the name attribute. (ASP.NET controls
render both an id and name attribute.)

XHTML also removes support for certain features that were allowed in HTML, such as frames and
formatting that doesn’t use CSS. In most cases, a suitable XHTML alternative exists. However, one
sticking point is the target attribute, which HTML developers can use to create links that open in new
windows. The following ASP.NET controls allow you to use the target attribute:

* AdRotator

* TreeNode

* HyperLink

* HyperLinkColumn
* BulletedList

For example, if you set the HyperLink.Target property, the markup that ASP.NET generates will use
the target attribute and so won’t be XHTML-compliant.

Using the target attribute won’t cause a problem in modern browsers. However, if you need to
create a website that is completely XHTML-compliant, you must avoid using the target attribute.

Note You won’t gain much immediate benefit by using XHTML. However, many companies and organizations
mandate the use of XHTML, with a view to future standards. In the future, XHTML will make it easier to design web
pages that are adaptable to a variety of different platforms, can be processed by other applications, and are
extensible with new markup features. For example, you could use XSLT (XSL Transformations), another XML-
based standard, to transform an XHTML document into another form. The same features won’t be available to
HTML pages.

Document Type Definitions

Every XHTML document should begin with a doctype (document type definition) that defines the type of
XHTML it uses. In an ASP.NET web page, the doctype must be placed immediately after the Page
directive in the markup portion of your web page. That way, the doctype will be rendered as the first line
of your document, which is a requirement.

Here’s an example that defines a web page that supports the full XHTML 1.1 standard, which is
known as XHTML 1.1 strict:

89

90

CHAPTER 3 ' WEB FORMS

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="TestPage.aspx.cs" Inherits="TestPage

n o

0>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>Untitled Page</title>
</head>
<body>
<form id="form1" runat="server">
</form>
</body>
</html>

This page also defines the XML namespace for the <html> element. This is another detail that
XHTML requires.

If you don’t want to support the full XHTML 1.1 standard, you can make a few compromises. One
other common choice for the doctype is XHTML 1.0 transitional, which enforces the structural rules of
XHTML but allows HTML formatting features that have been replaced by stylesheets and are considered
obsolete. Here’s the doctype you need:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The XHTML transitional doctype is still too strict if your website uses HTML frames, which XHTML
considers obsolete. If you need to use frames but still want to follow the other rules of XHTML
transitional, you can use the XHTML 1.0 frameset doctype for your frames page, as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Remember, the ASP.NET server controls will work equally well with any doctype (and they will work
with browsers that support only HTML as well). It’s up to you to choose the level of standards
compliance (and backward compatibility) you want in your web pages. It's always a good idea to include
a doctype for your web pages to clearly indicate the markup standard they support. Without this detail,
Internet Explorer renders pages using a legacy behavior known as “quirks” mode, which differs from the
more standardized rendering found in other browsers like Firefox.

Note Most of the examples in this book use the XHTML 1.1 strict doctype. But to save space, the web page
markup listings in this book don’t include the lines that declare the doctype.

Configuring XHTML Rendering

The ASP.NET server controls automatically use strict XHTML 1.0 markup. Minor quirks that existed in
previous versions have been eliminated.

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd

CHAPTER 3 " WEB FORMS

ASP.NET’s XHTML rendering is set through a configuration file attribute named
controlRenderingCompatibilityVersion, which is applied on the <pages> element. By default, this
attribute is set in the root web.config, so it applies to all ASP.NET 4 applications:

<configuration>
<system.web>
<pages controlRenderingCompatibilityVersion="4.0" />

</system.web>
</configuration>

If you set controlRenderingCompatibility to 3.5 (the only other supported value at this time), web
controls will use the same rendering that they did with ASP.NET 3.5.

Note When you use Visual Studio to upgrade a web application from an earlier version of ASP.NET to ASP.NET
4, Visual Studio sets the controlRenderingCompatibilityVersion attribute to 3.5. To get ASP.NET’s stricter XHTML
rendering, you simply need to remove this attribute.

Confusingly enough, when controlRenderingCompatibilityVersion is set to 3.5, ASP.NET’s rendering
behavior is controlled by another web.config setting, named <xhtmlConformance>:

<configuration>
<system.web>
<pages controlRenderingCompatibilityVersion="3.5" />
<xhtmlConformance mode="Transitional" />

</system.web>
</configuration>

The mode attribute in the <xhtmlConformance> element takes one of three values:

Strict: This produces XHTML-compliant rendering that’s almost as clean as what you get when
controlRenderingCompatibilityVersion is set to 4.0.

Transitional: This is the default value. It produces XHTML-compliant rendering with a small set of
possible quirks. For example, ASP.NET adds the name attribute to the <form> element, some
controls render border="0" to create invisible tables, and disabled controls sometimes use invalid
styles. All of these details are forbidden by the rules of XHTML strict.

Note ASP.NET 3.5 rendering inconsistencies won’t lead to errors. Browsers will still be able to process the page
successfully, even if it uses the XHTML 1.1 strict doctype. However, any inconsistencies will be flagged as an error
by an XHTML validation tool.

91

92

CHAPTER 3 ' WEB FORMS

Legacy: This reverts to the rendering that was used in ASP.NET 1.1. When legacy rendering is
enabled, ASP.NET controls do not use any of the XHTML refinements that aren’t strictly compatible
with HTML 4.01. For example, they render standard HTML elements such as
 instead of the
correct XHTML version,
. However, even if legacy rendering is enabled, ASP.NET won’t strip
out the namespace in the <html> tag or remove the doctype if these details are present in your page.
To avoid confusion, you should make sure that your <xhtmlConformance> setting and your web
page doctypes match. Ideally, you'll use the same doctype for all the web pages in your website,
because ASP.NET doesn’t allow you to configure XHTML rendering on a per-page basis.

Note ASP.NET makes no guarantee that the non-XHTML rendering will be supported in future versions of
ASP.NET, so use it only if it's required for a specific scenario.

Most of the time, you should keep the default controlRenderingCompatibilityVersion of 4.0. You
should set controlRenderingCompatibilityVersion to 3.5 and use the <xhtmlConformance> element only
if you have older pages that need this level of backward compatibility. This might be the case if your
pages contain client-side JavaScript code that expects one of these legacy details (for example, a script
block that uses the name attribute from the <form> element). But most of the time, the latest and most
modern XHTML rendering will give your web application the best standards compliance and
compatibility with the widest range of browsers.

Visual Studio’s Default Doctype

When you create a new web form in Visual Studio, it automatically adds a doctype for XHTML
transitional. If this isn’t what you want, it’s up to you to modify the doctype in each new page. If you're
using master pages (as described in Chapter 16), the solution is even easier. You can simply set the
doctype in your master page, and all the child pages that use that master page will acquire it
automatically.

It is technically possible to change Visual Studio’s default web page template so that it uses a
different doctype, but the process is a bit awkward. You need to first modify the templates, and then
rebuild Visual Studio’s template cache. Here’s a quick rundown of the steps you need to follow:

1. Youcan find the Visual Studio templates in a series of ZIP files in various
folders. You need to modify the WebForm.aspx and WebForm_cb.aspx files in
the c:\Program Files\Microsoft Visual Studio
10.0\Common7\IDE\ItemTemplates\Web\CSharp\1033\WebForm.zip
archive.

Note If you’re running a 64-bit version of Windows, you’ll find the Visual Studio templates in a directory that
begins with c:\Program Files (x86)\Microsoft Visual Studio 10.0 rather than c¢:\Program Files\Microsoft Visual
Studio 10.0.

CHAPTER 3 " WEB FORMS

2. When modifying the files, simply edit the doctype. You'll probably find it’s
easiest to copy the archive to another location, extract the appropriate files,
edit them, add them back to the archive, and then copy the entire archive back
to its original location. That’s because you need administrator rights to edit
these files, and most simple text editors (like Notepad) won’t attempt to
acquire these rights automatically. However, you'll be prompted through UAC
(User Account Control) when you copy, delete, and replace the files in
Windows Explorer.

3. Onceyou’ve updated the templates, delete the c:\Program Files\Microsoft
Visual Studio 10.0\Common7\IDE\ItemTemplatesCache folder to clear out
the template cache.

4. Run Visual Studio using the following command line to rebuild the template
cache:

devenv /InstallVSTemplates
This step requires administrator privileges.

5. You can now run Visual Studio normally. Any new web form files you add to a
web application should have the new doctype that you've set.

XHTML Validation

The core ASP.NET controls follow the rules of XHTML, but to make sure the finished page is XHTML-
compliant, you need to make sure any static content you add also follows these rules. Visual Studio can
help you with its own built-in validator. Just select the target standard from the drop-down list in the
HTML Source Editing toolbar. For example, if you choose XHTML 1.1, Visual Studio flags structural
errors, incorrect capitalization, improper or obsolete tags, and so on. For example, Figure 3-3 shows that

 is not allowed in XHTML because it’s a start tag without an end tag. Instead, you need to use the
empty tag syntax,
.

93

94

CHAPTER 3 " WEB FORMS

' ™
00 Website (3) - Microsoft Visual Studio [E=SRE)
File Edit View Website Build Debug Team Data Tools Architecture Test Apalyze Window Help
Pl S 6 B9 - G- b Debug || hitpy/ || QI Lo 59 3¢ S
P =] = 2 | ML - ® <

PageFlow.aspx X

Client Objects & Events - (No Events)
<%@ Page Language="C#" AutoEventiireup="true" CodeFile="PageFlow.aspx.cs" Inherits="PageFlow" %>

<!DOCTYPE htrl PUBLIC "-//W3C//DTD XHTML 1.1//EN" "

-1<html xrlns="http:
-I<head runat="server">
<title>Page Flow</title>
</head>
-1<body>
] <form id="forml" runat="server">
= <div>
<asp:Label id="1blInfo" runat="server" EnableviewState="False">
</asp:Label>

<asp:Button id="Buttonl" runat="server"
Text="Button" OnClick="Buttonl_Click"></asp:Button>
100% ~ « m

3 Design | O Split | Source l EH<htm|>”<body>||<form=form1>“<div>l

1310]dx3 13A13§ 4 ¥0q|00] X

L}
©
3
®
3
@
A
g
=3
3
=
o
-l
g
3
E |
7
o
=
o
h-l
g
I}

Error List
@ 0Errors ‘ A\ 2 Warnings ‘ i) 0 Messages
Description . File Column Project

4 2 Validation (XHTML 1.1): Empty elements such as 'br' mustend PageFlow.aspx 11 D:\..\Website\
with />,

YR B Output B2 Find Results1

-

Figure 3-3. Validating for XHTML 1.1 in Visual Studio

It’s still possible that an XHTML violation might slip through the cracks. For example, you could use
a third-party control that emits noncompliant markup when it renders itself. Visual Studio won’t be able
to spot the problem, because it’s examining the server-side web form markup, not the final rendered
document that’s sent to the client. Furthermore, your browser probably won't flag the error either.

To give your pages the acid test, you need use a third-party validator that can request your page and
scan it for errors. One good resource is the free W3C validation service at http://validator.w3.org.
Simply enter the URL to your web page, and click Check. You can also upload a file to check it, but in this
case you must make sure you upload the final rendered page, not the .aspx source. You can see (and
save) the rendered content for a page in Internet Explorer by choosing View » Source.

Client-Side Control IDs

Certain parts of ASP.NET functionality require that the elements in the rendered HTML have unique IDs.
(For example, ASP.NET needs to be able to uniquely determine what control has triggered a postback.)
At first glance, this seems to be an easy challenge—after all, the controls also need to have unique server-

http://validator.w3.org

CHAPTER 3 " WEB FORMS

side IDs in order for you to interact with them in code. So why not just use the server-side IDs for the
client-side IDs?

First, a server-side control can exist without any server ID, even if it uses a client-side feature like
automatic postback. Second, a single control can occur multiple times in the page in different
containers. For example, this occurs if you have controls inside a user control, and you repeat the user
control more than once on a page. It can also occur with master pages, and it’s guaranteed to happen
if you have a data-bound control such as the GridView, which repeats the same controls in every row.
To deal with scenarios like these, ASP.NET fuses together the ID of the server control, all of its naming
containers, and (if it's data bound) a numeric index. This leads to long and awkward client-side IDs
like this:

ctloo_ContentPlaceHolder1l ParentPanel NamingPanel TextBoxi

Note A naming container is a control that implements the INamingContainer interface. A control does this if it
needs to provide a unique naming scope for its children to prevent ID conflicts. Examples of naming containers
include Page, UserControl, and Content (a content region in a master page). Also, naming containers include all
controls that can bind to a list of data, from basics such as HtmlISelect, ListBox, and CheckBoxList to rich data
controls such as Details, FormView, and GridView. However, most simple containers aren’t naming containers—
think, for example, of the Panel class that wraps the <div> element.

Initially, ASP.NET developers didn’t give much thought to client-side names, because they were a
fully abstracted background detail. However, in modern web development you might find yourself
needing to refer to a client-side element, either to format it with a CSS stylesheet or to manipulate it with
a bit of client-side JavaScript. In both cases, having long, difficult-to-predict IDs makes your work more
difficult.

ASP.NET 4 adds a ClientIDMode property that allows you to change the naming behavior for an
entire page, a section of a page, or an individual control. Technically, the ClientIDMode property is a
member of the base Control class from which all ASP.NET web controls derive. It supports four possible
values, as listed in Table 3-1.

Table 3-1. Values from the ClientIDMode Enumeration

Value Description

AutoID ASP.NET generates the client-side ID by concatenating the IDs of the control with the
IDs of its naming containers, separated by an underscore. A numeric index is added if
the control is being bound in a data control.

Example: ct100_ContentPlaceHolder1l ParentPanel NamingPanel TextBox1
Static ASP.NET uses the server-side ID to set the client-side ID. This is the simplest scenario,

but it can run into issues if the control is repeated on the page in different naming
containers.

Example: TextBox1

95

96

CHAPTER 3 ' WEB FORMS

Value Description

Predictable ASP.NET uses the same concatenating strategy as it does for the AutolID setting but
simplifies it to create slightly cleaner names. First, the ID of the top-level page isn’t
included (which avoids having the client-side ID begin with an automatically
generated page ID like ctl00). Second, ASP.NET uses the ClientIDRowSuffix property
to generate unique values in a data-bound list control (which makes more sense than
the standard numeric index).

Example: ContentPlaceHolder1 ParentPanel NamingPanel TextBox1
Inherit This control uses the naming strategy of its parent naming container. Or, if this is set

in the Page, it uses the naming strategy that’s specified in the <pages> element of the
web.config file.

The default ClientIDMode setting is the same for every control: Inherit, which means the control
takes the ClientIDMode of its parent naming container. Eventually, this inheritance bubbles up to the
top-level page, which inherits its ClientIDMode setting from the <pages> element of the web.config file.
In a newly created ASP.NET 4 website, the root web.config file sets the ClientIDMode to Predictable. But
in a website that’s been migrated to ASP.NET 4 from an earlier version of ASP.NET, Visual Studio adds
the following web.config markup to set the default ClientIDMode to AutoID for backward compatibility:

<configuration>
<system.web>
<pages clientIDMode="AutoID" />

</system.web>
</configuration>

You can remove or modify the clientIDMode property as needed.

To try the behavior of different ClientIDMode settings, you need to use master pages or data-bound
controls, which are two topics we haven’t covered yet. For a quick test, you can create a new ASP.NET
website using the ASP.NET Web Site template (not the ASP.NET Empty Web Site template). Then, in the
Default.aspx page, in the BodyContent region, add a simple named control like the TextBox shown here:

<%@ Page Title="Home Page" Language="C#" ... %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
<asp:TextBox ID="txtNormal" runat="server"s</asp:TextBox>

</asp:Content>

By default, the TextBox inherits the ClientIDMode of the Content control, which inherits it from the
Page, which gets it from the web.config file. This value is Predictable, which means you end up with this
rendered HTML for the text box:

<input name="ctloo$MainContent$txtNormal" type="text" id="MainContent_txtNorxmal" />

CHAPTER 3 " WEB FORMS

Note You'll notice that the ClientiDMode setting doesn’t affect the value of the client-side name attribute. The
name attribute is set with a string that looks almost identical to the ID when ClientIDMode is set to AutoID. The
only difference is that dollar signs are used instead of underscores, so a typical name is
ctloo$ContentPlaceHolder1$ParentPanel$NamingPanel$TextBox1.

Now you change this behavior by setting the ClientIDMode to Static, either for the entire page or for
the specific TextBox control:

<asp:TextBox ID="txtNormal" ClientIDMode="Static" runat="server"></asp:TextBox>

This gives you the following rendered HTML:

<input name="ctloo$MainContent$txtNormal" type="text" id="txtNormal" />

It’s important to realize that the ClientIDMode property could be set to several points in the
hierarchy of a complex page. For example, you could have a container that uses static naming, which
contains other controls that use predictable naming. In this situation, the controls with predictable
naming get concatenated names that start with the static name of the parent control. Higher-level
naming containers are ignored.

So now that you know how the ClientIDMode property works, how should you use it in a real-world
application? Here are some guidelines:

* Ifyounever need to refer to client-side elements, there’s no need to think about
this issue at all.

* Ifyourarely need to refer to a client-side element, than it’s easiest to target just
that element by setting its ClientIDMode property to Static.

* Ifyoufrequently use client-side IDs, you may want to evaluate whether you can
use Static for entire pages. If these pages contain data-bound controls or repeated
user controls, you can set the ClientIDMode of just these controls to Predictable.

* Ifyouneed to use client-side IDs in a data-bound control, it makes sense to make
your life a bit easier by setting the control’s ClientIDMode property to Predictable
and using the ClientIDRowSuffix property, as described in Chapter 10.

Web Forms Processing Stages

On the server side, processing an ASP.NET web form takes place in stages. At each stage, various events
are raised. This allows your page to plug into the processing flow at any stage and respond however you
would like.

The following list shows the major stages in the process flow of an ASP.NET page:

* Page framework initialization
* User code initialization

e Validation

* Event handling

* Automatic data binding

97

98

CHAPTER 3 ' WEB FORMS

* Cleanup

Remember, these stages occur independently for each web request. Figure 3-4 shows the order in
which these stages unfold. More stages exist than are listed here, but those are typically used for
programming your own ASP.NET controls and aren’t handled directly by the page.

Page Framework InitializatioD{ [Browser makes request 1

N

3 User Code Initialization

)
|
)

|

5 Event Handling

6 Browser receives 7
v response

8 Cleanup

Figure 3-4. ASP.NET page life cycle

In the next few sections you'll learn about each stage and then examine a simple web page example.

Page Framework Initialization

This is the stage in which ASP.NET first creates the page. It generates all the controls you have defined
with tags in the .aspx web page. In addition, if the page is not being requested for the first time (in other
words, if it’s a postback), ASP.NET deserializes the view state information and applies it to all the
controls.

At this stage, the Page.Init event fires. However, this event is rarely handled by the web page,
because it’s still too early to perform page initialization. That’s because the control objects may not be
created yet and because the view state information isn’t loaded.

CHAPTER 3 " WEB FORMS

User Code Initialization

At this stage of the processing, the Page.Load event is fired. Most web pages handle this event to perform
any required initialization (such as filling in dynamic text or configuring controls).

The Page.Load event always fires, regardless of whether the page is being requested for the first
time or whether it is being requested as part of a postback. Fortunately, ASP.NET provides a way to
allow programmers to distinguish between the first time the page is loaded and all subsequent loads.
Why is this important? First, since view state is maintained automatically, you have to fetch your data
from a dynamic data source only on the first page load. On a postback, you can simply sit back, relax,
and let ASP.NET restore the control properties for you from the view state. This can provide a dramatic
performance boost if the information is expensive to re-create (for example, if you need to query it
from a database). Second, there are also other scenarios, such as edit forms and drill-down pages, in
which you need the ability to display one interface on a page’s first use and a different interface on
subsequent loads.

To determine the current state of the page, you can check the IsPostBack property of the page,
which will be false the first time the page is requested. Here’s an example:

if (!IsPostBack)

// It's safe to initialize the controls for the first time.
FirstName.Text = "Enter your name here";

Note It's a common convention to write Page.IsPostBack instead of just IsPostBack. This longer form works
because all web pages are server controls, and all server controls include a Page property that exposes the current
page. In other words, Page.IsPostBack is the same as IsPostBack—some developers simply think the first version
is easier to read. Which approach you use is simply a matter of preference.

Remember, view state stores every changed property. Initializing the control in the Page.Load event
counts as a change, so any control value you touch will be persisted in view state, needlessly enlarging
the size of your page and slowing transmission times. To streamline your view state and keep page sizes
small, avoid initializing controls in code. Instead, set the properties in the control tag (either by editing
the tag by hand in source view or by using the Properties window). That way, these details won’t be
persisted in view state. In cases where it really is easier to initialize the control in code, consider
disabling view state for the control by setting EnableViewState to false and initializing the control every
time the Page.Load event fires, regardless of whether the current request is a postback.

Validation

ASP.NET includes validation controls that can automatically validate other user input controls and
display error messages. These controls fire after the page is loaded but before any other events take
place. However, the validation controls are for the most part self-sufficient, which means you don’t
need to respond to the validation events. Instead, you can just examine whether the page is valid
(using the Page.IsValid property) in another event handler. Chapter 4 discusses the validation controls
in more detail.

99

100

CHAPTER 3 ' WEB FORMS

Event Handling

At this point, the page is fully loaded and validated. ASP.NET will now fire all the events that have taken
place since the last postback. For the most part, ASP.NET events are of two types:

Immediate response events: These include clicking a submit button or clicking some other button,
image region, or link in a rich web control that triggers a postback by calling the __doPostBack()
JavaScript function.

Change events: These include changing the selection in a control or the text in a text box. These
events fire immediately for web controls if AutoPostBack is set to true. Otherwise, they fire the next
time the page is posted back.

As you can see, ASP.NET’s event model is still quite different from a traditional Windows
environment. In a Windows application, the form state is resident in memory, and the application runs
continuously. That means you can respond to an event immediately. In ASP.NET, everything occurs in
stages, and as a result events are sometimes batched together.

For example, imagine you have a page with a submit button and a text box that doesn’t post back
automatically. You change the text in the text box and then click the submit button. At this point,
ASP.NET raises all of the following events (in this order):

¢ Page.Init

* Page.Load

* TextBox.TextChanged
* Button.Click

* Page.PreRender

* Page.Unload

Remembering this bit of information can be essential in making your life as an ASP.NET
programmer easier. There is an upside and a downside to the event-driven model. The upside is that the
event model provides a higher level of abstraction, which keeps your code clear of boilerplate code for
maintaining state. The downside is that it’s easy to forget that the event model is really just an
emulation. This can lead you to make an assumption that doesn’t hold true (such as expecting
information to remain in member variables) or a design decision that won’t perform well (such as
storing vast amounts of information in view state).

Automatic Data Binding

In Chapter 9, you’ll learn about the data source controls that automate the data binding process. When
you use the data source controls, ASP.NET automatically performs updates and queries against your
data source as part of the page life cycle.

Essentially, two types of data source operations exist. Any changes (inserts, deletes, or updates) are
performed after all the control events have been handled but just before the Page.PreRender event fires.
Then, after the Page.PreRender event fires, the data source controls perform their queries and insert the
retrieved data into any linked controls. This model makes instinctive sense, because if queries were
executed before updates, you could end up with stale data in your web page. However, this model also
introduces a necessary limitation—none of your other event handlers will have access to the most recent
data, because it hasn’t been retrieved yet.

This is the last stop in the page life cycle. Historically, the Page.PreRender event is supposed to
signify the last action before the page is rendered into HTML (although, as you've just learned, some
data binding work can still occur after the prerender stage). During the prerender stage, the page and

CHAPTER 3 " WEB FORMS

control objects are still available, so you can perform last-minute steps such as storing additional
information in view state.
To learn much more about the ASP.NET data binding story, refer to Chapter 9.

Cleanup

At the end of its life cycle, the page is rendered to HTML. After the page has been rendered, the real
cleanup begins, and the Page.Unload event is fired. At this point, the page objects are still available, but
the final HTML is already rendered and can’t be changed.

Remember, the .NET Framework has a garbage collection service that runs periodically to release
memory tied to objects that are no longer referenced. If you have any unmanaged resources to release,
you should make sure you do this explicitly in the cleanup stage or, even better, before. When the
garbage collector collects the page, the Page.Disposed event fires. This is the end of the road for the
web page.

A Page Flow Example

No matter how many times people explain how something works, it’s always more satisfying to see it for
yourself (or break it trying to learn how it works). To satisfy your curiosity, you can build a sample web
form test that illustrates the flow of processing. The only thing this example won’t illustrate is validation
(which is discussed in the next chapter).

To try this, start by creating a new web form named PageFlow.aspx. In Visual Studio, you simply
need to drag a label and a button onto the design surface of your web page. This places them inside the
server-side <form> section. Next, select the Label control on the design surface. Using the Properties
window, set the ID property to lIblinfo and the EnableViewState property to false.

Here’s the complete markup for the .aspx file, without any event handlers:

<%@ Page language="C#" CodeFile="PageFlow.aspx.cs"
AutoEventWireup="true" Inherits="PageFlow" %>

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Page Flow</title>

</head>
<body>
<form id="form1" runat="server">
<div>
<asp:lLabel id="1blInfo" runat="server" EnableViewState="False">
</asp:Label>
<asp:Button id="Button1" runat="server" Text="Button">
</asp:Button>
</div>
</form>
</body>
</html>

The next step is to add your event handlers. When you're finished, the code-behind file will hold five
event handlers that respond to different events, including Page.Init, Page.Load, Page.PreRender,
Page.Unload, and Button.Click.

Page event handlers are a special case. Unlike other controls, you don’t need to wire them up
using attributes in your markup. Instead, page event handlers are automatically connected provided

101

http://www.w3.org/1999/xhtml

102

CHAPTER 3 ' WEB FORMS

they use the correct method name (and assuming the Page directive sets AutoEventWireup to true,
which is the default).
Here are the event handlers for various page events in the PageFlow example:

private void Page Load(object sender, System.EventArgs e)

{
1blInfo.Text += "Page.Load event handled.
";
if (Page.IsPostBack)
1blInfo.Text +=
"This is not the first time you've seen this page.
";
}
}

private void Page Init(object sender, System.EventArgs e)

1blInfo.Text += "Page.Init event handled.
";
}

private void Page PreRender(object sender, System.EventArgs e)

1blInfo.Text += "Page.PreRender event handled.
";
}

private void Page Unload(object sender, System.EventArgs e)

// This text never appears because the HTML is already
// rendered for the page at this point.
1blInfo.Text += "Page.Unload event handled.
";

Each event handler simply adds to the text in the Text property of the label. When the code adds this
text, it also uses embedded HTML tags such as (to bold the text) and
 (to insert a line break).
Another option would be to create separate Label controls and configure the style-related properties of
each one.

Note In this example, the EnableViewState property of the label is set to false. This ensures that the text is
cleared every time the page is posted back and the text that’s shown corresponds only to the most recent batch of
processing. If you left EnableViewState set to true, the list would grow longer with each postback, showing you all
the activity that has happened since you first requested the page.

CHAPTER 3 " WEB FORMS

Additionally, you need to add an event handler for the Button.Click event:
protected void Buttoni Click(object sender, System.EventArgs e)

1blInfo.Text += "Buttoni.Click event handled.
";

And you need to wire it up to the corresponding control:

<asp:Button id="Button1" runat="server" Text="Button" OnClick="Buttoni_Click">
</asp:Button>

The Button.Click event handler requires a different accessibility level than the page event handlers.
The page event handlers are private, while all control event handlers are protected. To understand this
difference, you need to reconsider the code model that was introduced in Chapter 2.

Page handlers are hooked up explicitly using delegates in a hidden portion of designer code.
Because this designer code is still considered part of your class (thanks to the magic of partial classes), it
can hook up any method, including a private method. Control event handlers are connected using a
different mechanism—the control tag. They are bound at a later stage of processing, after the markup in
the .aspx file and the code-behind class have been merged together. ASP.NET creates this merged class
by deriving a new class from the code-behind class.

Here’s where things get tricky. This derived class needs to be able to access the event handlers in the
page so it can connect them to the appropriate controls. The derived class can access the event handlers
only if they are public (in which case any class can access them) or protected (in which case any derived
class can access them).

Tip Although it’s acceptable for page event handlers to be private, it’s a common convention in ASP.NET code
to make all event handlers protected, just for consistency and simplicity.

Figure 3-5 shows the ASP.NET page after clicking the button, which triggers a postback and the
Buttonl.Click event. Note that even though this event caused the postback, Page.Init and Page.Load
were both raised first.

103

104

CHAPTER 3 ' WEB FORMS

& Page Flow - Windows Internet Explorer =Na=N X
@ o~ 1& http://localhost:60501/Chapter03/PageFlow.aspx v ’ 4;’| X |
" T [B | T >
W it | @ PageFlow \ \) v o= v b Page v
Page Init event handled.
Page Load event handled.

This is not the first time you've seen this page.
Button].Click event handled.
Page PreRender event handled.

E}]« @ Internet | Protected Mode: On #100% ~

Figure 3-5. ASP.NET order of operations

The Page As a Control Container

Now that you've learned the stages of web forms processing, it’s time to take a closer look at how the
server control model plugs into this pipeline. To render a page, the web form needs to collaborate with
all its constituent controls. Essentially, the web form renders itself and then asks all the controls on the
page to render themselves. In turn, each of those controls can contain child controls; each is also
responsible for their own rendering code. As these controls render themselves, the page assembles the
generated HTML into a complete page. This process may seem a little complex at first, but it allows for
an amazing amount of power and flexibility in creating rich web-page interfaces.

When ASP.NET first creates a page (in response to an HTTP request), it inspects the .aspx file. For
each element it finds with the runat="server" attribute, it creates and configures a control object, and
then it adds this control as a child control of the page. You can examine the Page.Controls collection to
find all the child controls on the page.

Showing the Control Tree

Here’s an example that looks for controls. Each time it finds a control, the code uses the
Response.Write() command to write the control class type and control ID to the end of the rendered
HTML page, as shown here:

// Every control derives from System.Web.UI.Control, so you can use
// that as a base class to examine all controls.
foreach (Control control in Page.Controls)

Response.Write(control.GetType().ToString() + " - " +
control.ID + "
");

}

// Separate this content from the rest of the page with a horizontal line.
Response.Write("<hr />");

CHAPTER 3 " WEB FORMS

Note The Response.Write() method is a holdover from classic ASP, and you would almost never use it in a real-
world ASP.NET web application. It effectively bypasses the web control model, which leads to disjointed interfaces,
compromises ASP.NET’s ability to create markup that adapts to the target device, and almost always breaks
XHTML compatibility. However, in this test page Response.Write() allows you to write raw HTML without
generating any additional controls—which is a perfect technique for analyzing the controls on the page without
disturbing them.

To test this code, you can add it to the Page.Load event handler. In this case, the rendered content
will be written at the top of the page before the controls. However, when you run it, you’ll notice some
unexpected behavior. For example, consider the web form shown in Figure 3-6, which contains several
controls, some of which are organized into a box using the Panel web control. It also contains two lines
of static HTML text.

A Controls - Microsoft Internet Explorer

File Edit Yew Favorites Tools Help ¢) ‘ﬂ @ ; fl','

Address @ http:{flocalhost/Chapter04/Controls. aspx ¥

This is static HTML (not a web control).

[Button1][Button2][Button3]

Narme:)

This is static HTML (not a web control).

&] Done % Local intranet

Figure 3-6. A sample web page with multiple controls

Here’s the .aspx markup code for the page:

<%@ Page language="C#" CodeFile="ControlTree.aspx.cs" AutoEventWireup="true"
Inherits="ControlTree" %>

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Controls</title>
</head>

105

http://www.w3.org/1999/xhtml

CHAPTER 3 " WEB FORMS

<body>
<p><i>This is static HTML (not a web control).</i></p>
<form id="Controls" method="post" runat="server">
<div>
<asp:panel id="MainPanel" runat="server" Height="112px">
<p><asp:Button id="Button1" runat="server" Text="Button1"/>
<asp:Button id="Button2" runat="server" Text="Button2"/>
<asp:Button id="Button3" runat="server" Text="Button3"/></p>
<p><asp:Label id="Label1" runat="server" Width="48px">
Name:</asp:Label>
<asp:TextBox id="TextBox1" runat="server"></asp:TextBox></p>
</asp:panel>
<p><asp:Button id="Button4" runat="server" Text="Button4"/></p>
</div>
</form>
<p><i>This is static HTML (not a web control).</i></p>
</body>

</html>

When you run this page, you won'’t see a full list of controls. Instead, you'll see the list shown in
Figure 3-7.

2 Controls - Microsoft Internet Explorer B@

DRI, »
File Edit “iew Favorites Tools Help () Ba D - ¥R G "'f

Address .@] http:fflocalhost{Chapter04/Controls. aspx Bt ‘

System. Web UL ResourceBasedLiteralControl -
System. Web UL HtmlControls. HtmlF orm - Controls
System. Web Ul LiteralControl -

This is static HTML (not a webh contral).

[Button1][Button2][Button3]

Name: { o ‘

This is static HTML (not a web control).

.@] Done ‘:g Local intranet

Figure 3-7. Controls on the top layer of the page

106

CHAPTER 3 " WEB FORMS

ASP.NET models the entire page using control objects, including elements that don’t correspond to
server-side content. For example, if you have one server control on a page, ASP.NET will create a
LiteralControl that represents all the static content before the control and will create another
LiteralControl that represents the content after it. Depending on how much static con- tent you have
and how you break it up between other controls, you may end up with multiple LiteralControl objects.

LiteralControl objects don’t provide much in the way of functionality. For example, you can’t set
style-related information such as colors and font. They also don’t have a unique server-side ID.
However, you can manipulate the content of a LiteralControl using its Text property. The following code
rewrites the earlier example so that it checks for literal controls, and, if present, it casts the base Control
object to the LiteralControl type so it can extract the associated text:

foreach (Control control in Page.Controls)

{
Response.Write(control.GetType().ToString() + " - " +
control.ID + "
");
if (control is LiteralControl)
// Display the literal content (whitespace and all).
string text =((LiteralControl)control).Text;
Response.Write("*** Text: "+ Server.HtmlEncode(text) + "<br /»>");
}
}

Response.Write("<hr />");

The displayed text is HTML-encoded using the Server.HtmlEncode() method, which is discussed
later in this chapter in the “HTML and URL Encoding” section. The result is that you don’t see the
formatted content—instead, you see the HTML markup that’s used to create the content.

This example still suffers from a problem. You now understand the unexpected new content, but
what about the missing content—namely, the other control objects on the page?

To answer this question, you need to understand that ASP.NET renders a page hierarchically. It
directly renders only the top level of controls. If these controls contain other controls, they provide their
own Controls properties, which provide access to their child controls. In the example page, as in all
ASP.NET web forms, all the controls are nested inside the <form> tag. This means you need to inspect
the Controls collection of the HtmlForm class to get information about the server controls on the page.

However, life isn’t necessarily this straightforward. That’s because there’s no limit to how many
layers of nested controls you can use. To really solve this problem and display all the controls on a page,
you need to create a recursive routine that can tunnel through the entire control tree.

The following code shows the complete solution:

public partial class ControlTree : System.Web.UI.Page
protected void Page Load(object sender, System.EventArgs e)

// Start examining all the controls.
DisplayControl(Page.Controls, 0);

// Add the closing horizontal line.
Response.Write("<hr />");

}

private void DisplayControl(ControlCollection controls, int depth)
{

107

CHAPTER 3 " WEB FORMS

foreach (Control control in controls)

{
// Use the depth parameter to indent the control tree.
Response.Write(new String('-', depth * 4) + "> ");
// Display this control.
Response.Write(control.GetType().ToString() + " - " +
control.ID + "
");
if (control.Controls != null)
DisplayControl(control.Controls, depth + 1);
}
}
}
Figure 3-8 shows the new result—a hierarchical tree that shows all the controls on the page and
their nesting.
2 Controls - Microsoft Internet Explorer E]@
File Edit Yew Favorites Tools Help & Ba & B @ ‘_r';j ,Q Search 3 -"",'
Address 1@’] http:f/localhost{Chapter04/Controls.aspx X ‘
~
> System. Web. UL ResourceBasedLiteralControl -
> System. Web. UL HtmlControls. HtmlF orm - Controls
----> System. Web. Ul LiteralControl -
----> System. Web UL WebControls. Panel - MammPanel
-------- > System. Web UL LiteralControl -
-------- > System. Web UL WebControls. Button - Buttonl
-------- > System. Web Ul LiteralControl -
-------- > System. Web UL WebControls. Button - Button2
-------- > System. Web UL LiteralControl -
-------- > System. Web UL WebControls. Button - Button3
-------- > System. Web Ul LiteralControl -
-------- > System. Web UL WebControls. Label - Labell &3
-------- > System. Web UL LiteralControl -
-------- > System. Web. UL WebControls. TextBox - TextBox1
-------- > System. Web Ul LiteralControl -
----> System. Web. Ul LiteralControl -
----> System. Web. UL WebControls. Button - Buttond
----> System. Web. Ul LiteralControl -
> System. Web. UL Literal Control -
Vi
@ Done ‘d Local intranet :

Figure 3-8. A tree of controls on the page

108

CHAPTER 3 " WEB FORMS

The Page Header

As you’ve seen, you can transform any HTML element into a server control with the runat="server"
attribute, and a page can contain an unlimited number of HTML controls. In addition to the controls
you add, a web form can also contain a single HtmlHead control, which provides server-side access to
the <head> tag.

The control tree shown in the previous example doesn’t include the HtmlHead control, because the
runat="server" attribute isn’t applied to the <head> tag in the page. However, the Visual Studio default is
to always make the <head> tag into a server-side control, in contrast to previous versions of ASP.NET.

As with other server controls, you can use the HtmlHead control to programmatically change the
content that’s rendered in the <head> tag. The difference is that the <head> tag doesn’t correspond to
actual content you can see in the web page. Instead, it includes other details such as the title, metadata
tags (useful for providing keywords to search engines), and stylesheet references. To change any of these
details, you use one of a small set of members in the HtmlHead class, as described in Table 3-2).

Table 3-2. Useful HtmlHead Properties

Property Description

Title This is the title of the HTML page, which is usually displayed in the browser’s title bar.
You can modify this at runtime.

StyleSheet This provides an IStyleSheet object that represents inline styles defined in the header.
You can also use the IStyleSheet object to create new style rules dynamically by
writing code that calls its CreateStyleRule() and RegisterStyle() methods.

Description This is the text of the description metatag. This metatag is used to create the
description of your website on search engines like Google.

Keywords This is the text of the keywords metatag. Although search engines once used this
information to determine search rankings for specific queries, almost all now ignore it.

Controls You can add or remove metadata tags programmatically using this collection and the
HtmlMeta control class. This is useful if you want to add metatags other than
description and keywords.

Here’s an example that sets title information and metadata tags dynamically:

Page.Header.Title = "Dynamically Titled Page";
Page.Header.Description = "A great website to learn .NET";

Page.Header.Keywords = ".NET, C#, ASP.NET";

And here’s how you can add a different metatag to your header, such as the robots metatag that tells
search engines not to index the current page:

// Define the robots metatag.
HtmlMeta metaTag = new HtmlMeta();
metaTag.Name = "robots";
metaTag.Content = "noindex";

// Add it.
Page.Header.Controls.Add(metaTag);

109

110

CHAPTER 3 ' WEB FORMS

Tip The HtmlHead control is handy in pages that are extremely dynamic. For example, if you build a data-driven
website that serves promotional content from a database, you might want to change the keywords and title of the
page depending on the content you use when the page is requested.

Dynamic Control Creation

Using the Controls collection, you can create a control and add it to a page programmatically. Here’s an
example that generates a new button and adds it to a Panel control on the page:

protected void Page Load(object sender, System.EventArgs e)
{

// Create a new button object.

Button newButton = new Button();

// Assign some text and an ID so you can retrieve it later.
newButton.Text = "* Dynamic Button *";
newButton.ID = "newButton";

// Add the button to a Panel.
Panel1.Controls.Add(newButton);

You can execute this code in any event handler. However, because the page is already created, this
code always adds the new control at the end of the collection. In this example, that means the new
button will end up at the bottom of the Panel control.

To get more control over where a dynamically added control is positioned, you can use a
PlaceHolder. A PlaceHolder is a control that has no purpose except to house other controls. If you don’t
add any controls to the Controls collection of the PlaceHolder, it won’t render anything in the final web
page. However, Visual Studio gives a default representation that looks like an ordinary label at design
time, so you can position it exactly where you want. That way, you can add a dynamic control between
other controls.

// Add the button to a PlaceHolder.
PlaceHolder1.Controls.Add(newButton);

When using dynamic controls, you must remember that they will exist only until the next postback.
ASP.NET will not re-create a dynamically added control. If you need to re-create a control multiple
times, you should perform the control creation in the Page.Load event handler. This has the additional
benefit of allowing you to use view state with your dynamic control. Even though view state is normally
restored before the Page.Load event, if you create a control in the handler for the Page.Load event,
ASP.NET will apply any view state information that it has after the Page.Load event handler ends. This
process is automatic.

If you want to interact with the control later, you should give it a unique ID. You can use this ID to
retrieve the control from the Controls collection of its container. You can find the control using recursive
searching logic, as demonstrated in the control tree example, or you can use the static
Page.FindControl() method, which just searches the top-level Page.Controls collection for the control
with the ID you specify. Here’s an example that searches for the dynamically added control with the
FindControl() method and then removes it:

CHAPTER 3 " WEB FORMS

protected void cmdRemove Click(object sender, System.EventArgs e)

{
// Search for the button in the Page.Controls collection.
Button foundButton = (Button)Page.FindControl("newButton");
// Remove the button.
if (foundButton != null)
foundButton.Parent.Controls.Remove(foundButton);
}

Dynamically added controls can handle events. All you need to do is attach an event handler using
delegate code. You must perform this task in your Page.Load event handler. As you learned earlier, all
control-specific events are fired after the Page.Load event. If you wait any longer, the event handler will
be connected after the event has already fired, and you won’t be able to react to it any longer.

// Attach an event handler to the Button.Click event.
newButton.Click += dynamicButton Click;

Figure 3-9 demonstrates all these concepts. It generates a dynamic button. When you click this
button, the text in a label is modified. Two other buttons allow you to dynamically remove or re-create
the button.

2 DynamicButton - Microsoft Internet Explorer

File Edit ‘“iew Favorites Tools Help Qback - & - ¥ A &

Address .g‘] http:/flocalhost/Chapter04/DynamicButton. aspx

You clicked the dynamic button.

[* Dynamic Button * H Reset Text]

[Create Button] [Remaove Button]

@ Done ‘3 Local intranet

Figure 3-9. Handling an event from a dynamically added control

Dynamic control creation is particularly powerful when you combine it with user controls (reusable
blocks of user interface that can combine a group of controls and HTML). You'll learn more about user
controls in Chapter 15.

111

112

CHAPTER 3 ' WEB FORMS

The Page Class

Now that you’ve explored the page life cycle and learned how a page contains controls, it's worth
pointing out that the page itself is also instantiated as a type of control object. In fact, all web forms are
actually instances of the ASP.NET Page class, which is found in the System.Web.UI namespace.

You may have already figured this out by noticing that every code-behind class explicitly derives
from System.Web.UIPage. This means that every web form you create is equipped with an enormous
amount of out-of-the-box functionality. The FindControl() method and the IsPostBack property are two
examples you've seen so far. In addition, deriving from the Page class gives your code the following
extremely useful properties:

* Session

* Application
* Cache

* Request

* Response

e Server
e User
e Trace

Many of these properties correspond to intrinsic objects that you could use in classic ASP web
pages. However, in classic ASP you accessed this functionality through built-in objects that were
available at all times. In ASP.NET, each of these built-in objects actually corresponds to a Page property
that exposes an instance of a full-featured class.

The following sections introduce these objects.

Session, Application, and Cache

The Session object is an instance of the System.Web.SessionState. HttpSessionState class. It’s designed
to store any type of user-specific data that needs to persist between web-page requests. The Session
object provides dictionary-style access to a set of name/value pairs that represents the user’s data for
that session. Session state is often used to maintain things such as the user’s name, the user’s ID, a
shopping cart, or various other elements that are discarded when a given user is no longer accessing
pages on the website.

The Application object is an instance of the System.Web.HttpApplicationState class. Like the
Session object, it’s also a name/value dictionary of data. However, this data is global to the entire
application.

Finally, the Cache object is an instance of the System.Web.Caching.Cache class. It also stores
global information, but it provides a much more scalable storage mechanism because ASP.NET can
remove objects if server memory becomes scarce. Like the other state collections, it’s essentially a
name/value collection of objects, but you can also set specialized expiration policies and
dependencies for each item.

Deciding how to implement state management is one of the key challenges of programming a web
application. You'll learn much more about all these types of state management in Chapter 6.

Request

CHAPTER 3 " WEB FORMS

The Request object is an instance of the System.Web.HttpRequest class. This object represents the
values and properties of the HTTP request that caused your page to be loaded. It contains all the URL
parameters and all other information sent by a client. Much of the information provided by the Request
object is wrapped by higher-level abstractions (such as the ASP.NET web control model), so itisn’t
nearly as important as it was in classic ASP. However, you might still use the Request object to find out
what browser the client is using or to set and examine cookies.

Table 3-3 describes some of the more common properties of the Request object.

Table 3-3. HttpRequest Properties

Property Description

AnonymousID This uniquely identifies the current user if you’ve enabled
anonymous access. You'll learn how to use the anonymous access
features in Chapter 24.

ApplicationPath and ApplicationPath gets the ASP.NET application’s virtual directory

PhysicalApplicationPath (URL), while PhysicalApplicationPath gets the “real” directory.

Browser This provides a link to an HttpBrowserCapabilities object, which
contains properties describing various browser features, such as
support for ActiveX controls, cookies, VBScript, and frames.

ClientCertificate This is an HttpClientCertificate object that gets the security
certificate for the current request, if there is one.

Cookies This gets the collection of cookies sent with this request. Chapter 6
discusses cookies.

FilePath and These return the real file path (relative to the server) for the currently

CurrentExecutionFilePath

Form

Headers and ServerVariables

executing page. FilePath gets the page that started the execution
process. This is the same as CurrentExecutionFilePath, unless you've
transferred the user to a new page without a redirect (for example,
using the Server.Transfer() method), in which case
CurrentExecutionFilePath reflects the new page and FilePath
indicates the original page.

This represents the collection of form variables that were posted
back to the page. In almost all cases, you'll retrieve this information
from control properties instead of using this collection.

These provide a dictionary collection of HTTP headers and server
variables, indexed by name. These collections are mostly made up of
low-level information that’s sent by the browser along with its web
request (such as the browser type, its support for various features, its
language settings, its authentication credentials, and so on). Usually,
you can get this information more effectively from other properties
of the HttpRequest object and higher-level ASP.NET classes.

113

114

CHAPTER 3 ' WEB FORMS

Property

Description

IsAuthenticated and
IsSecureConnection

IsLocal

QueryString

Url and UrlReferrer

UserAgent

UserHostAddress and
UserHostName

UserLanguages

These return true if the user has been successfully authenticated and
if the user is connected over SSL (Secure Sockets Layer).

This returns true if the user is requesting the page from the local
computer.

This provides the parameters that were passed along with the query
string. Chapter 6 shows how you can use the query string to transfer
information between pages.

These provide a Uri object that represents the current address for the
page and the page where the user is coming from (the previous page
that linked to this page).

This is a string representing the browser type. Internet Explorer
provides the value “MSIE” for this property. ASP.NET uses this
information to identify the browser and, ultimately, to determine the
features the browser should support (such as cookies, JavaScript,
and so on). This, in turn, can influence how web controls render
themselves. For more information about ASP.NET’s adaptive
rendering model, refer to Chapter 27.

These get the IP address and the DNS name of the remote client. You
could also access this information through the ServerVariables
collection. However, this information may not always be meaningful
due to network address translation (NAT). Depending on how clients
connect to the Internet, multiple clients may share the same IP
address (that of a gateway computer). The IP address may also
change over the course of several requests.

This provides a sorted string array that lists the client’s language
preferences. This can be useful if you need to create multilingual

pages.

Response

The Response object is an instance of the System.Web.HttpResponse class, and it represents the web
server’s response to a client request. In classic ASP, the Response object was the only way to
programmatically send HTML text to the client. Now server-side controls have nested, object-oriented
methods for rendering themselves. All you have to do is set their properties. As a result, the Response
object doesn’t play nearly as central a role.

Table 3-4 lists the common HttpResponse members.

Table 3-4. HttpResponse Members

CHAPTER 3 " WEB FORMS

Member

Description

BufferOutput

Cache
Cookies

Expires and ExpiresAbsolute

IsClientConnected

Redirect()

RedirectPermanent()

RedirectToRoute() and
RedirectToRoutePermanent ()

Transfer()

TransferRequest()

When set to true (the default), the page isn’t sent to the client until it’s
completely rendered and ready to be sent, as opposed to being sent
piecemeal. In some specialized scenarios, it makes sense to set
BufferOutput to false. The most obvious example is when a client is
downloading a large file. If BufferOuput is false, the client will see the
Save dialog box and be able to choose the file name before the file is
fully downloaded.

This references an HttpCachePolicy object that allows you to
configure output caching. Chapter 11 discusses caching.

This is the collection of cookies sent with the response. You can use
this property to add additional cookies.

You can use these properties to cache the rendered HTML for the
page, improving performance for subsequent requests. You'll learn
about this type of caching (known as output caching) in Chapter 11.

This is a Boolean value indicating whether the client is still connected
to the server. If it isn’t, you might want to stop a time-consuming
operation.

This method instructs the browser to request another URL, which can
point to a new page in your web application or to a different website.

This method redirects the browser to a new URL, much like the
Redirect() method. The difference is that it uses HTTP status code 301
(which indicates that the page has moved permanently) rather than
HTTP status code 302 (which indicates that the page has moved
temporarily).

These methods parallel the Redirect() and RedirectPermanent()
methods. The only difference is that they use a route (which is a
registered URL pattern that doesn’t map directly to a page). You'll
learn much more about routing when you consider ASP.NET MVC in
Chapter 32.

This method tells ASP.NET to abandon the current page and start to
process a new web form page (which you specify). There’s no round-
trip required, and the web browser and web application user aren’t
notified of the change.

This method is similar to Transfer(), but it allows you to transfer the
user to another type of page. For example, you can use it to send a
user from an ASP.NET web form to an HTML page. When using the
TransferRequest() method, the full IIS pipeline runs to handle the
new resource, along with all the appropriate HTTP modules. But
TransferRequest() also comes with a few sizable caveats. To use it, you
must be using the IIS 7 web server in integrated mode. You must also
release session state (if you've acquired it) to prevent a time-
consuming delay.

115

116

CHAPTER 3 ' WEB FORMS

Additionally, the HttpResponse class includes some members that you won’t use in conjunction
with ASP.NET’s web control model. However, you might use these members when you create custom
HTTP handlers (as described in Chapter 5) or return different types of content instead of HTML pages.
Table 3-5 lists these members.

Table 3-5. HttpResponse Members that Bypass the Control Model

Member Description

ContentType When set to true (the default), the page isn’t sent to the client until
it’s completely rendered and ready to be sent, as opposed to being
sent piecemeal. In some specialized scenarios, it makes sense to set
BufferOutput to false. The most obvious example is when a client is
downloading a large file. If BufferOuput is false, the client will see the
Save dialog box and be able to choose the file name before the file is
fully downloaded.

OutputStream This represents the data you're sending to the browser as a stream of
raw bytes. You can use this property to plug into the .NET stream
model (which is described in Chapter 12). For an example that
demonstrates OutputStream, refer to Chapter 28, which uses it to
return the image content from a dynamically generated graphic.

Write() This method allows you to write text directly to the response stream.
Usually, you'll use the control model instead and let controls output
their own HTML. If you attempt to use Response.Write() and the
control model, you won'’t be able to decide where the text is placed in
the page. However, Response.Write() is important if you want to
design controls that render their own HTML representation from
scratch. You'll learn how to use Response.Write() in this context in
Chapter 27.

BinaryWrite() and WriteFile() = These methods allow you to take binary content from a byte array or
from a file and write it directly to the response stream. You won’t use
these methods in conjunction with server controls, but you might
use them if you create a custom HTTP handler. For example, you
could create an HTTP handler that reads the data for a PDF
document from a record in a database and writes that data directly to
the response stream using BinaryWrite(). On the client side, the end
result is the same as if the user downloaded a static PDF file. (You'll
see an example of WriteFile() with a custom HTTP handler that
prevents image leeching in Chapter 5.) When writing non-HTML
content, make sure you set the ContentType property accordingly.

Moving Between Pages

The most important function of the HttpResponse class is the small set of methods that allow you to leap
from one page to another. The most versatile of these methods is Redirect(), which sends the user to
another page. Here’s an example:

CHAPTER 3 " WEB FORMS

// You can redirect to a file in the current directory.
Response.Redirect("newpage.aspx");

// You can redirect to another website.
Response.Redirect("http://www.prosetech.com");

The Redirect() method requires a round-trip. Essentially, it sends a message to the browser that
instructs it to request a new page.

The Redirect() method has an overload that accepts a Boolean second parameter. This parameter
indicates whether you want the page code to continue executing. By default, even though the Redirect()
method redirects the user and closes the connection, any remaining code in the method will still run,
along with other page events. This allows you to perform cleanup, if necessary. But if you supply the
second parameter true, ASP.NET will stop processing the page immediately, potentially reducing the
web server’s workload.

If you want to transfer the user to another web form in the same web application, you can use a
faster approach with the Server.Transfer() method. However, Server.Transfer has some quirks. Because
the redirection happens on the server side, the original URL remains in the client’s web browser.
Effectively, the browser has no way of knowing that it’s actually displaying a different page. This
limitation leads to a problem if the client refreshes or bookmarks the page. Also, Server.Transfer() is
unable to transfer execution to a non-ASP.NET page or a web page in another web application or on
another web server.

Tip Another way also exists to get from one page to the next—cross-page posting. Using this technique, you
can create a page that posts itself to another page, which allows you to effectively transfer all the view state
information and the contents of any controls. You'll learn how to use this technique in Chapter 6.

ASP.NET 4 adds another redirection method to the HttpResponse class, called RedirectPermanent().
RedirectPermanent() has the same effect as Redirect()—it sends a redirect message to the browser,
which asks it to request a new page. However, it uses the HTTP status 301 (which indicates a permanent
redirect) rather than 302 (which indicates a temporary redirect). This distinction has no effect on web
browsers, but it’s important for search engines. If a search engine’s web crawler is exploring your
website and it receives the 301 status code, it will update the search catalog with the new URL
information.

Thus, you use should Redirect() and RedirectPermanent() in very different ways. You use Redirect()
for normal navigation and control of flow in an application (for example, as a user steps through a
checkout process). You use RedirectPermanent() if an old URL is requested, which you supported in the
past but no longer use. Typically, you'll call Redirect() somewhere in your web form code. However,
you're more likely to call RedirectPermanent() in your application code—specifically, in the
Application_BeginRequest() method in the global.asax file. That way, you can manage all of your
permanent redirects in one place, without being forced to keep around stubs of your old pages. Here’s
an example:

protected void Application BeginRequest(object sender, EventArgs e)

// The web application no longer contains the about.aspx page.
if (Request.FilePath == "/about.aspx")

Response.RedirectPermanent("/about/about-Us.aspx");

117

http://www.prosetech.com

CHAPTER 3 ' WEB FORMS

// (Add more redirects here.)

Chapter 5 has more about the Application_BeginRequest() method and other web application

events.

Server

The Server object is an instance of the System.Web.HttpServerUetility class. It provides a handful of
miscellaneous helper methods and properties, as listed in Table 3-6.

Table 3-6. HttpServerUtility Members

Member Description

MachineName A property representing the computer name of the computer on which
the page is running. This is the name the web server computer uses to
identify itself to the rest of the network.

GetLastError() Retrieves the exception object for the most recently encountered error

HtmlEncode() and
HtmlDecode()

UrlEncode() and
UrlDecode()

MapPath()

Transfer()

(or a null reference, if there isn’t one). This error must have occurred
while processing the current request, and it must not have been handled.
This is most commonly used in an application event handler that checks
for error conditions (an example of which you'll see in Chapter 5).

Changes an ordinary string into a string with legal HTML characters (and
back again).

Changes an ordinary string into a string with legal URL characters (and
back again).

Returns the physical file path that corresponds to a specified virtual file
path on the web server. Calling MapPath() with / returns the physical
path of the web application root. The MapPath() method also supports
paths with the tilde (~) character, which represents the root of the web
(for example, ~/homepage.aspx).

Transfers execution to another web page in the current application. This
is similar to the Response.Redirect() method, but it’s faster. It cannot be
used to transfer the user to a site on another web server or to a non-
ASP.NET page (such as an HTML page or an ASP page).

The Transfer() method is the quickest way to redirect the user to another page in your application.
When you use this method, a round-trip is not involved. Instead, the ASP.NET engine simply loads the
new page and begins processing it. As a result, the URL that’s displayed in the client’s browser won't

change.

118

CHAPTER 3 " WEB FORMS

// You can transfer to a file in the current web application.
Server.Transfer("newpage.aspx");

// You can't redirect to another website
// (or another application pool on the same web server).
// This attempt will cause an error.

Server.Transfer("http://www.prosetech.com");

The MapPath() method is another useful method of the Server object. For example, imagine you
want to load a file named info.txt from the current virtual directory. Instead of hard-coding the path, you
can use Server.MapPath() to convert the relative path to your web application into a full physical path.
Here’s an example:

string physicalPath = Server.MapPath("info.txt");

// Now open the file.
StreamReader reader = new StreamReader(physicalPath);
// (Process the file here.)

reader.Close();

HTML and URL Encoding

The Server class also includes methods that change ordinary strings into a representation that can safely
be used as part of a URL or displayed in a web page. For example, imagine you want to display this text
on a web page:

To bold text use the tag.

If you try to write this information to a page or place it inside a control, you would end up with this
instead:

To bold text use the tag.

Not only will the text not appear, but the browser will interpret it as an instruction to make the
text that follows bold. To circumvent this automatic behavior, you need to convert potential problematic
values to their special HTML equivalents. For example, < becomes < in your final HTML page, which
the browser displays as the < character. Table 3-7 lists some special characters that need to be encoded.

Table 3-7. Common HTML Entities

Result Description Encoded Entity

Nonbreaking space

< Less-than symbol <
> Greater-than symbol >
& Ampersand &
" Quotation mark "

119

http://www.prosetech.com

120

CHAPTER 3 ' WEB FORMS

Here’s an example that circumvents the problem using the Server. HtmlEncode() method:

Labell.Text = Server.HtmlEncode("To bold text use the tag.");

You also have the freedom to use HtmlEncode for some input, but not for all of it if you want to
insert a combination of text that could be invalid and HTML tags. Here’s an example:

Label1.Text = "To bold text use the ";
Label1.Text += Server.HtmlEncode("") + " tag.";

Note Some controls circumvent this problem by automatically encoding tags. (The Label web control is not one
of them. Instead, it gives you the freedom to insert HTML tags as you please.) For example, the basic set of HTML
server controls include both an InnerText tag and an InnerHtml tag. When you set the contents of a control using
InnerText, any special characters are automatically converted into their HTML equivalents. However, this won’t
help if you want to set a tag that contains a mix of embedded HTML tags and encoded characters.

The HtmlEncode() method is particularly useful if you're retrieving values from a database and you
aren’t sure if the text is valid HTML. You can use the HtmlDecode() method to revert the text to its
normal form if you need to perform additional operations or comparisons with it in your code. Similarly,
the UrlEncode() method changes text into a form that can be used in a URL, escaping spaces and other
special characters. This step is usually performed with information you want to add to the query string.

It’s worth noting that the HtmlEncode() method won’t convert spaces to nonbreaking spaces. This
means that if you have a series of space characters, the browser will display only a single space. Although
this doesn’t invalidate your HTML, it may not be the effect you want. To change this behavior, you can
manually replace spaces with nonbreaking spaces using the String.Replace() method. Just make sure you
perform this step after you encode the string, not before, or the nonbreaking space character sequence
() will be replaced with character entities and treated as ordinary text.

// Encode illegal characters.
line = Server.HtmlEncode(line);

// Replace spaces with nonbreaking spaces.
line = line. Replace(" ", "8nbsp;");

Similarly, the HtmlEncode() method won’t convert line breaks into
 tag. This means that hard
returns will be ignored unless you specifically insert
 tags.

Note The issue of properly encoding input is important for more than just ensuring properly displayed data. If
you try to display data that has embedded <script> tags, you could inadvertently end up executing a block of
JavaScript code on the client. Chapter 29 has more about this danger and the ASP.NET request validation feature
that prevents it.

CHAPTER 3 " WEB FORMS

User

The User object represents information about the user making the request of the web server, and it
allows you to test that user’s role membership.

The User object implements System.Security.Principal.IPrincipal. The specific class depends on the
type of authentication you're using. For example, you can authenticate a user based on Windows
account information using IIS or using a custom database and a dedicated login page. However, it’s
important to realize that the User object provides useful information only if your web application is
performing some sort of authentication that restricts anonymous users.

Part 4 of this book deals with security in detail.

Trace

The Trace object is a general-purpose tracing tool (and an instance of the System.Web.TraceContext class).
It allows you to write information to a log that is scoped at the page level. This log has detailed timing
information so that not only can you use the Trace object for debugging but you can also use it for
performance monitoring and timing. Additionally, the trace log shows a compilation of miscellaneous
information, grouped into several sections. Table 3-8 describes all the information you'll see.

Table 3-8. Trace Log Information

Section Description

Request Details This section includes some basic information about the request context,
including the current session ID, the time the web request was made, and the
type of web request and encoding.

Trace Information This section shows the different stages of processing the page went through
before being sent to the client. Each section has additional information about
how long it took to complete, as a measure from the start of the first stage
(From First) and as a measure from the start of the previous stage (From Last).
If you add your own trace messages (a technique described shortly), they will
also appear in this section.

Control Tree The control tree shows you all the controls on the page, indented to show
their hierarchy, similar to the control tree example earlier in this chapter. One
useful feature of this section is the Viewstate column, which tells you how
many bytes of space are required to persist the current information in the
control. This can help you gauge whether enabling control state could affect
page transmission times.

Session State and These sections display every item that is in the current session or application

Application State state. Each item is listed with its name, type, and value. If you're storing
simple pieces of string information, the value is straightforward. If you're
storing an object, .NET calls the object’s ToString() method to get an
appropriate string representation. For complex objects, the result may just be
the class name.

121

122

CHAPTER 3 ' WEB FORMS

Section Description

Cookies Collection This section displays all the cookies that are sent with the request and
response, as well as the content and size of each cookie in bytes. Even if you
haven’t explicitly created a cookie, you'll see the ASP.NET_Sessionld cookie,
which contains the current session ID. If you're using forms-based
authentication, you'll also see the security cookie.

Headers Collection This section lists all the HTTP headers associated with the request.

Forms Collection This section lists the posted-back form information.

QueryString This section lists the variables and values submitted in the query string.
Collection

Server Variables This section lists all the server variables and their contents.

Tip Tracing complements Visual Studio debugging. In many cases, debugging is the best approach for solving
problems while you are coding a web application, while tracing gives you an easier option if you need to
troubleshoot problems that appear while the application is running on a web server. However, tracing provides a
few services that debugging doesn’t (at least not as easily), such as showing you the amount of information in
view state and the time taken to process the page on the server. Tracing also works regardless of whether you
build your application in debug mode (with the debug symbols) or release mode.

You can enable tracing in two ways. You can set the Trace.IsEnabled property to true at any point in
your code, as follows:

Trace.IsEnabled = true;

Usually, you'll do this in the Page.Load event handler. Another option is to use the Trace attribute in
the Page directive:

<%@ Page Language="C#" CodeFile="PageFlow.aspx.cs" AutoEventWireup="true"
Inherits="PageFlow" Trace="true" %>

By default, trace messages are listed in the order they were generated. Alternatively, you can specify
that messages should be sorted by category, using the TraceMode attribute in the Page directive, as
follows:

<%@ Page Language="C#" CodeFile="PageFlow.aspx.cs" AutoEventWireup="true"
Inherits="PageFlow" Trace="true" TraceMode="SortByCategory" %>

or the TraceMode property of the Trace object in your code:

Trace.TraceMode = TraceMode.SortByCategory;

Figure 3-10 shows a partial listing of trace information with the PageFlow example demonstrated
earlier.

CHAPTER 3 " WEB FORMS

A Page Flow - Microsoft Internet Explorer Q@@
(3

File Edit Yiew Favorites Tools Help Q - ¥ &) o P search Favorites &2 o B Q3 Hh

Address @ http:{flocalhost:59402/Chapter03/PageFlowTracing. aspx v
~

Page Init event handled.

Page.Load event handled.

Page. PreRender event handled.

Request Details

Session Id:
Time of Request:
Request Encoding:
Trace Information

xumlzgvenb4lm130wa2tdifo
11/28/2005 11:22:38 AM
Unicode (UTF-8

Request Type:
Status Code:
Response Encoding:

Category Message From First{s) From Last(s)
aspx.page Begin Prelnit
aspx.page End Prelnit 0.000122361920299926 0.000122
aspx.page Begin Init 0.00019974605711061 0.000077
aspx.page End Init 0.00110069855246966 0.000901
aspx.page Begin InitComplete 0.00125071761913875 0.000150
aspx.page End InitComplete 0.00133313032801655 0.000082
aspx.page Begin PreLoad 0.00138341604868775 0.000050
aspx.page End PreLoad 0.00143286367401443 0.000049
aspx.page Begin Load 0.00148175256911144 0.000049
aspx.page End Load 0.00154069860834268 0.000059
aspx.page Begin LoadComplete 0.00159070496389904 0.000050
aspx.page End LoadComplete 0.00163931449388121 0.000049
aspx.page Begin PreRender 0.00168708592851885 0.000048
aspx.page End PreRender 0.00177396847923409 0.000087
aspx.page Begin PreRenderComplete 0.00182229864410142 0.000048
aspx.page End PreRenderComplete 0.00186951134850938 0.000047
aspx.page Begin SaveState 0.00404129575127565 0.002172
aspx.page End SaveState 0.00455812121372968 0.000517
aspx.page Begin SaveStateComplete 0.00466400059225404 0.000106
aspx.page End SaveStateComplete 0.00471931488499237 0.000055
aspx.page Beqin Render 0.00476764504985969 0.000048 hA
>
&) Done % Local intranet

Figure 3-10. Basic trace information

You can also write your own information to the trace log (the portion of the trace log that appears in
the Trace Information section) using the Trace.Write() or Trace.Warn() method. These methods are
equivalent. The only difference is that Warn() displays the message in red lettering, which makes it easier

to distinguish from other messages in the list.
Here’s a code snippet that writes a trace message when the user clicks a button:

protected void Buttoni Click(object sender, System.EventArgs e)

{
// You can supply just a message, or include a category label,
// as shown here.
Trace.Write("Buttoni Click", "About to update the label.");
1blInfo.Text += "Buttoni.Click event handled.
";
Trace.Write("Buttoni Click", "Label updated.");

123

CHAPTER 3 ' WEB FORMS

When you write trace messages, they are automatically sent to all trace listeners. However, if you've
disabled tracing for the page, the messages are simply ignored. Tracing messages are automatically
HTML-encoded. This means tags such as
 and are displayed as text, not interpreted as HTML.

Figure 3-11 shows the new entries in the log.

Tip Not only can you send your own trace messages, but you can also create an event handler that receives
every trace message. Although this is an uncommon and specialized technique, you could use it to filter out
messages that are of particular interest to you during development and log them accordingly. All you need to do is
handle the Trace.TraceFinished event, which provides you with a collection of TraceContext objects representing
each trace message.

Trace Information

Category Message From First(s) From Last(s)
aspx.page Begin Prelnit

aspx.page End Prelnit 0.000139123827190327 0.000139
aspx.page Begin Init 0.000217066694230691 0.000078
aspx.page End Init 0.000311212737931776 0.000094
aspx.page Begin InitComplete 0.000360380998143619 0.000049
aspx.page End InitComplete 0.000416812751341302 0.000056
aspx.page Begin LoadState 0.000465142916208624 0.000048
aspx.page End LoadState 0.000799263593557282 0.000334
aspx.page Begin ProcessPostData 0.000898438209325487 0.000099
aspx.page End ProcessPostData 0.00102722552726673 0.000129
aspx.page Begin PreLoad 0.00110349220361806 0.000076
aspx.page End PreLoad 0.00115321919405958 0.000050
aspx.page Begin Load 0.00119987316823786 0.000047
aspx.page End Load 0.00125881920746911 0.000059
aspx.page Begin ProcessPostData Second Try 0.00130575254676223 0.000047
aspx.page End ProcessPostData Second Try 0.00135100969536631 0.000045
aspx.page Begin Raise ChangedEvents 0.00139738430442975 0.000046
aspx.page End Raise ChangedEvents 0.00144571446929708 0.000048
aspx.page Begin Raise PostBackEvent 0.0014926478085902 0.000047
Buttonl_Click About to update the label. 0.00488274347717377 0.003390
Buttonl_Click Label updated. 0.00511154350622775 0.000229
aspx.page End Raise PostBackEvent 0.00521826098009663 0.000107
aspx.page Begin LoadComplete 0.00526882606588268 0.000051
aspx.page End LoadComplete 0.00531715623075 0.000048
aspx.page Begin PreRender 0.00536492766538764 0.000048
aspx.page End PreRender 0.00543365148363828 0.000069
aspx.page Begin PreRenderComplete 0.00548309910896497 0.000049
aspx.page End PreRenderComplete 0.00552947371802841 0.000046
aspx.page Begin SaveState 0.00672459767931399 0.001195
aspx.page End SaveState 0.00711431201451581 0.000390
aspx.page Begin SaveStateComplete 0.00719979773965686 0.000085
aspx.page End SaveStateComplete 0.00725343584170614 0.000054
aspx.page Begin Render 0.0073369660110433 0.000084
aspx.page End Render 0.00856952489771745 0.001233

Figure 3-11. Writing custom trace messages

124

CHAPTER 3 " WEB FORMS

Application Tracing

By default, tracing is enabled on a page-by-page basis. This isn’t always convenient. In some cases, you
want to collect trace statistics for a page and then view them later. ASP.NET supports this approach with
application-level tracing.

To enable application-level tracing, you need to modify the web.config configuration file. Look for
the <trace> element and enable it as shown here:

<configuration>
<system.web>
<trace enabled="true" requestlLimit="10" pageOutput="false"
traceMode="SortByTime" localOnly="true" />

</system.web>
</configuration>

This example turns on tracing (by setting enabled to true), stores a maximum of ten requests (by
setting the requestLimit), and ensures that the trace information won’t appear in the page (by setting
the pageOutput to false). It also sorts traces by time (using the traceMode attribute), which means that
the newest ten traces are kept, and it only allows local users to review the stored traces (using the
localOnly attribute).

When you enable application-level tracing, you won'’t see the trace information on the page.
Instead, to view tracing information you must request the trace.axd application extension in your web
application’s root directory. This extension doesn’t correspond to an actual file—instead, ASP.NET
automatically intercepts the request and lists the most recently collected trace requests (as shown in
Figure 3-12), provided you're making the request from the local machine or have enabled remote
tracing. You can see the detailed information for any request by clicking the View Details link.

@ http://localhost:60501/Chapter03/trace.axd - Windows Internet Explorer @E}ﬁ

@ U v |£€] http://localhost:60501/Chapter03/trace.axd he (‘7] X |
— — 2 »

W ‘@ http://localhost:60501/Chapter03/trace.axd ’ } f v = v [k Page v {Ji Tools v

Application Trace
Chapter03

[clear current trace]
Physical Directory:D:\Code\Pro ASP.NET 3.5\Chapter03\

Requests to this Application Remaining: 7

No. Time of Request File Status Code Verb

1 9/7/2007 9:33:36 AM /PageFlow.aspx 200 GET View Details
2 9/7/2007 9:33:44 AM /SimpleViewState.aspx 200 GET View Details
3 9/7/2007 9:33:46 AM /SimpleViewState.aspx 200 POST View Details

Microsoft .NET Framework Version:2.0.50727.1378; ASP.NET Version:2.0.50727.1378

[# € Internet | Protected Mode: On #®100% ~

Figure 3-12. Traced application request

125

CHAPTER 3 ' WEB FORMS

Table 3-9 describes the full list of tracing options in the web.config <trace> element.

Table 3-9. Tracing Options

Attribute

Values

Description

Enabled

traceMode

localOnly

pageOutput

requestLimit

mostRecent

writeToDiagnostics
Trace

true, false

SortByTime,
SortByCategory

true, false

true, false

Any integer

true, false

true, false

This turns tracing on or off for all pages. This is the default
setting for your web application—you can still override it
on a page-by-page basis with the Page directive. Use the
pageOutput setting to determine whether trace
information is shown in the page or collected silently.

This determines the sort order of trace messages.

This determines whether tracing information will be shown
only to local clients (clients using the same computer) or can
be shown to remote clients as well. By default, this is true and
remote clients cannot see tracing information. In a
production-level application, this should always be true to
ensure security.

This determines whether tracing information will be
displayed on the page (as it is with page-level tracing) or
just stored on the server (application-level tracing). If you
choose false to use application-level tracing, you'll still be
able to view the collected information by requesting
trace.axd from the virtual directory where your application
is running.

When using application-level tracing, this is the number of
HTTP requests (for example, 10) for which tracing
information will be stored. Unlike page-level tracing, this
allows you to collect a batch of information from multiple
requests. If you specify any value greater than 10,000,
ASP.NET treats it as 10,000. When the maximum is reached,
the behavior depends on the value of the mostRecent setting.

If true, ASP.NET keeps only the most recent trace messages.
When the requestLimit maximum is reached, the
information for the oldest request is abandoned every time
anew request is received. If false (the default), ASP.NET
stops collecting new trace messages when the limit is
reached and ignores subsequent requests.

If true, all trace messages are also forwarded to the
System.Diagnostics tracing infrastructure and received by
any trace listeners you've configured using that model. The
default is false. The System.Diagnostics trace features are
not ASP.NET-specific and can be used in a wide variety of
.NET applications. They may be used in ASP.NET as a way
to automatically capture trace messages and enter them in
an event log.

126

CHAPTER 3 " WEB FORMS

Tracing with the Web Development Helper

If you’ve installed the Web Development Helper introduced in Chapter 2 (and available at
http://projects.nikhilk.net/Projects/WebDevHelper.aspx), you have another option for looking at
tracing information—viewing it in a separate window.

To try this out, follow the instructions in Chapter 2 to configure the module for the Web
Development Helper in your web application, and then choose Tools » Web Development Helper to
switch it on in your browser.

When the Web Developer Helper is running, it automatically removes trace information from the
page. To see the tracing information, you can either uncheck the Hide Trace option (choose Tools »
Options from the Web Development Helper and then click the ASP.NET tab) or you can open itin a
separate window (choose ASP.NET » Show Trace Information from the Web Development Helper).

Figure 3-13 shows this handy feature at work.

(& Page Flow - Windows Internet Explorer IE‘%
@ Y 'é http://localhost:60501/Chapter03/PageFlowTracing.aspx v ‘ 5 ‘ X ‘
" T Y ; : »
¢t | @& PageFlow %) v = v b Page v { Tools v
Page Init event handled.
Page.Load event handled.
Page PreRender event handled.
Button
Trace Viewer @J
Request Details El
Session Id: 1kygageobqg3qv45Spreeno4s Request Type: GET
Time of Request: 8/1/2007 9:43:05 AM Status Code: 200
Request Encoding: Unicode (UTF-8) Response Encoding: Unicode (UTF-8)

Nikhil's Web Development Helper

N Trace Information
‘fJTooIs - ‘ Page v Script ~ HTTH

G y Message From First(s) From Last(s)

URL aspx.page Begin Prelnit
aspx.page End Prelnit 5.28000067047628E-05 0.000053
aspx.page Begin Init 0.000153650813162008 0.000101
aspx.page End Init 0.000548114355316109 0.0003%4
aspx.page Begin InitComplete 0.00057453340634075 0.000027
aspx.page End InitComplete 0.000597561980642791 0.000023

7 aspx.page Begin PreLoad 0.000617396903796432 0.000020

aspx.page End PreLoad 0.000636673096720393 0.000019 ~

@

Figure 3-13. Managing trace information with the Web Development Helper

Accessing the HTTP Context in Another Class

Over the past several sections, you've seen how the Page class exposes a significant number of useful
features that let you retrieve information about the current HTTP context. These details are available
because they’re provided as properties of the Page class. But what if you want to retrieve this
information from inside another class, one that doesn’t derive from Page?

127

http://projects.nikhilk.net/Projects/WebDevHelper.aspx

CHAPTER 3 ' WEB FORMS

Fortunately, another way exists to get access to all the HTTP context information. You can use the
System.Web.HttpContext class. This class exposes a static property called Current, which returns an
instance of the HttpContext class that represents all the information about the current request and
response. It provides the same set of built-in ASP.NET objects as properties.

For example, here’s how you would write a trace message from another component that doesn’t
derive from Page but is being used by a web page as part of a web request:

HttpContext.Current.Trace.Write("This message is from DB Component");

If you want to perform multiple operations, it may be slightly faster to retrieve a reference to the
current context and then reuse it:

HttpContext current = HttpContext.Current;
current.Trace.Write("This is message 1");

current.Trace.Write("This is message 2");

Summary

In this chapter you walked through a detailed examination of the ASP.NET page. You learned what it is
and how it really works behind the scenes with postbacks and view state. You also learned the basics of
the server control model, examined the System.Web.UI.Page class, and learned how to use tracing. In
the next chapter, you'll take a closer look at the web controls that ASP.NET gives you to build
sophisticated pages.

128

CHAPTER 4

Server Controls

ASP.NET server controls are a fundamental part of the ASP.NET architecture. Essentially, server controls
are classes in the .NET Framework that represent visual elements on a web form. Some of these classes
are relatively straightforward and map closely to a specific HTML tag. Other controls are much more
ambitious abstractions that render a more complex representation from multiple HTML elements.

In this chapter, you'll learn about the different types of ASP.NET server controls and how they’re
related. You'll also learn how to use validation controls to ensure that the user input matches specific
rules before a web page is submitted to the server.

What’s New ASP.NET 4 includes the same controls as earlier versions, with two notable exceptions. First,
there’s a new set of controls to deal with the ASP.NET Dynamic Data feature (Chapter 33). Second, there’s a new
Chart control for transforming data into richly detailed charts and graphs (Chapter 28). But this chapter
concentrates on the standard set of controls that has been around since ASP.NET 2.0.

Types of Server Controls

ASP.NET offers many different server controls, which fall into several categories. This chapter explores
the controls in the following categories:

HTML server controls: These are classes that wrap the standard HTML elements. Apart from this
attribute, the declaration for an HTML server control remains the same. Two examples include
HtmlAnchor (for the <a> tag) and HtmlSelect (for the <select> tag). However, you can turn any
HTML tag into a server control. If there isn’t a direct corresponding class, ASP.NET will simply use
the HtmlGenericControl class. To change an ordinary HTML element into a server control, simply
add the runat="server" attribute to the element tag.

Web controls: These classes duplicate the functionalities of the basic HTML elements but have a
more consistent and meaningful set of properties and methods that make it easier for the developer
to declare and access them. Some examples are the HyperLink, ListBox, and Button controls. In
addition, several other types of ASP.NET controls (such as rich controls and validation controls) are
commonly considered to be special types of web controls. In Visual Studio, you’ll find the basic web
forms controls in the Standard tab of the Toolbox.

129

130

CHAPTER 4 | SERVER CONTROLS

Rich controls: These advanced controls have the ability to generate a large amount of HTML
markup and even client-side JavaScript to create the interface. Examples include the Calendar,
AdRotator, and TreeView controls. In Visual Studio, many rich controls are also found in the
Standard tab of the Toolbox.

Validation controls: This set of controls allows you to easily validate an associated input control
against several standard or user-defined rules. For example, you can specify that the input can’t be
empty, that it must be a number, that it must be greater than a certain value, and so on. If validation
fails, you can prevent page processing or allow these controls to show inline error messages in the
page. In Visual Studio, these controls are found in the Validation tab of the Toolbox.

Additionally, you'll examine several more specialized control groupings in other chapters. These
include the following:

Data controls: These controls include sophisticated grids and lists that are designed to display large
amounts of data, with support for advanced features such as templating, editing, sorting, and
pagination. This set also includes the data source controls that allow you to bind to different data
sources declaratively, without writing extra code. You'll learn about the data controls in Chapters 9
and 10.

Navigation controls: These controls are designed to display site maps and allow the user to navigate
from one page to another. You'll learn about the navigation controls in Chapter 17.

Login controls: These controls support forms authentication, an ASP.NET model for authenticating
users against a database and tracking their status. Rather than writing your own interfaces to work
with forms authentication, you can use these controls to get prebuilt, customizable login pages,
password recovery, and user-creation wizards. You'll learn about the login controls in Chapter 21.

Web parts controls: This set of controls supports WebParts, an ASP.NET model for building
componentized, highly configurable web portals. You'll learn about WebParts in Chapter 31.

ASP.NET AJAX controls: These controls allow you to use Ajax techniques in your web pages without
forcing you to write client-side code. Ajax-style pages can be more responsive because they bypass
the regular postback-and-refresh page cycle. You’ll learn much more in Chapter 30.

ASP.NET Dynamic Data controls: These controls support the ASP.NET Dynamic Data feature,
which allows you to create a data-driven website by building flexible templates rather than writing
tedious code. Chapter 33 explores this feature.

The Server Control Hierarchy

All server controls derive from the base Control class in the System.Web.UI namespace. This is true
whether you’re using HTML server controls, using web controls, or creating your own custom controls.
It also applies to the Page class from which all web forms derive. Figure 4-1 illustrates the main branches
of this inheritance chain.

System.Web.Ul

TemplateControl
Page

UserControl

LiteralControl

DataBoundLiteralControl

CHAPTER 4 = SERVER CONTROLS

System.Object
|
Control
System.Weh.Ul.WebControls System.Web.Ul.HtmIControls
Contains the web Contains the HTML
server controls server controls

Figure 4-1. Server control inheritance

Because all controls derive from the base Control class, you have a basic common denominator that
you can use to manipulate any control on the page, even if you don’t know the specific control type. (For
example, you could use this technique to loop through all the controls on the page and hide each one by
setting the Visible property to false.) Tables 4-1 and 4-2 describe the most commonly used members of

the Control class.

Table 4-1. Control Class Properties

Property Description

ClientID Returns the identifier of the control, which is a unique name created by ASP.NET
at the time the page is instantiated.

Controls Returns the collection of child controls. You can use the Page.Controls collection
to get the top-level collection of controls on the page. Each control in the
Controls collection may contain its own child controls, and those controls can
hold still more controls of their own, and so on.

EnableViewState Returns or sets a Boolean value indicating whether the control should maintain
its state across postbacks of its parent page. This property is true by default.

ID Returns or sets the identifier of the control. In practice, this is the name through
which you can access the control from the server-side scripts or the code-behind
class.

Page Returns a reference to the page object that contains the control.

Parent Returns a reference to the control’s parent, which can be the page or another
container control.

Visible Returns or sets a Boolean value indicating whether the control should be

rendered. If false, the control isn’t just made invisible on the client—instead, the
corresponding HTML tag is not generated.

131

132

CHAPTER 4 | SERVER CONTROLS

Table 4-2. Control Class Methods

Method Description

DataBind() Binds the control and all of its child controls to the specified data source or
expression. You'll learn about data binding in Part 2.

FindControl() Searches for a child control with a specific name in the current control and all
contained controls. If the child control is found, the method returns a reference of
the general type Control. You can then cast this control to the proper type.

HasControls() Returns a Boolean value indicating whether this control has any child controls. The
control must be a container tag to have child controls (such as a <div> tag).

RenderControl() Writes the HTML output for the control based on its current state. You don’t call

this method directly. Instead, ASP.NET calls it when the page is being rendered.

HTML Server Controls

In the following sections you'll learn about the HTML server controls, which are defined in the
namespace System.Web.UIL. HtmlControls. Overall, there are about 20 distinct HTML server control
classes. They're split into separate categories based on whether they are input controls (in which case
they derive from HtmlInputControl) or can contain other controls (in which case they derive from
HtmlContainerControl). Figure 4-2 shows the inheritance hierarchy.

System.Objerl
System.Weh.UI.Control

System.Web.UlL.HtmIControls

HtmiControl
HtmlinputControl HtmlContainerControl Htmllmage
HtmiLink
I~ Htmllnputlliutton I~ HtmlAnchor HtmiTitle
HtmlInputSubmit I~ HtmlButton
I~ HtmlinputReset = HtmlIForm
— HtmlInputCheckBox — HtmlGenericControl — HtmlHead
I~ HtmlInputFile I HtmlSelect
I~ HtmlinputHidden I~ HtmiTable
— HtmlInputimage I~ HtmiTableCell
I~ HtmlinputRadioButton I~ HtmITableRow
— HtmlInputText — HtmlTextArea

— HtmlinputPassword

Figure 4-2. HTML server controls

CHAPTER 4 = SERVER CONTROLS

The HtmlControl Class

All the HTML server controls derive from the base class HtmlControl. Table 4-3 shows the properties
that the HtmlControl class adds to the base Control class.

Table 4-3. HtmlControl Properties

Property Description

Attributes Allows you to access or add attributes in the control tag. You can use this collection to
add attributes that are not exposed by specific properties. (For example, you could add
the onFocus attribute to a text box and specify some JavaScript code to configure what
happens when the text box gets focus in the page.)

Disabled Returns or sets the control’s disabled state. If true, the control is usually rendered as a
“grayed-out” control and is not usable.

Style Returns a collection of CSS attributes that are applied to the control. In the web page
you set this property as a semicolon-delimited list of style:value attributes. In Visual
Studio, you can set this information using a designer by right-clicking the control and
selecting New Style. Styles are discussed in more detail in Chapter 16.

TagName Returns the control’s tag name, such as a, img, and so on.

The HtmlContainerControl Class

Any HTML tag that has both an opening and a closing tag can contain other HTML content or controls.
One example is the anchor tag, which usually wraps text or an image with the tags <a>.... Many
other HTML tags also work as containers, including everything from the <div> tag (which allows you to
format a block of content) to the lowly tag (which applies bold formatting). These tags don’t map to
specific HTML server control classes, but you can still use them with the runat="server" attribute. In this
case, you interact with them using the HtmlGenericControl class, which itself derives from
HtmlContainerControl.

To support containment, the HtmlContainerControl class adds the two properties shown in
Table 4-4.

Table 4-4. HtmlContainerControl Properties

Property Description

InnerHtml Returns or sets the HTML text inside the opening and closing tags. When you use this
property, all characters are left as is. This means you can embed HTML markup
(bolding text, adding line breaks, and so on).

InnerText Returns or sets the text inside the opening and closing tags. When you use this
property, any characters that would be interpreted as special HTML syntax (such as <,
the angle bracket) are automatically replaced with the HTML entity equivalents.

133

134

CHAPTER 4 | SERVER CONTROLS

The HtmlInputControl Class

The HTML input controls allow for user interaction. These include the familiar graphical widgets,
including check boxes, text boxes, buttons, and list boxes. All of these controls are generated with the
<input> tag. The type attribute indicates the type of input control, as in <input type="text"> (a text box),
<input type="submit"> (a submit button), and <input type="file"> (controls for uploading a file).

Server-side input controls derive from HtmlInputControl, which adds the properties shown in
Table 4-5.

Table 4-5. HtmlInputControl Properties

Property Description

Type Gets the type of an HtmlInputControl. For example, if this property is set to text, the
HtmlInputControl is a text box for data entry.

Value Gets or sets the value associated with an input control. The value associated with a
control depends on the type of control. For example, in a text box this property contains
the text entered in the control. For buttons, this defines the text on the button.

The HTML Server Control Classes

Table 4-6 lists all the available HTML server controls and the specific properties and events that each
one adds to the base class. As noted earlier, the declaration of HTML server controls on the page is the
same as what you use for normal static HTML tags, with the addition of the runat="server" attribute. It is
this attribute that allows ASP.NET to process them and translate them into instances of the
corresponding .NET class. For this reason, the HTML server controls are a good option if you're
converting your existing HTML or ASP page to an ASP.NET web form.

Table 4-6. HTML Server Control Classes

Tag Declaration .NET Class Specific Members

<arunat="server"> HtmlAnchor HRef, Target, Title, Name,
ServerClick event

<button runat="server"> HtmlButton CausesValidation,

ValidationGroup, ServerClick event

<form runat="server"> HtmlForm Enctype, Method, Target,
DefaultButton, DefaultFocus

 HtmlImage Align, Alt, Border, Height, Src,
Width

<input type="button" HtmlInputButton Type, Value, CausesValidation,

runat="server"> ValidationGroup, ServerClick event

<input type="reset" runat="server"> HtmlInputReset Type, Value

CHAPTER 4 = SERVER CONTROLS

Tag Declaration .NET Class Specific Members

<input type="submit" HtmlInputSubmit Type, Value, CausesValidation,

runat="server"> ValidationGroup, ServerClick event

<input type="checkbox" HtmlInputCheckBox Checked, Type, Value, ServerClick

runat="server"> event

<input type="file" runat="server"> HtmlInputFile Accept, MaxLength, PostedFile,
Size, Type, Value

<input type="hidden" HtmlInputHidden Type, Value, ServerChange event

runat="server">

<input type="image" HtmlInputImage Align, Alt, Border, Src, Type, Value,

runat="server"> CausesValidation,
ValidationGroup, ServerClick event

<input type="radio" runat="server"> HtmlInputRadioButton Checked, Type, Value,
ServerChange event

<input type="text" runat="server"> HtmlInputText MaxLength, Type, Value,
ServerChange event

<input type="password" HtmlInputPassword MaxLength, Type, Value,

runat="server"> ServerChange event

<select runat="server"> HtmlSelect Multiple, SelectedIndex, Size,
Value, DataSource, DataTextField,
DataValueField, Items (collection),
ServerChange event

<table runat="server">, <td HtmlTable Align, BgColor, Border,

runat="server"> BorderColor, CellPadding,
CellSpacing, Height, Width, Rows
(collection)

<th runat="server"> HtmlTableCell Align, BgColor, BorderColor,
ColSpan, Height, NoWrap,
RowSpan, VAlign, Width

<tr runat="server"> HtmlTableRow Align, BgColor, BorderColor,
Height, VAlign, Cells (collection)

<textarea runat="server'"> HtmlTextArea Cols, Rows, Value, ServerChange
event

Any other HTML tag with the HtmlGenericControl None

runat="server" attribute

CHAPTER 4 | SERVER CONTROLS

Note Three specialized HTML controls aren’t shown in Table 4-6. These are the HtmIHead, HtmIMeta, and
HtmiTitle controls, which provide server-side access to the <head> portion of a web page. Using these controls,
you can dynamically set the title, metadata, and linked stylesheets for the page. Chapter 3 shows an example.

The meaning of most of the HTML server control properties is quite obvious, because they match
the underlying HTML tag attributes. This means there’s no need to focus on each individual control. In
the next few sections, you'll get an overview of some common techniques for using controls and dig a
little deeper into their events and the common object model.

Setting Style Attributes and Other Properties

The following example shows how you can configure a standard HtmlInputText control (which
represents the <input type="text"> tag). To read or set the current text in the text box, you use the Value
property. If you want to configure the style information, you need to add new CSS style attributes using
the Style collection. Finally, if you want to set other attributes that aren’t exposed by any properties, you
need to use the Attributes collection. This example uses the Attributes collection to associate some
simple JavaScript code—showing an alert message box with the current value of the text box—to the
client-side onfocus event of the control.

protected void Page Load(object sender, System.EventArgs e)

// Perform the initialization only the first time the page is requested.
// After that, this information is tracked in view state.

if (!Page.IsPostBack)

{

// Set the style attributes to configure appearance.
Text1.Style["font-size"] = "20px";
Text1.Style["color"] = "red";

// Use a slightly different but equivalent syntax
// for setting a style attribute.
Text1.Style.Add("background-color", "lightyellow");

// Set the default text.
Text1.Value = "<Enter e-mail address here>";

// Set other nonstandard attributes.
Text1.Attributes["onfocus"] = "alert(Texti.value)";

If you request the page, the following HTML code will be returned for the text box:

<input id="Text1" type="text"
style="font-size:20px;color:red;background-color:1lightyellow;"
value="<Enter e-mail address here>"

onfocus="alert(Text1.value)" />

136

CHAPTER 4 = SERVER CONTROLS

The CSS style attribute may also include information that wasn’t explicitly set in the code. For
example, if you resize the input control in the Visual Studio designer, Visual Studio will add the height
and width properties to the style it uses. These details will then also appear in the final HTML.

Figure 4-3 shows the resulting page when focus changes to the text box.

A WebForm1 - Microsoft Internet Explorer Q@@

. » g
File Edit Vew Favorites Tools Help &) I M @ & l','

J

Address .@j http:{{localhost/Chapter0S/webForm1.aspx v

<Enter e-mail address here>|

Microsoft Internet Explorer. @

! 5 <Enter e-mail address here>

&] Done & Local intranet

Figure 4-3. Testing HTML server controls

This process of control interaction is essentially the same for all HTML server controls. Style
properties and attributes are always set in the same way. The only difference is that some controls
expose additional properties that you can use. For example, the HtmlAnchor control exposes an HRef
property that lets you set the target page for the link.

Programmatically Creating Server Controls

Sometimes you don’t know in advance how many text boxes, radio buttons, table rows, or other controls
you need because this might depend on other factors such as the number of records stored in a database
or the user’s input. With ASP.NET, the solution is easy—you can simply create instances of the HTML
server controls you need, set their properties with the object-oriented approach used in the previous
example, and then add them to the Controls collection of the containing page. This technique was
introduced in the previous chapter, and it applies equally well to HTML server controls and web
controls.

For example, the following code dynamically creates a table with five rows and four cells per row,
sets their colors and text, and shows all this on the page. The interesting detail is that no control tags are
declared in the .aspx file. Instead, everything is generated programmatically.

protected void Page Load(object sender, System.EventArgs e)

// Create a new HtmlTable object.
HtmlTable tablel = new HtmlTable();

137

138

CHAPTER 4 | SERVER CONTROLS

// Set the table's formatting-related properties.
tablel.Border = 1;

table1l.CellPadding = 3;
table1.CellSpacing = 3;
table1.BorderColor = "red";

// Start adding content to the table.
HtmlTableRow row;

HtmlTableCell cell;

for (int i=1; i<=5; i++)

{
// Create a new row and set its background color.
row = new HtmlTableRow();
row.BgColor = (i%2==0 ? "lightyellow" : "lightcyan");
for (int j=1; j<=4; j++)
// Create a cell and set its text.
cell = new HtmlTableCell();
cell.InnerHtml = "Row: " + i.ToString() +
"
Cell: " + j.ToString();
// Add the cell to the current row.
row.Cells.Add(cell);
}
// Add the row to the table.
tablel.Rows.Add(row);
}

// Add the table to the page.
this.Controls.Add(table1);

This example contains two nested loops. The outer loop creates the rows. The inner loop creates the
individual cells for each row, and adds them to the Cells collection of the current row. When the inner
loop ends, the code adds the entire row to the Rows collection of the table. The final step occurs when
the outer loop is finished. At this point, the code adds the completed table to the Controls collection of
the page.

Figure 4-4 shows the resulting page.

CHAPTER 4 = SERVER CONTROLS

A DynamicTable - Microsoft Internet Explorer @@@
: »)

File Edit Wew Favorites Tools Help) ",,'

.y

1

Address]e_‘] http:fflocalhostChapter0S{DynamicTable. aspx b ‘

Row: 1||Row: 1{|Row: 1||Row: 1
Cell: 1 ||Cell: 2 |[Cell: 3 [|Cell: 4

Row: 2||Row: 2||Row: 2||Row: 2
Cell: 1 ||Cell: 2 ||Cell: 3 || Cell: 4

Row: 3||Row: 3||Row: 3||Row: 3
Cell: 1 ||Cell: 2 ||Cell: 3 || Cell: 4

Row: 4||Row: 4||Row: 4||Row: 4
Cell: 1 ||Cell: 2 |[Cell: 3 [|Cell: 4

Row: 5||Row: 5||Row: 5||Row: 5
Cell: 1 ||Cell: 2 ||[Cell: 3 || Cell: 4

;g’] Done \3 Local intranet

Figure 4-4. A dynamically generated table

This example used a table because it gave a good opportunity to show how child controls (cells and
rows) are added to the Controls collection of the parent, but of course this mechanism works with any
other server control.

Handling Server-Side Events

HTML server controls provide a sparse event model with two possible events: ServerClick and
ServerChange. The ServerClick event is simply a click that is processed on the server side. It’s provided
by most button controls, and it allows your code to take immediate action. This action might override
the expected behavior. For example, if you intercept the click event of a hyperlink control (the <a>
element), the user won’t be redirected to a new page unless you provide extra code to forward the
request.

The ServerChange event responds when a change has been made to a text or selection control. This
event doesn’t occur until the page is posted back (for example, after the user clicks a submit button). At
this point, the ServerChange event occurs for all changed controls, followed by the appropriate
ServerClick.

Table 4-7 shows which controls provide a ServerClick event and which ones provide a ServerChange
event.

139

140

CHAPTER 4 | SERVER CONTROLS

Table 4-7. HTML Control Events

Event Controls That Provide It
ServerClick HtmlAnchor, HtmlButton, HtmlInputButton, HtmlInputSubmit,
HtmlInputImage

ServerChange HtmlInputText, HtmlInputCheckBox, HtmlInputRadioButton,
HtmlInputHidden, HtmlSelect, HtmlTextArea

The ServerClick and ServerChange Events

The following example demonstrates the ServerClick and ServerChange events and shows you the order
in which they unfold. To create this example, you need a text box, list box, and check box.
Here are the controls on the page:

<form runat="server">
<div>
<select runat="server" id="List1" size="5" multiple="true">
<option>Option 1</option>
<option>Option 2</option>
</select>

<input type="text" runat="server" ID="Textbox1" Size="10" />

<input type="checkbox" runat="server" ID="Checkbox1" />
Option text

<input type="submit" runat="server" ID="Submit1" value="Submit Query" />
</div>

</form>

Note that this code declares two list items for the list box and includes the multiple attribute. This
means that the user will be able to select multiple items by holding down the Ctrl key while clicking
each entry.

The next step is to add event handlers for the ServerChange event. The text box and the check box
are attached to the same event handler, while the list box uses a separate event handler with different
code. Here’s the event handling code that works with the text box and list box:

protected void Ctrl ServerChange(object sender, System.EventArgs e)

{

Response.Write("ServerChange detected for " +
((Control)sender).ID + "</1li>");

The actual event handler code is quite straightforward. It simply casts the sender object to a Control
type, reads its ID property, and writes a message declaring that the event was detected (using the HTML
 element to create a bulleted list and element to add a list item).

To attach the event handler to the appropriate server controls, you need to switch to the HTML
source view, and add the OnServerChange attribute to the text box and check box tags, as shown here:

<input type="text" runat="server" ID="Textbox1" size="10"
OnServerChange="Ctrl_ServerChange" />

CHAPTER 4 = SERVER CONTROLS

<input type="checkbox" runat="server" ID="Checkbox1"
OnServerChange="Ctrl_SexverChange" />

Note Visual Studio provides a greater level of design-time support for events with web controls. When working
with web controls, you can attach event handlers using a special event view in the Properties window—you just
need to click the lightning bolt icon. With HTML server controls, this facility isn’t available, so you need to wire up
your event handlers manually, by editing the web page markup.

Next, you need to create the event handler for the list box. This event handler cycles through the
control’s Items collection and writes the value of all the selected items to the web page in a sublist,
as follows:

protected void List1 ServerChange(object sender, System.EventArgs e)

{

Response.Write("ServerChange detected for Listi. " +
"The selected items are:");
foreach (ListItem 1i in Listi.Items)

if (1li.Selected)
Response.Write("<1i>" + li.Value + "</1i>");

Response.Write("");

You attach this event handler in the same way—by adding the OnServerChange attribute to the
select element:

<select runat="server" OnServerChange="List1 ServerChange" ... >

Finally, the submit button handles the ServerClick event, as shown here:

protected void Submiti ServerClick(object sender, System.EventArgs e)

{
Response.Write("ServerClick detected for Submiti.");
}
You attach this event handler by adding the OnServerClick attribute:
<input type="submit" runat="server" OnServerClick="Submit1i ServerClick" ... />

As an added bonus, when the page is created, the event handler for the Page.Load event adds
another three items to the list box, provided the page is being requested for the first time. This shows
how easy it is to programmatically add list items.
protected void Page Load(object sender, System.EventArgs e)

if (!Page.IsPostBack)

141

142

CHAPTER 4 " SERVER CONTROLS

List1.Items.Add("Option 3");
List1.Items.Add("Option 4");
List1.Items.Add("Option 5");

To test this page, request it in the browser, select some items in the list box, type some characters in
the text box, select the check box, and click the submit button to generate a postback. You should end up
with something similar to what’s shown in Figure 4-5.

2 ChangeEvents - Microsoft Internet Explorer B@@
File Edit View Favorites Tools Help Qback - & - ¥ &) @ i "‘,','
Address .g’] http:/flocalhost/Chapter0S/ChangeEvents. aspx M ‘

o ServerChange detected for List]. The selected items are:
- Option 1
- Option 3
- Option 4

o ServerChange detected for Textbox1

o ServerChange detected for Checkbox1

o ServerClick detected for Submit1.

Option text

Submit Query

:@ Done ‘ﬂ Local intranet

Figure 4-5. Detecting change events

Note that the order of change events is nondeterministic, and you shouldn’t rely on these events
occurring in any set order. However, you're likely to see events raised in the order in which the controls
are declared. The only detail of which you're guaranteed is that all the change events fire before the
ServerClick event that triggered the postback.

Web Controls

HTML server controls provide a relatively fast way to migrate to ASP.NET, but not necessarily the best
way. For one thing, the names of HTML controls and their attributes are not always intuitive, and they
don’t have the same design-time support for attaching event handlers. The HTML controls also have
certain limitations, such as that style properties must be set through CSS syntax (which is more difficult

CHAPTER 4 = SERVER CONTROLS

than setting a direct property) and that change events can’t be raised until the page is posted back in
response to another action. Finally, HTML server controls can’t provide user interface elements that
aren’t already defined in the HTML standard. If you want to create some sort of aggregate control that
uses a combination of HTML elements to render a complex interface, you're on your own.

To address these issues, ASP.NET provides a higher-level web control model. All web controls are
defined in the System.Web.UI.WebControls namespace and derive from the WebControl base class,
which provides a more abstract, consistent model than the HTML server controls. Web controls also
enable additional features, such as automatic postback. But the really exciting part is that many
extended controls don’t just map a single HTML tag but instead generate more complex output made up
of several HTML tags and JavaScript code. Examples include lists of check boxes, radio buttons,
calendars, editable grids, and so on.

Figure 4-6 shows a portion of the inheritance hierarchy for web controls.

System.Object
System.Web.llll.ControI
System.Weh.Ul.WebControls
WebControl —— BaseDataBoundControl
I Button Literal —{ — DataBoundControl
— CheckBox Placeholder — AdRotator
RadioButton Xml - CompositeDataBoundControl
— HyperLink - FileUpload DetailsView
— Image L Calendar FormView HierarchicalDataBoundControl
ImageButton Vallli_dationSummary GridView Menu
ImageMap — ListView TreeView
— Label BaseValidator L ListControl
I LinkButton I~ BaseCompareValidator CheckBoxList
— Panel CompareValidator Ll
- Table RangeValidator BB
— TableCell - CustomValidator RadioButtonlist
TableHeaderCell - RegularExpressionValidator BulletedList
— TableRow - RequiredFieldValidator
L TextBox

Figure 4-6. Web controls

The WebControl Base Class

All the web controls inherit from the WebControl class. The WebControl class also derives from Control.
As aresult, many of its properties and methods—such as Controls, Visible, and FindControl()—are
similar to those of the HTML server controls. However, the WebControl class adds the properties shown
in Table 4-8. Many of these properties wrap the CSS style attributes, such as the foreground or

143

CHAPTER 4 | SERVER CONTROLS

background color, the font, the height, the width, and so on. These properties allow you to configure the
appearance of a web control much more easily (and with less chance of error).

Table 4-8. WebControl Class Properties

Property Description

AccessKey Returns or sets the keyboard shortcut that allows the user to quickly navigate to the
control. For example, if set to A, the user can move the focus to this control by
pressing Alt+A.

BackColor Returns or sets the background color.

BorderColor Returns or sets the border color.

BorderStyle One of the values from the BorderStyle enumeration, including Dashed, Dotted,
Double, Groove, Ridge, Inset, Outset, Solid, and None.

BorderWidth Returns or sets the border width.

CssClass Returns or sets the CSS style to associate with the control. The CSS style can be
defined in a <style> section at the top of the page or in a separate CSS file referenced
by the page.

Enabled Returns or sets the control’s enabled state. If false, the control is usually rendered

grayed out and is not usable.

Font Returns an object with all the style information of the font used for the control’s text.
This property includes subproperties that can be set with the object-walker syntax
shown in this chapter.

ForeColor Returns or sets the foreground color—for example, that of the text of the control.
Height Returns or sets the control’s height.
TabIndex A number that allows you to control the tab order. The control with a TabIndex of 0

has the focus when the page first loads. Pressing Tab moves the user to the control
with the next lowest TabIndex, provided it is enabled. This property is supported
only in Internet Explorer 4.0 and higher.

Tooltip Displays a text message when the user hovers the mouse above the control. Many
older browsers don’t support this property.

Width Returns or sets the control’s width.

144

Basic Web Control Classes

ASP.NET includes a web control that duplicates each HTML server control and provides the same
functionality. These web controls inherit from WebControl and add their own properties and events.
Table 4-9 summarizes these core controls and their specific members.

Table 4-9. Basic Web Control Classes

CHAPTER 4 = SERVER CONTROLS

ASP.NET Tag Declaration

Generated HTML

Key Members

<asp:Button>

<asp:CheckBox>

<asp:FileUpload>

<asp:HiddenField>
<asp:HyperLink>
<asp:Image>

<asp:ImageButton>

<asp:ImageMap>

<asp:Label>

<asp:LinkButton>

<asp:Panel>

<asp:RadioButton>

<asp:Table>

<asp:TableCell>

<input type="submit"/> or

<input type="button"/>

<input type="checkbox"/>

<input type="file">

<input type="hidden">
<a>.

<input type="image" />

<map>

...

<a>

<div>...</div>

<input type="radio"/>

<table>...

<td>...

Text, CausesValidation, PostBackUTrl,
ValidationGroup, Click event

AutoPostBack, Checked, Text, TextAlign,
CheckedChanged event

FileBytes, FileContent, FileName, HasFile,
PostedFile, SaveAs()

Value
ImageUrl, NavigateUrl, Target, Text
AlternateText, ImageAlign, ImageUrl

CausesValidation, ValidationGroup, Click
event

HotSpotMode, HotSpots (collection),
AlternateText, ImageAlign, ImageUrl

Text, AssociatedControllD

Text, CausesValidation, ValidationGroup,
Click event

BackImageUrl, DefaultButton,
GroupingText, HorizontalAlign, Scrollbars,
Wrap

AutoPostBack, Checked, GroupName, Text,
TextAlign, CheckedChanged event

BackImageUr], CellPadding, CellSpacing,
GridLines, HorizontalAlign, Rows
(collection)

ColumnSpan, HorizontalAlign, RowSpan,
Text, VerticalAlign, Wrap

145

CHAPTER 4 | SERVER CONTROLS

ASP.NET Tag Declaration ~ Generated HTML Key Members
<asp:TableRow> <tr>...</tr> Cells (collection), HorizontalAlign,
VerticalAlign
<asp:TextBox> <input type="text"/> or AutoPostBack, Columns, MaxLength,
<textarea>...</textarea> ReadOnly, Rows, Text, TextMode, Wrap,
TextChanged event

The properties of web controls are all fairly intuitive. One of the goals of web controls is to make it
easier to set a control’s attributes through properties with consistent names, without having to worry
about the details of how they translate to HTML code (although having a good knowledge of HTML
certainly helps). For this reason, this chapter won’t describe and show examples for every type of
control. Instead, we’ll provide a general discussion that’s useful for every control.

To start highlighting some of the key differences between HTML server controls and web controls,
consider the following web control tag:

<asp:TextBox runat="server" ID="TextBox1" Text="This is a test"
ForeColor="red" BackColor="lightyellow" Width="250px"
Font-Name="Verdana" Font-Bold="True" Font-Size="20" />

Web controls are always declared on the page with the syntax <asp:ControlName>, with the asp:
prefix that makes them immediately recognizable as being different from the HTML controls. But this
example also demonstrates a more dramatic difference—the way that style information is specified.

Essentially, this tag generates a text box control with a width of 250 pixels, a red foreground color,
and a light yellow background. The text is displayed with the font Verdana, with a size of 20, and with
bold formatting. The differences between the previous declaration and the respective declaration of a
HTML tag are the following:

* The control is declared using its class name (TextBox) instead of the HTML tag
name (input).

* The default content is set with the Text property, instead of a less obvious Value
attribute.

* The style attributes (colors, width, and font) are set by direct properties, instead of
being grouped together in a single style attribute.

* Web controls also have two special restrictions:

* Every control declaration must have a corresponding closing tag or use /> (the
empty element syntax) at the end of the opening tag. In other words, ASP.NET tags
follow the same rules as tags in XHTML. If you don’t close the tag, you'll get a
runtime error. Breaking this rule when working with HTML server controls has no
adverse effect.

* All web controls must be declared within a server-side form tag (and there can be
only one server-side form per page), even if they don’t cause a postback.
Otherwise, you'll get a run- time error. This rule is not necessary when working
with HTML server controls, provided you don’t need to handle postbacks.

If you request a page with this tag, you'll see that the control is translated into the following HTML
tag when the page is rendered:

146

CHAPTER 4 = SERVER CONTROLS

<input name="Textbox1" type="text" value="This is a test" id="Textbox1"
style="color:Red;background-color:LightYellow;font-family:Verdana;

font-size:20pt;font-weight:bold;width:250px;" />

Note The exact HTML that’s rendered depends on the properties you’ve set and the browser that’s making the
request. You’ll learn more about ASP.NET’s rendering system (and how it differentiates between different types of
browsers) when you consider custom controls in Chapter 27.

Units

All the control properties that use measurements, including BorderWidth, Height, and Width, require
the Unit structure, which combines a numeric value with a type of measurement (pixels, percentage,
and so on). This means that when you set these properties in a control tag, you must make sure to
append px (for pixel) or % (for percentage) to the number to indicate the type of unit.

Here’s an example with a Panel control that is 300 pixels tall and has a width equal to 50 percent of
the current browser window:

<asp:Panel Height="300px" Width="50%" id="pnl" runat="server" />

If you're assigning a unit-based property through code, you need to use one of the static methods of
the Unit type. Use Pixel() to supply a value in pixels, and use Percentage() to supply a percentage value.

// Convert the number 300 to a Unit object
// representing pixels, and assign it.
pnl.Height = Unit.Pixel(300);

// Convert the number 50 to a Unit object
// representing percent, and assign it.

pnl.Width = Unit.Percentage(50);

You could also manually create a Unit object and initialize it using one of the supplied constructors
and the UnitType enumeration. This requires a few more steps but allows you to easily assign the same
unit to several controls.

// Create a Unit object.

Unit myUnit = new Unit(300, UnitType.Pixel);

// Assign the Unit object to several controls or properties.
pnl.Height = myUnit;

pnl.Width = myUnit;

Enumerations

Enumerations are used heavily in the .NET class library to group a set of related constants. For example,
when you set a control’s BorderStyle property, you can choose one of several predefined values from the
BorderStyle enumeration. In code, you set an enumeration using the dot syntax:

ctrl.BorderStyle = BorderStyle.Dashed;

147

148

CHAPTER 4 | SERVER CONTROLS

In the .aspx file, you set an enumeration by specifying one of the allowed values as a string. You
don’t include the name of the enumeration type, which is assumed automatically.

<asp:TextBox BorderStyle="Dashed" Text="Border Test" id="txt"
runat="server" />

Colors

The Color property refers to a Color object from the System.Drawing namespace. You can create Color
objects in several ways:

* Using an ARGB (alpha, red, green, blue) color value: You specify each value as
integer.

* Using a predefined .NET color name: You choose the correspondingly named
read-only property from the Color class. These properties include all the HTML
colors.

* Using an HTML color name: You specify this value as a string using the
ColorTranslator class.

To use these any of techniques, you must import the System.Drawing namespace, as follows:
using System.Drawing;

The following code shows several ways to specify a color in code:

// Create a color from an ARGB value.
int alpha = 255, red = 0, green = 255, blue = 0;
ctrl.ForeColor = Color.FromArgb(alpha, red, green, blue);

// Create a color using a .NET name.
ctrl.ForeColor = Color.Crimson;

// Create a color from an HTML code.
ctrl.ForeColor = ColorTranslator.FromHtml("Blue");

When defining a color in the .aspx file, you can use any one of the known color names, as follows:

<asp:TextBox ForeColor="Red" Text="Test" id="txt" runat="server" />

Refer to the Visual Studio documentation for a full list of color names. Alternatively, you can use a
hexadecimal color number (in the format #<red><green><blue>), as shown here:

<asp:TextBox ForeColor="#99FFFF" Text="Test"
id="txt" runat="server" />

Fonts

The Font property actually references a full FontInfo object, which is defined in the
System.Web.UL.WebControls namespace. Every FontInfo object has several properties that define a
font’s name, size, and style. Even though the WebControl.Font property is read-only, you can modify all
the FontInfo properties (shown in Table 4-10).

CHAPTER 4 = SERVER CONTROLS

Table 4-10. FontInfo Properties

Property Description

Name A string indicating the font name (such as Verdana).

Names An array of strings with font names, which are ordered by
preference.

Size The size of the font as a FontUnit object. This can represent an

absolute or relative size.

Bold, Italic, Strikeout, Boolean properties that either apply the given style attribute or
Underline, and Overline ignore it.

In code, you can assign values to the various font properties as shown here:

ctrl.Font.Name = "Verdana";
ctrl.Font.Bold = true;

You can also set the size using the FontUnit type:

// Specifies a relative size.
ctrl.Font.Size = FontUnit.Small;

// Specifies an absolute size of 14 points.
ctrl.Font.Size = FontUnit.Point(14);

In the .aspx file, you need to use a special object-walker syntax to specify object properties such as
font. The object-walker syntax uses a hyphen (-) to separate properties. For example, you could set a
control with a specific font (Tahoma) and font size (40 point) like this:

<asp:TextBox Font-Name="Tahoma" Font-Size="40" Text="Size Test" id="txt"
runat="server" />

or with a relative size, as follows:

<asp:TextBox Font-Name="Tahoma" Font-Size="Large" Text="Size Test"
id="txt" runat="server" />

Of course, in the world of the Internet, font names are just recommendations. If a given font isn’t
present on a client’s computer, the browser attempts to substitute a similar font. (For more information
on this font substitution process, refer to the CSS specification at http://www.w3.0rg/TR/REC-
CSS2/fonts.html.)

If you want to provide a list of possible fonts, you can use the FontInfo.Names property instead of
the FontInfo.Name property. The Names property accepts an array of names that will be rendered as an
ordered list (with greatest preference given to the names at the top of the list). Here’s an example:

<asp:TextBox Font-Names="Calibri, Times New Roman, Times"
Font-Size="Large" Text="Size Test" id="txt" runat="server" />

149

http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/fonts.html

150

CHAPTER 4 | SERVER CONTROLS

Tip The Names and Name properties are kept synchronized, and setting either one affects the other. When you
set the Names property, the Name property is automatically set to the first item in the array you used for the
Names property. If you set the Name property, the Names property is automatically set with an array containing a
single item. Therefore, you should use only the Name property or the Names property, but not both at once.

Focus

Unlike HTML server controls, every web control provides a Focus() method. The Focus() method has an
effect only for input controls (controls that can accept keystrokes from the user). When the page is
rendered in the client browser, the user starts in the focused control.

For example, if you have a form that allows the user to edit customer information, you might call the
Focus() method on the first text box with customer address information. That way, the cursor appears in
this text box immediately. Also, if the text box is partway down the form, the page scrolls to the correct
position automatically. Once the page is rendered, the user can move from control to control using the
time-honored Tab key.

Of course, if you're familiar with the HTML standard, you know there isn’t any built-in way to give
focus to an input control. Instead, you need to rely on JavaScript. This is the secret to ASP.NET’s
implementation. When your code is finished processing and the page is rendered, ASP.NET adds an
extra block of JavaScript code to the end of your page. This JavaScript code simply sets the focus to the
last control that had the Focus() method triggered. Here’s the code that ASP.NET adds to your rendered
web page to move the focus to a control named TextBox2:

<script type="text/javascript">
WebForm_AutoFocus('TextBox2');

</script>

If you haven’t called Focus() at all, this code isn’t emitted. If you've called it for more than one
control, the JavaScript code uses the more recently focused control.

Rather than call the Focus() method programmatically, you can set a control that should always be
focused (unless you override it by calling the Focus() method). You do this by setting the
Form.DefaultFocus property, like so:

<form id="Form1" DefaultFocus="TextBox2" runat="server">

Incidentally, the focusing code relies on a JavaScript method named WebForm_AutoFocus(), which
ASP.NET generates automatically. Technically, the JavaScript method is provided through an ASP.NET
extension named WebResource.axd. The resource is named Focus.js. If you dig through the rendered
HTML of your page, you'll find an element that links to this JavaScript file that takes this form (where the
d and t arguments are long):

<script src="WebResource.axd?d=...&t=..."></script>

You can type this request directly into your browser to download and examine the JavaScript
document. It’s quite lengthy, because it carefully deals with cases such as focusing on a nonfocusable
control that contains a focusable child. However, the following code shows the heart of the focusing logic:

function WebForm AutoFocus(focusId) {
// Find the element based on the ID (code differs based on browser).
var targetControl;

CHAPTER 4 = SERVER CONTROLS

if (__nonMSDOMBrowser) {
targetControl = document.getElementById(focusId);

else {
targetControl = document.all[focusId];

// Check if the control can accept focus or contains a child that can.

var focused = targetControl;

if (targetControl != null 8& (!WebForm CanFocus(targetControl))) {
focused = WebForm FindFirstFocusableChild(targetControl);

// If there is a valid control, try to apply focus and scroll it into view.
if (focused != null) {
try {
focused.focus();
focused.scrollIntoView();
if (window. smartNav != null) {
window. smartNav.ae = focused.id;
}

catch (e) {
}

As you can see, the first task this code performs is to test whether the current browser is an up-level
version of Internet Explorer (and hence supports the Microsoft DOM). However, even if it isn’t, the script
code still performs the autofocusing, with only subtle differences.

Another way to manage focus is using access keys. For example, if you set the AccessKey property of
a TextBox to A, then when the user presses Alt+A, focus will switch to the TextBox. Labels can also get
into the game, even though they can’t accept focus. The trick is to set the property
Label.AssociatedControllID to specify a linked input control. That way, the label transfers focus to the
control nearby.

For example, the following label gives focus to TextBox2 when the keystroke Alt+2 is pressed:

<asp:Label AccessKey="2" AssociatedControlID="TextBox2" runat="server">
TextBox2:</asp:Label><asp:TextBox runat="server" ID="TextBox2" />

Access keys are also supported in non-Microsoft browsers, including Firefox.

The Default Button

Along with the idea of control focusing, ASP.NET includes a mechanism that allows you to designate a
default button on a web page. The default button is the button that is “clicked” when the user presses
the Enter key. For example, on a form you might want to turn the submit button into a default button.
That way, if the user hits Enter at any time, the page is posted back and the Button.Click event is fired for
that button.

To designate a default button, you must set the HtmlForm.DefaultButton property with the ID of
the respective control, as shown here:

<form id="Form1" DefaultButton="cmdSubmit" runat="server">

151

CHAPTER 4 " SERVER CONTROLS

The default button must be a control that implements the IButtonControl interface. The interface is
implemented by the Button, LinkButton, and ImageButton web controls but not by any of the HTML
server controls.

In some cases, it makes sense to have more than one default button. For example, you might create
a web page with two groups of input controls. Both groups may need a different default button. You can
handle this by placing the groups into separate panels. The Panel control also exposes the DefaultButton
property, which works when any input control it contains gets the focus.

Scrollable Panels

The Panel control has the ability to scroll. This means you can fill your Panel controls with server
controls or HTML, explicitly set the Height and Width properties of the panel so they won’t be smaller
than what'’s required, and then switch on scrolling by setting the ScrollBars property to Vertical,
Horizontal, Both, or Auto (which shows scrollbars only when there’s too much content to fit).

Here’s an example:

<asp:Panel ID="Panel1" runat="server" Height="116px" Width="278px"
BorderStyle="Solid" BorderWidth="1px" ScrollBars="Auto">
This scrolls.

<asp:Button ID="Button1" runat="server" Text="Button" />
<asp:Button ID="Button2" runat="server" Text="Button" />

</asp:Panel>

Figure 4-7 shows the result.

2 Scrollable Panel - Microsoft Internet Explorer g@

» 13
File Edit ‘“iew Favorites Tools Help ¢ > I E ',','
Address -@j http:/flocalhost:6414/Chapter04)ScrollablePanel. aspx v
This scrolls. N
O
v
&] Done %J Local intranet

Figure 4-7. A scrollable panel

152

CHAPTER 4 = SERVER CONTROLS

The panel is rendered as a <div> tag. The scrolling behavior is provided by setting the CSS overflow
property.

Handling Web Control Events

Server-side events work in much the same way as the server events of the HTML server controls. Instead
of the ServerClick events, there is a Click event, and instead of the generic ServerChange events there are
specific events such as CheckedChanged (for the RadioButton and CheckButton) and TextChanged (for
the TextBox), but the behavior remains the same.

The key difference is that web controls support the AutoPostBack feature described in the previous
chapter, which uses JavaScript to capture a client-side event and trigger a postback. ASP.NET receives
the posted-back page and raises the corresponding server-side event immediately.

To watch these events in action, it helps to create a simple event tracker application (see Figure
4-8). All this application does is add a new entry to a list control every time one of the events it’s
monitoring occurs. This allows you to see the order in which events are triggered and the effect of using
automatic postback.

A http:/flocalhost/Chapter05/EventTracker.aspx - Microso... Q@@

File Edit Yiew Favorites Tools Help Q Back ~ ©J = “,','
Address \-g] http:/flocalhost/Chapter0S/EventTracker . aspx v ‘
4]
List of events:
chk Changed [
opt1 Changed |
opt2 Changed [
Controls being monitored for change events:
hello
L
o ®
v
&] Done %J Local intranet

Figure 4-8. The event tracker

153

154

CHAPTER 4 | SERVER CONTROLS

In this demonstration, all control change events are handled by the same event handler:

<form id="form1" runat="server">

<div>
<h3>List of events:</h3>
<asp:ListBox id="lstEvents" runat="server" Height="107px" Width="355px"/>

<h3>Controls being monitored for change events:</h3>
<asp:TextBox id="txt" runat="server" AutoPostBack="true"
OnTextChanged="CtrlChanged"/>

<asp:CheckBox id="chk" runat="server" AutoPostBack="true"
OnCheckedChanged="CtrlChanged"/>

<asp:RadioButton id="opt1" runat="server" GroupName="Sample"
AutoPostBack="true" OnCheckedChanged="CtrlChanged"/>
<asp:RadioButton id="opt2" runat="server" GroupName="Sample"
AutoPostBack="true" OnCheckedChanged="CtrlChanged"/>

</div>

</form>

The event handler simply adds a new message to a list box and scrolls to the end:

protected void CtrlChanged(Object sender, EventArgs e)

{
string ctrlName = ((Control)sender).ID;
1stEvents.Items.Add(ctrlName + " Changed");
// Select the last item to scroll the list so the most recent
// entries are visible.
1stEvents.SelectedIndex = lstEvents.Items.Count - 1;

}

Note Automatic postback isn’t always a good thing. Posting the page back to the server interrupts the user for a
brief amount of time. If the page is large, the delay may be more than a noticeable flicker. If the page is long and
the user has scrolled to the bottom of the page, the user will lose the current position when the page is refreshed
and the view is returned to the top of the page. Because of these idiosyncrasies, it’s a good idea to evaluate
whether you really need postback and to refrain from using it for minor cosmetic reasons. One possible alternative
is to use the Ajax features described in Chapter 30.

The Click Event and the ImageButton Control

In the examples you've looked at so far, the second event parameter has always been used to pass an
empty System.EventArgs object. This object doesn’t contain any additional information—it’s just a
glorified placeholder.

One control that does send extra information is the ImageButton control. It sends a special
ImageClickEventArgs object (from the System.Web.UI namespace) that provides X and Y properties
representing the location where the image was clicked. Using this additional information, you can create

CHAPTER 4 = SERVER CONTROLS

a server-side image map. For example, here’s the code that simply displays the location where the image
was clicked and checks if it was over a predetermined region of the picture:

protected void ImageButtoni Click(object sender,
System.Web.UI.ImageClickEventArgs e)

1blResult.Text = "You clicked at (" + e.X.ToString() +
", " + e.Y.ToString() + "). ";

// Check if the clicked point falls in the rectangle described

// by the points (20,20) and (275,100), which is the button surface.

if ((e.Y < 100) & (e.Y > 20) & (e.X > 20) & (e.X < 275))
1blResult.Text += "You clicked on the button surface.";

else

1blResult.Text += "You clicked the button border.";

The sample web page shown in Figure 4-9 puts this feature to work with a simple graphical button.
Depending on whether the user clicks the button border or the button surface, the web page displays a
different message.

Note Another, more powerful approach to handling image clicks is to create a server-side image map using the
ImageMap control. The ImageMap control is demonstrated in Chapter 28, which deals with dynamic graphics.

| ImageTest - Microsoft Internet Explorer Q@@
File Edit View Favorites Tools Help Qsak - & - ¥ & & = I.','
Address ’@ http:/flocalhost/Chapter0S{ImageTest.aspx M ‘

You clicked at (284, 93). You clicked the button border.

@ Done ‘3 Local intranet

Figure 4-9. Using an ImageButton control

155

156

CHAPTER 4 | SERVER CONTROLS

The List Controls

The list controls are specialized web controls that generate list boxes, drop-down lists, and other
repeating controls that can be either bound to a data source (such as a database or a hard-coded
collection of values) or programmatically filled with items. Most list controls allow the user to select one
or more items, but the BulletedList is an exception—it displays a static bulleted or numbered list. Table
4-11 shows all the list controls.

Table 4-11. List Controls

Control Description

<asp:DropDownList> A drop-down list populated by a collection of <asp:ListItem> objects. In
HTML, it is rendered by a <select> tag with the size="1" attribute.

<asp:ListBox> Alist box list populated by a collection of <asp:ListIltem> objects. In HTML,
itis rendered by a <select> tag with the size="x" attribute, where x is the
number of visible items.

<asp:CheckBoxList> Its items are rendered as check boxes, aligned in a table with one or more
columns.

<asp:RadioButtonList> Like the <asp:CheckBoxList>, but the items are rendered as radio buttons.

<asp:BulletedList> A static bulleted or numbered list. In HTML, it is rendered using the or
 tags. You can also use this control to create a list of hyperlinks.

All the list controls support the same base properties and methods as other web controls. In
addition, they inherit from the System.Web.UIL.WebControls.ListControl class, which exposes the
properties described in Table 4-12 (among others). You can fill the lists automatically from a data source
(as you'll learn in Part 2), or you can fill them programmatically or declaratively, as you'll see in the
next section.

Table 4-12. ListControl Class Properties

Member Description

AutoPostBack If true, the form is automatically posted back when the user changes the
current selection.

Items Returns a collection of ListItem items (the items can also be added
declaratively by adding the <asp:ListItem> tag).

SelectedIndex Returns or sets the index of the selected item. For lists with multiple
selectable items, you should loop through the Items collection and check
the Selected property of each ListItem instead.

CHAPTER 4 = SERVER CONTROLS

Member

Description

SelectedItem

DataSource

DataMember

DataTextField

DataValueField

DataTextFormatString

Returns a reference to the first selected ListItem. For lists with multiple
selectable items, you should loop through the Items collection and check
the Selected property of each ListItem instead.

You can set this property to an object that contains the information you
want to display (such as a DataSet, DataTable, or collection). When you call
DataBind(), the list will be filled based on that object.

Used in conjunction with data binding when the data source contains more
than one table (such as when the source is a DataSet). The DataMember
identifies which table you want to use.

Used in conjunction with data binding to indicate which property or field
in the data source should be used for the text of each list item.

Used in conjunction with data binding to indicate which property or field
in the data source should be used for the value attribute of each list item
(which isn’t displayed but can be read programmatically for future
reference).

Sets the formatting string used to render the text of the list item (according
to the DataTextField property).

In addition, the ListControl control class also defines a SelectedIndexChanged event, which fires
when the user changes the current selection.

Note The SelectedindexChanged event and the Selectedindex and Selecteditem properties are not used for the

BulletedList control.

The Selectable List Controls

The selectable list controls include the DropDownlList, ListBox, CheckBoxList, and RadioButtonList
controls—all the list controls except the BulletedList. They allow users to select one or more of the
contained items. When the page is posted back, you can check which items were chosen.

By default, the RadioButtonList and CheckBoxList render multiple option buttons or check boxes.
Both of these classes add a few more properties that allow you to manage the layout of these repeated
items, as described in Table 4-13.

157

158

CHAPTER 4 | SERVER CONTROLS

Table 4-13. Added RadioButtonList and CheckBoxList Properties

Property Description

RepeatLayout This enumeration specifies whether the check boxes or radio buttons will

be rendered in a table (Table), inline (Flow), in a element
(UnorderedList), or in a elment (OrderedList).

RepeatDirection This specifies whether the list of controls will be rendered horizontally or
vertically.
RepeatColumns This sets the number of columns, in case RepeatLayout is set to Table.

CellPadding, CellSpacing, If RepeatLayout is set to Table, then these properties configure the
TextAlign spacing and alignment of the cells of the layout table.

Here’s an example page that declares an instance of every selectable list control, adds items to each

of them declaratively, and sets a few other properties:

<form id="form1" runat="server">
<div>

<asp:ListBox runat="server" ID="Listbox1" SelectionMode="Multiple" Rows="5">
<asp:ListItem Selected="true">Option 1</asp:ListItem>
<asp:ListItem>Option 2</asp:ListItem>

</asp:ListBox>

<asp:DropDownlList runat="server" ID="DropdownlList1">
<asp:ListItem Selected="true">Option 1</asp:ListItem>
<asp:ListItem>Option 2</asp:ListItem>

</asp:DropDownlList>

<asp:CheckBoxList runat="server" ID="CheckboxList1" RepeatColumns="3" >
<asp:ListItem Selected="true">Option 1</asp:ListItem>
<asp:ListItem>Option 2</asp:ListItem>

</asp:CheckBoxList>

<asp:RadioButtonlList runat="server" ID="RadiobuttonList1"

RepeatDirection="Horizontal" RepeatColumns="2">

<asp:ListItem Selected="true">Option 1</asp:ListItem>
<asp:ListItem>Option 2</asp:ListItem>

</asp:RadioButtonList>

<asp:Button id="Button1" runat="server" Text="Submit"

OnClick="Button1 Click"/>

</div>
</form>

CHAPTER 4 = SERVER CONTROLS

When the page is loaded for the first time, the event handler for the Page.Load event adds three

more items to each list control programmatically, as shown here:

protected void Page Load(object sender, System.EventArgs e)

if (!Page.IsPostBack)
for (int i=3; i<=5; i++)
Listbox1.Items.Add("Option " + i.ToString());
DropdownList1.Items.Add("Option " + i.ToString());

CheckboxList1.Items.Add("Option " + i.ToString());
RadiobuttonList1.Items.Add("Option " + i.ToString());

Finally, when the submit button is clicked, the selected items of each control are displayed on the

page. For the controls with a single selection (DropDownList and RadioButtonList), this is just a matter
of accessing the SelectedItem property. For the other controls that allow multiple selections, you must

cycle through all the items in the Items collection and check whether the ListItem.Selected property is

true. Here’s the code that does both of these tasks:

protected void Buttoni Click(object sender, System.EventArgs e)

{

Response.Write("Selected items for Listboxi:
");
foreach (ListItem 1i in Listboxi.Items)

if (li.Selected) Response.Write("- " + 1li.Text + "
");
Response.Write("Selected item for DropdownListi:
");
Response.Write("- " + DropdownList1.SelectedItem.Text + "
");

Response.Write("Selected items for CheckboxlListi:
");
foreach (ListItem 1i in CheckboxList1.Items)

if (li.Selected) Response.Write("- " + 1li.Text + "
");

Response.Write("Selected item for RadiobuttonListi:
");
Response.Write("- " + RadiobuttonListi.SelectedItem.Text + "
");

To test the page, load it, select one or more items in each control, and then click the button. You

should get something like what’s shown in Figure 4-10.

159

160

CHAPTER 4 " SERVER CONTROLS

2l ListControls - Microsoft Internet Explorer

Sl »
File Edit View Favorites Tools Help Qback - © - [¥ -’.','

Address ‘.éj http:fflocalhost{Chapter0S ListControls, aspx ¥ ‘

Selected items for Listbox]:

- Option 1

- Option 3

- Option 4

Selected item for DropdownListl:
- Option 3

Selected items for CheckboxListl:
- Option 1

- Option 4

Selected item for RadiobuttonListl:
- Option 4

Option 1 [JOption 3 [JOption 5
[0 Option 2 [Option 4

O Option 1 O Option 2
O Option 3 ® Option 4
O Option 5

€] Done «J Local intranet

Figure 4-10. Checking for selected items in the list controls

Tip You can set the Listitem.Enabled property to false if you want an item in a RadioButtonList or CheckBoxList
1o be disabled. It will still appear in the page, but it will be grayed out and won’t be selectable. The
Listitem.Enabled property is ignored for ListBox and DropDownList controls.

CHAPTER 4 = SERVER CONTROLS

The BulletedList Control

The BulletedList control is the server-side equivalent of the (unordered list) or (ordered list)
elements. As with all list controls, you set the collection of items that should be displayed through the
Items property. Additionally, you can use the properties in Table 4-14 to configure how the items are
displayed.

Table 4-14. Added BulletedList Properties

Property Description

BulletStyle Determines the type of list. Choose from Numbered (1, 2, 3...), LowerAlpha (a,
b, c...) and UpperAlpha (A, B, C...), LowerRoman (j, ij, iii...) and UpperRoman (I,
II, I1I...), and the bullet symbols Disc, Circle, Square, or CustomImage (in which
case you must set the BulletimageUrl property).

BulletimageUrl If the BulletStyle is set to CustomImage, this points to the image that is placed
to the left of each item as a bullet.

FirstBulletNumber In an ordered list (using the Numbered, LowerAlpha, UpperAlpha,
LowerRoman, or UpperRoman styles), this sets the first value. For example, if
you set FirstBulletNumber to 3, the list might read 3, 4, 5 (for Numbered) or C,
D, E (for UpperAlpha).

DisplayMode Determines whether the text of each item is rendered as text (use Text, the
default) or a hyperlink (use LinkButton or HyperLink). The difference between
LinkButton and HyperLink is how they treat clicks. When you use LinkButton,
the BulletedList fires a Click event that you can react to on the server to
perform the navigation. When you use HyperLink, the BulletedList doesn’t fire
the Click event—instead, it treats the text of each list item as a relative or
absolute URL, and renders them as ordinary HTML hyperlinks. When the user
clicks an item, the browser attempts to navigate to that URL.

If you choose to set the DisplayMode to LinkButton, you can react to the Click event to determine
which item was clicked. Here’s an example:

protected void BulletedListi Click(object sender, BulletedListEventArgs e)

{
string itemText = BulletedlListi.Items[e.Index].Text;
Label1.Text = "You choose item" + itemText;

Figure 4-11 shows the different BulletStyle values. When you click one, the list is updated
accordingly.

161

162

CHAPTER 4 | SERVER CONTROLS

A Untitled Page - Microsoft Internet Explorer Q@@

= »
File Edit V‘iew Favorites Tools Help QBack v ,','

Address @ http://localhost:6414/Chapter04/BulletedList. aspx v

Bullet styles:

1. Not3et
Numbered
Lowerdlpha
Upperdlpha
LowerRoman
UpperRoman
Disc

Circle

Square
Customlmage

=5

w REE S g

& % Local intranet

Figure 4-11. Different BulletedList styles

Input Validation Controls

One of the most common uses for web pages (and the reason that the HTML form tags were first
created) is to collect data. Often, a web page will ask a user for some information and then store it in a
back-end database. In almost every case, this data must be validated to ensure that you don’t store
useless, spurious, or contradictory information that might cause later problems.

Ideally, the validation of the user input should take place on the client side so that the user is
immediately informed that there’s something wrong with the input before the form is posted back to the
server. If this pattern is implemented correctly, it saves server resources and gives the user faster
feedback. However, regardless of whether client-side validation is performed, the form’s data must also
be validated on the server side. Otherwise, a shrewd attacker could hack the page by removing the client-
side JavaScript that validates the input, saving the new page, and using it to submit bogus data.

Writing validation code by hand is a lengthy task, especially because the models for client-side
programming (typically JavaScript) and server-side programming (in this case, ASP.NET) are quite
different. The developers at Microsoft are well aware of this, so, in addition to the set of HTML and web
controls, they also developed a set of validation controls. These controls can be declared on a web form
and then bound to any other input control. Once bound to an input control, the validation control
performs automatic client-side and server-side validation. If the corresponding control is empty, doesn’t
contain the correct data type, or doesn’t adhere to the specified rules, the validator will prevent the page
from being posted back altogether.

CHAPTER 4 = SERVER CONTROLS

The Validation Controls

ASP.NET includes six validation controls. These controls all perform a good portion of the heavy lifting
for you, thereby streamlining the validation process and saving you from having to write tedious code.
Even better, the validation controls are flexible enough to work with the custom rules you define, which
makes your code more reusable and modular. Table 4-15 briefly summarizes each validator.

Table 4-15. The Validation Controls

Validation Control Description

<asp:RequiredFieldValidator> Checks that the control it has to validate is not empty when the
form is submitted.

<asp:RangeValidator> Checks that the value of the associated control is within a
specified range. The value and the range can be numerical—a
date or a string.

<asp:CompareValidator> Checks that the value of the associated control matches a
specified comparison (less than, greater than, and so on)
against another constant value or control.

<asp:RegularExpressionValidator> Checks if the value of the control it has to validate matches the
specified regular expression.

<asp:CustomValidator> Allows you to specify any client-side JavaScript validation
routine and its server-side counterpart to perform your own
custom validation logic.

<asp:ValidationSummary> Shows a summary with the error messages for each failed
validator on the page (or in a pop-up message box).

It’s important to note that you can use more than one validator for the same control. For example,
you could use a validator to ensure that an input control is not empty and another to ensure that it
contains data of a certain type. In fact, if you use the RangeValidator, CompareValidator, or
RegularExpressionValidator, validation will automatically succeed if the input control is empty,
because there is no value to validate. If this isn’t the behavior you want, you should add a
RequiredFieldValidator to the control. This ensures that two types of validation will be performed,
effectively restricting blank values.

Although you can’t validate RadioButton or CheckBox controls, you can validate the TextBox (the
most common choice) and other controls such as ListBox, DropDownList, RadioButtonList,
HtmlInputText, HtmlTextArea, and HtmlSelect. When validating a list control, the property that is being
validated is the Value property of the selected ListItem object. Remember, the Value property is a hidden
attribute that stores a piece of information in the HTML page for each list item, but it isn’t displayed in
the browser. If you don’t use the Value attribute, you can’t validate the control (validating the text of the
selection isn’t a supported option).

Technically, every control class has the option of designating one property that can be validated
using the ValidationProperty attribute. For example, if you create your own control class named
FancyTextBox, here’s how you would designate the Text property as the property that supports
validation:

163

164

CHAPTER 4 | SERVER CONTROLS

[ValidationProperty("Text")]
public class FancyTextBox : WebControl

{...}

You'll learn more about how attributes work with custom controls in Chapter 27.

The Validation Process

You can use the validation controls to verify a page automatically when the user submits it or to verify it
manually in your code. The first approach is the most common.

When using automatic validation, the user receives a normal page and begins to fill in the input
controls. When finished, the user clicks a button to submit the page. Every button has a
CausesValidation property, which can be set to true or false. What happens when the user clicks the
button depends on the value of the CausesValidation property:

* CausesValidation is false: ASP.NET will ignore the validation controls, the page
will be posted back, and your event-handling code will run normally.

* CausesValidation is true (the default): ASP.NET will automatically validate the
page when the user clicks the button. It does this by performing the validation for
each control on the page. If any control fails to validate, ASP.NET will return the
page with some error information, depending on your settings. Your click event-
handling code may or may not be executed—meaning you’ll have to specifically
check in the event handler whether the page is valid.

Note Many other button-like controls that can be used to submit the page also provide the CausesValidation
property. Examples include the LinkButton, ImageButton, and BulletedList.

Based on this description, you’ll realize that validation happens automatically when certain buttons
are clicked. It doesn’t happen when the page is posted back because of a change event (such as choosing
a new value in an AutoPostBack list) or if the user clicks a button that has CausesValidation set to false.
However, you can still validate one or more controls manually and then make a decision in your code
based on the results.

In browsers that support it, ASP.NET will automatically add code for client-side validation. In this
case, when the user clicks a CausesValidation button, the same error messages will appear without the
page needing to be submitted and returned from the server. This increases the responsiveness of the
application. However, if the page validates successfully on the client side, ASP.NET will still revalidate it
when it’s received at the server. By performing the validation at both ends, your application can be as
responsive as possible but still remain secure. Best of all, the client-side validation works in most non-
Microsoft web browsers.

Figure 4-12 shows a page that uses validation with several text boxes and ends with a validation
summary. In the following section, you'll learn about how you can use the different validators in this
example.

CHAPTER 4 = SERVER CONTROLS

2} ASP.NET Validators - Microsoft Internet Explorer

File Edit View Favorites Tools Help & Bact

Address

@ http:fflocalhost/Chapter0S)validators. aspx v ’

Description Value

Name: { |*
ID (multiple of 5): (33 J

Day off
08/05/08-08/20/08

Age (>=18): 5 *
E-mail: 1m I*

[01/01/01 *

Password: 1 .o |

Re-enter Password:]- | !

Validators enabled
Client-side validation enabled
Show summary

[J Show message box

Please review the following errors:

o Name is required

ID must be a multiple of 5

Day Off is not within the valid interval
You must be at least 18-year-old
E-mail 1s not in a valid format

The passwords don't match

&] Done &J Local intranet

Figure 4-12. Validating a sample page

The BaseValidator Class

The validation control classes are found in the System.Web.UIL.WebControls namespace and inherit
from the BaseValidator class. This class defines the basic functionality for a validation control. Table 4-
16 describes its key properties.

165

166

CHAPTER 4 | SERVER CONTROLS

Table 4-16. BaseValidator Members

Member

Description

ControlToValidate

Display

EnableClientScript

Enabled

ErrorMessage

Text

IsValid

SetFocusOnError

ValidationGroup

Validate()

Indicates the input control to validate.

Indicates how the error message will be shown. If Static, the space required to
show the message will be calculated and added to the space layout in advance.
If Dynamic, the page layout will dynamically change to show the error string.
Be aware that although the dynamic style could seem useful, if your layout is
heavily based on table structures, it could change quite a bit if multiple strings
are dynamically added, and this could confuse the user.

A Boolean property that specifies whether the client-side validation will take
place. It is true by default.

A Boolean property that allows the user to enable or disable the validator.
When the control is disabled, it does not validate anything. You can set this
property programmatically if you want to create a page that dynamically
decides what it should validate.

Error string that will be shown in the errors summary by the
ValidationSummary control, if present.

The error text that will be displayed in the validator control if the attached
input control fails its validation.

This property is also usually read or set only from script code (or the code-
behind class) to determine whether the associated input control’s value is
valid. This property can be checked on the server after a postback, but if the
client-side validation is active and supported by the client browser, the
execution won’t get to the server if the value isn’t valid. (In other words, you
check this property just in case the client-side validation did not run.)
Remember that you can also read the Page.IsValid property to know in a single
step if all the input controls are in a valid state. Page.IsValid returns true only if
all the contained controls are valid.

If true, when the user attempts to submit a page that has an invalid control, the
browser switches focus to the input control so the value can be easily corrected.
(If false, the button or control that was clicked to post the page retains focus.)
This feature works for both client-side and server-side validation. If you have
multiple validators with SetFocusOnError set to true, and all the input controls
are invalid, the first input control in the tab sequence gets focus.

Allows you to group multiple validators into a logical group so that validation
can be performed distinctly without involving other groups. This is
particularly useful if you have several distinct panels on a web page, each with
its own submit button.

This method revalidates the control and updates the IsValid property
accordingly. The web page calls this method when a page is posted back by a
CausesValidation control. You can also call it programmatically (for example,
if you programmatically set the content of an input control and you want to
check its validity).

CHAPTER 4 = SERVER CONTROLS

In addition, the BaseValidator class has other properties such as BackColor, Font, ForeColor, and
others that are inherited (and in some case overridden) from the base class Label (and the classes it
inherits from, such as WebControl and Control). Every derived validator adds its own specific properties,
which you'll see in the following sections.

The RequiredFieldValidator Control

The simplest available control is RequiredFieldValidator, whose only work is to ensure that the
associated control is not empty. For example, the control will fail validation if a linked text box doesn’t
contain any content (or just contains spaces). Alternatively, instead of checking for blank values you can
specify a default value using the InitialValue property. In this case, validation fails if the content in the
control matches this InitialValue (indicating that the user hasn’t changed it in any way).

Here is an example of a typical RequiredFieldValidator:

<asp:TextBox runat="server" ID="Name" />

<asp:RequiredFieldValidator runat="server"
ControlToValidate="Name" ErrorMessage="Name is required"
Display="dynamic">*

</asp:RequiredFieldValidator>

The validator declared here will show an asterisk (*) character if the Name text box is empty. This
error text appears when the user tries to submit the form by clicking a button that has CausesValidation
set to true. It also occurs on the client side in Internet Explorer 5.0 or above as soon as the user tabs to a
new control, thanks to the client-side JavaScript.

If you want to place a specific message next to the validated control, you should replace * with an
error message. (You don’t need to use the ErrorMessage property. The ErrorMessage is required only if
you want to show the summary of all the errors on the page using the ValidationSummary control, which
you’ll see later in this chapter.) Alternatively, for a nicer result, you could use an HTML tag to use
a picture (such as the common ! sign inside a yellow triangle) with a tooltip for the error message. You'll
see this approach later in this chapter as well.

The RangeValidator Control

The RangeValidator control verifies that an input value falls within a predetermined range. It has three
specific properties: MinimumValue, MaximumValue, and Type. The MinimumValue and
MaximumValue properties define an inclusive range of valid values. The Type property defines the type
of the data that will be typed into the input control and validated. The supported values are Currency,
Date, Double, Integer, and String.

The following example checks that the date entered falls within the range of August 5 to August 20
(encoded in the locale-independent form yyyy-mm-dd, so if your web server uses different regional
settings, you'll have to change the date format):

<asp:TextBox runat="server" ID="DayOff" />

<asp:RangeValidator runat="server" Display="dynamic"
ControlToValidate="DayOff" Type="Date"
ErrorMessage="Day Off is not within the valid interval"
MinimumValue="2008-08-05" MaximumValue="2008-08-20">*

</asp:RangeValidator>

167

168

CHAPTER 4 | SERVER CONTROLS

The CompareValidator Control

The CompareValidator control compares a value in one control with a fixed value or, more commonly, a
value in another control. For example, this allows you to check that two text boxes have the same data or
that a value in one text box doesn’t exceed a maximum value established in another.

Like the RangeValidator control, the CompareValidator provides a Type property that specifies the
type of data you are comparing. It also exposes the ValueToCompare and ControlToCompare properties,
which allow you to compare the value of the input control with a constant value or the value of another
input control, respectively. You use only one of these two properties.

The Operator property allows you to specify the type of comparison you want to do. The available
values are Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, and
DataTypeCheck. The DataTypeCheck value forces the validation control to check that the input has the
required data type (specified through the Type property), without performing any additional
comparison.

The following example compares an input with a constant value in order to ensure that the specified
age is greater than or equal to 18:

<asp:TextBox runat="server" ID="Age" />

<asp:CompareValidator runat="server" Display="dynamic"
ControlToValidate="Age" ValueToCompare="18"
ErrorMessage="You must be at least 18 years old"
Type="Integer" Operator="GreaterThanEqual">*

</asp:CompareValidator>

The next example compares the input values in two password text boxes to ensure that their value is
the same:

<asp:TextBox runat="server" TextMode="Password" ID="Password" />
<asp:TextBox runat="server" TextMode="Password" ID="Password2" />
<asp:CompareValidator runat="server"
ControlToValidate="Password2" ControlToCompare="Password"
ErrorMessage="The passwords don't match"
Type="String" Display="dynamic">

</asp:CompareValidator>

This example also demonstrates another useful technique. The previous examples have used an
asterisk (*) to indicate errors. However, this control tag uses an tag to show a small image file of an
exclamation mark instead.

The RegularExpressionValidator Control

The RegularExpressionValidator control is a powerful tool in the ASP.NET developer’s toolbox. It allows
you to validate text by matching against a pattern defined in a regular expression. You simply need to set
the regular expression in the ValidationExpression property.

Regular expressions are also powerful tools—they allow you to specify complex rules that specify the
characters, and in what sequence (position and number of occurrences) they are allowed, in the string.
For example, the following control checks that the text input in the text box is a valid e-mail address:

<asp:TextBox runat="server" ID="Email" />
<asp:RegularExpressionValidator runat="server"
ControlToValidate="Email" ValidationExpression=".*@.{2,}\..{2,}"

CHAPTER 4 = SERVER CONTROLS

ErrorMessage="E-mail is not in a valid format" Display="dynamic">*
</asp:RegularExpressionValidator>

The expression .*@.{2,}\..{2,} specifies that the string that it’s validating must begin with a number of
characters (.*) and must contain an @ character, at least two more characters (the domain name), a
period (escaped as \.), and, finally, at least two more characters for the domain extension. For example,
marco@apress.com is a valid e-mail address, while marco@apress or marco.apress.com would fail
validation. The proposed expression is quite simple in reality. Using a more complex regular expression,
you could check that the domain name is valid, that the extension is not made up (see
http://www.icann.org for alist of allowed domain name extensions), and so on. However, regular
expressions obviously don’t provide any way to check that a domain actually exists or is online.

Table 4-17 summarizes the commonly used syntax constructs (modifiers) for regular expressions.

Table 4-17. Metacharacters for Matching Single Characters

Character Escapes Description

Ordinary characters Characters other than .$/{[(|)*+?\ match themselves.

\b Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.

\v Matches a vertical tab.

\f Matches a form feed.

\n Matches a newline.

\ If followed by a special character (one of .$/{[(|)*+?\), this character escape

matches that character literal. For example, \+ matches the + character.

In addition to single characters, you can specify a class or a range of characters that can be matched
in the expression. For example, you could allow any digit or any vowel in any position and exclude all the
other characters. The metacharacters in Table 4-18 accomplish this.

Table 4-18. Metacharacters for Matching Types of Characters

Character Class ~ Description

Matches any character except \n.

[aeiou] Matches any single character specified in the set.
[Aaeiou] Matches any character not specified in the set.
[3-7a-dA-D] Matches any character specified in the specified ranges (in the example the ranges

are 3-7, a-d, A-D).

169

mailto:marco@apress.com
http://www.icann.org

CHAPTER 4 | SERVER CONTROLS

Character Class Description

\w Matches any word character; that is, any alphanumeric character or the
underscore ().

\W Matches any nonword character.

\s Matches any whitespace character (space, tab, form feed, newline, carriage
return, or vertical feed).

\S Matches any nonwhitespace character.
\d Matches any decimal character.
\D Matches any nondecimal character.

Using more advanced syntax, you can specify that a certain character or class of characters must be
present at least once, or between two and six times, and so on. The quantifiers are placed just after a
character or a range of characters and allow you to specify how many times the preceding character
must be matched (see Table 4-19).

Table 4-19. Quantifiers

Quantifier Description

* Zero or more matches

+ One or more matches

? Zero or one matches

{N} N matches

{N,} N or more matches

{N,M} Between N and M matches (inclusive)

To demonstrate these rules with another easy example, consider the following regular expression:
[aeiou]{2,4}\+[1-5]*

A string that correctly matches this expression must start with two to four vowels, have a + sign, and
terminate with zero or more digits between 1 and 5. The .NET Framework documentation details many
more expression modifiers.

Table 4-20 describes a few common (and useful) regular expressions.

170

CHAPTER 4 = SERVER CONTROLS

Table 4-20. Commonly Used Regular Expressions

Content Regular Expression Description

E-mail address*® \S+@\S+\.\S+ Defines an email address that requires an at
symbol (@) and a dot (.), and only allows
nonwhitespace characters.

Password \w+ Defines a password that allows any sequence of
word characters (letter, space, or underscore).

Specific-length password ~ \w{4,10} Defines a password that must be at least four
characters long but no longer than ten characters.

Advanced password [a-zA-Z]\w{3,9} Defines a password that allows four to ten total
characters, as with the specific-length password.
The twist is that the first character must fall in the
range of a-z or A-Z (that is to say, it must start with
anonaccented ordinary letter).

Another advanced [a-zA-Z]\w*\d+\w* Defines a password that starts with a letter

password character, followed by zero or more word
characters, one or more digits, and then zero or
more word characters. In short, it forces a
password to contain a number somewhere inside
it. You could use a similar pattern to require two
numbers or any other special character.

Limited-length field \S{4,10} Defines a string of four to ten characters (like the
password example), but it allows special
characters (asterisks, ampersands, and so on).

Social Security number \d{3}-\d{2}-\d{4} Defines a sequence of three, two, and then four

(Us) digits, with each group separated by a hyphen. A
similar pattern could be used when requiring a
phone number.

“Many different regular expressions of varying complexity can validate e-mail addresses. See
http://www.4guysfromrolla.com/webtech/validateemail.shtml for a discussion of the subject and numerous examples.

The CustomValidator Control

If the validation controls described so far are not flexible or powerful enough for you, and if you need
more advanced or customized validation, then the CustomValidator control is what you need. The
CustomValidator allows you to execute your custom client-side and server-side validation routines. You
can associate these routines with the control so that validation is performed automatically. If the
validation fails, the Page.IsValid property is set to false, as occurs with any other validation control.

The client-side and server-side validation routines for the CustomValidator are declared similarly.
They both take two parameters: a reference to the validator and a custom argument object. The custom
argument object provides a Value property that contains the current value of the associated input
control (the value you have to validate) and an IsValid property through which you specify whether the
input value is valid. If you want to check that a number is a multiple of five, for example, you could use a
client-side JavaScript validation routine like this:

171

http://www.4guysfromrolla.com/webtech/validateemail.shtml

CHAPTER 4 | SERVER CONTROLS

<script type="text/javascript">
function EmpIDClientValidate(ctl, args)
{

// the value is a multiple of 5 if the modulus by 5 is 0
args.IsValid=(args.Value%5 == 0);

</script>

To associate this code with the control so that client-side validation is performed automatically, you
simply need to set the ClientValidationFunction to the name of the function (in this case,
EmplIDClientValidate).

Next, when the page is posted back, ASP.NET fires the CustomValidator.ServerValidate event. You
handle this event to perform the same task using C# code. And although the JavaScript logic is optional,
you must make sure you include a server-side validation routine to ensure the validation is performed
even if the client is using a down-level browser (or tampers with the web-page HTML).

Here’s the event handler for the ServerValidate event. It performs the C# equivalent of the client-
side validation routine shown earlier:

protected void EmpIDServerValidate(object sender, ServerValidateEventArgs args)

{

try

{
args.IsValid = (int.Parse(args.Value)%5 == 0);

catch
// An error is most likely caused by non-numeric data.
args.IsValid = false;

}

Finally, here’s an example CustomValidator tag that uses these routines:

<asp:TextBox runat="server" ID="EmpID" />

<asp:CustomValidator runat="server" ControlToValidate="EmpID"
ClientValidationFunction="EmpIDClientValidate" OnServerValidate="EmpIDServerValidate"
ErrorMessage="ID must be a multiple of 5" Display="dynamic">*

</asp:CustomValidator>

The CustomValidator includes an additional property named ValidateEmptyText, which is false by
default. However, it’s quite possible you might create a client-side function that attempts to assess empty
values. If so, set ValidateEmptyText to true to give the same behavior to your server-side event handler.

The ValidationSummary Control

The ValidationSummary control doesn’t perform any validation. Instead, it allows you to show a
summary of all the errors in the page. This summary displays the ErrorMessage value of each failed
validator. The summary can be shown in a client-side JavaScript message box (if the ShowMessageBox
property is true) or on the page (if the ShowSummary property is true). You can set both
ShowMessageBox and ShowSummary to true to show both types of summaries, since they are not
exclusive. If you choose to display the summary on the page, you can choose a style with the

172

CHAPTER 4 = SERVER CONTROLS

DisplayMode property (possible values are SingleParagraph, List, and BulletList). Finally, you can set a
title for the summary with the HeaderText property.
The control declaration is straightforward:

<asp:ValidationSummary runat="server" ID="Summary"
ShowSummary="true" ShowMessageBox="true" DisplayMode="BulletList"
HeaderText="Please review the following errors:"

/>

Figure 4-13 shows an example with a validation summary that displays a bulleted summary on the
page and in a message box.

2 ASP.NET Validators - Microsoft Internet Explorer

File Edit Yiew Favorites Tools Help) Bact & [ﬂ @ ‘:';j 2 »’,','
Address @ http:{flocalhost/Chapter0S validators, aspx Vi]

Description Value

Name: ‘ L*

ID (multiple of 5): |33 *

0’;703255508120108 |D1 Ao }*

Age (>=18); 5 £

E-mail: lm [*

Password: o Microsoft Internet xplorer @

Re-enter Password: e

Please review the following errors:
! - Name is required
- ID must be a multiple of 5

- Day Off is not within the valid interval

- You must be at least 18-year-old

[Validators enabled Sl
Client-side validation enabled

Show summary

[J Show message box

Please review the following errors:

o Name is required

o ID must be a multiple of 5

o Day Off is not within the valid interval
o Toumust be at least 18-year-old

o E-mail is not in a valid format

o The passwords don't match

&] Done & Local intranet

Figure 4-13. The validation summary

173

174

CHAPTER 4 | SERVER CONTROLS

Using the Validators Programmatically

As with all other server controls, you can programmatically read and modify the properties of a validator.
To access all the validators on the page, you can iterate over the Validators collection of the current page.
In fact, this technique was already demonstrated in the sample page shown in Figures 4-12 and

4-13. This page provides four check boxes that allow you to test the behavior of the validators with
different options. When a check box is selected, it causes a postback. The event handler iterates over all
the validators and updates them according to the new options, as shown here:

protected void Options Changed(object sender, System.EventArgs e)

{
// Examine all the validators on the back.
foreach (BaseValidator validator in Page.Validators)
// Turn the validators on or off, depending on the value
// of the "Validators enabled" check box (chkEnableValidators).
validator.Enabled = chkEnableValidators.Checked;
// Turn client-side validation on or off, depending on the value
// of the "Client-side validation enabled" check box
// (chkEnableClientSide).
validator.EnableClientScript = chkEnableClientSide.Checked;
}
// Configure the validation summary based on the final two check boxes.
Summary.ShowMessageBox = chkShowMsgBox.Checked;
Summary.ShowSummary = chkShowSummary.Checked;
}

You can use a similar technique to perform custom validation. The basic idea is to add a button with
CausesValidation set to false. When this button is clicked, manually validate the page or just specific
validators using the Validate() method. Then examine the IsValid property and decide what to do.

The next example uses this technique. It examines all the validation controls on the page by looping
through the Page.Validators collection. Every time it finds a control that hasn’t validated successfully, it
retrieves the invalid value from the input control and adds it to a string. At the end of this routine, it
displays a message that describes which values were incorrect. This technique adds a feature that
wouldn’t be available with automatic validation, which uses the static ErrorMessage property. In that
case, it isn’t possible to include the actual incorrect values in the message.

protected void cmdOK Click(Object sender, EventArgs e)

{
// Validate the page.

this.Validate();

if (!this.Isvalid)
{

string errorMessage = "Mistakes found:
";

// Create a variable to represent the input control.
TextBox ctrlInput;

// Search through the validation controls.
foreach (BaseValidator ctrl in this.Validators)

CHAPTER 4 = SERVER CONTROLS

if (!ctrl.Isvalid)
{

errorMessage += ctrl.ErrorMessage + "
";
ctrlInput = (TextBox)this.FindControl(ctrl.ControlToValidate);

errorMessage += " * Problem is with this input: ";
errorMessage += ctrlInput.Text + "
";

}

1blMessage.Text = errorMessage;

This example uses an advanced technique: the Page.FindControl() method. It’s required because
the ControlToValidate property is just a string with the name of a control, not a reference to the actual
control object. To find the control that matches this name (and retrieve its Text property), you need to
use the FindControl() method. Once the code has retrieved the matching text box, it can perform other
tasks such as clearing the current value, tweaking a property, or even changing the text box color.

Validation Groups

In more complex pages, you might have several distinct groups of controls, possibly in separate panels.
In these situations, you may want to perform validation separately. For example, you might create a
form that includes a box with login controls and a box underneath it with the controls for registering a
new user. Each box includes its own submit button, and depending on which button is clicked, you want
to perform the validation just for that section of the page.

ASP.NET enables this scenario with a feature called validation groups. To create a validation group,
you need to put the input controls and the CausesValidation button controls into the same logical group.
You do this by setting the ValidationGroup property of every control with the same descriptive string
(such as “Login” or “NewUser”). Every button control that provides a CauseValidation property also
includes the ValidationGroup property. All validators acquire the ValidationGroup by inheriting from the
BaseValidator class.

For example, the following page defines two validation groups, named Groupl and Group2:

<form id="form1" runat="server">
<div>
<asp:Panel ID="Panel1" runat="server">
<asp:TextBox ID="TextBox1" ValidationGroup="Groupl" runat="server" />
<asp:RequiredFieldValidator ID="RequiredFieldValidator1"
ErrorMessage="*Required" ValidationGroup="Group1"
runat="server" ControlToValidate="TextBox1" />
<asp:Button ID="Button1" Text="Validate Group1"
ValidationGroup="Group1" runat="server" />
</asp:Panel>

<asp:Panel ID="Panel2" runat="server">
<asp:TextBox ID="TextBox2" ValidationGroup="Group2"
runat="server" />
<asp:RequiredFieldValidator ID="RequiredFieldValidator2"
ErrorMessage="*Required" ValidationGroup="Group2"
ControlToValidate="TextBox2" runat="server" />
<asp:Button ID="Button2" Text="Validate Group2"

175

176

CHAPTER 4 | SERVER CONTROLS

ValidationGroup="Group2" runat="server" />
</asp:Panel>
</div>

</form>

Figure 4-14 shows the page. If you click the first button, only the first text box is validated. If you
click the second button, only the second text box is validated.

An interesting scenario is if you add a new button that doesn’t specify any validation group. In this
case, the button validates every control that isn’t explicitly assigned to a named validation group. In this
case, no controls fit the requirement, so the page is posted back successfully and deemed to be valid. If
you want to make sure a control is always validated, regardless of the validation group of the button
that’s clicked, you'll need to create multiple validators for the control, one for each group (and one with
no validation group). Alternatively, you might choose to manage complex scenarios such as these using
server-side code.

Figure 4-14. Grouping controls for validation

In your code, you can work with the validation groups programmatically. You can retrieve the
controls in a given validator group using the Page.GetValidators() method. Just pass the name of the
group as the first parameter. You can then loop through the items in this collection and choose which
ones you want to validate, as shown in the previous section.

CHAPTER 4 = SERVER CONTROLS

Another option is to use the Page.Validate() method and specify the name of the validation group.
For example, using the previous page, you could create a button with no validation group assigned and
respond to the Click event with this code:

protected void cmdvalidateAll Click(object sender, EventArgs e)

{
Label1.Text = "Initial Page.IsValid State: " + Page.IsValid.ToString();
Page.Validate("Group1");
Label1.Text += "
Groupl Valid: " + Page.IsValid.ToString();
Page.Validate("Group2");
Label1.Text += "
Groupl and Group2 Valid: " + Page.IsValid.ToString();
}

The first Page.IsValid check will return true, because none of the validators were validated. After
validating the first group, the Page.IsValid property will return true or false, depending on whether there
is text in TextBox1. After you validate the second group, Page.IsValid will only return true if both groups
passed the test.

Rich Controls

Rich controls are web controls that model complex user interface elements. Although there isn’t a strict
definition for rich controls, the term commonly describes web controls that provide an object model
that is distinctly separate from the underlying HTML representation. A typical rich control can often be
programmed as a single object (and defined with a single control tag), but renders itself with a complex
sequence of HTML elements and may even use client-side JavaScript.

To understand the difference, consider the Table control and the Calendar control. When you
program with the Table control, you use objects that provide a thin wrapper over HTML table elements
such as <table>, <tr>, and <td>. The Table control isn’t considered a rich control. On the other hand,
when you program with the Calendar, you work in terms of days, months, and selection ranges—
concepts that have no direct correlation to the HTML markup that the Calendar renders. For that reason,
the Calendar is considered a rich control.

ASP.NET includes numerous rich controls that are discussed elsewhere in this book, including data-
based list controls, navigation controls, security controls, and controls tailored for web portals. The
following list identifies the rich controls that don’t fall into any specialized category, and are found in the
Standard section of the Toolbox in Visual Studio:

* AdRotator: This control is a banner ad that displays one out of a set of images
based on a predefined schedule that’s saved in an XML file.

* Calendar: This control is a calendar that displays and allows you to move through
months and days and to select a date or a range of days.

¢ MultiView, View, and Wizard: You can think of these controls as more advanced
panels that let you switch between groups of controls on a page. The Wizard
control even includes built-in navigation logic. You'll learn about these controls in
Chapter 17.

* Substitution: This control is really a placeholder that allows you to customize
ASP.NET’s output caching feature, which you'll tackle in Chapter 11.

* Xml: This control takes an XML file and an XSLT stylesheet file as input and
displays the resulting HTML in a browser. You’ll learn about the Xml control in
Chapter 14.

177

178

CHAPTER 4 | SERVER CONTROLS

The rich controls in this list all appear in the Standard tab of the Visual Studio Toolbox.

The AdRotator Control

The AdRotator randomly selects banner graphics from a list that’s specified in an external XML
schedule file.
Before creating the control, it makes sense to define the XML schedule file. Here’s an example:

<Advertisements>

<Ad>
<ImageUrl>hdr_logo.gif</ImageUrl>
<NavigateUrl>http://www.apress.com</NavigateUrl>
<AlternateText>Apress - The Author's Press</AlternateText>
<Impressions>20</Impressions>
<Keyword>books</Keyword>

</Ad>

<Ad>
<ImageUrl>techEd. jpg</ImageUrl>
<NavigateUrl> http://www.microsoft.com/events/teched2008</NavigateUrl>
<AlternateText>TechEd from Microsoft</AlternateText>
<Impressions>20</Impressions>
<Keyword>Java</Keyword>

</Ad>

<!-- More ads can go here. -->

</Advertisements>

Each <Ad> element has a number of other important properties that configure the link, the image,
and the frequency, as described in Table 4-21.

Table 4-21. Advertisement File Elements

Element Description

ImageUrl The image that will be displayed. This can be a relative link (a file in the current
directory) or a fully qualified Internet URL.

NavigateUrl The link that will be followed if the user clicks the banner.

AlternateText The text that will be displayed instead of the picture if it cannot be displayed. This
text will also be used as a tooltip in some newer browsers.

Impressions A number that sets how often an advertisement will appear. This number is relative
to the numbers specified for other ads. For example, a banner with the value 10 will
be shown twice as often as a banner with the value 5.

Keyword A keyword that identifies a group of advertisements. This can be used for filtering.
For example, you could create ten advertisements and give half of them the
keyword Retail and the other half the keyword Computer. The web page can then
choose to filter the possible advertisements to include only one of these groups.

http://www.apress.com</NavigateUrl
http://www.microsoft.com/events/teched2008</NavigateUrl

CHAPTER 4 = SERVER CONTROLS

The actual AdRotator class provides a limited set of properties. You specify both the appropriate
advertisement file in the AdvertisementFile property and the type of window that the link should follow
in the Target property. You can also set the KeywordFilter property so that the banner will be chosen
from entries that have a specific keyword.

Here’s an example that opens the link for an advertisement in a new window:

<asp:AdRotator runat="server" AdvertisementFile="Ads.xml" Target="_blank" />

Figure 4-15 shows the AdRotator control. Try refreshing the page. When you do, you'll see that a
new advertisement is randomly selected each time.

€& Untitled Page - Windows Internet Explorer l =T0E %J
i) {é http://localhost:50616/Chapter04/AdTest.aspx v | 44 ’ X ‘
A7 dhe ‘ & Untitled Page ‘ ‘ &y v = v [Page v {0k Tools v

-» For event updates, sign the Tech-Ed 2008 Guestbook

[# €D Internet | Protected Mode: On #100% ~

. J

Figure 4-15. The AdRotator control

Additionally, you can react to the AdRotator.AdCreated event. This occurs when the page is being
created and an image is randomly chosen from the file. This event provides you with information about
the image that you can use to customize the rest of your page.

The event-handling code for this example simply configures a HyperLink control so that it
corresponds with the randomly selected advertisement in the AdRotator:

protected void Ads_AdCreated(Object sender, AdCreatedEventArgs e)

{
// Synchronize a Hyperlink control elsewhere on the page.
InkBanner.NavigateUrl = e.NavigateUrl;
// Synchronize the text of the link.
InkBanner.Text = "Click here for information about our sponsor: ";
InkBanner.Text += e.AlternateText;

}

179

CHAPTER 4 | SERVER CONTROLS

The Calendar Control

This control creates a functionally rich and good-looking calendar box that shows one month at a time.
The user can move from month to month, select a date, and even select a range of days (if multiple
selection is allowed). The Calendar control has many properties that, taken together, allow you to
change almost every part of this control. For example, you can fine-tune the foreground and background
colors, the font, the title, the format of the date, the currently selected date, and so on. The Calendar also
provides events that enable you to react when the user changes the current month
(VisibleMonthChanged), when the user selects a date (SelectionChanged), and when the Calendar is
about to render a day (DayRender).

The following Calendar tag sets a few basic properties:

<asp:Calendar runat="server" ID="Calendar1"
ForeColor="red" BackColor="lightyellow" />

The most important Calendar event is SelectionChanged, which fires every time a user clicks a date.
Here’s a basic event handler that responds to the SelectionChanged event and displays the selected date:

protected void Calendari SelectionChanged(object sender, EventArgs e)

lblDates.Text = "You selected: " + Calendari.SelectedDate.ToLongDateString();

Note Every user interaction with the calendar triggers a postback. This allows you to react to the selection
event immediately, and it allows the Calendar to rerender its interface, thereby showing a new month or newly
selected dates. The Calendar does not use the AutoPostBack property.

You can also allow users to select entire weeks or months as well as single dates, or you can render
the control as a static calendar that doesn’t allow selection. The only fact you must remember is that if
you allow month selection, the user can also select a single week or a day. Similarly, if you allow week
selection, the user can also select a single day. The type of selection is set through the
Calendar.SelectionMode property. You may also need to set the Calendar.FirstDayOfWeek property to
configure how a week is selected. (For example, if you set FirstDayOfWeek to the enumerated value
Monday, weeks will be selected from Monday to Sunday.)

When you allow multiple date selection (by setting Calendar.SelectionMode to something other
than Day), you need to examine the SelectedDates property instead of the SelectedDate property.
SelectedDates provides a collection of all the selected dates, which you can examine, as shown here:

protected void Calendari SelectionChanged(object sender, EventArgs e)

1blDates.Text = "You selected these dates:
";
foreach (DateTime dt in Calendari.SelectedDates)

1blDates.Text += dt.ToLongDateString() + "
";

180

CHAPTER 4 = SERVER CONTROLS

The Calendar control exposes many more formatting-related properties, many of which map to the
underlying HTML table representation (such as CellSpacing, CellPadding, Caption, and CaptionAlign).
Additionally, you can individually tweak portions of the controls through grouped formatting settings
called styles (which expose color, font, and alignment options). Example properties include
DayHeaderStyle, DayStyle, NextPrevStyle, OtherMonthDayStyle, SelectedDayStyle, TitleStyle,
TodayDayStyle, and WeekendDayStyle. You can change the subproperties for all of these styles using the
Properties window.

Finally, by handling the DayRender event, you can completely change the appearance of the cell
being rendered. The DayRender event is extremely powerful. Besides allowing you to tailor what dates
are selectable, it also allows you to configure the cell where the date is located through the e.Cell
property. (The Calendar control is really a sophisticated HTML table.) For example, you could highlight
an important date or even add extra controls or HTML content in the cell. Here’s an example that
changes the background and foreground colors of the weekend days and also makes them nonclickable
so that the user can’t choose those days:

protected void Calendari DayRender(object sender, DayRenderEventArgs e)
if (e.Day.IsWeekend)
e.Cell.BackColor = System.Drawing.Color.CGreen;

e.Cell.ForeColor = System.Drawing.Color.Yellow;
e.Day.IsSelectable = false;

Figure 4-16 shows the result.

181

182

CHAPTER 4 " SERVER CONTROLS

@ Untitled Page - Windows Internet Explorer @E@
@) 7 £ | http://localhost:50616/Chapter04/CalendarTest.aspx v | 5 | X l
W 4 | @ Untitled Page || v v [Page v
< September 2008 >

=>> Su Mo Tu We Th Fr Sa

= Ta020p Bogod 56
=% 7 8 9 10 11 312 13

You selected these dates:
Sunday, September 14, 2008
Monday, September 15, 2008
Tuesday, September 16, 2008
Wednesday, September 17, 2008
Thursday, September 18, 2008
Friday, September 19, 2008
Saturday, September 20, 2008

EE @ Internet | Protected Mode: On #100% ~

&

Figure 4-16. The Calendar control

Tip If you're using a design tool such as Visual Studio, you can even set an entire related color scheme using
the built-in designer. Simply select the Auto Format link in the smart tag. You'll be presented with a list of

predefined formats that set various style properties.

Summary

In this chapter you learned the basics of the core server controls included with ASP.NET, such as HTML
server controls, web controls, list controls, validation controls, and rich controls. You also learned how
to use ASP.NET controls from your web-page code, access their properties, and handle their server-side
events. Finally, you learned how to validate potentially problematic user input with the validation
controls. In the next chapter, you'll learn how pages come together to form web applications.

CHAPTER 5

ASP.NET Applications

In traditional desktop programming, an application is an executable file with related support files. For
example, a typical Windows application consists of a main executable file (EXE), supporting components
(typically DLLs), and other resources such as databases and configuration files. An ASP.NET application
follows a much different model.

On the most fundamental level, an ASP.NET application is a combination of files, pages, handlers,
modules, and executable code that can be invoked from a virtual directory (and its subdirectories) on a
web server. In this chapter, you'll learn why this distinction exists and take a closer look at how an
ASP.NET application is configured and deployed. You'll also learn how to use components, HTTP
handlers, and HTTP modules with an ASP.NET application.

Anatomy of an ASP.NET Application

The difference between ASP.NET applications and rich client applications makes a lot of sense when you
consider the ASP.NET execution model. Unlike a Windows application, the end user never runs an
ASP.NET application directly. Instead, a user launches a browser such as Internet Explorer and requests
a specific URL (such as http://www.mysite.com/mypage.aspx) over HTTP. This request is received by a
web server. When you're debugging the application in Visual Studio, you can use a local-only test server.
When you deploy the application, you use the IIS web server, as described in Chapter 18.

The web server has no concept of separate applications—it simply passes the request to the
ASP.NET worker process. However, the ASP.NET worker process carefully segregates code execution into
different application domains based on the virtual directory. Web pages that are hosted in the same
virtual directory (or one of its subdirectories) execute in the same application domain. Web pages in
different virtual directories execute in separate application domains.

Note A virtual directory is simply a directory that’s exposed through a web server. In Chapter 18, you’ll learn
how to create virtual directories. When using the test server in Visual Studio, your web project directory is treated
like a virtual directory. The only exception is that the test server supports only local connections (requests initiated
from the current computer).

183

http://www.mysite.com/mypage.aspx

184

CHAPTER 5 ' ASP.NET APPLICATIONS

The Application Domain

An application domain is a boundary enforced by the CLR that ensures that one application can’t
influence (or see the in-memory data) of another. The following characteristics are a direct result of the
application domain model:

All the web pages in a single web application share the same in-memory resources, such as global
application data, per-user session data, and cached data. This information isn’t directly accessible
to other ASP.NET or ASP applications.

All the web pages in a single web application share the same core configuration settings. However,
you can customize some configuration settings in individual subdirectories of the same virtual
directory. For example, you can set only one authentication mechanism for a web application, no
matter how many subdirectories it has. However, you can set different authorization rules in each
directory to fine-tune who is allowed to access different groups of pages.

All web applications raise global application events at various stages (when the application domain
is first created, when it’s destroyed, and so on). You can attach event handlers that react to these
global application events using code in the global.asax file in your application’s virtual directory.

In other words, the virtual directory is the basic grouping structure that delimits an ASP.NET
application. You can create a legitimate ASP.NET application with a single web form (.aspx file).
However, ASP.NET applications can include all of the following ingredients:

* Web forms (.aspx files): These are the cornerstones of any ASP.NET application.

* Master pages (.master files): These are templates that you can create and then use
to build multiple web forms with the same structure. Chapter 16 describes master
pages in detail.

* Web services (.asmx files): These allow you to share useful functions with
applications on other computers and other platforms.

Note Web services have largely been replaced by WCF (Windows Communication Foundation) services, which
support all the same protocols and more. You can host WCF services on an IIS web server as part of an ASP.NET
web application. To learn more, refer to a dedicated book about WCF, such as the excellent Programming WCF
Services, by Juval Lowy (O'Reilly Media, 2008). You'll use WCF web services with Silverlight in Chapter 34.

* Code-behind files: Depending on the code model you're using, you may also have
separate source code files. If these files are coded in C#, they have the extension .cs.

* A configuration file (web.config): This file contains a slew of application-level
settings that configure everything from security to debugging and state
management.

* global.asax: This file contains event handlers that react to global application
events (such as when the application is first being started).

* Other components: These are compiled assemblies that contain separate
components you've developed or third-party components with useful
functionality. Components allow you to separate business and data access logic
and create custom controls.

CHAPTER 5 " ASP.NET APPLICATIONS

Of course, a virtual directory can hold a great deal of additional resources that ASP.NET web
applications will use, including stylesheets, images, XML files, and so on. In addition, you can extend the
ASP.NET model by developing specialized components known as HTTP handlers and HTTP modules,
which can plug into your application and take part in the processing of ASP.NET web requests.

Note It's possible to have file types that are owned by different handlers in the same virtual directory. One
example is if you mingle .aspx and .asp files. A more complex example is if you configure ASP.NET 4 to process
requests for.aspx files and configure ASP.NET 3.5 to process requests for another extension of your own devising
(like .aspx35). You’ll learn more about the configuration settings that map file types in the “Extending the HTTP
Pipeline” section in this chapter, and you’ll learn more about how the IIS web server implements this feature in
Chapter 18.

Application Lifetime

ASP.NET uses a lazy initialization technique for creating application domains. This means that the
application domain for a web application is created the first time a request is received for a page in that
application.

An application domain can shut down for a variety of reasons, including if the web server itself shuts
down. But, more commonly, applications restart themselves in new application domains in response to
error conditions or configuration changes.

ASP.NET automatically recycles application domains when you change the application. One
example is if you modify the web.config file. Another example is if you replace an existing web-page file
or DLL assembly file. In both of these cases, ASP.NET starts a new application domain to handle all
future requests and keeps the existing application domain alive long enough to finish handling any
outstanding requests (including queued requests).

Application Domains vs. Application Pools

Although you won’t get a formal introduction to IIS until Chapter 18, it’s worth clearing up one point of
possible confusion. In IS, you configure the way web applications behave through application pools. Your
application pool settings determine what version of .NET your application gets, how long it can remain idle
before shutting down, whether it should restart itself automatically when facing certain errors, and so on.
The application pool concept is similar to application domains, but slightly broader.

The difference is as follows. Each IIS application pool can configure one or more web applications. While
running, each of these web applications typically consists of a single application domain. Technically,
application pools are an IIS configuration feature, while application domains are a part of the .NET
infrastructure.

185

186

CHAPTER 5 ' ASP.NET APPLICATIONS

Application Updates

One of the most remarkable features about the ASP.NET execution model is that you can update your
web application without needing to restart the web server and without worrying about harming existing
clients. This means you can add, replace, or delete files in the virtual directory at any time. ASP.NET then
performs the same transition to a new application domain that it performs when you modify the
web.config configuration file.

Being able to update any part of an application at any time without interrupting existing requests is
a powerful feature. However, it’s important to understand the architecture that makes it possible. Many
developers make the mistake of assuming that it’s a feature of the CLR that allows ASP.NET to seamlessly
transition to a new application domain. But in reality, the CLR always locks assembly files when it
executes them. To get around this limitation, ASP.NET doesn’t actually use the ASP.NET files in the
virtual directory. Instead, it uses another technique, called shadow copy, during the compilation process
to create a copy of your files in c:\Windows\Microsoft. NET\Framework\ [Version]\Temporary ASP.NET
Files. The ASP.NET worker process loads the assemblies from this directory, which means these
assemblies are locked.

The second part of the story is ASP.NET’s ability to detect when you change the original files. This
detail is fairly straightforward—it simply relies on the ability of the Windows operating system to track
directories and files and send immediate change notifications. ASP.NET maintains an active list of all
assemblies loaded within a particular application’s application domain and uses monitoring code to
watch for changes and acts accordingly.

Note ASP.NET can use files that are stored in the GAC (global assembly cache), a computer-wide repository of
assemblies that includes staples such as the assemblies for the entire .NET Framework class library. You can also
put your own assemblies into the GAC, but web applications are usually simpler to deploy and more
straightforward to manage if you don’t.

Application Directory Structure

Every web application should have a well-planned directory structure. Independently from the directory
structure you design, ASP.NET defines a few directories with special meanings, as described in Table 5-1.

Table 5-1. Special ASP.NET Directories

Directory Description

Bin This directory contains all the precompiled .NET assemblies (usually DLLs)
that the ASP.NET web application uses. These assemblies can include
precompiled web-page classes, as well as other assemblies referenced by
these classes. (If you're using the project model to develop your web
application in Visual Studio, rather than the more common website model,
the Bin directory will also contain an assembly that has the compiled code
for your entire web application. This assembly is named after your
application, as in WebApplicationl.dll. To learn more about the difference
between project and projectless development, refer to Chapter 2.)

CHAPTER 5 " ASP.NET APPLICATIONS

Directory Description

App_Code This directory contains source code files that are dynamically compiled for
use in your application. These code files are usually separate components,
such as alogging component or a data access library. The compiled code
never appears in the Bin directory, as ASP.NET places it in the temporary
directories used for dynamic compilation. (If you're using the project model
to develop your web application in Visual Studio, rather than the more
common website model, you don’t need to use the App_Code directory.
Instead, all the code files in your project are automatically compiled into the
assembly for your web application alongside your web pages.)

App_GlobalResources This directory stores global resources that are accessible to every page in the
web application.

App_LocalResources This directory serves the same purpose as App_GlobalResources, except
these resources are accessible for their dedicated page only.

App_WebReferences This directory stores references to web services that the web application
uses. This includes WSDL files and discovery documents.

App_Data This directory is reserved for data storage, including SQL Server Express
database files and XML files. Of course, you're free to store data files in other
directories.

App_Browsers This directory contains browser definitions stored in XML files. These XML

files define the capabilities of client-side browsers for different rendering
actions. Although ASP.NET does this globally (across the entire computer),
the App_Browsers folder allows you to configure this behavior for separate
web applications. See Chapter 27 for more information about how ASP.NET
determines different browsers.

App_Themes This directory stores the themes used by the web application. You'll learn
more about themes in Chapter 16.

The global.asax Application File

The global.asax file allows you to write event handlers that react to global events. Users cannot request
the global.asax file directly. Instead, the global.asax file executes its code automatically in response to
certain application events. The global.asax file provides a similar service to the global.asa file in classic
ASP applications.

You write the code in a global.asax file in a similar way to a web form. The difference is that the
global.asax doesn’t contain any HTML or ASP.NET tags. Instead, it contains methods with specific,
predefined names. For example, the following global.asax file reacts to the HttpApplication.EndRequest
event, which happens just before the page is sent to the user:

<%@ Application Language="C#" %>

<script language="C#" runat="server">
protected void Application_OnEndRequest()

187

188

CHAPTER 5 ' ASP.NET APPLICATIONS

{
Response.Write("<hr />This page was served at " +
DateTime.Now.ToString());
}
</script>

Although it’s not indicated in the global.asax file, every global.asax file defines the methods for a
single class—the application class. The application class derives from HttpApplication, and as a result
your code has access to all its public and protected members. This example uses the Response object,
which is provided as a built-in property of the HttpApplication class, just like it’s a built-in property of
the Page class.

In the preceding example, the Application_OnEndRequest() event handler writes a footer at the
bottom of the page with the date and time that the page was created. Because it reacts to the
HttpApplication.EndRequest event, this method executes every time a page is requested, after all the
event-handling code in that page has finished.

As with web forms, you can also separate the content of the global.asax file into two files, one that
declares the file and another that contains the code. However, because there’s no design surface for
global.asax files, the division isn’t required. Visual Studio doesn’t give you the option to create a
global.asax file with a separate code-behind class.

Note If you've created your web application as a web project, Visual Studio will use the code-behind approach
and create both a global.asax file (which will be nearly empty) and a linked global.asax.cs (which contains the
global application class that holds the event handlers). The end result is the same. For more information about the
different between project-based and projectless development in Visual Studio, refer to Chapter 2.

The global.asax file is optional, but a web application can have no more than one global.asax file,
and it must reside in the root directory of the application, not in a subdirectory. To add a global.asax file
to a project, select Website » Add New Item (or Project » Add New Item if you're using the Visual Studio
web project model) and choose the Global Application Class template. (This option doesn’t appear if you
already have a global.asax file in your project.) When Visual Studio adds a global.asax file, it includes
empty event handlers for the most commonly used application events. You simply need to insert your
code in the appropriate method.

It’s worth noting that the application event handlers in the global.asax file aren’t attached in the
same way as the event handlers for ordinary control events. The usual way to attach an application event
handler is just to use the recognized method name. For example, if you create a protected method
named Application_OnEndRequest(), ASP.NET automatically calls this method when the
HttpApplication.EndRequest event occurs. (This is really just a matter of convention. You can choose to
attach an event handler to the HttpApplication.EndRequest event instead of supplying an
Application_OnEndRequest() method. In fact, later in this chapter you’ll see how HTTP modules handle
application events using this technique.)

ASP.NET creates a pool of application objects when your application domain is first loaded and uses
one to serve each request. This pool varies in size depending on the system and the number of available
threads, but it typically ranges from 1 to 100 instances. Each request gets exclusive access to one of these
application objects, and when the request ends, the object is reused. As different stages in application
processing occur, ASP.NET calls the corresponding method, which triggers your code. Of course, if your
methods have the wrong name, your implementation won’t get called—instead, your code will simply
be ignored.

CHAPTER 5 " ASP.NET APPLICATIONS

Note The global application class that’s used by the global.asax file should always be stateless. That’s because
application objects are reused for different requests as they become available. If you set a value in a member
variable in one request, it might reappear in another request. However, there’s no way to control how this happens
or which request gets which instance of the application object. To circumvent this issue, don’t use member
variables unless they’re static (as discussed in Chapter 6).

Application Events

You can handle two types of events in the global.asax file:

Events that always occur for every request. These include request-related and
response-related events.

Events that occur only under certain conditions.

The required events unfold in this order:

1.

Application_BeginRequest(): This method is called at the start of every
request.

Application_AuthenticateRequest(): This method is called just before
authentication is performed. This is a jumping-off point for creating your own
authentication logic.

Application_AuthorizeRequest(): After the user is authenticated (identified),
it’s time to determine the user’s permissions. You can use this method to
assign special privileges.

Application_ResolveRequestCache(): This method is commonly used in
conjunction with output caching. With output caching (described in Chapter
11), the rendered HTML of a web form is reused, without executing any of your
code. However, this event handler still runs.

At this point, the request is handed off to the appropriate handler. For
example, for a web form request, this is the point when the page is compiled (if
necessary) and instantiated.

Application_AcquireRequestState(): This method is called just before session-
specific information is retrieved for the client and used to populate the Session
collection. (Session state is covered in Chapter 6.)

Application_PreRequestHandlerExecute(): This method is called before the
appropriate HTTP handler executes the request.

At this point, the appropriate handler executes the request. For example, if it’s
a web form request, the event-handling code for the page is executed, and the
page is rendered to HTML.

Application_PostRequestHandlerExecute(): This method is called just after
the request is handled.

189

CHAPTER 5 ' ASP.NET APPLICATIONS

10. Application_ReleaseRequestState(): This method is called when the session-
specific information is about to be serialized from the Session collection so
that it’s available for the next request.

11. Application_UpdateRequestCache(): This method is called just before
information is added to the output cache. For example, if you’ve enabled
output caching for a web page, ASP.NET will insert the rendered HTML for the
page into the cache at this point.

12. Application_EndRequest(): This method is called at the end of the request,
just before the objects are released and reclaimed. It’s a suitable point for
cleanup code.

Figure 5-1 shows the process of handling a single request.

BeginRequest EndRequest

| AuthenticateRequest |

| Author\izeRequest |

ResolveRequestCache		UpdateRequestCache
AcquireRequestState		ReleaseRequestState
PreRequestHandlerExecute		PostRequestHandlerExecute

ASP.NET

Internet Information Services

Figure 5-1. The application events

Some events don’t fire with every request:

Application_Start(): This method is invoked when the application first starts up and the application
domain is created. This event handler is a useful place to provide application-wide initialization
code. For example, at this point you might load and cache data that will not change throughout the
lifetime of an application, such as navigation trees, static product catalogs, and so on.

Session_Start(): This method is invoked each time a new session begins. This is often used to
initialize user-specific information. Chapter 6 discusses sessions with state management.

Application_Error(): This method is invoked whenever an unhandled exception occurs in the
application.

190

CHAPTER 5 " ASP.NET APPLICATIONS

Session_End(): This method is invoked whenever the user’s session ends. A session ends when your
code explicitly releases it or when it times out after there have been no more requests received
within a given timeout period (typically 20 minutes). This method is typically used to clean up any
related data. However, this method is only called if you are using in-process session state storage
(the InProc mode, not the StateServer or SQLServer modes).

Application_End(): This method is invoked just before an application ends. The end of an
application can occur because IIS is being restarted or because the application is transitioning to a
new application domain in response to updated files or the process recycling settings.

Application_Disposed(): This method is invoked some time after the application has been shut
down and the .NET garbage collector is about to reclaim the memory it occupies. This point is too
late to perform critical cleanup, but you can use it as a last-ditch failsafe to verify that critical
resources are released.

Application events are commonly used to perform application initialization, cleanup, usage logging,
profiling, and troubleshooting. However, don’t assume that your application will need to use global
application events. Many ASP.NET applications don’t use the global.asax file at all.

Tip The global.asax file isn’t the only place where you can respond to global web application events. You can
also create custom modules that participate in the processing of web requests, as discussed later in this chapter
in the section “Extending the HTTP Pipeline.”

Demonstrating Application Events

The following web application uses a global.asax file that responds to the HttpApplication.Error event. It
intercepts the error and displays some information about it in a predefined format.

<script language="C#" runat="server">
protected void Application Error(Object sender, EventArgs e)

{
Response.Write("");
Response.Write("Oops! Looks like an error occurred!!<hr />");
Response.Write(Server.GetlastError().Message.ToString());
Response.Write("<hr />" + Server.GetlLastError().ToString());
Server.ClearError();

}

</script>

To test this application event handler, you need to create another web page that causes an error.
Here’s an example that generates an error by attempting to divide by zero when a page loads:

protected void Page Load(object sender, EventArgs e)

{
int 1 = 0;
int j = 1;
int k = j/i;
}

191

192

CHAPTER 5 ' ASP.NET APPLICATIONS

If you request this page, you'll see the display shown in Figure 5-2.

% | http://localhost/Chapter06/DivideByZero.aspx - Microsoft Internet Explorer

A »
File Edit Vew Favorites Tools Help € > \ﬂ ‘ﬂ o - Search Favorites ,','
Address Ej http: fflocalhost{Chapter06/DivideByZero, aspx e’

Oops! Looks like an error occurred!!
Exception of type System.Web. HttpUnhandledException was thrown.

System.Web. HttpUnhandledException: Exception of type System.Web. HttpUnhandledException was thrown. --->
System.DivideByZeroException: Attempted to divide by zero. at Chapter06.DivideByZero.Page_Load{Object
sender, EventArgs e) in c:\codel\proasp.netichapterdB\dividebyzero.aspi.cs:line 23 at
System.Web.Ul.Control.OnLoad(EventArgs e) at System.Web.Ul.Control. LoadRecursive() at
System.Web.Ul.Page. ProcessRequestMain() --- End of inner exception stack trace --- at
System.Web.Ul.Page.HandleError(Exception e) at System.Web.Ul.Page. ProcessRequestMain{) at
System.Web.Ul.Page. ProcessRequest() at System.Web.Ul.Page.ProcessRequest(HttpContext context) at
System.Web. CallHandlerExecutionStep. System.Web. HttpApplication+lExecutionStep. Execute() at
System.Web. HitpApplication. ExecuteStep(IExecutionStep step, Boolean& completedSynchronously)

&] Dane % Local intranet

Figure 5-2. Catching an unhandled error

Note This technique only works when you’re running your web application with IIS. When using the built-in web
server, you'll get an ASP.NET error page instead.

Typically, you wouldn’t use the Application_Error() method to control the appearance of a web
page, because it doesn’t give you enough flexibility to deal with different types of errors (without coding
painstaking conditional logic). Instead, you would probably configure custom error pages using IIS.
However, Application_Error() might be extremely useful if you want to log an error for future reference
or even send an e-mail about it to a system administrator. In fact, in many events you'll need to use
techniques such as these because the Response object won’t be available. Two examples include the
Application_Start() and Application_End() methods.

ASP.NET Configuration

Configuration in ASP.NET is managed with XML configuration files. All the information needed to
configure an ASP.NET application’s core settings, as well as the custom settings specific to your own
application, is stored in these configuration files.

The ASP.NET configuration files have several advantages over traditional ASP configuration:

They are never locked: As described in the beginning of this chapter, you can update configuration
settings at any point, and ASP.NET will smoothly transition to a new application domain.

CHAPTER 5 " ASP.NET APPLICATIONS

They are easily accessed and replicated: Provided you have the appropriate network rights, you can
modify a configuration file from a remote computer (or even replace it by uploading a new version
via FTP). You can also copy a configuration file and use it to apply identical settings to another
application or another web server that runs the same application in a web farm scenario.

They are easy to edit and understand: The settings in the configuration files are human-readable,
which means they can be edited and understood without needing a special configuration tool.

The machine.config File

The configuration starts with a file named machine.config that resides in a directory like
c:\Windows\Microsoft. NET\Framework\ [Version]\Config. The machine.config file defines supported
configuration file sections, configures the ASP.NET worker process, and registers providers that can be
used for advanced features such as profiles, membership, and role-based security.

Compared with ASP.NET 1.x, the machine.config file in later versions of ASP.NET has been
streamlined dramatically. To optimize the initialization process, many of the default settings that used
to be in the machine.config file are now initialized programmatically. However, you can still look at the
relevant settings by opening the new machine.config.comments file (which you can find in the same
directory). It contains the full text for the standard settings along with descriptive comments (this is
similar to the machine.config file in ASP.NET 1.x). Using the machine.config.comments file, you can
learn about the default settings, and then you can add settings that override these values to
machine.config.

Along with the machine.config file, ASP.NET uses a root web.config file (in the same directory) that
contains additional settings. The settings register ASP.NET’s core HTTP handlers and modules, set up
rules for browser support, and define security policy.

All the web applications on the computer inherit the settings in these two files. However, most of the
settings are essentially plumbing features that you never need to touch. Many of the settings don’t apply
when your application is deployed to an IIS web server, because they’'ve been replaced by similar
settings in IIS (which has its own configuration file, named ApplicationHost.config). The following
section describes one exception—an important piece of information that still resides in the
machine.config file.

<machineKey>

The <machineKey> section allows you to set the server-specific key used for encrypting data and
creating digital signatures. You can use encryption in conjunction with several ASP.NET features.
ASP.NET uses it automatically to protect the forms authentication cookie, and you can also apply it to
protected view state data (as described in Chapter 6). The key is also used for authentication with out-of-
process session state providers.

Ordinarily, the <machineKey> element takes this form:

<machineKey validationKey="AutoGenerate,IsolateApps"
decryptionKey="AutoGenerate,IsolateApps" validation="SHA1" />

The AutoGenerate,IsolateApps value indicates that ASP.NET will create and store machine-specific,
application-specific keys. In other words, each application uses a distinct, automatically generated key.
This prevents potential cross-site attacks.

If you don’t need application-specific keys, you can choose to use a single key for all applications on
the current computer, like so:

<machineKey validationKey="AutoGenerate"
decryptionKey="AutoGenerate" validation="SHA1" />

193

194

CHAPTER 5 ' ASP.NET APPLICATIONS

If you're using a web farm and running the same application on multiple computers, both of these
approaches raise a problem. If you request a page and it’s handled by one server, and then you post back
the page and it’s handled by another server, the second server won’t be able to decrypt the view state
and the forms cookie from the first server. This problem occurs because the two web servers use
different keys.

To resolve this problem, you need to define the key explicitly in the machine.config file. Here’s an
example of a <machineKey> element with the two key attributes defined:

<machineKey
validationKey="61EA54E005915332011232149A2EEB317586824B265326CCDB3AD9ABDBEID

6F24B0625547769E835539AD3882D3DA88896EA531CC7AFE664866BD5242FC2B05D"
decryptionKey="61EA54E005915332011232149A2EEB317586824B265337AF"

validation="SHA1" />

Tip You can also hard-code application-specific keys by adding a hard-coded <machineKey> in the web.config
file that you place in the application virtual directory. You’ll need this approach if you’re in a situation that
combines the two scenarios described previously. (For example, you’ll need this approach if you’re running your
application on multiple servers and these servers host multiple web applications that need individual keys.)

The validationKey value can be from 40 to 128 characters long. It is strongly recommended that you
use the maximum length key available. The decryptionKey value can be either 16 or 48 characters long. If
16 characters are defined, standard DES (Data Encryption Standard) encryption is used. If 48 characters
are defined, Triple DES (or 3DES) will be used. (This means DES is applied three times consecutively.)
3DES is much more difficult to break than DES, so it is recommended that you always use 48 characters
for the decryptionKey. If the length of either of the keys is outside the allowed values, ASP.NET will
return a page with an error message when requests are made to the application.

It doesn’t make much sense to create the validation and decryption keys on your own. If you do,
they're not likely to be sufficiently random, which makes them more subject to certain types of attacks. A
better approach is to generate a strong random key using code and the .NET Framework cryptography
classes (from the System.Security.Cryptography namespace).

The following is a generic code routine called CreateMachineKey() that creates a random series of
bytes using a cryptographically strong random number generator. The CreateMachineKey() method
accepts a single parameter that specifies the number of characters to use. The result is returned in
hexadecimal format, which is required for the machine.config file.

public static string CreateMachineKey(int length)

{
// Create a byte array.

byte[] random = new byte[length/2];

// Create a cryptographically strong random number generator.
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

// Fill the byte array with random bytes.
rng.GetBytes(random);

// Create a StringBuilder to hold the result once it is
// converted to hexadecimal format.

CHAPTER 5 " ASP.NET APPLICATIONS

System.Text.StringBuilder machineKey = new
System.Text.StringBuilder(length);

// Loop through the random byte array and append each value
// to the StringBuilder.
for (int i = 0; i < random.Length; i++)

{
machineKey.Append(String.Format("{0:X2}", random[i]));

return machineKey.ToString();
You can use this function in a web form to create the keys you need. For example, the following
snippet of code creates a 48-character decryption key and a 128-character validation key, and it displays

the values in two separate text boxes:

txtDecryptionKey.Text = CreateMachineKey(48);
txtValidationKey.Text = CreateMachineKey(128);

You can then copy the information and paste it into the machine.config file for each computer in
the web farm. This is a much more convenient and secure approach than creating keys by hand. You’ll
learn much more about the cryptography classes in the System.Security.Cryptography namespace
described in Chapter 25.

Along with the validationKey and decryptionKey attributes described so far, you can also choose the
algorithm that’s used to create the view state hash code. The SHA1 algorithm is recommended for the
best encryption strength, but you can alternately choose MD5 (Message Digest 5, which offers better
performance), AES (Rijndael), or 3DES (TripleDES). In addition, you can add the validation attribute to
specify what encryption method is used for the login ticket that’s used with forms authentication.
(Forms authentication is discussed in Chapter 20). Valid values are AES, DES, 3DES, and Auto (the
default, which varies based on the form authentication settings you’re using).

Tip The lIS Manager tool also allows you to change the machine key settings. To use this feature, you simply
select the web server computer in the website tree and double-click the Machine Key icon. You can even create
new, random validation and decryption keys at this point by clicking Generate Keys in the Actions column on the
far right of the IIS Manager window.

The web.config File

Every web application inherits the settings from the machine.config file and the root web.config file. In
addition, you can apply settings to individual web applications. For example, you might want to set a
specific method for authentication, a type of debugging, a default language, or custom error pages. To
do so, you supply a web.config file in the root virtual directory of your web application. To further
configure individual subdirectories in your web application, you can place additional web.config files in
these folders.

It’s important to understand that the web.config file in a web application can’t override all the
settings in the machine.config file. Certain settings, such as the process model settings, can’t be changed
on a per-application basis. Other settings are application-specific. That means you can set them in the

195

196

CHAPTER 5 ' ASP.NET APPLICATIONS

web.config file that’s in the root virtual directory of your website, but you can’t set them using a
web.config file that’s in a subdirectory.

The entire content of an ASP.NET configuration file is nested in a root <configuration> element.
This element contains a <system.web> element, which is used for ASP.NET settings. Inside the
<system.web> element are separate elements for each aspect of configuration. Along with <system.web>
are the <appSettings> element%, which you can use to store custom settings, and the
<connectionStrings> element, which you can use to store connection strings to databases that you use
or that other ASP.NET features rely on.

Here is the absolute simplest web.config file, which is what you get when you create a blank
ASP.NET website in Visual Studio:

<?xml version="1.0"?>
<configuration>
<system.web>
<compilation debug="true" targetFramework="4.0" />
</system.web>

</configuration>

Note Like all XML documents, the web.config file is case-sensitive. Every setting uses camel case and starts
with a lowercase letter. That means you cannot write <System.Web> instead of <system.web>.

The <system.web> section is the heart of ASP.NET configuration. Inside it are all the elements that
configure ASP.NET features. Most ASP.NET applications also use the <appSettings> section to store
miscellaneous configuration details that are application-specific, and the <connectionStrings> section
to store connection strings for contacting a database. You can also use the <system.webServer> section
to extend the ASP.NET pipeline with additional HTTP handlers and HTTP modules. Here’s the basic
skeletal structure of the web.config file with these details:

<?xml version="1.0"?>
<configuration>
<appSettings />
<connectionStrings />
<system.web>
<!-- ASP.NET configuration sections go here. -->
</system.web>
<system.webServer />

</configuration>

Note The configuration file for ASP.NET 3.5 applications was noticeably more convoluted, due to the way that
ASP.NET 3.5 was released. Essentially, ASP.NET 3.5 fused together the core ASP.NET 2.0 model, with version 2.0
of the CLR, and a set of extensions. As a result, each application used the web.config file to opt into new features.
However, ASP.NET 4 doesn’t use this approach, and ASP.NET applications have simpler, more streamlined
content. The additional settings have been moved into the machine.config and root web.config files, where they
belong.

CHAPTER 5 " ASP.NET APPLICATIONS

Configuration Inheritance

ASP.NET uses a multilayered configuration system that allows you to use different settings for different
parts of your application. To use this technique, you need to create additional subdirectories inside your
virtual directory. These subdirectories can contain their own web.config files with additional settings.
ASP.NET uses configuration inheritance so that each subdirectory acquires the settings from the parent
directory.

For example, consider the web request http://localhost/A/B/C/MyPage.aspx, where A is the root
directory for the web application. In this case, multiple levels of settings come into play:

1. The default machine.config settings are applied first.

2. The web.config settings from the computer root are applied next. This
web.config file is in the same Config directory as the machine.config file.

3. Ifthere is a web.config file in the application root A, these settings are applied
next.

4. If there is a web.config file in the subdirectory B, these settings are applied
next.

5. If there is a web.config file in the subdirectory C, these settings are applied last.

In this sequence (shown in Figure 5-3), it’s important to note that although you can have an
unlimited number of subdirectories, the settings applied in step 1 and step 2 have special significance.
That’s because certain settings can be applied only at the machine.configlevel (such as the Windows
account used to execute code), and other settings can be applied only at the application root level (such
as the type of authentication your web application uses).

CONFIG

Machine.config Web.config

Web.config

Web.config

Figure 5-3. Configuration inheritance

197

http://localhost/A/B/C/MyPage.aspx

198

CHAPTER 5 ' ASP.NET APPLICATIONS

In this way, subdirectories can specify just a small set of settings that differ from the rest of the web
application. One reason you might want to use multiple directories in an application is to apply different
security settings. Files that need to be secured would then be placed in a special directory with a
web.config file that defines more stringent security settings than the root virtual directory.

If settings conflict, the settings from a web.config in a nested directory always override the settings
inherited from the parent. However, one exception exists. You can designate specific locked sections
that can’t be changed. The next section describes this technique.

Note If you're developing a web project (as opposed to a projectless website), your project will also include the
files web.Debug.config and web.Release.config. These files are designed to change between the settings you use
when testing a web application and those you need when deploying it in a production environment. However, they
have no effect when you run your application in Visual Studio—in fact, Visual Studio ignores them completely.
Instead, they are only used when you build a deployment package, as described in Chapter 18.

Using <location> Elements

The <location> element is an extension that allows you to specify more than one group of settings in the
same configuration file. You use the path attribute of the <location> element to specific the subdirectory
or file to which the settings should be applied.

For example, the following web.config file uses the <location> element to create two groups of
settings—one for the current directory and one that applies only to files in the subdirectory named
Secure:

<configuration>

<system.web>
<!-- Basic configuration settings go here. -->

</system.web>

<location path="/Secure">
<system.web>
<!-- Configuration settings for the Secure subdirectory go here. -->
</system.web>
</location>

</configuration>

This web.config file essentially plays the role of two configuration files. It has the same result as if
you had split the settings into two separate web.config files and placed one in the Secure subdirectory.

There’s no limit to how many different location elements you can use in a single configuration file.
However, the <location> element isn’t used often, because it’s usually easier to manage and update
configuration settings when they are separated into distinct files. But there is one scenario where the
<location> element gives you functionality you can’t get any other way. This occurs when you want to
lock specific settings so they can’t be overridden.

To understand how this technique works, consider the next example. It defines two groups of
settings and sets the allowOverride attribute of the <location> tag to false on one group, as shown here:

<configuration>

<system.web>
<!-- Unprotected configuration settings go here. -->

</system.web>

CHAPTER 5 " ASP.NET APPLICATIONS

<location allowOverride="false">
<system.web>
<!-- Locked configuration settings go here. -->
</system.web>
</location>

</configuration>

In this case, you can’t override any of the settings in the <location> section. If you try, ASP.NET will
generate an unhandled exception when you request a page in the web application.

The allowOverride attribute of the <location> element is primarily useful for web hosting companies
that want to make sure certain settings can’t be changed. In this case, the administrator will modify the
machine.config file on the web server and use the <location> element to lock specific sections.

Tip When you lock settings in the machine.config file, you have two choices. First, you can lock the settings for
all applications by omitting the path attribute of the <location> tag. Second, you can lock settings for a specific
application by setting the path attribute to the appropriate web application name.

<system.web>

The <system.web> element contains all the ASP.NET-specific configuration settings. These settings
configure various aspects of your web application and enable services such as security, state
management, and tracing. The schema of the <system.web> section is fixed—in other words, you can’t
change the structure or add your own custom elements here. However, you can include as few or as
many configuration sections as you want.

Table 5-3 lists the basic child elements that the <system.web> element can contain and their
purpose. This list is not complete and is intended only to give you a rough idea of the scope of ASP.NET
configuration. Throughout this book, you'll consider different parts of the web.config file as you learn
about the corresponding features.

Table 5-3. Some Basic Configuration Sections

Element Description

authentication This element configures your authorization system—in other words, it determines
how you will verify a client’s identity when the client requests a page.

authorization This element controls which clients have access to the resources within the web
application or current directory.

compilation This element identifies the version of .NET that your web application is targeting
(through the targetFramework attribute) and whether you want to generate debug
symbols in .pdb files (through the debug attribute), so you can debug your
application with a tool like Visual Studio. The compilation element can also
contain the <assemblies> element, which lists additional assemblies that your web
application uses. These assemblies are then made available to your code (as long as
they can be found in the Bin directory or the GAC).

199

200

CHAPTER 5 ' ASP.NET APPLICATIONS

Element

Description

customErrors

membership

pages

profile

roleManager

sessionState

trace

This element allows you to set specific redirect URLs that should be used when
specific (or default) errors occur. For example, this element could be used to
redirect the user to a friendly replacement for the dreaded 404 (page not found)
error. But although this setting still works with Visual Studio’s built-in test web
server, it’s effectively been replaced by the <httpErrors> section in IIS 7.x.

This element allows you to configure ASP.NET’s membership feature, which
manages user account information and provides a high-level API for security-
related tasks such as user login and password resetting.

This element defines default page settings (most of which you can override with the
Page directive).

This element allows you to configure ASP.NET’s profile feature, which
automatically stores and retrieves user-specific information (usually, profile
settings). Typically, profile data is serialized to a database.

This element allows you to configure ASP.NET’s role-based security feature, which
provides a way to store role information and a high-level API for role-based
authorization.

This element configures the various options for maintaining session state for the
application, such as whether to maintain it at all and where to maintain it (SQL, a
separate Windows service, and so on).

This element configures tracing, an ASP.NET feature that lets you display
diagnostic information in the page (or collect it for viewing separately).

Note The configuration file architecture is a .NET standard, and other types of applications (such as Windows
applications) can also use configuration files. For that reason, the root <configuration> element isn’t tailored to
web application settings. Instead, web application settings are contained inside the dedicated <system.web>

section.

<system.webServer>

This section contains settings that affect to the web server. You use the <handlers> element inside this
section to register custom HTTP handlers. You use the <modules> section to register HTTP modules.
Both tasks are demonstrated later in this chapter.

CHAPTER 5 " ASP.NET APPLICATIONS

<appSettings>

You add custom settings to a web.config file in a special element called <appSettings>. Here’s where the
<appSettings> section fits into the web.config file:

<?xml version="1.0"?>
<configuration>
<appSettings>
<!-- Custom application data goes here. -->
</appSettings>
<system.web>...</system.web>

</configuration>

The custom settings that you add are written as simple string variables. You might want to use a
special web.config setting for several reasons. Often, you’ll want the ability to record hard-coded but
changeable information for connecting to external resources, such as database query strings, file paths,
and web service URLs. Because the configuration file can be modified at any time, this allows you to
update the configuration of an application as its physical deployment characteristics change without
needing to recompile it.

Custom settings are entered using an <add> element that identifies a unique variable name (the
key) and the variable contents (the value). The following example adds two new custom configuration
settings:

<?xml version="1.0" ?>
<configuration>
<appSettings>
<add key="websiteName" value="My New Website"/>
<add key="welcomeMessage" value="Welcome to my new Website, friend!"/>
</appSettings>
<system.web>...</system.web>

</configuration>

Once you've added this information, .NET makes it extremely easy to retrieve it in your web-page
code. You simply need to use the WebConfigurationSettings class from the System.Web.Configuration
namespace. It exposes a static property called AppSettings, which contains a dynamically built
collection of available application settings for the current directory. For example, if the ASP.NET page
class referencing the AppSettings collection is at a location such as
http://localhost/MyApp/MyDirectory/ MySubDirectory, it is possible that the AppSettings collection
contains settings from three different web.config files. The AppSettings collection makes that hierarchy
seamless to the page that’s using it.

To use the WebConfigurationSettings class, it helps to first import the System.Web.Configuration
namespace so you can refer to the class without needing to use the long fully qualified name, as
shown here:

using System.Web.Configuration;
Next, you simply need to retrieve the value by name. The following example fills two labels using the
custom application information:

protected void Page Load(object sender, EventArgs e)

1blSiteName.Text =
WebConfigurationManager.AppSettings["websiteName"];
lblWelcome.Text =

201

http://localhost/MyApp/MyDirectory/MySubDirectory

202

CHAPTER 5 ' ASP.NET APPLICATIONS

WebConfigurationManager.AppSettings["welcomeMessage"];

Figure 5-4 shows the test web page in action.
A Welcome - Microsoft Internet Explorer Q@
File Edit View Favorites Tools Help ¢ > .','
Address -@j http:fflocalhost/Chapter06/Welcome. aspx I |

My New Website

Welcome to my new Website, friend!

&] Done %J Local intranet

Figure 5-4. Retrieving custom application settings

An error won'’t occur if you try to retrieve a value that doesn’t exist. If you suspect this could be a
problem, make sure to test for a null reference before retrieving a value.

Note Values in the <appSettings> element of a configuration file are available to any class in your application
or to any component that your application uses, whether it's a web form class, a business logic class, a data
access class, or something else. In all these cases, you use the ConfigurationSettings class in the same way.

<connectionStrings>

This section allows you to define database connection strings that will be used elsewhere in your
application. Seeing as connection strings need to be reused exactly to support connection pooling and
may need to be modified without recompiling the web application, it makes perfect sense to store them
in the web.config file.

You can add as many connection strings as you want. For each one, you need to specify the
ADO.NET provider name (see Chapter 7 for more information).

Here’s an example that defines a single connection string:

<configuration>
<connectionStrings>
<add name="NorthwindConnection"
connectionString=
"Data Source=localhost;Integrated Security=SSPI;Initial Catalog=Northwind;"
providerName="System.Data.SqlClient" />
</connectionStrings>
<system.web>...</system.web>
</configuration>

CHAPTER 5 " ASP.NET APPLICATIONS

You can retrieve connection strings in your code using the static
WebConfigurationManager.ConnectionStrings property:

string connectionString =
WebConfigurationManager.ConnectionStrings["NorthwindConnection"].Value;

The ConnectionStrings collection includes the connection strings that are defined directly in your
web.config file and any that are defined in higher-level configuration files (namely, the root web.config
file and the machine.config file). That means you’ll automatically get a connection string named
LocalSqlServer that points to a local instance of SQL Server Express (which is the scaled-down version of
SQL Server that’s included with Visual Studio). The connection string looks like this:

Data Source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=
|DataDirectory|aspnetdb.mdf;User Instance=true

The interesting thing about SQL Server Express is that it allows you to connect directly to a database
file in your website. To learn more about SQL Server Express, refer to Chapter 15.

Reading and Writing Configuration Sections Programmatically
As you've already learned, ASP.NET provides the WebConfigurationManager class in the

System.Web.Configuration namespace, which allows you to extract information from a configuration
file at runtime. The WebConfigurationManager provides the members shown in Table 5-4.

Table 5-4. WebConfigurationManager Members

Member Description

AppSettings Provides access to any custom information you've added to the
<appSettings> section of the application configuration file.
Individual settings are provided through a collection that’s indexed
by name.

ConnectionStrings Provides access to data in the <connectionStrings> section of the
configuration file. Individual settings are provided through a
collection that’s indexed by name.

GetSection() Returns an object that wraps the information from a specific section
of the configuration file.

OpenWebConfiguration() Returns an editable Configuration object that provides access to the
configuration information for the specified web application.

OpenMachineConfiguration() Returns an editable Configuration object that provides access to the
configuration information that’s defined for the web server (in the
machine.config file).

The WebConfigurationManager class gives convenient access to two configuration sections: the
<appSettings> section, where you can define custom settings, and the <connectionStrings> section, used
to define how your application connects to the database. You can get this information using the
AppSettings and ConnectionStrings properties.

Using the WebConfigurationManager.GetSection() method, you can retrieve information about any
other configuration section.

203

204

CHAPTER 5 ' ASP.NET APPLICATIONS

However, you'll need to go to a little more work. The trick is that the GetSection() method returns a
different type of object depending on the type of section. For example, if you're retrieving information
from the <authentication> section, you'll receive an AuthenticationSection object, as shown here:

// Search for the <authentication> element inside the <system.web> element.
AuthenticationSection authSection =

(AuthenticationSection)WebConfigurationManager.GetSection("system.web/authentication");

The search is performed using a pathlike syntax. You don’t indicate the root <configuration>
element, because all configuration sections are contained in that element.

Classes for every configuration section are defined in the class library in the
System.Web.Configuration namespace (not the System.Configuration namespace, which includes only
configuration classes that are generic to all .NET applications). All these classes inherit from the
ConfigurationSection class.

Using a ConfigurationSection object allows you to retrieve a good deal of information about the
current state of your application. Here’s an example that displays information about the assemblies that
are currently referenced:

CompilationSection compSection =
(CompilationSection)WebConfigurationManager.GetSection("system.web/compilation”);
foreach (AssemblyInfo assm in compSection.Assemblies)

{
}

Response.Write(assm.Assembly + "<br /");

Note When you retrieve information using the GetSection() method (or the OpenWebConfiguration() method
described next), it reflects the cumulative configuration for the current application. That means settings from the
current web.config file are merged with those defined higher up the configuration hierarchy (for example, in the
root web.config and the machine.config files).

You can also modify most configuration sections programmatically with the
WebConfigurationManager—in fact, ASP.NET relies on this functionality for its administrative web
pages. To use this approach, you need to call the OpenWebConfiguration() method first to get a
Configuration object. You can then use the Configuration.GetSection() method to retrieve exactly the
section you want to change, and the Configuration.Save() method to commit the change. When
modifying a setting, ASP.NET handles the update safely, by using synchronization code to ensure that
multiple clients can’t commit a change simultaneously. As with any configuration change, ASP.NET
creates a new application domain with the new settings, and uses this application domain to handle new
requests while winding down the old application domain.

In your code, you're most likely to change settings in the <appSettings> section or the
<connectionStrings> section. Here’s an example that rewrites the application settings shown earlier so
that it updates one of the settings after reading it:

protected void Page Load(object sender, EventArgs e)

Configuration config =
WebConfigurationManager.OpenWebConfiguration(Request.ApplicationPath);

1blSiteName.Text =

CHAPTER 5 " ASP.NET APPLICATIONS

config.AppSettings.Settings["websiteName"].Value;
lblWelcome.Text =
config.AppSettings.Settings["welcomeMessage"].Value;

config.AppSettings.Settings["welcomeMessage"].Value = "Welcome, again.";
config.Save();

Tip This example reflects the cumulative configuration in the root web application directory, because it uses the
value Request.ApplicationPath when calling the OpenWebConfiguration() method. If you use the name of a
subdirectory, you’ll get the cumulative settings for that folder. If you use the path Request.CurrentExecutionFilePath,
you’ll get cumulative settings for the directory where the current web page is located.

Note that the web.config file is never a good solution for state management. Instead, it makes sense
as a way to occasionally update a setting that, under normal circumstances, almost never changes.
That’s because changing a configuration setting has a significant cost. File access has never been known
for blistering speed, and the required synchronization adds a certain amount of overhead. However, the
real problem is that the cost of creating a new application domain (which happens every time a
configuration setting changes) is significant. The next time you request the page, you'll see the effect—
the request will complete much more slowly while the page is compiled to native machine code, cached,
and loaded. Even worse, information in the Application and Caching collections will be lost, as well as
any information in the Session collection if you're using the in-process session provider (see Chapter 6
for more information). Unfortunately, the new configuration model makes it all too easy to make the
serious mistake of storing frequently changed values in a configuration file.

By default, the Configuration.Save() method persists only those changes you have made since
creating the Configuration object. Settings are stored in the local web.config file, and one is created if
needed. It’s important to realize that if you change an inherited setting (for example, one that’s stored in
the machine.config file), then when you save the changes, you won’t overwrite the existing value in the
configuration file where it’s defined. Instead, the new value will be saved in the local web.config file so
that it overrides the inherited value for the current application only. You can also use the SaveAs()
method to save configuration settings to another file.

When calling Configuration.Save(), you can use an overloaded version of the method that accepts a
value from the ConfigurationSaveMode enumeration. Use Modified to save any value you changed, even
ifit doesn’t differ from the inherited values. Use Full to save everything in the local web.config, which is
useful if you're trying to duplicate configuration settings for testing or deployment. Finally, use Minimal
to save only those changes that differ from the inherited levels—this is the default.

Note In order to successfully use the methods and properties of the WebConfigurationManager, the ASP.NET
worker process needs certain permissions (such as read read access to the web application directory). If you are
using the OpenWebConfiguration() method to change these settings programmatically, the worker process also
requires write access. (The same limitation doesn’t apply to the GetSection() method or the AppSettings and
ConnectionStrings properties.) To protect against problems, you should always wrap your configuration calls in
exception-handling code.

205

206

CHAPTER 5 " ASP.NET APPLICATIONS

The Website Administration Tool (WAT)

You might wonder why the ASP.NET team went to all the trouble of creating a sophisticated tool like the
WebConfigurationManager that performs too poorly to be used in a typical web application. The reason
is because the WebConfigurationManager isn’t really intended to be used in your web pages. Instead, it’s
designed to allow developers to build custom configuration tools that simplify the work of configuring
web applications. ASP.NET even includes a graphical configuration tool that’s entirely based on the
WebConfigurationManager, although you’d never know it unless you dived into the code.

This tool is called the WAT, and it lets you configure various parts of the web.config file using a web-
page interface. To run the WAT to configure the current web application in Visual Studio, select Website
» ASP.NET Configuration (or Project » ASP.NET Configuration if you're using project-based
development). Visual Studio will open an Internet Explorer window (see Figure 5-5), and Internet
Explorer will authenticate you automatically under the current user account.

You can use the WAT to automate the web.config changes you made in the previous example. To try
this, click the Application tab. Using this tab, you can edit or remove application settings (select the
Manage Application Settings link) or create a new setting (click the Create Application Settings link).
Figure 5-6 shows how you can edit an application setting.

i I
& ASP.Net Web Application Administration - Windows Internet Explorer E@I&J

U U ’é http://localhost:59982/asp.netwebadminfiles/default.aspx?applicationPhysicalPa v ’ +4 | X ‘

- - o »
W ‘@ASP.NetWeb Application Administration ‘ l 3 v = v [} Page v) Tools v

How do I use this tool?

J Home H Security ” Application H Provider]

Welcome to the Web Site Administration Tool

Application:/Website
Current User Name:MATTHEWM\MATTHEW

Enables you to set up and edit users, roles, and
access permissions for your site.

e Site is using windows authentication for user
management.

Application Enables you to manage your application's

Configuration configuration settings.

Provider Enables you to specify where and how to store

Configuration administration data used by your Web site.

—v

IDone [# € Internet | Protected Mode: Off #100% ~
-

Figure 5-5. Running the WAT

CHAPTER 5 " ASP.NET APPLICATIONS

- B
& ASP.Net Web Application Administration - Windows Internet Explorer E@Iﬂ

@U v]@ http://locgIhqﬁ%ﬂgsp.netwebadminfrilis{afg(iopfig{ManageAppSettings.as i | 5 | X ’

- — i »
W e ‘@ASP.NetWebApplicationAdministration I I i v o= v = Page v () Tools v

ASP Web Site Administration Tool How do I use this tool? @
[e || sy | el

Use this page to edit, override, or delete application settings
that you do not want to hard-code into your pages. Settings
can be local to your application or can be inherited from a
default site-wide or computer-wide configuration. If a setting is
inherited, you can override it to specify a new value for your

[Apprm;n]

application.
Source Name Value
. My New "
Local websiteName \Website Edit Delete
Local welcomeMessage rlgi%ome, Edit Delete

Existing application settings: 2
Create new application setting

| [# € Internet | Protected Mode: Off #100% ~

\ y,

Figure 5-6. Editing an application setting with the WAT

This is the essential idea behind the WAT. You make your changes using a graphical interface (a web
page), and the WAT generates the settings you need and adds them to the web.config file for your
application behind the scenes. Of course, the WAT has a number of settings for configuring more
complex ASP.NET settings, and you'll see it at work throughout this book.

Extending the Configuration File Structure

Earlier in this chapter, you learned how you can use the <appSettings> element to store custom
information that your application uses. The <appSettings> element has two significant limitations. First,
it doesn’t provide a way to store structured information, such as lists or groups of related settings.
Second, it doesn’t give you the flexibility to deal with different types of data. Instead, the <appSettings>
element is limited to single strings.

Fortunately, ASP.NET uses a modular, highly extensible configuration model that allows you to
extend the structure of the web.config and machine.config configuration files with your own custom
sections. To extend a configuration file, you need to take three basic steps:

207

208

CHAPTER 5 ' ASP.NET APPLICATIONS

1. Determine the information you want to store in the configuration file and how
it will be organized into elements and attributes. Ideally, you’ll have one
element for each conceptually related group of settings. You'll use attributes to
store each piece of information that’s associated with the element.

2. For each new element, create a C# class that encapsulates its information.
When you run your application, ASP.NET will read the information from the
element in the configuration file and use it to create an instance of your class.
You can then read the information from this object whenever you need it.

3. the new section in your configuration file. To do this, you need to use the
<configSections> element. The <configSections> element identifies each new
element and maps it to the associated class.

The easiest way to see how this works is to consider a basic example. The following sections show
you how to create and register a new element in the web.config file.

Creating a Section Class

Imagine you want to store several related settings that, when taken together, tell your application how to
contact a remote object. For example, these settings could indicate a port number, server location, URL,
user authentication information, and so on. Using what you've already learned, you could enter this
information using separate settings in the <appSettings> group. However, there wouldn’t be anything to
indicate what settings are logically related. Not only does that make the settings harder to read and
interpret, it could lead to problems if one setting is updated but the other related settings aren’t.

A better option would be to break free from the limited structure of the <appSettings> section and
wrap the information in a single XML element. Here’s an example that defines a custom <orderService>
element:

<orderService available="true" pollTimeout="00:01:00"
location="tcp://0OrderComputer:8010/0rderService"/>

If you want to use this sort of structure, you need to define a matching class that derives from
System.Configuration.ConfigurationSection. You can place this class in a separate DLL component, or
you can add the source code to the App_Code folder so it will be automatically compiled as part of the
current web application. (Or, if you're creating your web application using a web project, simply add the
source code file to your project and it will be compiled as part of the web application assembly
automatically.)

Note For information about component reuse, see the “.NET Components” section later in this chapter. For now,
you can use the quicker App_Code approach rather than creating a full-fledged, separately compiled component.

The following OrderService class plays that role. It represents a single <orderService> element and
provides access to the three attributes through strongly typed properties:

public class OrderService : ConfigurationSection

[ConfigurationProperty("available"”,
IsRequired = false, DefaultValue = true)]
public bool Available

{

tcp://OrderComputer:8010/OrderService

CHAPTER 5 " ASP.NET APPLICATIONS

get { return (bool)base["available"]; }
set { base["available"] = value; }

[ConfigurationProperty("pollTimeout",
IsRequired = true)]

public TimeSpan PollTimeout

{

get { return (TimeSpan)base["pollTimeout"]; }
set { base["pollTimeout"] = value; }

}

[ConfigurationProperty("location"”,
IsRequired = true)]
public string Location

get { return (string)base["location"]; }
set { base["location"] = value; }

As you can see, each property is mapped to the corresponding attribute name using the
ConfigurationProperty attribute. This part is critically important, because it defines the schema (the
structure) of your custom section. If you add an attribute in your custom section but you don’t include a
matching ConfigurationProperty attribute, ASP.NET will throw an exception when you try to read that
part of the web.config file.

The ConfigurationProperty attribute also gives you the opportunity to decide whether that piece of
information is mandatory and what default value should be used if it isn’t supplied.

In the actual property procedures, the code uses the dictionary of attributes that’s provided by the
base class. You can retrieve the attribute you want from this collection by name.

Registering a Section Class

Once you've created the section class, your coding work is complete. However, you still need to register
your section class in the web.config file so that ASP.NET recognizes your custom settings. If you don’t
perform this step, you'll get an error when you attempt to run the application because ASP.NET will
notice an unrecognized section in the web.config file.

To register your custom section, you simply add a <section> element to the <configSections> section
of the web.config file. You need to indicate the name of the section (using the name attribute) and the
name of the corresponding section class (using the type attribute). Here’s the full web.config file you need:

<configuration>
<configSections>

<section name="orderService" type="OrderService" />
</configSections>

<orderService available="true" pollTimeout="00:01:00"
location="tcp://0rderComputer:8010/0rderService"/>

<system.web>...</system.web>
</configuration>

209

tcp://OrderComputer:8010/OrderService

CHAPTER 5 " ASP.NET APPLICATIONS

The final step is to retrieve the information from your custom section when you need it in your web
page. All you need is the ConfigurationManager.GetSection() method:

OrderService custSection =
(OrderService)ConfigurationManager.GetSection("orderService");

1blInfo.Text += "Retrieved service information...
" +
"Location: " + custSection.Location +
"
Available: " + custSection.Available.ToString() +

"
Timeout: " + custSection.PollTimeout.ToString() + "

";

Figure 5-7 shows the displayed data.

2 Untitled Page - Microsoft Internet Explorer, Q@@
>» "

File Edit Yiew Favorites Tools Help

Address @j http:{flocalhost: 19209/ Chapter0S {UseCustomSettings. aspx v

Retrieved service information. ..

Location: tcp:/fOrderComputer:8010/OrderService
Available: True

Timeout: 00:01:00

This page was served at 6/27/2008 4:37:56 P

&) Done %J Local intranet

Figure 5-7. Retrieving custom configuration data

Custom section handlers can get a fair bit more sophisticated. For example, you might want to
create a section that has nested subelements. Here’s an example of a more complex <orderService>
section that uses this design:

<orderService available="true" pollTimeout="00:01:00">
<location computer="OrderComputer" port="8010" endpoint="OrderService" />
</orderService>

To work with this structure, you simply need to create a class that derives from
ConfigurationElement to represent each nested element. Here’s the class you need to repre- sent the
<location> element:

public class Location : ConfigurationElement

{

[ConfigurationProperty("computer"”,
IsRequired = true)]
public string Computer

get { return (string)base["computer"]; }
set { base["computer"] = value; }

210

CHAPTER 5 " ASP.NET APPLICATIONS

}

[ConfigurationProperty("port",
IsRequired = true)]
public int Port

get { return (int)base["port"]; }
set { base["port"] = value; }

}

[ConfigurationProperty("endpoint”,
IsRequired = true)]
public string Endpoint

get { return (string)base["endpoint"]; }
set { base["endpoint"] = value; }

And here’s the revised Location property in the OrderService class:

[ConfigurationProperty("location"”,

IsRequired = true)]

public Location Location

{
get { return (Location)base["location"]; }
set { base["location"] = value; }

Now you can write code like this:

1blInfo.Text = "Server: " + custSection.Location.Computer;

Using the techniques in this chapter, you can save changes to a custom configuration section, and
you can encrypt it. You can also use additional attributes to validate configuration string values (look for
the attributes that derive from ConfigurationValidatorAttribute), and you can create sections with nested
elements and more complex structures. For more information about extending ASP.NET configuration
files, refer to the MSDN Help.

Encrypting Configuration Sections

ASP.NET never serves requests for configuration files, because they often contain sensitive information.
However, even with this basic restriction in place, you may want to increase security by encrypting
sections of a configuration file. This is a recommended practice for data such as connections and user-
specific details. (Of course, any passwords should also be encrypted, although ideally they won’t be
placed in a configuration file at all.)

ASP.NET supports two encryption options:

RSA: The RSA provider allows you to create a key pair that is then used to encrypt the configuration
data. The advantage is that you can copy this key between computers (for example, if you want to
use the same configuration file with all the servers in a web farm). The RSA provider is used by
default.

211

CHAPTER 5 ' ASP.NET APPLICATIONS

DPAPI: The DPAPI (data protection API) provider uses a protection mechanism that’s built into
Windows. Configuration files are encrypted using a machine-specific key. The advantage is that you
don’t need to manage or maintain the key. The disadvantage is that you can’t use a configuration
file encrypted in this way on any other computer.

With both of these options, encryption is completely transparent. When you retrieve a setting from
an encrypted section, ASP.NET automatically performs the decryption and returns the plain text to your
code (provided the required key is available). Similarly, if you modify a value programmatically and save
it, encryption is performed automatically. However, you won'’t be able to edit that section of the
web.config file by hand. But you can still use the WAT, IIS Manager, or your own custom code. When you
use the configuration API, the decryption and encryption steps are performed automatically when you
read from or write to a protected section.

Programmatic Encryption

To enable encryption programmatically, you need to retrieve the corresponding
ConfigurationSection.SectionInformation object and then call the ProtectSection() method. Any existing
data is encrypted at this point, and any changes you make from this point on are automatically encrypted.
If you want to switch off encryption, you simply use the corresponding UnprotectSection() method.

Here’s an example that encrypts the application section if it's unencrypted or switches off
encryption if it is:

Configuration config = WebConfigurationManager.OpenWebConfiguration("/");
ConfigurationSection appSettings = config.GetSection("appSettings");

if (appSettings.SectionInformation.IsProtected)
appSettings.SectionInformation.UnprotectSection();

else

{

appSettings.SectionInformation.ProtectSection(
"DataProtectionConfigurationProvider");

config.Save();

Here’s an excerpted version of what a protected <appSettings> section looks like:

<appSettings configProtectionProvider="DataProtectionConfigurationProvider">
<EncryptedData>
<CipherData>
<CipherValue>AQAAANCMnd8BFdERjHoAWE/C1+sBAAAAIEokx++BEOmpDaPjVr]/jQ0AAAA
CAAAAAAADZgAAGAAAABAAAACLKEKt++FOJ0J1rMZs12KWAAAAAAASAAACEAAAAEAAAAFYA231GZF1pe
FwDPTKM2/1IAQAAYG/Y4cmS1EVs/a4yK7KXoYbWt jDsOBnMAcndmK3g+0Dw/8. . .</CipherValue>
</CipherData>
</EncryptedData>

</appSettings>

Note that you can’t tell anything about the encrypted data, including the number of settings, the key
names of settings, or their data types.

212

CHAPTER 5 " ASP.NET APPLICATIONS

Command-Line Encryption

Currently, no graphical tool exists for encrypting and decrypting configuration file settings. However, if
you don’t want to write code, you can use the aspnet_regiis.exe command-line utility, which is found in
the directory c:\Windows\Microsoft. NET\Framework\[Version]. To use this tool, you must have already
created a virtual directory to set your application up in IIS (see Chapter 18 for more about that process).

When using aspnet_regiis to protect a portion of a configuration file, you need to specify these
command-line arguments:

* The -pe switch specifies the configuration section to encrypt.
* The -app switch specifies your web application’s virtual path.
* The -prov switch specifies the provider name.

Here’s the command line that duplicates the earlier example for an application at
http://localhost/TestApp:

aspnet_regiis -pe "appSettings" -app "/TestApp"
-prov "DataProtectionConfigurationProvider"

.NET Components

A well-designed web application written for ASP.NET will include separate components that may be
organized into distinct data and business tiers. Once you've created these components, you can use
them from any ASP.NET web page seamlessly.

You can create a component in two ways:

Create a new .cs file in the App_Code subdirectory: ASP.NET automatically compiles any code files
in this directory and makes the classes they contain available to the rest of your web application.
When you add a new class in Visual Studio, you’ll be prompted to create the App_Code directory (if
it doesn’t exist yet) and place the file there. (Web applications created using the Visual Studio web
project model don’t have an App_Code subdirectory. For web projects, you get the same result by
simply adding the source code file to your project, so that Visual Studio compiles it as part of your
web application assembly.)

Create a new class library project in Visual Studio: All the classes in this project will be compiled
into a DLL assembly. Once you've compiled the assembly, you can use Visual Studio’s Website »
Add Reference (or Project » Add Reference) command to bring it into your web application. This
step adds the assembly reference to your web.config file and copies the assembly to the Bin
subdirectory of your application.

Both approaches have the same ultimate result. For example, if you code a database component,
you'll access it in the same way regardless of whether it’s a compiled assembly in the Bin directory or a
source code file in the App_Code directory. Similarly, if you use ASP.NET’s precompilation features
(discussed in Chapter 18), both options will perform the same way. (If you don’t, you'll find that the first
request to your web application takes longer to execute when you use the App_Code approach, because
an extra compilation step is involved.)

Although both approaches have essentially the same footprint, they aren’t the same for code
management. This is especially true in cases where you want to reuse the component in more than one
web application (or even in different types of .NET applications). If you use the App_Code approach with
multiple web applications, it’s all too easy to make slight modifications and wind up with a mess of
different versions of the same shared class. The second approach is also more practical for building
large-scale applications with a team of developers, in which case you’ll want the freedom to have

213

http://localhost/TestApp:

214

CHAPTER 5 ' ASP.NET APPLICATIONS

different portions of the web application completed and compiled separately. For these reasons, the
class library approach is always preferred for professional applications.

Tip The App_Code subdirectory should be used only for classes that are tightly coupled to your web application.
Reusable units of functionality (such as business libraries, database components, validation routines, encryption
utilities, and so on) should always be built as separate class libraries.

Creating a Component

The next example demonstrates a simple component that reads a random Sherlock Holmes quote from
an XML file. (This XML file is available on the Internet and freely reusable via the GNU Public License—
you can download it at http://www.amk.ca/quotations/sherlock-holmes.xml or with the samples for this
chapter.) The component consists of two classes—a Quotation class that represents a single quote and a
SherlockQuotes class that allows you to read a random quote. Both of these classes are placed in the
SherlockLib namespace.

The first listing shows the SherlockQuotes class, which loads an XML file containing quotes in QEL
(Quotation Exchange Language, an XML dialect) when it’s instantiated. The SherlockQuotes class
provides a public GetRandom() quote method that the web-page code can use.

using System;
using System.Xml;

namespace SherlockLib

public class SherlockQuotes

{
private XmlDocument quoteDoc;
private int quoteCount;
public SherlockQuotes(string fileName)
quoteDoc = new XmlDocument();
quoteDoc.Load(fileName);
quoteCount = quoteDoc.DocumentElement.ChildNodes.Count;
}
public Quotation GetRandomQuote()
int i;
Random x = new Random();
i = x.Next(quoteCount-1);
return new Quotation(quoteDoc.DocumentElement.ChildNodes[i]);
}
}

http://www.amk.ca/quotations/sherlock-holmes.xml

CHAPTER 5

ASP.NET APPLICATIONS

Each time a random quotation is obtained, it is stored in a Quotation object. The listing for the
Quotation class is as follows:

using System;
using System.Xml;

namespace SherlockLib

public class Quotation

{

Using a Component Through the App_Code Directory

private string qsource;
public string Source

get {return gsource;}
set {gsource = value;}
private string date;

public string Date

get {return date;}
set {date = value;}

}

private string quotation;
public string QuotationText

get {return quotation;}

set {quotation = value;}

public Quotation(XmlNode quoteNode)

if ((quoteNode.SelectSingleNode("source")) != null)

gsource = quoteNode.SelectSingleNode("source").InnerText;

if ((quoteNode.Attributes.GetNamedItem("date")) != null)
date = quoteNode.Attributes.GetNamedItem("date").Value;
quotation = quoteNode.FirstChild.InnerText;

The simplest way to quickly test this class is to copy the source code files to the App_Code subdirectory
in a web application. You can take this step in Windows Explorer or use Visual Studio (Website » Add
Existing Item).
Now you might want to import the SherlockLib namespace into your web page to make its classes
more readily available, as shown here:

using SherlockLib;

215

216

CHAPTER 5 ' ASP.NET APPLICATIONS

Finally, you can use the class in your web-page code just as you would use a class from the .NET
Framework. Here’s an example that displays the quotation information on a web page:

protected void Page_Load(object sender, System.EventArgs e)

{
// Put user code to initialize the page here.
SherlockQuotes quotes = new
SherlockQuotes(Server.MapPath("./sherlock-holmes.xml"));
Quotation quote = quotes.GetRandomQuote();
Response.Write("" + quote.Source + " (<i>" + quote.Date + "</i>)");
Response.Write("<blockquote>" + quote.QuotationText + "</blockquote>");
}

When you run this application, you'll see something like what’s shown in Figure 5-8. Every time you
refresh the page, you'll see a different quote.

Note When you use the App_Code directory, you face another limitation—you can use only one language. This
limitation results from the way that ASP.NET performs its dynamic compilation. Essentially, all the classes in the
App_Code directory are compiled into a single file, so you can’t mix C# and VB.

A HolmesQuote - Microsoft Internet Explorer Q@@

7 » ‘
File Edit View Favorites Tools Help €) ﬂ @ h l"’

Address é_j http:fflocalhost{Chapter06/HolmesQuote. aspx v

Sherlock Holmes, in "' The Adventure of Black Peter" (7904)

"If you could have looked into Allardyce's back shop, you would have seen
a dead pig swung from a hook in the celing, and a gentleman in his shirt
sleeves furtously stabbing at it with this weapon. I was that energetic
person, and I have satisfied myself that by no exertion of my strength can I
transfix the pig with a single blow. Perhaps you would care to try?"

&] Done & Local intranet

Figure 5-8. Using the component in your web page

Using a Component Through the Bin Directory

Assuming that your component provides a significant piece of functionality and that it may be reused in
different applications, you'll probably want to create it using a separate project. This way, your
component can be reused, tested, and versioned separately from the web application.

To create a separate component, you need to use Visual Studio to create a class library project.
Although you can create this using a separate instance of Visual Studio, it’s often easier to load both your

CHAPTER 5 " ASP.NET APPLICATIONS

class library project and your web application into a single Visual Studio solution to assist in debugging.
This allows you to easily modify both the web application and the component code at the same time and
single-step from a web-page event handler into a method in your component. To set this up, create your
web application first. Then, select File » Add » New Project to open the Add New Project dialog box. In
the list on the left, choose the Visual C# group of templates, and select the Class Library template (see
Figure 5-9).

Figure 5-9. Adding a class library project to a solution

Once you've added the code to your class library project, you can compile your component by right-
clicking the project in the Solution Explorer and choosing Build. This generates a DLL assembly that
contains all the component classes.

To allow your web application to use this component, you need to add an assembly reference to the
component. This allows Visual Studio to provide its usual syntax checking and IntelliSense. Otherwise, it
will interpret your attempts to use the class as mistakes and refuse to compile your code.

To add a reference, choose Website » Add Reference from your web application (or Project » Add
Reference if you're developing a web project). The Add Reference dialog box includes several tabs:

.NET: This allows you to add a reference to a .NET assembly. You can choose from the list of well-
known assemblies that are stored in the registry. Typically, you'll use this tab to add a reference to
an assembly that’s included as part of the NET Framework.

COM: This allows you to add a reference to alegacy COM component. You can choose from a list of
shared components that are installed in the Windows system directory. When you add a reference
to a COM component, .NET automatically creates an intermediary wrapper class known as an
interop assembly. You use the interop assembly in your .NET code, and the interop assembly
interacts with the legacy component.

217

218

CHAPTER 5 ' ASP.NET APPLICATIONS

Projects: This allows you to add a reference to a .NET class library project that’s currently loaded in
Visual Studio. Visual Studio automatically shows a list of eligible projects. This is often the easiest
way to add a reference to one of your own custom components.

Browse: This allows you to hunt for a compiled .NET assembly file (or a COM component) on your
computer. This is a good approach for testing custom components if you don’t have the source
project or you don’t want to load it into Visual Studio where you might inadvertently modity it.

Recent: This allows you to add a reference to a compiled .NET assembly that you've used recently
(rather than forcing you to browse for it all over again).

Figure 5-10 compares two ways to add a reference to the SherlockLib component—by adding a
reference to a currently loaded project and by adding a reference to the compiled DLL file.

Figure 5-10. Adding a reference to SherlockLib.dll

Once you add the reference, the corresponding DLL file will be automatically copied to the Bin
directory of your current project. You can verify this by checking the Path property of the reference in
the Properties window or just by browsing to the directory in Windows Explorer. The nice thing is that
this file will automatically be overwritten with the most recent compiled version of the assembly every
time you run the web application.

It really is that easy. To use another component—either from your own business tier, from a third-
party developer, or from somewhere else—all you need to do is add a reference to that assembly.

Tip ASP.NET also allows you to use assemblies with custom controls just as easily as you use assemblies with
custom components. This allows you to bundle reusable user interface output and functionality into self-contained
packages so that they can be used over and over again within the same or multiple applications. Part 5 has more
information about this technique.

CHAPTER 5 " ASP.NET APPLICATIONS

Extending the HTTP Pipeline

The pipeline of application events isn’t limited to requests for .aspx web forms. It also applies if you
create your own handlers to deal with custom file types.

Why would you want to create your own handler? For the most part, you won’t. However,
sometimes it’s convenient to use a lower-level interface that still provides access to useful objects such
as Response and Request but doesn’t use the full control-based web form model. One example is if you
want to create a web resource that dynamically renders a custom graphic (a technique demonstrated in
Chapter 28). In this situation, you simply need to receive a request, check the URL parameters, and then
return raw image data as a JPEG or GIF file. By avoiding the full web control model, you save some
overhead, because ASP.NET does not need to go through as many steps (such as creating the web-page
objects, persisting view state, and so on).

ASP.NET makes scenarios like these remarkably easy through its pluggable architecture. You can
“snap in” new handlers for specialized file types just by adding configuration settings. But first, you need
to take a closer look at the HTTP pipeline.

HTTP Handlers

Every request into an ASP.NET application is handled by a specialized component known as an HTTP
handler. The HTTP handler is the backbone of the ASP.NET request processing framework. ASP.NET
uses different HTTP handlers to serve different file types. For example, the handler for web pages creates
the page and control objects, runs your code, and renders the final HTML.

You can register HTTP handlers in two ways. First, if you're using Visual Studio’s integrated web
server, if you're running an old version of IIS, or if you're running IIS 7.x in classic mode, you need to add
your HTTP handlers to the <httpHandlers> section in the <system.web> element of the web.config file.
That’s the location shown here:

<configuration>
<system.web>
<httpHandlers>

</httpHanlders>»

</system.web>
</configuration>

Inside the <httpHandlers> section, you can place <add> elements that register new handlers and
<remove> elements to unregister existing handlers. You can see the core set of HTTP handlers defined in
this way in the root web.config file. Here’s an excerpt of that file:

<httpHandlers>

<add verb="*" path="trace.axd" validate="true"
type="System.Web.Handlers.TraceHandler"/>
<add verb="*" path="*.config" validate="true"
type="System.Web.HttpForbiddenHandler"/>

<add verb="*" path="*.cs" validate="true"
type="System.Web.HttpForbiddenHandler"/>

<add verb="*" path="*.aspx" validate="true"
type="System.Web.UI.PageHandlerFactory"/>

</httpHandlers>

219

220

CHAPTER 5 ' ASP.NET APPLICATIONS

In this example, four classes are registered. All requests for trace.axd are handed to the
TraceHandler, which renders an HTML page with a list of all the recently collected trace output (as
described in Chapter 3). Requests for files that end in .config or .cs are handled by the
HttpForbiddenHandler, which always generates an exception informing the user that these file types are
never served. And files ending in .aspx are handled by the PageHandlerFactory. In this case,
PageHandlerFactory isn’t actually an HTTP handler. Instead, it’s a factory class that will create the
appropriate HTTP handler. This extra layer allows the factory to create a different handler or configure
the handler differently depending on other information about the request.

This method of registering HTTP handlers doesn’t work if you're using IIS 7.x in integrated mode
(which is the default). In this situation, IIS reads the <system.webServer> section and uses the handlers
defined in its <handlers> section:

<configuration>
<system.web>

</system.web>

<system.webServer>
<handlers>
</hanlders>

</system.webServer>

</configuration>

Just like the <httpHandlers> section, you register HTTP handlers by placing <add> elements inside
the <handlers> section.

This minor change in the configuration file underlies a more significant shift in the way IIS works. In
versions of IIS before IIS 7 (and when running IIS 7.x in classic mode), IIS deals with every request by
first checking its file mappings. If a particular file type is mapped to ASP.NET, IIS passes the file to the
ASP.NET engine, which then reads the handler information from the web.config file and decides how to
deal with the request. The disadvantage of this approach is that the whole process relies on the initial file
registration. If ASP.NET isn’t registered for a specific file type, you can’t run a custom HTTP handler or
HTTP module when that file type is requested.

IIS 7.x is smarter. In integrated mode, it handles the task of sending the request to the appropriate
HTTP handler, and it always reads the handler information from the <system.WebServer> section. If you
attempt to register handlers in the <httpHandler> section, you'll receive an IIS error page when you run
the application. This is to prevent the security risk of having a web application that appears to
implement certain handlers, but doesn’t actually use them. (Incidentally, you can disable this behavior
so IIS 7.x simply ignores and accepts the <httpHandler> section by adding <validation
validateIntegratedModeConfiguration="false"/> inside the <system.webServer> section, but it’s not
recommended.)

Note IIS 7.x doesn’t use the root web.config to define its core set of handlers and modules. Instead, you’ll find
these in the Applicationhost.config file, which is a directory like c:\Windows\System32\inetsrv\config.

The examples in this chapter use the <httpHandlers> section, so that they work with the Visual
Studio web server. The web.config file with the downloadable code for this chapter uses both types of
registration.

CHAPTER 5 " ASP.NET APPLICATIONS

Note IIS 7.0 is included with Windows Server 2008 and the Home, Premium, Business, Enterprise, and Ultimate
editions of Windows Vista. IIS 7.5 is included with Windows Server 2008 R2 and Windows 7. For more information
about IIS, including how to register an HTTP handler using the IIS Manager tool, refer to Chapter 18.

Creating a Custom HTTP Handler

If you want to work at a lower level than the web form model to support a specialized form of processing,
you can implement your own HTTP handler.

To create a custom HTTP handler, you simply need to author a class that implements the
IHttpHandler interface. You can place this class in the App_Code directory, or you can compile it as part
of a stand-alone DLL assembly (in other words, a separate class library project) and add a reference to it
in your web application.

The IHttpHandler requires your class to implement two members, which are shown in Table 5-5.

Table 5-5. I[HttpHandler Members

Member Description

ProcessRequest() ASP.NET calls this method when a request is received. It’s where the HTTP
handlers perform all the processing. You can access the intrinsic ASP.NET
objects (such as Request, Response, and Server) through the HttpContext
object that’s passed to this method.

IsReusable After ProcessRequest() finishes its work, ASP.NET checks this property to
determine whether a given instance of an HTTP handler can be reused. If it
returns true, the HTTP handler object can be reused for another request of the
same type current. If it returns false, the HTTP handler object will simply be
discarded.

The following code shows one of the simplest possible HTTP handlers you can create. It simply
returns a fixed block of HTML with a message.

using System;
using System.Web;

namespace HttpExtensions
public class SimpleHandler : IHttpHandler
public void ProcessRequest(System.Web.HttpContext context)
HttpResponse response = context.Response;

response.Write("<html><body><hi>Rendered by the SimpleHandler") ;
response.Write("</body>") ;

public bool IsReusable

221

222

CHAPTER 5 ' ASP.NET APPLICATIONS

get {return true;}

Note If you create this extension as a class library project, you’ll need to add a reference to the System.Web.dll
assembly, which contains the bulk of the ASP.NET classes. Without this reference, you won’t be able to use types
such as [HttpHandler and HttpContext. (To add the reference, right-click the project name in the Solution Explorer,
choose Add Reference, and find the assembly in the list in the .NET tab.)

Configuring a Custom HTTP Handler

Once you've created your HTTP handler class and made it available to your web application (either by
placing it in the App_Code directory or by adding a reference), you're ready to use your extension. The
next step is to alter the web.config file for the web application so that it registers your HTTP handler.
Here’s an example:

<configuration>
<system.web>
<httpHandlers>
<add verb="*" path="test.simple"
type="HttpExtensions.SimpleHandler,HttpExtensions" />
</httpHandlers>

<system.web>
</configuration>

When you register an HTTP handler, you specify three important details. The verb attribute
indicates whether the request is an HITP POST or HTTP GET request (use * for all request types). The
path attribute indicates the file extension that will invoke the HTTP handler. In this example, the
web.config section links the SimpleHandler class to the filename test.simple. Finally, the type attribute
identifies the HTTP handler class. This identification consists of two portions. First is the fully qualified
class name (in this example, HttpExtensions.SimpleHandler). That portion is followed by a comma and
the name of the DLL assembly that contains the class (in this example, HttpExtensions.dll). Note that the
.dll extension is always assumed, and you don’t include it in the name.

If you're using the App_Code approach instead of a separately compiled assembly, you can omit the
DLL name entirely, because ASP.NET generates it automatically.

<httpHandlers>
<add verb="*" path="test.simple"
type="HttpExtensions.SimpleHandler" />

</httpHandlers>

Visual Studio doesn’t allow you to launch your HTTP handler directly. Instead, you need to run
your web project and then type in a URL that includes test.simple. For example, if your web
application URL is set to http://localhost:19209/Chapter05 in the local server, you need to manually
change it to http://localhost:19209/Chapter05/test.simple. (If you don’t remember the current web

http://localhost:19209/Chapter05
http://localhost:19209/Chapter05/test.simple

CHAPTER 5 " ASP.NET APPLICATIONS

application URL, just run your application and then modify the URL in the browser.) You'll see the
HTML shown in Figure 5-11.

A http:/flocalhost/ChapterO6/test.simple - Microsoft Internet Explorer. Q@@

A »
File Edit ‘iew Favorites Tools Help Qbak v) - [¥] & @ | F search ,','

Address 5 @j http:/flocalhost/Chapter06 test.simple v

Rendered by the SimpleHandler

&] Done %J Local intranet

Figure 5-11. Running a custom HTTP handler

Using Configuration-Free HTTP Handlers

ASP.NET provides an alternate approach that allows you to avoid registering HTTP handlers and
worrying about configuration file settings—you can use the recognized extension .ashx. No matter what
version of IIS you're using (or if you're using the integrated Visual Studio web server), requests that end
in .ashx are automatically recognized as requests for a custom HTTP handler.

To create an .ashx file in Visual Studio, select Website » Add New Item (or Project » Add New [tem
for web projects) and choose Generic Handler. You can then fill in a suitable name and click Add to
create the handler.

The .ashx file begins with a WebHandler directive. This WebHandler directive indicates the class
that should be exposed through this file. Here’s an example:

<%@ WebHandler Language="C#" Class="HttpExtensions.SimpleHandler" %>

The class name can correspond to a class in the App_Code directory or a class in a reference
assembly. Alternatively, you can define the class directly in the .ashx file (underneath the WebHandler
directive). Either way, when a client requests the .ashx file, the corresponding HTTP handler class is
executed. If you save the previous example as the file simple.ashx, whenever the client requests
simple.ashx your custom web handler will be executed. Best of all, the .ashx file type is registered in IIS,
so you don’t need to perform any IIS configuration when you deploy your application.

Whether you use a configuration file or an .ashx file is mostly a matter of preference. However, .ashx
files are usually used for simpler extensions that are designed for a single web application. Configuration
files also give you a little more flexibility. For example, you can register an HTTP handler to deal with all
requests that end with a given extension, whereas an .ashx file only serves a request if it has a specific
filename. Also, you can register an HTTP handler for multiple applications (by registering it in the
web.config file and installing the assembly in the Global Assembly Cache). To achieve the same effect
with an .ashx file, you need to copy the .ashx file to each virtual directory.

Creating an Advanced HTTP Handler

In the previous example, the HTTP handler simply returns a block of static HTML. However, you can
create much more imaginative handlers. For example, you might read data that has been posted to the
page or that has been supplied in the query string and use that to customize your rendered output.

223

CHAPTER 5 ' ASP.NET APPLICATIONS

Here’s a more sophisticated example that displays the source code for a requested file. It uses the file I/O
support that’s found in the System.IO namespace.

using System;
using System.Web;
using System.IO;

namespace HttpExtensions
public class SourceHandler : IHttpHandler

public void ProcessRequest(System.Web.HttpContext context)
{
// Make the HTTP context objects easily available.
HttpResponse response = context.Response;
HttpRequest request = context.Request;
HttpServerUtility server = context.Server;

response.Write("<html><body>");

// Get the name of the requested file.

string file = request.QueryString["file"];

try

{
// Open the file and display its contents one line at a time.
response.Write("Listing " + file + "
");
StreamReader r = File.OpenText(

server.MapPath(Path.Combine("./", file)));

string line = "";
while (line != null)
{

line = r.ReadlLine();
if (line != null)
{

// Make sure tags and other special characters are

// replaced by their corresponding HTML entities so that
// they can be displayed appropriately.

line = server.HtmlEncode(line);

// Replace spaces and tabs with nonbreaking spaces
// to preserve whitespace.
line = line.Replace(" ", " ");
line = line.Replace(
"\t", " 8nbsp; 8nbsp;");

// A more sophisticated source viewer might apply

// color coding.
response.Write(line + "
");

}
}
r.Close();

catch (Exception err)

224

CHAPTER 5 " ASP.NET APPLICATIONS

response.Write(err.Message);

response.Write("</body>");

}
public bool IsReusable

get {return true;}

This code simply finds the requested file, reads its content, and uses a little string substitution (for
example, replacing spaces with nonbreaking spaces and line breaks with the
 element) and HTML
encoding to create a representation that can be safely displayed in a browser. You'll learn more about
techniques for reading and manipulating files in Chapter 12.

Next, you can map the handler to a file extension, as follows:

<httpHandlers>
<add verb="*" path="source.simple"
type="HttpExtensions.SourceHandler,HttpExtensions"/>

</httpHandlers>
To test this handler, you can use a URL in this format:

http://localhost:[Port]/[Website]/source.simple?file=HolmesQuote.aspx.cs

The HTTP handler will then show the source code for the .cs file, as shown in Figure 5-12.

225

http://localhost:

226

CHAPTER 5 " ASP.NET APPLICATIONS

A http:#/localhost/ChapterO6/source.simple?file=HolmesQuote.aspx.cs - Microsoft In...

= " - » F
File Edit View Favorites Tools Help QBack ¥~) ¥ & @ | P search ,','
Address 2_,'[http:/flocalhost/Chapter0é source. simple?file=HolmesQuote. aspx.cs v
A~

Listing HolmesQuote.aspx.cs
using System,

using System. Collections;

using System. Componentiodel;
using System Data;,

using System Drawing,

using System. Web;,

using System. Web. SessionState;
using System. Web. UL

using System. Web. UL WebControls;
using System. Web. UL HtmlControls;

namespace Chapter2
{
/i <summary>
i Summary description for HolmesQuote.
i <fsummary=>
public class HolmesQuote : System Web. ULPage
{
private void Page_Load(object sender, System EventArgs e)

{
/f Put user code to mitialize the page here

&] Done &J Local intranet

Figure 5-12. Using a more sophisticated HTTP handler

Creating an HTTP Handler for Non-HTML Content

Some of the most interesting HTTP handlers don’t generate HTML. Instead, they render different types of
content, such as images. This approach gives you the flexibility to retrieve or generate your content
programmatically, rather than relying on fixed files. For example, you could read the content for a large ZIP
file from a database record and use Response.BinaryWrite() to send it to the client. Or, you could get even
more ambitious and use your HTTP handler to dynamically create a ZIP archive that combines several
smaller files. Either way, to the client who is using your HTTP handler, it seems as though the browser is
downloading an ordinary file. But in actuality, the content is being served using ASP.NET code.

The following example demonstrates an HTTP handler that deals with image files. This handler
doesn’t create the image content dynamically (for that trick, refer to Chapter 28), but it does use code to
perform another important task. Whenever an image is requested, this HTTP handler checks the referrer
header of the request. The referrer header provides the host name, which indicates whether the link to
the image originates from one of the pages on your site, or whether it stems from a page on someone
else’s site. If the page that’s using the image is on another site, you have a potential problem. Not only is
this page stealing your image, it’s also creating more work for your web server. That’s because every time
someone views the third-party site, the image is requested from your server. If the stolen image appears

CHAPTER 5 " ASP.NET APPLICATIONS

on a popular site, this could generate a significant amount of extra work and reduce the bandwidth you
have available to serve your own pages.

This problem—sites that steal bandwidth by linking to resources on your server—is known
informally as leeching. It’s a common headache for popular websites that serve large amounts of non-
HTML content (for example, photo-sharing sites such as Flickr). Many websites combat this problem
using the same technique as the HTTP handler described previously—namely, they refuse to serve the
image or they substitute a dummy image if the referrer header indicates that a request originates from
another site.

Here’s an HTTP handler that implements this solution in ASP.NET. In order for this code to work as
written, you must import the System.Globalization namespace and the System.IO namespace.

public class ImageGuardHandler : IHttpHandler

public void ProcessRequest(System.Web.HttpContext context)
{

HttpResponse response = context.Response;

HttpRequest request = context.Request;

string imagePath = null;

// Check whether the page requesting the image is from your site.
if (request.UrlReferrer != null)

// Perform a case-insensitive comparison of the referrer.

if (String.Compare(request.Url.Host, request.UrlReferrer.Host,
true, CultureInfo.InvariantCulture) == 0)

{

// The requesting host is correct.
// Allow the image to be served (if it exists).
imagePath = request.PhysicalPath;
if (!File.Exists(imagePath))
{
response.Status = "Image not found";
response.StatusCode = 404;
return;

}
if (imagePath == null)
{

// No valid image was allowed.

// Return the warning image instead of the requested image.

// Rather than hard-code this image, you could

// retrieve it from the web.config file

// (using the <appSettings> section or a custom

// section).

imagePath = context.Server.MapPath("./Images/notAllowed.gif");

}

// Set the content type to the appropriate image type.
response.ContentType = "image/" +
Path.GetExtension(imagePath).ToLower();

// Serve the image.

227

228

CHAPTER 5 ' ASP.NET APPLICATIONS

response.WriteFile(imagePath);

}
public bool IsReusable
{

get { return true; }
}

For this handler to protect image files, you need to register it to deal with the appropriate file types.
Here’s the web.config settings that set this up for the .gif and .png file types (but not .jpg):

<httpHandlers>
<add verb="*" path="*.gif"
type="ImageGuardHandler"/>
<add verb="*" path="*.png"
type="ImageGuardHandler"/>
</httpHandlers>

Note This solution to leeching is far from perfect, but it serves to stop casual leechers. A programming-savvy
user can easily circumvent it with a little JavaScript code. Some web developers create much more elaborate
systems. For example, you can dynamically generate a timestamp code and append it to your image links
whenever a page is requested. Your HTTP handler can then refuse to serve images if the timestamp is out of date,
which suggests the link has been copied and is being reused on another page long after its creation time.
However, none of these techniques can stop someone from creating a copy of the picture and serving it directly
from their site.

Based on this example, you can probably imagine a variety of different ways you can use HTTP
handlers. For example, you could render a custom image, perform an ad hoc database query, or return
some binary data. These examples extend the ASP.NET architecture but bypass the web-page model.
The result is a leaner, more efficient component.

You can also create HTTP handlers that work asynchronously. This means they create a new thread
to do their work, instead of using one of the ASP.NET worker threads. This improves scalability in
situations where you need to perform a task that takes a long time but isn’t CPU-intensive. A classic
example is waiting to read an extremely slow network resource. ASP.NET allows only a fixed number of
worker threads (typically 25) to run at once. Once this limit is reached, additional requests will be
queued, even if the computer has available CPU time.

With asynchronous handlers, additional requests can be accepted, because the handler creates a
new thread to process each request rather than using the worker process. Of course, there is a risk with
this approach. Namely, if you create too many threads for the computer to manage efficiently, or if you
try to do too much CPU-intensive work at once, the performance of the entire web server will be
adversely affected. Asynchronous HTTP handlers aren’t covered in this book, but in Chapter 11 you'll
learn how to use asynchronous pages, which use asynchronous HTTP handlers behind the scenes.

CHAPTER 5 " ASP.NET APPLICATIONS

HTTP Handlers and Session State

By default, HTTP handlers do not have access to client-specific session state. That’s because HTTP
handlers are generally used for lower-level tasks, and skipping the steps needed to serialize and retrieve
session state information achieves a minor increase in performance. However, if you do need access to
session state information, you simply need to implement one of the following two interfaces:

* |RequiresSessionState
¢ |ReadOnlySessionState

If you require just read-only access to session state, you should implement the IReadOnlySessionState
interface. If you need to modify or add to session information, you should implement the
IRequiresSessionState interface. You should never implement both at the same time.

These two interfaces are just marker interfaces and do not contain any methods. That means you don’t
need to write any extra code to enable session support. For example, if you want to use read-only session
state with the SimpleHandler class, you would declare it in this way:

public class SimpleHandler : IHttpHandler, IReadOnlySessionState
{...}

To actually access the Session object, you’ll need to work through the HttpContext object that’s submitted
to the ProcessRequest() method. It provides a Session property.

HTTP Modules

ASP.NET also uses another ingredient in page processing, called HTTP modules. HTTP modules
participate in the processing of a request by handling application events, much like the global.asax file.
ASP.NET uses a core set of HTTP modules to enable platform features such as caching, authentication,
and error pages.

A given request can flow through multiple HTTP modules, but it always ends with a single HTTP
handler. Figure 5-13 shows how the two interact.

229

CHAPTER 5 ' ASP.NET APPLICATIONS

A
Module 1
Module 2
Module 3
Module 4
Y
Handler 1 Handler 2 Handler n

Figure 5-13. The ASP.NET request processing architecture

If you're using Visual Studio’s integrated web server, or if you're running an old version of IIS, or if
you're running the IIS 7.x web server in classic mode, you need to add your HTTP modules to the
<httpModules> section in the <system.web> element::

<configuration>
<system.web>
<httpModules>

</httpModules>

</system.web>
</configuration>

If you're running IIS 7.x in integrated mode, you use the <modules> section shown here instead:

<configuration>
<system.web>

</system.web>

<system.webServer>
<modules>
</modules>

</system.webServer>

</configuration>

230

CHAPTER 5 " ASP.NET APPLICATIONS

Creating a Custom HTTP Module

It’s just as easy to create custom HTTP modules as custom HTTP handlers. You simply need to author a
class that implements the System.Web.IHttpModule interface. You can then register your module by
adding it to the <httpModules> section of the web.config file. However, you don’t need to configure IIS
to use your HTTP modules. That’s because modules are automatically used for every web request.

So, how does an HTTP module plug itself into the ASP.NET request processing pipeline? It does so
in the same way as the global.asax file. Essentially, when an HTTP module is created, it registers to
receive specific global application events. For example, if the module is concerned with authentication,
it will register itself to receive the authentication events. Whenever those events occur, ASP.NET invokes
all the interested HTTP modules. The HTTP module wires up its events with delegate code in the Init()
method.

The IHttpModule interface defines the two methods shown in Table 5-6.

Table 5-6. IHttpModule Members

Member Description

Init() This method allows an HTTP module to register its event handlers to receive the events
of the HttpApplication object. This method provides the current HttpApplication object
for the request as a parameter.

Dispose() This method gives an HTTP module an opportunity to perform any cleanup before the
object gets garbage collected.

The following class is a custom HTTP module that handles the event
HttpApplication.AuthenticateRequest and then logs the user information to a new entry in the Windows
event log using the EventLog class from the System.Diagnostics namespace:

using System;
using System.Web;
using System.Diagnostics;
namespace HttpExtensions
public class LogUserModule : IHttpModule
public void Init(HttpApplication httpApp)
// Attach application event handlers.
httpApp.AuthenticateRequest += new EventHandler(OnAuthentication);

private void OnAuthentication(object sender, EventArgs a)

// Get the current user identity.
string name = HttpContext.Current.User.Identity.Name;

// Log the user name.

EventLog log = new Eventlog();

log.Source = "Log User Module";
log.WriteEntry(name + " was authenticated.");

231

232

CHAPTER 5 ' ASP.NET APPLICATIONS

}

public void Dispose()
(}

Note To use this example, the account used to run ASP.NET code must have permission to write to the event
log. (More specifically, the account must have permission to modify the
HKEY_Local_Machine\SYSTEM\CurrentControlSet\Services\EventLog registry key.) If you’re using the Visual Studio
test server, you'll need to explicitly run Visual Studio as an administrator (right-click the Visual Studio shortcut and
choose Run As Administrator).

Now you can register the module with the following information in the web.config file. Here’s an
example that assumes it’s compiled in a separate assembly named HttpExtensions.dll:

<configuration>
<system.web>
<httpModules>
<add name="LogUserModule"
type="HttpExtensions.LogUserModule,HttpExtensions" />
</httpModules>

</system.web>
</configuration>

To test this module, request any other page in the web application. Then check the entry in the
Windows application event log. (To view the log, run the Event Viewer, which you find by searching the
Start menu.

CHAPTER 5 " ASP.NET APPLICATIONS

Figure 5-14. Logging messages with an HTTP module

Handling Events from Other Modules

The previous example shows how you can handle application events in a custom HTTP module. However,
some global events aren’t provided by the HitpApplication class but are still quite important. These include
events raised by other HTTP modules, such as the events fired to start and end a session.

Fortunately, you can wire up to these events in the Init() event; you just need a slightly different approach.
The HttpApplication class provides a collection of all the modules that are a part of the current HTTP

pipeline through the Modules collection. You can retrieve a module by name and then use delegate code to
connect an event handler.

For example, if you want to connect an event handler named OnSessionStart() to the
SessionStateModule.Start event, you could use code like this for the Init() method in your HTTP module:

public void Init(HttpApplication httpApp)

{
SessionStateModule sessionMod = (SessionStateModule)httpApp.Modules["Session"];
sessionMod.Start += new EventHandler(OnSessionStart);

}

233

CHAPTER 5 ' ASP.NET APPLICATIONS

Summary

In this chapter, you took a closer look at what constitutes an ASP.NET application. After learning more
about the life cycle of an application, you learned how to code global application event handlers with the
global.asax file and how to set application configuration with the web.config file. Finally, you learned
how to use separately compiled components in your web pages and how to extend the HTTP pipeline
with your own handlers and modules.

234

CHAPTER 6

State Management

No web application framework, no matter how advanced, can change the fact that HTTP is a stateless
protocol. After every web request, the client disconnects from the server, and the ASP.NET engine
discards the objects that were created for the page. This architecture ensures that web applications can
scale up to serve thousands of simultaneous requests without running out of server memory. The
drawback is that your code needs to use other techniques to store information between web requests
and retrieve it when needed.

In this chapter, you'll see how to tackle this challenge by maintaining information on the server and
on the client using a variety of techniques. You'll also learn how to transfer information from one web
page to another.

State Management Changes in ASP.NET 4

ASP.NET 4 adds a few refinements to its state management features:

Opt-in view state: ASP.NET 4 adds a ViewStateMode property that allows you to disable view
state for a page but then selectively enable view state for those controls that absolutely require it.
This opt-in model of view state is described in the “Selectively Disabling View State” section.

Session compression: ASP.NET 4 introduces a compression feature that reduces the size of data
before it's sent to an out-of-process state provider. This feature is described in the “Compression”
section.

Selectively enabling session state: ASP.NET 4 adds the HttpContext.SetSessionStateBehavior()
method. You can create an HTTP module (as described in Chapter 5) that examines the current
request and then calls SetSessionStateBehavior() to programmatically enable or disable session
state. The idea here is to wring just a bit more performance out of your web application by
disabling session state when it's not needed but still allowing it to work for some requests.
However, this is a fairly specialized optimization technique that most developers won’t use.

Partial session state: Session state now recognizes the concept of partial state storage and
retrieval, which could theoretically allow you to pull just a single property out of a serialized object.
As promising as this sounds, no current state providers support it, so you can’t use this feature in
your applications just yet. Microsoft may release session state providers that support this feature in
future versions of ASP.NET or sooner—for example, with new products like Windows Server
AppFabric (http://tinyurl.com/yhds97y).

235

http://tinyurl.com/yhds97y

CHAPTER 6 ' STATE MANAGEMENT

ASP.NET State Management

ASP.NET includes a variety of options for state management. You choose the right option depending on
the data you need to store, the length of time you want to store it, the scope of your data (whether it’s
limited to individual users or shared across multiple requests), and additional security and performance

236

considerations. The different state management options in ASP.NET are complementary, which means
you’ll almost always use a combination of them in the same web application (and often the same page).
Table 6-1, Table 6-2, and Table 6-3 show an at-a-glance comparison of your state management
options. You can review your options now, or you can use these tables as a reference after you work your
way through the more detailed information in this chapter.

Table 6-1. State Management Options Compared (Part 1)

View State

Query String

Custom Cookies

Allowed data types

Storage location

All serializable .NET
data types.

A hidden field in the
current web page.

A limited amount of
string data.

The browser’s URL
string.

String data.

The client’s computer (in
memory or a small text
file, depending on its
lifetime settings).

Lifetime Retained permanently Lost when the user Set by the programmer. It
for postbacks to a enters a new URL or can be used in multiple
single page. closes the browser. pages and it persists

However, can be between visits.
stored and can persist
between visits.

Scope Limited to the current Limited to the target The whole ASP.NET
page. page. application.

Security Tamper-proof by Clearly visible and easy Insecure and can be
default but easy to for the user to modify. modified by the user.
read. You can use the
Page directive to
enforce encryption.

Performance Storing a large None, because the None, because the amount

implications amount of amount of data is of data is trivial.
information will slow trivial.
transmission but will
not affect server
performance.

Typical use Page-specific settings. Sending a product ID Personalization

from a catalog pageto preferences for a website.
a details page.

Table 6-2. State Management Options Compared (Part 2)

CHAPTER 6 "' STATE MANAGEMENT

Session State

Application State

Allowed data types

Storage location

Lifetime

Scope

Security

Performance

implications

Typical use

All serializable .NET data types.
Nonserializable types are supported if you
are using the default in-process state
service.

Server memory (by default), or a dedicated
database, depending on the mode you
choose.

Times out after a predefined period
(usually 20 minutes but can be altered
globally or programmatically).

The whole ASP.NET application.

Secure, because data is never transmitted
to the client. However, subject to session
hijacking if you don’t use SSL.

Storing a large amount of information can
slow down the server severely, especially if
there are a large number of users at once,
because each user will have a separate set
of session data.

Store items in a shopping basket.

All .NET data types.

Server memory.

The lifetime of the application
(typically, until the server is
rebooted).

The whole ASP.NET application.
Unlike most other types of
methods, application data is
global to all users.

Very secure, because data is
stored on the server.

Storing a large amount of
information can slow down the
server, because this data will
never time out and be removed.

Storing any type of global data.

Table 6-3. State Management Options Compared (Part 3)

Profiles

Caching

Allowed data types

Storage location

Lifetime

All serializable .NET data
types.

All .NET data types. Nonserializable
types are supported if you create a

custom profile.

A back-end database.

Permanent.

Server memory.

Depends on the expiration policy

you set, but may possibly be
released early if server memory
becomes scarce.

237

238

CHAPTER 6 ' STATE MANAGEMENT

Profiles Caching
Scope The whole ASP.NET The same as application state (global
application. May also be to all users and all pages).
accessed by other
applications.
Security Fairly secure, because Very secure, because the cached

Performance implications

Typical use

although data is never
transmitted, it is stored
without encryption in a
database that could be
compromised.

Large amounts of data can be
stored easily, but there may
be a nontrivial overhead in
retrieving and writing the
data for each request.

Store customer account
information.

data is stored on the server.

Storing a large amount of
information may force out other,
more useful cached information.
However, ASP.NET has the ability to
remove items early to ensure
optimum performance.

Storing data retrieved from a
database.

Clearly, there’s no shortage of choices for managing state in ASP.NET. Fortunately, most of these
state management systems expose a similar collection-based programming interface. One notable
exception is the profiles feature, which gives you a higher-level data model.

This chapter explores all the approaches to state management shown in Table 6-1 and Table 6-2,
but not those in Table 6-3. Caching, an indispensable technique for optimizing access to limited
resources such as databases, is covered in Chapter 11. Profiles, a higher-level model for storing user-

specific information that works in conjunction with ASP.NET authentication, is covered in Chapter 24.
However, before you can tackle either of these topics, you'll need to have a thorough understanding of
state management basics.

In addition, you can write your own custom state management code and use server-side resources
to store that information. The most common example of this technique is storing information in one or
more tables in a database. The drawback with using server-side resources is that they tend to slow down
performance and can hurt scalability. For example, opening a connection to a database or reading
information from a file takes time. In many cases, you can reduce this overhead by supplementing your
state management system with caching. You'll explore your options for using and enhancing database
access code in Part 2.

View State

View state should be your first choice for storing information within the bounds of a single page. View state
is used natively by the ASP.NET web controls. It allows them to retain their properties between postbacks.
You can add your own data to the view state collection using a built-in page property called ViewState. The
type of information you can store includes simple data types and your own custom objects.

Like most types of state management in ASP.NET, view state relies on a dictionary collection, where
each item is indexed with a unique string name. For example, consider this code:

ViewState["Counter"] = 1;

CHAPTER 6 "' STATE MANAGEMENT

This places the value 1 (or rather, an integer that contains the value 1) into the ViewState collection
and gives it the descriptive name Counter. If there is currently no item with the name Counter, a new item
will be added automatically. If there is already an item indexed under the name Counter, it will be replaced.

When retrieving a value, you use the key name. You also need to cast the retrieved value to the
appropriate data type. This extra step is required because the ViewState collection casts all items to the
base Object type, which allows it to handle any type of data.

Here’s the code that retrieves the counter from view state and converts it to an integer:

int counter;
if (ViewState["Counter"] != null)

counter = (int)ViewState["Counter"];
If you attempt to look up a value that isn’t present in the collection, you'll receive a

NullReferenceException. To defend against this possibility, you should check for a null value before you
attempt to retrieve and cast data that may not be present.

Note ASP.NET provides many collections that use the same dictionary syntax. This includes the collections
you’ll use for session and application state as well as those used for caching and cookies. You'll see several of
these collections in this chapter.

A View State Example

The following code demonstrates a page that uses view state. It allows the user to save a set of values (all
the text that’s displayed in all the text boxes of a table) and restore it later. This example uses recursive
logic to dig through all child controls, and it uses the control ID for the view state key, because this is
guaranteed to be unique in the page.
Here’s the complete code:
public partial class ViewStateTest : System.Web.UI.Page
protected void cmdSave Click(object sender, System.EventArgs e)
// Save the current text.
SaveAllText(Tablel.Controls, true);
private void SaveAllText(ControlCollection controls, bool saveNested)
foreach (Control control in controls)
if (control is TextBox)
// Store the text using the unique control ID.
ViewState[control.ID] = ((TextBox)control).Text;

if ((control.Controls != null) 8& saveNested)

239

240

CHAPTER 6 " STATE MANAGEMENT

SaveAllText(control.Controls, true);

}

protected void cmdRestore Click(object sender, System.EventArgs e)

// Retrieve the last saved text.
RestoreAllText(Tablel.Controls, true);

}

private void RestoreAllText(ControlCollection controls, bool saveNested)
foreach (Control control in controls)
if (control is TextBox)

if (viewState[control.ID] != null)
((TextBox)control).Text = (string)ViewState[control.ID];

if ((control.Controls != null) 8& saveNested)

RestoreAllText(control.Controls, true);

Figure 6-1 shows the page in action.

File Edit View Favorites Tools Help €] > BRE! A 2],','
Address -@j http: fflocalhostfChapter07fYiewStateTest. aspx N
-
Description Value
Name: |Joe |
D 12300505 E
Age: [24
E-mail: ljoe@myplace.com |
Password: [oosese |
v
.@j Done \3 Local intranet:

Figure 6-1. Saving and restoring text using view state

CHAPTER 6 "' STATE MANAGEMENT

Storing Objects in View State

You can store your own objects in view state just as easily as you store numeric and string types.
However, to store an item in view state, ASP.NET must be able to convert it into a stream of bytes so that
it can be added to the hidden input field in the page. This process is called serialization. If your objects
aren’t serializable (and by default they aren’t), you'll receive an error message when you attempt to place
them in view state.

To make your objects serializable, you need to add the Serializable attribute before your class
declaration. For example, here’s an exceedingly simple Customer class:

[Serializable]
public class Customer

{

public string FirstName;
public string LastName;

public Customer(string firstName, string lastName)

FirstName = firstName;
LastName = lastName;

Because the Customer class is marked as serializable, it can be stored in view state:

// Store a customer in view state.
Customer cust = new Customer("Marsala", "Simons");
ViewState["CurrentCustomer"] = cust;

Remember, when using custom objects, you'll need to cast your data when you retrieve it from view
state.

// Retrieve a customer from view state.
Customer cust;
cust = (Customer)ViewState["CurrentCustomer"];

For your classes to be serializable, you must meet these requirements:
* Your class must have the Serializable attribute.
* Any classes it derives from must have the Serializable attribute.

* All the member variables of the class must use serializable data types. Any
nonserializable data type must be decorated with the NonSerialized attribute
(which means it is simply ignored during the serialization process).

Once you understand these principles, you'll also be able to determine what .NET objects can be
placed in view state. You simply need to find the class information in the MSDN Help. Find the class
you're interested in, and examine the documentation. If the class declaration is preceded with the
Serializable attribute, the object can be placed in view state. If the Serializable attribute isn’t present, the
object isn’t serializable, and you won’t be able to store it in view state. However, you may still be able to
use other types of state management, such as in-process session state, which is described later in the
“Session State” section.

The following example rewrites the page shown earlier to use the generic Dictionary class. The
Dictionary class is a serializable key-value collection that’s provided in the System.Collections.Generic

241

242

CHAPTER 6 ' STATE MANAGEMENT

namespace. As long as you use the Dictionary to store serializable objects (and use a serializable data
type for your keys), you can store a Dictionary object in view state without a hitch.

To demonstrate this technique, the following example stores all the control information for the page
as a collection of strings in a Dictionary object, and it indexes each item by string using the control ID.
The final Dictionary object is then stored in the view state for the page. When the user clicks the Display
button, the dictionary is retrieved, and all the information it contains is displayed in a label.

public partial class ViewStateObjects : System.Web.UI.Page
protected void cmdSave Click(object sender, System.EventArgs e)
// Put the text in the Dictionary.
Dictionary<string,string> textToSave = new Dictionary<string,string>();

SaveAllText(Tablel.Controls, textToSave, true);

// Store the entire collection in view state.
ViewState["ControlText"] = textToSave;

}

private void SaveAllText(ControlCollection controls,
Dictionary<string, string> textToSave, bool saveNested)

foreach (Control control in controls)
if (control is TextBox)

// Add the text to the Dictionary.
textToSave.Add(control.ID, ((TextBox)control).Text);

}
if ((control.Controls != null) && saveNested)

SaveAllText(control.Controls, textToSave, true);

}
protected void cmdDisplay Click(object sender, System.EventArgs e)

if (viewState["ControlText"] != null)

// Retrieve the Dictionary.
Dictionary<string, string> savedText =
(Dictionary<string, string>)ViewState["ControlText"];

// Display all the text by looping through the Dictionary.
1blResults.Text = "";
foreach (KeyValuePair<string, string> item in savedText)

1blResults.Text += item.Key + " = " + item.Value + "
";

CHAPTER 6 "' STATE MANAGEMENT

Figure 6-2 shows the result of a simple test, after entering some data, saving it, and retrieving it.

2 http:#Hlocalhost/Chapter07/ViewStateObjects.aspx - Microsoft Internet Explorer Q@@

File Edit Vew Favorites Tools Help QBack A > \ﬂ \g] ;‘ ,-»" Search

Address «Eﬂ http:flocalhost{Chapter07/viewStateObjects.aspx e

Description Value

Name: joe

ID: 204324234

Age: 24

E-mail: joe@myplace.com

Password:

Email = joe@myplace.com
Age=124

EmpID = 204324234
Password = ssdfsdf

Name = joe

&] Dane &J Local intranet

Figure 6-2. Retrieving an object from view state

Assessing View State

View state is ideal because it doesn’t take up any memory on the server and doesn’t impose any arbitrary
usage limits (such as a time-out). So, what might force you to abandon view state for another type of
state management? Here are three possible reasons:

* Youneed to store mission-critical data that the user cannot be allowed to tamper
with. (An ingenious user could modify the view state information in a postback
request.) In this case, consider session state. Alternatively, consider using the
countermeasures described in the next section. They aren’t bulletproof, but they
will greatly increase the effort an attacker would need in order to read or modify
view state data.

* You need to store information that will be used by multiple pages. In this case,
consider session state, cookies, or the query string.

* Youneed to store an extremely large amount of information, and you don’t want
to slow down page transmission times. In this case, consider using a database, or
possibly session state.

243

244

CHAPTER 6 ' STATE MANAGEMENT

The amount of space used by view state depends on the number of controls, their complexity, and
the amount of dynamic information. If you want to profile the view state usage of a page, just turn on
tracing by adding the Trace attribute to the Page directive, as shown here:

<%@ Page Language="C#" Trace="true" ... %>

Look for the Control Tree section. Although it doesn’t provide the total view state used by the page,
it does indicate the view state used by each individual control in the Viewstate Size Bytes column (see
Figure 6-3). Don’t worry about the Render Size Bytes column, which simply reflects the size of the
rendered HTML for the control.

Tip You can also examine the contents of the current view state of a page using the Web Development Helper
described in Chapter 2.

A http://localhost/Chapter07/ViewStateTest.aspx - Microsoft Internet Explorer

File Edit Vew Favorites Tools Help € > ‘ﬂ ‘g 2 - Search Favorites @ Media £ v &g 2 ,','
Address éj http: fflocalhostfChapter07fYiewStateTest. aspx e’
~
Render Size Bytes Viewstate Size Bytes
S L Type (including children) (excluding children)
_ PAGE ASP.ViewStateTest_aspx 1306 20
_ctlo System.\Web. UL LiteralControl 105 0
Form¥alidators System.Web . UL.HtmIControls.HtmIForm 1180 0
_ctl1 System.\Web. UL LiteralControl 5 0
Tablel System.Web,UL.WebControls. Table 756 0
_ctl2 System.Web. UL WebControls, TableRow 148 0
_ctl3 System.\Web, UL WebControls. TableCell 70 0
_ctl4 System.\Web,UI.WebControls. TableCell 63 0
_ctls System.Web UL WebControls. TableRow 103 0
_ctlé System.\Web,UI.WebControls. TableCell 16 0
_ctl? System.\Web UL WebControls. TableCell 73 0 v
< ?
&] Done %J Local intranet

Figure 6-3. Determining the view state used in a page

Selectively Disabling View State

To improve the transmission times of your page, it’s a good idea to eliminate view state when it’s not
needed. Although you can disable view state at the application and page level, it makes the most sense to
disable it on a per-control basis. You won’t need view state for a control in three instances:

* The control never changes. For example, a button with static text doesn’t need
view state.

* The control is repopulated in every postback. For example, if you have a label that
shows the current time, and you set the current time in the Page.Load event
handler, it doesn’t need view state.

CHAPTER 6 "' STATE MANAGEMENT

* The control is an input control, and it changes only because of user actions. After
each postback, ASP.NET will populate your input controls using the submitted
form values. This means the text in a text box or the selection in a list box won'’t be
lost, even if you don’t use view state.

Tip Remember that view state applies to all the values that change, not just the text displayed in the control.
For example, if you dynamically change the colors used in a label, these changes are stored in view state, even if
you don’t dynamically set the text. (Technically, it’s the control’s responsibility to use view state. That means it is
possible to create a server control that doesn’t retain certain values, even if view state is enabled. However, the
ASP.NET web controls always store changed values in view state.)

To turn off view state for a single control, set the EnableViewState property of the control to false. To
turn off view state for an entire page and all its controls, set the EnableViewState property of the page to
false, or use the EnableViewState attribute in the Page directive, as shown here:

<%@ Page Language="C#" EnableViewState="false" ... %>

Even when you disable view state for the entire page, you'll still see the hidden view state tag with a
small amount of information in the rendered HTML. That’s because ASP.NET always stores the control
hierarchy for the page at a minimum. There’s no way to remove this last little fragment of data.

You can turn view state off for all the web pages in your application by setting the enableViewState
attribute of the <pages> element in the web.config file, as shown here:

<configuration>
<system.web>
<pages enableViewState="false" />

</system.web>
</configuration>

Now, you'll need to set the EnableViewState attribute of the Page directive to true if you want to
switch on view state for a particular page.

Finally, it’s possible to switch of view state for a page (either through the Page directive or through
the web.config file) but selectively override that setting by explicitly enabling view state for a particular
control. This technique, which is new in ASP.NET 4, is popular with developers who are obsessed with
paring down the view state of their pages to the smallest size possible. It allows you to switch on view
state only when it’s absolutely necessary—for example, with a data editing control such as the GridView
(which uses view state to keep track of the currently selected item, among other details).

To use this approach, you need to use another property, called ViewStateMode. Like
EnableViewState, the ViewStateMode property applies to all controls and page and can be set in a
control tag or through an attribute in the page directive. ViewStateMode takes one of three values:

Enabled: View state will work, provided the EnableViewState property allows it.
Disabled: View state will not work for this control, although it may be allowed for child controls.

Inherit: This control will use the ViewStateMode property of its container. This is the default value.

245

246

CHAPTER 6 ' STATE MANAGEMENT

To use opt-in state management, you set ViewStateMode of the page to Disabled. This turns off view
state for the top-level page. By default, all the controls inside the page will have a ViewStateMode of
Inherit, which means they also disable themselves.

<%@ Page Language="C#" ViewStateMode="Disabled" ... %>

Note that you do not set EnableViewState to false—if you do, ASP.NET completely shuts down view
state for the page, and no control can opt in.
Now, to opt in for a particular control in the page, you simply set ViewStateMode to Enabled:

<asp:Label ViewStateMode="Enabled" ... />

This model is a bit awkward, but it’s useful when view state size is an issue. The only drawback is
that you need to remember to explicitly enable view state on controls that have dynamic values you
want to persist or on controls that use view state for part of their functionality.

View State Security

As described in earlier chapters, view state information is stored in a single Base64-encoded string that
looks like this:

<input type="hidden" name="__ VIEWSTATE"
id="__ VIEWSTATE" value="dDw3NDg2NTI5MDg70z4="/>

Because this value isn’t formatted as clear text, many ASP.NET programmers assume that their view
state data is encrypted. It isn’t. A malicious user could reverse-engineer this string and examine your
view state data in a matter of seconds, as demonstrated in Chapter 3.

If you want to make view state secure, you have two choices. First, you can make sure that the view
state information is tamper-proof by using a hash code.

A hash code is a cryptographically strong checksum. Essentially, ASP.NET calculates this checksum
based on the current view state content and adds it to the hidden input field when it returns the page.
When the page is posted back, ASP.NET recalculates the checksum and ensures that it matches. If a
malicious user changes the view state data, ASP.NET will be able to detect the change, and it will reject
the postback.

Hash codes are enabled by default, so if you want this functionality, you don’t need to take any extra
steps. Occasionally, developers choose to disable this feature to prevent problems in a web farm where
different servers have different keys. (The problem occurs if the page is posted back and handled by a
new server, which won’t be able to verify the view state information.) To disable hash codes, you can use
the EnableViewStateMAC property of the Page directive in your .aspx file:

<%@ Page EnableViewStateMac="false" ... %>

Alternatively, you can set the enableViewStateMac attribute of the <pages> element in the
web.config file, as shown here:

<configuration>
<system.web>
<pages enableViewStateMac="false" />

</system.web>
</configuration>

CHAPTER 6 "' STATE MANAGEMENT

Note This step is strongly discouraged. It's much better to configure multiple servers to use the same key,
thereby removing any problem. Chapter 5 describes how to do this.

Even when you use hash codes, the view state data will still be readable. To prevent users from
getting any view state information, you can enable view state encryption. You can turn on encryption for
an individual page using the ViewStateEncryptionMode property of the Page directive:

<%@Page ViewStateEncryptionMode="Always" ... %>

Or you can set the same attribute in the web.config configuration file:

<pages viewStateEncryptionMode="Always" />

Either way, this enforces encryption. You have three choices for your view state encryption setting—
always encrypt (Always), never encrypt (Never), or encrypt only if a control specifically requests it (Auto).
The default is Auto, which means that the page won’t encrypt its view state unless a control on that page
specifically requests it. To request encryption, a control must call the
Page.RegisterRequiresViewStateEncryption() method at some point during its life cycle, before it’s
renders itself to HTML. If no control calls this method to indicate it has sensitive information, the view
state is not encrypted, thereby saving the encryption overhead. However, the control doesn’t have
absolute power—if it calls Page.RegisterRequiresViewStateEncryption() and the encryption mode of the
page is Never, the view state won’t be encrypted.

When hashing or encrypting data, ASP.NET uses the computer-specific key defined in the
<machineKey> section of the machine.config file, which is described in Chapter 5. By default, you won’t
actually see the definition for the <machineKey> because it’s initialized programmatically. However, you
can see the equivalent content in the machine.config.comments files, and you can explicitly add the
<machineKey> element if you want to customize its settings.

Tip Don’t encrypt view state data if you don’t need to do so. The encryption will impose a performance penalty,
because the web server needs to perform the encryption and decryption with each postback.

Transferring Information Between Pages

One of the most significant limitations with view state is that it’s tightly bound to a specific page. If the
user navigates to another page, this information is lost. This problem has several solutions, and the best
approach depends on your requirements. In the following sections, you'll see how to pass information
from one page to the next using the query string and cross-page posting. If neither of these techniques is
right for your scenario, you'll need to use a form of state management that has a broader scope, such as
cookies, session state, or application state, all of which are discussed later in this chapter.

247

248

CHAPTER 6 ' STATE MANAGEMENT

The Query String

One common approach is to pass information using a query string in the URL. You will commonly find
this approach in search engines. For example, if you perform a search on the Google website, you’ll be
redirected to a new URL that incorporates your search parameters. Here’s an example:

http://www.google.ca/search?q=organic+gardening

The query string is the portion of the URL after the question mark. In this case, it defines a single
variable named g, which contains the “organic+gardening” string.

The advantage of the query string is that it’s lightweight and doesn’t exert any kind of burden on the
server. Unlike cross-page posting, the query string can easily transport the same information from page
to page. It has some limitations, however:

* Information is limited to simple strings, which must contain URL-legal characters.

* Information is clearly visible to the user and to anyone else who cares to
eavesdrop on the Internet.

* The enterprising user might decide to modify the query string and supply new
values, which your program won’t expect and can’t protect against.

* Many browsers impose a limit on the length of a URL (usually from 1 to 2 KB). For
that reason, you can’t place a large amount of information in the query string and
still be assured of compatibility with most browsers.

Adding information to the query string is still a useful technique. It’s particularly well suited in
database applications where you present the user with a list of items corresponding to records in a
database, like products. The user can then select an item and be forwarded to another page with detailed
information about the selected item. One easy way to implement this design is to have the first page
send the item ID to the second page. The second page then looks that item up in the database and
displays the detailed information. You'll notice this technique in e-commerce sites such as
Amazon.com.

Using the Query String

To store information in the query string, you need to place it there yourself. Unfortunately, there is no
collection-based way to do this. Typically, this means using a special HyperLink control, or you can use a
Response.Redirect() statement like the one shown here:

// Go to newpage.aspx. Submit a single query string argument
// named recordID and set to 10.
int recordID = 10;

Response.Redirect("newpage.aspx?recordID=" + recordID.ToString());

You can send multiple parameters as long as you separate them with an ampersand (&), as
shown here:

// Go to newpage.aspx. Submit two query string arguments:
// recordID (10) and mode (full).

Response.Redirect("newpage.aspx?recordID=108mode=full");

The receiving page has an easier time working with the query string. It can receive the values from
the QueryString dictionary collection exposed by the built-in Request object, as shown here:

string ID = Request.QueryString["recordID"];

http://www.google.ca/search?q=organic+gardening

CHAPTER 6 "' STATE MANAGEMENT

If the query string doesn’t contain the recordID parameter, or if the query string contains the
recordID parameter but doesn’t supply a value, the ID string will be set to null.

Note that information is always retrieved as a string, which can then be converted to another simple
data type. Values in the QueryString collection are indexed by the variable name.

Note Unfortunately, ASP.NET does not expose any mechanism to automatically verify or encrypt query string
data. This facility could work in almost the same way as the view state protection. Without these features, query
string data is easily subject to tampering. In Chapter 25, you'll take a closer look at the .NET cryptography classes
and learn how you can use them to build a truly secure query string.

URL Encoding

One potential problem with the query string is using characters that aren’t allowed in a URL. The list of
characters that are allowed in a URL is much shorter than the list of allowed characters in an HTML
document. All characters must be alphanumeric or one of a small set of special characters (including $-
_.+/¥0),). Some browsers tolerate certain additional special characters (Internet Explorer is notoriously
lax), but many do not. Furthermore, some characters have special meaning. For example, the
ampersand (&) is used to separate multiple query string parameters, the plus sign (+) is an alternate way
to represent a space, and the number sign (#) is used to point to a specific bookmark in a web page. If
you try to send query string values that include any of these characters, you'll lose some of your data.

If you're concerned that the data you want to store in the query string may not consist of URL-legal
characters, you should use URL encoding. With URL encoding, special characters are replaced by
escaped character sequences starting with the percent sign (%), followed by a two-digit hexadecimal
representation. The only exception is the space character, which can be represented as the character
sequence %20 or the + sign.

You can use the methods of the HttpServerUetility class to encode your data automatically. For
example, the following shows how you would encode a string of arbitrary data for use in the query string.
This replaces all the nonlegal characters with escaped character sequences.

string productName = "Flying Carpet";
Response.Redirect("newpage.aspx?productName="

+ Server.UrlEncode(productName));

You can use the HttpServerUtility.UrlDecode() method to return a URL-encoded string to its initial
value. However, you don’t need to take this step with the query string because ASP.NET automatically
decodes your values when you access them through the Request.QueryString collection. Usually, it's safe
to call UrlDecode() a second time, because decoding data that’s already decoded won'’t cause a problem.
The only exception is if you have a value that legitimately includes the + sign. In this case, calling
UrlDecode() will convert the + sign to a space.

Cross-Page Posting

You've already learned how ASP.NET pages post back to themselves. When a page is posted back, it
sends the current content of all the controls in the form for that page (including the contents of the
hidden view state field). To transfer information from one page to another, you can use the same
postback mechanism, but send the information to a different page. This technique sounds conceptually
straightforward, but it’s a potential minefield. If you're not careful, it can lead you to create pages that
are tightly coupled to one another and difficult to enhance and debug.

249

250

CHAPTER 6 ' STATE MANAGEMENT

The infrastructure that supports cross-page postbacks is a property named PostBackUrl, which is
defined by the IButtonControl interface and turns up in button controls such as ImageButton,
LinkButton, and Button. To use cross-page posting, you simply set PostBackUrl to the name of another
web form. When the user clicks the button, the page will be posted to that new URL with the values from
all the input controls on the current page.

Here’s an example that defines a form with two text boxes and a button that posts to a page named
CrossPage2.aspx:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="CrossPagel.aspx.cs"
Inherits="CrossPage1" %>

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head runat="server">
<title>CrossPagel</title>

</head>
<body>
<form id="formi" runat="server" >
<div>
<asp:TextBox runat="server" ID="txtFirstName"></asp:TextBox>
<asp:TextBox runat="server" ID="txtLastName"></asp:TextBox>
<asp:Button runat="server" ID="cmdSubmit"
PostBackUrl="CrossPage2.aspx" Text="Submit" />
</div>
</form>
</body>
</html>

In CrossPage2.aspx, the page can interact with the CrossPagel.aspx objects using the
Page.PreviousPage property. Here’s an example:

protected void Page Load(object sender, EventArgs e)
if (PreviousPage != null)

1blInfo.Text = "You came from a page titled " +
PreviousPage.Header.Title;

Note that this page checks for a null reference before attempting to access the PreviousPage object.
If there’s no PreviousPage object, there’s no cross-page postback.

ASP.NET uses some interesting sleight of hand to make this system work. The first time the second
page accesses Page.PreviousPage, ASP.NET needs to create the previous page object. To do this, it
actually starts the page processing life cycle, but interrupts it just before the PreRender stage. Along the
way, a stand-in HttpResponse object is created to silently catch and ignore any Response.Write()
commands from the previous page. However, there are still some interesting side effects. For example,
all the page events of the previous page are fired, including Page.Load, Page.Init, and even the
Button.Click event for the button that triggered the postback (if it'’s defined). Firing these events is
mandatory, because they are required to properly initialize the page.

http://www.w3.org/1999/xhtml

CHAPTER 6 "' STATE MANAGEMENT

Note Trace messages aren’t ignored like Response messages are, which means you may see tracing
information from both pages in a cross-posting situation.

Getting Page-Specific Information

In the previous example, the information you can retrieve from the previous page is limited to the
members of the Page class. If you want to get more specific details, such as control values, you need to
cast the PreviousPage reference to the appropriate type.

Here’s an example that handles this situation properly, by checking first if the PreviousPage object is
an instance of the expected source (CrossPagel):

protected void Page Load(object sender, EventArgs e)

{
CrossPagel prevPage = PreviousPage as CrossPagel;
if (prevPage != null)
// (Read some information from the previous page.)
}

Note In a projectless website, Visual Studio may flag this as an error, indicating that it does not have the type
information for the source page class (in this example, that’s CrossPage1). However, once you compile the
website, the error will disappear.

You can solve this problem in another way. Rather than casting the reference manually, you can add
the PreviousPageType control directive to your page, which indicates the expected type of the page
initiating the cross-page postback. Here’s an example:

<%@ PreviousPageType VirtualPath="CrossPagel.aspx" %>

However, this approach is more fragile because it limits you to a single type. You don’t have the
flexibility to deal with situations where more than one page might trigger a cross-page postback. For that
reason, the casting approach is preferred.

Tip Seeing as the PostBackUrl property can point to only one page, it may seem that cross-page posting can
accommodate a fixed relationship between just two pages. However, you can extend this relationship with various
techniques. For example, you can modify the PostBackUrl property programmatically to choose a different target.
Conversely, a cross-post target can test the PreviousPage property, checking if it is one of several different
classes. You can then perform different tasks depending on what page initiated the cross-post.

251

252

CHAPTER 6 ' STATE MANAGEMENT

Once you've cast the previous page to the appropriate page type, you still won'’t be able to directly
access the control values. That’s because the controls are declared as protected members. You can
handle this by adding properties to the page class that wrap the control variables, like this:

public TextBox FirstNameTextBox

{
get { return txtFirstName; }

public TextBox LastNameTextBox

get { return txtLastName; }

However, this usually isn’t the best approach. The problem is that it exposes too many details,
giving the target page the freedom to read every control property. If you need to change the page later to
use different input controls, it’s difficult to maintain these properties. Instead, you'll probably be forced
to rewrite code in both pages.

A better choice is to define specific, limited methods or properties that extract just the information
you need. Here’s an example:

public string FullName

get { return txtFirstName.Text + " " + txtLastName.Text; }

This way, the relationship between the two pages is well documented and easily understood. If the
controls in the source page are changed, you can probably still keep the same interface for the public
methods or properties. For example, if you changed the name entry to use different controls in the
previous example, you would still be forced to revise the FullName property. However, once your
changes would be confined to CrossPagel.aspx, you wouldn’t need to modify CrossPage2.aspx at all.

Tip In some cases, a better alternative to cross-page posting is to use some sort of control that simulates
multiple pages or multiple steps, such as separate Panel controls or the MultiView or Wizard control. This offers
much the same user experience and simplifies the coding model. You'll learn about these controls in Chapter 17.

Performing Cross-Page Posting in Any Event Handler

As you learned in the previous section, cross-page posting is available only with controls that implement
the IButtonControl interface. However, there is a workaround. You can use an overloaded method of
Server.Transfer() to switch to a new ASP.NET page with the view state information left intact. You simply
need to include the Boolean preserveForm parameter and set it to true, as shown here:

Server.Transfer("CrossPage2.aspx”, true);

This gives you the opportunity to use cross-page posting anywhere in your web-page code. As with
any call to Server.Transfer(), this technique causes a server-side redirect. That means there is no extra
roundtrip to redirect the client. As a disadvantage, the original page URL (from the source page) remains
in the user’s browser even though you’ve moved on to another page.

CHAPTER 6 "' STATE MANAGEMENT

Interestingly, there is a way to distinguish between a cross-page post that’s initiated directly through
a button and the Server.Transfer() method. Although in both cases you can access Page.PreviousPage, if
you use Server.Transfer(), the Page.PreviousPage.IsCrossPagePostBack property is false. Here’s the code
that demonstrates how this logic works:

if (PreviousPage == null)
// The page was requested (or posted back) directly.
else if (PreviousPage.IsCrossPagePostBack)

// A cross-page postback was triggered through a button.
}

else

// A stateful transfer was triggered through Server.Transfer().

}
The IsPostBack and IsCrossPagePostBack Properties

It’s important to understand how the Page.IsPostBack property works during a cross-page postback. For
the source page (the one that triggered the cross-page postback), the IsPostBack property is true. For the
destination page (the one that’s receiving the postback), the IsPostBack property is false. One benefit of
this system is that it means your initialization code will usually run when it should.

For example, imagine CrossPagel.aspx performs some time-consuming initialization the first time
it’s requested, using code like this:

protected void Page Load(object sender, EventArgs e)
if (!IsPostBack)

// (Retrieve some data from a database and display it on the page.)

Now imagine the user moves from CrossPagel.aspx to CrossPage2.aspx through a cross-page
postback. As soon as CrossPage2.aspx accesses the PreviousPage property, the page life cycle executes
for CrossPagel.aspx. At this point, the Page.Load event fires for CrossPagel.aspx. However, on
CrossPagel.aspx the Page.IsPostBack property is true, so your code skips the time-consuming
initialization steps. Instead, the control values are restored from view state. On the other hand, the
Page.IsPostBack property for CrossPage2.aspx is false, so this page performs the necessary first-time
initialization.

In some situations, you might have code that you want to execute for the first request and all
subsequent postbacks except when the page is the source of a cross-page postback. In this case, you can
check the IsCrossPagePostBack property. This property is true if the current page triggered a cross-page
postback.

That means you can use code like this in CrossPagel.aspx:

protected void Page Load(object sender, EventArgs e)
if (IsCrossPagePostBack)

// This page triggered a postback to CrossPage2.aspx.

253

254

CHAPTER 6 ' STATE MANAGEMENT

// Don't perform time-consuming initialization unless it affects
// the properties that the target page will read.

else if (IsPostBack)

// This page was posted back normally.
// Don't do the first-request initialization.

else

// This is the first request for the page.
// Perform all the required initialization.

There is a trick that allows you to avoid running the life cycle of the source page if you simply want
to read one of its control values. You can get the control value directly from the Request collection using
the control’s ID. For example, Request["txtName"] gets the value of the text box named txtName, even
though that text box is located on the previous page. However, retrieving Request["txtName"] won’t
cause ASP.NET to instantiate the source page and fire its events.

Before you use this approach, you should consider two serious caveats. First, you need to make sure
you use the client-side control ID, which is slightly different from the server-side control ID if the control
is nested inside a naming container such as a master page, data control, and so on (if in doubt, check the
rendered HTML). The second, more serious consideration is that this approach violates good object-
oriented practices; this approach is extremely fragile. If the source page is modified even slightly, this
technique may fail, and you won’t discover the problem until you run this code. As a rule, it’s always
better to restrict interaction between different classes to public properties and methods.

Cross-Page Posting and Validation

Cross-page posting introduces a few wrinkles when you use it in conjunction with the validator controls
described in Chapter 4. As you learned in Chapter 4, when you use the validator controls, you need to
check the Page.IsValid property to ensure that the data the user entered is correct. Although users are
usually prevented from posting invalid pages back to the server (thanks to some slick client-side
JavaScript), this isn’t always the case. For example, the client browser might not support JavaScript, or a
malicious user could deliberately circumvent the client-side validation checks.

When you use validation in a cross-page posting scenario, the potential for some trouble exists.
Namely, what happens if you use a cross-page postback and the source page has validation controls?
Figure 6-4 shows an example with a RequiredFieldValidator that requires input in a text box.

CHAPTER 6 "' STATE MANAGEMENT

A CrossPage1 - Microsoft Internet Explorer

i} B »
File Edit View Favorites Tools Help Qback ~ O - ¥ A & ,','
Address http:{flocalhost: 39698/ Chapter06/CrossPagel . aspx v
Type somethinghere:| | This is a required field.

[Cross-Page Postback] [Manual Transfer
&] Done &J Local intranet

Figure 6-4. Using a validator in a page that cross-posts

Both buttons have CausesValidation set to true. As a result, if you click the button to perform a
cross-page postback, you'll be prevented by the browser’s client-side checks. Instead, the error message
will appear. However, you should also check what happens when client-side script isn’t supported by
setting the RequiredFieldValidator.EnableClientScript property to false. (You can change it back to true
once you perfect your code.) Now when you click one of the buttons, the page is posted back, and the
new page appears.

To prevent this from happening, you obviously need to check the validity of the source page in the
target page by examining Page.IsValid before you perform any other action. This is the standard line of
defense used in any web form that employs validation. The difference is that if the page isn’t valid, it’s
not sufficient to do nothing. Instead, you need to take the extra step of returning the user to the original
page. Here’s the code you need in the destination page:

// This code is in the target page.
protected void Page Load(object sender, EventArgs e)

{
// Check the validity of the previous page.
if (PreviousPage != null)
if (!PreviousPage.IsValid)
// Display an error message or just do nothing.
else
{...}
}
}

It’s still possible to improve on this code. Currently, when the user is returned to the original page,
the error message won'’t appear, because the page is being re-requested (not posted back). To correct
this issue, you can set a flag to let the source page know the page has been refused by the target page.
Here’s an example that adds this flag to the query string:

255

256

CHAPTER 6 ' STATE MANAGEMENT

if (!PreviousPage.IsValid)

Response.Redirect(Request.UrlReferrer.AbsolutePath + "?err=true");

Now the original page simply needs to check for the presence of this query string value and perform
the validation accordingly. The validation causes error messages to appear for any invalid data.

// This code is in the source page.
protected void Page Load(object sender, EventArgs e)

if (Request.QueryString["err"] != null)
Page.Validate();

You could do still more to try to improve the page. For example, if the user is in the midst of filling
out a detailed form, re-requesting the page isn’t a good idea, because it clears all the input controls and
forces the user to start again from scratch. Instead, you might want to write a little bit of JavaScript code
to the response stream, which could use the browser’s back feature to return to the source page. Chapter
29 has more about JavaScript.

Tip This example demonstrates that cross-page postbacks are often trickier than developers first expect. If not
handled carefully, cross-page postbacks can lead you to build tightly coupled pages that have subtle dependencies
on one another, which makes it more difficult to change them in the future. As a result, think carefully before you
decide to use cross-page postbacks as a method to transfer information.

Cookies

Custom cookies provide another way you can store information for later use. Cookies are small files that
are created on the client’s hard drive (or, if they're temporary, in the web browser’s memory). One
advantage of cookies is that they work transparently without the user being aware that information
needs to be stored. They also can be easily used by any page in your application and even retained
between visits, which allows for truly long-term storage. They suffer from some of the same drawbacks
that affect query strings. Namely, they’re limited to simple string information, and they’re easily
accessible and readable if the user finds and opens the corresponding file. These factors make them a
poor choice for complex or private information or large amounts of data.

Some users disable cookies on their browsers, which will cause problems for web applications that
require them. However, cookies are widely adopted because so many sites use them.

Cookies are fairly easy to use. Both the Request and Response objects (which are provided through
Page properties) provide a Cookies collection. The important trick to remember is that you retrieve
cookies from the Request object, and you set cookies using the Response object.

To set a cookie, just create a new System.Net.HttpCookie object. You can then fill it with string
information (using the familiar dictionary pattern) and attach it to the current web response, as follows:

CHAPTER 6 "' STATE MANAGEMENT

// Create the cookie object.
HttpCookie cookie = new HttpCookie("Preferences");

// Set a value in it.
cookie["LanguagePref"] = "English";

// Add another value.
cookie["Country"] = "US";

// Add it to the current web response.
Response.Cookies.Add(cookie);

A cookie added in this way will persist until the user closes the browser and will be sent with every
request. To create a longer-lived cookie (which is stored with the temporary Internet files on the user’s
hard drive), you can set an expiration date, as shown here:

// This cookie lives for one year.
cookie.Expires = DateTime.Now.AddYears(1);

Cookies are retrieved by cookie name using the Request.Cookies collection, as shown here:
HttpCookie cookie = Request.Cookies["Preferences"];

// Check to see whether a cookie was found with this name.
// This is a good precaution to take,

// because the user could disable cookies,

// in which case the cookie would not exist.

string language;

if (cookie != null)

{
}

language = cookie["LanguagePref"];

The only way to remove a cookie is by replacing it with a cookie that has an expiration date that has
already passed. The following code demonstrates this technique:

HttpCookie cookie = new HttpCookie("LanguagePref");
cookie.Expires = DateTime.Now.AddDays(-1);

Response.Cookies.Add(cookie);

Note You'll find that some other ASP.NET features use cookies. Two examples are session state (which allows
you to temporarily store user-specific information in server memory) and forms security (which allows you to
restrict portions of a website and force users to access it through a login page).

257

258

CHAPTER 6 ' STATE MANAGEMENT

Session State

Session state is the heavyweight of state management. It allows information to be stored in one page and
accessed in another, and it supports any type of object, including your own custom data types. Best of
all, session state uses the same collection syntax as view state. The only difference is the name of the
built-in page property, which is Session.

Every client that accesses the application has a different session and a distinct collection of
information. Session state is ideal for storing information such as the items in the current user’s
shopping basket when the user browses from one page to another. But session state doesn’t come for
free. Though it solves many of the problems associated with other forms of state management, it forces
the web server to store additional information in memory. This extra memory requirement, even if it is
small, can quickly grow to performance-destroying levels as thousands of clients access the site.

Session Architecture

Session management is not part of the HTTP standard. As a result, ASP.NET needs to do some extra work
to track session information and bind it to the appropriate response.

ASP.NET tracks each session using a unique 120-bit identifier. ASP.NET uses a proprietary algorithm
to generate this value, thereby guaranteeing (statistically speaking) that the number is unique and that
it’s random enough so a malicious user can’t reverse-engineer or guess what session ID a given client
will be using. This ID is the only piece of information that is transmitted between the web server and the
client. When the client presents the session ID, ASP.NET looks up the corresponding session, retrieves
the serialized data from the state server, converts it to live objects, and places these objects into a special
collection so they can be accessed in code. This process takes place automatically.

Note Every time you make a new request, ASP.NET generates a new session ID until you actually use session
state to store some information. This behavior achieves a slight performance enhancement—in short, why bother
to save the session ID if it’s not being used?

At this point you're probably wondering where ASP.NET stores session information and how it
serializes and deserializes it. In classic ASP, the session state is implemented as a free-threaded COM
object that’s contained in the asp.dll library. In ASP.NET, the programming interface is nearly identical,
but the underlying implementation is quite a bit different.

Asyou saw in Chapter 5, when ASP.NET handles an HTTP request, it flows through a pipeline of
different modules that can react to application events. One of the modules in this chain is the
SessionStateModule (in the System.Web.SessionState namespace). The SessionStateModule generates
the session ID, retrieves the session data from external state providers, and binds the data to the call
context of the request. It also saves the session state information when the page is finished processing.
However, it’s important to realize that the SessionStateModule doesn’t actually store the session data.
Instead, the session state is persisted in external components, which are named state providers. Figure 6-
5 shows this interaction.

CHAPTER 6 "' STATE MANAGEMENT

ASP.NET
Web Page
Session
Collection
(HttpSessionState)
J\
— ¥ N
InProc StateServer SQLServer
S State ModIuIeS .
Y
In-Memory Windows Service Tables in the
Object aspnet_state.exe ~ ASPState Database
Y State Providers)

Figure 6-5. ASP.NET session state architecture

Session state is another example of ASP.NET’s pluggable architecture. A state provider is any class
that implements the IHttpSessionState interface, which means you can customize how session state
works simply by building (or purchasing) a new .NET component. ASP.NET includes three prebuilt state
providers, which allow you to store information in process, in a separate service, or in a SQL Server
database.

For session state to work, the client needs to present the appropriate session ID with each request.
The final ingredient in the puzzle is how the session ID is tracked from one request to the next. You can
accomplish this in two ways:

Using cookies: In this case, the session ID is transmitted in a special cookie (named
ASP.NET_Sessionld), which ASP.NET creates automatically when the session collection is used. This
is the default, and it’s also the same approach that was used in earlier versions of ASP.

Using modified URLSs: In this case, the session ID is transmitted in a specially modified (or
“munged”) URL. This allows you to create applications that use session state with clients that don’t
support cookies.

You'll learn more about how to configure cookieless sessions and different session state providers
later in the “Configuring Session State” section.

Using Session State

You can interact with session state using the System.Web.SessionState.HttpSessionState class, which is
provided in an ASP.NET web page as the built-in Session object. The syntax for adding items to the
collection and retrieving them is basically the same as for adding items to the view state of a page.

259

260

CHAPTER 6 ' STATE MANAGEMENT

For example, you might store a DataSet in session memory like this:

Session["ProductsDataSet"] = dsProducts;

You can then retrieve it with an appropriate conversion operation:

dsProducts = (DataSet)Session["ProductsDataSet"];

Session state is global to your entire application for the current user. Session state can be lost in
several ways:

e Ifthe user closes and restarts the browser.

» Ifthe user accesses the same page through a different browser window, although
the session will still exist if a web page is accessed through the original browser
window. Browsers differ on how they handle this situation.

» Ifthe session times out because of inactivity. By default, a session times out after
20 idle minutes.

» Ifthe programmer ends the session by calling Session.Abandon().

In the first two cases, the session actually remains in memory on the server, because the web server
has no idea that the client has closed the browser or changed windows. The session will linger in
memory, remaining inaccessible, until it eventually expires.

In addition, session state will be lost when the application domain is re-created. This process
happens transparently when you update your web application or change a configuration setting. The
application domain may also be recycled periodically to ensure application health, as described in
Chapter 18. If this behavior is causing a problem, you can store session state information out of process,
as described in the next section. With out-of-process state storage, the session information is retained
even when the application domain is shut down.

Table 6-4 describes the key methods and properties of the HttpSessionState class.

Table 6-4. HttpSessionState Members

Member Description
Count The number of items in the current session collection.
IsCookieless Identifies whether this session is tracked with a cookie or with modified URLs.

IsNewSession Identifies whether this session was just created for the current request. If there is
currently no information in session state, ASP.NET won’t bother to track the session
or create a session cookie. Instead, the session will be re-created with every request.

Mode Provides an enumerated value that explains how ASP.NET stores session state
information. This storage mode is determined based on the web.config
configuration settings discussed later in this chapter.

SessionID Provides a string with the unique session identifier for the current client.

StaticObjects Provides a collection of read-only session items that were declared by <object
runat="server"> tags in the global.asax file. Generally, this technique isn’t used and
is a holdover from ASP programming that is included for backward compatibility.

CHAPTER 6 "' STATE MANAGEMENT

Member Description

Timeout The current number of minutes that must elapse before the current session will be
abandoned, provided that no more requests are received from the client. This value
can be changed programmatically, giving you the chance to make the session
collection longer term when required for more important operations.

Abandon() Cancels the current session immediately and releases all the memory it occupied.
This is a useful technique in a logoff page to ensure that server memory is reclaimed
as quickly as possible.

Clear() Removes all the session items but doesn’t change the current session identifier.

Configuring Session State

You can configure session state through the <sessionState> element in the web.config file for your
application. Here’s a snapshot of all the available settings you can use:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<!-- Other settings omitted. -->

<sessionState
mode="0ff|InProc|StateServer|SQLServer|Custom"
stateConnectionString="tcpip=127.0.0.1:42424"
stateNetworkTimeout="10"
sqlConnectionString="data source=127.0.0.1;Integrated Security=SSPI
sqlCommandTimeout="30" allowCustomSqlDatabase="false"
useHostingIdentity="true|false"
compressionEnabled="true|false"
cookieless="UseCookies" cookieName="ASP.NET SessionId"
regenerateExpiredSessionId="true|false"

timeout="20"
customProvider=""
/>
</system.web>
</configuration>

The session attributes are described in the following sections.

Mode

The mode session state settings allow you to configure what session state provider is used to store
session state information between requests. The following sections explain your options.

Off

This setting disables session state management for every page in the application. This can provide a
slight performance improvement for websites that are not using session state.

261

262

CHAPTER 6 ' STATE MANAGEMENT

InProc

InProc is similar to how session state was stored in classic ASP. It instructs ASP.NET to store information
in the current application domain. This provides the best performance but the least durability. If you
restart your server, the state information will be lost.

InProc is the default option, and it makes sense for most small websites. In a web farm scenario,
though, it won’t work at all. To allow session state to be shared between servers, you must use the out-
of-process or SQL Server state service. Another reason you might want to avoid InProc mode is because
it makes for more fragile sessions. In ASP.NET, application domains are recycled in response to a variety
of actions, including configuration changes, updated pages, and when certain thresholds are met
(regardless of whether an error has occurred). If you find that your application domain is being restarted
frequently and contributing to prematurely lost sessions, you can change to one of the more robust
session state providers.

Before you use either the out-of-process or the SQL Server state service, keep in mind that more
considerations will apply:

* When using the StateServer or SQLServer mode, the objects you store in session
state must be serializable. Otherwise, ASP.NET will not be able to transmit the
object to the state service or store it in the database.

» Ifyou’re hosting ASP.NET on a web farm, you'll also need to take some extra
configuration steps to make sure all the web servers are in sync. Otherwise, one
might encode information in session state differently than another, which will
cause a problem if the user is routed from one server to another during a session.
The solution is to modify the <machineKey> section of the machine.config file so
it’s consistent across all servers. For more information, refer to Chapter 5.

* Ifyouaren’t using the in-process state provider, the SessionStateModule.End
event won't be fired, and any event handlers for this event in the global.asax file or
an HTTP module will be ignored.

StateServer

With this setting, ASP.NET will use a separate Windows service for state management. Even if you run
this service on the same web server, it will be loaded outside the main ASP.NET process, which gives it a
basic level of protection if the ASP.NET process needs to be restarted. The cost is the increased time
delay imposed when state information is transferred between two processes. If you frequently access
and change state information, this can make for a fairly unwelcome slowdown.

When using the StateServer setting, you need to specify a value for the stateConnectionString
setting. This string identifies the TCP/IP address of the computer that is running the StateServer service
and its port number (which is defined by ASP.NET and doesn’t usually need to be changed). This allows
you to host the StateServer on another computer. If you don’t change this setting, the local server will be
used (set as address 127.0.0.1).

Of course, before your application can use the service, you need to start it. The easiest way to do this
is to use the Microsoft Management Console. Select Start » Programs » Administrative Tools »
Computer Management (you can also access the Administrative Tools group through the Control Panel).
Then, in the Computer Management tool, find the Services and Applications » Services node. Find the
service called ASP.NET State Service in the list, as shown in Figure 6-6.

CHAPTER 6 "' STATE MANAGEMENT
E Computer Management @m
File Action
e’ | 2@ B = H b mun
E §°mPUte’ Management (Local|| Name o Description Status Startup Type Log On As # || Actions
“ m‘ Syst;ka:c;‘lsd : £ Adobe LM Service AdobelM S... Manual Local Syste... E} Services)
v @ @ c' cduier £, Application Experience Processesa.. Started Automatic Local Syste... More... »
> (@ Event Viewer . Application Information Facilitates t. Started Manual Local Syste
» Gl Shared Folders mAppicat Hates B YoLe.. ASP.NET St... a
1 % Application Layer Gateway ... Provides su... Manual Local Service
&% Local Users and Groups|| o) M N
. . || ‘i Application Management Processes in... Manual Local Syste... ore...
» @ Reliability and Performz|| " .
& Device Manager Q ASP.NET State Service Provides su... Manual Network S...
4 Eg Storage ,(, Background Intelligent Tra... Transfersfil... Started Automatic (D... Local Syste...
29 Disk Management £ Base Filtering Engine The Base Fil... Started Automatic Local Service
a f‘g Services and Applications . Block Level Backup Engine ... Engineto p... Manual Local Syste...
> w Internet Information Seil| ‘o Certificate Propagation Propagates ... Manual Local Syste...
Services £ CNG Key Isolation The CNG ke... Manual Local Syste...
ﬁi WMI Centrol % COM+ Event System Supports Sy... Started Automatic Local Service
&[] SQL Server Configuratic|| ‘C;, COM+ System Application ~ Manages th... Manual Local Syste...
b L& Message Queuing £, Computer Browser Maintains a... Started Automatic Local Syste...
~. Cryptographic Services Provides fo... Started Automatic Network S...
DCOM Server Process Laun... Provides lau... Started Automatic Local Syste...
Desktop Window Manager ... Provides De... Started Automatic Local Syste... &

=

7| PremF—

Extended A Standard /

.

Figure 6-6. The ASP.NET state service

Once you find the service in the list, you can manually start and stop it by right-clicking it.
Generally, you’ll want to configure Windows to automatically start the service. Right-click it, select
Properties, and modify the Startup Type setting to Automatic, as shown in Figure 6-7. Then click Start to

start it immediately.

263

264

CHAPTER 6 ' STATE MANAGEMENT

ASP.NET State Service Properties (Local Computer) ld_:h,l

General lLog On] Recovery | Dependencies]

Service name: aspnet_state

Display name: ASP.NET State Service

Description: Provides support for out-of process session states for
= IASP NET. If this service is stopped, out-of-process

Path to executable:
C:\Windows\Microsoft. NET\Framework\v2.0.50727\aspnet _state exe

Startup type: {Automatic R4

Help me configure service startup options

Service status: Stopped

You can specify the start parameters that apply when you start the service
from here.

Start parameters:

[ok][Cancel][sopty]

. J

Figure 6-7. Service properties

Note When using StateServer mode, you can also set an optional stateNetworkTimeout attribute that specifies
the maximum number of seconds to wait for the service to respond before canceling the request. The default is 10
seconds.

SQLServer

This setting instructs ASP.NET to use a SQL Server database to store session information, as identified by
the sqlConnectionString attribute. This is the most resilient state store but also the slowest by far. To use
this method of state management, you'll need to have a server with SQL Server installed.

When setting the sqlConnectionString, you follow the same sort of pattern you use with ADO.NET
data access (which is described in Part 2). Generally, you’ll need to specify a data source (the server
address) and a user ID and password, unless you're using SQL integrated security.

In addition, you need to install the special stored procedures and temporary session databases.
These stored procedures take care of storing and retrieving the session information. ASP.NET includes a
command-line tool that does the work for you automatically, called aspnet_regsql.exe. It’s found in the
c:\Windows\Microsoft. NET\Framework\ [Version] directory. The easiest way to run aspnet_regsql.exe is
to start by launching the Visual Studio command prompt (open the Start menu and choose Programs »
Visual Studio 2010 » Visual Studio Tools » Visual Studio 2010 Command Prompt). You can then type in
an aspnet_regsql.exe command, no matter what directory you're in.

CHAPTER 6 "' STATE MANAGEMENT

You can use the aspnet_regsql.exe tool to perform several different database-related tasks. As you
travel through this book, you’ll see how to use aspnet_regsql.exe with ASP.NET features such as caching
(Chapter 11), membership (Chapter 21), and profiles (Chapter 24). To use aspnet_regsql.exe to create a
session storage database, you supply the -ssadd parameter. In addition, you use the -S parameter to
indicate the database server name, and the -E parameter to log in to the database using the currently
logged in Windows user account.

Here’s a command that creates the session storage database on the current computer, using the
default database name ASPState:

aspnet_regsql.exe -S localhost -E -ssadd

This command uses the alias localhost, which tells aspnet_regsqgl.exe to connect to the database
server on the current computer. You can replace this detail with the computer name of your database
server.

Once you've created your session state database, you need to tell ASP.NET to use it by modifying the
<sessionState> section of the web.config file. If you're using a database named ASPState to store your
session information (which is the default), you don’t need to supply the database name. Instead, you
simply need to indicate the location of the server and the type of authentication that ASP.NET should
use to connect to it, as shown here:

<sessionState mode="SQLServer"
sqlConnectionString="data source=localhost;Integrated Security=SSPI" ... />

This completes the setup procedure. However, you can alter these steps slightly if you want to use
persistent sessions or use a custom database, as you'll see next.

Tip To remove the ASPState database, use the -ssremove parameter.

Ordinarily, the standard session state time-out still applies to SQL Server state management. That’s
because the aspnet_regsqgl.exe tool also creates a new SQL Server job named
ASPState_Job_DeleteExpiredSessions. As long as the SQLServerAgent service is running, this job will be
executed every minute.

Additionally, the state tables will be removed every time you restart SQL Server, no matter what the
session time-out. That’s because the state tables are created in the tempdb database, which is a
temporary storage area. If this isn’t the behavior you want, you can tell the aspnet_regsql.exe tool to
install permanent state tables in the ASPState database. To do this, you use the -sstype p (for persisted)
parameter. Here’s the revised command line:

aspnet_regsql.exe -S localhost -E -ssadd -sstype p

Now session records will remain in the database, even if you restart SQL Server.

Your final option is to use aspnet_regsql.exe to create the state tables in a different database (not
ASPState). To do so, you use the -sstype c (for custom) parameter, and then supply the database name
with the -d parameter, as shown here:

aspnet_regsql.exe -S localhost -E -ssadd -sstype c -d MyCustomStateDb

When you use this approach, you'll create permanent session tables, so their records will remain
even when SQL Server is restarted.

265

266

CHAPTER 6 ' STATE MANAGEMENT

If you use a custom database, you’ll also need to make two configuration tweaks to the
<sessionState> element in your application’s web.config file. First, you must set
allowCustomSgqglDatabase to true. Second, you must make sure the connection string includes the Initial
Catalog setting, which indicates the name of the database you want to use. Here’s the correctly adjusted
element:

<sessionState Mode="SQLServer" allowCustomSqlDatabase="true" sqlConnectionString=
"data source=localhost;Integrated Security=SSPI;Initial Catalog=MyCustomStateDb"

/>

Tip When using the SqlServer mode, you can also set an optional sqlCommandTimeout attribute that specifies
the maximum number of seconds to wait for the database to respond before canceling the request. The default is
30 seconds.

Custom

When using custom mode, you need to indicate what session state store provider to use by supplying the
customProvider attribute. The customProvider attribute points to the name of a class that’s part of your
web application in the App_Code directory, or in a compiled assembly in the Bin directory or the GAC.

The most common reasons to use a custom session state provider are to store session information
in a database other than SQL Server or to use an existing table in a database that has a specific schema.
Creating a custom state provider is a low-level task that needs to be handled carefully to ensure security,
stability, and scalability, so it’s always best to use a prebuilt provider that has been designed and tested
by a reliable third party rather than roll your own.

Custom state providers are also beyond the scope of this book. However, if you'd like to try creating
your own, you can find an overview at http://msdn2.microsoft.com/en-us/library/aa479034.aspx.

Compression

ASP.NET includes a compression feature that allows you to reduce the size of serialized session data.
When you set enableCompression to true, session data is compressed (using the
System.I0.Compressio.GZipStream class) before it’s passed out of process. The enableCompression
setting has an effect only when you’re using out-of-process session state storage, because it’s only in this
situation that the data is serialized.

To compress and decompress session data, the web server needs to perform additional work.
However, this isn’t usually a problem, because compression is used in scenarios where web servers have
plenty of CPU time to spare but are limited by other factors. There are two key scenarios where session-
state compression makes sense:

When storing huge amounts of session state data in memory: Web server memory is a precious
resource. Ideally, session state is used for relatively small chunks of information, while a back-end
database deals with the long-term storage of larger amounts of data. But if this isn’t the case and if
the out-of-process state server is hogging huge amounts of memory, compression is a potential
solution.

When storing session state data on another computer: In some large-scale web applications,
session state is stored out of process (usually in SQL Server) and on a separate computer. As a result,
ASP.NET needs to pass the session information back and forth over a network connection. Clearly,
this design reduces performance from the speeds you’ll see when session state is stored on the web

http://msdn2.microsoft.com/en-us/library/aa479034.aspx

CHAPTER 6 "' STATE MANAGEMENT

server computer. However, it’s still the best compromise for some heavily trafficked web
applications with huge session state storage needs.

In the first scenario, compression sacrifices CPU work for web server memory. In the second
scenario, compression sacrifices CPU work for network bandwidth.

The actual amount of compression varies greatly depending on the type of data, but in testing
Microsoft saw clients achieve 30 percent to 60 percent size reductions, which guarantees a significant
performance benefit in these scenarios.

Cookieless

You can set the cookieless setting to one of the values defined by the HttpCookieMode enumeration, as
described in Table 6-5. You can also set the name that’s used for the cookie with the cookieName
attribute. If you don’t, the default value cookie name is ASP.NET_SessionId.

Table 6-5. HttpCookieMode Values

Value Description

UseCookies Cookies are always used, even if the browser or device doesn’t support cookies
or they are disabled. This is the default. If the device does not support cookies,
session information will be lost over subsequent requests, because each request
will get a new ID.

UseUri Cookies are never used, regardless of the capabilities of the browser or device.
Instead, the session ID is stored in the URL.

UseDeviceProfile ASP.NET chooses whether to use cookieless sessions by examining the
BrowserCapabilities object. The drawback is that this object indicates what the
device should support—it doesn’t take into account that the user may have
disabled cookies in a browser that supports them. Chapter 27 has more
information about how ASP.NET identifies different browsers and decides
whether they support features such as cookies.

AutoDetect ASP.NET attempts to determine whether the browser supports cookies by
attempting to set and retrieve a cookie (a technique commonly used on the
Web). This technique can correctly determine if a browser supports cookies but
has them disabled, in which case cookieless mode is used instead.

Here’s an example that forces cookieless mode (which is useful for testing):

<sessionState cookieless="UseUri" ... />

In cookieless mode, the session ID will automatically be inserted into the URL. When ASP.NET
receives a request, it will remove the ID, retrieve the session collection, and forward the request to the
appropriate directory. A munged URL is shown here:

http://localhost/WebApplication/(amfvyc55evojka55cffbq355)/Pagel.aspx

Because the session ID is inserted in the current URL, relative links also automatically gain the
session ID. In other words, if the user is currently stationed on Pagel.aspx and clicks a relative link to
Page2.aspx, the relative link includes the current session ID as part of the URL. The same is true if you
call Response.Redirect() with a relative URL, as shown here:

267

http://localhost/WebApplication

268

CHAPTER 6 ' STATE MANAGEMENT

Response.Redirect("Page2.aspx");

The only real limitation of cookieless state is that you cannot use absolute links, because they will
not contain the session ID. For example, this statement causes the user to lose all session information:

Response.Redirect("http://localhost/WebApplication/Page2.aspx");

By default, ASP.NET allows you to reuse a session identifier. For example, if you make a request and
your query string contains an expired session, ASP.NET creates a new session and uses that session ID.
The problem is that a session ID might inadvertently appear in a public place—such as in a results page
in a search engine. This could lead to multiple users accessing the server with the same session identifier
and then all joining the same session with the same shared data.

To avoid this potential security risk, it's recommended that you include the optional
regenerateExpiredSessionld attribute and set it to true whenever you use cookieless sessions. This way, a
new session ID will be issued if a user connects with an expired session ID. The only drawback is that
this process also forces the current page to lose all view state and form data, because ASP.NET performs
aredirect to make sure the browser has a new session identifier.

Note You can test if a cookieless session is currently being used by checking the IsCookieless property of the
Session object.

Timeout

Another important session state setting in the web.config file is the timeout. This specifies the number of
minutes that ASP.NET will wait, without receiving a request, before it abandons the session.

<sessionState timeout="20" ... />

This setting represents one of the most important compromises of session state. A difference of
minutes can have a dramatic effect on the load of your server and the performance of your application.
Ideally, you will choose a time frame that is short enough to allow the server to reclaim valuable memory
after a client stops using the application but long enough to allow a client to pause and continue a
session without losing it.

You can also programmatically change the session time-out in code. For example, if you know a
session contains an unusually large amount of information, you may need to limit the amount of time
the session can be stored. You would then warn the user and change the timeout property. Here’s a
sample line of code that changes the time-out to ten minutes:

Session.Timeout = 10;

Securing Session State

The information in session state is very secure, because it is stored exclusively on the server. However,
the cookie with the session ID can easily become compromised. This means an eavesdropper could steal
the cookie and assume the session on another computer.

Several workarounds address this problem. One common approach is to use a custom session
module that checks for changes in the client’s IP address. However, the only truly secure approach is to
restrict session cookies to portions of your website that use SSL. That way, the session cookie is
encrypted and useless on other computers.

http://localhost/WebApplication/Page2.aspx

CHAPTER 6 "' STATE MANAGEMENT

If you choose to use this approach, it also makes sense to mark the session cookie as a secure cookie
so that it will be sent only over SSL connections. That prevents the user from changing the URL from
https:// to http://, which would send the cookie without SSL. Here’s the code you need:

Request.Cookies["ASP.NET SessionId"].Secure = true;

Typically, you’ll use this code immediately after the user is authenticated. Make sure there is at least
one piece of information in session state so the session isn’t abandoned (and then re-created later).

Another related security risk exists with cookieless sessions. Even if the session ID is encrypted, a
clever user could use a social engineering attack to trick a user into joining a specific session. All the
malicious user needs to do is feed the user a URL with a valid session ID. When the user clicks the link,
he joins that session. Although the session ID is protected from this point onward, the attacker now
knows what session ID is in use and can hijack the session at a later time.

Taking certain steps can reduce the likelihood of this attack. First, when using cookieless sessions,
always set regenerateExpiredSessionld to true. This prevents the attacker from supplying a session ID
that’s expired. Next, explicitly abandon the current session before logging in a new user.

Application State

Application state allows you to store global objects that can be accessed by any client. Application state
is based on the System.Web.HttpApplicationState class, which is provided in all web pages through the
built-in Application object.

Application state is similar to session state. It supports the same types of objects, retains
information on the server, and uses the same dictionary-based syntax. A common example with
application state is a global counter that tracks how many times an operation has been performed by all
of the web application’s clients.

For example, you could create a global.asax event handler that tracks how many sessions have been
created or how many requests have been received into the application. Or you can use similar logic in
the Page.Load event handler to track how many times a given page has been requested by various
clients. Here’s an example of the latter:

protected void Page Load(Object sender, EventArgs e)

{
int count = 0;
if (Application["HitCounterForOrderPage"] != null)

count = (int)Application["HitCounterForOrderPage"];

count++;
Application["HitCounterForOrderPage"] = count;
1blCounter.Text = count.ToString();

}

Once again, application state items are stored as objects, so you need to cast them when you
retrieve them from the collection. Items in application state never time out. They last until the
application or server is restarted or until the application domain refreshes itself (because of automatic
process-recycling settings or an update to one of the pages or components in the application).

Application state isn’t often used, because it’s generally inefficient. In the previous example, the
counter would probably not keep an accurate count, particularly in times of heavy traffic. For example, if
two clients requested the page at the same time, you could have a sequence of events like this:

1. User A retrieves the current count (432).

2. User B retrieves the current count (432).

269

https://to

270

CHAPTER 6 ' STATE MANAGEMENT

3. User A sets the current count to 433.
4. User B sets the current count to 433.

In other words, one request isn’t counted because two clients access the counter at the same time.
To prevent this problem, you need to use the Lock() and UnLock() methods, which explicitly allow only
one client to access the Application state collection at a time, as follows:

protected void Page Load(Object sender, EventArgs e)
{

// Acquire exclusive access.

Application.Lock();

int count = 0;
if (Application["HitCounterForOrderPage"] != null)
count = (int)Application["HitCounterForOrderPage"];

count++;
Application["HitCounterForOrderPage"] = count;

// Release exclusive access.
Application.UnLock();

1blCounter.Text = count.ToString();

Unfortunately, all other clients requesting the page will now be stalled until the Application
collection is released. This can drastically reduce performance. Generally, frequently modified values are
poor candidates for application state. In fact, application state is rarely used in the .NET world because
its two most common uses have been replaced by easier, more efficient methods:

* Inthe past, application state was used to store application-wide constants, such as
a database connection string. As you saw in Chapter 5, this type of constant can
now be stored in the web.config file, which is generally more flexible because you
can change it easily without needing to hunt through web-page code or recompile
your application.

* Application state can also be used to store frequently used information that is
time-consuming to create, such as a full product catalog that requires a database
lookup. However, using application state to store this kind of information raises all
sorts of problems about how to check if the data is valid and how to replace it
when needed. It can also hamper performance if the product catalog is too large. A
similar but much more sensible approach is to store frequently used information
in the ASP.NET cache. Many uses of application state can be replaced more
efficiently with caching.

Application state information is always stored in process. This means you can use any .NET data
types. However, it also introduces the same two limitations that affect in-process session state. Namely,
you can’t share application state between the servers in a web farm, and you will always lose your
application state information when the application domain is restarted—an event that can occur as part
of ASP.NET’s normal housekeeping.

CHAPTER 6 "' STATE MANAGEMENT

Note Application state is included primarily for backward compatibility with classic ASP. In new applications,
it's almost always better to rely on other mechanisms for global data, such as using databases in conjunction with
the Cache object.

Static Application Variables

You can store global application variables in one other way. You can add static member variables to the
global.asax file (which was introduced in Chapter 5). These members are then compiled into the custom
HttpApplication class for your web application and made available to all pages. Here’s an example that
declares a static array of strings:

public static string[] FileList;

The key detail that allows this to work is that the variable is static. That’s because ASP.NET creates a
pool of HttpApplication classes to serve multiple requests. As a result, each request might be served with
a different HttpApplication object, and each HttpApplication object has its own instance data. However,
there is only one copy of the static data, which is shared for all instances (on the same web server).

There’s another requirement to make this strategy work. The rest of your code needs to be able to
access the static members you've added to your custom application class. To make this possible, you
need to specify the name that should be used for that class. To do this, you set the ClassName property
of the Application directive, which is at the start of the global.asax file. Here’s an example that gives the
application class the name Global:

<%@ Application Language="C#" ClassName="Global" %>

Now you can write code like this in your web pages:

string firstEntry = Global.FilelList[0];

To improve this example, and get better encapsulation (and more flexibility), you should use
property procedures in your application class instead of public member variables. Here’s the
corrected code:

private static string[] filelist;
public static string[] Filelist

{
}

get { return filelist; }

When you add a member variable to the global.asax file, it has essentially the same characteristics as
a value in the Application collection. In other words, you can use any .NET data type, the value is
retained until the application domain is restarted, and state isn’t shared across computers in a web farm.
However, there’s no automatic locking. Because multiple clients might try to access or modify a value at
the same time, you should use the C# lock statement to temporarily restrict the variable to a single
thread. Depending on how your data is accessed, you might perform the locking in the web page (in
which case you could perform several tasks at once with the locked data) or in the property procedures
or methods in the global.asax file (in which case the lock would be held for the shortest possible time).

Here’s an example that uses two methods to manage access to a private dictionary of metadata.
These methods ensure that the global collection is always accessed in a thread-safe manner:

271

272

CHAPTER 6 ' STATE MANAGEMENT

private static Dictionary<string, string> metadata =
new Dictionary<string, string>();

public void AddMetadata(string key, string value)
lock (metadata)
{ metadatal[key] = value;

}

public string GetMetadata(string key)
%ock (metadata)

return metadatalkey];

}

Using static member variables instead of the Application collection has two advantages. First, it
allows you to write custom code that runs automatically when the value is accessed or changed (by
wrapping your data in property procedures or methods). You could use this code to log how many times
avalue is being accessed, to check if the data is still valid, or to re-create it. Here’s an example that uses a
lazy initialization pattern and creates the global object only when it’s first requested:

private static string[] filelist;
public static string[] Filelist

{
get
if (fileList == null)
filelist = Directory.GetFiles(
HttpContext.Current.Request.PhysicalApplicationPath);
return filelist;
}
}

This example uses the file access classes described in Chapter 12 to retrieve a list of files in the web
application. This approach wouldn’t be possible with the Application collection.

The other benefit of using static member variables is that the code that consumes them can be
typesafe. Here’s an example that uses the FileList property:

protected void Page Load(object sender, EventArgs e)

{

StringBuilder builder = new StringBuilder();
foreach (string file in Global.Filelist)
builder.Append(file + "
");

}
1blInfo.Text = builder.ToString();
}

CHAPTER 6 "' STATE MANAGEMENT

Notice that no casting step is required to gain access to the custom property you've added.

Summary

State management is the art of retaining information between requests. Usually, this information is
user-specific (such as a list of items in a shopping cart, a user name, or an access level), but sometimes
it’s global to the whole application (such as usage statistics that track site activity). Because ASP.NET
uses a disconnected architecture, you need to explicitly store and retrieve state information with each
individual request. The approach you choose for storing this data can have a dramatic effect on the
performance, scalability, and security of your application. To perfect your state management solution,
you’ll almost certainly want to consider adding caching into the mix, as described in Chapter 11.

273

PART 2
EEE

DEI: WA N

The core data features of the .NET Framework remain in .NET 4, and are essentially unchanged.
Developers can use the same ADO.NET data classes to interact with relational databases (Chapter 7),
and other parts of the .NET Framework to interact with the file system (Chapter 12) and read XML
documents (Chapter 14).

Similarly, the data binding features in ASP.NET remain unchanged, allowing you to pull information
out of data classes and show it in a web page with as little code as possible (Chapter 9). The same rich
data controls remain (Chapter 10), with their support for data display and data editing, and the same
caching feature allows you to reduce the number of times you query the information (Chapter 11) to
ensure optimum performance.

Developers in search of a higher-level model will appreciate ASP.NET’s support for Language
Integrated Query (LINQ). At its simplest, LINQ gives developers more powerful ways to manipulate in-
memory data—for example, sorting, filtering, and grouping it to get key bits of information. But the most
dramatic part of LINQ is the LINQ to Entities feature that’s built on top of it, which allows you to pull
information out of a database using little more than a LINQ query. That means there’s no need to write
lower-level ADO.NET data access code. LINQ to Entities isn’t necessarily the best way to get your data or
manipulate it—that depends on your exact requirements—but it is a compelling feature that should be
in every developer’s toolkit. You'll explore LINQ in Chapter 13.

Finally, it’s important to remember that no matter what data access strategy you use—whether it
relies on ADO.NET, LINQ to Entities, or a different set of classes—it shouldn’t be a part of your main web
application code. Instead, it makes much more sense to separate it into a dedicated component that can
be coded, versioned, and refined separately. You'll learn more about this strategy in Chapter 8.

275

CHAPTER 7

ADO.NET Fundamentals

The .NET Framework includes its own data access technology: ADO.NET. ADO.NET consists of managed
classes that allow .NET applications to connect to data sources (usually relational databases), execute
commands, and manage disconnected data. The small miracle of ADO.NET is that it allows you to write
more or less the same data access code in web applications that you write for client-server desktop
applications, or even single-user applications that connect to a local database.

This chapter describes the architecture of ADO.NET and the ADO.NET data providers. You'll learn
about ADO.NET basics such as opening a connection, executing a SQL statement or stored procedure,
and retrieving the results of a query. You'll also learn how to prevent SQL injection attacks and how to
use transactions.

Database Access Without ADO.NET

In ASP.NET, there are a few ways to get information out of a database without directly using the ADO.NET
classes. Depending on your needs, you may be able to use one or more of these approaches to
supplement your database code (or to avoid writing it altogether).

Your options for database access without ADO.NET include the following:

The SqiDataSource control: The SglDataSource control allows you to define
queries declaratively. You can connect the SglDataSource to rich controls such as
the GridView, and give your pages the ability to edit and update data without
requiring any ADO.NET code. Best of all, the SqlDataSource uses ADO.NET behind
the scenes, and so it supports any database that has a full ADO.NET provider.
However, the SqlDataSource is somewhat controversial, because it encourages you
to place database logic in the markup portion of your page. Many developers prefer
to use the ObjectDataSource instead, which gives similar data binding functionality
but relies on a custom database component. When you use the ObjectDataSource,
it's up to you to create the database component and write the back-end ADO.NET
code. You'll learn more about data source controls in Chapter 9.

LINQ to Entities: With LINQ to Entities, you generate a data model with the design
support in Visual Studio. The appropriate database logic is generated
automatically. LINQ to Entities supports updates, generates secure and well-
written SQL statements, and provides wide ranging customizability. LINQ to Entites
is also the preferred successor to the simpler LINQ to SQL model, which ASP.NET
developers have used in the past. You'll get the full details in Chapter 13. LINQ to
Entites also powers the new data scaffolding system called ASP.NET Dynamic
Data, which you’ll consider in Chapter 33.

277

278

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

None of these options is a replacement for ADO.NET, because none of them offers the full flexibility,
customizability, and performance that hand-written database code offers. However, depending on your
needs, it may be worth using one or more of these features simply to get better code-writing productivity.

Overall, most ASP.NET developers will need to write some ADO.NET code, even if it’s only to optimize a
performance-sensitive task or to perform a specific operation that wouldn’t otherwise be possible. Also,
every professional ASP.NET developer needs to understand how the ADO.NET plumbing works in order to
evaluate when it's required and when another approach is just as effective.

The ADO.NET Architecture

ADO.NET uses a multilayered architecture that revolves around a few key concepts, such as Connection,
Command, and DataSet objects.

One of the key differences between ADO.NET and some other database technologies is how it deals
with the challenge of different data sources. In many previous database technologies, such as classic
ADO, programmers use a generic set of objects no matter what the underlying data source is. For
example, if you want to retrieve a record from an Oracle database using ADO code, you use the same
Connection class you would use to tackle the task with SQL Server. This isn’t the case in ADO.NET,
which uses a data provider model.

ADO.NET Data Providers

A data provider is a set of ADO.NET classes that allows you to access a specific database, execute SQL
commands, and retrieve data. Essentially, a data provider is a bridge between your application and a
data source.

The classes that make up a data provider include the following:

* Connection: You use this object to establish a connection to a data source.
* Command: You use this object to execute SQL commands and stored procedures.

* DataReader: This object provides fast read-only, forward-only access to the data
retrieved from a query.

* DataAdapter: This object performs two tasks. First, you can use it to fill a DataSet
(a disconnected collection of tables and relationships) with information extracted
from a data source. Second, you can use it to apply changes to a data source,
according to the modifications you've made in a DataSet.

ADO.NET doesn’t include generic data provider objects. Instead, it includes different data providers
specifically designed for different types of data sources. Each data provider has a specific
implementation of the Connection, Command, DataReader, and DataAdapter classes that’s optimized
for a specific RDBMS (relational database management system). For example, if you need to create a
connection to a SQL Server database, you'll use a connection class named SqlConnection.

CHAPTER 7 ' ADO.NET FUNDAMENTALS

Note This book uses generic names for provider-specific classes. In other words, instead of discussing the
SqglConnection and OracleConnection classes, you'll learn about all connection classes. Just keep in mind that
there really isn’t a generic Connection class—it’s just convenient shorthand for referring to all the provider-
specific connection classes, which work in a standardized fashion.

One of the key underlying ideas of the ADO.NET provider model is that it’s extensible. In other
words, developers can create their own providers for proprietary data sources. In fact, numerous proof-
of-concept examples are available that show how you can easily create custom ADO.NET providers to
wrap nonrelational data stores, such as the file system or a directory service. Some third-party vendors
also sell custom providers for .NET.

The .NET Framework is bundled with a small set of four providers:

* SQL Server provider: Provides optimized access to a SQL Server database (version
7.0 or later).

* OLE DB provider: Provides access to any data source that has an OLE DB driver.
This includes SQL Server databases prior to version 7.0.

* Oracle provider: Provides optimized access to an Oracle database (version 8i or
later).

* ODBC provider: Provides access to any data source that has an ODBC driver.

Tip As of .NET 4, the Oracle provider is considered obsolete. Although it still works, Microsoft recommends
using a third-party ADO.NET provider to access Oracle databases, such as Oracle’s own ODP.NET (Oracle Data
Provider for .NET), which is available at http://www.oracle.com/technology/tech/windows/odpnet. It provides
richer support for specialized Oracle data types such as LOBs (large objects), timestamps, and XML data, along
with a few additional features.

Figure 7-1 shows the layers of the ADO.NET provider model.

279

http://www.oracle.com/technology/tech/windows/odpnet

280

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

.NET
Application
SQL Server .NET OLE DB .NET Oracle .NET
Provider Provider Provider
A ¢ A
OLE DB Provider
SQL Server Data Source Oracle

Database Database

Figure 7-1. The ADO.NET architecture

When choosing a provider, you should first try to find a native .NET provider that’s customized for
your data source. If you can’t find a native provider, you can use the OLE DB provider, as long as you
have an OLE DB driver for your data source. The OLE DB technology has been around for many years as
part of ADO, so most data sources provide an OLE DB driver (including SQL Server, Oracle, Access,
MySQL, and many more). In the rare situation when you can’t find a dedicated .NET provider or an OLE
DB driver, you can fall back on the ODBC provider, which works in conjunction with an ODBC driver.

Tip Microsoft includes the OLE DB provider with ADO.NET so that you can use your existing OLE DB drivers.
However, if you can find a provider that’s customized specifically for your data source, you should use it instead.
For example, you can connect to a SQL Server database using either the SQL Server provider or the OLE DB
provider, but the SQL Server provider will always perform best.

Standardization in ADO.NET

At first glance, it might seem that ADO.NET offers a fragmented model, because it doesn’t include a
generic set of objects that can work with multiple types of databases. As a result, if you change from one
RDBMS to another, you'll need to modify your data access code to use a different set of classes.

But even though different .NET data providers use different classes, all providers are standardized in
the same way. More specifically, each provider is based on the same set of interfaces and base classes.

CHAPTER 7 ' ADO.NET FUNDAMENTALS

For example, every Connection object implements the IDbConnection interface, which defines core
methods such as Open() and Close(). This standardization guarantees that every Connection class will
work in the same way and expose the same set of core properties and methods.

Behind the scenes, different providers use completely different low-level calls and APIs. For
example, the SQL Server provider uses the proprietary TDS (Tabular Data Stream) protocol to
communicate with the server. The benefits of this model aren’t immediately obvious, but they are
significant:

* Because each provider uses the same interfaces and base classes, you can still
write generic data access code (with a little more effort) by coding against the
interfaces instead of the provider classes. You'll see this technique in action in the
section “Provider-Agnostic Code.”

* Because each provider is implemented separately, it can use proprietary
optimizations. (This is different from the ADO model, where every database call
needs to filter through a common layer before it reaches the underlying database
driver.) In addition, custom providers can add nonstandard features that aren’t
included in other providers (such as SQL Server’s ability to perform an XML query).

ADO.NET also has another layer of standardization: the DataSet. The DataSet is an all-purpose
container for data that you've retrieved from one or more tables in a data source. The DataSet is
completely generic—in other words, custom providers don’t define their own custom versions of the
DataSet class. No matter which data provider you use, you can extract your data and place it into a
disconnected DataSet in the same way. That makes it easy to separate data retrieval code from data
processing code. If you change the underlying database, you will need to change the data retrieval code,
but if you use the DataSet and your information has the same structure, you won'’t need to modify the
way you process that data.

Fundamental ADO.NET Classes

ADO.NET has two types of objects: connection-based and content-based.

Connection-based objects: These are the data provider objects such as Connection, Command,
DataReader, and DataAdapter. They allow you to connect to a database, execute SQL statements,
move through a read-only result set, and fill a DataSet. The connection-based objects are specific to
the type of data source, and are found in a provider-specific namespace (such as
System.Data.SqlClient for the SQL Server provider).

Content-based objects: These objects are really just “packages” for data. They include the DataSet,
DataColumn, DataRow, DataRelation, and several others. They are completely independent of the
type of data source and are found in the System.Data namespace.

In the rest of this chapter, you'll learn about the first level of ADO.NET—the connection-based
objects, including Connection, Command, and DataReader. You won’t learn about the higher-level
DataAdapter yet, because the DataAdapter is designed for use with the DataSet and is discussed in
Chapter 8. (Essentially, the DataAdapter is a group of related Command objects; these objects help you
synchronize a DataSet with a data source.)

The ADO.NET classes are grouped into several namespaces. Each provider has its own namespace,
and generic classes such as the DataSet are stored in the System.Data namespaces. Table 7-1 describes
the most important namespaces for basic ADO.NET support.

281

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

Table 7-1. The ADO.NET Namespace

Namespace Description

System.Data Contains the key data container classes that model columns, relations,
tables, datasets, rows, views, and constraints. In addition, contains the
key interfaces that are implemented by the connection-based data
objects.

System.Data.Common Contains base, mostly abstract classes that implement some of the
interfaces from System.Data and define the core ADO.NET
functionality. Data providers inherit from these classes (such as
DbConnection, DbCommand, and so on) to create their own
specialized versions.

System.Data.OleDb Contains the classes used to connect to an OLE DB provider, including
OleDbCommand, OleDbConnection, OleDbDataReader, and
OleDbDataAdapter. These classes support most OLE DB providers, but
not those that require OLE DB version 2.5 interfaces.

System.Data.SqlClient Contains the classes you use to connect to a Microsoft SQL Server
database, including SqlCommand, SqlConnection, SqlDataReader, and
SqlDataAdapter. These classes are optimized to use the TDS interface to
SQL Server.

System.Data.OracleClient Contains the classes required to connect to an Oracle database (version
8.1.7 or later), including OracleCommand, OracleConnection,
OracleDataReader, and OracleDataAdapter. These classes are using the
optimized Oracle Call Interface (OCI).

System.Data.Odbc Contains the classes required to connect to most ODBC drivers. These
classes include OdbcCommand, OdbcConnection, OdbcDataReader,
and OdbcDataAdapter. ODBC drivers are included for all kinds of data
sources and are configured through the Data Sources icon in the
Control Panel.

System.Data.SqlTypes Contains structures that match the native data types in SQL Server.
These classes aren’t required but provide an alternative to using
standard .NET data types, which require automatic conversion.

Note An ADO.NET provider is simply a set of ADO.NET classes (with an implementation of Connection,
Command, DataAdapter, and DataReader) that’s distributed in a class library assembly. Usually, all the classes in
the data provider use the same prefix. For example, the prefix OleDb is used for the ADO.NET OLE DB provider, and
it provides an implementation of the Connection object named OleDbConnection.

282

CHAPTER 7 ' ADO.NET FUNDAMENTALS

The Connection Class

The Connection class allows you to establish a connection to the data source that you want to interact
with. Before you can do anything else (including retrieving, deleting, inserting, or updating data), you
need to establish a connection.

The core Connection properties and methods are specified by the IDbConnection interface, which
all Connection classes implement.

Connection Strings

When you create a Connection object, you need to supply a connection string. The connection string is a
series of name/value settings separated by semicolons (;). The order of these settings is unimportant, as
is the capitalization. Taken together, they specify the basic information needed to create a connection.

Although connection strings vary based on the RDBMS and provider you are using, a few pieces of
information are almost always required:

The server where the database is located: In the examples in this book, the database server is always
located on the same computer as the ASP.NET application, so the loopback alias localhost is used
instead of a computer name.

The database you want to use: Most of the examples in this book use the Northwind database,
which is installed with older versions of SQL Server (and can be installed on newer versions using
the SQL script that’s included with the downloadable examples for this book).

How the database should authenticate you: The Oracle and SQL Server providers give you the choice
of supplying authentication credentials or logging in as the current user. The latter choice is usually
best, because you don’t need to place password information in your code or configuration files.

For example, here’s the connection string you would use to connect to the Northwind database on
the current computer using integrated security (which uses the currently logged-in Windows user to
access the database):

string connectionString = "Data Source=localhost; Initial Catalog=Northwind;" +
"Integrated Security=SSPI";

If integrated security isn’t supported, the connection must indicate a valid user and password
combination. For a newly installed SQL Server database, the sa (system administrator) account is usually
present. Here’s a connection string that uses this account:

string connectionString = "Data Source=localhost; Initial Catalog=Northwind;" +
"user id=sa; password=opensesame";

If you're using the OLE DB provider, your connection string will still be similar, with the addition of

a provider setting that identifies the OLE DB driver. For example, you can use the following connection
string to connect to an Oracle database through the MSDAORA OLE DB provider:

string connectionString = "Data Source=localhost; Initial Catalog=Sales;" +
"user id=sa; password=da#ta_li#nk 43;Provider=MSDAORA";

Here’s an example that connects to an Access database file:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" +
@"Data Source=C:\DataSources\Northwind.mdb";

283

284

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

Tip If you're using a database other than SQL Server, you might need to consult the data provider
documentation (or the .NET Framework class library reference) to determine the supported connection string
values. For example, most databases support the Connect Timeout setting, which sets the number of seconds to
wait for a connection before throwing an exception. (The SQL Server default is 15 seconds.)

When you create a Connection object, you can pass the connection string as a constructor
parameter. Alternatively, you can set the ConnectionString property by hand, as long as you do it before
you attempt to open the connection.

There’s no reason to hard-code a connection string. As discussed in Chapter 5, the
<connectionStrings> section of the web.config file is a handy place to store your connection strings.
Here’s an example:

<configuration>
<connectionStrings>
<add name="Northwind" connectionString=
"Data Source=localhost; Initial Catalog=Northwind; Integrated Security=SSPI"/>
</connectionStrings>

</configuration>

You can then retrieve your connection string by name from the
WebConfigurationManager.ConnectionStrings collection. Assuming you've imported the
System.Web.Configuration namespace, you can use a code statement like this:

string connectionString =
WebConfigurationManager.ConnectionStrings|["Northwind"].ConnectionString;

The following examples assume you’'ve added this connection string to your web.config file.

User Instance Connections

Every database server stores a master catalog of all the databases that you’ve installed on it. This list
includes the name of each database and the location of the files that hold the data. When you create a
database (for example, by running a script or using a management tool), the information about that
database is added to the master catalog. When you connect to the database, you specify the database
name using the Initial Catalog value in the connection string.

Interestingly, SQL Server Express has a convenient feature that lets you bypass the master list and
connect directly to any database file, even if it’s not in the master catalog of databases. This feature is
called user instances, and it isn’t available in the full edition of SQL Server.

CHAPTER 7 ' ADO.NET FUNDAMENTALS

Note SQL Server Express is a scaled-down version of SQL Server 2008 that’s free to distribute. SQL Server
Express has certain limitations—for example, it can use only one CPU and a maximum of 1GB of RAM, and
databases can’t be larger than 4GB. However, it’s still remarkably powerful and suitable for many midscale web
sites. Even better, you can easily upgrade from SQL Server Express to a paid version of SQL Server if you need
more features later. For more information about SQL Server Express or to download it with or without additional
administrative tools, refer to http://www.microsoft.com/express/database.

To attach a user instance database, you need to set the User Instances value to True (in the
connection string) and supply the file name of the database you want to connect to with the
AttachDBFilename value. You don’t supply an Initial Catalog value.

Here’s an example connection string that uses this approach:

myConnection.ConnectionString = @"Data Source=localhost\SQLEXPRESS;" +
"Integrated Security=SSPI;" +

@"AttachDBFilename=|DataDirectory|\Northwind.mdf;User Instance=True";

There’s another trick here. The file name starts with |DataDirectory|. This automatically points to
the App_Data folder inside your web application directory. This way, you don’t need to supply a full file
path, which might not remain valid when you move the web application to a web server. Instead,
ADO.NET will always look in the App_Data directory for a file named Northwind.mdf.

User instances is a handy feature if you have a web server that hosts many different web
applications that use databases and these databases are frequently being added and removed. This
feature also works well in conjunction with other, higher-level ASP.NET features like profiles and
membership (see Part Four). By default, these features create file-based databases for SQL Server
Express, which saves you the configuration work.

Visual Studio’s Support for User Instance Databases

¥isual Studio provides two handy features that make it easier to work with databases in the App_Data
older.

First, Visual Studio gives you a nearly effortless way to create new databases. Simply choose Website »

Add New Item. Then, pick SQL Server Database from the list of templates, choose a file name for your

database, and click OK. The .mdf and .Idf files for the new database will be placed in the App_Data folder,

and you’ll see them in the Solution Explorer. Initially, they’ll be blank, so you’ll need to add the tables

X%lé v%/aglt. ()The easiest way to do this is to right-click the Tables group in the Server Explorer, and choose
able.

Visual Studio also simplifies your life with its automatic Server Explorer support. When you open a web
application, Visual Studio automatically adds a data connection to the Server Explorer window for each
database that it finds in the App_Data folder. To jump to a specific data connection in a hurry, just double-
click the .mdf file for the database in the Solution Explorer. Using the Server Explorer, you can create
tables, edit data, and execute commands, all without leaving the comfort of Visual Studio.

285

http://www.microsoft.com/express/database

CHAPTER 7 ©* ADO.NET FUNDAMENTALS

Testing a Connection

Once you've chosen your connection string, managing the connection is easy—you simply use the
Open() and Close() methods.

You can use the following code in the Page.Load event handler to test a connection and write its
status to a label (as shown in Figure 7-2). To use this code as written, you must import the
System.Data.SqlClient namespace.

// Create the Connection object.

string connectionString =
WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;

SqlConnection con = new SqlConnection(connectionString);

try

{
// Try to open the connection.
con.Open();
1blInfo.Text = "Server Version:
1blInfo.Text += "
Connection Is:

+ con.ServerVersion;
" + con.State.ToString();

catch (Exception err)

// Handle an error by displaying the information.
1blInfo.Text = "Error reading the database. " + err.Message;

}
finally
{

// Either way, make sure the connection is properly closed.

// Even if the connection wasn't opened successfully,

// calling Close() won't cause an error.

con.Close();

1blInfo.Text += "
Now Connection Is: " +
con.State.ToString();

Figure 7-2 shows the results of running this code.

A TestConnection - Microsoft Internet Explorer Q@@
File Edit View Favorites Tools Help €] 2 ;,','
Address | &] http:/flocalhost{Chapter08{TestConnection. aspx v

Server Version: 08.00.0534
Comnection Is: Open
Now Connection Is: Closed

I@ Done %J Local intranet

Figure 7-2. Testing a connection

286

CHAPTER 7 ' ADO.NET FUNDAMENTALS

Note When opening a connection, you face two possible exceptions. An InvalidOperationException occurs if
your connection string is missing required information or the connection is already open. A SqlException occurs for
just about any other type of problem, including an error contacting the database server, logging in, or accessing
the specified database.

SqlException is a provider-specific class that’s used for the SQL Server provider. Other database providers use
different exception classes to serve the same role, such as OracleException, OleDbException, and OdbcException.

Connections are a limited server resource. This means it’s imperative that you open the connection
as late as possible and release it as quickly as possible. In the previous code sample, an exception
handler is used to make sure that even if an unhandled error occurs, the connection will be closed in the
finally block. If you don’t use this design and an unhandled exception occurs, the connection will remain
open until the garbage collector disposes of the SqlConnection object.

An alternate approach is to wrap your data access code in a using block. The using statement
declares that you are using a disposable object for a short period of time. As soon as the using block
ends, the CLR releases the corresponding object immediately by calling its Dispose() method.
Interestingly, calling the Dispose() method of a Connection object is equivalent to calling Close(). That
means you can rewrite the earlier example in the following, more compact, form:

string connectionString =
WebConfigurationManager.ConnectionStrings|["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);

using (con)
con.Open();

1blInfo.Text = "Server Version:
1blInfo.Text += "
Connection Is:

+ con.ServerVersion;
" + con.State.ToString();

1blInfo.Text += "
Now Connection Is: ";
1blInfo.Text += con.State.ToString();

The best part is that you don’t need to write a finally block—the using statement releases the object
you're using even if you exit the block as the result of an unhandled exception.

Connection Pooling

Acquiring a connection takes a short, but definite, amount of time. In a web application in which
requests are being handled efficiently, connections will be opened and closed endlessly as new requests
are processed. In this environment, the small overhead required to establish a connection can become
significant and limit the scalability of the system.

One solution is connection pooling. Connection pooling is the practice of keeping a permanent
set of open database connections to be shared by sessions that use the same data source. This avoids
the need to create and destroy connections all the time. Connection pools in ADO.NET are completely
transparent to the programmer, and your data access code doesn’t need to be altered. When a client
requests a connection by calling Open(), it’s served directly from the available pool, rather than

287

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

re-created. When a client releases a connection by calling Close() or Dispose(), it’s not discarded but
returned to the pool to serve the next request.

ADO.NET does not include a connection pooling mechanism. However, most ADO.NET providers
implement some form of connection pooling. The SQL Server and Oracle data providers implement
their own efficient connection pooling algorithms. These algorithms are implemented entirely in
managed code and—in contrast to some popular misconceptions—do not use COM+ enterprises
services. For a connection to be reused with SQL Server or Oracle, the connection string must match
exactly. If it differs even slightly, a new connection will be created in a new pool.

Tip SQL Server and Oracle connection pooling use a full-text match algorithm. That means any minor change in
the connection string will thwart connection pooling, even if the change is simply to reverse the order of
parameters or add an extra blank space at the end. For this reason, it’s imperative that you don’t hard-code the
connection string in different web pages. Instead, you should store the connection string in one place—preferably
in the <connectionStrings> section of the web.config file.

With both the SQL Server and Oracle providers, connection pooling is enabled and used
automatically. However, you can also use connection string parameters to configure pool size settings.
Table 7-2 describes these parameters.

Table 7-2. Connection Pooling Settings

Setting Description

Max Pool Size The maximum number of connections allowed in the pool (defaults to 100).
If the maximum pool size has been reached, any further attempts to open a
connection are queued until a connection becomes available. (An error is
raised if the Connection.Timeout value elapses before a connection
becomes available.)

Min Pool Size The minimum number of connections always retained in the pool (defaults
to 0). This number of connections will be created when the first connection
is opened, leading to a minor delay for the first request.

Pooling When true (the default), the connection is drawn from the appropriate pool
or, if necessary, is created and added to the appropriate pool.

Connection Lifetime Specifies a time interval in seconds. If a connection is returned to the pool
and its creation time is older than the specified lifetime, it will be destroyed.
The default is 0, which disables this behavior. This feature is useful when you
want to recycle a large number of connections at once.

288

CHAPTER 7 ' ADO.NET FUNDAMENTALS

Here’s an example connection string that sets a minimum pool size:

string connectionString = "Data Source=localhost; Initial Catalog=Northwind;" +
"Integrated Security=SSPI; Min Pool Size=10";
SglConnection con = new SqlConnection(connectionString);

// Get the connection from the pool (if it exists)
// or create the pool with 10 connections (if it doesn't).
con.Open();

// Return the connection to the pool.
con.Close();

Some providers include methods for emptying out the connection pool. For example, with the
SqlConnection you can call the static ClearPool() and ClearAllPools() methods. When calling
ClearPool(), you supply a SqlConnection, and all the matching connections are removed. ClearAllPools()
empties out every connection pool in the current application domain. (Technically, these methods don’t
close the connections. They just mark them as invalid so that they will time out and be closed during the
regular connection cleanup a few minutes later.) This functionality is rarely used—typically, the only
case in which it’s useful is if you know the pool is full of invalid connections (for example, as a result of
restarting SQL Server) and you want to avoid an error.

Tip SQL Server and Oracle connection pools are always maintained as part of the global resources in an
application domain. As a result, connection pools can’t be reused between separate web applications on the same
web server or between web applications and other .NET applications. For the same reason, all the connections are
lost if the application domain is restarted. (Application domains are restarted for a variety of reasons, including
when you change a web page, assembly, or configuration file in the web application. Application domains are also
restarted when certain thresholds are reached—for example, IS may recycle an application domain that’s using a
large amount of memory or has a large number of requests in the queue. Both details may indicate that the
performance of the application domain has degraded.)

The Command and DataReader Classes

The Command class allows you to execute any type of SQL statement. Although you can use a Command
class to perform data definition tasks (such as creating and altering databases, tables, and indexes),
you're much more likely to perform data manipulation tasks (such as retrieving and updating the
records in a table).

The provider-specific Command classes implement standard functionality, just like the Connection
classes. In this case, the IDbCommand interface defines a few key properties and the core set of methods
that are used to execute a command over an open connection.

289

290

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

Command Basics

Before you can use a command, you need to choose the command type, set the command text, and bind
the command to a connection. You can perform this work by setting the corresponding properties
(CommandType, CommandText, and Connection), or you can pass the information you need as
constructor arguments.

The command text can be a SQL statement, a stored procedure, or the name of a table. It all
depends on the type of command you're using. Three types of commands exist, as listed in Table 7-3.

Table 7-3. Values for the CommandType Enumeration

Value Description

CommandType.Text The command will execute a direct SQL statement. The SQL
statement is provided in the CommandText property. This is
the default value.

CommandType.StoredProcedure The command will execute a stored procedure in the data
source. The CommandText property provides the name of the
stored procedure.

CommandType.TableDirect The command will query all the records in the table. The
CommandText is the name of the table from which the
command will retrieve the records. (This option is included for
backward compatibility with certain OLE DB drivers only. It is
not supported by the SQL Server data provider, and it won’t
perform as well as a carefully targeted query.)

For example, here’s how you would create a Command object that represents a query:

SqlCommand cmd = new SqlCommand();
cmd.Connection = con;
cmd.CommandType = CommandType.Text;

cmd.CommandText = "SELECT * FROM Employees";

And here’s a more efficient way using one of the Command constructors. Note that you don’t need
to specify the CommandType, because CommandType.Text is the default.

SqlCommand cmd = new SqlCommand("SELECT * FROM Employees", con);

Alternatively, to use a stored procedure, you would use code like this:

SqlCommand cmd = new SqlCommand("GetEmployees", con);
cmd.CommandType = CommandType.StoredProcedure;

These examples simply define a Command object; they don’t actually execute it. The Command
object provides three methods that you can use to perform the command, depending on whether you
want to retrieve a full result set, retrieve a single value, or just execute a nonquery command. Table 7-4
lists these methods.

CHAPTER 7 ' ADO.NET FUNDAMENTALS

Table 7-4. Command Methods

Method

Description

ExecuteNonQuery()

ExecuteScalar()

ExecuteReader()

Executes non-SELECT commands, such as SQL commands that insert, delete,
or update records. The returned value indicates the number of rows affected
by the command. You can also use ExecuteNonQuery() to execute data-
definition commands that create, alter, or delete database objects (such as
tables, indexes, constraints, and so on).

Executes a SELECT query and returns the value of the first field of the first row
from the rowset generated by the command. This method is usually used
when executing an aggregate SELECT command that uses functions such as
COUNT() or SUM() to calculate a single value.

Executes a SELECT query and returns a DataReader object that wraps a read-
only, forward-only cursor.

The DataReader Class

A DataReader allows you to read the data returned by a SELECT command one record at a time, in a
forward-only, read-only stream. This is sometimes called a firehose cursor. Using a DataReader is the
simplest way to get to your data, but it lacks the sorting and relational abilities of the disconnected
DataSet described in Chapter 8. However, the DataReader provides the quickest possible no-nonsense

access to data.

Table 7-5 lists the core methods of the DataReader.

Table 7-5. DataReader Methods

Method

Description

Read()

GetValue()

Advances the row cursor to the next row in the stream. This method must
also be called before reading the first row of data. (When the DataReader
is first created, the row cursor is positioned just before the first row.) The
Read() method returns true if there’s another row to be read, or false if it’s
on the last row.

Returns the value stored in the field with the specified index, within the
currently selected row. The type of the returned value is the closest .NET
match to the native value stored in the data source. If you access the field
by index and inadvertently pass an invalid index that refers to a
nonexistent field, you will get an IndexOutOfRangeException exception.
You can also access values by field name using the indexer for the
DataReader. (In other words, myDataReader.GetValue(0) and
myDataReader["NameOfFirstField"] are equivalent.) Name-based
lookups are more readable, but slightly less efficient.

291

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

Method Description

GetValues() Saves the values of the current row into an array. The number of fields
that are saved depends on the size of the array you pass to this method.
You can use the DataReader.FieldCount property to determine the
number of fields in a row, and you can use that information to create an
array of the right size if you want to save all the fields.

GetInt32(),GetChar(), These methods return the value of the field with the specified index in the

GtDateTime(), GetXxx() current row, with the data type specified in the method name. Note that
if you try to assign the returned value to a variable of the wrong type,
you'll get an InvalidCastException exception. Also note that these
methods don’t support nullable data types. If a field might contain a null
value, you need to check it before you call one of these methods. To test
for a null value, compare the unconverted value (which you can retrieve
by position using the GetValue() method or by name using the
DataReader indexer) to the constant DBNull.Value.

NextResult() If the command that generated the DataReader returned more than one
rowset, this method moves the pointer to the next rowset (just before the
first row).

Close() Closes the reader. If the originator command ran a stored procedure that

returned an output value, that value can be read only from the respective
parameter after the reader has been closed.

The ExecuteReader() Method and the DataReader

The following example creates a simple query command to return all the records from the Employees
table in the Northwind database. The command is created when the page is loaded.

protected void Page Load(object sender, EventArgs e)
{
// Create the Command and the Connection objects.
string connectionString =
WebConfigurationManager.ConnectionStrings|["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);
string sql = "SELECT * FROM Employees";
SqlCommand cmd = new SqlCommand(sql, con);

Note This SELECT query uses the * wildcard to retrieve all the fields, but in real-world code you should retrieve
only the fields you really need in order to avoid consuming time to retrieve data you’ll never use. It’s also a good
idea to limit the records returned with a WHERE clause if you don’t need all the records.

292

CHAPTER 7 ' ADO.NET FUNDAMENTALS

The connection is then opened, and the command is executed through the ExecuteReader()
method, which returns a SqlDataReader, as follows:

// Open the Connection and get the DataReader.
con.Open();
SqlDataReader reader = cmd.ExecuteReader();

Once you have the DataReader, you can cycle through its records by calling the Read() method in a
while loop. This moves the row cursor to the next record (which, for the first call, means to the first
record). The Read() method also returns a Boolean value indicating whether there are more rows to read.
In the following example the loop continues until Read() returns false, at which point the loop ends
gracefully.

The information for each record is then joined into a single large string. To ensure that these string
manipulations are performed quickly, a StringBuilder (from the System.Text namespace) is used instead
of ordinary string objects.

// Cycle through the records, and build the HTML string.

StringBuilder htmlStr = new StringBuilder("");

while (reader.Read())

{
htmlStr.Append("<1i>");
htmlStr.Append(reader["TitleOfCourtesy"]);
htmlStr.Append(" ");
htmlStr.Append(reader.GetString(1));
htmlStr.Append(", ");
htmlStr.Append(reader.GetString(2));
htmlStr.Append(" - employee from ");
htmlStr.Append(reader.GetDateTime(6).ToString("d"));
htmlStr.Append("</1i>");

This code reads the value of the TitleOfCourtesy field by accessing the field by name through the
Item indexer. Because the Item property is the default indexer, you don’t need to explicitly include the
Item property name when you retrieve a field value. Next, the code reads the LastName and FirstName
fields by calling GetString() with the field index (1 and 2 in this case). Finally, the code accesses the
HireDate field by calling GetDateTime() with a field index of 6. All these approaches are equivalent and
included to show the supported variation.

Note In this example, the StringBuilder ensures a dramatic increase in performance. If you use the + operator
to concatenate strings instead, this operation would discard the current string object and create a new one every
time. This operation is noticeably slower, especially for large strings. The StringBuilder object avoids this problem
by allocating a modifiable buffer of memory for characters.

293

294

CHAPTER 7 ©* ADO.NET FUNDAMENTALS

The final step is to close the reader and the connection and show the generated text in a server control:

%ééder.close();
con.Close();
HtmlContent.Text = htmlStr.ToString();

If you run the page, you'll see the output shown in Figure 7-3.

In most ASP.NET pages, you won'’t take this labor-intensive approach to displaying data in a web
page. Instead, you’ll use the data controls described in later chapters. However, you're still likely to use
the DataReader when writing data access code in a database component.

4 http:#localhost/Chapter0B/DataReader.aspx - Microsoft Internet Explorer Q@@

File Edit View Favorites Tools Help € <) ERE A - ll',‘
Address ’@ http:{flocalhost/Chapter0g/DataReader . aspx v
Emplovees

o Ms Davolio, Nancy - employee from 5/1/1992

Dr. Fuller, Andrew - employee from 8/14/1992

Ms. Leverling, Janet - employee from 4/1/1992
Mrs. Peacock, Margaret - employee from 5/3/1993
IMr. Buchanan, Steven - employee from 10/17/1993
Mr. Suyama, Michael - employee from 10/17/1993
Mr. King, Robert - employee from 1/2/1994

Ms. Callahan, Laura - employee from 3/5/19%4

Ms. Dodsworth, Anne - employee from 11/15/1994

&) Done ‘3 Local intranet

Figure 7-3. Retrieving results with a DataReader

Null Values

As you no doubt already know, databases use null values to represent missing or nonapplicable
information. You can use the same concept in .NET with nullable data types, which can take a value and
anull reference. Here’s an example with a nullable integer:

// Nullable integer can contain any 32-bit integer or a null value.
int? nullableInteger = null;

// Test nullableInteger for a null value.
if (nullableInteger.HasValue)

// Do something with nullableInteger.
nullableInteger += 1;

CHAPTER 7 ' ADO.NET FUNDAMENTALS

Unfortunately, the DataReader isn’t integrated with .NET nullable values. This discrepancy is due to
historical reasons. The nullable data types were first introduced in .NET 2.0, at which point the
DataReader model was already well established and difficult to change.

Instead, the DataReader returns the constant DBNull.Value when it comes across a null value in the
database. Attempting to use this value or cast it to another data type will cause an exception. (Sadly,
there’s no way to cast between DBNull.Value and a nullable data type.) As a result, you need to test for
DBNull.Value when it might occur, using code like this:

int? numberOfHires;

if (reader["NumberOfHires"] == DBNull.Value)
numberOfHires = null;
else

numberOfHires = (int?)reader["NumberOfHires"];

CommandBehavior

The ExecuteReader() method has an overloaded version that takes one of the values from the
CommandBehavior enumeration as a parameter. One useful value is
CommandBehavior.CloseConnection. When you pass this value to the ExecuteReader() method, the
DataReader will close the associated connection as soon as you close the DataReader.

Using this technique, you could rewrite the code as follows:

SqlDataReader reader = cmd.ExecuteReader(CommandBehavior.CloseConnection);
// (Build the HTML string here.)

// No need to close the connection. You can simply close the reader.
reader.Close();

HtmlContent.Text = htmlStr.ToString();

This behavior is particularly useful if you retrieve a DataReader in one method and need to pass it to
another method to process it. If you use the CommandBehavior.CloseConnection value, the connection
will be automatically closed as soon as the second method closes the reader.

Another possible value is CommandBehavior.SingleRow, which can improve the performance of the
query execution when you're retrieving only a single row. For example, if you are retrieving a single
record using its unique primary key field (CustomerID, ProductID, and so on), you can use this
optimization. You can also use CommandBehavior.SequentialAccess to read part of a binary field at a
time, which reduces the memory overhead for large binary fields. You'll see this technique at work in
Chapter 10.

The other values are less frequently used and aren’t covered here. You can refer to the .NET
documentation for a full list.

Processing Multiple Result Sets

The command you execute doesn’t have to return a single result set. Instead, it can execute more than
one query and return more than one result set as part of the same command. This is useful if you need to
retrieve a large amount of related data, such as a list of products and product categories that, taken
together, represent a product catalog.

A command can return more than one result set in two ways:

* Ifyou're calling a stored procedure, it may use multiple SELECT statements.

295

296

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

* Ifyou’re using a straight text command, you may be able to batch multiple
commands by separating commands with a semicolon (;). Not all providers
support this technique, but the SQL Server database provider does.

Here’s an example of a string that defines a batch of three SELECT statements:

string sql = "SELECT TOP 5 * FROM Employees;" +
"SELECT TOP 5 * FROM Customers; SELECT TOP 5 * FROM Suppliers";

This string contains three queries. Together, they return the first five records from the Employees
table, the first five from the Customers table, and the first five from the Suppliers table.

Processing these results is fairly straightforward. Initially, the DataReader will provide access to the
results from the Employees table. Once you've finished using the Read() method to read all these
records, you can call NextResult() to move to the next result set. When there are no more result sets, this
method returns false.

You can even cycle through all the available result sets with a while loop, although in this case you
must be careful not to call NextResult() until you finish reading the first result set. Here’s an example of
this more specialized technique:

// Cycle through the records and all the rowsets,

// and build the HTML string.

StringBuilder htmlStr = new StringBuilder("");

int 1 = 0;

do

{
htmlStr.Append("<h2>Rowset: ");
htmlStr.Append(i.ToString());
htmlStr.Append("</h2>");

while (reader.Read())
{
htmlStr.Append("<1i>");
// Get all the fields in this row.
for (int field = 0; field < reader.FieldCount; field++)

htmlStr.Append(reader.GetName(field).ToString());
htmlStr.Append(": ");
htmlStr.Append(reader.GetValue(field).ToString());
htmlStr.Append(" 8 8nbsp;");

}
htmlStr.Append("</1i>");

}
htmlStr.Append("

");
i++;

} while (reader.NextResult());

// Close the DataReader and the Connection.
reader.Close();
con.Close();

// Show the generated HTML code on the page.
HtmlContent.Text = htmlStr.ToString();

CHAPTER 7 ' ADO.NET FUNDAMENTALS

Note that in this case all the fields are accessed using the generic GetValue() method, which takes
the index of the field to read. That’s because the code is designed generically to read all the fields of all
the returned result sets, no matter what query you use. However, in a realistic database application, you
would almost certainly know which tables to expect, as well as the corresponding table and field names.

Figure 7-4 shows the page output.

Tip There is one case where you might treat all result sets with the same code—if all your result sets contain
data with the same structure. For example, you might call a stored procedure that returns three groups of
employees in three distinct result sets, separated according the sales office where they work. You can then
hardcode your field names instead of using GetValue(), because each result set will have the same fields.

¢ | http://localhost/ChapterO8/DataReaderMultiple.aspx - Microsoft Internet Explorer.

. . »
File Edit Yew Favorites Tools Help €]) ﬂ L;ﬂ o) search <7 Favorites @ Media £2 ,','

@j http:/flocalhost{Chapter08/DataReaderMultiple.aspx v |

Address

Rowset:

o EmployeelD: 1 FirstName: Nancy LastName: Davolio
o EmployeelD: 2 FirstName: Andrew LastName: Fuller

o EmployeelD: 3 FirstName: Janet LastName: Leverling

o EmployeelD: 4 FirstName: Margaret LastName: Peacock
o EmployeelD: 5 FirstName: Steven LastName: Buchanan

Rowset: 1

o ContactName: Maria Anders ContactTitle: Sales Representative
ContactName: Ana Trujillo ContactTitle: Owner

ContactName: Antonio Moreno ContactTitle: Owner
ContactName: Thomas Hardy ContactTitle: Sales Representative
ContactName: Christina Berglund ContactTitle: Order Administrator

Rowset: 2

o SupplierID: 1 CompanyName: Exotic Liquids ContactName: Charlotte Cooper

o SupplierID: 2 CompanyName: New Orleans Cajun Delights ContactName: Shelley Burke

o SupplierID: 3 CompanyName: Grandma Kelly's Homestead ContactName: Regina Murphy

o SupplierID: 4 CompanyName: Tokyo Traders ContactlName: Yoshi Nagase

o SupplierID: 5 CompanyName: Cooperativa de Quesos 'Las Cabras' ContactName: Antonio del Valle Saavedra

&) Done %J Local intranet

Figure 7-4. Retrieving multiple result sets

297

298

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

You don’t always need to step through each record. If you're willing to show the data exactly as it is,
with no extra processing or formatting, you can add a GridView control to your page and bind the
DataReader to the GridView control in a single line. Here is the code you would use:

// Specify the data source.
GridViewl.DataSource = reader;

// Fill the GridView with all the records in the DataReader.
GridView1.DataBind();

You'll learn much more about data binding and how to customize it in Chapter 9 and Chapter 10.

The ExecuteScalar() Method

The ExecuteScalar() method returns the value stored in the first field of the first row of a result set
generated by the command’s SELECT query. This method is usually used to execute a query that
retrieves only a single field, perhaps calculated by a SQL aggregate function such as COUNT() or SUM().

The following procedure shows how you can get (and write on the page) the number of records in
the Employees table with this approach:

SqlConnection con = new SqlConnection(connectionString);
string sql = " SELECT COUNT(*) FROM Employees ";
SqlCommand cmd = new SqlCommand(sql, con);

// Open the Connection and get the COUNT(*) value.
con.Open();

int numEmployees = (int)cmd.ExecuteScalar();
con.Close();

// Display the information.
HtmlContent.Text += "
Total employees: " +

numEmployees.ToString() + "
";

The code is fairly straightforward, but it’s worth noting that you must cast the returned value to the
proper type because ExecuteScalar() returns an object.

The ExecuteNonQuery() Method

The ExecuteNonQuery() method executes commands that don’t return a result set, such as INSERT,

DELETE, and UPDATE. The ExecuteNonQuery() method returns a single piece of information—the

number of affected records (or -1 if your command isn’t an INSERT, DELETE, or UPDATE statement).
Here’s an example that uses a DELETE command by dynamically building a SQL string:

SqlConnection con = new SqlConnection(connectionString);
string sql = "DELETE FROM Employees WHERE EmployeeID = " + empID.ToString();
SqlCommand cmd = new SqlCommand(sql, con);

try

{
con.Open();
int numAff = cmd.ExecuteNonQuery();
HtmlContent.Text += string.Format(

CHAPTER 7 ' ADO.NET FUNDAMENTALS

"
Deleted {0} record(s)
", numAff);
}
catch (SqlException exc)

HtmlContent.Text += string.Format(
"Error: {0}

", exc.Message);

}
finally

con.Close();

This particular code won’t actually delete the record, because foreign key constraints prevent you
from removing an employee record if it’s linked to other records in other tables.

SQL Injection Attacks

So far, all the examples you've seen have used hard-coded values. That makes the examples simple,
straightforward, and relatively secure. It also means they aren’t that realistic, and they don’t
demonstrate one of the most serious risks for web applications that interact with a database—SQL
injection attacks.

In simple terms, SQL injection is the process of passing SQL code into an application, in a way that
was not intended or anticipated by the application developer. This may be possible because of the poor
design of the application, and it affects only applications that use SQL string building techniques to
create a command with user-supplied values.

Consider the example shown in Figure 7-5. In this example, the user enters a customer ID, and the
GridView shows all the rows for that customer. In a more realistic example the user would also need to
supply some sort of authentication information such as a password. Or, the user ID might be based on a
previous login screen, and the text box would allow the user to supply additional criteria such as a date
range or the name of a product in the order.

299

300

CHAPTER 7 ©* ADO.NET FUNDAMENTALS

A Sqlinjection - Microsoft Internet Explorer E]@

File Edit View Favorites Tools Help Qsack ~ © - ¥ A | P search 2 ",','
Address ’@ http:/flocalhost{Chapter0s/Sqlinjection. aspx V
Enter Customer ID:
’ALFKI ‘ Get Records
CustomerID OrderID Items Total
ALFKI 10643 3 1086.0000
ALFKI 10692 1 878.0000
ALFKI 10702 2 330.0000
ALFKI 10835 2 851.0000
ALFKI 10952 2 491.2000
ALFKI 11011 2 960.0000
Q’] Done ‘:J Local intranet

Figure 7-5. Retrieving orders for a single customer

The problem is how this command is executed. In this example, the SQL statement is built
dynamically using a string building technique. The value from the txtID text box is simply pasted into the
middle of the string. Here’s the code:

string connectionString =
WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);
string sql =
"SELECT Orders.CustomerID, Orders.OrderID, COUNT(UnitPrice) AS Items, " +
"SUM(UnitPrice * Quantity) AS Total FROM Orders " +
"INNER JOIN [Order Details] " +
"ON Orders.OrderID = [Order Details].OrderID " +
"WHERE Orders.CustomerID = '" + txtID.Text + "' " +
"GROUP BY Orders.OrderID, Orders.CustomerID";
SqlCommand cmd = new SqlCommand(sql, con);

con.Open();
SqlDataReader reader
GridViewl.DataSource
GridViewl1.DataBind();
reader.Close();

con.Close();

cmd. ExecuteReader();
reader;

CHAPTER 7 ' ADO.NET FUNDAMENTALS

In this example, a user might try to tamper with the SQL statement. Often, the first goal of such an
attack is to receive an error message. If the error isn’t handled properly and the low-level information is
exposed to the attacker, that information can be used to launch a more sophisticated attack.

For example, imagine what happens if the user enters the following text into the text box:

ALFKI' OR '1'="1

Now consider the complete SQL statement that this creates:

SELECT Orders.CustomerID, Orders.OrderID, COUNT(UnitPrice) AS Items,
SUM(UnitPrice * Quantity) AS Total FROM Orders
INNER JOIN [Order Details]
ON Orders.OrderID = [Order Details].OrderID
WHERE Orders.CustomerID = 'ALFKI' OR '1'='1'

GROUP BY Orders.OrderID, Orders.CustomerID

This statement returns all the order records. Even if the order wasn’t created by ALFK], it’s still true
that 1=1 for every row. The result is that instead of seeing the specific information for the current
customer, all the information is exposed to the attacker, as shown in Figure 7-6. If the information
shown on the screen is sensitive, such as Social Security numbers, dates of birth, or credit card
information, this could be an enormous problem! In fact, simple SQL injection attacks exactly like this
are often the source of problems that affect major e-commerce companies. Often, the vulnerability
doesn’t occur in a text box but appears in the query string (which can be used to pass a database value
such as a unique ID from a list page to a details page).

A Sqlinjection - Microsoft Internet Explorer

- . = » g

File Edit View Favorites Tools Help Qback ~ © - [¥] &) @ | P Search ,','

Address ’.@j http:/flocalhost{Chapter0s/Sqlinjection. aspx v
PN

Enter Customer ID:

ARORT=T |

CustomerID OrderID Items Total

VINET 10248 3 440.0000

TOMSP 10249 2 1863.4000

HANAR 10250 3 1813.0000

VICTE 10251 3 670.8000

SUPRD 10252 3 3730.0000

HANAR 10253 3 1444.8000

CHOPS 10254 3 625.2000

RICSU 10255 4 2490.5000

WELLI 10256 2 517.8000

HILAA 10257 3 1119.9000

FRNSH 1N26A 2 2N18 ANNN i
&] Done % Local intranet

Figure 7-6. A SQL injection attack that shows all the orders

301

302

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

More sophisticated attacks are possible. For example, the malicious user could simply comment out
the rest of your SQL statement by adding two hyphens (—).This attack is specific to SQL Server, but
equivalent exploits are possible in MySQL with the hash (#) symbol and in Oracle with the semicolon (;).
Alternatively, the attacker could use a batch command to execute an arbitrary SQL command. With the
SQL Server provider, the attacker simply needs to supply a semicolon followed by a new command. This
exploit allows the user to delete the contents of another table, or even use the SQL Server xp_cmdshell
system stored procedure to execute an arbitrary program at the command line.

Here’s what the user would need to enter in the text box for a more sophisticated SQL injection
attack to delete all the rows in the Customers table:

ALFKI'; DELETE * FROM Customers—

So, how can you defend against SQL injection attacks? You can keep a few good guidelines in mind.
First, it’s a good idea to use the TextBox.MaxLength property to prevent overly long entries if they aren’t
needed. That reduces the chance of a large block of script being pasted in where it doesn’t belong. In
addition, you can use the ASP.NET validator controls to lock out obviously incorrect data (such as text,
spaces, or special characters in a numeric value). Furthermore, you should restrict the information that’s
given by your error messages. If you catch a database exception, you should report only a generic
message such as “Data source error” rather than display the information in the Exception.Message
property, which may provide more information about system vulnerabilities.

More important, you should take care to remove special characters. For example, you can convert
all single quotation marks to two quotation marks, thereby ensuring that they won’t be confused with
the delimiters in your SQL statement:

string ID = txtID.Text().Replace("'", "''");

Of course, this introduces headaches if your text values really should contain apostrophes. It also
suffers because some SQL injection attacks are still possible. Replacing apostrophes prevents a
malicious user from closing a string value prematurely. However, if you're building a dynamic SQL
statement that includes numeric values, a SQL injection attack just needs a single space. This
vulnerability is often (and dangerously) ignored.

An even better approach is to use a parameterized command or a stored procedure that performs its
own escaping and is impervious to SQL injection attacks. The following sections describe these
techniques.

Tip Another good idea is to restrict the permissions of the account used to access the database so that it
doesn’t have the right to access other databases or execute extended system stored procedures. However, this
can’t remove the problem of SQL script injection, because the process you use to connect to the database will
almost always require a broader set of privileges than the ones you would allocate to any single user. By
restricting the account, you could prevent an attack that deletes a table, for example, but you probably can’t
prevent an attack that steals someone else’s information.

CHAPTER 7 ' ADO.NET FUNDAMENTALS

Using Parameterized Commands

A parameterized command is simply a command that uses placeholders in the SQL text. The
placeholders indicate dynamically supplied values, which are then sent through the Parameters
collection of the Command object.

For example, take this SQL statement:

SELECT * FROM Customers WHERE CustomerID = 'ALFKI'

It would become something like this:

SELECT * FROM Customers WHERE CustomerID = @CustID

The placeholders are then added separately and automatically encoded.

The syntax for parameterized commands differs slightly for different providers. With the SQL Server
provider, parameterized commands use named placeholders (with unique names). With the OLE DB
provider, each hard-coded value is replaced with a question mark. In either case, you need to supply a
Parameter object for each parameter, which you insert into the Command.Parameters collection. With
the OLE DB provider, you must make sure you add the parameters in the same order that they appear in
the SQL string. This isn’t a requirement with the SQL Server provider, because the parameters are
matched to the placeholders based on their names.

The following example rewrites the query to remove the possibility of a SQL injection attack:

string connectionString =
WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);
string sql =
"SELECT Orders.CustomerID, Orders.OrderID, COUNT(UnitPrice) AS Items, " +
"SUM(UnitPrice * Quantity) AS Total FROM Orders " +
"INNER JOIN [Order Details] " +
"ON Orders.OrderID = [Order Details].OrderID " +
"WHERE Orders.CustomerID = @CustID " +
"GROUP BY Orders.OrderID, Orders.CustomerID";
SqlCommand cmd = new SqlCommand(sql, con);
cmd. Parameters.AddWithValue("@CustID", txtID.Text);

con.Open();
SqlDataReader reader
GridViewl.DataSource
GridView1.DataBind();
reader.Close();

con.Close();

cmd. ExecuteReader();
reader;

If you try to perform the SQL injection attack against this revised version of the page, you'll find it
returns no records. That’s because no order items contain a customer ID value that equals the text string
ALFKI' OR '1'="1. This is exactly the behavior you want.

303

CHAPTER 7 "/ ADO.NET FUNDAMENTALS

POST Injection Attacks

Savvy users might realize there’s another potential avenue for attack with web controls. Although
parameterized commands prevent SQL injection attacks, they don’t prevent attackers from adding
malicious values to the data that’s posted back to the server. Left unchecked, this could allow attackers to
submit control values that wouldn’t otherwise be possible.

For example, imagine you have a list that shows orders made by the current user. A crafty attacker could
save a local copy of the page, modify the HTML to add more entries to the list, and then select one of these
“fake” entries. If this attack succeeds, the user will be able to see the orders made by another user, which
is an obvious problem.

Fortunately, ASP.NET defends against this attack using a rarely discussed feature called event validation.
Event validation checks the data that’s posted back to the server and verifies that the values are legitimate.
For example, if the POST data indicates the user chose a value that doesn’t make sense (because it
doesn’t actually exist in the control), ASP.NET generates an error and stops processing.

You can disable event validation by setting the EnableEventValidation attribute of the Page directive to
false. This step is sometimes necessary when you create pages that are dynamically modified using client-
side script (as you'll see in Chapter 32). However, in these situations, be careful to check for potential
POST injection attacks by validating selected values before you act on them.

Calling Stored Procedures

Parameterized commands are just a short step from commands that call full-fledged stored procedures.

As you probably know, a stored procedure is a batch of one or more SQL statements that are stored
in the database. Stored procedures are similar to functions in that they are well-encapsulated blocks of
logic that can accept data (through input parameters) and return data (through result sets and output
parameters). Stored procedures have many benefits:

They are easier to maintain: For example, you can optimize the commands in a stored procedure
without recompiling the application that uses it. They also standardize data access logic in one
place—the database—making it easier for different applications to reuse that logic in a consistent
way. (In object-oriented terms, stored procedures define the interface to your database.)

They allow you to implement more secure database usage: For example, you can allow the
Windows account that runs your ASP.NET code to use certain stored procedures but restrict access
to the underlying tables.

They can improve performance: Because a stored procedure batches together multiple statements,
you can get a lot of work done with just one trip to the database server. If your database is on
another computer, this reduces the total time to perform a complex task dramatically.

Note SQL Server precompiles all SQL commands, including off-the-cuff SQL statements. That means you gain
the benefit of compilation regardless of whether you are using stored procedures. However, stored procedures still
tend to increase the performance benefits, because systems that use stored procedures tend to have less
variability. Systems that use ad hoc SQL statements tend to use slightly different commands to perform similar
tasks, which means compiled execution plans can’t be reused as effectively.

304

CHAPTER 7 ' ADO.NET FUNDAMENTALS

Here’s the SQL code needed to create a stored procedure for inserting a single record into the
Employees table. This stored procedure isn’t in the Northwind database initially, so you'll need to add it
to the database (using a tool such as SQL Server Management Studio) before you use it.

CREATE PROCEDURE InsertEmployee
@TitleOfCourtesy varchar(2s),

@LastName varchar(20),

@FirstName varchar(10),

@EmployeeID int OUTPUT
AS

INSERT INTO Employees
(TitleOfCourtesy, LastName, FirstName, HireDate)
VALUES (@TitleOfCourtesy, @LastName, @FirstName, GETDATE());

SET @EmployeeID = @@IDENTITY

This stored procedure takes three parameters for the employee’s title of courtesy, last name, and first
name. It returns the ID of the new record through the output parameter called @EmployeelD, which is
retrieved after the INSERT statement using the @@IDENTITY function. This is one example of a simple task
that a stored procedure can make much easier. Without using a stored procedure, it’s quite awkward to try
to determine the automatically generated identity value of a new record you've just inserted.

Next, you can create a SqlCommand to wrap the call to the stored procedure. This command takes
the same three parameters as inputs and uses @@IDENTITY to get and then return the ID of the new
record. Here is the first step, which creates the required objects and sets InsertEmployee as the
command text:

string connectionString =
WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);

// Create the command for the InsertEmployee stored procedure.
SqlCommand cmd = new SqlCommand("InsertEmployee", con);
cmd.CommandType = CommandType.StoredProcedure;

Now you need to add the stored procedure’s parameters to the Command.Parameters collection.
When you do, you need to specify the exact data type and length of the