
M
acDonald
Freem

an
Szpuszta

FOURTH EDITION

ASP.NET 4
in C# 2010

Companion eBook Available

7.5 x 9.25 spine = 3.03125" 1616 page count

THE EXPERT’S VOICE® IN .NET

Pro

ASP.NET 4
in C# 2010

FOURTH EDITION

Matthew MacDonald, Adam Freeman,
and Mario Szpuszta

Pro

this print for content only—size & color not accurate

  CYAN
  MAGENTA

  YELLOW
  BLACK
  PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Matthew MacDonald,
Author of

Pro Silverlight 4 in C#

Beginning ASP.NET 4 in C#
2010

Pro WPF in C# 2010

Pro .NET 2.0 Windows
Forms and Custom Controls

US $59.99

Shelve in:
.NET

User level:
Intermediate–Advanced

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2529-4

9 781430 225294

55999

Adam Freeman,
Co-Author of

Introducing Visual C# 2010

Pro .NET 4 Parallel
Programming in C#

Pro LINQ: Language
Integrated Query in C#
2010

Visual C# 2010 Recipes

Programming .NET Security

Microsoft .NET XML Web
Services Step by Step

C# for Java Developers

Programming the Internet
with Java

Active Java

Mario Szpuszta,
Co-Author of

Advanced .NET Remoting

Pro ASP.NET 4 in C# 2010
Dear Reader,

As you know, ASP.NET is Microsoft’s premier technology for creating server-
side web applications. In this book, you’ll learn about ASP.NET 4, which is the
latest milestone in web development.

ASP.NET 4 adds a host of refinements and two major new features to pre-
vious versions of the technology. The first major change is the inclusion of
ASP.NET MVC—an alternative way to design web pages—that offers clean-
er URLs, better testability, and tight control over HTML. The second is ASP.
NET Dynamic Data—a data scaffolding framework that allows you to build
an entire website out of flexible, reusable templates. You’ll learn about both
of these innovations in this book. You’ll also get a solid look at Silverlight,
Microsoft’s next-generation browser plug-in that allows you to draw vector
graphics, show animations, and play media files in your ASP.NET pages.

The book also covers:
•	 Core concepts of ASP.NET 4. You’ll learn the fundamentals of Visual Studio, ASP.	
	 NET, and the web forms model—and how to extend this infrastructure when 	
	 you need to.
•	 Data access. You’ll get a thorough review of scalable data access programming, 	
	 covering pure ADO.NET, LINQ, the Entity Framework, ASP.NET Dynamic Data, 	
	 and advanced caching techniques.
•	 Security. You’ll learn to secure your website with ASP.NET’s built-in authoriza-	
	 tion and authentication features, and how to protect sensitive data wherever it’s 	
	 stored with encryption.
•	 Advanced user interface. You’ll study a range of techniques for building pages with 	
	 pizzazz, including CSS, custom controls, GDI+, JavaScript, and ASP.NET AJAX.
• And much more…

Matthew MacDonald (Microsoft MVP, MCSD)

THE APRESS ROADMAP

Pro
Silverlight 4 in C#

Pro
Dynamic .NET 4.0

Applications

Pro
Windows AzurePro C# 2010

and the
.NET 4 Platform

Pro ASP.NET 4
in C# 2010,

Introducing
.NET 4.0

Accelerated
C# 2010

2529-4 MacDonald.indd 1 6/7/10 12:08 PM

Pro ASP.NET 4 in C# 2010
Fourth Edition

■ ■ ■

Matthew MacDonald, Adam Freeman,
and Mario Szpuszta

Pro ASP.NET in C# 2010, Fourth Edition

Copyright © 2010 by Matthew MacDonald, Adam Freeman, and Mario Szpuszta

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright the publisher.

ISBN-13 (pbk): 978-1-4302-2529-4

ISBN-13 (electronic): 978-1-4302-2530-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewers: Fabio Claudio Ferracchiati and Todd Meister
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Anne Collett
Copy Editors: Ralph Moore, Katie Stence, Kim Wimpsett
Compositor: Mary Sudul
Indexer: Kevin Broccoli
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

iii

Contents at a Glance

Contents..v
About the Author .. xxxii
About the Technical Reviewer ... xxxiii
Introduction ... xxxiv

Part 1: Core Concepts ...1

■ Chapter 1: Introducing ASP.NET...3
■ Chapter 2: Visual Studio...21

■ Chapter 3: Web Forms..77

■ Chapter 4: Server Controls...129
■ Chapter 5: ASP.NET Applications ...183
■ Chapter 6: State Management ...235

Part 2: Data Access ..275
■ Chapter 7: ADO.NET Fundamentals ..277
■ Chapter 8: Data Components and the DataSet ...321
■ Chapter 9: Data Binding ...353
■ Chapter 10: Rich Data Controls..403
■ Chapter 11: Caching and Asynchronous Pages ...477
■ Chapter 12: Files and Streams...527
■ Chapter 13: LINQ ..563

■ Chapter 14: XML...617

iv

Part 3: Building ASP.NET Websites...679

■ Chapter 15: User Controls ..681

■ Chapter 16: Themes and Master Pages ...703

■ Chapter 17: Website Navigation...735

■ Chapter 18: Website Deployment...791

Part 4: Security...833

■ Chapter 19: The ASP.NET Security Model ..835

■ Chapter 20: Forms Authentication ...851

■ Chapter 21: Membership..877

■ Chapter 22: Windows Authentication...933

■ Chapter 23: Authorization and Roles ...963

■ Chapter 24: Profiles ...995

■ Chapter 25: Cryptography..1029

■ Chapter 26: Custom Membership Providers ..1061

Part 5: Advanced User Interface...1099

■ Chapter 27: Custom Server Controls..1101

■ Chapter 28: Graphics, GDI+, and Charting ...1135

■ Chapter 29: JavaScript and Ajax Techniques ..1179

■ Chapter 30: ASP.NET AJAX...1239

■ Chapter 31: Portals with Web Part Pages..1303

■ Chapter 32: MVC ..1363

■ Chapter 33: Dynamic Data ...1397

■ Chapter 34: Silverlight ...1437

Index...1491

■ CONTENTS

v

Contents

Contents at a Glance..iii
About the Author .. xxxii
About the Technical Reviewer ... xxxiii
Introduction ... xxxiv

Part 1: Core Concepts ...1

■ Chapter 1: Introducing ASP.NET...3
The Seven Pillars of ASP.NET ..3

#1: ASP.NET Is Integrated with the .NET Framework ...3
#2: ASP.NET Is Compiled, Not Interpreted ..4
#3: ASP.NET Is Multilanguage ..6
#4: ASP.NET Is Hosted by the Common Language Runtime...8
#5: ASP.NET Is Object-Oriented..9
#6: ASP.NET Supports all Browsers..11
#7: ASP.NET Is Easy to Deploy and Configure ..11

The Evolution of ASP.NET ..12
ASP.NET 1.0 and 1.1...12
ASP.NET 2.0..12
ASP.NET 3.5..13
ASP.NET 4...16
Silverlight ...18

Summary ...19

■ CONTENTS

vi

■ Chapter 2: Visual Studio...21

Introducing Visual Studio...21
Websites and Web Projects ..22
Creating a Projectless Website...23
Designing a Web Page..28

The Visual Studio IDE...35
Solution Explorer ..37
Document Window ...38
Toolbox ...38
Error List and Task List...39
Server Explorer ...41

The Code Editor ...42
Adding Assembly References ...43
IntelliSense and Outlining...46
Visual Studio 2010 Improvements..50

The Code Model ...56
How Code-Behind Files Are Connected to Pages ...59
How Control Tags Are Connected to Page Variables ..60
How Events Are Connected to Event Handlers ...61

Web Projects..63
Creating a Web Project ...64
Migrating a Website from a Previous Version of Visual Studio...66

Visual Studio Debugging..68
Single-Step Debugging...69
Variable Watches..72
Advanced Breakpoints..74

The Web Development Helper ...74
Summary ...76

■ Chapter 3: Web Forms..77

Page Processing ..78
HTML Forms ...78

■ CONTENTS

vii

Dynamic User Interface ..80
The ASP.NET Event Model ..81
Automatic Postbacks..82
View State ..84
XHTML Compliance...88
Client-Side Control IDs ...94

Web Forms Processing Stages ..97
Page Framework Initialization ..98
User Code Initialization...99
Validation..99
Event Handling..100
Automatic Data Binding..100
Cleanup...101
A Page Flow Example ...101

The Page As a Control Container ...104
Showing the Control Tree ...104
The Page Header ..109
Dynamic Control Creation...110

The Page Class ..112
Session, Application, and Cache ..112
Request ..113
Response ..114
Server ...118
User ..121
Trace...121
Accessing the HTTP Context in Another Class..127

Summary ...128

■ Chapter 4: Server Controls...129
Types of Server Controls..129

The Server Control Hierarchy ...130

HTML Server Controls ..132
The HtmlControl Class ..133

■ CONTENTS

viii

The HtmlContainerControl Class...133
The HtmlInputControl Class ..134
The HTML Server Control Classes ..134
Setting Style Attributes and Other Properties...136
Programmatically Creating Server Controls ...137
Handling Server-Side Events..139

Web Controls ...142
The WebControl Base Class..143
Basic Web Control Classes ...145
Units ...147
Enumerations ...147
Colors ...148
Fonts...148
Focus ..150
The Default Button..151
Scrollable Panels ..152
Handling Web Control Events ...153

The List Controls ..156
The Selectable List Controls ...157
The BulletedList Control ...161

Input Validation Controls..162
The Validation Controls...163
The Validation Process ...164
The BaseValidator Class ...165
The RequiredFieldValidator Control ..167
The RangeValidator Control ..167
The CompareValidator Control..168
The RegularExpressionValidator Control ..168
The CustomValidator Control ..171
The ValidationSummary Control ...172
Using the Validators Programmatically ..174
Validation Groups..175

■ CONTENTS

ix

Rich Controls..177
The AdRotator Control ..178
The Calendar Control ..180

Summary ...182

■ Chapter 5: ASP.NET Applications ...183
Anatomy of an ASP.NET Application ..183

The Application Domain..184
Application Lifetime..185
Application Updates..186
Application Directory Structure ..186

The global.asax Application File ..187
Application Events ..189
Demonstrating Application Events..191

ASP.NET Configuration ..192
The machine.config File ...193
The web.config File ..195
<system.web> ...199
<system.webServer>...200
<appSettings> ...201
<connectionStrings>..202
Reading and Writing Configuration Sections Programmatically...203
The Website Administration Tool (WAT) ...206
Extending the Configuration File Structure...207
Encrypting Configuration Sections ...211

.NET Components ..213
Creating a Component ..214
Using a Component Through the App_Code Directory ...215
Using a Component Through the Bin Directory ..216

Extending the HTTP Pipeline..219
HTTP Handlers ..219
Creating a Custom HTTP Handler ...221
Configuring a Custom HTTP Handler ..222

■ CONTENTS

x

Using Configuration-Free HTTP Handlers ...223
Creating an Advanced HTTP Handler..223
Creating an HTTP Handler for Non-HTML Content..226
HTTP Modules...229
Creating a Custom HTTP Module ..231

Summary ...234

■ Chapter 6: State Management ...235

ASP.NET State Management..236
View State..238

A View State Example...239
Storing Objects in View State ...241
Assessing View State ...243
Selectively Disabling View State ..244
View State Security ..246

Transferring Information Between Pages ..247
The Query String...248
Cross-Page Posting ..249

Cookies ..256
Session State...258

Session Architecture ..258
Using Session State..259
Configuring Session State ..261
Securing Session State ..268

Application State..269
Static Application Variables..271

Summary ...273

Part 2: Data Access ..275

■ Chapter 7: ADO.NET Fundamentals ..277
The ADO.NET Architecture ...278

ADO.NET Data Providers ...278

■ CONTENTS

xi

Standardization in ADO.NET ...280
Fundamental ADO.NET Classes ..281

The Connection Class ..283
Connection Strings ...283
Testing a Connection ..286
Connection Pooling...287

The Command and DataReader Classes..289
Command Basics..290
The DataReader Class ..291
The ExecuteReader() Method and the DataReader...292
The ExecuteScalar() Method...298
The ExecuteNonQuery() Method ...298
SQL Injection Attacks..299
Using Parameterized Commands ...303
Calling Stored Procedures ..304

Transactions ..307
Transactions and ASP.NET Applications...307
Isolation Levels...312
Savepoints ..314

Provider-Agnostic Code ...315
Creating the Factory ...316
Create Objects with Factory ...317
A Query with Provider-Agnostic Code ..318

Summary ...319

■ Chapter 8: Data Components and the DataSet ...321
Building a Data Access Component...321

The Data Package...323
The Stored Procedures ...324
The Data Utility Class..325
Testing the Database Component...331

Disconnected Data...333
Web Applications and the DataSet ...334

■ CONTENTS

xii

XML Integration ..335

The DataSet ...335
The DataAdapter Class ..337

Filling a DataSet ...338
Working with Multiple Tables and Relationships..340
Searching for Specific Rows ..343
Using the DataSet in a Data Access Class..344
Data Binding ...345

The DataView Class ...345
Sorting with a DataView ...346
Filtering with a DataView ...348
Advanced Filtering with Relationships ...350
Calculated Columns..350

Summary ...352

■ Chapter 9: Data Binding ...353
Basic Data Binding...354

Single-Value Binding ..354
Other Types of Expressions ..356
Repeated-Value Binding ...360

Data Source Controls ...368
The Page Life Cycle with Data Binding...369

The SqlDataSource ..370
Selecting Records...371
Parameterized Commands ...374
Handling Errors...379
Updating Records ...379
Deleting Records ..384
Inserting Records ...384
Disadvantages of the SqlDataSource ...385

The ObjectDataSource ...386
Selecting Records...387

■ CONTENTS

xiii

Updating Records ...392
Updating with a Data Object ...393

The Limits of the Data Source Controls ...397
The Problem ...398
Adding the Extra Items ...399
Handling the Extra Options with the SqlDataSource ..399
Handling the Extra Options with the ObjectDataSource ...400

Summary ...401

■ Chapter 10: Rich Data Controls..403
The GridView..404

Defining Columns ...404

Formatting the GridView..408
Formatting Fields..409
Styles..410
Formatting-Specific Values ..414

GridView Row Selection...416
Using Selection to Create a Master-Details Form...418
The SelectedIndexChanged Event ..420
Using a Data Field As a Select Button ..421

Sorting the GridView..422
Sorting with the SqlDataSource ...422
Sorting with the ObjectDataSource ..423
Sorting and Selection ...425
Advanced Sorting ...425

Paging the GridView ..427
Automatic Paging ...427
Paging and Selection..429
Custom Pagination with the ObjectDataSource..429
Customizing the Pager Bar ...432

GridView Templates...433
Using Multiple Templates ...435

■ CONTENTS

xiv

Editing Templates in Visual Studio ...436
Binding to a Method ...437
Handling Events in a Template ...439
Editing with a Template..440
Client IDs in Templates...447

The ListView ..447
Grouping ...451
Paging...453

The DetailsView and FormView ...454
The DetailsView ..454
The FormView...457

Advanced Grids..459
Summaries in the GridView ..459
A Parent/Child View in a Single Table ..461
Editing a Field Using a Lookup Table..464
Serving Images from a Database ...466
Detecting Concurrency Conflicts ..472

Summary ...476

■ Chapter 11: Caching and Asynchronous Pages ...477
Understanding ASP.NET Caching...477
Output Caching ..478

Declarative Output Caching ..479
Caching and the Query String...480
Caching with Specific Query String Parameters...481
Custom Caching Control ...481
Caching with the HttpCachePolicy Class ..483
Post-Cache Substitution and Fragment Caching..484
Cache Profiles...487
Cache Configuration ...487
Output Caching Extensibility...488

Data Caching ...493
Adding Items to the Cache ...494

■ CONTENTS

xv

A Simple Cache Test...496
Cache Priorities ..498
Caching with the Data Source Controls ..498

Cache Dependencies ...502
File and Cache Item Dependencies ..502
Aggregate Dependencies ...503
The Item Removed Callback ...504
Understanding SQL Cache Notifications ...507
How Cache Notifications Work ...508
Enabling Notifications...508
Creating the Cache Dependency ..509

Custom Cache Dependencies ..510
A Basic Custom Cache Dependency...510
A Custom Cache Dependency Using Message Queues ..512

Asynchronous Pages ...514
Creating an Asynchronous Page...515
Querying Data in an Asynchronous Page..517
Handling Errors...519
Using Caching with Asynchronous Tasks...522
Multiple Asynchronous Tasks and Timeouts ..524

Summary ...526

■ Chapter 12: Files and Streams...527
Working with the File System..527

The Directory and File Classes ...528
The DirectoryInfo and FileInfo Classes ...530
The DriveInfo Class...533
Working with Attributes..534
Filter Files with Wildcards ..536
Retrieving File Version Information ..537
The Path Class ..538
A File Browser ..541

■ CONTENTS

xvi

Reading and Writing Files with Streams..546
Text Files ..547
Binary Files...549
Uploading Files ...550
Making Files Safe for Multiple Users..552
Compression...557

Serialization...558
Summary ...561

■ Chapter 13: LINQ ..563

LINQ Basics..563
Deferred Execution ...565
How LINQ Works ...566
LINQ Expressions..567
LINQ Expressions “Under the Hood” ..575

LINQ to DataSet..578
Typed DataSets ..581
Null Values..581

LINQ to Entities ..581
Generating the Data Model...582
The Data Model Classes ...583
Entity Relationships ..586
Querying Stored Procedures...587
LINQ to Entities Queries “Under the Hood”...589

Database Operations ...595
Inserts...595
Updates ..598
Deletes..598
Managing Concurrency...598
Handling Concurrency Conflicts ...599

The EntityDataSource Control..604
Displaying Data...604

■ CONTENTS

xvii

Getting Related Data...609
Editing Data ..610
Validation..611

Using the QueryExtender Control...612
Using a SearchExpression ..613
Using a RangeExpression ...614
Using a PropertyExpression..614
Using a MethodExpression ...615

Summary ...616

■ Chapter 14: XML...617

When Does Using XML Make Sense? ..617
An Introduction to XML ..618

The Advantages of XML ..619
Well-Formed XML ...620
XML Namespaces ...621
XML Schemas...622

Stream-Based XML Processing ...624
Writing XML Files..624
Reading XML Files ..628

In-Memory XML Processing...631
The XmlDocument ..632
The XPathNavigator ..636
The XDocument ..638

Searching XML Content ...643
Searching with XmlDocument ..644
Searching XmlDocument with XPath..646
Searching XDocument with LINQ..649

Validating XML Content..651
A Basic Schema..651
Validating with XmlDocument ..652
Validating with XDocument ..654

■ CONTENTS

xviii

Transforming XML Content ..654
A Basic Stylesheet ..655
Using XslCompiledTransform ...656
Using the Xml Control ...657
Transforming XML with LINQ to XML..658

XML Data Binding ..660
Nonhierarchical Binding ...660
Using XPath ..662
Nested Grids ...665
Hierarchical Binding with the TreeView ...667
Using XSLT..669
Binding to XML Content from Other Sources..671
Updating XML Through the XmlDataSource ...672

XML and the ADO.NET DataSet ..672
Converting the DataSet to XML...673
Accessing a DataSet As XML..675

Summary ...678

Part 3: Building ASP.NET Websites...679

■ Chapter 15: User Controls ..681

User Control Basics ...681
Creating a Simple User Control ..682
Converting a Page to a User Control...684

Adding Code to a User Control...684
Handling Events..684
Adding Properties ...685
Using Custom Objects ..688
Adding Events...690
Exposing the Inner Web Control ...694

Dynamically Loading User Controls ...695
Portal Frameworks ...695

■ CONTENTS

xix

Partial Page Caching..699
VaryByControl ...699
Sharing Cached Controls ..701

Summary ...702

■ Chapter 16: Themes and Master Pages ...703

Cascading Style Sheets ...703
Creating a Stylesheet ...703
Applying Stylesheet Rules ..706

Themes ..709
Theme Folders and Skins ...709
Applying a Simple Theme...711
Handling Theme Conflicts...712
Creating Multiple Skins for the Same Control ..713
Skins with Templates and Images..714
Using CSS in a Theme ..717
Applying Themes Through a Configuration File..717
Applying Themes Dynamically..718

Standardizing Website Layout ...720
Master Page Basics ...720

A Simple Master Page ..721
A Simple Content Page ...723
Default Content...725
Master Pages with Tables and CSS Layout ..726
Master Pages and Relative Paths ...729
Applying Master Pages Through a Configuration File...730

Advanced Master Pages ..730
Interacting with the Master Page Class..730
Dynamically Setting a Master Page..732
Nesting Master Pages ..732

Summary ...734

■ CONTENTS

xx

■ Chapter 17: Website Navigation...735

Pages with Multiple Views...736
The MultiView Control ..736
The Wizard Control ...741

Site Maps...751
Defining a Site Map ..752
Binding to a Site Map ...753
Breadcrumbs ..754
Showing a Portion of the Site Map ...757
The Site Map Objects..760
Adding Custom Site Map Information...762
Creating a Custom SiteMapProvider...763
Security Trimming ..770

URL Mapping and Routing ...772
URL Mapping ..772
URL Routing ..773

The TreeView Control...774
The TreeNode ...775
Populating Nodes on Demand ..778
TreeView Styles ..779

The Menu Control ..783
Menu Styles..786
Menu Templates ...788

Summary ...789

■ Chapter 18: Website Deployment...791

Installing and Configuring IIS...791
Installing IIS 7 ...791
Managing IIS 7..793

Deploying a Website ..795
Deploying by Copying Files...796
Using Web Deployment ..801

■ CONTENTS

xxi

Using FTP Deployment..809

Managing a Website ..817
Creating a New Site..817
Creating Virtual Directories ..818
Using the VirtualPathProvider...819
Using Application Pools ..823
Using Application Warm-Up..826

Extending the Integrated Pipeline..828
Creating the Handler...828
Deploying the Handler ..829
Configuring the Handler..829
Testing the Handler ..830

Summary ...831

Part 4: Security...833

■ Chapter 19: The ASP.NET Security Model ..835

What It Means to Create Secure Software...835
Understanding Potential Threats ..835
Secure Coding Guidelines...836
Understanding Gatekeepers ...837

Understanding the Levels of Security ..838
Authentication ..838
Authorization ..839
Confidentiality and Integrity ...840
Pulling It All Together ...841

Understanding Secure Sockets Layer..842
Understanding Certificates ...843
Understanding SSL ...843
Configuring SSL in IIS 7.x ...845

Summary ...849

■ CONTENTS

xxii

■ Chapter 20: Forms Authentication ...851

Introducing Forms Authentication ...851
Why Use Forms Authentication?...852
Why Would You Not Use Forms Authentication? ..854
Why Not Implement Cookie Authentication Yourself? ..855
The Forms Authentication Classes ...856

Implementing Forms Authentication..857
Configuring Forms Authentication ..857
Denying Access to Anonymous Users ..861
Creating a Custom Login Page ...862
Custom Credentials Store...868
Persistent Cookies in Forms Authentication...869

IIS 7.x and Forms Authentication...871
Summary ...876

■ Chapter 21: Membership..877

Introducing the ASP.NET Membership API...877
Using the Membership API ..880

Configuring Forms Authentication ..882
Creating the Data Store ..883
Configuring Connection String and Membership Provider ...890
Creating and Authenticating Users ...893

Using the Security Controls ...897
The Login Control..898
The LoginStatus Control ...909
The LoginView Control..910
The PasswordRecovery Control..911
The ChangePassword Control...916
The CreateUserWizard Control..917

Configuring Membership in IIS 7.x...922
Configuring Providers and Users ..922
Using the Membership API with Other Applications ...924

■ CONTENTS

xxiii

Using the Membership Class ...926
Retrieving Users from the Store ...927
Updating Users in the Store..929
Creating and Deleting Users ...930
Validating Users..931

Summary ...931

■ Chapter 22: Windows Authentication...933

Introducing Windows Authentication...933
Why Use Windows Authentication? ..933
Why Would You Not Use Windows Authentication?..935
Mechanisms for Windows Authentication ..935

Implementing Windows Authentication ...942
Configuring IIS 7.x ..942
Configuring ASP.NET ..944
Deeper Into the IIS 7.x Pipeline ..945
Denying Access to Anonymous Users ..948
Accessing Windows User Information ..950

Impersonation..956
Impersonation and Delegation in Windows ..956
Configured Impersonation ..958
Programmatic Impersonation ...959

Summary ...962

■ Chapter 23: Authorization and Roles ...963

URL Authorization ..963
Authorization Rules ..964

File Authorization...970
Authorization Checks in Code..970

Using the IsInRole() Method..970
Using the PrincipalPermission Class ..971

Using the Roles API for Role-Based Authorization...974
Using the LoginView Control with Roles ...981

■ CONTENTS

xxiv

Accessing Roles Programmatically ..981
Using the Roles API with Windows Authentication...984

Authorization and Roles in IIS 7.x ..986
Authorization with ASP.NET Roles in IIS 7.x ...989
Managing ASP.NET Roles with IIS 7.x ..991

Summary ...993

■ Chapter 24: Profiles ...995

Understanding Profiles ..995
Profile Performance..996
How Profiles Store Data..997
Profiles and Authentication ..998
Profiles vs. Custom Data Components ...998

Using the SqlProfileProvider ..998
Creating the Profile Tables ...999
Configuring the Provider...1002
Defining Profile Properties..1003
Using Profile Properties ..1004
Profile Serialization ..1006
Profile Groups ...1008
Profiles and Custom Data Types...1008
The Profiles API ..1012
Anonymous Profiles..1015

Custom Profile Providers ...1017
The Custom Profile Provider Classes..1018
Designing the FactoredProfileProvider ...1020
Coding the FactoredProfileProvider..1021
Testing the FactoredProfileProvider ...1025

Summary ...1028

■ Chapter 25: Cryptography..1029

Encrypting Data: Confidentiality Matters ...1029
The .NET Cryptography Namespace ..1030

■ CONTENTS

xxv

Understanding the .NET Cryptography Classes ...1033
Symmetric Encryption Algorithms ..1035
Asymmetric Encryption ..1036
The Abstract Encryption Classes ..1037
The ICryptoTransform Interface..1037
The CryptoStream Class ...1038

Encrypting Sensitive Data..1039
Managing Secrets...1039
Using Symmetric Algorithms ..1041
Using Asymmetric Algorithms ..1047
Encrypting Sensitive Data in a Database..1049

Encrypting the Query String...1054
Wrapping the Query String ...1054
Creating a Test Page ..1057

Summary ...1059

■ Chapter 26: Custom Membership Providers ..1061

Architecture of Custom Providers..1061
Basic Steps for Creating Custom Providers ...1063

Overall Design of the Custom Provider ...1063
Designing and Implementing the Custom Store ...1065
Implementing the Provider Classes ..1072
Using the Custom Provider Classes..1092

Summary ...1097

Part 5: Advanced User Interface...1099

■ Chapter 27: Custom Server Controls..1101

Custom Server Control Basics ...1101
Creating a Bare-Bones Custom Control ..1102
Using a Custom Control ..1104
Custom Controls in the Toolbox..1105
Creating a Web Control That Supports Style Properties ...1108

■ CONTENTS

xxvi

The Rendering Process...1111

Dealing with Different Browsers..1113
The HtmlTextWriter...1113
Browser Detection ..1114
Browser Properties...1115
Overriding Browser Type Detection..1117
Adaptive Rendering ..1117

Control State and Events ...1119
View State ..1119
Control State...1121
Postback Data and Change Events ...1123
Triggering a Postback...1125

Extending Existing Web Controls ...1127
Composite Controls ..1127
Derived Controls ...1130

Summary ...1133

■ Chapter 28: Graphics, GDI+, and Charting ...1135

The ImageMap Control...1135
Creating Hotspots ...1136
Handling Hotspot Clicks..1137
A Custom Hotspot ...1139

Drawing with GDI+ ..1141
Simple Drawing ..1141
Image Format and Quality ..1143
The Graphics Class ...1145
Using a GraphicsPath ...1148
Pens..1149
Brushes ..1152

Embedding Dynamic Graphics in a Web Page ...1154
Using the PNG Format ..1155
Passing Information to Dynamic Images ..1155
Custom Controls That Use GDI+ ...1158

■ CONTENTS

xxvii

Using the Chart Control..1163
Creating a Basic Chart ..1163
Populating a Chart with Data..1170

Summary ...1178

■ Chapter 29: JavaScript and Ajax Techniques ..1179

JavaScript Essentials...1179
The HTML Document Object Model ..1180
Client-Side Events ..1181
Script Blocks ..1184
Manipulating HTML Elements...1185
Debugging JavaScript ..1186

Basic JavaScript Examples..1189
Creating a JavaScript Page Processor ...1190
Using JavaScript to Download Images Asynchronously...1193
Rendering Script Blocks ...1198

Script Injection Attacks..1199
Request Validation..1200
Disabling Request Validation ..1201
Extending Request Validation ...1203

Custom Controls with JavaScript...1205
Pop-Up Windows ..1205
Rollover Buttons ...1210

Frames...1213
Frame Navigation ...1214
Inline Frames..1216

Understanding Ajax..1217
The XMLHttpRequest Object...1218
An Ajax Example ...1220

Using Ajax with Client Callbacks ...1224
Creating a Client Callback ..1225
Client Callbacks “Under the Hood”...1231

■ CONTENTS

xxviii

Client Callbacks in Custom Controls...1232

Summary ...1237

■ Chapter 30: ASP.NET AJAX...1239

Introducing ASP.NET AJAX...1239
ASP.NET AJAX on the Client: The Script Libraries ..1240
ASP.NET AJAX on the Server: The ScriptManager..1241

Server Callbacks..1242
Web Services in ASP.NET AJAX..1243
Placing a Web Method in a Page ..1250
ASP.NET AJAX Application Services ...1252

ASP.NET AJAX Server Controls ..1259
Partial Rendering with the UpdatePanel...1260
Timed Refreshes with the Timer ..1268
Time-Consuming Updates with UpdateProgress ..1269
Managing Browser History ...1272

Deeper into the Client Libraries ...1276
Understanding the Client Model ...1276
Object-Oriented Programming in JavaScript..1277
The Web-Page Framework ...1286

Control Extenders ..1291
Installing the ASP.NET AJAX Control Toolkit...1292
The AutoCompleteExtender ..1294
The ASP.NET AJAX Control Toolkit ...1297

Summary ...1302

■ Chapter 31: Portals with Web Part Pages..1303

Typical Portal Pages ..1304
Basic Web Part Pages..1305

Creating the Page Design ...1306
WebPartManager and WebPartZone Controls ..1307
Adding Web Parts to the Page ..1309
Customizing the Page...1313

■ CONTENTS

xxix

Creating Web Parts ..1316
Simple Web Part Tasks...1316
Developing Advanced Web Parts..1325
Web Part Editors ...1335
Connecting Web Parts ..1341
Custom Verbs and Web Parts ...1350
User Controls and Advanced Web Parts ...1351
Uploading Web Parts Dynamically..1354
Authorizing Web Parts ..1360
Final Tasks for Personalization...1360

Summary ...1361

■ Chapter 32: MVC ..1363

Choosing Between MVC and Web Forms...1363
Creating a Basic MVC Application..1364

Creating the Model ...1365
Creating the Controller ...1365
Creating the Index View..1366
Testing the (Incomplete) Application ..1367
Completing the Controller and Views ...1368
Modifying the Site.Master File..1371

Extending the Basic MVC Application ..1371
Configuring Routing..1371
Adding Error Handling ..1373
Adding Authentication ..1374
Consolidating Data Store Access..1375
Adding Support for Foreign Key Constraints ..1378

Customizing Views...1378
Modifying the View ...1379
Adding View Data ...1381

Adding to the Model...1383

■ CONTENTS

xxx

Validating Data...1388
Performing Basic Validation ...1388
Adding Validation Annotations..1390

Using Action Results ..1393
Returning JSON Data..1394
Calling Another Controller Method..1395

Summary ...1396

■ Chapter 33: Dynamic Data ...1397

Creating a Dynamic Data Application ..1397
Creating the Dynamic Data Site..1397
Exploring the Dynamic Data Site ..1400

Understanding the Anatomy of a Dynamic Data Project..1403
Customizing a Dynamic Data Site..1404

Customizing with Templates ..1404
Customizing with Routes..1414
Customizing with Metadata..1423
Customizing Validation ...1430

Summary ...1435

■ Chapter 34: Silverlight ...1437

Understanding Silverlight ..1438
Silverlight vs. Flash ..1439
Silverlight System Requirements ...1441

Creating a Silverlight Solution ...1442
Silverlight Compilation ...1443
The Entry Page ...1445

Creating a Silverlight Project ...1449
Designing a Silverlight Page...1450
Understanding XAML ..1454
Setting Properties...1455
The XAML Code-Behind ..1456
Handling Events..1457

■ CONTENTS

xxxi

Browsing the Silverlight Class Libraries...1459

Layout ..1460
The Canvas ...1460
The Grid ..1466

Animation...1471
Animation Basics ..1471
Defining an Animation ..1472
The Storyboard Class..1472
An Interactive Animation Example..1475
Transforms ...1479

Using Web Services with Silverlight ..1483
Creating the Web Service ...1484
Adding a Web Reference ..1484
Calling the Web Service..1485
Configuring the Web Service URL...1487
Cross-Domain Web Service Calls ...1488

Summary ...1489

Index...1491

■ CONTENTS

xxxii

About the Authors

■ Matthew MacDonald is an author, educator, and Microsoft MVP. He’s the
author of more than a dozen books about .NET programming, including Pro
Silverlight 3 in C# (Apress, 2009), Pro WPF in C# 2010 (Apress, 2010), and
Beginning ASP.NET 4 in C# 2010 (Apress, 2010). He lives in Toronto with his wife
and two daughters.

■ Adam Freeman is an experienced IT professional who has held senior positions
in a range of companies, most recently chief technology officer and chief
operating officer of a global bank. He has written several of books on Java and
.NET and has a long-term interest in all things parallel.

■ Mario Szpuszta works as an architect in the Developer and Platform group of
Microsoft Austria and helps software architects of top enterprise and web
customers with establishing new Microsoft technologies. For several years he has
been focusing on secure software development, web services and interoperability,
and the integration of Microsoft Office clients and servers in custom applications.
Mario speaks regularly at local and international conferences such as DevDays
and TechEd Europe Developers, and he has been a technical content owner of
TechEd Europe Developers in the past two years.

■ CONTENTS

xxxiii

About the Technical Reviewers

■ Fabio Claudio Ferracchiati is a prolific writer on cutting-edge technologies. Fabio has contributed to
more than a dozen books on .NET, C#, Visual Basic, and ASP.NET. He is a .NET Microsoft Certified
Solution Developer (MCSD) and lives in Rome, Italy. You can read his blog at
http://www.ferracchiati.com.

■ Todd Meister has been using Microsoft technologies for more than ten years. He’s been a technical
editor on more than 50 books on topics ranging from SQL Server to the .NET Framework. Besides
technical editing, he is an assistant director for computing services at Ball State University in Muncie,
Indiana. He lives in central Indiana with his wife, Kimberly, and their four outstanding children.

http://www.ferracchiati.com

■ INTRODUCTION

xxxiv

Introduction

When .NET first appeared, it introduced a small avalanche of new technologies. There was a whole new
way to write web applications (ASP.NET), a whole new way to connect to databases (ADO.NET), new
typesafe languages (C# and VB .NET), and a managed runtime (the CLR). Not least among these new
technologies was Windows Forms, a library of classes for building Windows applications.

As you no doubt already know, ASP.NET is Microsoft’s next-generation technology for creating server-
side web applications. It’s built on the Microsoft .NET Framework, which is a cluster of closely related
technologies that revolutionize everything from database access to distributed applications. ASP.NET is
one of the most important components of the .NET Framework—it’s the part that enables you to
develop high-performance web applications.

It’s not hard to get developers interested in ASP.NET. Without exaggeration, ASP.NET is the most
complete platform for web development that’s ever been put together. It far outclasses its predecessor,
ASP, which was designed as a quick-and-dirty set of tools for inserting dynamic content into ordinary
web pages. By contrast, ASP.NET is a full-blown platform for developing comprehensive, blisteringly fast
web applications.

In this book, you’ll learn everything you need to master ASP.NET 4. If you’ve programmed with a
previous version of ASP.NET, you can focus on new features such as ASP.NET MVC (Chapter 32),
ASP.NET Dynamic Data (Chapter 33), and Silverlight (Chapter 34). If you’ve never programmed with
ASP.NET, you’ll find that this book provides a well-paced tour that leads you through all the
fundamentals, along with a backstage pass that lets you see how the ASP.NET internals really work. The
only requirement for this book is that you have a solid understanding of the C# language and the basics
of .NET. If you’re a seasoned Java or C++ developer but you’re new to C#, you may find it easier to start
with a book about .NET fundamentals, such as Pro C# 2010 and the .NET 4 Platform by Andrew Troelsen
(Apress, 2010).

What Does This Book Cover?
Here is a quick breakdown of what you’ll find in this book:

Part 1: Core Concepts: You’ll begin in Chapter 1 with a look at the overall ASP.NET platform, the
.NET Framework, and an overview of the changes that have taken place in ASP.NET 4. In Chapter 2
you’ll branch out to learn the tools of the trade—namely, Visual Studio 2008. In Chapters 3, 4, 5, and
6 you’ll learn the key parts of the ASP.NET infrastructure, such as the web-page model, application
configuration, and state management. As you learn these core concepts, you’ll also take a low-level
look at how ASP.NET processes requests and manages the lifetime of your web applications. You’ll
even learn how to extend the ASP.NET architecture.

Part 2: Data Access: This part tackles one of the core problem domains for all software
development—accessing and manipulating data. In Chapters 7 and 8 you’ll consider the
fundamentals of ADO.NET as they apply to web applications and learn how to design data access
components. In Chapters 9 and 10 you’ll learn about ASP.NET’s set of innovative data-bound
controls that let you format and present data without writing pages of code. Chapter 11 branches

■ INTRODUCTION

xxxv

out into advanced caching strategies that ensure first-class performance. Finally, Chapters 12, 13,
and 14 move beyond the world of ADO.NET to show you how to work with files, LINQ, and XML
content.

Part 3: Building ASP.NET Websites: In this part you’ll learn about essential techniques and features
for managing groups of web pages. You’ll start simply with user controls in Chapter 15, which allow
you to reuse segments of the user interface. In Chapter 16 you’ll consider themes (for styling
controls automatically) and master pages (for reusing a layout template across multiple pages).
Chapter 17 shows how you can use ASP.NET’s navigation model to let visitors surf from one page to
another. Finally, Chapter 18 describes deployment and the IIS web server software.

Part 4: Security: In this part, you’ll look at ASP.NET’s rich complement of security features. You’ll
start with a high-level overview of security concepts in Chapter 19 and then learn the ins and outs of
forms authentication (Chapter 20) and the membership feature that works with it (Chapter 21). In
Chapter 22 you’ll tackle Windows authentication, and in Chapter 23 you’ll learn how to restrict
authenticated users with sophisticated authorization rules and use role-based security. In Chapter
24 you’ll explore the profiles feature—a prebuilt solution for storing user-specific information; in
Chapter 25 you’ll go one step further and learn how to protect the data you store in a database as
well as the information you send in a URL with encryption. Finally, Chapter 26 shows how you can
plug into the ASP.NET security model by designing a custom membership provider.

Part 5: Advanced User Interface: This part shows how you can extend web pages with advanced
techniques. In Chapters 27 you’ll get an introduction to custom controls. In Chapter 28 you’ll
branch out to use GDI+ for handcrafted graphics. In Chapters 29 and 30, you’ll consider how to use
JavaScript and Ajax techniques to make web pages more dynamic (by incorporating effects such as
text autocompletion and drag-and-drop) and more responsive (by reacting to client-side events and
seamlessly refreshing the web page). Finally, Chapter 31 explores ASP.NET’s Web Parts feature,
which allows you to easily create web portals.

Part 6: New Directions: In this part, you’ll consider some of the most exciting innovations in
modern web development. In Chapter 32 you’ll explore ASP.NET MVC, a new alternative to the
classic web forms model that gives developers complete control over HTML rendering and URL
structure. In Chapter 33 you’ll consider ASP.NET Dynamic Data, which is the perfect solution for
quickly building applications that revolve around viewing and editing the information in a database.
Finally, in Chapter 34 you’ll dive into the world of Silverlight, a Microsoft-built browser plug-in that
gives you the ability to bring rich graphics, animation, sound, and video to ordinary web pages on a
variety of browsers and operating systems.

Who Is This Book For?
This book is intended as a primer for professional developers who have a reasonable knowledge of
server-side web development. This book doesn’t provide an exhaustive look at every ingredient in the
.NET Framework—in fact, such a book would require twice as many pages. Instead, this book aims to
provide an intelligent introduction to ASP.NET for professional programmers who don’t want to rehash
the basics. Along the way, you’ll focus on other corners of the .NET Framework that you’ll need in order
to build professional web applications, including data access and XML. Using these features, you’ll be
able to create next-generation websites with the best tools on hand today.

This book is also relentlessly practical. You won’t learn just about features; you’ll also learn about
the real-world techniques that can take your website to the next level. Later chapters are dedicated to
cutting-edge topics such as custom controls, dynamic graphics, advanced security, and high-
performance data access, all with the goal of giving you everything you need to build professional web
applications.

To get the most from this book, you should be familiar with the syntax of the C# language and with
object-oriented concepts. You don’t need to have experience with a previous version of ASP.NET,

■ INTRODUCTION

xxxvi

because all the fundamentals are covered in this book. If you’re an experienced Java or C++ developer
with no .NET experience, you should consider supplementing this book with an introduction to .NET,
such as Pro C# 2010 and the .NET 4 Platform by Andrew Troelsen (Apress, 2010).

What Do You Need to Use This Book?
To develop and test ASP.NET web applications, you need Visual Studio 2010. Although you could
theoretically write code by hand, the sheer tedium and the likelihood of error mean this approach is
never used in a professional environment. Additionally, if you plan to host ASP.NET websites, you’ll
need to use a server-based version of Windows, such as Windows Server 2003 or Windows Server 2008.
You’ll also need to install IIS (Internet Information Services), the web hosting software that’s part of the
Windows operating system. IIS is described in Chapter 18.

This book includes several examples that use sample databases that are included with SQL Server to
demonstrate data access code, security techniques, and other features. You can use any version of SQL
Server to try these examples, including SQL Server Express, which is included with some versions of
Visual Studio (and freely downloadable at http://www.microsoft.com/express/database). If you use
other relational database engines, the same concepts will apply, but you will need to modify the example
code.

Customer Support
We always value hearing from our readers, and we want to know what you think about this book—what
you liked, what you didn’t like, and what you think we can do better next time. You can send your
comments by e-mail to feedback@apress.com. Please be sure to mention the book title in your message.

Sample Code
To download the sample code, visit the Apress website at http://www.apress.com, and search for this
book. You can then download the sample code, which is compressed into a single ZIP file. Before you
use the code, you’ll need to uncompress it using a utility such as WinZip. Code is arranged into separate
directories by chapter. Before using the code, refer to the accompanying readme.txt file for information
about other prerequisites and considerations.

Bonus Chapters
The Apress website also includes several additional chapters that you can download as PDFs. These
chapters include content that couldn’t be included in this book because of space limitations and isn’t
considered as important to ASP.NET web development. Here’s what you’ll find:

Bonus Chapter 1, “Resources and Localization”: This chapter describes how to use resources and
localization in ASP.NET websites. It’s an essential chapter for developers who need to create
websites that can be viewed in multiple languages.

Bonus Chapter 2, “Design-Time Support”: This chapter describes how to add design-time support
to your own custom controls so that they behave nicely in the Visual Studio environment, take
charge of their own property serialization, and support advanced designer features such as smart
tags.

http://www.microsoft.com/express/database
mailto:feedback@apress.com
http://www.apress.com

■ INTRODUCTION

xxxvii

■ Note The bonus chapters are reprinted from the previous edition of this book. The information in these

chapters still applies to ASP.NET 4, because these features haven’t changed.

Errata
We’ve made every effort to make sure the text and the code contain no errors. However, no one is
perfect, and therefore mistakes do occur. If you find an error in the book, such as a spelling mistake or a
faulty piece of code, we would be grateful to hear about it. By sending in errata, you may save another
reader hours of frustration, and you’ll be helping us provide higher-quality information. Simply e-mail
the problem to support@apress.com, where your information will be checked and posted on the errata
page or used in subsequent editions of the book. You can view errata from the book’s detail page.

mailto:support@apress.com

P A R T 1

■ ■ ■

1

Core Concepts

Before you can code an ASP.NET website, you need to master a small set of fundamental skills. In this
part, you’ll consider the .NET Framework, which supports every .NET application (Chapter 1), the Visual
Studio design tool that helps you build and test websites (Chapter 2), and the ASP.NET infrastructure
that makes websites work (Chapters 3, 4, 5, and 6).

Although these topics may seem like straightforward review for a professional ASP.NET developer,
there are some critically important finer points. Every serious ASP.NET developer needs to thoroughly
understand details such as the life cycle of web pages and web applications, the ASP.NET request
processing pipeline, state management, and the ASP.NET configuration model. Not only is this
understanding a key requirement for creating high-performance web applications, it’s also a necessary
skill if you want to extend the ASP.NET infrastructure—a topic you’ll consider throughout the chapters
in this part.

C H A P T E R 1

■ ■ ■

3

Introducing ASP.NET

When the first version of the .NET Framework was released nearly a decade ago, it was the start of a
radical new direction in software design. Inspired by the best of Java, COM, and the Web, and informed
by the mistakes and limitations of previous technologies, Microsoft set out to “hit the reset button” on
their development platform. The result was a set of surprisingly mature technologies that developers
could use to do everything from building a Windows application to executing a database query, and a
web-site-building tool known as ASP.NET.

Today, ASP.NET is as popular as ever, but it’s no longer quite as revolutionary. And, although the
basic functionality that sits at the heart of ASP.NET is—suprisingly—virtually the same as it was ten years
ago, Microsoft has added layers of new features and higher-level coding abstractions. It has also
introduced at least one new direction that competes with traditional ASP.NET programming, which is
called ASP.NET MVC.

In this introduction, you’ll get a quick outline of the fundamentals of the ASP.NET platform and an
overview that explains how it has evolved into version 4. If you’re new to ASP.NET, this chapter will
quickly get you up to speed. On the other hand, if you’re a seasoned .NET developer, you have two
choices. Your first option is to read this chapter for a brisk review of where we are today. Alternatively,
you can skip to the section “The Evolution of ASP.NET” to preview what ASP.NET 4 has in store.

The Seven Pillars of ASP.NET
When ASP.NET was first released, there were seven key facts that differentiated it from previous
Microsoft products and competing platforms. If you’re coming to ASP.NET from another web
development platform, or you’re an old-hand .NET coder who has yet to try programming for the Web,
these sections will quickly give you a bit of ASP.NET insight.

#1: ASP.NET Is Integrated with the .NET Framework
The .NET Framework is divided into an almost painstaking collection of functional parts, with tens of
thousands of types (the .NET term for classes, structures, interfaces, and other core programming
ingredients). Before you can program any sort of .NET application, you need a basic understanding of
those parts—and an understanding of why things are organized the way they are.

The massive collection of functionality that the .NET Framework provides is organized in a way that
traditional Windows programmers will see as a happy improvement. Each one of the thousands of
classes in the .NET Framework is grouped into a logical, hierarchical container called a namespace.
Different namespaces provide different features. Taken together, the .NET namespaces offer
functionality for nearly every aspect of distributed development from message queuing to security. This
massive toolkit is called the class library.

CHAPTER 1 ■ INTRODUCING ASP.NET

4

Interestingly, the way you use the .NET Framework classes in ASP.NET is the same as the way you
use them in any other type of .NET application (including a stand-alone Windows application, a
Windows service, a command-line utility, and so on). Although there are Windows-specific and web-
specific classes for building user interfaces, the vast majority of the .NET Framework (including
everything from database access to multithreaded programming) is usable in any type of application. In
other words, .NET gives the same tools to web developers that it gives to rich client developers.

■ Tip One of the best resources for learning about new corners of the .NET Framework is the .NET Framework
class library reference, which is part of the MSDN Help library reference. If you have Visual Studio 2008
installed, you can view the MSDN Help library by clicking the Start button and choosing Programs ➤ Microsoft

Visual Studio 2010 ➤ Microsoft Visual Studio 2010 Documentation (the exact shortcut depends on your version
of Visual Studio). Or, you can find the most recent version of the class library reference online at

http://tinyurl.com/2d42w5e.

#2: ASP.NET Is Compiled, Not Interpreted
ASP.NET applications, like all .NET applications, are always compiled. In fact, it’s impossible to execute
C# or Visual Basic code without it being compiled first.

.NET applications actually go through two stages of compilation. In the first stage, the C# code you
write is compiled into an intermediate language called Microsoft Intermediate Language (MSIL), or just
IL. This first step is the fundamental reason that .NET can be language-interdependent. Essentially, all
.NET languages (including C#, Visual Basic, and many more) are compiled into virtually identical IL
code. This first compilation step may happen automatically when the page is first requested, or you can
perform it in advance (a process known as precompiling). The compiled file with IL code is an assembly.

The second level of compilation happens just before the page is actually executed. At this point, the
IL code is compiled into low-level native machine code. This stage is known as just-in-time (JIT)
compilation, and it takes place in the same way for all .NET applications (including Windows
applications, for example). Figure 1-1 shows this two-step compilation process.

.NET compilation is decoupled into two steps in order to offer developers the most convenience and
the best portability. Before a compiler can create low-level machine code, it needs to know what type of
operating system and hardware platform the application will run on (for example, 32-bit or 64-bit
Windows). By having two compile stages, you can create a compiled assembly with .NET code and still
distribute this to more than one platform.

http://tinyurl.com/2d42w5e

CHAPTER 1 ■ INTRODUCING ASP.NET

5

Figure 1-1. Compilation in an ASP.NET web page

Of course, JIT compilation probably wouldn’t be that useful if it needed to be performed every time
a user requested a web page from your site. Fortunately, ASP.NET applications don’t need to be
compiled every time a web page is requested. Instead, the IL code is created once and regenerated only
when the source is modified. Similarly, the native machine code files are cached in a system directory
that has a path like c:\Windows\Microsoft.NET\Framework\[Version]\Temporary ASP.NET Files.

As you’ll learn in Chapter 2, the actual point where your code is compiled to IL depends on how
you’re creating and deploying your web application. If you’re building a web project in Visual Studio, the
code is compiled to IL when you compile your project. But if you’re building a lighter-weight projectless
website, the code for each page is compiled the first time you request that page. Either way, the code
goes through its second compilation step (from IL to machine code) the first time it’s executed.

ASP.NET also includes precompilation tools that you can use to compile your application right
down to machine code once you’ve deployed it to the production web server. This allows you to avoid
the overhead of first-time compilation when you deploy a finished application (and prevent other
people from tampering with your code). Precompilation is described in Chapter 18.

CHAPTER 1 ■ INTRODUCING ASP.NET

6

#3: ASP.NET Is Multilanguage
Though you’ll probably opt to use one language over another when you develop an application, that
choice won’t determine what you can accomplish with your web applications. That’s because no matter
what language you use, the code is compiled into IL.

IL is a stepping stone for every managed application. (A managed application is any application
that’s written for .NET and executes inside the managed environment of the CLR.) In a sense, IL is the
language of .NET, and it’s the only language that the CLR recognizes.

To understand IL, it helps to consider a simple example. Take a look at this code written in C#:

using System;

namespace HelloWorld
{
 public class TestClass
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World");
 }
 }
}

This code shows the most basic application that’s possible in .NET—a simple command-line utility
that displays a single, predictable message on the console window.

Now look at it from a different perspective. Here’s the IL code for the Main() method:

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 // Code size 13 (0xd)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "Hello World"
 IL_0006: call void [mscorlib]System.Console::WriteLine(string)
 IL_000b: nop
 IL_000c: ret
} // end of method TestClass::Main

It’s easy enough to look at the IL for any compiled .NET application. You simply need to run the
IL Disassembler, which is installed with Visual Studio and the .NET SDK (software development kit).
Look for the file ildasm.exe in a directory like c:\Program Files\Microsoft SDKs\Windows\v7.0A\bin.
Run ildasm.exe, and then use the File ➤ Open command, and select any DLL or EXE that was created
with .NET.

■ Tip For even more disassembling power, check out the remarkable (and free) Reflector tool at

http://www.red-gate.com/products/reflector. With the help of community-created add-ins, you can use

Reflector to diagram, analyze, and decompile the IL code in any assembly.

http://www.red-gate.com/products/reflector

CHAPTER 1 ■ INTRODUCING ASP.NET

7

If you’re patient and a little logical, you can deconstruct the IL code fairly easily and figure out
what’s happening. The fact that IL is so easy to disassemble can raise privacy and code control issues,
but these issues usually aren’t of any concern to ASP.NET developers. That’s because all ASP.NET code is
stored and executed on the server. Because the client never receives the compiled code file, the client
has no opportunity to decompile it. If it is a concern, consider using an obfuscator that scrambles code
to try to make it more difficult to understand. (For example, an obfuscator might rename all variables to
have generic, meaningless names such as f__a__234.) Visual Studio includes a scaled-down version of
one popular obfuscator, called Dotfuscator.

The following code shows the same console application in Visual Basic code:

Imports System

Namespace HelloWorld
 Public Class TestClass
 Shared Sub Main(args() As String)
 Console.WriteLine("Hello World")
 End Sub
 End Class
End Namespace

If you compile this application and look at the IL code, you’ll find that it’s nearly identical to the IL
code generated from the C# version. Although different compilers can sometimes introduce their own
optimizations, as a general rule of thumb no .NET language outperforms any other .NET language,
because they all share the same common infrastructure. This infrastructure is formalized in the CLS
(Common Language Specification), which is described in the following sidebar, entitled “The Common
Language Specification.”

It’s worth noting that IL has been adopted as an Ecma and ISO standard. This adoption allows the
adoption of other common language frameworks on other platforms. The Mono project at
http://www.mono-project.com is the best example of such a project.

The Common Language Specification

The CLR expects all objects to adhere to a specific set of rules so that they can interact. The CLS is this set
of rules.

The CLS defines many laws that all languages must follow, such as primitive types, method overloading,
and so on. Any compiler that generates IL code to be executed in the CLR must adhere to all rules
governed within the CLS. The CLS gives developers, vendors, and software manufacturers the opportunity
to work within a common set of specifications for languages, compilers, and data types. You can find a list
of a large number of CLS-compliant languages at http://dotnetpowered.com/languages.aspx.

Given these criteria, the creation of a language compiler that generates true CLR-compliant code can be
complex. Nevertheless, compilers can exist for virtually any language, and chances are that there may
eventually be one for just about every language you’d ever want to use. Imagine—mainframe
programmers who loved COBOL in its heyday can now use their knowledge base to create web
applications!

http://www.mono-project.com
http://dotnetpowered.com/languages.aspx

CHAPTER 1 ■ INTRODUCING ASP.NET

8

#4: ASP.NET Is Hosted by the Common Language Runtime
Perhaps the most important aspect of the ASP.NET engine is that it runs inside the runtime environment
of the CLR. The whole of the .NET Framework—that is, all namespaces, applications, and classes—is
referred to as managed code. Though a full-blown investigation of the CLR is beyond the scope of this
chapter, some of the benefits are as follows:

Automatic memory management and garbage collection: Every time your application instantiates
a reference-type object, the CLR allocates space on the managed heap for that object. However, you
never need to clear this memory manually. As soon as your reference to an object goes out of scope
(or your application ends), the object becomes available for garbage collection. The garbage
collector runs periodically inside the CLR, automatically reclaiming unused memory for
inaccessible objects. This model saves you from the low-level complexities of C++ memory handling
and from the quirkiness of COM reference counting.

Type safety: When you compile an application, .NET adds information to your assembly that
indicates details such as the available classes, their members, their data types, and so on. As a result,
other applications can use them without requiring additional support files, and the compiler can
verify that every call is valid at runtime. This extra layer of safety completely obliterates whole
categories of low-level errors.

Extensible metadata: The information about classes and members is only one of the types of
metadata that .NET stores in a compiled assembly. Metadata describes your code and allows you to
provide additional information to the runtime or other services. For example, this metadata might
tell a debugger how to trace your code, or it might tell Visual Studio how to display a custom control
at design time. You could also use metadata to enable other runtime services, such as transactions
or object pooling.

Structured error handling: .NET languages offer structured exception handling, which allows you to
organize your error-handling code logically and concisely. You can create separate blocks to deal
with different types of errors. You can also nest exception handlers multiple layers deep.

Multithreading: The CLR provides a pool of threads that various classes can use. For example, you
can call methods, read files, or communicate with web services asynchronously, without needing to
explicitly create new threads.

Figure 1-2 shows a high-level look at the CLR and the .NET Framework.

CHAPTER 1 ■ INTRODUCING ASP.NET

9

Figure 1-2. The CLR and the .NET Framework

#5: ASP.NET Is Object-Oriented
ASP provides a relatively feeble object model. It provides a small set of objects; these objects are really
just a thin layer over the raw details of HTTP and HTML. On the other hand, ASP.NET is truly object-
oriented. Not only does your code have full access to all objects in the .NET Framework, but you can also
exploit all the conventions of an OOP (object-oriented programming) environment. For example, you
can create reusable classes, standardize code with interfaces, extend existing classes with inheritance,
and bundle useful functionality in a distributable, compiled component.

One of the best examples of object-oriented thinking in ASP.NET is found in server-based controls.
Server-based controls are the epitome of encapsulation. Developers can manipulate control objects
programmatically using code to customize their appearance, provide data to display, and even react to
events. The low-level HTML markup that these controls render is hidden away behind the scenes.
Instead of forcing the developer to write raw HTML manually, the control objects render themselves to
HTML just before the web server sends the page to the client. In this way, ASP.NET offers server controls
as a way to abstract the low-level details of HTML and HTTP programming.

CHAPTER 1 ■ INTRODUCING ASP.NET

10

Here’s a quick example with a standard HTML text box that you can define in an ASP.NET web page:

<input type="text" id="myText" runat="server" />

With the addition of the runat="server" attribute, this static piece of HTML becomes a fully
functional server-side control that you can manipulate in C# code. You can now work with events that it
generates, set attributes, and bind it to a data source.

For example, you can set the text of this box when the page first loads using the following C# code:

void Page_Load(object sender, EventArgs e)
{
 myText.Value = "Hello World!";
}

Technically, this code sets the Value property of an HtmlInputText object. The end result is that a
string of text appears in a text box on the HTML page that’s rendered and sent to the client.

HTML Controls VS. Web Controls

When ASP.NET was first created, two schools of thought existed. Some ASP.NET developers were most
interested in server-side controls that matched the existing set of HTML controls exactly. This approach
allows you to create ASP.NET web-page interfaces in dedicated HTML editors, and it provides a quick
migration path for existing ASP pages. However, another set of ASP.NET developers saw the promise of
something more—rich server-side controls that didn’t just emulate individual HTML tags. These controls
might render their interface from dozens of distinct HTML elements while still providing a simple object-
based interface to the programmer. Using this model, developers could work with programmable menus,
calendars, data lists, validators, and so on.

After some deliberation, Microsoft decided to provide both models. You’ve already seen an example of
HTML server controls, which map directly to the basic set of HTML tags. Along with these are ASP.NET
web controls, which provide a higher level of abstraction and more functionality. In most cases, you’ll use
HTML server-side controls for backward compatibility and quick migration, and use web controls for new
projects.

ASP.NET web control tags always start with the prefix asp: followed by the class name. For example, the
following snippet creates a text box and a check box:

<asp:TextBox id="myASPText" Text="Hello ASP.NET TextBox" runat="server" />
<asp:CheckBox id="myASPCheck" Text="My CheckBox" runat="server" />

Again, you can interact with these controls in your code, as follows:

myASPText.Text = "New text";
myASPCheck.Text = "Check me!";

Notice that the Value property you saw with the HTML control has been replaced with a Text property. The
HtmlInputText.Value property was named to match the underlying value attribute in the HTML <input> tag.
However, web controls don’t place the same emphasis on correlating with HTML syntax, so the more
descriptive property name Text is used instead.

The ASP.NET family of web controls includes complex rendered controls (such as the Calendar and
TreeView), along with more streamlined controls (such as TextBox, Label, and Button), which map closely
to existing HTML tags. In the latter case, the HTML server-side control and the ASP.NET web control
variants provide similar functionality, although the web controls tend to expose a more standardized,

CHAPTER 1 ■ INTRODUCING ASP.NET

11

streamlined interface. This makes the web controls easy to learn, and it also means they’re a natural fit for
Windows developers moving to the world of the Web, because many of the property names are similar to
the corresponding Windows controls.

#6: ASP.NET Supports all Browsers
One of the greatest challenges web developers face is the wide variety of browsers they need to support.
Different browsers, versions, and configurations differ in their support of XHTML, CSS, and JavaScript.
Web developers need to choose whether they should render their content according to the lowest
common denominator, and whether they should add ugly hacks to deal with well-known quirks on
popular browsers.

ASP.NET addresses this problem in a remarkably intelligent way. Although you can retrieve
information about the client browser and its capabilities in an ASP.NET page, ASP.NET actually
encourages developers to ignore these considerations and use a rich suite of web server controls. These
server controls render their markup adaptively by taking the client’s capabilities into account. One
example is ASP.NET’s validation controls, which use JavaScript and DHTML (Dynamic HTML) to
enhance their behavior if the client supports it. Another example is the set of Ajax-enabled controls,
which uses complex JavaScript routines that test browser versions and use carefully tested workarounds
to ensure consistent behavior. These features are optional, but they demonstrate how intelligent
controls can make the most of cutting-edge browsers without shutting out other clients. Best of all, you
don’t need any extra coding work to support both types of client.

#7: ASP.NET Is Easy to Deploy and Configure
One of the biggest headaches a web developer faces during a development cycle is deploying a
completed application to a production server. Not only do the web-page files, databases, and
components need to be transferred, but components need to be registered and a slew of configuration
settings need to be re-created. ASP.NET simplifies this process considerably.

Every installation of the .NET Framework provides the same core classes. As a result, deploying an
ASP.NET application is relatively simple. For no-frills deployment, you simply need to copy all the files
to a virtual directory on a production server (using an FTP program or even a command-line command
like XCOPY). As long as the host machine has the .NET Framework, there are no time-consuming
registration steps. Chapter 18 covers deployment in detail.

Distributing the components your application uses is just as easy. All you need to do is copy the
component assemblies along with your website files when you deploy your web application. Because all
the information about your component is stored directly in the assembly file metadata, there’s no need
to launch a registration program or modify the Windows registry. As long as you place these components
in the correct place (the Bin subdirectory of the web application directory), the ASP.NET engine
automatically detects them and makes them available to your web-page code. Try that with a traditional
COM component!

Configuration is another challenge with application deployment, particularly if you need to transfer
security information such as user accounts and user privileges. ASP.NET makes this deployment process
easier by minimizing the dependence on settings in IIS (Internet Information Services). Instead, most
ASP.NET settings are stored in a dedicated web.config file. The web.config file is placed in the same
directory as your web pages. It contains a hierarchical grouping of application settings stored in an easily
readable XML format that you can edit using nothing more than a text editor such as Notepad. When you
modify an application setting, ASP.NET notices that change and smoothly restarts the application in a new
application domain (keeping the existing application domain alive long enough to finish processing any
outstanding requests). The web.config file is never locked, so it can be updated at any time.

CHAPTER 1 ■ INTRODUCING ASP.NET

12

The Evolution of ASP.NET
When Microsoft released ASP.NET 1.0, even it didn’t anticipate how enthusiastically the technology
would be adopted. ASP.NET quickly became the standard for developing web applications with
Microsoft technologies and a heavy-hitting competitor against all other web development platforms.
Since that time, ASP.NET has had several updates. The following sections explain how ASP.NET has
evolved over the years.

ASP.NET 1.0 and 1.1
When ASP.NET 1.0 first hit the scene, its core idea was a model of web page design called web forms. As
you’ll see in the early chapters in this book, the web form model is simply an abstraction that models
your page as a combination of objects. When a browser requests a specific page, ASP.NET instantiates
the page object, and then creates objects for all the ASP.NET controls inside that page. The page and its
control go through a sequence of life-cycle events, and then—when the page processing is finished—
they render the final HTML and are released from memory. The bulk of ASP.NET programming is filling
in what happens in between.

ASP.NET 2.0
It’s a testament to the good design of ASP.NET 1.0 and 1.1 that few of the changes introduced in
ASP.NET 2.0 were fixes for existing features. Instead, ASP.NET 2.0 kept the same core abstraction (the
web form model) and concentrated on adding new, higher-level features. Some of the highlights include:

• Master pages: Master pages are reusable page templates. For example, you can
use a master page to ensure that every web page in your application has the same
header, footer, and navigation controls.

• Themes: Themes allow you to define a standardized set of appearance
characteristics for web controls. Once defined, you can apply these formatting
presets across your website for a consistent look.

• Navigation. ASP.NET’s navigation framework includes a mechanism for defining
site maps that describe the logical arrangement of pages in a website. It also
includes navigation controls (such as trees and breadcrumb-style links) that use
this information to let users move through the site.

• Security and membership: ASP.NET 2.0 added a slew of security-related features,
including automatic support for storing user credentials, a role-based
authorization feature, and prebuilt security controls for common tasks like logging
in, registering, and retrieving a forgotten password.

• Data source controls: The data source control model allows you to define how
your page interacts with a data source declaratively in your markup, rather than
having to write the equivalent data access code by hand. Best of all, this feature
doesn’t force you to abandon good component-based design—you can bind to a
custom data component just as easily as you bind directly to the database.

• Web parts: One common type of web application is the portal, which centralizes
different information using separate panes on a single web page. Web parts
provide a prebuilt portal framework complete with a flow-based layout,
configurable views, and even drag-and-drop support.

CHAPTER 1 ■ INTRODUCING ASP.NET

13

• Profiles: Profiles allow you to store user-specific information in a database
without writing any database code. Instead, ASP.NET takes care of the tedious
work of retrieving the profile data when it’s needed and saving the profile data
when it changes.

The Provider Model

Many of the features introduced in ASP.NET 2.0 work through an abstraction called the provider model.
The beauty of the provider model is that you can use the simple providers to build your page code. If your
requirements change, you don’t need to change a single page—instead, you simply need to create a
custom provider and update your website configuration.

For example, most serious developers will quickly realize that the default implementation of profiles is a
one-size-fits-all solution that probably won’t suit their needs. It doesn’t work if you need to use existing
database tables, store encrypted information, or customize how large amounts of data are cached to
improve performance. However, you can customize the profile feature to suit your needs by building your
own profile provider. This allows you to use the convenient profile features but still control the low-level
details. Of course, the drawback is that you’re still responsible for some of the heavy lifting, but you gain
the flexibility and consistency of the profile model.

You’ll learn how to use provider-based features and create your own providers throughout this book.

ASP.NET 3.5
Developers who are facing ASP.NET 3.5 for the first time are likely to wonder what happened to ASP.NET
3.0. Oddly enough, it doesn’t exist. Microsoft used the name .NET Framework 3.0 to release new
technologies—most notably, WPF (Windows Presentation Foundation), a slick new user interface
technology for building rich clients, WCF (Windows Communication Foundation), a technology for
building message-oriented services, and WF (Windows Workflow Foundation), a technology that allows
you to model a complex business process as a series of actions (optionally using a visual flowchart-like
designer). However, the .NET Framework 3.0 doesn’t include a new version of the CLR or ASP.NET.
Instead, the next release of ASP.NET was rolled into the .NET Framework 3.5.

Compared to ASP.NET 2.0, ASP.NET 3.5 is a more gradual evolution. Its new features are
concentrated in two areas: LINQ and Ajax, as described in the following sections.

LINQ
LINQ (Language Integrated Query) is a set of extensions for the C# and Visual Basic languages. It allows
you to write C# or Visual Basic code that manipulates in-memory data in much the same way you query
a database.

Technically, LINQ defines about 40 query operators, such as select, from, in, where, and orderby (in
C#). These operators allow you to code your query. However, there are various types of data on which
this query can be performed, and each type of data requires a separate flavor of LINQ.

The most fundamental LINQ flavor is LINQ to Objects, which allows you to take a collection of
objects and perform a query that extracts some of the details from some of the objects. LINQ to Objects
isn’t ASP.NET-specific. In other words, you can use it in a web page in exactly the same way that you use
it in any other type of .NET application.

Along with LINQ to Objects is LINQ to DataSet, which provides similar behavior for querying an in-
memory DataSet object, and LINQ to XML, which works on XML data. But one of the most interesting
flavors of LINQ is LINQ to Entities, which allows you to use the LINQ syntax to execute a query against a

CHAPTER 1 ■ INTRODUCING ASP.NET

14

relational database. Essentially, LINQ to Entities creates a properly parameterized SQL query based on
your code, and executes the query when you attempt to access the query results. You don’t need to write
any data access code or use the traditional ADO.NET objects.

LINQ to Objects, LINQ to DataSet, and LINQ to XML are features that complement ASP.NET, and
aren’t bound to it in any specific way. However, ASP.NET includes enhanced support for LINQ to
Entities, including a data source control that lets you perform a query through LINQ to Entities and bind
the results to a web control, with no extra code required. You’ll take a look at LINQ to Objects, LINQ to
DataSet, and LINQ to Entities in Chapter 13. You’ll consider LINQ to XML in Chapter 14.

■ Note If you programmed with ASP.NET 3.5, you may have used another technique to access relational
databases, called LINQ to SQL. Although LINQ to SQL is still supported (so you don’t need to rewrite existing

applications), it’s been largely replaced by LINQ to Entities. LINQ to Entities is far more flexible and supports more

types of data providers, while LINQ to SQL is limited to SQL Server only.

ASP.NET AJAX
Because traditional ASP.NET code does all its work on the web server, every time an action occurs in the
page the browser needs to post some data to the server, get a new copy of the page, and refresh the
display. This process, though fast, introduces a noticeable flicker. It also takes enough time that it isn’t
practical to respond to events that fire frequently, such as mouse movements or key presses.

Web developers work around these sorts of limitations using JavaScript, the only broadly supported
client-side scripting language. In ASP.NET, many of the most powerful controls use a healthy bit of
JavaScript. For example, the Menu control responds immediately as the user moves the mouse over
different subheadings. When you use the Menu control, your page doesn’t post back to the server until
the user clicks an item.

In traditional ASP.NET pages, developers use server controls such as Menu and gain the benefit of
the client-side script these controls emit. However, even with advanced controls, some postbacks are
unavoidable. For example, if you need to update the information on a portion of the page, the only way
to accomplish this in ordinary ASP.NET is to post the page back to the server and get an entirely new
HTML document. The solution works, but it isn’t seamless.

Restless web developers have responded to challenges like these by using more client-side code and
applying it in more advanced ways. One of the most talked about examples today is Ajax (Asynchronous
JavaScript and XML). Ajax is programming shorthand for a client-side technique that allows your page to
call the server and update its content without triggering a complete postback. Typically, an Ajax page
uses client-side script code to fire an asynchronous request behind the scenes. The server receives this
request, runs some code, and then returns the data your page needs (often as a block of XML markup).
Finally, the client-side code receives the new data and uses it to perform another action, such as
refreshing part of the page. Although Ajax is conceptually quite simple, it allows you to create pages that
work more like seamless, continuously running applications. Figure 1-3 illustrates the differences.

CHAPTER 1 ■ INTRODUCING ASP.NET

15

Figure 1-3. Ordinary server-side pages vs. Ajax

Ajax and similar client-side scripting techniques are nothing new, but in recent years they’ve begun
to play an increasingly important role in web development. One of the reasons is that the
XMLHttpRequest object—the plumbing that’s required to support asynchronous client requests—is
now present in the majority of modern browsers, including the following:

• Internet Explorer 5 and newer

• Netscape 7 and newer

• Opera 7.6 and newer

• Safari 1.2 and newer

• Firefox (any version)

• Google Chrome (any version)

CHAPTER 1 ■ INTRODUCING ASP.NET

16

However, writing the client-side script in such a way that it’s compatible with all browsers and
implementing all the required pieces (including the server-side code that handles the asynchronous
requests) can be a bit tricky. As you’ll see in Chapter 29, ASP.NET provides a client callback feature that
handles some of the work. However, ASP.NET also includes a much more powerful abstraction layer
named ASP.NET AJAX, which extends ASP.NET with impressive Ajax-style features. You’ll explore
ASP.NET AJAX in Chapter 30.

■ Note It’s generally accepted that Ajax isn’t written in all capitals, because the word is no longer treated as an
acronym. However, Microsoft chose to capitalize it when naming ASP.NET AJAX. For that reason, you’ll see two
capitalizations of Ajax in this book—Ajax when talking in general terms about the technology and philosophy of

Ajax, and AJAX when talking about ASP.NET AJAX, which is Microsoft’s specific implementation of these concepts.

ASP.NET 4
In its latest version, ASP.NET continues to plug in new enhancements and refinements. The most
significant ones include:

Consistent XHTML rendering; ASP.NET 3.5 made it possible to render ASP.NET web pages as
XHTML documents, but there were still a few issues to trip up unsuspecting developers. (For
example, you had to opt-in through a configuration file setting to get true, strict XHTML.) ASP.NET 4
smooths out the wrinkles and makes clean, quirk-free XHTML the standard. Chapter 3 covers the
details.

Updated browser detection: ASP.NET 4 ships with updated browser definition files, which means its
server-side rendering engine can recognize and provide properly targeted support to a wider range
of browsers. Better-supported browsers include Google Chrome, Internet Explorer 8, Firefox 3.5,
Opera 10, Safari 4, and the mobile browsers for the BlackBerry, IPhone, IPod, and Windows Mobile
operating system. You’ll learn more about browser definitions in Chapter 27.

Session state compression: Microsoft added the System.IO.Compression namespace with gzip
support in .NET 2.0. Now, ASP.NET can use it to compress the data it passes to an out-of-processs
session state service. This technique makes sense in a fairly narrow set of circumstances, but if it
applies to you, the performance improvement is almost automatic. Chapter 6 explains how it works.

Opt-in view state. Rather than disabling view state selectively, per control, you can now turn it off
for an entire page and then opt-in when necessary. This allows you to easily slim down your page
size. Chapter 6 shows you how to use this feature.

Extensible caching: Caching is one of ASP.NET’s premiere features, but with the exception of SQL
Server cache dependencies, caching hasn’t seen any new features since .NET 1.0. With ASP.NET 4,
Microsoft finally begins exposing the caching extensibility points that will allow them (and other
developers) to use new types of cache storage, including distributed caching solutions such as
Windows Server AppFabric and memcached. Although these extra bits of infrastructure aren’t all
there yet, Chapter 11 shows how the model works.

The Chart control: For years, ASP.NET developers have been forced to master the GDI+ drawing
model or purchase a third-party control to create a respectable graph. Now, ASP.NET includes an
impressive Chart control that supports a range of beautifuly rendered two- and three-dimensional
graphs (including line, bar, curve, area, pie, doughnut, and point charts, complete with features like
error bars and Bollinger bands). You’ll explore the Chart control in Chapter 28.

CHAPTER 1 ■ INTRODUCING ASP.NET

17

Revamped Visual Studio: Although the Visual Studio 2010 interface still follows the same basic
design, it’s been completely rebuilt using .NET and WPF (Windows Presentation Foundation). Along
the way, Microsoft managed to introduce a few frills, like the enhanced IntelliSense you’ll learn
about in Chapter 2, and the new visual designer that makes designing Silverlight content a breeze
(Chapter 34).

Routing: ASP.NET MVC includes support for meaningful, search-engine-friendly URLs. In ASP.NET
4, you can use the same routing technology to redirect web form requests. Chapter 17 demonstrates
this technique.

Better deployment tools: Visual Studio now allows you to create web packages, compressed files
that contain your application content and other details such as SQL Server database schemas and
IIS settings. Web packages also work in conjunction with a new web.config transformation feature
that allows you to cleanly separate the settings that apply to the test build of your application and
the ones that apply to the deployed instance. Finally, you can load and precompile a newly
deployed application more easily with the IIS application warm-up module. Chapter 18 has the
details on all these features.

Although these features are undeniably useful, the most impressive new additions to ASP.NET
development come from two separate add-ins: ASP.NET MVC and ASP.NET Dynamic Data. Both of
these features invite you to abandon part of the traditional ASP.NET development model for a different
approach, with a different set of benefits and drawbacks. In many ways, they represent the start of a new
direction in web application programming. But if either one fits your needs, it has the potential to
reduce your work dramatically.

ASP.NET MVC
ASP.NET MVC (which stands for Model-View-Controller) offers a dramatically different way to build web
pages than the standard web forms model. The core idea is that your application is separated into three
logical parts. The model includes the application-specific business code—for example, data-access logic
and validation rules. The view creates a suitable representation of the model by rendering it to HTML
pages. The controller coordinates the whole show, handling user interactions, updating the model, and
passing the information to the view.

The MVC pattern sidelines several traditional ASP.NET concepts, including web forms, web
controls, view state, postbacks, and session state. As a result, it forces developers to adopt a new way of
thinking (and accept a temporary drop in productivity). To some, the MVC pattern is cleaner and more
suited to the Web. To others, it’s extra effort with no clear payoff. But if any of the following points are
important to you, it’s worth at least considering ASP.NET MVC:

Test-driven development: Thanks to the clean separation of parts in an ASP.NET MVC application,
it’s easy to create unit tests that exercise it. With web forms, automated testing is tedious and often
impossible.

Control over HTML markup: With web forms, you program against a rich set of objects that take
care of state management and HTML rendering. With ASP.NET MVC, you inject content in a way
that’s more like data binding. While this means that complex formatted pages may take more work
to design, it also means that you have complete control over every markup detail. This control is
useful if you plan to write client-side JavaScript or use a third-party JavaScript library like jQuery.
(On the other hand, if you aren’t comfortable or interested in mucking around with HTML, web
forms is probably a better framework for your applications.)

Control over URLs: Although ASP.NET continues to give developers more control over URL routing,
ASP.NET MVC has the concept built-in. Controllers handle the mapping between URLs and your
application logic, which means it’s easy to use URL configurations such as /Products/List/Beverages
instead of /Products/List.aspx?category=Beverages. These clear, readable URLs make search-engine
optimization easier and more effective.

CHAPTER 1 ■ INTRODUCING ASP.NET

18

On the other hand, if you prefer to have rapid application design, a high-level model that manages
state for you, and a range of rich web controls, web forms will probably remain your first choice
development model.

Most of this book focuses on web forms, ASP.NET’s core model. You’ll get an introduction to
ASP.NET MVC in Chapter 32. For much more information, you can visit the official ASP.NET MVC
website at http://www.asp.net/mvc, or refer to the excellent book Pro ASP.NET MVC Framework by
Steven Sanderson (Apress, 2009).

ASP.NET Dynamic Data
ASP.NET Dynamic Data is a scaffolding framework that allows you to quickly build a data-driven
application. When used in conjunction with LINQ to SQL or LINQ to Entities (as it almost always is),
Dynamic Data gives you an end-to-end solution that takes you from database schema to a full-fledged
web application with support for viewing, editing, inserting, and deleting records.

It’s important to realize that Dyanmic Data isn’t just a code and markup generation tool for
developers who are too lazy to build their own custom applications. Instead, it’s a template-based,
componentized, and thoroughly customizable framework that’s ideal for creating applications that are
all about data. In fact, Dynamic Data can be seen as a logical extension of the rich data controls that
ASP.NET already provides (like the GridView, DetailsView, and FormView). But instead of forcing you to
modify many different data controls on many different pages to get the effect you want, Dynamic Data
uses field-based templates that are defined once and shared everywhere. Combine this clean design with
new features—such as validation that’s based on the database schema and easier filtering based on
foreign key relationships—and you can see why Dynamic Data is a compelling approach for web
applications that focus on viewing and editing database records. You’ll explore ASP.NET Dynamic Data
in Chapter 33.

Silverlight
Recently, there’s been a lot of excitement about Silverlight, a rapidly evolving Microsoft technology that
allows a variety of browsers on a variety of operating systems to run true .NET code. Silverlight works
through a browser plug-in, and provides a subset of the .NET Framework class library. This subset
includes a slimmed-down version of WPF, the technology that developers use to craft next-generation
Windows user interfaces.

So where does Silverlight fit into the ASP.NET world? Silverlight is all about client code—quite simply,
it allows you to create richer pages than you could with HTML, DHTML, and JavaScript alone. In many
ways, Silverlight duplicates the features and echoes the goals of Adobe Flash. By using Silverlight in a web
page, you can draw sophisticated 2D graphics, animate a scene, and play video and other media files.

Silverlight is perfect for creating a mini-applet, like a browser-hosted game. It’s also a good choice
for adding interactive media and animation to a website. However, Silverlight obviously isn’t a good
choice for tasks that require server-side code, such as performing a secure checkout in an e-commerce
shop, verifying user input, or interacting with a server-side database. And because Silverlight is still a
new, emerging technology, it’s too early to make assumptions about its rate of adoption. That means it’s
not a good choice to replace basic ingredients in a website with Silverlight content. For example,
although you can use Silverlight to create an animated button, this is a risky strategy. Users without the
Silverlight plug-in won’t be able to see your button or interact with it. (Of course, you could create more
than one front end for your web application, using Silverlight if it’s available or falling back on regular
ASP.NET controls if it’s not. However, this approach requires a significant amount of work.)

In many respects, Silverlight is a complementary technology to ASP.NET. ASP.NET 4 doesn’t
include any features that use Silverlight, but you can freely mix ASP.NET pages and Silverlight pages
on a website—or place Silverlight content in an ASP.NET page. It’s also possible that developers will
some day use ASP.NET web controls that render Silverlight content. Using these controls, you just
might gain the best of both worlds—the server-side programming model of ASP.NET and the rich

http://www.asp.net/mvc

CHAPTER 1 ■ INTRODUCING ASP.NET

19

interactivity of client-side Silverlight. In Chapter 34, you’ll get a thorough introduction to Silverlight.
Or, for a comprehensive look that covers all the features of Silverlight consider Pro Silverlight 3 in C#
(Apress, 2010).

Summary
So far, you’ve just scratched the surface of the features and frills that are provided in ASP.NET and the
.NET Framework. You’ve taken a quick look at the high-level concepts you need to understand in order
to be a competent ASP.NET programmer. You’ve also previewed the new features that ASP.NET 4 offers.
As you continue through this book, you’ll learn much more about the innovations and revolutions of
ASP.NET 4 and the .NET Framework.

C H A P T E R 2

■ ■ ■

21

Visual Studio

With ASP.NET, you have several choices for developing web applications. If you’re inclined (and don’t
mind the work), you can code every web page and class by hand using a bare-bones text editor. This
approach is appealingly straightforward but tedious and error-prone for anything other than a simple
page. Professional ASP.NET developers rarely go this route.

Instead, almost all large-scale ASP.NET websites are built using Visual Studio. This professional
development tool includes a rich set of design tools, including legendary debugging tools and
IntelliSense, which catches errors and offers suggestions as you type. Visual Studio also supports the
robust code-behind model, which separates the .NET code you write from the web-page markup tags.
To seal the deal, Visual Studio adds a built-in test web server that makes debugging websites easy.

In this chapter, you’ll tour the Visual Studio IDE (Integrated Development Environment) and
consider the two ways you can create an ASP.NET web application in Visual Studio—either as a
straightforward website or as a web project. You’ll also learn about the code model used for ASP.NET
web pages and the compilation process used for ASP.NET web applications. Finally, you’ll take a quick
look at the Web Development Helper, a browser-based debugging tool that you can use in conjunction
with Visual Studio.

■ What’s New Although Visual Studio 2010 follows the same basic model as earlier versions, it gets a significant
facelift. In fact, Visual Studio 2010 has been completely rewritten using WPF (Microsoft’s .NET-based user-interface

technology), and the result is a cleaner, more modern interface. Most of the changes are in the details, such as
reduced on-screen clutter and streamlined IntelliSense (as described in the “Visual Studio 2010 Improvements”
section). But developers working with WPF or Silverlight (Chapter 34) get a long-awaited designer that lets them build

user interfaces by dragging and dropping controls from the Toolbox, just like in an ASP.NET page.

Introducing Visual Studio
Writing and compiling code by hand would be a tedious task for any developer. But the Visual Studio
IDE offers a slew of high-level features that go beyond basic code management. These are some of Visual
Studio’s advantages:

An integrated web server: To host an ASP.NET web application, you need web server software like
IIS, which waits for web requests and serves the appropriate pages. Setting up your web server isn’t
difficult, but it can be inconvenient. Thanks to the integrated development web server in Visual
Studio, you can run a website directly from the design environment. You also have the added

CHAPTER 2 ■ VISUAL STUDIO

22

security of knowing no external computer can run your test website, because the test server only
accepts connections from the local computer.

Multilanguage development: Visual Studio allows you to code in your language or languages of
choice using the same interface (IDE) at all times. Furthermore, Visual Studio allows you to create
web pages in different languages, but include them all in the same web site. There are only two
limitations: you can’t use more than one language in the same web page (which would create
obvious compilation problems), and you must use the projectless website model (not web projects).

Less code to write: Most applications require a fair bit of standard boilerplate code, and ASP.NET
web pages are no exception. For example, when you add a web control, attach event handlers, and
adjust formatting, a number of details need to be set in the page markup. With Visual Studio, these
details are set automatically.

Intuitive coding style: By default, Visual Studio formats your code as you type, indenting
automatically and using color-coding to distinguish elements such as comments. These minor
differences make code much more readable and less prone to error. You can even configure what
automatic formatting Visual Studio applies, which is great if you prefer different brace styles (such
as K&R style, which always puts the opening brace on the same line as the preceding declaration).

■ Tip To change the formatting options in Visual Studio, select Tools ➤ Options, and then look at the groups
under the Text Editor ➤ C# ➤ Formatting section. You’ll see a slew of options that control where curly braces

should be placed

Faster development time: Many of the features in Visual Studio are geared toward helping you get
your work done faster. Convenience features allow you to work quickly and efficiently, such as
IntelliSense (which flags errors and can suggest corrections), search-and-replace (which can hunt
for keywords in one file or an entire project), and automatic comment and uncomment features
(which can temporarily hide a block of code).

Debugging: The Visual Studio debugging tools are the best way to track down mysterious errors and
diagnose strange behavior. You can execute your code one line at a time, set intelligent breakpoints
that you can save for later use, and view current in-memory information at any time.

Visual Studio also has a wealth of features that you won’t see in this chapter, including project
management, integrated source code control, code refactoring, macros, and a rich extensibility model.
Furthermore, if you’re using Visual Studio 2010 Team System you’ll gain advanced unit testing,
collaboration, and code versioning support (which is far beyond that available in simpler tools such as
Visual SourceSafe). Although Visual Studio Team System isn’t discussed in this chapter, you can learn
more from http://msdn.microsoft.com/teamsystem.

Websites and Web Projects
Somewhat confusingly, Visual Studio offers two ways to create an ASP.NET-powered web application:

• Project-based development: When you create a web project, Visual Studio
generates a .csproj project file (assuming you’re coding in C#) that records the files
in your project and stores a few debugging settings. When you run a web project,
Visual Studio compiles all your code into a single assembly before launching your
web browser.

http://msdn.microsoft.com/teamsystem

CHAPTER 2 ■ VISUAL STUDIO

23

• Projectless development: An alternate approach is to create a simple website
without any project file. In this case, Visual Studio assumes that every file in the
website directory (and its subdirectories) is part of your web application. In this
scenario, Visual Studio doesn’t need to precompile your code. Instead, ASP.NET
compiles your website the first time you request a page. (Of course, you can use
precompilation to remove the first-request overhead for a deployed web
application. Chapter 18 explains how.)

The first .NET version of Visual Studio used the project model. Visual Studio 2005 removed the
project model in favor of projectless development. However, a small but significant group of developers
revolted. Realizing that there were specific scenarios that worked better with project-based
development, Microsoft released a download that added the project feature back to Visual Studio 2005.
Now, both options are supported in Visual Studio 2010.

In this chapter, you’ll begin by creating the standard projectless website, which is the simpler, more
streamlined approach. Later in this chapter, you’ll learn what scenarios work better with project-based
development, and you’ll see how to create web projects.

Creating a Projectless Website
To get right to work and create a new web application, choose File ➤ New ➤ Web Site. Visual Studio will
show the New Web Site dialog box (see Figure 2-1).

Figure 2-1. The New Web Site window

CHAPTER 2 ■ VISUAL STUDIO

24

To create a new website, you must choose the development language (at the left), the version of
.NET (at the top of the middle section), the website template (in the middle), and the location (at the
bottom). Then, once you’ve specified these details, click OK to create your website.

The following sections expand on each of these details.

The Hidden Solution File

Although projectless development simplifies life, the last vestiges of Visual Studio’s solution-based system
are still lurking behind the scenes.

When you create a web application, Visual Studio actually creates solution files (.sln and .suo) in a user-
specific directory like c:\Users\[UserName]\Documents\Visual Studio 2010\Projects\[WebsiteFolderName].
The solution files provide a few Visual Studio-specific features that aren’t directly related to ASP.NET, such
as debugging settings. For example, if you add a breakpoint to the code in a web page (as discussed in the
“Visual Studio Debugging” section later in this chapter), Visual Studio stores the breakpoint in the .suo file.
The next time you open the website, Visual Studio locates the matching solution files automatically.
Similarly, Visual Studio uses the solution files to keep track of the files that are currently open in the design
environment so that it can restore your view when you return to the website. This approach to solution
management is fragile—obviously, if you move the website from one location to another, you lose all this
information. However, because this information isn’t really all that important (think of it as a few project-
specific preferences), losing it isn’t a serious problem. The overall benefits of a projectless system are
usually worth the trade-off.

If you want a more permanent solution, you can save your solution files explicitly in a location of your
choosing. To do so, simply click the top item in the Solution Explorer (which represents your solution). For
example, if you open a folder named MyWebSite, the top item is named Solution 'MyWebSite'. Then,
choose File ➤ Save [SolutionName] As. This technique is handy if you’ve created a solution that combines
multiple applications (for example, a projectless website and a class library component) and you want to
edit and debug them at the same time.

The Development Language
The language identifies the .NET programming language you’ll use to code your website. The language
you choose is simply the default language for the project. This means you can explicitly add Visual Basic
web pages to a C# website, and vice versa.

The Framework Version
Older versions of Visual Studio were tightly coupled to specific versions of .NET. You used Visual Studio
.NET to create .NET 1.0 applications, Visual Studio .NET 2003 to create .NET 1.1 applications, and Visual
Studio 2005 to create .NET 2.0 applications.

Visual Studio 2008 removed this restriction with multitargeting, and Visual Studio 2010 continues the
trend. It allows you to create web applications that are designed to work with .NET 2.0, .NET 3.0, .NET 3.5,
or .NET 4. Typically, you’ll choose the latest version that your web server supports. Later versions give you
access to more recent features, and all the samples that are included with this book target .NET 4.

■ Note Of course, there’s no reason that you can’t install multiple versions of .NET on the same web server and
configure different IIS virtual directories to use different versions of ASP.NET (as described in Chapter 18).

CHAPTER 2 ■ VISUAL STUDIO

25

To provide accurate multitargeting, Visual Studio 2010 includes reference assemblies for each version
of .NET. These assemblies include the metadata of every type, but none of the code that’s required to
implement it. That means Visual Studio 2010 can use the reference assembly to tailor its Intellisense and
error checking, ensuring that you aren’t able to use controls, classes, or members that aren’t available in
the version of .NET that you’re targeting. It also uses this metadata to determine what controls should
appear in the toolbox, what members should appear in the Properties window and Object Browser, and
so on, ensuring that the entire IDE is limited to the version you’ve chosen.

You can also change the version of .NET that you’re targeting after you’ve created your website. To
do that, follow these steps:

1. Choose Website ➤ Start Options.

2. In the list on the left, choose the Build category.

3. In the Target Framework list, choose the version of .NET you want to target.

■ Note This process is slightly different in a web project. In a web project, you begin by double-clicking the
Properties node in the Solution Explorer. Then, choose the Application tab, which contains the Target Framework
list in which you can choose the version of .NET you want to target.

When you change the .NET version, Visual Studio modifies your web.config file quite significantly.
For example, the web.config file for a .NET 4 application is short and streamlined, because all of the
plumbing it needs is set up in the computer’s root web.config file. But the web.config file for a .NET 3.5
application needs a good deal of extra boilerplate to explicitly enable support for Ajax and C# 3.5
features. You’ll dig deeper into the contents of the web.config file in Chapter 5.

The Template
Once you choose a language (in the list on the left), you’ll see a list of all the templates that Visual Studio
provides for that language (in the large box in the center). The template determines what files your
website starts with.

Visual Studio supports several types of ASP.NET applications, but all of them are compiled and
executed in the same way. The only difference is the files that Visual Studio creates by default. For
example, if you create a WCF Service, Visual Studio generates a website that starts with a single WCF
service in it, rather than an ASP.NET web page.

Here’s a rundown of your template choices:

ASP.NET Web Site: This creates a full-featured ASP.NET website, with its basic infrastructure
already in place. This website includes a master page that defines the overall layout (with a header,
footer, and menu bar), and ready-made default.aspx and about.aspx pages. It also includes an
Accounts folder with pages for registration, login, and password changing, and a Scripts folder with
the jQuery library for client-side JavaScript.

ASP.NET Empty Web Site: This creates a nearly empty website. It includes a stripped-down
web.config configuration file, and nothing else. Of course, it’s easy to fill in the pieces you need as
you start coding.

■ Tip If you’re relatively new to ASP.NET, start with the ASP.NET Empty Web Site option. Once you’ve read the
other chapters in this book and learned how to use such features as master pages and membership, you’ll be
ready to jump into the somewhat more convoluted ASP.NET Web Site template, if it suits your needs.

CHAPTER 2 ■ VISUAL STUDIO

26

ASP.NET Dynamic Data Entites Web Site: This creates an ASP.NET website that uses the ASP.NET
Dynamic Data feature described in Chapter 33. This website is designed to use the Entity Model to
access the back-end database, while the similarly named ASP.NET Dynamic Data LINQ to SQL Web
Site template uses the older LINQ to SQL approach.

WCF Service: This creates a WCF service—a library of server-side methods that remote clients (for
example, Windows applications) can call. Although you won’t examine the WCF model in detail in
this book, you will create WCF services to provide server-side functionality for Silverlight pages in
Chapter 34.

ASP.NET Reports Web Site: This creates an ASP.NET website that uses the ReportView control and
SQL Server Reporting Services (a tool for generating database reports that can be viewed and
managed over the Web). The ASP.NET Crystal Reports Web Site template provides a similar service,
but it uses the competing Crystal Reports software.

Although most developers prefer to start with the ASP.NET Empty Web Site or ASP.NET Web Site
template and begin coding, there are still more specialized templates for specific types of web applications.
To view them, click the Online Templates heading on the far left of the New Web Site dialog box. There will
be a short delay while Visual Studio contacts the Microsoft web servers, after which it will add a list of
template subcategories, each with its own group of ready-made templates. For example, ASP.NET
developers can download a template to create a DotNetNuke website (which uses the popular DotNetNuke
portal framework) or an ASP.NET MVC website that uses OpenID for user authentication.

The Location
The location specifies where the website files will be stored. Typically, you’ll choose File System and
then use a folder on the local computer or a network path. However, you can also edit a website directly
over HTTP or FTP (File Transfer Protocol). This is occasionally useful if you want to perform live website
edits on a remote web server. However, it also introduces additional overhead. Of course, you should
never edit a production web server directly because changes are automatic and irreversible. Instead,
limit your changes to test servers.

If you simply want to create your project in a folder on the file system, you may decide to type it into
the Location box by hand. But if you prefer to see all your options, and hunt for the right location, you
can click the Browse button, which shows the Choose Location dialog box (Figure 2-2).

Along the left side of Choose Location dialog box, you’ll see four buttons that let you connect to
different types of locations:

File System: This is the easiest choice—you simply need to browse through a tree of drives and
directories or through the shares provided by other computers on the network. If you want to create
a new directory for your application, just click the Create New Folder icon above the top-right
corner of the directory tree. (You can also coax Visual Studio into creating a directory by adding a
new directory name to the end of your path.)

Local IIS: This choice allows you to browse the virtual directories made available through the IIS
web hosting software, assuming it’s running on the current computer. Chapter 18 describes virtual
directories in detail and shows you how to create them with IIS Manager. Impressively, you can also
create them without leaving Visual Studio. Just select the Default Web Site node and then click the
Create New Web Application icon at the top-right corner of the virtual directory tree.

■ Note There are two significant limitations to the Local IIS location type, First, you must have IIS 6 Management
Compatibility installed. (This is one of the optional subfeatures of IIS that you’ll see when you install it from the
Windows Features dialog box.) Second, you must choose to run Visual Studio as an administrator when you launch
it. (To do this, right-click the Visual Studio shortcut and choose Run As Administrator.)

CHAPTER 2 ■ VISUAL STUDIO

27

FTP Site: This option isn’t quite as convenient as browsing for a directory—instead, you’ll need to
enter all the connection information, including the FTP site, the port, the directory, a user name,
and a password before you can connect.

Remote Web Site: This option accesses a website at a specified URL (uniform resource locator)
using HTTP. For this to work, the web server must have the FrontPage Extensions installed. When
you connect, you’ll be prompted for a user name and password.

Figure 2-2. Browsing to a website location

CHAPTER 2 ■ VISUAL STUDIO

28

Designing a Web Page
To start designing a web page, double-click the web page in the Solution Explorer. If you’re using the
ASP.NET Empty Web Site template, start by creating a new page (right-click the website in the
Solution Explorer, choose Add New Item, and pick the Web Form template). A new page begins with
the bare minimum markup that it needs, but has no visible content, so it will appear like a blank page
in the designer.

Visual Studio gives you three ways to look at a web page: source view, design view, and split view.
You can choose the view you want by clicking one of the three buttons at the bottom of the web page
window (Source, Design, or Split). Source view shows the markup for your page (the HTML and ASP.NET
control tags). Design view shows a formatted view of what your page looks like in the web browser. Split
view combines the other two views so that you can see the markup for a page and a live preview at the
same time.

■ Note Technically, most ASP.NET pages are made up of XHTML, and all ASP.NET controls emit valid XHTML
unless configured otherwise. However, in this chapter we refer to web page markup as HTML, because it can use

HTML or the similar but more stringent XHTML standard. Chapter 3 has more information about ASP.NET’s support

for XHTML.

The easiest way to add an ASP.NET control to a page is to drag the control from the Toolbox on the
left. (The controls in the Toolbox are grouped in numerous categories based on their functions, but
you’ll find basic ingredients in the Standard tab.) You can drag a control onto the visual design surface of
a page (using design view), or you can drop it in a specific position of your web page markup (using
source view). Either way, the result is the same. Alternatively, you can type in the control tag that you
need by hand in the source view. In this case, the design view won't be updated until you click in the
design portion of the window or press Ctrl+S to save the web page.

Once you’ve added a control, you can resize it and configure its properties in the Properties window.
Many developers prefer to lay out new web pages in design view, but switch to source view to rearrange
their controls or perform more detailed tweaking. The exception is with ordinary HTML markup—
although the Toolbox includes a tab of HTML elements, it’s usually easiest to type the tags you need by
hand, rather than dragging and dropping them one at a time.

Figure 2-3 shows a web page in split view, with the source markup in the top half and the graphical
surface in the bottom half.

CHAPTER 2 ■ VISUAL STUDIO

29

Figure 2-3. Editing a web page in split view

■ Tip If you have a widescreen monitor, you’ll probably prefer to have the split view use two side-by-side regions
(rather than a top and bottom region). Fortunately, it’s easy to configure Visual Studio to do so. Just select Tools ➤
Options, and then head to the HTML Designer ➤General section in the tree of settings. Finally, select the Split

Views Vertically option and click OK.

To configure a control, click once to select it, or choose it by name in the drop-down list at the top of
the Properties window. Then, modify the appropriate properties in the window, such as Text, ID, and
ForeColor. These settings are automatically translated to the corresponding ASP.NET control tag
attributes and define the initial appearance of your control. Visual Studio even provides special
“choosers” (technically known as UITypeEditors) that allow you to select extended properties. For
example, you can select a color from a drop-down list that shows you the color, and you can configure
the font from a standard font selection dialog box.

Absolute Positioning
To position a control on the page, you need to use all the usual tricks of HTML design, such as
paragraphs, line breaks, tables, and styles. Visual Studio assumes you want to position your elements
using flexible “flow” positioning, so content can grow and shrink dynamically without creating a layout
problem. However, you can also use absolute positioning mode (also known as grid layout) with the help
of the CSS standard. All you need to do is add an inline CSS style for your control that specifies absolute
positioning. Here’s an example that places a button exactly 100 pixels from the left edge of the page and
50 pixels from the top:

CHAPTER 2 ■ VISUAL STUDIO

30

<asp:Button id="cmd" style="POSITION: absolute; left: 100px; top: 50px;"
 runat="server" ... />

Once you’ve made this change, you’re free to drag the button around the window at will, and Visual
Studio will update the coordinates in the style correspondingly.

It rarely makes sense to position individual controls using absolute positioning. It doesn’t allow
your layout to adapt to different web browser window sizes, and it causes problems if the content in one
element expands, causing it to overlap another absolutely positioned element. It’s also a recipe for
inflexible layouts that are difficult to change in the future. However, you can use absolute positioning to
place entire containers, and then use flow content inside your container. For example, you could use
absolute positioning to keep a menu bar at the side, but use ordinary flow layout for the list of links
inside. The <div> container is a good choice for this purpose, because it has no built-in appearance
(although you can use style rules to apply a border, background color, and so on). The <div> is
essentially a floating box. In this example, it’s given a fixed 200 pixel width, and the height will expand to
fit the content inside.

<div style="POSITION: absolute; left: 100px; top: 50px; width:200px">
 ...
</div>

You can find some common examples of multicolumn layout that use CSS at
http://www.glish.com/css. You’ll also learn more about styles in Chapter 16.

Smart Tags
Smart tags make it easier to configure complex controls. Smart tags aren’t offered for all controls, but
they are used for rich controls such as GridView, TreeView, and Calendar.

You’ll know a smart tag is available if, when you select a control, you see a small arrow in the top-
right corner. If you click this arrow, a window will appear with links (and other controls) that trigger
higher-level tasks. For example, Figure 2-4 shows how you can use this technique to access Calendar
autoformatting. (Smart tags can include many more features, but the Calendar smart tag provides only a
single link.)

http://www.glish.com/css

CHAPTER 2 ■ VISUAL STUDIO

31

Figure 2-4. A smart tag for the Calendar control

Static HTML Tags
As you know, ASP.NET pages contain a mixture of ordinary HTML tags and ASP.NET controls. To add
HTML tags, you simply type them in or drag them from the HTML tab of the Toolbox.

Visual Studio provides a valuable style builder for formatting any static HTML element with CSS
style properties. To test it, add the <div> element from the HTML section of the Toolbox. The <div> will
appear on your page as a borderless panel. Then click to select the panel, and click the Style box in the
Properties window. An ellipsis (…) button will appear in the Style box. When you click it, the Modify
Style dialog box (shown in Figure 2-5) will appear, with options for configuring the colors, font, layout,
and border for the element.

CHAPTER 2 ■ VISUAL STUDIO

32

Figure 2-5. Building HTML styles

When you create a new style in this way, it will be stored as an inline style, and recorded in the style
attribute of the element you’re modifying. Alternatively, you can define a named style in the current
page (the default) or in a separate stylesheet. You’ll learn more about these techniques and Visual
Studio’s support for stylesheets in Chapter 16.

If you want to configure the HTML element as a server control so that you can handle events and
interact with it in code, you need to switch to source view and add the required runat="server" attribute
to the control tag.

HTML Tables
Visual Studio provides good design-time support for creating HTML tables. To try it, drag a table from
the HTML tab of the Toolbox. You’ll start with a standard 3×3 table, but you can quickly transform it
using editing features that more closely resemble a word processor than a programming tool. Here are
some of the tricks you’ll want to use:

• To move from one cell to another in the table, press the Tab key or use the arrow
keys. The current cell is highlighted with a blue border. Inside each cell you can
type static HTML or drag and drop controls from the Toolbox. If you tab beyond
the final cell, Visual Studio adds a new row.

• To add new rows and columns, right-click inside a cell, and choose from one
of the many options in the Insert submenu to insert rows, columns, and
individual cells.

• To resize a part of the table, just click one of the borders and drag.

CHAPTER 2 ■ VISUAL STUDIO

33

• To format a cell, right-click inside it, click the Style box in the Properties window,
and then click the ellipsis (…) button. This shows the same Modify Style dialog
box you saw in Figure 2-5.

• To work with several cells at once, hold down Ctrl while you click each cell. You
can then right-click to perform a batch formatting operation.

• To merge cells (for example, change two cells into one cell that spans two
columns), just select the cells, right-click, and choose Modify ➤ Merge Cells.

With these conveniences, you might never need to resort to a design tool like Dreamweaver or
Expression Web.

■ Tip Modern web design practices discourage using tables for layout. Instead, most professional developers
favor CSS layout properties, which work equally well with Visual Studio. You’ll learn more about Visual Studio’s

support for CSS in Chapter 16.

Structuring HTML Markup
There are endless ways to format the same chunk of HTML. Nested tags can be indented, and long tags
are often broken over several lines for better readability. However, the exact amount of indentation and
the preferred line length vary from person to person.

Because of these variations, Visual Studio doesn’t enforce any formatting. Instead, it always
preserves the capitalization and indenting you use. The drawback is that it’s easy to be inconsistent and
create web pages that use widely different formatting conventions or have messily misaligned tags.

To help sort this out, Visual Studio offers an innovative feature that lets you define the formatting
rules you want to use and then apply them anywhere you want. To try this, switch to the source view for
a page. Now, highlight some haphazard HTML, right-click the selection, and choose Format Selection.
Visual Studio will automatically straighten out the selected HTML content, giving it the correct
capitalization, indenting, and line wrapping.

Of course, this raises an excellent question—namely, who determines what the correct formatting
settings are? Although Visual Studio starts with its own sensible defaults, you have the ability to fine-tune
them extensively. To do so, right-click anywhere in the HTML source view, and choose Formatting and
Validation. This shows the Options dialog box, positioned at the Text Editor ➤ HTML ➤ Formatting
group of settings (see Figure 2-6).

CHAPTER 2 ■ VISUAL STUDIO

34

Figure 2-6. Configuring HTML formatting settings

This section lets you control what capitalization settings are used and how long lines can be before
they have to wrap. By default, lines don’t wrap until they hit an eye-straining 80 characters, so many
developers choose to decrease this number. You can also control how attributes are quoted and set
whether Visual Studio should automatically add the matching closing tag when you add an opening tag.

■ Note The formatting rules are applied whenever you use the Format Selection command and whenever you add
HTML content by adding controls from the Toolbox in design view. If you type in your HTML by hand, Visual Studio
won’t apply the formatting to “correct” you.

If you’re even more ambitious, you can click the Tag Specific Options button to set formatting rules
that apply only to specific tags. For example, you can tell Visual Studio to add line breaks at the
beginning and end of a <div> tag. Or, you can tell Visual Studio to use different colors to highlight
specific tags, such as tags that you often need to locate in a hurry or tags you plan to avoid. (For example,
developers who are planning to move to a CSS-based layout might try avoiding <table> tags and use
color-coding to highlight them.)

Along with the formatting settings, the Options dialog box also has several useful settings in the
subgroups of the HTML group:

General: Lets you configure Visual Studio’s automatic statement completion, use automatic
wrapping, and turn on line numbers to help you locate hard-to-remember places in your pages.

Tabs: Lets you choose the number of spaces to insert when you press Tab.

Miscellaneous: Includes the handy Format HTML on Paste option, which isn’t enabled by default.
Switch this on, and your formatting rules are applied whenever you paste new content into the
source view.

CHAPTER 2 ■ VISUAL STUDIO

35

Validation: Lets you set the browser or type of markup you’re targeting (for example, HTML 4.01 or
XHTML 1.1). Depending on your choices, Visual Studio will flag violations, such as the use of
deprecated elements. (You can also change this option using the HTML Source Editing toolbar,
where the option appears as a drop-down list.)

As these settings show, Visual Studio is a great partner when adding ordinary HTML content to
ASP.NET pages.

The Visual Studio IDE
Now that you’ve created a basic website, it’s a good time to take a tour of the different parts of the Visual
Studio interface. Figure 2-7 identifies each part of the Visual Studio window, and Table 2-1 describes the
most commonly used windows.

If you don’t see a particular window, it’s easy enough to summon it into view. You can pick the most
common windows directly from the View window (for example, View Solution Explorer) and you can
find less common windows under the Other Windows submenu (for example, View Other
Windows Macro Explorer). Finally, you’ll find windows that are used for debugging under the
Debug Windows submenu.

Figure 2-7. The Visual Studio interface

CHAPTER 2 ■ VISUAL STUDIO

36

Table 2-1. Common Visual Studio Windows

Window Description

Solution Explorer Lists the files and subfolders that are in the web application folder.

Toolbox Shows ASP.NET’s built-in server controls and any third-party controls or
custom controls that you build yourself and add to the Toolbox. Controls can
be written in any language and used in any language.

Server Explorer Allows access to databases, system services, message queues, and other
server-side resources.

Properties Allows you to configure the currently selected element, whether it’s a file in
the Solution Explorer or a control on the design surface of a web form.

Error List Reports on errors that Visual Studio has detected in your code but that you
haven’t resolved yet.

Task List Lists comments that start with a predefined moniker so that you can keep
track of portions of code that you want to change and also jump to the
appropriate position quickly. For example, you can flag areas that need
attention by creating a comment that starts with // HACK or // TODO.

Document Allows you to design a web page by dragging and dropping, and to edit the
code files you have within your Solution Explorer. Also supports non-
ASP.NET file types, such as static HTML and XML files.

Macro Explorer Allows you to see all the macros you’ve created and execute them. Macros
are an advanced Visual Studio feature; they allow you to automate tedious or
time-consuming tasks, such as formatting code, creating backup copies of
files, arranging document windows, changing debugging settings, and so on.
Visual Studio exposes a rich extensibility model, and you can write a macro
using pure .NET code.

Class View Shows a different view of your application, which is organized to show all the
classes you’ve created (and their methods, properties, and events).

Team Explorer Shows team projects and allows you to check files out through source
control so you can work on them. This window only appears if you’ve
installed the Visual Studio Team Suite edition.

Manage Styles and
Apply Styles

Allows you to modify styles in a linked stylesheet and apply them to the
current web page. You’ll see how these windows work in Chapter 16.

CHAPTER 2 ■ VISUAL STUDIO

37

■ Tip The Visual Studio interface is highly configurable. You can drag the various windows and dock them to the
sides of the main Visual Studio window. Also, some windows on the side automatically slide into and out of view
as you move your mouse. If you want to freeze these windows in place, just click the thumbtack icon in the top-

right corner of the appropriate window.

Solution Explorer
The Solution Explorer is, at its most basic, a visual filing system. It allows you to see the files that are in
the web application directory.

Table 2-2 lists some of the file types you’re likely to see in an ASP.NET web application.
In addition, your web application can contain other resources that aren’t ASP.NET file types. For

example, your web application directory can hold image files, HTML files, or CSS files. These resources
might be used in one of your ASP.NET web pages, or they can be used independently.

Visual Studio distinguishes between different file types. When you right-click a file in the list, a
context menu appears with the menu options that apply for that file type. For example, if you right-click
a web page, you’ll have the option of building it and launching it in a browser window.

Using the Solution Explorer, you can rename, rearrange, and add files. All these options are just a
right-click away. To delete a file, just select it in the Solution Explorer and press the Delete key.

Table 2-2. ASP.NET File Types

File Description

Ends with .aspx These are ASP.NET web pages (the .NET equivalent of the .asp file in an
ASP application). They contain the user interface and, optionally, the
underlying application code. Users request or navigate directly to one of
these pages to start your web application.

Ends with .ascx These are ASP.NET user controls. User controls are similar to web pages,
except that they can’t be accessed directly. Instead, they must be hosted
inside an ASP.NET web page. User controls allow you to develop an
important piece of the user interface and reuse it in as many web forms
as you want without repetitive code.

Ends with .asmx or .svc These are ASP.NET web services. Web services work differently than web
pages, but they still share the same application resources, configuration
settings, and memory. However, ASP.NET web services are gradually
being phased out in favor of WCF (Windows Communication
Foundation) services, which were introduced with .NET 3.0 and have the
extension .svc. You’ll use web services with ASP.NET AJAX in Chapter 30.

web.config This is the XML-based configuration file for your ASP.NET application. It
includes settings for customizing security, state management, memory
management, and much more. In a web project, you may have
variations of this file that ar used in different deployment scenarios (like
web.Debug.config, web.Release.config, and so on). This feature, called
web.config transformation, only applies to setup packages and is
explained in Chapter 18.

CHAPTER 2 ■ VISUAL STUDIO

38

File Description

global.asax This is the global application file. You can use this file to define global
variables and react to global events, such as when a web application first
starts (see Chapter 5 for a detailed discussion). Visual Studio doesn’t
create a global.asax file by default—you need to add it if it’s appropriate.

Ends with .cs These are code-behind files that contain C# code. They allow you to
separate the application from the user interface of a web page. The
code-behind model is introduced in this chapter and used extensively in
this book.

You can also add new files by right-clicking the Solution Explorer and selecting Add ➤ Add New

Item. You can add various different types of files, including web forms, web services, and stand-alone
classes. You can also copy files that already exist elsewhere on your computer (or an accessible network
path) by selecting Add ➤ Add Existing Item. Use Add ➤ New Folder to create a new subdirectory inside
your web application. You can then drag web pages and other files into or out of this directory. Use the
Add ASP.NET Folder submenu to quickly insert one of the folders that has a specific meaning to
ASP.NET (such as the App_LocalResources and App_GlobalResources folders for globalization, or the
Theme folder for website-specific themes). ASP.NET recognizes these folders based on their names.

Visual Studio also checks for project management events such as when another process changes a
file in a project you currently have open. When this occurs, Visual Studio will notify you and give you the
option to refresh the file.

Document Window
The document window is the portion of Visual Studio that allows you to edit various types of files using
different designers. Each file type has a default editor. To learn a file’s default editor, simply right-click
that file in the Solution Explorer, and then select Open With from the pop-up menu. The default editor
will have the word Default alongside it.

Toolbox
The Toolbox works in conjunction with the document window. Its primary use is providing the controls
that you can drag onto the design surface of a web form. However, it also allows you to store code and
HTML snippets.

The content of the Toolbox depends on the current designer you’re using as well as the project type.
For example, when designing a web page, you’ll see the set of tabs described in Table 2-3. Each tab
contains a group of buttons. To view a tab, click the heading, and the buttons will slide into view.

Table 2-3. Toolbox Tabs for an ASP.NET Project

Tab Description

Standard This tab includes the rich web server controls that are the heart of ASP.NET’s web
form model.

Data These components allow you to connect to a database. This tab includes nonvisual
data source controls that you can drop onto a form and configure at design time
(without using any code) and data display controls such as grids.

CHAPTER 2 ■ VISUAL STUDIO

39

Tab Description

Validation These controls allow you to verify an associated input control against user-defined
rules. For example, you can specify that the input can’t be empty, that it must be a
number, that it must be greater than a certain value, and so on. Chapter 4 has more
details.

Navigation These controls are designed to display site maps and allow the user to navigate from
one page to another. You’ll learn about the navigation controls in Chapter 17.

Login These controls provide prebuilt security solutions, such as login boxes and a wizard
for creating users. You’ll learn about the login controls in Chapter 21.

WebParts This set of controls supports web parts, an ASP.NET model for building
componentized, highly configurable web portals. You’ll learn about web parts in
Chapter 31.

AJAX
Extensions

These controls use ASP.NET AJAX techniques behind the scenes, allowing you to
refresh parts of the page without a full postback. They’re discussed in Chapter 30.

Dynamic
Data

These controls are a part of ASP.NET Dynamic Data, an ASP.NET scaffolding system
for building data-driven websites using intelligent templates. Chapter 33 explores
Dynamic Data in detail.

Reporting This tab includes the ReportViewer control, which allows you to generate reports
from a database (much like the third-party package Crystal Reports). Although the
ReportViewer isn’t discussed in this book, you can learn more at
http://tinyurl.com/ycwyp6e.

HTML This tab allows you to drag and drop static HTML elements. If you want, you can also
use this tab to create server-side HTML controls—just drop a static HTML element
onto a page, switch to source view, and add the runat="server" attribute to the
control tag.

General This tab provides a repository for code snippets and control objects. Just drag and
drop them here, and pull them off when you need to use them later.

You can customize both the tabs and the items in each tab. To modify the tab groups, right-click a

tab heading, and select Rename Tab, Add Tab, or Delete Tab. To add an item to a tab, right-click the
blank space on a Toolbox tab, and click Choose Items. You can also drag items from one tab group to
another.

Error List and Task List
The Error List and Task List are two versions of the same window. The Error List catalogs error
information that’s generated by Visual Studio when it detects problematic code. The Task List shows a
similar view with to-do tasks and other code annotations you’re tracking. Each entry in the Error List and
Task List consists of a text description and, optionally, a link that leads you to a specific line of code
somewhere in your project.

http://tinyurl.com/ycwyp6e

CHAPTER 2 ■ VISUAL STUDIO

40

With the default Visual Studio settings, the Error List appears automatically whenever you build a
project that has errors (see Figure 2-8).

Figure 2-8. Viewing build errors in a project

To see the Task List, choose View ➤ Task List. Two types of tasks exist—user tasks and comments.
You can choose which you want to see from the drop-down list at the top of the Task List. User tasks are
entries you’ve specifically added to the Task List. You create these by clicking the Create User Task icon
(which looks like a clipboard with a check mark) in the Task List. You can give your task a basic
description, a priority, and a check mark to indicate when it’s complete.

■ Note As with breakpoints, any custom tasks you add by hand are stored in the hidden solution files. This makes
them fairly fragile—if you rename or move your project, these tasks will disappear without warning (or without

even a notification the next time you open the website).

The comment entries are more interesting because they’re added automatically and they link to a
specific line in your code. To try the comment feature, move somewhere in your code, and enter the
comment marker (//) followed by the word TODO (which is commonly referred to as a token tag). Now
type in some descriptive text:

// TODO: Replace this hard-coded value with a configuration file setting.
string fileName = @"c:\myfile.txt"

Because your comment uses the recognized token tag TODO, Visual Studio recognizes it and
automatically adds it to the Task List (as shown in Figure 2-9).

Figure 2-9. Keeping track of tasks

CHAPTER 2 ■ VISUAL STUDIO

41

To move to the line of code, double-click the new task entry. Notice that if you remove the
comment, the task entry is automatically removed as well.

Three token tags are built-in: HACK, TODO, and UNDONE. However, you can add more. Simply
select Tools ➤ Options. In the Options dialog box, navigate to the Environment ➤ Task List tab. You’ll
see a list of comment tokens, which you can modify, remove, and add to. Figure 2-10 shows this window
with a new ASP comment token that you could use to keep track of sections of code that have been
migrated from classic ASP pages.

Figure 2-10. Adding a new comment token

■ Tip Comment tags are not case-sensitive. For example, you can use TODO and todo interchangeably.

Server Explorer
The Server Explorer provides a tree that allows you to explore various types of services on the current
computer (and other servers on the network). It’s similar to the Computer Management administrative
tool. Typically, you’ll use the Server Explorer to learn about available event logs, message queues,
performance counters, system services, and SQL Server databases on your computer.

The Server Explorer is particularly noteworthy because it doesn’t just provide a way for you to
browse server resources; it also allows you to interact with them. For example, you can create databases,
execute queries, and write stored procedures using the Server Explorer in much the same way that you
would using SQL Server Management Studio, the administrative utility that’s included with the full
version of SQL Server. To find out what you can do with a given item, right-click it. Figure 2-11 shows the
Server Explorer window listing the databases in a local SQL Server and allowing you to retrieve all the
records in the selected table.

CHAPTER 2 ■ VISUAL STUDIO

42

Figure 2-11. Querying data in a database table

The Code Editor
Many of Visual Studio’s handiest features appear when you start to write the code that supports your
user interface. To start coding, you need to switch to the code-behind view. To switch back and forth,
you can use two buttons that are placed just above the Solution Explorer window. The tooltips identify
these buttons as View Code and View Designer. When you switch to code view, you’ll see the page class
for your web page. You’ll learn more about code-behind later in this chapter.

ASP.NET is event-driven, and everything in your web-page code takes place in response to an event.
To create a simple event handler for the Button.Click event, double-click the button in design view.
Here’s a simple example that displays the current date and time in a label:

protected void Button1_Click(object sender, EventArgs e)
{
 Label1.Text = "Current time: " + DateTime.Now.ToLongTimeString();
}

To test this page, select Debug ➤ Start Debugging from the menu. Because this is the first time
running any page in this application, Visual Studio will inform you that you need a configuration file that
specifically enables debugging, and will offer to change your current web.config file accordingly (see
Figure 2-12).

CHAPTER 2 ■ VISUAL STUDIO

43

Figure 2-12. Modifying a web.config file automatically

Click OK to change the web.config configuration file. Visual Studio will then start the integrated test
web server and launch your default browser with the URL set to the current page that’s open in Visual
Studio. At this point, your request will be passed to ASP.NET, which will compile the page and execute it.

To test your event-handling logic, click the button on the page. The page will then be submitted to
ASP.NET, which will run your event-handling code and return a new HTML page with the data (as
shown in Figure 2-13).

Figure 2-13. Testing a simple web page

Adding Assembly References
By default, ASP.NET makes a small set of commonly used .NET assemblies available to all web pages.
These assemblies (listed in Table 2-4) are configured through a special machine-wide configuration file.
You don’t need to take any extra steps to use the classes in these assemblies.

CHAPTER 2 ■ VISUAL STUDIO

44

Table 2-4. Core Assemblies for ASP.NET Pages

Assembly Description
mscorlib.dll, Microsoft.CSharp.dll,
and System.dll

Includes the core set of .NET data types, common exception
types, and numerous other fundamental building blocks for
.NET and the C# language.

System.Configuration.dll Includes classes for reading and writing configuration
information in the web.config file, including your custom
settings.

System.Core.dll Includes support for some of the core features that were
introduced with .NET 3.5, such as LINQ.

System.Data.dll Includes the data container classes for ADO.NET, along with the
SQL Server data provider.

System.Data.DataSetExtensions.dll Includes support for LINQ to DataSet.

System.Drawing.dll Includes classes representing colors, fonts, and shapes. Also
includes the GDI+ drawing logic you need to build graphics on
the fly.

System.EnterpriseServices.dll Includes .NET classes for COM+ services such as transactions.
These are rarely used, as many of the classes have been
superseded by newer platform features.

System.Web.dll Includes the core ASP.NET classes, including classes for building
web forms, managing state, handling security, and much more.

System.Web.ApplicationServices.dll Includes some classes that were a part of the System.Web.dll
assembly in previous releases, but were moved because they
may also apply to desktop code. This allows developers to create
rich client applications that target the slimmed-down .NET 4
Client Profile, which includes this assembly but not
System.Web.dll.

System.Web.DynamicData.dll Includes support for the ASP.NET Dynamic Data scaffolding
system.

System.Web.Entity.dll Includes the EntityDataSource control, which allows you to plug
web forms into the LINQ to Entities feature.

System.Web.Extensions.dll Includes ASP.NET-specific support for the features that were
introduced with .NET 3.5, including LINQ and ASP.NET AJAX.

System.Web.Services.dll Includes classes for building web services—units of code that
can be remotely invoked over HTTP. This feature has largely
been replaced by WCF (Windows Communication Foundation).

System.Xml.dll,
System.Xml.Linq.dll

Includes .NET classes for reading, writing, searching,
transforming, and validating XML, with or without LINQ to
XML.

CHAPTER 2 ■ VISUAL STUDIO

45

If you want to use additional features or a third-party component, you may need to import more
assemblies. For example, if you want to use an Oracle database, you need to add a reference to the
System.Data.OracleClient.dll assembly. To add a reference, select Website ➤ Add Reference (or
Project ➤ Add Reference in a web project). The Add Reference dialog box will appear, with a list of
registered .NET assemblies (see Figure 2-14).

■ Note Visual Studio 2010 has enhanced the Add Reference window to use asynchronous loading. As a result, it
appears much quicker and doesn’t freeze you out while it scans your system for assemblies. However, while these

assemblies are being added to the list, you may find it difficult to select the item you want before it “jumps” to a

new position.

Figure 2-14. Adding a reference

In the Add Reference dialog box, select the component you want to use. If you want to use a
component that isn’t listed here, you’ll need to click the Browse tab and select the DLL file from the
appropriate directory (or from another project in the same solution, using the Projects tab).

If you’re working with a projectless website and you add a reference to another assembly, Visual
Studio modifies the web.config file to indicate the assembly you’re using. Here’s an example of what you
might see after you add a reference to the System.Web.Routing.dll file:

CHAPTER 2 ■ VISUAL STUDIO

46

<compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add assembly=
"System.Web.Routing, Version=4.0.0.0, Culture=neutral,PublicKeyToken=31BF3856AD364E35" />
 </assemblies>
</compilation>

If you’re working with a web project, and you add a reference to another assembly, Visual Studio
doesn’t need to change the web.config file. That’s because Visual Studio is responsible for compiling the
code in a web project, not ASP.NET. Instead, Visual Studio makes a note of this reference in the .csproj
project file. The reference also appears in the Solution Explorer window under the References node. You
can review your references here, and remove any one by right-clicking it and choosing Remove.

If you add a reference to an assembly that isn’t stored in the GAC (global assembly cache), Visual
Studio will create a Bin subdirectory in your web application and copy the DLL into that directory. (This
happens regardless of whether you’re using project-based or projectless development.) This step isn’t
required for assemblies in the GAC because they are shared with all the .NET applications on the
computer.

If you look at the code for a web-page class, you’ll notice that Visual Studio imports just a few core
.NET namespaces. Here’s the code you’ll see:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

Adding a reference isn’t the same as importing the namespace with the using statement. The using
statement allows you to use the classes in a namespace without typing the long, fully qualified class
names. However, if you’re missing a reference, it doesn’t matter what using statements you include—the
classes won’t be available. For example, if you import the System.Web.UI namespace, you can write
Page instead of System.Web.UI.Page in your code. But if you haven’t added a reference to the
System.Web.dll assembly that contains these classes, you still won’t be able to access the classes in the
System.Web.UI namespace.

IntelliSense and Outlining
As you program with Visual Studio, you’ll become familiar with its many time-saving conveniences. The
following sections outline the most important features you’ll use (none of which is new in Visual Studio
2010).

Outlining
Outlining allows Visual Studio to “collapse” a subroutine, block structure, or region to a single line. It
allows you to see the code that interests you, while hiding unimportant code. To collapse a portion of
code, click the minus box next to the first line. Click the box again (which will now have a plus symbol) to
expand it (see Figure 2-15).

CHAPTER 2 ■ VISUAL STUDIO

47

Figure 2-15. Collapsing code

You can collapse an entire code file so that it only shows definitions (such as the namespace and
class declarations, member variables and properties, method declarations, and so on), but hides all
other details (such as the code inside your methods and your namespace imports). To get this top-level
view of your code, right-click anywhere in the code window and choose Outlining ➤ Collapse to
Definitions. To remove your outlining and expand all collapsed regions so you can see everything at
once, right-click in the code window and choose Outlining ➤ Stop Outlining.

Member List
Visual Studio makes it easy for you to interact with controls and classes. When you type a period (.) after
a class or object name, Visual Studio pops up a list of available properties and methods (see Figure 2-16).
It uses a similar trick to provide a list of data types when you define a variable and to provide a list of
valid values when you assign a value to an enumeration.

CHAPTER 2 ■ VISUAL STUDIO

48

Figure 2-16. IntelliSense at work

Visual Studio also provides a list of parameters and their data types when you call a method or
invoke a constructor. This information is presented in a tooltip below the code and is shown as you type.
Because the .NET class library heavily uses function overloading, these methods may have multiple
different versions. When they do, Visual Studio indicates the number of versions and allows you to see
the method definitions for each one by clicking the small up and down arrows in the tooltip. Each time
you click the arrow, the tooltip displays a different version of the overloaded method (see Figure 2-17).

CHAPTER 2 ■ VISUAL STUDIO

49

Figure 2-17. IntelliSense with overloaded method

Error Underlining
One of the code editor’s most useful features is error underlining. Visual Studio is able to detect a variety
of error conditions, such as undefined variables, properties, or methods; invalid data type conversions;
and missing code elements. Rather than stopping you to alert you that a problem exists, the Visual
Studio editor quietly underlines the offending code. You can hover your mouse over an underlined error
to see a brief tooltip description of the problem (see Figure 2-18).

CHAPTER 2 ■ VISUAL STUDIO

50

Figure 2-18. Highlighting errors at design time

Visual Studio won’t flag your errors immediately. Instead, it will quickly scan through your code as
soon as you try to compile it and mark all the errors it finds. If your code contains at least one error,
Visual Studio will ask you whether it should continue. At this point, you’ll almost always decide to cancel
the operation and fix the problems Visual Studio has reported. (If you choose to continue, you’ll actually
wind up using the last compiled version of your application because the .NET compilers can’t build an
application that has errors.)

■ Note You may find that as you fix errors and rebuild your project you discover more problems. That’s because
Visual Studio doesn’t check for all types of errors at once. When you try to compile your application, Visual Studio

scans for basic problems such as unrecognized class names. If these problems exist, they can easily mask other
errors. On the other hand, if your code passes this basic level of inspection, Visual Studio checks for more subtle

problems such as trying to use an unassigned variable.

Visual Studio 2010 Improvements
The most remarkable change in Visual Studio 2010 is the behind-the-scenes architecture. In fact, despite
being rebuilt with WPF, Visual Studio 2010 keeps most of the conventions of its predecessors.

Fortunately, Microsoft did take the time to slip in some welcome refinements. The following
sections outline the most notable.

CHAPTER 2 ■ VISUAL STUDIO

51

IntelliSense Gets More Intelligent
Every modern version of Visual Studio has had the ability to fill in class and member names as you type.
For example, type the name of a text box, followed by a period and the letter “F” (as shown in Figure 2-
16), and you’ll get suggestions such as Font and ForeColor. But in Visual Studio 2010, these automatic
suggestions become more helpful thanks to a new filtering feature.

Here’s how it works. As soon as you’ve typed in at least two letters of a class or member name, Visual
Studio filters the list of suggestions to show just those that match what you’ve entered so far. That means
if you type “TextBox1.Fon”, you’ll see the Font property but not ForeColor. By comparison, the
IntelliSense in previous versions of Visual Studio would show the entire member list, but simply move to
the matching position (Font) and highlight that member.

This minor change seems obvious in retrospect, and many developers won’t even realize that a shift
has taken place. More useful is the way that filtering allows you to search inside a class or member name.
For example, if you type “TextBox1.Fon”, you’ll match properties that start with “Fon” and properties
that have the letters “Fon” in them. For example, if you type “GridView1.Sort”, you’ll see a list with the
members Sort, SortDirection, AllowSorting, EnableSortingAndPagingCallbacks, and so on, as shown in
Figure 2-19.

Figure 2-19. IntelliSense Filtering

This trick also works with class names. For example, if you type List when you begin declaring a new
variable, you’ll see class names such as List<T>, ListBox, LinkedList<T>, IList<T>, and so on.

Another IntelliSense filtering trick lets you use capitals to pick out long member names that are
composed of several words. For example, type “GridView1.ES” to find all the members that incorporate a
word starting with E and a word starting with S. This includes EditRowStyle and EnableViewState. The
Visual Studio designers call this feature “Pascal case filtering.”

CHAPTER 2 ■ VISUAL STUDIO

52

At first glance, this trick seems a bit too cute to be truly practical, but it can cut down on keystrokes
when dealing with long member names. For example, you’ll probably appreciate typing
“GridView1.ESA” to bring up the EnableSortingAndPagingCallbacks property, as shown in Figure 2-20.

Figure 2-20. Quick Matching with Capital Letters

New Tools for Search and Navigation
One of the great challenges in a real-world project is navigating through tangled hierarchies of code. This
is particularly true in mature applications that have their own business frameworks, data management
components, and other libraries.

Visual Studio 2010 introduces several features that can help you find your way through the densest
thickets of code. One of the nicest features is a tiny frill called variable highlighting. To use this feature,
simply highlight a variable name. Visual Studio automatically highlights all occurences of that variable
using a lighter shade of grey (Figure 2-21).

CHAPTER 2 ■ VISUAL STUDIO

53

Figure 2-21. Highlighting a specific variable

The highlighting disappears when you click somewhere else with the mouse or press a key.
However, the highlighting doesn’t disappear if you simply scroll through your document with the
mouse, or if you use Ctrl+Shift+ to jump to the next highlighted match or Ctrl+Shift+ to jump to the
previous one.

The next nifty navigation feature is a new call hierarchy explorer that lets you look at any method,
quickly determine what methods call that method, and jump to their code. To access this feature, you
simply right-click the name of the method that interests you and choose View Call Hierarchy. Visual
Studio then opens a Call Hierarchy window that shows a tree of information (Figure 2-22). You can then
expand the “Calls To” node to find the incoming method calls (the methods that call this method), or the
“Calls From” node to find the outgoing method calls (the methods that this method calls). In Figure 2-22,
you can see that the WriteEmployeeList() method in a web page calls the GetEmployees() method in a
data component, which is currently being examined in the Call Hierarchy window. If you’re viewing an
overridden method, you’ll also see an Overrides category that allows you to find methods that override
or are overridden by this one.

CHAPTER 2 ■ VISUAL STUDIO

54

Figure 2-22. Navigating through the call hierarchy

Every time you right-click a method and choose View Call Hierarchy, it’s added as a new item in the
Call Hierarchy window. All the methods you add remain there until you explicitly remove them (by right-
clicking it and choosing Remove Root).

■ Note Once you’ve expanded a node in the Call Hierarchy window, its method list won’t be updated, even if you
change the code. To force it to update itself to take new changes into account, you must right-click the method

and choose Refresh.

You can jump to the code for any method by double-clicking it in the Call Hierarchy window. Or,
you can expand it and continue the search another level. If you find yourself lost several levels deep in
the call hierarchy, simply right-click the method that you’re interested in and choose Add As New Root.
Visual Studio will add it as a new top-level item in the Call Hierarchy window.

CHAPTER 2 ■ VISUAL STUDIO

55

The last navigation feature is the new Navigation To window that acts as a sort of super-search
feature. To access this window, press Ctrl+, (hold down Ctrl and press the comma key). Then, begin
typing in the “Search terms” box.

The Navigate To searches asynchronously, so it begins adding matches as you type. To find its
matches, it compares the text you supply with the names of types, variables, and members in your
classes. It doesn’t search the actual code or the comments in your methods, and it ignores the code-
behind classes that sit behind your web pages altogether. For these reasons, the Navigate To window is
best for searching through the object model of a complex system—for example, hunting down a piece of
business logic in a multi-layered framework. Figure 2-23 shows how it can quickly find methods from a
data access class.

Figure 2-23. Searching with the Navigate To window

The Navigate To window has some clear advantages over ordinary searches. First, it ignores the
messy code details, which would return thousands of hits in a large project and bury the members you’re
actually looking for. Second, it’s blindingly fast. Third, it also uses some of the IntelliSense filtering tricks
you learned about in the previous section. For example, when you type multiple search words separated
by a space (such as “customer get”), you’ll find results that incorporate both words in any combination
(such as the members GetCustomers(), GetCustomerCount(), CustomerCommandGet, and so on). You
can also use a sequence of capital letters to find matches with words that use those letters, in that order
(so GCC matches the GetCustomerCount() and GetClientCache() methods). But the best way to get a feel
for this intuitive searching feature is to try it out for yourself on a large project.

CHAPTER 2 ■ VISUAL STUDIO

56

Draggable Document Windows
Visual Studio has always had a highly configurable user interface that supports a flexible (and sometimes
confusing) docking system. But Visual Studio2010 is the first version that allows you to take a document
window that shows your web page markup or code and drag it right out of the main window. In fact, a
simple drag of the mouse is all you need to free any tab, or bring it back into the fold (Figure 2-23).

This feature gives developers complete control over the arrangement of their code windows. But the
real purpose of it is to provide a better development experience on computers with multiple monitors. In
this situation, it makes sense to drag a code window from the main Visual Studio user interface to
another monitor.

Figure 2-24. Dragging document windows out of Visual Studio

The Code Model
So far, you’ve learned how to design simple web pages, and you’ve taken a tour of the Visual Studio
interface. But before you get to serious coding, it’s important to understand a little more about the
underpinnings of the ASP.NET code model. In this section, you’ll learn about your options for using
code to program a web page and how ASP.NET events wire up to your code.

Visual Studio supports two models for coding web pages:

Inline code: This model is the closest to traditional ASP. All the code and HTML markup is stored in
a single .aspx file. The code is embedded in one or more script blocks. However, even though the
code is in a script block, it doesn’t lose IntelliSense or debugging support, and it doesn’t need to be

CHAPTER 2 ■ VISUAL STUDIO

57

executed linearly from top to bottom (like classic ASP code). Instead, you’ll still react to control
events and use subroutines. This model is handy because it keeps everything in one neat package,
and it’s popular for coding simple web pages.

Code-behind: This model separates each ASP.NET web page into two files: an .aspx markup file with
the HTML and control tags, and a .cs code file with the source code for the page (assuming you’re
using C# as your web page programming language). This model provides better organization, and
separating the user interface from programmatic logic is keenly important when building complex
pages.

In Visual Studio, you have the freedom to use both approaches. When you add a new web page to
your website (using Website ➤ Add New Item), the Place Code in a Separate File check box lets you
choose whether you want to use the code-behind model (see Figure 2-25). Visual Studio remembers
your previous setting for the next time you add a new page, but it’s completely valid (albeit potentially
confusing) to mix both styles of pages in the same application.

This flexibility only applies to projectless development. If you’ve created a web project, you must
use the code-behind model—there’s no other choice. Furthermore, the code-behind model is subtly
different for the code-behind model that’s used in a projectless website, as you’ll see shortly.

Figure 2-25. Choosing the code model

To better understand the difference between the inline code and code-behind models, it helps to
consider a simple page. The following example shows the markup for a page named
TestFormInline.aspx, which displays the current time in a label and refreshes it whenever a button is
clicked. Here’s how the page looks with inline code:

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<script runat="server">
 protected void Button1_Click(object sender, EventArgs e)

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

CHAPTER 2 ■ VISUAL STUDIO

58

 {
 Label1.Text = "Current time: " + DateTime.Now.ToLongTimeString();
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Test Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="Label1" runat="server" Text="Click Me!" />

 <asp:Button ID="Button1" runat="server" OnClick="Button1_Click"
 Text="Button" />
 </div>
 </form>
</body>
</html>

The following listings, TestFormCodeBehind.aspx and TestFormCodeBehind.aspx.cs, show how the
page is broken up into two pieces using the code-behind model. This is TestFormCodeBehind.aspx:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="TestFormCodeBehind.aspx.cs"
 Inherits="TestFormCodeBehind"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Test Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="Label1" runat="server" Text="Click Me!"></asp:Label>

 <asp:Button ID="Button1" runat="server" OnClick="Button1_Click"
 Text="Button" />
 </div>
 </form>
</body>
</html>

This is TestFormCodeBehind.aspx.cs:

using System;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;

http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

CHAPTER 2 ■ VISUAL STUDIO

59

using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class TestFormCodeBehind : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {
 Label1.Text = "Current time: " + DateTime.Now.ToLongTimeString();
 }
}

The only real difference between the inline code example and the code-behind example is that the
page class is no longer implicit in the latter—instead it’s declared to contain all the page methods.

Overall, the code-behind model is preferred for complex pages. Although the inline code model is
slightly more compact for small pages, as your code and HTML grows it becomes much easier to deal
with both portions separately. The code-behind model is also conceptually cleaner, as it explicitly
indicates the class you’ve created and the namespaces you’ve imported. Finally, the code-behind model
introduces the possibility that a web designer may refine the markup in your pages without touching
your code. This book uses the code-behind model for all examples.

How Code-Behind Files Are Connected to Pages
Every .aspx page starts with a Page directive
. This Page directive specifies the language for the page, and it also tells ASP.NET where to find the
associated code (unless you’re using inline code, in which case the code is contained in the same file).

You can specify where to find the associated code in several ways. In older versions of ASP.NET, it
was common to use the Src attribute to point to the source code file or the Inherits attribute to indicate a
compiled class name. However, both of these options have their idiosyncrasies. For example, with the
Inherits attribute, you’re forced to always precompile your code, which is tedious (and can cause
problems in development teams, because the standard option is to compile every page into a single DLL
assembly). But the real problem is that both approaches force you to declare every web control you want
to use with a member variable. This adds a lot of boilerplate code.

You can solve the problem using a language feature called partial classes, which lets you split a
single class into multiple source code files. Essentially, the model is the same as before, but the control
declarations are shuffled into a separate file. You, the developer, never need to be distracted by this file—
instead you can just access your web-page controls by name. Keen eyes will have spotted the word
partial in the class declaration for your web-page code:

public partial class TestFormCodeBehind : System.Web.UI.Page
{ ... }

With this bit of infrastructure in place, the rest is easy. Your .aspx page uses the Inherits attribute to
indicate the class you’re using, and the CodeFile attribute to indicate the file that contains your code-
behind, as shown here:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="TestFormCodeBehind.aspx.cs"
 Inherits="TestFormCodeBehind"%>

CHAPTER 2 ■ VISUAL STUDIO

60

Notice that Visual Studio uses a slightly unusual naming syntax for the source code file. It has the
full name of the corresponding web page, complete with the .aspx extension, followed by the .cs
extension at the end. This is just a matter of convention, and it avoids a problem if you happen to create
two different code-behind file types (for example, a web page and a web service) with the same name.

How Control Tags Are Connected to Page Variables
When you request your web page in a browser, ASP.NET starts by finding the associated code file. Then,
it generates a variable declaration for each server control (each element that has the runat="server"
attribute).

For example, imagine you have a text box named txtInput:

<asp:TextBox id="txtInput" runat="server"/>

ASP.NET generates the following member variable declaration and merges it with your page class
using the magic of partial classes:

protected System.Web.UI.TextBox txtInput;

Of course, you won’t see this declaration, because it’s part of the automatically generated code that
the .NET compiler creates. But you rely on it every time you write a line of code that refers to the txtInput
object (either to read or to write a property):

txtInput.Text = "Hello.";

To make sure this system works, you must keep both the .aspx markup file (with the control tags)
and the .cs file (with the source code) synchronized. If you edit control names in one piece using another
tool (such as a text editor), you’ll break the link, and your code won’t compile.

Incidentally, you’ll notice that control variables are always declared with the protected accessibility
keyword. That’s because of the way ASP.NET uses inheritance in the web-page model. The following
layers are at work:

1. The Page class from the .NET class library defines the basic functionality that
allows a web page to host other controls, render itself to HTML, and provide
access to the traditional ASP-style objects such as Request, Response, and
Session.

2. Your code-behind class (for example, TestFormCodeBehind) inherits from the
Page class to acquire the basic set of ASP.NET web-page functionality.

3. When you compile your class, ASP.NET merges some extra code into your class
(using the magic of partial classes). This automatically generated code defines
all the controls on your page as protected variables so that you can access
them in your code.

4. The ASP.NET compiler creates one more class to represents the actual .aspx
page. This class inherits from your custom code-behind class (with the extra
bit of merged code). To name this class, ASP.NET adds _aspx to the name of
the code-behind class (for example, TestFormCodeBehind_aspx). This class
contains the code needed to initialize the page and its controls and spits out
the final rendered HTML. It’s also the class that ASP.NET instantiates when it
receives the page request.

Figure 2-26 diagrams this tangled relationship.

CHAPTER 2 ■ VISUAL STUDIO

61

Figure 2-26. How a page class is constructed

So, why are all the control variables and methods declared as protected? It’s because of the way
inheritance is used in this series of layers. Protected variables act like private variables, with a key
difference—they are accessible to derived classes. In other words, using protected variables in your
code-behind class (for example, TestFormCodeBehind) ensures that the variables are accessible in the
derived page class (TestFormCodeBehind_aspx). This allows ASP.NET to match your control variables to
the control tags and attach event handlers at runtime.

How Events Are Connected to Event Handlers
Most of the code in an ASP.NET web page is placed inside event handlers that react to web control
events. Using Visual Studio, you can add an event handler to your code in three ways:

Type it in by hand: In this case, you add the method directly to the page class. You must specify the
appropriate parameters so that the signature of the event handler exactly matches the signature of
the event you want to handle. You’ll also need to edit the control tag so that it links the control to the
appropriate event handler, by adding an OnEventName attribute. (Alternatively, you can use
delegates to wire this up programmatically.)

Double-click a control in design view: In this case, Visual Studio will create an event handler for
that control’s default event (and adjust the control tag accordingly). For example, if you double-click
the page, it will create a Page.Load event handler. If you double-click a Button control, Visual Studio
will create an event handler for the Click event.

Choose the event from the Properties window: Just select the control, and click the lightning bolt in
the Properties window. You’ll see a list of all the events provided by that control. Double-click in the
box next to the event you want to handle, and Visual Studio will automatically generate the event
handler in your page class and adjust the control tag.

CHAPTER 2 ■ VISUAL STUDIO

62

The second and third options are the most convenient. The third option is the most flexible,
because it allows you to select a method in the page class that you’ve already created. Just select the
event in the Properties window, and click the drop-down arrow at the right. You’ll see a list that includes
all the methods in your class that match the signature this event requires. You can then choose a method
from the list to connect it. Figure 2-27 shows an example where the Button.Click event is connected to
the Button_Click() method in your page class. The only limitation of this technique is that it works
exclusively with web controls, not server-side HTML controls.

Figure 2-27. Attaching an event handler

Visual Studio uses automatic event wire-up, as indicated in the Page directive. Automatic event
wire-up has two basic principles:

• All page event handlers are connected automatically based on the name of the
event handler. In other words, the Page_Load() method is automatically called
when the page loads.

• All control event handlers are connected using attributes in the control tag. The
attribute has the same name as the event, prefixed by the word On.

For example, if you want to handle the Click event of the Button control, you simply need to set the
OnClick attribute in the control tag with the name of the event handler you want to use. Here’s the
change you need:

<asp:Button id="cmdOK" OnClick="cmdOK_Click" runat="server">

ASP.NET controls always use this syntax. Remember, because ASP.NET must connect the event
handlers, the derived page class must be able to access the code-behind class. This means your event
handlers must be declared with the protected or public keyword. (Protected is preferred, because it
prevents other classes from seeing this method.)

Of course, if you’re familiar with .NET events, you know there’s another approach to connect an
event handler. You can do it dynamically through code using delegates. Here’s an example:

cmdOK.Click += cmdOK_Click;

This approach is useful if you’re creating controls on the fly. You’ll see this technique in action in
Chapter 3.

CHAPTER 2 ■ VISUAL STUDIO

63

Web Projects
So far, you’ve seen how to create websites without any project files. The advantage of projectless
development is that it’s simple and straightforward. When you create a projectless website, you don’t
need to deploy any extra support files. Instead, every file in your web folder is automatically considered
part of the web application. (This model makes sense because every web page in a virtual directory is
independently accessible, whether or not you consider it an official part of your project.)

Projectless development remains popular for the following reasons:

Projectless development simplifies deployment: You simply need to copy all the files in the website
directory to the web server—there aren’t any project or debugging files to avoid.

Projectless development simplifies file management: If you want to remove a web page, you can
simply delete the associated files using the file management tool of your choice. If you want to add a
new page or move a page from one website to another, you simply need to copy the files—there’s no
need to go through Visual Studio or edit the project file. You can even author web pages with other
tools, because there’s no project file to maintain.

Projectless development simplifies team collaboration: Different people can work independently
on different web pages, without needing to lock the project files.

Projectless development simplifies debugging: When creating a web project, you must recompile
the entire application when you change a single page. With projectless development, each page is
compiled separately, and the page is only compiled when you request it for the first time.

Projectless development allows you to mix languages: Because each web page is compiled
separately, you’re free to code your pages in different languages. In a web project, you’d be forced to
create separate web projects (which is trickier to manage) or separate class library projects.

That said, there are some more specialized reasons that might lead you to adopt project-based
development instead, or use web projects in specific scenarios. You’ll consider these in the next section.

Project-Based Development
When you create a web project, Visual Studio generates a number of extra files, including the .csproj and
.csproj.user project files and a .sln solution file. When you build your application, Visual Studio
generates temporary files, which it places in the Obj subdirectory, and one or more .pdb files (in the Bin
subdirectory) with debugging symbols. None of these files should be deployed to the web server when
your web application is complete. Furthermore, none of the C# source code files (files with the extension
.cs) should be deployed, because Visual Studio precompiles them into a DLL assembly.

■ Note At first glance, the precompilation of web projects seems like a big win—not only does it ensure pages
don’t need to be compiled the first time they’re requested, but it also allows you to avoid deploying your source

code to the web server. However, projectless websites can be compiled for deployment just as easily—you simply

need to use the precompilation tool you’ll learn about in Chapter 18.

Project-based development has a dedicated following. The most significant advantages to web
projects are the following:

CHAPTER 2 ■ VISUAL STUDIO

64

The project development system is stricter than projectless development: This is because the
project file explicitly lists what files should be part of the project. This allows you to catch potential
errors (such as missing files) and even deliberate acts of sabotage (such as unwanted files added by
a malicious user).

Web projects allow for more flexible file management: One example is if you’ve created several
separate projects and placed them in subdirectories of the same virtual directory. In this case, the
projects are kept separate for development purposes but are in essence the same application for
deployment. With projectless development, there’s no way to keep the files in these subdirectories
separate.

■ Tip For the same reason, web projects can be more efficient if you’re creating a web application that uses a
huge number of resource files—for example, a website that includes an Images subdirectory with thousands of

pictures. With projectless development, Visual Studio examines these files and adds them to the Solution Explorer,
because they’re a part of your website directory. But a web project avoids this extra overhead because you won’t

explicitly add the images to the list of files in your project.

Web projects allow for a customizable deployment process: Visual Studio project files work with
the web package feature, which gives you additional features for configuring the deployed version of
your application (as described in Chapter 18).

Web projects work better in some migration scenarios: Any web application created with Visual
Studio 2003 or earlier is a web project, because these versions of Visual Studio didn’t include the
projectless website feature. If you open one of these projects in Visual Studio 2010, Visual Studio
runs the migration wizard to convert the application to a Visual Studio 2010 web project.

Both projectless and project-based development give you all the same ASP.NET features. Both

approaches also offer the same performance. So which option is best when building a new ASP.NET
website? There are advocates for both approaches. Officially, Microsoft suggests you use the simpler
website model unless there’s a specific reason to use a web project—for example, you’ve developed a
custom MSBuild extension, you have a highly automated deployment process in place, you’re migrating
an older website created in Visual Studio 2003, or you want to create multiple projects in one directory.

■ Note The downloadable examples for this book use projectless websites.

Creating a Web Project
To create a web project, choose File ➤ New ➤ Project to show the New Project dialog box (which looks
extremely similar to the New Web Site dialog box you considered earlier). In the Project Types tree,
browse to Visual C# ➤ Web. Then choose ASP.NET Web Application.

When creating a web project, you supply a location, which can be a file path or a URL that points to
a local or remote IIS web server. You can change the version of the .NET Framework that you’re targeting
using the list at the top of the window, as you can when creating a projectless website.

CHAPTER 2 ■ VISUAL STUDIO

65

Although web projects and projectless websites have the same end result once they’re deployed to
the web server and compiled, there are some differences in the way they’re structured at design time.
These differences include the following:

• Compilation: As explained earlier, web projects are compiled by Visual Studio
(not ASP.NET) when you run them. The web page classes are combined into a
single assembly that has the name of the web project (like WebApplication1.dll),
which is then placed in the Bin folder.

• Code-behind: The web pages in a web project always use the code-behind model.
However, they include an extra file with the extension .aspx.designer.cs, which
includes the declarations for all the controls on the web page. This means if you
create a page named Default.aspx, you’ll end up with a code-behind class in a file
named Default.aspx.cs and control declarations in a file named
Default.aspx.designer.cs (see Figure 2-28). At compile time, these two files will be
merged. In a projectless website, you never see a file with the control declarations,
because this part of the code is generated at compile time by ASP.NET.

• The Page directive: The web pages in a web project use a slightly different Page
directive. Instead of using the CodeFile attribute to indicate the file that has the
source code, they use the CodeBehind attribute. This difference is due to the fact
that Visual Studio performs the compilation instead of ASP.NET. ASP.NET checks
the CodeFile attribute, but Visual Studio uses the CodeBehind attribute.

• Assembly references: In a projectless website, all the assembly references are
recorded in the web.config file, so ASP.NET can use them when resolving
references at compile time. But the assembly references in a web project are
stored in a project file, which Visual Studio uses when it compiles the code. The
only exceptions are the references to the System.Core.dll and
System.Web.Extensions.dll assemblies, which contain all the features that are
specific to .NET 3.5. These references are defined in the web.config file because
they include classes that you need to specify new configuration settings.

Figure 2-28. The designer file with control declarations

CHAPTER 2 ■ VISUAL STUDIO

66

■ Note The code file with the control declarations isn’t available in a projectless web application. Instead, it’s
generated behind the scenes the first time the application is compiled and executed. As a result, you never have

the chance to view this code.

Migrating a Website from a Previous Version of Visual Studio
If you have an existing ASP.NET web application created with an earlier version Visual Studio, you can
migrate it to the ASP.NET world with ease.

If you created a projectless website with an earlier version of Visual Studio, you use the File ➤
Open ➤ Web Site command, just as you would with a website created in Visual Studio 2010. The first
time you open an old website in this way, you’ll be asked if you want to adjust it to use ASP.NET 4 (see
Figure 2-29). If you choose Yes, the web.config file will be modified to target .NET 4, as described in
the “Multitargeting” section earlier in this chapter. If you choose No, your website will continue
targeting the version of ASP.NET that it was designed for. You can modify this detail at any time by
choosing Website ➤ Start Options. Either way, you won’t be asked again, because your preference is
recorded in the hidden solution file that’s stored in a user-specific Visual Studio directory.

Figure 2-29. Opening a projectless website that was created with Visual Studio 2008

If you created a web project with an earlier version of Visual Studio, you need to use the File ➤
Open ➤ Project/Solution command. You also need to use this command if you created a solution that
contains a website. (For example, you might take this step when designing and debugging a website
along with a separately compiled component.) When you open an old project or solution, Visual
Studio begins the Conversion Wizard (see Figure 2-30). The Conversion Wizard is exceedingly simple.
It prompts you to choose whether to create a backup and, if so, where it should be placed. If this is
your only copy of the application, a backup is a good idea in case some aspects of your application
can’t be converted successfully. Otherwise, you can skip this option.

CHAPTER 2 ■ VISUAL STUDIO

67

Figure 2-30. Importing a web project that was created with an older version of Visual Studio

When you click Finish, Visual Studio performs an in-place conversion. Any errors and warnings are
added to a conversion log, which you can display when the conversion is complete. If you’re opening a
solution that contains a website, Visual Studio will also show the same window you saw earlier (Figure 2-
29), asking you if you want to update it.

When you update an ASP.NET 3.5 website, you end up with a modified web.config that contains
some content you may not want. Here’s the added content you’re likely to find:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.0">
 </compilation>
 <pages controlRenderingCompatibilityVersion="3.5" clientIDMode="AutoID" />
 ...
 </system.web>

 <system.codedom>
 <compilers>
 <compiler language="c#;cs;csharp" extension=".cs" ...>
 <providerOption name="CompilerVersion" value="v4.0"/>
 </compiler>
 <compiler language="vb;vbs;visualbasic;vbscript" extension=".vb" ...>
 <providerOption name="CompilerVersion" value="v4.0"/>
 </compiler>
 </compilers>
 </system.codedom>
</configuration>

CHAPTER 2 ■ VISUAL STUDIO

68

The <pages> element tells ASP.NET to use the traditional page rendering (which has a few XHTML
quirks), and the traditional method for assigning client-side control IDs (which creates huge,
unpredictable names that are difficult to target with CSS rules or JavaScript). If you don’t need this level
of backward-compatibility, you can delete the <pages> element altogether. Chapter 3 has more
information about these settings.

The <system.codedom> section registers the C# and VB language compilers. (ASP.NET 3.5 needed
to take this step because it was deployed as an add-on to the core ASP.NET 2.0 engine rather than a
completely new, separate release.) Although Visual Studio isn’t intelligent enough to strip this
information out, you can remove the <system.codedom> section yourself, unless you’ve modified it to
register other, third-party language compilers.

Visual Studio Debugging
To debug a specific web page in Visual Studio, select that web page in the Solution Explorer, and click
the Start Debugging button on the toolbar. (If you are currently editing the web page you want to test,
you don’t need to select it at all—just click Start Debugging to launch it directly.)

What happens next depends on the location of your project. If your project is stored on a remote
web server or a local IIS virtual directory, Visual Studio simply launches your default browser and directs
you to the appropriate URL. If you’ve used a file system application, Visual Studio starts its integrated
web server on a dynamically selected port (which prevents it from conflicting with IIS, if it’s installed).
Then Visual Studio launches the default browser and passes it a URL that points to the local web server.
Either way, the real work—compiling the page and creating the page objects—is passed along to the
ASP.NET worker process.

The test server only runs while Visual Studio is running, and it only accepts requests from your
computer. When Visual Studio starts the integrated web server, it adds an icon for it in the system tray. If
you want to get a little bit of extra information about the test server, or you want to shut it down, simply
double-click the system tray icon.

■ Tip Visual Studio’s built-in web server allows you to retrieve a file listing. This means if you create a web
application named MyApp, you can make a request in the form of http://localhost:port/MyApp to see a list of

pages. Then, just click the page you want to test. This process assumes your web application doesn’t have a

default.aspx page—if it does, any requests for the website root automatically return this page.

The separation between Visual Studio, the web server, and ASP.NET allows for a few interesting
tricks. For example, while your browser window is open, you can still make changes to the code and tags
of your web pages. Once you’ve completed your changes, just save the page, and click the Refresh button
in your browser to request it again. Although you’ll always be forced to restart the entire page to see the
results of any changes you make, it’s still more convenient than rebuilding your whole project.

Fixing and restarting a web page is handy, but what about when you need to track down an elusive
error? In these cases, you need Visual Studio’s debugging smarts, which are described in the next few
sections.

http://localhost:port/MyApp

CHAPTER 2 ■ VISUAL STUDIO

69

■ Note When you use the test web server, it runs all code using your user account. This is different from the
much more limited behavior you’ll see in IIS, which uses a less-privileged account to ensure security. It’s
important to understand the difference, because if your application accesses protected resources (such as the file

system, a database, the registry, or an event log), you’ll need to make sure you explicitly allow the IIS user. For

more information about IIS and the hosting model, refer to Chapter 18.

Single-Step Debugging
Single-step debugging allows you to execute your code one line at a time. It’s incredibly easy to use. Just
follow these steps:

1. Find a location in your code where you want to pause execution, and start
single-stepping (you can use any executable line of code but not a variable
declaration, comment, or blank line). Click in the margin next to the line code,
and a red breakpoint will appear (see Figure 2-31).

Figure 2-31. Setting a breakpoint

CHAPTER 2 ■ VISUAL STUDIO

70

2. Now start your program as you would ordinarily. When the program reaches
your breakpoint, execution will pause, and you’ll be switched back to the
Visual Studio code window. The breakpoint statement won’t be executed.

3. At this point, you have several options. You can execute the current line by
pressing F11. The following line in your code will be highlighted with a yellow
arrow, indicating that this is the next line that will be executed. You can
continue like this through your program, running one line at a time by
pressing F11 and following the code’s path of execution. Or, you can exit break
mode and resume running your code by pressing F5.

■ Note Instead of using shortcut keys such as F11 and F5, you can use the buttons in the Visual Studio Debug

toolbar. Alternatively, you can right-click the code window and choose an option from the context menu.

4. Whenever the code is in break mode, you can hover over variables to see their
current contents. This allows you to verify that variables contain the values you
expect (see Figure 2-32). If you hover over an object, you can drill down into all
the individual properties by clicking the small plus symbol to expand it (see
Figure 2-33).

Figure 2-32. Viewing variable contents in break mode

CHAPTER 2 ■ VISUAL STUDIO

71

Figure 2-33. Viewing object properties in break mode

■ Tip You can even modify the values in a variable or property directly—just click inside the tooltip, and enter the
new value. This allows you to simulate scenarios that are difficult or time-consuming to re-create manually or to

test specific error conditions.

5. You can also use any of the commands listed in Table 2-5 while in break mode.
These commands are available from the context menu by right-clicking the
code window or by using the associated hot key.

You can switch your program into break mode at any point by clicking the pause button in the
toolbar or by selecting Debug ➤ Break All.

CHAPTER 2 ■ VISUAL STUDIO

72

Table 2-5. Commands Available in Break Mode

Command (Hot Key) Description

Step Into (F11) Executes the currently highlighted line and then pauses. If the currently
highlighted line calls a method or property, execution will pause at the first
executable line inside the method or property (which is why this feature is
called stepping into).

Step Over (F10) The same as Step Into, except that it runs methods (or properties) as though
they are a single line. If you select the Step Over command while a method
call is highlighted, the entire method will be executed. Execution will pause at
the next executable statement in the current procedure.

Step Out (Shift+F11) Executes all the code in the current procedure and then pauses at the
statement that immediately follows the one that called this method or
property. In other words, this allows you to step “out” of the current
procedure in one large jump.

Continue (F5) Resumes the program and continues to run it normally without pausing until
another breakpoint is reached.

Run to Cursor Allows you to run all the code up to a specific line (where your cursor is
currently positioned). You can use this technique to skip a time-consuming
loop.

Set Next Statement Allows you to change your program’s path of execution while debugging. It
causes your program to mark the current line (where your cursor is
positioned) as the current line for execution. When you resume execution,
this line will be executed, and the program will continue from that point. You
can use this technique to temporarily bypass troublemaking code, but it’s
easy to run into an error if you skip a required detail or leave your data in an
inconsistent state.

Show Next Statement Moves focus to the line of code that is marked for execution. This line is
marked by a yellow arrow. The Show Next Statement command is useful if
you lose your place while editing.

Variable Watches
In some cases, you might want to track the status of a variable without switching into break mode
repeatedly. In this case, it’s more useful to use the Locals, Autos, and Watch windows, which allow you
to track variables across an entire application. Table 2-6 describes these windows.

CHAPTER 2 ■ VISUAL STUDIO

73

Table 2-6. Variable Tracking Windows

Window Description

Locals Automatically displays all the variables that are in scope in the current procedure. This
offers a quick summary of important variables.

Autos Automatically displays variables that Visual Studio determines are important for the
current code statement. For example, this might include variables that are accessed or
changed in the previous line.

Watch Displays variables you have added. Watches are saved with your project, so you can
continue tracking a variable later. To add a watch, right-click a variable in your code, and
select Add Watch; alternatively, double-click the last row in the Watch window, and type
in the variable name.

Each row in the Locals, Autos, and Watch windows provides information about the type or class of

the variable and its current value. If the variable holds an object instance, you can expand the variable
and see its private members and properties. For example, in the Locals window you’ll see the this
variable, which is a reference to the current page object. If you click the plus symbol next to this, a full
list will appear that describes many page properties (and some system values), as shown in Figure 2-34.

Figure 2-34. Viewing the current page object in the Locals window

The Locals, Autos, and Watch windows allow you to change variables or properties while your
program is in break mode. Just double-click the current value in the Value column, and type in a new
value. If you are missing one of the watch windows, you can show it manually by selecting it from the
Debug ➤ Windows submenu.

CHAPTER 2 ■ VISUAL STUDIO

74

Advanced Breakpoints
Choose Debug ➤ Windows ➤ Breakpoints to see a window that lists all the breakpoints in your current
project. The Breakpoints window provides a hit count, showing you the number of times a breakpoint
has been encountered (see Figure 2-35). You can jump to the corresponding location in code by double-
clicking a breakpoint. You can also use the Breakpoints window to disable a breakpoint without
removing it. That allows you to keep a breakpoint to use in testing later, without leaving it active.
Breakpoints are automatically saved with the solution file described earlier.

Figure 2-35. The Breakpoints window

Visual Studio allows you to customize breakpoints so that they occur only if certain conditions are
true. To customize a breakpoint, right-click it, and choose one of the following options:

Location: Use this option to review the exact file and line where the breakpoint is placed.

Condition: Use this option to set an expression. You can choose to enable this breakpoint only
when this expression is true or when it has changed since the last time the breakpoint was hit.

Hit Count: Use this option to create a breakpoint that pauses only after a breakpoint has been hit a
certain number of times (for example, at least 20) or a specific multiple of times (for example, every
fifth time).

Filter: Use this option to enable a breakpoint for certain processes or threads. You’ll rarely use this
option in ASP.NET, because all web page code is executed by the ASP.NET worker process, which
uses a pool of threads.

When Hit: Use this option to set up an automatic action that will be performed every time the
breakpoint is hit. You have two handy options. Your first option is to print a message in the Debug
window, which allows you to monitor the progress of your code without cluttering it up with
Debug.Write() statements. This feature is known as tracepoints. Your second option is to run a
Visual Studio macro, which allows you to perform absolutely any action in the IDE.

The Web Development Helper
Another interesting tool that’s not tied to Visual Studio is the Web Development Helper, a free tool
created by Nikhil Kothari from the ASP.NET team. The central goal of the Web Development Helper is to
improve the debugging experience for ASP.NET developers by enhancing the ability of the browser to
participate in the debugging process. The Web Development Helper provides a few useful features:

• It can report whether a page is in debug or tracing mode.

• It can display the view state information for a page.

CHAPTER 2 ■ VISUAL STUDIO

75

• It can display the trace information for a page (and hide it from the page, making
sure your layout isn’t cluttered).

• It can clear the cache or trigger an application restart.

• It allows you to browse the HTML DOM (document object model)—in other
words, the tree of elements that make up the rendered HTML of the page.

• It can maintain a log of HTML requests, which information about what page was
requested, how long it took to receive it, and how large the HTML document was.

Many of these work with ASP.NET features that we haven’t covered yet. You’ll use the Web
Development Helper with ASP.NET’s tracing feature in the next chapter.

The design of the Web Development Helper is quite interesting. Essentially, it’s built out of two
pieces:

• An HTTP module that runs on the web server and makes additional information
available to the client browser. (You’ll learn about HTTP modules in Chapter 5.)

• An unmanaged browser plug-in that communicates with the HTTP module and
displays the important information in a side panel in the browser (see Figure 2-
36). The browser plug-in is designed exclusively for Internet Explorer, but at least
one other developer has already created a Firefox version that works with the
same HTTP module.

Figure 2-36. The Web Development Helper

CHAPTER 2 ■ VISUAL STUDIO

76

To download the Web Development Helper, surf to http://projects.nikhilk.net/Projects/
WebDevHelper.aspx. There you can download a setup program that installs two DLLs. One is a .NET
assembly that provides the HTTP module (nStuff.WebDevHelper.Server.dll). The other is the browser
plug-in (WebDevHelper.dll). The setup program copies both files to the c:\Program Files\nStuff\Web
Development Helper directory, and it registers the browser plug-in with Internet Explorer. When the
setup is finished, it gives you the option to open a PDF document that has a short but detailed overview
of all the features of the Web Development Helper.

When you want to use this tool with a web application, you need to add a reference to the
nStuff.WebDevHelper.Server.dll assembly. You also need to modify the web.config file so it loads the
HTTP module, as shown here:

<configuration>
 <system.web>
 <httpModules>
 <add name="DevInfo" type="nStuff.WebDevHelper.Server.DevInfoModule,
nStuff.WebDevHelper.Server, Version=0.5.0.0, Culture=neutral,
PublicKeyToken=8fc0e3af5abcb6c4" />
 </httpModules>
 ...
 </system.web>
</configuration>

Now, run one of the pages from this application. To actually switch on the browser plug-in, you
need to choose Tools ➤ Web Development Helper from the Internet Explorer menu. When you click this
icon, a pane will appear at the bottom of the browser window. At the top of the pane are a series of drop-
down menus with a variety of options for examining ASP.NET pages. You’ll see one example that uses
the Web Developer Helper in Chapter 3.

Summary
This chapter considered the role that Visual Studio can play in helping you develop your web
applications. At the same time that you explored its rich design-time environment, you also learned
about how it works behind the scenes with the code-behind model and how to extend it with time-
saving features such as macros. In the next two chapters, you’ll jump into full-fledged ASP.NET coding
by examining web pages and server controls.

http://projects.nikhilk.net/Projects

C H A P T E R 3

■ ■ ■

77

Web Forms

ASP.NET pages (officially known as web forms) are a vital part of an ASP.NET application. They provide
the actual output of a web application—the web pages that clients request and view in their browsers.

Essentially, web forms allow you to create a web application using the same control-based interface
as a Windows application. To run an ASP.NET web form, the ASP.NET engine reads the entire .aspx file,
generates the corresponding objects, and fires a series of events. You react to these events using
thoroughly object-oriented code.

This chapter provides in-depth coverage of web forms. You’ll learn how they work and how you can
use them to build simple pages. You’ll also get an in-depth first look at the page-processing life cycle and
the ASP.NET server-side control model.

Web Forms Changes in ASP.NET 4

ASP.NET 4 introduces a few, mostly minor changes to the web forms model. Here they are, in the order
you’ll encounter them in this chapter:

• Strict XHTML rendering: Although you could configure ASP.NET 3.5 to get strict
with XHTML, its default rendering had a few quirks. In ASP.NET 4, the last of these
has finally been removed, which means your web form pages will be 100 percent
XHTML-compliant (unless you break the rules of XHTML yourself). Read the
“XHTML Compliance” section for the full details.

• Predictable client IDs: To ensure that every control gets a unique ID in the
rendered HTML, ASP.NET uses a long-winded name generation system.
Unfortunately, this complicates your life if you actually need to refer to one of
these IDs, such as in client-side JavaScript. ASP.NET 4 improves this situation by
allowing you to configure how the name generation system works in each page.
You’ll see how this works in the “Client-Side Control IDs” section.

• New HtmlHead properties: You can now set the description and keywords
metatags through dedicated properties in the HtmlHead class. It’s a minor change
that you’ll learn about in the section named “The Page Header.”

• Permanent redirects: In its ongoing quest to provide better search engine
optimization, ASP.NET now allows you to redirect requests with the HTTP status
code 301, which signifies a permanent redirect. When search engine crawlers get
this message, they know to update their catalogs. To see how it works, read the
“Moving Between Pages” section.

CHAPTER 3 ■ WEB FORMS

78

Not included in this list is a far more significant change: the introduction of a whole new programming
model, called ASP.NET MVC, that competes with traditional ASP.NET web forms. You’ll explore ASP.NET
MVC in detail in Chapter 32.

Page Processing
One of the key goals of ASP.NET is to create a model that lets web developers rapidly develop web forms
in the same way that Windows developers can build made-to-measure windows in a desktop
application. Of course, web applications are very different from traditional rich client applications.
There are two key stumbling blocks:

Web applications execute on the server: For example, suppose you create a form that allows the
user to select a product record and update its information. The user performs these tasks in the
browser, but in order for you to perform the required operations (such as updating the database),
your code needs to run on the web server. ASP.NET handles this divide with a technique called
postback, which sends the page (and all user-supplied information) to the server when certain
actions are performed. Once ASP.NET receives the page, it can then fire the corresponding server-
side events to notify your code.

Web applications are stateless: In other words, once the page is rendered to HTML, your web-page
objects are destroyed and all client-specific information is discarded. This model lends itself well to
highly scalable, heavily trafficked applications, but it makes it difficult to create a seamless user
experience. ASP.NET includes several tools to help you bridge this gap; most notable is a persistence
mechanism called view state, which automatically embeds information about the page in a hidden
field in the rendered HTML.

In the following sections, you’ll learn about both the postback and the view state features. Together,
these mechanisms help abstract the underlying HTML and HTTP details, allowing developers to work in
terms of objects and events.

HTML Forms
If you’re familiar with HTML, you know that the simplest way to send client-side data to the server is
using a <form> tag. Inside the <form> tag, you can place other <input> tags to represent basic user
interface ingredients such as buttons, text boxes, list boxes, check boxes, and radio buttons.

For example, here’s an HTML page that contains two text boxes, two check boxes, and a submit
button, for a total of five <input> tags:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Programmer Questionnaire</title>
 </head>
 <body>
 <form method="post" action="page.aspx">
 <div>
 Enter your first name:
 <input type="text" name="FirstName" />

 Enter your last name:
 <input type="text" name="LastName" />

 You program with:

http://www.w3.org/1999/xhtml

CHAPTER 3 ■ WEB FORMS

79

 <input type="checkbox" name="CS" />C#

 <input type="checkbox" name="VB" />VB .NET

 <input type="submit" value="Submit" id="OK" />
 </div>
 </form>
 </body>
</html>

Figure 3-1 shows what this basic page looks like in a web browser.

Figure 3-1. A simple HTML form

When the user clicks the submit button, the browser collects the current value of each control and
pastes it together in a long string. This string is then sent back to the page indicated in the <form> tag (in
this case, page.aspx) using an HTTP POST operation.

In this example, that means the web server might receive a request with this string of information:

FirstName=Matthew&LastName=MacDonald&CS=on&VB=on

The browser follows certain rules when constructing this string. Information is always sent as a
series of name/value pairs separated by the ampersand (&) character. Each name/value pair is split with
an equal (=) sign. Check boxes are left out unless they are checked, in which case the browser supplies
the text on for the value. For the complete lowdown on the HTML forms standard, which is supported in
every current browser, surf to http://www.w3.org/TR/REC-html40/interact/forms.html.

Virtually all server-side programming frameworks add a layer of abstraction over the raw form data.
They parse this string and expose it in a more useful way. For example, JSP, ASP, and ASP.NET all allow
you to retrieve the value of a form control using a thin object layer. In ASP and ASP.NET, you can look up

http://www.w3.org/TR/REC-html40/interact/forms.html

CHAPTER 3 ■ WEB FORMS

80

values by name in the Request.Form collection. If you change the previous page into an ASP.NET web
form, you can use this approach with code like this:

string firstName = Request.Form["FirstName"];

This thin veneer over the actual POST message is helpful, but it’s still a long way from a true object-
oriented framework. That’s why ASP.NET goes another step further. When a page is posted back to
ASP.NET, it extracts the values, populates the Form collection (for backward compatibility with ASP
code), and then configures the corresponding control objects. This means you can use the following
much more intuitive syntax to retrieve information in an ASP.NET web form:

string firstName = txtFirstName.Text;

This code also has the benefit of being typesafe. In other words, if you’re retrieving the state of the
check box, you’ll receive a Boolean true or false value, instead of a string with the word on. In this way,
developers are insulated from the quirks of HTML syntax.

■ Note In ASP.NET, all controls are placed inside a single <form> tag. This tag is marked with the runat="server"
attribute, which allows it to work on the server side. ASP.NET does not allow you to create web forms that contain

more than one server-side form tag, although it is possible to create a page that posts to another page using a

technique called cross-page posting, which is discussed in Chapter 6.

Dynamic User Interface
Clearly, the control model makes life easier for retrieving form information. What’s even more
remarkable is how it simplifies your life when you need to add information to a page. Almost all web
control properties are readable and writable. This means you can set the Text property of a text box just
as easily as you can read it.

For example, consider what happens if you want to update a piece of text on a web page to reflect
some information the user has entered earlier. In classic ASP, you would need to find a convenient place
to insert a script block that would write the raw HTML. Here’s a snippet of ASP.NET code that uses this
technique to display a brightly colored welcome message:

string message = "Welcome " +
 FirstName + " " + LastName + "";
Response.Write(message);

On the other hand, life is much neater when you define a Label control in ASP.NET:

<asp:Label id="lblWelcome" runat="server" />

CHAPTER 3 ■ WEB FORMS

81

Now you can simply set its properties:

lblWelcome.Text = "Welcome " + FirstName + " " + LastName;
lblWelcome.ForeColor = Color.Red;

This code has several key advantages. First, it’s much easier to write (and to write without errors).
The savings seem fairly minor in this example, but it is much more dramatic when you consider a
complete ASP.NET page that needs to dynamically render complex blocks of HTML that contain links,
images, and styles.

Second, control-based code is also much easier to place inside a page. You can write your ASP.NET
code wherever the corresponding action takes place. On the other hand, in classic ASP you need to worry
about where the content appears on the page and arrange your script blocks code appropriately. If a
page has several dynamic regions, it can quickly become a tangled mess of script blocks that don’t show
any clear relation or organization.

A subtler but equally dramatic advantage of the control model is the way it hides the low-level
HTML details. Not only does this allow you to write code without learning all the idiosyncrasies of
HTML, but it also allows your pages to support a wider range of browsers. Because the control renders
itself, it has the ability to tailor its output to support different browsers or different flavors of HTML and
XHTML. Essentially, your code is no longer tightly coupled to the HTML standard.

The ASP.NET Event Model
Classic ASP uses a linear processing model. That means code on the page is processed from start to
finish and is executed in order. Because of this model, classic ASP developers need to write a
considerable amount of code even for simple pages. A classic example is a web page that has three
different submit buttons for three different operations. In this case, your script code has to carefully
distinguish which button was clicked when the page is submitted and then execute the right action using
conditional logic.

ASP.NET provides a refreshing change with its event-driven model. In this model, you add controls
to a web form and then decide what events you want to respond to. Each event handler is a discrete
method, which keeps the page code tidy and organized. This model is nothing new, but until the advent
of ASP.NET it has been the exclusive domain of windowed UI programming in rich client applications.

So, how do ASP.NET events work? It’s surprisingly straightforward. Here’s a brief outline:

1. Your page runs for the first time. ASP.NET creates page and control objects, the
initialization code executes, and then the page is rendered to HTML and
returned to the client. The page objects are also released from server memory.

2. At some point, the user does something that triggers a postback, such as
clicking a button. At this point, the page is submitted with all the form data.

3. ASP.NET intercepts the returned page and re-creates the page objects, taking
care to return them to the state they were in the last time the page was sent to
the client.

4. Next, ASP.NET checks what operation triggered the postback, and it raises the
appropriate events (such as Button.Click), which your code can react to.
Typically, at this point you’ll perform some server-side operation (such as
updating a database or reading data from a file) and then modify the control
objects to display new information.

5. The modified page is rendered to HTML and returned to the client. The page
objects are released from memory. If another postback occurs, ASP.NET
repeats the process in steps 2 through 4.

CHAPTER 3 ■ WEB FORMS

82

In other words, ASP.NET doesn’t just use the form data to configure the control objects for your
page. It also uses it to decide what events to fire. For example, if it notices the text in a text box has
changed since the last postback, it raises an event to notify your page. It’s up to you whether you want to
respond to this event.

■ Note Keep in mind that since HTTP is completely stateless, and all state made available by ASP.NET is
reconstituted, the event-driven model is really an emulation. ASP.NET performs quite a few tasks in the
background in order to support this model, as you’ll see in the following sections. The beauty of this concept is

that the beginner programmer doesn’t need to be familiar with the underpinnings of the system to take advantage

of server-side events.

Automatic Postbacks
Of course, one gap exists in the event system described so far. Windows developers have long been
accustomed to a rich event model that lets your code react to mouse movements, key presses, and the
minutest control interactions. But in ASP.NET, client actions happen on the client side, and server
processing takes place on the web server. This means a certain amount of overhead is always involved in
responding to an event. For this reason, events that fire rapidly (such as a mouse move event) are
completely impractical in the world of ASP.NET.

■ Note If you want to accomplish a certain UI effect, you might handle rapid events such as mouse movements
with client-side JavaScript. Or, better yet, you might use a custom ASP.NET control that already has these smarts
built in, such as the ASP.NET AJAX controls you’ll consider in Part 6. However, all your business code must

execute in the secure, feature-rich server environment.

If you’re familiar with HTML forms, you know there is one basic way to submit a page—by clicking a
submit button. If you’re using the standard HTML server controls in your .aspx web forms, this is still
your only option. However, once the page is posted back, ASP.NET can fire other events at the same time
(namely, events that indicate that the value in an input control has been changed).

Clearly, this isn’t enough to build a rich web form. Fortunately, ASP.NET web controls extend this
model with an automatic postback feature. With this feature, input controls can fire different events, and
your server-side code can respond immediately. For example, you can trigger a postback when the user
clicks a check box, changes the selection in a list, or changes the text in a text box and then moves to
another field. These events still aren’t as fine-grained as events in a Windows application, but they are a
significant step up from the submit button.

Automatic Postbacks “Under the Hood”
To use automatic postback, you simply need to set the AutoPostBack property of a web control to true
(the default is false, which ensures optimum performance if you don’t need to react to a change event).

CHAPTER 3 ■ WEB FORMS

83

When you do, ASP.NET uses the client-side abilities of JavaScript to bridge the gap between client-side
and server-side code.

Here’s how it works: if you create a web page that includes one or more web controls that are
configured to use AutoPostBack, ASP.NET adds a JavaScript function to the rendered HTML page named
__doPostBack(). When called, it triggers a postback, posting the page back to the web server with all the
form information.

ASP.NET also adds two hidden input fields that the __doPostBack() function uses to pass
information back to the server. This information consists of the ID of the control that raised the event
and any additional information that might be relevant. These fields are initially empty, as shown here:

<div class="aspNetHidden">
 <input type="hidden" name="__EVENTTARGET" id="__EVENTTARGET" value="" />
 <input type="hidden" name="__EVENTARGUMENT" id="__EVENTARGUMENT" value="" />
 ...
</div>

The __doPostBack() function has the responsibility for setting these values with the appropriate
information about the event and then submitting the form. A sample __doPostBack() function is
shown here:

<script type="text/javascript">
function __doPostBack(eventTarget, eventArgument) {
 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
 ...
}
</script>

Remember, ASP.NET generates the __doPostBack() function automatically. This code grows
lengthier as you add more AutoPostBack controls to your page, because the event data must be set for
each control.

Finally, any control that has its AutoPostBack property set to true is connected to the
__doPostBack() function using the onclick or onchange attribute. These attributes indicate what action
the browser should take in response to the client-side JavaScript events onclick and onchange.

The following example shows the rendered HTML for a list control named lstCountry, which posts
back automatically. Whenever the user changes the selection in the list, the client-side onchange event
fires. The browser then calls the __doPostBack() function, which sends the page back to the server.

<select name="lstCountry" onchange=
 "javascript:setTimeout('__doPostBack(\'lstCountry\',\'\')', 0)">

In other words, ASP.NET automatically changes a client-side JavaScript event into a server-side
ASP.NET event, using the __doPostBack() function as an intermediary. If you’re a seasoned ASP
developer, you may have manually created a solution like this for traditional ASP web pages. ASP.NET
handles these details for you automatically, simplifying life a great deal.

CHAPTER 3 ■ WEB FORMS

84

■ Tip Remember, ASP.NET includes two control models: the bare-bones HTML server controls and the more fully

functional web controls. Automatic postback is available only with web controls.

View State
The final ingredient in the ASP.NET model is the view state mechanism. View state solves another
problem that occurs because of the stateless nature of HTTP—lost changes.

Every time your page is posted back to the server, ASP.NET receives all the information that the user
has entered in any <input> controls in the <form> tag. ASP.NET then loads the web page in its original
state (based on the layout and defaults you’ve defined in the .aspx file) and tweaks the page according to
this new information. The problem is that in a dynamic web form, your code might change a lot more.
For example, you might programmatically change the color of a heading, modify a piece of static text,
hide or show a panel of controls, or even bind a full table of data to a grid. All these actions change the
page from its initial state. However, none of them is reflected in the form data that’s posted back. That
means this information will be lost after every postback. Traditionally, statelessness has been overcome
with the use of simple cookies, session-based cookies, and various other workarounds. All of these
mechanisms require homemade (and sometimes painstaking) measures.

To deal with this limitation, ASP.NET has devised its own integrated state serialization mechanism.
Essentially, once your page code has finished running (and just before the final HTML is rendered and
sent to the client), ASP.NET examines all the properties of all the controls on your page. If any of these
properties has been changed from its initial state, ASP.NET makes a note of this information in a
name/value collection. Finally, ASP.NET takes all the information it has amassed and then serializes it as
a Base64 string. (A Base64 string ensures that there aren’t any special characters that wouldn’t be valid
HTML.) The final string is inserted in the <form> section of the page as a new hidden field.

The next time the page is posted back, ASP.NET follows these steps:

1. ASP.NET re-creates the page and control objects based on its defaults (as
defined in the .aspx file). Thus, the page has the same state that it had when it
was first requested.

2. Next, ASP.NET deserializes the view state information and updates all the
controls. This returns the page to the state it was in before it was sent to the
client the last time.

3. Finally, ASP.NET adjusts the page according to the posted back form data. For
example, if the client has entered new text in a text box or made a new
selection in a list box, that information will be in the Form collection and
ASP.NET will use it to tweak the corresponding controls. After this step, the
page reflects the current state as it appears to the user.

4. Now your event-handling code can get involved. ASP.NET triggers the
appropriate events, and your code can react to change the page, move to a new
page, or perform a completely different operation.

Using view state is a great solution because server resources can be freed after each request, thereby
allowing for scalability to support hundreds or thousands of requests without bogging the server down.
However, it still comes with a price. Because view state is stored in the page, it results in a larger total
page size. This affects the client doubly, because the client not only needs to receive a larger page, but
the client also needs to send the hidden view state data back to the server with the next postback. Thus,
it takes longer both to receive and post the page. For simple pages, this overhead is minimal, but if
you configure complex, data-heavy controls such as the GridView, the view state information can
grow to a size where it starts to exert a toll. In these cases, you can disable view state for a control by

CHAPTER 3 ■ WEB FORMS

85

setting its EnableViewState property to false. However, in this case you need to reinitialize the control
with each postback.

■ Note Even if you set EnableViewState to false, the control can still hold onto a smaller amount of view state
information that it deems critical for proper functioning. This privileged view state information is known as control
state, and it can never be disabled. However, in a well-designed control the size required for control state will be

significantly smaller than the size of the entire view state. You’ll see how it works when you design your own

custom controls in Chapter 27.

ASP.NET uses view state only with page and control properties. ASP.NET doesn’t take the same
steps with member variables and other data you might use. However, as you’ll learn later in this book
(Chapter 6), you can place other types of data into view state and retrieve this information manually at a
later time.

Figure 3-2 provides an end-to-end look at page requests that puts all these concepts together.

■ Note It is absolutely essential to your success as an ASP.NET programmer to remember that the web form is
re-created with every round-trip. It does not persist or remain in memory longer than it takes to render a single

request.

CHAPTER 3 ■ WEB FORMS

86

Figure 3-2. ASP.NET page requests

View State “Under the Hood”
If you look at the rendered HTML for an ASP.NET page, you can easily find the hidden input field with
the view state information. The following example shows a page that uses a simple Label web control
and sets it with a dynamic “Hello, world” message:

<html>
 <head>
 <title>Hello World Page</title>
 </head>
 <body>
 <form method="post" action="WebForm1.aspx" id="form1">

CHAPTER 3 ■ WEB FORMS

87

 <div class="aspNetHidden">
 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="/wEPDwUKLTE2MjY5MTY1NQ9kFgICAw9kFgICAQ8PFgIeBFRleHQFDEhlbGxv
IFdvcmxkIWRkZPsbiNOyNAufEt7OvNIbVYcGWHqf" />
 ...
 </div>
 <div>
 <input type="submit" name="Button1" value="Button" id="Button1" />
 Hello, world
 </div>
 </form>
 </body>
</html>

The view state string isn’t human readable—it just looks like a series of random characters.
However, it’s important to note that a user who is willing to go to a little work can interpret this data
quite easily. Here’s a snippet of .NET code that does the job and writes the decoded information to a web
page:

// viewStateString contains the view state information.
// Convert the Base64 string to an ordinary array of bytes
// representing ASCII characters.
byte[] stringBytes = Convert.FromBase64String(viewStateString);

// Deserialize and display the string.
string decodedViewState = System.Text.Encoding.ASCII.GetString(stringBytes);
lbl.Text = decodedViewState;

In order to test this web page, you’ll need to copy a view state string from an existing web page
(using the View Source command in your web browser). Or, you can retrieve the view state string for the
current web page using server-side code like this:

string viewStateString = Request["__VIEWSTATE"];

When you look at the decoded view state string, you’ll see something like this:

? -162691655dd-Text Hello, worldddd????4 ?????U?Xz?

As you can see, the control text is clearly visible (along with some unprintable characters that render
as blank boxes). This means that, in its default implementation, view state isn’t a good place to store
sensitive information that the client shouldn’t be allowed to see—that sort of data should stay on the
server. Additionally, you shouldn’t make decisions based on view state that could compromise your
application if the client tampers with the view state data.

■ Tip You can also decode the view state information for a page using the Web Development Helper utility that

was introduced in Chapter 2.

Fortunately, it’s possible to tighten up view state security quite a bit. You can enable automatic hash
codes to prevent view state tampering, and you can even encrypt view state to prevent it from being

CHAPTER 3 ■ WEB FORMS

88

decoded. These techniques raise hidden fields from a clumsy workaround to a much more robust and
respectable piece of infrastructure. You’ll learn about both of these techniques in Chapter 6.

View State Chunking
The size of the hidden view state field has no limit. However, some proxy servers, firewalls, and mobile
browsers refuse to let pages through if they have hidden fields greater than a certain size. To circumvent
this problem, you can use view state chunking, which automatically divides view state into multiple
fields to ensure that no hidden field exceeds a size threshold you set.

To use view state, you simply need to set the maxPageStateFieldLength attribute of the <pages>
element in the web.config file. This specifies the maximum view state size, in bytes. Here’s an example
that caps view state at 1 KB:

<configuration>
 <system.web>
 <pages maxPageStateFieldLength="1024" />
 ...
 </system.web>
</configuration>

When you request a page that generates a view state larger than this, several hidden input fields will
be created:

<input type="hidden" name="__VIEWSTATEFIELDCOUNT" value="3" />
<input type="hidden" name="__VIEWSTATE" value="..." />
<input type="hidden" name="__VIEWSTATE1" value="..." />
<input type="hidden" name="__VIEWSTATE2" value="..." />

Remember, view state chunking is simply a mechanism for avoiding problems with certain proxies
(which is a relatively rare occurrence). View state chunking does not improve performance (and adds a
small amount of extra serialization overhead). As a matter of good design, you should strive to include as
little information in view state as possible, which ensures the best performance.

XHTML Compliance
The web controls in ASP.NET are compliant with the XHTML 1.1 standard. However, it’s still up to you to
make sure the rest of your page behaves by the rules. ASP.NET doesn’t take any steps to force XHTML
compliance onto your page.

■ Note XHTML support doesn’t add any functionality to your web pages that you wouldn’t have with HTML 4.01.
However, because XHTML is a stricter standard, it has a few benefits. For example, you can validate XHTML pages
to catch minor errors that could trip up certain browsers. Most important, XHTML pages are also valid XML
documents, which makes it easier for applications to read or analyze them programmatically and introduces the

possibility of future extensibility. The current consensus is that XHTML will replace HTML in the future. You can

learn more about XHTML by referring to the specification at http://www.w3.org/TR/xhtml11.

http://www.w3.org/TR/xhtml11

CHAPTER 3 ■ WEB FORMS

89

All the ASP.NET server controls render themselves using XHTML-compliant markup. That means
this markup follows the rules of XHTML, which include the following:

• Tag and attribute names must be in lowercase.

• All elements must be closed, either with a dedicated closing tag (<p></p>) or
using an empty tag that closes itself (
).

• All attribute values must be enclosed in single or double quotes (for example,
runat="server").

• The id attribute must be used instead of the name attribute. (ASP.NET controls
render both an id and name attribute.)

XHTML also removes support for certain features that were allowed in HTML, such as frames and
formatting that doesn’t use CSS. In most cases, a suitable XHTML alternative exists. However, one
sticking point is the target attribute, which HTML developers can use to create links that open in new
windows. The following ASP.NET controls allow you to use the target attribute:

• AdRotator

• TreeNode

• HyperLink

• HyperLinkColumn

• BulletedList

For example, if you set the HyperLink.Target property, the markup that ASP.NET generates will use
the target attribute and so won’t be XHTML-compliant.

Using the target attribute won’t cause a problem in modern browsers. However, if you need to
create a website that is completely XHTML-compliant, you must avoid using the target attribute.

■ Note You won’t gain much immediate benefit by using XHTML. However, many companies and organizations
mandate the use of XHTML, with a view to future standards. In the future, XHTML will make it easier to design web
pages that are adaptable to a variety of different platforms, can be processed by other applications, and are

extensible with new markup features. For example, you could use XSLT (XSL Transformations), another XML-
based standard, to transform an XHTML document into another form. The same features won’t be available to

HTML pages.

Document Type Definitions
Every XHTML document should begin with a doctype (document type definition) that defines the type of
XHTML it uses. In an ASP.NET web page, the doctype must be placed immediately after the Page
directive in the markup portion of your web page. That way, the doctype will be rendered as the first line
of your document, which is a requirement.

Here’s an example that defines a web page that supports the full XHTML 1.1 standard, which is
known as XHTML 1.1 strict:

CHAPTER 3 ■ WEB FORMS

90

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="TestPage.aspx.cs" Inherits="TestPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 ...
 </form>
</body>
</html>

This page also defines the XML namespace for the <html> element. This is another detail that
XHTML requires.

If you don’t want to support the full XHTML 1.1 standard, you can make a few compromises. One
other common choice for the doctype is XHTML 1.0 transitional, which enforces the structural rules of
XHTML but allows HTML formatting features that have been replaced by stylesheets and are considered
obsolete. Here’s the doctype you need:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The XHTML transitional doctype is still too strict if your website uses HTML frames, which XHTML
considers obsolete. If you need to use frames but still want to follow the other rules of XHTML
transitional, you can use the XHTML 1.0 frameset doctype for your frames page, as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Remember, the ASP.NET server controls will work equally well with any doctype (and they will work
with browsers that support only HTML as well). It’s up to you to choose the level of standards
compliance (and backward compatibility) you want in your web pages. It's always a good idea to include
a doctype for your web pages to clearly indicate the markup standard they support. Without this detail,
Internet Explorer renders pages using a legacy behavior known as “quirks” mode, which differs from the
more standardized rendering found in other browsers like Firefox.

■ Note Most of the examples in this book use the XHTML 1.1 strict doctype. But to save space, the web page

markup listings in this book don’t include the lines that declare the doctype.

Configuring XHTML Rendering
The ASP.NET server controls automatically use strict XHTML 1.0 markup. Minor quirks that existed in
previous versions have been eliminated.

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd

CHAPTER 3 ■ WEB FORMS

91

ASP.NET’s XHTML rendering is set through a configuration file attribute named
controlRenderingCompatibilityVersion, which is applied on the <pages> element. By default, this
attribute is set in the root web.config, so it applies to all ASP.NET 4 applications:

<configuration>
 <system.web>
 <pages controlRenderingCompatibilityVersion="4.0" />
 ...
 </system.web>
</configuration>

If you set controlRenderingCompatibility to 3.5 (the only other supported value at this time), web
controls will use the same rendering that they did with ASP.NET 3.5.

■ Note When you use Visual Studio to upgrade a web application from an earlier version of ASP.NET to ASP.NET
4, Visual Studio sets the controlRenderingCompatibilityVersion attribute to 3.5. To get ASP.NET’s stricter XHTML

rendering, you simply need to remove this attribute.

Confusingly enough, when controlRenderingCompatibilityVersion is set to 3.5, ASP.NET’s rendering
behavior is controlled by another web.config setting, named <xhtmlConformance>:

<configuration>
 <system.web>
 <pages controlRenderingCompatibilityVersion="3.5" />
 <xhtmlConformance mode="Transitional" />
 ...
 </system.web>
</configuration>

The mode attribute in the <xhtmlConformance> element takes one of three values:

Strict: This produces XHTML-compliant rendering that’s almost as clean as what you get when
controlRenderingCompatibilityVersion is set to 4.0.

Transitional: This is the default value. It produces XHTML-compliant rendering with a small set of
possible quirks. For example, ASP.NET adds the name attribute to the <form> element, some
controls render border="0" to create invisible tables, and disabled controls sometimes use invalid
styles. All of these details are forbidden by the rules of XHTML strict.

■ Note ASP.NET 3.5 rendering inconsistencies won’t lead to errors. Browsers will still be able to process the page

successfully, even if it uses the XHTML 1.1 strict doctype. However, any inconsistencies will be flagged as an error

by an XHTML validation tool.

CHAPTER 3 ■ WEB FORMS

92

Legacy: This reverts to the rendering that was used in ASP.NET 1.1. When legacy rendering is
enabled, ASP.NET controls do not use any of the XHTML refinements that aren’t strictly compatible
with HTML 4.01. For example, they render standard HTML elements such as
 instead of the
correct XHTML version,
. However, even if legacy rendering is enabled, ASP.NET won’t strip
out the namespace in the <html> tag or remove the doctype if these details are present in your page.
To avoid confusion, you should make sure that your <xhtmlConformance> setting and your web
page doctypes match. Ideally, you’ll use the same doctype for all the web pages in your website,
because ASP.NET doesn’t allow you to configure XHTML rendering on a per-page basis.

■ Note ASP.NET makes no guarantee that the non-XHTML rendering will be supported in future versions of

ASP.NET, so use it only if it’s required for a specific scenario.

Most of the time, you should keep the default controlRenderingCompatibilityVersion of 4.0. You
should set controlRenderingCompatibilityVersion to 3.5 and use the <xhtmlConformance> element only
if you have older pages that need this level of backward compatibility. This might be the case if your
pages contain client-side JavaScript code that expects one of these legacy details (for example, a script
block that uses the name attribute from the <form> element). But most of the time, the latest and most
modern XHTML rendering will give your web application the best standards compliance and
compatibility with the widest range of browsers.

Visual Studio’s Default Doctype
When you create a new web form in Visual Studio, it automatically adds a doctype for XHTML
transitional. If this isn’t what you want, it’s up to you to modify the doctype in each new page. If you’re
using master pages (as described in Chapter 16), the solution is even easier. You can simply set the
doctype in your master page, and all the child pages that use that master page will acquire it
automatically.

It is technically possible to change Visual Studio’s default web page template so that it uses a
different doctype, but the process is a bit awkward. You need to first modify the templates, and then
rebuild Visual Studio’s template cache. Here’s a quick rundown of the steps you need to follow:

1. You can find the Visual Studio templates in a series of ZIP files in various
folders. You need to modify the WebForm.aspx and WebForm_cb.aspx files in
the c:\Program Files\Microsoft Visual Studio
10.0\Common7\IDE\ItemTemplates\Web\CSharp\1033\WebForm.zip
archive.

■ Note If you’re running a 64-bit version of Windows, you’ll find the Visual Studio templates in a directory that
begins with c:\Program Files (x86)\Microsoft Visual Studio 10.0 rather than c:\Program Files\Microsoft Visual

Studio 10.0.

CHAPTER 3 ■ WEB FORMS

93

2. When modifying the files, simply edit the doctype. You’ll probably find it’s
easiest to copy the archive to another location, extract the appropriate files,
edit them, add them back to the archive, and then copy the entire archive back
to its original location. That’s because you need administrator rights to edit
these files, and most simple text editors (like Notepad) won’t attempt to
acquire these rights automatically. However, you’ll be prompted through UAC
(User Account Control) when you copy, delete, and replace the files in
Windows Explorer.

3. Once you’ve updated the templates, delete the c:\Program Files\Microsoft
Visual Studio 10.0\Common7\IDE\ItemTemplatesCache folder to clear out
the template cache.

4. Run Visual Studio using the following command line to rebuild the template
cache:

devenv /InstallVSTemplates

This step requires administrator privileges.

5. You can now run Visual Studio normally. Any new web form files you add to a
web application should have the new doctype that you’ve set.

XHTML Validation
The core ASP.NET controls follow the rules of XHTML, but to make sure the finished page is XHTML-
compliant, you need to make sure any static content you add also follows these rules. Visual Studio can
help you with its own built-in validator. Just select the target standard from the drop-down list in the
HTML Source Editing toolbar. For example, if you choose XHTML 1.1, Visual Studio flags structural
errors, incorrect capitalization, improper or obsolete tags, and so on. For example, Figure 3-3 shows that

 is not allowed in XHTML because it’s a start tag without an end tag. Instead, you need to use the
empty tag syntax,
.

CHAPTER 3 ■ WEB FORMS

94

Figure 3-3. Validating for XHTML 1.1 in Visual Studio

It’s still possible that an XHTML violation might slip through the cracks. For example, you could use
a third-party control that emits noncompliant markup when it renders itself. Visual Studio won’t be able
to spot the problem, because it’s examining the server-side web form markup, not the final rendered
document that’s sent to the client. Furthermore, your browser probably won’t flag the error either.

To give your pages the acid test, you need use a third-party validator that can request your page and
scan it for errors. One good resource is the free W3C validation service at http://validator.w3.org.
Simply enter the URL to your web page, and click Check. You can also upload a file to check it, but in this
case you must make sure you upload the final rendered page, not the .aspx source. You can see (and
save) the rendered content for a page in Internet Explorer by choosing View ➤ Source.

Client-Side Control IDs
Certain parts of ASP.NET functionality require that the elements in the rendered HTML have unique IDs.
(For example, ASP.NET needs to be able to uniquely determine what control has triggered a postback.)
At first glance, this seems to be an easy challenge—after all, the controls also need to have unique server-

http://validator.w3.org

CHAPTER 3 ■ WEB FORMS

95

side IDs in order for you to interact with them in code. So why not just use the server-side IDs for the
client-side IDs?

First, a server-side control can exist without any server ID, even if it uses a client-side feature like
automatic postback. Second, a single control can occur multiple times in the page in different
containers. For example, this occurs if you have controls inside a user control, and you repeat the user
control more than once on a page. It can also occur with master pages, and it’s guaranteed to happen
if you have a data-bound control such as the GridView, which repeats the same controls in every row.
To deal with scenarios like these, ASP.NET fuses together the ID of the server control, all of its naming
containers, and (if it’s data bound) a numeric index. This leads to long and awkward client-side IDs
like this:

ctl00_ContentPlaceHolder1_ParentPanel_NamingPanel_TextBox1

■ Note A naming container is a control that implements the INamingContainer interface. A control does this if it
needs to provide a unique naming scope for its children to prevent ID conflicts. Examples of naming containers

include Page, UserControl, and Content (a content region in a master page). Also, naming containers include all
controls that can bind to a list of data, from basics such as HtmlSelect, ListBox, and CheckBoxList to rich data
controls such as Details, FormView, and GridView. However, most simple containers aren’t naming containers—

think, for example, of the Panel class that wraps the <div> element.

Initially, ASP.NET developers didn’t give much thought to client-side names, because they were a
fully abstracted background detail. However, in modern web development you might find yourself
needing to refer to a client-side element, either to format it with a CSS stylesheet or to manipulate it with
a bit of client-side JavaScript. In both cases, having long, difficult-to-predict IDs makes your work more
difficult.

ASP.NET 4 adds a ClientIDMode property that allows you to change the naming behavior for an
entire page, a section of a page, or an individual control. Technically, the ClientIDMode property is a
member of the base Control class from which all ASP.NET web controls derive. It supports four possible
values, as listed in Table 3-1.

Table 3-1. Values from the ClientIDMode Enumeration

Value Description

AutoID ASP.NET generates the client-side ID by concatenating the IDs of the control with the
IDs of its naming containers, separated by an underscore. A numeric index is added if
the control is being bound in a data control.

Example: ctl00_ContentPlaceHolder1_ParentPanel_NamingPanel_TextBox1

Static ASP.NET uses the server-side ID to set the client-side ID. This is the simplest scenario,
but it can run into issues if the control is repeated on the page in different naming
containers.

Example: TextBox1

CHAPTER 3 ■ WEB FORMS

96

Value Description

Predictable ASP.NET uses the same concatenating strategy as it does for the AutoID setting but
simplifies it to create slightly cleaner names. First, the ID of the top-level page isn’t
included (which avoids having the client-side ID begin with an automatically
generated page ID like ctl00). Second, ASP.NET uses the ClientIDRowSuffix property
to generate unique values in a data-bound list control (which makes more sense than
the standard numeric index).

Example: ContentPlaceHolder1_ParentPanel_NamingPanel_TextBox1

Inherit This control uses the naming strategy of its parent naming container. Or, if this is set
in the Page, it uses the naming strategy that’s specified in the <pages> element of the
web.config file.

The default ClientIDMode setting is the same for every control: Inherit, which means the control
takes the ClientIDMode of its parent naming container. Eventually, this inheritance bubbles up to the
top-level page, which inherits its ClientIDMode setting from the <pages> element of the web.config file.
In a newly created ASP.NET 4 website, the root web.config file sets the ClientIDMode to Predictable. But
in a website that’s been migrated to ASP.NET 4 from an earlier version of ASP.NET, Visual Studio adds
the following web.config markup to set the default ClientIDMode to AutoID for backward compatibility:

<configuration>
 <system.web>
 <pages clientIDMode="AutoID" />
 ...
 </system.web>
</configuration>

You can remove or modify the clientIDMode property as needed.
To try the behavior of different ClientIDMode settings, you need to use master pages or data-bound

controls, which are two topics we haven’t covered yet. For a quick test, you can create a new ASP.NET
website using the ASP.NET Web Site template (not the ASP.NET Empty Web Site template). Then, in the
Default.aspx page, in the BodyContent region, add a simple named control like the TextBox shown here:

<%@ Page Title="Home Page" Language="C#" ... %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <asp:TextBox ID="txtNormal" runat="server"></asp:TextBox>
</asp:Content>

By default, the TextBox inherits the ClientIDMode of the Content control, which inherits it from the
Page, which gets it from the web.config file. This value is Predictable, which means you end up with this
rendered HTML for the text box:

<input name="ctl00$MainContent$txtNormal" type="text" id="MainContent_txtNormal" />

CHAPTER 3 ■ WEB FORMS

97

■ Note You’ll notice that the ClientIDMode setting doesn’t affect the value of the client-side name attribute. The
name attribute is set with a string that looks almost identical to the ID when ClientIDMode is set to AutoID. The
only difference is that dollar signs are used instead of underscores, so a typical name is

ctl00$ContentPlaceHolder1$ParentPanel$NamingPanel$TextBox1.

Now you change this behavior by setting the ClientIDMode to Static, either for the entire page or for
the specific TextBox control:

<asp:TextBox ID="txtNormal" ClientIDMode="Static" runat="server"></asp:TextBox>

This gives you the following rendered HTML:

<input name="ctl00$MainContent$txtNormal" type="text" id="txtNormal" />

It’s important to realize that the ClientIDMode property could be set to several points in the
hierarchy of a complex page. For example, you could have a container that uses static naming, which
contains other controls that use predictable naming. In this situation, the controls with predictable
naming get concatenated names that start with the static name of the parent control. Higher-level
naming containers are ignored.

So now that you know how the ClientIDMode property works, how should you use it in a real-world
application? Here are some guidelines:

• If you never need to refer to client-side elements, there’s no need to think about
this issue at all.

• If you rarely need to refer to a client-side element, than it’s easiest to target just
that element by setting its ClientIDMode property to Static.

• If you frequently use client-side IDs, you may want to evaluate whether you can
use Static for entire pages. If these pages contain data-bound controls or repeated
user controls, you can set the ClientIDMode of just these controls to Predictable.

• If you need to use client-side IDs in a data-bound control, it makes sense to make
your life a bit easier by setting the control’s ClientIDMode property to Predictable
and using the ClientIDRowSuffix property, as described in Chapter 10.

Web Forms Processing Stages
On the server side, processing an ASP.NET web form takes place in stages. At each stage, various events
are raised. This allows your page to plug into the processing flow at any stage and respond however you
would like.

The following list shows the major stages in the process flow of an ASP.NET page:

• Page framework initialization

• User code initialization

• Validation

• Event handling

• Automatic data binding

CHAPTER 3 ■ WEB FORMS

98

• Cleanup

Remember, these stages occur independently for each web request. Figure 3-4 shows the order in
which these stages unfold. More stages exist than are listed here, but those are typically used for
programming your own ASP.NET controls and aren’t handled directly by the page.

Figure 3-4. ASP.NET page life cycle

In the next few sections you’ll learn about each stage and then examine a simple web page example.

Page Framework Initialization
This is the stage in which ASP.NET first creates the page. It generates all the controls you have defined
with tags in the .aspx web page. In addition, if the page is not being requested for the first time (in other
words, if it’s a postback), ASP.NET deserializes the view state information and applies it to all the
controls.

At this stage, the Page.Init event fires. However, this event is rarely handled by the web page,
because it’s still too early to perform page initialization. That’s because the control objects may not be
created yet and because the view state information isn’t loaded.

CHAPTER 3 ■ WEB FORMS

99

User Code Initialization
At this stage of the processing, the Page.Load event is fired. Most web pages handle this event to perform
any required initialization (such as filling in dynamic text or configuring controls).

The Page.Load event always fires, regardless of whether the page is being requested for the first
time or whether it is being requested as part of a postback. Fortunately, ASP.NET provides a way to
allow programmers to distinguish between the first time the page is loaded and all subsequent loads.
Why is this important? First, since view state is maintained automatically, you have to fetch your data
from a dynamic data source only on the first page load. On a postback, you can simply sit back, relax,
and let ASP.NET restore the control properties for you from the view state. This can provide a dramatic
performance boost if the information is expensive to re-create (for example, if you need to query it
from a database). Second, there are also other scenarios, such as edit forms and drill-down pages, in
which you need the ability to display one interface on a page’s first use and a different interface on
subsequent loads.

To determine the current state of the page, you can check the IsPostBack property of the page,
which will be false the first time the page is requested. Here’s an example:

if (!IsPostBack)
{
 // It's safe to initialize the controls for the first time.
 FirstName.Text = "Enter your name here";
}

■ Note It’s a common convention to write Page.IsPostBack instead of just IsPostBack. This longer form works
because all web pages are server controls, and all server controls include a Page property that exposes the current

page. In other words, Page.IsPostBack is the same as IsPostBack—some developers simply think the first version

is easier to read. Which approach you use is simply a matter of preference.

Remember, view state stores every changed property. Initializing the control in the Page.Load event
counts as a change, so any control value you touch will be persisted in view state, needlessly enlarging
the size of your page and slowing transmission times. To streamline your view state and keep page sizes
small, avoid initializing controls in code. Instead, set the properties in the control tag (either by editing
the tag by hand in source view or by using the Properties window). That way, these details won’t be
persisted in view state. In cases where it really is easier to initialize the control in code, consider
disabling view state for the control by setting EnableViewState to false and initializing the control every
time the Page.Load event fires, regardless of whether the current request is a postback.

Validation
ASP.NET includes validation controls that can automatically validate other user input controls and
display error messages. These controls fire after the page is loaded but before any other events take
place. However, the validation controls are for the most part self-sufficient, which means you don’t
need to respond to the validation events. Instead, you can just examine whether the page is valid
(using the Page.IsValid property) in another event handler. Chapter 4 discusses the validation controls
in more detail.

CHAPTER 3 ■ WEB FORMS

100

Event Handling
At this point, the page is fully loaded and validated. ASP.NET will now fire all the events that have taken
place since the last postback. For the most part, ASP.NET events are of two types:

Immediate response events: These include clicking a submit button or clicking some other button,
image region, or link in a rich web control that triggers a postback by calling the __doPostBack()
JavaScript function.

Change events: These include changing the selection in a control or the text in a text box. These
events fire immediately for web controls if AutoPostBack is set to true. Otherwise, they fire the next
time the page is posted back.

As you can see, ASP.NET’s event model is still quite different from a traditional Windows
environment. In a Windows application, the form state is resident in memory, and the application runs
continuously. That means you can respond to an event immediately. In ASP.NET, everything occurs in
stages, and as a result events are sometimes batched together.

For example, imagine you have a page with a submit button and a text box that doesn’t post back
automatically. You change the text in the text box and then click the submit button. At this point,
ASP.NET raises all of the following events (in this order):

• Page.Init

• Page.Load

• TextBox.TextChanged

• Button.Click

• Page.PreRender

• Page.Unload

Remembering this bit of information can be essential in making your life as an ASP.NET
programmer easier. There is an upside and a downside to the event-driven model. The upside is that the
event model provides a higher level of abstraction, which keeps your code clear of boilerplate code for
maintaining state. The downside is that it’s easy to forget that the event model is really just an
emulation. This can lead you to make an assumption that doesn’t hold true (such as expecting
information to remain in member variables) or a design decision that won’t perform well (such as
storing vast amounts of information in view state).

Automatic Data Binding
In Chapter 9, you’ll learn about the data source controls that automate the data binding process. When
you use the data source controls, ASP.NET automatically performs updates and queries against your
data source as part of the page life cycle.

Essentially, two types of data source operations exist. Any changes (inserts, deletes, or updates) are
performed after all the control events have been handled but just before the Page.PreRender event fires.
Then, after the Page.PreRender event fires, the data source controls perform their queries and insert the
retrieved data into any linked controls. This model makes instinctive sense, because if queries were
executed before updates, you could end up with stale data in your web page. However, this model also
introduces a necessary limitation—none of your other event handlers will have access to the most recent
data, because it hasn’t been retrieved yet.

This is the last stop in the page life cycle. Historically, the Page.PreRender event is supposed to
signify the last action before the page is rendered into HTML (although, as you’ve just learned, some
data binding work can still occur after the prerender stage). During the prerender stage, the page and

CHAPTER 3 ■ WEB FORMS

101

control objects are still available, so you can perform last-minute steps such as storing additional
information in view state.

To learn much more about the ASP.NET data binding story, refer to Chapter 9.

Cleanup
At the end of its life cycle, the page is rendered to HTML. After the page has been rendered, the real
cleanup begins, and the Page.Unload event is fired. At this point, the page objects are still available, but
the final HTML is already rendered and can’t be changed.

Remember, the .NET Framework has a garbage collection service that runs periodically to release
memory tied to objects that are no longer referenced. If you have any unmanaged resources to release,
you should make sure you do this explicitly in the cleanup stage or, even better, before. When the
garbage collector collects the page, the Page.Disposed event fires. This is the end of the road for the
web page.

A Page Flow Example
No matter how many times people explain how something works, it’s always more satisfying to see it for
yourself (or break it trying to learn how it works). To satisfy your curiosity, you can build a sample web
form test that illustrates the flow of processing. The only thing this example won’t illustrate is validation
(which is discussed in the next chapter).

To try this, start by creating a new web form named PageFlow.aspx. In Visual Studio, you simply
need to drag a label and a button onto the design surface of your web page. This places them inside the
server-side <form> section. Next, select the Label control on the design surface. Using the Properties
window, set the ID property to lblInfo and the EnableViewState property to false.

Here’s the complete markup for the .aspx file, without any event handlers:

<%@ Page language="C#" CodeFile="PageFlow.aspx.cs"
 AutoEventWireup="true" Inherits="PageFlow" %>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Page Flow</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <asp:Label id="lblInfo" runat="server" EnableViewState="False">
 </asp:Label>
 <asp:Button id="Button1" runat="server" Text="Button">
 </asp:Button>
 </div>
 </form>
 </body>
</html>

The next step is to add your event handlers. When you’re finished, the code-behind file will hold five
event handlers that respond to different events, including Page.Init, Page.Load, Page.PreRender,
Page.Unload, and Button.Click.

Page event handlers are a special case. Unlike other controls, you don’t need to wire them up
using attributes in your markup. Instead, page event handlers are automatically connected provided

http://www.w3.org/1999/xhtml

CHAPTER 3 ■ WEB FORMS

102

they use the correct method name (and assuming the Page directive sets AutoEventWireup to true,
which is the default).

Here are the event handlers for various page events in the PageFlow example:

private void Page_Load(object sender, System.EventArgs e)
{
 lblInfo.Text += "Page.Load event handled.
";
 if (Page.IsPostBack)
 {
 lblInfo.Text +=
 "This is not the first time you've seen this page.
";
 }
}

private void Page_Init(object sender, System.EventArgs e)
{
 lblInfo.Text += "Page.Init event handled.
";
}

private void Page_PreRender(object sender, System.EventArgs e)
{
 lblInfo.Text += "Page.PreRender event handled.
";
}

private void Page_Unload(object sender, System.EventArgs e)
{
 // This text never appears because the HTML is already
 // rendered for the page at this point.
 lblInfo.Text += "Page.Unload event handled.
";
}

Each event handler simply adds to the text in the Text property of the label. When the code adds this
text, it also uses embedded HTML tags such as (to bold the text) and
 (to insert a line break).
Another option would be to create separate Label controls and configure the style-related properties of
each one.

■ Note In this example, the EnableViewState property of the label is set to false. This ensures that the text is
cleared every time the page is posted back and the text that’s shown corresponds only to the most recent batch of
processing. If you left EnableViewState set to true, the list would grow longer with each postback, showing you all

the activity that has happened since you first requested the page.

CHAPTER 3 ■ WEB FORMS

103

Additionally, you need to add an event handler for the Button.Click event:

protected void Button1_Click(object sender, System.EventArgs e)
{
 lblInfo.Text += "Button1.Click event handled.
";
}

And you need to wire it up to the corresponding control:

<asp:Button id="Button1" runat="server" Text="Button" OnClick="Button1_Click">
</asp:Button>

The Button.Click event handler requires a different accessibility level than the page event handlers.
The page event handlers are private, while all control event handlers are protected. To understand this
difference, you need to reconsider the code model that was introduced in Chapter 2.

Page handlers are hooked up explicitly using delegates in a hidden portion of designer code.
Because this designer code is still considered part of your class (thanks to the magic of partial classes), it
can hook up any method, including a private method. Control event handlers are connected using a
different mechanism—the control tag. They are bound at a later stage of processing, after the markup in
the .aspx file and the code-behind class have been merged together. ASP.NET creates this merged class
by deriving a new class from the code-behind class.

Here’s where things get tricky. This derived class needs to be able to access the event handlers in the
page so it can connect them to the appropriate controls. The derived class can access the event handlers
only if they are public (in which case any class can access them) or protected (in which case any derived
class can access them).

■ Tip Although it’s acceptable for page event handlers to be private, it’s a common convention in ASP.NET code

to make all event handlers protected, just for consistency and simplicity.

Figure 3-5 shows the ASP.NET page after clicking the button, which triggers a postback and the
Button1.Click event. Note that even though this event caused the postback, Page.Init and Page.Load
were both raised first.

CHAPTER 3 ■ WEB FORMS

104

Figure 3-5. ASP.NET order of operations

The Page As a Control Container
Now that you’ve learned the stages of web forms processing, it’s time to take a closer look at how the
server control model plugs into this pipeline. To render a page, the web form needs to collaborate with
all its constituent controls. Essentially, the web form renders itself and then asks all the controls on the
page to render themselves. In turn, each of those controls can contain child controls; each is also
responsible for their own rendering code. As these controls render themselves, the page assembles the
generated HTML into a complete page. This process may seem a little complex at first, but it allows for
an amazing amount of power and flexibility in creating rich web-page interfaces.

When ASP.NET first creates a page (in response to an HTTP request), it inspects the .aspx file. For
each element it finds with the runat="server" attribute, it creates and configures a control object, and
then it adds this control as a child control of the page. You can examine the Page.Controls collection to
find all the child controls on the page.

Showing the Control Tree
Here’s an example that looks for controls. Each time it finds a control, the code uses the
Response.Write() command to write the control class type and control ID to the end of the rendered
HTML page, as shown here:

// Every control derives from System.Web.UI.Control, so you can use
// that as a base class to examine all controls.
foreach (Control control in Page.Controls)
{
 Response.Write(control.GetType().ToString() + " - " +
 control.ID + "
");
}
// Separate this content from the rest of the page with a horizontal line.
Response.Write("<hr />");

CHAPTER 3 ■ WEB FORMS

105

■ Note The Response.Write() method is a holdover from classic ASP, and you would almost never use it in a real-

world ASP.NET web application. It effectively bypasses the web control model, which leads to disjointed interfaces,
compromises ASP.NET’s ability to create markup that adapts to the target device, and almost always breaks

XHTML compatibility. However, in this test page Response.Write() allows you to write raw HTML without
generating any additional controls—which is a perfect technique for analyzing the controls on the page without

disturbing them.

To test this code, you can add it to the Page.Load event handler. In this case, the rendered content
will be written at the top of the page before the controls. However, when you run it, you’ll notice some
unexpected behavior. For example, consider the web form shown in Figure 3-6, which contains several
controls, some of which are organized into a box using the Panel web control. It also contains two lines
of static HTML text.

Figure 3-6. A sample web page with multiple controls

Here’s the .aspx markup code for the page:

<%@ Page language="C#" CodeFile="ControlTree.aspx.cs" AutoEventWireup="true"
 Inherits="ControlTree" %>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Controls</title>
 </head>

http://www.w3.org/1999/xhtml

CHAPTER 3 ■ WEB FORMS

106

 <body>
 <p><i>This is static HTML (not a web control).</i></p>
 <form id="Controls" method="post" runat="server">
 <div>
 <asp:panel id="MainPanel" runat="server" Height="112px">
 <p><asp:Button id="Button1" runat="server" Text="Button1"/>
 <asp:Button id="Button2" runat="server" Text="Button2"/>
 <asp:Button id="Button3" runat="server" Text="Button3"/></p>
 <p><asp:Label id="Label1" runat="server" Width="48px">
 Name:</asp:Label>
 <asp:TextBox id="TextBox1" runat="server"></asp:TextBox></p>
 </asp:panel>
 <p><asp:Button id="Button4" runat="server" Text="Button4"/></p>
 </div>
 </form>
 <p><i>This is static HTML (not a web control).</i></p>
 </body>
</html>

When you run this page, you won’t see a full list of controls. Instead, you’ll see the list shown in
Figure 3-7.

Figure 3-7. Controls on the top layer of the page

CHAPTER 3 ■ WEB FORMS

107

ASP.NET models the entire page using control objects, including elements that don’t correspond to
server-side content. For example, if you have one server control on a page, ASP.NET will create a
LiteralControl that represents all the static content before the control and will create another
LiteralControl that represents the content after it. Depending on how much static con- tent you have
and how you break it up between other controls, you may end up with multiple LiteralControl objects.

LiteralControl objects don’t provide much in the way of functionality. For example, you can’t set
style-related information such as colors and font. They also don’t have a unique server-side ID.
However, you can manipulate the content of a LiteralControl using its Text property. The following code
rewrites the earlier example so that it checks for literal controls, and, if present, it casts the base Control
object to the LiteralControl type so it can extract the associated text:

foreach (Control control in Page.Controls)
{
 Response.Write(control.GetType().ToString() + " - " +
 control.ID + "
");

 if (control is LiteralControl)
 {
 // Display the literal content (whitespace and all).
 string text =((LiteralControl)control).Text;
 Response.Write("*** Text: "+ Server.HtmlEncode(text) + "
");
 }
}
Response.Write("<hr />");

The displayed text is HTML-encoded using the Server.HtmlEncode() method, which is discussed
later in this chapter in the “HTML and URL Encoding” section. The result is that you don’t see the
formatted content—instead, you see the HTML markup that’s used to create the content.

This example still suffers from a problem. You now understand the unexpected new content, but
what about the missing content—namely, the other control objects on the page?

To answer this question, you need to understand that ASP.NET renders a page hierarchically. It
directly renders only the top level of controls. If these controls contain other controls, they provide their
own Controls properties, which provide access to their child controls. In the example page, as in all
ASP.NET web forms, all the controls are nested inside the <form> tag. This means you need to inspect
the Controls collection of the HtmlForm class to get information about the server controls on the page.

However, life isn’t necessarily this straightforward. That’s because there’s no limit to how many
layers of nested controls you can use. To really solve this problem and display all the controls on a page,
you need to create a recursive routine that can tunnel through the entire control tree.

The following code shows the complete solution:

public partial class ControlTree : System.Web.UI.Page
{
 protected void Page_Load(object sender, System.EventArgs e)
 {
 // Start examining all the controls.
 DisplayControl(Page.Controls, 0);

 // Add the closing horizontal line.
 Response.Write("<hr />");
 }

 private void DisplayControl(ControlCollection controls, int depth)
 {

CHAPTER 3 ■ WEB FORMS

108

 foreach (Control control in controls)
 {
 // Use the depth parameter to indent the control tree.
 Response.Write(new String('-', depth * 4) + "> ");

 // Display this control.
 Response.Write(control.GetType().ToString() + " - " +
 control.ID + "
");

 if (control.Controls != null)
 {
 DisplayControl(control.Controls, depth + 1);
 }
 }
 }
}

Figure 3-8 shows the new result—a hierarchical tree that shows all the controls on the page and
their nesting.

Figure 3-8. A tree of controls on the page

CHAPTER 3 ■ WEB FORMS

109

The Page Header
As you’ve seen, you can transform any HTML element into a server control with the runat="server"
attribute, and a page can contain an unlimited number of HTML controls. In addition to the controls
you add, a web form can also contain a single HtmlHead control, which provides server-side access to
the <head> tag.

The control tree shown in the previous example doesn’t include the HtmlHead control, because the
runat="server" attribute isn’t applied to the <head> tag in the page. However, the Visual Studio default is
to always make the <head> tag into a server-side control, in contrast to previous versions of ASP.NET.

As with other server controls, you can use the HtmlHead control to programmatically change the
content that’s rendered in the <head> tag. The difference is that the <head> tag doesn’t correspond to
actual content you can see in the web page. Instead, it includes other details such as the title, metadata
tags (useful for providing keywords to search engines), and stylesheet references. To change any of these
details, you use one of a small set of members in the HtmlHead class, as described in Table 3-2).

Table 3-2. Useful HtmlHead Properties

Property Description

Title This is the title of the HTML page, which is usually displayed in the browser’s title bar.
You can modify this at runtime.

StyleSheet This provides an IStyleSheet object that represents inline styles defined in the header.
You can also use the IStyleSheet object to create new style rules dynamically by
writing code that calls its CreateStyleRule() and RegisterStyle() methods.

Description This is the text of the description metatag. This metatag is used to create the
description of your website on search engines like Google.

Keywords This is the text of the keywords metatag. Although search engines once used this
information to determine search rankings for specific queries, almost all now ignore it.

Controls You can add or remove metadata tags programmatically using this collection and the
HtmlMeta control class. This is useful if you want to add metatags other than
description and keywords.

Here’s an example that sets title information and metadata tags dynamically:

Page.Header.Title = "Dynamically Titled Page";
Page.Header.Description = "A great website to learn .NET";
Page.Header.Keywords = ".NET, C#, ASP.NET";

And here’s how you can add a different metatag to your header, such as the robots metatag that tells
search engines not to index the current page:

// Define the robots metatag.
HtmlMeta metaTag = new HtmlMeta();
metaTag.Name = "robots";
metaTag.Content = "noindex";

// Add it.
Page.Header.Controls.Add(metaTag);

CHAPTER 3 ■ WEB FORMS

110

■ Tip The HtmlHead control is handy in pages that are extremely dynamic. For example, if you build a data-driven

website that serves promotional content from a database, you might want to change the keywords and title of the

page depending on the content you use when the page is requested.

Dynamic Control Creation
Using the Controls collection, you can create a control and add it to a page programmatically. Here’s an
example that generates a new button and adds it to a Panel control on the page:

protected void Page_Load(object sender, System.EventArgs e)
{
 // Create a new button object.
 Button newButton = new Button();

 // Assign some text and an ID so you can retrieve it later.
 newButton.Text = "* Dynamic Button *";
 newButton.ID = "newButton";

 // Add the button to a Panel.
 Panel1.Controls.Add(newButton);
}

You can execute this code in any event handler. However, because the page is already created, this
code always adds the new control at the end of the collection. In this example, that means the new
button will end up at the bottom of the Panel control.

To get more control over where a dynamically added control is positioned, you can use a
PlaceHolder. A PlaceHolder is a control that has no purpose except to house other controls. If you don’t
add any controls to the Controls collection of the PlaceHolder, it won’t render anything in the final web
page. However, Visual Studio gives a default representation that looks like an ordinary label at design
time, so you can position it exactly where you want. That way, you can add a dynamic control between
other controls.

// Add the button to a PlaceHolder.
PlaceHolder1.Controls.Add(newButton);

When using dynamic controls, you must remember that they will exist only until the next postback.
ASP.NET will not re-create a dynamically added control. If you need to re-create a control multiple
times, you should perform the control creation in the Page.Load event handler. This has the additional
benefit of allowing you to use view state with your dynamic control. Even though view state is normally
restored before the Page.Load event, if you create a control in the handler for the Page.Load event,
ASP.NET will apply any view state information that it has after the Page.Load event handler ends. This
process is automatic.

If you want to interact with the control later, you should give it a unique ID. You can use this ID to
retrieve the control from the Controls collection of its container. You can find the control using recursive
searching logic, as demonstrated in the control tree example, or you can use the static
Page.FindControl() method, which just searches the top-level Page.Controls collection for the control
with the ID you specify. Here’s an example that searches for the dynamically added control with the
FindControl() method and then removes it:

CHAPTER 3 ■ WEB FORMS

111

protected void cmdRemove_Click(object sender, System.EventArgs e)
{
 // Search for the button in the Page.Controls collection.
 Button foundButton = (Button)Page.FindControl("newButton");

 // Remove the button.
 if (foundButton != null)
 {
 foundButton.Parent.Controls.Remove(foundButton);
 }
}

Dynamically added controls can handle events. All you need to do is attach an event handler using
delegate code. You must perform this task in your Page.Load event handler. As you learned earlier, all
control-specific events are fired after the Page.Load event. If you wait any longer, the event handler will
be connected after the event has already fired, and you won’t be able to react to it any longer.

// Attach an event handler to the Button.Click event.
newButton.Click += dynamicButton_Click;

Figure 3-9 demonstrates all these concepts. It generates a dynamic button. When you click this
button, the text in a label is modified. Two other buttons allow you to dynamically remove or re-create
the button.

Figure 3-9. Handling an event from a dynamically added control

Dynamic control creation is particularly powerful when you combine it with user controls (reusable
blocks of user interface that can combine a group of controls and HTML). You’ll learn more about user
controls in Chapter 15.

CHAPTER 3 ■ WEB FORMS

112

The Page Class
Now that you’ve explored the page life cycle and learned how a page contains controls, it’s worth
pointing out that the page itself is also instantiated as a type of control object. In fact, all web forms are
actually instances of the ASP.NET Page class, which is found in the System.Web.UI namespace.

You may have already figured this out by noticing that every code-behind class explicitly derives
from System.Web.UI.Page. This means that every web form you create is equipped with an enormous
amount of out-of-the-box functionality. The FindControl() method and the IsPostBack property are two
examples you’ve seen so far. In addition, deriving from the Page class gives your code the following
extremely useful properties:

• Session

• Application

• Cache

• Request

• Response

• Server

• User

• Trace

Many of these properties correspond to intrinsic objects that you could use in classic ASP web
pages. However, in classic ASP you accessed this functionality through built-in objects that were
available at all times. In ASP.NET, each of these built-in objects actually corresponds to a Page property
that exposes an instance of a full-featured class.

The following sections introduce these objects.

Session, Application, and Cache
The Session object is an instance of the System.Web.SessionState.HttpSessionState class. It’s designed
to store any type of user-specific data that needs to persist between web-page requests. The Session
object provides dictionary-style access to a set of name/value pairs that represents the user’s data for
that session. Session state is often used to maintain things such as the user’s name, the user’s ID, a
shopping cart, or various other elements that are discarded when a given user is no longer accessing
pages on the website.

The Application object is an instance of the System.Web.HttpApplicationState class. Like the
Session object, it’s also a name/value dictionary of data. However, this data is global to the entire
application.

Finally, the Cache object is an instance of the System.Web.Caching.Cache class. It also stores
global information, but it provides a much more scalable storage mechanism because ASP.NET can
remove objects if server memory becomes scarce. Like the other state collections, it’s essentially a
name/value collection of objects, but you can also set specialized expiration policies and
dependencies for each item.

Deciding how to implement state management is one of the key challenges of programming a web
application. You’ll learn much more about all these types of state management in Chapter 6.

CHAPTER 3 ■ WEB FORMS

113

Request
The Request object is an instance of the System.Web.HttpRequest class. This object represents the
values and properties of the HTTP request that caused your page to be loaded. It contains all the URL
parameters and all other information sent by a client. Much of the information provided by the Request
object is wrapped by higher-level abstractions (such as the ASP.NET web control model), so it isn’t
nearly as important as it was in classic ASP. However, you might still use the Request object to find out
what browser the client is using or to set and examine cookies.

Table 3-3 describes some of the more common properties of the Request object.

Table 3-3. HttpRequest Properties

Property Description

AnonymousID This uniquely identifies the current user if you’ve enabled
anonymous access. You’ll learn how to use the anonymous access
features in Chapter 24.

ApplicationPath and
PhysicalApplicationPath

ApplicationPath gets the ASP.NET application’s virtual directory
(URL), while PhysicalApplicationPath gets the “real” directory.

Browser This provides a link to an HttpBrowserCapabilities object, which
contains properties describing various browser features, such as
support for ActiveX controls, cookies, VBScript, and frames.

ClientCertificate This is an HttpClientCertificate object that gets the security
certificate for the current request, if there is one.

Cookies This gets the collection of cookies sent with this request. Chapter 6
discusses cookies.

FilePath and
CurrentExecutionFilePath

These return the real file path (relative to the server) for the currently
executing page. FilePath gets the page that started the execution
process. This is the same as CurrentExecutionFilePath, unless you’ve
transferred the user to a new page without a redirect (for example,
using the Server.Transfer() method), in which case
CurrentExecutionFilePath reflects the new page and FilePath
indicates the original page.

Form This represents the collection of form variables that were posted
back to the page. In almost all cases, you’ll retrieve this information
from control properties instead of using this collection.

Headers and ServerVariables These provide a dictionary collection of HTTP headers and server
variables, indexed by name. These collections are mostly made up of
low-level information that’s sent by the browser along with its web
request (such as the browser type, its support for various features, its
language settings, its authentication credentials, and so on). Usually,
you can get this information more effectively from other properties
of the HttpRequest object and higher-level ASP.NET classes.

CHAPTER 3 ■ WEB FORMS

114

Property Description

IsAuthenticated and
IsSecureConnection

These return true if the user has been successfully authenticated and
if the user is connected over SSL (Secure Sockets Layer).

IsLocal This returns true if the user is requesting the page from the local
computer.

QueryString This provides the parameters that were passed along with the query
string. Chapter 6 shows how you can use the query string to transfer
information between pages.

Url and UrlReferrer These provide a Uri object that represents the current address for the
page and the page where the user is coming from (the previous page
that linked to this page).

UserAgent This is a string representing the browser type. Internet Explorer
provides the value “MSIE” for this property. ASP.NET uses this
information to identify the browser and, ultimately, to determine the
features the browser should support (such as cookies, JavaScript,
and so on). This, in turn, can influence how web controls render
themselves. For more information about ASP.NET’s adaptive
rendering model, refer to Chapter 27.

UserHostAddress and
UserHostName

These get the IP address and the DNS name of the remote client. You
could also access this information through the ServerVariables
collection. However, this information may not always be meaningful
due to network address translation (NAT). Depending on how clients
connect to the Internet, multiple clients may share the same IP
address (that of a gateway computer). The IP address may also
change over the course of several requests.

UserLanguages This provides a sorted string array that lists the client’s language
preferences. This can be useful if you need to create multilingual
pages.

Response
The Response object is an instance of the System.Web.HttpResponse class, and it represents the web
server’s response to a client request. In classic ASP, the Response object was the only way to
programmatically send HTML text to the client. Now server-side controls have nested, object-oriented
methods for rendering themselves. All you have to do is set their properties. As a result, the Response
object doesn’t play nearly as central a role.

Table 3-4 lists the common HttpResponse members.

CHAPTER 3 ■ WEB FORMS

115

Table 3-4. HttpResponse Members

Member Description
BufferOutput When set to true (the default), the page isn’t sent to the client until it’s

completely rendered and ready to be sent, as opposed to being sent
piecemeal. In some specialized scenarios, it makes sense to set
BufferOutput to false. The most obvious example is when a client is
downloading a large file. If BufferOuput is false, the client will see the
Save dialog box and be able to choose the file name before the file is
fully downloaded.

Cache This references an HttpCachePolicy object that allows you to
configure output caching. Chapter 11 discusses caching.

Cookies This is the collection of cookies sent with the response. You can use
this property to add additional cookies.

Expires and ExpiresAbsolute You can use these properties to cache the rendered HTML for the
page, improving performance for subsequent requests. You’ll learn
about this type of caching (known as output caching) in Chapter 11.

IsClientConnected This is a Boolean value indicating whether the client is still connected
to the server. If it isn’t, you might want to stop a time-consuming
operation.

Redirect() This method instructs the browser to request another URL, which can
point to a new page in your web application or to a different website.

RedirectPermanent() This method redirects the browser to a new URL, much like the
Redirect() method. The difference is that it uses HTTP status code 301
(which indicates that the page has moved permanently) rather than
HTTP status code 302 (which indicates that the page has moved
temporarily).

RedirectToRoute() and
RedirectToRoutePermanent ()

These methods parallel the Redirect() and RedirectPermanent()
methods. The only difference is that they use a route (which is a
registered URL pattern that doesn’t map directly to a page). You’ll
learn much more about routing when you consider ASP.NET MVC in
Chapter 32.

Transfer() This method tells ASP.NET to abandon the current page and start to
process a new web form page (which you specify). There’s no round-
trip required, and the web browser and web application user aren’t
notified of the change.

TransferRequest() This method is similar to Transfer(), but it allows you to transfer the
user to another type of page. For example, you can use it to send a
user from an ASP.NET web form to an HTML page. When using the
TransferRequest() method, the full IIS pipeline runs to handle the
new resource, along with all the appropriate HTTP modules. But
TransferRequest() also comes with a few sizable caveats. To use it, you
must be using the IIS 7 web server in integrated mode. You must also
release session state (if you’ve acquired it) to prevent a time-
consuming delay.

CHAPTER 3 ■ WEB FORMS

116

Additionally, the HttpResponse class includes some members that you won’t use in conjunction
with ASP.NET’s web control model. However, you might use these members when you create custom
HTTP handlers (as described in Chapter 5) or return different types of content instead of HTML pages.
Table 3-5 lists these members.

Table 3-5. HttpResponse Members that Bypass the Control Model

Member Description

ContentType When set to true (the default), the page isn’t sent to the client until
it’s completely rendered and ready to be sent, as opposed to being
sent piecemeal. In some specialized scenarios, it makes sense to set
BufferOutput to false. The most obvious example is when a client is
downloading a large file. If BufferOuput is false, the client will see the
Save dialog box and be able to choose the file name before the file is
fully downloaded.

OutputStream This represents the data you’re sending to the browser as a stream of
raw bytes. You can use this property to plug into the .NET stream
model (which is described in Chapter 12). For an example that
demonstrates OutputStream, refer to Chapter 28, which uses it to
return the image content from a dynamically generated graphic.

Write() This method allows you to write text directly to the response stream.
Usually, you’ll use the control model instead and let controls output
their own HTML. If you attempt to use Response.Write() and the
control model, you won’t be able to decide where the text is placed in
the page. However, Response.Write() is important if you want to
design controls that render their own HTML representation from
scratch. You’ll learn how to use Response.Write() in this context in
Chapter 27.

BinaryWrite() and WriteFile() These methods allow you to take binary content from a byte array or
from a file and write it directly to the response stream. You won’t use
these methods in conjunction with server controls, but you might
use them if you create a custom HTTP handler. For example, you
could create an HTTP handler that reads the data for a PDF
document from a record in a database and writes that data directly to
the response stream using BinaryWrite(). On the client side, the end
result is the same as if the user downloaded a static PDF file. (You’ll
see an example of WriteFile() with a custom HTTP handler that
prevents image leeching in Chapter 5.) When writing non-HTML
content, make sure you set the ContentType property accordingly.

Moving Between Pages
The most important function of the HttpResponse class is the small set of methods that allow you to leap
from one page to another. The most versatile of these methods is Redirect(), which sends the user to
another page. Here’s an example:

CHAPTER 3 ■ WEB FORMS

117

// You can redirect to a file in the current directory.
Response.Redirect("newpage.aspx");

// You can redirect to another website.
Response.Redirect("http://www.prosetech.com");

The Redirect() method requires a round-trip. Essentially, it sends a message to the browser that
instructs it to request a new page.

The Redirect() method has an overload that accepts a Boolean second parameter. This parameter
indicates whether you want the page code to continue executing. By default, even though the Redirect()
method redirects the user and closes the connection, any remaining code in the method will still run,
along with other page events. This allows you to perform cleanup, if necessary. But if you supply the
second parameter true, ASP.NET will stop processing the page immediately, potentially reducing the
web server’s workload.

If you want to transfer the user to another web form in the same web application, you can use a
faster approach with the Server.Transfer() method. However, Server.Transfer has some quirks. Because
the redirection happens on the server side, the original URL remains in the client’s web browser.
Effectively, the browser has no way of knowing that it’s actually displaying a different page. This
limitation leads to a problem if the client refreshes or bookmarks the page. Also, Server.Transfer() is
unable to transfer execution to a non-ASP.NET page or a web page in another web application or on
another web server.

■ Tip Another way also exists to get from one page to the next—cross-page posting. Using this technique, you
can create a page that posts itself to another page, which allows you to effectively transfer all the view state

information and the contents of any controls. You’ll learn how to use this technique in Chapter 6.

ASP.NET 4 adds another redirection method to the HttpResponse class, called RedirectPermanent().
RedirectPermanent() has the same effect as Redirect()—it sends a redirect message to the browser,
which asks it to request a new page. However, it uses the HTTP status 301 (which indicates a permanent
redirect) rather than 302 (which indicates a temporary redirect). This distinction has no effect on web
browsers, but it’s important for search engines. If a search engine’s web crawler is exploring your
website and it receives the 301 status code, it will update the search catalog with the new URL
information.

Thus, you use should Redirect() and RedirectPermanent() in very different ways. You use Redirect()
for normal navigation and control of flow in an application (for example, as a user steps through a
checkout process). You use RedirectPermanent() if an old URL is requested, which you supported in the
past but no longer use. Typically, you’ll call Redirect() somewhere in your web form code. However,
you’re more likely to call RedirectPermanent() in your application code—specifically, in the
Application_BeginRequest() method in the global.asax file. That way, you can manage all of your
permanent redirects in one place, without being forced to keep around stubs of your old pages. Here’s
an example:

protected void Application_BeginRequest(object sender, EventArgs e)
{
 // The web application no longer contains the about.aspx page.
 if (Request.FilePath == "/about.aspx")
 {
 Response.RedirectPermanent("/about/about-Us.aspx");

http://www.prosetech.com

CHAPTER 3 ■ WEB FORMS

118

 }
 // (Add more redirects here.)
}

Chapter 5 has more about the Application_BeginRequest() method and other web application
events.

Server
The Server object is an instance of the System.Web.HttpServerUtility class. It provides a handful of
miscellaneous helper methods and properties, as listed in Table 3-6.

Table 3-6. HttpServerUtility Members

Member Description

MachineName A property representing the computer name of the computer on which
the page is running. This is the name the web server computer uses to
identify itself to the rest of the network.

GetLastError() Retrieves the exception object for the most recently encountered error
(or a null reference, if there isn’t one). This error must have occurred
while processing the current request, and it must not have been handled.
This is most commonly used in an application event handler that checks
for error conditions (an example of which you’ll see in Chapter 5).

HtmlEncode() and
HtmlDecode()

Changes an ordinary string into a string with legal HTML characters (and
back again).

UrlEncode() and
UrlDecode()

Changes an ordinary string into a string with legal URL characters (and
back again).

MapPath() Returns the physical file path that corresponds to a specified virtual file
path on the web server. Calling MapPath() with / returns the physical
path of the web application root. The MapPath() method also supports
paths with the tilde (~) character, which represents the root of the web
(for example, ~/homepage.aspx).

Transfer() Transfers execution to another web page in the current application. This
is similar to the Response.Redirect() method, but it’s faster. It cannot be
used to transfer the user to a site on another web server or to a non-
ASP.NET page (such as an HTML page or an ASP page).

The Transfer() method is the quickest way to redirect the user to another page in your application.

When you use this method, a round-trip is not involved. Instead, the ASP.NET engine simply loads the
new page and begins processing it. As a result, the URL that’s displayed in the client’s browser won’t
change.

CHAPTER 3 ■ WEB FORMS

119

// You can transfer to a file in the current web application.
Server.Transfer("newpage.aspx");

// You can't redirect to another website
// (or another application pool on the same web server).
// This attempt will cause an error.
Server.Transfer("http://www.prosetech.com");

The MapPath() method is another useful method of the Server object. For example, imagine you
want to load a file named info.txt from the current virtual directory. Instead of hard-coding the path, you
can use Server.MapPath() to convert the relative path to your web application into a full physical path.
Here’s an example:

string physicalPath = Server.MapPath("info.txt");

// Now open the file.
StreamReader reader = new StreamReader(physicalPath);
// (Process the file here.)
reader.Close();

HTML and URL Encoding
The Server class also includes methods that change ordinary strings into a representation that can safely
be used as part of a URL or displayed in a web page. For example, imagine you want to display this text
on a web page:

To bold text use the tag.

If you try to write this information to a page or place it inside a control, you would end up with this
instead:

To bold text use the tag.

Not only will the text not appear, but the browser will interpret it as an instruction to make the
text that follows bold. To circumvent this automatic behavior, you need to convert potential problematic
values to their special HTML equivalents. For example, < becomes < in your final HTML page, which
the browser displays as the < character. Table 3-7 lists some special characters that need to be encoded.

Table 3-7. Common HTML Entities

Result Description Encoded Entity

 Nonbreaking space

< Less-than symbol <

> Greater-than symbol >

& Ampersand &

" Quotation mark "

http://www.prosetech.com

CHAPTER 3 ■ WEB FORMS

120

Here’s an example that circumvents the problem using the Server.HtmlEncode() method:

Label1.Text = Server.HtmlEncode("To bold text use the tag.");

You also have the freedom to use HtmlEncode for some input, but not for all of it if you want to
insert a combination of text that could be invalid and HTML tags. Here’s an example:

Label1.Text = "To bold text use the ";
Label1.Text += Server.HtmlEncode("") + " tag.";

■ Note Some controls circumvent this problem by automatically encoding tags. (The Label web control is not one
of them. Instead, it gives you the freedom to insert HTML tags as you please.) For example, the basic set of HTML

server controls include both an InnerText tag and an InnerHtml tag. When you set the contents of a control using
InnerText, any special characters are automatically converted into their HTML equivalents. However, this won’t

help if you want to set a tag that contains a mix of embedded HTML tags and encoded characters.

The HtmlEncode() method is particularly useful if you’re retrieving values from a database and you
aren’t sure if the text is valid HTML. You can use the HtmlDecode() method to revert the text to its
normal form if you need to perform additional operations or comparisons with it in your code. Similarly,
the UrlEncode() method changes text into a form that can be used in a URL, escaping spaces and other
special characters. This step is usually performed with information you want to add to the query string.

It’s worth noting that the HtmlEncode() method won’t convert spaces to nonbreaking spaces. This
means that if you have a series of space characters, the browser will display only a single space. Although
this doesn’t invalidate your HTML, it may not be the effect you want. To change this behavior, you can
manually replace spaces with nonbreaking spaces using the String.Replace() method. Just make sure you
perform this step after you encode the string, not before, or the nonbreaking space character sequence
() will be replaced with character entities and treated as ordinary text.

// Encode illegal characters.
line = Server.HtmlEncode(line);

// Replace spaces with nonbreaking spaces.
line = line. Replace(" ", " ");

Similarly, the HtmlEncode() method won’t convert line breaks into
 tag. This means that hard
returns will be ignored unless you specifically insert
 tags.

■ Note The issue of properly encoding input is important for more than just ensuring properly displayed data. If
you try to display data that has embedded <script> tags, you could inadvertently end up executing a block of
JavaScript code on the client. Chapter 29 has more about this danger and the ASP.NET request validation feature

that prevents it.

CHAPTER 3 ■ WEB FORMS

121

User
The User object represents information about the user making the request of the web server, and it
allows you to test that user’s role membership.

The User object implements System.Security.Principal.IPrincipal. The specific class depends on the
type of authentication you’re using. For example, you can authenticate a user based on Windows
account information using IIS or using a custom database and a dedicated login page. However, it’s
important to realize that the User object provides useful information only if your web application is
performing some sort of authentication that restricts anonymous users.

Part 4 of this book deals with security in detail.

Trace
The Trace object is a general-purpose tracing tool (and an instance of the System.Web.TraceContext class).
It allows you to write information to a log that is scoped at the page level. This log has detailed timing
information so that not only can you use the Trace object for debugging but you can also use it for
performance monitoring and timing. Additionally, the trace log shows a compilation of miscellaneous
information, grouped into several sections. Table 3-8 describes all the information you’ll see.

Table 3-8. Trace Log Information

Section Description

Request Details This section includes some basic information about the request context,
including the current session ID, the time the web request was made, and the
type of web request and encoding.

Trace Information This section shows the different stages of processing the page went through
before being sent to the client. Each section has additional information about
how long it took to complete, as a measure from the start of the first stage
(From First) and as a measure from the start of the previous stage (From Last).
If you add your own trace messages (a technique described shortly), they will
also appear in this section.

Control Tree The control tree shows you all the controls on the page, indented to show
their hierarchy, similar to the control tree example earlier in this chapter. One
useful feature of this section is the Viewstate column, which tells you how
many bytes of space are required to persist the current information in the
control. This can help you gauge whether enabling control state could affect
page transmission times.

Session State and
Application State

These sections display every item that is in the current session or application
state. Each item is listed with its name, type, and value. If you’re storing
simple pieces of string information, the value is straightforward. If you’re
storing an object, .NET calls the object’s ToString() method to get an
appropriate string representation. For complex objects, the result may just be
the class name.

CHAPTER 3 ■ WEB FORMS

122

Section Description
Cookies Collection This section displays all the cookies that are sent with the request and

response, as well as the content and size of each cookie in bytes. Even if you
haven’t explicitly created a cookie, you’ll see the ASP.NET_SessionId cookie,
which contains the current session ID. If you’re using forms-based
authentication, you’ll also see the security cookie.

Headers Collection This section lists all the HTTP headers associated with the request.

Forms Collection This section lists the posted-back form information.

QueryString
Collection

This section lists the variables and values submitted in the query string.

Server Variables This section lists all the server variables and their contents.

■ Tip Tracing complements Visual Studio debugging. In many cases, debugging is the best approach for solving

problems while you are coding a web application, while tracing gives you an easier option if you need to
troubleshoot problems that appear while the application is running on a web server. However, tracing provides a
few services that debugging doesn’t (at least not as easily), such as showing you the amount of information in

view state and the time taken to process the page on the server. Tracing also works regardless of whether you

build your application in debug mode (with the debug symbols) or release mode.

You can enable tracing in two ways. You can set the Trace.IsEnabled property to true at any point in
your code, as follows:

Trace.IsEnabled = true;

Usually, you’ll do this in the Page.Load event handler. Another option is to use the Trace attribute in
the Page directive:

<%@ Page Language="C#" CodeFile="PageFlow.aspx.cs" AutoEventWireup="true"
 Inherits="PageFlow" Trace="true" %>

By default, trace messages are listed in the order they were generated. Alternatively, you can specify
that messages should be sorted by category, using the TraceMode attribute in the Page directive, as
follows:

<%@ Page Language="C#" CodeFile="PageFlow.aspx.cs" AutoEventWireup="true"
 Inherits="PageFlow" Trace="true" TraceMode="SortByCategory" %>

or the TraceMode property of the Trace object in your code:

Trace.TraceMode = TraceMode.SortByCategory;

Figure 3-10 shows a partial listing of trace information with the PageFlow example demonstrated
earlier.

CHAPTER 3 ■ WEB FORMS

123

Figure 3-10. Basic trace information

You can also write your own information to the trace log (the portion of the trace log that appears in
the Trace Information section) using the Trace.Write() or Trace.Warn() method. These methods are
equivalent. The only difference is that Warn() displays the message in red lettering, which makes it easier
to distinguish from other messages in the list.

Here’s a code snippet that writes a trace message when the user clicks a button:

protected void Button1_Click(object sender, System.EventArgs e)
{
 // You can supply just a message, or include a category label,
 // as shown here.
 Trace.Write("Button1_Click", "About to update the label.");
 lblInfo.Text += "Button1.Click event handled.
";
 Trace.Write("Button1_Click", "Label updated.");
}

CHAPTER 3 ■ WEB FORMS

124

When you write trace messages, they are automatically sent to all trace listeners. However, if you’ve
disabled tracing for the page, the messages are simply ignored. Tracing messages are automatically
HTML-encoded. This means tags such as
 and are displayed as text, not interpreted as HTML.

Figure 3-11 shows the new entries in the log.

■ Tip Not only can you send your own trace messages, but you can also create an event handler that receives
every trace message. Although this is an uncommon and specialized technique, you could use it to filter out
messages that are of particular interest to you during development and log them accordingly. All you need to do is

handle the Trace.TraceFinished event, which provides you with a collection of TraceContext objects representing

each trace message.

Figure 3-11. Writing custom trace messages

CHAPTER 3 ■ WEB FORMS

125

Application Tracing
By default, tracing is enabled on a page-by-page basis. This isn’t always convenient. In some cases, you
want to collect trace statistics for a page and then view them later. ASP.NET supports this approach with
application-level tracing.

To enable application-level tracing, you need to modify the web.config configuration file. Look for
the <trace> element and enable it as shown here:

<configuration>
 <system.web>
 <trace enabled="true" requestLimit="10" pageOutput="false"
 traceMode="SortByTime" localOnly="true" />
 ...
 </system.web>
</configuration>

This example turns on tracing (by setting enabled to true), stores a maximum of ten requests (by
setting the requestLimit), and ensures that the trace information won’t appear in the page (by setting
the pageOutput to false). It also sorts traces by time (using the traceMode attribute), which means that
the newest ten traces are kept, and it only allows local users to review the stored traces (using the
localOnly attribute).

When you enable application-level tracing, you won’t see the trace information on the page.
Instead, to view tracing information you must request the trace.axd application extension in your web
application’s root directory. This extension doesn’t correspond to an actual file—instead, ASP.NET
automatically intercepts the request and lists the most recently collected trace requests (as shown in
Figure 3-12), provided you’re making the request from the local machine or have enabled remote
tracing. You can see the detailed information for any request by clicking the View Details link.

Figure 3-12. Traced application request

CHAPTER 3 ■ WEB FORMS

126

Table 3-9 describes the full list of tracing options in the web.config <trace> element.

Table 3-9. Tracing Options

Attribute Values Description
Enabled true, false This turns tracing on or off for all pages. This is the default

setting for your web application—you can still override it
on a page-by-page basis with the Page directive. Use the
pageOutput setting to determine whether trace
information is shown in the page or collected silently.

traceMode SortByTime,
SortByCategory

This determines the sort order of trace messages.

localOnly true, false This determines whether tracing information will be shown
only to local clients (clients using the same computer) or can
be shown to remote clients as well. By default, this is true and
remote clients cannot see tracing information. In a
production-level application, this should always be true to
ensure security.

pageOutput true, false This determines whether tracing information will be
displayed on the page (as it is with page-level tracing) or
just stored on the server (application-level tracing). If you
choose false to use application-level tracing, you’ll still be
able to view the collected information by requesting
trace.axd from the virtual directory where your application
is running.

requestLimit Any integer When using application-level tracing, this is the number of
HTTP requests (for example, 10) for which tracing
information will be stored. Unlike page-level tracing, this
allows you to collect a batch of information from multiple
requests. If you specify any value greater than 10,000,
ASP.NET treats it as 10,000. When the maximum is reached,
the behavior depends on the value of the mostRecent setting.

mostRecent true, false If true, ASP.NET keeps only the most recent trace messages.
When the requestLimit maximum is reached, the
information for the oldest request is abandoned every time
a new request is received. If false (the default), ASP.NET
stops collecting new trace messages when the limit is
reached and ignores subsequent requests.

writeToDiagnostics
Trace

true, false If true, all trace messages are also forwarded to the
System.Diagnostics tracing infrastructure and received by
any trace listeners you’ve configured using that model. The
default is false. The System.Diagnostics trace features are
not ASP.NET-specific and can be used in a wide variety of
.NET applications. They may be used in ASP.NET as a way
to automatically capture trace messages and enter them in
an event log.

CHAPTER 3 ■ WEB FORMS

127

Tracing with the Web Development Helper
If you’ve installed the Web Development Helper introduced in Chapter 2 (and available at
http://projects.nikhilk.net/Projects/WebDevHelper.aspx), you have another option for looking at
tracing information—viewing it in a separate window.

To try this out, follow the instructions in Chapter 2 to configure the module for the Web
Development Helper in your web application, and then choose Tools ➤ Web Development Helper to
switch it on in your browser.

When the Web Developer Helper is running, it automatically removes trace information from the
page. To see the tracing information, you can either uncheck the Hide Trace option (choose Tools ➤
Options from the Web Development Helper and then click the ASP.NET tab) or you can open it in a
separate window (choose ASP.NET ➤ Show Trace Information from the Web Development Helper).

Figure 3-13 shows this handy feature at work.

Figure 3-13. Managing trace information with the Web Development Helper

Accessing the HTTP Context in Another Class
Over the past several sections, you’ve seen how the Page class exposes a significant number of useful
features that let you retrieve information about the current HTTP context. These details are available
because they’re provided as properties of the Page class. But what if you want to retrieve this
information from inside another class, one that doesn’t derive from Page?

http://projects.nikhilk.net/Projects/WebDevHelper.aspx

CHAPTER 3 ■ WEB FORMS

128

Fortunately, another way exists to get access to all the HTTP context information. You can use the
System.Web.HttpContext class. This class exposes a static property called Current, which returns an
instance of the HttpContext class that represents all the information about the current request and
response. It provides the same set of built-in ASP.NET objects as properties.

For example, here’s how you would write a trace message from another component that doesn’t
derive from Page but is being used by a web page as part of a web request:

HttpContext.Current.Trace.Write("This message is from DB Component");

If you want to perform multiple operations, it may be slightly faster to retrieve a reference to the
current context and then reuse it:

HttpContext current = HttpContext.Current;
current.Trace.Write("This is message 1");
current.Trace.Write("This is message 2");

Summary
In this chapter you walked through a detailed examination of the ASP.NET page. You learned what it is
and how it really works behind the scenes with postbacks and view state. You also learned the basics of
the server control model, examined the System.Web.UI.Page class, and learned how to use tracing. In
the next chapter, you’ll take a closer look at the web controls that ASP.NET gives you to build
sophisticated pages.

C H A P T E R 4

■ ■ ■

129

Server Controls

ASP.NET server controls are a fundamental part of the ASP.NET architecture. Essentially, server controls
are classes in the .NET Framework that represent visual elements on a web form. Some of these classes
are relatively straightforward and map closely to a specific HTML tag. Other controls are much more
ambitious abstractions that render a more complex representation from multiple HTML elements.

In this chapter, you’ll learn about the different types of ASP.NET server controls and how they’re
related. You’ll also learn how to use validation controls to ensure that the user input matches specific
rules before a web page is submitted to the server.

■ What’s New ASP.NET 4 includes the same controls as earlier versions, with two notable exceptions. First,
there’s a new set of controls to deal with the ASP.NET Dynamic Data feature (Chapter 33). Second, there’s a new
Chart control for transforming data into richly detailed charts and graphs (Chapter 28). But this chapter

concentrates on the standard set of controls that has been around since ASP.NET 2.0.

Types of Server Controls
ASP.NET offers many different server controls, which fall into several categories. This chapter explores
the controls in the following categories:

HTML server controls: These are classes that wrap the standard HTML elements. Apart from this
attribute, the declaration for an HTML server control remains the same. Two examples include
HtmlAnchor (for the <a> tag) and HtmlSelect (for the <select> tag). However, you can turn any
HTML tag into a server control. If there isn’t a direct corresponding class, ASP.NET will simply use
the HtmlGenericControl class. To change an ordinary HTML element into a server control, simply
add the runat="server" attribute to the element tag.

Web controls: These classes duplicate the functionalities of the basic HTML elements but have a
more consistent and meaningful set of properties and methods that make it easier for the developer
to declare and access them. Some examples are the HyperLink, ListBox, and Button controls. In
addition, several other types of ASP.NET controls (such as rich controls and validation controls) are
commonly considered to be special types of web controls. In Visual Studio, you’ll find the basic web
forms controls in the Standard tab of the Toolbox.

CHAPTER 4 ■ SERVER CONTROLS

130

Rich controls: These advanced controls have the ability to generate a large amount of HTML
markup and even client-side JavaScript to create the interface. Examples include the Calendar,
AdRotator, and TreeView controls. In Visual Studio, many rich controls are also found in the
Standard tab of the Toolbox.

Validation controls: This set of controls allows you to easily validate an associated input control
against several standard or user-defined rules. For example, you can specify that the input can’t be
empty, that it must be a number, that it must be greater than a certain value, and so on. If validation
fails, you can prevent page processing or allow these controls to show inline error messages in the
page. In Visual Studio, these controls are found in the Validation tab of the Toolbox.

Additionally, you’ll examine several more specialized control groupings in other chapters. These
include the following:

Data controls: These controls include sophisticated grids and lists that are designed to display large
amounts of data, with support for advanced features such as templating, editing, sorting, and
pagination. This set also includes the data source controls that allow you to bind to different data
sources declaratively, without writing extra code. You’ll learn about the data controls in Chapters 9
and 10.

Navigation controls: These controls are designed to display site maps and allow the user to navigate
from one page to another. You’ll learn about the navigation controls in Chapter 17.

Login controls: These controls support forms authentication, an ASP.NET model for authenticating
users against a database and tracking their status. Rather than writing your own interfaces to work
with forms authentication, you can use these controls to get prebuilt, customizable login pages,
password recovery, and user-creation wizards. You’ll learn about the login controls in Chapter 21.

Web parts controls: This set of controls supports WebParts, an ASP.NET model for building
componentized, highly configurable web portals. You’ll learn about WebParts in Chapter 31.

ASP.NET AJAX controls: These controls allow you to use Ajax techniques in your web pages without
forcing you to write client-side code. Ajax-style pages can be more responsive because they bypass
the regular postback-and-refresh page cycle. You’ll learn much more in Chapter 30.

ASP.NET Dynamic Data controls: These controls support the ASP.NET Dynamic Data feature,
which allows you to create a data-driven website by building flexible templates rather than writing
tedious code. Chapter 33 explores this feature.

The Server Control Hierarchy
All server controls derive from the base Control class in the System.Web.UI namespace. This is true
whether you’re using HTML server controls, using web controls, or creating your own custom controls.
It also applies to the Page class from which all web forms derive. Figure 4-1 illustrates the main branches
of this inheritance chain.

CHAPTER 4 ■ SERVER CONTROLS

131

Figure 4-1. Server control inheritance

Because all controls derive from the base Control class, you have a basic common denominator that
you can use to manipulate any control on the page, even if you don’t know the specific control type. (For
example, you could use this technique to loop through all the controls on the page and hide each one by
setting the Visible property to false.) Tables 4-1 and 4-2 describe the most commonly used members of
the Control class.

Table 4-1. Control Class Properties

Property Description

ClientID Returns the identifier of the control, which is a unique name created by ASP.NET
at the time the page is instantiated.

Controls Returns the collection of child controls. You can use the Page.Controls collection
to get the top-level collection of controls on the page. Each control in the
Controls collection may contain its own child controls, and those controls can
hold still more controls of their own, and so on.

EnableViewState Returns or sets a Boolean value indicating whether the control should maintain
its state across postbacks of its parent page. This property is true by default.

ID Returns or sets the identifier of the control. In practice, this is the name through
which you can access the control from the server-side scripts or the code-behind
class.

Page Returns a reference to the page object that contains the control.

Parent Returns a reference to the control’s parent, which can be the page or another
container control.

Visible Returns or sets a Boolean value indicating whether the control should be
rendered. If false, the control isn’t just made invisible on the client—instead, the
corresponding HTML tag is not generated.

CHAPTER 4 ■ SERVER CONTROLS

132

Table 4-2. Control Class Methods

Method Description

DataBind() Binds the control and all of its child controls to the specified data source or
expression. You’ll learn about data binding in Part 2.

FindControl() Searches for a child control with a specific name in the current control and all
contained controls. If the child control is found, the method returns a reference of
the general type Control. You can then cast this control to the proper type.

HasControls() Returns a Boolean value indicating whether this control has any child controls. The
control must be a container tag to have child controls (such as a <div> tag).

RenderControl() Writes the HTML output for the control based on its current state. You don’t call
this method directly. Instead, ASP.NET calls it when the page is being rendered.

HTML Server Controls
In the following sections you’ll learn about the HTML server controls, which are defined in the
namespace System.Web.UI.HtmlControls. Overall, there are about 20 distinct HTML server control
classes. They’re split into separate categories based on whether they are input controls (in which case
they derive from HtmlInputControl) or can contain other controls (in which case they derive from
HtmlContainerControl). Figure 4-2 shows the inheritance hierarchy.

Figure 4-2. HTML server controls

CHAPTER 4 ■ SERVER CONTROLS

133

The HtmlControl Class
All the HTML server controls derive from the base class HtmlControl. Table 4-3 shows the properties
that the HtmlControl class adds to the base Control class.

Table 4-3. HtmlControl Properties

Property Description

Attributes Allows you to access or add attributes in the control tag. You can use this collection to
add attributes that are not exposed by specific properties. (For example, you could add
the onFocus attribute to a text box and specify some JavaScript code to configure what
happens when the text box gets focus in the page.)

Disabled Returns or sets the control’s disabled state. If true, the control is usually rendered as a
“grayed-out” control and is not usable.

Style Returns a collection of CSS attributes that are applied to the control. In the web page
you set this property as a semicolon-delimited list of style:value attributes. In Visual
Studio, you can set this information using a designer by right-clicking the control and
selecting New Style. Styles are discussed in more detail in Chapter 16.

TagName Returns the control’s tag name, such as a, img, and so on.

The HtmlContainerControl Class
Any HTML tag that has both an opening and a closing tag can contain other HTML content or controls.
One example is the anchor tag, which usually wraps text or an image with the tags <a>.... Many
other HTML tags also work as containers, including everything from the <div> tag (which allows you to
format a block of content) to the lowly tag (which applies bold formatting). These tags don’t map to
specific HTML server control classes, but you can still use them with the runat="server" attribute. In this
case, you interact with them using the HtmlGenericControl class, which itself derives from
HtmlContainerControl.

To support containment, the HtmlContainerControl class adds the two properties shown in
Table 4-4.

Table 4-4. HtmlContainerControl Properties

Property Description

InnerHtml Returns or sets the HTML text inside the opening and closing tags. When you use this
property, all characters are left as is. This means you can embed HTML markup
(bolding text, adding line breaks, and so on).

InnerText Returns or sets the text inside the opening and closing tags. When you use this
property, any characters that would be interpreted as special HTML syntax (such as <,
the angle bracket) are automatically replaced with the HTML entity equivalents.

CHAPTER 4 ■ SERVER CONTROLS

134

The HtmlInputControl Class
The HTML input controls allow for user interaction. These include the familiar graphical widgets,
including check boxes, text boxes, buttons, and list boxes. All of these controls are generated with the
<input> tag. The type attribute indicates the type of input control, as in <input type="text"> (a text box),
<input type="submit"> (a submit button), and <input type="file"> (controls for uploading a file).

Server-side input controls derive from HtmlInputControl, which adds the properties shown in
Table 4-5.

Table 4-5. HtmlInputControl Properties

Property Description

Type Gets the type of an HtmlInputControl. For example, if this property is set to text, the
HtmlInputControl is a text box for data entry.

Value Gets or sets the value associated with an input control. The value associated with a
control depends on the type of control. For example, in a text box this property contains
the text entered in the control. For buttons, this defines the text on the button.

The HTML Server Control Classes
Table 4-6 lists all the available HTML server controls and the specific properties and events that each
one adds to the base class. As noted earlier, the declaration of HTML server controls on the page is the
same as what you use for normal static HTML tags, with the addition of the runat="server" attribute. It is
this attribute that allows ASP.NET to process them and translate them into instances of the
corresponding .NET class. For this reason, the HTML server controls are a good option if you’re
converting your existing HTML or ASP page to an ASP.NET web form.

Table 4-6. HTML Server Control Classes

Tag Declaration .NET Class Specific Members

 HtmlAnchor HRef, Target, Title, Name,
ServerClick event

<button runat="server"> HtmlButton CausesValidation,
ValidationGroup, ServerClick event

<form runat="server"> HtmlForm Enctype, Method, Target,
DefaultButton, DefaultFocus

 HtmlImage Align, Alt, Border, Height, Src,
Width

<input type="button"
runat="server">

HtmlInputButton Type, Value, CausesValidation,
ValidationGroup, ServerClick event

<input type="reset" runat="server"> HtmlInputReset Type, Value

CHAPTER 4 ■ SERVER CONTROLS

135

Tag Declaration .NET Class Specific Members

<input type="submit"
runat="server">

HtmlInputSubmit Type, Value, CausesValidation,
ValidationGroup, ServerClick event

<input type="checkbox"
runat="server">

HtmlInputCheckBox Checked, Type, Value, ServerClick
event

<input type="file" runat="server"> HtmlInputFile Accept, MaxLength, PostedFile,
Size, Type, Value

<input type="hidden"
runat="server">

HtmlInputHidden Type, Value, ServerChange event

<input type="image"
runat="server">

HtmlInputImage Align, Alt, Border, Src, Type, Value,
CausesValidation,
ValidationGroup, ServerClick event

<input type="radio" runat="server"> HtmlInputRadioButton Checked, Type, Value,
ServerChange event

<input type="text" runat="server"> HtmlInputText MaxLength, Type, Value,
ServerChange event

<input type="password"
runat="server">

HtmlInputPassword MaxLength, Type, Value,
ServerChange event

<select runat="server"> HtmlSelect Multiple, SelectedIndex, Size,
Value, DataSource, DataTextField,
DataValueField, Items (collection),
ServerChange event

<table runat="server">, <td
runat="server">

HtmlTable Align, BgColor, Border,
BorderColor, CellPadding,
CellSpacing, Height, Width, Rows
(collection)

<th runat="server"> HtmlTableCell Align, BgColor, BorderColor,
ColSpan, Height, NoWrap,
RowSpan, VAlign, Width

<tr runat="server"> HtmlTableRow Align, BgColor, BorderColor,
Height, VAlign, Cells (collection)

<textarea runat="server"> HtmlTextArea Cols, Rows, Value, ServerChange
event

Any other HTML tag with the
runat="server" attribute

HtmlGenericControl None

CHAPTER 4 ■ SERVER CONTROLS

136

■ Note Three specialized HTML controls aren’t shown in Table 4-6. These are the HtmlHead, HtmlMeta, and
HtmlTitle controls, which provide server-side access to the <head> portion of a web page. Using these controls,

you can dynamically set the title, metadata, and linked stylesheets for the page. Chapter 3 shows an example.

The meaning of most of the HTML server control properties is quite obvious, because they match
the underlying HTML tag attributes. This means there’s no need to focus on each individual control. In
the next few sections, you’ll get an overview of some common techniques for using controls and dig a
little deeper into their events and the common object model.

Setting Style Attributes and Other Properties
The following example shows how you can configure a standard HtmlInputText control (which
represents the <input type="text"> tag). To read or set the current text in the text box, you use the Value
property. If you want to configure the style information, you need to add new CSS style attributes using
the Style collection. Finally, if you want to set other attributes that aren’t exposed by any properties, you
need to use the Attributes collection. This example uses the Attributes collection to associate some
simple JavaScript code—showing an alert message box with the current value of the text box—to the
client-side onfocus event of the control.

protected void Page_Load(object sender, System.EventArgs e)
{
 // Perform the initialization only the first time the page is requested.
 // After that, this information is tracked in view state.
 if (!Page.IsPostBack)
 {
 // Set the style attributes to configure appearance.
 Text1.Style["font-size"] = "20px";
 Text1.Style["color"] = "red";

 // Use a slightly different but equivalent syntax
 // for setting a style attribute.
 Text1.Style.Add("background-color", "lightyellow");

 // Set the default text.
 Text1.Value = "<Enter e-mail address here>";

 // Set other nonstandard attributes.
 Text1.Attributes["onfocus"] = "alert(Text1.value)";
 }
}

If you request the page, the following HTML code will be returned for the text box:

<input id="Text1" type="text"
 style="font-size:20px;color:red;background-color:lightyellow;"
 value="<Enter e-mail address here>"
 onfocus="alert(Text1.value)" />

CHAPTER 4 ■ SERVER CONTROLS

137

The CSS style attribute may also include information that wasn’t explicitly set in the code. For
example, if you resize the input control in the Visual Studio designer, Visual Studio will add the height
and width properties to the style it uses. These details will then also appear in the final HTML.

Figure 4-3 shows the resulting page when focus changes to the text box.

Figure 4-3. Testing HTML server controls

This process of control interaction is essentially the same for all HTML server controls. Style
properties and attributes are always set in the same way. The only difference is that some controls
expose additional properties that you can use. For example, the HtmlAnchor control exposes an HRef
property that lets you set the target page for the link.

Programmatically Creating Server Controls
Sometimes you don’t know in advance how many text boxes, radio buttons, table rows, or other controls
you need because this might depend on other factors such as the number of records stored in a database
or the user’s input. With ASP.NET, the solution is easy—you can simply create instances of the HTML
server controls you need, set their properties with the object-oriented approach used in the previous
example, and then add them to the Controls collection of the containing page. This technique was
introduced in the previous chapter, and it applies equally well to HTML server controls and web
controls.

For example, the following code dynamically creates a table with five rows and four cells per row,
sets their colors and text, and shows all this on the page. The interesting detail is that no control tags are
declared in the .aspx file. Instead, everything is generated programmatically.

protected void Page_Load(object sender, System.EventArgs e)
{
 // Create a new HtmlTable object.
 HtmlTable table1 = new HtmlTable();

CHAPTER 4 ■ SERVER CONTROLS

138

 // Set the table's formatting-related properties.
 table1.Border = 1;
 table1.CellPadding = 3;
 table1.CellSpacing = 3;
 table1.BorderColor = "red";

 // Start adding content to the table.
 HtmlTableRow row;
 HtmlTableCell cell;
 for (int i=1; i<=5; i++)
 {
 // Create a new row and set its background color.
 row = new HtmlTableRow();
 row.BgColor = (i%2==0 ? "lightyellow" : "lightcyan");

 for (int j=1; j<=4; j++)
 {
 // Create a cell and set its text.
 cell = new HtmlTableCell();
 cell.InnerHtml = "Row: " + i.ToString() +
 "
Cell: " + j.ToString();

 // Add the cell to the current row.
 row.Cells.Add(cell);
 }

 // Add the row to the table.
 table1.Rows.Add(row);
 }

 // Add the table to the page.
 this.Controls.Add(table1);
}

This example contains two nested loops. The outer loop creates the rows. The inner loop creates the
individual cells for each row, and adds them to the Cells collection of the current row. When the inner
loop ends, the code adds the entire row to the Rows collection of the table. The final step occurs when
the outer loop is finished. At this point, the code adds the completed table to the Controls collection of
the page.

Figure 4-4 shows the resulting page.

CHAPTER 4 ■ SERVER CONTROLS

139

Figure 4-4. A dynamically generated table

This example used a table because it gave a good opportunity to show how child controls (cells and
rows) are added to the Controls collection of the parent, but of course this mechanism works with any
other server control.

Handling Server-Side Events
HTML server controls provide a sparse event model with two possible events: ServerClick and
ServerChange. The ServerClick event is simply a click that is processed on the server side. It’s provided
by most button controls, and it allows your code to take immediate action. This action might override
the expected behavior. For example, if you intercept the click event of a hyperlink control (the <a>
element), the user won’t be redirected to a new page unless you provide extra code to forward the
request.

The ServerChange event responds when a change has been made to a text or selection control. This
event doesn’t occur until the page is posted back (for example, after the user clicks a submit button). At
this point, the ServerChange event occurs for all changed controls, followed by the appropriate
ServerClick.

Table 4-7 shows which controls provide a ServerClick event and which ones provide a ServerChange
event.

CHAPTER 4 ■ SERVER CONTROLS

140

Table 4-7. HTML Control Events

Event Controls That Provide It

ServerClick HtmlAnchor, HtmlButton, HtmlInputButton, HtmlInputSubmit,
HtmlInputImage

ServerChange HtmlInputText, HtmlInputCheckBox, HtmlInputRadioButton,
HtmlInputHidden, HtmlSelect, HtmlTextArea

The ServerClick and ServerChange Events
The following example demonstrates the ServerClick and ServerChange events and shows you the order
in which they unfold. To create this example, you need a text box, list box, and check box.

Here are the controls on the page:

<form runat="server">
 <div>
 <select runat="server" id="List1" size="5" multiple="true">
 <option>Option 1</option>
 <option>Option 2</option>
 </select>

 <input type="text" runat="server" ID="Textbox1" Size="10" />

 <input type="checkbox" runat="server" ID="Checkbox1" />
 Option text

 <input type="submit" runat="server" ID="Submit1" value="Submit Query" />
 </div>
</form>

Note that this code declares two list items for the list box and includes the multiple attribute. This
means that the user will be able to select multiple items by holding down the Ctrl key while clicking
each entry.

The next step is to add event handlers for the ServerChange event. The text box and the check box
are attached to the same event handler, while the list box uses a separate event handler with different
code. Here’s the event handling code that works with the text box and list box:

protected void Ctrl_ServerChange(object sender, System.EventArgs e)
{
 Response.Write("ServerChange detected for " +
 ((Control)sender).ID + "");
}

The actual event handler code is quite straightforward. It simply casts the sender object to a Control
type, reads its ID property, and writes a message declaring that the event was detected (using the HTML
 element to create a bulleted list and element to add a list item).

To attach the event handler to the appropriate server controls, you need to switch to the HTML
source view, and add the OnServerChange attribute to the text box and check box tags, as shown here:

<input type="text" runat="server" ID="Textbox1" size="10"
 OnServerChange="Ctrl_ServerChange" />

CHAPTER 4 ■ SERVER CONTROLS

141

<input type="checkbox" runat="server" ID="Checkbox1"
 OnServerChange="Ctrl_ServerChange" />

■ Note Visual Studio provides a greater level of design-time support for events with web controls. When working

with web controls, you can attach event handlers using a special event view in the Properties window—you just

need to click the lightning bolt icon. With HTML server controls, this facility isn’t available, so you need to wire up

your event handlers manually, by editing the web page markup.

Next, you need to create the event handler for the list box. This event handler cycles through the
control’s Items collection and writes the value of all the selected items to the web page in a sublist,
as follows:

protected void List1_ServerChange(object sender, System.EventArgs e)
{
 Response.Write("ServerChange detected for List1. " +
 "The selected items are:");
 foreach (ListItem li in List1.Items)
 {
 if (li.Selected)
 Response.Write("" + li.Value + "");
 }
 Response.Write("");
}

You attach this event handler in the same way—by adding the OnServerChange attribute to the
select element:

<select runat="server" OnServerChange="List1_ServerChange" ... >

Finally, the submit button handles the ServerClick event, as shown here:

protected void Submit1_ServerClick(object sender, System.EventArgs e)
{
 Response.Write("ServerClick detected for Submit1.");
}

You attach this event handler by adding the OnServerClick attribute:

<input type="submit" runat="server" OnServerClick="Submit1_ServerClick" ... />

As an added bonus, when the page is created, the event handler for the Page.Load event adds
another three items to the list box, provided the page is being requested for the first time. This shows
how easy it is to programmatically add list items.

protected void Page_Load(object sender, System.EventArgs e)
{
 if (!Page.IsPostBack)
 {

CHAPTER 4 ■ SERVER CONTROLS

142

 List1.Items.Add("Option 3");
 List1.Items.Add("Option 4");
 List1.Items.Add("Option 5");
 }
}

To test this page, request it in the browser, select some items in the list box, type some characters in
the text box, select the check box, and click the submit button to generate a postback. You should end up
with something similar to what’s shown in Figure 4-5.

Figure 4-5. Detecting change events

Note that the order of change events is nondeterministic, and you shouldn’t rely on these events
occurring in any set order. However, you’re likely to see events raised in the order in which the controls
are declared. The only detail of which you’re guaranteed is that all the change events fire before the
ServerClick event that triggered the postback.

Web Controls
HTML server controls provide a relatively fast way to migrate to ASP.NET, but not necessarily the best
way. For one thing, the names of HTML controls and their attributes are not always intuitive, and they
don’t have the same design-time support for attaching event handlers. The HTML controls also have
certain limitations, such as that style properties must be set through CSS syntax (which is more difficult

CHAPTER 4 ■ SERVER CONTROLS

143

than setting a direct property) and that change events can’t be raised until the page is posted back in
response to another action. Finally, HTML server controls can’t provide user interface elements that
aren’t already defined in the HTML standard. If you want to create some sort of aggregate control that
uses a combination of HTML elements to render a complex interface, you’re on your own.

To address these issues, ASP.NET provides a higher-level web control model. All web controls are
defined in the System.Web.UI.WebControls namespace and derive from the WebControl base class,
which provides a more abstract, consistent model than the HTML server controls. Web controls also
enable additional features, such as automatic postback. But the really exciting part is that many
extended controls don’t just map a single HTML tag but instead generate more complex output made up
of several HTML tags and JavaScript code. Examples include lists of check boxes, radio buttons,
calendars, editable grids, and so on.

Figure 4-6 shows a portion of the inheritance hierarchy for web controls.

Figure 4-6. Web controls

The WebControl Base Class
All the web controls inherit from the WebControl class. The WebControl class also derives from Control.
As a result, many of its properties and methods—such as Controls, Visible, and FindControl()—are
similar to those of the HTML server controls. However, the WebControl class adds the properties shown
in Table 4-8. Many of these properties wrap the CSS style attributes, such as the foreground or

CHAPTER 4 ■ SERVER CONTROLS

144

background color, the font, the height, the width, and so on. These properties allow you to configure the
appearance of a web control much more easily (and with less chance of error).

Table 4-8. WebControl Class Properties

Property Description

AccessKey Returns or sets the keyboard shortcut that allows the user to quickly navigate to the
control. For example, if set to A, the user can move the focus to this control by
pressing Alt+A.

BackColor Returns or sets the background color.

BorderColor Returns or sets the border color.

BorderStyle One of the values from the BorderStyle enumeration, including Dashed, Dotted,
Double, Groove, Ridge, Inset, Outset, Solid, and None.

BorderWidth Returns or sets the border width.

CssClass Returns or sets the CSS style to associate with the control. The CSS style can be
defined in a <style> section at the top of the page or in a separate CSS file referenced
by the page.

Enabled Returns or sets the control’s enabled state. If false, the control is usually rendered
grayed out and is not usable.

Font Returns an object with all the style information of the font used for the control’s text.
This property includes subproperties that can be set with the object-walker syntax
shown in this chapter.

ForeColor Returns or sets the foreground color—for example, that of the text of the control.

Height Returns or sets the control’s height.

TabIndex A number that allows you to control the tab order. The control with a TabIndex of 0
has the focus when the page first loads. Pressing Tab moves the user to the control
with the next lowest TabIndex, provided it is enabled. This property is supported
only in Internet Explorer 4.0 and higher.

Tooltip Displays a text message when the user hovers the mouse above the control. Many
older browsers don’t support this property.

Width Returns or sets the control’s width.

CHAPTER 4 ■ SERVER CONTROLS

145

Basic Web Control Classes
ASP.NET includes a web control that duplicates each HTML server control and provides the same
functionality. These web controls inherit from WebControl and add their own properties and events.
Table 4-9 summarizes these core controls and their specific members.

Table 4-9. Basic Web Control Classes

ASP.NET Tag Declaration Generated HTML Key Members

<asp:Button> <input type="submit"/> or
<input type="button"/>

Text, CausesValidation, PostBackUrl,
ValidationGroup, Click event

<asp:CheckBox> <input type="checkbox"/> AutoPostBack, Checked, Text, TextAlign,
CheckedChanged event

<asp:FileUpload> <input type="file"> FileBytes, FileContent, FileName, HasFile,
PostedFile, SaveAs()

<asp:HiddenField> <input type="hidden"> Value

<asp:HyperLink> <a>... ImageUrl, NavigateUrl, Target, Text

<asp:Image> AlternateText, ImageAlign, ImageUrl

<asp:ImageButton> <input type="image"/> CausesValidation, ValidationGroup, Click
event

<asp:ImageMap> <map> HotSpotMode, HotSpots (collection),
AlternateText, ImageAlign, ImageUrl

<asp:Label> ... Text, AssociatedControlID

<asp:LinkButton> <a> Text, CausesValidation, ValidationGroup,
Click event

<asp:Panel> <div>...</div> BackImageUrl, DefaultButton,
GroupingText, HorizontalAlign, Scrollbars,
Wrap

<asp:RadioButton> <input type="radio"/> AutoPostBack, Checked, GroupName, Text,
TextAlign, CheckedChanged event

<asp:Table> <table>... BackImageUrl, CellPadding, CellSpacing,
GridLines, HorizontalAlign, Rows
(collection)

<asp:TableCell> <td>... ColumnSpan, HorizontalAlign, RowSpan,
Text, VerticalAlign, Wrap

CHAPTER 4 ■ SERVER CONTROLS

146

ASP.NET Tag Declaration Generated HTML Key Members

<asp:TableRow> <tr>...</tr> Cells (collection), HorizontalAlign,
VerticalAlign

<asp:TextBox> <input type="text"/> or
<textarea>...</textarea>

AutoPostBack, Columns, MaxLength,
ReadOnly, Rows, Text, TextMode, Wrap,
TextChanged event

The properties of web controls are all fairly intuitive. One of the goals of web controls is to make it

easier to set a control’s attributes through properties with consistent names, without having to worry
about the details of how they translate to HTML code (although having a good knowledge of HTML
certainly helps). For this reason, this chapter won’t describe and show examples for every type of
control. Instead, we’ll provide a general discussion that’s useful for every control.

To start highlighting some of the key differences between HTML server controls and web controls,
consider the following web control tag:

<asp:TextBox runat="server" ID="TextBox1" Text="This is a test"
 ForeColor="red" BackColor="lightyellow" Width="250px"
 Font-Name="Verdana" Font-Bold="True" Font-Size="20" />

Web controls are always declared on the page with the syntax <asp:ControlName>, with the asp:
prefix that makes them immediately recognizable as being different from the HTML controls. But this
example also demonstrates a more dramatic difference—the way that style information is specified.

Essentially, this tag generates a text box control with a width of 250 pixels, a red foreground color,
and a light yellow background. The text is displayed with the font Verdana, with a size of 20, and with
bold formatting. The differences between the previous declaration and the respective declaration of a
HTML tag are the following:

• The control is declared using its class name (TextBox) instead of the HTML tag
name (input).

• The default content is set with the Text property, instead of a less obvious Value
attribute.

• The style attributes (colors, width, and font) are set by direct properties, instead of
being grouped together in a single style attribute.

• Web controls also have two special restrictions:

• Every control declaration must have a corresponding closing tag or use /> (the
empty element syntax) at the end of the opening tag. In other words, ASP.NET tags
follow the same rules as tags in XHTML. If you don’t close the tag, you’ll get a
runtime error. Breaking this rule when working with HTML server controls has no
adverse effect.

• All web controls must be declared within a server-side form tag (and there can be
only one server-side form per page), even if they don’t cause a postback.
Otherwise, you’ll get a run- time error. This rule is not necessary when working
with HTML server controls, provided you don’t need to handle postbacks.

If you request a page with this tag, you’ll see that the control is translated into the following HTML
tag when the page is rendered:

CHAPTER 4 ■ SERVER CONTROLS

147

<input name="Textbox1" type="text" value="This is a test" id="Textbox1"
style="color:Red;background-color:LightYellow;font-family:Verdana;
font-size:20pt;font-weight:bold;width:250px;" />

■ Note The exact HTML that’s rendered depends on the properties you’ve set and the browser that’s making the

request. You’ll learn more about ASP.NET’s rendering system (and how it differentiates between different types of

browsers) when you consider custom controls in Chapter 27.

Units
All the control properties that use measurements, including BorderWidth, Height, and Width, require
the Unit structure, which combines a numeric value with a type of measurement (pixels, percentage,
and so on). This means that when you set these properties in a control tag, you must make sure to
append px (for pixel) or % (for percentage) to the number to indicate the type of unit.

Here’s an example with a Panel control that is 300 pixels tall and has a width equal to 50 percent of
the current browser window:

<asp:Panel Height="300px" Width="50%" id="pnl" runat="server" />

If you’re assigning a unit-based property through code, you need to use one of the static methods of
the Unit type. Use Pixel() to supply a value in pixels, and use Percentage() to supply a percentage value.

// Convert the number 300 to a Unit object
// representing pixels, and assign it.
pnl.Height = Unit.Pixel(300);

// Convert the number 50 to a Unit object
// representing percent, and assign it.
pnl.Width = Unit.Percentage(50);

You could also manually create a Unit object and initialize it using one of the supplied constructors
and the UnitType enumeration. This requires a few more steps but allows you to easily assign the same
unit to several controls.

// Create a Unit object.
Unit myUnit = new Unit(300, UnitType.Pixel);
// Assign the Unit object to several controls or properties.
pnl.Height = myUnit;
pnl.Width = myUnit;

Enumerations
Enumerations are used heavily in the .NET class library to group a set of related constants. For example,
when you set a control’s BorderStyle property, you can choose one of several predefined values from the
BorderStyle enumeration. In code, you set an enumeration using the dot syntax:

ctrl.BorderStyle = BorderStyle.Dashed;

CHAPTER 4 ■ SERVER CONTROLS

148

In the .aspx file, you set an enumeration by specifying one of the allowed values as a string. You
don’t include the name of the enumeration type, which is assumed automatically.

<asp:TextBox BorderStyle="Dashed" Text="Border Test" id="txt"
 runat="server" />

Colors
The Color property refers to a Color object from the System.Drawing namespace. You can create Color
objects in several ways:

• Using an ARGB (alpha, red, green, blue) color value: You specify each value as
integer.

• Using a predefined .NET color name: You choose the correspondingly named
read-only property from the Color class. These properties include all the HTML
colors.

• Using an HTML color name: You specify this value as a string using the
ColorTranslator class.

To use these any of techniques, you must import the System.Drawing namespace, as follows:

using System.Drawing;

The following code shows several ways to specify a color in code:

// Create a color from an ARGB value.
int alpha = 255, red = 0, green = 255, blue = 0;
ctrl.ForeColor = Color.FromArgb(alpha, red, green, blue);

// Create a color using a .NET name.
ctrl.ForeColor = Color.Crimson;

// Create a color from an HTML code.
ctrl.ForeColor = ColorTranslator.FromHtml("Blue");

When defining a color in the .aspx file, you can use any one of the known color names, as follows:

<asp:TextBox ForeColor="Red" Text="Test" id="txt" runat="server" />

Refer to the Visual Studio documentation for a full list of color names. Alternatively, you can use a
hexadecimal color number (in the format #<red><green><blue>), as shown here:

<asp:TextBox ForeColor="#99FFFF" Text="Test"
 id="txt" runat="server" />

Fonts
The Font property actually references a full FontInfo object, which is defined in the
System.Web.UI.WebControls namespace. Every FontInfo object has several properties that define a
font’s name, size, and style. Even though the WebControl.Font property is read-only, you can modify all
the FontInfo properties (shown in Table 4-10).

CHAPTER 4 ■ SERVER CONTROLS

149

Table 4-10. FontInfo Properties

Property Description

Name A string indicating the font name (such as Verdana).

Names An array of strings with font names, which are ordered by
preference.

Size The size of the font as a FontUnit object. This can represent an
absolute or relative size.

Bold, Italic, Strikeout,
Underline, and Overline

Boolean properties that either apply the given style attribute or
ignore it.

In code, you can assign values to the various font properties as shown here:

ctrl.Font.Name = "Verdana";
ctrl.Font.Bold = true;

You can also set the size using the FontUnit type:

// Specifies a relative size.
ctrl.Font.Size = FontUnit.Small;

// Specifies an absolute size of 14 points.
ctrl.Font.Size = FontUnit.Point(14);

In the .aspx file, you need to use a special object-walker syntax to specify object properties such as
font. The object-walker syntax uses a hyphen (-) to separate properties. For example, you could set a
control with a specific font (Tahoma) and font size (40 point) like this:

<asp:TextBox Font-Name="Tahoma" Font-Size="40" Text="Size Test" id="txt"
 runat="server" />

or with a relative size, as follows:

<asp:TextBox Font-Name="Tahoma" Font-Size="Large" Text="Size Test"
 id="txt" runat="server" />

Of course, in the world of the Internet, font names are just recommendations. If a given font isn’t
present on a client’s computer, the browser attempts to substitute a similar font. (For more information
on this font substitution process, refer to the CSS specification at http://www.w3.org/TR/REC-
CSS2/fonts.html.)

If you want to provide a list of possible fonts, you can use the FontInfo.Names property instead of
the FontInfo.Name property. The Names property accepts an array of names that will be rendered as an
ordered list (with greatest preference given to the names at the top of the list). Here’s an example:

<asp:TextBox Font-Names="Calibri, Times New Roman, Times"
 Font-Size="Large" Text="Size Test" id="txt" runat="server" />

http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/fonts.html

CHAPTER 4 ■ SERVER CONTROLS

150

■ Tip The Names and Name properties are kept synchronized, and setting either one affects the other. When you

set the Names property, the Name property is automatically set to the first item in the array you used for the
Names property. If you set the Name property, the Names property is automatically set with an array containing a

single item. Therefore, you should use only the Name property or the Names property, but not both at once.

Focus
Unlike HTML server controls, every web control provides a Focus() method. The Focus() method has an
effect only for input controls (controls that can accept keystrokes from the user). When the page is
rendered in the client browser, the user starts in the focused control.

For example, if you have a form that allows the user to edit customer information, you might call the
Focus() method on the first text box with customer address information. That way, the cursor appears in
this text box immediately. Also, if the text box is partway down the form, the page scrolls to the correct
position automatically. Once the page is rendered, the user can move from control to control using the
time-honored Tab key.

Of course, if you’re familiar with the HTML standard, you know there isn’t any built-in way to give
focus to an input control. Instead, you need to rely on JavaScript. This is the secret to ASP.NET’s
implementation. When your code is finished processing and the page is rendered, ASP.NET adds an
extra block of JavaScript code to the end of your page. This JavaScript code simply sets the focus to the
last control that had the Focus() method triggered. Here’s the code that ASP.NET adds to your rendered
web page to move the focus to a control named TextBox2:

<script type="text/javascript">
 WebForm_AutoFocus('TextBox2');
</script>

If you haven’t called Focus() at all, this code isn’t emitted. If you’ve called it for more than one
control, the JavaScript code uses the more recently focused control.

Rather than call the Focus() method programmatically, you can set a control that should always be
focused (unless you override it by calling the Focus() method). You do this by setting the
Form.DefaultFocus property, like so:

<form id="Form1" DefaultFocus="TextBox2" runat="server">

Incidentally, the focusing code relies on a JavaScript method named WebForm_AutoFocus(), which
ASP.NET generates automatically. Technically, the JavaScript method is provided through an ASP.NET
extension named WebResource.axd. The resource is named Focus.js. If you dig through the rendered
HTML of your page, you’ll find an element that links to this JavaScript file that takes this form (where the
d and t arguments are long):

<script src="WebResource.axd?d=...&t=..."></script>

You can type this request directly into your browser to download and examine the JavaScript
document. It’s quite lengthy, because it carefully deals with cases such as focusing on a nonfocusable
control that contains a focusable child. However, the following code shows the heart of the focusing logic:

function WebForm_AutoFocus(focusId) {
 // Find the element based on the ID (code differs based on browser).
 var targetControl;

CHAPTER 4 ■ SERVER CONTROLS

151

 if (__nonMSDOMBrowser) {
 targetControl = document.getElementById(focusId);
 }
 else {
 targetControl = document.all[focusId];
 }

 // Check if the control can accept focus or contains a child that can.
 var focused = targetControl;
 if (targetControl != null && (!WebForm_CanFocus(targetControl))) {
 focused = WebForm_FindFirstFocusableChild(targetControl);
 }
 // If there is a valid control, try to apply focus and scroll it into view.
 if (focused != null) {
 try {
 focused.focus();
 focused.scrollIntoView();
 if (window.__smartNav != null) {
 window.__smartNav.ae = focused.id;
 }
 }
 catch (e) {
 }
 }
}

As you can see, the first task this code performs is to test whether the current browser is an up-level
version of Internet Explorer (and hence supports the Microsoft DOM). However, even if it isn’t, the script
code still performs the autofocusing, with only subtle differences.

Another way to manage focus is using access keys. For example, if you set the AccessKey property of
a TextBox to A, then when the user presses Alt+A, focus will switch to the TextBox. Labels can also get
into the game, even though they can’t accept focus. The trick is to set the property
Label.AssociatedControlID to specify a linked input control. That way, the label transfers focus to the
control nearby.

For example, the following label gives focus to TextBox2 when the keystroke Alt+2 is pressed:

<asp:Label AccessKey="2" AssociatedControlID="TextBox2" runat="server">
 TextBox2:</asp:Label><asp:TextBox runat="server" ID="TextBox2" />

Access keys are also supported in non-Microsoft browsers, including Firefox.

The Default Button
Along with the idea of control focusing, ASP.NET includes a mechanism that allows you to designate a
default button on a web page. The default button is the button that is “clicked” when the user presses
the Enter key. For example, on a form you might want to turn the submit button into a default button.
That way, if the user hits Enter at any time, the page is posted back and the Button.Click event is fired for
that button.

To designate a default button, you must set the HtmlForm.DefaultButton property with the ID of
the respective control, as shown here:

<form id="Form1" DefaultButton="cmdSubmit" runat="server">

CHAPTER 4 ■ SERVER CONTROLS

152

The default button must be a control that implements the IButtonControl interface. The interface is
implemented by the Button, LinkButton, and ImageButton web controls but not by any of the HTML
server controls.

In some cases, it makes sense to have more than one default button. For example, you might create
a web page with two groups of input controls. Both groups may need a different default button. You can
handle this by placing the groups into separate panels. The Panel control also exposes the DefaultButton
property, which works when any input control it contains gets the focus.

Scrollable Panels
The Panel control has the ability to scroll. This means you can fill your Panel controls with server
controls or HTML, explicitly set the Height and Width properties of the panel so they won’t be smaller
than what’s required, and then switch on scrolling by setting the ScrollBars property to Vertical,
Horizontal, Both, or Auto (which shows scrollbars only when there’s too much content to fit).

Here’s an example:

<asp:Panel ID="Panel1" runat="server" Height="116px" Width="278px"
 BorderStyle="Solid" BorderWidth="1px" ScrollBars="Auto">
 This scrolls.

 <asp:Button ID="Button1" runat="server" Text="Button" />
 <asp:Button ID="Button2" runat="server" Text="Button" />

 ...
</asp:Panel>

Figure 4-7 shows the result.

Figure 4-7. A scrollable panel

CHAPTER 4 ■ SERVER CONTROLS

153

The panel is rendered as a <div> tag. The scrolling behavior is provided by setting the CSS overflow
property.

Handling Web Control Events
Server-side events work in much the same way as the server events of the HTML server controls. Instead
of the ServerClick events, there is a Click event, and instead of the generic ServerChange events there are
specific events such as CheckedChanged (for the RadioButton and CheckButton) and TextChanged (for
the TextBox), but the behavior remains the same.

The key difference is that web controls support the AutoPostBack feature described in the previous
chapter, which uses JavaScript to capture a client-side event and trigger a postback. ASP.NET receives
the posted-back page and raises the corresponding server-side event immediately.

To watch these events in action, it helps to create a simple event tracker application (see Figure
4-8). All this application does is add a new entry to a list control every time one of the events it’s
monitoring occurs. This allows you to see the order in which events are triggered and the effect of using
automatic postback.

Figure 4-8. The event tracker

CHAPTER 4 ■ SERVER CONTROLS

154

In this demonstration, all control change events are handled by the same event handler:

<form id="form1" runat="server">
 <div>
 <h3>List of events:</h3>
 <asp:ListBox id="lstEvents" runat="server" Height="107px" Width="355px"/>

 <h3>Controls being monitored for change events:</h3>
 <asp:TextBox id="txt" runat="server" AutoPostBack="true"
 OnTextChanged="CtrlChanged"/>

 <asp:CheckBox id="chk" runat="server" AutoPostBack="true"
 OnCheckedChanged="CtrlChanged"/>

 <asp:RadioButton id="opt1" runat="server" GroupName="Sample"
 AutoPostBack="true" OnCheckedChanged="CtrlChanged"/>
 <asp:RadioButton id="opt2" runat="server" GroupName="Sample"
 AutoPostBack="true" OnCheckedChanged="CtrlChanged"/>
 </div>
</form>

The event handler simply adds a new message to a list box and scrolls to the end:

protected void CtrlChanged(Object sender, EventArgs e)
{
 string ctrlName = ((Control)sender).ID;
 lstEvents.Items.Add(ctrlName + " Changed");

 // Select the last item to scroll the list so the most recent
 // entries are visible.
 lstEvents.SelectedIndex = lstEvents.Items.Count - 1;
}

■ Note Automatic postback isn’t always a good thing. Posting the page back to the server interrupts the user for a

brief amount of time. If the page is large, the delay may be more than a noticeable flicker. If the page is long and
the user has scrolled to the bottom of the page, the user will lose the current position when the page is refreshed

and the view is returned to the top of the page. Because of these idiosyncrasies, it’s a good idea to evaluate
whether you really need postback and to refrain from using it for minor cosmetic reasons. One possible alternative

is to use the Ajax features described in Chapter 30.

The Click Event and the ImageButton Control
In the examples you’ve looked at so far, the second event parameter has always been used to pass an
empty System.EventArgs object. This object doesn’t contain any additional information—it’s just a
glorified placeholder.

One control that does send extra information is the ImageButton control. It sends a special
ImageClickEventArgs object (from the System.Web.UI namespace) that provides X and Y properties
representing the location where the image was clicked. Using this additional information, you can create

CHAPTER 4 ■ SERVER CONTROLS

155

a server-side image map. For example, here’s the code that simply displays the location where the image
was clicked and checks if it was over a predetermined region of the picture:

protected void ImageButton1_Click(object sender,
 System.Web.UI.ImageClickEventArgs e)
{
 lblResult.Text = "You clicked at (" + e.X.ToString() +
 ", " + e.Y.ToString() + "). ";

 // Check if the clicked point falls in the rectangle described
 // by the points (20,20) and (275,100), which is the button surface.
 if ((e.Y < 100) && (e.Y > 20) && (e.X > 20) && (e.X < 275))
 {
 lblResult.Text += "You clicked on the button surface.";
 }
 else
 {
 lblResult.Text += "You clicked the button border.";
 }
}

The sample web page shown in Figure 4-9 puts this feature to work with a simple graphical button.
Depending on whether the user clicks the button border or the button surface, the web page displays a
different message.

■ Note Another, more powerful approach to handling image clicks is to create a server-side image map using the

ImageMap control. The ImageMap control is demonstrated in Chapter 28, which deals with dynamic graphics.

Figure 4-9. Using an ImageButton control

CHAPTER 4 ■ SERVER CONTROLS

156

The List Controls
The list controls are specialized web controls that generate list boxes, drop-down lists, and other
repeating controls that can be either bound to a data source (such as a database or a hard-coded
collection of values) or programmatically filled with items. Most list controls allow the user to select one
or more items, but the BulletedList is an exception—it displays a static bulleted or numbered list. Table
4-11 shows all the list controls.

Table 4-11. List Controls

Control Description

<asp:DropDownList> A drop-down list populated by a collection of <asp:ListItem> objects. In
HTML, it is rendered by a <select> tag with the size="1" attribute.

<asp:ListBox> A list box list populated by a collection of <asp:ListItem> objects. In HTML,
it is rendered by a <select> tag with the size="x" attribute, where x is the
number of visible items.

<asp:CheckBoxList> Its items are rendered as check boxes, aligned in a table with one or more
columns.

<asp:RadioButtonList> Like the <asp:CheckBoxList>, but the items are rendered as radio buttons.

<asp:BulletedList> A static bulleted or numbered list. In HTML, it is rendered using the or
 tags. You can also use this control to create a list of hyperlinks.

All the list controls support the same base properties and methods as other web controls. In

addition, they inherit from the System.Web.UI.WebControls.ListControl class, which exposes the
properties described in Table 4-12 (among others). You can fill the lists automatically from a data source
(as you’ll learn in Part 2), or you can fill them programmatically or declaratively, as you’ll see in the
next section.

Table 4-12. ListControl Class Properties

Member Description

AutoPostBack If true, the form is automatically posted back when the user changes the
current selection.

Items Returns a collection of ListItem items (the items can also be added
declaratively by adding the <asp:ListItem> tag).

SelectedIndex Returns or sets the index of the selected item. For lists with multiple
selectable items, you should loop through the Items collection and check
the Selected property of each ListItem instead.

CHAPTER 4 ■ SERVER CONTROLS

157

Member Description

SelectedItem Returns a reference to the first selected ListItem. For lists with multiple
selectable items, you should loop through the Items collection and check
the Selected property of each ListItem instead.

DataSource You can set this property to an object that contains the information you
want to display (such as a DataSet, DataTable, or collection). When you call
DataBind(), the list will be filled based on that object.

DataMember Used in conjunction with data binding when the data source contains more
than one table (such as when the source is a DataSet). The DataMember
identifies which table you want to use.

DataTextField Used in conjunction with data binding to indicate which property or field
in the data source should be used for the text of each list item.

DataValueField Used in conjunction with data binding to indicate which property or field
in the data source should be used for the value attribute of each list item
(which isn’t displayed but can be read programmatically for future
reference).

DataTextFormatString Sets the formatting string used to render the text of the list item (according
to the DataTextField property).

In addition, the ListControl control class also defines a SelectedIndexChanged event, which fires

when the user changes the current selection.

■ Note The SelectedIndexChanged event and the SelectedIndex and SelectedItem properties are not used for the

BulletedList control.

The Selectable List Controls
The selectable list controls include the DropDownList, ListBox, CheckBoxList, and RadioButtonList
controls—all the list controls except the BulletedList. They allow users to select one or more of the
contained items. When the page is posted back, you can check which items were chosen.

By default, the RadioButtonList and CheckBoxList render multiple option buttons or check boxes.
Both of these classes add a few more properties that allow you to manage the layout of these repeated
items, as described in Table 4-13.

CHAPTER 4 ■ SERVER CONTROLS

158

Table 4-13. Added RadioButtonList and CheckBoxList Properties

Property Description

RepeatLayout This enumeration specifies whether the check boxes or radio buttons will
be rendered in a table (Table), inline (Flow), in a element
(UnorderedList), or in a elment (OrderedList).

RepeatDirection This specifies whether the list of controls will be rendered horizontally or
vertically.

RepeatColumns This sets the number of columns, in case RepeatLayout is set to Table.

CellPadding, CellSpacing,
TextAlign

If RepeatLayout is set to Table, then these properties configure the
spacing and alignment of the cells of the layout table.

Here’s an example page that declares an instance of every selectable list control, adds items to each

of them declaratively, and sets a few other properties:

<form id="form1" runat="server">
 <div>
 <asp:ListBox runat="server" ID="Listbox1" SelectionMode="Multiple" Rows="5">
 <asp:ListItem Selected="true">Option 1</asp:ListItem>
 <asp:ListItem>Option 2</asp:ListItem>
 </asp:ListBox>

 <asp:DropDownList runat="server" ID="DropdownList1">
 <asp:ListItem Selected="true">Option 1</asp:ListItem>
 <asp:ListItem>Option 2</asp:ListItem>
 </asp:DropDownList>

 <asp:CheckBoxList runat="server" ID="CheckboxList1" RepeatColumns="3" >
 <asp:ListItem Selected="true">Option 1</asp:ListItem>
 <asp:ListItem>Option 2</asp:ListItem>
 </asp:CheckBoxList>

 <asp:RadioButtonList runat="server" ID="RadiobuttonList1"
 RepeatDirection="Horizontal" RepeatColumns="2">
 <asp:ListItem Selected="true">Option 1</asp:ListItem>
 <asp:ListItem>Option 2</asp:ListItem>
 </asp:RadioButtonList>
 <asp:Button id="Button1" runat="server" Text="Submit"
 OnClick="Button1_Click"/>
 </div>
</form>

CHAPTER 4 ■ SERVER CONTROLS

159

When the page is loaded for the first time, the event handler for the Page.Load event adds three
more items to each list control programmatically, as shown here:

protected void Page_Load(object sender, System.EventArgs e)
{
 if (!Page.IsPostBack)
 {
 for (int i=3; i<=5; i++)
 {
 Listbox1.Items.Add("Option " + i.ToString());
 DropdownList1.Items.Add("Option " + i.ToString());
 CheckboxList1.Items.Add("Option " + i.ToString());
 RadiobuttonList1.Items.Add("Option " + i.ToString());
 }
 }
}

Finally, when the submit button is clicked, the selected items of each control are displayed on the
page. For the controls with a single selection (DropDownList and RadioButtonList), this is just a matter
of accessing the SelectedItem property. For the other controls that allow multiple selections, you must
cycle through all the items in the Items collection and check whether the ListItem.Selected property is
true. Here’s the code that does both of these tasks:

protected void Button1_Click(object sender, System.EventArgs e)
{
 Response.Write("Selected items for Listbox1:
");
 foreach (ListItem li in Listbox1.Items)
 {
 if (li.Selected) Response.Write("- " + li.Text + "
");
 }

 Response.Write("Selected item for DropdownList1:
");
 Response.Write("- " + DropdownList1.SelectedItem.Text + "
");

 Response.Write("Selected items for CheckboxList1:
");
 foreach (ListItem li in CheckboxList1.Items)
 {
 if (li.Selected) Response.Write("- " + li.Text + "
");
 }

 Response.Write("Selected item for RadiobuttonList1:
");
 Response.Write("- " + RadiobuttonList1.SelectedItem.Text + "
");
}

To test the page, load it, select one or more items in each control, and then click the button. You
should get something like what’s shown in Figure 4-10.

CHAPTER 4 ■ SERVER CONTROLS

160

Figure 4-10. Checking for selected items in the list controls

■ Tip You can set the ListItem.Enabled property to false if you want an item in a RadioButtonList or CheckBoxList

to be disabled. It will still appear in the page, but it will be grayed out and won’t be selectable. The

ListItem.Enabled property is ignored for ListBox and DropDownList controls.

CHAPTER 4 ■ SERVER CONTROLS

161

The BulletedList Control
The BulletedList control is the server-side equivalent of the (unordered list) or (ordered list)
elements. As with all list controls, you set the collection of items that should be displayed through the
Items property. Additionally, you can use the properties in Table 4-14 to configure how the items are
displayed.

Table 4-14. Added BulletedList Properties

Property Description

BulletStyle Determines the type of list. Choose from Numbered (1, 2, 3...), LowerAlpha (a,
b, c...) and UpperAlpha (A, B, C...), LowerRoman (i, ii, iii...) and UpperRoman (I,
II, III...), and the bullet symbols Disc, Circle, Square, or CustomImage (in which
case you must set the BulletImageUrl property).

BulletImageUrl If the BulletStyle is set to CustomImage, this points to the image that is placed
to the left of each item as a bullet.

FirstBulletNumber In an ordered list (using the Numbered, LowerAlpha, UpperAlpha,
LowerRoman, or UpperRoman styles), this sets the first value. For example, if
you set FirstBulletNumber to 3, the list might read 3, 4, 5 (for Numbered) or C,
D, E (for UpperAlpha).

DisplayMode Determines whether the text of each item is rendered as text (use Text, the
default) or a hyperlink (use LinkButton or HyperLink). The difference between
LinkButton and HyperLink is how they treat clicks. When you use LinkButton,
the BulletedList fires a Click event that you can react to on the server to
perform the navigation. When you use HyperLink, the BulletedList doesn’t fire
the Click event—instead, it treats the text of each list item as a relative or
absolute URL, and renders them as ordinary HTML hyperlinks. When the user
clicks an item, the browser attempts to navigate to that URL.

If you choose to set the DisplayMode to LinkButton, you can react to the Click event to determine

which item was clicked. Here’s an example:

protected void BulletedList1_Click(object sender, BulletedListEventArgs e)
{
 string itemText = BulletedList1.Items[e.Index].Text;
 Label1.Text = "You choose item" + itemText;
}

Figure 4-11 shows the different BulletStyle values. When you click one, the list is updated
accordingly.

CHAPTER 4 ■ SERVER CONTROLS

162

Figure 4-11. Different BulletedList styles

Input Validation Controls
One of the most common uses for web pages (and the reason that the HTML form tags were first
created) is to collect data. Often, a web page will ask a user for some information and then store it in a
back-end database. In almost every case, this data must be validated to ensure that you don’t store
useless, spurious, or contradictory information that might cause later problems.

Ideally, the validation of the user input should take place on the client side so that the user is
immediately informed that there’s something wrong with the input before the form is posted back to the
server. If this pattern is implemented correctly, it saves server resources and gives the user faster
feedback. However, regardless of whether client-side validation is performed, the form’s data must also
be validated on the server side. Otherwise, a shrewd attacker could hack the page by removing the client-
side JavaScript that validates the input, saving the new page, and using it to submit bogus data.

Writing validation code by hand is a lengthy task, especially because the models for client-side
programming (typically JavaScript) and server-side programming (in this case, ASP.NET) are quite
different. The developers at Microsoft are well aware of this, so, in addition to the set of HTML and web
controls, they also developed a set of validation controls. These controls can be declared on a web form
and then bound to any other input control. Once bound to an input control, the validation control
performs automatic client-side and server-side validation. If the corresponding control is empty, doesn’t
contain the correct data type, or doesn’t adhere to the specified rules, the validator will prevent the page
from being posted back altogether.

CHAPTER 4 ■ SERVER CONTROLS

163

The Validation Controls
ASP.NET includes six validation controls. These controls all perform a good portion of the heavy lifting
for you, thereby streamlining the validation process and saving you from having to write tedious code.
Even better, the validation controls are flexible enough to work with the custom rules you define, which
makes your code more reusable and modular. Table 4-15 briefly summarizes each validator.

Table 4-15. The Validation Controls

Validation Control Description

<asp:RequiredFieldValidator> Checks that the control it has to validate is not empty when the
form is submitted.

<asp:RangeValidator> Checks that the value of the associated control is within a
specified range. The value and the range can be numerical—a
date or a string.

<asp:CompareValidator> Checks that the value of the associated control matches a
specified comparison (less than, greater than, and so on)
against another constant value or control.

<asp:RegularExpressionValidator> Checks if the value of the control it has to validate matches the
specified regular expression.

<asp:CustomValidator> Allows you to specify any client-side JavaScript validation
routine and its server-side counterpart to perform your own
custom validation logic.

<asp:ValidationSummary> Shows a summary with the error messages for each failed
validator on the page (or in a pop-up message box).

It’s important to note that you can use more than one validator for the same control. For example,

you could use a validator to ensure that an input control is not empty and another to ensure that it
contains data of a certain type. In fact, if you use the RangeValidator, CompareValidator, or
RegularExpressionValidator, validation will automatically succeed if the input control is empty,
because there is no value to validate. If this isn’t the behavior you want, you should add a
RequiredFieldValidator to the control. This ensures that two types of validation will be performed,
effectively restricting blank values.

Although you can’t validate RadioButton or CheckBox controls, you can validate the TextBox (the
most common choice) and other controls such as ListBox, DropDownList, RadioButtonList,
HtmlInputText, HtmlTextArea, and HtmlSelect. When validating a list control, the property that is being
validated is the Value property of the selected ListItem object. Remember, the Value property is a hidden
attribute that stores a piece of information in the HTML page for each list item, but it isn’t displayed in
the browser. If you don’t use the Value attribute, you can’t validate the control (validating the text of the
selection isn’t a supported option).

Technically, every control class has the option of designating one property that can be validated
using the ValidationProperty attribute. For example, if you create your own control class named
FancyTextBox, here’s how you would designate the Text property as the property that supports
validation:

CHAPTER 4 ■ SERVER CONTROLS

164

[ValidationProperty("Text")]
public class FancyTextBox : WebControl
{...}

You’ll learn more about how attributes work with custom controls in Chapter 27.

The Validation Process
You can use the validation controls to verify a page automatically when the user submits it or to verify it
manually in your code. The first approach is the most common.

When using automatic validation, the user receives a normal page and begins to fill in the input
controls. When finished, the user clicks a button to submit the page. Every button has a
CausesValidation property, which can be set to true or false. What happens when the user clicks the
button depends on the value of the CausesValidation property:

• CausesValidation is false: ASP.NET will ignore the validation controls, the page
will be posted back, and your event-handling code will run normally.

• CausesValidation is true (the default): ASP.NET will automatically validate the
page when the user clicks the button. It does this by performing the validation for
each control on the page. If any control fails to validate, ASP.NET will return the
page with some error information, depending on your settings. Your click event-
handling code may or may not be executed—meaning you’ll have to specifically
check in the event handler whether the page is valid.

■ Note Many other button-like controls that can be used to submit the page also provide the CausesValidation

property. Examples include the LinkButton, ImageButton, and BulletedList.

Based on this description, you’ll realize that validation happens automatically when certain buttons
are clicked. It doesn’t happen when the page is posted back because of a change event (such as choosing
a new value in an AutoPostBack list) or if the user clicks a button that has CausesValidation set to false.
However, you can still validate one or more controls manually and then make a decision in your code
based on the results.

In browsers that support it, ASP.NET will automatically add code for client-side validation. In this
case, when the user clicks a CausesValidation button, the same error messages will appear without the
page needing to be submitted and returned from the server. This increases the responsiveness of the
application. However, if the page validates successfully on the client side, ASP.NET will still revalidate it
when it’s received at the server. By performing the validation at both ends, your application can be as
responsive as possible but still remain secure. Best of all, the client-side validation works in most non-
Microsoft web browsers.

Figure 4-12 shows a page that uses validation with several text boxes and ends with a validation
summary. In the following section, you’ll learn about how you can use the different validators in this
example.

CHAPTER 4 ■ SERVER CONTROLS

165

Figure 4-12. Validating a sample page

The BaseValidator Class
The validation control classes are found in the System.Web.UI.WebControls namespace and inherit
from the BaseValidator class. This class defines the basic functionality for a validation control. Table 4-
16 describes its key properties.

CHAPTER 4 ■ SERVER CONTROLS

166

Table 4-16. BaseValidator Members

Member Description

ControlToValidate Indicates the input control to validate.

Display Indicates how the error message will be shown. If Static, the space required to
show the message will be calculated and added to the space layout in advance.
If Dynamic, the page layout will dynamically change to show the error string.
Be aware that although the dynamic style could seem useful, if your layout is
heavily based on table structures, it could change quite a bit if multiple strings
are dynamically added, and this could confuse the user.

EnableClientScript A Boolean property that specifies whether the client-side validation will take
place. It is true by default.

Enabled A Boolean property that allows the user to enable or disable the validator.
When the control is disabled, it does not validate anything. You can set this
property programmatically if you want to create a page that dynamically
decides what it should validate.

ErrorMessage Error string that will be shown in the errors summary by the
ValidationSummary control, if present.

Text The error text that will be displayed in the validator control if the attached
input control fails its validation.

IsValid This property is also usually read or set only from script code (or the code-
behind class) to determine whether the associated input control’s value is
valid. This property can be checked on the server after a postback, but if the
client-side validation is active and supported by the client browser, the
execution won’t get to the server if the value isn’t valid. (In other words, you
check this property just in case the client-side validation did not run.)
Remember that you can also read the Page.IsValid property to know in a single
step if all the input controls are in a valid state. Page.IsValid returns true only if
all the contained controls are valid.

SetFocusOnError If true, when the user attempts to submit a page that has an invalid control, the
browser switches focus to the input control so the value can be easily corrected.
(If false, the button or control that was clicked to post the page retains focus.)
This feature works for both client-side and server-side validation. If you have
multiple validators with SetFocusOnError set to true, and all the input controls
are invalid, the first input control in the tab sequence gets focus.

ValidationGroup Allows you to group multiple validators into a logical group so that validation
can be performed distinctly without involving other groups. This is
particularly useful if you have several distinct panels on a web page, each with
its own submit button.

Validate() This method revalidates the control and updates the IsValid property
accordingly. The web page calls this method when a page is posted back by a
CausesValidation control. You can also call it programmatically (for example,
if you programmatically set the content of an input control and you want to
check its validity).

CHAPTER 4 ■ SERVER CONTROLS

167

In addition, the BaseValidator class has other properties such as BackColor, Font, ForeColor, and
others that are inherited (and in some case overridden) from the base class Label (and the classes it
inherits from, such as WebControl and Control). Every derived validator adds its own specific properties,
which you’ll see in the following sections.

The RequiredFieldValidator Control
The simplest available control is RequiredFieldValidator, whose only work is to ensure that the
associated control is not empty. For example, the control will fail validation if a linked text box doesn’t
contain any content (or just contains spaces). Alternatively, instead of checking for blank values you can
specify a default value using the InitialValue property. In this case, validation fails if the content in the
control matches this InitialValue (indicating that the user hasn’t changed it in any way).

Here is an example of a typical RequiredFieldValidator:

<asp:TextBox runat="server" ID="Name" />
<asp:RequiredFieldValidator runat="server"
 ControlToValidate="Name" ErrorMessage="Name is required"
 Display="dynamic">*
</asp:RequiredFieldValidator>

The validator declared here will show an asterisk (*) character if the Name text box is empty. This
error text appears when the user tries to submit the form by clicking a button that has CausesValidation
set to true. It also occurs on the client side in Internet Explorer 5.0 or above as soon as the user tabs to a
new control, thanks to the client-side JavaScript.

If you want to place a specific message next to the validated control, you should replace * with an
error message. (You don’t need to use the ErrorMessage property. The ErrorMessage is required only if
you want to show the summary of all the errors on the page using the ValidationSummary control, which
you’ll see later in this chapter.) Alternatively, for a nicer result, you could use an HTML tag to use
a picture (such as the common ! sign inside a yellow triangle) with a tooltip for the error message. You’ll
see this approach later in this chapter as well.

The RangeValidator Control
The RangeValidator control verifies that an input value falls within a predetermined range. It has three
specific properties: MinimumValue, MaximumValue, and Type. The MinimumValue and
MaximumValue properties define an inclusive range of valid values. The Type property defines the type
of the data that will be typed into the input control and validated. The supported values are Currency,
Date, Double, Integer, and String.

The following example checks that the date entered falls within the range of August 5 to August 20
(encoded in the locale-independent form yyyy-mm-dd, so if your web server uses different regional
settings, you’ll have to change the date format):

<asp:TextBox runat="server" ID="DayOff" />
<asp:RangeValidator runat="server" Display="dynamic"
 ControlToValidate="DayOff" Type="Date"
 ErrorMessage="Day Off is not within the valid interval"
 MinimumValue="2008-08-05" MaximumValue="2008-08-20">*
</asp:RangeValidator>

CHAPTER 4 ■ SERVER CONTROLS

168

The CompareValidator Control
The CompareValidator control compares a value in one control with a fixed value or, more commonly, a
value in another control. For example, this allows you to check that two text boxes have the same data or
that a value in one text box doesn’t exceed a maximum value established in another.

Like the RangeValidator control, the CompareValidator provides a Type property that specifies the
type of data you are comparing. It also exposes the ValueToCompare and ControlToCompare properties,
which allow you to compare the value of the input control with a constant value or the value of another
input control, respectively. You use only one of these two properties.

The Operator property allows you to specify the type of comparison you want to do. The available
values are Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, and
DataTypeCheck. The DataTypeCheck value forces the validation control to check that the input has the
required data type (specified through the Type property), without performing any additional
comparison.

The following example compares an input with a constant value in order to ensure that the specified
age is greater than or equal to 18:

<asp:TextBox runat="server" ID="Age" />
<asp:CompareValidator runat="server" Display="dynamic"
 ControlToValidate="Age" ValueToCompare="18"
 ErrorMessage="You must be at least 18 years old"
 Type="Integer" Operator="GreaterThanEqual">*
</asp:CompareValidator>

The next example compares the input values in two password text boxes to ensure that their value is
the same:

<asp:TextBox runat="server" TextMode="Password" ID="Password" />
<asp:TextBox runat="server" TextMode="Password" ID="Password2" />
<asp:CompareValidator runat="server"
 ControlToValidate="Password2" ControlToCompare="Password"
 ErrorMessage="The passwords don't match"
 Type="String" Display="dynamic">

</asp:CompareValidator>

This example also demonstrates another useful technique. The previous examples have used an
asterisk (*) to indicate errors. However, this control tag uses an tag to show a small image file of an
exclamation mark instead.

The RegularExpressionValidator Control
The RegularExpressionValidator control is a powerful tool in the ASP.NET developer’s toolbox. It allows
you to validate text by matching against a pattern defined in a regular expression. You simply need to set
the regular expression in the ValidationExpression property.

Regular expressions are also powerful tools—they allow you to specify complex rules that specify the
characters, and in what sequence (position and number of occurrences) they are allowed, in the string.
For example, the following control checks that the text input in the text box is a valid e-mail address:

<asp:TextBox runat="server" ID="Email" />
<asp:RegularExpressionValidator runat="server"
 ControlToValidate="Email" ValidationExpression=".*@.{2,}\..{2,}"

CHAPTER 4 ■ SERVER CONTROLS

169

 ErrorMessage="E-mail is not in a valid format" Display="dynamic">*
</asp:RegularExpressionValidator>

The expression .*@.{2,}\..{2,} specifies that the string that it’s validating must begin with a number of
characters (.*) and must contain an @ character, at least two more characters (the domain name), a
period (escaped as \.), and, finally, at least two more characters for the domain extension. For example,
marco@apress.com is a valid e-mail address, while marco@apress or marco.apress.com would fail
validation. The proposed expression is quite simple in reality. Using a more complex regular expression,
you could check that the domain name is valid, that the extension is not made up (see
http://www.icann.org for a list of allowed domain name extensions), and so on. However, regular
expressions obviously don’t provide any way to check that a domain actually exists or is online.

Table 4-17 summarizes the commonly used syntax constructs (modifiers) for regular expressions.

Table 4-17. Metacharacters for Matching Single Characters

Character Escapes Description

Ordinary characters Characters other than .$^{[(|)*+?\ match themselves.

\b Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.

\v Matches a vertical tab.

\f Matches a form feed.

\n Matches a newline.

\ If followed by a special character (one of .$^{[(|)*+?\), this character escape
matches that character literal. For example, \+ matches the + character.

In addition to single characters, you can specify a class or a range of characters that can be matched

in the expression. For example, you could allow any digit or any vowel in any position and exclude all the
other characters. The metacharacters in Table 4-18 accomplish this.

Table 4-18. Metacharacters for Matching Types of Characters

Character Class Description

. Matches any character except \n.

[aeiou] Matches any single character specified in the set.

[^aeiou] Matches any character not specified in the set.

[3-7a-dA-D] Matches any character specified in the specified ranges (in the example the ranges
are 3-7, a-d, A-D).

mailto:marco@apress.com
http://www.icann.org

CHAPTER 4 ■ SERVER CONTROLS

170

Character Class Description

\w Matches any word character; that is, any alphanumeric character or the
underscore (_).

\W Matches any nonword character.

\s Matches any whitespace character (space, tab, form feed, newline, carriage
return, or vertical feed).

\S Matches any nonwhitespace character.

\d Matches any decimal character.

\D Matches any nondecimal character.

Using more advanced syntax, you can specify that a certain character or class of characters must be

present at least once, or between two and six times, and so on. The quantifiers are placed just after a
character or a range of characters and allow you to specify how many times the preceding character
must be matched (see Table 4-19).

Table 4-19. Quantifiers

Quantifier Description

* Zero or more matches

+ One or more matches

? Zero or one matches

{N} N matches

{N,} N or more matches

{N,M} Between N and M matches (inclusive)

To demonstrate these rules with another easy example, consider the following regular expression:

[aeiou]{2,4}\+[1-5]*

A string that correctly matches this expression must start with two to four vowels, have a + sign, and
terminate with zero or more digits between 1 and 5. The .NET Framework documentation details many
more expression modifiers.

Table 4-20 describes a few common (and useful) regular expressions.

CHAPTER 4 ■ SERVER CONTROLS

171

Table 4-20. Commonly Used Regular Expressions

Content Regular Expression Description

E-mail addressa \S+@\S+\.\S+ Defines an email address that requires an at
symbol (@) and a dot (.), and only allows
nonwhitespace characters.

Password \w+ Defines a password that allows any sequence of
word characters (letter, space, or underscore).

Specific-length password \w{4,10} Defines a password that must be at least four
characters long but no longer than ten characters.

Advanced password [a-zA-Z]\w{3,9} Defines a password that allows four to ten total
characters, as with the specific-length password.
The twist is that the first character must fall in the
range of a-z or A-Z (that is to say, it must start with
a nonaccented ordinary letter).

Another advanced
password

[a-zA-Z]\w*\d+\w* Defines a password that starts with a letter
character, followed by zero or more word
characters, one or more digits, and then zero or
more word characters. In short, it forces a
password to contain a number somewhere inside
it. You could use a similar pattern to require two
numbers or any other special character.

Limited-length field \S{4,10} Defines a string of four to ten characters (like the
password example), but it allows special
characters (asterisks, ampersands, and so on).

Social Security number
(US)

\d{3}-\d{2}-\d{4} Defines a sequence of three, two, and then four
digits, with each group separated by a hyphen. A
similar pattern could be used when requiring a
phone number.

aMany different regular expressions of varying complexity can validate e-mail addresses. See
http://www.4guysfromrolla.com/webtech/validateemail.shtml for a discussion of the subject and numerous examples.

The CustomValidator Control
If the validation controls described so far are not flexible or powerful enough for you, and if you need
more advanced or customized validation, then the CustomValidator control is what you need. The
CustomValidator allows you to execute your custom client-side and server-side validation routines. You
can associate these routines with the control so that validation is performed automatically. If the
validation fails, the Page.IsValid property is set to false, as occurs with any other validation control.

The client-side and server-side validation routines for the CustomValidator are declared similarly.
They both take two parameters: a reference to the validator and a custom argument object. The custom
argument object provides a Value property that contains the current value of the associated input
control (the value you have to validate) and an IsValid property through which you specify whether the
input value is valid. If you want to check that a number is a multiple of five, for example, you could use a
client-side JavaScript validation routine like this:

http://www.4guysfromrolla.com/webtech/validateemail.shtml

CHAPTER 4 ■ SERVER CONTROLS

172

<script type="text/javascript">
 function EmpIDClientValidate(ctl, args)
 {

 // the value is a multiple of 5 if the modulus by 5 is 0
 args.IsValid=(args.Value%5 == 0);
 }
</script>

To associate this code with the control so that client-side validation is performed automatically, you
simply need to set the ClientValidationFunction to the name of the function (in this case,
EmpIDClientValidate).

Next, when the page is posted back, ASP.NET fires the CustomValidator.ServerValidate event. You
handle this event to perform the same task using C# code. And although the JavaScript logic is optional,
you must make sure you include a server-side validation routine to ensure the validation is performed
even if the client is using a down-level browser (or tampers with the web-page HTML).

Here’s the event handler for the ServerValidate event. It performs the C# equivalent of the client-
side validation routine shown earlier:

protected void EmpIDServerValidate(object sender, ServerValidateEventArgs args)
{
 try
 {
 args.IsValid = (int.Parse(args.Value)%5 == 0);
 }
 catch
 {
 // An error is most likely caused by non-numeric data.
 args.IsValid = false;
 }
}

Finally, here’s an example CustomValidator tag that uses these routines:

<asp:TextBox runat="server" ID="EmpID" />
<asp:CustomValidator runat="server" ControlToValidate="EmpID"
 ClientValidationFunction="EmpIDClientValidate" OnServerValidate="EmpIDServerValidate"
 ErrorMessage="ID must be a multiple of 5" Display="dynamic">*
</asp:CustomValidator>

The CustomValidator includes an additional property named ValidateEmptyText, which is false by
default. However, it’s quite possible you might create a client-side function that attempts to assess empty
values. If so, set ValidateEmptyText to true to give the same behavior to your server-side event handler.

The ValidationSummary Control
The ValidationSummary control doesn’t perform any validation. Instead, it allows you to show a
summary of all the errors in the page. This summary displays the ErrorMessage value of each failed
validator. The summary can be shown in a client-side JavaScript message box (if the ShowMessageBox
property is true) or on the page (if the ShowSummary property is true). You can set both
ShowMessageBox and ShowSummary to true to show both types of summaries, since they are not
exclusive. If you choose to display the summary on the page, you can choose a style with the

CHAPTER 4 ■ SERVER CONTROLS

173

DisplayMode property (possible values are SingleParagraph, List, and BulletList). Finally, you can set a
title for the summary with the HeaderText property.

The control declaration is straightforward:

<asp:ValidationSummary runat="server" ID="Summary"
 ShowSummary="true" ShowMessageBox="true" DisplayMode="BulletList"
 HeaderText="Please review the following errors:"
/>

Figure 4-13 shows an example with a validation summary that displays a bulleted summary on the
page and in a message box.

Figure 4-13. The validation summary

CHAPTER 4 ■ SERVER CONTROLS

174

Using the Validators Programmatically
As with all other server controls, you can programmatically read and modify the properties of a validator.
To access all the validators on the page, you can iterate over the Validators collection of the current page.

In fact, this technique was already demonstrated in the sample page shown in Figures 4-12 and
4-13. This page provides four check boxes that allow you to test the behavior of the validators with
different options. When a check box is selected, it causes a postback. The event handler iterates over all
the validators and updates them according to the new options, as shown here:

protected void Options_Changed(object sender, System.EventArgs e)
{
 // Examine all the validators on the back.
 foreach (BaseValidator validator in Page.Validators)
 {
 // Turn the validators on or off, depending on the value
 // of the "Validators enabled" check box (chkEnableValidators).
 validator.Enabled = chkEnableValidators.Checked;

 // Turn client-side validation on or off, depending on the value
 // of the "Client-side validation enabled" check box
 // (chkEnableClientSide).
 validator.EnableClientScript = chkEnableClientSide.Checked;
 }

 // Configure the validation summary based on the final two check boxes.
 Summary.ShowMessageBox = chkShowMsgBox.Checked;
 Summary.ShowSummary = chkShowSummary.Checked;
}

You can use a similar technique to perform custom validation. The basic idea is to add a button with
CausesValidation set to false. When this button is clicked, manually validate the page or just specific
validators using the Validate() method. Then examine the IsValid property and decide what to do.

The next example uses this technique. It examines all the validation controls on the page by looping
through the Page.Validators collection. Every time it finds a control that hasn’t validated successfully, it
retrieves the invalid value from the input control and adds it to a string. At the end of this routine, it
displays a message that describes which values were incorrect. This technique adds a feature that
wouldn’t be available with automatic validation, which uses the static ErrorMessage property. In that
case, it isn’t possible to include the actual incorrect values in the message.

protected void cmdOK_Click(Object sender, EventArgs e)
{
 // Validate the page.
 this.Validate();

 if (!this.IsValid)
 {
 string errorMessage = "Mistakes found:
";

 // Create a variable to represent the input control.
 TextBox ctrlInput;

 // Search through the validation controls.
 foreach (BaseValidator ctrl in this.Validators)

CHAPTER 4 ■ SERVER CONTROLS

175

 {
 if (!ctrl.IsValid)
 {
 errorMessage += ctrl.ErrorMessage + "
";
 ctrlInput = (TextBox)this.FindControl(ctrl.ControlToValidate);
 errorMessage += " * Problem is with this input: ";
 errorMessage += ctrlInput.Text + "
";
 }
 }
 lblMessage.Text = errorMessage;
 }
}

This example uses an advanced technique: the Page.FindControl() method. It’s required because
the ControlToValidate property is just a string with the name of a control, not a reference to the actual
control object. To find the control that matches this name (and retrieve its Text property), you need to
use the FindControl() method. Once the code has retrieved the matching text box, it can perform other
tasks such as clearing the current value, tweaking a property, or even changing the text box color.

Validation Groups
In more complex pages, you might have several distinct groups of controls, possibly in separate panels.
In these situations, you may want to perform validation separately. For example, you might create a
form that includes a box with login controls and a box underneath it with the controls for registering a
new user. Each box includes its own submit button, and depending on which button is clicked, you want
to perform the validation just for that section of the page.

ASP.NET enables this scenario with a feature called validation groups. To create a validation group,
you need to put the input controls and the CausesValidation button controls into the same logical group.
You do this by setting the ValidationGroup property of every control with the same descriptive string
(such as “Login” or “NewUser”). Every button control that provides a CauseValidation property also
includes the ValidationGroup property. All validators acquire the ValidationGroup by inheriting from the
BaseValidator class.

For example, the following page defines two validation groups, named Group1 and Group2:

<form id="form1" runat="server">
 <div>
 <asp:Panel ID="Panel1" runat="server">
 <asp:TextBox ID="TextBox1" ValidationGroup="Group1" runat="server" />
 <asp:RequiredFieldValidator ID="RequiredFieldValidator1"
 ErrorMessage="*Required" ValidationGroup="Group1"
 runat="server" ControlToValidate="TextBox1" />
 <asp:Button ID="Button1" Text="Validate Group1"
 ValidationGroup="Group1" runat="server" />
 </asp:Panel>

 <asp:Panel ID="Panel2" runat="server">
 <asp:TextBox ID="TextBox2" ValidationGroup="Group2"
 runat="server" />
 <asp:RequiredFieldValidator ID="RequiredFieldValidator2"
 ErrorMessage="*Required" ValidationGroup="Group2"
 ControlToValidate="TextBox2" runat="server" />
 <asp:Button ID="Button2" Text="Validate Group2"

CHAPTER 4 ■ SERVER CONTROLS

176

 ValidationGroup="Group2" runat="server" />
 </asp:Panel>
 </div>
</form>

Figure 4-14 shows the page. If you click the first button, only the first text box is validated. If you
click the second button, only the second text box is validated.

An interesting scenario is if you add a new button that doesn’t specify any validation group. In this
case, the button validates every control that isn’t explicitly assigned to a named validation group. In this
case, no controls fit the requirement, so the page is posted back successfully and deemed to be valid. If
you want to make sure a control is always validated, regardless of the validation group of the button
that’s clicked, you’ll need to create multiple validators for the control, one for each group (and one with
no validation group). Alternatively, you might choose to manage complex scenarios such as these using
server-side code.

Figure 4-14. Grouping controls for validation

In your code, you can work with the validation groups programmatically. You can retrieve the
controls in a given validator group using the Page.GetValidators() method. Just pass the name of the
group as the first parameter. You can then loop through the items in this collection and choose which
ones you want to validate, as shown in the previous section.

CHAPTER 4 ■ SERVER CONTROLS

177

Another option is to use the Page.Validate() method and specify the name of the validation group.
For example, using the previous page, you could create a button with no validation group assigned and
respond to the Click event with this code:

protected void cmdValidateAll_Click(object sender, EventArgs e)
{
 Label1.Text = "Initial Page.IsValid State: " + Page.IsValid.ToString();
 Page.Validate("Group1");
 Label1.Text += "
Group1 Valid: " + Page.IsValid.ToString();
 Page.Validate("Group2");
 Label1.Text += "
Group1 and Group2 Valid: " + Page.IsValid.ToString();
}

The first Page.IsValid check will return true, because none of the validators were validated. After
validating the first group, the Page.IsValid property will return true or false, depending on whether there
is text in TextBox1. After you validate the second group, Page.IsValid will only return true if both groups
passed the test.

Rich Controls
Rich controls are web controls that model complex user interface elements. Although there isn’t a strict
definition for rich controls, the term commonly describes web controls that provide an object model
that is distinctly separate from the underlying HTML representation. A typical rich control can often be
programmed as a single object (and defined with a single control tag), but renders itself with a complex
sequence of HTML elements and may even use client-side JavaScript.

To understand the difference, consider the Table control and the Calendar control. When you
program with the Table control, you use objects that provide a thin wrapper over HTML table elements
such as <table>, <tr>, and <td>. The Table control isn’t considered a rich control. On the other hand,
when you program with the Calendar, you work in terms of days, months, and selection ranges—
concepts that have no direct correlation to the HTML markup that the Calendar renders. For that reason,
the Calendar is considered a rich control.

ASP.NET includes numerous rich controls that are discussed elsewhere in this book, including data-
based list controls, navigation controls, security controls, and controls tailored for web portals. The
following list identifies the rich controls that don’t fall into any specialized category, and are found in the
Standard section of the Toolbox in Visual Studio:

• AdRotator: This control is a banner ad that displays one out of a set of images
based on a predefined schedule that’s saved in an XML file.

• Calendar: This control is a calendar that displays and allows you to move through
months and days and to select a date or a range of days.

• MultiView, View, and Wizard: You can think of these controls as more advanced
panels that let you switch between groups of controls on a page. The Wizard
control even includes built-in navigation logic. You’ll learn about these controls in
Chapter 17.

• Substitution: This control is really a placeholder that allows you to customize
ASP.NET’s output caching feature, which you’ll tackle in Chapter 11.

• Xml: This control takes an XML file and an XSLT stylesheet file as input and
displays the resulting HTML in a browser. You’ll learn about the Xml control in
Chapter 14.

CHAPTER 4 ■ SERVER CONTROLS

178

The rich controls in this list all appear in the Standard tab of the Visual Studio Toolbox.

The AdRotator Control
The AdRotator randomly selects banner graphics from a list that’s specified in an external XML
schedule file.

Before creating the control, it makes sense to define the XML schedule file. Here’s an example:

<Advertisements>
 <Ad>
 <ImageUrl>hdr_logo.gif</ImageUrl>
 <NavigateUrl>http://www.apress.com</NavigateUrl>
 <AlternateText>Apress - The Author's Press</AlternateText>
 <Impressions>20</Impressions>
 <Keyword>books</Keyword>
 </Ad>
 <Ad>
 <ImageUrl>techEd.jpg</ImageUrl>
 <NavigateUrl> http://www.microsoft.com/events/teched2008</NavigateUrl>
 <AlternateText>TechEd from Microsoft</AlternateText>
 <Impressions>20</Impressions>
 <Keyword>Java</Keyword>
 </Ad>
 <!-- More ads can go here. -->
</Advertisements>

Each <Ad> element has a number of other important properties that configure the link, the image,
and the frequency, as described in Table 4-21.

Table 4-21. Advertisement File Elements

Element Description

ImageUrl The image that will be displayed. This can be a relative link (a file in the current
directory) or a fully qualified Internet URL.

NavigateUrl The link that will be followed if the user clicks the banner.

AlternateText The text that will be displayed instead of the picture if it cannot be displayed. This
text will also be used as a tooltip in some newer browsers.

Impressions A number that sets how often an advertisement will appear. This number is relative
to the numbers specified for other ads. For example, a banner with the value 10 will
be shown twice as often as a banner with the value 5.

Keyword A keyword that identifies a group of advertisements. This can be used for filtering.
For example, you could create ten advertisements and give half of them the
keyword Retail and the other half the keyword Computer. The web page can then
choose to filter the possible advertisements to include only one of these groups.

http://www.apress.com</NavigateUrl
http://www.microsoft.com/events/teched2008</NavigateUrl

CHAPTER 4 ■ SERVER CONTROLS

179

The actual AdRotator class provides a limited set of properties. You specify both the appropriate
advertisement file in the AdvertisementFile property and the type of window that the link should follow
in the Target property. You can also set the KeywordFilter property so that the banner will be chosen
from entries that have a specific keyword.

Here’s an example that opens the link for an advertisement in a new window:

<asp:AdRotator runat="server" AdvertisementFile="Ads.xml" Target="_blank" />

Figure 4-15 shows the AdRotator control. Try refreshing the page. When you do, you’ll see that a
new advertisement is randomly selected each time.

Figure 4-15. The AdRotator control

Additionally, you can react to the AdRotator.AdCreated event. This occurs when the page is being
created and an image is randomly chosen from the file. This event provides you with information about
the image that you can use to customize the rest of your page.

The event-handling code for this example simply configures a HyperLink control so that it
corresponds with the randomly selected advertisement in the AdRotator:

protected void Ads_AdCreated(Object sender, AdCreatedEventArgs e)
{
 // Synchronize a Hyperlink control elsewhere on the page.
 lnkBanner.NavigateUrl = e.NavigateUrl;

 // Synchronize the text of the link.
 lnkBanner.Text = "Click here for information about our sponsor: ";
 lnkBanner.Text += e.AlternateText;
}

CHAPTER 4 ■ SERVER CONTROLS

180

The Calendar Control
This control creates a functionally rich and good-looking calendar box that shows one month at a time.
The user can move from month to month, select a date, and even select a range of days (if multiple
selection is allowed). The Calendar control has many properties that, taken together, allow you to
change almost every part of this control. For example, you can fine-tune the foreground and background
colors, the font, the title, the format of the date, the currently selected date, and so on. The Calendar also
provides events that enable you to react when the user changes the current month
(VisibleMonthChanged), when the user selects a date (SelectionChanged), and when the Calendar is
about to render a day (DayRender).

The following Calendar tag sets a few basic properties:

<asp:Calendar runat="server" ID="Calendar1"
 ForeColor="red" BackColor="lightyellow" />

The most important Calendar event is SelectionChanged, which fires every time a user clicks a date.
Here’s a basic event handler that responds to the SelectionChanged event and displays the selected date:

protected void Calendar1_SelectionChanged(object sender, EventArgs e)
{
 lblDates.Text = "You selected: " + Calendar1.SelectedDate.ToLongDateString();
}

■ Note Every user interaction with the calendar triggers a postback. This allows you to react to the selection
event immediately, and it allows the Calendar to rerender its interface, thereby showing a new month or newly

selected dates. The Calendar does not use the AutoPostBack property.

You can also allow users to select entire weeks or months as well as single dates, or you can render
the control as a static calendar that doesn’t allow selection. The only fact you must remember is that if
you allow month selection, the user can also select a single week or a day. Similarly, if you allow week
selection, the user can also select a single day. The type of selection is set through the
Calendar.SelectionMode property. You may also need to set the Calendar.FirstDayOfWeek property to
configure how a week is selected. (For example, if you set FirstDayOfWeek to the enumerated value
Monday, weeks will be selected from Monday to Sunday.)

When you allow multiple date selection (by setting Calendar.SelectionMode to something other
than Day), you need to examine the SelectedDates property instead of the SelectedDate property.
SelectedDates provides a collection of all the selected dates, which you can examine, as shown here:

protected void Calendar1_SelectionChanged(object sender, EventArgs e)
{
 lblDates.Text = "You selected these dates:
";
 foreach (DateTime dt in Calendar1.SelectedDates)
 {
 lblDates.Text += dt.ToLongDateString() + "
";
 }
}

CHAPTER 4 ■ SERVER CONTROLS

181

The Calendar control exposes many more formatting-related properties, many of which map to the
underlying HTML table representation (such as CellSpacing, CellPadding, Caption, and CaptionAlign).
Additionally, you can individually tweak portions of the controls through grouped formatting settings
called styles (which expose color, font, and alignment options). Example properties include
DayHeaderStyle, DayStyle, NextPrevStyle, OtherMonthDayStyle, SelectedDayStyle, TitleStyle,
TodayDayStyle, and WeekendDayStyle. You can change the subproperties for all of these styles using the
Properties window.

Finally, by handling the DayRender event, you can completely change the appearance of the cell
being rendered. The DayRender event is extremely powerful. Besides allowing you to tailor what dates
are selectable, it also allows you to configure the cell where the date is located through the e.Cell
property. (The Calendar control is really a sophisticated HTML table.) For example, you could highlight
an important date or even add extra controls or HTML content in the cell. Here’s an example that
changes the background and foreground colors of the weekend days and also makes them nonclickable
so that the user can’t choose those days:

protected void Calendar1_DayRender(object sender, DayRenderEventArgs e)
{
 if (e.Day.IsWeekend)
 {
 e.Cell.BackColor = System.Drawing.Color.Green;
 e.Cell.ForeColor = System.Drawing.Color.Yellow;
 e.Day.IsSelectable = false;
 }
}

Figure 4-16 shows the result.

CHAPTER 4 ■ SERVER CONTROLS

182

Figure 4-16. The Calendar control

■ Tip If you’re using a design tool such as Visual Studio, you can even set an entire related color scheme using
the built-in designer. Simply select the Auto Format link in the smart tag. You’ll be presented with a list of

predefined formats that set various style properties.

Summary
In this chapter you learned the basics of the core server controls included with ASP.NET, such as HTML
server controls, web controls, list controls, validation controls, and rich controls. You also learned how
to use ASP.NET controls from your web-page code, access their properties, and handle their server-side
events. Finally, you learned how to validate potentially problematic user input with the validation
controls. In the next chapter, you’ll learn how pages come together to form web applications.

C H A P T E R 5

■ ■ ■

183

ASP.NET Applications

In traditional desktop programming, an application is an executable file with related support files. For
example, a typical Windows application consists of a main executable file (EXE), supporting components
(typically DLLs), and other resources such as databases and configuration files. An ASP.NET application
follows a much different model.

On the most fundamental level, an ASP.NET application is a combination of files, pages, handlers,
modules, and executable code that can be invoked from a virtual directory (and its subdirectories) on a
web server. In this chapter, you’ll learn why this distinction exists and take a closer look at how an
ASP.NET application is configured and deployed. You’ll also learn how to use components, HTTP
handlers, and HTTP modules with an ASP.NET application.

Anatomy of an ASP.NET Application
The difference between ASP.NET applications and rich client applications makes a lot of sense when you
consider the ASP.NET execution model. Unlike a Windows application, the end user never runs an
ASP.NET application directly. Instead, a user launches a browser such as Internet Explorer and requests
a specific URL (such as http://www.mysite.com/mypage.aspx) over HTTP. This request is received by a
web server. When you’re debugging the application in Visual Studio, you can use a local-only test server.
When you deploy the application, you use the IIS web server, as described in Chapter 18.

The web server has no concept of separate applications—it simply passes the request to the
ASP.NET worker process. However, the ASP.NET worker process carefully segregates code execution into
different application domains based on the virtual directory. Web pages that are hosted in the same
virtual directory (or one of its subdirectories) execute in the same application domain. Web pages in
different virtual directories execute in separate application domains.

■ Note A virtual directory is simply a directory that’s exposed through a web server. In Chapter 18, you’ll learn
how to create virtual directories. When using the test server in Visual Studio, your web project directory is treated
like a virtual directory. The only exception is that the test server supports only local connections (requests initiated

from the current computer).

http://www.mysite.com/mypage.aspx

CHAPTER 5 ■ ASP.NET APPLICATIONS

184

The Application Domain
An application domain is a boundary enforced by the CLR that ensures that one application can’t
influence (or see the in-memory data) of another. The following characteristics are a direct result of the
application domain model:

All the web pages in a single web application share the same in-memory resources, such as global
application data, per-user session data, and cached data. This information isn’t directly accessible
to other ASP.NET or ASP applications.

All the web pages in a single web application share the same core configuration settings. However,
you can customize some configuration settings in individual subdirectories of the same virtual
directory. For example, you can set only one authentication mechanism for a web application, no
matter how many subdirectories it has. However, you can set different authorization rules in each
directory to fine-tune who is allowed to access different groups of pages.

All web applications raise global application events at various stages (when the application domain
is first created, when it’s destroyed, and so on). You can attach event handlers that react to these
global application events using code in the global.asax file in your application’s virtual directory.

In other words, the virtual directory is the basic grouping structure that delimits an ASP.NET
application. You can create a legitimate ASP.NET application with a single web form (.aspx file).
However, ASP.NET applications can include all of the following ingredients:

• Web forms (.aspx files): These are the cornerstones of any ASP.NET application.

• Master pages (.master files): These are templates that you can create and then use
to build multiple web forms with the same structure. Chapter 16 describes master
pages in detail.

• Web services (.asmx files): These allow you to share useful functions with
applications on other computers and other platforms.

■ Note Web services have largely been replaced by WCF (Windows Communication Foundation) services, which
support all the same protocols and more. You can host WCF services on an IIS web server as part of an ASP.NET
web application. To learn more, refer to a dedicated book about WCF, such as the excellent Programming WCF

Services, by Juval Lowy (O’Reilly Media, 2008). You’ll use WCF web services with Silverlight in Chapter 34.

• Code-behind files: Depending on the code model you’re using, you may also have
separate source code files. If these files are coded in C#, they have the extension .cs.

• A configuration file (web.config): This file contains a slew of application-level
settings that configure everything from security to debugging and state
management.

• global.asax: This file contains event handlers that react to global application
events (such as when the application is first being started).

• Other components: These are compiled assemblies that contain separate
components you’ve developed or third-party components with useful
functionality. Components allow you to separate business and data access logic
and create custom controls.

CHAPTER 5 ■ ASP.NET APPLICATIONS

185

Of course, a virtual directory can hold a great deal of additional resources that ASP.NET web
applications will use, including stylesheets, images, XML files, and so on. In addition, you can extend the
ASP.NET model by developing specialized components known as HTTP handlers and HTTP modules,
which can plug into your application and take part in the processing of ASP.NET web requests.

■ Note It’s possible to have file types that are owned by different handlers in the same virtual directory. One
example is if you mingle .aspx and .asp files. A more complex example is if you configure ASP.NET 4 to process
requests for.aspx files and configure ASP.NET 3.5 to process requests for another extension of your own devising

(like .aspx35). You’ll learn more about the configuration settings that map file types in the “Extending the HTTP
Pipeline” section in this chapter, and you’ll learn more about how the IIS web server implements this feature in

Chapter 18.

Application Lifetime
ASP.NET uses a lazy initialization technique for creating application domains. This means that the
application domain for a web application is created the first time a request is received for a page in that
application.

An application domain can shut down for a variety of reasons, including if the web server itself shuts
down. But, more commonly, applications restart themselves in new application domains in response to
error conditions or configuration changes.

ASP.NET automatically recycles application domains when you change the application. One
example is if you modify the web.config file. Another example is if you replace an existing web-page file
or DLL assembly file. In both of these cases, ASP.NET starts a new application domain to handle all
future requests and keeps the existing application domain alive long enough to finish handling any
outstanding requests (including queued requests).

Application Domains vs. Application Pools

Although you won’t get a formal introduction to IIS until Chapter 18, it’s worth clearing up one point of
possible confusion. In IIS, you configure the way web applications behave through application pools. Your
application pool settings determine what version of .NET your application gets, how long it can remain idle
before shutting down, whether it should restart itself automatically when facing certain errors, and so on.
The application pool concept is similar to application domains, but slightly broader.

The difference is as follows. Each IIS application pool can configure one or more web applications. While
running, each of these web applications typically consists of a single application domain. Technically,
application pools are an IIS configuration feature, while application domains are a part of the .NET
infrastructure.

CHAPTER 5 ■ ASP.NET APPLICATIONS

186

Application Updates
One of the most remarkable features about the ASP.NET execution model is that you can update your
web application without needing to restart the web server and without worrying about harming existing
clients. This means you can add, replace, or delete files in the virtual directory at any time. ASP.NET then
performs the same transition to a new application domain that it performs when you modify the
web.config configuration file.

Being able to update any part of an application at any time without interrupting existing requests is
a powerful feature. However, it’s important to understand the architecture that makes it possible. Many
developers make the mistake of assuming that it’s a feature of the CLR that allows ASP.NET to seamlessly
transition to a new application domain. But in reality, the CLR always locks assembly files when it
executes them. To get around this limitation, ASP.NET doesn’t actually use the ASP.NET files in the
virtual directory. Instead, it uses another technique, called shadow copy, during the compilation process
to create a copy of your files in c:\Windows\Microsoft.NET\Framework\[Version]\Temporary ASP.NET
Files. The ASP.NET worker process loads the assemblies from this directory, which means these
assemblies are locked.

The second part of the story is ASP.NET’s ability to detect when you change the original files. This
detail is fairly straightforward—it simply relies on the ability of the Windows operating system to track
directories and files and send immediate change notifications. ASP.NET maintains an active list of all
assemblies loaded within a particular application’s application domain and uses monitoring code to
watch for changes and acts accordingly.

■ Note ASP.NET can use files that are stored in the GAC (global assembly cache), a computer-wide repository of

assemblies that includes staples such as the assemblies for the entire .NET Framework class library. You can also
put your own assemblies into the GAC, but web applications are usually simpler to deploy and more

straightforward to manage if you don’t.

Application Directory Structure
Every web application should have a well-planned directory structure. Independently from the directory
structure you design, ASP.NET defines a few directories with special meanings, as described in Table 5-1.

Table 5-1. Special ASP.NET Directories

Directory Description

Bin This directory contains all the precompiled .NET assemblies (usually DLLs)
that the ASP.NET web application uses. These assemblies can include
precompiled web-page classes, as well as other assemblies referenced by
these classes. (If you’re using the project model to develop your web
application in Visual Studio, rather than the more common website model,
the Bin directory will also contain an assembly that has the compiled code
for your entire web application. This assembly is named after your
application, as in WebApplication1.dll. To learn more about the difference
between project and projectless development, refer to Chapter 2.)

CHAPTER 5 ■ ASP.NET APPLICATIONS

187

Directory Description

App_Code This directory contains source code files that are dynamically compiled for
use in your application. These code files are usually separate components,
such as a logging component or a data access library. The compiled code
never appears in the Bin directory, as ASP.NET places it in the temporary
directories used for dynamic compilation. (If you’re using the project model
to develop your web application in Visual Studio, rather than the more
common website model, you don’t need to use the App_Code directory.
Instead, all the code files in your project are automatically compiled into the
assembly for your web application alongside your web pages.)

App_GlobalResources This directory stores global resources that are accessible to every page in the
web application.

App_LocalResources This directory serves the same purpose as App_GlobalResources, except
these resources are accessible for their dedicated page only.

App_WebReferences This directory stores references to web services that the web application
uses. This includes WSDL files and discovery documents.

App_Data This directory is reserved for data storage, including SQL Server Express
database files and XML files. Of course, you’re free to store data files in other
directories.

App_Browsers This directory contains browser definitions stored in XML files. These XML
files define the capabilities of client-side browsers for different rendering
actions. Although ASP.NET does this globally (across the entire computer),
the App_Browsers folder allows you to configure this behavior for separate
web applications. See Chapter 27 for more information about how ASP.NET
determines different browsers.

App_Themes This directory stores the themes used by the web application. You’ll learn
more about themes in Chapter 16.

The global.asax Application File
The global.asax file allows you to write event handlers that react to global events. Users cannot request
the global.asax file directly. Instead, the global.asax file executes its code automatically in response to
certain application events. The global.asax file provides a similar service to the global.asa file in classic
ASP applications.

You write the code in a global.asax file in a similar way to a web form. The difference is that the
global.asax doesn’t contain any HTML or ASP.NET tags. Instead, it contains methods with specific,
predefined names. For example, the following global.asax file reacts to the HttpApplication.EndRequest
event, which happens just before the page is sent to the user:

<%@ Application Language="C#" %>

<script language="C#" runat="server">
 protected void Application_OnEndRequest()

CHAPTER 5 ■ ASP.NET APPLICATIONS

188

 {
 Response.Write("<hr />This page was served at " +
 DateTime.Now.ToString());
 }
</script>

Although it’s not indicated in the global.asax file, every global.asax file defines the methods for a
single class—the application class. The application class derives from HttpApplication, and as a result
your code has access to all its public and protected members. This example uses the Response object,
which is provided as a built-in property of the HttpApplication class, just like it’s a built-in property of
the Page class.

In the preceding example, the Application_OnEndRequest() event handler writes a footer at the
bottom of the page with the date and time that the page was created. Because it reacts to the
HttpApplication.EndRequest event, this method executes every time a page is requested, after all the
event-handling code in that page has finished.

As with web forms, you can also separate the content of the global.asax file into two files, one that
declares the file and another that contains the code. However, because there’s no design surface for
global.asax files, the division isn’t required. Visual Studio doesn’t give you the option to create a
global.asax file with a separate code-behind class.

■ Note If you’ve created your web application as a web project, Visual Studio will use the code-behind approach

and create both a global.asax file (which will be nearly empty) and a linked global.asax.cs (which contains the
global application class that holds the event handlers). The end result is the same. For more information about the
different between project-based and projectless development in Visual Studio, refer to Chapter 2.

The global.asax file is optional, but a web application can have no more than one global.asax file,
and it must reside in the root directory of the application, not in a subdirectory. To add a global.asax file
to a project, select Website ➤ Add New Item (or Project ➤ Add New Item if you’re using the Visual Studio
web project model) and choose the Global Application Class template. (This option doesn’t appear if you
already have a global.asax file in your project.) When Visual Studio adds a global.asax file, it includes
empty event handlers for the most commonly used application events. You simply need to insert your
code in the appropriate method.

It’s worth noting that the application event handlers in the global.asax file aren’t attached in the
same way as the event handlers for ordinary control events. The usual way to attach an application event
handler is just to use the recognized method name. For example, if you create a protected method
named Application_OnEndRequest(), ASP.NET automatically calls this method when the
HttpApplication.EndRequest event occurs. (This is really just a matter of convention. You can choose to
attach an event handler to the HttpApplication.EndRequest event instead of supplying an
Application_OnEndRequest() method. In fact, later in this chapter you’ll see how HTTP modules handle
application events using this technique.)

ASP.NET creates a pool of application objects when your application domain is first loaded and uses
one to serve each request. This pool varies in size depending on the system and the number of available
threads, but it typically ranges from 1 to 100 instances. Each request gets exclusive access to one of these
application objects, and when the request ends, the object is reused. As different stages in application
processing occur, ASP.NET calls the corresponding method, which triggers your code. Of course, if your
methods have the wrong name, your implementation won’t get called—instead, your code will simply
be ignored.

CHAPTER 5 ■ ASP.NET APPLICATIONS

189

■ Note The global application class that’s used by the global.asax file should always be stateless. That’s because
application objects are reused for different requests as they become available. If you set a value in a member
variable in one request, it might reappear in another request. However, there’s no way to control how this happens

or which request gets which instance of the application object. To circumvent this issue, don’t use member

variables unless they’re static (as discussed in Chapter 6).

Application Events
You can handle two types of events in the global.asax file:

• Events that always occur for every request. These include request-related and
response-related events.

• Events that occur only under certain conditions.

The required events unfold in this order:

1. Application_BeginRequest(): This method is called at the start of every
request.

2. Application_AuthenticateRequest(): This method is called just before
authentication is performed. This is a jumping-off point for creating your own
authentication logic.

3. Application_AuthorizeRequest(): After the user is authenticated (identified),
it’s time to determine the user’s permissions. You can use this method to
assign special privileges.

4. Application_ResolveRequestCache(): This method is commonly used in
conjunction with output caching. With output caching (described in Chapter
11), the rendered HTML of a web form is reused, without executing any of your
code. However, this event handler still runs.

5. At this point, the request is handed off to the appropriate handler. For
example, for a web form request, this is the point when the page is compiled (if
necessary) and instantiated.

6. Application_AcquireRequestState(): This method is called just before session-
specific information is retrieved for the client and used to populate the Session
collection. (Session state is covered in Chapter 6.)

7. Application_PreRequestHandlerExecute(): This method is called before the
appropriate HTTP handler executes the request.

8. At this point, the appropriate handler executes the request. For example, if it’s
a web form request, the event-handling code for the page is executed, and the
page is rendered to HTML.

9. Application_PostRequestHandlerExecute(): This method is called just after
the request is handled.

CHAPTER 5 ■ ASP.NET APPLICATIONS

190

10. Application_ReleaseRequestState(): This method is called when the session-
specific information is about to be serialized from the Session collection so
that it’s available for the next request.

11. Application_UpdateRequestCache(): This method is called just before
information is added to the output cache. For example, if you’ve enabled
output caching for a web page, ASP.NET will insert the rendered HTML for the
page into the cache at this point.

12. Application_EndRequest(): This method is called at the end of the request,
just before the objects are released and reclaimed. It’s a suitable point for
cleanup code.

Figure 5-1 shows the process of handling a single request.

Figure 5-1. The application events

Some events don’t fire with every request:

Application_Start(): This method is invoked when the application first starts up and the application
domain is created. This event handler is a useful place to provide application-wide initialization
code. For example, at this point you might load and cache data that will not change throughout the
lifetime of an application, such as navigation trees, static product catalogs, and so on.

Session_Start(): This method is invoked each time a new session begins. This is often used to
initialize user-specific information. Chapter 6 discusses sessions with state management.

Application_Error(): This method is invoked whenever an unhandled exception occurs in the
application.

CHAPTER 5 ■ ASP.NET APPLICATIONS

191

Session_End(): This method is invoked whenever the user’s session ends. A session ends when your
code explicitly releases it or when it times out after there have been no more requests received
within a given timeout period (typically 20 minutes). This method is typically used to clean up any
related data. However, this method is only called if you are using in-process session state storage
(the InProc mode, not the StateServer or SQLServer modes).

Application_End(): This method is invoked just before an application ends. The end of an
application can occur because IIS is being restarted or because the application is transitioning to a
new application domain in response to updated files or the process recycling settings.

Application_Disposed(): This method is invoked some time after the application has been shut
down and the .NET garbage collector is about to reclaim the memory it occupies. This point is too
late to perform critical cleanup, but you can use it as a last-ditch failsafe to verify that critical
resources are released.

Application events are commonly used to perform application initialization, cleanup, usage logging,
profiling, and troubleshooting. However, don’t assume that your application will need to use global
application events. Many ASP.NET applications don’t use the global.asax file at all.

■ Tip The global.asax file isn’t the only place where you can respond to global web application events. You can
also create custom modules that participate in the processing of web requests, as discussed later in this chapter

in the section “Extending the HTTP Pipeline.”

Demonstrating Application Events
The following web application uses a global.asax file that responds to the HttpApplication.Error event. It
intercepts the error and displays some information about it in a predefined format.

<script language="C#" runat="server">
 protected void Application_Error(Object sender, EventArgs e)
 {
 Response.Write("");
 Response.Write("Oops! Looks like an error occurred!!<hr />");
 Response.Write(Server.GetLastError().Message.ToString());
 Response.Write("<hr />" + Server.GetLastError().ToString());
 Server.ClearError();
 }
</script>

To test this application event handler, you need to create another web page that causes an error.
Here’s an example that generates an error by attempting to divide by zero when a page loads:

protected void Page_Load(object sender, EventArgs e)
{
 int i = 0;
 int j = 1;
 int k = j/i;
}

CHAPTER 5 ■ ASP.NET APPLICATIONS

192

If you request this page, you’ll see the display shown in Figure 5-2.

Figure 5-2. Catching an unhandled error

■ Note This technique only works when you’re running your web application with IIS. When using the built-in web

server, you’ll get an ASP.NET error page instead.

Typically, you wouldn’t use the Application_Error() method to control the appearance of a web
page, because it doesn’t give you enough flexibility to deal with different types of errors (without coding
painstaking conditional logic). Instead, you would probably configure custom error pages using IIS.
However, Application_Error() might be extremely useful if you want to log an error for future reference
or even send an e-mail about it to a system administrator. In fact, in many events you’ll need to use
techniques such as these because the Response object won’t be available. Two examples include the
Application_Start() and Application_End() methods.

ASP.NET Configuration
Configuration in ASP.NET is managed with XML configuration files. All the information needed to
configure an ASP.NET application’s core settings, as well as the custom settings specific to your own
application, is stored in these configuration files.

The ASP.NET configuration files have several advantages over traditional ASP configuration:

They are never locked: As described in the beginning of this chapter, you can update configuration
settings at any point, and ASP.NET will smoothly transition to a new application domain.

CHAPTER 5 ■ ASP.NET APPLICATIONS

193

They are easily accessed and replicated: Provided you have the appropriate network rights, you can
modify a configuration file from a remote computer (or even replace it by uploading a new version
via FTP). You can also copy a configuration file and use it to apply identical settings to another
application or another web server that runs the same application in a web farm scenario.

They are easy to edit and understand: The settings in the configuration files are human-readable,
which means they can be edited and understood without needing a special configuration tool.

The machine.config File
The configuration starts with a file named machine.config that resides in a directory like
c:\Windows\Microsoft.NET\Framework\[Version]\Config. The machine.config file defines supported
configuration file sections, configures the ASP.NET worker process, and registers providers that can be
used for advanced features such as profiles, membership, and role-based security.

Compared with ASP.NET 1.x, the machine.config file in later versions of ASP.NET has been
streamlined dramatically. To optimize the initialization process, many of the default settings that used
to be in the machine.config file are now initialized programmatically. However, you can still look at the
relevant settings by opening the new machine.config.comments file (which you can find in the same
directory). It contains the full text for the standard settings along with descriptive comments (this is
similar to the machine.config file in ASP.NET 1.x). Using the machine.config.comments file, you can
learn about the default settings, and then you can add settings that override these values to
machine.config.

Along with the machine.config file, ASP.NET uses a root web.config file (in the same directory) that
contains additional settings. The settings register ASP.NET’s core HTTP handlers and modules, set up
rules for browser support, and define security policy.

All the web applications on the computer inherit the settings in these two files. However, most of the
settings are essentially plumbing features that you never need to touch. Many of the settings don’t apply
when your application is deployed to an IIS web server, because they’ve been replaced by similar
settings in IIS (which has its own configuration file, named ApplicationHost.config). The following
section describes one exception—an important piece of information that still resides in the
machine.config file.

<machineKey>
The <machineKey> section allows you to set the server-specific key used for encrypting data and
creating digital signatures. You can use encryption in conjunction with several ASP.NET features.
ASP.NET uses it automatically to protect the forms authentication cookie, and you can also apply it to
protected view state data (as described in Chapter 6). The key is also used for authentication with out-of-
process session state providers.

Ordinarily, the <machineKey> element takes this form:

<machineKey validationKey="AutoGenerate,IsolateApps"
 decryptionKey="AutoGenerate,IsolateApps" validation="SHA1" />

The AutoGenerate,IsolateApps value indicates that ASP.NET will create and store machine-specific,
application-specific keys. In other words, each application uses a distinct, automatically generated key.
This prevents potential cross-site attacks.

If you don’t need application-specific keys, you can choose to use a single key for all applications on
the current computer, like so:

<machineKey validationKey="AutoGenerate"
 decryptionKey="AutoGenerate" validation="SHA1" />

CHAPTER 5 ■ ASP.NET APPLICATIONS

194

If you’re using a web farm and running the same application on multiple computers, both of these
approaches raise a problem. If you request a page and it’s handled by one server, and then you post back
the page and it’s handled by another server, the second server won’t be able to decrypt the view state
and the forms cookie from the first server. This problem occurs because the two web servers use
different keys.

To resolve this problem, you need to define the key explicitly in the machine.config file. Here’s an
example of a <machineKey> element with the two key attributes defined:

<machineKey
 validationKey="61EA54E005915332011232149A2EEB317586824B265326CCDB3AD9ABDBE9D
6F24B0625547769E835539AD3882D3DA88896EA531CC7AFE664866BD5242FC2B05D"
 decryptionKey="61EA54E005915332011232149A2EEB317586824B265337AF"
 validation="SHA1" />

■ Tip You can also hard-code application-specific keys by adding a hard-coded <machineKey> in the web.config

file that you place in the application virtual directory. You’ll need this approach if you’re in a situation that
combines the two scenarios described previously. (For example, you’ll need this approach if you’re running your

application on multiple servers and these servers host multiple web applications that need individual keys.)

The validationKey value can be from 40 to 128 characters long. It is strongly recommended that you
use the maximum length key available. The decryptionKey value can be either 16 or 48 characters long. If
16 characters are defined, standard DES (Data Encryption Standard) encryption is used. If 48 characters
are defined, Triple DES (or 3DES) will be used. (This means DES is applied three times consecutively.)
3DES is much more difficult to break than DES, so it is recommended that you always use 48 characters
for the decryptionKey. If the length of either of the keys is outside the allowed values, ASP.NET will
return a page with an error message when requests are made to the application.

It doesn’t make much sense to create the validation and decryption keys on your own. If you do,
they’re not likely to be sufficiently random, which makes them more subject to certain types of attacks. A
better approach is to generate a strong random key using code and the .NET Framework cryptography
classes (from the System.Security.Cryptography namespace).

The following is a generic code routine called CreateMachineKey() that creates a random series of
bytes using a cryptographically strong random number generator. The CreateMachineKey() method
accepts a single parameter that specifies the number of characters to use. The result is returned in
hexadecimal format, which is required for the machine.config file.

public static string CreateMachineKey(int length)
{
 // Create a byte array.
 byte[] random = new byte[length/2];

 // Create a cryptographically strong random number generator.
 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

 // Fill the byte array with random bytes.
 rng.GetBytes(random);

 // Create a StringBuilder to hold the result once it is
 // converted to hexadecimal format.

CHAPTER 5 ■ ASP.NET APPLICATIONS

195

 System.Text.StringBuilder machineKey = new
 System.Text.StringBuilder(length);

 // Loop through the random byte array and append each value
 // to the StringBuilder.
 for (int i = 0; i < random.Length; i++)
 {
 machineKey.Append(String.Format("{0:X2}", random[i]));
 }
 return machineKey.ToString();
}

You can use this function in a web form to create the keys you need. For example, the following
snippet of code creates a 48-character decryption key and a 128-character validation key, and it displays
the values in two separate text boxes:

txtDecryptionKey.Text = CreateMachineKey(48);
txtValidationKey.Text = CreateMachineKey(128);

You can then copy the information and paste it into the machine.config file for each computer in
the web farm. This is a much more convenient and secure approach than creating keys by hand. You’ll
learn much more about the cryptography classes in the System.Security.Cryptography namespace
described in Chapter 25.

Along with the validationKey and decryptionKey attributes described so far, you can also choose the
algorithm that’s used to create the view state hash code. The SHA1 algorithm is recommended for the
best encryption strength, but you can alternately choose MD5 (Message Digest 5, which offers better
performance), AES (Rijndael), or 3DES (TripleDES). In addition, you can add the validation attribute to
specify what encryption method is used for the login ticket that’s used with forms authentication.
(Forms authentication is discussed in Chapter 20). Valid values are AES, DES, 3DES, and Auto (the
default, which varies based on the form authentication settings you’re using).

■ Tip The IIS Manager tool also allows you to change the machine key settings. To use this feature, you simply
select the web server computer in the website tree and double-click the Machine Key icon. You can even create
new, random validation and decryption keys at this point by clicking Generate Keys in the Actions column on the

far right of the IIS Manager window.

The web.config File
Every web application inherits the settings from the machine.config file and the root web.config file. In
addition, you can apply settings to individual web applications. For example, you might want to set a
specific method for authentication, a type of debugging, a default language, or custom error pages. To
do so, you supply a web.config file in the root virtual directory of your web application. To further
configure individual subdirectories in your web application, you can place additional web.config files in
these folders.

It’s important to understand that the web.config file in a web application can’t override all the
settings in the machine.config file. Certain settings, such as the process model settings, can’t be changed
on a per-application basis. Other settings are application-specific. That means you can set them in the

CHAPTER 5 ■ ASP.NET APPLICATIONS

196

web.config file that’s in the root virtual directory of your website, but you can’t set them using a
web.config file that’s in a subdirectory.

The entire content of an ASP.NET configuration file is nested in a root <configuration> element.
This element contains a <system.web> element, which is used for ASP.NET settings. Inside the
<system.web> element are separate elements for each aspect of configuration. Along with <system.web>
are the <appSettings> element%, which you can use to store custom settings, and the
<connectionStrings> element, which you can use to store connection strings to databases that you use
or that other ASP.NET features rely on.

Here is the absolute simplest web.config file, which is what you get when you create a blank
ASP.NET website in Visual Studio:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.0" />
 </system.web>
</configuration>

■ Note Like all XML documents, the web.config file is case-sensitive. Every setting uses camel case and starts

with a lowercase letter. That means you cannot write <System.Web> instead of <system.web>.

The <system.web> section is the heart of ASP.NET configuration. Inside it are all the elements that
configure ASP.NET features. Most ASP.NET applications also use the <appSettings> section to store
miscellaneous configuration details that are application-specific, and the <connectionStrings> section
to store connection strings for contacting a database. You can also use the <system.webServer> section
to extend the ASP.NET pipeline with additional HTTP handlers and HTTP modules. Here’s the basic
skeletal structure of the web.config file with these details:

<?xml version="1.0"?>
<configuration>
 <appSettings />
 <connectionStrings />
 <system.web>
 <!-- ASP.NET configuration sections go here. -->
 </system.web>
 <system.webServer />
</configuration>

■ Note The configuration file for ASP.NET 3.5 applications was noticeably more convoluted, due to the way that

ASP.NET 3.5 was released. Essentially, ASP.NET 3.5 fused together the core ASP.NET 2.0 model, with version 2.0
of the CLR, and a set of extensions. As a result, each application used the web.config file to opt into new features.
However, ASP.NET 4 doesn’t use this approach, and ASP.NET applications have simpler, more streamlined

content. The additional settings have been moved into the machine.config and root web.config files, where they

belong.

CHAPTER 5 ■ ASP.NET APPLICATIONS

197

Configuration Inheritance
ASP.NET uses a multilayered configuration system that allows you to use different settings for different
parts of your application. To use this technique, you need to create additional subdirectories inside your
virtual directory. These subdirectories can contain their own web.config files with additional settings.
ASP.NET uses configuration inheritance so that each subdirectory acquires the settings from the parent
directory.

For example, consider the web request http://localhost/A/B/C/MyPage.aspx, where A is the root
directory for the web application. In this case, multiple levels of settings come into play:

1. The default machine.config settings are applied first.

2. The web.config settings from the computer root are applied next. This
web.config file is in the same Config directory as the machine.config file.

3. If there is a web.config file in the application root A, these settings are applied
next.

4. If there is a web.config file in the subdirectory B, these settings are applied
next.

5. If there is a web.config file in the subdirectory C, these settings are applied last.

In this sequence (shown in Figure 5-3), it’s important to note that although you can have an
unlimited number of subdirectories, the settings applied in step 1 and step 2 have special significance.
That’s because certain settings can be applied only at the machine.config level (such as the Windows
account used to execute code), and other settings can be applied only at the application root level (such
as the type of authentication your web application uses).

Figure 5-3. Configuration inheritance

http://localhost/A/B/C/MyPage.aspx

CHAPTER 5 ■ ASP.NET APPLICATIONS

198

In this way, subdirectories can specify just a small set of settings that differ from the rest of the web
application. One reason you might want to use multiple directories in an application is to apply different
security settings. Files that need to be secured would then be placed in a special directory with a
web.config file that defines more stringent security settings than the root virtual directory.

If settings conflict, the settings from a web.config in a nested directory always override the settings
inherited from the parent. However, one exception exists. You can designate specific locked sections
that can’t be changed. The next section describes this technique.

■ Note If you’re developing a web project (as opposed to a projectless website), your project will also include the
files web.Debug.config and web.Release.config. These files are designed to change between the settings you use

when testing a web application and those you need when deploying it in a production environment. However, they
have no effect when you run your application in Visual Studio—in fact, Visual Studio ignores them completely.

Instead, they are only used when you build a deployment package, as described in Chapter 18.

Using <location> Elements
The <location> element is an extension that allows you to specify more than one group of settings in the
same configuration file. You use the path attribute of the <location> element to specific the subdirectory
or file to which the settings should be applied.

For example, the following web.config file uses the <location> element to create two groups of
settings—one for the current directory and one that applies only to files in the subdirectory named
Secure:

<configuration>
 <system.web>
 <!-- Basic configuration settings go here. -->
 </system.web>

 <location path="/Secure">
 <system.web>
 <!-- Configuration settings for the Secure subdirectory go here. -->
 </system.web>
 </location>
</configuration>

This web.config file essentially plays the role of two configuration files. It has the same result as if
you had split the settings into two separate web.config files and placed one in the Secure subdirectory.

There’s no limit to how many different location elements you can use in a single configuration file.
However, the <location> element isn’t used often, because it’s usually easier to manage and update
configuration settings when they are separated into distinct files. But there is one scenario where the
<location> element gives you functionality you can’t get any other way. This occurs when you want to
lock specific settings so they can’t be overridden.

To understand how this technique works, consider the next example. It defines two groups of
settings and sets the allowOverride attribute of the <location> tag to false on one group, as shown here:

<configuration>
 <system.web>
 <!-- Unprotected configuration settings go here. -->
 </system.web>

CHAPTER 5 ■ ASP.NET APPLICATIONS

199

 <location allowOverride="false">
 <system.web>
 <!-- Locked configuration settings go here. -->
 </system.web>
 </location>
</configuration>

In this case, you can’t override any of the settings in the <location> section. If you try, ASP.NET will
generate an unhandled exception when you request a page in the web application.

The allowOverride attribute of the <location> element is primarily useful for web hosting companies
that want to make sure certain settings can’t be changed. In this case, the administrator will modify the
machine.config file on the web server and use the <location> element to lock specific sections.

■ Tip When you lock settings in the machine.config file, you have two choices. First, you can lock the settings for
all applications by omitting the path attribute of the <location> tag. Second, you can lock settings for a specific

application by setting the path attribute to the appropriate web application name.

<system.web>
The <system.web> element contains all the ASP.NET-specific configuration settings. These settings
configure various aspects of your web application and enable services such as security, state
management, and tracing. The schema of the <system.web> section is fixed—in other words, you can’t
change the structure or add your own custom elements here. However, you can include as few or as
many configuration sections as you want.

Table 5-3 lists the basic child elements that the <system.web> element can contain and their
purpose. This list is not complete and is intended only to give you a rough idea of the scope of ASP.NET
configuration. Throughout this book, you’ll consider different parts of the web.config file as you learn
about the corresponding features.

Table 5-3. Some Basic Configuration Sections

Element Description

authentication This element configures your authorization system—in other words, it determines
how you will verify a client’s identity when the client requests a page.

authorization This element controls which clients have access to the resources within the web
application or current directory.

compilation This element identifies the version of .NET that your web application is targeting
(through the targetFramework attribute) and whether you want to generate debug
symbols in .pdb files (through the debug attribute), so you can debug your
application with a tool like Visual Studio. The compilation element can also
contain the <assemblies> element, which lists additional assemblies that your web
application uses. These assemblies are then made available to your code (as long as
they can be found in the Bin directory or the GAC).

CHAPTER 5 ■ ASP.NET APPLICATIONS

200

Element Description

customErrors This element allows you to set specific redirect URLs that should be used when
specific (or default) errors occur. For example, this element could be used to
redirect the user to a friendly replacement for the dreaded 404 (page not found)
error. But although this setting still works with Visual Studio’s built-in test web
server, it’s effectively been replaced by the <httpErrors> section in IIS 7.x.

membership This element allows you to configure ASP.NET’s membership feature, which
manages user account information and provides a high-level API for security-
related tasks such as user login and password resetting.

pages This element defines default page settings (most of which you can override with the
Page directive).

profile This element allows you to configure ASP.NET’s profile feature, which
automatically stores and retrieves user-specific information (usually, profile
settings). Typically, profile data is serialized to a database.

roleManager This element allows you to configure ASP.NET’s role-based security feature, which
provides a way to store role information and a high-level API for role-based
authorization.

sessionState This element configures the various options for maintaining session state for the
application, such as whether to maintain it at all and where to maintain it (SQL, a
separate Windows service, and so on).

trace This element configures tracing, an ASP.NET feature that lets you display
diagnostic information in the page (or collect it for viewing separately).

■ Note The configuration file architecture is a .NET standard, and other types of applications (such as Windows

applications) can also use configuration files. For that reason, the root <configuration> element isn’t tailored to
web application settings. Instead, web application settings are contained inside the dedicated <system.web>

section.

<system.webServer>
This section contains settings that affect to the web server. You use the <handlers> element inside this
section to register custom HTTP handlers. You use the <modules> section to register HTTP modules.
Both tasks are demonstrated later in this chapter.

CHAPTER 5 ■ ASP.NET APPLICATIONS

201

<appSettings>
You add custom settings to a web.config file in a special element called <appSettings>. Here’s where the
<appSettings> section fits into the web.config file:

<?xml version="1.0"?>
<configuration>
 <appSettings>
 <!-- Custom application data goes here. -->
 </appSettings>
 <system.web>...</system.web>
</configuration>

The custom settings that you add are written as simple string variables. You might want to use a
special web.config setting for several reasons. Often, you’ll want the ability to record hard-coded but
changeable information for connecting to external resources, such as database query strings, file paths,
and web service URLs. Because the configuration file can be modified at any time, this allows you to
update the configuration of an application as its physical deployment characteristics change without
needing to recompile it.

Custom settings are entered using an <add> element that identifies a unique variable name (the
key) and the variable contents (the value). The following example adds two new custom configuration
settings:

<?xml version="1.0" ?>
<configuration>
 <appSettings>
 <add key="websiteName" value="My New Website"/>
 <add key="welcomeMessage" value="Welcome to my new Website, friend!"/>
 </appSettings>
 <system.web>...</system.web>
</configuration>

Once you’ve added this information, .NET makes it extremely easy to retrieve it in your web-page
code. You simply need to use the WebConfigurationSettings class from the System.Web.Configuration
namespace. It exposes a static property called AppSettings, which contains a dynamically built
collection of available application settings for the current directory. For example, if the ASP.NET page
class referencing the AppSettings collection is at a location such as
http://localhost/MyApp/MyDirectory/MySubDirectory, it is possible that the AppSettings collection
contains settings from three different web.config files. The AppSettings collection makes that hierarchy
seamless to the page that’s using it.

To use the WebConfigurationSettings class, it helps to first import the System.Web.Configuration
namespace so you can refer to the class without needing to use the long fully qualified name, as
shown here:

using System.Web.Configuration;

Next, you simply need to retrieve the value by name. The following example fills two labels using the
custom application information:

protected void Page_Load(object sender, EventArgs e)
{
 lblSiteName.Text =
 WebConfigurationManager.AppSettings["websiteName"];
 lblWelcome.Text =

http://localhost/MyApp/MyDirectory/MySubDirectory

CHAPTER 5 ■ ASP.NET APPLICATIONS

202

 WebConfigurationManager.AppSettings["welcomeMessage"];
}

Figure 5-4 shows the test web page in action.

Figure 5-4. Retrieving custom application settings

An error won’t occur if you try to retrieve a value that doesn’t exist. If you suspect this could be a
problem, make sure to test for a null reference before retrieving a value.

■ Note Values in the <appSettings> element of a configuration file are available to any class in your application
or to any component that your application uses, whether it’s a web form class, a business logic class, a data

access class, or something else. In all these cases, you use the ConfigurationSettings class in the same way.

<connectionStrings>
This section allows you to define database connection strings that will be used elsewhere in your
application. Seeing as connection strings need to be reused exactly to support connection pooling and
may need to be modified without recompiling the web application, it makes perfect sense to store them
in the web.config file.

You can add as many connection strings as you want. For each one, you need to specify the
ADO.NET provider name (see Chapter 7 for more information).

Here’s an example that defines a single connection string:

<configuration>
 <connectionStrings>
 <add name="NorthwindConnection"
 connectionString=
 "Data Source=localhost;Integrated Security=SSPI;Initial Catalog=Northwind;"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 <system.web>...</system.web>
</configuration>

CHAPTER 5 ■ ASP.NET APPLICATIONS

203

You can retrieve connection strings in your code using the static
WebConfigurationManager.ConnectionStrings property:

string connectionString =
 WebConfigurationManager.ConnectionStrings["NorthwindConnection"].Value;

The ConnectionStrings collection includes the connection strings that are defined directly in your
web.config file and any that are defined in higher-level configuration files (namely, the root web.config
file and the machine.config file). That means you’ll automatically get a connection string named
LocalSqlServer that points to a local instance of SQL Server Express (which is the scaled-down version of
SQL Server that’s included with Visual Studio). The connection string looks like this:

Data Source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=
|DataDirectory|aspnetdb.mdf;User Instance=true

The interesting thing about SQL Server Express is that it allows you to connect directly to a database
file in your website. To learn more about SQL Server Express, refer to Chapter 15.

Reading and Writing Configuration Sections Programmatically
As you’ve already learned, ASP.NET provides the WebConfigurationManager class in the
System.Web.Configuration namespace, which allows you to extract information from a configuration
file at runtime. The WebConfigurationManager provides the members shown in Table 5-4.

Table 5-4. WebConfigurationManager Members

Member Description
AppSettings Provides access to any custom information you’ve added to the

<appSettings> section of the application configuration file.
Individual settings are provided through a collection that’s indexed
by name.

ConnectionStrings Provides access to data in the <connectionStrings> section of the
configuration file. Individual settings are provided through a
collection that’s indexed by name.

GetSection() Returns an object that wraps the information from a specific section
of the configuration file.

OpenWebConfiguration() Returns an editable Configuration object that provides access to the
configuration information for the specified web application.

OpenMachineConfiguration() Returns an editable Configuration object that provides access to the
configuration information that’s defined for the web server (in the
machine.config file).

The WebConfigurationManager class gives convenient access to two configuration sections: the
<appSettings> section, where you can define custom settings, and the <connectionStrings> section, used
to define how your application connects to the database. You can get this information using the
AppSettings and ConnectionStrings properties.

Using the WebConfigurationManager.GetSection() method, you can retrieve information about any
other configuration section.

CHAPTER 5 ■ ASP.NET APPLICATIONS

204

However, you’ll need to go to a little more work. The trick is that the GetSection() method returns a
different type of object depending on the type of section. For example, if you’re retrieving information
from the <authentication> section, you’ll receive an AuthenticationSection object, as shown here:

// Search for the <authentication> element inside the <system.web> element.
AuthenticationSection authSection =
 (AuthenticationSection)WebConfigurationManager.GetSection("system.web/authentication");

The search is performed using a pathlike syntax. You don’t indicate the root <configuration>
element, because all configuration sections are contained in that element.

Classes for every configuration section are defined in the class library in the
System.Web.Configuration namespace (not the System.Configuration namespace, which includes only
configuration classes that are generic to all .NET applications). All these classes inherit from the
ConfigurationSection class.

Using a ConfigurationSection object allows you to retrieve a good deal of information about the
current state of your application. Here’s an example that displays information about the assemblies that
are currently referenced:

CompilationSection compSection =
 (CompilationSection)WebConfigurationManager.GetSection("system.web/compilation");
foreach (AssemblyInfo assm in compSection.Assemblies)
{
 Response.Write(assm.Assembly + "<br /");
}

■ Note When you retrieve information using the GetSection() method (or the OpenWebConfiguration() method

described next), it reflects the cumulative configuration for the current application. That means settings from the
current web.config file are merged with those defined higher up the configuration hierarchy (for example, in the

root web.config and the machine.config files).

You can also modify most configuration sections programmatically with the
WebConfigurationManager—in fact, ASP.NET relies on this functionality for its administrative web
pages. To use this approach, you need to call the OpenWebConfiguration() method first to get a
Configuration object. You can then use the Configuration.GetSection() method to retrieve exactly the
section you want to change, and the Configuration.Save() method to commit the change. When
modifying a setting, ASP.NET handles the update safely, by using synchronization code to ensure that
multiple clients can’t commit a change simultaneously. As with any configuration change, ASP.NET
creates a new application domain with the new settings, and uses this application domain to handle new
requests while winding down the old application domain.

In your code, you’re most likely to change settings in the <appSettings> section or the
<connectionStrings> section. Here’s an example that rewrites the application settings shown earlier so
that it updates one of the settings after reading it:

protected void Page_Load(object sender, EventArgs e)
{
 Configuration config =
 WebConfigurationManager.OpenWebConfiguration(Request.ApplicationPath);

 lblSiteName.Text =

CHAPTER 5 ■ ASP.NET APPLICATIONS

205

 config.AppSettings.Settings["websiteName"].Value;
 lblWelcome.Text =
 config.AppSettings.Settings["welcomeMessage"].Value;

 config.AppSettings.Settings["welcomeMessage"].Value = "Welcome, again.";
 config.Save();
}

■ Tip This example reflects the cumulative configuration in the root web application directory, because it uses the

value Request.ApplicationPath when calling the OpenWebConfiguration() method. If you use the name of a
subdirectory, you’ll get the cumulative settings for that folder. If you use the path Request.CurrentExecutionFilePath,

you’ll get cumulative settings for the directory where the current web page is located.

Note that the web.config file is never a good solution for state management. Instead, it makes sense
as a way to occasionally update a setting that, under normal circumstances, almost never changes.
That’s because changing a configuration setting has a significant cost. File access has never been known
for blistering speed, and the required synchronization adds a certain amount of overhead. However, the
real problem is that the cost of creating a new application domain (which happens every time a
configuration setting changes) is significant. The next time you request the page, you’ll see the effect—
the request will complete much more slowly while the page is compiled to native machine code, cached,
and loaded. Even worse, information in the Application and Caching collections will be lost, as well as
any information in the Session collection if you’re using the in-process session provider (see Chapter 6
for more information). Unfortunately, the new configuration model makes it all too easy to make the
serious mistake of storing frequently changed values in a configuration file.

By default, the Configuration.Save() method persists only those changes you have made since
creating the Configuration object. Settings are stored in the local web.config file, and one is created if
needed. It’s important to realize that if you change an inherited setting (for example, one that’s stored in
the machine.config file), then when you save the changes, you won’t overwrite the existing value in the
configuration file where it’s defined. Instead, the new value will be saved in the local web.config file so
that it overrides the inherited value for the current application only. You can also use the SaveAs()
method to save configuration settings to another file.

When calling Configuration.Save(), you can use an overloaded version of the method that accepts a
value from the ConfigurationSaveMode enumeration. Use Modified to save any value you changed, even
if it doesn’t differ from the inherited values. Use Full to save everything in the local web.config, which is
useful if you’re trying to duplicate configuration settings for testing or deployment. Finally, use Minimal
to save only those changes that differ from the inherited levels—this is the default.

■ Note In order to successfully use the methods and properties of the WebConfigurationManager, the ASP.NET
worker process needs certain permissions (such as read read access to the web application directory). If you are
using the OpenWebConfiguration() method to change these settings programmatically, the worker process also
requires write access. (The same limitation doesn’t apply to the GetSection() method or the AppSettings and
ConnectionStrings properties.) To protect against problems, you should always wrap your configuration calls in
exception-handling code.

CHAPTER 5 ■ ASP.NET APPLICATIONS

206

The Website Administration Tool (WAT)
You might wonder why the ASP.NET team went to all the trouble of creating a sophisticated tool like the
WebConfigurationManager that performs too poorly to be used in a typical web application. The reason
is because the WebConfigurationManager isn’t really intended to be used in your web pages. Instead, it’s
designed to allow developers to build custom configuration tools that simplify the work of configuring
web applications. ASP.NET even includes a graphical configuration tool that’s entirely based on the
WebConfigurationManager, although you’d never know it unless you dived into the code.

This tool is called the WAT, and it lets you configure various parts of the web.config file using a web-
page interface. To run the WAT to configure the current web application in Visual Studio, select Website
➤ ASP.NET Configuration (or Project ➤ ASP.NET Configuration if you’re using project-based
development). Visual Studio will open an Internet Explorer window (see Figure 5-5), and Internet
Explorer will authenticate you automatically under the current user account.

You can use the WAT to automate the web.config changes you made in the previous example. To try
this, click the Application tab. Using this tab, you can edit or remove application settings (select the
Manage Application Settings link) or create a new setting (click the Create Application Settings link).
Figure 5-6 shows how you can edit an application setting.

Figure 5-5. Running the WAT

CHAPTER 5 ■ ASP.NET APPLICATIONS

207

Figure 5-6. Editing an application setting with the WAT

This is the essential idea behind the WAT. You make your changes using a graphical interface (a web
page), and the WAT generates the settings you need and adds them to the web.config file for your
application behind the scenes. Of course, the WAT has a number of settings for configuring more
complex ASP.NET settings, and you’ll see it at work throughout this book.

Extending the Configuration File Structure
Earlier in this chapter, you learned how you can use the <appSettings> element to store custom
information that your application uses. The <appSettings> element has two significant limitations. First,
it doesn’t provide a way to store structured information, such as lists or groups of related settings.
Second, it doesn’t give you the flexibility to deal with different types of data. Instead, the <appSettings>
element is limited to single strings.

Fortunately, ASP.NET uses a modular, highly extensible configuration model that allows you to
extend the structure of the web.config and machine.config configuration files with your own custom
sections. To extend a configuration file, you need to take three basic steps:

CHAPTER 5 ■ ASP.NET APPLICATIONS

208

1. Determine the information you want to store in the configuration file and how
it will be organized into elements and attributes. Ideally, you’ll have one
element for each conceptually related group of settings. You’ll use attributes to
store each piece of information that’s associated with the element.

2. For each new element, create a C# class that encapsulates its information.
When you run your application, ASP.NET will read the information from the
element in the configuration file and use it to create an instance of your class.
You can then read the information from this object whenever you need it.

3. the new section in your configuration file. To do this, you need to use the
<configSections> element. The <configSections> element identifies each new
element and maps it to the associated class.

The easiest way to see how this works is to consider a basic example. The following sections show
you how to create and register a new element in the web.config file.

Creating a Section Class
Imagine you want to store several related settings that, when taken together, tell your application how to
contact a remote object. For example, these settings could indicate a port number, server location, URL,
user authentication information, and so on. Using what you’ve already learned, you could enter this
information using separate settings in the <appSettings> group. However, there wouldn’t be anything to
indicate what settings are logically related. Not only does that make the settings harder to read and
interpret, it could lead to problems if one setting is updated but the other related settings aren’t.

A better option would be to break free from the limited structure of the <appSettings> section and
wrap the information in a single XML element. Here’s an example that defines a custom <orderService>
element:

<orderService available="true" pollTimeout="00:01:00"
 location="tcp://OrderComputer:8010/OrderService"/>

If you want to use this sort of structure, you need to define a matching class that derives from
System.Configuration.ConfigurationSection. You can place this class in a separate DLL component, or
you can add the source code to the App_Code folder so it will be automatically compiled as part of the
current web application. (Or, if you’re creating your web application using a web project, simply add the
source code file to your project and it will be compiled as part of the web application assembly
automatically.)

■ Note For information about component reuse, see the “.NET Components” section later in this chapter. For now,

you can use the quicker App_Code approach rather than creating a full-fledged, separately compiled component.

The following OrderService class plays that role. It represents a single <orderService> element and
provides access to the three attributes through strongly typed properties:

public class OrderService : ConfigurationSection
{
 [ConfigurationProperty("available",
 IsRequired = false, DefaultValue = true)]
 public bool Available
 {

tcp://OrderComputer:8010/OrderService

CHAPTER 5 ■ ASP.NET APPLICATIONS

209

 get { return (bool)base["available"]; }
 set { base["available"] = value; }
 }

 [ConfigurationProperty("pollTimeout",
 IsRequired = true)]
 public TimeSpan PollTimeout
 {
 get { return (TimeSpan)base["pollTimeout"]; }
 set { base["pollTimeout"] = value; }
 }

 [ConfigurationProperty("location",
 IsRequired = true)]
 public string Location
 {
 get { return (string)base["location"]; }
 set { base["location"] = value; }
 }
}

As you can see, each property is mapped to the corresponding attribute name using the
ConfigurationProperty attribute. This part is critically important, because it defines the schema (the
structure) of your custom section. If you add an attribute in your custom section but you don’t include a
matching ConfigurationProperty attribute, ASP.NET will throw an exception when you try to read that
part of the web.config file.

The ConfigurationProperty attribute also gives you the opportunity to decide whether that piece of
information is mandatory and what default value should be used if it isn’t supplied.

In the actual property procedures, the code uses the dictionary of attributes that’s provided by the
base class. You can retrieve the attribute you want from this collection by name.

Registering a Section Class
Once you’ve created the section class, your coding work is complete. However, you still need to register
your section class in the web.config file so that ASP.NET recognizes your custom settings. If you don’t
perform this step, you’ll get an error when you attempt to run the application because ASP.NET will
notice an unrecognized section in the web.config file.

To register your custom section, you simply add a <section> element to the <configSections> section
of the web.config file. You need to indicate the name of the section (using the name attribute) and the
name of the corresponding section class (using the type attribute). Here’s the full web.config file you need:

<configuration>
 <configSections>
 ...
 <section name="orderService" type="OrderService" />
 </configSections>

 <orderService available="true" pollTimeout="00:01:00"
 location="tcp://OrderComputer:8010/OrderService"/>

 <system.web>...</system.web>
</configuration>

tcp://OrderComputer:8010/OrderService

CHAPTER 5 ■ ASP.NET APPLICATIONS

210

The final step is to retrieve the information from your custom section when you need it in your web
page. All you need is the ConfigurationManager.GetSection() method:

OrderService custSection =
 (OrderService)ConfigurationManager.GetSection("orderService");

lblInfo.Text += "Retrieved service information...
" +
 "Location: " + custSection.Location +
 "
Available: " + custSection.Available.ToString() +
 "
Timeout: " + custSection.PollTimeout.ToString() + "

";

Figure 5-7 shows the displayed data.

Figure 5-7. Retrieving custom configuration data

Custom section handlers can get a fair bit more sophisticated. For example, you might want to
create a section that has nested subelements. Here’s an example of a more complex <orderService>
section that uses this design:

<orderService available="true" pollTimeout="00:01:00">
 <location computer="OrderComputer" port="8010" endpoint="OrderService" />
</orderService>

To work with this structure, you simply need to create a class that derives from
ConfigurationElement to represent each nested element. Here’s the class you need to repre- sent the
<location> element:

public class Location : ConfigurationElement
{
 [ConfigurationProperty("computer",
 IsRequired = true)]
 public string Computer
 {
 get { return (string)base["computer"]; }
 set { base["computer"] = value; }

CHAPTER 5 ■ ASP.NET APPLICATIONS

211

 }

 [ConfigurationProperty("port",
 IsRequired = true)]
 public int Port
 {
 get { return (int)base["port"]; }
 set { base["port"] = value; }
 }

 [ConfigurationProperty("endpoint",
 IsRequired = true)]
 public string Endpoint
 {
 get { return (string)base["endpoint"]; }
 set { base["endpoint"] = value; }
 }
}

And here’s the revised Location property in the OrderService class:

[ConfigurationProperty("location",
 IsRequired = true)]
public Location Location
{
 get { return (Location)base["location"]; }
 set { base["location"] = value; }
}

Now you can write code like this:

lblInfo.Text = "Server: " + custSection.Location.Computer;

Using the techniques in this chapter, you can save changes to a custom configuration section, and
you can encrypt it. You can also use additional attributes to validate configuration string values (look for
the attributes that derive from ConfigurationValidatorAttribute), and you can create sections with nested
elements and more complex structures. For more information about extending ASP.NET configuration
files, refer to the MSDN Help.

Encrypting Configuration Sections
ASP.NET never serves requests for configuration files, because they often contain sensitive information.
However, even with this basic restriction in place, you may want to increase security by encrypting
sections of a configuration file. This is a recommended practice for data such as connections and user-
specific details. (Of course, any passwords should also be encrypted, although ideally they won’t be
placed in a configuration file at all.)

ASP.NET supports two encryption options:

RSA: The RSA provider allows you to create a key pair that is then used to encrypt the configuration
data. The advantage is that you can copy this key between computers (for example, if you want to
use the same configuration file with all the servers in a web farm). The RSA provider is used by
default.

CHAPTER 5 ■ ASP.NET APPLICATIONS

212

DPAPI: The DPAPI (data protection API) provider uses a protection mechanism that’s built into
Windows. Configuration files are encrypted using a machine-specific key. The advantage is that you
don’t need to manage or maintain the key. The disadvantage is that you can’t use a configuration
file encrypted in this way on any other computer.

With both of these options, encryption is completely transparent. When you retrieve a setting from
an encrypted section, ASP.NET automatically performs the decryption and returns the plain text to your
code (provided the required key is available). Similarly, if you modify a value programmatically and save
it, encryption is performed automatically. However, you won’t be able to edit that section of the
web.config file by hand. But you can still use the WAT, IIS Manager, or your own custom code. When you
use the configuration API, the decryption and encryption steps are performed automatically when you
read from or write to a protected section.

Programmatic Encryption
To enable encryption programmatically, you need to retrieve the corresponding
ConfigurationSection.SectionInformation object and then call the ProtectSection() method. Any existing
data is encrypted at this point, and any changes you make from this point on are automatically encrypted.
If you want to switch off encryption, you simply use the corresponding UnprotectSection() method.

Here’s an example that encrypts the application section if it’s unencrypted or switches off
encryption if it is:

Configuration config = WebConfigurationManager.OpenWebConfiguration("/");
ConfigurationSection appSettings = config.GetSection("appSettings");

if (appSettings.SectionInformation.IsProtected)
{
 appSettings.SectionInformation.UnprotectSection();
}
else
{
 appSettings.SectionInformation.ProtectSection(
 "DataProtectionConfigurationProvider");
}
config.Save();

Here’s an excerpted version of what a protected <appSettings> section looks like:

<appSettings configProtectionProvider="DataProtectionConfigurationProvider">
 <EncryptedData>
 <CipherData>
 <CipherValue>AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAAIEokx++BE0mpDaPjVrJ/jQQAAAA
CAAAAAAADZgAAqAAAABAAAAClK6Kt++FOJoJrMZs12KWdAAAAAASAAACgAAAAEAAAAFYA23iGZF1pe
FwDPTKM2/1IAQAAYG/Y4cmSlEVs/a4yK7KXoYbWtjDsQBnMAcndmK3q+ODw/8...</CipherValue>
 </CipherData>
 </EncryptedData>
</appSettings>

Note that you can’t tell anything about the encrypted data, including the number of settings, the key
names of settings, or their data types.

CHAPTER 5 ■ ASP.NET APPLICATIONS

213

Command-Line Encryption
Currently, no graphical tool exists for encrypting and decrypting configuration file settings. However, if
you don’t want to write code, you can use the aspnet_regiis.exe command-line utility, which is found in
the directory c:\Windows\Microsoft.NET\Framework\[Version]. To use this tool, you must have already
created a virtual directory to set your application up in IIS (see Chapter 18 for more about that process).

When using aspnet_regiis to protect a portion of a configuration file, you need to specify these
command-line arguments:

• The -pe switch specifies the configuration section to encrypt.

• The -app switch specifies your web application’s virtual path.

• The -prov switch specifies the provider name.

Here’s the command line that duplicates the earlier example for an application at
http://localhost/TestApp:

aspnet_regiis -pe "appSettings" -app "/TestApp"
 -prov "DataProtectionConfigurationProvider"

.NET Components
A well-designed web application written for ASP.NET will include separate components that may be
organized into distinct data and business tiers. Once you’ve created these components, you can use
them from any ASP.NET web page seamlessly.

You can create a component in two ways:

Create a new .cs file in the App_Code subdirectory: ASP.NET automatically compiles any code files
in this directory and makes the classes they contain available to the rest of your web application.
When you add a new class in Visual Studio, you’ll be prompted to create the App_Code directory (if
it doesn’t exist yet) and place the file there. (Web applications created using the Visual Studio web
project model don’t have an App_Code subdirectory. For web projects, you get the same result by
simply adding the source code file to your project, so that Visual Studio compiles it as part of your
web application assembly.)

Create a new class library project in Visual Studio: All the classes in this project will be compiled
into a DLL assembly. Once you’ve compiled the assembly, you can use Visual Studio’s Website ➤
Add Reference (or Project ➤ Add Reference) command to bring it into your web application. This
step adds the assembly reference to your web.config file and copies the assembly to the Bin
subdirectory of your application.

Both approaches have the same ultimate result. For example, if you code a database component,
you’ll access it in the same way regardless of whether it’s a compiled assembly in the Bin directory or a
source code file in the App_Code directory. Similarly, if you use ASP.NET’s precompilation features
(discussed in Chapter 18), both options will perform the same way. (If you don’t, you’ll find that the first
request to your web application takes longer to execute when you use the App_Code approach, because
an extra compilation step is involved.)

Although both approaches have essentially the same footprint, they aren’t the same for code
management. This is especially true in cases where you want to reuse the component in more than one
web application (or even in different types of .NET applications). If you use the App_Code approach with
multiple web applications, it’s all too easy to make slight modifications and wind up with a mess of
different versions of the same shared class. The second approach is also more practical for building
large-scale applications with a team of developers, in which case you’ll want the freedom to have

http://localhost/TestApp:

CHAPTER 5 ■ ASP.NET APPLICATIONS

214

different portions of the web application completed and compiled separately. For these reasons, the
class library approach is always preferred for professional applications.

■ Tip The App_Code subdirectory should be used only for classes that are tightly coupled to your web application.
Reusable units of functionality (such as business libraries, database components, validation routines, encryption

utilities, and so on) should always be built as separate class libraries.

Creating a Component
The next example demonstrates a simple component that reads a random Sherlock Holmes quote from
an XML file. (This XML file is available on the Internet and freely reusable via the GNU Public License—
you can download it at http://www.amk.ca/quotations/sherlock-holmes.xml or with the samples for this
chapter.) The component consists of two classes—a Quotation class that represents a single quote and a
SherlockQuotes class that allows you to read a random quote. Both of these classes are placed in the
SherlockLib namespace.

The first listing shows the SherlockQuotes class, which loads an XML file containing quotes in QEL
(Quotation Exchange Language, an XML dialect) when it’s instantiated. The SherlockQuotes class
provides a public GetRandom() quote method that the web-page code can use.

using System;
using System.Xml;

namespace SherlockLib
{
 public class SherlockQuotes
 {
 private XmlDocument quoteDoc;
 private int quoteCount;
 public SherlockQuotes(string fileName)
 {
 quoteDoc = new XmlDocument();
 quoteDoc.Load(fileName);
 quoteCount = quoteDoc.DocumentElement.ChildNodes.Count;
 }

 public Quotation GetRandomQuote()
 {
 int i;
 Random x = new Random();
 i = x.Next(quoteCount-1);
 return new Quotation(quoteDoc.DocumentElement.ChildNodes[i]);
 }
 }
}

http://www.amk.ca/quotations/sherlock-holmes.xml

CHAPTER 5 ■ ASP.NET APPLICATIONS

215

Each time a random quotation is obtained, it is stored in a Quotation object. The listing for the
Quotation class is as follows:

using System;
using System.Xml;

namespace SherlockLib
{
 public class Quotation
 {
 private string qsource;
 public string Source
 {
 get {return qsource;}
 set {qsource = value;}
 }

 private string date;
 public string Date
 {
 get {return date;}
 set {date = value;}
 }

 private string quotation;
 public string QuotationText
 {
 get {return quotation;}
 set {quotation = value;}
 }

 public Quotation(XmlNode quoteNode)
 {
 if ((quoteNode.SelectSingleNode("source")) != null)
 qsource = quoteNode.SelectSingleNode("source").InnerText;
 if ((quoteNode.Attributes.GetNamedItem("date")) != null)
 date = quoteNode.Attributes.GetNamedItem("date").Value;
 quotation = quoteNode.FirstChild.InnerText;
 }
 }
}

Using a Component Through the App_Code Directory
The simplest way to quickly test this class is to copy the source code files to the App_Code subdirectory
in a web application. You can take this step in Windows Explorer or use Visual Studio (Website ➤ Add
Existing Item).

Now you might want to import the SherlockLib namespace into your web page to make its classes
more readily available, as shown here:

using SherlockLib;

CHAPTER 5 ■ ASP.NET APPLICATIONS

216

Finally, you can use the class in your web-page code just as you would use a class from the .NET
Framework. Here’s an example that displays the quotation information on a web page:

protected void Page_Load(object sender, System.EventArgs e)
{
 // Put user code to initialize the page here.
 SherlockQuotes quotes = new
 SherlockQuotes(Server.MapPath("./sherlock-holmes.xml"));
 Quotation quote = quotes.GetRandomQuote();
 Response.Write("" + quote.Source + " (<i>" + quote.Date + "</i>)");
 Response.Write("<blockquote>" + quote.QuotationText + "</blockquote>");
}

When you run this application, you’ll see something like what’s shown in Figure 5-8. Every time you
refresh the page, you’ll see a different quote.

■ Note When you use the App_Code directory, you face another limitation—you can use only one language. This
limitation results from the way that ASP.NET performs its dynamic compilation. Essentially, all the classes in the

App_Code directory are compiled into a single file, so you can’t mix C# and VB.

Figure 5-8. Using the component in your web page

Using a Component Through the Bin Directory
Assuming that your component provides a significant piece of functionality and that it may be reused in
different applications, you’ll probably want to create it using a separate project. This way, your
component can be reused, tested, and versioned separately from the web application.

To create a separate component, you need to use Visual Studio to create a class library project.
Although you can create this using a separate instance of Visual Studio, it’s often easier to load both your

CHAPTER 5 ■ ASP.NET APPLICATIONS

217

class library project and your web application into a single Visual Studio solution to assist in debugging.
This allows you to easily modify both the web application and the component code at the same time and
single-step from a web-page event handler into a method in your component. To set this up, create your
web application first. Then, select File ➤ Add ➤ New Project to open the Add New Project dialog box. In
the list on the left, choose the Visual C# group of templates, and select the Class Library template (see
Figure 5-9).

Figure 5-9. Adding a class library project to a solution

Once you’ve added the code to your class library project, you can compile your component by right-
clicking the project in the Solution Explorer and choosing Build. This generates a DLL assembly that
contains all the component classes.

To allow your web application to use this component, you need to add an assembly reference to the
component. This allows Visual Studio to provide its usual syntax checking and IntelliSense. Otherwise, it
will interpret your attempts to use the class as mistakes and refuse to compile your code.

To add a reference, choose Website ➤ Add Reference from your web application (or Project ➤ Add
Reference if you’re developing a web project). The Add Reference dialog box includes several tabs:

.NET: This allows you to add a reference to a .NET assembly. You can choose from the list of well-
known assemblies that are stored in the registry. Typically, you’ll use this tab to add a reference to
an assembly that’s included as part of the .NET Framework.

COM: This allows you to add a reference to a legacy COM component. You can choose from a list of
shared components that are installed in the Windows system directory. When you add a reference
to a COM component, .NET automatically creates an intermediary wrapper class known as an
interop assembly. You use the interop assembly in your .NET code, and the interop assembly
interacts with the legacy component.

CHAPTER 5 ■ ASP.NET APPLICATIONS

218

Projects: This allows you to add a reference to a .NET class library project that’s currently loaded in
Visual Studio. Visual Studio automatically shows a list of eligible projects. This is often the easiest
way to add a reference to one of your own custom components.

Browse: This allows you to hunt for a compiled .NET assembly file (or a COM component) on your
computer. This is a good approach for testing custom components if you don’t have the source
project or you don’t want to load it into Visual Studio where you might inadvertently modify it.

Recent: This allows you to add a reference to a compiled .NET assembly that you’ve used recently
(rather than forcing you to browse for it all over again).

Figure 5-10 compares two ways to add a reference to the SherlockLib component—by adding a
reference to a currently loaded project and by adding a reference to the compiled DLL file.

Figure 5-10. Adding a reference to SherlockLib.dll

Once you add the reference, the corresponding DLL file will be automatically copied to the Bin
directory of your current project. You can verify this by checking the Path property of the reference in
the Properties window or just by browsing to the directory in Windows Explorer. The nice thing is that
this file will automatically be overwritten with the most recent compiled version of the assembly every
time you run the web application.

It really is that easy. To use another component—either from your own business tier, from a third-
party developer, or from somewhere else—all you need to do is add a reference to that assembly.

■ Tip ASP.NET also allows you to use assemblies with custom controls just as easily as you use assemblies with
custom components. This allows you to bundle reusable user interface output and functionality into self-contained

packages so that they can be used over and over again within the same or multiple applications. Part 5 has more

information about this technique.

CHAPTER 5 ■ ASP.NET APPLICATIONS

219

Extending the HTTP Pipeline
The pipeline of application events isn’t limited to requests for .aspx web forms. It also applies if you
create your own handlers to deal with custom file types.

Why would you want to create your own handler? For the most part, you won’t. However,
sometimes it’s convenient to use a lower-level interface that still provides access to useful objects such
as Response and Request but doesn’t use the full control-based web form model. One example is if you
want to create a web resource that dynamically renders a custom graphic (a technique demonstrated in
Chapter 28). In this situation, you simply need to receive a request, check the URL parameters, and then
return raw image data as a JPEG or GIF file. By avoiding the full web control model, you save some
overhead, because ASP.NET does not need to go through as many steps (such as creating the web-page
objects, persisting view state, and so on).

ASP.NET makes scenarios like these remarkably easy through its pluggable architecture. You can
“snap in” new handlers for specialized file types just by adding configuration settings. But first, you need
to take a closer look at the HTTP pipeline.

HTTP Handlers
Every request into an ASP.NET application is handled by a specialized component known as an HTTP
handler. The HTTP handler is the backbone of the ASP.NET request processing framework. ASP.NET
uses different HTTP handlers to serve different file types. For example, the handler for web pages creates
the page and control objects, runs your code, and renders the final HTML.

You can register HTTP handlers in two ways. First, if you’re using Visual Studio’s integrated web
server, if you’re running an old version of IIS, or if you’re running IIS 7.x in classic mode, you need to add
your HTTP handlers to the <httpHandlers> section in the <system.web> element of the web.config file.
That’s the location shown here:

<configuration>
 <system.web>
 <httpHandlers>
 ...
 </httpHanlders>
 ...
 </system.web>
</configuration>

Inside the <httpHandlers> section, you can place <add> elements that register new handlers and
<remove> elements to unregister existing handlers. You can see the core set of HTTP handlers defined in
this way in the root web.config file. Here’s an excerpt of that file:

<httpHandlers>
 <add verb="*" path="trace.axd" validate="true"
 type="System.Web.Handlers.TraceHandler"/>
 <add verb="*" path="*.config" validate="true"
 type="System.Web.HttpForbiddenHandler"/>
 <add verb="*" path="*.cs" validate="true"
 type="System.Web.HttpForbiddenHandler"/>
 <add verb="*" path="*.aspx" validate="true"
 type="System.Web.UI.PageHandlerFactory"/>
 ...
</httpHandlers>

CHAPTER 5 ■ ASP.NET APPLICATIONS

220

In this example, four classes are registered. All requests for trace.axd are handed to the
TraceHandler, which renders an HTML page with a list of all the recently collected trace output (as
described in Chapter 3). Requests for files that end in .config or .cs are handled by the
HttpForbiddenHandler, which always generates an exception informing the user that these file types are
never served. And files ending in .aspx are handled by the PageHandlerFactory. In this case,
PageHandlerFactory isn’t actually an HTTP handler. Instead, it’s a factory class that will create the
appropriate HTTP handler. This extra layer allows the factory to create a different handler or configure
the handler differently depending on other information about the request.

This method of registering HTTP handlers doesn’t work if you’re using IIS 7.x in integrated mode
(which is the default). In this situation, IIS reads the <system.webServer> section and uses the handlers
defined in its <handlers> section:

<configuration>
 <system.web>
 ...
 </system.web>
 <system.webServer>
 <handlers>
 ...
 </hanlders>
 </system.webServer>
</configuration>

Just like the <httpHandlers> section, you register HTTP handlers by placing <add> elements inside
the <handlers> section.

This minor change in the configuration file underlies a more significant shift in the way IIS works. In
versions of IIS before IIS 7 (and when running IIS 7.x in classic mode), IIS deals with every request by
first checking its file mappings. If a particular file type is mapped to ASP.NET, IIS passes the file to the
ASP.NET engine, which then reads the handler information from the web.config file and decides how to
deal with the request. The disadvantage of this approach is that the whole process relies on the initial file
registration. If ASP.NET isn’t registered for a specific file type, you can’t run a custom HTTP handler or
HTTP module when that file type is requested.

IIS 7.x is smarter. In integrated mode, it handles the task of sending the request to the appropriate
HTTP handler, and it always reads the handler information from the <system.WebServer> section. If you
attempt to register handlers in the <httpHandler> section, you’ll receive an IIS error page when you run
the application. This is to prevent the security risk of having a web application that appears to
implement certain handlers, but doesn’t actually use them. (Incidentally, you can disable this behavior
so IIS 7.x simply ignores and accepts the <httpHandler> section by adding <validation
validateIntegratedModeConfiguration="false"/> inside the <system.webServer> section, but it’s not
recommended.)

■ Note IIS 7.x doesn’t use the root web.config to define its core set of handlers and modules. Instead, you’ll find

these in the Applicationhost.config file, which is a directory like c:\Windows\System32\inetsrv\config.

The examples in this chapter use the <httpHandlers> section, so that they work with the Visual
Studio web server. The web.config file with the downloadable code for this chapter uses both types of
registration.

CHAPTER 5 ■ ASP.NET APPLICATIONS

221

■ Note IIS 7.0 is included with Windows Server 2008 and the Home, Premium, Business, Enterprise, and Ultimate
editions of Windows Vista. IIS 7.5 is included with Windows Server 2008 R2 and Windows 7. For more information

about IIS, including how to register an HTTP handler using the IIS Manager tool, refer to Chapter 18.

Creating a Custom HTTP Handler
If you want to work at a lower level than the web form model to support a specialized form of processing,
you can implement your own HTTP handler.

To create a custom HTTP handler, you simply need to author a class that implements the
IHttpHandler interface. You can place this class in the App_Code directory, or you can compile it as part
of a stand-alone DLL assembly (in other words, a separate class library project) and add a reference to it
in your web application.

The IHttpHandler requires your class to implement two members, which are shown in Table 5-5.

Table 5-5. IHttpHandler Members

Member Description

ProcessRequest() ASP.NET calls this method when a request is received. It’s where the HTTP
handlers perform all the processing. You can access the intrinsic ASP.NET
objects (such as Request, Response, and Server) through the HttpContext
object that’s passed to this method.

IsReusable After ProcessRequest() finishes its work, ASP.NET checks this property to
determine whether a given instance of an HTTP handler can be reused. If it
returns true, the HTTP handler object can be reused for another request of the
same type current. If it returns false, the HTTP handler object will simply be
discarded.

The following code shows one of the simplest possible HTTP handlers you can create. It simply

returns a fixed block of HTML with a message.

using System;
using System.Web;

namespace HttpExtensions
{
 public class SimpleHandler : IHttpHandler
 {
 public void ProcessRequest(System.Web.HttpContext context)
 {
 HttpResponse response = context.Response;
 response.Write("<html><body><h1>Rendered by the SimpleHandler") ;
 response.Write("</body>") ;
 }

 public bool IsReusable
 {

CHAPTER 5 ■ ASP.NET APPLICATIONS

222

 get {return true;}
 }
 }
}

■ Note If you create this extension as a class library project, you’ll need to add a reference to the System.Web.dll

assembly, which contains the bulk of the ASP.NET classes. Without this reference, you won’t be able to use types
such as IHttpHandler and HttpContext. (To add the reference, right-click the project name in the Solution Explorer,

choose Add Reference, and find the assembly in the list in the .NET tab.)

Configuring a Custom HTTP Handler
Once you’ve created your HTTP handler class and made it available to your web application (either by
placing it in the App_Code directory or by adding a reference), you’re ready to use your extension. The
next step is to alter the web.config file for the web application so that it registers your HTTP handler.
Here’s an example:

<configuration>
 <system.web>
 <httpHandlers>
 <add verb="*" path="test.simple"
 type="HttpExtensions.SimpleHandler,HttpExtensions" />
 </httpHandlers>
 ...
 <system.web>
</configuration>

When you register an HTTP handler, you specify three important details. The verb attribute
indicates whether the request is an HTTP POST or HTTP GET request (use * for all request types). The
path attribute indicates the file extension that will invoke the HTTP handler. In this example, the
web.config section links the SimpleHandler class to the filename test.simple. Finally, the type attribute
identifies the HTTP handler class. This identification consists of two portions. First is the fully qualified
class name (in this example, HttpExtensions.SimpleHandler). That portion is followed by a comma and
the name of the DLL assembly that contains the class (in this example, HttpExtensions.dll). Note that the
.dll extension is always assumed, and you don’t include it in the name.

If you’re using the App_Code approach instead of a separately compiled assembly, you can omit the
DLL name entirely, because ASP.NET generates it automatically.

<httpHandlers>
 <add verb="*" path="test.simple"
 type="HttpExtensions.SimpleHandler" />
</httpHandlers>

Visual Studio doesn’t allow you to launch your HTTP handler directly. Instead, you need to run
your web project and then type in a URL that includes test.simple. For example, if your web
application URL is set to http://localhost:19209/Chapter05 in the local server, you need to manually
change it to http://localhost:19209/Chapter05/test.simple. (If you don’t remember the current web

http://localhost:19209/Chapter05
http://localhost:19209/Chapter05/test.simple

CHAPTER 5 ■ ASP.NET APPLICATIONS

223

application URL, just run your application and then modify the URL in the browser.) You’ll see the
HTML shown in Figure 5-11.

Figure 5-11. Running a custom HTTP handler

Using Configuration-Free HTTP Handlers
ASP.NET provides an alternate approach that allows you to avoid registering HTTP handlers and
worrying about configuration file settings—you can use the recognized extension .ashx. No matter what
version of IIS you’re using (or if you’re using the integrated Visual Studio web server), requests that end
in .ashx are automatically recognized as requests for a custom HTTP handler.

To create an .ashx file in Visual Studio, select Website ➤ Add New Item (or Project ➤ Add New Item
for web projects) and choose Generic Handler. You can then fill in a suitable name and click Add to
create the handler.

The .ashx file begins with a WebHandler directive. This WebHandler directive indicates the class
that should be exposed through this file. Here’s an example:

<%@ WebHandler Language="C#" Class="HttpExtensions.SimpleHandler" %>

The class name can correspond to a class in the App_Code directory or a class in a reference
assembly. Alternatively, you can define the class directly in the .ashx file (underneath the WebHandler
directive). Either way, when a client requests the .ashx file, the corresponding HTTP handler class is
executed. If you save the previous example as the file simple.ashx, whenever the client requests
simple.ashx your custom web handler will be executed. Best of all, the .ashx file type is registered in IIS,
so you don’t need to perform any IIS configuration when you deploy your application.

Whether you use a configuration file or an .ashx file is mostly a matter of preference. However, .ashx
files are usually used for simpler extensions that are designed for a single web application. Configuration
files also give you a little more flexibility. For example, you can register an HTTP handler to deal with all
requests that end with a given extension, whereas an .ashx file only serves a request if it has a specific
filename. Also, you can register an HTTP handler for multiple applications (by registering it in the
web.config file and installing the assembly in the Global Assembly Cache). To achieve the same effect
with an .ashx file, you need to copy the .ashx file to each virtual directory.

Creating an Advanced HTTP Handler
In the previous example, the HTTP handler simply returns a block of static HTML. However, you can
create much more imaginative handlers. For example, you might read data that has been posted to the
page or that has been supplied in the query string and use that to customize your rendered output.

CHAPTER 5 ■ ASP.NET APPLICATIONS

224

Here’s a more sophisticated example that displays the source code for a requested file. It uses the file I/O
support that’s found in the System.IO namespace.

using System;
using System.Web;
using System.IO;

namespace HttpExtensions
{
 public class SourceHandler : IHttpHandler
 {
 public void ProcessRequest(System.Web.HttpContext context)
 {
 // Make the HTTP context objects easily available.
 HttpResponse response = context.Response;
 HttpRequest request = context.Request;
 HttpServerUtility server = context.Server;

 response.Write("<html><body>");

 // Get the name of the requested file.
 string file = request.QueryString["file"];
 try
 {
 // Open the file and display its contents one line at a time.
 response.Write("Listing " + file + "
");
 StreamReader r = File.OpenText(
 server.MapPath(Path.Combine("./", file)));
 string line = "";
 while (line != null)
 {
 line = r.ReadLine();

 if (line != null)
 {
 // Make sure tags and other special characters are
 // replaced by their corresponding HTML entities so that
 // they can be displayed appropriately.
 line = server.HtmlEncode(line);

 // Replace spaces and tabs with nonbreaking spaces
 // to preserve whitespace.
 line = line.Replace(" ", " ");
 line = line.Replace(
 "\t", " ");

 // A more sophisticated source viewer might apply
 // color coding.
 response.Write(line + "
");
 }
 }
 r.Close();
 }
 catch (Exception err)

CHAPTER 5 ■ ASP.NET APPLICATIONS

225

 {
 response.Write(err.Message);
 }
 response.Write("</body>");
 }

 public bool IsReusable
 {
 get {return true;}
 }
 }
}

This code simply finds the requested file, reads its content, and uses a little string substitution (for
example, replacing spaces with nonbreaking spaces and line breaks with the
 element) and HTML
encoding to create a representation that can be safely displayed in a browser. You’ll learn more about
techniques for reading and manipulating files in Chapter 12.

Next, you can map the handler to a file extension, as follows:

<httpHandlers>
 <add verb="*" path="source.simple"
 type="HttpExtensions.SourceHandler,HttpExtensions"/>
</httpHandlers>

To test this handler, you can use a URL in this format:

http://localhost:[Port]/[Website]/source.simple?file=HolmesQuote.aspx.cs

The HTTP handler will then show the source code for the .cs file, as shown in Figure 5-12.

http://localhost:

CHAPTER 5 ■ ASP.NET APPLICATIONS

226

Figure 5-12. Using a more sophisticated HTTP handler

Creating an HTTP Handler for Non-HTML Content
Some of the most interesting HTTP handlers don’t generate HTML. Instead, they render different types of
content, such as images. This approach gives you the flexibility to retrieve or generate your content
programmatically, rather than relying on fixed files. For example, you could read the content for a large ZIP
file from a database record and use Response.BinaryWrite() to send it to the client. Or, you could get even
more ambitious and use your HTTP handler to dynamically create a ZIP archive that combines several
smaller files. Either way, to the client who is using your HTTP handler, it seems as though the browser is
downloading an ordinary file. But in actuality, the content is being served using ASP.NET code.

The following example demonstrates an HTTP handler that deals with image files. This handler
doesn’t create the image content dynamically (for that trick, refer to Chapter 28), but it does use code to
perform another important task. Whenever an image is requested, this HTTP handler checks the referrer
header of the request. The referrer header provides the host name, which indicates whether the link to
the image originates from one of the pages on your site, or whether it stems from a page on someone
else’s site. If the page that’s using the image is on another site, you have a potential problem. Not only is
this page stealing your image, it’s also creating more work for your web server. That’s because every time
someone views the third-party site, the image is requested from your server. If the stolen image appears

CHAPTER 5 ■ ASP.NET APPLICATIONS

227

on a popular site, this could generate a significant amount of extra work and reduce the bandwidth you
have available to serve your own pages.

This problem—sites that steal bandwidth by linking to resources on your server—is known
informally as leeching. It’s a common headache for popular websites that serve large amounts of non-
HTML content (for example, photo-sharing sites such as Flickr). Many websites combat this problem
using the same technique as the HTTP handler described previously—namely, they refuse to serve the
image or they substitute a dummy image if the referrer header indicates that a request originates from
another site.

Here’s an HTTP handler that implements this solution in ASP.NET. In order for this code to work as
written, you must import the System.Globalization namespace and the System.IO namespace.

public class ImageGuardHandler : IHttpHandler
{
 public void ProcessRequest(System.Web.HttpContext context)
 {
 HttpResponse response = context.Response;
 HttpRequest request = context.Request;
 string imagePath = null;

 // Check whether the page requesting the image is from your site.
 if (request.UrlReferrer != null)
 {
 // Perform a case-insensitive comparison of the referrer.
 if (String.Compare(request.Url.Host, request.UrlReferrer.Host,
 true, CultureInfo.InvariantCulture) == 0)
 {
 // The requesting host is correct.
 // Allow the image to be served (if it exists).
 imagePath = request.PhysicalPath;
 if (!File.Exists(imagePath))
 {
 response.Status = "Image not found";
 response.StatusCode = 404;
 return;
 }
 }
 }

 if (imagePath == null)
 {
 // No valid image was allowed.
 // Return the warning image instead of the requested image.
 // Rather than hard-code this image, you could
 // retrieve it from the web.config file
 // (using the <appSettings> section or a custom
 // section).
 imagePath = context.Server.MapPath("./Images/notAllowed.gif");
 }

 // Set the content type to the appropriate image type.
 response.ContentType = "image/" +
 Path.GetExtension(imagePath).ToLower();

 // Serve the image.

CHAPTER 5 ■ ASP.NET APPLICATIONS

228

 response.WriteFile(imagePath);
 }

 public bool IsReusable
 {
 get { return true; }
 }
}

For this handler to protect image files, you need to register it to deal with the appropriate file types.
Here’s the web.config settings that set this up for the .gif and .png file types (but not .jpg):

<httpHandlers>
 <add verb="*" path="*.gif"
 type="ImageGuardHandler"/>
 <add verb="*" path="*.png"
 type="ImageGuardHandler"/>
</httpHandlers>

■ Note This solution to leeching is far from perfect, but it serves to stop casual leechers. A programming-savvy

user can easily circumvent it with a little JavaScript code. Some web developers create much more elaborate
systems. For example, you can dynamically generate a timestamp code and append it to your image links
whenever a page is requested. Your HTTP handler can then refuse to serve images if the timestamp is out of date,

which suggests the link has been copied and is being reused on another page long after its creation time.
However, none of these techniques can stop someone from creating a copy of the picture and serving it directly

from their site.

Based on this example, you can probably imagine a variety of different ways you can use HTTP
handlers. For example, you could render a custom image, perform an ad hoc database query, or return
some binary data. These examples extend the ASP.NET architecture but bypass the web-page model.
The result is a leaner, more efficient component.

You can also create HTTP handlers that work asynchronously. This means they create a new thread
to do their work, instead of using one of the ASP.NET worker threads. This improves scalability in
situations where you need to perform a task that takes a long time but isn’t CPU-intensive. A classic
example is waiting to read an extremely slow network resource. ASP.NET allows only a fixed number of
worker threads (typically 25) to run at once. Once this limit is reached, additional requests will be
queued, even if the computer has available CPU time.

With asynchronous handlers, additional requests can be accepted, because the handler creates a
new thread to process each request rather than using the worker process. Of course, there is a risk with
this approach. Namely, if you create too many threads for the computer to manage efficiently, or if you
try to do too much CPU-intensive work at once, the performance of the entire web server will be
adversely affected. Asynchronous HTTP handlers aren’t covered in this book, but in Chapter 11 you’ll
learn how to use asynchronous pages, which use asynchronous HTTP handlers behind the scenes.

CHAPTER 5 ■ ASP.NET APPLICATIONS

229

HTTP Handlers and Session State

By default, HTTP handlers do not have access to client-specific session state. That’s because HTTP
handlers are generally used for lower-level tasks, and skipping the steps needed to serialize and retrieve
session state information achieves a minor increase in performance. However, if you do need access to
session state information, you simply need to implement one of the following two interfaces:

• IRequiresSessionState

• IReadOnlySessionState

If you require just read-only access to session state, you should implement the IReadOnlySessionState
interface. If you need to modify or add to session information, you should implement the
IRequiresSessionState interface. You should never implement both at the same time.

These two interfaces are just marker interfaces and do not contain any methods. That means you don’t
need to write any extra code to enable session support. For example, if you want to use read-only session
state with the SimpleHandler class, you would declare it in this way:

public class SimpleHandler : IHttpHandler, IReadOnlySessionState
{...}

To actually access the Session object, you’ll need to work through the HttpContext object that’s submitted
to the ProcessRequest() method. It provides a Session property.

HTTP Modules
ASP.NET also uses another ingredient in page processing, called HTTP modules. HTTP modules
participate in the processing of a request by handling application events, much like the global.asax file.
ASP.NET uses a core set of HTTP modules to enable platform features such as caching, authentication,
and error pages.

A given request can flow through multiple HTTP modules, but it always ends with a single HTTP
handler. Figure 5-13 shows how the two interact.

CHAPTER 5 ■ ASP.NET APPLICATIONS

230

Figure 5-13. The ASP.NET request processing architecture

If you’re using Visual Studio’s integrated web server, or if you’re running an old version of IIS, or if
you’re running the IIS 7.x web server in classic mode, you need to add your HTTP modules to the
<httpModules> section in the <system.web> element::

<configuration>
 <system.web>
 <httpModules>
 ...
 </httpModules>
 ...
 </system.web>
</configuration>

If you’re running IIS 7.x in integrated mode, you use the <modules> section shown here instead:

<configuration>
 <system.web>
 ...
 </system.web>
 <system.webServer>
 <modules>
 ...
 </modules>
 </system.webServer>
</configuration>

CHAPTER 5 ■ ASP.NET APPLICATIONS

231

Creating a Custom HTTP Module
It’s just as easy to create custom HTTP modules as custom HTTP handlers. You simply need to author a
class that implements the System.Web.IHttpModule interface. You can then register your module by
adding it to the <httpModules> section of the web.config file. However, you don’t need to configure IIS
to use your HTTP modules. That’s because modules are automatically used for every web request.

So, how does an HTTP module plug itself into the ASP.NET request processing pipeline? It does so
in the same way as the global.asax file. Essentially, when an HTTP module is created, it registers to
receive specific global application events. For example, if the module is concerned with authentication,
it will register itself to receive the authentication events. Whenever those events occur, ASP.NET invokes
all the interested HTTP modules. The HTTP module wires up its events with delegate code in the Init()
method.

The IHttpModule interface defines the two methods shown in Table 5-6.

Table 5-6. IHttpModule Members

Member Description

Init() This method allows an HTTP module to register its event handlers to receive the events
of the HttpApplication object. This method provides the current HttpApplication object
for the request as a parameter.

Dispose() This method gives an HTTP module an opportunity to perform any cleanup before the
object gets garbage collected.

The following class is a custom HTTP module that handles the event

HttpApplication.AuthenticateRequest and then logs the user information to a new entry in the Windows
event log using the EventLog class from the System.Diagnostics namespace:

using System;
using System.Web;
using System.Diagnostics;

namespace HttpExtensions
{
 public class LogUserModule : IHttpModule
 {
 public void Init(HttpApplication httpApp)
 {
 // Attach application event handlers.
 httpApp.AuthenticateRequest += new EventHandler(OnAuthentication);
 }

 private void OnAuthentication(object sender, EventArgs a)
 {
 // Get the current user identity.
 string name = HttpContext.Current.User.Identity.Name;

 // Log the user name.
 EventLog log = new EventLog();
 log.Source = "Log User Module";
 log.WriteEntry(name + " was authenticated.");

CHAPTER 5 ■ ASP.NET APPLICATIONS

232

 }

 public void Dispose()
 {}
 }
}

■ Note To use this example, the account used to run ASP.NET code must have permission to write to the event

log. (More specifically, the account must have permission to modify the
HKEY_Local_Machine\SYSTEM\CurrentControlSet\Services\EventLog registry key.) If you’re using the Visual Studio

test server, you’ll need to explicitly run Visual Studio as an administrator (right-click the Visual Studio shortcut and

choose Run As Administrator).

Now you can register the module with the following information in the web.config file. Here’s an
example that assumes it’s compiled in a separate assembly named HttpExtensions.dll:

<configuration>
 <system.web>
 <httpModules>
 <add name="LogUserModule"
 type="HttpExtensions.LogUserModule,HttpExtensions" />
 </httpModules>
 ...
 </system.web>
</configuration>

To test this module, request any other page in the web application. Then check the entry in the
Windows application event log. (To view the log, run the Event Viewer, which you find by searching the
Start menu.

CHAPTER 5 ■ ASP.NET APPLICATIONS

233

Figure 5-14. Logging messages with an HTTP module

Handling Events from Other Modules

The previous example shows how you can handle application events in a custom HTTP module. However,
some global events aren’t provided by the HttpApplication class but are still quite important. These include
events raised by other HTTP modules, such as the events fired to start and end a session.

Fortunately, you can wire up to these events in the Init() event; you just need a slightly different approach.
The HttpApplication class provides a collection of all the modules that are a part of the current HTTP
pipeline through the Modules collection. You can retrieve a module by name and then use delegate code to
connect an event handler.

For example, if you want to connect an event handler named OnSessionStart() to the
SessionStateModule.Start event, you could use code like this for the Init() method in your HTTP module:

public void Init(HttpApplication httpApp)
{
 SessionStateModule sessionMod = (SessionStateModule)httpApp.Modules["Session"];
 sessionMod.Start += new EventHandler(OnSessionStart);
}

CHAPTER 5 ■ ASP.NET APPLICATIONS

234

Summary
In this chapter, you took a closer look at what constitutes an ASP.NET application. After learning more
about the life cycle of an application, you learned how to code global application event handlers with the
global.asax file and how to set application configuration with the web.config file. Finally, you learned
how to use separately compiled components in your web pages and how to extend the HTTP pipeline
with your own handlers and modules.

C H A P T E R 6

■ ■ ■

235

State Management

No web application framework, no matter how advanced, can change the fact that HTTP is a stateless
protocol. After every web request, the client disconnects from the server, and the ASP.NET engine
discards the objects that were created for the page. This architecture ensures that web applications can
scale up to serve thousands of simultaneous requests without running out of server memory. The
drawback is that your code needs to use other techniques to store information between web requests
and retrieve it when needed.

In this chapter, you’ll see how to tackle this challenge by maintaining information on the server and
on the client using a variety of techniques. You’ll also learn how to transfer information from one web
page to another.

State Management Changes in ASP.NET 4

ASP.NET 4 adds a few refinements to its state management features:

Opt-in view state: ASP.NET 4 adds a ViewStateMode property that allows you to disable view
state for a page but then selectively enable view state for those controls that absolutely require it.
This opt-in model of view state is described in the “Selectively Disabling View State” section.

Session compression: ASP.NET 4 introduces a compression feature that reduces the size of data
before it’s sent to an out-of-process state provider. This feature is described in the “Compression”
section.

Selectively enabling session state: ASP.NET 4 adds the HttpContext.SetSessionStateBehavior()
method. You can create an HTTP module (as described in Chapter 5) that examines the current
request and then calls SetSessionStateBehavior() to programmatically enable or disable session
state. The idea here is to wring just a bit more performance out of your web application by
disabling session state when it’s not needed but still allowing it to work for some requests.
However, this is a fairly specialized optimization technique that most developers won’t use.

Partial session state: Session state now recognizes the concept of partial state storage and
retrieval, which could theoretically allow you to pull just a single property out of a serialized object.
As promising as this sounds, no current state providers support it, so you can’t use this feature in
your applications just yet. Microsoft may release session state providers that support this feature in
future versions of ASP.NET or sooner—for example, with new products like Windows Server
AppFabric (http://tinyurl.com/yhds97y).

http://tinyurl.com/yhds97y

CHAPTER 6 ■ STATE MANAGEMENT

236

ASP.NET State Management
ASP.NET includes a variety of options for state management. You choose the right option depending on
the data you need to store, the length of time you want to store it, the scope of your data (whether it’s
limited to individual users or shared across multiple requests), and additional security and performance
considerations. The different state management options in ASP.NET are complementary, which means
you’ll almost always use a combination of them in the same web application (and often the same page).

Table 6-1, Table 6-2, and Table 6-3 show an at-a-glance comparison of your state management
options. You can review your options now, or you can use these tables as a reference after you work your
way through the more detailed information in this chapter.

Table 6-1. State Management Options Compared (Part 1)

 View State Query String Custom Cookies

Allowed data types All serializable .NET
data types.

A limited amount of
string data.

String data.

Storage location A hidden field in the
current web page.

The browser’s URL
string.

The client’s computer (in
memory or a small text
file, depending on its
lifetime settings).

Lifetime Retained permanently
for postbacks to a
single page.

Lost when the user
enters a new URL or
closes the browser.
However, can be
stored and can persist
between visits.

Set by the programmer. It
can be used in multiple
pages and it persists
between visits.

Scope Limited to the current
page.

Limited to the target
page.

The whole ASP.NET
application.

Security Tamper-proof by
default but easy to
read. You can use the
Page directive to
enforce encryption.

Clearly visible and easy
for the user to modify.

Insecure and can be
modified by the user.

Performance
implications

Storing a large
amount of
information will slow
transmission but will
not affect server
performance.

None, because the
amount of data is
trivial.

None, because the amount
of data is trivial.

Typical use Page-specific settings. Sending a product ID
from a catalog page to
a details page.

Personalization
preferences for a website.

CHAPTER 6 ■ STATE MANAGEMENT

237

Table 6-2. State Management Options Compared (Part 2)

 Session State Application State

Allowed data types All serializable .NET data types.
Nonserializable types are supported if you
are using the default in-process state
service.

All .NET data types.

Storage location Server memory (by default), or a dedicated
database, depending on the mode you
choose.

Server memory.

Lifetime Times out after a predefined period
(usually 20 minutes but can be altered
globally or programmatically).

The lifetime of the application
(typically, until the server is
rebooted).

Scope The whole ASP.NET application. The whole ASP.NET application.
Unlike most other types of
methods, application data is
global to all users.

Security Secure, because data is never transmitted
to the client. However, subject to session
hijacking if you don’t use SSL.

Very secure, because data is
stored on the server.

Performance
implications

Storing a large amount of information can
slow down the server severely, especially if
there are a large number of users at once,
because each user will have a separate set
of session data.

Storing a large amount of
information can slow down the
server, because this data will
never time out and be removed.

Typical use Store items in a shopping basket. Storing any type of global data.

Table 6-3. State Management Options Compared (Part 3)

 Profiles Caching

Allowed data types All serializable .NET data
types.

All .NET data types. Nonserializable
types are supported if you create a
custom profile.

Storage location A back-end database. Server memory.

Lifetime Permanent. Depends on the expiration policy
you set, but may possibly be
released early if server memory
becomes scarce.

CHAPTER 6 ■ STATE MANAGEMENT

238

 Profiles Caching

Scope The whole ASP.NET
application. May also be
accessed by other
applications.

The same as application state (global
to all users and all pages).

Security Fairly secure, because
although data is never
transmitted, it is stored
without encryption in a
database that could be
compromised.

Very secure, because the cached
data is stored on the server.

Performance implications Large amounts of data can be
stored easily, but there may
be a nontrivial overhead in
retrieving and writing the
data for each request.

Storing a large amount of
information may force out other,
more useful cached information.
However, ASP.NET has the ability to
remove items early to ensure
optimum performance.

Typical use Store customer account
information.

Storing data retrieved from a
database.

Clearly, there’s no shortage of choices for managing state in ASP.NET. Fortunately, most of these

state management systems expose a similar collection-based programming interface. One notable
exception is the profiles feature, which gives you a higher-level data model.

This chapter explores all the approaches to state management shown in Table 6-1 and Table 6-2,
but not those in Table 6-3. Caching, an indispensable technique for optimizing access to limited
resources such as databases, is covered in Chapter 11. Profiles, a higher-level model for storing user-
specific information that works in conjunction with ASP.NET authentication, is covered in Chapter 24.
However, before you can tackle either of these topics, you’ll need to have a thorough understanding of
state management basics.

In addition, you can write your own custom state management code and use server-side resources
to store that information. The most common example of this technique is storing information in one or
more tables in a database. The drawback with using server-side resources is that they tend to slow down
performance and can hurt scalability. For example, opening a connection to a database or reading
information from a file takes time. In many cases, you can reduce this overhead by supplementing your
state management system with caching. You’ll explore your options for using and enhancing database
access code in Part 2.

View State
View state should be your first choice for storing information within the bounds of a single page. View state
is used natively by the ASP.NET web controls. It allows them to retain their properties between postbacks.
You can add your own data to the view state collection using a built-in page property called ViewState. The
type of information you can store includes simple data types and your own custom objects.

Like most types of state management in ASP.NET, view state relies on a dictionary collection, where
each item is indexed with a unique string name. For example, consider this code:

ViewState["Counter"] = 1;

CHAPTER 6 ■ STATE MANAGEMENT

239

This places the value 1 (or rather, an integer that contains the value 1) into the ViewState collection
and gives it the descriptive name Counter. If there is currently no item with the name Counter, a new item
will be added automatically. If there is already an item indexed under the name Counter, it will be replaced.

When retrieving a value, you use the key name. You also need to cast the retrieved value to the
appropriate data type. This extra step is required because the ViewState collection casts all items to the
base Object type, which allows it to handle any type of data.

Here’s the code that retrieves the counter from view state and converts it to an integer:

int counter;
if (ViewState["Counter"] != null)
{
 counter = (int)ViewState["Counter"];
}

If you attempt to look up a value that isn’t present in the collection, you’ll receive a
NullReferenceException. To defend against this possibility, you should check for a null value before you
attempt to retrieve and cast data that may not be present.

■ Note ASP.NET provides many collections that use the same dictionary syntax. This includes the collections
you’ll use for session and application state as well as those used for caching and cookies. You’ll see several of

these collections in this chapter.

A View State Example
The following code demonstrates a page that uses view state. It allows the user to save a set of values (all
the text that’s displayed in all the text boxes of a table) and restore it later. This example uses recursive
logic to dig through all child controls, and it uses the control ID for the view state key, because this is
guaranteed to be unique in the page.

Here’s the complete code:

public partial class ViewStateTest : System.Web.UI.Page
{
 protected void cmdSave_Click(object sender, System.EventArgs e)
 {
 // Save the current text.
 SaveAllText(Table1.Controls, true);
 }

 private void SaveAllText(ControlCollection controls, bool saveNested)
 {
 foreach (Control control in controls)
 {
 if (control is TextBox)
 {
 // Store the text using the unique control ID.
 ViewState[control.ID] = ((TextBox)control).Text;
 }

 if ((control.Controls != null) && saveNested)
 {

CHAPTER 6 ■ STATE MANAGEMENT

240

 SaveAllText(control.Controls, true);
 }
 }
 }

 protected void cmdRestore_Click(object sender, System.EventArgs e)
 {
 // Retrieve the last saved text.
 RestoreAllText(Table1.Controls, true);
 }

 private void RestoreAllText(ControlCollection controls, bool saveNested)
 {
 foreach (Control control in controls)
 {
 if (control is TextBox)
 {
 if (ViewState[control.ID] != null)
 ((TextBox)control).Text = (string)ViewState[control.ID];
 }
 if ((control.Controls != null) && saveNested)
 {
 RestoreAllText(control.Controls, true);
 }
 }
 }
}

Figure 6-1 shows the page in action.

Figure 6-1. Saving and restoring text using view state

CHAPTER 6 ■ STATE MANAGEMENT

241

Storing Objects in View State
You can store your own objects in view state just as easily as you store numeric and string types.
However, to store an item in view state, ASP.NET must be able to convert it into a stream of bytes so that
it can be added to the hidden input field in the page. This process is called serialization. If your objects
aren’t serializable (and by default they aren’t), you’ll receive an error message when you attempt to place
them in view state.

To make your objects serializable, you need to add the Serializable attribute before your class
declaration. For example, here’s an exceedingly simple Customer class:

[Serializable]
public class Customer
{
 public string FirstName;
 public string LastName;

 public Customer(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;
 }
}

Because the Customer class is marked as serializable, it can be stored in view state:

// Store a customer in view state.
Customer cust = new Customer("Marsala", "Simons");
ViewState["CurrentCustomer"] = cust;

Remember, when using custom objects, you’ll need to cast your data when you retrieve it from view
state.

// Retrieve a customer from view state.
Customer cust;
cust = (Customer)ViewState["CurrentCustomer"];

For your classes to be serializable, you must meet these requirements:

• Your class must have the Serializable attribute.

• Any classes it derives from must have the Serializable attribute.

• All the member variables of the class must use serializable data types. Any
nonserializable data type must be decorated with the NonSerialized attribute
(which means it is simply ignored during the serialization process).

Once you understand these principles, you’ll also be able to determine what .NET objects can be
placed in view state. You simply need to find the class information in the MSDN Help. Find the class
you’re interested in, and examine the documentation. If the class declaration is preceded with the
Serializable attribute, the object can be placed in view state. If the Serializable attribute isn’t present, the
object isn’t serializable, and you won’t be able to store it in view state. However, you may still be able to
use other types of state management, such as in-process session state, which is described later in the
“Session State” section.

The following example rewrites the page shown earlier to use the generic Dictionary class. The
Dictionary class is a serializable key-value collection that’s provided in the System.Collections.Generic

CHAPTER 6 ■ STATE MANAGEMENT

242

namespace. As long as you use the Dictionary to store serializable objects (and use a serializable data
type for your keys), you can store a Dictionary object in view state without a hitch.

To demonstrate this technique, the following example stores all the control information for the page
as a collection of strings in a Dictionary object, and it indexes each item by string using the control ID.
The final Dictionary object is then stored in the view state for the page. When the user clicks the Display
button, the dictionary is retrieved, and all the information it contains is displayed in a label.

public partial class ViewStateObjects : System.Web.UI.Page
{
 protected void cmdSave_Click(object sender, System.EventArgs e)
 {
 // Put the text in the Dictionary.
 Dictionary<string,string> textToSave = new Dictionary<string,string>();
 SaveAllText(Table1.Controls, textToSave, true);

 // Store the entire collection in view state.
 ViewState["ControlText"] = textToSave;
 }

 private void SaveAllText(ControlCollection controls,
 Dictionary<string, string> textToSave, bool saveNested)
 {
 foreach (Control control in controls)
 {
 if (control is TextBox)
 {
 // Add the text to the Dictionary.
 textToSave.Add(control.ID, ((TextBox)control).Text);
 }
 if ((control.Controls != null) && saveNested)
 {
 SaveAllText(control.Controls, textToSave, true);
 }
 }
 }

 protected void cmdDisplay_Click(object sender, System.EventArgs e)
 {
 if (ViewState["ControlText"] != null)
 {
 // Retrieve the Dictionary.
 Dictionary<string, string> savedText =
 (Dictionary<string, string>)ViewState["ControlText"];

 // Display all the text by looping through the Dictionary.
 lblResults.Text = "";
 foreach (KeyValuePair<string, string> item in savedText)
 {
 lblResults.Text += item.Key + " = " + item.Value + "
";
 }
 }
 }
}

CHAPTER 6 ■ STATE MANAGEMENT

243

Figure 6-2 shows the result of a simple test, after entering some data, saving it, and retrieving it.

Figure 6-2. Retrieving an object from view state

Assessing View State
View state is ideal because it doesn’t take up any memory on the server and doesn’t impose any arbitrary
usage limits (such as a time-out). So, what might force you to abandon view state for another type of
state management? Here are three possible reasons:

• You need to store mission-critical data that the user cannot be allowed to tamper
with. (An ingenious user could modify the view state information in a postback
request.) In this case, consider session state. Alternatively, consider using the
countermeasures described in the next section. They aren’t bulletproof, but they
will greatly increase the effort an attacker would need in order to read or modify
view state data.

• You need to store information that will be used by multiple pages. In this case,
consider session state, cookies, or the query string.

• You need to store an extremely large amount of information, and you don’t want
to slow down page transmission times. In this case, consider using a database, or
possibly session state.

CHAPTER 6 ■ STATE MANAGEMENT

244

The amount of space used by view state depends on the number of controls, their complexity, and
the amount of dynamic information. If you want to profile the view state usage of a page, just turn on
tracing by adding the Trace attribute to the Page directive, as shown here:

<%@ Page Language="C#" Trace="true" ... %>

Look for the Control Tree section. Although it doesn’t provide the total view state used by the page,
it does indicate the view state used by each individual control in the Viewstate Size Bytes column (see
Figure 6-3). Don’t worry about the Render Size Bytes column, which simply reflects the size of the
rendered HTML for the control.

■ Tip You can also examine the contents of the current view state of a page using the Web Development Helper

described in Chapter 2.

Figure 6-3. Determining the view state used in a page

Selectively Disabling View State
To improve the transmission times of your page, it’s a good idea to eliminate view state when it’s not
needed. Although you can disable view state at the application and page level, it makes the most sense to
disable it on a per-control basis. You won’t need view state for a control in three instances:

• The control never changes. For example, a button with static text doesn’t need
view state.

• The control is repopulated in every postback. For example, if you have a label that
shows the current time, and you set the current time in the Page.Load event
handler, it doesn’t need view state.

CHAPTER 6 ■ STATE MANAGEMENT

245

• The control is an input control, and it changes only because of user actions. After
each postback, ASP.NET will populate your input controls using the submitted
form values. This means the text in a text box or the selection in a list box won’t be
lost, even if you don’t use view state.

■ Tip Remember that view state applies to all the values that change, not just the text displayed in the control.
For example, if you dynamically change the colors used in a label, these changes are stored in view state, even if

you don’t dynamically set the text. (Technically, it’s the control’s responsibility to use view state. That means it is
possible to create a server control that doesn’t retain certain values, even if view state is enabled. However, the

ASP.NET web controls always store changed values in view state.)

To turn off view state for a single control, set the EnableViewState property of the control to false. To
turn off view state for an entire page and all its controls, set the EnableViewState property of the page to
false, or use the EnableViewState attribute in the Page directive, as shown here:

<%@ Page Language="C#" EnableViewState="false" ... %>

Even when you disable view state for the entire page, you’ll still see the hidden view state tag with a
small amount of information in the rendered HTML. That’s because ASP.NET always stores the control
hierarchy for the page at a minimum. There’s no way to remove this last little fragment of data.

You can turn view state off for all the web pages in your application by setting the enableViewState
attribute of the <pages> element in the web.config file, as shown here:

<configuration>
 <system.web>
 <pages enableViewState="false" />
 ...
 </system.web>
</configuration>

Now, you’ll need to set the EnableViewState attribute of the Page directive to true if you want to
switch on view state for a particular page.

Finally, it’s possible to switch of view state for a page (either through the Page directive or through
the web.config file) but selectively override that setting by explicitly enabling view state for a particular
control. This technique, which is new in ASP.NET 4, is popular with developers who are obsessed with
paring down the view state of their pages to the smallest size possible. It allows you to switch on view
state only when it’s absolutely necessary—for example, with a data editing control such as the GridView
(which uses view state to keep track of the currently selected item, among other details).

To use this approach, you need to use another property, called ViewStateMode. Like
EnableViewState, the ViewStateMode property applies to all controls and page and can be set in a
control tag or through an attribute in the page directive. ViewStateMode takes one of three values:

Enabled: View state will work, provided the EnableViewState property allows it.

Disabled: View state will not work for this control, although it may be allowed for child controls.

Inherit: This control will use the ViewStateMode property of its container. This is the default value.

CHAPTER 6 ■ STATE MANAGEMENT

246

To use opt-in state management, you set ViewStateMode of the page to Disabled. This turns off view
state for the top-level page. By default, all the controls inside the page will have a ViewStateMode of
Inherit, which means they also disable themselves.

<%@ Page Language="C#" ViewStateMode="Disabled" ... %>

Note that you do not set EnableViewState to false—if you do, ASP.NET completely shuts down view
state for the page, and no control can opt in.

Now, to opt in for a particular control in the page, you simply set ViewStateMode to Enabled:

<asp:Label ViewStateMode="Enabled" ... />

This model is a bit awkward, but it’s useful when view state size is an issue. The only drawback is
that you need to remember to explicitly enable view state on controls that have dynamic values you
want to persist or on controls that use view state for part of their functionality.

View State Security
As described in earlier chapters, view state information is stored in a single Base64-encoded string that
looks like this:

<input type="hidden" name="__VIEWSTATE"
 id="__VIEWSTATE" value="dDw3NDg2NTI5MDg7Oz4="/>

Because this value isn’t formatted as clear text, many ASP.NET programmers assume that their view
state data is encrypted. It isn’t. A malicious user could reverse-engineer this string and examine your
view state data in a matter of seconds, as demonstrated in Chapter 3.

If you want to make view state secure, you have two choices. First, you can make sure that the view
state information is tamper-proof by using a hash code.

A hash code is a cryptographically strong checksum. Essentially, ASP.NET calculates this checksum
based on the current view state content and adds it to the hidden input field when it returns the page.
When the page is posted back, ASP.NET recalculates the checksum and ensures that it matches. If a
malicious user changes the view state data, ASP.NET will be able to detect the change, and it will reject
the postback.

Hash codes are enabled by default, so if you want this functionality, you don’t need to take any extra
steps. Occasionally, developers choose to disable this feature to prevent problems in a web farm where
different servers have different keys. (The problem occurs if the page is posted back and handled by a
new server, which won’t be able to verify the view state information.) To disable hash codes, you can use
the EnableViewStateMAC property of the Page directive in your .aspx file:

<%@ Page EnableViewStateMac="false" ... %>

Alternatively, you can set the enableViewStateMac attribute of the <pages> element in the
web.config file, as shown here:

<configuration>
 <system.web>
 <pages enableViewStateMac="false" />
 ...
 </system.web>
</configuration>

CHAPTER 6 ■ STATE MANAGEMENT

247

■ Note This step is strongly discouraged. It’s much better to configure multiple servers to use the same key,

thereby removing any problem. Chapter 5 describes how to do this.

Even when you use hash codes, the view state data will still be readable. To prevent users from
getting any view state information, you can enable view state encryption. You can turn on encryption for
an individual page using the ViewStateEncryptionMode property of the Page directive:

<%@Page ViewStateEncryptionMode="Always" ... %>

Or you can set the same attribute in the web.config configuration file:

<pages viewStateEncryptionMode="Always" />

Either way, this enforces encryption. You have three choices for your view state encryption setting—
always encrypt (Always), never encrypt (Never), or encrypt only if a control specifically requests it (Auto).
The default is Auto, which means that the page won’t encrypt its view state unless a control on that page
specifically requests it. To request encryption, a control must call the
Page.RegisterRequiresViewStateEncryption() method at some point during its life cycle, before it’s
renders itself to HTML. If no control calls this method to indicate it has sensitive information, the view
state is not encrypted, thereby saving the encryption overhead. However, the control doesn’t have
absolute power—if it calls Page.RegisterRequiresViewStateEncryption() and the encryption mode of the
page is Never, the view state won’t be encrypted.

When hashing or encrypting data, ASP.NET uses the computer-specific key defined in the
<machineKey> section of the machine.config file, which is described in Chapter 5. By default, you won’t
actually see the definition for the <machineKey> because it’s initialized programmatically. However, you
can see the equivalent content in the machine.config.comments files, and you can explicitly add the
<machineKey> element if you want to customize its settings.

■ Tip Don’t encrypt view state data if you don’t need to do so. The encryption will impose a performance penalty,

because the web server needs to perform the encryption and decryption with each postback.

Transferring Information Between Pages
One of the most significant limitations with view state is that it’s tightly bound to a specific page. If the
user navigates to another page, this information is lost. This problem has several solutions, and the best
approach depends on your requirements. In the following sections, you’ll see how to pass information
from one page to the next using the query string and cross-page posting. If neither of these techniques is
right for your scenario, you’ll need to use a form of state management that has a broader scope, such as
cookies, session state, or application state, all of which are discussed later in this chapter.

CHAPTER 6 ■ STATE MANAGEMENT

248

The Query String
One common approach is to pass information using a query string in the URL. You will commonly find
this approach in search engines. For example, if you perform a search on the Google website, you’ll be
redirected to a new URL that incorporates your search parameters. Here’s an example:

http://www.google.ca/search?q=organic+gardening

The query string is the portion of the URL after the question mark. In this case, it defines a single
variable named q, which contains the “organic+gardening” string.

The advantage of the query string is that it’s lightweight and doesn’t exert any kind of burden on the
server. Unlike cross-page posting, the query string can easily transport the same information from page
to page. It has some limitations, however:

• Information is limited to simple strings, which must contain URL-legal characters.

• Information is clearly visible to the user and to anyone else who cares to
eavesdrop on the Internet.

• The enterprising user might decide to modify the query string and supply new
values, which your program won’t expect and can’t protect against.

• Many browsers impose a limit on the length of a URL (usually from 1 to 2 KB). For
that reason, you can’t place a large amount of information in the query string and
still be assured of compatibility with most browsers.

Adding information to the query string is still a useful technique. It’s particularly well suited in
database applications where you present the user with a list of items corresponding to records in a
database, like products. The user can then select an item and be forwarded to another page with detailed
information about the selected item. One easy way to implement this design is to have the first page
send the item ID to the second page. The second page then looks that item up in the database and
displays the detailed information. You’ll notice this technique in e-commerce sites such as
Amazon.com.

Using the Query String
To store information in the query string, you need to place it there yourself. Unfortunately, there is no
collection-based way to do this. Typically, this means using a special HyperLink control, or you can use a
Response.Redirect() statement like the one shown here:

// Go to newpage.aspx. Submit a single query string argument
// named recordID and set to 10.
int recordID = 10;
Response.Redirect("newpage.aspx?recordID=" + recordID.ToString());

You can send multiple parameters as long as you separate them with an ampersand (&), as
shown here:

// Go to newpage.aspx. Submit two query string arguments:
// recordID (10) and mode (full).
Response.Redirect("newpage.aspx?recordID=10&mode=full");

The receiving page has an easier time working with the query string. It can receive the values from
the QueryString dictionary collection exposed by the built-in Request object, as shown here:

string ID = Request.QueryString["recordID"];

http://www.google.ca/search?q=organic+gardening

CHAPTER 6 ■ STATE MANAGEMENT

249

If the query string doesn’t contain the recordID parameter, or if the query string contains the
recordID parameter but doesn’t supply a value, the ID string will be set to null.

Note that information is always retrieved as a string, which can then be converted to another simple
data type. Values in the QueryString collection are indexed by the variable name.

■ Note Unfortunately, ASP.NET does not expose any mechanism to automatically verify or encrypt query string
data. This facility could work in almost the same way as the view state protection. Without these features, query
string data is easily subject to tampering. In Chapter 25, you’ll take a closer look at the .NET cryptography classes

and learn how you can use them to build a truly secure query string.

URL Encoding
One potential problem with the query string is using characters that aren’t allowed in a URL. The list of
characters that are allowed in a URL is much shorter than the list of allowed characters in an HTML
document. All characters must be alphanumeric or one of a small set of special characters (including $-
_.+!*’(),). Some browsers tolerate certain additional special characters (Internet Explorer is notoriously
lax), but many do not. Furthermore, some characters have special meaning. For example, the
ampersand (&) is used to separate multiple query string parameters, the plus sign (+) is an alternate way
to represent a space, and the number sign (#) is used to point to a specific bookmark in a web page. If
you try to send query string values that include any of these characters, you’ll lose some of your data.

If you’re concerned that the data you want to store in the query string may not consist of URL-legal
characters, you should use URL encoding. With URL encoding, special characters are replaced by
escaped character sequences starting with the percent sign (%), followed by a two-digit hexadecimal
representation. The only exception is the space character, which can be represented as the character
sequence %20 or the + sign.

You can use the methods of the HttpServerUtility class to encode your data automatically. For
example, the following shows how you would encode a string of arbitrary data for use in the query string.
This replaces all the nonlegal characters with escaped character sequences.

string productName = "Flying Carpet";
Response.Redirect("newpage.aspx?productName=" + Server.UrlEncode(productName));

You can use the HttpServerUtility.UrlDecode() method to return a URL-encoded string to its initial
value. However, you don’t need to take this step with the query string because ASP.NET automatically
decodes your values when you access them through the Request.QueryString collection. Usually, it's safe
to call UrlDecode() a second time, because decoding data that’s already decoded won’t cause a problem.
The only exception is if you have a value that legitimately includes the + sign. In this case, calling
UrlDecode() will convert the + sign to a space.

Cross-Page Posting
You’ve already learned how ASP.NET pages post back to themselves. When a page is posted back, it
sends the current content of all the controls in the form for that page (including the contents of the
hidden view state field). To transfer information from one page to another, you can use the same
postback mechanism, but send the information to a different page. This technique sounds conceptually
straightforward, but it’s a potential minefield. If you’re not careful, it can lead you to create pages that
are tightly coupled to one another and difficult to enhance and debug.

CHAPTER 6 ■ STATE MANAGEMENT

250

The infrastructure that supports cross-page postbacks is a property named PostBackUrl, which is
defined by the IButtonControl interface and turns up in button controls such as ImageButton,
LinkButton, and Button. To use cross-page posting, you simply set PostBackUrl to the name of another
web form. When the user clicks the button, the page will be posted to that new URL with the values from
all the input controls on the current page.

Here’s an example that defines a form with two text boxes and a button that posts to a page named
CrossPage2.aspx:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="CrossPage1.aspx.cs"
 Inherits="CrossPage1" %>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>CrossPage1</title>
</head>
<body>
 <form id="form1" runat="server" >
 <div>
 <asp:TextBox runat="server" ID="txtFirstName"></asp:TextBox>
 <asp:TextBox runat="server" ID="txtLastName"></asp:TextBox>
 <asp:Button runat="server" ID="cmdSubmit"
 PostBackUrl="CrossPage2.aspx" Text="Submit" />
 </div>
 </form>
</body>
</html>

In CrossPage2.aspx, the page can interact with the CrossPage1.aspx objects using the
Page.PreviousPage property. Here’s an example:

protected void Page_Load(object sender, EventArgs e)
{
 if (PreviousPage != null)
 {
 lblInfo.Text = "You came from a page titled " +
 PreviousPage.Header.Title;
 }
}

Note that this page checks for a null reference before attempting to access the PreviousPage object.
If there’s no PreviousPage object, there’s no cross-page postback.

ASP.NET uses some interesting sleight of hand to make this system work. The first time the second
page accesses Page.PreviousPage, ASP.NET needs to create the previous page object. To do this, it
actually starts the page processing life cycle, but interrupts it just before the PreRender stage. Along the
way, a stand-in HttpResponse object is created to silently catch and ignore any Response.Write()
commands from the previous page. However, there are still some interesting side effects. For example,
all the page events of the previous page are fired, including Page.Load, Page.Init, and even the
Button.Click event for the button that triggered the postback (if it’s defined). Firing these events is
mandatory, because they are required to properly initialize the page.

http://www.w3.org/1999/xhtml

CHAPTER 6 ■ STATE MANAGEMENT

251

■ Note Trace messages aren’t ignored like Response messages are, which means you may see tracing

information from both pages in a cross-posting situation.

Getting Page-Specific Information
In the previous example, the information you can retrieve from the previous page is limited to the
members of the Page class. If you want to get more specific details, such as control values, you need to
cast the PreviousPage reference to the appropriate type.

Here’s an example that handles this situation properly, by checking first if the PreviousPage object is
an instance of the expected source (CrossPage1):

protected void Page_Load(object sender, EventArgs e)
{
 CrossPage1 prevPage = PreviousPage as CrossPage1;
 if (prevPage != null)
 {
 // (Read some information from the previous page.)
 }
}

■ Note In a projectless website, Visual Studio may flag this as an error, indicating that it does not have the type
information for the source page class (in this example, that’s CrossPage1). However, once you compile the

website, the error will disappear.

You can solve this problem in another way. Rather than casting the reference manually, you can add
the PreviousPageType control directive to your page, which indicates the expected type of the page
initiating the cross-page postback. Here’s an example:

<%@ PreviousPageType VirtualPath="CrossPage1.aspx" %>

However, this approach is more fragile because it limits you to a single type. You don’t have the
flexibility to deal with situations where more than one page might trigger a cross-page postback. For that
reason, the casting approach is preferred.

■ Tip Seeing as the PostBackUrl property can point to only one page, it may seem that cross-page posting can
accommodate a fixed relationship between just two pages. However, you can extend this relationship with various
techniques. For example, you can modify the PostBackUrl property programmatically to choose a different target.

Conversely, a cross-post target can test the PreviousPage property, checking if it is one of several different

classes. You can then perform different tasks depending on what page initiated the cross-post.

CHAPTER 6 ■ STATE MANAGEMENT

252

Once you’ve cast the previous page to the appropriate page type, you still won’t be able to directly
access the control values. That’s because the controls are declared as protected members. You can
handle this by adding properties to the page class that wrap the control variables, like this:

public TextBox FirstNameTextBox
{
 get { return txtFirstName; }
}
public TextBox LastNameTextBox
{
 get { return txtLastName; }
}

However, this usually isn’t the best approach. The problem is that it exposes too many details,
giving the target page the freedom to read every control property. If you need to change the page later to
use different input controls, it’s difficult to maintain these properties. Instead, you’ll probably be forced
to rewrite code in both pages.

A better choice is to define specific, limited methods or properties that extract just the information
you need. Here’s an example:

public string FullName
{
 get { return txtFirstName.Text + " " + txtLastName.Text; }
}

This way, the relationship between the two pages is well documented and easily understood. If the
controls in the source page are changed, you can probably still keep the same interface for the public
methods or properties. For example, if you changed the name entry to use different controls in the
previous example, you would still be forced to revise the FullName property. However, once your
changes would be confined to CrossPage1.aspx, you wouldn’t need to modify CrossPage2.aspx at all.

■ Tip In some cases, a better alternative to cross-page posting is to use some sort of control that simulates
multiple pages or multiple steps, such as separate Panel controls or the MultiView or Wizard control. This offers

much the same user experience and simplifies the coding model. You’ll learn about these controls in Chapter 17.

Performing Cross-Page Posting in Any Event Handler
As you learned in the previous section, cross-page posting is available only with controls that implement
the IButtonControl interface. However, there is a workaround. You can use an overloaded method of
Server.Transfer() to switch to a new ASP.NET page with the view state information left intact. You simply
need to include the Boolean preserveForm parameter and set it to true, as shown here:

Server.Transfer("CrossPage2.aspx", true);

This gives you the opportunity to use cross-page posting anywhere in your web-page code. As with
any call to Server.Transfer(), this technique causes a server-side redirect. That means there is no extra
roundtrip to redirect the client. As a disadvantage, the original page URL (from the source page) remains
in the user’s browser even though you’ve moved on to another page.

CHAPTER 6 ■ STATE MANAGEMENT

253

Interestingly, there is a way to distinguish between a cross-page post that’s initiated directly through
a button and the Server.Transfer() method. Although in both cases you can access Page.PreviousPage, if
you use Server.Transfer(), the Page.PreviousPage.IsCrossPagePostBack property is false. Here’s the code
that demonstrates how this logic works:

if (PreviousPage == null)
{
 // The page was requested (or posted back) directly.
}
else if (PreviousPage.IsCrossPagePostBack)
{
 // A cross-page postback was triggered through a button.
}
else
{
 // A stateful transfer was triggered through Server.Transfer().
}

The IsPostBack and IsCrossPagePostBack Properties
It’s important to understand how the Page.IsPostBack property works during a cross-page postback. For
the source page (the one that triggered the cross-page postback), the IsPostBack property is true. For the
destination page (the one that’s receiving the postback), the IsPostBack property is false. One benefit of
this system is that it means your initialization code will usually run when it should.

For example, imagine CrossPage1.aspx performs some time-consuming initialization the first time
it’s requested, using code like this:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // (Retrieve some data from a database and display it on the page.)
 }
}

Now imagine the user moves from CrossPage1.aspx to CrossPage2.aspx through a cross-page
postback. As soon as CrossPage2.aspx accesses the PreviousPage property, the page life cycle executes
for CrossPage1.aspx. At this point, the Page.Load event fires for CrossPage1.aspx. However, on
CrossPage1.aspx the Page.IsPostBack property is true, so your code skips the time-consuming
initialization steps. Instead, the control values are restored from view state. On the other hand, the
Page.IsPostBack property for CrossPage2.aspx is false, so this page performs the necessary first-time
initialization.

In some situations, you might have code that you want to execute for the first request and all
subsequent postbacks except when the page is the source of a cross-page postback. In this case, you can
check the IsCrossPagePostBack property. This property is true if the current page triggered a cross-page
postback.

That means you can use code like this in CrossPage1.aspx:

protected void Page_Load(object sender, EventArgs e)
{
 if (IsCrossPagePostBack)
 {
 // This page triggered a postback to CrossPage2.aspx.

CHAPTER 6 ■ STATE MANAGEMENT

254

 // Don't perform time-consuming initialization unless it affects
 // the properties that the target page will read.
 }
 else if (IsPostBack)
 {
 // This page was posted back normally.
 // Don't do the first-request initialization.
 }
 else
 {
 // This is the first request for the page.
 // Perform all the required initialization.
 }
}

There is a trick that allows you to avoid running the life cycle of the source page if you simply want
to read one of its control values. You can get the control value directly from the Request collection using
the control’s ID. For example, Request["txtName"] gets the value of the text box named txtName, even
though that text box is located on the previous page. However, retrieving Request["txtName"] won’t
cause ASP.NET to instantiate the source page and fire its events.

Before you use this approach, you should consider two serious caveats. First, you need to make sure
you use the client-side control ID, which is slightly different from the server-side control ID if the control
is nested inside a naming container such as a master page, data control, and so on (if in doubt, check the
rendered HTML). The second, more serious consideration is that this approach violates good object-
oriented practices; this approach is extremely fragile. If the source page is modified even slightly, this
technique may fail, and you won’t discover the problem until you run this code. As a rule, it’s always
better to restrict interaction between different classes to public properties and methods.

Cross-Page Posting and Validation
Cross-page posting introduces a few wrinkles when you use it in conjunction with the validator controls
described in Chapter 4. As you learned in Chapter 4, when you use the validator controls, you need to
check the Page.IsValid property to ensure that the data the user entered is correct. Although users are
usually prevented from posting invalid pages back to the server (thanks to some slick client-side
JavaScript), this isn’t always the case. For example, the client browser might not support JavaScript, or a
malicious user could deliberately circumvent the client-side validation checks.

When you use validation in a cross-page posting scenario, the potential for some trouble exists.
Namely, what happens if you use a cross-page postback and the source page has validation controls?
Figure 6-4 shows an example with a RequiredFieldValidator that requires input in a text box.

CHAPTER 6 ■ STATE MANAGEMENT

255

Figure 6-4. Using a validator in a page that cross-posts

Both buttons have CausesValidation set to true. As a result, if you click the button to perform a
cross-page postback, you’ll be prevented by the browser’s client-side checks. Instead, the error message
will appear. However, you should also check what happens when client-side script isn’t supported by
setting the RequiredFieldValidator.EnableClientScript property to false. (You can change it back to true
once you perfect your code.) Now when you click one of the buttons, the page is posted back, and the
new page appears.

To prevent this from happening, you obviously need to check the validity of the source page in the
target page by examining Page.IsValid before you perform any other action. This is the standard line of
defense used in any web form that employs validation. The difference is that if the page isn’t valid, it’s
not sufficient to do nothing. Instead, you need to take the extra step of returning the user to the original
page. Here’s the code you need in the destination page:

// This code is in the target page.
protected void Page_Load(object sender, EventArgs e)
{
 // Check the validity of the previous page.
 if (PreviousPage != null)
 {
 if (!PreviousPage.IsValid)
 {
 // Display an error message or just do nothing.
 }
 else
 { ... }
 }
}

It’s still possible to improve on this code. Currently, when the user is returned to the original page,
the error message won’t appear, because the page is being re-requested (not posted back). To correct
this issue, you can set a flag to let the source page know the page has been refused by the target page.
Here’s an example that adds this flag to the query string:

CHAPTER 6 ■ STATE MANAGEMENT

256

if (!PreviousPage.IsValid)
{
 Response.Redirect(Request.UrlReferrer.AbsolutePath + "?err=true");
}

Now the original page simply needs to check for the presence of this query string value and perform
the validation accordingly. The validation causes error messages to appear for any invalid data.

// This code is in the source page.
protected void Page_Load(object sender, EventArgs e)
{
 if (Request.QueryString["err"] != null)
 Page.Validate();
}

You could do still more to try to improve the page. For example, if the user is in the midst of filling
out a detailed form, re-requesting the page isn’t a good idea, because it clears all the input controls and
forces the user to start again from scratch. Instead, you might want to write a little bit of JavaScript code
to the response stream, which could use the browser’s back feature to return to the source page. Chapter
29 has more about JavaScript.

■ Tip This example demonstrates that cross-page postbacks are often trickier than developers first expect. If not
handled carefully, cross-page postbacks can lead you to build tightly coupled pages that have subtle dependencies
on one another, which makes it more difficult to change them in the future. As a result, think carefully before you

decide to use cross-page postbacks as a method to transfer information.

Cookies
Custom cookies provide another way you can store information for later use. Cookies are small files that
are created on the client’s hard drive (or, if they’re temporary, in the web browser’s memory). One
advantage of cookies is that they work transparently without the user being aware that information
needs to be stored. They also can be easily used by any page in your application and even retained
between visits, which allows for truly long-term storage. They suffer from some of the same drawbacks
that affect query strings. Namely, they’re limited to simple string information, and they’re easily
accessible and readable if the user finds and opens the corresponding file. These factors make them a
poor choice for complex or private information or large amounts of data.

Some users disable cookies on their browsers, which will cause problems for web applications that
require them. However, cookies are widely adopted because so many sites use them.

Cookies are fairly easy to use. Both the Request and Response objects (which are provided through
Page properties) provide a Cookies collection. The important trick to remember is that you retrieve
cookies from the Request object, and you set cookies using the Response object.

To set a cookie, just create a new System.Net.HttpCookie object. You can then fill it with string
information (using the familiar dictionary pattern) and attach it to the current web response, as follows:

CHAPTER 6 ■ STATE MANAGEMENT

257

// Create the cookie object.
HttpCookie cookie = new HttpCookie("Preferences");

// Set a value in it.
cookie["LanguagePref"] = "English";

// Add another value.
cookie["Country"] = "US";

// Add it to the current web response.
Response.Cookies.Add(cookie);

A cookie added in this way will persist until the user closes the browser and will be sent with every
request. To create a longer-lived cookie (which is stored with the temporary Internet files on the user’s
hard drive), you can set an expiration date, as shown here:

// This cookie lives for one year.
cookie.Expires = DateTime.Now.AddYears(1);

Cookies are retrieved by cookie name using the Request.Cookies collection, as shown here:

HttpCookie cookie = Request.Cookies["Preferences"];

// Check to see whether a cookie was found with this name.
// This is a good precaution to take,
// because the user could disable cookies,
// in which case the cookie would not exist.
string language;
if (cookie != null)
{
 language = cookie["LanguagePref"];
}

The only way to remove a cookie is by replacing it with a cookie that has an expiration date that has
already passed. The following code demonstrates this technique:

HttpCookie cookie = new HttpCookie("LanguagePref");
cookie.Expires = DateTime.Now.AddDays(-1);
Response.Cookies.Add(cookie);

■ Note You’ll find that some other ASP.NET features use cookies. Two examples are session state (which allows

you to temporarily store user-specific information in server memory) and forms security (which allows you to

restrict portions of a website and force users to access it through a login page).

CHAPTER 6 ■ STATE MANAGEMENT

258

Session State
Session state is the heavyweight of state management. It allows information to be stored in one page and
accessed in another, and it supports any type of object, including your own custom data types. Best of
all, session state uses the same collection syntax as view state. The only difference is the name of the
built-in page property, which is Session.

Every client that accesses the application has a different session and a distinct collection of
information. Session state is ideal for storing information such as the items in the current user’s
shopping basket when the user browses from one page to another. But session state doesn’t come for
free. Though it solves many of the problems associated with other forms of state management, it forces
the web server to store additional information in memory. This extra memory requirement, even if it is
small, can quickly grow to performance-destroying levels as thousands of clients access the site.

Session Architecture
Session management is not part of the HTTP standard. As a result, ASP.NET needs to do some extra work
to track session information and bind it to the appropriate response.

ASP.NET tracks each session using a unique 120-bit identifier. ASP.NET uses a proprietary algorithm
to generate this value, thereby guaranteeing (statistically speaking) that the number is unique and that
it’s random enough so a malicious user can’t reverse-engineer or guess what session ID a given client
will be using. This ID is the only piece of information that is transmitted between the web server and the
client. When the client presents the session ID, ASP.NET looks up the corresponding session, retrieves
the serialized data from the state server, converts it to live objects, and places these objects into a special
collection so they can be accessed in code. This process takes place automatically.

■ Note Every time you make a new request, ASP.NET generates a new session ID until you actually use session

state to store some information. This behavior achieves a slight performance enhancement—in short, why bother

to save the session ID if it’s not being used?

At this point you’re probably wondering where ASP.NET stores session information and how it
serializes and deserializes it. In classic ASP, the session state is implemented as a free-threaded COM
object that’s contained in the asp.dll library. In ASP.NET, the programming interface is nearly identical,
but the underlying implementation is quite a bit different.

As you saw in Chapter 5, when ASP.NET handles an HTTP request, it flows through a pipeline of
different modules that can react to application events. One of the modules in this chain is the
SessionStateModule (in the System.Web.SessionState namespace). The SessionStateModule generates
the session ID, retrieves the session data from external state providers, and binds the data to the call
context of the request. It also saves the session state information when the page is finished processing.
However, it’s important to realize that the SessionStateModule doesn’t actually store the session data.
Instead, the session state is persisted in external components, which are named state providers. Figure 6-
5 shows this interaction.

CHAPTER 6 ■ STATE MANAGEMENT

259

Figure 6-5. ASP.NET session state architecture

Session state is another example of ASP.NET’s pluggable architecture. A state provider is any class
that implements the IHttpSessionState interface, which means you can customize how session state
works simply by building (or purchasing) a new .NET component. ASP.NET includes three prebuilt state
providers, which allow you to store information in process, in a separate service, or in a SQL Server
database.

For session state to work, the client needs to present the appropriate session ID with each request.
The final ingredient in the puzzle is how the session ID is tracked from one request to the next. You can
accomplish this in two ways:

Using cookies: In this case, the session ID is transmitted in a special cookie (named
ASP.NET_SessionId), which ASP.NET creates automatically when the session collection is used. This
is the default, and it’s also the same approach that was used in earlier versions of ASP.

Using modified URLs: In this case, the session ID is transmitted in a specially modified (or
“munged”) URL. This allows you to create applications that use session state with clients that don’t
support cookies.

You’ll learn more about how to configure cookieless sessions and different session state providers
later in the “Configuring Session State” section.

Using Session State
You can interact with session state using the System.Web.SessionState.HttpSessionState class, which is
provided in an ASP.NET web page as the built-in Session object. The syntax for adding items to the
collection and retrieving them is basically the same as for adding items to the view state of a page.

CHAPTER 6 ■ STATE MANAGEMENT

260

For example, you might store a DataSet in session memory like this:

Session["ProductsDataSet"] = dsProducts;

You can then retrieve it with an appropriate conversion operation:

dsProducts = (DataSet)Session["ProductsDataSet"];

Session state is global to your entire application for the current user. Session state can be lost in
several ways:

• If the user closes and restarts the browser.

• If the user accesses the same page through a different browser window, although
the session will still exist if a web page is accessed through the original browser
window. Browsers differ on how they handle this situation.

• If the session times out because of inactivity. By default, a session times out after
20 idle minutes.

• If the programmer ends the session by calling Session.Abandon().

In the first two cases, the session actually remains in memory on the server, because the web server
has no idea that the client has closed the browser or changed windows. The session will linger in
memory, remaining inaccessible, until it eventually expires.

In addition, session state will be lost when the application domain is re-created. This process
happens transparently when you update your web application or change a configuration setting. The
application domain may also be recycled periodically to ensure application health, as described in
Chapter 18. If this behavior is causing a problem, you can store session state information out of process,
as described in the next section. With out-of-process state storage, the session information is retained
even when the application domain is shut down.

Table 6-4 describes the key methods and properties of the HttpSessionState class.

Table 6-4. HttpSessionState Members

Member Description

Count The number of items in the current session collection.

IsCookieless Identifies whether this session is tracked with a cookie or with modified URLs.

IsNewSession Identifies whether this session was just created for the current request. If there is
currently no information in session state, ASP.NET won’t bother to track the session
or create a session cookie. Instead, the session will be re-created with every request.

Mode Provides an enumerated value that explains how ASP.NET stores session state
information. This storage mode is determined based on the web.config
configuration settings discussed later in this chapter.

SessionID Provides a string with the unique session identifier for the current client.

StaticObjects Provides a collection of read-only session items that were declared by <object
runat="server"> tags in the global.asax file. Generally, this technique isn’t used and
is a holdover from ASP programming that is included for backward compatibility.

CHAPTER 6 ■ STATE MANAGEMENT

261

Member Description

Timeout The current number of minutes that must elapse before the current session will be
abandoned, provided that no more requests are received from the client. This value
can be changed programmatically, giving you the chance to make the session
collection longer term when required for more important operations.

Abandon() Cancels the current session immediately and releases all the memory it occupied.
This is a useful technique in a logoff page to ensure that server memory is reclaimed
as quickly as possible.

Clear() Removes all the session items but doesn’t change the current session identifier.

Configuring Session State
You can configure session state through the <sessionState> element in the web.config file for your
application. Here’s a snapshot of all the available settings you can use:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <!-- Other settings omitted. -->

 <sessionState
 mode="Off|InProc|StateServer|SQLServer|Custom"
 stateConnectionString="tcpip=127.0.0.1:42424"
 stateNetworkTimeout="10"
 sqlConnectionString="data source=127.0.0.1;Integrated Security=SSPI"
 sqlCommandTimeout="30" allowCustomSqlDatabase="false"
 useHostingIdentity="true|false"
 compressionEnabled="true|false"
 cookieless="UseCookies" cookieName="ASP.NET_SessionId"
 regenerateExpiredSessionId="true|false"
 timeout="20"
 customProvider=""
 />
 </system.web>
</configuration>

The session attributes are described in the following sections.

Mode
The mode session state settings allow you to configure what session state provider is used to store
session state information between requests. The following sections explain your options.

Off

This setting disables session state management for every page in the application. This can provide a
slight performance improvement for websites that are not using session state.

CHAPTER 6 ■ STATE MANAGEMENT

262

InProc

InProc is similar to how session state was stored in classic ASP. It instructs ASP.NET to store information
in the current application domain. This provides the best performance but the least durability. If you
restart your server, the state information will be lost.

InProc is the default option, and it makes sense for most small websites. In a web farm scenario,
though, it won’t work at all. To allow session state to be shared between servers, you must use the out-
of-process or SQL Server state service. Another reason you might want to avoid InProc mode is because
it makes for more fragile sessions. In ASP.NET, application domains are recycled in response to a variety
of actions, including configuration changes, updated pages, and when certain thresholds are met
(regardless of whether an error has occurred). If you find that your application domain is being restarted
frequently and contributing to prematurely lost sessions, you can change to one of the more robust
session state providers.

Before you use either the out-of-process or the SQL Server state service, keep in mind that more
considerations will apply:

• When using the StateServer or SQLServer mode, the objects you store in session
state must be serializable. Otherwise, ASP.NET will not be able to transmit the
object to the state service or store it in the database.

• If you’re hosting ASP.NET on a web farm, you’ll also need to take some extra
configuration steps to make sure all the web servers are in sync. Otherwise, one
might encode information in session state differently than another, which will
cause a problem if the user is routed from one server to another during a session.
The solution is to modify the <machineKey> section of the machine.config file so
it’s consistent across all servers. For more information, refer to Chapter 5.

• If you aren’t using the in-process state provider, the SessionStateModule.End
event won’t be fired, and any event handlers for this event in the global.asax file or
an HTTP module will be ignored.

StateServer

With this setting, ASP.NET will use a separate Windows service for state management. Even if you run
this service on the same web server, it will be loaded outside the main ASP.NET process, which gives it a
basic level of protection if the ASP.NET process needs to be restarted. The cost is the increased time
delay imposed when state information is transferred between two processes. If you frequently access
and change state information, this can make for a fairly unwelcome slowdown.

When using the StateServer setting, you need to specify a value for the stateConnectionString
setting. This string identifies the TCP/IP address of the computer that is running the StateServer service
and its port number (which is defined by ASP.NET and doesn’t usually need to be changed). This allows
you to host the StateServer on another computer. If you don’t change this setting, the local server will be
used (set as address 127.0.0.1).

Of course, before your application can use the service, you need to start it. The easiest way to do this
is to use the Microsoft Management Console. Select Start ➤ Programs ➤ Administrative Tools ➤
Computer Management (you can also access the Administrative Tools group through the Control Panel).
Then, in the Computer Management tool, find the Services and Applications ➤ Services node. Find the
service called ASP.NET State Service in the list, as shown in Figure 6-6.

CHAPTER 6 ■ STATE MANAGEMENT

263

Figure 6-6. The ASP.NET state service

Once you find the service in the list, you can manually start and stop it by right-clicking it.
Generally, you’ll want to configure Windows to automatically start the service. Right-click it, select
Properties, and modify the Startup Type setting to Automatic, as shown in Figure 6-7. Then click Start to
start it immediately.

CHAPTER 6 ■ STATE MANAGEMENT

264

Figure 6-7. Service properties

■ Note When using StateServer mode, you can also set an optional stateNetworkTimeout attribute that specifies
the maximum number of seconds to wait for the service to respond before canceling the request. The default is 10

seconds.

SQLServer

This setting instructs ASP.NET to use a SQL Server database to store session information, as identified by
the sqlConnectionString attribute. This is the most resilient state store but also the slowest by far. To use
this method of state management, you’ll need to have a server with SQL Server installed.

When setting the sqlConnectionString, you follow the same sort of pattern you use with ADO.NET
data access (which is described in Part 2). Generally, you’ll need to specify a data source (the server
address) and a user ID and password, unless you’re using SQL integrated security.

In addition, you need to install the special stored procedures and temporary session databases.
These stored procedures take care of storing and retrieving the session information. ASP.NET includes a
command-line tool that does the work for you automatically, called aspnet_regsql.exe. It’s found in the
c:\Windows\Microsoft.NET\Framework\[Version] directory. The easiest way to run aspnet_regsql.exe is
to start by launching the Visual Studio command prompt (open the Start menu and choose Programs ➤
Visual Studio 2010 ➤ Visual Studio Tools ➤ Visual Studio 2010 Command Prompt). You can then type in
an aspnet_regsql.exe command, no matter what directory you’re in.

CHAPTER 6 ■ STATE MANAGEMENT

265

You can use the aspnet_regsql.exe tool to perform several different database-related tasks. As you
travel through this book, you’ll see how to use aspnet_regsql.exe with ASP.NET features such as caching
(Chapter 11), membership (Chapter 21), and profiles (Chapter 24). To use aspnet_regsql.exe to create a
session storage database, you supply the -ssadd parameter. In addition, you use the -S parameter to
indicate the database server name, and the -E parameter to log in to the database using the currently
logged in Windows user account.

Here’s a command that creates the session storage database on the current computer, using the
default database name ASPState:

aspnet_regsql.exe -S localhost -E -ssadd

This command uses the alias localhost, which tells aspnet_regsql.exe to connect to the database
server on the current computer. You can replace this detail with the computer name of your database
server.

Once you’ve created your session state database, you need to tell ASP.NET to use it by modifying the
<sessionState> section of the web.config file. If you’re using a database named ASPState to store your
session information (which is the default), you don’t need to supply the database name. Instead, you
simply need to indicate the location of the server and the type of authentication that ASP.NET should
use to connect to it, as shown here:

<sessionState mode="SQLServer"
 sqlConnectionString="data source=localhost;Integrated Security=SSPI" ... />

This completes the setup procedure. However, you can alter these steps slightly if you want to use
persistent sessions or use a custom database, as you’ll see next.

■ Tip To remove the ASPState database, use the -ssremove parameter.

Ordinarily, the standard session state time-out still applies to SQL Server state management. That’s
because the aspnet_regsql.exe tool also creates a new SQL Server job named
ASPState_Job_DeleteExpiredSessions. As long as the SQLServerAgent service is running, this job will be
executed every minute.

Additionally, the state tables will be removed every time you restart SQL Server, no matter what the
session time-out. That’s because the state tables are created in the tempdb database, which is a
temporary storage area. If this isn’t the behavior you want, you can tell the aspnet_regsql.exe tool to
install permanent state tables in the ASPState database. To do this, you use the -sstype p (for persisted)
parameter. Here’s the revised command line:

aspnet_regsql.exe -S localhost -E -ssadd -sstype p

Now session records will remain in the database, even if you restart SQL Server.
Your final option is to use aspnet_regsql.exe to create the state tables in a different database (not

ASPState). To do so, you use the -sstype c (for custom) parameter, and then supply the database name
with the -d parameter, as shown here:

aspnet_regsql.exe -S localhost -E -ssadd -sstype c -d MyCustomStateDb

When you use this approach, you’ll create permanent session tables, so their records will remain
even when SQL Server is restarted.

CHAPTER 6 ■ STATE MANAGEMENT

266

If you use a custom database, you’ll also need to make two configuration tweaks to the
<sessionState> element in your application’s web.config file. First, you must set
allowCustomSqlDatabase to true. Second, you must make sure the connection string includes the Initial
Catalog setting, which indicates the name of the database you want to use. Here’s the correctly adjusted
element:

<sessionState Mode="SQLServer" allowCustomSqlDatabase="true" sqlConnectionString=
"data source=localhost;Integrated Security=SSPI;Initial Catalog=MyCustomStateDb"
... />

■ Tip When using the SqlServer mode, you can also set an optional sqlCommandTimeout attribute that specifies
the maximum number of seconds to wait for the database to respond before canceling the request. The default is

30 seconds.

Custom

When using custom mode, you need to indicate what session state store provider to use by supplying the
customProvider attribute. The customProvider attribute points to the name of a class that’s part of your
web application in the App_Code directory, or in a compiled assembly in the Bin directory or the GAC.

The most common reasons to use a custom session state provider are to store session information
in a database other than SQL Server or to use an existing table in a database that has a specific schema.
Creating a custom state provider is a low-level task that needs to be handled carefully to ensure security,
stability, and scalability, so it’s always best to use a prebuilt provider that has been designed and tested
by a reliable third party rather than roll your own.

Custom state providers are also beyond the scope of this book. However, if you’d like to try creating
your own, you can find an overview at http://msdn2.microsoft.com/en-us/library/aa479034.aspx.

Compression
ASP.NET includes a compression feature that allows you to reduce the size of serialized session data.
When you set enableCompression to true, session data is compressed (using the
System.IO.Compressio.GZipStream class) before it’s passed out of process. The enableCompression
setting has an effect only when you’re using out-of-process session state storage, because it’s only in this
situation that the data is serialized.

To compress and decompress session data, the web server needs to perform additional work.
However, this isn’t usually a problem, because compression is used in scenarios where web servers have
plenty of CPU time to spare but are limited by other factors. There are two key scenarios where session-
state compression makes sense:

When storing huge amounts of session state data in memory: Web server memory is a precious
resource. Ideally, session state is used for relatively small chunks of information, while a back-end
database deals with the long-term storage of larger amounts of data. But if this isn’t the case and if
the out-of-process state server is hogging huge amounts of memory, compression is a potential
solution.

When storing session state data on another computer: In some large-scale web applications,
session state is stored out of process (usually in SQL Server) and on a separate computer. As a result,
ASP.NET needs to pass the session information back and forth over a network connection. Clearly,
this design reduces performance from the speeds you’ll see when session state is stored on the web

http://msdn2.microsoft.com/en-us/library/aa479034.aspx

CHAPTER 6 ■ STATE MANAGEMENT

267

server computer. However, it’s still the best compromise for some heavily trafficked web
applications with huge session state storage needs.

In the first scenario, compression sacrifices CPU work for web server memory. In the second
scenario, compression sacrifices CPU work for network bandwidth.

The actual amount of compression varies greatly depending on the type of data, but in testing
Microsoft saw clients achieve 30 percent to 60 percent size reductions, which guarantees a significant
performance benefit in these scenarios.

Cookieless
You can set the cookieless setting to one of the values defined by the HttpCookieMode enumeration, as
described in Table 6-5. You can also set the name that’s used for the cookie with the cookieName
attribute. If you don’t, the default value cookie name is ASP.NET_SessionId.

Table 6-5. HttpCookieMode Values

Value Description

UseCookies Cookies are always used, even if the browser or device doesn’t support cookies
or they are disabled. This is the default. If the device does not support cookies,
session information will be lost over subsequent requests, because each request
will get a new ID.

UseUri Cookies are never used, regardless of the capabilities of the browser or device.
Instead, the session ID is stored in the URL.

UseDeviceProfile ASP.NET chooses whether to use cookieless sessions by examining the
BrowserCapabilities object. The drawback is that this object indicates what the
device should support—it doesn’t take into account that the user may have
disabled cookies in a browser that supports them. Chapter 27 has more
information about how ASP.NET identifies different browsers and decides
whether they support features such as cookies.

AutoDetect ASP.NET attempts to determine whether the browser supports cookies by
attempting to set and retrieve a cookie (a technique commonly used on the
Web). This technique can correctly determine if a browser supports cookies but
has them disabled, in which case cookieless mode is used instead.

Here’s an example that forces cookieless mode (which is useful for testing):

<sessionState cookieless="UseUri" ... />

In cookieless mode, the session ID will automatically be inserted into the URL. When ASP.NET
receives a request, it will remove the ID, retrieve the session collection, and forward the request to the
appropriate directory. A munged URL is shown here:

http://localhost/WebApplication/(amfvyc55evojk455cffbq355)/Page1.aspx

Because the session ID is inserted in the current URL, relative links also automatically gain the
session ID. In other words, if the user is currently stationed on Page1.aspx and clicks a relative link to
Page2.aspx, the relative link includes the current session ID as part of the URL. The same is true if you
call Response.Redirect() with a relative URL, as shown here:

http://localhost/WebApplication

CHAPTER 6 ■ STATE MANAGEMENT

268

Response.Redirect("Page2.aspx");

The only real limitation of cookieless state is that you cannot use absolute links, because they will
not contain the session ID. For example, this statement causes the user to lose all session information:

Response.Redirect("http://localhost/WebApplication/Page2.aspx");

By default, ASP.NET allows you to reuse a session identifier. For example, if you make a request and
your query string contains an expired session, ASP.NET creates a new session and uses that session ID.
The problem is that a session ID might inadvertently appear in a public place—such as in a results page
in a search engine. This could lead to multiple users accessing the server with the same session identifier
and then all joining the same session with the same shared data.

To avoid this potential security risk, it’s recommended that you include the optional
regenerateExpiredSessionId attribute and set it to true whenever you use cookieless sessions. This way, a
new session ID will be issued if a user connects with an expired session ID. The only drawback is that
this process also forces the current page to lose all view state and form data, because ASP.NET performs
a redirect to make sure the browser has a new session identifier.

■ Note You can test if a cookieless session is currently being used by checking the IsCookieless property of the

Session object.

Timeout
Another important session state setting in the web.config file is the timeout. This specifies the number of
minutes that ASP.NET will wait, without receiving a request, before it abandons the session.

<sessionState timeout="20" ... />

This setting represents one of the most important compromises of session state. A difference of
minutes can have a dramatic effect on the load of your server and the performance of your application.
Ideally, you will choose a time frame that is short enough to allow the server to reclaim valuable memory
after a client stops using the application but long enough to allow a client to pause and continue a
session without losing it.

You can also programmatically change the session time-out in code. For example, if you know a
session contains an unusually large amount of information, you may need to limit the amount of time
the session can be stored. You would then warn the user and change the timeout property. Here’s a
sample line of code that changes the time-out to ten minutes:

Session.Timeout = 10;

Securing Session State
The information in session state is very secure, because it is stored exclusively on the server. However,
the cookie with the session ID can easily become compromised. This means an eavesdropper could steal
the cookie and assume the session on another computer.

Several workarounds address this problem. One common approach is to use a custom session
module that checks for changes in the client’s IP address. However, the only truly secure approach is to
restrict session cookies to portions of your website that use SSL. That way, the session cookie is
encrypted and useless on other computers.

http://localhost/WebApplication/Page2.aspx

CHAPTER 6 ■ STATE MANAGEMENT

269

If you choose to use this approach, it also makes sense to mark the session cookie as a secure cookie
so that it will be sent only over SSL connections. That prevents the user from changing the URL from
https:// to http://, which would send the cookie without SSL. Here’s the code you need:

Request.Cookies["ASP.NET_SessionId"].Secure = true;

Typically, you’ll use this code immediately after the user is authenticated. Make sure there is at least
one piece of information in session state so the session isn’t abandoned (and then re-created later).

Another related security risk exists with cookieless sessions. Even if the session ID is encrypted, a
clever user could use a social engineering attack to trick a user into joining a specific session. All the
malicious user needs to do is feed the user a URL with a valid session ID. When the user clicks the link,
he joins that session. Although the session ID is protected from this point onward, the attacker now
knows what session ID is in use and can hijack the session at a later time.

Taking certain steps can reduce the likelihood of this attack. First, when using cookieless sessions,
always set regenerateExpiredSessionId to true. This prevents the attacker from supplying a session ID
that’s expired. Next, explicitly abandon the current session before logging in a new user.

Application State
Application state allows you to store global objects that can be accessed by any client. Application state
is based on the System.Web.HttpApplicationState class, which is provided in all web pages through the
built-in Application object.

Application state is similar to session state. It supports the same types of objects, retains
information on the server, and uses the same dictionary-based syntax. A common example with
application state is a global counter that tracks how many times an operation has been performed by all
of the web application’s clients.

For example, you could create a global.asax event handler that tracks how many sessions have been
created or how many requests have been received into the application. Or you can use similar logic in
the Page.Load event handler to track how many times a given page has been requested by various
clients. Here’s an example of the latter:

protected void Page_Load(Object sender, EventArgs e)
{
 int count = 0;
 if (Application["HitCounterForOrderPage"] != null)
 count = (int)Application["HitCounterForOrderPage"];

 count++;
 Application["HitCounterForOrderPage"] = count;
 lblCounter.Text = count.ToString();
}

Once again, application state items are stored as objects, so you need to cast them when you
retrieve them from the collection. Items in application state never time out. They last until the
application or server is restarted or until the application domain refreshes itself (because of automatic
process-recycling settings or an update to one of the pages or components in the application).

Application state isn’t often used, because it’s generally inefficient. In the previous example, the
counter would probably not keep an accurate count, particularly in times of heavy traffic. For example, if
two clients requested the page at the same time, you could have a sequence of events like this:

1. User A retrieves the current count (432).

2. User B retrieves the current count (432).

https://to

CHAPTER 6 ■ STATE MANAGEMENT

270

3. User A sets the current count to 433.

4. User B sets the current count to 433.

In other words, one request isn’t counted because two clients access the counter at the same time.
To prevent this problem, you need to use the Lock() and UnLock() methods, which explicitly allow only
one client to access the Application state collection at a time, as follows:

protected void Page_Load(Object sender, EventArgs e)
{
 // Acquire exclusive access.
 Application.Lock();

 int count = 0;
 if (Application["HitCounterForOrderPage"] != null)
 count = (int)Application["HitCounterForOrderPage"];

 count++;
 Application["HitCounterForOrderPage"] = count;

 // Release exclusive access.
 Application.UnLock();

 lblCounter.Text = count.ToString();
}

Unfortunately, all other clients requesting the page will now be stalled until the Application
collection is released. This can drastically reduce performance. Generally, frequently modified values are
poor candidates for application state. In fact, application state is rarely used in the .NET world because
its two most common uses have been replaced by easier, more efficient methods:

• In the past, application state was used to store application-wide constants, such as
a database connection string. As you saw in Chapter 5, this type of constant can
now be stored in the web.config file, which is generally more flexible because you
can change it easily without needing to hunt through web-page code or recompile
your application.

• Application state can also be used to store frequently used information that is
time-consuming to create, such as a full product catalog that requires a database
lookup. However, using application state to store this kind of information raises all
sorts of problems about how to check if the data is valid and how to replace it
when needed. It can also hamper performance if the product catalog is too large. A
similar but much more sensible approach is to store frequently used information
in the ASP.NET cache. Many uses of application state can be replaced more
efficiently with caching.

Application state information is always stored in process. This means you can use any .NET data
types. However, it also introduces the same two limitations that affect in-process session state. Namely,
you can’t share application state between the servers in a web farm, and you will always lose your
application state information when the application domain is restarted—an event that can occur as part
of ASP.NET’s normal housekeeping.

CHAPTER 6 ■ STATE MANAGEMENT

271

■ Note Application state is included primarily for backward compatibility with classic ASP. In new applications,
it’s almost always better to rely on other mechanisms for global data, such as using databases in conjunction with

the Cache object.

Static Application Variables
You can store global application variables in one other way. You can add static member variables to the
global.asax file (which was introduced in Chapter 5). These members are then compiled into the custom
HttpApplication class for your web application and made available to all pages. Here’s an example that
declares a static array of strings:

public static string[] FileList;

The key detail that allows this to work is that the variable is static. That’s because ASP.NET creates a
pool of HttpApplication classes to serve multiple requests. As a result, each request might be served with
a different HttpApplication object, and each HttpApplication object has its own instance data. However,
there is only one copy of the static data, which is shared for all instances (on the same web server).

There’s another requirement to make this strategy work. The rest of your code needs to be able to
access the static members you’ve added to your custom application class. To make this possible, you
need to specify the name that should be used for that class. To do this, you set the ClassName property
of the Application directive, which is at the start of the global.asax file. Here’s an example that gives the
application class the name Global:

<%@ Application Language="C#" ClassName="Global" %>

Now you can write code like this in your web pages:

string firstEntry = Global.FileList[0];

To improve this example, and get better encapsulation (and more flexibility), you should use
property procedures in your application class instead of public member variables. Here’s the
corrected code:

private static string[] fileList;
public static string[] FileList
{
 get { return fileList; }
}

When you add a member variable to the global.asax file, it has essentially the same characteristics as
a value in the Application collection. In other words, you can use any .NET data type, the value is
retained until the application domain is restarted, and state isn’t shared across computers in a web farm.
However, there’s no automatic locking. Because multiple clients might try to access or modify a value at
the same time, you should use the C# lock statement to temporarily restrict the variable to a single
thread. Depending on how your data is accessed, you might perform the locking in the web page (in
which case you could perform several tasks at once with the locked data) or in the property procedures
or methods in the global.asax file (in which case the lock would be held for the shortest possible time).

Here’s an example that uses two methods to manage access to a private dictionary of metadata.
These methods ensure that the global collection is always accessed in a thread-safe manner:

CHAPTER 6 ■ STATE MANAGEMENT

272

private static Dictionary<string, string> metadata =
 new Dictionary<string, string>();

public void AddMetadata(string key, string value)
{
 lock (metadata)
 {
 metadata[key] = value;
 }
}

public string GetMetadata(string key)
{
 lock (metadata)
 {
 return metadata[key];
 }
}

Using static member variables instead of the Application collection has two advantages. First, it
allows you to write custom code that runs automatically when the value is accessed or changed (by
wrapping your data in property procedures or methods). You could use this code to log how many times
a value is being accessed, to check if the data is still valid, or to re-create it. Here’s an example that uses a
lazy initialization pattern and creates the global object only when it’s first requested:

private static string[] fileList;
public static string[] FileList
{
 get
 {
 if (fileList == null)
 {
 fileList = Directory.GetFiles(
 HttpContext.Current.Request.PhysicalApplicationPath);
 }
 return fileList;
 }
}

This example uses the file access classes described in Chapter 12 to retrieve a list of files in the web
application. This approach wouldn’t be possible with the Application collection.

The other benefit of using static member variables is that the code that consumes them can be
typesafe. Here’s an example that uses the FileList property:

protected void Page_Load(object sender, EventArgs e)
{
 StringBuilder builder = new StringBuilder();
 foreach (string file in Global.FileList)
 {
 builder.Append(file + "
");
 }
 lblInfo.Text = builder.ToString();
}

CHAPTER 6 ■ STATE MANAGEMENT

273

Notice that no casting step is required to gain access to the custom property you’ve added.

Summary
State management is the art of retaining information between requests. Usually, this information is
user-specific (such as a list of items in a shopping cart, a user name, or an access level), but sometimes
it’s global to the whole application (such as usage statistics that track site activity). Because ASP.NET
uses a disconnected architecture, you need to explicitly store and retrieve state information with each
individual request. The approach you choose for storing this data can have a dramatic effect on the
performance, scalability, and security of your application. To perfect your state management solution,
you’ll almost certainly want to consider adding caching into the mix, as described in Chapter 11.

P A R T 2

■ ■ ■

275

Data Access

The core data features of the .NET Framework remain in .NET 4, and are essentially unchanged.
Developers can use the same ADO.NET data classes to interact with relational databases (Chapter 7),
and other parts of the .NET Framework to interact with the file system (Chapter 12) and read XML
documents (Chapter 14).

Similarly, the data binding features in ASP.NET remain unchanged, allowing you to pull information
out of data classes and show it in a web page with as little code as possible (Chapter 9). The same rich
data controls remain (Chapter 10), with their support for data display and data editing, and the same
caching feature allows you to reduce the number of times you query the information (Chapter 11) to
ensure optimum performance.

Developers in search of a higher-level model will appreciate ASP.NET’s support for Language
Integrated Query (LINQ). At its simplest, LINQ gives developers more powerful ways to manipulate in-
memory data—for example, sorting, filtering, and grouping it to get key bits of information. But the most
dramatic part of LINQ is the LINQ to Entities feature that’s built on top of it, which allows you to pull
information out of a database using little more than a LINQ query. That means there’s no need to write
lower-level ADO.NET data access code. LINQ to Entities isn’t necessarily the best way to get your data or
manipulate it—that depends on your exact requirements—but it is a compelling feature that should be
in every developer’s toolkit. You’ll explore LINQ in Chapter 13.

Finally, it’s important to remember that no matter what data access strategy you use—whether it
relies on ADO.NET, LINQ to Entities, or a different set of classes—it shouldn’t be a part of your main web
application code. Instead, it makes much more sense to separate it into a dedicated component that can
be coded, versioned, and refined separately. You’ll learn more about this strategy in Chapter 8.

C H A P T E R 7

■ ■ ■

277

ADO.NET Fundamentals

The .NET Framework includes its own data access technology: ADO.NET. ADO.NET consists of managed
classes that allow .NET applications to connect to data sources (usually relational databases), execute
commands, and manage disconnected data. The small miracle of ADO.NET is that it allows you to write
more or less the same data access code in web applications that you write for client-server desktop
applications, or even single-user applications that connect to a local database.

This chapter describes the architecture of ADO.NET and the ADO.NET data providers. You’ll learn
about ADO.NET basics such as opening a connection, executing a SQL statement or stored procedure,
and retrieving the results of a query. You’ll also learn how to prevent SQL injection attacks and how to
use transactions.

Database Access Without ADO.NET

In ASP.NET, there are a few ways to get information out of a database without directly using the ADO.NET
classes. Depending on your needs, you may be able to use one or more of these approaches to
supplement your database code (or to avoid writing it altogether).

Your options for database access without ADO.NET include the following:

• The SqlDataSource control: The SqlDataSource control allows you to define
queries declaratively. You can connect the SqlDataSource to rich controls such as
the GridView, and give your pages the ability to edit and update data without
requiring any ADO.NET code. Best of all, the SqlDataSource uses ADO.NET behind
the scenes, and so it supports any database that has a full ADO.NET provider.
However, the SqlDataSource is somewhat controversial, because it encourages you
to place database logic in the markup portion of your page. Many developers prefer
to use the ObjectDataSource instead, which gives similar data binding functionality
but relies on a custom database component. When you use the ObjectDataSource,
it’s up to you to create the database component and write the back-end ADO.NET
code. You’ll learn more about data source controls in Chapter 9.

• LINQ to Entities: With LINQ to Entities, you generate a data model with the design
support in Visual Studio. The appropriate database logic is generated
automatically. LINQ to Entities supports updates, generates secure and well-
written SQL statements, and provides wide ranging customizability. LINQ to Entites
is also the preferred successor to the simpler LINQ to SQL model, which ASP.NET
developers have used in the past. You’ll get the full details in Chapter 13. LINQ to
Entites also powers the new data scaffolding system called ASP.NET Dynamic
Data, which you’ll consider in Chapter 33.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

278

None of these options is a replacement for ADO.NET, because none of them offers the full flexibility,
customizability, and performance that hand-written database code offers. However, depending on your
needs, it may be worth using one or more of these features simply to get better code-writing productivity.

Overall, most ASP.NET developers will need to write some ADO.NET code, even if it’s only to optimize a
performance-sensitive task or to perform a specific operation that wouldn’t otherwise be possible. Also,
every professional ASP.NET developer needs to understand how the ADO.NET plumbing works in order to
evaluate when it’s required and when another approach is just as effective.

The ADO.NET Architecture
ADO.NET uses a multilayered architecture that revolves around a few key concepts, such as Connection,
Command, and DataSet objects.

One of the key differences between ADO.NET and some other database technologies is how it deals
with the challenge of different data sources. In many previous database technologies, such as classic
ADO, programmers use a generic set of objects no matter what the underlying data source is. For
example, if you want to retrieve a record from an Oracle database using ADO code, you use the same
Connection class you would use to tackle the task with SQL Server. This isn’t the case in ADO.NET,
which uses a data provider model.

ADO.NET Data Providers
A data provider is a set of ADO.NET classes that allows you to access a specific database, execute SQL
commands, and retrieve data. Essentially, a data provider is a bridge between your application and a
data source.

The classes that make up a data provider include the following:

• Connection: You use this object to establish a connection to a data source.

• Command: You use this object to execute SQL commands and stored procedures.

• DataReader: This object provides fast read-only, forward-only access to the data
retrieved from a query.

• DataAdapter: This object performs two tasks. First, you can use it to fill a DataSet
(a disconnected collection of tables and relationships) with information extracted
from a data source. Second, you can use it to apply changes to a data source,
according to the modifications you’ve made in a DataSet.

ADO.NET doesn’t include generic data provider objects. Instead, it includes different data providers
specifically designed for different types of data sources. Each data provider has a specific
implementation of the Connection, Command, DataReader, and DataAdapter classes that’s optimized
for a specific RDBMS (relational database management system). For example, if you need to create a
connection to a SQL Server database, you’ll use a connection class named SqlConnection.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

279

■ Note This book uses generic names for provider-specific classes. In other words, instead of discussing the
SqlConnection and OracleConnection classes, you’ll learn about all connection classes. Just keep in mind that
there really isn’t a generic Connection class—it’s just convenient shorthand for referring to all the provider-

specific connection classes, which work in a standardized fashion.

One of the key underlying ideas of the ADO.NET provider model is that it’s extensible. In other
words, developers can create their own providers for proprietary data sources. In fact, numerous proof-
of-concept examples are available that show how you can easily create custom ADO.NET providers to
wrap nonrelational data stores, such as the file system or a directory service. Some third-party vendors
also sell custom providers for .NET.

The .NET Framework is bundled with a small set of four providers:

• SQL Server provider: Provides optimized access to a SQL Server database (version
7.0 or later).

• OLE DB provider: Provides access to any data source that has an OLE DB driver.
This includes SQL Server databases prior to version 7.0.

• Oracle provider: Provides optimized access to an Oracle database (version 8i or
later).

• ODBC provider: Provides access to any data source that has an ODBC driver.

■ Tip As of .NET 4, the Oracle provider is considered obsolete. Although it still works, Microsoft recommends
using a third-party ADO.NET provider to access Oracle databases, such as Oracle’s own ODP.NET (Oracle Data

Provider for .NET), which is available at http://www.oracle.com/technology/tech/windows/odpnet. It provides
richer support for specialized Oracle data types such as LOBs (large objects), timestamps, and XML data, along

with a few additional features.

Figure 7-1 shows the layers of the ADO.NET provider model.

http://www.oracle.com/technology/tech/windows/odpnet

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

280

Figure 7-1. The ADO.NET architecture

When choosing a provider, you should first try to find a native .NET provider that’s customized for
your data source. If you can’t find a native provider, you can use the OLE DB provider, as long as you
have an OLE DB driver for your data source. The OLE DB technology has been around for many years as
part of ADO, so most data sources provide an OLE DB driver (including SQL Server, Oracle, Access,
MySQL, and many more). In the rare situation when you can’t find a dedicated .NET provider or an OLE
DB driver, you can fall back on the ODBC provider, which works in conjunction with an ODBC driver.

■ Tip Microsoft includes the OLE DB provider with ADO.NET so that you can use your existing OLE DB drivers.
However, if you can find a provider that’s customized specifically for your data source, you should use it instead.
For example, you can connect to a SQL Server database using either the SQL Server provider or the OLE DB

provider, but the SQL Server provider will always perform best.

Standardization in ADO.NET
At first glance, it might seem that ADO.NET offers a fragmented model, because it doesn’t include a
generic set of objects that can work with multiple types of databases. As a result, if you change from one
RDBMS to another, you’ll need to modify your data access code to use a different set of classes.

But even though different .NET data providers use different classes, all providers are standardized in
the same way. More specifically, each provider is based on the same set of interfaces and base classes.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

281

For example, every Connection object implements the IDbConnection interface, which defines core
methods such as Open() and Close(). This standardization guarantees that every Connection class will
work in the same way and expose the same set of core properties and methods.

Behind the scenes, different providers use completely different low-level calls and APIs. For
example, the SQL Server provider uses the proprietary TDS (Tabular Data Stream) protocol to
communicate with the server. The benefits of this model aren’t immediately obvious, but they are
significant:

• Because each provider uses the same interfaces and base classes, you can still
write generic data access code (with a little more effort) by coding against the
interfaces instead of the provider classes. You’ll see this technique in action in the
section “Provider-Agnostic Code.”

• Because each provider is implemented separately, it can use proprietary
optimizations. (This is different from the ADO model, where every database call
needs to filter through a common layer before it reaches the underlying database
driver.) In addition, custom providers can add nonstandard features that aren’t
included in other providers (such as SQL Server’s ability to perform an XML query).

ADO.NET also has another layer of standardization: the DataSet. The DataSet is an all-purpose
container for data that you’ve retrieved from one or more tables in a data source. The DataSet is
completely generic—in other words, custom providers don’t define their own custom versions of the
DataSet class. No matter which data provider you use, you can extract your data and place it into a
disconnected DataSet in the same way. That makes it easy to separate data retrieval code from data
processing code. If you change the underlying database, you will need to change the data retrieval code,
but if you use the DataSet and your information has the same structure, you won’t need to modify the
way you process that data.

Fundamental ADO.NET Classes
ADO.NET has two types of objects: connection-based and content-based.

Connection-based objects: These are the data provider objects such as Connection, Command,
DataReader, and DataAdapter. They allow you to connect to a database, execute SQL statements,
move through a read-only result set, and fill a DataSet. The connection-based objects are specific to
the type of data source, and are found in a provider-specific namespace (such as
System.Data.SqlClient for the SQL Server provider).

Content-based objects: These objects are really just “packages” for data. They include the DataSet,
DataColumn, DataRow, DataRelation, and several others. They are completely independent of the
type of data source and are found in the System.Data namespace.

In the rest of this chapter, you’ll learn about the first level of ADO.NET—the connection-based
objects, including Connection, Command, and DataReader. You won’t learn about the higher-level
DataAdapter yet, because the DataAdapter is designed for use with the DataSet and is discussed in
Chapter 8. (Essentially, the DataAdapter is a group of related Command objects; these objects help you
synchronize a DataSet with a data source.)

The ADO.NET classes are grouped into several namespaces. Each provider has its own namespace,
and generic classes such as the DataSet are stored in the System.Data namespaces. Table 7-1 describes
the most important namespaces for basic ADO.NET support.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

282

Table 7-1. The ADO.NET Namespace

Namespace Description

System.Data Contains the key data container classes that model columns, relations,
tables, datasets, rows, views, and constraints. In addition, contains the
key interfaces that are implemented by the connection-based data
objects.

System.Data.Common Contains base, mostly abstract classes that implement some of the
interfaces from System.Data and define the core ADO.NET
functionality. Data providers inherit from these classes (such as
DbConnection, DbCommand, and so on) to create their own
specialized versions.

System.Data.OleDb Contains the classes used to connect to an OLE DB provider, including
OleDbCommand, OleDbConnection, OleDbDataReader, and
OleDbDataAdapter. These classes support most OLE DB providers, but
not those that require OLE DB version 2.5 interfaces.

System.Data.SqlClient Contains the classes you use to connect to a Microsoft SQL Server
database, including SqlCommand, SqlConnection, SqlDataReader, and
SqlDataAdapter. These classes are optimized to use the TDS interface to
SQL Server.

System.Data.OracleClient Contains the classes required to connect to an Oracle database (version
8.1.7 or later), including OracleCommand, OracleConnection,
OracleDataReader, and OracleDataAdapter. These classes are using the
optimized Oracle Call Interface (OCI).

System.Data.Odbc Contains the classes required to connect to most ODBC drivers. These
classes include OdbcCommand, OdbcConnection, OdbcDataReader,
and OdbcDataAdapter. ODBC drivers are included for all kinds of data
sources and are configured through the Data Sources icon in the
Control Panel.

System.Data.SqlTypes Contains structures that match the native data types in SQL Server.
These classes aren’t required but provide an alternative to using
standard .NET data types, which require automatic conversion.

■ Note An ADO.NET provider is simply a set of ADO.NET classes (with an implementation of Connection,
Command, DataAdapter, and DataReader) that’s distributed in a class library assembly. Usually, all the classes in
the data provider use the same prefix. For example, the prefix OleDb is used for the ADO.NET OLE DB provider, and

it provides an implementation of the Connection object named OleDbConnection.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

283

The Connection Class
The Connection class allows you to establish a connection to the data source that you want to interact
with. Before you can do anything else (including retrieving, deleting, inserting, or updating data), you
need to establish a connection.

The core Connection properties and methods are specified by the IDbConnection interface, which
all Connection classes implement.

Connection Strings
When you create a Connection object, you need to supply a connection string. The connection string is a
series of name/value settings separated by semicolons (;). The order of these settings is unimportant, as
is the capitalization. Taken together, they specify the basic information needed to create a connection.

Although connection strings vary based on the RDBMS and provider you are using, a few pieces of
information are almost always required:

The server where the database is located: In the examples in this book, the database server is always
located on the same computer as the ASP.NET application, so the loopback alias localhost is used
instead of a computer name.

The database you want to use: Most of the examples in this book use the Northwind database,
which is installed with older versions of SQL Server (and can be installed on newer versions using
the SQL script that’s included with the downloadable examples for this book).

How the database should authenticate you: The Oracle and SQL Server providers give you the choice
of supplying authentication credentials or logging in as the current user. The latter choice is usually
best, because you don’t need to place password information in your code or configuration files.

For example, here’s the connection string you would use to connect to the Northwind database on
the current computer using integrated security (which uses the currently logged-in Windows user to
access the database):

string connectionString = "Data Source=localhost; Initial Catalog=Northwind;" +
 "Integrated Security=SSPI";

If integrated security isn’t supported, the connection must indicate a valid user and password
combination. For a newly installed SQL Server database, the sa (system administrator) account is usually
present. Here’s a connection string that uses this account:

string connectionString = "Data Source=localhost; Initial Catalog=Northwind;" +
 "user id=sa; password=opensesame";

If you’re using the OLE DB provider, your connection string will still be similar, with the addition of
a provider setting that identifies the OLE DB driver. For example, you can use the following connection
string to connect to an Oracle database through the MSDAORA OLE DB provider:

string connectionString = "Data Source=localhost; Initial Catalog=Sales;" +
 "user id=sa; password=da#ta_li#nk_43;Provider=MSDAORA";

Here’s an example that connects to an Access database file:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" +
 @"Data Source=C:\DataSources\Northwind.mdb";

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

284

■ Tip If you’re using a database other than SQL Server, you might need to consult the data provider

documentation (or the .NET Framework class library reference) to determine the supported connection string
values. For example, most databases support the Connect Timeout setting, which sets the number of seconds to

wait for a connection before throwing an exception. (The SQL Server default is 15 seconds.)

When you create a Connection object, you can pass the connection string as a constructor
parameter. Alternatively, you can set the ConnectionString property by hand, as long as you do it before
you attempt to open the connection.

There’s no reason to hard-code a connection string. As discussed in Chapter 5, the
<connectionStrings> section of the web.config file is a handy place to store your connection strings.
Here’s an example:

<configuration>
 <connectionStrings>
 <add name="Northwind" connectionString=
"Data Source=localhost; Initial Catalog=Northwind; Integrated Security=SSPI"/>
 </connectionStrings>
 ...
</configuration>

You can then retrieve your connection string by name from the
WebConfigurationManager.ConnectionStrings collection. Assuming you’ve imported the
System.Web.Configuration namespace, you can use a code statement like this:

string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;

The following examples assume you’ve added this connection string to your web.config file.

User Instance Connections
Every database server stores a master catalog of all the databases that you’ve installed on it. This list
includes the name of each database and the location of the files that hold the data. When you create a
database (for example, by running a script or using a management tool), the information about that
database is added to the master catalog. When you connect to the database, you specify the database
name using the Initial Catalog value in the connection string.

Interestingly, SQL Server Express has a convenient feature that lets you bypass the master list and
connect directly to any database file, even if it’s not in the master catalog of databases. This feature is
called user instances, and it isn’t available in the full edition of SQL Server.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

285

■ Note SQL Server Express is a scaled-down version of SQL Server 2008 that’s free to distribute. SQL Server
Express has certain limitations—for example, it can use only one CPU and a maximum of 1GB of RAM, and
databases can’t be larger than 4GB. However, it’s still remarkably powerful and suitable for many midscale web

sites. Even better, you can easily upgrade from SQL Server Express to a paid version of SQL Server if you need
more features later. For more information about SQL Server Express or to download it with or without additional
administrative tools, refer to http://www.microsoft.com/express/database.

To attach a user instance database, you need to set the User Instances value to True (in the
connection string) and supply the file name of the database you want to connect to with the
AttachDBFilename value. You don’t supply an Initial Catalog value.

Here’s an example connection string that uses this approach:

myConnection.ConnectionString = @"Data Source=localhost\SQLEXPRESS;" +
 "Integrated Security=SSPI;" +
 @"AttachDBFilename=|DataDirectory|\Northwind.mdf;User Instance=True";

There’s another trick here. The file name starts with |DataDirectory|. This automatically points to
the App_Data folder inside your web application directory. This way, you don’t need to supply a full file
path, which might not remain valid when you move the web application to a web server. Instead,
ADO.NET will always look in the App_Data directory for a file named Northwind.mdf.

User instances is a handy feature if you have a web server that hosts many different web
applications that use databases and these databases are frequently being added and removed. This
feature also works well in conjunction with other, higher-level ASP.NET features like profiles and
membership (see Part Four). By default, these features create file-based databases for SQL Server
Express, which saves you the configuration work.

Visual Studio’s Support for User Instance Databases

Visual Studio provides two handy features that make it easier to work with databases in the App_Data
folder.

First, Visual Studio gives you a nearly effortless way to create new databases. Simply choose Website ➤
Add New Item. Then, pick SQL Server Database from the list of templates, choose a file name for your
database, and click OK. The .mdf and .ldf files for the new database will be placed in the App_Data folder,
and you’ll see them in the Solution Explorer. Initially, they’ll be blank, so you’ll need to add the tables
you want. (The easiest way to do this is to right-click the Tables group in the Server Explorer, and choose
Add Table.)

Visual Studio also simplifies your life with its automatic Server Explorer support. When you open a web
application, Visual Studio automatically adds a data connection to the Server Explorer window for each
database that it finds in the App_Data folder. To jump to a specific data connection in a hurry, just double-
click the .mdf file for the database in the Solution Explorer. Using the Server Explorer, you can create
tables, edit data, and execute commands, all without leaving the comfort of Visual Studio.

http://www.microsoft.com/express/database

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

286

Testing a Connection
Once you’ve chosen your connection string, managing the connection is easy—you simply use the
Open() and Close() methods.

You can use the following code in the Page.Load event handler to test a connection and write its
status to a label (as shown in Figure 7-2). To use this code as written, you must import the
System.Data.SqlClient namespace.

// Create the Connection object.
string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);

try
{
 // Try to open the connection.
 con.Open();
 lblInfo.Text = "Server Version: " + con.ServerVersion;
 lblInfo.Text += "
Connection Is: " + con.State.ToString();
}
catch (Exception err)
{
 // Handle an error by displaying the information.
 lblInfo.Text = "Error reading the database. " + err.Message;
}
finally
{
 // Either way, make sure the connection is properly closed.
 // Even if the connection wasn't opened successfully,
 // calling Close() won't cause an error.
 con.Close();
 lblInfo.Text += "
Now Connection Is: " +
 con.State.ToString();
}

Figure 7-2 shows the results of running this code.

Figure 7-2. Testing a connection

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

287

■ Note When opening a connection, you face two possible exceptions. An InvalidOperationException occurs if
your connection string is missing required information or the connection is already open. A SqlException occurs for
just about any other type of problem, including an error contacting the database server, logging in, or accessing

the specified database.

SqlException is a provider-specific class that’s used for the SQL Server provider. Other database providers use

different exception classes to serve the same role, such as OracleException, OleDbException, and OdbcException.

Connections are a limited server resource. This means it’s imperative that you open the connection
as late as possible and release it as quickly as possible. In the previous code sample, an exception
handler is used to make sure that even if an unhandled error occurs, the connection will be closed in the
finally block. If you don’t use this design and an unhandled exception occurs, the connection will remain
open until the garbage collector disposes of the SqlConnection object.

An alternate approach is to wrap your data access code in a using block. The using statement
declares that you are using a disposable object for a short period of time. As soon as the using block
ends, the CLR releases the corresponding object immediately by calling its Dispose() method.
Interestingly, calling the Dispose() method of a Connection object is equivalent to calling Close(). That
means you can rewrite the earlier example in the following, more compact, form:

string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);

using (con)
{
 con.Open();
 lblInfo.Text = "Server Version: " + con.ServerVersion;
 lblInfo.Text += "
Connection Is: " + con.State.ToString();
}
lblInfo.Text += "
Now Connection Is: ";
lblInfo.Text += con.State.ToString();

The best part is that you don’t need to write a finally block—the using statement releases the object
you’re using even if you exit the block as the result of an unhandled exception.

Connection Pooling
Acquiring a connection takes a short, but definite, amount of time. In a web application in which
requests are being handled efficiently, connections will be opened and closed endlessly as new requests
are processed. In this environment, the small overhead required to establish a connection can become
significant and limit the scalability of the system.

One solution is connection pooling. Connection pooling is the practice of keeping a permanent
set of open database connections to be shared by sessions that use the same data source. This avoids
the need to create and destroy connections all the time. Connection pools in ADO.NET are completely
transparent to the programmer, and your data access code doesn’t need to be altered. When a client
requests a connection by calling Open(), it’s served directly from the available pool, rather than

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

288

re-created. When a client releases a connection by calling Close() or Dispose(), it’s not discarded but
returned to the pool to serve the next request.

ADO.NET does not include a connection pooling mechanism. However, most ADO.NET providers
implement some form of connection pooling. The SQL Server and Oracle data providers implement
their own efficient connection pooling algorithms. These algorithms are implemented entirely in
managed code and—in contrast to some popular misconceptions—do not use COM+ enterprises
services. For a connection to be reused with SQL Server or Oracle, the connection string must match
exactly. If it differs even slightly, a new connection will be created in a new pool.

■ Tip SQL Server and Oracle connection pooling use a full-text match algorithm. That means any minor change in
the connection string will thwart connection pooling, even if the change is simply to reverse the order of

parameters or add an extra blank space at the end. For this reason, it’s imperative that you don’t hard-code the
connection string in different web pages. Instead, you should store the connection string in one place—preferably

in the <connectionStrings> section of the web.config file.

With both the SQL Server and Oracle providers, connection pooling is enabled and used
automatically. However, you can also use connection string parameters to configure pool size settings.
Table 7-2 describes these parameters.

Table 7-2. Connection Pooling Settings

Setting Description

Max Pool Size The maximum number of connections allowed in the pool (defaults to 100).
If the maximum pool size has been reached, any further attempts to open a
connection are queued until a connection becomes available. (An error is
raised if the Connection.Timeout value elapses before a connection
becomes available.)

Min Pool Size The minimum number of connections always retained in the pool (defaults
to 0). This number of connections will be created when the first connection
is opened, leading to a minor delay for the first request.

Pooling When true (the default), the connection is drawn from the appropriate pool
or, if necessary, is created and added to the appropriate pool.

Connection Lifetime Specifies a time interval in seconds. If a connection is returned to the pool
and its creation time is older than the specified lifetime, it will be destroyed.
The default is 0, which disables this behavior. This feature is useful when you
want to recycle a large number of connections at once.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

289

Here’s an example connection string that sets a minimum pool size:

string connectionString = "Data Source=localhost; Initial Catalog=Northwind;" +
 "Integrated Security=SSPI; Min Pool Size=10";
SqlConnection con = new SqlConnection(connectionString);

// Get the connection from the pool (if it exists)
// or create the pool with 10 connections (if it doesn't).
con.Open();

// Return the connection to the pool.
con.Close();

Some providers include methods for emptying out the connection pool. For example, with the
SqlConnection you can call the static ClearPool() and ClearAllPools() methods. When calling
ClearPool(), you supply a SqlConnection, and all the matching connections are removed. ClearAllPools()
empties out every connection pool in the current application domain. (Technically, these methods don’t
close the connections. They just mark them as invalid so that they will time out and be closed during the
regular connection cleanup a few minutes later.) This functionality is rarely used—typically, the only
case in which it’s useful is if you know the pool is full of invalid connections (for example, as a result of
restarting SQL Server) and you want to avoid an error.

■ Tip SQL Server and Oracle connection pools are always maintained as part of the global resources in an
application domain. As a result, connection pools can’t be reused between separate web applications on the same
web server or between web applications and other .NET applications. For the same reason, all the connections are

lost if the application domain is restarted. (Application domains are restarted for a variety of reasons, including
when you change a web page, assembly, or configuration file in the web application. Application domains are also
restarted when certain thresholds are reached—for example, IIS may recycle an application domain that’s using a

large amount of memory or has a large number of requests in the queue. Both details may indicate that the

performance of the application domain has degraded.)

The Command and DataReader Classes
The Command class allows you to execute any type of SQL statement. Although you can use a Command
class to perform data definition tasks (such as creating and altering databases, tables, and indexes),
you’re much more likely to perform data manipulation tasks (such as retrieving and updating the
records in a table).

The provider-specific Command classes implement standard functionality, just like the Connection
classes. In this case, the IDbCommand interface defines a few key properties and the core set of methods
that are used to execute a command over an open connection.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

290

Command Basics
Before you can use a command, you need to choose the command type, set the command text, and bind
the command to a connection. You can perform this work by setting the corresponding properties
(CommandType, CommandText, and Connection), or you can pass the information you need as
constructor arguments.

The command text can be a SQL statement, a stored procedure, or the name of a table. It all
depends on the type of command you’re using. Three types of commands exist, as listed in Table 7-3.

Table 7-3. Values for the CommandType Enumeration

Value Description

CommandType.Text The command will execute a direct SQL statement. The SQL
statement is provided in the CommandText property. This is
the default value.

CommandType.StoredProcedure The command will execute a stored procedure in the data
source. The CommandText property provides the name of the
stored procedure.

CommandType.TableDirect The command will query all the records in the table. The
CommandText is the name of the table from which the
command will retrieve the records. (This option is included for
backward compatibility with certain OLE DB drivers only. It is
not supported by the SQL Server data provider, and it won’t
perform as well as a carefully targeted query.)

For example, here’s how you would create a Command object that represents a query:

SqlCommand cmd = new SqlCommand();
cmd.Connection = con;
cmd.CommandType = CommandType.Text;
cmd.CommandText = "SELECT * FROM Employees";

And here’s a more efficient way using one of the Command constructors. Note that you don’t need
to specify the CommandType, because CommandType.Text is the default.

SqlCommand cmd = new SqlCommand("SELECT * FROM Employees", con);

Alternatively, to use a stored procedure, you would use code like this:

SqlCommand cmd = new SqlCommand("GetEmployees", con);
cmd.CommandType = CommandType.StoredProcedure;

These examples simply define a Command object; they don’t actually execute it. The Command
object provides three methods that you can use to perform the command, depending on whether you
want to retrieve a full result set, retrieve a single value, or just execute a nonquery command. Table 7-4
lists these methods.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

291

Table 7-4. Command Methods

Method Description

ExecuteNonQuery() Executes non-SELECT commands, such as SQL commands that insert, delete,
or update records. The returned value indicates the number of rows affected
by the command. You can also use ExecuteNonQuery() to execute data-
definition commands that create, alter, or delete database objects (such as
tables, indexes, constraints, and so on).

ExecuteScalar() Executes a SELECT query and returns the value of the first field of the first row
from the rowset generated by the command. This method is usually used
when executing an aggregate SELECT command that uses functions such as
COUNT() or SUM() to calculate a single value.

ExecuteReader() Executes a SELECT query and returns a DataReader object that wraps a read-
only, forward-only cursor.

The DataReader Class
A DataReader allows you to read the data returned by a SELECT command one record at a time, in a
forward-only, read-only stream. This is sometimes called a firehose cursor. Using a DataReader is the
simplest way to get to your data, but it lacks the sorting and relational abilities of the disconnected
DataSet described in Chapter 8. However, the DataReader provides the quickest possible no-nonsense
access to data.

Table 7-5 lists the core methods of the DataReader.

Table 7-5. DataReader Methods

Method Description

Read() Advances the row cursor to the next row in the stream. This method must
also be called before reading the first row of data. (When the DataReader
is first created, the row cursor is positioned just before the first row.) The
Read() method returns true if there’s another row to be read, or false if it’s
on the last row.

GetValue() Returns the value stored in the field with the specified index, within the
currently selected row. The type of the returned value is the closest .NET
match to the native value stored in the data source. If you access the field
by index and inadvertently pass an invalid index that refers to a
nonexistent field, you will get an IndexOutOfRangeException exception.
You can also access values by field name using the indexer for the
DataReader. (In other words, myDataReader.GetValue(0) and
myDataReader["NameOfFirstField"] are equivalent.) Name-based
lookups are more readable, but slightly less efficient.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

292

Method Description

GetValues() Saves the values of the current row into an array. The number of fields
that are saved depends on the size of the array you pass to this method.
You can use the DataReader.FieldCount property to determine the
number of fields in a row, and you can use that information to create an
array of the right size if you want to save all the fields.

GetInt32(),GetChar(),
GtDateTime(), GetXxx()

These methods return the value of the field with the specified index in the
current row, with the data type specified in the method name. Note that
if you try to assign the returned value to a variable of the wrong type,
you’ll get an InvalidCastException exception. Also note that these
methods don’t support nullable data types. If a field might contain a null
value, you need to check it before you call one of these methods. To test
for a null value, compare the unconverted value (which you can retrieve
by position using the GetValue() method or by name using the
DataReader indexer) to the constant DBNull.Value.

NextResult() If the command that generated the DataReader returned more than one
rowset, this method moves the pointer to the next rowset (just before the
first row).

Close() Closes the reader. If the originator command ran a stored procedure that
returned an output value, that value can be read only from the respective
parameter after the reader has been closed.

The ExecuteReader() Method and the DataReader
The following example creates a simple query command to return all the records from the Employees
table in the Northwind database. The command is created when the page is loaded.

protected void Page_Load(object sender, EventArgs e)
{
 // Create the Command and the Connection objects.
 string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
 SqlConnection con = new SqlConnection(connectionString);
 string sql = "SELECT * FROM Employees";
 SqlCommand cmd = new SqlCommand(sql, con);
 ...

■ Note This SELECT query uses the * wildcard to retrieve all the fields, but in real-world code you should retrieve
only the fields you really need in order to avoid consuming time to retrieve data you’ll never use. It’s also a good

idea to limit the records returned with a WHERE clause if you don’t need all the records.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

293

The connection is then opened, and the command is executed through the ExecuteReader()
method, which returns a SqlDataReader, as follows:

 ...
 // Open the Connection and get the DataReader.
 con.Open();
 SqlDataReader reader = cmd.ExecuteReader();
 ...

Once you have the DataReader, you can cycle through its records by calling the Read() method in a
while loop. This moves the row cursor to the next record (which, for the first call, means to the first
record). The Read() method also returns a Boolean value indicating whether there are more rows to read.
In the following example the loop continues until Read() returns false, at which point the loop ends
gracefully.

The information for each record is then joined into a single large string. To ensure that these string
manipulations are performed quickly, a StringBuilder (from the System.Text namespace) is used instead
of ordinary string objects.

 ...
 // Cycle through the records, and build the HTML string.
 StringBuilder htmlStr = new StringBuilder("");
 while (reader.Read())
 {
 htmlStr.Append("");
 htmlStr.Append(reader["TitleOfCourtesy"]);
 htmlStr.Append(" ");
 htmlStr.Append(reader.GetString(1));
 htmlStr.Append(", ");
 htmlStr.Append(reader.GetString(2));
 htmlStr.Append(" - employee from ");
 htmlStr.Append(reader.GetDateTime(6).ToString("d"));
 htmlStr.Append("");
 }
 ...

This code reads the value of the TitleOfCourtesy field by accessing the field by name through the
Item indexer. Because the Item property is the default indexer, you don’t need to explicitly include the
Item property name when you retrieve a field value. Next, the code reads the LastName and FirstName
fields by calling GetString() with the field index (1 and 2 in this case). Finally, the code accesses the
HireDate field by calling GetDateTime() with a field index of 6. All these approaches are equivalent and
included to show the supported variation.

■ Note In this example, the StringBuilder ensures a dramatic increase in performance. If you use the + operator
to concatenate strings instead, this operation would discard the current string object and create a new one every

time. This operation is noticeably slower, especially for large strings. The StringBuilder object avoids this problem

by allocating a modifiable buffer of memory for characters.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

294

The final step is to close the reader and the connection and show the generated text in a server control:

 ...
 reader.Close();
 con.Close();
 HtmlContent.Text = htmlStr.ToString();
}

If you run the page, you’ll see the output shown in Figure 7-3.
In most ASP.NET pages, you won’t take this labor-intensive approach to displaying data in a web

page. Instead, you’ll use the data controls described in later chapters. However, you’re still likely to use
the DataReader when writing data access code in a database component.

Figure 7-3. Retrieving results with a DataReader

Null Values
As you no doubt already know, databases use null values to represent missing or nonapplicable
information. You can use the same concept in .NET with nullable data types, which can take a value and
a null reference. Here’s an example with a nullable integer:

// Nullable integer can contain any 32-bit integer or a null value.
int? nullableInteger = null;

// Test nullableInteger for a null value.
if (nullableInteger.HasValue)
{
 // Do something with nullableInteger.
 nullableInteger += 1;
}

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

295

Unfortunately, the DataReader isn’t integrated with .NET nullable values. This discrepancy is due to
historical reasons. The nullable data types were first introduced in .NET 2.0, at which point the
DataReader model was already well established and difficult to change.

Instead, the DataReader returns the constant DBNull.Value when it comes across a null value in the
database. Attempting to use this value or cast it to another data type will cause an exception. (Sadly,
there’s no way to cast between DBNull.Value and a nullable data type.) As a result, you need to test for
DBNull.Value when it might occur, using code like this:

int? numberOfHires;

if (reader["NumberOfHires"] == DBNull.Value)
 numberOfHires = null;
else
 numberOfHires = (int?)reader["NumberOfHires"];

CommandBehavior
The ExecuteReader() method has an overloaded version that takes one of the values from the
CommandBehavior enumeration as a parameter. One useful value is
CommandBehavior.CloseConnection. When you pass this value to the ExecuteReader() method, the
DataReader will close the associated connection as soon as you close the DataReader.

Using this technique, you could rewrite the code as follows:

SqlDataReader reader = cmd.ExecuteReader(CommandBehavior.CloseConnection);

// (Build the HTML string here.)

// No need to close the connection. You can simply close the reader.
reader.Close();
HtmlContent.Text = htmlStr.ToString();

This behavior is particularly useful if you retrieve a DataReader in one method and need to pass it to
another method to process it. If you use the CommandBehavior.CloseConnection value, the connection
will be automatically closed as soon as the second method closes the reader.

Another possible value is CommandBehavior.SingleRow, which can improve the performance of the
query execution when you’re retrieving only a single row. For example, if you are retrieving a single
record using its unique primary key field (CustomerID, ProductID, and so on), you can use this
optimization. You can also use CommandBehavior.SequentialAccess to read part of a binary field at a
time, which reduces the memory overhead for large binary fields. You’ll see this technique at work in
Chapter 10.

The other values are less frequently used and aren’t covered here. You can refer to the .NET
documentation for a full list.

Processing Multiple Result Sets
The command you execute doesn’t have to return a single result set. Instead, it can execute more than
one query and return more than one result set as part of the same command. This is useful if you need to
retrieve a large amount of related data, such as a list of products and product categories that, taken
together, represent a product catalog.

A command can return more than one result set in two ways:

• If you’re calling a stored procedure, it may use multiple SELECT statements.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

296

• If you’re using a straight text command, you may be able to batch multiple
commands by separating commands with a semicolon (;). Not all providers
support this technique, but the SQL Server database provider does.

Here’s an example of a string that defines a batch of three SELECT statements:

string sql = "SELECT TOP 5 * FROM Employees;" +
 "SELECT TOP 5 * FROM Customers; SELECT TOP 5 * FROM Suppliers";

This string contains three queries. Together, they return the first five records from the Employees
table, the first five from the Customers table, and the first five from the Suppliers table.

Processing these results is fairly straightforward. Initially, the DataReader will provide access to the
results from the Employees table. Once you’ve finished using the Read() method to read all these
records, you can call NextResult() to move to the next result set. When there are no more result sets, this
method returns false.

You can even cycle through all the available result sets with a while loop, although in this case you
must be careful not to call NextResult() until you finish reading the first result set. Here’s an example of
this more specialized technique:

// Cycle through the records and all the rowsets,
// and build the HTML string.
StringBuilder htmlStr = new StringBuilder("");
int i = 0;
do
{
 htmlStr.Append("<h2>Rowset: ");
 htmlStr.Append(i.ToString());
 htmlStr.Append("</h2>");

 while (reader.Read())
 {
 htmlStr.Append("");
 // Get all the fields in this row.
 for (int field = 0; field < reader.FieldCount; field++)
 {
 htmlStr.Append(reader.GetName(field).ToString());
 htmlStr.Append(": ");
 htmlStr.Append(reader.GetValue(field).ToString());
 htmlStr.Append(" ");
 }
 htmlStr.Append("");
 }
 htmlStr.Append("

");
 i++;
} while (reader.NextResult());

// Close the DataReader and the Connection.
reader.Close();
con.Close();

// Show the generated HTML code on the page.
HtmlContent.Text = htmlStr.ToString();

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

297

Note that in this case all the fields are accessed using the generic GetValue() method, which takes
the index of the field to read. That’s because the code is designed generically to read all the fields of all
the returned result sets, no matter what query you use. However, in a realistic database application, you
would almost certainly know which tables to expect, as well as the corresponding table and field names.

Figure 7-4 shows the page output.

■ Tip There is one case where you might treat all result sets with the same code—if all your result sets contain
data with the same structure. For example, you might call a stored procedure that returns three groups of
employees in three distinct result sets, separated according the sales office where they work. You can then

hardcode your field names instead of using GetValue(), because each result set will have the same fields.

Figure 7-4. Retrieving multiple result sets

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

298

You don’t always need to step through each record. If you’re willing to show the data exactly as it is,
with no extra processing or formatting, you can add a GridView control to your page and bind the
DataReader to the GridView control in a single line. Here is the code you would use:

// Specify the data source.
GridView1.DataSource = reader;

// Fill the GridView with all the records in the DataReader.
GridView1.DataBind();

You’ll learn much more about data binding and how to customize it in Chapter 9 and Chapter 10.

The ExecuteScalar() Method
The ExecuteScalar() method returns the value stored in the first field of the first row of a result set
generated by the command’s SELECT query. This method is usually used to execute a query that
retrieves only a single field, perhaps calculated by a SQL aggregate function such as COUNT() or SUM().

The following procedure shows how you can get (and write on the page) the number of records in
the Employees table with this approach:

SqlConnection con = new SqlConnection(connectionString);
string sql = " SELECT COUNT(*) FROM Employees ";
SqlCommand cmd = new SqlCommand(sql, con);

// Open the Connection and get the COUNT(*) value.
con.Open();
int numEmployees = (int)cmd.ExecuteScalar();
con.Close();

// Display the information.
HtmlContent.Text += "
Total employees: " +
 numEmployees.ToString() + "
";

The code is fairly straightforward, but it’s worth noting that you must cast the returned value to the
proper type because ExecuteScalar() returns an object.

The ExecuteNonQuery() Method
The ExecuteNonQuery() method executes commands that don’t return a result set, such as INSERT,
DELETE, and UPDATE. The ExecuteNonQuery() method returns a single piece of information—the
number of affected records (or -1 if your command isn’t an INSERT, DELETE, or UPDATE statement).

Here’s an example that uses a DELETE command by dynamically building a SQL string:

SqlConnection con = new SqlConnection(connectionString);
string sql = "DELETE FROM Employees WHERE EmployeeID = " + empID.ToString();
SqlCommand cmd = new SqlCommand(sql, con);

try
{
 con.Open();
 int numAff = cmd.ExecuteNonQuery();
 HtmlContent.Text += string.Format(

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

299

 "
Deleted {0} record(s)
", numAff);
}
catch (SqlException exc)
{
 HtmlContent.Text += string.Format(
 "Error: {0}

", exc.Message);
}
finally
{
 con.Close();
}

This particular code won’t actually delete the record, because foreign key constraints prevent you
from removing an employee record if it’s linked to other records in other tables.

SQL Injection Attacks
So far, all the examples you’ve seen have used hard-coded values. That makes the examples simple,
straightforward, and relatively secure. It also means they aren’t that realistic, and they don’t
demonstrate one of the most serious risks for web applications that interact with a database—SQL
injection attacks.

In simple terms, SQL injection is the process of passing SQL code into an application, in a way that
was not intended or anticipated by the application developer. This may be possible because of the poor
design of the application, and it affects only applications that use SQL string building techniques to
create a command with user-supplied values.

Consider the example shown in Figure 7-5. In this example, the user enters a customer ID, and the
GridView shows all the rows for that customer. In a more realistic example the user would also need to
supply some sort of authentication information such as a password. Or, the user ID might be based on a
previous login screen, and the text box would allow the user to supply additional criteria such as a date
range or the name of a product in the order.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

300

Figure 7-5. Retrieving orders for a single customer

The problem is how this command is executed. In this example, the SQL statement is built
dynamically using a string building technique. The value from the txtID text box is simply pasted into the
middle of the string. Here’s the code:

string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);
string sql =
 "SELECT Orders.CustomerID, Orders.OrderID, COUNT(UnitPrice) AS Items, " +
 "SUM(UnitPrice * Quantity) AS Total FROM Orders " +
 "INNER JOIN [Order Details] " +
 "ON Orders.OrderID = [Order Details].OrderID " +
 "WHERE Orders.CustomerID = '" + txtID.Text + "' " +
 "GROUP BY Orders.OrderID, Orders.CustomerID";
SqlCommand cmd = new SqlCommand(sql, con);

con.Open();
SqlDataReader reader = cmd.ExecuteReader();
GridView1.DataSource = reader;
GridView1.DataBind();
reader.Close();
con.Close();

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

301

In this example, a user might try to tamper with the SQL statement. Often, the first goal of such an
attack is to receive an error message. If the error isn’t handled properly and the low-level information is
exposed to the attacker, that information can be used to launch a more sophisticated attack.

For example, imagine what happens if the user enters the following text into the text box:

ALFKI' OR '1'='1

Now consider the complete SQL statement that this creates:

SELECT Orders.CustomerID, Orders.OrderID, COUNT(UnitPrice) AS Items,
 SUM(UnitPrice * Quantity) AS Total FROM Orders
 INNER JOIN [Order Details]
 ON Orders.OrderID = [Order Details].OrderID
 WHERE Orders.CustomerID = 'ALFKI' OR '1'='1'
 GROUP BY Orders.OrderID, Orders.CustomerID

This statement returns all the order records. Even if the order wasn’t created by ALFKI, it’s still true
that 1=1 for every row. The result is that instead of seeing the specific information for the current
customer, all the information is exposed to the attacker, as shown in Figure 7-6. If the information
shown on the screen is sensitive, such as Social Security numbers, dates of birth, or credit card
information, this could be an enormous problem! In fact, simple SQL injection attacks exactly like this
are often the source of problems that affect major e-commerce companies. Often, the vulnerability
doesn’t occur in a text box but appears in the query string (which can be used to pass a database value
such as a unique ID from a list page to a details page).

Figure 7-6. A SQL injection attack that shows all the orders

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

302

More sophisticated attacks are possible. For example, the malicious user could simply comment out
the rest of your SQL statement by adding two hyphens (—).This attack is specific to SQL Server, but
equivalent exploits are possible in MySQL with the hash (#) symbol and in Oracle with the semicolon (;).
Alternatively, the attacker could use a batch command to execute an arbitrary SQL command. With the
SQL Server provider, the attacker simply needs to supply a semicolon followed by a new command. This
exploit allows the user to delete the contents of another table, or even use the SQL Server xp_cmdshell
system stored procedure to execute an arbitrary program at the command line.

Here’s what the user would need to enter in the text box for a more sophisticated SQL injection
attack to delete all the rows in the Customers table:

ALFKI'; DELETE * FROM Customers—

So, how can you defend against SQL injection attacks? You can keep a few good guidelines in mind.
First, it’s a good idea to use the TextBox.MaxLength property to prevent overly long entries if they aren’t
needed. That reduces the chance of a large block of script being pasted in where it doesn’t belong. In
addition, you can use the ASP.NET validator controls to lock out obviously incorrect data (such as text,
spaces, or special characters in a numeric value). Furthermore, you should restrict the information that’s
given by your error messages. If you catch a database exception, you should report only a generic
message such as “Data source error” rather than display the information in the Exception.Message
property, which may provide more information about system vulnerabilities.

More important, you should take care to remove special characters. For example, you can convert
all single quotation marks to two quotation marks, thereby ensuring that they won’t be confused with
the delimiters in your SQL statement:

string ID = txtID.Text().Replace("'", "''");

Of course, this introduces headaches if your text values really should contain apostrophes. It also
suffers because some SQL injection attacks are still possible. Replacing apostrophes prevents a
malicious user from closing a string value prematurely. However, if you’re building a dynamic SQL
statement that includes numeric values, a SQL injection attack just needs a single space. This
vulnerability is often (and dangerously) ignored.

An even better approach is to use a parameterized command or a stored procedure that performs its
own escaping and is impervious to SQL injection attacks. The following sections describe these
techniques.

■ Tip Another good idea is to restrict the permissions of the account used to access the database so that it
doesn’t have the right to access other databases or execute extended system stored procedures. However, this

can’t remove the problem of SQL script injection, because the process you use to connect to the database will
almost always require a broader set of privileges than the ones you would allocate to any single user. By
restricting the account, you could prevent an attack that deletes a table, for example, but you probably can’t

prevent an attack that steals someone else’s information.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

303

Using Parameterized Commands
A parameterized command is simply a command that uses placeholders in the SQL text. The
placeholders indicate dynamically supplied values, which are then sent through the Parameters
collection of the Command object.

For example, take this SQL statement:

SELECT * FROM Customers WHERE CustomerID = 'ALFKI'

It would become something like this:

SELECT * FROM Customers WHERE CustomerID = @CustID

The placeholders are then added separately and automatically encoded.
The syntax for parameterized commands differs slightly for different providers. With the SQL Server

provider, parameterized commands use named placeholders (with unique names). With the OLE DB
provider, each hard-coded value is replaced with a question mark. In either case, you need to supply a
Parameter object for each parameter, which you insert into the Command.Parameters collection. With
the OLE DB provider, you must make sure you add the parameters in the same order that they appear in
the SQL string. This isn’t a requirement with the SQL Server provider, because the parameters are
matched to the placeholders based on their names.

The following example rewrites the query to remove the possibility of a SQL injection attack:

string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);
string sql =
 "SELECT Orders.CustomerID, Orders.OrderID, COUNT(UnitPrice) AS Items, " +
 "SUM(UnitPrice * Quantity) AS Total FROM Orders " +
 "INNER JOIN [Order Details] " +
 "ON Orders.OrderID = [Order Details].OrderID " +
 "WHERE Orders.CustomerID = @CustID " +
 "GROUP BY Orders.OrderID, Orders.CustomerID";
SqlCommand cmd = new SqlCommand(sql, con);
cmd.Parameters.AddWithValue("@CustID", txtID.Text);

con.Open();
SqlDataReader reader = cmd.ExecuteReader();
GridView1.DataSource = reader;
GridView1.DataBind();
reader.Close();
con.Close();

If you try to perform the SQL injection attack against this revised version of the page, you’ll find it
returns no records. That’s because no order items contain a customer ID value that equals the text string
ALFKI' OR '1'='1. This is exactly the behavior you want.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

304

POST Injection Attacks

Savvy users might realize there’s another potential avenue for attack with web controls. Although
parameterized commands prevent SQL injection attacks, they don’t prevent attackers from adding
malicious values to the data that’s posted back to the server. Left unchecked, this could allow attackers to
submit control values that wouldn’t otherwise be possible.

For example, imagine you have a list that shows orders made by the current user. A crafty attacker could
save a local copy of the page, modify the HTML to add more entries to the list, and then select one of these
“fake” entries. If this attack succeeds, the user will be able to see the orders made by another user, which
is an obvious problem.

Fortunately, ASP.NET defends against this attack using a rarely discussed feature called event validation.
Event validation checks the data that’s posted back to the server and verifies that the values are legitimate.
For example, if the POST data indicates the user chose a value that doesn’t make sense (because it
doesn’t actually exist in the control), ASP.NET generates an error and stops processing.

You can disable event validation by setting the EnableEventValidation attribute of the Page directive to
false. This step is sometimes necessary when you create pages that are dynamically modified using client-
side script (as you’ll see in Chapter 32). However, in these situations, be careful to check for potential
POST injection attacks by validating selected values before you act on them.

Calling Stored Procedures
Parameterized commands are just a short step from commands that call full-fledged stored procedures.

As you probably know, a stored procedure is a batch of one or more SQL statements that are stored
in the database. Stored procedures are similar to functions in that they are well-encapsulated blocks of
logic that can accept data (through input parameters) and return data (through result sets and output
parameters). Stored procedures have many benefits:

They are easier to maintain: For example, you can optimize the commands in a stored procedure
without recompiling the application that uses it. They also standardize data access logic in one
place—the database—making it easier for different applications to reuse that logic in a consistent
way. (In object-oriented terms, stored procedures define the interface to your database.)

They allow you to implement more secure database usage: For example, you can allow the
Windows account that runs your ASP.NET code to use certain stored procedures but restrict access
to the underlying tables.

They can improve performance: Because a stored procedure batches together multiple statements,
you can get a lot of work done with just one trip to the database server. If your database is on
another computer, this reduces the total time to perform a complex task dramatically.

■ Note SQL Server precompiles all SQL commands, including off-the-cuff SQL statements. That means you gain
the benefit of compilation regardless of whether you are using stored procedures. However, stored procedures still
tend to increase the performance benefits, because systems that use stored procedures tend to have less
variability. Systems that use ad hoc SQL statements tend to use slightly different commands to perform similar
tasks, which means compiled execution plans can’t be reused as effectively.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

305

Here’s the SQL code needed to create a stored procedure for inserting a single record into the
Employees table. This stored procedure isn’t in the Northwind database initially, so you’ll need to add it
to the database (using a tool such as SQL Server Management Studio) before you use it.

CREATE PROCEDURE InsertEmployee
 @TitleOfCourtesy varchar(25),
 @LastName varchar(20),
 @FirstName varchar(10),
 @EmployeeID int OUTPUT
AS

INSERT INTO Employees
 (TitleOfCourtesy, LastName, FirstName, HireDate)
 VALUES (@TitleOfCourtesy, @LastName, @FirstName, GETDATE());

SET @EmployeeID = @@IDENTITY

This stored procedure takes three parameters for the employee’s title of courtesy, last name, and first
name. It returns the ID of the new record through the output parameter called @EmployeeID, which is
retrieved after the INSERT statement using the @@IDENTITY function. This is one example of a simple task
that a stored procedure can make much easier. Without using a stored procedure, it’s quite awkward to try
to determine the automatically generated identity value of a new record you’ve just inserted.

Next, you can create a SqlCommand to wrap the call to the stored procedure. This command takes
the same three parameters as inputs and uses @@IDENTITY to get and then return the ID of the new
record. Here is the first step, which creates the required objects and sets InsertEmployee as the
command text:

string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);

// Create the command for the InsertEmployee stored procedure.
SqlCommand cmd = new SqlCommand("InsertEmployee", con);
cmd.CommandType = CommandType.StoredProcedure;

Now you need to add the stored procedure’s parameters to the Command.Parameters collection.
When you do, you need to specify the exact data type and length of the parameter so that it matches the
details in the database.

Here’s how it works for a single parameter:

cmd.Parameters.Add(new SqlParameter(
 "@TitleOfCourtesy", SqlDbType.NVarChar, 25));
cmd.Parameters["@TitleOfCourtesy"].Value = title;

The first line creates a new SqlParameter object. It sets its name, type (using the SqlDbType
enumeration), and size (as a number of characters) in the constructor. It then adds it to the Parameters
collection. The second statement assigns the value for the parameter, which will be sent to the stored
procedure when you execute the command.

Now you can add the next two parameters in a similar way:

cmd.Parameters.Add(new SqlParameter("@LastName", SqlDbType.NVarChar, 20));
cmd.Parameters["@LastName"].Value = lastName;
cmd.Parameters.Add(new SqlParameter("@FirstName", SqlDbType.NVarChar, 10));
cmd.Parameters["@FirstName"].Value = firstName;

mailto:Parameters["@TitleOfCourtesy"].Value
mailto:Parameters["@LastName"].Value
mailto:Parameters["@FirstName"].Value

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

306

The last parameter is an output parameter, which allows the stored procedure to return information
to your code. Although this Parameter object is created in the same way, you must make sure you specify
it is an output parameter by setting its Direction property to Output. You don’t need to supply a value.

cmd.Parameters.Add(new SqlParameter("@EmployeeID", SqlDbType.Int, 4));
cmd.Parameters["@EmployeeID"].Direction = ParameterDirection.Output;

Finally, you can open the connection and execute the command with the ExecuteNonQuery()
method. When the command is completed, you can read the output value, as shown here:

con.Open();
try
{
 int numAff = cmd.ExecuteNonQuery();
 HtmlContent.Text += String.Format(
 "Inserted {0} record(s)
", numAff);

 // Get the newly generated ID.
 int empID = (int)cmd.Parameters["@EmployeeID"].Value;
 HtmlContent.Text += "New ID: " + empID.ToString();
}
finally
{
 con.Close();
}

Adding Parameters with Implicit Data Types

One handy shortcut is the AddWithValue() method of the Parameters collection. This method takes the
parameter name and the value but no data type information. Instead, it infers the data type from the
supplied data. (Obviously, this works with input parameters but not output parameters, because you don’t
supply a value for output para- meters.) If you don’t need to explicitly choose a nonstandard data type, you
can streamline your code with this less-strict approach.

Here’s an example:

cmd.Parameters.AddWithValue("@LastName", lastName);
cmd.Parameters.AddWithValue("@FirstName" firstName);

Assuming that lastName is a C# string with 12 letters, this creates a SqlParameter object with a Size of 12
(characters) and a SqlDbType of NVarChar. The database can convert this data as needed, provided you
aren’t trying to stuff it into a field with a smaller size or a completely different data type.

■ Note There’s one catch—nullable fields. If you want to pass a null value to a stored procedure, you can’t use a
C# null reference, because that indicates an uninitialized reference, which is an error condition. Unfortunately, you
can’t use a nullable data type either (such as int?), because the SqlParameter class doesn’t support nullable data

types. To indicate null content in a field, you must pass the .NET constant DBNull.Value as a parameter value.

mailto:Parameters["@EmployeeID"].Direction
mailto:Parameters["@EmployeeID"].Value

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

307

In the next chapter, you’ll see a small but fully functional database component that does all its work
through stored procedures.

Transactions
A transaction is a set of operations that must either succeed or fail as a unit. The goal of a transaction is
to ensure that data is always in a valid, consistent state.

For example, consider a transaction that transfers $1,000 from account A to account B. Clearly there
are two operations:

• It should deduct $1,000 from account A.

• It should add $1,000 to account B.

Suppose that an application successfully completes step 1, but because of some error, step 2 fails.
This leads to inconsistent data, because the total amount of money in the system is no longer accurate. A
full $1,000 has gone missing.

Transactions help avoid these types of problems by ensuring that changes are committed to a data
source only if all the steps are successful. So, in this example, if step 2 fails, then the changes made by
step 1 will not be committed to the database. This ensures that the system stays in one of its two valid
states—the initial state (with no money transferred) and the final state (with money debited from one
account and credited to another).

Transactions are characterized by four properties popularly called ACID properties. ACID is an
acronym that represents the following concepts:

Atomic: All steps in the transaction should succeed or fail together. Unless all the steps from a
transaction complete, a transaction is not considered complete.

Consistent: The transaction takes the underlying database from one stable state to another.

Isolated: Every transaction is an independent entity. One transaction should not affect any other
transaction running at the same time.

Durable: Changes that occur during the transaction are permanently stored on some media,
typically a hard disk, before the transaction is declared successful. Logs are maintained so that the
database can be restored to a valid state even if a hardware or network failure occurs.

Note that even though these are ideal characteristics of a transaction, they aren’t always
absolutely attainable. One problem is that in order to ensure isolation, the RDBMS often needs to lock
data so that other users can’t access it while the transaction is in progress. The more locks you use,
and the coarser these locks are, the greater the chance that a user won’t be able to perform another
task while the transactions are underway. In other words, there’s often a trade-off between user
concurrency and isolation.

Transactions and ASP.NET Applications
You can use three basic transaction types in an ASP.NET web application. They are as follows (from least
to most overhead):

Stored procedure transactions: These transactions take place entirely in the database. Stored
procedure transactions offer the best performance, because they need only a single round-trip to
the database. The drawback is that you also need to write the transaction logic using SQL
statements.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

308

Client-initiated (ADO.NET) transactions: These transactions are controlled programmatically by
your ASP.NET web-page code. Under the covers, they use the same commands as a stored
procedure transaction, but your code uses some ADO.NET objects that wrap these details. The
drawback is that extra round-trips are required to the database to start and commit the transaction.

COM+ transactions: These transactions are handled by the COM+ runtime, based on declarative
attributes you add to your code. COM+ transactions use a two-stage commit protocol and always
incur extra overhead. They also require that you create a separate serviced component class. COM+
components are generally a good choice only if your transaction spans multiple transaction-aware
resource managers, because COM+ includes built-in support for distributed transactions. For
example, a single COM+ transaction can span interactions in a SQL Server database and an Oracle
database. COM+ transactions are not covered in this book.

Even though ADO.NET provides good support for transactions, you should not always use
transactions. In fact, every time you use any kind of transaction, you automatically incur some overhead.
Also, transactions involve some kind of locking of table rows. Thus, unnecessarily using transactions
may harm the overall scalability of your application.

When implementing a transaction, you can follow these practices to achieve the best results:

• Keep transactions as short as possible.

• Avoid returning data with a SELECT query in the middle of a transaction. Ideally,
you should return the data before the transaction starts. This reduces the amount
of data your transaction will lock.

• If you do retrieve records, fetch only the rows that are required so as to reduce the
number of locks.

• Wherever possible, write transactions within stored procedures instead of using
ADO.NET transactions. This way, your transaction can be started and completed
more quickly, because the database server doesn’t need to communicate with the
client (the web application).

• Avoid transactions that combine multiple independent batches of work. Put
separate batches into separate transactions.

• Avoid updates that affect a large range of records if at all possible.

■ Note ADO.NET also supports a higher-level model of promotable transactions. However, a promotable
transaction isn’t a new type of transaction—it’s just a way to create a client-initiated transaction that can
automatically escalate itself into a COM+ transaction if needed. You don’t need promotable transactions unless

you need to perform operations with different data sources in the scope of the single transaction. You can learn

more about promotable transactions in Pro ADO.NET 2.0 by Sahil Malik (Apress, 2005).

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

309

■ Tip As a rule of thumb, use a transaction only when your operation requires one. For example, if you are simply
selecting records from a database, or firing a single query, you will not need a transaction. On the other hand, if
you are inserting an Order record in conjunction with a series of related OrderItem records, you might want to use

a transaction. In general, a transaction is never required for single-statement commands such as individual

UPDATE, DELETE, or INSERT statements, because these are inherently transactional.

Stored Procedure Transactions
If possible, the best place to put a transaction is in stored procedure code. This ensures that the server-
side code is always in control, which makes it impossible for a client to accidentally hold a transaction
open too long and potentially cause problems for other client updates. It also ensures the best possible
performance, because all actions can be executed at the data source without requiring any network
communication. Generally, the shorter the span of a transaction, the better the concurrency of the
database and the fewer the number of database requests that will be serialized (put on hold while a
temporary record lock is in place).

Stored procedure code varies depending on the database you are using, but most RDBMSs support
the SQL statement BEGIN TRANSACTION. Once you start a transaction, all subsequent statements are
considered part of the transaction. You can end the transaction with the COMMIT or ROLLBACK
statement. If you don’t, the transaction will be automatically rolled back.

Here’s a pseudocode example that performs a fund transfer between accounts. It’s a simplified
version that allows an account to be set to a negative balance.

CREATE Procedure TransferAmount
(
 @Amount Money,
 @ID_A int,
 @ID_B int
)
AS
 BEGIN TRANSACTION
 UPDATE Accounts SET Balance = Balance + @Amount WHERE AccountID = @ID_A
 IF (@@ERROR > 0)
 GOTO PROBLEM
 UPDATE Accounts SET Balance = Balance - @Amount WHERE AccountID = @ID_B
 IF (@@ERROR > 0)
 GOTO PROBLEM

 — No problem was encountered.
 COMMIT
 RETURN

 — Error handling code.
 PROBLEM:
 ROLLBACK
 RAISERROR('Could not update.', 16, 1)

The previous example uses the limited error handling features of Transact-SQL (the variant of SQL
used by SQL Server). When using the @@ERROR value in Transact-SQL, you must be careful to check it

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

310

immediately after each operation. That’s because @@ERROR is reset to 0 when a successful SQL
statement is completed. As a result, if the first update fails and the second update succeeds, @@ERROR
returns to 0. It’s therefore too late to check it at this point.

If you’re using SQL Server 2005 or later, you have the benefit of a more modern try/catch structure
that’s similar to the structured error handling in C#. When you use this approach, any errors interrupt
your code immediately, and execution passes to the subsequent error handling block. As a result, you
can structure your transaction code more cleanly, like this:

CREATE Procedure TransferAmount
(
 @Amount Money,
 @ID_A int,
 @ID_B int
)
AS
 BEGIN TRY
 BEGIN TRANSACTION
 UPDATE Accounts SET Balance = Balance + @Amount WHERE AccountID = @ID_A
 UPDATE Accounts SET Balance = Balance - @Amount WHERE AccountID = @ID_B

 — If code reaches this point, all operations succeeded.
 COMMIT
 END TRY

 BEGIN CATCH
 — An error occurred somewhere in the try block.
 IF (@@TRANCOUNT > 0)
 ROLLBACK

 — Notify the client by raising an exception with the error details.
 DECLARE @ErrMsg nvarchar(4000), @ErrSeverity int
 SELECT @ErrMsg = ERROR_MESSAGE(), @ErrSeverity = ERROR_SEVERITY()
 RAISERROR(@ErrMsg, @ErrSeverity, 1)
 END CATCH

This example checks @@TRANCOUNT to determine if a transaction is underway. (The
@@TRANCOUNT variable counts the number of active transactions for the current connection. The
BEGIN TRANSACTION statement increments @@TRANCOUNT by one, while ROLLBACK or COMMIT
decrements it by one.)

To prevent errors from being silently suppressed by the catch block, the RAISERROR statement
is used. ADO.NET translates this message to a SqlException object, which you must catch in your
.NET code.

■ Note In SQL Server, a stored procedure can also perform a distributed transaction (one that involves multiple
data sources and is typically hosted on multiple servers). By default, every transaction begins as a local
transaction, but if you access a database on another server, the transaction is automatically upgraded to a

distributed transaction governed by the Windows DTC (Distributed Transaction Coordinator) service.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

311

Client-Initiated ADO.NET Transactions
Most ADO.NET data providers include support for database transactions. Transactions are started
through the Connection object by calling the BeginTransaction() method. This method returns a
provider-specific Transaction object that’s used to manage the transaction. All Transaction classes
implement the IDbTransaction interface. Examples include SqlTransaction, OleDbTransaction,
OracleTransaction, and so on.

The Transaction class provides two key methods:

Commit(): This method identifies that the transaction is complete and that the pending changes
should be stored permanently in the data source.

Rollback(): This method indicates that a transaction was unsuccessful. Pending changes are
discarded, and the database state remains unchanged.

Typically, you use Commit() at the end of your operation. However, if any exception is thrown along
the way, you should call Rollback().

Here’s an example that inserts two records into the Employees table:

string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);

SqlCommand cmd1 = new SqlCommand(
 "INSERT INTO Employees (LastName, FirstName) VALUES ('Joe','Tester')",
 con);
SqlCommand cmd2 = new SqlCommand(
 "INSERT INTO Employees (LastName, FirstName) VALUES ('Harry','Sullivan')",
 con);
SqlTransaction tran = null;

try
{
 // Open the connection and create the transaction.
 con.Open();
 tran = con.BeginTransaction();

 // Enlist two commands in the transaction.
 cmd1.Transaction = tran;
 cmd2.Transaction = tran;

 // Execute both commands.
 cmd1.ExecuteNonQuery();
 cmd2.ExecuteNonQuery();

 // Commit the transaction.
 tran.Commit();
}
catch
{
 // In the case of error, roll back the transaction.
 tran.Rollback();
}

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

312

finally
{
 con.Close();
}

Note that it’s not enough to create and commit a transaction. You also need to explicitly enlist each
Command object to be part of the transaction by setting the Command.Transaction property to the
Transaction object. If you try to execute a command that isn’t a part of the current transaction while the
transaction is underway, you’ll receive an error. However, in the future this object model might allow
providers to support more than one simultaneous transaction on the same connection.

■ Tip Instead of using separate command objects, you could also execute the same object twice and just modify
its CommandText property in between (if it’s a dynamic SQL statement) or the value of its parameters (if it’s a
parameterized command). For example, if your command inserts a new record, you could use this approach to

insert two records in the same transaction.

To test the rollback features of a transaction, you can insert the following line just before the
Commit() method is called in the previous example:

throw new ApplicationException();

This raises an exception, which will trigger a rollback and ensure that neither record is committed to
the database.

Although an ADO.NET transaction revolves around the Connection and Transaction objects, the
underlying commands aren’t different from a stored procedure transaction. For example, when you call
BeginTransaction() with the SQL Server provider, it sends a BEGIN TRANSACTION command to the
database.

■ Tip A transaction should be completed as quickly as possible (started as late as possible and finished as soon
as possible). Also, an active transaction puts locks on the various resources involved, so you should select only the

rows you really require.

Isolation Levels
The isolation level determines how sensitive a transaction is to changes made by other in-progress
transactions. For example, by default when two transactions are running independently of each other,
records inserted by one transaction are not visible to the other transaction until the first transaction is
committed.

The concept of isolation levels is closely related to the concept of locks, because by determining the
isolation level for a given transaction you determine what types of locks are required. Shared locks are
locks that are placed when a transaction wants to read data from the database. No other transactions
can modify the data while shared locks exist on a table, row, or range. However, more than one user can
use a shared lock to read the data simultaneously. Exclusive locks are the locks that prevent two or more

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

313

transactions from modifying data simultaneously. An exclusive lock is issued when a transaction needs
to update data and no other locks are already held. No other user can read or modify the data while an
exclusive lock is in place.

■ Note SQL Server actually has several types of locks that work together to help prevent deadlocks and other
situations. To learn more, refer to the information about locking in the SQL Server Books Online help, which is

installed with SQL Server.

In a SQL Server stored procedure, you can set the isolation level using the SET TRANSACTION
ISOLATION LEVEL command. In ADO.NET, you can pass a value from the IsolationLevel enumeration
to the Connection.BeginTransaction() method. Table 7-6 lists possible values.

Table 7-6. Values of the IsolationLevel Enumeration

Value Description

ReadUncommitted No shared locks are placed, and no exclusive locks are honored. This type of
isolation level is appropriate when you want to work with all the data matching
certain conditions, irrespective of whether it’s committed. Dirty reads are
possible, but performance is increased.

ReadCommitted Shared locks are held while the data is being read by the transaction. This
avoids dirty reads, but the data can be changed before a transaction completes.
This may result in nonrepeatable reads or phantom rows. This is the default
isolation level used by SQL Server.

Snapshot Stores a copy of the data your transaction accesses. As a result, the transaction
won’t see the changes made by other transactions. This approach reduces
blocking, because even if other transactions are holding locks on the data, a
transaction with snapshot isolation will still be able to read a copy of the data.
This isolation level is supported in SQL Server 2005 and later, and it needs to be
enabled through a database-level option.

RepeatableRead In this case, shared locks are placed on all data that is used in a query. This
prevents others from modifying the data, and it also prevents nonrepeatable
reads. However, phantom rows are possible.

Serializable A range lock is placed on the data you use, thereby preventing other users from
updating or inserting rows that would fall in that range. This is the only
isolation level that removes the possibility of phantom rows. However, it has an
extremely negative effect on user concurrency and is rarely used in multiple
user scenarios.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

314

Table 7-6 introduces some database terminology that deserves a bit more explanation:

• Dirty reads: A dirty read is a read that sees a value from another, uncommitted
transaction, which may be subsequently rolled back.

• Nonrepeatable reads: If nonrepeatable reads are allowed, it’s possible to perform
the query in the same transaction more than once and get different data. That’s
because merely reading data doesn’t prevent other people from changing it while
the transaction is underway. To prevent nonrepeatable reads, the database server
needs to lock the rows that your transaction reads.

• Phantom rows: A phantom row is a row that doesn’t appear in an initial read, but
appears when the same data is read again during the same transaction. This can
occur if another user inserts a record while the transaction is underway. To
prevent phantom rows, when your transaction performs a query the database
server needs to use a range lock based on its WHERE clause.

Whether these phenomena are harmless quirks or potential error conditions depends on your
specific requirements. Most of the time, nonrepeatable reads and phantom rows are minor issues, and
the concurrency cost of preventing them with locks is too high to be worthwhile. However, if you need to
update a number of records at once, and these records have some interrelated data, you may need more
stringent locking to prevent overlapping changes from causing inconsistencies.

The isolation levels in Table 7-6 are arranged from the least degree of locking to the highest degree
of locking. The default, ReadCommitted, is a good compromise for most transactions. Table 7-7
summarizes the locking behavior for different isolation levels.

Table 7-7. Isolation Levels Compared

Isolation Level Dirty Read Nonrepeatable Read Phantom Data Concurrency

Read uncommitted Yes Yes Yes Best

Read committed No Yes Yes Good

Snapshot No No No Good

Repeatable read No No Yes Poor

Serializable No No No Very poor

Savepoints
Whenever you roll back a transaction, it nullifies the effect of every command you’ve executed since you
started the transaction. But what happens if you want to roll back only part of an ongoing transaction?
SQL Server handles this with a feature called savepoints.

Savepoints are markers that act like bookmarks. You mark a certain point in the flow of the
transaction, and then you can roll back to that point. You set the savepoint using the Transaction.Save()
method. Note that the Save() method is available only for the SqlTransaction class, because it’s not part
of the standard IDbTransaction interface.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

315

Here’s a conceptual look at how you use a savepoint:

// Start the transaction.
SqlTransaction tran = con.BeginTransaction();

// (Enlist and execute some commands inside the transaction.)

// Mark a savepoint.
tran.Save("CompletedInsert");

// (Enlist and execute some more commands inside the transaction.)

// If needed, roll back to the savepoint.
tran.Rollback("CompletedInsert");

// Commit or roll back the transaction.
tran.Commit();

Note how the Rollback() method is used with the savepoint name as a parameter. If you want to roll
back the whole transaction, simply omit this parameter.

■ Note Once you roll back to a savepoint, all the savepoints defined after that savepoint are lost. You must set

them again if they are needed.

Provider-Agnostic Code
For the most part, ADO.NET’s provider model is an ideal solution for dealing with different data sources.
It allows each database vendor to develop a native, optimized solution while enforcing a high level of
consistency so that skilled developers don’t need to relearn the basics.

However, the provider model isn’t perfect. Although you can use standard interfaces to interact with
Command and Connection objects, when you instantiate a Command or Connection object, you need
to know the provider-specific, strongly typed class you want to use (such as SqlConnection). This
limitation makes it difficult to build other tools or add-ins that use ADO.NET. For example, in Chapter 9
you’ll consider the ASP.NET data source controls, which allow you to create data-bound pages without
writing a line of code. To provide this functionality, you need a way for the data control to create the
ADO.NET objects that it needs behind the scenes. This wasn’t possible in .NET 1.x. However, .NET 2.0
introduced a new factory model that adds improved support for writing provider-agnostic code (code
that can work with any database). This model remains unchanged in .NET 3.5.

■ Note Provider-agnostic code is useful when building specialized components. It may also make sense if you
anticipate the need to move to a different database in the future or if you aren’t sure what type of database you’ll

use in the final version of an application. However, it also has drawbacks. Provider-agnostic code can’t take
advantage of some provider-specific features (such as XML queries in SQL Server) and is more difficult to

optimize. For those reasons, it’s not commonly found in large-scale professional web applications.

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

316

Creating the Factory
The basic idea of the factory model is that you use a single factory object to create every other type of
provider-specific object you need. You can then interact with these provider-specific objects in a
completely generic way, through a set of common base classes.

The factory class is itself provider-specific—for example, the SQL Server provider includes a class
named System.Data.SqlClient.SqlClientFactory. The Oracle provider uses
System.Data.OracleClient.OracleClientFactory. At first glance, this might seem to stop you from writing
provider-agnostic code. However, it turns out that there’s a completely standardizedclass that’s
designed to dynamically find and create the factory you need. This class is
System.Data.Common.DbProviderFactories. It provides a static GetFactory() method that returns the
factory you need based on the provider name.

For example, here’s the code that uses DbProviderFactories to get the SqlClientFactory:

string factory = "System.Data.SqlClient";
DbProviderFactory provider = DbProviderFactories.GetFactory(factory);

Even though the DbProviderFactories class returns a strongly typed SqlClientFactory object, you
shouldn’t treat it as such. Instead, your code should access it as a DbProviderFactory instance. That’s
because all factories inherit from DbProviderFactory. If you use only the DbProviderFactory members,
you can write code that works with any factory.

The weak point in the code snippet shown previously is that you need to pass a string that identifies
the provider to the DbProviderFactories.GetFactory() method. You would typically read this from an
application setting in the web.config file. That way, you can write completely database-agnostic code
and switch your application over to another provider simply by modifying a single setting.

■ Tip In practice, you’ll need to store several provider-specific details in a configuration file. Not only do you need
to retrieve the provider name, but you’ll also need to get a connection string. You might also need to retrieve

queries or stored procedure names if you want to avoid hard-coding them because they might change. It’s up to

you to determine the ideal trade-off between development complexity and flexibility.

For the DbProviderFactories class to work, your provider needs a registered factory in the
machine.config or web.config configuration file. The machine.config file registers the four providers that
are included with the .NET Framework:

<configuration>
 <system.data>
 <DbProviderFactories>
 <add name="Odbc Data Provider" invariant="System.Data.Odbc"
 type="System.Data.Odbc.OdbcFactory, ..." />
 <add name="OleDb Data Provider" invariant="System.Data.OleDb"
 type="System.Data.OleDb.OleDbFactory, ..." />
 <add name="OracleClient Data Provider"
 invariant="System.Data.OracleClient"
 type="System.Data.OracleClient.OracleClientFactory, ..." />
 <add name="SqlClient Data Provider" invariant="System.Data.SqlClient"
 type="System.Data.SqlClient.SqlClientFactory, ..." />

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

317

 </DbProviderFactories>
 </system.data>
 ...
</configuration>

This registration step identifies the factory class and assigns a unique name for the provider (which,
by convention, is the same as the namespace for that provider). If you have a third-party provider that
you want to use, you need to register it in the <DbProviders> section of the machine.config file (to access
it across a specific computer) or a web.config file (to access it in a specific web application). It’s likely
that the person or company that developed the provider will include a setup program to automate this
task or the explicit configuration syntax.

Create Objects with Factory
Once you have a factory, you can create other objects, such as Connection and Command instances,
using the DbProviderFactory.CreateXxx() methods. For example, the CreateConnection() method
returns the Connection object for your data provider. Once again, you must assume you don’t know
what provider you’ll be using, so you can interact with the objects the factory creates only through a
standard base class.

■ Note As explained earlier in this chapter, the provider-specific objects also implement certain interfaces (such
as IDbConnection). However, because some objects use more than one ADO.NET interface (for example, a

DataReader implements both IDataRecord and IDataReader), the base class model simplifies the model.

Table 7-8 gives a quick reference that shows what method you need in order to create each type of
data access object and what base class you can use to manipulate it safely.

Table 7-8. Interfaces for Standard ADO.NET Objects

Type of Object Base Class Example DbProviderFactory Method

Connection DbConnection SqlConnection CreateConnection()

Command DbCommand SqlCommand CreateCommand()

Parameter DbParameter SqlParameter CreateParameter()

DataReader DbDataReader SqlDataReader None (use IDbCommand.ExecuteReader()
instead)

DataAdapter DbDataAdapter SqlDataAdapter CreateDataAdapter()

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

318

A Query with Provider-Agnostic Code
To get a better understanding of how all these pieces fit together, it helps to consider a simple example.
In this section, you’ll see how to perform a query and display the results using provider-agnostic code. In
fact, this example is an exact rewrite of the page shown earlier in Figure 7-3. The only difference is that
it’s no longer tightly bound to the SQL Server provider.

The first step is to set up the web.config file with the connection string, provider name, and query
for this example:

<configuration>
 <connectionStrings>
 <add name="Northwind" connectionString=
"Data Source=localhost; Initial Catalog=Northwind; Integrated Security=SSPI"/>
 </connectionStrings>
 <appSettings>
 <add key="factory" value="System.Data.SqlClient" />
 <add key="employeeQuery" value="SELECT * FROM Employees" />
 </appSettings>
 ...
</configuration>

Next, here’s the factory-based code:

// Get the factory.
string factory = WebConfigurationManager.AppSettings["factory"];
DbProviderFactory provider = DbProviderFactories.GetFactory(factory);

// Use this factory to create a connection.
DbConnection con = provider.CreateConnection();
con.ConnectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;

// Create the command.
DbCommand cmd = provider.CreateCommand();
cmd.CommandText = WebConfigurationManager.AppSettings["employeeQuery"];
cmd.Connection = con;

// Open the Connection and get the DataReader.
con.Open();
DbDataReader reader = cmd.ExecuteReader();

// The code for navigating through the reader and displaying the records
// is identical from this point on.

To give this example a real test, try modifying the web.config file to use a different provider. For
example, if you’re using SQL Server 2005 or later, you can access the same database through the OLE DB
provider by making this change:

<configuration>
 <connectionStrings>
 <add name="Northwind" connectionString="Provider=SQLNCLI; Data Source=
localhost; Initial Catalog=Northwind; Integrated Security=SSPI"/>
 </connectionStrings>

CHAPTER 7 ■ ADO.NET FUNDAMENTALS

319

 <appSettings>
 <add key="factory" value="System.Data.OleDb" />
 <add key="employeeQuery" value="SELECT * FROM Employees" />
 </appSettings>
 ...
</configuration>

Now when you run the page, you’ll see the same list of records. The difference is that the
DbDataFactories class creates OLE DB objects to work with your code.

■ Note SQL Server 2005 introduced an OLE DB provider named SQLNCLI. Older versions of SQL Server use an
OLE DB provider named SQLOLEDB. Either way, accessing SQL Server through OLE DB is discouraged for
performance reasons. In this example, it’s simply used to demonstrate how easily you can switch from one

provider to another if you’re using the factory model.

The challenges of provider-agnostic code aren’t completely solved yet. Even with the provider
factories, you still face a few problems. For example, there’s no generic way to catch database exception
objects (because different provider-specific exception objects don’t inherit from a common base class).
Also, different providers may have slightly different conventions with parameter names and may
support specialized features that aren’t available through the common base classes (in which case you
need to write some thorny conditional logic).

Summary
In this chapter, you learned about the first level of database access with ADO.NET: connected access. In
many cases, using simple commands and quick read-only cursors to retrieve results provides the easiest
and most efficient way to write data access code for a web application. Along the way, you considered
some advanced topics, including SQL injection attacks, transactions, and provider-agnostic code.
In the next chapter, you’ll learn how to use these techniques to build your own data access classes and
how to use ADO.NET’s disconnected DataSet.

C H A P T E R 8

■ ■ ■

321

Data Components and the DataSet

In the previous chapter, you had your first look at ADO.NET, and you examined connection-based data
access. Now, it’s time to bring your data access code into a well-designed application.

In a properly organized application, your data access code is never embedded directly in the code-
behind for a page. Instead, it’s separated into a dedicated database component. In this chapter, you’ll
see how to create a simple data access class of your own, adding a separate method for each data task
you need to perform. Best of all, your database component won’t be limited to code-only scenarios. In
the next chapter, you’ll see how to consume your database component with ASP.NET’s new data binding
infrastructure.

This chapter also tackles disconnected data—the ADO.NET features that revolve around the DataSet
and allow you to interact with data long after you’ve closed the connection to the data source. The
DataSet isn’t required in ASP.NET pages. However, it gives you more flexibility for navigating, filtering,
and sorting your data—topics you’ll consider in this chapter.

Building a Data Access Component
In professional applications, database code is not embedded directly in the client but encapsulated in a
dedicated class. To perform a database operation, the client creates an instance of this class and calls the
appropriate method.

When creating a database component, you should follow the basic guidelines in this section. This
will ensure that you create a well-encapsulated, optimized component that can be executed in a
separate process, if needed, and even used in a load-balancing configuration with multiple servers.

Open and close connections quickly: Open the database connection in every method call, and close
it before the method ends. Connections should never be held open between client requests, and the
client should have no control over how connections are acquired or when they are released. If the
client does have this ability, it introduces the possibility that a connection might not be closed as
quickly as possible or might be inadvertently left open, which hampers scalability.

Implement error handling: Use error handling to make sure the connection is closed even if the
SQL command generates an exception. Remember, connections are a finite resource, and using
them for even a few extra seconds can have a major overall effect on performance.

Follow stateless design practices: Accept all the information needed for a method in its parameters,
and return all the retrieved data through the return value. If you create a class that maintains state, it
cannot be easily implemented as a web service or used in a load-balancing scenario. Also, if the
database component is hosted out of the process, each method call has a measurable overhead, and
using multiple calls to set properties will take much longer than invoking a single method with all
the information as parameters.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

322

Don’t let the client use wide-open queries: Every query should judiciously select only the columns it
needs. Also, you should restrict the results with a WHERE clause whenever possible. For example,
when retrieving order records, you might impose a minimum date range (or a SQL clause such as
TOP 1000). Without these safeguards, your application may work well at first but will slow down as
the database grows and clients perform large queries, which can tax both the database and the
network.

A good, straightforward design for a database component uses a separate class for every database
table (or logically related group of tables). The common database access methods such as inserting,
deleting, and modifying a record are all wrapped in separate stateless methods. Finally, every database
call uses a dedicated stored procedure. Figure 8-1 shows this carefully layered design.

Figure 8-1. Layered design with a database class

The following example demonstrates a simple database component. Rather than placing the
database code in the web page, it follows a much better design practice of separating the code into a
distinct class that can be used in multiple pages. This class can then be compiled as part of a separate
component if needed. Additionally, the connection string is retrieved from the <connectionStrings>
section of the web.config file, rather than being hard-coded.

The database component actually consists of at least two classes—a data package class that wraps a
single record of information (known as the data class) and a database utility class that performs the
actual database operations with ADO.NET code (known as the data access class). In this chapter, we refer
to the component that includes these ingredients as a database component. In the following sections,
you’ll consider an extremely simple database component that works with a single table.

■ Note Your database component doesn’t need to use the ADO.NET classes to perform its work. In particular,
you may be interested in using LINQ to Entities (as discussed in Chapter 13) to do some of the work. However,

it’s always a good idea to follow this essential design and create a separate, stateless component for your

database logic.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

323

The Data Package
To make it easier to shuffle information to the Northwind database and back, it makes sense to create an
EmployeeDetails class that provides all the database fields as public properties. Here’s the full code for
this class:

public class EmployeeDetails
{
 private int employeeID;
 public int EmployeeID
 {
 get {return employeeID;}
 set {employeeID = value;}
 }

 private string firstName;
 public string FirstName
 {
 get {return firstName;}
 set {firstName = value;}
 }

 private string lastName;
 public string LastName
 {
 get {return lastName;}
 set {lastName = value;}
 }

 private string titleOfCourtesy;
 public string TitleOfCourtesy
 {
 get {return titleOfCourtesy;}
 set {titleOfCourtesy = value;}
 }

 public EmployeeDetails(int employeeID, string firstName, string lastName,
 string titleOfCourtesy)
 {
 EmployeeID = employeeID;
 FirstName = firstName;
 LastName = lastName;
 TitleOfCourtesy = titleOfCourtesy;
 }
}

Note that this class doesn’t include all the information that’s in the Employees table in order to
make the example more concise.

When building a data class, you may choose to use automatic properties, a C# language feature that
allows you to create a property wrapper and the underlying private variable with one code construct, like
this:

public int EmployeeID
{ get; set; }

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

324

When using automatic properties, the private variable is generated automatically at compile time,
so you won’t know its name. In your code, you must always access the private variable through the
property procedures. The C# compiler also adds the code that gets and sets the private variable, which is
the same as the code you’d write yourself.

Automatic variables look similar to public member fields, but the implications of using them are
dramatically different. Because automatic properties really are full-fledged properties, you can replace
them with an explicit property at a later time (for example, if you need to add validation code) without
changing the public interface of your data class or disturbing the other classes that use your data class.
Similarly, automatic properties have all the metadata of explicit properties, so they work like properties
in key coding scenarios. For example, unlike public member fields, automatic properties support the
data binding techniques you’ll learn about in Chapter 9.

The Stored Procedures
Before you can start coding the data access logic, you need to make sure you have the set of stored
procedures you need in order to retrieve, insert, and update information. The following database script
creates the five stored procedures that are needed:

CREATE PROCEDURE InsertEmployee
@EmployeeID int OUTPUT,
@FirstName varchar(10),
@LastName varchar(20),
@TitleOfCourtesy varchar(25)
AS
INSERT INTO Employees
 (TitleOfCourtesy, LastName, FirstName, HireDate)
 VALUES (@TitleOfCourtesy, @LastName, @FirstName, GETDATE());
SET @EmployeeID = @@IDENTITY
GO

CREATE PROCEDURE DeleteEmployee
@EmployeeID int
AS
DELETE FROM Employees WHERE EmployeeID = @EmployeeID
GO

CREATE PROCEDURE UpdateEmployee
@EmployeeID int,
@TitleOfCourtesy varchar(25),
@LastName varchar(20),
@FirstName varchar(10)
AS

UPDATE Employees
 SET TitleOfCourtesy = @TitleOfCourtesy,
 LastName = @LastName,
 FirstName = @FirstName
 WHERE EmployeeID = @EmployeeID
GO

CREATE PROCEDURE GetAllEmployees
AS

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

325

SELECT EmployeeID, FirstName, LastName, TitleOfCourtesy FROM Employees
GO

CREATE PROCEDURE CountEmployees
AS
SELECT COUNT(EmployeeID) FROM Employees
GO

CREATE PROCEDURE GetEmployee
@EmployeeID int
AS
SELECT EmployeeID, FirstName, LastName, TitleOfCourtesy FROM Employees
 WHERE EmployeeID = @EmployeeID
GO

The Data Utility Class
Finally, you need the utility class that performs the actual database operations. This class uses the stored
procedures that were shown in the previous section.

In this example, the data utility class is named EmployeeDB. It encapsulates all the data access code
and database-specific details. Here’s the basic outline:

public class EmployeeDB
{
 private string connectionString;

 public EmployeeDB()
 {
 // Get default connection string.
 connectionString = WebConfigurationManager.ConnectionStrings[
 "Northwind"].ConnectionString;
 }
 public EmployeeDB(string connectionString)
 {
 // Set the specified connection string.
 this.connectionString = connectionString;
 }

 public int InsertEmployee(EmployeeDetails emp)
 { ... }
 public void DeleteEmployee(int employeeID)
 { ... }
 public void UpdateEmployee(EmployeeDetails emp)
 { ... }

 public EmployeeDetails GetEmployee(int employeeID)
 { ... }
 public List<EmployeeDetails> GetEmployees()
 { ... }
 public int CountEmployees()
 { ... }
}

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

326

■ Note You may have noticed that the EmployeeDB class uses instance methods, not static methods. That’s

because even though the EmployeeDB class doesn’t store any state from the database, it does store the connection
string as a private member variable. Because this is an instance class, the connection string can be retrieved every

time the class is created, rather than every time a method is invoked. This approach makes the code a little clearer
and allows it to be slightly faster (by avoiding the need to read the web.config file multiple times). However, the

benefit is fairly small, so you can use static methods just as easily in your database components.

Each method uses the same careful approach, relying exclusively on a stored procedure to interact
with the database. Here’s the code for inserting a record, assuming you’ve imported the
System.Data.SqlClient namespace:

public int InsertEmployee(EmployeeDetails emp)
{
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("InsertEmployee", con);
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add(new SqlParameter("@FirstName", SqlDbType.NVarChar, 10));
 cmd.Parameters["@FirstName"].Value = emp.FirstName;
 cmd.Parameters.Add(new SqlParameter("@LastName", SqlDbType.NVarChar, 20));
 cmd.Parameters["@LastName"].Value = emp.LastName;
 cmd.Parameters.Add(new SqlParameter("@TitleOfCourtesy",
 SqlDbType.NVarChar, 25));
 cmd.Parameters["@TitleOfCourtesy"].Value = emp.TitleOfCourtesy;
 cmd.Parameters.Add(new SqlParameter("@EmployeeID", SqlDbType.Int, 4));
 cmd.Parameters["@EmployeeID"].Direction = ParameterDirection.Output;

 try
 {
 con.Open();
 cmd.ExecuteNonQuery();
 return (int)cmd.Parameters["@EmployeeID"].Value;
 }
 catch (SqlException err)
 {
 // Replace the error with something less specific.
 // You could also log the error now.
 throw new ApplicationException("Data error.");
 }
 finally
 {
 con.Close();
 }
}

As you can see, the method accepts data as an EmployeeDetails data object. Any errors are
caught, and the sensitive internal details are not returned to the web-page code. This prevents the
web page from providing information that could lead to possible exploits. This would also be an ideal

mailto:Parameters["@FirstName"].Value
mailto:Parameters["@LastName"].Value
mailto:Parameters["@TitleOfCourtesy"].Value
mailto:Parameters["@EmployeeID"].Direction
mailto:Parameters["@EmployeeID"].Value

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

327

place to call another method in a logging component to report the full information in an event log or
another database.

The GetEmployee() and GetEmployees() methods return the data using a single EmployeeDetails
object or a list of EmployeeDetails objects, respectively:

public EmployeeDetails GetEmployee(int employeeID)
{
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("GetEmployee", con);
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add(new SqlParameter("@EmployeeID", SqlDbType.Int, 4));
 cmd.Parameters["@EmployeeID"].Value = employeeID;

 try
 {
 con.Open();
 SqlDataReader reader = cmd.ExecuteReader(CommandBehavior.SingleRow);

 // Check if the query returned a record.
 if (!reader.HasRows) return null;

 // Get the first row.
 reader.Read();
 EmployeeDetails emp = new EmployeeDetails(
 (int)reader["EmployeeID"], (string)reader["FirstName"],
 (string)reader["LastName"], (string)reader["TitleOfCourtesy"]);
 reader.Close();
 return emp;
 }
 catch (SqlException err)
 {
 throw new ApplicationException("Data error.");
 }
 finally
 {
 con.Close();
 }
}

public List<EmployeeDetails> GetEmployees()
{
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("GetAllEmployees", con);
 cmd.CommandType = CommandType.StoredProcedure;

 // Create a collection for all the employee records.
 List<EmployeeDetails> employees = new List<EmployeeDetails>();

 try
 {
 con.Open();
 SqlDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 {

mailto:Parameters["@EmployeeID"].Value

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

328

 EmployeeDetails emp = new EmployeeDetails(
 (int)reader["EmployeeID"], (string)reader["FirstName"],
 (string)reader["LastName"], (string)reader["TitleOfCourtesy"]);
 employees.Add(emp);
 }
 reader.Close();
 return employees;
 }
 catch (SqlException err)
 {
 throw new ApplicationException("Data error.");
 }
 finally
 {
 con.Close();
 }
}

The UpdateEmployee() method plays a special role. It determines the concurrency strategy of your
database component (see the next section, “Concurrency Strategies”).

Here’s the code:

public void UpdateEmployee(int EmployeeID, string firstName, string lastName,
 string titleOfCourtesy)
{
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("UpdateEmployee", con);
 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.Add(new SqlParameter("@FirstName", SqlDbType.NVarChar, 10));
 cmd.Parameters["@FirstName"].Value = firstName;
 cmd.Parameters.Add(new SqlParameter("@LastName", SqlDbType.NVarChar, 20));
 cmd.Parameters["@LastName"].Value = lastName;
 cmd.Parameters.Add(new SqlParameter("@TitleOfCourtesy", SqlDbType.NVarChar,
 25));
 cmd.Parameters["@TitleOfCourtesy"].Value = titleOfCourtesy;
 cmd.Parameters.Add(new SqlParameter("@EmployeeID", SqlDbType.Int, 4));
 cmd.Parameters["@EmployeeID"].Value = EmployeeID;

 try
 {
 con.Open();
 cmd.ExecuteNonQuery();
 }
 catch (SqlException err)
 {
 throw new ApplicationException("Data error.");
 }
 finally
 {
 con.Close();
 }
}

mailto:Parameters["@FirstName"].Value
mailto:Parameters["@LastName"].Value
mailto:Parameters["@TitleOfCourtesy"].Value
mailto:Parameters["@EmployeeID"].Value

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

329

Finally, the DeleteEmployee() and CountEmployees() methods fill in the last two ingredients:

public void DeleteEmployee(int employeeID)
{
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("DeleteEmployee", con);
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add(new SqlParameter("@EmployeeID", SqlDbType.Int, 4));
 cmd.Parameters["@EmployeeID"].Value = employeeID;

 try
 {
 con.Open();
 cmd.ExecuteNonQuery();
 }
 catch (SqlException err)
 {
 throw new ApplicationException("Data error.");

 }
 finally
 {
 con.Close();
 }
}

public int CountEmployees()
{
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("CountEmployees", con);
 cmd.CommandType = CommandType.StoredProcedure;

 try
 {
 con.Open();
 return (int)cmd.ExecuteScalar();
 }
 catch (SqlException err)
 {
 throw new ApplicationException("Data error.");
 }
 finally
 {
 con.Close();
 }
}

mailto:Parameters["@EmployeeID"].Value

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

330

Concurrency Strategies
In any multiuser application, including web applications, there’s the potential that more than one user
will perform overlapping queries and updates. This can lead to a potentially confusing situation where
two users, who are both in possession of the current state for a row, attempt to commit divergent
updates. The first user’s update will always succeed. The success or failure of the second update is
determined by your concurrency strategy.

There are several broad approaches to concurrency management. The most important thing to
understand is that you determine your concurrency strategy by the way you write your UPDATE and
DELETE commands (particularly the way you shape the WHERE clause).

Here are the most common examples:

Last-in-wins updating: This is a less restrictive form of concurrency control that always commits
the update (unless the original row has been deleted). Every time an update is committed, all the
values are applied. Last-in-wins makes sense if data collisions are rare. For example, you can safely
use this approach if there is only one person responsible for updating a given group of records.
Usually, you implement a last-in-wins by writing a WHERE clause that matches the record to update
based on its primary key. The UpdateEmployee() method in the previous example uses the last-in-
wins approach.

 UPDATE Employees SET ... WHERE EmployeeID=@EmployeeID

Match-all updating: To implement this strategy, your UPDATE command needs to use all the values
you want to set, plus all the original values. You use all the original values to construct the WHERE
clause that finds the original record. That way, if even a single field has been modified, the record
won’t be matched and the change will not succeed. One problem with this approach is that
compatible changes are not allowed. For example, if two users are attempting to modify different
parts of the same record, the second user’s change will be rejected, even though it doesn’t conflict.
Another more significant problem with the match-all updating strategy is that it leads to large,
inefficient SQL statements. You can implement the same strategy more effectively with timestamps
(see the next point).

 UPDATE Employees SET ... WHERE EmployeeID=@EmployeeID AND
 FirstName=@OriginalFirstName AND LastName=@OriginalLastName ...

Timestamp-based updating: Most database systems support a timestamp column, which the data
source updates automatically every time a change is performed. You don’t modify the timestamp
column manually. However, if you retrieve it when you perform your SELECT statement, you can
use it in the WHERE clause for your UPDATE statement. That way, you’re guaranteed to update the
record only if it hasn’t been modified, just like with match-all updating. Unlike match-all updating,
the WHERE clause is shorter and more efficient, because it only needs two pieces of information—
the primary key and the timestamp.

 UPDATE Employees SET ... WHERE EmployeeID=@EmployeeID AND TimeStamp=@TimeStamp

Changed-value updating: This approach attempts to apply just the changed values in an UPDATE
command, thereby allowing two users to make changes at the same time if these changes are to
different fields. The problem with this approach is it can be complex, because you need to keep
track of what values have changed (in which case they should be incorporated in the WHERE clause)
and what values haven’t.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

331

■ Note Last-in-wins is an example of database access with no concurrency control at all. Match-all updating,
timestamp-based updating, and changed-value updating are examples of optimistic concurrency. With optimistic
concurrency, your code doesn’t hold locks on the data it’s using—instead, your strategy is to hope that changes don’t

overlap and respond accordingly if they do. Later in this chapter you’ll learn about transactions, which allow you to
implement pessimistic concurrency. Pessimistic concurrency prevents concurrency conflicts by locking in-use

records. The tradeoff is scalability, because other users who attempt to access the same data will be put on hold.

To get a better understanding of how this plays out, consider what happens if two users attempt to
commit different updates to an employee record using a method such as UpdateEmployee(), which
implements last-in-wins concurrency. The first user updates the mailing address. The second user
changes the employee name and inadvertently reapplies the old mailing address at the same time. The
problem is that the UpdateEmployee() method doesn’t have any way to know what changes you are
committing. This means that it pushes all the in-memory values back to the data source, even if these
old values haven’t been changed (and wind up overwriting someone else’s update).

If you have large, complex records and you need to support different types of edits, the easiest way
to solve a problem like this may be to create more-targeted methods. Instead of creating a generic
UpdateEmployee() method, use more-targeted methods such as UpdateEmployeeAddress() or
ChangeEmployeeStatus(). These methods can then execute more limited UPDATE statements that don’t
risk reapplying old values.

You might also want to consider allowing multiple levels of concurrency and giving the user the final
say. For example, when a user commits an edit, you can attempt to apply the update using strict match-
all or timestamp-based concurrency. If this fails, you can then show the user the data that’s currently in
the record and compare it with the data the user is trying to apply. At that point, you can give the user
the option to make further edits or commit the change with last-in-wins concurrency, overwriting the
current values. You’ll see an example of this technique with ASP.NET’s rich data controls in Chapter 10,
in the section “Detecting Concurrency Conflicts.”

Testing the Database Component
Now that you’ve created the database component, you just need a simple test page to try it out. As with
any other component, you must begin by adding a reference to the component assembly. Then you can
import the namespace it uses to make it easier to use the EmployeeDetails and EmployeeDB classes. The
only step that remains is to write the code that interacts with the classes. In this example, the code takes
place in the Page.Load event handler of a web page.

First, the code retrieves and writes the number and the list of employees by using a private
WriteEmployeesList() method that translates the details to HTML and displays that HTML in a Literal
control named HtmlContent. Next, the code adds a record and lists the table content again. Finally, the
code deletes the added record and shows the content of the Employees table one more time.

Here’s the complete page code:

public partial class ComponentTest : System.Web.UI.Page
{
 // Create the database component so it's available anywhere on the page.
 private EmployeeDB db = new EmployeeDB();

 protected void Page_Load(object sender, System.EventArgs e)
 {

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

332

 WriteEmployeesList();

 // The ID value is simply set to 0, because it's generated by the
 // database server and filled in automatically when you call
 // InsertEmployee().
 int empID = db.InsertEmployee(
 new EmployeeDetails(0, "Mr.", "Bellinaso", "Marco"));
 HtmlContent.Text += "
Inserted 1 employee.
";

 WriteEmployeesList();

 db.DeleteEmployee(empID);
 HtmlContent.Text += "
Deleted 1 employee.
";

 WriteEmployeesList();
 }

 private void WriteEmployeesList()
 {
 StringBuilder htmlStr = new StringBuilder("");

 int numEmployees = db.CountEmployees();
 htmlStr.Append("
Total employees: ");
 htmlStr.Append(numEmployees.ToString());
 htmlStr.Append("

");

 List<EmployeeDetails> employees = db.GetEmployees();
 foreach (EmployeeDetails emp in employees)
 {
 htmlStr.Append("");
 htmlStr.Append(emp.EmployeeID);
 htmlStr.Append(" ");
 htmlStr.Append(emp.TitleOfCourtesy);
 htmlStr.Append(" ");
 htmlStr.Append(emp.FirstName);
 htmlStr.Append(", ");
 htmlStr.Append(emp.LastName);
 htmlStr.Append("");
 }
 htmlStr.Append("
");
 HtmlContent.Text += htmlStr.ToString();
 }
}

Figure 8-2 shows the page output.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

333

Figure 8-2. Using a database component

Disconnected Data
So far, all the examples you’ve seen have used ADO.NET’s connection-based features. When using this
approach, data ceases to have anything to do with the data source the moment it is retrieved. It’s up to
your code to track user actions, store information, and determine when a new command should be
generated and executed.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

334

ADO.NET emphasizes an entirely different philosophy with the DataSet object. When you connect
to a database, you fill the DataSet with a copy of the information drawn from the database. If you change
the information in the DataSet, the information in the corresponding table in the database isn’t
changed. That means you can easily process and manipulate the data without worry, because you aren’t
using a valuable database connection. If necessary, you can reconnect to the original data source and
apply all your DataSet changes in a single batch operation.

Of course, this convenience isn’t without drawbacks, such as concurrency issues. Depending on
how your application is designed, an entire batch of changes may be submitted at once. A single error
(such as trying to update a record that another user has updated in the meantime) can derail the entire
update process. With studious coding you can protect your application from these problems—but it
requires additional effort.

On the other hand, sometimes you might want to use ADO.NET’s disconnected access model
and the DataSet. Some of the scenarios in which a DataSet is easier to use than a DataReader include
the following:

• When you need a convenient package to send the data to another component (for
example, if you’re sharing information with other components or distributing it to
clients through a web service).

• When you need a convenient file format to serialize the data to disk (the DataSet
includes built-in functionality that allows you to save it to an XML file).

• When you want to navigate backward and forward through a large amount of data.
For example, you could use a DataSet to support a paged list control that shows a
subset of information at a time. The DataReader, on the other hand, can move in
only one direction: forward.

• When you want to navigate among several different tables. The DataSet can store
all these tables, and information about the relations between them, thereby
allowing you to create easy master-detail pages without needing to query the
database more than once.

• When you want to use data binding with user interface controls. You can use a
DataReader for data binding, but because the DataReader is a forward-only
cursor, you can’t bind your data to multiple controls. You also won’t have the
ability to apply custom sorting and filtering criteria, like you can with the DataSet.

• When you want to manipulate the data as XML.

• When you want to provide batch updates. For example, you might create a web
service that allows a client to download a DataTable full of rows, make multiple
changes, and then resubmit it later. At that point, the web service can apply all the
changes in a single operation (assuming no conflicts occur).

In the remainder of this chapter, you’ll learn about how to retrieve data into a DataSet. You’ll also
learn how to retrieve data from multiple tables, how to create relationships between these in-memory
data tables, how to sort and filter data, and how to search for specific records. However, you won’t
consider the task of using the DataSet to perform updates. That’s because the ASP.NET model lends
itself more closely to direct commands, as discussed in the next section.

Web Applications and the DataSet
A common misconception is that the DataSet is required to ensure scalability in a web application. Now
that you understand the ASP.NET request processing architecture, you can probably see that this isn’t
the case. A web application runs only for a matter of seconds (if that long). This means that even if your

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

335

web application uses direct cursor-based access, the lifetime of the connection is so short that it won’t
significantly reduce scalability, except in the mostly highly trafficked web applications.

In fact, the DataSet makes much more sense with distributed applications that use a rich Windows
client. In this scenario, the clients can retrieve a DataSet from the server (perhaps using a web service),
work with their DataSet objects for a long period of time, and reconnect to the system only when they
need to update the data source with the batch of changes they’ve made. This allows the system to handle
a much larger number of concurrent users than it would be able to if each client maintained a direct,
long-lasting connection. It also allows you to efficiently share resources by caching data on the server
and pooling connections between client requests.

The DataSet also acts as a neat package of information for rich client applications that are only
intermittently connected to your system. For example, consider a traveling sales associate who needs to
enter order information or review information about sales contacts on a laptop. Using the DataSet, an
application on the user’s laptop can store disconnected data locally and serialize it to an XML file. This
allows the sales associate to build new orders using the cached data, even when no Internet connection
is available. The new data can be submitted later when the user reconnects to the system.

So, where does all this leave ASP.NET web applications? Essentially, you have two choices. You can
use the DataSet, or you can use direct commands to bypass the DataSet altogether. Generally speaking,
you’ll bypass the DataSet when inserting, deleting, or updating records. However, you won’t avoid the
DataSet completely. In fact, when you retrieve records, you’ll probably want to use the DataSet, because
it supports a few indispensable features. In particular, the DataSet allows you to easily pass a block of
data from a database component to a web page. The DataSet also supports data binding, which allows
you to display your information in advanced data controls such as the GridView. For that reason, most
web applications retrieve data into the DataSet but perform direct updates using straightforward
commands.

■ Note Web services represent the only real web application scenario in which you might decide to perform batch
updating through a DataSet. In this case, a rich client application downloads the data as a DataSet, edits it, and

resubmits the DataSet later to commit its changes.

XML Integration
The DataSet also provides native XML serialization. You don’t need to even be aware of this to enjoy its
benefits, such as being able to easily serialize a DataSet to a file or transmit the DataSet to another
application through a web service. At its best, this feature allows you to share your data with clients
written in different programming languages and running on other operating systems. However,
implementing such a solution isn’t easy (and often the DataSet isn’t the best approach) because you
have little ability to customize the structure of the XML that the DataSet produces.

You’ll learn more about the DataSet support for XML in Chapter 14.

The DataSet
The DataSet is the heart of disconnected data access. The DataSet contains two important ingredients: a
collection of zero or more tables (exposed through the Tables property) and a collection of zero or more
relationships that you can use to link tables together (exposed through the Relations property). Figure
8-3 shows the basic structure of the DataSet.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

336

Figure 8-3. Dissecting the DataSet

■ Note Occasionally, novice ADO.NET developers make the mistake of assuming that the DataSet should contain
all the information from a given table in the data source. This is not the case. For performance reasons, you will
probably use the DataSet to work with a small subset of the total information in the data source. Also, the tables in
the DataSet do not need to map directly to tables in the data source. A single table can hold the results of a query

on one table, or it can hold the results of a JOIN query that combines data from more than one linked table.

As you can see in Figure 8-3, each item in the DataSet.Tables collection is a DataTable. The
DataTable contains its own collections—the Columns collection of DataColumn objects (which describe
the name and data type of each field) and the Rows collection of DataRow objects (which contain the
actual data in each record).

Each record in a DataTable is represented by a DataRow object. Each DataRow object represents a
single record in a table that has been retrieved from the data source. The DataRow is the container for
the actual field values. You can access them by field name, as in myRow["FieldName"]. Always
remember that the data in the data source is not touched at all when you work with the DataSet objects.
Instead, all the changes are made locally to the DataSet in memory. The DataSet never retains any type
of connection to a data source.

The DataSet also has methods that can write and read XML data and schemas and has methods you
can use to quickly clear and duplicate data. Table 8-1 outlines these methods. You’ll learn more about
XML in Chapter 14.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

337

Table 8-1. DataSet XML and Miscellaneous Methods

Method Description
GetXml() and
GetXmlSchema()

Returns a string with the data (in XML markup) or schema information for the
DataSet. The schema information is the structural information such as the
number of tables, their names, their columns, their data types, and their
relationships.

WriteXml() and
WriteXmlSchema()

Persists the data and schema represented by the DataSet to a file or a stream
in XML format.

ReadXml() and
ReadXmlSchema()

Creates the tables in a DataSet based on an existing XML document or XML
schema document. The XML source can be a file or any other stream.

Clear() Empties all the data from the tables. However, this method leaves the schema
and relationship information intact.

Copy() Returns an exact duplicate of the DataSet, with the same set of tables,
relationships, and data.

Clone() Returns a DataSet with the same structure (tables and relationships) but no
data.

Merge() Takes another DataSet, a DataTable, or a collection of DataRow objects as
input and merges them into the current DataSet, adding any new tables and
merging any existing tables.

The DataAdapter Class
To extract records from a database and use them to fill a table in a DataSet, you need to use another
ADO.NET object: a DataAdapter. The DataAdapter comes in a provider-specific object, so there is a
separate DataAdapter class for each provider (such as SqlDataAdapter, OracleDataAdapter, and so on).

The DataAdapter serves as a bridge between a single DataTable in the DataSet and the data source.
It contains all the available commands for querying and updating the data source.

To enable the DataAdapter to edit, delete, and add rows, you need to specify Command objects for
the UpdateCommand, DeleteCommand, and InsertCommand properties of the DataAdapter. To use the
DataAdapter to fill a DataSet, you must set the SelectCommand.

The DataAdapter provides three key methods, as listed in Table 8-2.

Table 8-2. DataAdapter Methods

Method Description
Fill() Adds a DataTable to a DataSet by executing the query in the SelectCommand. If your

query returns multiple result sets, this method will add multiple DataTable objects at
once. You can also use this method to add data to an existing DataTable.

FillSchema() Adds a DataTable to a DataSet by executing the query in the SelectCommand and
retrieving schema information only. This method doesn’t add any data to the
DataTable. Instead, it simply preconfigures the DataTable with detailed information
about column names, data types, primary keys, and unique constraints.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

338

Method Description

Update() Examines all the changes in a single DataTable and applies this batch of changes to
the data source by executing the appropriate InsertCommand, UpdateCommand,
and DeleteCommand operations.

Figure 8-4 shows how a DataAdapter and its Command objects work together with the data source

and the DataSet.

Figure 8-4. How the DataAdapter interacts with the data source

Filling a DataSet
In the following example, you’ll see how to retrieve data from a SQL Server table and use it to fill a
DataTable object in the DataSet. You’ll also see how to display the data by programmatically cycling

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

339

through the records and displaying them one by one. All the logic takes place in the event handler for the
Page.Load event.

First, the code creates the connection and defines the text of the SQL query:

string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);
string sql = "SELECT * FROM Employees";

The next step is to create a new instance of the SqlDataAdapter class that will retrieve the employee
list. Although every DataAdapter supports four Command objects, only one of these (the
SelectCommand) is required to fill a DataSet. To make life even easier, you can create the Command
object you need and assign it to the DataAdapter.SelectCommand property in one step. You just need to
supply a Connection object and query string in the DataAdapter constructor, as shown here:

SqlDataAdapter da = new SqlDataAdapter(sql, con);

Now you need to create a new, empty DataSet and use the DataAdapter.Fill() method to execute the
query and place the results in a new DataTable in the DataSet. At this point, you can also specify the
name for the table. If you don’t, a default name (like Table) will be used automatically. In the following
example, the table name corresponds to the name of the source table in the database, although this is
not a requirement:

DataSet ds = new DataSet();
da.Fill(ds, "Employees");

Note that this code doesn’t explicitly open the connection by calling Connection.Open(). Instead,
the DataAdapter opens and closes the linked connection behind the scenes when you call the Fill()
method. As a result, the only line of code you should consider placing in an exception-handling block is
the call to DataAdapter.Fill(). Alternatively, you can also open and close the connection manually. If the
connection is open when you call Fill(), the DataAdapter will use that connection and won’t close it
automatically. This approach is useful if you want to perform multiple operations with the data source in
quick succession and you don’t want to incur the additional overhead of repeatedly opening and closing
the connection each time.

The last step is to display the contents of the DataSet. A quick approach is to use the same technique
that was shown in the previous chapter and build an HTML string by examining each record. The
following code cycles through all the DataRow objects in the DataTable and displays the field values of
each record in a bulleted list:

StringBuilder htmlStr = new StringBuilder("");
foreach (DataRow dr in ds.Tables["Employees"].Rows)
{
 htmlStr.Append("");
 htmlStr.Append(dr["TitleOfCourtesy"].ToString());
 htmlStr.Append(" ");
 htmlStr.Append(dr["LastName"].ToString());
 htmlStr.Append(", ");
 htmlStr.Append(dr["FirstName"].ToString());
 htmlStr.Append("");
}
HtmlContent.Text = htmlStr.ToString();

Of course, the ASP.NET model is designed to save you from coding raw HTML. A much better
approach is to bind the data in the DataSet to a data-bound control, which automatically generates the
HTML you need based on a single template. Chapter 9 describes the data-bound controls in detail.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

340

■ Note When you bind a DataSet to a control, no data objects are stored in view state. The data control stores
enough information to show only the data that’s currently displayed. If you need to interact with a DataSet over
multiple postbacks, you’ll need to store it in the ViewState collection manually (which will greatly increase the size

of the page) or the Session or Cache objects.

Working with Multiple Tables and Relationships
The next example shows a more advanced use of the DataSet that, in addition to providing disconnected
data, uses table relationships. This example demonstrates how to retrieve some records from the
Categories and Products tables of the Northwind database and how to create a relationship between them
so that it’s easy to navigate from a category record to all of its child products and create a simple report.

The first step is to initialize the ADO.NET objects and declare the two SQL queries (for retrieving
categories and products), as shown here:

string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);

string sqlCat = "SELECT CategoryID, CategoryName FROM Categories";
string sqlProd = "SELECT ProductName, CategoryID FROM Products";

SqlDataAdapter da = new SqlDataAdapter(sqlCat, con);
DataSet ds = new DataSet();

Next, the code executes both queries, adding two tables to the DataSet. Note that the connection is
explicitly opened at the beginning and closed after the two operations, ensuring the best possible
performance.

try
{
 con.Open();

 // Fill the DataSet with the Categories table.
 da.Fill(ds, "Categories");

 // Change the command text and retrieve the Products table.
 // You could also use another DataAdapter object for this task.
 da.SelectCommand.CommandText = sqlProd;
 da.Fill(ds, "Products");
}
finally
{
 con.Close();
}

In this example, the same DataAdapter is used to fill both tables. This technique is perfectly
legitimate, and it makes sense in this scenario because you don’t need to reuse the DataAdapter to
update the data source. However, if you were using the DataAdapter both to query data and to commit
changes, you probably wouldn’t use this approach. Instead, you would use a separate DataAdapter for

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

341

each table so that you could make sure each DataAdapter has the appropriate insert, update, and delete
commands for the corresponding table.

At this point you have a DataSet with two tables. These two tables are linked in the Northwind
database by a relationship against the CategoryID field. This field is the primary key for the Categories
table and the foreign key in the Products table. Unfortunately, ADO.NET does not provide any way to
read a relationship from the data source and apply it to your DataSet automatically. Instead, you need to
manually create a DataRelation that represents the relationship.

A relationship is created by defining a DataRelation object and adding it to the DataSet.Relations
collection. When you create the DataRelation, you typically specify three constructor arguments: the
name of the relationship, the DataColumn for the primary key in the parent table, and the DataColumn
for the foreign key in the child table.

Here’s the code you need for this example:

// Define the relationship between Categories and Products.
DataRelation relat = new DataRelation("CatProds",
 ds.Tables["Categories"].Columns["CategoryID"],
 ds.Tables["Products"].Columns["CategoryID"]);

// Add the relationship to the DataSet.
ds.Relations.Add(relat);

Once you’ve retrieved all the data, you can loop through the records of the Categories table and add
the name of each category to the HTML string:

StringBuilder htmlStr = new StringBuilder("");
// Loop through the category records and build the HTML string.
foreach (DataRow row in ds.Tables["Categories"].Rows)
{
 htmlStr.Append("");
 htmlStr.Append(row["CategoryName"].ToString());
 htmlStr.Append("");
 ...

Here’s the interesting part. Inside this block, you can access the related product records for the
current category by calling the DataRow.GetChildRows() method. This method searches the in-memory
data in the linked DataTable to find matching records. Once you have the array of product records, you
can loop through it using a nested foreach loop. This is far simpler than the code you’d need in order to
look up this information in a separate object or to execute multiple queries with traditional connection-
based access.

The following piece of code demonstrates this approach, retrieving the child records and
completing the outer foreach loop:

 ...
 // Get the children (products) for this parent (category).
 DataRow[] childRows = row.GetChildRows(relat);

 // Loop through all the products in this category.
 foreach (DataRow childRow in childRows)
 {
 htmlStr.Append("");
 htmlStr.Append(childRow["ProductName"].ToString());
 htmlStr.Append("");
 }
 htmlStr.Append("");
}

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

342

The last step is to display the HTML string on the page:

HtmlContent.Text = htmlStr.ToString();

The code for this example is now complete. If you run the page, you’ll see the output shown in
Figure 8-5.

■ Tip A common question new ADO.NET programmers have is, when do you use JOIN queries and when do you
use DataRelation objects? The most important consideration is whether you plan to update the retrieved data. If
you do, using separate tables and a DataRelation object always offers the most flexibility. If not, you could use
either approach, although the JOIN query may be more efficient because it involves only a single round-trip across
the network, while the DataRelation approach often requires two to fill the separate tables.

Figure 8-5. A list of products in each category

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

343

Referential Integrity

When you add a relationship to a DataSet, you are bound by the rules of referential integrity. For example,
you can’t delete a parent record if there are linked child rows, and you can’t create a child record that
references a nonexistent parent. This can cause a problem if your DataSet contains only partial data. For
example, if you have a full list of customer orders, but only a partial list of customers, it could appear that
an order refers to a customer who doesn’t exist just because that customer record isn’t in your DataSet.
One way to get around this problem is to create a DataRelation without creating the corresponding
constraints. To do so, use the DataRelation constructor that accepts the Boolean createConstraints
parameter and set it to false, as shown here:

DataRelation relat = new DataRelation("CatProds",
 ds.Tables["Categories"].Columns["CategoryID"],
 ds.Tables["Products"].Columns["CategoryID"], false);

Another approach is to disable all types of constraint checking (including unique value checking) by setting
the DataSet.EnforceConstraints property to false before you add the relationship.

Searching for Specific Rows
The DataTable provides a useful Select() method that allows you to search its rows using a SQL
expression. The expression you use with the Select() method plays the same role as the WHERE clause in
a SELECT statement, but it acts on the in-memory data that’s already in the DataTable (so no database
operation is performed).

For example, the following code retrieves all the products that are marked as discontinued:

// Get the children (products) for this parent (category).
DataRow[] matchRows = ds.Tables["Products"].Select("Discontinued = 0");

// Loop through all the discontinued products and generate a bulleted list.
htmlStr.Append("");
foreach (DataRow row in matchRows)
{
 htmlStr.Append("");
 htmlStr.Append(row["ProductName"].ToString());
 htmlStr.Append("");
}
htmlStr.Append("");

In this example, the Select() statement uses a fairly simple filter string. However, you’re free to use
more complex operators and a combination of different criteria. For more information, refer to the
MSDN class library reference description for the DataColumn.Expression property, or refer to Table 8-3
and the discussion about filter strings in the “Filtering with a DataView” section.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

344

■ Note The Select() method has one potential caveat—it doesn’t support a parameterized condition. As a result,
it’s open to SQL injection attacks. Clearly, the SQL injection attacks that a malicious user could perform in this
situation are fairly limited, because there’s no way to get access to the actual data source or execute additional

commands. However, a carefully written value could still trick your application into returning extra information
from the table. If you create a filter expression with a user-supplied value, you might want to iterate over the

DataTable manually to find the rows you want, instead of using the Select() method.

Using the DataSet in a Data Access Class
There’s no reason you can’t use the DataSet or DataTable as the return value from a method in your
custom data access class. For example, you could rewrite the GetAllEmployees() method shown earlier
with the following DataSet code:

public DataTable GetEmployees()
{
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("GetEmployees", con);
 cmd.CommandType = CommandType.StoredProcedure;

 SqlDataAdapter da = new SqlDataAdapter(cmd);
 DataSet ds = new DataSet();

 // Fill the DataSet.
 try
 {
 da.Fill(ds, "Employees");
 return ds.Tables["Employees"];

 }
 catch
 {
 throw new ApplicationException("Data error.");
 }
}

Interestingly, when you use this approach, you have exactly the same functionality at your
fingertips. For example, in the next chapter you’ll learn to use the ObjectDataSource to bind to custom
classes. The ObjectDataSource understands custom classes and the DataSet object equally well (and
they have essentially the same performance).

The DataSet approach has a couple of limitations. Although the DataSet makes the ideal container
for disconnected data, you may find it easier to create methods that return individual DataTable objects
and even distinct DataRow objects (for example, as a return value from a GetEmployee() method).
However, these objects don’t have the same level of data binding support as the DataSet, so you’ll need
to decide between a clearer coding model (using the various disconnected data objects) and more
flexibility (always using the full DataSet, even when returning only a single record). Another limitation is
that the DataSet is weakly typed. That means there’s no compile-time syntax checking or IntelliSense to

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

345

make sure you use the right field names (unlike with a custom data access class such as
EmployeeDetails).

Data Binding
Although there’s nothing stopping you from generating HTML by hand as you loop through dis-
connected data, in most cases ASP.NET data binding can simplify your life quite a bit. Chapter 9
discusses data binding in detail, but before continuing to the DataView examples in this chapter you
need to know the basics.

The key idea behind data binding is that you associate a link between a data object and a control,
and then the ASP.NET data binding infrastructure takes care of building the appropriate output.

One of the data-bound controls that’s easiest to use is the GridVew. The GridView has the built-in
smarts to create an HTML table with one row per record and with one column per field.

To bind data to a data-bound control such as the GridView, you first need to set the DataSource
property. This property points to the object that contains the information you want to display. In this
case, it’s the DataSet:

GridView1.DataSource = ds;

Because data-bound controls can bind to only a single table (not the entire DataSet), you also need
to explicitly specify what table you want to use. You can do that by setting the DataMember property to
the appropriate table name, as shown here:

GridView1.DataMember = "Employees";

Alternatively, you could replace both of these statements with one statement that binds directly to
the appropriate table:

GridView1.DataSource = ds.Tables["Employees"];

Finally, once you’ve defined where the data is, you need to call the control’s DataBind() method to
copy the information from the DataSet into the control. If you forget this step, the control will remain
empty, and the information will not appear on the page.

GridView1.DataBind();

As a shortcut, you can call the DataBind() method of the current page, which walks over every
control that supports data binding and calls the DataBind() method.

■ Note The following examples use data binding to demonstrate the filtering and sorting features of the GridView.

You’ll learn much more about data binding and the GridView control in Chapter 9 and Chapter 10.

The DataView Class
A DataView defines a view onto a DataTable object—in other words, a representation of the data in a
DataTable that can include custom filtering and sorting settings. To allow you to configure these
settings, the DataView has properties such as Sort and RowFilter. These properties allow you to choose
what data you’ll see through the view. However, they don’t affect the actual data in the DataTable. For
example, if you filter a table to hide certain rows, those rows will remain in the DataTable, but they won’t
be accessible through the DataView.

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

346

The DataView is particularly useful in data binding scenarios. It allows you to show just a subset of
the total data in a table, without needing to process or alter that data if you need it for other tasks.

Every DataTable has a default DataView associated with it, although you can create multiple
DataView objects to represent different views onto the same table. The default DataView is provided
through the DataTable.DefaultView property.

In the following examples, you’ll see how to create some grids that display records sorted by
different fields and filtered against a given expression.

Sorting with a DataView
The next example uses a page with three GridView controls. When the page loads, it binds the same
DataTable to each of the grids. However, it uses three different views, each of which sorts the results
using a different field.

The code begins by retrieving the list of employees into a DataSet:

// Create the Connection, DataAdapter, and DataSet.
string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);
string sql =
 "SELECT TOP 5 EmployeeID, TitleOfCourtesy, LastName, FirstName FROM Employees";

SqlDataAdapter da = new SqlDataAdapter(sql, con);
DataSet ds = new DataSet();

// Fill the DataSet.
da.Fill(ds, "Employees");

The next step is to fill the GridView controls through data binding. To bind the first grid, you can
simply use the DataTable directly, which uses the default DataView and displays all the data. For the
other two grids, you must create new DataView objects. You can then set its Sort property explicitly.

// Bind the original data to #1.
grid1.DataSource = ds.Tables["Employees"];

// Sort by last name and bind it to #2.
DataView view2 = new DataView(ds.Tables["Employees"]);
view2.Sort = "LastName";
grid2.DataSource = view2;

// Sort by first name and bind it to #3.
DataView view3 = new DataView(ds.Tables["Employees"]);
view3.Sort = "FirstName";
grid3.DataSource = view3;

Sorting a grid is simply a matter of setting the DataView.Sort property to a valid sorting expression.
This example sorts by each view using a single field, but you could also sort by multiple fields, by
specifying a comma-separated list. Here’s an example:

view2.Sort = "LastName, FirstName";

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

347

■ Note The sort is according to the data type of the column. Numeric and date columns are ordered from smallest to
largest. String columns are sorted alphanumerically without regard to case, assuming the DataTable.CaseSensitive
property is false (the default). Columns that contain binary data cannot be sorted. You can also use the ASC and DESC

attributes to sort in ascending or descending order. You’ll use sorting again and learn about DataView filtering in

Chapter 10.

Once you’ve bound the grids, you still need to trigger the data binding process that copies the values
from the DataTable into the control. You can do this for each control separately or for the entire page by
calling Page.DataBind(), as in this example:

Page.DataBind();

Figure 8-6 shows the resulting page.

Figure 8-6. Grids sorted in different ways

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

348

Filtering with a DataView
You can also use a DataView to apply custom filtering so that only certain rows are included in the
display. To accomplish this feat, you use the RowFilter property. The RowFilter property acts like a
WHERE clause in a SQL query. Using it, you can limit results using logical operators (such as <, >, and =)
and a wide range of criteria. Table 8-3 lists the most common filter operators.

Table 8-3. Filter Operators

Operator Description
<, >, <=, and >= Performs comparison of more than one value. These comparisons can be numeric

(with number data types) or alphabetic dictionary comparisons (with string data
types).

<> and = Performs equality testing.

NOT Reverses an expression. Can be used in conjunction with any other clause.

BETWEEN Specifies an inclusive range. For example, “Units BETWEEN 5 AND 15” selects
rows that have a value in the Units column from 5 to 15.

IS NULL Tests the column for a null value.

IN(a,b,c) A short form for using an OR clause with the same field. Tests for equality between
a column and the specified values (a, b, and c).

LIKE Performs pattern matching with string data types.

+ Adds two numeric values or concatenates a string.

- Subtracts one numeric value from another.

* Multiplies two numeric values.

/ Divides one numeric value by another.

% Finds the modulus (the remainder after one number is divided by another).

AND Combines more than one clause. Records must match all criteria to be displayed.

OR Combines more than one clause. Records must match at least one of the filter
expressions to be displayed.

The following example page includes three GridView controls. Each one is bound to the same

DataTable but with different filter settings.

string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);
string sql = "SELECT ProductID, ProductName, UnitsInStock, UnitsOnOrder, " +
 "Discontinued FROM Products";

SqlDataAdapter da = new SqlDataAdapter(sql, con);
DataSet ds = new DataSet();

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

349

da.Fill(ds, "Products");

// Filter for the Chocolade product.
DataView view1 = new DataView(ds.Tables["Products"]);
view1.RowFilter = "ProductName = 'Chocolade'";
grid1.DataSource = view1;

// Filter for products that aren't on order or in stock.
DataView view2 = new DataView(ds.Tables["Products"]);
view2.RowFilter = "UnitsInStock = 0 AND UnitsOnOrder = 0";
grid2.DataSource = view2;

// Filter for products starting with the letter P.
DataView view3 = new DataView(ds.Tables["Products"]);
view3.RowFilter = "ProductName LIKE 'P%'";
grid3.DataSource = view3;

Page.DataBind();

Running the page will fill the three grids, as shown in Figure 8-7.

Figure 8-7. Grids filtered in different ways

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

350

Advanced Filtering with Relationships
The DataView allows for some surprisingly complex filter expressions. One of its little-known features is
the ability to filter rows based on relationships. For example, you could display categories that contain
more than 20 products, or you could display customers who have made a certain number of total
purchases. In both of these examples, you need to filter one table based on the information in a related
table.

To create this sort of filter string, you need to combine two ingredients:

• A table relationship that links two tables.

• An aggregate function such as AVG(), MAX(), MIN(), or COUNT(). This function
acts on the data in the related records.

For example, suppose you’ve filled a DataSet with the Categories and Products tables and defined
this relationship:

// Define the relationship between Categories and Products.
DataRelation relat = new DataRelation("CatProds",
 ds.Tables["Categories"].Columns["CategoryID"],
 ds.Tables["Products"].Columns["CategoryID"]);

// Add the relationship to the DataSet.
ds.Relations.Add(relat);

You can now filter the display of the Categories table using a filter expression based on the Products
table. For example, imagine you want to show only category records that have at least one product worth
more than $50. To accomplish this, you use the MAX() function, along with the name of the table
relationships (CatProds). Here’s the filter string you need:

MAX(Child(CatProds).UnitPrice) > 50

And here’s the code that applies this filter string to the DataView:

DataView view1 = new DataView(ds.Tables["Categories"]);
view1.RowFilter = "MAX(Child(CatProds).UnitPrice) > 50";
GridView1.DataSource = view1;

The end result is that the GridView shows only the categories that have a product worth more
than $50.

Calculated Columns
In addition to the fields retrieved from the data source, you can add calculated columns. Calculated
columns are ignored when retrieving and updating data. Instead, they represent a value that’s computed
using a combination of existing values. To create a calculated column, you simply create a new
DataColumn object (specifying its name and type) and set the Expression property. Finally, you add the
DataColumn to the Columns collection of the DataTable using the Add() method.

As an example, here’s a column that uses string concatenation to combine the first and last name
into one field:

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

351

DataColumn fullName = new DataColumn(
 "FullName", typeof(string),
 "TitleOfCourtesy + ' ' + LastName + ', ' + FirstName");
ds.Tables["Employees"].Columns.Add(fullName);

■ Tip Of course, you can also execute a query that creates calculated columns. However, that approach makes it
more difficult to update the data source later, and it creates more work for the data source. For that reason, it’s

often a better solution to create calculated columns in the DataSet.

You can also create a calculated column that incorporates information from related rows. For
example, you might add a column in a Categories table that indicates the number of related product
rows. In this case, you need to make sure you first define the relationship with a DataRelation object.
You also need to use a SQL aggregate function such as AVG(), MAX(), MIN(), or COUNT().

Here’s an example that creates three calculated columns, all of which use aggregate functions and
table relationships:

string connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);
string sqlCat = "SELECT CategoryID, CategoryName FROM Categories";
string sqlProd = "SELECT ProductName, CategoryID, UnitPrice FROM Products";
SqlDataAdapter da = new SqlDataAdapter(sqlCat, con);
DataSet ds = new DataSet();

try
{
 con.Open();
 da.Fill(ds, "Categories");
 da.SelectCommand.CommandText = sqlProd;
 da.Fill(ds, "Products");
}
finally
{
 con.Close();
}

// Define the relationship between Categories and Products.
DataRelation relat = new DataRelation("CatProds",
 ds.Tables["Categories"].Columns["CategoryID"],
 ds.Tables["Products"].Columns["CategoryID"]);
// Add the relationship to the DataSet.
ds.Relations.Add(relat);

// Create the calculated columns.
DataColumn count = new DataColumn(
 "Products (#)", typeof(int), "COUNT(Child(CatProds).CategoryID)");
DataColumn max = new DataColumn(
 "Most Expensive Product", typeof(decimal), "MAX(Child(CatProds).UnitPrice)");
DataColumn min = new DataColumn(

CHAPTER 8 ■ DATA COMPONENTS AND THE DATA SET

352

 "Least Expensive Product", typeof(decimal), "MIN(Child(CatProds).UnitPrice)");

// Add the columns.
ds.Tables["Categories"].Columns.Add(count);
ds.Tables["Categories"].Columns.Add(max);
ds.Tables["Categories"].Columns.Add(min);

// Show the data.
grid1.DataSource = ds.Tables["Categories"];
grid1.DataBind();

Figure 8-8 shows the resulting page.

Figure 8-8. Showing calculated columns

■ Note Keep in mind that these examples simply demonstrate convenient ways to filter and aggregate data.
These operations are only part of presenting your data properly. The other half of the equation is proper formatting.
In Chapter 9 and Chapter 10, you’ll learn a lot more about the GridView so that you can show currency values in

the appropriate format and customize other details such as color, sizing, column order, and fonts. For example, by

setting the format, you can change 4.5000 to the more reasonable display value, $4.50.

Summary
In this chapter, you learned how to create basic database components and took an in-depth look at the
DataSet and DataView. In the next chapter, you’ll continue working with the same database component
and the DataSet—albeit through a new layer. You’ll learn how the data source controls wrap the ADO.NET
world with a higher-level abstraction and let you build rich data-bound pages with minimal code.

C H A P T E R 9

■ ■ ■

353

Data Binding

Almost every web application has to deal with data, whether it’s stored in a database, an XML file, a
structured file, or something else. Retrieving this data is only part of the challenge—a modern
application also needs a convenient, flexible, and attractive way to display the data in a web page.

Fortunately, ASP.NET includes a rich and full-featured model for data binding. Data binding allows
you to bind the data objects you’ve retrieved to one or more web controls, which will then show the data
automatically. That means you don’t need to write time-consuming logic to loop through rows, read
multiple fields, and manipulate individual controls.

To make your life even easier, you can use ASP.NET’s data source controls. A data source control
allows you to define a declarative link between your page and a data source (such as a database or a
custom data access component). Data source controls are notable for the way they plug into the data
binding infrastructure. Once you’ve configured a data source control, you can hook it up to your web
controls at design time, and ASP.NET will take care of all the data binding details. In fact, by using a data
source control, you can create a sophisticated page that allows you to query and update a database—all
without writing a single line of code.

■ Tip Of course, in a professional application you probably will write code to customize various aspects of the
data binding process, such as error handling. That’s why you’ll be happy to discover that the data binding model
and data source controls are remarkably extensible. In the past, countless data binding models have failed

because of a lack of flexibility.

In this chapter, you’ll learn how data binding and the data source controls work. You’ll learn a
straightforward approach to using the data source controls and the best practices you’ll need to make
them truly practical. This distinction is important, because it’s easy to use the data source controls to
build pages that are difficult to maintain and impossible to optimize properly. When used correctly, data
source controls don’t need to prevent good design practices—in fact, informed developers can plug their
own custom data access classes into the data binding framework without sacrificing a thing.

But before you can tackle the data source controls, you need to start at the beginning—with a
description of ASP.NET data binding.

CHAPTER 9 ■ DATA BINDING

354

Basic Data Binding
Data binding is a feature that allows you to associate a data source with a control and have that control
automatically display your data. The key characteristic of data binding is that it’s declarative, not
programmatic. That means data binding is defined outside your code, alongside the controls in the .aspx
page. The advantage is that it helps you achieve a cleaner separation between your controls and your
code in a web page.

In ASP.NET, most web controls (including TextBox, LinkButton, Image, and many more) support
single-value data binding. With single-value binding, you can bind a control property to a data source,
but the control can display only a single value. The property you bind doesn’t need to represent
something directly visible on the page. For example, not only can you bind the text of a hyperlink by
setting the Hyperlink.Text property, but you can also bind the NavigateUrl property to specify the target
destination of the link. To use single-value binding, you create data binding expressions.

Many web controls support repeated-value binding, which means they can render a set of items.
Repeated-value controls often create lists and grids (the ListBox and GridView are two examples). If a
control supports repeated-value binding, it always exposes a DataSource property, which accepts a data
object. (Typically, the data object is some sort of collection, and each item in the collection represents a
record of data.) When you set the DataSource property, you create the logical link from the server
control to the data object that contains the data to render. However, this doesn’t directly fill the control
with that data. To accomplish that, you need the control’s DataBind() method, which loops through the
data source, extracts its data, and renders it to the page. Repeated-value binding is by far the more
powerful type of data binding.

In the following sections, you’ll consider both single-value binding and repeated-value binding.

Single-Value Binding
The controls that support single-value data binding allow you to bind some of their properties to a data
binding expression. This expression is entered in the .aspx markup portion of the page (not the code-
behind file) and enclosed between the <%# and %> delimiters. Here’s an example:

<%# expression_goes_here %>

This may look like a script block, but it isn’t. If you try to write any code inside this tag, you will receive
an error. The only thing you can add is valid data binding expressions. For example, if you have a public,
protected, or internal variable in your page class named EmployeeName, you could write the following:

<%# EmployeeName %>

To evaluate a data binding expression such as this, you must call the Page.DataBind() method in
your code. When you call DataBind(), ASP.NET will examine all the expressions on your page and
replace them with the corresponding value (in this case, the current value that’s defined for the
EmployeeName variable). If you forget to call the DataBind() method, the data binding expression won’t
be filled in—instead, it just gets tossed away when your page is rendered to HTML.

The source for single-value data binding can include the value of a property, member variable, or
return value of a function (as long as the property, member variable, or function has an accessibility of
protected, public, or internal). It can also be any other expression that can be evaluated at runtime, such
as a reference to another control’s property, a calculation using operators and literal values, and so on.
The following data binding expressions are all valid:

<%# GetUserName() %>
<%# 1 + (2 * 20) %>
<%# "John " + "Smith" %>
<%# Request.Browser.Browser %>

CHAPTER 9 ■ DATA BINDING

355

You can place your data binding expressions just about anywhere on the page, but usually you’ll
assign a data binding expression to a property in the control tag. Here’s an example page that uses
several data binding expressions:

<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <form method="post" runat="server">
 <asp:Image ID="image1" runat="server" ImageUrl='<%# FilePath %>' />

 <asp:Label ID="label1" runat="server" Text='<%# FilePath %>' />

 <asp:TextBox ID="textBox1" runat="server" Text='<%# GetFilePath() %>' />

 <asp:HyperLink ID="hyperLink1" runat="server"
 NavigateUrl='<%# LogoPath.Value %>' Font-Bold="True" Text="Show logo" />

 <input type="hidden" ID="LogoPath" runat="server" value="apress.gif">
 <%# FilePath %>

 <img src="<%# GetFilePath() %>">
 </form>
 </body>
</html>

As you can see, not only can you bind the Text property of a Label and a TextBox, but you can also
use other properties such as the ImageUrl of an Image, the NavigateUrl property of a HyperLink, and
even the src attribute of a static HTML tag. You can also put the binding expression elsewhere in
the page without binding to any property or attribute. For example, the previous web page has a binding
expression between the and tags. When it’s processed, the resulting text will be rendered on
the page and rendered in bold type. You can even place the expression outside the <form> section, as
long as you don’t try to insert a server-side control there.

The expressions in this sample page refer to a FilePath property, a GetFilePath() function, and the
Value property of a server-side hidden field that’s declared on the same page. To complete this page, you
need to define these ingredients in script blocks or in the code-behind class:

protected string GetFilePath()
{
 return "apress.gif";
}

protected string FilePath
{
 get { return "apress.gif"; }
}

In this example, the property and function return only a hard-coded string. However, you can also
add just about any C# code to generate the value for the data binding expression dynamically.

It’s important to remember that the data binding expression does not directly set the property to
which it’s bound. It simply defines a connection between the control’s property and some other piece of
information. To cause the page to evaluate the expression, run the appropriate code, and assign the
appropriate value, you must call the DataBind() method of the containing page, as shown here:

http://www.w3.org/1999/xhtml

CHAPTER 9 ■ DATA BINDING

356

protected void Page_Load(object sender, System.EventArgs e)
{
 this.DataBind();
}

Figure 9-1 shows what you’ll see when you run this page.
You’ll see data binding expressions again when you create templates for more advanced controls in

Chapter 10.

■ Tip It’s also common to see the command this.DataBind() written Page.DataBind(), or just DataBind(). All three
statements are equivalent. Page.DataBind() works because all control classes (including pages) inherit the
Control.Page property. When you write Page.DataBind(), you’re actually using the Page property of the current

page (which points to itself), and then calling DataBind() on the page object.

Figure 9-1. Single-value data binding in various controls

Other Types of Expressions
Data binding expressions are always wrapped in the <%# and %> characters. ASP.NET also has support
for a different type of expression, commonly known as $ expressions because they incorporate the $
character. Technically, a $ expression is a code sequence that you can add to an .aspx page and that will

CHAPTER 9 ■ DATA BINDING

357

be evaluated by an expression builder when the page is rendered. The expression builder processes the
expression and replaces it with a string value in the final HTML.

ASP.NET includes a built-in expression builder that allows you to extract custom application
settings and connection string information from the web.config file. For example, if you want to retrieve
an application setting named appName from the <appSettings> portion of the web.config file, you can
use the following expression:

<asp:Literal Runat="server" Text="<%$ AppSettings:appName %>" />

Several differences exist between $ expressions and data binding expressions:

• Data binding expressions start with the <%# character sequence, and $
expressions use <%$.

• Unlike data binding expressions, you don’t need to call the DataBind() method to
evaluate $ expressions. Instead, they’re always evaluated when the page is
rendered.

• Unlike data binding expressions, $ expressions can’t be inserted anywhere in a page.
Instead, you need to wrap them in a control tag and use the expression result to set a
control property. That means if you just want to show the result of an expression as
ordinary text, you need to wrap it in a Literal control (as shown in the previous
example). (The Literal control outputs its text to plain, unformatted HTML.)

The first part of a $ expression indicates the name of the expression builder. For example, the
AppSettings:appName expression works because a dedicated AppSettingsExpressionBuilder is
registered to handle all expressions that begin with AppSettings. Similarly, ASP.NET includes a
ResourceExpressionBuilder for inserting resources and a ConnectionStringsExpressionBuilder that
retrieves connection information from the <connectionStrings> section of the web.config file. Here’s an
example that uses the ConnectionStringsExpressionBuilder:.

<asp:Literal Runat="server" Text="<%$ ConnectionStrings:Northwind %>" />

Displaying a connection string isn’t that useful. But this technique becomes much more useful
when you combine it with the SqlDataSource control you’ll examine later in this chapter, in which case
you can use it to quickly supply a connection string from the web.config file:

<asp:SqlDataSource ConnectionString="<%$ ConnectionStrings:Northwind %>" ... />

Technically, $ expressions don’t involve data binding. But they work in a similar way to data binding
expressions and have a similar syntax.

Custom Expression Builders
One of the most innovative features of $ expressions is that you can create your own expression builders
that plug into this framework. This is a specialized technique that, while impressive, isn’t always
practical. As you’ll see, custom $ expressions make the most sense if you’re developing a feature that you
want to use to extend more than one web application.

For example, imagine you want a way to create a custom expression builder that allows you to
insert random numbers. You want to be able to write a tag such as this to show a random number
between 1 and 6:

<asp:Literal Runat="server" Text="<%$ RandomNumber:1,6 %>" />

Unfortunately, creating a custom expression builder isn’t quite as easy as you probably expect. The
problem is how the code is compiled. When you compile a page that contains an expression, the
expression evaluating the code also needs to be compiled with it. However, you don’t want the

CHAPTER 9 ■ DATA BINDING

358

expression to be evaluated at that point—instead, you want the expression to be reevaluated each time
the page is requested. To make this possible, your expression builder needs to generate a segment of
code that performs the appropriate task.

The technology that enables this is CodeDOM (Code Document Object Model)—a model for
dynamically generating code constructs. Every expression builder includes a method named
GetCodeExpression() that uses CodeDOM to generate the code needed for the expression. In other
words, if you want to create a RandomNumberExpressionBuilder, you need to create a
GetCodeExpression() method that uses CodeDOM to generate a segment of code for calculating random
numbers. Clearly, it’s not that straightforward—and for anything but trivial code, it’s quite lengthy.

All expression builders must derive from the base ExpressionBuilder class (which is found in the
System.Web.Compilation namespace). Here’s how you might declare an expression builder for random
number generation:

public class RandomNumberExpressionBuilder : ExpressionBuilder
{ ... }

To make the code more concise, you’ll also need to import the following namespaces:

using System.Web.Compilation;
using System.CodeDom;
using System.ComponentModel;

The easiest way to build a simple expression builder is to begin by creating a static method that
performs the task you need. In this case, the static method needs to generate a random number:

public static string GetRandomNumber(int lowerLimit, int upperLimit)
{
 Random rand = new Random();
 int randValue = rand.Next(lowerLimit, upperLimit + 1);
 return randValue.ToString();
}

The advantage of this approach is that when you use CodeDOM, you simply generate the single line
of code needed to call the GetRandomNumber() method (rather than the code needed to generate the
random number).

Now, you need to override the GetCodeExpression() method. This is the method that ASP.NET calls
when it finds an expression that’s mapped to your expression builder (while compiling the page). At this
point, you need to examine the expression, verify no errors are present, and then generate the code for
calculating the expression result. The code that you generate needs to be represented in a language-
independent way, as a System.CodeDom.CodeExpression object that you construct. This dynamically
generated piece of code will be executed every time the page is requested.

Here’s the first part of the GetCodeExpression() method:

public override CodeExpression GetCodeExpression(BoundPropertyEntry entry,
 object parsedData, ExpressionBuilderContext context)
{
 // entry.Expression is the number string
 // without the prefix (for example "1,6").
 if (!entry.Expression.Contains(","))
 {
 throw new ArgumentException(
 "Must include two numbers separated by a comma.");
 }

CHAPTER 9 ■ DATA BINDING

359

 else
 {
 // Get the two numbers.
 string[] numbers = entry.Expression.Split(',');

 if (numbers.Length != 2)
 {
 throw new ArgumentException("Only include two numbers.");
 }
 else
 {
 int lowerLimit, upperLimit;
 if (Int32.TryParse(numbers[0], out lowerLimit) &&
 Int32.TryParse(numbers[1], out upperLimit))
 {
 ...

So far, all the operations have been performed in normal code. That’s because the two numbers are
specified as part of the expression. They won’t change each time the page is requested, and so they don’t
need to be evaluated each time the page is requested. However, the random number should be
recalculated each time, so now you need to switch to CodeDOM and create a dynamic segment of code
that performs this task. The basic strategy is to construct a CodeExpression that calls the static
GetRandomNumber() method.

First, the code needs to get a reference to the class that contains the GetRandomNumber() method.
In this example, that’s the expression builder class where the code is currently executing, which makes
the process fairly straightforward:

 ...
 // Get a reference to the class that has the
 // GetRandomNumber() method.
 // (It's the class where this code is executing.)
 CodeTypeReferenceExpression typeRef = new
 CodeTypeReferenceExpression(this.GetType());
 ...

Next, the code defines the parameters that need to be passed to the GetRandomNumber() method:

 ...
 CodeExpression[] methodParameters = new CodeExpression[2];
 methodParameters[0] = new CodePrimitiveExpression(lowerLimit);
 methodParameters[1] = new CodePrimitiveExpression(upperLimit);
 ...

With these details in place, the code can now create the CodeExpression that calls
GetRandomNumber(). To do this, it creates an instance of the CodeMethodInvokeExpression class
(which derives from CodeExpression):

 ...
 return new CodeMethodInvokeExpression(
 typeRef, "GetRandomNumber", methodParameters);
 }
 else
 {

CHAPTER 9 ■ DATA BINDING

360

 throw new ArgumentException("Use valid integers.");
 }
 }
 }
}

Now you can copy this expression builder to the App_Code folder (or compile it separately and
place the DLL assembly in the Bin folder).

Finally, to use this expression builder in a web application, you need to register it in the web.config
file and map it to the prefix you want to use:

<configuration>
 <system.web>
 <compilation debug="true">
 <expressionBuilders>
 <add expressionPrefix="RandomNumber"
 type="RandomNumberExpressionBuilder"/>
 </expressionBuilders>
 </compilation>
 ...
 </system.web>
</configuration>

Now you can use expressions such as <%$ RandomNumber:1,6 %> in the markup of a web form.
These expressions will be automatically handled by your custom expression builder, which generates the
code when the page is compiled. However, the code isn’t executed until you request the page. As a
result, you’ll see a new random number (that falls in the desired range) each time you run the page.

The possibilities for expression builders are intriguing. They enable many extensibility scenarios,
and third-party tools are sure to take advantage of this feature. However, if you intend to use an
expression in a single web application or in a single web page, you’ll find it easier to just use a data
binding expression that calls a custom method in your page. For example, you could create a data
binding expression like this:

<%# GetRandomNumber(1,6) %>

And add a matching public, protected, or internal method in your page, like this:

protected string GetRandomNumber(int lowerLimit, int upperLimit)
{ ... }

Just remember to call Page.DataBind() to evaluate your expression.

Repeated-Value Binding
Repeated-value binding allows you to bind an entire list of information to a control. This list of
information is represented by a data object that wraps a collection of items. This could be a collection of
custom objects (for example, in an ordinary ArrayList or Hashtable) or a collection of rows (for example,
with a DataReader or DataSet).

ASP.NET includes several basic list controls that support repeated-value binding:

• All controls that render themselves using the <select> tag, including the
HtmlSelect, ListBox, and DropDownList controls

CHAPTER 9 ■ DATA BINDING

361

• The CheckBoxList and RadioButtonList controls, which render each child item
with a separate check box or radio button

• The BulletedList control, which creates a list of bulleted or numbered points

All these controls display a single-value field of a property from each data item. When performing
data binding with one of these controls, you’ll use the properties listed in Table 9-1.

Table 9-1. Data Properties for List Controls

Property Description

DataSource This is a data object that contains a collection of data items to display. This
data object must implement one of the interfaces that ASP.NET data
binding supports, typically ICollection.

DataSourceID Instead of supplying the data object programmatically (using code), you
can link your list control to a data source control by setting this property.
The data source control will generate the required data object
automatically. You can use either the DataSource property or the
DataSourceID property, but not both.

DataTextField Every data source represents a collection of data items. A list control can
display only a single value from each list item. The DataTextField indicates
the field (in the case of a row) or property (in the case of an object) of the
data item that contains the value to display in the page.

DataTextFormatString This property specifies an optional format string that the control will use to
format each DataTextValue before displaying it. For example, you can
specify that a number should be formatted as a currency value.

DataValueField This property is similar to the DataTextField property, but the value from
the data item isn’t displayed in the page—instead, it’s stored in the value
attribute of the underlying HTML tag. This allows you to retrieve the value
later in your code. The primary use of this field is to store a unique ID or
primary key field so you can use it later to retrieve more data when the user
selects a specific item.

All the list controls are essentially the same. The only differences are the way they render themselves

in HTML and whether or not they support multiple selection.
Figure 9-2 shows a test page that uses all these list controls (except the BulletedList control, which

doesn’t support selection). In this example, the list controls are bound to the same data object—a
hashtable. When the user clicks the Get Selection button, the page lists the currently selected items.

When the page loads for the first time, the code creates a data source and assigns it to all the list
controls. In this example, the data object is a Hashtable object, which contains a series of strings (the
values) indexed by name (the keys). Hashtable collections work in the same way as the ViewState,
Session, Application, and Cache collections that you can use to store data.

Here’s the code for creating and binding the hashtable:

protected void Page_Load(object sender, System.EventArgs e)
{
 if (!Page.IsPostBack)
 {
 // Create the data source.

CHAPTER 9 ■ DATA BINDING

362

 Hashtable ht = new Hashtable();
 ht.Add("Key1", "Lasagna");
 ht.Add("Key2", "Spaghetti");
 ht.Add("Key3", "Pizza");
 // Set the DataSource property for the controls.
 Select1.DataSource = ht;
 Select2.DataSource = ht;
 Listbox1.DataSource = ht;
 DropdownList1.DataSource = ht;
 CheckList1.DataSource = ht;
 OptionList1.DataSource = ht;

 // Bind the controls.
 this.DataBind();
}

■ Note Every control that supports repeated-value data binding includes a DataBind() method. You could call this
method to bind a specific control. However, when you call the Page.DataBind() method, the page object calls

DataBind() on every contained control, simplifying your life.

Figure 9-2. Repeated-value data binding in list controls

CHAPTER 9 ■ DATA BINDING

363

Each key-value pair in a hashtable is represented by an instance of the DictionaryStructure class.
The DictionaryStructure class provides two properties: Value (the actual stored item, which is a string in
this example) and Key (the unique name under which this item is indexed). When you bind a hashtable
to a list control, you are actually binding a group of DictionaryStructure objects.

In this example, the bound controls display the Value property of each item, which contains the text.
They also keep track of the Key property for later use. To accomplish this, you must set the
DataTextField and DataValueField properties of the lists as follows:

<select runat="server" ID="Select1" size="3"
 DataTextField="Value" DataValueField="Key" />
<select runat="server" ID="Select2"
 DataTextField="Value" DataValueField="Key" />
<asp:ListBox runat="server" ID="Listbox1" Rows="3"
 DataTextField="Value" DataValueField="Key" />
<asp:DropDownList runat="server" ID="DropdownList1"
 DataTextField="Value" DataValueField="Key" />
<asp:RadioButtonList runat="server" ID="OptionList1"
 DataTextField="Value" DataValueField="Key" />
<asp:CheckBoxList runat="server" ID="CheckList1"
 DataTextField="Value" DataValueField="Key" />

When the user clicks Get Selection, the page adds the name and values of all the selected items to
the label. Here’s the code that accomplishes this task:

protected void cmdGetSelection_Click(object sender, EventArgs e)
{
 Result.Text += "- Item selected in Select1: " +
 Select1.Items[Select1.SelectedIndex].Text + " - " +
 Select1.Value + "
";
 Result.Text += "- Item selected in Select2: " +
 Select2.Items[Select2.SelectedIndex].Text + " - " +
 Select2.Value + "
";
 Result.Text += "- Item selected in Listbox1: " +
 Listbox1.SelectedItem.Text + " - " +
 Listbox1.SelectedItem.Value + "
";
 Result.Text += "- Item selected in DropdownList1: " +
 DropdownList1.SelectedItem.Text + " - " +
 DropdownList1.SelectedItem.Value + "
";
 Result.Text += "- Item selected in OptionList1: " +
 OptionList1.SelectedItem.Text + " - " +
 OptionList1.SelectedItem.Value + "
";
 Result.Text += "- Items selected in CheckList1: ";
 foreach (ListItem li in CheckList1.Items)
 {
 if (li.Selected)
 Result.Text += li.Text + " - " + li.Value + " ";
 }
}

Binding to a DataReader
The previous example used a hashtable as the data source. Basic collections certainly aren’t the only
kind of data source you can use with list data binding. Instead, you can bind any data structure that
implements the ICollection interface or one of its derivatives. The following list summarizes many of
these data classes:

CHAPTER 9 ■ DATA BINDING

364

• All in-memory collection classes, such as Collection, ArrayList, Hashtable, and
Dictionary

• An ADO.NET DataReader object, which provides connection-based, forward-only,
and read-only access to the database

• The ADO.NET DataView, which provides a view onto a single disconnected
DataTable object

• Any other custom object that implements the ICollection interface

For example, imagine you want to fill a list box with the full names of all the employees contained in
the Employees table of the Northwind database. Figure 9-3 shows the result you want to produce.

Figure 9-3. Data binding with a DataReader

The information in this example includes each person’s title of courtesy, first name, and last name,
which are stored in three separate fields. Unfortunately, the DataTextField property expects the name of
only a single field. You cannot use data binding to concatenate these three pieces of data and create a
value for the DataTextField. However, you can solve this issue with an easy but powerful trick—using a
calculated column. You simply need to modify the SELECT query so that it creates a calculated column
that consists of the information in the three fields. You can then use this column for the DataTextField.
The SQL command that you need to accomplish this is as follows:

CHAPTER 9 ■ DATA BINDING

365

SELECT EmployeeID, TitleOfCourtesy + ' ' +
 FirstName + ' ' + LastName As FullName FROM Employees

The data-bound list box is declared on the page as follows:

<asp:ListBox runat="server" ID="lstNames" Rows="10" SelectionMode="Multiple"
 DataTextField="FullName" DataValueField="EmployeeID"/>

When the page loads, it retrieves the records from the database and binds them to the list control.
This example uses a DataReader as the data source, as shown here:

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 // Create the Command and the Connection.
 string connectionString = WebConfigurationManager.ConnectionStrings[
 "Northwind"].ConnectionString;
 string sql = "SELECT EmployeeID, TitleOfCourtesy + ' ' + " +
 "FirstName + ' ' + LastName As FullName FROM Employees";

 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand(sql, con);

 try
 {
 // Open the connection and get the DataReader.
 con.Open();
 SqlDataReader reader = cmd.ExecuteReader();

 // Bind the DataReader to the list.
 lstNames.DataSource = reader;
 lstNames.DataBind();
 reader.Close();
 }
 finally
 {
 // Close the connection.
 con.Close();
 }
 }
}

The previous code sample creates a connection to the database, creates the command that will
select the data, opens the connection, and executes the command that returns the DataReader. The
returned DataReader is bound to the list box, and finally the DataReader and the connection are both
closed. Note that the DataBind() method of the page or the control must be called before the connection
is closed. It’s not until you call this method that the actual data is extracted.

The last piece of this example is the code for determining the selected items. As in the previous
example, this code is quite straightforward:

CHAPTER 9 ■ DATA BINDING

366

protected void cmdGetSelection_Click(object sender, System.EventArgs e)
{
 Result.Text += "Selected employees:";
 foreach (ListItem li in lstNames.Items)
 {
 if (li.Selected)
 Result.Text += String.Format("({0}) {1}", li.Value, li.Text);
 }
}

If you want to use a DropDownList, a CheckListBox, or a RadioButtonList instead of a ListBox, you
need to change only the control declaration. The rest of the code that sets up the data binding remains
the same.

The Rich Data Controls
In addition to the simple list controls, ASP.NET includes some rich data controls that support repeated-
value binding. The rich data controls are quite a bit different from the simple list controls—for one thing,
they are designed exclusively for data binding. They also have the ability to display several properties or
fields from each data item, often in a table-based layout or according to a template you’ve defined; they
support higher-level features such as editing; and they provide several events that allow you to plug into
the control’s inner workings at various points.

The rich data controls include the following:

GridView: The GridView is an all-purpose grid control for showing large tables of information. It
supports selecting, editing, sorting, and paging. The GridView is the heavyweight of ASP.NET data
controls. It’s also the successor to the ASP.NET 1.x DataGrid.

DetailsView: The DetailsView is ideal for showing a single record at a time, in a table that has one
row per field. The DetailsView supports editing and optional paging controls that allow you to
browse through a sequence of records.

FormView: Like the DetailsView, the FormView shows a single record at a time, supports editing,
and provides paging controls for moving through a series of records. The difference is that the
FormView is based on templates, which allow you to combine fields in a much more flexible layout
that doesn’t need to be based on a table.

■ Note In addition to the controls in this list, some of ASP.NET’s more specialized controls support data binding.

These include the Menu and TreeView controls (see Chapter 17) and the AdRotator control (Chapter 4).

You’ll explore the rich data controls in detail in Chapter 10. However, it’s worth taking a look at a
quick example now with the GridView, because you’ll use it to work through a variety of examples in this
chapter.

Like the list controls, the GridView provides a DataSource property for the data object and a
DataBind() method that triggers it to read the data object and display each record. However, you don’t
need to use properties such as DataTextField and DataValueField, because the GridView automatically
generates a column for every property (if you’re binding to a custom object) or every field (if you’re
binding to a row). Here’s all you need to get this basic representation:

<asp:GridView ID="grid" runat="server" AutoGenerateColumns="true" />

CHAPTER 9 ■ DATA BINDING

367

■ Note Technically, you don’t even need to set the AutoGenerateColumns property, because true is the

default value.

Now, define a query that selects several fields from the Employees table:

string sql = "SELECT EmployeeID, FirstName, LastName, Title, City " +
 "FROM Employees";

You can bind the GridView to a DataReader in the same way you bound the list control in the
previous example. Only the name of the control changes:

grid.DataSource = reader;
grid.DataBind();

Figure 9-4 shows the GridView this code creates.

Figure 9-4. The bare-bones GridView

Of course, you can do a lot more to configure the appearance of the GridView. If you declare the
columns explicitly (rather than relying on AutoGenerateColumns), you can fine-tune column order and
formatting. You can also use advanced features such as sorting, paging, and editing. You’ll learn about
these features throughout this chapter and in the next chapter. You can also give your GridView a quick
face-lift by choosing Auto Format from the GridView’s smart tag.

CHAPTER 9 ■ DATA BINDING

368

Binding to a DataView
You will encounter a few limitations when you bind directly to a DataReader. Because the DataReader is
a forward-only cursor, you can’t bind your data to multiple controls. You also won’t have the ability to
apply custom sorting and filtering criteria on the fly. Finally, unless you take care to code your page
using generic interfaces such as IDataReader, you lock your code into the data provider you’re currently
using, making it more difficult to modify or adapt your code in the future. To solve these problems, you
can use the disconnected ADO.NET data objects.

If you fill a disconnected DataSet, you can bind it to one or more controls, and you can tailor the
sorting and filtering criteria. The DataSet is also completely generic—no matter which data provider you
use to fill your DataSet, the DataSet itself (and the data binding code) looks the same.

Technically, you never bind directly to a DataSet or DataTable object. Instead, you bind to a DataView
object. A DataView represents a view of the data in a specific DataTable. That means the following:

grid.DataSource = dataTable;
grid.DataBind();

is equivalent to this:

grid.DataSource = dataTable.DefaultView;
grid.DataBind();

It’s important to note that every DataTable includes a default DataView object that’s provided
through the DataTable.DefaultView property. This sleight of hand allows you bind directly to the
DataTable. If you do, ASP.NET actually uses the default DataView automatically. The default DataView
doesn’t apply any sort order and doesn’t filter out any rows. If you want to tweak these settings, you can
either configure the default DataView or create your own and explicitly bind it. You can then use all the
sorting and filtering techniques explained in Chapter 8.

Data Source Controls
In Chapter 7 and Chapter 8, you saw how you can directly connect to a database, execute a query, loop
through the records in the result set, and display them on a page. In this chapter, you’ve already seen
that you have a simpler option; with data binding, you can write your data access logic and then show
the results in the page with no looping or control manipulation required. Now, it’s time to introduce
another convenience—data source controls. With data source controls, you can avoid writing any data
access code.

■ Note As you’ll soon see, there’s often a gap between what you can do and what you should do. In most
professional, large-scale applications, you’ll still need to write and fine-tune your data access code for optimum

performance, data aggregation, error handling, logging, and so on. Even if you do, you can still use the data source

controls—just don’t expect to escape without writing any code!

The data source controls include any control that implements the IDataSource interface. The .NET
Framework includes the following data source controls:

CHAPTER 9 ■ DATA BINDING

369

SqlDataSource: This data source allows you to connect to any data source that has an ADO.NET
data provider. This includes SQL Server, Oracle, and the OLE DB or ODBC data sources, as
discussed in Chapter 7. When using this data source, you don’t need to write the data access code.

ObjectDataSource: This data source allows you to connect to a custom data access class, such as the
one you saw in Chapter 8. This is the preferred approach for large-scale professional web
applications.

AccessDataSource: This data source allows you to read and write the data in an Access database file
(.mdb). Access databases do not have a dedicated server engine (like SQL Server) that coordinates
the actions of multiple people and ensures that data won’t be lost or corrupted. For that reason,
Access databases are best suited for very small websites, where few people need to manipulate data
at the same time. A much better small-scale data solution is using the free SQL Server Express with
the SqlDataSource control.

XmlDataSource: This data source allows you to connect to an XML file. You’ll learn more in
Chapter 14.

SiteMapDataSource: This data source allows you to connect to the Web.sitemap file that describes
the navigational structure of your website. You’ll learn more in Chapter 17.

You can find all the data source controls in the Data tab of the Toolbox in Visual Studio.
When you drop a data source control onto your web page, it shows up as a gray box in Visual Studio.

However, this box won’t appear when you run your web application and request the page.

The Page Life Cycle with Data Binding
Data source controls can perform two key tasks:

• They can retrieve data from a data source and supply it to linked controls.

• They can update the data source when edits take place in linked controls.

In order to understand how data controls work, you need to know how they fit into the page life cycle.
This understanding is important when you run into situations where you need to work with or extend the
data binding model. For example, you might want to add data or set a selected item in a control after it has
been bound to the data source. Depending on the scenario, you might be able to respond to data source
control events, but they aren’t always fired at the point you need to perform your logic.

Essentially, data binding tasks take place in this order:

1. The page object is created (based on the .aspx file).

2. The page life cycle begins, and the Page.Init and Page.Load events fire.

3. All other control events fire.

4. The data source controls perform any updates. If a row is being updated,
the Updating and Updated events fire. If a row is being inserted, the Inserting
and Inserted events fire. If a row is being deleted, the Deleting and Deleted
events fire.

5. The Page.PreRender event fires.

6. The data source controls perform any queries and insert the retrieved data in
the linked controls. The Selecting and Selected events fire at this point.

7. The page is rendered and disposed.

CHAPTER 9 ■ DATA BINDING

370

In the rest of this chapter, you’ll look in detail at the SqlDataSource and the ObjectDataSource and
see how you can use both to enable a variety of data binding scenarios with the rich GridView control.

■ Tip Even if you plan to use the ObjectDataSource for binding your pages, you should begin by reading “The
SqlDataSource” section, which will explain many of the basics about data source controls, including parameters,

key fields, and two-way data binding.

The SqlDataSource
Data source controls turn up in the .aspx markup portion of your web page like ordinary controls. Here’s
an example:

<asp:SqlDataSource ID="SqlDataSource1" runat="server" ... />

The SqlDataSource represents a database connection that uses an ADO.NET provider. However, this
has a catch. The SqlDataSource needs a generic way to create the Connection, Command, and
DataReader objects it requires. The only way this is possible is if your data provider includes a data
provider factory, as discussed in Chapter 7. The factory has the responsibility of creating the provider-
specific objects that the SqlDataSource needs in order to access the data source.

As you know, .NET ships with these four provider factories:

• System.Data.SqlClient

• System.Data.OracleClient

• System.Data.OleDb

• System.Data.Odbc

These are registered in the machine.config file, and as a result you can use any of them with the
SqlDataSource. You choose a data source by setting the provider name. Here’s a SqlDataSource that
connects to a SQL Server database:

<asp:SqlDataSource ProviderName="System.Data.SqlClient" ... />

The next step is to supply the required connection string—without it, you cannot make any
connections. Although you can hard-code the connection string directly in the SqlDataSource tag, you
should always place it in the <connectionStrings> section of the web.config file to guarantee greater
flexibility and ensure you won’t inadvertently change the connection string, which minimizes the
effectiveness of connection pooling.

For example, if you create this connection string:

<configuration>
 <connectionStrings>
 <add name="Northwind"
connectionString="Data Source=localhost;Initial Catalog=Northwind;
Integrated Security=SSPI"/>
 </connectionStrings>
 ...
</configuration>

CHAPTER 9 ■ DATA BINDING

371

you would specify it in the SqlDataSource using a $ expression like this:

<asp:SqlDataSource ConnectionString="<%$ ConnectionStrings:Northwind %>" ... />

Once you’ve specified the provider name and connection string, the next step is to add the query
logic that the SqlDataSource will use when it connects to the database.

Selecting Records
You can use each SqlDataSource control you create to retrieve a single query. Optionally, you can also
add corresponding commands for deleting, inserting, and updating rows. For example, one
SqlDataSource is enough to query and update the Customers table in the Northwind database. However,
if you need to independently retrieve or update Customers and Orders information, you’ll need two
SqlDataSource controls.

The SqlDataSource command logic is supplied through four properties: SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand, each of which takes a string. The string you
supply can be inline SQL (in which case the corresponding SelectCommandType, InsertCommandType,
UpdateCommandType, or DeleteCommandType property should be Text, the default) or the name of a
stored procedure (in which case the command type is StoredProcedure). You need to define commands
only for the types of actions you want to perform. In other words, if you’re using a data source for read-
only access to a set of records, you need to define only the SelectCommand property.

■ Note If you configure a command in the Properties window, you’ll see a property named SelectQuery instead of

SelectCommand. The SelectQuery is actually a virtual property that’s displayed as a design-time convenience.
When you edit the SelectQuery (by clicking the ellipsis next to the property name), you can use a special designer

to write the command text (the SelectCommand) and add command parameters (the SelectParameters).

Here’s a complete SqlDataSource that defines a SELECT command for retrieving records from the
Employees table:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>" SelectCommand=
"SELECT EmployeeID, FirstName, LastName, Title, City FROM Employees"/>

■ Tip You can write the data source logic by hand or by using a design-time wizard that lets you create a

connection and then create the command logic in a graphical query builder. To launch this tool, select the data

source control, and choose Configure Data Source from the smart tag.

Once you’ve created the data source, you can reap the benefits—namely, the ability to bind your
controls at design time, rather than writing logic in the event handler for the Page.Load event. Here’s
how it works:

CHAPTER 9 ■ DATA BINDING

372

1. Select the data source control, and click Refresh Schema in the smart tag. This
step triggers the data source control to connect to the database and retrieve
the column information for your query.

2. Add a ListBox to your form. Set the ListBox.DataSourceID property to the data
source control. You can choose it from a drop-down list that shows all the data
sources on the form (see Figure 9-5).

Figure 9-5. Binding a list control to a data source field

3. Set the ListBox.DataTextField to the column you want to display (in this case,
choose EmployeeID). The list of fields should also be provided in a drop-down
list (see Figure 9-5). If you didn’t perform the first step (clicking Refresh
Schema), you’d be forced to type the field names in by hand.

4. You can use the same steps to bind a rich data control. Add a GridView to your
page, and set the GridView.DataSourceID property to the same data source.
You don’t need to set any field information, because the GridView can display
multiple fields. You’ll see the column headings from your query appear on the
design surface of your page immediately.

5. Run your page. Don’t worry about executing the command or calling
DataBind() on the page—ASP.NET performs both of those tasks automatically.
You’ll see a data-bound page like the one in Figure 9-6.

CHAPTER 9 ■ DATA BINDING

373

Figure 9-6. A simple data-bound page with no code

Clearly, the great advantage of the data source controls is that they allow you to configure data
binding at design time, without writing tedious code. Even better, the results of your selections appear
(to a limited degree) in the Visual Studio designer so you can get a better idea of what your form will look
like.

Data Binding “Under the Hood”
As you learned earlier in this chapter, you can bind to a DataReader or a DataView. So, it’s worth asking,
which approach does the SqlDataSource control use? It’s actually in your control, based on whether you
set the DataSourceMode to SqlDataSourceMode.DataSet (the default) or to
SqlDataSourceMode.DataReader. The DataSet mode is almost always better, because it supports
advanced sorting, filtering, and caching settings that depend on the DataSet. All these features are
disabled in the DataReader mode. However, you can use the DataReader mode with extremely large
grids, as it’s more memory-efficient. That’s because the DataReader holds only one record in memory at
a time—just long enough to copy the record’s information to the linked control. Both modes support
binding to multiple controls. To understand why this is possible, you need to take a closer look at how
the selection is performed.

If you profile your database, you’ll discover that by binding two controls to the same data source,
you cause the query to be executed twice. On the other hand, if you bind the page manually, you have
the ability to bind the same object to two different controls, which means you need to execute the query
only once. Clearly, the SqlDataSource imposes a bit of unnecessary extra overhead here, but if you’re

CHAPTER 9 ■ DATA BINDING

374

aware of it you can design accordingly. First, you should consider caching, which the SqlDataSource
supports natively through the EnableCaching, CacheExpirationPolicy, and CacheDuration properties
(see Chapter 11 for a full discussion). Second, realize that most of the time you won’t be binding more
than one control to a data source. That’s because the rich data controls—the GridView, DetailsView, and
FormView—have the ability to present multiple pieces of data in a flexible layout. If you use these
controls, you’ll need to bind only one control, which allows you to avoid this limitation altogether.

It’s also important to note that data binding is performed at the end of your web-page processing,
just before the page is rendered. That means the Page.Load event will fire, followed by any control
events, followed by the Page.PreRender event, and only then will the data binding take place. If you need
to write code that springs into action after the data binding is complete, you can override the
Page.OnPreRenderComplete() method. This method is called immediately after the PreRender stage but
just before the view state is serialized and the actual HTML is rendered.

Parameterized Commands
In the previous example, the complete query was hard-coded. Often, you won’t have this flexibility.
Instead, you’ll want to retrieve a subset of data, such as all the products in a given category or all the
employees in a specific city.

The following example creates a master-details form using parameters. To create this example, you
need two data sources. The first data source provides a list of cities (where various employees live).
Here’s the definition for this SqlDataSource:

<asp:SqlDataSource ID="sourceEmployeeCities" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT DISTINCT City FROM Employees">
</asp:SqlDataSource>

This data source fills a drop-down list with city values:

<asp:DropDownList ID="lstCities" runat="server"
 DataSourceID="sourceEmployeeCities" DataTextField="City" AutoPostBack="True">
</asp:DropDownList>

The list control has automatic postback enabled, which ensures that the page is posted back every
time the list selection is changed, giving your page the chance to update the list of employees based on
the current city selection. The other option is to create a dedicated button (such as Select) next to the list
control for initiating the postback.

When you select a city, the second data source retrieves all the employees in that city. Here’s the
definition for the second data source:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT EmployeeID, FirstName, LastName,
 Title, City FROM Employees WHERE City=@City">
 <SelectParameters>
 <asp:ControlParameter ControlID="lstCities" Name="City"
 PropertyName="SelectedValue" />
 </SelectParameters>
</asp:SqlDataSource>

CHAPTER 9 ■ DATA BINDING

375

The trick here is the query is written using a parameter. Parameters are always indicated with an @
symbol, as in @City. You can define as many symbols as you want, but you must map each parameter to
a value. In this example, the value for the @City parameter is taken from the lstCities.SelectedValue
property. However, you could just as easily modify the ControlParameter tag to bind to another property
or control.

Here’s the minimum required markup for the GridView that shows the employee list (without the
formatting details):

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceEmployees">
</asp:GridView>

When you create a parameterized command in a SqlDataSource tag, the parameters are properly
encoded and SQL injection attacks (as discussed in Chapter 7) aren’t a problem.

■ Note If you look at the downloadable examples for this chapter, you’ll find that the GridView markup is a fair bit
more complex than what’s shown here. That’s because the GridView markup in these examples uses properties
and styles to apply more attractive formatting. The markup also explicitly defines each column in the grid. You’ll

learn how to use these features when you take a closer look at the GridView in Chapter 10. For now, you’ll focus

on the plumbing of the ASP.NET data binding model and the data source controls.

Now when you run the page, you can view the employees in a specific city (see Figure 9-7).

Figure 9-7. Selecting records based on control selection

CHAPTER 9 ■ DATA BINDING

376

Stored Procedures
You can adapt this example to work with a stored procedure just as easily. For example, if you have the
following stored procedure in your database:

CREATE PROCEDURE GetEmployeesByCity
 @City varchar(15)
AS
 SELECT EmployeeID, FirstName, LastName, Title,
 City FROM Employees WHERE City=@City

you can change the sourceEmployees data source, as shown here:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="GetEmployeesByCity" SelectCommandType="StoredProcedure">
 <SelectParameters>
 <asp:ControlParameter ControlID="lstCities" Name="City"
 PropertyName="SelectedValue" />
 </SelectParameters>
</asp:SqlDataSource>

Not only does this give you all the benefit of stored procedures, but it also streamlines the .aspx
portion of your page by removing the actual SQL query, which can be quite lengthy in a real-world page.

More Parameter Types
Parameter values aren’t necessarily drawn from other controls. You can map a parameter to any of the
parameter types defined in Table 9-2.

Table 9-2. Parameter Types

Source Control Tag Description
Control property <asp:ControlParameter> A property from another control on the page.

Query string value <asp:QueryStringParameter> A value from the current query string.

Session state value <asp:SessionParameter> A value stored in the current user’s session.

Cookie value <asp:CookieParameter> A value from any cookie attached to the
current request.

Profile value <asp:ProfileParameter> A value from the current user’s profile (see
Chapter 24).

A form variable <asp:FormParameter> A value posted to the page from an input
control. Usually, you’ll use a control property
instead, but you might need to grab a value
straight from the Forms collection if you’ve
disabled view state for the corresponding
control.

CHAPTER 9 ■ DATA BINDING

377

Source Control Tag Description

A route value <asp:RouteParameter> A value from a routed URL. Routed URLs are
described in the “URL Routing” section in
Chapter 17.

Set programmatically <asp:Parameter> The base class from which all other
parameters inherit. It’s never set
automatically, so it makes sense when you’re
using code to set a parameter value by hand.

You don’t need to remember the different tag names, as Visual Studio provides a handy editor that

lets you create your command and define your parameters (see Figure 9-8). To see this dialog box, click
the ellipsis (...) next to the SelectQuery property in the Properties window. When you type a command
that uses one or more parameters, click the Refresh Parameters button, and the list of parameters will
appear. You can then choose the mapping for each parameter by making a choice in the Parameter
Source box.

Figure 9-8. Configuring parameter binding at design time

CHAPTER 9 ■ DATA BINDING

378

For example, you could split the earlier example into two pages. In the first page, define a list control
that shows all the available cities:

<asp:SqlDataSource ID="sourceEmployeeCities" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT DISTINCT City FROM Employees">
</asp:SqlDataSource>
<asp:ListBox ID="lstCities" runat="server" DataSourceID="sourceEmployeeCities"
 DataTextField="City"></asp:ListBox>

Now, you’ll need a little extra code to copy the selected city to the query string and redirect the page.
Here’s a button that does just that:

protected void cmdGo_Click(object sender, EventArgs e)
{
 Response.Redirect("QueryParameter2.aspx?city=" + lstCities.SelectedValue);
}

Finally, the second page can bind the GridView according to the city value that’s supplied in the
query string:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="GetEmployeesByCity" SelectCommandType="StoredProcedure">
 <SelectParameters>
 <asp:QueryStringParameter Name="City" QueryStringField="city" />
 </SelectParameters>
</asp:SqlDataSource>

Once again, the GridView markup is exceedingly straightforward:

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceEmployees">
</asp:GridView>

Sometimes you’ll need to set a parameter with a value that isn’t represented by any of the parameter
classes in Table 9-2. Or, you might want to modify a parameter value before using it. In both of these
scenarios, you need to use code to set the parameter value just before the database operation takes place.

The SqlDataSource has a number of events that are designed for this purpose. For example, you can
fill in parameters for a select operation by reacting to the Selecting event. Similarly, you can use the
Updating, Deleting, and Inserting events when updating, deleting, or inserting a record. In these event
handlers, you can access the command that’s about to be executed through the
SqlDataSourceSelectingEventArgs.Command property, and modify its parameter values by hand. Here’s
an example:

protected void sourceEmployee_Selecting(object sender,
 SqlDataSourceSelectingEventArgs e)
{
 // Only keep the first three characters of the city name,
 e.Command.Parameters["@City"].Value ==
 Request.QueryString["city"].Substring(0, 3);
}

mailto:Parameters["@City"].Value

CHAPTER 9 ■ DATA BINDING

379

Note that when you look up a parameter in the Parameters collection, you need to add the @
character at the beginning of the parameter name.

Handling Errors
When you deal with an outside resource such as a database, you need to protect your code with a basic
amount of error-handling logic. Even if you’ve avoided every possible coding mistake, you still need to
defend against factors outside your control—for example, if the database server isn’t running or the
network connection is broken.

You can count on the SqlDataSource to properly release any resources (such as connections) if an
error occurs. However, the underlying exception won’t be handled. Instead, it will bubble up to the page
and derail your processing. As with any other unhandled exception, the user will receive a cryptic error
message or an error page. This design is unavoidable—if the SqlDataSource suppressed exceptions, it
could hide potential problems and make debugging extremely difficult. However, it’s a good idea to
handle the problem in your web page and show a more suitable error message.

To do this, you need to handle the data source event that occurs immediately after the error. If
you’re performing a query, that’s the Selected event. If you’re performing an update, delete, or insert
operation, you would handle the Updated, Deleted, or Inserted events instead. (If you don’t want to offer
customized error messages, you could handle all these events with the same event handler.)

In the event handler, you can access the exception object through the
SqlDataSourceStatusEventArgs.Exception property. If you want to prevent the error from spreading any
further, simply set the SqlDataSourceStatusEventArgs.ExceptionHandled property to true. Then, make
sure you show an appropriate error message on your web page to inform the user that the command was
not completed.

Here’s an example:

protected void sourceEmployees_Selected(object sender,
 SqlDataSourceStatusEventArgs e)
{
 if (e.Exception != null)
 {
 // Mask the error with a generic message (for security purposes).
 lblError.Text = "An exception occurred performing the query.";

 // Consider the error handled.
 e.ExceptionHandled = true;
 }
}

Updating Records
Selecting data is only half of the equation. The SqlDataSource can also apply changes. The only catch is
that not all controls support updating. For example, the humble ListBox doesn’t provide any way for the
user to edit values, delete existing items, or insert new ones. Fortunately, ASP.NET’s rich data controls—
including the GridView, DetailsView, and FormView—all have editing features that you can switch on.

The first step is to define suitable commands for the operations you want to perform, such as
inserting (InsertCommand), deleting (DeleteCommand), and updating (UpdateCommand). If you know
that you will allow the user to perform only certain operations (such as updates) but not others (such as
insertions and deletions), you can safely omit the commands you don’t need.

You define the InsertCommand, DeleteCommand, and UpdateCommand in the same way you
define the command for the SelectCommand property—by using a parameterized query or stored

CHAPTER 9 ■ DATA BINDING

380

procedure call. For example, here’s a SqlDataSource that defines a basic update command that updates
every field:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT EmployeeID, FirstName, LastName, Title, City FROM Employees"
 UpdateCommand="UPDATE Employees SET FirstName=@FirstName, LastName=@LastName,
 Title=@Title, City=@City FROM Employees WHERE EmployeeID=@EmployeeID">
</asp:SqlDataSource>

In this example, the parameter names aren’t chosen arbitrarily. As long as you give each parameter
the same name as the field it affects and preface it with the @ symbol (so FirstName becomes
@FirstName), you don’t need to define the parameter. That’s because the ASP.NET data controls
automatically submit a collection of parameters with the new values before triggering the update. Each
parameter in the collection uses this naming convention.

To try this, create a page with the SqlDataSource shown previously and a linked GridView control.
To enable editing, set the GridView.AutoGenerateEditButton property to true. A new column appears at
the left side of the grid. The GridView uses this column to show links for controlling the editing process.

When you run the page and the GridView is bound and displayed, the edit column shows a link
named Edit next to every record. When clicked, this link switches the corresponding row into edit mode.
All fields are changed to text boxes (with the exception of read-only fields), and the Edit link is replaced
with an Update link and a Cancel link (see Figure 9-9).

The Cancel link returns the row to its initial state. The Update link passes the values to the
SqlDataSource.UpdateParameters collection (using the field names) and then triggers the
SqlDataSource.Update() method to apply the change to the database. Once again, you don’t have to
write any code.

■ Note The GridView is an extremely flexible control. Templates, one of its many features, allow you to define the
controls and markup used when editing a record. This is handy if you want to enable editing through drop-down
lists, add validation controls, or just fine-tune the appearance of a row in edit mode. You’ll consider the GridView’s

support for templates in Chapter 10.

CHAPTER 9 ■ DATA BINDING

381

Figure 9-9. Editing with the GridView

Strict Concurrency Checking
The update command in the previous example matches the record based on its ID. The problem with
this approach is that the update command updates every field indiscriminately—it has no way to
distinguish between fields that are and aren’t changed. As a result, you can end up obliterating the
changes of another user, if they are made between the time the page is requested and the time the page
is updated.

For example, imagine Chen and Lucy are viewing the same table of employee records. Lucy
commits a change to the address of an employee. A few seconds later, Chen commits a name change to
the same employee record. However, that update command not only applies the new name, but it also
overwrites every field with the values in Chen’s page—effectively replacing the address Lucy entered
with the old address.

To defend against this sort of problem, you can enforce stricter concurrency checking. One way to
do this is to create a command that performs the update only if every field matches, using a more
stringent WHERE clause. Here’s what that command would look like:

UpdateCommand="UPDATE Employees SET FirstName=@FirstName, LastName=@LastName,
Title=@Title, City=@City FROM Employees WHERE EmployeeID=@original_EmployeeID AND
FirstName=@original_FirstName AND LastName=@original_LastName AND
Title=@original_Title AND City=@original_City"

There’s an important change in this command. The WHERE clause doesn’t attempt to match the
parameters named @FirstName, @LastName, and so on, because these parameters reflect the current
values (which may not match the original values). Instead, it uses the parameter named
@original_FirstName, @original_LastName, and so on. This raises an obvious question—where do these
parameter values come from? In order to get access to these original values, you need to take first steps.

First, you need to tell the SqlDataSource that you need access to the original values by setting the
SqlDataSource.ConflictDetection property to ConflictOptions.CompareAllValues instead of
ConflictOptions.OverwriteChanges (the default).

The second step is to tell the SqlDataSource how to name the parameters that hold the original
values. By default, the original values are given the same parameter names as the changed values. In

CHAPTER 9 ■ DATA BINDING

382

fact, they overwrite the original parameter values. To prevent this behavior, you need to set the
SqlDataSource.OldValuesParameterFormatString property. This property takes a string that has a {0}
placeholder, where {0} indicates the original parameter name. For example, if you set
OldValuesParameterFormatString to original_{0} (which is a common convention), the parameters
that have the original values are given the prefix original_. For example, @FirstName becomes
@original_FirstName and @LastName becomes @original_LastName, as in the update command
shown previously.

Now that you understand these details, you can create a fully configured SqlDataSource that
implements this technique:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand=
"SELECT EmployeeID, FirstName, LastName, Title, City FROM Employees"
 ConflictDetection="CompareAllValues"
 OldValuesParameterFormatString="original_{0}"
 UpdateCommand="UPDATE Employees SET FirstName=@FirstName, LastName=@LastName,
Title=@Title, City=@City FROM Employees WHERE EmployeeID=@original_EmployeeID
AND FirstName=@original_FirstName AND LastName=@original_LastName AND
Title=@original_Title AND City=@original_City">
</asp:SqlDataSource>

At the end of Chapter 10 you’ll see an example that shows how you can implement a more
sophisticated concurrency handling strategy that warns you when a change will conflict, and gives you
the option of applying it or canceling it.

■ Tip Commands that compare values are often inefficient, because they require more data to be sent over the

network and mean more comparison work for the database. A better solution is to use a timestamp field (which

you can hide in your bound data control). If the row is unchanged, the timestamp will always match.

Incidentally, there’s one other way to gain access to original values—by setting the
DataKeyNames property of the bound control. For example, if you set GridView.DataKeyNames to
EmployeeID, you’ll have access to both the current and original value for EmployeeID (although you’ll
still need to use the OldValuesParameterFormatString if you want to distinguish between them).
However, the DataKeyNames property is really meant to indicate the fields that compose the primary
key, and it’s used to gain access to other features in the bound data control, such as selection. If you
want to keep track of old values for the purpose of concurrency checking, you should always use the
SqlDataSource.ConflictDetection property. You’ll see the DataKeyNames property in action in
Chapter 10.

Updating with Stored Procedures
The update example works just as readily with stored procedures. In this case, you simply supply the
stored procedure name for the UpdateCommand:

UpdateCommand="UpdateEmployee" UpdateCommandType="StoredProcedure"

CHAPTER 9 ■ DATA BINDING

383

However, this has a catch. As you’ve learned, the parameter names are based on the field names. If
the stored procedure uses the same parameter names, the update works without a hitch. However, if the
stored procedure parameter names are slightly different, the update will fail.

■ Tip The order of parameters is irrelevant. Only the names are important. The SqlDataSource does a case-

insensitive comparison, so your parameters can have different capitalization.

For example, consider an UpdateEmployee stored procedure that takes parameters like this:

CREATE PROCEDURE UpdateEmployee
 @EmployeeID int,
 @TitleOfCourtesy varchar(25),
 @Last varchar(20),
 @First varchar(10)
AS
...

In this example, the FirstName and LastName fields map to parameters named @First and @Last.
Unfortunately, there’s no declarative way to correct this problem and map these parameters to their
correct names. Instead, you need to define the new parameters and write a little custom code.

The first step is to add two parameters to the SqlDataSource.UpdateParameters collection.
Unfortunately, you can’t create these while the update is in progress. Instead, you need to add them to
the SqlDataSource tag:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>" SelectCommand=
 "SELECT EmployeeID, FirstName, LastName, TitleOfCourtesy FROM Employees"
 UpdateCommand="UpdateEmployee" UpdateCommandType="StoredProcedure"
 OnUpdating="sourceEmployees_Updating" >
 <UpdateParameters>
 <asp:Parameter Name="First" Type="String" />
 <asp:Parameter Name="Last" Type="String" />
 </UpdateParameters>
</asp:SqlDataSource>

Note that the parameter names don’t include the @ symbol when you define them in the
SqlDataSource tag.

The next step is to react to the SqlDataSource.Updating event, which fires immediately before the
update is committed. You can then set the value for the @First and @Last parameters and remove the
@FirstName and @LastName parameters from sight. Here’s the code you need:

protected void sourceEmployees_Updating(object sender,
 SqlDataSourceCommandEventArgs e)
{
 e.Command.Parameters["@First"].Value = e.Command.Parameters["@FirstName"].Value;
 e.Command.Parameters["@Last"].Value = e.Command.Parameters["@LastName"].Value;
 e.Command.Parameters.Remove(e.Command.Parameters["@FirstName"]);
 e.Command.Parameters.Remove(e.Command.Parameters["@LastName"]);
}

mailto:Parameters["@First"].Value
mailto:Parameters["@FirstName"].Value
mailto:Parameters["@Last"].Value
mailto:Parameters["@LastName"].Value

CHAPTER 9 ■ DATA BINDING

384

This represents a fairly typical scenario in which the no-code data binding won’t work. Overall, if
you can design your stored procedures and classes to work with the data source controls, you’ll avoid
writing a great deal of code. On the other hand, if you introduce the data source controls to an existing
application with a fixed database schema and database components, it may take a fair bit of extra code
to fit these pieces together.

Deleting Records
Deleting a record is similar to updating it. You begin by creating a DeleteCommand that removes the
record you want to delete. You can match the record using its primary key, or you can use the match-all-
values approach described previously (in which case you must set the SqlDataSource.ConflictDetection
property to ConflictOptions.CompareAllValues).

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand=
"SELECT EmployeeID, FirstName, LastName, Title, City FROM Employees"
 DeleteCommand="DELETE Employees WHERE EmployeeID=@EmployeeID ">
</asp:SqlDataSource>

You also need to make minor adjustments to the GridView. First, set the
GridView.AutoGenerateDeleteButton property to true to add a column that shows a link named Delete
next to each record. (Alternatively, you can explicitly add a CommandField column to the GridView and
set its ShowDeleteButton property to true, which accomplishes the same thing. You’ll learn how to
explicitly define GridView columns in Chapter 10.)

If you’re using the standard ConflictDetection (ConflictOptions.OverwriteChanges), you also need
to set the GridView.DataKeyNames with a comma-separated list of the field names that make up the
primary key. If you don’t remember to take this step, the GridView will not pass these parameters to the
SqlDataSource, and the SqlDataSource won’t be able to find the record it needs to delete.

Here’s the minimum markup required to create a GridView that uses this SqlDataSource to allow
record deletion:

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceEmployees"
 AutoGenerateDeleteButton="true" DataKeyNames="EmployeeID">
</asp:GridView>

Inserting Records
The GridView supports editing and deleting records, but it doesn’t support insertion. However, the
DetailsView and FormView do support insertion. The basic process is the same. Make sure you’ve
defined the InsertCommand, as shown here:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand=
"SELECT EmployeeID, FirstName, LastName, Title, City FROM Employees"
 InsertCommand="INSERT INTO Employees (FirstName,LastName,Title,City)
VALUES (@FirstName,@LastName,@Title,@City)">
</asp:SqlDataSource>

CHAPTER 9 ■ DATA BINDING

385

You don’t need to worry about the ConflictDetection and OldValuesParameterFormatString
properties, because they have no effect when inserting records.

Next, you can configure the bound data control to support insertion. With the DetailsView, you
simply need to set AutoGenerateInsertButton to true, as shown here:

<asp:DetailsView ID="DetailsView1" runat="server"
 DataSourceID="sourceEmployees" AutoGenerateInsertButton="true">
</asp:DetailsView>

Alternatively, you can add a CommandField to the DetailsView and set its ShowInsertButton to true.
You can also define the fields in the DetailsView explicitly, which gives you the opportunity to set
InsertVisible to false to hide fields that don’t apply to insertion operations (like automatically generated
identity values or timestamps). You’ll also learn much more about the DetailsView in Chapter 10.

Additionally, you can set the DefaultMode property to Insert to start your DetailsView in insert
mode, which is useful if you’re combining a GridView and a DetailsView on one page, and using the
GridView to show the current list of records and the DetailsView to allow the user to add new records.
You’ll see a page that uses this technique with the ObjectDataSource, shown later in Figure 9-12.

■ Tip When performing record insertions, it’s a good idea to handle the SqlDataSource.Inserted event and check
for errors by examining the SqlDataSourceStatusEventArgs.Exception property. Potential errors include inserting

data that violates a database constraint or failing to supply a value for a required field.

Disadvantages of the SqlDataSource
As you’ve seen, when you use the SqlDataSource, you can often avoid writing any data access code.
However, you also sacrifice a fair bit of flexibility. Here are the most significant disadvantages:

Data access logic embedded in the page: To create a SqlDataSource control, you need to hard-code
the SQL statements in your web page. This means you can’t fine-tune your query without modifying
your web page. In an enterprise application, this limitation isn’t acceptable, as it’s common to revise
the queries after the application is deployed in response to profiling, indexes, and expected loads.

■ Tip You can improve this situation a fair bit by restricting your use of the SqlDataSource to stored procedures.
However, in a large-scale web application, the data access code will be maintained, tested, and refined separately
from the business logic (and it may even be coded by different developers). The SqlDataSource just doesn’t give

you that level of flexibility.

Maintenance in large applications: Every page that accesses the database needs its own set of
SqlDataSource controls. This can turn into a maintenance nightmare, particularly if you have
several pages using the same query (each of which requires a duplicate instance of the
SqlDataSource). In a component-based application, you’ll use a higher-level model. The web pages
will communicate with a data access library, which will contain all the database details.

CHAPTER 9 ■ DATA BINDING

386

Lack of flexibility: Every data access task requires a separate SqlDataSource. If you want to provide a
user with multiple ways to view or query data, this can swamp your page with data source objects,
one for each command variant. This can get complicated—fast.

Inapplicability to other data tasks: The SqlDataSource doesn’t properly represent some types of
tasks. The SqlDataSource is intended for data display and data editing scenarios. However, this
model breaks down if you need to connect to the database and perform another task, such as
placing a shipment request into an order pipeline or logging an event. In these situations, you’ll
need custom database code. It will simplify your application if you have a single database library
that encapsulates these tasks along with data retrieval and updating operations.

■ Note In fact, in a well-abstracted three-tier application, your web page may call a method such as
Business.PlaceOrder() without worrying about whether this operation involves saving an order record in a

database, sending a message to a message queue, communicating with a remote component, or using a

combination of all these tasks.

To get around these limitations, you should consider the ObjectDataSource. The ObjectDataSource
allows you to bind your page to a custom data access component. Best of all, you get almost all the same
frills, such as design-time data binding and no need to write code in your web page.

The ObjectDataSource
The ObjectDataSource allows you to create a declarative link between your web-page controls and a
data access component that queries and updates data. The ObjectDataSource is remarkably flexible and
can work with a variety of different components. However, to use it, your data access class must conform
to a few rules:

• All the logic must be contained in a single class. (If you want to use different
classes for selecting and updating your data, you’ll need to wrap them in another
higher-level class.)

• It must provide the query results when a single method is called.

• The query results are several records, which can be represented as a collection, an
array, a DataSet, a DataTable, a DataView, or a list object that implements
IEnumerable. Each record should be a custom object that exposes all its data
through public properties.

• You can use instance methods or static methods. However, if you use instance
methods the class must have a default, no-argument constructor so that the
ObjectDataSource can create an instance when needed.

• It must be stateless. That’s because the ObjectDataSource will create an instance
only when needed and destroy it at the end of every request, if you’re using
instance methods. (And if you’re using static methods, your class should always be
stateless, just to avoid problems if more than one ASP.NET thread is using the
same methods at the same time.)

CHAPTER 9 ■ DATA BINDING

387

You can work around many of these rules by handling ObjectDataSource events and writing custom
code. However, if you want your data access class to plug into the data-binding model seamlessly
without extra work, you should observe these guidelines.

Selecting Records
For example, consider the data-bound page shown earlier in Figure 9-6. You can create the same page
using the custom data access component developed in Chapter 8. You can refer to Chapter 8 to see the
full code, which has the following structure:

public class EmployeeDB
{
 public EmployeeDetails GetEmployee(int EmployeeID) { ... }
 public List<EmployeeDetails> GetEmployees() { ... }

 public int InsertEmployee(EmployeeDetails emp) { ... }
 public void DeleteEmployee(int employeeID) { ... }
 public void UpdateEmployee(int employeeID, string firstName,
 string lastName, string titleOfCourtesy) {... }

 public int CountEmployees() { ... }
}

The first step to use this class in your page is to define the ObjectDataSource and indicate the name
of the class that contains the data access methods. You do this by specifying the fully qualified class
name with the TypeName property:

<asp:ObjectDataSource ID="sourceEmployees" runat="server"
 TypeName="DatabaseComponent.EmployeeDB" ... />

■ Note For this to work, the DatabaseComponent.EmployeeDB class must exist in the App_Code folder or be

compiled in an assembly in the Bin folder.

Once you’ve attached the ObjectDataSource to a class, the next step is to point it to the methods it
can use to select and update records.

The ObjectDataSource defines SelectMethod, DeleteMethod, UpdateMethod, and InsertMethod
properties that you use to link your data access class to various tasks. Each property takes the name of
the method in the data access class. In this example, you simply need to enable querying, so you need to
set the SelectMethod property:

<asp:ObjectDataSource ID="sourceEmployees" runat="server"
 TypeName="DatabaseComponent.EmployeeDB" SelectMethod="GetEmployees" />

Remember, the GetEmployees() method returns a collection of EmployeeDetails objects. These
objects fit the criteria of the ObjectDataSource—they provide all the appropriate record data through
public properties.

CHAPTER 9 ■ DATA BINDING

388

Once you’ve set up the ObjectDataSource, you can bind your web-page controls in the same way
you do with the SqlDataSource. You can even use the same drop-down lists in the Properties window,
provided you click the Refresh Schema link in the ObjectDataSource smart tag first. When you click
Refresh Schema, Visual Studio retrieves the property names and data types by reflecting on the
EmployeeDetails class.

Here’s the complete page code, without the formatting details for the GridView:

<asp:ObjectDataSource ID="sourceEmployees" runat="server"
 TypeName="DatabaseComponent.EmployeeDB" SelectMethod="GetEmployees"/>
<asp:ListBox ID="ListBox1" runat="server" DataSourceID="sourceEmployees"
 DataTextField="EmployeeID"></asp:ListBox>

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceEmployees">
</asp:GridView>

Figure 9-10 shows the result.

Figure 9-10. Binding to a data access class

From the user’s perspective, this example is equivalent to the SqlDataSource page shown in Figure
9-6. The only difference is that by default, the columns are shown in the order that the properties are
declared in the EmployeeDetails class, whereas the SqlDataSource shows them in the order they’re listed
in the query. You can easily change the ordering of columns by customizing the GridView.

CHAPTER 9 ■ DATA BINDING

389

The apparent similarities conceal some real behind-the-scenes differences. In this example, the web
page doesn’t require any hard-coded SQL details. Instead, all the work is handed off to the EmployeeDB
class. When you run the page, the ListBox and GridView will request data from the ObjectDataSource,
which will call the EmployeeDB.GetEmployees() method to retrieve the data (once for each control).
This data is then bound and displayed in both controls, with no code required.

■ Note Remember, the EmployeeDB class uses error-handling blocks to make sure connections are properly
closed, but it doesn’t catch exceptions. (Best design practices are to let the exception notify the web page, which
can then decide how best to inform the user.) You can handle errors with the ObjectDataSource in the same way

you handle them with the SqlDataSource—first, handle the Selected, Inserted, Updated, or Deleted event; second,
check for an exception; and third, mark it as handled. For more information, see the “Handling Errors” section

earlier in the chapter.

Using a Parameterized Constructor
A key part of extending the data source controls takes place through event handling. For example, by
default the ObjectDataSource is able to create your custom data access class only if it provides a zero
no-argument constructor. However, you can extend the ObjectDataSource to work with data access
classes that don’t meet this requirement by writing code that reacts to the
ObjectDataSource.ObjectCreating event.

The current EmployeesDB class retrieves the database connection string directly from the
web.config file, as shown here:

private string connectionString;

public EmployeeDB()
{
 connectionString =
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;
}

However, you might want to add another constructor that lets the web page supply a specific
connection string of its choosing:

public EmployeeDB(string connectionString)
{
 this.connectionString = connectionString;
}

To force the ObjectDataSource to use this constructor, you need to handle the ObjectCreating event,
create the EmployeeDB instance yourself, and then assign it to the data source using the
ObjectDataSourceEventArgs:

protected void sourceEmployees_ObjectCreating(object sender,
 ObjectDataSourceEventArgs e)
{
 e.ObjectInstance = new DatabaseComponent.EmployeeDB("...");
}

CHAPTER 9 ■ DATA BINDING

390

Clearly, you could perform more complex initialization in the ObjectCreating event. For example,
you could call an initialization method, choose to instantiate one of several derived classes, and so on.

■ Tip The data source controls expose a rich event model. Events tend to fall into two categories. Events ending
in ing such as ObjectCreating occur while a task is underway and give you the chance to cancel or customize
what’s happening. Events ending in ed such as ObjectCreated occur when the task is finished and are suitable for

logging the action, synchronizing other controls, and handling errors.

You can also react to the ObjectDisposing event to perform cleanup. The ObjectDisposing event is
fired just before the data access object is released (before the page is served). Usually, you won’t need to
use the ObjectDisposing event because a better alternative exists—place your cleanup code in a
dedicated Dispose() method inside your data access class. As long as the data access class implements
IDisposable, the ObjectDataSource will automatically call your Dispose() method. (To get a painless
implementation of IDisposable for free, just derive your data access class from the
System.ComponentModel.Component class and override the Dispose() method.)

Using Method Parameters
Earlier, you saw how you could use the SqlDataSource to execute parameterized commands. The
same feat is possible with the ObjectDataSource, if you provide a suitable select method that accepts
one or more parameters. You can then map each parameter to a control value, query string argument,
and so on.

To try this, you can use the EmployeeDB.GetEmployee() method, which retrieves a single employee
by ID number. Here’s the method declaration:

public EmployeeDetails GetEmployee(int employeeID)
{ ... }

The test page provides a list with all the employee IDs. This list control uses the GetEmployees()
method through an Object data source:

<asp:ObjectDataSource ID="sourceEmployeesList" runat="server"
 SelectMethod="GetEmployees" TypeName="DatabaseComponent.EmployeeDB"/>
<asp:ListBox ID="lstEmployees" runat="server" DataSourceID="sourceEmployeesList"
 DataTextField="EmployeeID" AutoPostBack="True"/>

When you choose an ID, the page posts back and uses a second data source to call GetEmployee().
The employeeID value is taken from the selected item in the list:

<asp:ObjectDataSource ID="sourceEmployee" runat="server"
 SelectMethod="GetEmployee" TypeName="DatabaseComponent.EmployeeDB">
 <SelectParameters>
 <asp:ControlParameter ControlID="lstEmployees" Name="employeeID"
 PropertyName="SelectedValue" />
 </SelectParameters>
</asp:ObjectDataSource>

CHAPTER 9 ■ DATA BINDING

391

The name you define for the parameter must match the parameter name you use in the method
exactly. When the ObjectDataSource calls the method, it uses reflection to examine the method, and it
examines the parameter names to determine the order of arguments. This system allows you to use
overloaded methods, because the ObjectDataSource is able to correctly identify the overload you want
based on the number of parameters you define and their names.

■ Tip The data types are not used in the matching process—instead, the ObjectDataSource will attempt to
convert the parameter value into the data type of the matching parameter using the appropriate type converter for

that data type. If this process fails, an exception is raised.

Now, the single employee record returned from GetEmployee() is displayed in another rich data
control—the DetailsView. By default, the DetailsView creates a basic table with one row for each field or
property in the data item (assuming the AutoGenerateRows property is true, which is its default value).
Here’s a basic declaration for the DetailsView:

<asp:DetailsView ID="DetailsView1" runat="server"
 DataSourceID="sourceEmployees" />

You have one more detail to fill in. The first time the page is requested, there won’t be any selected
value in the lstEmployees control. However, the DetailsView will still try to bind itself, so the
ObjectDataSource will call GetEmployee(). The employeeID parameter is null, but the actual value that’s
passed is 0, because regular integers aren’t nullable. When the GetEmployee() method executes the
query, it doesn’t find a matching record with an employeeID of 0. This is an error condition, and an
exception is thrown.

You could solve this problem by revising the GetEmployee() method to return null in this situation.
However, it makes more sense to catch the binding attempt and explicitly cancel it when there’s no
employeeID parameter. You can do this by handling the ObjectDataSource.Selecting event and looking
for the employeeID parameter in the ObjectDataSourceSelectingEventArgs.InputParameters collection,
which has every parameter you’re using indexed by name.

protected void sourceEmployee_Selecting(object sender,
 ObjectDataSourceSelectingEventArgs e)
{
 if (e.InputParameters["employeeID"] == null) e.Cancel = true;
}

This is the only code you need to write for the page. Figure 9-11 shows the page in action.

CHAPTER 9 ■ DATA BINDING

392

Figure 9-11. Binding to a single employee record

Updating Records
The ObjectDataSource provides the same type of support for updatable data binding as the
SqlDataSource. The first step is to specify the UpdateMethod, which needs to be a public instance
method in the same class:

<asp:ObjectDataSource ID="sourceEmployees" runat="server"
 TypeName="DatabaseComponent.EmployeeDB"
 SelectMethod="GetEmployees" UpdateMethod="UpdateEmployee" />

The challenge is in making sure the UpdateMethod has the right signature. As with the
SqlDataSource, updates, inserts, and deletes automatically receive a collection of parameters from the
linked data control. These parameters have the same names as the corresponding class properties.

To understand how this works, it helps to consider a basic example. Assume you create a grid that
shows a list of EmployeeDetails objects. You also add a column with edit links. When the user commits
an edit, the GridView fills the ObjectDataSource.UpdateParameters collection with one parameter for
each property of the EmployeeDetails class, including EmployeeID, FirstName, LastName, and
TitleOfCourtesy. Then, the ObjectDataSource searches for a method named UpdateEmployee() in the
EmployeeDB class. This method must have the same parameters, with the same names.

CHAPTER 9 ■ DATA BINDING

393

That means this method is a match:

public void UpdateEmployee(int employeeID, string firstName, string lastName,
 string titleOfCourtesy)
{ ... }

This method is not a match, because the names don’t match exactly:

public void UpdateEmployee(int id, string first, string last,
 string titleOfCourtesy)
{ ... }

This is not a match, because there’s an additional parameter:

public void UpdateEmployee(int employeeID, string firstName, string lastName,
 string titleOfCourtesy, bool useOptimisticConcurrency)
{ ... }

The method matching algorithm is not case-sensitive, and it doesn’t consider the order or data type
of the parameters. It simply tries to find a method with the right number of parameters and the same
names. As long as that method is present, the update can be committed automatically, without any
custom code.

Updating with a Data Object
One problem with the UpdateEmployee() method shown in the previous example is that the method
signature is a little cumbersome—you need one parameter for each property in the data object. Seeing
as you already have a definition for the EmployeeDetails class, it makes sense to create an
UpdateEmployee() method that uses it and gets all its information from an EmployeeDetails object.
Here’s an example:

public void UpdateEmployee(EmployeeDetails emp)
{ ... }

The ObjectDataSource supports this approach. However, to use it, you must set the
DataObjectTypeName to the full name of the class you want to use. Here’s how it works:

<asp:ObjectDataSource ID="sourceEmployees" runat="server"
 TypeName="DatabaseComponent.EmployeeDB"
 DataObjectTypeName="DatabaseComponent.EmployeeDetails"
 ... />

Once this is in place, the ObjectDataSource will match only the UpdateMethod, DeleteMethod, or
InsertMethod if it has a single parameter that accepts the type specified in DataObjectTypeName.
Additionally, your data object must follow some rules:

• It must provide a default (zero-argument) constructor.

• For every parameter, there must be a property with the same name. (Public
variables are ignored.)

• All properties must be public and writable.

CHAPTER 9 ■ DATA BINDING

394

You’re free to add code to your data object class. For example, you can add methods, constructors,
validation, and event-handling logic in your property procedures, and so on.

Dealing with Nonstandard Method Signatures
Sometimes you may run into a problem in which the property names of your data class (for example,
EmployeeDetails) don’t exactly match the parameter names of your update method (for example, the
EmployeeDB.UpdateEmployee() method). If all you need is a simple renaming job, you need to perform
the task that was described in the “Updating with Stored Procedures” section earlier, although the
syntax is slightly different.

First, you define the additional parameters you need, with the correct names. For example, maybe
you need to rename the EmployeeDetails.EmployeeID property to a parameter named id in the update
method. Here’s the new parameter you need:

<asp:ObjectDataSource ID="sourceEmployees" runat="server"
 TypeName="DatabaseComponent.EmployeeDB" SelectMethod="GetEmployees"
 UpdateMethod="UpdateEmployee" OnUpdating="sourceEmployees_Updating" >
 <UpdateParameters>
 <asp:Parameter Name="id" Type="Int32" />
 </UpdateParameters>
</asp:ObjectDataSource>

Second, you react to the ObjectDataSource.Updating event, setting the value for these parameters
and removing the ones you don’t want:

protected void sourceEmployees_Updating(object sender,
 ObjectDataSourceMethodEventArgs e)
{
 e.InputParameters["id"] = e.InputParameters["EmployeeID"];
 e.InputParameters.Remove("EmployeeID");
}

■ Tip The same approach used here for updating applies when you’re performing inserts and deletes. The only

difference is that you handle the Inserting and Deleting events instead.

You can use a similar approach to add extra parameters. For example, if your method requires a
parameter with information that’s not contained in the linked data control, just define it as one of the
UpdateParameters and then set the value when the ObjectDataSource.Updating event fires.

If you’re more ambitious, you can even decide to programmatically point the ObjectDataSource to a
different update method in the same class:

sourceEmployees.UpdateMethod = "UpdateEmployeeStrict";

You’ll use this approach to solve a common problem in the section “The Limits of the Data Source
Controls” later in this chapter.

In fact, to get really adventurous you could set the ConflictDetection property to
ConflictOptions.CompareAllValues so that the old and new values are submitted in the
UpdateParameters collection. You can then examine these parameters, determine what fields have

CHAPTER 9 ■ DATA BINDING

395

changed, and call a different method (with different parameters accordingly). Unfortunately, this isn’t a
zero-code scenario, and you might end up writing some awkward code for updating and removing
parameters. At worst, this code can become messy and difficult to maintain. Still, it gives you an extra
layer of flexibility that you may need in some situations.

Handling Identity Values in an Insert
So far, all the examples you’ve seen have used parameters to supply values to an update operation.
However, you can also create a parameter to return a result. With the SqlDataSource, you can use this
option to get access to an output parameter. With the ObjectDataSource, you can use this technique to
capture the return value.

Figure 9-12 shows an example with a page that includes two data-bound controls. The DetailsView
(at the top) allows the user to insert records. The GridView (at the bottom) shows all the records that
currently exist and allows the user to delete them. Both records are bound to the same
ObjectDataSource.

Figure 9-12. Inserting records (with a DetailsView) and deleting records (with a GridView)

CHAPTER 9 ■ DATA BINDING

396

Here’s the stripped-down markup for the data controls, without any formatting details:

<asp:DetailsView ID="detailsInsertEmployee" runat="server"
 DataSourceID="sourceEmployees" DefaultMode="Insert"
 AutoGenerateInsertButton="true" />

<asp:Label ID="lblConfirmation" runat="server"
 EnableViewState="false" />

<asp:GridView ID="gridEmployeeList" runat="server"
 DataSourceID="sourceEmployees" AutoGenerateDeleteButton="true" />

When inserting a record, the ObjectDataSource calls the InsertEmployee() method, which adds an
employee record and returns the newly generated unique ID value as an integer:

public int InsertEmployee(EmployeeDetails emp)
{ ... }

You don’t need to use the identity value. As you’ve seen already, linked data controls are bound after
any updates are committed, which ensures that the updated information always appears in the linked
controls. However, you might want to use the identity for another purpose, such as displaying a
confirmation message. To capture this identity value, you need to define a parameter:

<asp:ObjectDataSource ID="sourceEmployees" runat="server"
 TypeName="DatabaseComponent.EmployeeDB"
 DataObjectTypeName="DatabaseComponent.EmployeeDetails"
 SelectMethod="GetEmployees"
 DeleteMethod="DeleteEmployee"
 InsertMethod="InsertEmployee" OnInserted="sourceEmployees_Inserted">
 <InsertParameters>
 <asp:Parameter Direction="ReturnValue" Name="EmployeeID" Type="Int32" />
 </InsertParameters>
</asp:ObjectDataSource>

Now you can retrieve the parameter by responding to the Inserted event, which fires after the insert
operation is finished:

protected void sourceEmployees_Inserted(object sender,
 ObjectDataSourceStatusEventArgs e)
{
 if (e.Exception == null)
 {
 lblConfirmation.Text = "Inserted record " + e.ReturnValue.ToString();
 }
 else
 {
 lblConfirmation.Text = e.Exception.Message;
 e.ExceptionHandled = true;
 }
}

CHAPTER 9 ■ DATA BINDING

397

Identifying Data Classes With Attributes

As you’ve already learned, Visual Studio can help you configure the markup for the ObjectDataSource using
the Configure Data Source Wizard. To start this wizard, select the ObjectDataSource, click the arrow in the
top-right corner to show the smart tag, and then click the Configure Data Source link. The wizard will walk
you through a series of steps, prompting you to pick a data access class and choose the methods you
want to use for selecting, inserting, updating, and deleting data.

When you create a database component, you can take a few simple steps to make sure it works well with
tools like the Configure Data Source Wizard. The trick is to add two specialized attributes from the
System.ComponentModel namespace that clearly identify that your class is designed for use with the
ObjectDataSource.

The first attribute you need is the DataObject attribute. You apply the DataObject attribute directly to the
declaration of your data access class, like this:

[DataObject]
public class EmployeeDB
{ ... }

This indicates that EmployeeDB should be considered a data object—in other words, it’s a data source
that can supply data to the ObjectDataSource control. When you enable the Show Only Data Components
check box option in the Configure Data Source Wizard, you’ll only see classes that use the DataObject
attribute. This is a great way to cut straight to the data access classes in your solution.

Next, you need to add attributes to the methods you use for your data operations. You do this with the
DataObjectMethod attribute, which takes two parameters. The first parameter indicates whether the
method is designed for a select, update, insert, delete, or DataSet fill operation. The second parameter is a
Boolean. If true, it signals that the method is the default for its type of operation. This is useful if you
provide more than one method for a specific type of operation. For example, you might create a data
access class that has several select methods. The default method could be the one that returns an
unfiltered collection of all the records.

Here’s an example that applies the DataObjectMethod attribute:

[DataObjectMethod(DataObjectMethodType.Select, true)]
public List<EmployeeDetails> GetEmployees()
{ ... }

When you’re choosing a method for record selection, the Configure Data Source Wizard will show a list of
all the methods that have a DataObjectMethod attribute with a DataObjectMethodType of Select. The
Configure Data Source Wizard will preselect the one you’ve identified as the default method.

The Limits of the Data Source Controls
As a whole, the data source controls are a remarkable innovation for ASP.NET developers. However,
you’ll still run into situations where you need to step beyond their bounds—or even abandon them
completely. In the following sections, you’ll see how to use the SqlDataSource and ObjectDataSource to
deal with a common design requirement—adding extra items to a data-bound list of information.

CHAPTER 9 ■ DATA BINDING

398

The Problem
Earlier, you saw an example that allowed users to browse a list of cities in different regions using two
linked controls—a DropDownList and a GridView. Best of all, this example could be created using a
SqlDataSource or an ObjectDataSource; either way, it doesn’t require any custom code. Figure 9-9
showed this example earlier.

As convenient as this example is, it presents a problem that’s difficult to fix. Because it’s impossible
to create a drop-down list that doesn’t have a selected item (unless it’s empty), the first city in the list is
automatically selected. Many web applications use a different behavior and add an extra item at the top
of the list with text such as “(Choose a City)”. Selecting this first item has no effect. Additionally, you
might want to add an item that allows you to see every city in a single list. Figure 9-13 shows the result
you want.

Figure 9-13. Data binding with extra options

So, how can you implement this model with data binding? One of the few weaknesses in the data
binding model is that you never explicitly handle or create the data object that’s bound to the control. As
a result, you don’t have the chance to add an extra item. In fact, this example has two challenges—
determining how to add the extra options to the list and reacting when they are selected to override the
automatic query logic.

CHAPTER 9 ■ DATA BINDING

399

Adding the Extra Items
This problem has a few possible workarounds, but none is perfect. You could rewrite the query so that it
returns a result set with an extra hard-coded item. Here’s an example:

SELECT '(Choose a City)' AS City UNION SELECT DISTINCT City FROM Employees

The problem with this approach is that it forces you to add presentation details to the data layer. If
your query is in a dedicated stored procedure (which is always a good idea), it will be difficult to reuse
this query for other purposes, and it will be awkward to maintain the page.

A better choice is to insert this fixed piece of string into the DropDownList programmatically.
However, you can’t take this step before the data binding takes place, because the data binding process
will wipe it from the list. You could override the Page.OnPreRenderComplete() method to perform this
task. However, that raises new complications. For one thing, the GridView will have already been filled
with data based on the initial DropDownList selection. (Even if you solve this problem, there are other
issues related to how changes are detected in the DropDownList selection.)

Ultimately, you’ll need to resort to programmatic data binding. In normal operation, data source
controls are invoked automatically when a linked control needs data or is ready to commit an update.
However, a lesser known fact is that you can also take charge of data source controls programmatically,
by calling methods such as Select(), Update(), Insert(), and Delete(). Of course, it’s up to you to bind the
data you retrieve from Select() and supply the changed data for when committing an update.

To put this into practice, start by removing the DropDownList.DataSourceID property. Instead of
using this property, you’ll bind the control when the page first loads. This gives you the chance to insert
the items immediately, before any other data binding actions take place:

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 // Trigger the sourceEmployeeCities query and bind the results.
 lstCities.DataSource =
 sourceEmployeeCities.Select(DataSourceSelectArguments.Empty);
 lstCities.DataBind();

 // Add the two new items and select the first.
 lstCities.Items.Insert(0, "(Choose a City)");
 lstCities.Items.Insert(1, "(All Cities)");
 lstCities.SelectedIndex = 0;
 }
}

In this example, the data binding for the list control is performed only once, when the page is
requested for the first time. After that, the values in view state are used instead. This code is identical for
the SqlDataSource and the ObjectDataSource. That’s not true for the remainder of the example.

Handling the Extra Options with the SqlDataSource
The next challenge is to intercept clicks on either of the first two items. You can accomplish this by
handling the data source Selecting event, which occurs just before the query is executed. You can then
check the parameters that are about to be supplied and cancel the operation if needed.

CHAPTER 9 ■ DATA BINDING

400

Here’s the complete code:

protected void sourceEmployees_Selecting(object sender,
 SqlDataSourceSelectingEventArgs e)
{
 if ((string)e.Command.Parameters["@City"].Value == "(Choose a City)")
 {
 // Do nothing.
 e.Cancel = true;
 }
 else if ((string)e.Command.Parameters["@City"].Value == "(All Cities)")
 {
 // Manually change the command.
 e.Command.CommandText = "SELECT * FROM Employees";
 }
}

This brute-force approach—changing the command using a hard-coded query—is ugly. Another
approach is to cancel the operation, call another method that returns the appropriate data, and bind
that. However, that forces you to do a fair bit of work manually, and mixing manual and automatic data
binding can quickly get confusing. Unfortunately, no perfect solution exists.

Handling the Extra Options with the ObjectDataSource
The object data source handles the problem better, because it gives you the option to reroute the
command to another method. If you find that a full list of employees is required, you can remove the
City parameter altogether and use a no-parameter method for retrieving all the employees.

Here’s how it works:

protected void sourceEmployees_Selecting(object sender,
 ObjectDataSourceSelectingEventArgs e)
{
 if (e.InputParameters["employeeID"] == null) e.Cancel = true;
 if ((string)e.InputParameters["City"].Value == "(Choose a City)")
 {
 // Do nothing.
 e.Cancel = true;
 }
 else if ((string)e.InputParameters["City"].Value == "(All Cities)")
 {
 // Manually change the method.
 sourceEmployees.SelectMethod = "GetAllEmployees";
 e.InputParameters.Remove("City");
 }
}

This solution isn’t possible with the SqlDataSource, because the command logic is embedded into
the data source control. Still, this approach can easily be abused and lead to code that is difficult to
maintain. For example, you won’t receive any warning if you rename, remove, or modify the parameters
for the GetAllEmployees() method. In this case, you’ll receive an error only when you run the page and
click the (All Cities) option.

mailto:Parameters["@City"].Value
mailto:Parameters["@City"].Value

CHAPTER 9 ■ DATA BINDING

401

Summary
In this chapter, you looked at data binding expressions and the ASP.NET data source controls in detail.
Along the way, you started using the GridView, ASP.NET’s premier rich data control. In the next chapter,
you’ll explore the three most powerful data-bound controls in detail: the GridView, DetailsView, and
FormView. You’ll also learn how they work with a few data source features that this chapter didn’t cover,
such as sorting and filtering.

C H A P T E R 10

■ ■ ■

403

Rich Data Controls

In the previous chapter, you saw how to use the data source controls to perform queries, both with and
without the assistance of a custom data access class. Along the way, you used some of ASP.NET’s rich
data controls, such as the GridView. However, you haven’t delved into all the features these controls
provide.

In this chapter, you’ll take a closer look at the three most powerful data controls that ASP.NET
offers: the GridView, the DetailsView, the FormView, and the ListView. Using these controls, you’ll learn
how to fine-tune formatting and use features such as selection, sorting, filtering, and templates. You’ll
also learn about advanced scenarios such as showing images, calculating summaries, and creating a
master-details list in a single control.

Data Control Changes in ASP.NET 4

ASP.NET 4 adds a few minor refinements to its rich data controls. Here they are, in the order you’ll
encounter them in this chapter:

• Better selection behavior when sorting or paging: The GridView and ListView
controls gain a new property named EnablePersistedSelection. When set to true,
this tells the control to keep the same item selected after a sort or paging
operation. When set to false, these controls revert to their traditional (and
somewhat annoying) behavior, which keeps the same row number selected, even
though it probably isn’t the same item.

• Predictable IDs in data templates: In Chapter 3, you learned how ASP.NET 4
adds a ClientIDMode property that every web control can use to influence how its
client-side ID is generated. This allows you to generate simpler, more predictable
client-side IDs, which makes it easier to write JavaScript and CSS rules that use
these IDs. ASP.NET extends this feature to data controls like the GridView and
ListView with the ClientIDRowSuffix property. You’ll learn more in the section
“Client IDs in Templates.”

• Layout-free ListView controls: The ListView now renders a default
LayoutTemplate if you don’t supply one. This is a minor improvement, as most of
the time you’re using the ListView to get more control of your data layout, and so
you need a custom LayoutTemplate anyway.

CHAPTER 10 ■ RICH DATA CONTROLS

404

The GridView
The GridView is an extremely flexible grid control for showing data in a basic grid consisting of rows and
columns. It includes a wide range of hard-wired features, including selection, paging, sorting, and
editing, and it is extensible through templates. The great advantage of the GridView over the DataGrid is
its support for code-free scenarios. Using the GridView, you can accomplish many common tasks, such
as paging and selection, without writing any code. With the DataGrid, you were forced to handle events
to implement the same features.

You’ve already seen the GridView at work in the previous chapter. However, you haven’t yet
considered how to customize it to provide the exact data display you want.

Defining Columns
The GridView examples you’ve seen so far have set the GridView.AutoGenerateColumns property to
true. When this property is set, the GridView uses reflection to examine the data object and finds all the
fields (of a record) or properties (of a custom object). It then creates a column for each one, in the order
that it finds it.

This automatic column generation is good for creating quick test pages, but it doesn’t give you the
flexibility you’ll usually want. For example, what if you want to hide columns, change their order, or
configure some aspect of their display, such as the formatting or heading text? In all of these cases, you’ll
need to set AutoGenerateColumns to false and define the columns yourself in the <Columns> section of
the GridView control tag.

■ Tip It’s possible to have AutoGenerateColumns set to true and define columns in the <Columns> section. In this

case, the columns you explicitly defined are added before the autogenerated columns. This technique was used in
the previous chapter to create a GridView with automatically generated bound columns and a manually defined

column with edit controls. However, for the most flexibility you’ll usually want to explicitly define every column.

Each column can be any of several different types, as described in Table 10-1. The order of your
column tags determines the right-to-left order of columns in the GridView.

Table 10-1. Column Types

Column Description

BoundField This column displays text from a field in the data source.

ButtonField This column displays a button for each item in the list.

CheckBoxField This column displays a check box for each item in the list. It’s used
automatically for true/false fields (in SQL Server, these are fields that use the
bit data type).

CommandField This column provides selection or editing buttons.

CHAPTER 10 ■ RICH DATA CONTROLS

405

Column Description

HyperLinkField This column displays its contents (a field from the data source or static text) as
a hyperlink.

ImageField This column displays image data from a binary field (providing it can be
successfully interpreted as a supported image format).

TemplateField This column allows you to specify multiple fields, custom controls, and
arbitrary HTML using a custom template. It gives you the highest degree of
control but requires the most work.

The most basic column type is the BoundField, which binds to one field in the data object. For

example, here’s the definition for a single data-bound column that displays the EmployeeID field:

<asp:BoundField DataField="EmployeeID" HeaderText="ID" />

This achieves one improvement over the autogenerated column—the header text has been changed
from EmployeeID to just ID.

When you first create a GridView, the AutoGenerateColumns property is not set (and so the default
value of true is used). When you bind it to a data source control, nothing changes. However, if you click
the Refresh Schema link of the data source control, the AutoGenerateColumns property is flipped to
false, and Visual Studio adds a <asp:BoundField> tag for each field it finds in the data source. This
approach has several advantages:

• You can easily fine-tune your column order, column headings, and other details
by tweaking the properties of your column object.

• You can hide columns you don’t want to show by removing the column tag.
(However, don’t overuse this technique, because it’s better to cut down on the
amount of data you’re retrieving if you don’t intend to display it.)

■ Tip You can also hide columns programmatically. To hide a column, use the Columns collection for the
GridView. For example, setting GridView1.Columns[2].Visible to false hides the third column. Hidden columns are

left out of the rendered HTML altogether.

• Explicitly defined columns are faster than autogenerated columns. That’s because
auto- generated columns force the GridView to reflect on the data source at
runtime.

• You can add extra columns to the mix for selecting, editing, and more.

■ Tip If you modify the data source so that it returns a different set of columns, you can regenerate the GridView
columns. Just select the GridView, and click the Refresh Schema link in the smart tag. This step will wipe out any

custom columns you’ve added (such as editing controls).

CHAPTER 10 ■ RICH DATA CONTROLS

406

Here’s a complete GridView declaration with explicit columns:

<asp:GridView ID="gridEmployees" runat="server" DataSourceID="sourceEmployees"
 AutoGenerateColumns="False">
 <Columns>
 <asp:BoundField DataField="EmployeeID" HeaderText="ID" />
 <asp:BoundField DataField="FirstName" HeaderText="First Name" />
 <asp:BoundField DataField="LastName" HeaderText="Last Name" />
 <asp:BoundField DataField="Title" HeaderText="Title" />
 <asp:BoundField DataField="City" HeaderText="City" />
 </Columns>
</asp:GridView>

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 ProviderName="System.Data.SqlClient" SelectCommand=
"SELECT EmployeeID, FirstName, LastName, BirthDate, Title, City FROM Employees">
</asp:SqlDataSource>

When you explicitly declare a bound field, you have the opportunity to set other properties. Table
10-2 lists these properties.

Table 10-2. BoundField Properties

Property Description

DataField This property indicates the name of the field (for a row) or property (for
an object) of the data item that you want to display in this column.

DataFormatString This property formats the field. This is useful for getting the right
representation of numbers and dates. In previous versions of .NET, it
was necessary to set the HtmlEncode property to false in order to use
the DataFormatString property. This is no longer required.

ApplyFormatInEditMode If true, the format string will be used to format the value even when it
appears in a text box in edit mode. The default is false, which means
only the underlying normal will be used (1143.02 instead of $1,143.02).

HeaderText, FooterText,
and HeaderImageUrl

The first two properties set the text in the header and footer region of
the grid, if this grid has a header (GridView.ShowHeader is true) and
footer (GridView.ShowFooter is true). The header is most commonly
used for a descriptive label such as the field name, while the footer can
contain a dynamically calculated value such as a summary (a
technique demonstrated in the section “Summaries in the GridView”
toward the end of this chapter). To show an image in the header
instead of text, set the HeaderImageUrl property.

ReadOnly If true, the value for this column can’t be changed in edit mode. No edit
control will be provided. Primary key fields are often read-only.

InsertVisible If false, the value for this column can’t be set in insert mode. If you
want a column value to be set programmatically or based on a default
value defined in the database, you can use this feature.

CHAPTER 10 ■ RICH DATA CONTROLS

407

Property Description

Visible If false, the column won’t be visible in the page (and no HTML will be
rendered for it). This property gives you a convenient way to
programmatically hide or show specific columns, changing the overall
view of the data.

SortExpression This property specifies an expression that can be appended to a query
to perform a sort based on this column. It’s used in conjunction with
sorting, as described in the “Sorting the GridView” section.

HtmlEncode If true (the default), all text will be HTML encoded to prevent special
characters from mangling the page. You could disable HTML encoding
if you want to embed a working HTML tag (such as a hyperlink), but
this approach isn’t safe. It’s always a better idea to use HTML encoding
on all values and provide other functionality by reacting to GridView
selection events.

NullDisplayText This property defines the text that will be displayed for a null value. The
default is an empty string, although you could change this to a hard-
coded value, such as “(not specified).”

ConvertEmptyStringToNull If this is true, before an edit is committed, all empty strings will be
converted to null values.

ControlStyle, HeaderStyle,
FooterStyle, and ItemStyle

These properties configure the appearance for just this column,
overriding the styles for the row. You’ll learn more about styles
throughout this chapter.

If you don’t want to configure columns by hand, select the GridView, and click the ellipsis (...) next

to the Columns property in the Properties window. You’ll see a Fields dialog box that lets you add,
remove, and refine your columns (see Figure 10-1).

Now that you understand the underpinnings of the GridView, you’ve still only started to explore its
higher-level features. In the following sections, you’ll tackle these topics:

Formatting: How to format rows and data values

Selecting: How to let users select a row in the GridView and respond accordingly

Sorting: How to dynamically reorder the GridView in response to clicks on a column header

Paging: How to divide a large result set into multiple pages of data, using both automatic and
custom paging code

Templates: How to take complete control of layout, formatting, and editing by defining templates

CHAPTER 10 ■ RICH DATA CONTROLS

408

Figure 10-1. Configuring columns in Visual Studio

Formatting the GridView
Formatting consists of several related tasks. First, you want to ensure that dates, currencies, and other
number values are presented in the appropriate way. You handle this job by setting the
DataFormatString property on the column. Next, you’ll want to apply the perfect mix of colors, fonts,
borders, and alignment options to each aspect of the grid, from headers to data items. The GridView
supports these features through styles. Finally, you can intercept events, examine row data, and apply
formatting to specific data points programmatically. In the following sections, you’ll consider each of
these techniques.

The GridView itself also exposes several formatting properties that are self-explanatory and aren’t
covered here. These include GridLines (for adding or hiding table borders), CellPadding and CellSpacing
(for controlling the overall spacing between cells), and Caption and CaptionAlign (for adding a title to
the top of the grid).

■ Tip Want to create a GridView that scrolls—inside a web page? It’s easy. Just place the GridView inside a Panel

control, set the appropriate size for the panel, and set the Panel.Scrollbars to Auto, Vertical, or Both.

CHAPTER 10 ■ RICH DATA CONTROLS

409

Formatting Fields
Each BoundField column provides a DataFormatString property that you can use to configure the
appearance of numbers and dates using a format string.

Format strings are generally made up of a placeholder and format indicator, which are wrapped
inside curly brackets. A typical format string looks something like this:

{0:C}

The 0 represents the value that will be formatted, and the letter indicates a predetermined format
style. In this case, C means currency format, which is based on the culture settings that are applied to the
current thread. By default, a computer that’s configured for the English (United States) region runs with
a locale of en-US and displays currencies with the dollar sign (so 3400.34 becomes $3,400.34). A
computer that’s configured for another locale might display a different currency symbol. Here’s a
column that uses this format string:

<asp:BoundField DataField="UnitPrice" HeaderText="Price"
 DataFormatString="{0:C}" />

To use a different currency format, you can change the localization settings of the web server (in the
Regional and Language Options section of the Control Panel). Or, you can set a different culture for your
web application using code or using the <globalization> element in the web.config file.

■ Note If you need to display a variety of different currency strings in your application, the built-in formatting
won’t work, and it’s up to you to solve the problem. One typical strategy is to create a Money structure that wraps
the number amount and the culture. You can then override Money.ToString() to return the right string

representation.

Table 10-3 shows some of the other formatting options for numeric values.

Table 10-3. Numeric Format Strings

Type Format String Example

Currency {0:C} $1,234.50Brackets indicate negative values: ($1,234.50).
The currency sign is locale-specific: €1,234.50.

Scientific (Exponential) {0:E} 1.234500E+003

Percentage {0:P} 45.6%

Fixed Decimal {0:F?} Depends on the number of decimal places you set. {0:F3}
would be 123.400. {0:F0} would be 123.

CHAPTER 10 ■ RICH DATA CONTROLS

410

You can find other examples in the Visual Studio Help. For date or time values, there is also an
extensive list. For example, if you want to write the BirthDate value in the format month/day/year (as in
12/30/08), you use the following column:

<asp:BoundField DataField="BirthDate" HeaderText="Birth Date"
DataFormatString="{0:MM/dd/yy}" />

Table 10-4 shows some more examples.

Table 10-4. Time and Date Format Strings

Type Format String Example

Short Date {0:d} M/d/yyyy (for example: 10/30/2008)

Long Date and Short Time {0:f} dddd, MMMM dd, yyyy HH:mm aa (for example:
Monday, January 30, 2008 10:00 AM)

Long Date {0:D} dddd, MMMM dd, yyyy (for example: Monday, January
30, 2008)

Long Date and Long Time {0:F} dddd, MMMM dd, yyyy HH:mm:ss aa (for example:
Monday, January 30, 2008 10:00:23 AM)

ISO Sortable Standard {0:s} yyyy-MM-ddTHH:mm:ss (for example: 2008-01-
30T10:00:23)

Month and Day {0:M} MMMM dd (for example: January 30)

General {0:G} M/d/yyyy HH:mm:ss aa (depends on locale-specific
settings) (for example: 10/30/2008 10:00:23 AM)

The format characters are not specific to the GridView. You can use them with other controls, with

data-bound expressions in templates (as you’ll see later in this chapter), and as parameters for many
methods. For example, the Decimal and DateTime types expose their own ToString() methods that
accept a format string, allowing you to format values manually.

Styles
The GridView exposes a rich formatting model that’s based on styles. Altogether, you can set eight
GridView styles, as described in Table 10-5.

CHAPTER 10 ■ RICH DATA CONTROLS

411

Table 10-5. Numeric Format Strings

Style Description

HeaderStyle Configures the appearance of the header row that contains column titles, if
you’ve chosen to show it (if ShowHeader is true).

RowStyle Configures the appearance of every data row.

AlternatingRowStyle If set, applies additional formatting to every other row. This formatting acts
in addition to the RowStyle formatting. For example, if you set a font using
RowStyle, it is also applied to alternating rows, unless you explicitly set a
different font through the AlternatingRowStyle.

SelectedRowStyle Configures the appearance of the row that’s currently selected. This
formatting acts in addition to the RowStyle formatting.

EditRowStyle Configures the appearance of the row that’s in edit mode. This formatting
acts in addition to the RowStyle formatting.

EmptyDataRowStyle Configures the style that’s used for the single empty row in the special case
where the bound data object contains no rows.

FooterStyle Configures the appearance of the footer row at the bottom of the GridView, if
you’ve chosen to show it (if ShowFooter is true).

PagerStyle Configures the appearance of the row with the page links, if you’ve enabled
paging (set AllowPaging to true).

Styles are not simple single-value properties. Instead, each style exposes a Style object that includes

properties for choosing colors (ForeColor and BackColor), adding borders (BorderColor, BorderStyle,
and BorderWidth), sizing the row (Height and Width), aligning the row (HorizontalAlign and
VerticalAlign), and configuring the appearance of text (Font and Wrap). These style properties allow you
to refine almost every aspect of an item’s appearance. And if you don’t want to hard-code all the
appearance settings in the web page, you can set the CssClass property of the style object reference to a
stylesheet class that’s defined in a linked stylesheet (see Chapter 16 for more about styles).

Defining Styles
When setting style properties, you can use two similar syntaxes (and you’ll see both of them in this
chapter). First, you can use the object-walker syntax to indicate the extended style properties as
attributes in the opening tag for the GridView. Here’s an example:

<asp:GridView runat="server" ID="grid"
 RowStyle-ForeColor="DarkBlue" ... />
 ...
</asp:GridView>

CHAPTER 10 ■ RICH DATA CONTROLS

412

Alternatively, you can add nested tags, as shown here:

<asp:GridView runat="server" ID="grid" ...>
 <RowStyle ForeColor="DarkBlue" ... />
 ...
</asp:GridView>

Both of these approaches are equivalent. However, you make one other decision when setting style
properties. You can specify global style properties that affect every column in the grid (as in the previous
examples), or you can define column-specific styles. To create a column-specific style, you need to add
style attributes or a nested tag inside the appropriate column tag, as shown here:

<asp:GridView runat="server" ID="grid" ...>
 <Columns>
 <asp:BoundField DataField="EmployeeID" HeaderText="ID" ItemStyle-Width="30px" />
 ...
 </Columns>
</asp:GridView>

Or equivalently, you can use a nested tag:

<asp:GridView runat="server" ID="grid" ...>
 <Columns>
 <asp:BoundField DataField="EmployeeID" HeaderText="ID">
 <ItemStyle Width="30px" />
 </asp:BoundField>
 ...
 </Columns>
</asp:GridView>

This technique is often used to define specific column widths. If you don’t define a specific column
width, ASP.NET makes each column just wide enough to fit the data it contains (or, if wrapping is
enabled, to fit the text without splitting a word over a line break). If values range in size, the width is
determined by the largest value or the width of the column header, whichever is larger. However, if the
grid is wide enough, you might want to expand a column so it doesn’t appear to be crowded against the
adjacent columns. In this case, you need to explicitly define a larger width.

Here’s a fully formatted GridView:

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceEmployees"
 Font-Names="Verdana" Font-Size="X-Small" ForeColor="#333333"
 CellPadding="4" GridLines="None" AutoGenerateColumns="False">

 <HeaderStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#FFFBD6" ForeColor="#333333" />
 <AlternatingRowStyle BackColor="White" />

 <Columns>
 <asp:BoundField DataField="EmployeeID" HeaderText="ID">
 <ItemStyle Font-Bold="True" BorderWidth="1" />
 </asp:BoundField>
 <asp:BoundField DataField="FirstName" HeaderText="First Name" />
 <asp:BoundField DataField="LastName" HeaderText="Last Name" />
 <asp:BoundField DataField="City" HeaderText="City">

CHAPTER 10 ■ RICH DATA CONTROLS

413

 <ItemStyle BackColor="LightSteelBlue" />
 </asp:BoundField>
 <asp:BoundField DataField="Country" HeaderText="Country">
 <ItemStyle BackColor="LightSteelBlue" />
 </asp:BoundField>
 <asp:BoundField DataField="BirthDate" HeaderText="Birth Date"
 DataFormatString="{0:MM/dd/yyyy}" />
 <asp:BoundField DataField="Notes" HeaderText="Notes">
 <ItemStyle Wrap="True" Width="400"/>
 </asp:BoundField>
 </Columns>
</asp:GridView>

This example uses GridView properties to set the font and adjust the cell spacing and cell gridlines.
It uses styles to bold headings and configure the background of rows and alternating rows. Additionally,
column-specific style settings highlight the location information with a different background, bold the
ID values, and explicitly size the Notes column. A DataFormatString is used to format all date values in
the BirthDate field. Figure 10-2 shows the final result.

Figure 10-2. A formatted GridView

CHAPTER 10 ■ RICH DATA CONTROLS

414

Configuring Styles with Visual Studio
There’s no reason to code style properties by hand in the GridView control tag, because the GridView
provides rich design-time support. To set style properties, you can use the Properties window to modify
the style properties. For example, to configure the font of the header, expand the HeaderStyle property
to show the nested Font property, and set that. The only limitation of this approach is that it doesn’t
allow you to set a style for individual columns—if you need that trick, you must first call up the Fields
dialog box (shown previously in Figure 10-1) by editing the Columns property. Then, select the
appropriate column, and set the style properties accordingly.

You can even set a combination of styles using a preset theme by clicking the Auto Format link in
the GridView smart tag. Figure 10-3 shows the Auto Format dialog box with some of the preset styles you
can choose. Select Remove Formatting to clear all the style settings.

Once you’ve chosen a theme, the style settings are inserted into your GridView tag, and you can
tweak them by hand or by using the Properties window.

Figure 10-3. Automatically formatting a GridView

Formatting-Specific Values
The formatting you’ve learned so far isn’t that fine-grained. At its most specific, this formatting applies
to a single column of values. But what if you want to change the formatting for a specific row, or even
just a single cell?

The solution is to react to the GridView.RowDataBound event. This event is raised when a part of
the grid (the header, footer, or pager or a normal, alternate, or selected item) is being created and bound
to the data object. You can access the current row as a GridViewRow control. The
GridViewRow.DataItem property provides the data object for the given row, and the GridViewRow.Cells
collection allows you to retrieve the row content. You can use the GridViewRow to change colors and
alignment, add or remove child controls, and so on.

The following example handles the RowDataBound event and sets the colors according to the
following rules:

• The item’s background color is set to pink and the foreground color is set to
maroon if the title of courtesy is a title for a female—in this case Ms. or Mrs.

CHAPTER 10 ■ RICH DATA CONTROLS

415

• The item’s background color is set to dark blue and the foreground color is set to
light cyan if the title of courtesy is Mr.

• For other generic titles such as Dr., the item is rendered with the background color
specified by the GridView.BackColor property.

Here is the complete code for the RowDataBound event handler that implements these rules:

protected void gridEmployees_RowDataBound(object sender, GridViewRowEventArgs e)
{
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 // Get the title of courtesy for the item that's being created.
 string title = (string)
 DataBinder.Eval(e.Row.DataItem, "TitleOfCourtesy");

 // If the title of courtesy is "Ms.", "Mrs.", or "Mr.",
 // change the item's colors.
 if (title == "Ms." || title == "Mrs.")
 {
 e.Row.BackColor = System.Drawing.Color.LightPink;
 e.Row.ForeColor = System.Drawing.Color.Maroon;
 }
 else if (title == "Mr.")
 {
 e.Row.BackColor = System.Drawing.Color.LightCyan;
 e.Row.ForeColor = System.Drawing.Color.DarkBlue;
 }
 }
}

First, the code checks if the item being created is a data row (rather than another part of the grid,
such as the pager, footer, or header). If the item is of the right type, the code extracts the TitleOfCourtesy
field from the data-bound item and compares it to some hard-coded string values.

Figure 10-4 shows the resulting page.

CHAPTER 10 ■ RICH DATA CONTROLS

416

Figure 10-4. Formatting individual rows based on values

■ Tip This example uses the DataBinder.Eval() method to retrieve a piece of information from the data item using
reflection. Alternatively, you could cast the e.Row.DataItem to the correct type (such as EmployeeDetails for the

ObjectDataSource), DataRowView (for the SqlDataSource in DataSet mode), or DbDataRecord (for the
SqlDataSource in DataReader mode). However, the DataBinder.Eval() approach works in all these scenarios (at the

cost of being slightly slower).

This isn’t the most useful example of using the RowDataBound event, but it demonstrates how you
can handle the event and read all the important information for the item. You could use much more
imaginative formatting to change the way the pager’s links are represented, add new buttons to the
pager or header, render values that you want to highlight with special fonts and colors, create total and
subtotal rows, and more.

GridView Row Selection
Selecting a row means that the user can highlight or change the appearance of a row by clicking some
sort of button or link. When the user clicks the button, not only will the row change its appearance, but
also your code will have the opportunity to handle the event.

The GridView provides built-in support for selection. You simply need to add a CommandField
column with the ShowSelectButton property set to true. The CommandField can be rendered as a
hyperlink, a button, or a fixed image. You choose the type using the ButtonType property. You can then
specify the text through the SelectText property (which defaults to the word Select) or specify the link to
the image through the SelectImageUrl property.

CHAPTER 10 ■ RICH DATA CONTROLS

417

Here’s an example that displays a select button:

<asp:CommandField ShowSelectButton="True" ButtonType="Button"
 SelectText="Select" />

And here’s an example that shows a small clickable icon:

<asp:CommandField ShowSelectButton="True" ButtonType="Image"
 SelectImageUrl="select.gif" />

Figure 10-5 shows both types of select buttons. Clicking either one selects the row.

■ Note Using a CommandField gives you the most control over where your select column is placed. It also allows
you to set the text or image that’s used for the select button. However, as you learned in Chapter 9, there’s a

shortcut that doesn’t involve creating a CommandField at all. If you set the GridView.AutoGenerateSelectButton
property to true, the GridView will add a select button column automatically. This select column will be placed at

the left side of the grid, and it will show a text link with the word Select.

When you click a select button, the page is posted back, and a series of steps unfolds. First, the
GridView.SelectedIndexChanging event fires, which you can intercept to cancel the operation. Next, the
GridView.SelectedIndex property is adjusted to point to the selected row. Finally, the
GridView.SelectedIndexChanged event fires, which you can handle if you want to manually update other
controls to reflect the new selection. When the page is rendered, the selected row is given the
SelectedRowStyle.

■ Note For selection to work, you must configure the SelectedRowStyle so that selected rows look different from

normal rows. Usually, selected rows will have a different BackColor property.

CHAPTER 10 ■ RICH DATA CONTROLS

418

Figure 10-5. GridView selection

Using Selection to Create a Master-Details Form
As demonstrated in the previous chapter, you can bind other data sources to a property in a control
using parameters. For example, you could add two GridView controls and use information from the first
GridView to perform a query in the second.

In the case of the GridView, the property you need to bind is SelectedIndex. However, this has one
problem. SelectedIndex returns a zero-based index number representing where the row occurs in the
grid. This isn’t the information you need to insert into the query that gets the related records. Instead,
you need a key field from the corresponding row.

Fortunately, the GridView makes it easy to retrieve this information using the SelectedDataKey
property. To use this feature, you must set the GridView.DataKeyNames property, with a comma-
separated list of one or more key fields. Each name you supply must match one of the properties of the
bound object or one of the fields of the bound record.

Usually, you’ll have only one key field, as shown here:

<asp:GridView ID="gridEmployees" runat="server" DataSourceID="sourceEmployees"
 DataKeyNames="EmployeeID" ... >

Now you can bind the second data source to this field. Here’s an example that uses the EmployeeID
in a join query to find all the matching records from the Territories table. In other words, this data source
retrieves all the regions that the selected employee manages:

<asp:SqlDataSource ID="sourceRegions" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 ProviderName="System.Data.SqlClient" SelectCommand="SELECT Employees.EmployeeID,

CHAPTER 10 ■ RICH DATA CONTROLS

419

Territories.TerritoryID, Territories.TerritoryDescription FROM Employees INNER JOIN
EmployeeTerritories ON Employees.EmployeeID = EmployeeTerritories.EmployeeID
INNER JOIN Territories ON EmployeeTerritories.TerritoryID = Territories.TerritoryID
WHERE (Employees.EmployeeID = @EmployeeID)" >
 <SelectParameters>
 <asp:ControlParameter ControlID="gridEmployees" Name="EmployeeID"
 PropertyName="SelectedDataKey.Values["EmployeeID"]" />
 </SelectParameters>
</asp:SqlDataSource>

In this example, the SqlDataSource uses a single parameter—the EmployeeID of the selected
employee record. The EmployeeID value is retrieved from the SelectedDataKey.Values collection of the
first grid. You can look up the EmployeeID field by its index position (which is 0 in this example, because
there’s only one field in the DataKeyNames list) or by name. The only trick when performing a name
lookup is that you need to replace the quotation marks with the corresponding HTML character entity
(").

Finally, the second GridView binds to this data source to show the territory records:

<asp:GridView ID="gridRegions" runat="server" DataSourceID="sourceRegions" ...>
 ...
 <Columns>
 <asp:BoundField DataField="TerritoryID" HeaderText="ID" />
 <asp:BoundField DataField="TerritoryDescription"
 HeaderText="Description"/>
 </Columns>
</asp:GridView>

Figure 10-6 shows this master-details form, which contains the regions assigned to an employee
whenever an employee record is selected.

CHAPTER 10 ■ RICH DATA CONTROLS

420

Figure 10-6. A master-details page

The SelectedIndexChanged Event
As the previous example demonstrates, you can set up master-details forms declaratively, without
needing to write any code. However, there are many cases when you’ll need to react to the
SelectedIndexChanged event. For example, you might want to redirect the user to a new page (possibly
with the selected value in the query string). Or, you might want to adjust other controls on the page.

For example, here’s the code you need to add a label describing the child table shown in the
previous example:

protected void gridEmployees_SelectedIndexChanged(object sender, EventArgs e)
{
 int index = gridEmployees.SelectedIndex;

 // You can retrieve the key field from the SelectedDataKey property.
 int ID = (int)gridEmployees.SelectedDataKey.Values["EmployeeID"];

 // You can retrieve other data directly from the Cells collection,
 // as long as you know the column offset.
 string firstName = gridEmployees.SelectedRow.Cells[2].Text;
 string lastName = gridEmployees.SelectedRow.Cells[3].Text;

 lblRegionCaption.Text = "Regions that " + firstName + " " + lastName +
 " (employee " + ID.ToString() + ") is responsible for:";
}

CHAPTER 10 ■ RICH DATA CONTROLS

421

Figure 10-7 shows the result.

Figure 10-7. Handling the SelectedIndexChanged event

Using a Data Field As a Select Button
You don’t need to create a new column to support row selection. Instead, you can turn an existing
column into a link. This technique is commonly used to allow users to select rows in a table by the
unique ID value.

To use this technique, add a ButtonField column. Set the DataTextField to the name of the field you
want to use, as shown here:

<asp:ButtonField ButtonType="Button" DataTextField="EmployeeID" />

This field will be underlined and turned into a link that, when clicked, will post back the page and
trigger the GridView.RowCommand event. You could handle this event, determine which row has been
clicked, and programmatically set the SelectedIndex property. However, you can use an easier method.
Instead, just configure the link to raise the SelectedIndexChanged event by specifying a CommandName
with the text Select, as shown here:

<asp:ButtonField CommandName="Select" ButtonType="Button"
 DataTextField="EmployeeID" />

CHAPTER 10 ■ RICH DATA CONTROLS

422

Now clicking the data field automatically selects the record. You can now remove the
CommandField column that was previously used to show the Select link, and you can remove the
BoundField column that was previously used to show the EmployeeID, because the ButtonField column
effectively fuses these two details in one place.

Sorting the GridView
The GridView sorting features allow the user to reorder the results in the GridView by clicking a column
header. It’s convenient—and easy to implement.

To enable sorting, you must set the GridView.AllowSorting property to true. Next, you need to define
a SortExpression for each column that can be sorted. In theory, a sort expression can use any syntax
that’s understood by the data source control. In practice, a sort expression almost always takes the form
used in the ORDER BY clause of a SQL query. That means the sort expression can include a single field or
a list of comma-separated fields, optionally with the word ASC or DESC added after the column name to
sort in ascending or descending order.

Here’s how you could define the FirstName column so it sorts by alphabetically ordering rows by
first name:

<asp:BoundField DataField="FirstName" HeaderText="First Name"
 SortExpression="FirstName"/>

If you click the column header for the FirstName column twice in a row, the first click will sort it
alphabetically, and the second click will sort it in reverse alphabetical order.

■ Tip If you use autogenerated columns, each bound column has its SortExpression property set to match the

DataField property. If you don’t want a column to be sort-enabled, just don’t set its SortExpression property.

Once you’ve associated a sort expression with the column and set the AllowSorting property to true,
the GridView will render the headers with clickable links. However, it’s up to the data source control to
implement the actual sorting logic. How the sorting is implemented depends on the data source you’re
using. Not all data sources support sorting, but both the SqlDataSource and the ObjectDataSource do.

Sorting with the SqlDataSource
In the case of the SqlDataSource, sorting is performed using the built-in sorting capabilities of the
DataView class. Essentially, when the user clicks a column link, the DataView.Sort property is set to the
sorting expression for that column.

■ Note As explained in Chapter 8, every DataTable is linked to a default DataView. The DataView is a window
onto the DataTable, and it allows you to apply sorting and filtering without altering the structure of the underlying

table. You can use a DataView programmatically, but when you use the SqlDataSource it’s used implicitly, behind

the scenes. However, it’s available only when the DataSourceMode property is set to SqlDataSourceMode.DataSet.

CHAPTER 10 ■ RICH DATA CONTROLS

423

With DataView sorting, the data is retrieved unordered from the database, and the results are sorted
in memory. This is not the speediest approach (sorting in memory requires more overhead and is slower
than having SQL Server do the same work), but it is more scalable when you add caching to the mix.
That’s because you can cache a single copy of the data and sort it dynamically in several different ways.
(Chapter 11 has much more about this essential technique.) Without DataView sorting, a separate query
is needed to retrieve the newly sorted data.

Figure 10-8 shows a sortable GridView with column links. Note that no custom code is required for
this scenario.

The sort is according to the data type of the column. Numeric and date columns are ordered from
smallest to largest. String columns are sorted alphanumerically without regard to case, assuming the
underlying DataTable.CaseSensitive property is false (the default setting). Columns that contain binary
data (such as images) cannot be sorted.

Sorting with the ObjectDataSource
The ObjectDataSource provides two options:

• If your select method returns a DataSet or DataTable, the ObjectDataSource can
use the same automatic sorting used with the SqlDataSource.

• If your select method returns a custom collection, you need to provide a selection
method that accepts a sort expression and performs the sorting. Once again, this
behavior gives you enough flexibility to build a solution, but it’s not necessarily
the ideal arrangement. For example, instead of building a GetEmployees() method
that can perform sorting, it might make more sense to create a custom
EmployeeDetails collection class with a Sort() method. Unfortunately, the
ObjectDataSource doesn’t support this pattern.

To use the sort parameter, you need to create a select method that accepts a single string parameter.
You must then set the ObjectDataSource.SortParameterName property to identify the name of that
parameter, as shown here:

<asp:ObjectDataSource ID="sourceEmployees" runat="server"
 TypeName="DatabaseComponent.EmployeeDB"
 SelectMethod="GetEmployees" SortParameterName="sortExpression" />

■ Note When you set SortParameterName, the ObjectDataSource will always call the version of your method that
accepts a sort expression. If the data doesn’t need to be sorted (for example, the first time the grid is filled), the

ObjectDataSource will simply pass an empty string as the sort expression.

CHAPTER 10 ■ RICH DATA CONTROLS

424

Figure 10-8. Automatic sorting by LastName

Now you have to implement the GetEmployees() method and decide how you want to perform the
sorting. The easiest approach is to fill a disconnected DataSet so you can rely on the sorting functionality
of the DataView. Here’s an example of a GetEmployees() method in a database component that
performs the sorting in this way:

public EmployeeDetails[] GetEmployees(string sortExpression)
{
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("GetAllEmployees", con);
 cmd.CommandType = CommandType.StoredProcedure;
 SqlDataAdapter adapter = new SqlDataAdapter(cmd);

 DataSet ds = new DataSet();
 try
 {
 con.Open();
 adapter.Fill(ds, "Employees");
 }
 catch (SqlException err)
 {
 // Replace the error with something less specific.
 // You could also log the error now.
 throw new ApplicationException("Data error.");
 }
 finally
 {
 con.Close();
 }

 // Apply sort.

CHAPTER 10 ■ RICH DATA CONTROLS

425

 DataView view = ds.Tables[0].DefaultView;
 view.Sort = sortExpression;

 // Create a collection for all the employee records.
 ArrayList employees = new ArrayList();
 foreach (DataRowView row in view)
 {
 EmployeeDetails emp = new EmployeeDetails(
 (int)row["EmployeeID"], (string)row["FirstName"],
 (string)row["LastName"], (string)row["TitleOfCourtesy"]);
 employees.Add(emp);
 }
 return (EmployeeDetails[])employees.ToArray(typeof(EmployeeDetails));
}

Another approach is to change the actual query you’re executing in response to the sort expression.
This way, your database can perform the sorting. This approach is a little more complicated, and no
perfect option exists. Here are the two most common possibilities:

• You could dynamically construct a SQL statement with an ORDER BY clause.
However, this risks SQL injection attacks, unless you validate your input carefully.

• You could write conditional logic to examine the sort expression and execute
different queries accordingly (either in your select method or in the stored
procedure). This code is likely to be fragile and involves a fair bit of string parsing.

Sorting and Selection
If you use sorting and selection at the same time, you’ll discover another issue. To see this problem in
action, select a row, and then sort the data by any column. You’ll see that the selection will remain, but it
will shift to a new item that has the same index as the previous item. In other words, if you select the
second row and perform a sort, the second row will still be selected in the new page, even though this
isn’t the record you selected.

In the past, the only way to solve this problem was to programmatically change the selection every
time the user clicks a header link. But ASP.NET adds a GridView.EnablePersistedSelection property that
provides a quick fix. Simply set this property to true, and ASP.NET will ensure that the selected item is
identified by its data key. As a result, the selected item will remain selected, even if it moves to a new
position in the GridView after a sort.

Advanced Sorting
The GridView’s sorting is straightforward—it supports sorting by any sortable column in ascending and
descending order. In some applications, the user has more sorting options or can order lengthy result
sets with more complex sorting expressions.

Your first avenue for improving sorting with the GridView is to handle the GridView.Sorting event,
which occurs just before the sort is applied. At this point, you can change the sorting expression. For
example, you could use this approach to turn clicks on different columns into a compound sort. For
example, you might want to check if the user clicks LastName and then FirstName. In this case, you
could apply a LastName+FirstName sort.

protected void gridEmployees_Sorting(object sender, GridViewSortEventArgs e)
{
 if (e.SortExpression == "FirstName" && gridEmployees.SortExpression ==

CHAPTER 10 ■ RICH DATA CONTROLS

426

"LastName")
 {
 // Based on the current sort and the requested sort, a compound
 // sort makes sense.
 e.SortExpression = "LastName, FirstName";
 }
}

You could take this sorting approach one step further and cascade searches over any arbitrary
collection of columns by storing the user’s past sort selections in view state and using them to build a
larger sort expression. Of course, it’s important not to go too overboard and create a custom sorting
mechanism that’s completely unintuitive to your users, which will cause more problems than it solves.

One more technique is available to you. You can sort the GridView programmatically by calling the
GridView.Sort() method and supplying a sort expression. This could come in handy if you want to
presort a lengthy data report before presenting it to the user. It also makes sense if you want to allow the
user to choose from a list of predefined sorting options (listed in another control) rather than use
column-header clicks.

Figure 10-9 shows an example. When an item is selected from the list, the sort is applied with this
code:

protected void lstSorts_SelectedIndexChanged(object sender, EventArgs e)
{
 gridEmployees.Sort(lstSorts.SelectedValue, SortDirection.Ascending);
}

Figure 10-9. Giving sorting options through another control

CHAPTER 10 ■ RICH DATA CONTROLS

427

Paging the GridView
All the examples of repeated-value binding that you’ve seen so far show all the records of the data source
on a single web page. However, this isn’t always ideal in real-world situations. Connecting to a data
source that contains hundreds or even thousands of records would produce an extremely large page that
would take a prohibitively long amount of time to render and transmit to the client browser.

Most websites that display data in tables or lists support record pagination, which means showing a
fixed number of records per page and providing links to navigate to the previous or next pages to display
other records. For example, you have no doubt seen this functionality in search engines that can return
thousands of matches.

The GridView control has built-in support for pagination. You can use simple pagination with both
the SqlDataSource and ObjectDataSource. If you’re using the ObjectDataSource, you also have the
ability to customize the way the paging works for a more efficient and scalable solution.

Automatic Paging
By setting a few properties and handling an event, you can make the GridView control manage the
paging for you. The GridView will create the links to jump to the previous or next pages and will display
the records for the current page without requiring you to manually extract the records by yourself.
Before discussing the advantages and disadvantages of this approach, let’s see what you need to get this
working.

The GridView provides several properties designed specifically to support paging, as shown in
Table 10-6.

Table 10-6. Paging Members of the GridView

Property Description

AllowPaging Enables or disables the paging of the bound records. It is false by default.

PageSize Gets or sets the number of items to display on a single page of the grid.
The default value is 10.

PageIndex Gets or sets the zero-based index of the currently displayed page, if
paging is enabled.

PagerSettings Provides a PagerSettings object that wraps a variety of formatting
options for the pager controls. These options determine where the
paging controls are shown and what text or images they contain. You
can set these properties to fine-tune the appearance of the pager
controls, or you can use the defaults.

PagerStyle Provides a style object you can use to configure fonts, colors, and text
alignment for the paging controls.

PageIndexChanging and
PageIndexChanged event

Occurs when one of the page selection elements is clicked, before the
navigation (PageIndexChanging) and after (PageIndexChanged).

CHAPTER 10 ■ RICH DATA CONTROLS

428

To use automatic paging, you need to set AllowPaging to true (which shows the page controls), and
you need to set PageSize to determine how many rows are allowed on each page. If you don’t set the
PageSize property, the default value of 10 is used.

Here’s an example of a GridView control that sets these properties:

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceEmployees"
 PageSize="5" AllowPaging="True" ...>
 ...
</asp:GridView>

This is enough to start using paging. Figure 10-10 shows an example with five records per page (for a
total of 16 pages).

Figure 10-10. Paging five records at a time

Automatic paging works with any data source that implements ICollection. This means that the
SqlDataSource supports automatic paging, as long as you use DataSet mode. (The DataReader mode
won’t work and causes an exception.) Additionally, the ObjectDataSource also supports paging,
assuming your custom data access class returns an object that implements ICollection—arrays, strongly
typed collections, and the disconnected DataSet are all valid options.

Automatic paging doesn’t reduce the amount of data you need to query from the database. Instead,
all the data is retrieved and bound every time the user navigates to another page. In other words, if you
split a table into ten pages and the user steps through each one, you will end up performing the same
work ten times (and multiplying the overall database workload for the page by a factor of ten).

Fortunately, you can make automatic paging much more efficient just by switching on automatic
caching for the data source control (see Chapter 11). This allows you to reuse the same data object for
multiple requests. Of course, storing the data in the cache may not be the ideal solution if you’re using
paging to deal with an extremely large query. In this case, a prohibitively large amount of server memory
is required to keep your data in the cache. That’s when custom pagination makes sense.

CHAPTER 10 ■ RICH DATA CONTROLS

429

Paging and Selection
By default, paging and selection don’t play nicely together. If you enable both for the GridView, you’ll
notice that the same row position remains selected as you move from one page to another. For example,
if you select the first row on the first page and then move to the second page, the first row on the second
page will become selected. To fix this quirk, you can use the GridView’s new EnablePersistedSelection
property. Set this to true and you’ll get very different results. As you move from one page to another, the
selection will automatically be removed from the GridView (and the SelectedIndex property will be set to
–1). But if you move back to the page that held the originally selected row, that row will be re-selected.
This behavior is intuitive, and it neatly ensures that your code won’t be confused by a selected row that
isn’t currently visible.

Custom Pagination with the ObjectDataSource
Custom pagination requires you to take care of extracting and binding only the current page of records
for the GridView. The GridView no longer selects the rows that should be displayed automatically.
However, the GridView still provides the pager bar with the autogenerated links that allow the user to
navigate through the pages.

Although custom pagination is more complex than automatic pagination, it also allows you to
minimize the bandwidth usage and avoid storing a large data object in server-side memory. On the other
hand, almost all custom pagination strategies requery the database with each postback, which means
you may be creating more work for the database.

The ObjectDataSource is the only data source to support custom pagination. The first step to take
control of custom paging is to set ObjectDataSource.EnablePaging to true. You can then implement
paging through three more properties: StartRowIndexParameterName, MaximumRowsParameterName,
and SelectCountMethod.

■ Tip To determine whether custom pagination is better than automatic paging with caching, you need to
evaluate the way you use data. The larger the amount of data the GridView is using, the more likely you’ll need to
use custom pagination. On the other hand, the slower the database server and the heavier its load, the more likely
you’ll want to reduce repeated calls by caching the full data object. Ultimately, you may need to profile your

application to determine the optimum paging strategy.

Counting the Records
To have the GridView create the correct number of page links for you, it must know the total number of
records and the number of records per page. The records-per-page value is set with the PageSize
property, as in the previous example. The total number of pages is a little trickier.

When using automatic pagination, the total number of records is automatically determined by the
GridView based on the number of records in the data source. In custom paging, you must explicitly
calculate the total number using a dedicated method. The EmployeeDB class already includes a
CountEmployees() method that returns this information, which you saw first in Chapter 8. You simply
need to bind this method to the ObjectDataSource using the SelectCountMethod property:

<asp:ObjectDataSource ID="sourceEmployees" runat="server" EnablePaging="True"
 SelectCountMethod="CountEmployees" ... />

CHAPTER 10 ■ RICH DATA CONTROLS

430

When you use custom paging, the SelectCountMethod is executed for every postback. If you want to
reduce database work at the risk of providing an incorrect count, you could cache this information and
reuse it.

A Stored Procedure to Get Paged Records
The next part of the solution is a little trickier. Instead of retrieving a collection with all the employee
records, the GetEmployees() method must retrieve records for the current page only. To accomplish this
feat, this example uses a stored procedure named GetEmployeePage. This stored procedure copies all the
employee records into a temporary table that has one additional column—a unique autoincrementing ID
that will number each row. Next, the stored procedure retrieves a selection from that table that
corresponds to the requested page of data, using the supplied @Start and @Count parameters.

Here’s the complete stored procedure code:

CREATE PROCEDURE GetEmployeePage
@Start int, @Count int
AS
— create a temporary table with the columns we are interested in
CREATE TABLE #TempEmployees
(
 ID int IDENTITY PRIMARY KEY,
 EmployeeID int,
 LastName nvarchar(20),
 FirstName nvarchar(10),
 TitleOfCourtesy nvarchar(25),
)

— fill the temp table with all the employees
INSERT INTO #TempEmployees
(
 EmployeeID, LastName, FirstName, TitleOfCourtesy
)
SELECT
 EmployeeID, LastName, FirstName, TitleOfCourtesy
FROM
 Employees ORDER BY EmployeeID ASC

— declare two variables to calculate the range of records
— to extract for the specified page
DECLARE @FromID int
DECLARE @ToID int
— calculate the first and last ID of the range of records we need
SET @FromID = @Start
SET @ToID = @Start + @Count - 1

— select the page of records
SELECT * FROM #TempEmployees WHERE ID >= @FromID AND ID <= @ToID

This stored procedure uses a SQL Server-specific approach. Other databases might have other
possible optimizations. For example, Oracle databases allow you to use the ROWNUM operator in the
WHERE clause of a query to return a range of rows. For example, the Oracle query SELECT * FROM
Employees WHERE ROWNUM > 100 AND ROWNUM < 200 retrieves the page of rows from 101 to 199.

CHAPTER 10 ■ RICH DATA CONTROLS

431

■ Tip SQL Server 2005 and later includes a ROWNUMBER() function that lets you return a subset of rows from a
large query. For an example that shows how to implement efficient paging using the ROWNUMBER() function, refer

to http://aspnet.4guysfromrolla.com/articles/031506-1.aspx.

The Paged Selection Method
The final step is to create an overload of the GetEmployees() method that performs paging. This method
receives two arguments—the index of the row that starts the page (starting at 0) and the page size
(maximum number of rows). You specify the parameter names you want to use for these two details
through the StartRowIndexParameterName and MaximumRowsParameterName properties on the
ObjectDataSource control. If not set, the default parameter names are startRowIndex and
maximumRows.

Here’s the GetEmployees() method you need to use the stored procedure shown in the previous
example:

public EmployeeDetails[] GetEmployees(int startRowIndex, int maximumRows)
{
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("GetEmployeePage", con);
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add(new SqlParameter("@Start", SqlDbType.Int, 4));
 cmd.Parameters["@Start"].Value = startRowIndex + 1;
 cmd.Parameters.Add(new SqlParameter("@Count", SqlDbType.Int, 4));
 cmd.Parameters["@Count"].Value = maximumRows;

 // Create a collection for all the employee records.
 ArrayList employees = new ArrayList();

 try
 {
 con.Open();
 SqlDataReader reader = cmd.ExecuteReader();

 while (reader.Read())
 {
 EmployeeDetails emp = new EmployeeDetails(
 (int)reader["EmployeeID"], (string)reader["FirstName"],
 (string)reader["LastName"], (string)reader["TitleOfCourtesy"]);
 employees.Add(emp);
 }
 reader.Close();

 return (EmployeeDetails[])employees.ToArray(typeof(EmployeeDetails));
 }
 catch (SqlException err)
 {
 throw new ApplicationException("Data error.");
 }
 finally

http://aspnet.4guysfromrolla.com/articles/031506-1.aspx
mailto:Parameters["@Start"].Value
mailto:Parameters["@Count"].Value

CHAPTER 10 ■ RICH DATA CONTROLS

432

 {
 con.Close();
 }
}

When you run this page, you’ll see that the output is the same as the output generated by the
previous page using automatic pagination, and the pager controls work the same way.

Customizing the Pager Bar
The GridView paging controls are remarkably flexible. In their default representation, you’ll see a series
of numbered links (see Figure 10-10). However, you customize them thoroughly using the PagerStyle
property (for foreground and background colors, the font, color, size, and so on) and the PagerSettings
property.

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceProducts"
 AllowPaging="True" ...>
 <PagerSettings Mode="NextPrevious" PreviousPageText="< Back"
 NextPageText="Forward >" />
 <PagerStyle BackColor="#FFCC66" ForeColor="#333333"
 HorizontalAlign="Center" />
 ...
</asp:GridView>

The most important detail is the PagerSettings.Mode property, which specifies how to render the
paging links according to one of several styles, as described in Table 10-7.

Table 10-7. Pager Modes

Mode Description

Numeric The grid will render as many links to other pages as specified by the
PagerSettings.PageButtonCount property. If that number of links is not
enough to link to every page of the grid, the pager will display ellipsis links
(...) that, when clicked, display the previous or next set of page links.

NextPrevious The grid will render only two links for jumping to the previous and next
pages. If you choose this option, you can also define the text for the two
links through the NextPageText and PreviousPageText properties on the
PagerSettings object (or use image links through NextPageImageUrl and
PreviousPageImageUrl).

NumericFirstLast The same as Numeric, except there are additional links for the first page and
the last page.

NextPreviousFirstLast The same as NextPrevious, except there are additional links for the first page
and the last page. You can set the text for these links through FirstPageText
and LastPageText properties on the PagerSettings object (or images through
FirstPageImageUrl and LastPageImageUrl).

CHAPTER 10 ■ RICH DATA CONTROLS

433

Sorting and Paging Callbacks

One disadvantage with a grid you can sort or page through is that each time you re-sort the grid or move
to another page, the browser needs to trigger a postback and render a completely new page of HTML. This
means the page flickers and scrolls back to the beginning, which makes the overall user experience a bit
jarring.

The GridView has a feature that improves on this situation: the EnableSortingAndPagingCallbacks property.
If you set this property to true, the GridView uses a different technique to refresh the page. Rather than
forcing a postback when you click a column header or a page link, the browser sends an asynchronous
request to the server to get new information. When the browser receives this information, it modifies the
current page using the HTML DOM. This technique creates a more seamless, flicker-free browsing
experience. Best of all, if a browser doesn’t support this feature, the GridView gracefully degrades to the
standard postback model. The only limitation is that you can’t use sorting and paging callbacks on a grid
that uses templates.

The EnableSortingAndPagingCallbacks property uses ASP.NET’s callback infrastructure. Under the hood,
callbacks are performed using JavaScript and the XMLHttpRequest object. You’ll learn more about
callbacks and how they work in Chapter 29.

If you don’t like the default pager bar, you can implement your own using the template feature

described in the next section by creating a PagerTemplate. You can then use any control you want, such as
a text box where the user can type the index of the page and a button to submit the request and load the
new page. The code for extracting and binding the records for the current page would remain the same.

GridView Templates
So far, the examples have used the GridView control to show data in using separate bound columns for
each field. If you want to place multiple values in the same cell, or have the unlimited ability to
customize the content in a cell by adding HTML tags and server controls, you need to use a
TemplateField.

The TemplateField allows you to define a completely customized template for a column. Inside the
template you can add control tags, arbitrary HTML elements, and data binding expressions. You have
complete freedom to arrange everything the way you want.

For example, imagine you want to create a column that combines the first name, last name, and
courtesy fields. To accomplish this trick, you can construct an ItemTemplate like this:

<asp:TemplateField HeaderText="Name">
 <ItemTemplate>
 <%# Eval("TitleOfCourtesy") %> <%# Eval("FirstName") %>
 <%# Eval("LastName") %>
 </ItemTemplate>
</asp:TemplateField>

Now when you bind the GridView, the GridView fetches the data from the data source and walks
through the collection of items. It processes the ItemTemplate for each item, evaluates the data binding
expressions, and adds the rendered HTML to the table. This template is quite simple—it simply defines
three data-binding expressions. When evaluated, these expressions are converted to ordinary text.

You’ll notice that these expressions use Eval(), which is a static method of the
System.Web.UI.DataBinder class. Eval()is an indispensable convenience—it automatically retrieves the

CHAPTER 10 ■ RICH DATA CONTROLS

434

data item that’s bound to the current row, uses reflection to find the matching field (for a DataRow
object) or property (for a custom data object), and retrieves the value. This process of reflection adds a
little bit of extra work. However, this overhead is unlikely to add much time to the processing of a
request. Without the Eval() method, you’d need to access the data object through the
Container.DataItem property and use typecasting code like this:

<%# ((EmployeeDetails)Container.DataItem)["FirstName"] %>

The problem with this approach is that you need to know the exact type of data object. For example,
the data-binding expression shown previously assumes you’re binding to an array of EmployeeDetails
objects through the ObjectDataSource. If you switch to the SqlDataSource, or if you rename the
EmployeeDetails class, your page will break. On the other hand, if you use the Eval() method, your data
binding expressions will keep working as long as the data object has a property with the given name. In
other words, using the Eval() method allows you to create pages that are loosely bound to your data
access layer.

■ Note If you attempt to bind a field that isn’t present in your result set, you’ll receive a runtime error. If you

retrieve additional fields that are never bound to any template, no problem will occur.

■ Tip When binding to a SqlDataSource in DataSet mode, the data item is a DataRowView. When binding to a

SqlDataSource in DataReader mode, the data item is a DbDataRecord.

The Eval() method also adds the extremely useful ability to format data fields on the fly. To use this
feature, you must use the overloaded version of the Eval() method that accepts an additional format
string parameter. Here’s an example:

<%# Eval("BirthDate", "{0:MM/dd/yy}") %>

You can use any of the format strings defined in Table 10-3 and Table 10-4 with the Eval() method.
You’re free to mix template columns with other column types. Or, you could get rid of every other

column and put all the information from the Employees table into one formatted template:

<asp:GridView ID="gridEmployees" runat="server" DataSourceID="sourceEmployees"
 AutoGenerateColumns="False" ...>
 <!-- Styles omitted. -->

 <Columns>
 <asp:TemplateField HeaderText="Employees">
 <ItemTemplate>

 <%# Eval("EmployeeID") %> -
 <%# Eval("TitleOfCourtesy") %> <%# Eval("FirstName") %>
 <%# Eval("LastName") %>

 <hr />
 <small><i>

CHAPTER 10 ■ RICH DATA CONTROLS

435

 <%# Eval("Address") %>

 <%# Eval("City") %>, <%# Eval("Country") %>,
 <%# Eval("PostalCode") %>

 <%# Eval("HomePhone") %></i>

 <%# Eval("Notes") %>
 </small>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

Figure 10-11 shows the result.

Figure 10-11. Creating a templated column

Using Multiple Templates
The previous example used a single template to configure the appearance of data items. However, the
ItemTemplate isn’t the only template that the GridView provides. In fact, the GridView allows you to
configure various aspects of its appearance with a number of templates. Inside every template column,
you can use the templates listed in Table 10-8.

CHAPTER 10 ■ RICH DATA CONTROLS

436

Table 10-8. GridView Templates

Mode Description

HeaderTemplate Determines the appearance and content of the header cell

FooterTemplate Determines the appearance and content of the footer cell

ItemTemplate Determines the appearance and content of each data cell (if you aren’t
using the AlternatingItemTemplate) or every odd-numbered data cell
(if you are)

AlternatingItemTemplate Used in conjunction with the ItemTemplate to format even-numbered
and odd-numbered rows differently

EditItemTemplate Determines the appearance and controls used in edit mode

InsertItemTemplate Determines the appearance and controls used when inserting a new
record

Out of the templates listed in Table 10-8, the EditItemTemplate is one of the most useful, as it gives

you the ability to control the editing experience for the field. If you don’t use template columns, you’re
limited to ordinary text boxes, and you won’t have any validation. The GridView also defines two
templates that you can use outside of any column. These are the PagerTemplate, which lets you
customize the appearance of pager controls, and the EmptyDataTemplate, which lets you set the
content that should appear if the GridView is bound to an empty data object.

Editing Templates in Visual Studio
Visual Studio allows you to edit templates in the web-page designer. To try this, follow these steps:

1. Create a GridView with at least one templated column.

2. Select the GridView and click Edit Templates in the smart tag. This switches
the GridView into template editing mode.

3. In the smart tag, use the drop-down Display list to choose the template you
want to edit (see Figure 10-12). You can choose either of the two templates that
apply to the whole GridView (EmptyDataTemplate or PagerTemplate), or you
can choose a specific template for one of the template columns.

CHAPTER 10 ■ RICH DATA CONTROLS

437

Figure 10-12. Editing a template in Visual Studio

4. Enter your content in the control. You can type in static content, drag-and-
drop controls, and so on.

5. When you’re finished, choose End Template Editing from the smart tag.

Binding to a Method
One of the benefits of templates is that they allow you to use data binding expressions that extend the
ways you can format and present bound data. One key technique that recurs in many scenarios is using
a method in your page class to process a field value. This removes the limitations of simple data binding
and lets you incorporate dynamic information and conditional logic.

For example, you might create a column where you want to display an icon next to each row.
However, you don’t want to use a static icon—instead, you want to choose the best image based on the
data in the row. Figure 10-13 shows an example where check marks indicate when there is a large
quantity of a given item in stock (more than 50 units) and an X indicates when stock is fully depleted.

CHAPTER 10 ■ RICH DATA CONTROLS

438

Figure 10-13. Flagging rows conditionally

Here’s how you would define the status column:

<asp:TemplateField HeaderText="Status">
 <ItemTemplate>
 <img src='<%# GetStatusPicture(Container.DataItem) %>' alt="Status" />
 </ItemTemplate>
</asp:TemplateField>

And here’s the GetStatusPicture() method that examines the data item and chooses the right
picture URL:

protected string GetStatusPicture(object dataItem)
{
 int units = Int32.Parse(DataBinder.Eval(dataItem, "UnitsInStock").ToString());
 if (units == 0)
 return "Cancel.gif";
 else if (units > 50)
 return "OK.gif";
 else
 return "blank.gif";
}

This technique turns up in many scenarios. For example, you could use it to adjust prices to take
into consideration the current exchange rates. Or, you could use it to translate a numeric code into a
more meaningful piece of text. You might even want to create completely calculated columns—for
example, use the EmployeeDateOfBirth field to calculate a value for an EmployeeAge column.

CHAPTER 10 ■ RICH DATA CONTROLS

439

In this example, you might also want to set the alt attribute of the tag using a similar
approach. That way the alternate text could provide a more meaningful description (such as OK or
Cancel) that would reflect the status of the corresponding product.

■ Note If you use data binding expressions to bind to methods, you can no longer use callbacks to optimize the
GridView refresh process. To prevent an error, make sure you do not set
GridView.EnableSortingAndPagingCallbacks to true. If you don’t want to sacrifice the callback features, you can

decide not to use templates and get similar functionality by modifying rows when they are first added to the grid,
using the GridView.RowDataBound event. This technique is described earlier in the “Formatting-Specific Values”

section of this chapter.

Handling Events in a Template
In some cases, you might need to handle events that are raised by the controls you add to a templated
column. For example, imagine you changed the previous example so that instead of showing a static
status icon, it created a clickable image link through the ImageButton control. This is easy enough to
accomplish:

<asp:TemplateField HeaderText="Status">
 <ItemTemplate>
 <asp:ImageButton ID="ImageButton1" runat="server"
 ImageUrl='<%# GetStatusPicture(Container.DataItem) %>' />
 </ItemTemplate>
</asp:TemplateField>

The problem is that if you add a control to a template, the GridView creates multiple copies of that
control, one for each data item. When the ImageButton is clicked, you need a way to determine which
image was clicked and which row it belongs to.

The way to resolve this problem is to use an event from the GridView, not the contained button. The
GridView.RowCommand event serves this purpose, because it fires whenever any button is clicked in
any template. This process, where a control event in a template is turned into an event in the containing
control, is called event bubbling.

Of course, you still need a way to pass information to the RowCommand event to identify the row
where the action took place. The secret lies in two string properties of all button controls:
CommandName and CommandArgument. CommandName sets a descriptive name you can use to
distinguish clicks on your ImageButton from clicks on other button controls in the GridView. The
CommandArgument supplies a piece of row-specific data you can use to identify the row that was
clicked. You can supply this information using a data binding expression.

Here’s the template field containing the revised ImageButton tag:

<asp:TemplateField HeaderText="Status">
 <ItemTemplate>
 <asp:ImageButton ID="ImageButton1" runat="server"
 ImageUrl='<%# GetStatusPicture(Container.DataItem) %>'
 CommandName="StatusClick" CommandArgument='<%# Eval("ProductID") %>' />
 </ItemTemplate>
</asp:TemplateField>

CHAPTER 10 ■ RICH DATA CONTROLS

440

And here’s the code you need to respond when an ImageButton is clicked:

protected void GridView1_RowCommand(object sender, GridViewCommandEventArgs e)
{
 if (e.CommandName == "StatusClick")
 lblInfo.Text = "You clicked product #" + e.CommandArgument;
}

This example simply displays the ProductID in a label.

■ Tip Remember, you can simplify your life using the GridView’s built-in selection support. Just set the
CommandName to Select and handle the SelectIndexChanged event, as described in the section “Using a Data

Field As a Select Button” earlier in this chapter. Although this approach gives you easy access to the clicked row, it

won’t help you if you want to provide multiple buttons that perform different tasks.

Editing with a Template
One of the best reasons to use a template is to provide a better editing experience. In the previous
chapter, you saw how the GridView provides automatic editing capabilities—all you need to do is switch
a row into edit mode by setting the GridView.EditIndex property.

The easiest way to make this possible is to add a CommandField column with the ShowEditButton
property set to true (or set the GridView.AutoGenerateEditButton property to true). Either way, you’ll
end up with a dedicated column that’s used to show editing commands. Initially this column will display
a link named Edit next to each record. When the user clicks an Edit link, every label in every column of
that row will be replaced by a text box, unless the field is read-only.

The standard editing support has several limitations:

It’s not always appropriate to edit values using a text box: Certain types of data are best handled
with other controls (such as drop-down lists), large fields need multiline text boxes, and so on.

You get no validation: It would be nice to restrict the editing possibilities so that currency figures
can’t be entered as negative numbers, and so on. You can do that by adding validator controls to an
EditItemTemplate.

It’s often ugly: A row of text boxes across a grid takes up too much space and rarely seems
professional.

In a templated column, you don’t have these issues. Instead, you explicitly define the edit controls
and their layout using the EditItemTemplate. This can be a somewhat laborious process.

Here’s an edit template that allows editing of a single field—the Notes field:

CHAPTER 10 ■ RICH DATA CONTROLS

441

<EditItemTemplate>

 <%# Eval("EmployeeID") %> -
 <%# Eval("TitleOfCourtesy") %> <%# Eval("FirstName") %>
 <%# Eval("LastName") %>

 <hr />
 <small><i>
 <%# Eval("Address") %>

 <%# Eval("City") %>, <%# Eval("Country") %>,
 <%# Eval("PostalCode") %>

 <%# Eval("HomePhone") %></i>

 <asp:TextBox Text='<%# Bind("Notes") %>' runat="server" id="textBox"
 TextMode="MultiLine" Width="413px" />
 </small>
</EditItemTemplate>

When binding an editable value to a control, you must use the Bind() method in your data binding
expression instead of the ordinary Eval() method. Only the Bind() method creates the two-way link,
ensuring that updated values will be sent back to the server.

Another important fact to keep in mind is that when the GridView commits an update, it will submit
only the bound, editable parameters. In the previous example, this means the GridView will pass back a
single @Notes parameter for the Notes field. This is important, because when you write your
parameterized update command (if you’re using the SqlDataSource), you must use only one parameter,
as shown here:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 ProviderName="System.Data.SqlClient"
 SelectCommand="SELECT EmployeeID, FirstName, LastName, Title, City, Country,
Notes, Address, Region, PostalCode, HomePhone, TitleOfCourtesy FROM Employees"
 UpdateCommand="UPDATE Employees SET Notes=@Notes WHERE EmployeeID=@EmployeeID">
</asp:SqlDataSource>

Similarly, if you’re using the ObjectDataSource, you must make sure your update method takes only
one parameter, named Notes.

Figure 10-14 shows the row in edit mode.

CHAPTER 10 ■ RICH DATA CONTROLS

442

Figure 10-14. Editing with a template

Editing with Advanced Controls
Template based-editing really shines if you need to bind to more interesting controls, such as lists. For
example, you could change the previous example to make the TitleOfCourtesy field editable through a
drop-down list. Here’s the template you need, with the new details in bold:

<EditItemTemplate>

 <%# Eval("EmployeeID") %> -
 <asp:DropDownList runat="server" ID="EditTitle"
 SelectedIndex='<%# GetSelectedTitle(Eval("TitleOfCourtesy")) %>'
 DataSource='<%# TitlesOfCourtesy %>' />
 <%# Eval("FirstName") %>
 <%# Eval("LastName") %>

 <hr />
 <small><i>
 <%# Eval("Address") %>

 <%# Eval("City") %>, <%# Eval("Country") %>,
 <%# Eval("PostalCode") %>

 <%# Eval("HomePhone") %></i>

 <asp:TextBox Text='<%# Bind("Notes") %>' runat="server" id="textBox"

CHAPTER 10 ■ RICH DATA CONTROLS

443

 TextMode="MultiLine" Width="413px" />
 </small>
</EditItemTemplate>

This template allows the user to pick a title of courtesy from a limited selection of possible titles. To
create this list, you need to resort to a little trick—setting the DropDownList.DataSource with a data
binding expression that points to a custom property. This custom property can then return a suitable
data source with the available titles of courtesy.

Here’s the definition for the TitlesOfCourtesy property in the web-page class:

protected string[] TitlesOfCourtesy
{
 get { return new string[]{"Mr.", "Dr.", "Ms.", "Mrs."}; }
}

■ Note This list of titles of courtesy is by no means complete. There are also Miss, Lord, Lady, Sir, None, and so

on. For a real-world application the titles could come from a database table or configuration file.

This step ensures that the drop-down list is populated, but it doesn’t solve the related problem of
making sure the right title is selected in the list for the current value. The best approach here is to bind
the SelectedIndex to a custom method that takes the current title and returns the index of that value. In
this example, the GetSelectedTitle() method performs this task. It takes a title as input and returns the
index of the respective value in the array returned by TitlesOfCourtesy.

protected int GetSelectedTitle(object title)
{
 return Array.IndexOf(TitlesOfCourtesy, title.ToString());
}

This code searches the array using the static Array.IndexOf() method. Note that you must explicitly
cast the title to a string. That’s because the DataBinder.Eval() method returns an object, not a string, and
that value is passed to the GetSelectedTitle() method.

Figure 10-15 shows the drop-down list in action.

CHAPTER 10 ■ RICH DATA CONTROLS

444

Figure 10-15. Editing with a drop-down list of values

Unfortunately, this still doesn’t complete the example. Now you have a list box that is populated in
edit mode, with the correct item automatically selected. However, if you change the selection, the value
isn’t sent back to the data source. In this example, you could tackle the problem by using the Bind()
method with the SelectedValue property, because the text in the control exactly corresponds to the text
you want to commit to the record. However, sometimes life isn’t as easy, because you need to translate
the value into a different database representation. In this situation, the only option is to handle the
RowUpdating event, find the list control in the current row, and extract the text. You can then
dynamically add the extra parameter, as shown here:

protected void gridEmployees_RowUpdating(object sender, GridViewUpdateEventArgs e)
{
 // Get the reference to the list control.
 DropDownList title = (DropDownList)
 (gridEmployees.Rows[e.RowIndex].FindControl("EditTitle"));

 // Add it to the parameters.
 e.NewValues.Add("TitleOfCourtesy", title.Text);
}

The UpdateCommand in the SqlDataSource must also be updated to use the @TitleOfCourtesy
parameter:

UpdateCommand="UPDATE Employees SET Notes=@Notes, TitleOfCourtesy=@TitleOfCourtesy
WHERE EmployeeID=@EmployeeID"

CHAPTER 10 ■ RICH DATA CONTROLS

445

This will now successfully update both the Notes field and the TitleOfCourtesy. As you can see,
editable templates give you a great deal of power, but they often aren’t quick to code.

■ Tip To make an even more interesting EditItemTemplate, you could add validator controls to verify input values,

as discussed in Chapter 4.

Editing Without a Command Column
So far, all the examples you’ve seen have used a CommandField that automatically generates edit
controls. However, now that you’ve made the transition over to a template-based approach, it’s worth
considering how you can add your own edit controls.

It’s actually quite easy. All you need to do is add a button control to the ItemTemplate and set the
CommandName to Edit. This automatically triggers the editing process, which fires the appropriate
events and switches the row into edit mode:

<ItemTemplate>

 <%# Eval("EmployeeID") %> - <%# Eval("TitleOfCourtesy") %>
 <%# Eval("TitleOfCourtesy") %> <%# Eval("FirstName") %>
 <%# Eval("LastName") %>

 <hr />
 <small><i>
 <%# Eval("Address") %>

 <%# Eval("City") %>, <%# Eval("Country") %>,
 <%# Eval("PostalCode") %>

 <%# Eval("HomePhone") %></i>

 <%# Eval("Notes") %>

 <asp:LinkButton runat="server" Text="Edit"
 CommandName="Edit" ID="cmdEdit" />
 </small>
</ItemTemplate>

In the EditItemTemplate, you need two more buttons with a CommandName of Update and
Cancel, respectively:

<EditItemTemplate>

 <%# Eval("EmployeeID") %> -
 <asp:DropDownList runat="server" ID="EditTitle"
 SelectedIndex='<%# GetSelectedTitle(Eval("TitleOfCourtesy")) %>'
 DataSource='<%# TitlesOfCourtesy %>' />
 <%# Eval("FirstName") %>
 <%# Eval("LastName") %>

 <hr />

CHAPTER 10 ■ RICH DATA CONTROLS

446

 <small><i>
 <%# Eval("Address") %>

 <%# Eval("City") %>, <%# Eval("Country") %>,
 <%# Eval("PostalCode") %>

 <%# Eval("HomePhone") %></i>

 <asp:TextBox Text='<%# Bind("Notes") %>' runat="server" id="textBox"
 TextMode="MultiLine" Width="413px" />

 <asp:LinkButton runat="server" Text="Update"
 CommandName="Update" ID="cmdUpdate" />
 <asp:LinkButton runat="server" Text="Cancel"
 CommandName="Cancel" ID="cmdCancel" />
 </small>
</EditItemTemplate>

As long as you use the right names when setting the CommandName property on your buttons, the
GridView editing events will fire and the data source controls will react in the same way as if you were
using the automatically generated editing controls. Figure 10-16 shows the custom edit links.

Figure 10-16. Custom edit controls

CHAPTER 10 ■ RICH DATA CONTROLS

447

Client IDs in Templates
As you’ve seen, the TemplateField in the GridView works by repeating the same block of markup in your
web page once for each data item. However, ASP.NET needs the ability to uniquely identify separate
instances of the same element. For example, if you place a button in your ItemTemplate, ASP.NET
creates one instance of that button for each data item. If the user clicks that button, ASP.NET needs to be
able to determine which button triggered the postback. Similarly, if you place a text box in a template,
ASP.NET needs to keep its values separate from text box values in other instances of the same template.

Fortunately, this task isn’t difficult for ASP.NET, provided each element has a distinct client-side ID
in the rendered markup. ASP.NET takes care of this detail for you, by automatically generating unique
IDs for each repeated element. In most situations, you can relax and let ASP.NET use its standard ID-
generation algorithm, without paying the client IDs any real attention. However, there are situations
when you might need more client-side control. For example, you might choose to modify an HTML
object using client-side JavaScript. In cases like these, it’s important that you know the exact client-side
IDs that ASP.NET will generate.

With data bound controls, this isn’t always easy. ASP.NET generates unique names by inserting a
numeric suffix. This numeric suffix doesn’t actually mean anything—it simply separates one item from
another. Thus, it’s difficult to know what numeric suffix ASP.NET will hand out to a specific data item,
and what client-side ID it will generate.

To solve this problem, you can use the ClientIDMode property described in Chapter 3 in
conjunction with the GridView’s ClientIDRowSuffix property. Essentially, the ClientIDRowSuffix
property tells the GridView to use a unique field from the data object as the control suffix. Because you
know the value of this field for each data item, you can predict the client IDs that ASP.NET will generate.

To understand this example, consider the grid of employees shown in earlier examples. In the
ItemTemplate, the control that creates the Edit link looks like this:

<asp:LinkButton runat="server" Text="Edit" CommandName="Edit" ID="cmdEdit" />

When rendered to HTML, the LinkButton writes an anchor element, and converts the server-side ID
cmdEdit to a unique client-side ID like gridEmployeed_cmdEdit_0:

Edit

The problem is that the 0 iscompletely arbitrary. It depends on the position of the data item in the
GridView, and the number of other records. However, if you use the ClientIDMode to Predictable for the
GridView, you can use the ClientIDRowSuffix to choose a data field for the suffic. Here’s an example:

<asp:GridView ID="gridEmployees" runat="server" ...
 ClientIDMode="Predictable" ClientIDRowSuffix="EmployeeID">

Now, the EmployeeID value of each data item is used as a suffix to make its client ID unique. If you
have an employee record with an ID of 45HJ77, ASP.NET generates an anchor like this:

Edit

This name is used no matter how the employee records are arranged.

The ListView
The ListView is an extremely flexible data-bound control that renders its content based on the templates
you define. Unlike the Repeater, the ListView adds higher-level features such as selection and editing,
which work in the same way as those in the GridView. But unlike the GridView, the ListView doesn’t
support a field-based model for creating quick-and-easy grids with a minimum of markup.

CHAPTER 10 ■ RICH DATA CONTROLS

448

Depending on your perspective, the ListView is either a more flexible version of the GridView that
requires more work or a more feature-filled version of the simple Repeater that was included with
ASP.NET 1.x.

The ListView includes a more extensive set of templates than the GridView. Table 10-9 lists them all.

Table 10-9. ListView Templates

Mode Description

ItemTemplate Sets the content of every data item (if you aren’t using the
AlternatingItemTemplate) or every odd-numbered data cell (if you are).

AlternatingItemTemplate Used in conjunction with the ItemTemplate to format even-numbered
and odd-numbered rows differently.

ItemSeparatorTemplate Sets the content of the separator that’s drawn between items.

SelectedItemTemplate Sets the content of the item that’s currently selected. You can use the
same content as the ItemSeparatorTemplate, but with different
formatting to make it stand out, or you can choose to show an
expanded display with additional details for the selected item.

EditItemTemplate Sets the controls used for an item in edit mode.

InsertItemTemplate Sets the controls used to insert a new item.

LayoutTemplate Sets the markup that wraps your list of items.

GroupTemplate Sets the markup that wraps each group of items, if you’re using the
grouping feature.

GroupSeparatorTemplate Sets the content of the separator that’s drawn between groups of items.

EmptyItemTemplate Sets the content that’s used to fill empty values in the last group, if
you’re using grouping. For example, if you create groups of 5 and your
data source is a collection of 13 objects, there are 2 items missing from
the last group.

EmptyDataTemplate Sets the markup that’s used if the bound data object is empty (doesn’t
contain any records or objects).

■ Tip The most common reason for using the ListView is to create an unusual layout—for example, to create a
table that places more than one item in the same row, or to break free from table-based rendering altogether.
When building a page to display large amounts of data, ASP.NET developers usually turn to the GridView first and

use the ListView in more specialized scenarios.

CHAPTER 10 ■ RICH DATA CONTROLS

449

To display some data with the ListView, you follow the same process that you’d follow with a
GridView that’s made up of TemplateField columns. First, you create the markup for the templates you
want to use. At a bare minimum, you need the ItemTemplate, which represents the content for each
item. Here’s an example:

<asp:ListView ID="listEmployees" DataSourceID="sourceEmployees" runat="server">
 <ItemTemplate>

 <%# Eval("EmployeeID") %> -
 <%# Eval("TitleOfCourtesy") %> <%# Eval("FirstName") %>
 <%# Eval("LastName") %>

 <hr />
 <small>
 <i><%# Eval("Address") %>

 <%# Eval("City") %>, <%# Eval("Country") %>,
 <%# Eval("PostalCode") %>

 <%# Eval("HomePhone") %></i>

 <%# Eval("Notes") %>

 </small>

 </ItemTemplate>
</asp:ListView>

When the ListView renders itself, it iterates over the bound data and renders the ItemTemplate for
each item. It places all of this content inside an ordinary .

Often, you’ll want to supply a LayoutTemplate to get more control over the arrangement of items. If
you include a LayoutTemplate, the list of items is placed inside the LayoutTemplate. The default
behavior of the ListView with no LayoutTemplate is equivalent to using a LayoutTemplate that looks
like this:

<asp:ListView ID="listEmployees" DataSourceID="sourceEmployees" runat="server">
 <LayoutTemplate>
 <asp:PlaceHolder ID="itemPlaceHolder" runat="server"></asp:PlaceHolder>
 </LayoutTemplate>

 <ItemTemplate>
 ...
 </ItemTemplate>
</asp:ListView>

When creating the LayoutTemplate for a ListView, you need to indicate where the ItemTemplate
content should be inserted. You do this by adding a placeholder—the element that will be duplicated
once for each bound data item. To designate an element as the placeholder, you simply set its ID to
itemPlaceholder, as shown in this example. Your placeholder must be a server control—in other words,
it needs the runat="server" attribute. This example uses the convenient PlaceHolder web control, but
you could substitute a server-side or <div> element instead.

CHAPTER 10 ■ RICH DATA CONTROLS

450

■ Note The LayoutTemplate is what allows the ListView to be so flexible. Other data controls use templates for

content, but not for the overall structure.

Using the LayoutTemplate, you can easily adapt this example so that it uses a table. For example, if
you want to place each item in a separate row (as the GridView does), you would use a table row (the
<tr> element) for your item placeholder:

<LayoutTemplate>
 <table border="1">
 <tr id="itemPlaceholder" runat="server" />

</LayoutTemplate>

Now, each item can start a new row (with <tr>) and add the cells where appropriate (with <td>):

<ItemTemplate>
 <tr>
 <td>...<td>
 ...
 </tr>
</ItemTemplate>

■ Note Compared to the GridView, the ListView has one conceptual drawback—it only has a single template for
displaying items. To understand how this can limit you, consider what would happen if you wanted to create a

multicolumn display using only the ListView. You’d need to add the column headers above the ListView, and then
you’d need to define all the column content in the ItemTemplate. This works perfectly well, but it will cause major

headaches if you want to make trivial-seeming changes like reordering your columns.

To make life a little more interesting, you can create a table layout that wouldn’t be possible with the
ordinary GridView—one that places each item in a separate column. Conceptually, this process is
simple. You simply need to use a table cell (the <td> element) as your placeholder:

<LayoutTemplate>
 <tr valign="top" border="1"><td id="itemPlaceholder" runat="server" />
</LayoutTemplate>

Now the LayoutTemplate must begin with the <td> tag. The result will quickly become difficult to
read if you have a somewhat large set of data (unless you also use paging). Figure 10-17 shows the result.

CHAPTER 10 ■ RICH DATA CONTROLS

451

Figure 10-17. An unusual layout with the ListView

Grouping
The ListView offers a way to create slightly more structured displays that resolve the problem shown in
Figure 10-17. The trick is to use grouping, which allows you to specify an additional level of layout that’s
used to arrange smaller groups of records inside the overall layout.

To use grouping, you begin by setting the GroupItemCount property, which determines the number
of data items in each group:

<asp:ListView ID="listEmployees" GroupItemCount="3" ... >

Sadly, the ListView’s grouping feature doesn’t work in conjunction with the information in your
bound data. For example, if you bind a collection of Product objects, there’s no way to place them into
groups based on price ranges or product categories (although you’ll see one possible way to solve this
problem later in this chapter, in the section “A Parent/Child View in a Single Table”). Instead, the
ListView’s groups are always fixed in size. The most you can do is make the group size user-configurable
(say, by supplying another control like a drop-down list box from which the user can choose the number
to use for GroupItemCount).

Once you’ve set the group size, you need to change the LayoutTemplate. That’s because your overall
layout no longer contains the data items—instead, it contains the groups, which in turn hold the items.
To reflect this fact, you must change the ID from itemPlaceholder to groupPlaceholder. In this example,
each group is a separate row:

<LayoutTemplate>
 <table border="1">
 <tr id="groupPlaceholder" runat="server">
</LayoutTemplate>

CHAPTER 10 ■ RICH DATA CONTROLS

452

Next, you need to supply a GroupTemplate, which is used to wrap each group. The GroupTemplate
must provide the item placeholder that was formerly in the LayoutTemplate. In this example, each item
is a separate cell:

<GroupTemplate>
 <tr><td runat="server" id="itemPlaceholder" valign="top" /></GroupTemplate>

■ Note Both the group placeholder and the item placeholder need to be server controls, and they need to be

content elements—in other words, they need to be able to hold other elements.

Now the ItemTemplate can begin with the <td> tag, so that each item is a cell inside a row. In turn,
each row is a group of three data items in the overall table. Figure 10-18 shows the result.

Figure 10-18. A ListView with grouping

When using grouping, the last group may not be completely filled. For example, the previous
example creates groups of three. If the number of data items isn’t a multiple of three, the last group
won’t be complete. In many cases, this isn’t an issue, but in some situations it might be—for example, if
you want to preserve a certain structure or place some alternate content in a table. In this case, you can
supply the new content by using the EmptyItemTemplate.

CHAPTER 10 ■ RICH DATA CONTROLS

453

Paging
Unlike the other data controls you’ll consider in this chapter, the ListView doesn’t have a hard-wired
paging feature. Instead, it supports another control whose sole purpose is providing the paging feature:
the DataPager.

The idea behind the DataPager is that it gives you a single, consistent way to use paging with a
variety of controls. Currently, the ListView is the only control that supports the DataPager. However, it’s
reasonable to expect the DataPager to work with more ASP.NET controls in future versions.

Another benefit of the DataPager is that you have the flexibility to position it where you want in your
overall layout, simply by placing the tag in the right part of the LayoutTemplate. Here’s a fairly typical
use of the DataPager that puts it at the bottom of the ListView, and gives it buttons for moving forward or
backward one page at a time or jumping straight to the first or last page:

<LayoutTemplate>
 <table id="groupPlaceholder" runat="server">

 <asp:DataPager runat="server" ID="ContactsDataPager" PageSize="6">
 <Fields>
 <asp:NextPreviousPagerField
 ShowFirstPageButton="true" ShowLastPageButton="true"
 FirstPageText="|<< " LastPageText=" >>|"
 NextPageText=" > " PreviousPageText=" < " />
 </Fields>
 </asp:DataPager>
</LayoutTemplate>

The DataPager also pares down the bound data so the ListView only gets the appropriate subset of
data. In the current example, pages are limited to six items. Figure 10-19 shows the paging buttons.

Figure 10-19. A ListView and DataPager working in conjunction

CHAPTER 10 ■ RICH DATA CONTROLS

454

The DetailsView and FormView
The GridView and ListView excel at showing dense tables with multiple rows of information. However,
sometimes you want to provide a detailed look at a single record. Although you could work out a
solution using a template column in a GridView, ASP.NET also includes two controls that are tailored for
this purpose: the DetailsView and FormView. Both show a single record at a time but can include
optional pager buttons that let you step through a series of records (showing one per page). Both
support templates, but the FormView requires them. This is the key distinction between the two
controls.

One other difference is the fact that the DetailsView renders its content inside a table, while the
FormView gives you the flexibility to display your content without a table. Thus, if you’re planning to use
templates, the FormView gives you the most flexibility. But if you want to avoid the complexity of
templates, the DetailsView gives you a simpler model that lets you build a multirow data display out of
field objects, in much the same way that the GridView is built out of column objects.

Now that you understand the features of the GridView and ListView, you can get up to speed with
the DetailsView and FormView quite quickly. That’s because both the DetailsView and the FormView
borrow a portion of the GridView model.

The DetailsView
The DetailsView is designed to display a single record at a time. It places each piece of information (be it
a field or a property) in a separate row of a table.

You saw how to create a basic DetailsView to show the currently selected record in Chapter 9. The
DetailsView can also bind to a collection of items. In this case, it shows the first item in the group. It also
allows you to move from one record to the next using paging controls, if you’ve set the AllowPaging
property to true. You can configure the paging controls using the PagingStyle and PagingSettings
properties in the same way as you tweak the pager for the GridView. The only difference is that there’s
no support for custom paging, which means the full data source object is always retrieved.

Figure 10-20 shows the DetailsView when it’s bound to a set of employee records, with full employee
information.

It’s tempting to use the DetailsView pager controls to make a handy record browser. Unfortunately,
this approach can be quite inefficient. First, a separate postback is required each time the user moves
from one record to another (whereas a grid control can show multiple records at once). But the real
drawback is that each time the page is posted back, the full set of records is retrieved, even though only a
single record is shown. If you choose to implement a record browser page with the DetailsView, at a bare
minimum you must enable caching to reduce the database work (see Chapter 11). That way, the full set
of records is retrieved from the cache when possible and doesn’t require a separate database operation.

Often, a better choice is to create your own record selection control using a subset of the full data.
For example, you could create a drop-down list and bind this to a data source that queries just the
employee names. Then, when a name is selected from the list, you retrieve the full details for just that
record using another data source. Of course, several metrics can determine which approach is best,
including the size of the full record (how much bigger it is than just the first and last name), the usage
patterns (whether the average user browses to just one or two records or needs to see them all), and how
many records there are in total. (You can afford to retrieve them all at once if there are dozens of records,
but you need to think twice if there are thousands.)

CHAPTER 10 ■ RICH DATA CONTROLS

455

Figure 10-20. The DetailsView with paging

Defining Fields
The DetailsView uses reflection to generate the fields it shows. That means it examines the data object
and creates a separate field for each field (in a row) or property (in a custom object), just like the
GridView. You can disable this automatic field generation by setting AutoGenerateRows to false. It’s then
up to you to declare the field objects.

Interestingly, you use the same field object to build a DetailsView as you used to design a GridView.
For example, fields from the data item are represented with the BoundField tag, buttons can be created
with the ButtonField, and so on. For the full list, refer to Table 10-1.

Following is a portion of the field declarations for a DetailsView:

<asp:DetailsView ID="DetailsView1" runat="server" DataSourceID="sourceEmployees"
 AutoGenerateRows="False">
 <Fields>
 <asp:BoundField DataField="EmployeeID" HeaderText="EmployeeID" />
 <asp:BoundField DataField="FirstName" HeaderText="FirstName" />

CHAPTER 10 ■ RICH DATA CONTROLS

456

 <asp:BoundField DataField="LastName" HeaderText="LastName" />
 <asp:BoundField DataField="Title" HeaderText="Title" />
 <asp:BoundField DataField="TitleOfCourtesy" HeaderText="TitleOfCourtesy" />
 <asp:BoundField DataField="BirthDate" HeaderText="BirthDate" />
 ...
 </Fields>
 ...
</asp:DetailsView>

You can use the BoundField tag to set properties such as header text, formatting string, editing
behavior, and so on (see Table 10-2 earlier). In addition, you can use the ShowHeader property. When
set to false, this instructs the DetailsView to leave the header text out of the row, and the field data takes
up both columns.

The field model isn’t the only part of the GridView that the DetailsView control adopts. It also uses a
similar set of styles, a similar set of events, and a similar editing model.

Record Operations
The DetailsView supports delete, insert, and edit operations. However, unlike the GridView, you don’t need
to add a CommandField with edit controls. Instead, you simply set the Boolean
AutoGenerateDeleteButton, AutoGenerateEditButton, and AutoGenerateInsertButton properties on the
DetailsView control. This adds a CommandField at the bottom of the DetailsView with links for these tasks.

When you click the Delete button, the delete operation is performed immediately. However, when
you click an Edit or Insert button, the DetailsView changes into edit or insert mode. Technically, the
DetailsView has three modes (as represented by the DetailsViewMode enumeration). These modes are
ReadOnly, Edit, and Insert. You can find the current mode at any time by checking the CurrentMode
property, and you can call ChangeMode() to change it. You can also use the DefaultMode property to
create a DetailsView that always begins in edit or insert mode.

In edit mode, the DetailsView uses standard text box controls just like the GridView (see Figure 10-
21). For more editing flexibility, you’ll want to use template fields or the FormView control.

Figure 10-21. Editing in the DetailsView

CHAPTER 10 ■ RICH DATA CONTROLS

457

■ Note If you place the DetailsView in edit mode to modify a record, and then navigate to a new record using the
pager buttons, the DetailsView remains in edit mode. If this isn’t the behavior you want, you can react to the

PageIndexChanged event and call the ChangeMode() method to programmatically put it back in read-only mode.

The FormView
If you need the ultimate flexibility of templates, the FormView provides a template-only control for
displaying and editing a single record.

The beauty of the FormView template model is that it matches the model of the TemplateField in
the GridView quite closely. Therefore, you have the following templates to work with:

• ItemTemplate

• EditItemTemplate

• InsertItemTemplate

• FooterTemplate

• HeaderTemplate

• EmptyDataTemplate

• PagerTemplate

This means you can take the exact template content you put in a TemplateField in a GridView and
place it inside the FormView. Here’s an example based on the earlier templated GridView:

<asp:FormView ID="FormView1" runat="server" DataSourceID="sourceEmployees">
 <ItemTemplate>

 <%# Eval("EmployeeID") %> -
 <%# Eval("TitleOfCourtesy") %> <%# Eval("FirstName") %>
 <%# Eval("LastName") %>

 <hr />
 <small><i>
 <%# Eval("Address") %>

 <%# Eval("City") %>, <%# Eval("Country") %>,
 <%# Eval("PostalCode") %>

 <%# Eval("HomePhone") %></i>

 <%# Eval("Notes") %>

 </small>
 </ItemTemplate>
</asp:FormView>

Figure 10-22 shows the result.

CHAPTER 10 ■ RICH DATA CONTROLS

458

Figure 10-22. A single record in a FormView

Much like the DetailsView, the FormView works in three distinct modes: read-only, insert, and edit.
However, unlike the DetailsView and the GridView, the FormView control doesn’t support the
CommandField class that automatically creates editing buttons. Instead, you’ll need to create these
buttons yourself.

To do so, you simply need to add a Button or LinkButton control and set its CommandName
property to the appropriate value. For example, a Button with a CommandName set to Edit switches the
FormView into edit mode. This technique is described earlier in this chapter, in the section “Editing
Without a Command Column.” For a quick refresher, refer to Table 10-10, which lists all the recognized
command names you can use.

Table 10-10. CommandName Values for FormView Editing

Command Name Description Where It Belongs

Edit Puts the FormView into edit mode. The FormView
renders the current record using the
EditItemTemplate with the edit controls you’ve
defined.

The ItemTemplate

Cancel Cancels the edit or insert operation and returns to the
mode specified by the DefaultMode property.
Usually, this will be normal mode
(FormViewMode.ReadOnly), and the FormView will
display the current record using the ItemTemplate.

The EditItemTemplate
and InsertItemTemplate

Update Applies the edit and raises the ItemUpdating and
ItemUpdated events on the way.

The EditItemTemplate

CHAPTER 10 ■ RICH DATA CONTROLS

459

Command Name Description Where It Belongs

New Puts the FormView in insertion mode. The FormView
displays a new, blank record using the
InsertItemTemplate with the edit controls you’ve
defined.

The ItemTemplate

Insert Inserts the newly supplied data and raises the
ItemInserting and ItemInserted events on the way.

The InsertItemTemplate

Delete Removes the current record from the data source,
raising the ItemDeleting and ItemDeleted events.
Does not change the FormView mode.

The ItemTemplate

Advanced Grids
In the following sections, you’ll consider a few ways to extend the GridView. You’ll learn how to show
summaries, create a complete master-details report on a single page, and display image data that’s
drawn from a database. You’ll also see an example that uses advanced concurrency handling to warn the
user about potential conflicts when updating a record.

Summaries in the GridView
Although the prime purpose of a GridView is to show a set of records, you can also add some more
interesting information, such as summary data. The first step is to add the footer row by setting the
GridView.ShowFooter property to true. This displays a shaded footer row (which you can customize
freely), but it doesn’t show any data. To take care of that task, you need insert the content into the
GridView.FooterRow.

For example, imagine you’re dealing with a list of products. A simple summary row could display
the total or average product price. In the next example, the summary row displays the total value of all
the in-stock products.

The first step is to decide when to calculate this information. If you’re using manual binding, you
could retrieve the data object and use it to perform your calculations before binding it to the GridView.
However, if you’re using declarative binding, you need another technique. You have two basic options—
you can retrieve the data from the data object before the grid is bound, or you can retrieve it from the
grid itself after the grid has been bound. The following example uses the latter approach because it gives
you the freedom to use the same calculation code no matter what data source was used to populate the
control. It also gives you the ability to total just the records that are displayed on the current page, if
you’ve enabled paging. The disadvantage is that your code is tightly bound to the GridView, because you
need to pull out the information you want by position, using hard-coded column index numbers.

In this example, a paged grid of products provides a summary that indicates the total price of all the
products that are currently on display (see Figure 10-23 for the results).

<asp:GridView ID="gridSummary" runat="server" DataSourceID="sourceProducts"
 AllowPaging="True" OnDataBound="gridSummary_DataBound" ShowFooter="True" ... >

CHAPTER 10 ■ RICH DATA CONTROLS

460

Figure 10-23. A GridView with a footer summary

To fill the footer, the code in this example reacts to the GridView.DataBound event. This occurs
immediately after the GridView is populated with data. At this point, you can’t access the data source
any longer, but you can navigate through the GridView as a collection of rows and cells. Once this total is
calculated, it’s inserted into the footer row.

Here’s the complete code:

protected void gridSummary_DataBound(object sender, EventArgs e)
{
 decimal valueInStock = 0;

 // The Rows collection includes only the rows that are displayed
 // on the current page (not "virtual" rows).
 foreach (GridViewRow row in gridSummary.Rows)
 {
 decimal price = Decimal.Parse(row.Cells[2].Text);
 int unitsInStock = Int32.Parse(row.Cells[3].Text);
 valueInStock += price * unitsInStock;
 }

 // Update the footer.
 GridViewRow footer = gridSummary.FooterRow;

 // Set the first cell to span over the entire row.
 footer.Cells[0].ColumnSpan = 3;
 footer.Cells[0].HorizontalAlign = HorizontalAlign.Center;

CHAPTER 10 ■ RICH DATA CONTROLS

461

 // Remove the unneeded cells.
 footer.Cells.RemoveAt(2);
 footer.Cells.RemoveAt(1);

 // Add the text.
 footer.Cells[0].Text = "Total value in stock (on this page): " +
 valueInStock.ToString("C");
}

The summary row has the same number of columns as the rest of the grid. As a result, if you want
your text to be displayed over multiple cells (as it is in this example), you need to configure cell spanning
by setting the ColumnSpan property of the appropriate cell. In this example, the first cell spans over
three columns (itself, and the next two on the right).

A Parent/Child View in a Single Table
Earlier in this chapter, you saw a master/detail page that used a GridView and DetailsView. This gives
you the flexibility to show the child records for just the currently selected parent record. However,
sometimes you want to create a parent/child report that shows all the records from the child table,
organized by parent. For example, you could use this to create a complete list of products organized by
category. The next example demonstrates how you show a complete, subgrouped product list in a single
grid, as shown in Figure 10-24.

The basic technique is to create a GridView for the parent table that contains an embedded
GridView for each row. These child GridView controls are inserted into the parent GridView using a
TemplateField. The only trick is that you can’t bind the child GridView controls at the same time that
you bind the parent GridView, because the parent rows haven’t been created yet. Instead, you need to
wait for the GridView.DataBound event to fire in the parent.

In this example, the parent GridView defines two columns, both of which are the TemplateField
type. The first column combines the category name and category description:

<asp:TemplateField HeaderText="Category">
 <ItemStyle VerticalAlign="Top" Width="20%"></ItemStyle>
 <ItemTemplate>

 <%# Eval("CategoryName") %>

 <%# Eval("Description") %>

 </ItemTemplate>
</asp:TemplateField>

CHAPTER 10 ■ RICH DATA CONTROLS

462

Figure 10-24. A parent grid with embedded child grids

The second column contains an embedded GridView of products, with two bound columns. Here’s
an excerpted listing that omits the style-related attributes:

<asp:TemplateField HeaderText="Products">
 <ItemStyle VerticalAlign="Top"></ItemStyle>
 <ItemTemplate>
 <asp:GridView ID="gridChild" runat="server">
 <Columns>
 <asp:BoundField DataField="ProductName"
 HeaderText="Product Name" />
 <asp:BoundField DataField="UnitPrice" HeaderText="Unit Price"
 DataFormatString="{0:C}" />
 </Columns>
 </asp:GridView>
 </ItemTemplate>
</asp:TemplateField>

CHAPTER 10 ■ RICH DATA CONTROLS

463

You’ll notice that the markup for the second GridView does not set the DataSourceID property.
That’s because the data source for each of these grids is supplied programmatically as the parent grid is
being bound to its data source.

Now all you need to do is create two data sources, one for retrieving the list of categories and the
other for retrieving all products in a specified category. The first data source provides the query that fills
the parent GridView:

<asp:SqlDataSource ID="sourceCategories" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 ProviderName="System.Data.SqlClient"
 SelectCommand="SELECT * FROM Categories">
</asp:SqlDataSource>

You can bind the first grid directly to the data source, as shown here:

<asp:GridView id="gridMaster" runat="server" DataKeyNames="CategoryID"
 DataSourceID="sourceCategories" OnRowDataBound="gridMaster_RowDataBound" ... >

This part of the code is typical. The trick is to bind the child GridView controls. If you leave out this
step, the child GridView controls won’t appear.

The second data source contains the query that’s called multiple times to fill the child GridView.
Each time, it retrieves the products that are in a different category. The CategoryID is supplied as a
parameter:

<asp:SqlDataSource ID="sourceProducts" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 ProviderName="System.Data.SqlClient"
 SelectCommand="SELECT * FROM Products WHERE CategoryID=@CategoryID">
 <SelectParameters>
 <asp:Parameter Name="CategoryID" Type="Int32" />
 </SelectParameters>
</asp:SqlDataSource>

To bind the child GridView controls, you need to react to the GridView.RowDataBound event, which
fires every time a row is generated and bound to the parent GridView. At this point, you can retrieve the
child GridView control from the second column and bind it to the product information by
programmatically calling the Select() method of the data source. To ensure that you show only the
products in the current category, you must also retrieve the CategoryID field for the current item and
pass it as a parameter. Here’s the code you need:

protected void gridMaster_RowDataBound(object sender, GridViewRowEventArgs e)
{
 // Look for data items.
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 // Retrieve the GridView control in the second column.
 GridView gridChild = (GridView)e.Row.Cells[1].Controls[1];

 // Set the CategoryID parameter so you get the products
 // in the current category only.
 string catID =
 gridMaster.DataKeys[e.Row.DataItemIndex].Value.ToString();

CHAPTER 10 ■ RICH DATA CONTROLS

464

 sourceProducts.SelectParameters[0].DefaultValue = catID;

 // Get the data object from the data source.
 object data = sourceProducts.Select(DataSourceSelectArguments.Empty);

 // Bind the grid.
 gridChild.DataSource = data;
 gridChild.DataBind();
 }
}

Editing a Field Using a Lookup Table
In data-driven applications, you’ll often encounter fields that are limited to a small list of predetermined
values. This is particularly common when you’re dealing with related tables. For example, consider the
Products and Categories tables in the Northwind database. Clearly, every product must belong to an
existing category. As a result, when you edit or create a new product, you must set the
Products.CategoryID field to one of the CategoryID values that’s in the Categories table.

When dealing with this sort of relationship, it’s often helpful to use a lookup list for edit and insert
operations. That way, you can choose the category from a list by name, rather than remember the
numeric CategoryID value. Figure 10-25 shows a DetailsView that uses a lookup list to simplify category
picking.

Figure 10-25. A lookup list using another table

CHAPTER 10 ■ RICH DATA CONTROLS

465

You’ve already seen an example that uses a fixed lookup list for the TitleOfCourtesy field in the
Employees table. In that example, the data and the currently selected value were retrieved by binding to
custom methods in the page. The same approach works with this example, but you have an easier
option—you can build the lookup list declaratively using a data source control.

Here’s how it works. In your page, you need two data source controls. The first one fills the
DetailsView, using a join query to get the category name information:

<asp:SqlDataSource ID="sourceProducts" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 ProviderName="System.Data.SqlClient" SelectCommand="SELECT ProductID,
ProductName, Products.CategoryID, CategoryName, UnitPrice FROM Products
INNER JOIN Categories ON Products.CategoryID=Categories.CategoryID"
 UpdateCommand="UPDATE Products SET ProductName=@ProductName,
CategoryID=@CategoryID, UnitPrice=@UnitPrice WHERE ProductID=@ProductID">
</asp:SqlDataSource>

This query gets all the rows from the Products table, but it’s more likely you’ll use a parameter
(possibly from the query string or from another control) to select just a single record that interests you.
Either way, the lookup list technique is the same.

The second data source control gets the full list of categories to use for the lookup list:

<asp:SqlDataSource ID="sourceCategories" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 ProviderName="System.Data.SqlClient"
 SelectCommand="SELECT CategoryName,CategoryID FROM Categories">
</asp:SqlDataSource>

The last step is to define the DetailsView control. This DetailsView is similar to the examples you’ve
seen previously. The difference is that the CategoryID field uses a list box instead of a text box for editing,
which requires a template.

<asp:DetailsView ID="detailsProducts" runat="server" AllowPaging="True"
 AutoGenerateEditButton="True" AutoGenerateRows="False"
 DataKeyNames="ProductID" DataSourceID="sourceProducts">
 ...
 <Fields>
 <asp:BoundField DataField="ProductID" HeaderText="ID" ReadOnly="True" />
 <asp:BoundField DataField="ProductName" HeaderText="Product" />
 <asp:TemplateField HeaderText="Category" >
 <ItemTemplate> ... </ItemTemplate>
 <EditItemTemplate>... </EditItemTemplate>
 </asp:TemplateField>
 <asp:BoundField DataField="UnitPrice" HeaderText="Price" />
 </Fields>
</asp:DetailsView>

In read-only mode, the template field simply shows the category name from the original query
(without using the lookup list at all):

<ItemTemplate>
 <%# Eval("CategoryName") %>
</ItemTemplate>

CHAPTER 10 ■ RICH DATA CONTROLS

466

In edit mode, the template uses a DropDownList control:

<EditItemTemplate>
 <asp:DropDownList id="lstCategories" runat="server"
 DataSourceID="sourceCategories"
 DataTextField="CategoryName" DataValueField="CategoryID"
 SelectedValue='<%# Bind("CategoryID")%>' >
 </asp:DropDownList>
</EditItemTemplate>

This control is bound in two ways. First, it gets its data from the lookup table of categories using the
DataSourceID. The lookup table is bound to the list using the DataTextField and DataValueField
properties. This creates a list of category names but keeps track of the matching ID for each item.

The trick is the SelectedValue property, which sets up the binding to the Products table. The
SelectedValue property uses a data binding expression that gets (or sets) the current CategoryID value.
That way, when you switch in edit mode, the correct category is selected automatically, and when you
apply an update, the selected CategoryID is automatically sent to the data source control and applied to
the database.

Serving Images from a Database
The data examples in this chapter retrieve text, numeric, and date information. However, databases
often have the additional challenge of storing binary data such as pictures. For example, you might have
a Products table that contains pictures of each item in a binary field. Retrieving this data in an ASP.NET
web page is fairly easy, but displaying it is not as simple.

The basic problem is that in order to show an image in an HTML page, you need to add an image tag
that links to a separate image file through the src attribute, as shown here:

Unfortunately, this isn’t much help if you need to show image data dynamically. Although you can
set the src attribute in code, you have no way to set the image content programmatically. You could first
save the data to an image file on the web server’s hard drive, but that approach would be dramatically
slower, waste space, and raise the possibility of concurrency errors if multiple requests are being served
at the same time and they are all trying to write the same file.

You can solve this problem in two ways. One approach is to store all your images in separate files.
Then your database record simply needs to store the filename, and you can bind the filename to a
server-side image. This is a perfectly reasonable solution, but it doesn’t help in situations where you
want to store images in the database so you can take advantage of the abilities of the RDBMS to cache
data, log usage, and back up everything.

In these situations, the solution is to use a separate ASP.NET resource that returns the binary data
directly. You can then use this binary data in other web pages in controls. To tackle this task, you also
need to step outside the data binding and write custom ADO.NET code. The following sections will
develop the solution you need piece by piece.

■ Tip As a general rule of thumb, storing images in a database works well as long as the images are not

enormous (for example, more than 50 MB) and do not need to be frequently edited by other applications.

CHAPTER 10 ■ RICH DATA CONTROLS

467

Displaying Binary Data
ASP.NET isn’t restricted to returning HTML content. In fact, you can use the Response.BinaryWrite()
method to return raw bytes and completely bypass the web-page model.

The following page uses this technique with the pub_info table in the pubs database (another
standard database that’s included with SQL Server). It retrieves the logo field, which contains binary
image data. The page then writes this data directly to the page, as shown here:

protected void Page_Load(object sender, System.EventArgs e)
{
 string connectionString =
 WebConfigurationManager.ConnectionStrings["Pubs"].ConnectionString;
 SqlConnection con = new SqlConnection(connectionString);
 string SQL = "SELECT logo FROM pub_info WHERE pub_id='1389'";
 SqlCommand cmd = new SqlCommand(SQL, con);

 try
 {
 con.Open();
 SqlDataReader r = cmd.ExecuteReader();
 if (r.Read())
 {
 byte[] bytes = (byte[])r["logo"];
 Response.BinaryWrite(bytes);
 }
 r.Close();
 }
 finally
 {
 con.Close();
 }
}

Figure 10-26 shows the result. It doesn’t appear terribly impressive (the logo data isn’t that
remarkable), but you could easily use the same technique with your own database, which can include
much richer and larger images.

Figure 10-26. Displaying an image from a database

When you use BinaryWrite(), you are stepping away from the web-page model. If you add other
controls to your web page, they won’t appear. Similarly, Response.Write() won’t have any effect, because
you are no longer creating an HTML page. Instead, you’re returning image data. You’ll see how to solve
this problem and optimize this approach in the following sections.

CHAPTER 10 ■ RICH DATA CONTROLS

468

Reading Binary Data Efficiently
Binary data can easily grow to large sizes. However, if you’re dealing with a large image file, the example
shown previously will demonstrate woefully poor performance. The problem is that it uses the
DataReader, which loads a single record into memory at a time. This is better than the DataSet (which
loads the entire result set into memory at once), but it still isn’t ideal if the field size is large.

There’s no good reason to load an entire 2 MB picture into memory at once. A much better idea
would be to read it piece by piece and then write each chunk to the output stream using
Response.BinaryWrite(). Fortunately, the DataReader has a sequential access feature that supports this
design. To use sequential access, you simply need to supply the CommandBehavior.SequentialAccess
value to the Command.ExecuteReader() method. Then you can move through the row one block at a
time, using the DataReader.GetBytes() method.

When using sequential access, you need to keep a couple of limitations in mind. First, you must
read the data as a forward-only stream. Once you’ve read a block of data, you automatically move ahead
in the stream, and there’s no going back. Second, you must read the fields in the same order they are
returned by your query. For example, if your query returns three columns, the third of which is a binary
field, you must return the values of the first and second fields before accessing the binary data in the
third field. If you access the third field first, you will not be able to access the first two fields.

Here’s how you would revise the earlier page to use sequential access:

protected void Page_Load(object sender, System.EventArgs e)
{
 string connectionString =
 WebConfigurationManager.ConnectionStrings["Pubs"].ConnectionString;
 SqlConnection con = new SqlConnection(connectionString);
 string SQL = "SELECT logo FROM pub_info WHERE pub_id='1389'";
 SqlCommand cmd = new SqlCommand(SQL, con);

 try
 {
 con.Open();
 SqlDataReader r =
 cmd.ExecuteReader(CommandBehavior.SequentialAccess);

 if (r.Read())
 {
 int bufferSize = 100; // Size of the buffer.
 byte[] bytes = new byte[bufferSize]; // The buffer of data.
 long bytesRead; // The number of bytes read.
 long readFrom = 0; // The starting index.

 // Read the field 100 bytes at a time.
 do
 {
 bytesRead = r.GetBytes(0, readFrom, bytes, 0, bufferSize);
 Response.BinaryWrite(bytes);
 readFrom += bufferSize;
 } while (bytesRead == bufferSize);
 }
 r.Close();
 }
 finally
 {
 con.Close();
 }
}

CHAPTER 10 ■ RICH DATA CONTROLS

469

The GetBytes() method returns a value that indicates the number of bytes retrieved. If you need to
determine the total number of bytes in the field, you simply need to pass a null reference instead of a
buffer when you call the GetBytes() method.

Integrating Images with Other Content
The Response.BinaryWrite() method creates a bit of a challenge if you want to integrate image data with
other controls and HTML. That’s because when you use BinaryWrite() to return raw image data, you lose
the ability to add any extra HTML content.

To attack this problem, you need to create another page that calls your image-generating code. The
best way to do this is to replace your image-generating page with a dedicated HTTP handler that
generates image output. This way, you save the overhead of the full ASP.NET web form model, which
you aren’t using anyway. (Chapter 5 introduces HTTP handlers.)

Creating the HTTP handler you need is quite easy. You simply need to implement the IHttpHandler
interface and implement the ProcessRequest() method (as you learned in Chapter 5). The HTTP handler
will retrieve the ID of the record you want to display from the query string.

Here’s the complete HTTP handler code:

public class ImageFromDB : IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 string connectionString =
 WebConfigurationManager.ConnectionStrings["Pubs"].ConnectionString;

 // Get the ID for this request.
 string id = context.Request.QueryString["id"];
 if (id == null) throw new ApplicationException("Must specify ID.");

 // Create a parameterized command for this record.
 SqlConnection con = new SqlConnection(connectionString);
 string SQL = "SELECT logo FROM pub_info WHERE pub_id=@ID";
 SqlCommand cmd = new SqlCommand(SQL, con);
 cmd.Parameters.AddWithValue("@ID", id);

 try
 {
 con.Open();
 SqlDataReader r =
 cmd.ExecuteReader(CommandBehavior.SequentialAccess);

 if (r.Read())
 {
 int bufferSize = 100; // Size of the buffer.
 byte[] bytes = new byte[bufferSize]; // The buffer.
 long bytesRead; // The # of bytes read.
 long readFrom = 0; // The starting index.

 // Read the field 100 bytes at a time.
 do
 {
 bytesRead = r.GetBytes(0, readFrom, bytes, 0, bufferSize);
 context.Response.BinaryWrite(bytes);

CHAPTER 10 ■ RICH DATA CONTROLS

470

 readFrom += bufferSize;
 } while (bytesRead == bufferSize);
 }
 r.Close();
 }
 finally
 {
 con.Close();
 }
 }

 public bool IsReusable
 {
 get { return true; }
 }
}

Once you’ve created the HTTP handler, you need to register it in the web.config file, as shown here:

<httpHandlers>
 <add verb="GET" path="ImageFromDB.ashx"
 type="ImageFromDB" />
</httpHandlers>

Now you can retrieve the image data by requesting the HTTP handler URL, with the ID of the row
that you want to retrieve. Here’s an example:

ImageFromDB.ashx?ID=1389

To show this image content in another page, you simply need to set the src attribute of an image to
this URL, as shown here:

Figure 10-27 shows a page with multiple controls and logo images. It uses the following
ItemTemplate in a GridView:

<ItemTemplate>
 <table border='1'><tr><td>
 <img src='ImageFromDB.ashx?ID=<%# Eval("pub_id")%>'/>
 </tr>
 <%# Eval("pub_name") %>

 <%# Eval("city") %>,
 <%# Eval("state") %>,
 <%# Eval("country") %>

</ItemTemplate>

And it binds to this data source:

<asp:SqlDataSource ID="sourcePublishers"
 ConnectionString="<%$ ConnectionStrings:Pubs %>"
 SelectCommand="SELECT * FROM publishers" runat="server"/>

CHAPTER 10 ■ RICH DATA CONTROLS

471

Figure 10-27. Displaying database images in ASP.NET web page

This current HTTP handler approach works well if you want to build a detail page with information
about a single record. For example, you could show a list of publishers and then display the image for
the appropriate publisher when the user makes a selection. However, this solution isn’t as efficient if you
want to show image data for every publisher at once, such as in a grid control. The approach still works,
but it will be inefficient because it uses a separate request to the HTTP handler (and hence a separate
database connection) to retrieve each image. You can solve this problem by creating an HTTP handler
that checks for image data in the cache before retrieving it from the database. Before you bind the
GridView, you would then perform a query that returns all the records with their image data and load
each image into the cache.

CHAPTER 10 ■ RICH DATA CONTROLS

472

Detecting Concurrency Conflicts
As discussed in Chapter 8, if a web application allows multiple users to make changes, it’s quite possible
for two or more edits to overlap. Depending on the way these edits overlap and the concurrency strategy
you’re using (see the section “Concurrency Strategies” in Chapter 8 for more information), this could
inadvertently result in committing stale values back to the database.

To prevent this problem, developers often use match-all or timestamp-based concurrency. The idea
here is that the UPDATE statement must match every value from the original record, or the update won’t
be allowed to continue. Here’s an example:

UPDATE Shippers SET CompanyName=@CompanyName, Phone=@Phone
 WHERE ShipperID=@original_ShipperID AND CompanyName=@original_CompanyName
 AND Phone=@original_Phone"

SQL Server uses the index on the ShipperID primary key to find the record and then compares the
other fields to make sure it matches. Now the update can succeed only if the values in the record match
what the user saw when making the changes.

■ Note As indicated in Chapter 8, timestamps are a better way to handle this problem than explicitly matching
every field. However, this example uses the match-all approach because it works with the existing Northwind

database. Otherwise, you would need to add a new timestamp column.

The problem with a match-all concurrency strategy is that it can lead to failed edits. Namely, if the
record has changed in between the time the user queried the record and applied the update, the update
won’t succeed. In fact, the data-bound controls won’t even warn you of the problem; they’ll just execute
the UPDATE statement without any effect, because this isn’t considered an error condition.

If you decide to use match-all concurrency, you’ll need to at least check for lost updates. You can do
this by handling the RowUpdated event of the GridView control, or the ItemUpdated event of the
DetailsView, FormView, or ListView controls. In your event handler you can check the AffectedRows
property of the appropriate EventArgs object (such as GridViewUpdatedEventArgs). If this property is 0,
no records were updated, which is almost always because another edit changed the record and the
WHERE clause in the UPDATE statement couldn’t match anything. (Other errors, such as trying an
update that fails because it violates a key constraint or tries to commit invalid data, do result in an error
being raised by the data source.)

Here’s an example that checks for a failed update in the DetailsView control and then informs the
user of the problem:

protected void DetailsView1_ItemUpdated(object sender,
 DetailsViewUpdatedEventArgs e)
{
 if (e.AffectedRows == 0)
 {
 lblStatus.Text = "A conflicting change has already been made to this " +
 " record by another user. No records were updated.";
 }
}

CHAPTER 10 ■ RICH DATA CONTROLS

473

Unfortunately, this doesn’t make for the most user-friendly web application. It’s particularly a
problem if the record has several fields, or if the fields take detailed information, because these edits are
simply discarded, forcing the user to start from scratch.

A better solution is to give the user a choice. Ideally, the page would show the current value of the
record (taking any recent changes into account) and allow the user to apply the original edited values,
cancel the update, or make additional refinements and then apply the update. It’s actually quite easy to
build a page that provides these niceties. Figure 10-28 shows an example. It warns the user when
changing United Package to United Packages that another user has already modified the record,
changing the company name to United Package Mailer. The user then has the choice to keep the
recently edited name or overwrite it with the new value.

Figure 10-28. Detecting a concurrency error during an edit

First, start with a DetailsView that allows the user to edit individual records from the Shippers table
in the Northwind database. (The Shippers table is fairly easy to use with match-all concurrency because
it has only three fields. Larger tables work better with the equivalent timestamp-based approach.)

CHAPTER 10 ■ RICH DATA CONTROLS

474

Here’s an abbreviated definition of the DetailsView you need:

<asp:DetailsView ID="detailsEditing" runat="server"
 DataKeyNames="ShipperID" AllowPaging="True" AutoGenerateRows="False"
 DataSourceID="sourceShippers" OnItemUpdated="detailsEditing_ItemUpdated" ...>
 <Fields>
 <asp:BoundField DataField="ShipperID" ReadOnly="True" />
 <asp:BoundField DataField="CompanyName" />
 <asp:BoundField DataField="Phone" />
 <asp:CommandField ShowEditButton="True" />
 </Fields>
 ...
</asp:DetailsView>

The data source control that’s bound to the DetailsView uses a match-all UPDATE expression to
implement strict concurrency:

<asp:SqlDataSource ID="sourceShippers" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT * FROM Shippers" UpdateCommand="UPDATE Shippers SET
CompanyName=@CompanyName, Phone=@Phone WHERE ShipperID=@original_ShipperID AND
CompanyName=@original_CompanyName AND Phone=@original_Phone"
 ConflictDetection="CompareAllValues" OldValuesParameterFormatString="original_{0}">
 <UpdateParameters>
 <asp:Parameter Name="CompanyName" />
 <asp:Parameter Name="Phone" />
 <asp:Parameter Name="original_ShipperID" />
 <asp:Parameter Name="original_CompanyName" />
 <asp:Parameter Name="original_Phone" />
 </UpdateParameters>
</asp:SqlDataSource>

You’ll notice the SqlDataSource.ConflictDetection property is set to CompareAllValues, which
ensures that the values from the original record are submitted as parameters (using the prefix defined by
the OldValuesParameterFormatString property).

Most of the work takes place in response to the DetailsView.ItemUpdated event. Here, the code
catches all failed updates and explicitly keeps the DetailsView in edit mode.

protected void detailsEditing_ItemUpdated(object sender,
 DetailsViewUpdatedEventArgs e)
{
 if (e.AffectedRows == 0)
 {
 e.KeepInEditMode = true;
 ...

But the real trick is to rebind the data control. This way, all the original values in the DetailsView are
reset to match the values in the database. That means the update can succeed (if the user tries to apply it
again).

 ...
 detailsEditing.DataBind();
 ...

CHAPTER 10 ■ RICH DATA CONTROLS

475

Rebinding the grid is the secret, but there’s still more to do. To maintain the values that the user is
trying to apply, you need to manually copy them back into the newly bound data control. This is easy
but a little tedious.

 ...
 // Repopulate the DetailsView with the edit values.
 TextBox txt;
 txt = (TextBox)detailsEditing.Rows[1].Cells[1].Controls[0];
 txt.Text = (string)e.NewValues["CompanyName"];
 txt = (TextBox)detailsEditing.Rows[2].Cells[1].Controls[0];
 txt.Text = (string)e.NewValues["Phone"];
 ...

At this point, you have a data control that can detect a failed update, rebind itself, and reinsert the
values the user’s trying to apply. That means if the user clicks Update a second time, the update will now
succeed (assuming the record isn’t changed yet again by another user).

However, this still has one shortcoming. The user might not have enough information at this point
to decide whether to apply the update. Most likely, he’ll want to know what changes were made before
he overwrites them. One way to handle this problem is to list the current values in a label or another
control. In this example, the code simply unhides a Panel control that contains an explanatory message
and another DetailsView:

 ...
 ErrorPanel.Visible = true;
 }
}

The error panel describes the problem with an informative error message and contains a second
DetailsView that binds to the matching row to show the current value of the record in question.

<asp:Panel ID="ErrorPanel" runat="server" Visible="False" EnableViewState="False">
 There is a newer version of this record in the database.

 The current record has the values shown below.

 <asp:DetailsView ID="detailsConflicting" runat="server"
 AutoGenerateRows="False" DataSourceID="sourceUpdateValues" ...>
 <Fields>
 <asp:BoundField DataField="ShipperID" />
 <asp:BoundField DataField="CompanyName" />
 <asp:BoundField DataField="Phone" />
 </Fields>
 ...
 </asp:DetailsView>

 * Click Update to override these values with your changes.

 * Click Cancel to abandon your edit.
 <asp:SqlDataSource ConnectionString="<%$ ConnectionStrings:Northwind %>"
 ID="sourceUpdateValues" runat="server"
 SelectCommand="SELECT * FROM Shippers WHERE (ShipperID = @ShipperID)"
 OnSelecting="sourceUpdateValues_Selecting">
 <SelectParameters>
 <asp:ControlParameter ControlID="detailsEditing" Name="ShipperID"

CHAPTER 10 ■ RICH DATA CONTROLS

476

 PropertyName="SelectedValue" Type="Int32" />
 </SelectParameters>
 </asp:SqlDataSource>
</asp:Panel>

There’s one last detail. To save overhead, there’s no point in performing the query for the second
DetailsView unless it’s absolutely necessary because a concurrency error occurred. To implement this
logic, the code reacts to the SqlDataSource.Selecting event for the second SqlDataSource control
(sourceUpdateValues) and cancels the query if the error panel isn’t currently visible.

protected void sourceUpdateValues_Selecting(object sender,
 SqlDataSourceSelectingEventArgs e)
{
 if (!ErrorPanel.Visible) e.Cancel = true;
}

To try this example, open two copies of the page in separate browser windows and put both into
edit mode for the same row. Apply the first change (by clicking the Update button), and then apply the
second one. When you attempt to apply the second one, the error panel will appear, with the
explanation (see Figure 10-28). You can then choose to continue with the edit by clicking Update or to
abandon it by clicking Cancel.

Summary
In this chapter, you considered everything you need to build rich data-bound pages. You took an
exhaustive tour of the GridView and considered its support for formatting, selection, sorting, paging,
templates, and editing. You also considered the template-based ListView and the data controls that are
designed to work with a single record at a time: the DetailsView and FormView. Finally, the chapter
wrapped up by looking at several common advanced scenarios with data-bound pages.

C H A P T E R 11

■ ■ ■

477

Caching and Asynchronous Pages

Caching is the technique of storing an in-memory copy of some information that’s expensive to create.
For example, you could cache the results of a complex query so that subsequent requests don’t need to
access the database at all. Instead, they can grab the appropriate object directly from server memory—a
much faster proposition. The real beauty of caching is that unlike many other performance-enhancing
techniques, caching bolsters both performance and scalability. Performance is better because the time
taken to retrieve the information is cut down dramatically. Scalability is improved because you work
around bottlenecks such as database connections. As a result, the application can serve more
simultaneous page requests with fewer database operations.

Of course, storing information in memory isn’t always a good idea. Server memory is a limited
resource; if you try to store too much, some of that information will be paged to disk, potentially slowing
down the entire system. That’s why the best caching strategies (such as those hard-wired into ASP.NET)
are self-limiting. When you store information in a cache, you expect to find it there on a future request
most of the time. However, the lifetime of that information is at the discretion of the server. If the cache
becomes full or other applications consume a large amount of memory, information will be selectively
evicted from the cache, ensuring that performance is maintained. It’s this self-sufficiency that makes
caching so powerful (and so complicated to implement on your own).

With ASP.NET, you get first-rate caching for free, and you have a variety of options. You can cache
the completely rendered HTML for a page, a portion of that HTML, or arbitrary objects. You can also
customize expiration policies and set up dependencies so that items are automatically removed when
other resources—such as files or database tables—are modified.

■ What’s New ASP.NET 4 adds support for creating custom output cache providers. Ideally, third-party
developers will use these features to create components that work with other types of storage—for example, hard

drives, databases, the Web, and so on. You’ll learn more in the “Output Caching Extensibility” section.

Understanding ASP.NET Caching
Many developers who learn about caching see it as a bit of a frill, but nothing could be further from the
truth. Used intelligently, caching can provide a twofold, threefold, or even tenfold performance
improvement by retaining important data for just a short period of time.

ASP.NET really has two types of caching. Your applications can and should use both types, because
they complement each other:

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

478

• Output caching: This is the simplest type of caching. It stores a copy of the final
rendered HTML page that is sent to the client. The next client that submits a
request for this page doesn’t actually run the page. Instead, the final HTML output
is sent automatically. The time that would have been required to run the page and
its code is completely reclaimed.

• Data caching: This type of caching is carried out manually in your code. To use
data caching, you store important pieces of information that are time-consuming
to reconstruct (such as a DataSet retrieved from a database) in the cache. Other
pages can check for the existence of this information and use it, thereby bypassing
the steps ordinarily required to retrieve it. Data caching is conceptually the same
as using application state, but it’s much more server-friendly because items will
be removed from the cache automatically when it grows too large and
performance could be affected. Items can also be set to expire automatically.

Also, two specialized types of caching build on these models:

• Fragment caching: This is a specialized type of output caching—instead of
caching the HTML for the whole page, it allows you to cache the HTML for a
portion of it. Fragment caching works by storing the rendered HTML output of a
user control on a page. The next time the page is executed, the same page events
fire (and so your page code will still run), but the code for the appropriate user
control isn’t executed.

• Data source caching: This is the caching that’s built into the data source controls,
including the SqlDataSource, ObjectDataSource, and XmlDataSource.
Technically, data source caching uses data caching. The difference is that you
don’t need to handle the process explicitly. Instead, you simply configure the
appropriate properties, and the data source control manages the caching storage
and retrieval.

In this chapter, you’ll consider every caching option. You’ll begin by considering the basics of
output caching and data caching. Next, you’ll consider the caching in the data source controls. Finally,
you’ll explore one of ASP.NET’s hottest caching features—linking cached items to tables in a database
with SQL cache dependencies.

Output Caching
With output caching, the final rendered HTML of the page is cached. When the same page is requested
again, the control objects are not created, the page life cycle doesn’t start, and none of your code
executes. Instead, the cached HTML is served. Clearly, output caching gets the theoretical maximum
performance increase, because all the overhead of your code is sidestepped.

■ Note An ASP.NET page may use other static resources (such as images) that aren’t handled by ASP.NET. Don’t

worry about caching these items. IIS automatically handles the caching of files in the most efficient way possible.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

479

Declarative Output Caching
To see output caching in action, you can create a simple page that displays the current time of day.
Figure 11-1 shows an example.

The code for this page is straightforward. It simply sets the date to appear in a label when the
Page.Load event fires:

protected void Page_Load(Object sender, EventArgs e)
{
 lblDate.Text = "The time is now:
";
 lblDate.Text += DateTime.Now.ToString();
}

You have two ways to add this page to the output cache. The most common approach is to insert the
OutputCache directive at the top of your .aspx file, just below the Page directive:

<%@ OutputCache Duration="20" VaryByParam="None" %>

Figure 11-1. Caching an entire page

In this example, the Duration attribute instructs ASP.NET to cache the page for 20 seconds. The
VaryByParam attribute is also required, but you’ll learn about its effect in the next section.

When you run the test page, you’ll discover some interesting behavior. The first time you access the
page, the current date will be displayed. If you refresh the page a short time later, however, the page will
not be updated. Instead, ASP.NET will automatically send the cached HTML output to you (assuming 20
seconds haven’t elapsed, and therefore the cached copy of the page hasn’t expired). If ASP.NET receives
a request after the cached page has expired, ASP.NET will run the page code again, generate a new
cached copy of the HTML output, and use that for the next 20 seconds.

Twenty seconds may seem like a trivial amount of time, but in a high-volume site, it can make a
dramatic difference. For example, you might cache a page that provides a list of products from a catalog.
By caching the page for 20 seconds, you limit database access for this page to three operations per
minute. Without caching, the page will try to connect to the database once for each client and could
easily make dozens of requests in a minute.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

480

Of course, just because you request that a page should be stored for 20 seconds doesn’t mean it
actually will be. The page could be evicted from the cache early if the system finds that memory is
becoming scarce. This allows you to use caching freely, without worrying too much about hampering
your application by using up vital memory.

■ Tip When you recompile a cached page, ASP.NET will automatically remove the page from the cache. This
prevents problems where a page isn’t properly updated because the older, cached version is being used. However,
you might still want to disable caching while testing your application. Otherwise, you may have trouble using

variable watches, breakpoints, and other debugging techniques, because your code will not be executed if a

cached copy of the page is available.

Caching and the Query String
One of the main considerations in caching is deciding when a page can be reused and when information
must be accurate up to the latest second. Developers, with their love of instant gratification (and lack of
patience), generally tend to overemphasize the importance of real-time information. You can usually
use caching to efficiently reuse slightly stale data without a problem, and with a considerable
performance improvement.

Of course, sometimes information needs to be dynamic. One example is if the page uses
information from the current user’s session to tailor the user interface. In this case, full page caching just
isn’t appropriate (although fragment caching may help). Another example is if the page is receiving
information from another page through the query string. In this case, the page is too dynamic to cache—
or is it?

The current example sets the VaryByParam attribute to None, which effectively tells ASP.NET that
you need to store only one copy of the cached page, which is suitable for all scenarios. If the request for
this page adds query string arguments to the URL, it makes no difference—ASP.NET will always reuse
the same output until it expires. You can test this by adding a query string parameter manually in the
browser window (such as ?a=b).

Based on this experiment, you might assume that output caching isn’t suitable for pages that use
query string arguments. But ASP.NET actually provides another option. You can set the VaryByParam
attribute to * to indicate that the page uses the query string and to instruct ASP.NET to cache separate
copies of the page for different query string arguments, as shown here:

<%@ OutputCache Duration="20" VaryByParam="*" %>

Now when you request the page with additional query string information, ASP.NET will examine the
query string. If the string matches a previous request, and a cached copy of that page exists, it will be
reused. Otherwise, a new copy of the page will be created and cached separately.

To get a better idea how this process works, consider the following series of requests:

1. You request a page without any query string parameter and receive page copy A.

2. You request the page with the parameter ProductID=1. You receive page copy B.

3. Another user requests the page with the parameter ProductID=2. That user
receives copy C.

4. Another user requests the page with ProductID=1. If the cached output B has
not expired, it’s sent to the user.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

481

5. The user then requests the page with no query string parameters. If copy A has
not expired, it’s sent from the cache.

You can try this on your own, although you might want to lengthen the amount of time that the
cached page is retained to make it easier to test.

Caching with Specific Query String Parameters
Setting VaryByParam="*" allows you to use caching with dynamic pages that vary their output based on
the query string. This approach could be extremely useful for a product detail page, which receives a
product ID in its query string. With vary-by-parameter caching, you could store a separate page for each
product, thereby saving a trip to the database. However, to gain performance benefits you might have to
increase the cached output lifetime to several minutes or longer.

Of course, this technique has some potential problems. Pages that accept a wide range of different
query string parameters (such as a page that receives numbers for a calculation, client information, or
search keywords) just aren’t suited to output caching. The possible number of variations is enormous,
and the potential reuse is low. Though these pages will be evicted from the cache when the memory is
needed, they could inadvertently force other more important information from the cache first or slow
down other operations.

In many cases, setting VaryByParam to the wildcard asterisk (*) is unnecessarily vague. It’s usually
better to specifically identify an important query string variable by name. Here’s an example:

<%@ OutputCache Duration="20" VaryByParam="ProductID" %>

In this case, ASP.NET will examine the query string looking for the ProductID parameter. Requests
with different ProductID parameters will be cached separately, but all other parameters will be ignored.
This is particularly useful if the page may be passed additional query string information that it doesn’t
use. ASP.NET has no way to distinguish the “important” query string parameters without your help.

You can specify several parameters, as long as you separate them with semicolons, as follows:

<%@ OutputCache Duration="20" VaryByParam="ProductID;CurrencyType" %>

In this case, the query string will cache separate versions, provided the query string differs by
ProductID or CurrencyType.

■ Note Output caching works well with pages that vary only based on server-side data (for example, the data in a
database) and the data in query strings. However, output caching doesn’t work if the page output depends on
user-specific information such as session data or cookies. Output caching also won’t work with event-driven
pages that use forms. In these cases, events will be ignored, and a static page will be re-sent with each postback,

effectively disabling the page. To avoid these problems, use fragment caching instead to cache a portion of the

page or use data caching to cache specific information.

Custom Caching Control
Varying by query string parameters isn’t the only option when storing multiple cached versions of a
page. ASP.NET also allows you to create your own procedure that decides whether to cache a new page
version or reuse an existing one. This code examines whatever information is appropriate and then

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

482

returns a string. ASP.NET uses this string to implement caching. If your code generates the same string
for different requests, ASP.NET will reuse the cached page. If your code generates a new string value,
ASP.NET will generate a new cached version and store it separately.

One way you could use custom caching is to cache different versions of a page based on the browser
type. That way, Firefox browsers will always receive Firefox-optimized pages, and Internet Explorer users
will receive Internet Explorer-optimized HTML. To set up this sort of logic, you start by adding the
OutputCache directive to the pages that will be cached. Use the VaryByCustom attribute to specify a
name that represents the type of custom caching you’re creating. (You can pick any name you like.) The
following example uses the name browser because pages will be cached based on the client browser:

<%@ OutputCache Duration="10" VaryByParam="None" VaryByCustom="browser" %>

Next, you need to create the procedure that will generate the custom caching string. This procedure
must be coded in the global.asax application file, as shown here:

public override string GetVaryByCustomString(
 HttpContext context, string arg)
{
 // Check for the requested type of caching.
 if (arg == "browser")
 {
 // Determine the current browser.
 string browserName;
 browserName = Context.Request.Browser.Browser;
 browserName += Context.Request.Browser.MajorVersion.ToString();

 // Indicate that this string should be used to vary caching.
 return browserName;
 }
 else
 {
 return base.GetVaryByCustomString(context, arg);
 }
}

The GetVaryByCustomString() function passes the VaryByCustom name in the arg parameter. This
allows you to create an application that implements several types of custom caching in the same
function. Each different type would use a different VaryByCustom name (such as Browser,
BrowserVersion, or DayOfWeek). Your GetVaryByCustomString() function would examine the
VaryByCustom name and then return the appropriate caching string. If the caching strings for different
requests match, ASP.NET will reuse the cached copy of the page. Or, to look at it another way, ASP.NET
will create and store a separate cached version of the page for each caching string it encounters.

Interestingly, the base implementation of the GetVaryByCustomString() already includes the logic
for browser-based caching. That means you don’t need to code the method shown previously. The base
implementation of GetVaryByCustomString() creates the cached string based on the browser name and
major version number. If you want to change how this logic works (for example, to vary based on name,
major version, and minor version), you could override the GetVaryByCustomString() method, as in the
previous example.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

483

■ Note Varying by browser is an important technique for cached pages that use browser-specific features. For
example, if your page generates client-side JavaScript that’s not supported by all browsers, you should make the
caching dependent on the browser version. Of course, it’s still up to your code to identify the browser and choose

what JavaScript to render. You’ll learn more about adaptive pages and JavaScript in Part 5.

The OutputCache directive also has a third attribute that you can use to define caching. This
attribute, VaryByHeader, allows you to store separate versions of a page based on the value of an HTTP
header received with the request. You can specify a single header or a list of headers separated by
semicolons. You could use this technique with multilingual sites to cache different versions of a page
based on the client browser language, as follows:

<%@ OutputCache Duration="20" VaryByParam="None"
 VaryByHeader="Accept-Language" %>

Caching with the HttpCachePolicy Class
Using the OutputCache directive is generally the preferred way to cache a page, because it separates the
caching instruction from the rest of your code. The OutputCache directive also makes it easy to
configure several advanced properties in one line.

However, you have another choice: You can write code that uses the built-in special
Response.Cache property, which provides an instance of the System.Web.HttpCachePolicy class. This
object provides properties that allow you to turn on caching for the current page. This allows you to
decide programmatically whether you want to enable output caching.

In the following example, the date page has been rewritten so that it automatically enables caching
when the page is first loaded. This code enables caching with the SetCacheability() method, which
specifies that the page will be cached on the server and that any other client can use the cached copy of
the page. The SetExpires() method defines the expiration date for the page, which is set to be the current
time plus 60 seconds.

protected void Page_Load(Object sender, EventArgs e)
{
 // Cache this page on the server.
 Response.Cache.SetCacheability(HttpCacheability.Public);

 // Use the cached copy of this page for the next 60 seconds.
 Response.Cache.SetExpires(DateTime.Now.AddSeconds(60));

 // This additional line ensures that the browser can't
 // invalidate the page when the user clicks the Refresh button
 // (which some rogue browsers attempt to do).
 Response.Cache.SetValidUntilExpires(true);

 lblDate.Text = "The time is now:
" + DateTime.Now.ToString();
}

Programmatic caching isn’t as clean from a design point of view. Embedding the caching code
directly into your page is often awkward, and it’s always messy if you need to include other initialization

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

484

code in your page. Remember, the code in the Page.Load event handler runs only if your page isn’t in the
cache (either because this is the first request for the page, because the last cached version has expired, or
because the request parameters don’t match).

■ Tip Make sure you use the Response.Cache property of the page, not the Page.Cache property. The
Page.Cache property isn’t used for output caching—instead, it gives you access to the data cache (discussed in

the “Data Caching” section).

Post-Cache Substitution and Fragment Caching
In some cases, you may find that you can’t cache an entire page, but you would still like to cache a
portion that is expensive to create and doesn’t vary. You have two ways to handle this challenge:

Fragment caching: In this case, you identify just the content you want to cache, wrap that in a
dedicated user control, and cache just the output from that control.

Post-cache substitution: In this case, you identify just the dynamic content you don’t want to cache.
You then replace this content with something else using the Substitution control.

Out of the two, fragment caching is the easiest to implement. However, the decision of which you

want to use will usually be based on the amount of content you want to cache. If you have a small,
distinct portion of content to cache, fragment caching makes the most sense. Conversely, if you have
only a small bit of dynamic content, post-cache substitution may be the more straightforward approach.
Both approaches offer similar performance.

■ Tip The most flexible way to implement a partial caching scenario is to step away from output caching
altogether and use data caching to handle the process programmatically in your code. You’ll see this technique in

the “Data Caching” section.

Fragment Caching
To implement fragment caching, you need to create a user control for the portion of the page you want
to cache. You can then add the OutputCache directive to the user control. The result is that the page will
not be cached, but the user control will. (Chapter 15 discusses user controls in detail.)

Fragment caching is conceptually the same as page caching. There is only one catch—if your page
retrieves a cached version of a user control, it cannot interact with it in code. For example, if your user
control provides properties, your web-page code cannot modify or access these properties. When the
cached version of the user control is used, a block of HTML is simply inserted into the page. The
corresponding user control object is not available.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

485

Post-Cache Substitution
The post-cache substitution feature revolves around a single method that has been added to the
HttpResponse class. The method is WriteSubstitution(), and it accepts a single parameter—a delegate
that points to a callback method that you implement in your page class. This callback method returns
the content for that portion of the page.

Here’s the trick: when the ASP.NET page framework retrieves the cached page, it automatically
triggers your callback method to get the dynamic content. It then inserts your content into the cached
HTML of the page. The nice thing is that even if your page hasn’t been cached yet (for example, if it’s
being rendered for the first time), ASP.NET still calls your callback in the same way to get the dynamic
content. In essence, the whole idea is that you create a method that generates some dynamic content,
and by doing so you guarantee that your method is always called, and its content is never cached.

The method that generates the dynamic content needs to be static. That’s because ASP.NET needs
to be able to call this method even when there isn’t an instance of your page class available. (Obviously,
when your page is served from the cache, the page object isn’t created.) The signature for the method is
fairly straightforward—it accepts an HttpContext object that represents the current request, and it
returns a string with the new HTML. Here’s an example that returns a date with bold formatting:

private static string GetDate(HttpContext context)
{
 return "" + DateTime.Now.ToString() + "";
}

To get this in the page, you need to use the Response.WriteSubstitution() method at some point:

protected void Page_Load(object sender, EventArgs e)
{
 Response.Write("This date is cached with the page: ");
 Response.Write(DateTime.Now.ToString() + "
");
 Response.Write("This date is not: ");
 Response.WriteSubstitution(new HttpResponseSubstitutionCallback(GetDate));
}

Now, even if you apply caching to this page with the OutputCache directive, the second date that’s
displayed on the page will still be updated for each request. That’s because the callback bypasses the
caching process. Figure 11-2 shows the result of running the page and refreshing it several times.

The problem with this technique is that post-cache substitution works at a lower level than the rest
of your user interface. Usually, when you design an ASP.NET page, you don’t use the Response object at
all—instead, you use web controls, and those web controls use the Response object to generate their
content. One problem is that if you use the Response object as shown in the previous example, you’ll
lose the ability to position your content with respect to the rest of the page. The only realistic solution is
to wrap your dynamic content in some sort of control. That way, the control can use
Response.WriteSubstitution() when it renders itself. You’ll learn more about control rendering in
Chapter 27.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

486

Figure 11-2. Injecting dynamic content into a cached page

However, if you don’t want to go to the work of developing a custom control just to get the post-
cache substitution feature, ASP.NET has one shortcut—a generic Substitution control that uses this
technique to make all its content dynamic. You bind the Substitution control to a static method that
returns your dynamic content, exactly as in the previous example. However, you can place the
Substitution control alongside other ASP.NET controls, allowing you to control exactly where the
dynamic content appears.

Here’s an example that duplicates the earlier example using markup in the .aspx portion of the page:

This date is cached with the page:
<asp:Label ID="lblDate" runat="server" />

This date is not:
<asp:Substitution ID="Substitution1" runat="server" MethodName="GetDate" />

Unfortunately, at design time you won’t see the content for the Substitution control.
Remember, post-cache substitution allows you to execute only a static method. ASP.NET still skips

the page life cycle, which means it won’t create any control objects or raise any control events. If your
dynamic content depends on the values of other controls, you’ll need to use a different technique (such
as data caching), because these control objects won’t be available to your callback.

■ Note Custom controls are free to use Response.WriteSubstitution() to set their caching behavior. For example,
the AdRotator uses this feature to ensure that the advertisement on a page is always rotated, even when the rest

of the page is served from the output cache.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

487

Cache Profiles
One problem with output caching is that you need to embed the instruction into the page—either in the
.aspx markup portion or in the code of the class. Although the first option (using the OutputCache) is
relatively clean, it still produces management problems if you create dozens of cached pages. If you want
to change the caching for all these pages (for example, moving the caching duration from 30 to 60
seconds), you need to modify every page. ASP.NET also needs to recompile these pages.

ASP.NET also allows you to apply the same caching settings to a group of pages with a feature called
cache profiles. Using cache profiles, you define caching settings in the web.config file, associate a name
with these settings, and then apply these settings to multiple pages using the name. That way, you have
the freedom to modify all the linked pages at once simply by changing the caching profile in the
web.config file.

To define a cache profile, you use the <add> tag in the <outputCacheProfiles> section, as follows.
You assign a name and a duration.

<configuration>
 <system.web>
 <caching>
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="ProductItemCacheProfile" duration="60" />
 </outputCacheProfiles>
 </outputCacheSettings>
 </caching>
 ...
 </system.web>
</configuration>

You can now use this profile in a page through the CacheProfile attribute:

<%@ OutputCache CacheProfile="ProductItemCacheProfile" VaryByParam="None" %>

Interestingly, if you want to apply other caching details, such as the VaryByParam behavior, you can
set it either as an attribute in the OutputCache directive or as an attribute of the <add> tag for the profile.
Just make sure you start with a lowercase letter if you use the <add> tag, because the property names are
camel case, as are all configuration settings, and case is important in XML.

Cache Configuration
You can also configure various details about ASP.NET’s cache behavior through the web.config file.
Many of these options are intended for easier debugging, and may not make sense in a production
application.

To configure these settings, you use the <cache> element inside the <caching> element described
previously. The <cache> element gives you several options to tweak, as shown here:

<configuration>
 <system.web>
 <caching>
 <cache disableMemoryCollection="true|false"
 disableExpiration="true|false"
 percentagePhysicalMemoryUsedLimit="90"
 privateBytesLimit="0"
 privateBytesPollTime="00:02:00"

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

488

 />
 ...
 </caching>
 </system.web>
 ...
</configuration>

Use disableMemoryCollection and disableExpiration to stop ASP.NET from collecting items when
memory is low (a process called scavenging) and removing expired items. Use caution with these
settings, as you could easily cause your application to run out of memory under these settings. Use
percentagePhysicalMemoryUsedLimit to set the maximum percentage of a computer’s physical
memory that ASP.NET will use for the cache. When the cache reaches the memory target, ASP.NET
begins to use aggressive scavenging to remove older and less used items. A value of 0 indicates that no
memory should be set aside for the cache, and ASP.NET will remove items as fast as they’re added. By
default, ASP.NET uses up to 90% of physical memory for caching.

The privateBytesLimit setting determines the maximum number of bytes a specific application can
use for its cache before ASP.NET begins aggressive scavenging. This limit includes both memory used by
the cache as well as normal memory overhead from the running application. A setting of 0 (the default)
indicates that ASP.NET will use its own algorithm for determining when to start reclaiming memory. The
privateBytesPollTime indicates how often ASP.NET checks the private bytes used. The default value is 2
minutes.

Output Caching Extensibility
The ASP.NET caching model works surprisingly well across a wide variety of web applications. It’s
simple to use and blisteringly fast, because the cache service runs in the ASP.NET process and stores
data in physical memory.

However, ASP.NET’s caching system doesn’t work as well if you want to cache huge amounts of data
for long amounts of time. For example, consider the sprawling product catalog of a giant e-commerce
company. Assuming the product catalog changes infrequently, you may want to cache thousands of
product pages to avoid the expense of creating them. But with this much data, using web server memory
is a risky proposition. Instead, you might prefer to rely on another type of storage that’s slower than
memory but still faster than recreating the page (and less likely to cause resource bottlenecks).
Possibilities include disk-based storage, database-based storage, or a distributed storage system like
Windows Server AppFabric.

■ Note Any type of external cache storage will be slower than regular in-memory caching. Some storage options
even have the potential to introduce new bottlenecks and even reduce scalability. Before you use a non-memory-
based type of caching, you need to carefully evaluate the cost of generating pages and the speed and scalability of
your cache storage system. Then, you need to profile its performance in a realistic environment, before you roll it

out in your web application.

In the past, exotic caching systems have been possible, but their implementation has been
completely separate from ASP.NET. As a result, every third-party caching solution has its own
programming API. But ASP.NET 4 finally adds the provider model to its caching feature, allowing you to
plug in cache providers that use different data stores. However, the following are two caveats:

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

489

• ASP.NET doesn’t include any pre-built caching providers. However, members of
the ASP.NET team have demonstrated prototypes that use file-based caching and
Windows Server AppFabric. The intention is to turn these into separate
components that you can download for free from http://www.codeplex.com.
ASP.NET architects have also pledged to release examples that show how to
integrate memcached (a popular open-source distributed caching system) with
ASP.NET output caching.

• You can only use a custom provider with output caching, not the data caching
feature described later in this chapter.

In the following sections, you’ll consider a basic example of a file-based caching solution.

Building a Custom Cache Provider
The following example shows a cache provider that stores each cached page (or user control, if you’re
using fragment caching) in a separate file. Although disk-based caching is an order of magnitude slower
than memory-based caching, it does have two important uses:

Durable caching: Because cached output is stored on disk, it remains even when the web
application domain is restarted. This makes it a worthwhile consideration if the information you’re
caching is expensive to generate.

Low memory usage: When a cached page is reused, it’s served straight from the hard drive. As a
result, it doesn’t need to be read back into memory. This is useful for large cached pages. It’s
particularly useful if you vary the cached output based on a query string parameter and there are
many variations. Either way, it can be difficult to implement a successful caching strategy using
memory alone.

■ Note Although the solution you’ll consider works quite well, it lacks the refinements you’ll want in a
professional application. As with all infrastructure programming, it’s always better for you, the application

developer, to concentrate on application logic, while letting experienced third-party developers or Microsoft

architects build the key bits of plumbing your application needs.

Creating a custom cache provider is easy. You simply derive from the OutputCacheProvider class in
the System.Web.Caching namespace. You then need to override the methods listed in Table 11-1.

http://www.codeplex.com

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

490

Table 11-1. Overridable Methods in the OutputCacheProvider

Method Description
Initialize() Gives you a place to perform initialization tasks when the provider is first loaded,

such as reading other settings from the web.config file. This is the only method in
this table that you don’t need to override.

Add() Adds the item to the cache, if it doesn’t already exist. If the item does exist, this
method should take no action.

Set() Adds the item to the cache. If the item already exists, this method should
overwrite it.

Get() Retrieves an item from the cache, if it exists. This method must also enforce time-
based expiration, by checking the expiration date and removing the item if
necessary.

Remove() Removes the item from the cache.

In this example, the custom cache provider is called FileCacheProvider:

public class FileCacheProvider : OutputCacheProvider
{
 // The location where cached files will be placed.
 public string CachePath
 { get; set; }

 ...
}

To perform its serialization, it uses a second class named CacheItem, which simply wraps the initial
item you want to cache and the expiration date:

[Serializable]
public class CacheItem
{
 public DateTime ExpiryDate;
 public object Item;

 public CacheItem(object item, DateTime expiryDate)
 {
 ExpiryDate = expiryDate;
 Item = item;
 }
}

Now you simply need to override the Add(), Set(), Get(), and Remove() methods. All of these
methods receive a key that uniquely identifies the cached content. The key is based on the file name of
the cached page. For example, if you use output caching with a page named OutputCaching.aspx in a
web site named CustomCacheProvider, your code might receive a key like this:

a2/customcacheprovider/outputcaching.aspx

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

491

To translate this into a valid file name, the code simply replaces slash characters (\) with dashes (-).
It also adds the extension .txt to distinguish this cached content from a real ASP.NET page and to make it
easier for you to open it and review its content during debugging. Here’s an example of a transformed
file name:

a2-customcacheprovider-outputcaching.aspx.txt

To perform this transformation, the FileOutputCacheProvider uses a private method named
ConvertKeyToPath():

private string ConvertKeyToPath(string key)
{
 // Flatten it to a single file name, with no path information.
 string file = key.Replace('/', '-');

 // Add .txt extension so it's not confused with a real ASP.NET file.
 file += ".txt";
 return Path.Combine(CachePath, file);
}

Other approaches are possible—for example, some caching systems use the types from the
System.Security.Cryptography namespace to convert the file name to a unique hash value, which looks
like a string of meaningless characters.

Using this method, it’s easy to write the Add() and Set() methods. Remember, the difference
between the two is that Set() always stores its content, while Add() must check if it already exists. Add()
also returns the cached object. The actual serialization code simply uses the BinaryFormatter to convert
the rendered page into a stream of bytes, which can then be written to a file.

public override object Add(string key, object entry, DateTime utcExpiry)
{
 // Transform the key to a unique filename.
 string path = ConvertKeyToPath(key);

 // Set it only if it is not already cached.
 if (!File.Exists(path))
 {
 Set(key, entry, utcExpiry);
 }
 return entry;
}

public override void Set(string key, object entry, DateTime utcExpiry)
{
 CacheItem item = new CacheItem(entry, utcExpiry);
 string path = ConvertKeyToPath(key);

 // Overwrite it, even if it already exists.
 using (FileStream file = File.OpenWrite(path))
 {
 BinaryFormatter formatter = new BinaryFormatter();
 formatter.Serialize(file, item);
 }
}

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

492

The Get() method is similarly straightforward. However, it must check the expiration date of the
retrieved item, and discard it if it has expired:

public override object Get(string key)
{
 string path = ConvertKeyToPath(key);

 if (!File.Exists(path)) return null;

 CacheItem item = null;
 using (FileStream file = File.OpenRead(path))
 {
 BinaryFormatter formatter = new BinaryFormatter();
 item = (CacheItem)formatter.Deserialize(file);
 }

 // Remove expired items.
 if (item.ExpiryDate <= DateTime.Now.ToUniversalTime())
 {
 Remove(key);
 return null;
 }

 return item.Item;
}

Finally, the Remove() method simply deletes the file with the cached data:

public override void Remove(string key)
{
 string path = ConvertKeyToPath(key);

 if (File.Exists(path)) File.Delete(path);
}

Using a Custom Cache Provider
To use a custom cache provider, you first need to add it inside the <caching> section. Here’s an example
that adds the FileCacheProivder and simultaneously sets it to be the default cache provider for all output
caching:

<configuration>
 <system.web>
 <caching>
 <outputCache defaultProvider="FileCache">
 <providers>
 <add name="FileCache" type="FileCacheProvider" cachePath="~/Cache" />
 </providers>
 </outputCache>
 </caching>
 ...
 </system.web>
</configuration>

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

493

This assumes that the FileCacheProvider is a class in the current web application (for example, as a file
in the App_Code folder of a projectless web site). If the class were part of a separate assembly, you would
need to include the assembly name. For example, a FileCacheProvider in a namespace named
CustomCaching and compiled in an assembly named CacheExtensibility would require this configuration:

 <add name="FileCache" type="CustomCaching.FileCacheProvider, CacheExtensibility"
 cachePath="~/Cache" />

There’s one other detail here. This example includes a custom attribute, named cachePath.
ASP.NET simply ignores this added detail, but your code is free to retrieve it and use it. For example, the
FileCacheProvider can use the Initialize() method to read this information and set the path (which, in
this case, is a subfolder named Cache in the web application folder).

public override void Initialize(string name, NameValueCollection attributes)
{
 base.Initialize(name, attributes);

 // Retrieve the web.config settings.
 CachePath = HttpContext.Current.Server.MapPath(attributes["cachePath"]);
}

If you don’t use the defaultProvider attribute, it’s up to you to tell ASP.NET when to use its standard
in-memory caching service, and when to use a custom cache provider. You might expect to handle this
with a directive in the page, but you can’t, simply because caching acts before the page has been
retrieved (and, if it’s successful, caching bypasses the page markup altogether).

Instead, you need to override the GetOutputCacheProviderName() method in the global.asax file.
This method examines the current request and then returns a string with the name of the cache provider
to use while handling this request. Here’s an example that tells ASP.NET to use the FileCacheProvider
with the page OutputCaching.aspx (but no other):

public override string GetOutputCacheProviderName(HttpContext context)
{
 // Get the page.
 string pageAndQuery = System.IO.Path.GetFileName(context.Request.Path);

 if (pageAndQuery.StartsWith("OutputCaching.aspx"))
 return "FileCache";
 else
 return base.GetOutputCacheProviderName(context);
}

Data Caching
Data caching is the most flexible type of caching, but it also forces you to take specific additional steps in
your code to implement it. The basic principle of data caching is that you add items that are expensive to
create to a special built-in collection object (called Cache). This object works much like the Application
object. It’s globally available to all requests from all clients in the application. However, a few key
differences exist:

The Cache object is thread-safe: This means you don’t need to explicitly lock or unlock the Cache
collection before adding or removing an item. However, the objects in the Cache collection will still
need to be thread-safe themselves. For example, if you create a custom business object, more than

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

494

one client could try to use that object at once, which could lead to invalid data. You can code around
this limitation in various ways. One easy approach that you’ll see in this chapter is just to make a
duplicate copy of the object if you need to work with it in a web page.

Items in the cache are removed automatically: ASP.NET will remove an item if it expires, if one of
the objects or files it depends on is changed, or if the server becomes low on memory. This means
you can freely use the cache without worrying about wasting valuable server memory, because
ASP.NET will remove items as needed. But because items in the cache can be removed, you always
need to check if a cached object exists before you attempt to use it. Otherwise, you’ll run into a
NullReferenceException.

Items in the cache support dependencies: You can link a cached object to a file, a database table, or
another type of resource. If this resource changes, your cached object is automatically deemed
invalid and released.

As with application state, the cached object is stored in process, which means it doesn’t persist if the
application domain is restarted, and it can’t be shared between computers in a web farm. This behavior
is by design, because the cost of allowing multiple computers to communicate with an out-of-process
cache would reduce some of its performance benefit. It makes more sense for each web server to have its
own cache.

Adding Items to the Cache
As with the Application and Session collections, you can add an item to the Cache collection just by
assigning a new key name:

Cache["key"] = item;

However, this approach is generally discouraged because it does not allow you to have any control
over the amount of time the object will be retained in the cache. A better approach is to use the
Cache.Insert() method. Table 11-2 lists the four versions of the Insert() method.

Table 11-2. The Insert() Method Overloads

Overload Description
Cache.Insert(key, value) Inserts an item into the cache under the specified key name, using the

default priority and expiration. This is the same as using the indexer-
based collection syntax and assigning to a new key name.

Cache.Insert(key, value,
dependencies)

Inserts an item into the cache under the specified key name, using the
default priority and expiration. The last parameter contains a
CacheDependency object that links to other files or cached items and
allows the cached item to be invalidated when these change.

Cache.Insert(key, value,
dependencies,
absoluteExpiration,
slidingExpiration)

Inserts an item into the cache under the specified key name, using the
default priority and the indicated sliding or absolute expiration policy
(you cannot set both at once). This is the most commonly used version
of the Insert() method.

Cache.Insert(key, value,
dependencies,
absoluteExpiration,
slidingExpiration, priority,
onRemoveCallback)

Allows you to configure every aspect of the cache policy for the item,
including expiration, priority, and dependencies. In addition, you can
submit a delegate that points to a method you want invoked when the
item is removed.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

495

The most important choice you make when inserting an item into the cache is the expiration policy.
ASP.NET allows you to set a sliding expiration or an absolute expiration policy, but you cannot use both
at the same time. If you want to use an absolute expiration, set the slidingExpiration parameter to
TimeSpan.Zero. To set a sliding expiration policy, set the absoluteExpiration parameter to
DateTime.Max.

With sliding expiration, ASP.NET waits for a set period of inactivity to dispose of a neglected cache
item. For example, if you use a sliding expiration period of 10 minutes, the item will be removed only if it
is not used within a 10-minute period. Sliding expiration works well when you have information that is
always valid but may not be in high demand, such as historical data or a product catalog. This
information doesn’t expire because it’s no longer valid but shouldn’t be kept in the cache if it isn’t doing
any good.

Here’s an example that stores an item with a sliding expiration policy of 10 minutes, with no
dependencies:

Cache.Insert("MyItem", obj, null,
 DateTime.MaxValue, TimeSpan.FromMinutes(10));

■ Note The similarity between caching with absolute expiration and session state is no coincidence. When you

use the in-process state server for session state, it actually uses the cache behind the scenes! The session state
information is stored in a private slot and given an expiration policy to match the timeout value. The session state

item is not accessible through the Cache object.

Absolute expirations are best when you know the information in a given item can be considered
valid only for a specific amount of time, such as a stock chart or weather report. With absolute
expiration, you set a specific date and time when the cached item will be removed.

Here’s an example that stores an item for exactly 60 minutes:

Cache.Insert("MyItem", obj, null,
 DateTime.Now.AddMinutes(60), TimeSpan.Zero);

When you retrieve an item from the cache, you must always check for a null reference. That’s
because ASP.NET can remove your cached items at any time. One way to handle this is to add special
methods that re-create the items as needed. Here’s an example:

private DataSet GetCustomerData()
{
 // Attempt to retrieve the DataSet from the cache.
 DataSet ds = Cache["CustomerData"] as DataSet;

 // Check if it was retrieved and re-create it if necessary.
 if (ds == null)
 {
 ds = QueryCustomerDataFromDatabase();
 Cache.Insert("CustomerData", ds);
 }

 return ds;

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

496

}

private DataSet QueryCustomerDataFromDatabase()
{
 // (Code to query the database goes here.)
}

Now you can retrieve the DataSet elsewhere in your code using the following syntax, without
worrying about the caching details:

GridView1.DataSource = GetCustomerData();

For an even better design, move the QueryDataFromDatabase() method to a separate data
component.

There’s no method for clearing the entire data cache, but you can enumerate through the collection
using the DictionaryEntry class. This gives you a chance to retrieve the key for each item and allows you
to empty the class using code like this:

foreach (DictionaryEntry item in Cache)
{
 Cache.Remove(item.Key.ToString());
}

Or you can retrieve a list of cached items, as follows:

string itemList = "";
foreach (DictionaryEntry item in Cache)
{
 itemList += item.Key.ToString() + " ";
}

This code is rarely used in a deployed application but is extremely useful while testing your caching
strategies.

A Simple Cache Test
The following example presents a simple caching test. An item is cached for 30 seconds and reused for
requests in that time. The page code always runs (because the page itself isn’t cached), checks the cache,
and retrieves or constructs the item as needed. It also reports whether the item was found in the cache.

All the caching logic takes place when the Page.Load event fires.

protected void Page_Load(Object sender, EventArgs e)
{
 if (this.IsPostBack)
 {
 lblInfo.Text += "Page posted back.
";
 }
 else
 {
 lblInfo.Text += "Page created.
";
 }

 DateTime? testItem = (DateTime?)Cache["TestItem"];

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

497

 if (testItem == null)
 {
 lblInfo.Text += "Creating TestItem...
";
 testItem = DateTime.Now;

 lblInfo.Text += "Storing TestItem in cache ";
 lblInfo.Text += "for 30 seconds.
";
 Cache.Insert("TestItem", testItem, null,
 DateTime.Now.AddSeconds(30), TimeSpan.Zero);
 }
 else
 {
 lblInfo.Text += "Retrieving TestItem...
";
 lblInfo.Text += "TestItem is '" + testItem.ToString();
 lblInfo.Text += "'
";
 }
 lblInfo.Text += "
";
}

Figure 11-3 shows the result after the page has been loaded and posted back several times in the
30-second period.

Figure 11-3. Retrieving data from the cache

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

498

Cache Priorities
You can also set a priority when you add an item to the cache. The priority only has an effect if ASP.NET
needs to perform cache scavenging, which is the process of removing cached items early because
memory is becoming scarce. In this situation, ASP.NET will look for underused items that haven’t yet
expired. If it finds more than one similarly underused item, it will compare the priorities to determine
which one to remove first. Generally, you would set a higher cache priority for items that take more time
to reconstruct in order to indicate its heightened importance.

To assign a cache priority, you choose a value from the CacheItemPriority enumeration. Table 11-3
lists all the values.

Table 11-3. Values of the CachePriority Enumeration

Value Description

High These items are the least likely to be deleted from the cache as the server frees
system memory.

AboveNormal These items are less likely to be deleted than Normal priority items.

Normal These items have the default priority level. They are deleted only after Low or
BelowNormal priority items have been removed.

BelowNormal These items are more likely to be deleted than Normal priority items.

Low These items are the most likely to be deleted from the cache as the server frees
system memory.

NotRemovable These items will ordinarily not be deleted from the cache as the server frees system
memory.

Caching with the Data Source Controls
In Chapter 9, you spent considerable time working with the data source controls. The SqlDataSource,
ObjectDataSource, and XmlDataSource all support built-in data caching. Using caching with these
controls is highly recommended, because the data source controls often generate extra query requests.
For example, they requery after every postback when parameters change, and they perform a separate
query for every bound control, even if those controls use exactly the same command, Even a little
caching can reduce this overhead.

■ Note Although many data source controls support caching, it’s not a required data source control feature, and
you’ll run into data source controls that don’t support it or for which it may not make sense (such as the

SiteMapDataSource).

To support caching, the data source controls all use the same properties, which are listed in
Table 11-4.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

499

Table 11-4. Cache-Related Properties of the Data Source Controls

Property Description
EnableCaching If true, caching is switched on. It’s false by default.

CacheExpirationPolicy Uses a value from the DataSourceCacheExpiry enumeration—
Absolute for absolute expiration (which times out after a fixed interval
of time) or Sliding for sliding expiration (which resets the time
window every time the data object is retrieved from the cache).

CacheDuration The number of seconds to cache the data object. If you are using
sliding expiration, the time limit is reset every time the object is
retrieved from the cache. The default value, 0 (or Infinite), keeps
cached items perpetually.

CacheKeyDependency and
SqlCacheDependency

Allows you to make a cached item dependent on another item in the
data cache (CacheKeyDependency) or on a table in your database
(SqlCacheDependency). Dependencies are discussed in the “Cache
Dependencies” section.

Caching with SqlDataSource
When you enable caching for the SqlDataSource control, you cache the results of the SelectQuery.
However, if you create a select query that takes parameters, the SqlDataSource will cache a separate
result for every set of parameter values.

For example, imagine you create a page that allows you to view employees by city. The user selects
the desired city from a list box, and you use a SqlDataSource control to fill in the matching employee
records in a grid (see Figure 11-4). This example was first presented in Chapter 9.

Figure 11-4. Retrieving data from the cache

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

500

To fill the grid, you use the following SqlDataSource:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT EmployeeID, FirstName, LastName, Title, City FROM Employees
WHERE City=@City">
 <SelectParameters>
 <asp:ControlParameter ControlID="lstCities" Name="City"
 PropertyName="SelectedValue" />
 </SelectParameters>
</asp:SqlDataSource>

In this example, each time you select a city, a separate query is performed to get just the matching
employees in that city. The query is used to fill a DataSet, which is then cached. If you select a different
city, the process repeats, and the new DataSet is cached separately. However, if you pick a city that you
or another user has already requested, the appropriate DataSet is fetched from the cache (provided it
hasn’t yet expired).

■ Note SqlDataSource caching works only when the DataSourceMode property is set to DataSet (the default). It
doesn’t work when the mode is set to DataReader, because the DataReader object maintains a live connection to

the database and can’t be efficiently cached.

Caching separate results for different parameter values works well if some parameter values are
used much more frequently than others. For example, if the results for London are requested much
more often than the results for Redmond, this ensures that the London results stick around in the cache
even when the Redmond DataSet has been released. Assuming the full set of results is extremely large,
this may be the most efficient approach.

On the other hand, if the parameter values are all used with similar frequency, this approach isn’t as
suitable. One of the problems it imposes is that when the items in the cache expire, you’ll need multiple
database queries to repopulate the cache (one for each parameter value), which isn’t as efficient as
getting the combined results with a single query.

If you fall into the second situation, you can change the SqlDataSource so that it retrieves a DataSet
with all the employee records and caches that. The SqlDataSource can then extract just the records it
needs to satisfy each request from the DataSet. This way, a single DataSet with all the records is cached,
which can satisfy any parameter value.

To use this technique, you need to rewrite your SqlDataSource to use filtering. First, the select query
should return all the rows and not use any SELECT parameters:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 SelectCommand="SELECT EmployeeID, FirstName, LastName, Title, City FROM Employees"
 ...>
</asp:SqlDataSource>

Second, you need to define the filter expression. This is the portion that goes in the WHERE clause
of a typical SQL query, and you write it in the same way as you used the DataView.RowFilter property in
Chapter 9. (In fact, the SqlDataSource uses the DataView’s row filtering abilities behind the scenes.)
However, this has a catch—if you’re supplying the filter value from another source (such as a control),

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

501

you need to define one or more placeholders, using the syntax {0} for the first placeholder, {1} for the
second, and so on. You then supply the filter values using the <FilterParameters> section, in much the
same way you supplied the select parameters in the first version.

Here’s the completed SqlDataSource tag:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
 ProviderName="System.Data.SqlClient"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT EmployeeID, FirstName, LastName, Title, City FROM Employees"
 FilterExpression="City='{0}'" EnableCaching="True">
 <FilterParameters>
 <asp:ControlParameter ControlID="lstCities" Name="City"
 PropertyName="SelectedValue" />
 </FilterParameters>
</asp:SqlDataSource>

■ Tip Don’t use filtering unless you are using caching. If you use filtering without caching, you are essentially

retrieving the full result set each time and then extracting a portion of its records. This combines the worst of both

worlds—you have to repeat the query with each postback, and you fetch far more data than you need each time.

Caching with ObjectDataSource
The ObjectDataSource caching works on the data object returned from the SelectMethod. If you are
using a parameterized query, the ObjectDataSource distinguishes between requests with different
parameter values and caches them separately. Unfortunately, the ObjectDataSource caching has a
significant limitation—it works only when the select method returns a DataSet or DataTable. If you
return any other type of object, you’ll receive a NotSupportedException.

This limitation is unfortunate, because there’s no technical reason you can’t cache custom objects
in the data cache. If you want this feature, you’ll need to implement data caching inside your method, by
manually inserting your objects into the data cache and retrieving them later. In fact, caching inside
your method can be more effective, because you have the ability to share the same cached object in
multiple methods. For example, you could cache a DataTable with a list of product categories and use
that cached item in both the GetProductCategories() and GetProductsByCategory() methods.

■ Tip The only consideration you should keep in mind is to make sure you use unique cache key names that
aren’t likely to collide with the names of cached items that the page might use. This isn’t a problem when using

the built-in data source caching, because it always stores its information in a hidden slot in the cache.

If your custom class returns a DataSet or DataTable, and you decide to use the built-in
ObjectDataSource caching, you can also use filtering as discussed with the SqlDataSource control. Just
instruct your ObjectDataSource to call a method that gets the full set of data, and set the FilterExpression
to retrieve just those items that match the current view.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

502

Cache Dependencies
As time passes, the data source may change in response to other actions. However, if your code uses
caching, you may remain unaware of the changes and continue using out-of-date information from the
cache. To help mitigate this problem, ASP.NET supports cache dependencies. Cache dependencies
allow you to make a cached item dependent on another resource so that when that resource changes,
the cached item is removed automatically.

ASP.NET includes three types of dependencies:

• Dependencies on other cache items

• Dependencies on files or folders

• Dependencies on a database query

In the following section, you’ll consider the first two options. Toward the end of this chapter, you’ll
learn about SQL dependencies, and you’ll learn how to create your own custom dependencies.

File and Cache Item Dependencies
To create a cache dependency, you need to create a CacheDependency object and then use it when
adding the dependent cached item. For example, the following code creates a cached item that will
automatically be evicted from the cache when an XML file is changed, deleted, or overwritten.

// Create a dependency for the ProductList.xml file.
CacheDependency prodDependency = new CacheDependency(
 Server.MapPath("ProductList.xml"));

// Add a cache item that will be dependent on this file.
Cache.Insert("ProductInfo", prodInfo, prodDependency);

If you point the CacheDependency to a folder, it watches for the addition, removal, or modification
of any files in that folder. Modifying a subfolder (for example, renaming, creating, or removing a
subfolder) also violates the cache dependency. However, changes further down the directory tree (such
as adding a file into a subfolder or creating a subfolder in a subfolder) don’t have any effect.

■ Tip CacheDependency monitoring begins as soon as it’s created. In this example, that means if the XML file
changes before you add the dependent prodItem object to the cache, the item will expire immediately once it’s
added. If that’s not the behavior you want, use the overloaded constructor that accepts a DateTime object. This

DateTime indicates when the dependency monitoring will begin.

The CacheDependency provides several constructors. You’ve already seen how it can make a
dependency based on a file by using the filename constructor. You can also specify a directory that
needs to be monitored for changes, or you can use a constructor that accepts an array of strings that
represent multiple files or directories.

Yet another constructor accepts an array of filenames and an array of cache keys. The following
example uses this constructor to create an item that is dependent on another item in the cache:

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

503

Cache["Key1"] = "Cache Item 1";

// Make Cache["Key2"] dependent on Cache["Key1"].
string[] dependencyKey = new string[1];
dependencyKey[0] = "Key1";
CacheDependency dependency = new CacheDependency(null, dependencyKey);

Cache.Insert("Key2", "Cache Item 2", dependency);

Next, when Cache["Key 1"] changes or is removed from the cache, Cache["Key 2"] will automatically
be dropped.

Figure 11-5 shows a simple test page that is included with the online samples for this chapter. It sets
up a dependency, modifies the file, and allows you to verify that the cache item has been dropped from
the cache.

Figure 11-5. Testing cache dependencies

Aggregate Dependencies
Sometimes, you might want to combine dependencies to create an item that’s dependent on more than
one other resource. For example, you might want to create an item that’s invalidated if any one of three
files changes. Or, you might want to create an item that’s invalidated if a file changes or another cached
item is removed. Creating these rules is easy with the AggregateCacheDependency class.

The AggregateCacheDependency can wrap any number of CacheDependency objects. All you need
to do is supply your CacheDependency objects in an array using the AggregateCacheDependency.Add()
method.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

504

Here’s an example that makes a cached item dependent on two files:

CacheDependency dep1 = new CacheDependency(
 Server.MapPath("ProductList1.xml"));

CacheDependency dep2 = new CacheDependency(
 Server.MapPath("ProductList2.xml"));

// Create the aggregate.
CacheDependency[] dependencies = new CacheDependency[]{dep1, dep2};
AggregateCacheDependency aggregateDep = new AggregateCacheDependency();
aggregateDep.Add(dependencies);

// Add the dependent cache item.
Cache.Insert("ProductInfo", prodInfo, aggregateDep);

This example isn’t particularly practical, because you can already supply an array of files when you
create a CacheDependency object to get the same effect. The real value of AggregateCacheDependency
appears when you need to wrap different types of objects that derive from CacheDependency. Because
the AggregateCacheDependency.Add() method supports any CacheDependency-derived object, you
could create a single dependency that incorporates a file dependency, a SQL cache dependency, and
even a custom cache dependency.

The Item Removed Callback
ASP.NET also allows you to write a callback method that will be triggered when an item is removed
from the cache. You can place the method that handles the callback in your web-page class, or you can
use a static method in another accessible class. However, you should keep in mind that this code won’t
be executed as part of a web request. That means you can’t interact with web-page objects or notify
the user.

The following example uses a cache callback to make two items dependent on one another—a feat
that wouldn’t be possible with dependencies alone. Two items are inserted in the cache, and when
either one of those items is removed, the item removed callback removes the other.

public partial class ItemRemovedCallbackTest : System.Web.UI.Page
{
 protected void Page_Load(object sender, System.EventArgs e)
 {
 if (!this.IsPostBack)
 {
 lblInfo.Text += "Creating items...
";
 string itemA = "item A";
 string itemB = "item B";
 Cache.Insert("itemA", itemA, null, DateTime.Now.AddMinutes(60),
 TimeSpan.Zero, CacheItemPriority.Default,
 new CacheItemRemovedCallback(ItemRemovedCallback));
 Cache.Insert("itemB", itemB, null, DateTime.Now.AddMinutes(60),
 TimeSpan.Zero, CacheItemPriority.Default,
 new CacheItemRemovedCallback(ItemRemovedCallback));
 }
 }

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

505

 protected void cmdCheck_Click(object sender, System.EventArgs e)
 {
 string itemList = "";
 foreach(DictionaryEntry item in Cache)
 {
 itemList += item.Key.ToString() + " ";
 }
 lblInfo.Text += "
Found: " + itemList + "
";
 }

 protected void cmdRemove_Click(object sender, System.EventArgs e)
 {
 lblInfo.Text += "
Removing itemA.
";
 Cache.Remove("itemA");
 }

 private void ItemRemovedCallback(string key, object value,
 CacheItemRemovedReason reason)
 {
 // This fires after the request has ended, when the
 // item is removed.

 // If either item has been removed, make sure
 // the other item is also removed.
 if (key == "itemA" || key == "itemB")
 {
 Cache.Remove("itemA");
 Cache.Remove("itemB");
 }
 }
}

Figure 11-6 shows a test of this page.
When you click Remove in this page, you’ll notice that the item removed callback actually fires

twice: once for the item you’ve just removed (itemA) and once for the dependent item (itemB). This
doesn’t cause a problem, because it’s safe to call Cache.Remove() on items that don’t exist. However,
if you have other cleanup steps (such as deleting a file), you need to make sure that they aren’t
performed twice.

The callback also provides your code with additional information, including the removed item and
the reason it was removed. Table 11-5 shows possible reasons.

There are a few reasons that you might choose to use the item removed callback. As in this example,
you might use it to implement complex dependency logic. Or, you might use it to clean up other related
resources (such as a temporary file on the hard drive).

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

506

Figure 11-6. Testing a cache callback

Table 11-5. Values for the CacheItemRemovedReason Enumeration

Value Description

DependencyChanged Removed because a file or key dependency changed

Expired Removed because it expired (according to its sliding or absolute expiration
policy)

Removed Removed programmatically by a Remove method call or by an Insert
method call that specified the same key

Underused Removed because ASP.NET decided it wasn’t important enough and
wanted to free memory

You can also use the item removed callback to recreate an item when it expires. This is primarily

useful if the item is time-consuming to create, and so you want to create it before it’s used in a request.
(For example, you could use the item removed callback to get data from a remote component or web
service.) However, you should be careful when using this technique that you don’t waste time generating
data that’s rarely used. You must also check the reason the item is removed by examining the
CacheItemRemovedReason value. If the item has been removed due to normal expiry (Expired) or
dependencies (DependencyChanged), you can usually recreate it safely. If the item has been removed
manually (Removed) or due to cache scavenging (Underused), you’re best not to recreate it, because the
item might be quickly discarded again. Above all, you want to ensure that your code doesn’t get trapped
into a cycle of recreating the same item over and over again in quick succession.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

507

Understanding SQL Cache Notifications
SQL cache dependencies give you the ability to automatically invalidate a cached data object (such as a
DataSet) when the related data is modified in the database. This feature works with SQL Server 2005 and
later. ASP.NET also provides slightly more limited support for SQL Server 2000, although the underlying
plumbing is quite a bit different.

To understand how SQL cache dependencies work, it’s important to understand a few flawed
solutions that developers have been forced to resort to in the past.

One common technique is to use a marker file. With this technique, you add the data object to the
cache and set up a file dependency. However, the file you use is empty—it’s just a marker file that’s
intended to indicate when the database state changes.

Here’s how it works. When the user calls a stored procedure that modifies the table you’re interested
in, your stored procedure removes or modifies the marker file. ASP.NET immediately detects the file
change and removes the corresponding data object. This ugly workaround isn’t terribly scalable and can
introduce concurrency problems if more than one user calls the stored procedure and tries to remove
the file at once. It also forces you to clutter your stored procedure code, because every stored procedure
that modifies the database needs similar file modification logic. Having a database interact with the file
system is a bad idea from the start, because it adds to the complexity and reduces the security of your
overall system.

Another common approach is to use a custom HTTP handler that removes cached items at your
request. Once again, this only works if you build the appropriate level of support into the stored
procedures that modify the corresponding tables. In this case, instead of interacting with a file, these
stored procedures call the custom HTTP handler and pass a query string that indicates what change has
taken place or what cache key has been affected. The HTTP handler can then use the Cache.Remove()
method to get rid of the data.

The problem with this approach is that it requires the considerable complexity of an extended
stored procedure. Also, the request to the HTTP handler must be synchronous, which causes a
significant delay. Even worse, this delay happens every time the stored procedure executes, because the
stored procedure has no way of determining if the call is necessary or if the cached item has already
been removed. As a result, the overall time taken to execute the stored procedure increases significantly,
and the overall scalability of the database suffers. Like the marker file approach, it works well in small
scenarios but can’t handle large-scale, complex applications. Both of these approaches introduce a
whole other set of complications in web farm scenarios with multiple servers.

What’s needed is an approach that can deliver notifications asynchronously, and in a scalable and
reliable fashion. In other words, the database server should notify ASP.NET without stalling the current
connection. Just as importantly, it should be possible to set up the cache dependency in a loosely
coupled way so that stored procedures don’t need to be aware of the caching that’s in place. The
database server should watch for changes that are committed by any means, including from a script, an
inline SQL command, or a batch process. Even if the change doesn’t go through the expected stored
procedures, the change should still be noticed, and the notification should still be delivered to ASP.NET.
Finally, the notification method needs to support web farms.

Microsoft put together a team of architects from the ASP.NET, SQL Server, ADO.NET, and IIS groups
to concoct a solution. They came up with two different architectures, one for SQL Server 2000 (which is
described in earlier editions of this book) and one for all later versions of SQL Server (which is described
next). Both of them use the SqlCacheDependency class, which derives from the CacheDependency class
you saw earlier.

■ Tip Using SQL cache dependencies still entails more complexity than just using a time-based expiration policy.
If it’s acceptable for certain information to be used without reflecting all the most recent changes (and developers

often overestimate the importance of up-to-the-millisecond live information), you may not need it at all.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

508

How Cache Notifications Work
SQL Server 2005 introduced a notification infrastructure and messaging system that’s built into the
database, called the Service Broker. The Service Broker manages queues, which are database objects that
have the same standing as tables, stored procedures, or views.

Using the Service Broker, you can receive notifications for specific database events. The most direct
approach is to use the CREATE EVENT NOTIFICATION command to indicate the event you want to
monitor. However, .NET offers a higher-level model that’s integrated with ADO.NET. Using this model,
you simply register a query command, and .NET automatically instructs SQL Server to send notifications
for any operations that would affect the results of that query. ASP.NET offers an even higher-level model
that builds on this infrastructure, and allows you to invalidate cached items automatically when a query
is invalidated.

The SQL Server notification mechanism works in a similar way to indexed views. Every time you
perform an operation, SQL Server determines whether your operation affects a registered command. If it
does, SQL Server sends a notification message and stops the notification process.

Figure 11-7shows an overview of how cache invalidation works in SQL.

Figure 11-7. Monitoring a database for changes in SQL Server

Enabling Notifications
The only configuration step you need to perform is to make sure your database has the
ENABLE_BROKER flag set. You can perform this by running the following SQL (assuming you’re using
the Northwind database):

Use Northwind
ALTER DATABASE Northwind SET ENABLE_BROKER

Notifications work with SELECT queries and stored procedures. However, some restrictions exist for
the SELECT syntax you can use. To properly support notifications, your command must adhere to the
following rules:

• You must fully qualify table names in the form [Owner].table, as in dbo.Employees
(not just Employees).

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

509

• Your query cannot use an aggregate function, such as COUNT(), MAX(), MIN(), or
AVERAGE().

• You cannot select all columns with the wildcard * (as in SELECT * FROM
Employees). Instead, you must specifically name each column so that SQL Server
can properly track changes that do and do not affect the results of your query.

Here’s an acceptable command:

SELECT EmployeeID, FirstName, LastName, City FROM dbo.Employees

These are the most important rules, but SQL Server Books Online has a lengthy list of caveats and
exceptions. If you break one of these rules, you won’t receive an error. However, the notification
message will be sent as soon as you register the command, and the cached item will be invalidated
immediately.

Creating the Cache Dependency
When creating a cache dependency, SQL Server needs to know the exact database command you’re
using to retrieve your data. If you use programmatic caching, you must create the SqlCacheDependency
using the constructor that accepts a SqlCommand object. Here’s an example:

// Create the ADO.NET objects.
string connectionString = WebConfigurationManager.ConnectionStrings[
 "Northwind"].ConnectionString;
SqlConnection con = new SqlConnection(connectionString);
string query =
 "SELECT EmployeeID, FirstName, LastName, City FROM dbo.Employees";
SqlCommand cmd = new SqlCommand(query, con);
SqlDataAdapter adapter = new SqlDataAdapter(cmd);

// Fill the DataSet.
DataSet ds = new DataSet();
adapter.Fill(ds, "Employees");

// Create the dependency.
SqlCacheDependency empDependency = new SqlCacheDependency(cmd);

// Add a cache item that will be invalidated if one of its records changes
// (or a new record is added in the same range).
Cache.Insert("Employees", ds, empDependency);

You also need to call the static SqlDependency.Start() method to initialize the listening service on
the web server. This needs to be performed only once for each database connection. One place you can
call the Start() method is in the Application_Start() method of the global.asax file.

SqlDependency.Start(connectionString);

This method opens a new, nonpooled connection to the database. ASP.NET checks the queue for
notifications using this connection. The first time you call Start(), a new queue is created with a unique,
automatically generated name, and a new notification service is created for that queue. Then, the
listening begins. When a notification is received, the web server pulls it from the queue, raises the
SqlDependency.OnChange event, and invalidates the cached item.

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

510

Even if you have dependencies on several different tables, the same queue is used for all of them.
That means you need only a single call to SqlDependency.Start(). If you inadvertently call the Start()
method more than once, nothing happens.

Finally, you can use the following code to detach the listener:

SqlDependency.Stop(connectionString);

Typically, you’ll use this when the Application_End() method is called to detach the listener and
release all resources.

■ Tip Polling works best with data that’s used heavily and changes infrequently. That way, you minimize the

overhead of the notification process.

Custom Cache Dependencies
ASP.NET gives you the ability to create your own custom cache dependencies by deriving from
CacheDependency, in much the same way that SqlCacheDependency does. This feature allows you (or
third-party developers) to create dependencies that wrap other databases or to create resources such as
message queues, Active Directory queries, and even web service calls.

Designing a custom CacheDependency is remarkably easy. All you need to do is start some
asynchronous task that checks when the dependent item has changed. When it has, you call the base
CacheDependency.NotifyDependencyChanged() method. In response, the base class updates the values
of the HasChanged and UtcLastModified properties, and ASP.NET will remove any linked item from the
cache.

You can use one of several techniques to create a custom cache dependency. Here are some typical
examples:

Start a timer: When this timer fires, poll your resource to see if it has changed.

Start a separate thread: On this thread, check your resource and, if necessary, pause between
checks by sleeping the thread.

Attach an event handler to another component: When the event fires, check your resource. For
example, you could use this technique with the FileSystemWatcher to watch for a specific type of file
change (such as file deletion).

In every case, you perform the basic initialization (attaching event handlers, creating a separate
thread, and so on) in the constructor for your dependency.

A Basic Custom Cache Dependency
The following example shows an exceedingly simple custom cache dependency class. This class uses a
timer to periodically check if a cached item is still valid.

The first step is to create the class by deriving from CacheDependency:

public class TimerTestCacheDependency : System.Web.Caching.CacheDependency
{ ... }

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

511

When the dependency is first created, you can set up the timer. In this example, the polling time
isn’t configurable—it’s hard-coded at 5 seconds. That means every 5 seconds the timer fires and the
dependency check runs.

private System.Threading.Timer timer;
private int pollTime = 5000;

public TimerTestCacheDependency()
{
 // Check immediately and then wait the poll time
 // for each subsequent check (same as CacheDependency behavior).
 timer = new Timer(
 new System.Threading.TimerCallback(CheckDependencyCallback),
 this, 0, pollTime);
}

As a test, the dependency check simply counts the number of times it’s called. Once it’s called for
the fifth time (after a total of about 25 seconds), it invalidates the cached item. The important part of this
example is how it tells ASP.NET to remove the dependent item. All you need to do is call the base
CacheDependency.NotifyDependencyChanged() method, passing in a reference to the event sender (the
current object) and any event arguments.

private int count = 0;

private void CheckDependencyCallback(object sender)
{
 // Check your resource here. If it has changed, notify ASP.NET:
 count++;
 if (count > 4)
 {
 // Signal that the item is expired.
 base.NotifyDependencyChanged(this, EventArgs.Empty);

 // Don't fire this callback again.
 timer.Dispose();
 }
}

The last step is to override DependencyDispose() to perform any cleanup that you need.
DependencyDispose() is called soon after you use the NotifyDependencyChanged() method to
invalidate the cached item. At this point, the dependency is no longer needed.

protected override void DependencyDispose()
{
 // Cleanup code goes here.
 if (timer != null) timer.Dispose();
}

Once you’ve created a custom dependency class, you can use it in the same way as the
CacheDependency class, by supplying it as a parameter when you call Cache.Insert():

TimerTestCacheDependency dependency = new TimerTestCacheDependency();
Cache.Insert("MyItem", item, dependency);

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

512

A Custom Cache Dependency Using Message Queues
Now that you’ve seen how to create a basic custom cache dependency, it’s worth considering a more
practical example. The following MessageQueueCacheDependency monitors a Microsoft Messaging
Queuing (MSMQ) queue. As soon as that queue receives a message, the item is considered expired
(although you could easily extend the class so that it waits to receive a specific message). The
MessageQueueCacheDependency class could come in handy if you’re building the backbone of a
distributed system and you need to pass messages between components on different computers to
notify them when certain actions are performed or changes are made.

■ Note MSMQ is included with Windows but not necessarily installed by default. To install MSMQ, double-click
the Programs and Features icon in the Control Panel, and then click Turn Windows Features On or Off. At

minimum, you need to place a check mark next to Microsoft Message Queuing (MSMQ) Server and Microsoft

Message Queuing (MSMQ) Server Core (which is nested underneath).

Before you can create the MessageQueueCacheDependency, you need to add a reference to the
System.Messaging.dll assembly and import the System.Messaging namespace where the MessageQueue
and Message classes reside. Then you’re ready to build the solution.

In this example, the MessageQueueCacheDependency is able to monitor any queue. When you
instantiate the dependency, you supply the queue name (which includes the location information). To
perform the monitoring, the MessageQueueCacheDependency fires its private WaitForMessage()
method asynchronously. This method waits until a new message is received in the queue, at which point
it calls NotifyDependencyChanged() to invalidate the cached item.

Here’s the complete code for the MessageQueueCacheDependency:

public class MessageQueueCacheDependency : CacheDependency
{
 // The queue to monitor.
 private MessageQueue queue;

 public MessageQueueCacheDependency(string queueName)
 {
 queue = new MessageQueue(queueName);

 // Wait for the queue message on another thread.
 WaitCallback callback = new WaitCallback(WaitForMessage);
 ThreadPool.QueueUserWorkItem(callback);
 }

 private void WaitForMessage(object state)
 {
 // Check your resource here (the polling).
 // This blocks until a message is sent to the queue.
 Message msg = queue.Receive();

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

513

 // (If you're looking for something specific, you could
 // perform a loop and check the Message object here
 // before invalidating the cached item.)
 base.NotifyDependencyChanged(this, EventArgs.Empty);
 }
}

To test this, you can use a revised version of the file-dependency testing page shown earlier (see
Figure 11-8).

Figure 11-8. Testing a message queue dependency

This page creates a new private cache on the current computer and then adds a new item to the
cache with a dependency on that queue:

private string queueName = @".\Private$\TestQueue";
// The leading . represents the current computer.
// The following Private$ indicates it's a private queue for this computer.
// The TestQueue is the queue name (you can modify this part).

protected void Page_Load(object sender, EventArgs e)
{
 if (!this.IsPostBack)
 {
 // Set up the queue.
 MessageQueue queue;
 if (MessageQueue.Exists(queueName))
 {
 queue = new MessageQueue(queueName);
 }

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

514

 else
 {
 queue = MessageQueue.Create(@".\Private$\TestQueue");
 }

 lblInfo.Text += "Creating dependent item...
";
 Cache.Remove("Item");
 MessageQueueCacheDependency dependency = new
 MessageQueueCacheDependency(queueName);
 string item = "Dependent cached item";
 lblInfo.Text += "Adding dependent item
";
 Cache.Insert("Item", item, dependency);
 }
}

When you click Send Message, a simple text message is sent to the queue, which will be received
almost instantaneously by the custom dependency class:

protected void cmdModify_Click(object sender, EventArgs e)
{
 MessageQueue queue = new MessageQueue(queueName);

 // (You could send a custom object instead
 // of a string.)
 queue.Send("Invalidate!");
 lblInfo.Text += "Message sent
";
}

To learn more about MSMQ, you can refer to the Visual Studio Help.

Asynchronous Pages
Now that you’ve considered the fundamentals of ASP.NET caching, it’s worth taking a detour to consider
a different performance-enhancing technique: asynchronous web pages. This specialized feature can
help boost the scalability of your website. It’s particularly useful in web pages that include time-
consuming code that queries a database.

The basic idea behind asynchronous web pages is they allow you to take code that involves
significant waiting and move it to a non-ASP.NET thread. To understand the potential benefit of this
technique, you need to know a little bit more about how ASP.NET handles requests (a topic that Chapter
18 tackles in more detail).

Essentially, .NET maintains a pool of threads that can handle page requests. When a new request is
received, ASP.NET grabs one of the available threads and uses it to process the entire page. That same
thread instantiates the page, runs your event handling code, and returns the rendered HTML. If
ASP.NET receives requests at a rapid pace—faster than it can serve them—unhandled requests will build
up in a queue. If the queue fills up, ASP.NET is forced to reject additional requests with 503 “Server
Unavailable” errors.

For most situations, the ASP.NET process model is the best possible compromise. However, there is
a possible exception. If your page code involves lengthy waiting—for example, it tries to read a file from a
remote location, call an object or web service on a distant computer, or query large amounts of data
from a slow database—you’ll tie up a request processing thread even though no real work is being
performed. In other words, the web server has the processing resources to handle more requests
(because your thread isn’t using the CPU), but it doesn’t have any available threads. Depending on the

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

515

wait time and the volume of requests on your website, this could adversely affect the overall throughput
of your site, preventing it from handling as many requests as it should be able to handle.

■ Note The actual number of threads in the pool and the size of the request queue are influenced by several
factors, including the version of IIS you’re using and the number of CPUs on your computer. It’s always best to let
ASP.NET handle these details, because it’s most successful at balancing all the requirements. If you have too

many ASP.NET threads running at once, your threads will tax the CPU (or fight over other limited resources) and
ultimately slow down the entire web server. It’s always better to stall or reject some requests than have the server

attempt to handle too many requests and fail to complete any of them.

If you have a page that involves a fair bit of waiting, you can use the asynchronous page feature to
free up the ASP.NET request thread. By doing so, your request is moved to another thread pool.
(Technically, you’re using the I/O completion port feature, which is built into the Windows operating
system.) When your asynchronous work is finished, ASP.NET is notified, and the next available thread in
the ASP.NET thread pool finishes the work, rendering the final HTML.

It’s important to understand that an asynchronous page is no faster than a normal, synchronous
page. In fact, the overhead of switching to the new thread and back again is likely to make it a bit slower.
The advantage is that other requests—ones that don’t involve long operations—can get served more
quickly. This improves the overall scalability of your site. It’s also important to realize that the
asynchronous processing takes place completely on the web server, and the web page user won’t notice
any difference—wait times and postbacks will still take just as long.

■ Note Asynchronous web pages shouldn’t be confused with asynchronous client-side programming techniques
(such as Ajax, which is discussed in Chapter 30). The potential advantage of server-side asynchronous web page
processing is that it allows you to deal with time-consuming requests more efficiently, so that other users won’t
need to wait when traffic is heavy. The potential advantage of client-side asynchronous programming is that the

page seems more responsive to the end user.

Creating an Asynchronous Page
The first step to building an asynchronous page is setting the Async attribute in the Page directive to
true, as shown here:

<%@ Page Async="true" ... %>

This tells ASP.NET that the page class it generates should implement IHttpAsyncHandler instead of
IHttpHandler, which gives it basic support for asynchronous operations.

The next step is to call the AddOnPreRenderCompleteAsync() method of the page, typically when
the page first loads. This method takes two delegates, which point to two separate methods. The first
method launches your asynchronous task. The second method handles the completion callback for your
asynchronous task. Here’s the syntax you need:

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

516

AddOnPreRenderCompleteAsync(new BeginEventHandler(BeginTask),
 new EndEventHandler(EndTask));

In fact, C# is intelligent enough to let you use this compressed syntax to supply the two delegates
you need:

AddOnPreRenderCompleteAsync(BeginTask, EndTask);

When ASP.NET encounters this statement, it takes note of it and then completes the normal page-
processing life cycle, stopping just after the PreRender event fires. Then, ASP.NET calls the begin method
you registered with AddOnPreRenderCompleteAsync(). If coded correctly, the begin method launches
an asynchronous task and returns immediately, allowing the ASP.NET thread to be assigned to another
request while the asynchronous task continues on another thread. When the task is complete, ASP.NET
acquires a thread from its thread pool, runs the end method, and renders the page. Figure 11-9
illustrates this process.

Figure 11-9. The life cycle of an asynchronous page

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

517

Unfortunately, this has one significant catch. To take advantage of this design, you need to have an
asynchronous method that plugs into this infrastructure. This means you need a task that launches itself
on a separate thread and returns an IAsyncResult object that allows ASP.NET to determine when it’s
complete. At first glance, it seems that several possible techniques can accomplish this. However, most
of these won’t work correctly in an ASP.NET application.

For example, seasoned .NET developers may expect to use the BeginInvoke() method of a delegate
or the ThreadPool.QueueUserWorkItem() method. Unfortunately, both of these methods draw from the
same thread pool that ASP.NET uses, which makes them ineffective. When you use these techniques in
conjunction with an asynchronous page, you relinquish the original page-processing thread, but you
acquire a second thread from the same pool. (The online examples include a page named
SimpleAsyncPage.aspx that demonstrates how this works.)

Another option is to use the Thread class to explicitly create your own threads. Unfortunately, this is
a risky endeavor, because it can easily lead to a page that creates more work than the server can handle.
To understand the problem, consider what happens if a page creates a custom thread and that page is
requested 100 times in quick succession. The web server winds up managing 100 threads, which taxes
performance even if these threads are doing no work at all. In a popular website, you might create so
many threads that the server can’t complete any requests. Furthermore, the act of thread creation itself
has some overhead. A good thread pooling system avoids thread creation and maintains a small set of
threads at the ready at all times.

That leaves you with only two options, one of which is writing a custom thread pool. This means you
use the low-level Thread class but take care to limit the total number of threads you’ll create. This
technique is not trivial, and it’s beyond the scope of this book. You can find an excellent (although not
production-ready) example of a custom thread pool at http://www.bearcanyon.com/dotnet/#threadpool.

So, what’s the alternative if you wisely decide not to create a custom thread pool? The
recommended approach is to use existing support in the .NET class library. For example, .NET includes
various classes that provide proper asynchronous support for downloading content from the Web,
reading data from a file, contacting a web service, and querying data through a DataReader. In general,
this support is provided through matching methods named BeginXxx() and EndXxx(). For example, the
System.IO.FileStream class provides a BeginRead() and an EndRead() method for asynchronously
retrieving data from a file. These methods use Windows I/O completion ports, so they don’t require
threads from the shared thread pool that ASP.NET uses. If you use these methods in conjunction with an
asynchronous page, you will free up another thread to serve ASP.NET web page requests.

In the following section, you’ll see a similar example that uses the asynchronous support that’s built
into the DataReader.

Querying Data in an Asynchronous Page
The data source controls don’t have any asynchronous support. However, many of the underlying
ADO.NET classes, including SqlCommand and SqlDataReader, have asynchronous support. The
following page takes advantage of the BeginReader() and EndReader() methods of the SqlDataReader. To
allow the asynchronous query, you need to explicitly enable it in the connection string, as shown in the
following snippet from the web.config file:

<connectionStrings>
 <add name="NorthwindAsync" connectionString="Data Source=localhost;
Initial Catalog=Northwind;Integrated Security=SSPI;Asynchronous Processing=true"
 providerName="System.Data.SqlClient"/>
</connectionStrings>

The first step is to register the methods that perform the asynchronous task. This step is the same in
any asynchronous web page:

http://www.bearcanyon.com/dotnet/#threadpool

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

518

protected void Page_Load(object sender, EventArgs e)
{
 // Register the asynchronous methods for later use.
 // This method returns immediately.
 Page.AddOnPreRenderCompleteAsync(BeginTask, EndTask);
}

When the BeginTask() method is called, you can launch the asynchronous operation:

// The ADO.NET objects need to be accessible in several different
// event handlers, so they must be declared as member variables.
private SqlConnection con;
private SqlCommand cmd;
private SqlDataReader reader;

private IAsyncResult BeginTask(object sender, EventArgs e,
 AsyncCallback cb, object state)
{
 // Create the command.
 string connectionString = WebConfigurationManager.ConnectionStrings
 ["NorthwindAsync"].ConnectionString;
 con = new SqlConnection(connectionString);
 cmd = new SqlCommand("SELECT * FROM Employees", con);

 // Open the connection.
 // This part is not asynchronous.
 con.Open();

 // Run the query asynchronously.
 // This method returns immediately and provides ASP.NET
 // with the IAsyncResult object it needs to track progress.
 return cmd.BeginExecuteReader(cb, state);
}

The EndTask() method fires automatically when the IAsyncResult object indicates the
BeginExecuteReader() method has finished its work and retrieved all the data:

private void EndTask(IAsyncResult ar)
{
 // You can now retrieve the DataReader.
 reader = cmd.EndExecuteReader(ar);
}

If you want to perform more page processing, you can handle the Page.PreRenderComplete event.
In this example, this is the point where the grid is filled with the retrieved data:

protected void Page_PreRenderComplete(object sender, EventArgs e)
{
 grid.DataSource = reader;
 grid.DataBind();
 con.Close();
}

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

519

Finally, you need to override the Dispose() method of the page to ensure that the connection is
closed in the event of an error:

public override void Dispose()
{
 if (con != null) con.Close();
 base.Dispose();
}

Overall, the asynchronous data retrieval makes this page more complex. The actual binding needs
to be performed by hand (rather than using a data source control), and it spans several methods.
However, the end result is a more scalable web application, assuming the query takes a significant
amount of time to execute.

Handling Errors
Currently, the asynchronous DataReader page has no error-handling code, which makes it unsuitable
for a real-world application. Implementing error handling isn’t difficult, but because of the multistage
nature of asynchronous pages, it may need to be performed in several places.

The easiest part of error handling is dealing with exceptions that occur during the asynchronous
operation. By convention, these exceptions are thrown when you call the EndXxx() method. In the
DataReader example, that means any query problems will cause an exception to be thrown when you
call EndExecuteReader(). Here’s how you catch it:

private void EndTask(IAsyncResult ar)
{
 // You can now retrieve the DataReader.
 try
 {
 reader = cmd.EndExecuteReader(ar);
 }
 catch (SqlException err)
 {
 lblError.Text = "The query failed.";
 }
}

You can test this code by modifying the query to be intentionally incorrect. (For example, create a
query that refers to a nonexistent table.)

The other possible point of failure is when you attempt to open the connection. An exception occurs
here if the connection string is invalid or if you’re trying to connect a database server that doesn’t exist.
Although it’s easy to catch the resulting exception, it’s not as easy to deal with it gracefully. That’s
because this error occurs in your begin method. Once you’ve reached the begin method, you’re at the
point of no return—you’ve started an asynchronous operation, and ASP.NET expects you to return an
IAsyncResult object. If you return a null reference, the page processing will be interrupted with an
InvalidOperationException.

The solution is to create a custom IAsyncResult class that signals the operation is complete. This
IAsyncResult class can also track the exception details, so you can retrieve them in your end method and
use them to report the error. Here’s an IAsyncResult-based class that includes these details:

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

520

public class CompletedSyncResult : IAsyncResult
{
 // Track the offending error.
 private Exception operationException;
 public Exception OperationException
 {
 get { return operationException; }
 set { operationException = value; }
 }

 // Maintain all the details for the asynchronous operation.
 public CompletedSyncResult(Exception operationException,
 AsyncCallback asyncCallback, object asyncState)
 {
 state = asyncState;
 OperationException = operationException;

 // Code that triggers the callback, if it's used.
 if (asyncCallback != null)
 {
 asyncCallback(this);
 }
 }

 // Implement the IAsyncState interface.
 // Use hard-coded values that indicate the task is always considered complete.
 private object state;
 object IAsyncResult.AsyncState
 {
 get { return state; }
 }

 WaitHandle IAsyncResult.AsyncWaitHandle
 {
 get { return null; }
 }

 bool IAsyncResult.CompletedSynchronously
 {
 get { return true; }
 }

 bool IAsyncResult.IsCompleted
 {
 get { return true; }
 }
}

Now if a connection error occurs, you can return an instance of this connection object instead of
relying on the BeginExecuteReader() method. Here’s the changed code:

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

521

private IAsyncResult BeginTask(object sender, EventArgs e,
 AsyncCallback cb, object state)
{
 ...

 // Open the connection.
 try
 {
 con.Open();
 }
 catch (Exception err)
 {
 return new CompletedSyncResult(err, cb, state);
 }

 // No error, so run the query asynchronously.
 return cmd.BeginExecuteReader(cb, state);
}

The only problem with this approach is that you need to explicitly check the type of IAsyncResult
object in your end method. That way, you can detect an error condition.

private void EndTask(IAsyncResult ar)
{
 if (ar is CompletedSyncResult)
 {
 lblError.Text = "A connection error occurred.
";

 // Demonstrate how exception details can be retrieved.
 lblError.Text += ((CompletedSyncResult)ar).OperationException.Message;
 return;
 }

 // Otherwise, you can retrieve the DataReader.
 try
 {
 reader = cmd.EndExecuteReader(ar);
 }
 catch (SqlException err)
 {
 lblError.Text = "The query failed.";
 }
}

To try this, modify the connection string to point to an invalid server or database, and run the page.
Your begin method will catch the error, and your end method will deal with it appropriately (in this
example, by showing a message on the page).

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

522

■ Note Ideally, this tactic (checking the object type) wouldn’t be necessary. Instead, you would simply call the
EndExecuteReader() method and pass in the CompletedSyncResult object, and it would rethrow whatever
exception object is stored in the CompletedSyncResult.OperationException property. Unfortunately, you can’t

implement this design because you don’t own the EndExecuteReader() code. The only alternative is to wrap the
BeginExecuteReader() and EndExecuteReader() methods in another, higher-level class (which is needlessly

complex) or inspect the IAsyncResult object as shown here.

Using Caching with Asynchronous Tasks
In the previous example, you saw how you could skip over the asynchronous processing stage when
an error occurs by using a custom class that implements IAsyncResult. However, you might want to
stop a requested asynchronous operation before it gets started for other reasons. One example is if
you’ve found the data you need in the cache. In this case, you don’t need to waste time with a trip to
the database.

You can handle this situation in more than one way. One option is to check the cache when the
page is first created and register the asynchronous task only if you can’t find the data object you need.
However, sometimes you won’t decide to skip the asynchronous processing stage until later, after your
begin method has already been called. In other situations, you might want to make sure that ASP.NET
runs the code in your end method, even though you’re not performing an asynchronous operation.
In both of these situations, you need a way to cancel your asynchronous task and return the data you
need immediately.

Once again, the solution is to use a custom IAsyncResult object. In fact, you can use the
CompletedSyncResult class developed in the previous section, with just a few minor changes. First, you
need a way to store the data that you want to return:

private DataTable result;
public DataTable Result
{
 get
 {
 if (OperationException != null)
 {
 throw OperationException;
 }
 return result;
 }
 set { result = value; }
}

Notice that this property uses a different error-handling design than the first version of
CompletedSyncResult. Now, when you try to read the Result property, CompletedSyncResult checks for
the presence of exception information. If an exception has occurred, there won’t be any data. This is the
perfect time to rethrow the exception to alert the caller.

The second detail you need is another constructor. This constructor should accept the result object
but not require any exception information:

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

523

public CompletedSyncResult(DataTable result, AsyncCallback asyncCallback,
 object asyncState)
{
 state = asyncState;
 Result = result;

 // Code that triggers the callback, if it's used.
 if (asyncCallback != null)
 {
 asyncCallback(this);
 }
}

Now you can modify your begin method to implement the caching. In this case, data is stored in a
DataTable object. (The DataReader can’t be efficiently cached, because it’s usable only one time, and it
holds an open database connection.)

Here’s the code that checks the cache for the DataTable and uses CompletedSyncResult to return it
without any asynchronous processing if it’s there:

private IAsyncResult BeginTask(object sender, EventArgs e,
 AsyncCallback cb, object state)
{
 // Check the cache.
 if (Cache["Employees"] != null)
 {
 return new CompletedSyncResult((DataTable)Cache["Employees"],
 cb, state);
 }

 ...
}

The EndTask() method also needs a few changes. First, it checks whether the IAsyncResult object it
has received is a CompletedSyncResult instance. If it is, it attempts to read the
CompletedSyncResult.Result property. At this point, an error is thrown if needed. If the IAsyncResult
isn’t a CompletedSyncResult, the code calls EndExecuteReader() to get the DataReader, uses the
DataReader to fill a DataTable with the handy DataTable.Load() method, and then stores the DataTable
in the cache for 5 minutes so it can be used by subsequent requests.

Here’s the complete code for the end method:

private DataTable table;

private void EndTask(IAsyncResult ar)
{
 CompletedSyncResult completedSync = ar as CompletedSyncResult;
 if (completedSync != null)
 {
 try
 {
 // Store the DataTable for use in the PreRenderComplete
 // event hander.
 table = completedSync.Result;
 lblError.Text = "Completed with data from the cache.";

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

524

 }
 catch (Exception err)
 {
 lblError.Text = "A connection error occurred.";
 }
 }
 else
 {
 try
 {
 reader = cmd.EndExecuteReader(ar);
 table = new DataTable("Employees");
 table.Load(reader);
 Cache.Insert("Employees", table, null,
 DateTime.Now.AddMinutes(5), TimeSpan.Zero);
 }
 catch (SqlException err)
 {
 lblError.Text = "The query failed.";
 }
 }
}

When the Page.PreRenderComplete event fires, the DataTable is bound to the grid:

protected void Page_PreRenderComplete(object sender, EventArgs e)
{
 grid.DataSource = table;
 grid.DataBind();
}

This example shows the entire process, but the code isn’t arranged in the most structured way. You
can improve this code by completely wrapping the BeginExecuteReader() and EndExecuteReader()
methods in the CompletedSyncResult class. That way, your web page deals with only one type of
IAsyncResult object.

■ Note To see an example of this more streamlined design, refer to the AsyncDataReaderRefactored.aspx page in
the samples for this chapter. This page uses an IAsyncResult-based class named AsyncQueryResult, which
supports synchronous use (when an error occurs or the data object is provided in the constructor) and

asynchronous use (through the BeginExecuteReader() and EndExecuteReader() methods).

Multiple Asynchronous Tasks and Timeouts
In some situations, you might have a series of asynchronous tasks that can be completed at the same
time. For example, maybe you have several web services that you want to call and they all involve a
considerable wait. By performing these calls simultaneously, you can collapse your waiting time (in
other words, you can wait for a response from all three web services at once).

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

525

■ Tip Performing simultaneous asynchronous tasks is a good technique when your tasks involve different resources.
It’s a bad idea if your tasks will compete for the same resource. For example, a page that performs three database
queries at once isn’t a good candidate for simultaneous execution, because you’ll need to open three connections at

the same time, which will probably have a negative effect on the overall scalability of your site.

If you use AddOnPreRenderCompleteAsync() to register multiple tasks, they’ll be executed
sequentially. If you want to execute more than one simultaneous task, you need to use the
RegisterAsyncTask() method instead. This method takes a PageAsyncTask object that encapsulates all
the request details.

Here’s an example that has the same end result as the AddOnPreRenderCompleteAsync() statement
in the previous example:

PageAsyncTask task = new PageAsyncTask(BeginTask, EndTask, null, null);
Page.RegisterAsyncTask(task);

To perform simultaneous requests, just create more than one task object and call RegisterAsyncTask
for each one:

PageAsyncTask taskA = new PageAsyncTask(BeginTaskA, EndTaskA, null, null);
Page.RegisterAsyncTask(taskA);

PageAsyncTask taskB = new PageAsyncTask(BeginTaskB, EndTaskB, null, null);
Page.RegisterAsyncTask(taskB);

In this case, the final page rendering stage will be delayed until all the asynchronous tasks have
completed their processing.

The RegisterAsyncTask() method has a few other differences as compared to the
AddOnPreRenderCompleteAsync() method. You may have noticed that it takes two additional
parameters. The first of these allows you to supply a delegate that points to a timeout method:

PageAsyncTask task = new PageAsyncTask(BeginTask, EndTask, Timeout, null);

This method will be triggered if the asynchronous request times out. You can use this code to
display an explanatory error message on the page before it’s rendered and returned to the user. Here’s
an example that’s designed for the asynchronous DataReader page:

public void Timeout(IAsyncResult result)
{
 if (con != null)
 con.Close();

 lblError.Text = "Task timed out.";
}

By default, a timeout occurs after 45 seconds, but you can supply a different timeout value using the
AsyncTimeout property of the Page directive, as shown here:

<%@ Page Async="true" AsyncTimeout="60" ... %>

CHAPTER 11 ■ CACHING AND ASYNCHRONOUS PAGES

526

■ Note The timeout affects all tasks. There is no way to set different timeouts to different asynchronous tasks.

The final parameter of the PageAsyncTask() constructor is an optional state object, which you can
use to pass any information you need to your begin method.

The other difference with the RegisterAsyncTask() is that the current HttpContext is passed to your
end and timeout methods. This means you can use properties such as Page.Request to get information
about the current request. This information isn’t available to asynchronous tasks that have been
registered using AddOnPreRenderCompleteAsync().

Summary
In this chapter, you took a detailed look at caching, which is one of ASP.NET’s premier features. As a
professional ASP.NET programmer, you should design with caching strategies in mind from the
beginning. Caching is particularly important when using the data source controls, because these
controls are deceptively simple—they make it easy to build a page that queries a database multiple times
for a single request.

C H A P T E R 12

■ ■ ■

527

Files and Streams

Most web applications rely heavily on databases to store information. Databases are unmatched in
multiuser scenarios. They handle simultaneous access without a hitch, and they support caching and
low-level disk optimizations that guarantee blistering performance. Quite simply, an RDBMS (Relational
Database Management System) offers the most robust and best-performing storage for data.

Of course, most web developers inevitably face a scenario where they need to access data in other
locations, such as the file system. Common examples include reading information produced by another
application, writing a quick-and-dirty log for testing purposes, and creating a management page that
allows administrators to upload files and view what’s currently on the server. In this chapter, you’ll learn
how to use the classes in the System.IO namespace to get file system information, work with file paths as
strings, write and read files, and serialize objects.

Working with the File System
The simplest level of file access just involves retrieving information about existing files and directories
and performing typical file system operations such as copying files and creating directories. These tasks
don’t involve actually opening or writing a file (both of which are tasks you’ll learn about later in this
chapter).

The .NET Framework provides a few basic classes for retrieving file system information. They are all
located in the System.IO namespace (and, incidentally, can be used in desktop applications in the same
way they are used in web applications). They include the following:

• Directory and File: These classes provide static methods that allow you to retrieve
information about any files and directories that are visible from your server.

• DriveInfo, DirectoryInfo, and FileInfo: These classes use similar instance
methods and properties to retrieve the same information.

These two sets of classes provide similar methods and properties. The key difference is that you
need to create a DirectoryInfo or FileInfo object before you can use any methods, whereas the static
methods of the Directory and File classes are always available. Typically, the Directory and File classes
are more convenient for one-off tasks. On the other hand, if you need to retrieve several pieces of
information, it’s better to create DirectoryInfo and FileInfo objects. That way you don’t need to keep
specifying the name of the directory or file each time you call a method. It’s also faster. That’s because
the FileInfo and DirectoryInfo classes perform their security checks once—when you create the object
instance. The Directory and File classes perform a security check every time you invoke a method.

CHAPTER 12 ■ FILES AND STREAMS

528

The Directory and File Classes
The Directory and File classes provide a number of useful methods. Tables 12-1 and 12-2 tell the whole
story. Note that every method takes the same parameter: a fully qualified path name identifying the
directory or file you want the operation to act on.

Table 12-1. Directory Methods

Method Description

CreateDirectory() Creates a new directory. If you specify a directory inside another
nonexistent directory, ASP.NET will thoughtfully create all the required
directories.

Delete() Deletes the corresponding empty directory. To delete a directory along
with its contents (subdirectories and files), add the optional second
parameter of true.

Exists() Returns true or false to indicate whether the specified directory exists.

GetCreationTime(),
GetLastAccessTime(),
and GetLastWriteTime()

Returns a DateTime object that represents the time the directory was
created, accessed, or written to. Each “Get” method has a corresponding
“Set” method, which isn’t shown in this table.

GetDirectories() and
GetFiles()

Returns an array of strings, one for each subdirectory or file in the
specified directory. These methods can accept a second parameter that
specifies a search expression (such as ASP*.*).

GetLogicalDrives() Returns an array of strings, one for each drive that’s defined on the
current computer. Drive letters are in this format: c:\.

GetParent() Parses the supplied directory string and tells you what the parent
directory is. You could do this on your own by searching for the \
character (or, more generically, the Path.DirectorySeparatorChar), but
this function makes life a little easier.

GetCurrentDirectory()
and
SetCurrentDirectory()

Allows you to set and retrieve the current directory, which is useful if you
need to use relative paths instead of full paths. Generally, you shouldn’t
rely on these functions—use full paths instead.

Move() Accepts two parameters: the source path and the destination path. The
directory and all its contents can be moved to any path, as long as it’s
located on the same drive.

GetAccessControl() and
SetAccessControl()

Returns or sets a System.Security.AccessControl.Directory- Security
object. You can use this object to examine the Windows access control
lists (ACLs) that are applied on this directory and even change them
programmatically.

CHAPTER 12 ■ FILES AND STREAMS

529

Table 12-2. File Methods

Method Description

Copy() Accepts two parameters: the fully qualified source filename and the fully
qualified destination filename. To allow overwriting, use the version that
takes a Boolean third parameter and set it to true.

Delete() Deletes the specified file but doesn’t throw an exception if the file can’t be
found.

Exists() Indicates true or false whether a specified file exists.

GetAttributes() and
SetAttributes()

Retrieves or sets an enumerated value that can include any combination of
the values from the FileAttributes enumeration.

GetCreationTime(),
GetLastAccessTime(),
and
GetLastWriteTime()

Returns a DateTime object that represents the time the file was created,
accessed, or last written to. Each “Get” method has a corresponding “Set”
method, which isn’t shown in this table.

Move() Accepts two parameters: the fully qualified source filename and the fully
qualified destination filename. You can move a file across drives and even
rename it while you move it (or rename it without moving it).

Create() and
CreateText()

Creates the specified file and returns a FileStream object that you can use
to write to it. CreateText() performs the same task but returns a
StreamWriter object that wraps the stream.

Open(), OpenText(),
OpenRead(), and
OpenWrite()

Opens a file (provided it exists). OpenText() and OpenRead() open a file in
read-only mode, returning a FileStream or StreamReader. OpenWrite()
opens a file in write-only mode, returning a FileStream.

ReadAllText(),
ReadAllLines(), and
ReadAllBytes()

Reads the entire file and returns its contents as a single string, an array of
strings (one for each line), or an array of bytes. Use this method only for
very small files. For larger files, use streams to read one chunk at a time
and reduce the memory overhead.

WriteAllText(),
WriteAllLines(), and
WriteAllBytes()

Writes an entire file in one shot using a supplied string, array of strings
(one for each line), or array of bytes. If the file already exists, it is
overwritten.

GetAccessControl() and
SetAccessControl()

Returns or sets a System.Security.AccessControl.FileSecurity object. You
can use this object to examine the Windows ACLs that are applied on this
directory and even change them programmatically.

CHAPTER 12 ■ FILES AND STREAMS

530

■ Tip The only feature that the File class lacks (and the FileInfo class provides) is the ability to retrieve the size of

a specified file.

The File and Directory methods are completely intuitive. For example, you could use this code to
write a dynamic list displaying the name of each file in the current directory:

string directoryName = @"c:\Temp";

// Retrieve the list of files, and display it in the page.
string[] fileList = Directory.GetFiles(directoryName);
foreach (string file in fileList)
{
 lstFiles.Items.Add(file);
}

In this example, the string with the file path c:\Temp is preceded by an at (@) character. This tells C#
to interpret the string exactly as written. Without this character, C# would assume the directory
separation character (\) indicates the start of a special character sequence. Another option is to use the
escaped character sequence \\, which C# reads as a single literal slash. In this case, you would write the
path as c:\\Temp.

Because the list of files is simply an ordinary list of strings, it can easily be bound to a list control,
resulting in the following more efficient syntax for displaying the files on a page:

string directoryName = @"c:\Temp";
lstFiles.DataSource = Directory.GetFiles(directoryName);
lstFiles.DataBind();

For this code to work, the account that is used to run the ASP.NET worker process must have rights
to the directory you’re using. Otherwise, a SecurityException will be thrown when your web page
attempts to access the file system. You can modify the permissions for a directory by right-clicking the
directory, selecting Properties, and choosing the Security tab. This typically won’t be a problem if you’re
testing an application with Visual Studio’s integrated web server, which runs under your user account.
However, it can easily cause issues when you deploy your site. In this case, you need to grant the
appropriate permissions to the IIS_USRS group (or modify the account that your web site uses). For
more information, refer to Chapter 18.

The DirectoryInfo and FileInfo Classes
The DirectoryInfo and FileInfo classes mirror the functionality in the Directory and File classes. In
addition, they make it easy to walk through directory and file relationships. For example, you can easily
retrieve the FileInfo objects of files in a directory represented by a DirectoryInfo object.

Note that while the Directory and File classes expose only methods, DirectoryInfo and FileInfo
provide a combination of properties and methods. For example, while the File class has separate
GetAttributes() and SetAttributes() methods, the FileInfo class exposes a read-write Attributes property.

Another nice thing about the DirectoryInfo and FileInfo classes is that they share a common set of
properties and methods because they derive from the common FileSystemInfo base class. Table 12-3
describes the members they have in common.

CHAPTER 12 ■ FILES AND STREAMS

531

Table 12-3. DirectoryInfo and FileInfo Members

Member Description

Attributes Allows you to retrieve or set attributes using a combination of values from the
FileAttributes enumeration.

CreationTime,
LastAccessTime,
and LastWriteTime

Allows you to set or retrieve the creation time, last access time, and last write
time using a DateTime object.

Exists Returns true or false depending on whether the file or directory exists. In other
words, you can create FileInfo and DirectoryInfo objects that don’t actually
correspond to current physical directories, although you obviously won’t be
able to use properties such as CreationTime and methods such as MoveTo().

FullName, Name,
and Extension

Returns a string that represents the fully qualified name, the directory or
filename (with extension), or the extension on its own, depending on which
property you use.

Delete() Removes the file or directory, if it exists. When deleting a directory, it must be
empty, or you must specify an optional parameter set to true.

Refresh() Updates the object so it’s synchronized with any file system changes that have
happened in the meantime (for example, if an attribute was changed manually
using Windows Explorer).

Create() Creates the specified directory or file.

MoveTo() Copies the directory and its contents or the file. For a DirectoryInfo object, you
need to specify the new path; for a FileInfo object, you specify a path and
filename.

In addition, the FileInfo and DirectoryInfo classes have a couple of unique members, as indicated in

Tables 12-4 and 12-5.

Table 12-4. Unique DirectoryInfo Members

Member Description

Parent and Root Returns a DirectoryInfo object that represents the parent or root directory.

CreateSubdirectory() Creates a directory with the specified name in the directory represented by
the DirectoryInfo object. It also returns a new DirectoryInfo object that
represents the subdirectory.

GetDirectories() Returns an array of DirectoryInfo objects that represent all the subdirectories
contained in this directory.

GetFiles() Returns an array of FileInfo objects that represent all the files contained in
this directory.

CHAPTER 12 ■ FILES AND STREAMS

532

Table 12-5. Unique FileInfo Members

Member Description

Directory Returns a DirectoryInfo object that represents the parent directory.

DirectoryName Returns a string that identifies the name of the parent directory.

Length Returns a long (64-bit integer) with the file size in bytes.

CopyTo() Copies a file to the new path and filename specified as a parameter. It also
returns a new FileInfo object that represents the new (copied) file. You can
supply an optional additional parameter of true to allow overwriting.

Create() and
CreateText()

Creates the specified file and returns a FileStream object that you can use to
write to it. CreateText() performs the same task but returns a StreamWriter
object that wraps the stream.

Open(), OpenRead(),
OpenText(), and
OpenWrite()

Opens a file (provided it exists). OpenRead() and OpenText() open a file in
read-only mode, returning a FileStream or StreamReader. OpenWrite()
opens a file in write-only mode, returning a FileStream.

When you create a DirectoryInfo or FileInfo object, you specify the full path in the constructor, as

shown here:

DirectoryInfo myDirectory = new DirectoryInfo(@"c:\Temp");
FileInfo myFile = new FileInfo(@"c:\Temp\readme.txt");

When you create a new DirectoryInfo or FileInfo object, you’ll receive an exception if the path you
used isn’t properly formed (for example, if it contains illegal characters). However, the path doesn’t need
to correspond to a real physical file or directory. If you’re not sure, you can use Exists to check whether
your directory or file really exists.

If the file or directory doesn’t exist, you can always use a method such as Create() to create it. Here’s
an example:

// Define the new directory and file.
DirectoryInfo myDirectory = new DirectoryInfo(@"c:\Temp\Test");
FileInfo myFile = new FileInfo(@"c:\Temp\Test\readme.txt");

// Now create them. Order here is important.
// You can't create a file in a directory that doesn't exist yet.
myDirectory.Create();
FileStream stream = myFile.Create();
stream.Close();

The FileInfo and DirectoryInfo objects retrieve information from the file system the first time you
query a property. They don’t check for new information on subsequent use. This could lead to
inconsistency if the file changes in the meantime. If you know or suspect that file system information
has changed for the given object, you should call the Refresh() method to retrieve the latest information.

CHAPTER 12 ■ FILES AND STREAMS

533

The DirectoryInfo class doesn’t provide any property for determining the total size information.
However, you can calculate the size of all the files in a particular directory quite easily by totaling the
FileInfo.Length contribution of each one.

Before you take this step, you need to decide whether to include subdirectories in the total. The
following method lets you use either approach:

private static long CalculateDirectorySize(DirectoryInfo directory,
 bool includeSubdirectories)
{
 long totalSize = 0;

 // Add up each file.
 FileInfo[] files = directory.GetFiles();
 foreach (FileInfo file in files)
 {
 totalSize += file.Length;
 }

 // Add up each subdirectory, if required.
 if (includeSubdirectories)
 {
 DirectoryInfo[] dirs = directory.GetDirectories();
 foreach (DirectoryInfo dir in dirs)
 {
 totalSize += CalculateDirectorySize(dir, true);
 }
 }
 return totalSize;
}

For information about free space, you need to use the DriveInfo class.

The DriveInfo Class
The DriveInfo class allows you to retrieve information about a drive on your computer. Few pieces of
information will interest you—typically, the DriveInfo class is just used to retrieve the total amount of
used and free space.

Table 12-6 shows the DriveInfo members. Unlike the FileInfo and DriveInfo classes, there is no
Drive class to provide instance versions of these methods.

Table 12-6. DriveInfo Members

Member Description

TotalSize Gets the total size of the drive, in bytes. This includes allocated and free space.

TotalFreeSpace Gets the total amount of free space, in bytes.

AvailableFreeSpace Gets the total amount of available free space, in bytes. Available space may be
less than the total free space if you’ve applied disk quotas limiting the space
that the ASP.NET process can use.

CHAPTER 12 ■ FILES AND STREAMS

534

Member Description

DriveFormat Returns the name of the file system used on the drive (such as NTFS or
FAT32).

DriveType Returns a value from the DriveType enumeration, which indicates whether
the drive is a fixed, network, CD-ROM, RAM, or removable drive. (It returns
Unknown if the drive’s type cannot be determined.)

IsReady Returns whether the drive is ready for reading or writing operations.
Removable drives are considered “not ready” if they don’t have any media.
For example, if there’s no CD in a CD drive, IsReady will return false. In this
situation, it’s not safe to query the other DriveInfo properties. Fixed drives are
always readable.

Name Returns the drive letter name of the drive (such as C: or E:).

VolumeLabel Gets or sets the descriptive volume label for the drive. In an NTFS-formatted
drive, the volume label can be up to 32 characters. If not set, this property
returns null.

RootDirectory Returns a DirectoryInfo object for the root directory in this drive.

GetDrives() Retrieves an array of DriveInfo objects, representing all the logical drives on
the current computer.

■ Tip Attempting to read from a drive that’s not ready (for example, a CD drive that doesn’t currently have a CD in

it) will throw an exception. To avoid this problem, check the DriveInfo.IsReady property and attempt to read other

properties only if the DriveInfo.IsReady property returns true.

Working with Attributes
The Attributes property of the FileInfo and DirectoryInfo classes represents the file system attributes for
the file or directory. Because every file and directory can have a combination of attributes, the Attributes
property contains a combination of values from the FileAttributes enumeration. Table 12-7 describes
these values.

CHAPTER 12 ■ FILES AND STREAMS

535

Table 12-7. Values for the FileAttributes Enumeration

Value Description

Archive The item is archived. Applications can use this attribute to mark files for
backup or removal, although it’s really just a holdover from older DOS-based
operating systems.

Compressed The item is compressed.

Device Not currently used. Reserved for future use.

Directory The item is a directory.

Encrypted This item is encrypted. For a file, this means that all data in the file is
encrypted. For a directory, this means that encryption is the default for newly
created files and directories.

Hidden This item is hidden and thus is not included in an ordinary directory listing.
However, you can still see it in Windows Explorer.

Normal This item is normal and has no other attributes set. This attribute is valid only
if used alone.

NotContentIndexed This item will not be indexed by the operating system’s content indexing
service.

Offline This file is offline and not currently available.

ReadOnly This item is read-only.

ReparsePoint This file contains a reparse point, which is a block of user-defined data
associated with a file or a directory in an NTFS file system.

SparseFile The file is a sparse file. Sparse files are typically large files with data consisting
of mostly zeros. This item is supported only on NTFS file systems.

System The item is part of the operating system or is used exclusively by the operating
system.

Temporary This item is temporary and can be deleted when the application is no longer
using it.

To find out all the attributes a file has, you can call the ToString() method of the Attributes property.

This returns a string with a comma-separated list of attributes:

// This displays a string in the format "ReadOnly, Archive, Encrypted"
lblInfo.Text = myFile.Attributes.ToString();

CHAPTER 12 ■ FILES AND STREAMS

536

When testing for a single specific attribute, you need to use bitwise arithmetic. For example,
consider the following faulty code:

if (myFile.Attributes == FileAttributes.ReadOnly)
{ ... }

This test succeeds only if the read-only attribute is the only attribute for the current file. This is rarely
the case. If you want to successfully check whether the file is read-only, you need this code instead:

if ((myFile.Attributes & FileAttributes.ReadOnly) != 0)
{ ... }

This test succeeds because it filters out just the read-only attribute. Essentially, the Attributes setting
consists (in binary) of a series of ones and zeros, such as 00010011. Each 1 represents an attribute that is
present, and each 0 represents an attribute that is not. When you use the & operator with an enumerated
value, it automatically performs a bitwise and operation, which compares each digit against each digit in
the enumerated value. For example, if you combine a value of 00100001 (representing an individual file’s
archive and read-only attributes) with the enumerated value 00000001 (which represents the read-only
flag), the resulting value will be 00000001. It will have a 1 only where it can be matched in both values.
You can then test this resulting value against the FileAttributes.ReadOnly enumerated value using the
equal sign.

Similar logic allows you to verify that a file does not have a specific attribute:

if ((myFile.Attributes & FileAttributes.ReadOnly) != 0)
{ ... }

When setting an attribute, you must also use bitwise arithmetic. In this case, you need to ensure that
you don’t inadvertently wipe out the other attributes that are already set.

// This sets the read-only attribute (and keeps all others as is).
myFile.Attributes = myFile.Attributes | FileAttributes.ReadOnly;

// This removes the read-only attribute (and keeps all others as is).
myFile.Attributes = myFile.Attributes & .FileAttributes.ReadOnly;

Some attributes can’t be set programmatically. For example, the Encrypted attribute is set by the
operating system if you’re using the EFS (Encrypting File System) feature in Windows. When a file is
encrypted using EFS, it’s encrypted with a secret key that’s linked to the current user account. When
the same user reads the file, Windows decrypts it transparently. However, other users won’t share
the same secret key and won’t be able to access the file. (Although EFS rarely makes sense in an
ASP.NET application, you can use it programmatically with the Encrypt() and Decrypt() methods of the
FileInfo class.)

Filter Files with Wildcards
The DirectoryInfo and Directory objects both provide a way to search the current directories for files or
directories that match a specific filter expression. These search expressions can use the standard ? and *
wildcards. The ? wildcard represents any single character, and the * wildcard represents any sequence of
zero or more characters.

For example, the following code snippet retrieves the names of all the files in the c:\temp directory
that have the extension .txt. The code then iterates through the retrieved FileInfo collection of matching
files and displays the name and size of each one.

CHAPTER 12 ■ FILES AND STREAMS

537

DirectoryInfo dir = new DirectoryInfo(@"c:\temp");

// Get all the files with the .txt extension.
FileInfo[] files = dir.GetFiles("*.txt");

// Process each file.
foreach (FileInfo file in files)
{ ... }

You can use a similar technique to retrieve directories that match a specified search pattern by
using the overloaded DirectoryInfo.GetDirectories() method.

The GetFiles() and GetDirectories() methods search only the current directory. If you want to
perform a search through all the contained subdirectories, you’d need to use recursive logic.

Retrieving File Version Information
File version information is the information you see when you look at the properties of an EXE or DLL file
in Windows Explorer. Version information commonly includes a version number, the company that
produced the component, trademark information, and so on.

The FileInfo and File classes don’t provide a way to retrieve file version information. However, you
can retrieve it quite easily using the static GetVersionInfo() method of the
System.Diagnostics.FileVersionInfo class. The following example uses this technique to get a string with
the complete version information and then displays it in a label:

string fileName = @"c:\Windows\explorer.exe";
FileVersionInfo info = FileVersionInfo.GetVersionInfo(fileName);
lblInfo.Text = info.FileVersion;

Table 12-8 lists the properties you can read.

Table 12-8. FileVersionInfo Properties

Property Description

FileVersion,
FileMajorPart,
FileMinorPart,
FileBuildPart, and
FilePrivatePart

Typically, a version number is displayed as
[MajorNumber].[MinorNumber].[BuildNumber].[PrivatePartNumber].
These properties allow you to retrieve the complete version as a string
(FileVersion) or each individual component as a number.

FileName Gets the name of the file that this instance of FileVersionInfo describes.

OriginalFilename Gets the name the file was created with.

InternalName Gets the internal name of the file, if one exists.

FileDescription Gets the description of the file.

CompanyName Gets the name of the company that produced the file.

CHAPTER 12 ■ FILES AND STREAMS

538

Property Description

ProductName Gets the name of the product this file is distributed with.

ProductVersion,
ProductMajorPart,
ProductMinorPart,
ProductBuildPart, and
ProductPrivatePart

These properties allow you to retrieve the complete product version as a
string (ProductVersion) or each individual component as a number.

IsDebug Gets a Boolean value that specifies whether the file contains debugging
information or is compiled with debugging features enabled.

IsPatched Gets a Boolean value that specifies whether the file has been modified and
is not identical to the original shipping file of the same version number.

IsPreRelease Gets a Boolean value that specifies whether the file is a development
version, rather than a commercially released product.

IsPrivateBuild Gets a Boolean value that specifies whether the file was built using
standard release procedures.

IsSpecialBuild Gets a Boolean value that specifies whether the file is a special build.

SpecialBuild If IsSpecialBuild is true, this property contains a string that specifies how
the build differs from an ordinary build.

Comments Gets the comments associated with the file.

Language Gets the default language string for the version info block.

LegalCopyright Gets all copyright notices that apply to the specified file.

LegalTrademarks Gets the trademarks and registered trademarks that apply to the file.

The Path Class
If you’re working with files, you’re probably also working with file and directory paths. Path information
is stored as an ordinary string. As a result, you’ll sometimes need messy string-parsing code to
manipulate it.

This is where the System.IO.Path class becomes very useful. The Path class provides static helper
methods that perform common path manipulation tasks. For example, the following code snippet uses
the Path.Combine() method to fuse together a full directory path with a filename for a file in that
directory:

DirectoryInfo dirInfo = new DirectoryInfo(@"c:\Upload\Documents");
string file = "test.txt";
string path = Path.Combine(dirInfo.FullName, file);

CHAPTER 12 ■ FILES AND STREAMS

539

The Path class is also a handy tool when preventing security risks such as a canonicalization error. A
canonicalization error is a specific type of application error that can occur when your code assumes that
user-supplied values will always be in a standardized form. Canonicalization errors are low-tech but
quite serious, and they usually have the result of allowing a user to perform an action that should be
restricted.

One infamous type of canonicalization error is SQL injection, whereby a user submits incorrectly
formatted values to trick your application into executing a modified SQL command. (Chapter 7 covers
SQL injection in detail). Other forms of canonicalization problems can occur with file paths and URLs.

For example, consider the following method that returns file data from a fixed document directory:

FileInfo file = new FileInfo(Server.MapPath("Documents\\" + txtBox.Text));
// (Read the file and display it in another control).

This code looks simple enough. It concatenates the user-supplied filename with the Documents
path, thereby allowing the user to retrieve data from any file in this directory. The problem is that
filenames can be represented in multiple formats. Instead of submitting a valid filename, an attacker can
submit a qualified filename such as ..\filename. The concatenated path of
WebApp\Documents\..\filename will actually retrieve a file from the parent of the Documents directory
(WebApp). A similar approach will allow the user to specify any filename on the web application drive.
Because the web page is limited only according to the restrictions of the ASP.NET worker process, the
user may be allowed to download a sensitive server-side file.

The fix for this code is fairly easy. Once again, you can use the Path class. This time, you use the
GetFileName() method to extract just the final filename portion of the string, as shown here:

string fileName = Path.GetFileName(txtBox.Text);
FileInfo file = new FileInfo(Server.MapPath(
 Path.Combine("Documents", fileName)));

This ensures that the user is constrained to the correct directory. If you are dealing with URLs, you
can work similar magic with the System.Uri type. For example, here’s how you might remove query
string arguments from a URI and make sure it refers to a given server and virtual directory:

string uriString = "http://www.wrongsite.com/page.aspx?cmd=run";

Uri uri = new Uri(uriString);
string page = Path.GetFileName(uri.AbsolutePath);
// page is now just "page.aspx"

Uri baseUri = new Uri("http://www.rightsite.com");
uri = new Uri(baseUri, page);
// uri now stores the path http://www.rightsite.com/page.aspx.

Table 12-9 lists the most useful methods of the Path class.

Table 12-9. Path Methods

Methods Description

Combine() Combines a path with a filename or a subdirectory.

ChangeExtension() Modifies the current extension of the file in a string. If no
extension is specified, the current extension will be removed.

http://www.wrongsite.com/page.aspx?cmd=run
http://www.rightsite.com
http://www.rightsite.com/page.aspx

CHAPTER 12 ■ FILES AND STREAMS

540

Methods Description

GetDirectoryName() Returns all the directory information, which is the text between
the first and last directory separators (\).

GetFileName() Returns just the filename portion of a path.

GetFileNameWithoutExtension() This method is similar to GetFileName(), but it omits the
extension from the returned string.

GetFullPath() This method has no effect on an absolute path, and it changes a
relative path into an absolute path using the current directory.
For example, if c:\Temp\ is the current directory, calling
GetFullPath() on a filename such as test.txt returns
c:\Temp\test.txt.

GetPathRoot() Retrieves a string with the root (for example, C:\), provided that
information is in the string. For a relative path, it returns a null
reference.

HasExtension() Returns true if the path ends with an extension.

IsPathRooted() Returns true if the path is an absolute path and false if it’s a
relative path.

Although the Path class contains methods for drilling down the directory structure (adding

subdirectories to directory paths), it doesn’t provide any methods for going back up (removing
subdirectories from directory paths). However, you can work around this limitation by using the
Combine() method with the relative path .., which means “move one directory up.” For good measure,
you can also use the GetFullPath() method on the result to return it to a normal form.

Here’s an example:

string path = @"c:\temp\subdir";

path = Path.Combine(path, "..");
// path now contains the string "c:\temp\subdir\.."

path = Path.GetFullPath(path);
// path now contains the string "c:\temp"

■ Note In most cases, an exception will be thrown if you supply a path that contains illegal characters to one of

these methods. However, path names that contain a wildcard character (* or ?) will not cause the methods to

throw an exception.

CHAPTER 12 ■ FILES AND STREAMS

541

A File Browser
Using the concepts you’ve learned so far, it’s quite straightforward to put together a simple file-browsing
application. Rather than iterating through collections of files and directories manually, this example
handles everything using the GridView and some data binding code.

Figure 12-1 shows this program in action.

Figure 12-1. Browsing the file system

The directory listing is built using two separate GridView controls, one on top of the other. The
topmost GridView shows the directories, and the GridView underneath shows files. The only visible
differences to the user are that the directories don’t display length information, and they have a folder
icon next to their names. The ShowHeader property of the second GridView is set to false so that the two
grids blend into each other fairly seamlessly. And because the GridView controls are stacked together, as
the list of directories grows, the list of files moves down the page to accommodate it.

Technically, you could handle the directory and file listing using one GridView object. That’s
because all FileInfo and DirectoryInfo objects have a common parent—the FileSystemInfo object.
However, in this grid you want to show the size in bytes of each file, and you want to differentiate
the appearance (in this case, through different icons). Because the DirectoryInfo object doesn’t
provide a Length property, trying to bind to it in a more generic list of FileSystemInfo objects would
cause an error.

CHAPTER 12 ■ FILES AND STREAMS

542

■ Note This problem has another, equally effective solution. You could create a single GridView but not bind
directly to the FileInfo.Length property. Instead, you would bind to a method in the page class that examines the
current data object and return either the length (for FileInfo objects) or a blank string (for DirectoryInfo objects).

You could construct a similar method to hand out the correct icon URL.

Here’s the declaration for the GridView control that provides the list of directories, without the
formatting-specific style properties:

<asp:GridView ID="gridDirList" runat="server" AutoGenerateColumns="False"
 OnSelectedIndexChanged="gridDirList_SelectedIndexChanged"
 GridLines="None" CellPadding="0" CellSpacing="1"
 DataKeyNames="FullName">

 <Columns>
 <asp:TemplateField>
 <ItemTemplate>

 </ItemTemplate>
 </asp:TemplateField>
 <asp:ButtonField DataTextField="Name" CommandName="Select"
 HeaderText="Name" />
 <asp:BoundField HeaderText="Size" />
 <asp:BoundField DataField="LastWriteTime" HeaderText="Last Modified" />
 </Columns>
</asp:GridView>

This grid binds to an array of DirectoryInfo objects and displays the Name and LastWriteTime
properties. It also creates a Size column, which it doesn’t use to display any information—instead, this
column simply reserves space so the directory list lines up nicely with the file list that appears
immediately underneath. In addition, the DirectoryInfo.FullName property is designated as a key field
in the grid so that you can return the full path after the user clicks one of the directories. You’ll also
notice that one of the columns doesn’t actually display any information—that’s the BoundColumn for
length that displays header text, but it doesn’t link to any data field.

The GridView for the files follows immediately. Here’s the slightly shortened control tag:

<asp:GridView ID="gridFileList" runat="server" AutoGenerateColumns="False"
 OnSelectedIndexChanged="gridFileList_SelectedIndexChanged"
 GridLines="None" CellPadding="0" CellSpacing="1" DataKeyNames="FullName">

 <SelectedRowStyle BackColor="#C0fFF" />
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>

 </ItemTemplate>
 </asp:TemplateField>
 <asp:ButtonField DataTextField="Name" CommandName="Select" />

CHAPTER 12 ■ FILES AND STREAMS

543

 <asp:BoundField DataField="Length" />
 <asp:BoundField DataField="LastWriteTime" />
 </Columns>
</asp:GridView>

Note that the GridView for displaying files must define a SelectedRowStyle because it supports file
selection. (The GridView for displaying directories handles selection differently. It reacts as soon as a file
is clicked by browsing to the new directory and rebinding the controls. Thus, a directory never appears
in a selected state.)

The next step is to write the code that fills these controls. The star of the show is a private method
named ShowDirectoryContents(), which retrieves the contents of the current folder and binds the two
GridView controls. Here’s the complete code:

private void ShowDirectoryContents(string path)
{
 // Define the current directory.
 DirectoryInfo dir = new DirectoryInfo(path);

 // Get the files and directories in the current directory.
 FileInfo[] files = dir.GetFiles();
 DirectoryInfo[] dirs = dir.GetDirectories();

 // Show the files and directories in the current directory.
 lblCurrentDir.Text = "Currently showing " + path;
 gridFileList.DataSource = files;
 gridDirList.DataSource = dirs;
 Page.DataBind();

 // Clear any selection in the GridView that shows files.
 gridFileList.SelectedIndex = -1;

 // Keep track of the current path.
 ViewState["CurrentPath"] = path;
}

When the page first loads, it calls this method to show the current application directory:

protected void Page_Load(object sender, System.EventArgs e)
{
 if (!Page.IsPostBack)
 {
 ShowDirectoryContents(Server.MapPath("."));
 }
}

You’ll notice that the ShowDirectoryContents() method stores the currently displayed directory in
view state. That allows the Move Up button to direct the user to a directory that’s one level above the
current directory:

protected void cmdUp_Click(object sender, System.EventArgs e)
{
 string path = (string)ViewState["CurrentPath"];
 path = Path.Combine(path, "..");

CHAPTER 12 ■ FILES AND STREAMS

544

 path = Path.GetFullPath(path);
 ShowDirectoryContents(path);
}

To move down through the directory hierarchy, the user simply needs to click a directory link. This
is raised as a SelectedIndexChanged event. The event handler then displays the new directory:

protected void gridDirList_SelectedIndexChanged(object source, EventArgs e)
{
 // Get the selected directory.
 string dir = (string)gridDirList.DataKeys[gridDirList.SelectedIndex].Value;

 // Now refresh the directory list to
 // show the selected directory.
 ShowDirectoryContents(dir);
}

But what happens if a user selects a file from the second GridView? In this case, the code retrieves
the full file path, creates a new FileInfo object, and binds it to a FormView control, which uses a template
to display several pieces of information about the file. Figure 12-2 shows the result.

Figure 12-2. Examining a file

CHAPTER 12 ■ FILES AND STREAMS

545

Here’s the code that binds the file information when a file is selected:

protected void gridFileList_SelectedIndexChanged(object sender, System.EventArgs e)
{
 // Get the selected file.
 string file = (string)gridFileList.DataKeys[gridFileList.SelectedIndex].Value;

 // The FormView shows a collection (or list) of items.
 // To accommodate this model, you must add the file object
 // to a collection of some sort.
 ArrayList files = new ArrayList();
 files.Add(new FileInfo(file));

 // Now show the selected file.
 formFileDetails.DataSource = files;
 formFileDetails.DataBind();
}

The FormView uses the following template:

<asp:FormView id="formFileDetails" runat="server">
 <ItemTemplate>
 File:
 <%# DataBinder.Eval(Container.DataItem, "FullName") %>

 Created at
 <%# DataBinder.Eval(Container.DataItem, "CreationTime") %>

 Last updated at
 <%# DataBinder.Eval(Container.DataItem, "LastWriteTime") %>

 Last accessed at
 <%# DataBinder.Eval(Container.DataItem, "LastAccessTime") %>

 <i><%# DataBinder.Eval(Container.DataItem, "Attributes") %></i>

 <%# DataBinder.Eval(Container.DataItem, "Length") %> bytes.
 <hr />
 <%# GetVersionInfoString(DataBinder.Eval(Container.DataItem, "FullName")) %>
 </ItemTemplate>
</asp:FormView>

The data binding expressions are fairly straightforward. The only one that needs any expression is
the GetVersionInfoString() method. This method is coded inside the page class. It creates a new
FileVersionInfo object for the file and uses that to extract the version information and product name.

protected string GetVersionInfoString(object path)
{
 FileVersionInfo info = FileVersionInfo.GetVersionInfo((string)path);
 return info.FileName + " " + info.FileVersion + "
" +
 info.ProductName + " " + info.ProductVersion;
}

Of course, most developers have FTP tools and other utilities that make it easier to manage files on a
web server. However, this page provides an excellent example of how to use the .NET file and directory
management classes. With a little more work, you could transform it into a full-featured administrative
tool for a web application.

CHAPTER 12 ■ FILES AND STREAMS

546

Reading and Writing Files with Streams
The .NET Framework uses a stream model in several areas of the framework. Streams are abstractions
that allow you to treat different data sources in a similar way—as a stream of ordered bytes. All .NET
stream classes derive from the base System.IO.Stream class. Streams represent data in a memory buffer,
data that’s being retrieved over a network connection, and data that’s being retrieved from or written to
a file.

Here’s how you create a new file and write an array of bytes to it through a FileStream:

FileStream fileStream = null;
try
{
 fileStream = new FileStream(fileName, FileMode.Create);
 fileStream.Write(bytes, 0, bytes.Length - 1);
}
finally
{
 if (fileStream != null) fileStream.Close();
}

In this example, the FileMode.Create value is specified in the FileStream constructor to indicate that
you want to create a new file. You can use any of the FileMode values described in Table 12-10.

Table 12-10. Values of the FileMode Enumeration

Value Description

Append Opens the file if it exists and seeks to the end of the file, or creates a new file.

Create Specifies that the operating system should create a new file. If the file already
exists, it will be overwritten.

CreateNew Specifies that the operating system should create a new file. If the file already
exists, an IOException is thrown.

Open Specifies that the operating system should open an existing file.

OpenOrCreate Specifies that the operating system should open a file if it exists; otherwise, a new
file should be created.

Truncate Specifies that the operating system should open an existing file. Once opened, the
file will be truncated so that its size is 0 bytes.

And here’s how you can open a FileStream and read its contents into a byte array:

FileStream fileStream = null;
try
{
 fileStream = new FileStream(fileName, FileMode.Open);
 byte[] dataArray = new byte[fileStream.Length];

CHAPTER 12 ■ FILES AND STREAMS

547

 for(int i = 0; i < fileStream.Length; i++)
 {
 dataArray[i] = (byte)fileStream.ReadByte();
 }
}
finally
{
 if (fileStream != null) fileStream.Close();
}

On their own, streams aren’t that useful. That’s because they work entirely in terms of single bytes
and byte arrays. .NET includes a more useful higher-level model of writer and reader objects that fill the
gaps. These objects wrap stream objects and allow you to write more complex data, including common
data types such as integers, strings, and dates. You’ll see readers and writers at work in the following
sections.

■ Tip Whenever you open a file through a FileStream, remember to call the FileStream.Close() method when
you’re finished. This releases the handle on the file and makes it possible for someone else to access the file. In
addition, because the FileStream class is disposable, you can use it with the using statement, which ensures that

the FileStream is closed as soon as the block ends.

Text Files
You can write to a file and read from a file using the StreamWriter and StreamReader classes in the
System.IO namespace. When creating these classes, you simply pass the underlying stream as a
constructor argument. For example, here’s the code you need to create a StreamWriter using an existing
FileStream:

FileStream fileStream = new FileStream(@"c:\myfile.txt", FileMode.Create);
StreamWriter w = new StreamWriter(fileStream);

You can also use one of the static methods included in the File and FileInfo classes, such as
CreateText() or OpenText(). Here’s an example that uses this technique to get a StreamWriter:

StreamWriter w = File.CreateText(@"c:\myfile.txt");

This code is equivalent to the earlier example.
Once you have the StreamWriter, you can use the Write() or WriteLine() method to add information

to the file. Both of these methods are overloaded so that they can write many simple data types,
including strings, integers, and other numbers. These values are essentially all converted into strings
when they’re written to a file, and they must be converted back into the appropriate types manually
when you read the file. To make this process easier, you should put each piece of information on a
separate line by using WriteLine() instead of Write(), as shown here:

w.WriteLine("ASP.NET Text File Test"); // Write a string.
w.WriteLine(1000); // Write a number.

CHAPTER 12 ■ FILES AND STREAMS

548

Text Encoding

You can represent a string in binary form using more than one way, depending on the encoding you use.
The most common encodings include the following:

• ASCII: Encodes each character in a string using 7 bits. ASCII-encoded data can’t
contain extended Unicode characters. When using ASCII encoding in .NET, the bits
will be padded, and the resulting byte array will have 1 byte for each character.

• Full Unicode (or UTF-16): Represents each character in a string using 16 bits. The
resulting byte array will have 2 bytes for each character.

• UTF-7 Unicode: Uses 7 bits for ordinary ASCII characters and multiple 7-bit pairs
for extended characters. This encoding is primarily for use with 7-bit protocols
such as mail, and it isn’t regularly used.

• UTF-8 Unicode: Uses 8 bits for ordinary ASCII characters and multiple 8-bit pairs
for extended characters. The resulting byte array will have 1 byte for each
character (provided there are no extended characters).

.NET provides a class for each type of encoding in the System.Text namespace. When using the
StreamReader and StreamWriter, you can specify the encoding you want to use with a constructor
argument, or you can simply use the default UTF-8 encoding.

Here’s an example that creates a StreamWriter that uses ASCII encoding:

FileStream fileStream = new FileStream(@"c:\myfile.txt", FileMode.Create);
StreamWriter w = new StreamWriter(fileStream, System.Text.Encoding.ASCII);

When you finish with the file, you must make sure you close it. Otherwise, the changes may not be

properly written to disk, and the file could be locked open. At any time, you can also call the Flush()
method to make sure all data is written to disk, as the StreamWriter will perform some in-memory
caching of your data to optimize performance (which is usually exactly the behavior you want).

// Tidy up.
w.Flush();
w.Close();

When reading information, you use the Read() or ReadLine() method of the StreamReader. The
Read() method reads a single character, or the number of characters you specify, and returns the data as
a char or char array. The ReadLine() method returns a string with the content of an entire line.
ReadLine() starts at the first line and advances the position to the end of the file, one line at a time.

Here’s a code snippet that opens and reads the file created in the previous example:

StreamReader r = File.OpenText(@"c:\myfile.txt");
string inputString;
inputString = r.ReadLine(); // = "ASP.NET Text File Test"
inputString = r.ReadLine(); // = "1000"

ReadLine() returns a null reference when there is no more data in the file. This means you can read
all the data in a file using code like this:

CHAPTER 12 ■ FILES AND STREAMS

549

// Read and display the lines from the file until the end
// of the file is reached.
string line;
do
{
 line = r.ReadLine();
 if (line != null)
 {
 // (Process the line here.)
 }
} while (line != null);

■ Tip You can also use the ReadToEnd() method to read the entire contents of the file and return it as a single

string. The File class also includes some shortcuts with static methods such as ReadAllText() and ReadAllBytes(),
which are suitable for small files only. Large files should not be read into memory at once—instead, you can

reduce the memory overhead by reading them one chunk at a time with the FileStream.

Binary Files
You can also read and write to a binary file. Binary data uses space more efficiently but also creates files
that aren’t readable. If you open a binary file in Notepad, you’ll see a lot of extended characters (politely
known as gibberish).

To open a file for binary writing, you need to create a new BinaryWriter class. The class constructor
accepts a stream, which you can create by hand or retrieve using the File.OpenWrite() method. Here’s
the code to open the file c:\binaryfile.bin for binary writing:

BinaryWriter w = new BinaryWriter(File.OpenWrite(@"c:\binaryfile.bin"));

.NET concentrates on stream objects, rather than the source or destination for the data. This means
you can write binary data to any type of stream, whether it represents a file or some other type of storage
location, using the same code. In addition, writing to a binary file is almost the same as writing to a text
file, as you can see here:

string str = "ASP.NET Binary File Test";
int integer = 1000;
w.Write(str);
w.Write(integer);

w.Flush();
w.Close();

Unfortunately, when you read data, you need to know the data type you want to retrieve. To retrieve
a string, you use the ReadString() method. To retrieve an integer, you must use ReadInt32(), as follows:

BinaryReader r = new BinaryReader(File.OpenRead(@"c:\binaryfile.bin"));
string str;
int integer;
str = r.ReadString();
integer = r.ReadInt32();

CHAPTER 12 ■ FILES AND STREAMS

550

■ Note There’s no easy way to jump to a location in a text or binary file without reading through all the information in

order. While you can use methods such as Seek() on the underlying stream, you need to specify an offset in bytes.
This involves some fairly involved calculations to determine variable sizes. If you need to store a large amount of

information and move through it quickly, you’re best off with a dedicated database, not a binary file.

Uploading Files
ASP.NET includes two controls that allow website users to upload files to the web server. Once the web
server receives the posted file data, it’s up to your application to examine it, ignore it, or save it to a back-
end database or a file on the web server.

The controls that allow file uploading are HtmlInputFile (an HTML server control) and FileUpload
(an ASP.NET web control). Both represent the <input type="file"> HTML tag. The only real difference is
that the FileUpload control takes care of automatically setting the encoding of the form to
multipart/form data. If you use the HtmlInputFile control, it’s up to you to make this change using the
enctype attribute of the <form> tag—if you don’t, the HtmlInputFile control won’t work.

Declaring the FileUpload control is easy. It doesn’t expose any new properties or events that you
can use through the control tag.

<asp:FileUpload ID="Uploader" runat="server" />

The <input type="file"> tag doesn’t give you much choice as far as the user interface is concerned
(it’s limited to a text box that contains a filename and a Browse button). When the user clicks Browse,
the browser presents an Open dialog box and allows the user to choose a file. This behavior is hard-
wired into the browser, and you can’t change it. Once the user selects a file, the filename is filled into the
corresponding text box. However, the file isn’t uploaded yet—that happens later, when the page is
posted back. At this point, all the data from all the input controls (including the file data) is sent to the
server. For that reason, it’s common to add a Button control to post back the page.

To get information about the posted file content, you can access the FileUpload.PostedFile object.
You can save the content by calling the PostedFile.SaveAs() method, as demonstrated in the following
example.

Here’s the event-handling code, which reacts to the Button.Click event and copies the uploaded file
into a subdirectory named Upload in the web application directory:

protected void cmdUpload_Click(object sender, EventArgs e)
{
 // Check if a file was submitted.
 if (Uploader.PostedFile.ContentLength != 0)
 {
 try
 {
 if (Uploader.PostedFile.ContentLength > 1048576)
 {
 // This exceeds the size limit you want to allow (1 MB).
 // You can also use the maxRequestLength attribute
 // of the httpRuntime element (in the web.config file)
 // to refuse large requests altogether.
 lblStatus.Text = "Too large. This file is not allowed";
 }
 else

CHAPTER 12 ■ FILES AND STREAMS

551

 {
 // Retrieve the physical directory path for the Upload
 // subdirectory.
 string destDir = Server.MapPath("./Upload");

 // Extract the filename part from the full path of the
 // original file.
 string fileName = Path.GetFileName(Uploader.PostedFile.FileName);

 // Combine the destination directory with the filename.
 string destPath = Path.Combine(destDir, fileName);

 // Save the file on the server.
 Uploader.PostedFile.SaveAs(destPath);
 lblStatus.Text = "Thanks for submitting your file.";
 }
 }
 catch (Exception err)
 {
 lblStatus.Text = err.Message;
 }
 }
}

In the example, if a file has been posted to the server and isn’t too large, the file is saved using the
HttpPostedFile.SaveAs() method. To determine the physical path you want to use, the code combines
the destination directory (Upload) with the name of the posted file using the static utility methods of the
Path class.

Figure 12-3 shows the page after the file has been uploaded.

Figure 12-3. Uploading a file

CHAPTER 12 ■ FILES AND STREAMS

552

You can also interact with the posted data through the stream model, rather than just saving it to
disk. To get access to the data, you use the FileUpload.PostedFile.InputStream property. For example,
you could use the following code to display the content of a posted file (assuming it’s text-based):

// Display the whole file content.
StreamReader r = new StreamReader(Uploader.PostedFile.InputStream);
lblStatus.Text = r.ReadToEnd();
r.Close();

■ Note By default, the maximum size of the uploaded file is 4 MB. If you try to upload a bigger file, you’ll get a

runtime error. To change this restriction, modify the maxRequestLength attribute of the <httpRuntime> setting in
the application’s web.config file. The size is specified in kilobytes, so <httpRuntime maxRequestLength="8192"/>
sets the maximum file size to 8 MB. By limiting file size, you can prevent denial-of-service attacks that attempt to

fill up your web server’s hard drive.

Making Files Safe for Multiple Users
Although it’s fairly easy to create a unique filename, what happens in the situation where you really do
need to access the same file to serve multiple different requests? Although this situation isn’t ideal (and
often indicates that a database-based solution would work better), you can use certain techniques to
defend yourself.

One approach is to open your files with sharing, which allows multiple processes to access the same
file at the same time. To use this technique, you need to use the four-parameter FileStream constructor
that allows you to select a FileMode. Here’s an example:

FileStream fs = new FileStream(fileName, FileMode.Open, FileAccess.Read,
 FileShare.Read);

This statement allows multiple users to open the file for reading at the same time. However, no one
will be able to update the file.

It is possible to have multiple users open the file in read-write mode by specifying a dif- ferent
FileAccess value (such as FileAccess.Write or FileAccess.ReadWrite). In this case, Windows will
dynamically lock small portions of the file when you write to them (or you can use the FileStream.Lock()
method to lock down a range of bytes in the file). If two users try to write to the same locked portion at
once, an exception can occur. Because web applications have high concurrency demands, this
technique is not recommended and is extremely difficult to implement properly. It also forces you to use
low-level byte-offset calculations, where it is notoriously easy to make small, aggravating errors.

So, what is the solution when multiple users need to update a file at once? One option is to create
separate user-specific files for each request. Another option is to tie the file to some other object and use
locking. The following sections explain these techniques.

CHAPTER 12 ■ FILES AND STREAMS

553

■ Tip Another technique that works well if multiple users need to access the same data, especially if this data is
frequently used and not excessively large, is to load the data into the cache (as described in Chapter 11). That
way, multiple users can simultaneously access the data without a hitch. If another process is responsible for

creating or periodically updating the file, you can use a file dependency to invalidate your cached item when the

file changes.

Creating Unique Filenames
One solution for dealing with user-concurrency headaches with files is to avoid the conflict altogether by
using different files for different users. For example, imagine you want to store a user-specific log. To
prevent the chance for an inadvertent conflict if two web pages try to use the same log, you can use the
following two techniques:

• Create a user-specific directory for each user.

• Add some information to the filename, such as a timestamp, GUID (global unique
identifier), or random number. This reduces the chance of duplicate filenames to
a small possibility.

The following sample page demonstrates this technique. It defines a method for creating file- names
that are statistically guaranteed to be unique. In this case, the filename incorporates a GUID.

Here’s the private method that generates a new unique filename:

private string GetFileName()
{
 // Create a unique filename.
 string fileName = "user." +
 Guid.NewGuid().ToString();

 // Put the file in the current web application path.
 return Path.Combine(Request.PhysicalApplicationPath, fileName);
}

■ Note A GUID is a 128-bit integer. GUID values are tremendously useful in programming because they’re

statistically unique. In other words, you can create GUID values continuously with little chance of ever creating a
duplicate. For that reason, GUIDs are commonly used to uniquely identify queued tasks, user sessions, and other
dynamic information. They also have the advantage over sequential numbers in that they can’t easily be guessed.

The only disadvantage is that GUIDs are long and almost impossible to remember (for an ordinary human being).
GUIDs are commonly represented in strings as a series of lowercase hexadecimal digits, like 382c74c3-721d-

4f34-80e5-57657b6cbc27.

CHAPTER 12 ■ FILES AND STREAMS

554

Using the GetFileName() method, you can create a safer logging application that writes information
about the user’s actions to a text file. In this example, all the logging is performed by calling a Log()
method, which then checks for the filename and assigns a new one if the file hasn’t been created yet. The
text message is then added to the file, along with the date and time information.

private void Log(string message)
{
 // Check for the file.
 FileMode mode;
 if (ViewState["LogFile"] == null)
 {
 // First, create a unique user-specific filename.
 ViewState["LogFile"] = GetFileName();

 // The log file must be created.
 mode = FileMode.Create;
 }
 else
 {
 // Add to the existing file.
 mode = FileMode.Append;
 }

 // Write the message.
 // A using block ensures the file is automatically closed,
 // even in the case of error.
 string fileName = (string)ViewState["LogFile"];
 using (FileStream fs = new FileStream(fileName, mode))
 {
 StreamWriter w = new StreamWriter(fs);
 w.WriteLine(DateTime.Now);
 w.WriteLine(message);
 w.WriteLine();
 w.Close();
 }
}

For example, a log message is added every time the page is loaded, as shown here:

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 Log("Page loaded for the first time.");
 }
 else
 {

 Log("Page posted back.");
 }
}

CHAPTER 12 ■ FILES AND STREAMS

555

The last ingredients are two button event handlers that allow you to delete the log file or show its
contents, as follows:

protected void cmdRead_Click(object sender, EventArgs e)
{
 if (ViewState["LogFile"] != null)
 {
 StringBuilder log = new StringBuilder();

 string fileName = (string)ViewState["LogFile"];
 using (FileStream fs = new FileStream(fileName, FileMode.Open))
 {
 StreamReader r = new StreamReader(fs);

 // Read line by line (allows you to add
 // line breaks to the web page).
 string line;
 do
 {
 line = r.ReadLine();
 if (line != null)
 {
 log.Append(line + "
");
 }
 } while (line != null);
 r.Close();
 }
 lblInfo.Text = log.ToString();
 }
 else
 {
 lblInfo.Text = "There is no log file.”
 }
}

protected void cmdDelete_Click(object sender, EventArgs e)
{
 if (ViewState["LogFile"] != null)
 {
 File.Delete((string)ViewState["LogFile"]);
 ViewState["LogFile"] = null;
 }
}

Figure 12-4 shows the web page displaying the log contents.

CHAPTER 12 ■ FILES AND STREAMS

556

Figure 12-4. A safer way to write a user-specific log

Locking File Access Objects
Of course, in some cases you do need to update the same file in response to actions taken by multiple
users. One approach is to use locking. The basic technique is to create a separate class that performs
all the work of retrieving the data. Once you’ve defined this class, you can create a single global instance
of it and add it to the Application collection. Now you can use the C# lock statement to ensure that
only one thread can access this object at a time (and hence only one thread can attempt to open the file
at once).

For example, imagine you create the following Logger class, which updates a file with log
information when you call the LogMessage() method, as shown here:

public class Logger
{
 public void LogMessage()
 {
 lock (this)
 {
 // (Open the file and update it.)
 }
 }
}

The Logger object locks itself before accessing the log file, creating a critical section. This ensures
that only one thread can execute the LogMessage() code at a time, removing the danger of file conflicts.

However, for this to work you must make sure every class is using the same instance of the Logger
object. You have a number of options here—for example, you could respond to the
HttpApplication.Start event in the global.asax file to create a global instance of the Logger class and store
it in the Application collection. Alternatively, you could expose a single Logger instance through a static
application variable, by adding this code to the global.asax file:

CHAPTER 12 ■ FILES AND STREAMS

557

private log = new Logger();
public Logger Log
{
 get { return log; }
}

Now any page that uses the Logger to call LogMessage() gets exclusive access:

// Update the file safely.
Application.Log.LogMessage(myMessage);

Keep in mind that this approach is really just a crude way to compensate for the inherent limitations
of a file-based system. It won’t allow you to manage more complex tasks, such as having individual users
read and write pieces of text in the same file at the same time. Additionally, while a file is locked for one
client, other requests will have to wait. This is guaranteed to slow down application performance and
lead to an exception if the object isn’t released before the second client times out. Unless you invest
considerable effort refining your threading code (for example, you can use classes in the
System.Threading namespace to test if an object is available and take alternative action if it isn’t), this
technique is suitable only for small-scale web applications. It’s for this reason that ASP.NET applications
almost never use file-based logs—instead, they write to the Windows event log or a database.

Compression
.NET includes built-in support for compressing data in any stream. This trick allows you to compress
data that you write to any file. The support comes from two classes in the new System.IO.Compression
namespace: GZipStream and DeflateStream. Both of these classes represent similarly efficient lossless
compression algorithms.

To use compression, you need to wrap the real stream with one of the compression streams. For
example, you could wrap a FileStream (for compressing data as it’s written to disk) or a MemoryStream
(for compressing data in memory). Using a MemoryStream, you could compress data before storing it in
a binary field in a database or sending it to a web service.

For example, imagine you want to compress data saved to a file. First, you create the FileStream:

FileStream fileStream = new FileStream(@"c:\myfile.bin", FileMode.Create);

Next, you create a GZipStream or DeflateStream, passing in the FileStream and a CompressionMode
value that indicates whether you are compressing or decompressing data:

GZipStream compressStream = new GZipStream(fileStream, CompressionMode.Compress);

To write your actual data, you use the Write() method of the compression stream, not the
FileStream. The compression stream compresses the data and then passes the compressed data to the
underlying FileStream. If you want to use a higher-level writer, such as the StreamWriter or
BinaryWriter, you supply the compression stream instead of the FileStream:

StreamWriter w = new StreamWriter(compressStream);

Now you can perform your writing through the writer object. When you’re finished, flush the
GZipStream so that all the data ends up in the file:

w.Flush();
fileStream.Close();

CHAPTER 12 ■ FILES AND STREAMS

558

Reading a file is just as straightforward. The difference is that you create a compression stream with
the CompressionMode.Decompress option, as shown here:

FileStream fileStream = new FileStream(@"c:\myfile.bin", FileMode.Open);
GZipStream decompressStream = new GZipStream(fileStream,
 CompressionMode.Decompress);
StreamReader r = new StreamReader(decompressStream);

■ Note Although GZIP is a industry-standard compression algorithm (see http://www.gzip.org for information),

that doesn’t mean you can use third-party tools to decompress the compressed files you create. The problem is
that although the compression algorithm may be the same, the file format is not. Namely, the files you create

won’t have header information that identifies the original compressed file.

Serialization
You can use one more technique to store data in a file—serialization. Serialization is a higher-level
model that’s built on .NET streams. Essentially, serialization allows you to convert an entire live object
into a series of bytes and write those bytes into a stream object such as the FileStream. You can then read
those bytes back later to re-create the original object.

For serialization to work, your class must all meet the following criteria:

• The class must have a Serializable attribute preceding the class declaration.

• All the public and private variables of the class must be serializable.

• If the class derives from another class, all parent classes must also be serializable.

If you violate any of these rules, you’ll receive a SerializationException when you attempt to serialize
the object.

Here’s a serializable class that you could use to store log information:

[Serializable()]
public class LogEntry
{
 private string message;
 private DateTime date;

 public string Message
 {
 get {return message;}
 set {message = value;}
 }
 public DateTime Date
 {
 get {return date;}
 set {date = value;}
 }

 public LogEntry(string message)

http://www.gzip.org

CHAPTER 12 ■ FILES AND STREAMS

559

 {
 Message = message;
 Date = DateTime.Now;
 }
}

■ Tip In some cases, a class might contain data that shouldn’t be serialized. For example, you might have a large

field you can recalculate or re-create easily, or you might have some sensitive data that could pose a security
request. In these cases, you can add a NonSerialized attribute before the appropriate variable to indicate it
shouldn’t be persisted. When you deserialize the data to create a copy of the original object, nonserialized

variables will return to their default values.

You may remember serializable classes from earlier in this book. Classes need to be serializable in
order to be stored in the view state for a page or put into an out-of-process session state store. In those
cases, you let .NET serialize the object for you automatically. However, you can also manually serialize
a serializable object and store it in a file or another data source of your choosing (such as a binary field
in a database).

To convert a serializable object into a stream of bytes, you need to use a class that implements the
IFormatter interface. The .NET Framework includes two such classes: BinaryFormatter, which serializes
an object to a compact binary representation, and SoapFormatter, which uses the SOAP XML format and
results in a longer text-based message. The BinaryFormatter class is found in the
System.Runtime.Serialization.Formatters.Binary namespace, and SoapFormatter is found in the
System.Runtime.Serialization.Formatters.Soap namespace. (To use SoapFormatter, you also need to
add a reference to the assembly System.Runtime.Serialization.Formatters.Soap.dll.) Both methods
serialize all the private and public data in a class, along with the assembly and type information needed
to ensure that the object can be deserialized exactly.

To create a simple example, let’s consider what you need to do to rewrite the logging page shown
earlier to use object serialization instead of writing data directly to the file. The first step is to change the
Log() method so that it creates a LogEntry object and uses the BinaryFormatter to serialize it into the
existing file, as follows:

private void Log(string message)
{
 // Check for the file.
 FileMode mode;
 if (ViewState["LogFile"] == null)
 {
 ViewState["LogFile"] = GetFileName();
 mode = FileMode.Create;
 }
 else
 {
 mode = FileMode.Append;
 }

 // Write the message.
 string fileName = (string)ViewState["LogFile"];

CHAPTER 12 ■ FILES AND STREAMS

560

 using (FileStream fs = new FileStream(fileName, mode))
 {
 // Create a LogEntry object.
 LogEntry entry = new LogEntry(message);

 // Create a formatter.
 BinaryFormatter formatter = new BinaryFormatter();

 // Serialize the object to a file.
 formatter.Serialize(fs, entry);
 }
}

The last step is to change the code that fills the label with the complete log text. Instead of reading
the raw data, it now deserializes each saved instance using the BinaryFormatter, as shown here:

protected void cmdRead_Click(object sender, System.EventArgs e)
{
 if (ViewState["LogFile"] != null)
 {
 StringBuilder log = new StringBuilder();

 string fileName = (string)ViewState["LogFile"];
 using (FileStream fs = new FileStream(fileName, FileMode.Open))
 {
 // Create a formatter.
 BinaryFormatter formatter = new BinaryFormatter();

 // Get all the serialized objects.
 while (fs.Position < fs.Length)
 {
 // Deserialize the object from the file.
 LogEntry entry = (LogEntry)formatter.Deserialize(fs);

 // Display its information.
 log.Append(entry.Date.ToString());
 log.Append("
");
 log.Append(entry.Message);
 log.Append("

");
 }
 }
 lblInfo.Text = log.ToString();
 }
 else
 {
 lblInfo.Text = "There is no log file."
 }
}

So, exactly what information is stored when an object is serialized? Both the BinaryFormatter and
the SoapFormatter use a proprietary .NET serialization format that includes information about the class,
the assembly that contains the class, and all the data stored in the class member variables. Although the

CHAPTER 12 ■ FILES AND STREAMS

561

binary format isn’t completely interpretable, if you display it as ordinary ASCII text, it looks something
like this:

?ÿÿÿÿ? ?GApp_Web_a7ve1ebl, Version=0.0.0.0, Culture=neutral,
PublicKeyToken=null??
?LogEntry??message?date????Page loaded for the first time. ????

The SoapFormatter produces more readily interpretable output, although it stores the same
information (in a less compact form). The assembly information is compressed into a namespace string,
and the data is enclosed in separate elements:

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <a1:LogEntry id="ref-1"
 xmlns:a1=
"http://schemas.microsoft.com/clr/assem/App_Web_m9gesigu%2C%20Version%3D0.0.0.0%2C
%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull ">
 <message id="ref-3">Page loaded for the first time.</message>
 <date>2008-09-21T22:50:04.8677568-04:00</date>
 </a1:LogEntry>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Clearly, this information (and its structure) is tailored for .NET applications. However, it provides
the most convenient, compact way to store the contents of an entire object.

Summary
In this chapter, you learned how to use the .NET classes for retrieving file system information. You also
examined how to work with files and how to serialize objects. Along the way you learned how data
binding can work with the file classes, how to plug security holes with the Path class, and how to deal
with file contention in multiuser scenarios. You also considered data compression using GZIP.

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/soap/envelope
http://schemas.microsoft.com/soap/encoding/clr/1.0
http://schemas.xmlsoap.org/soap/encoding
http://schemas.microsoft.com/clr/assem/App_Web_m9gesigu%2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull
http://schemas.microsoft.com/clr/assem/App_Web_m9gesigu%2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull

C H A P T E R 13

■ ■ ■

563

LINQ

One of the most hyped additions to.NET is LINQ (Language Integrated Query), a set of language
extensions that allows you to perform queries without leaving the comfort of the C# language.

At its simplest, LINQ defines keywords that you use to build query expressions. These query
expressions can select, filter, sort, group, and transform data. Different LINQ extensions allow you to use
the same query expressions with different data sources. For example, LINQ to Objects allows you to
query collections of in-memory objects. LINQ to DataSet performs the same feat with the in-memory
DataSet. Even more interesting are the three LINQ flavors that let you access external data. There’s LINQ
to Entities, which allows you to query a database without writing data access code; LINQ to XML, which
allows you to read an XML file without using .NET’s specialized XML classes; and Parallel LINQ, which is
a version of LINQ to Objects that processes data using multiple cores or processors simultaneously.

LINQ is a deeply integrated part of .NET and the C# language. However, it isn’t an ASP.NET-specific
feature, and it can be used equally well in any type of .NET application, from command-line tools to rich
Windows clients. Although you can use LINQ anywhere, in an ASP.NET application you’re most likely to
use LINQ as part of a database component. You can use LINQ in addition to ADO.NET data access code
or—with the help of LINQ to Entities—instead of it.

This chapter gives you an overview of LINQ from a web developer’s perspective. You’ll learn how to
use LINQ in your ASP.NET pages, and you’ll consider where LINQ improves on other data access
approaches (and where it falls short). You’ll spend the bulk of the chapter concentrating on LINQ to
Entities, which give you a higher-level model for database queries and updates. You’ll consider how this
system works and how it fits into a typical web application. You’ll also learn how to use the
EntityDataSource control, which allows you to create surprisingly sophisticated data-bound pages
without writing any data access code or SQL queries.

■ Note You’ll learn about one more type of LINQ—LINQ to XML—in Chapter 14.

LINQ Basics
The easiest way to approach LINQ is to consider how it works with in-memory collections. This is LINQ
to Objects—the simplest form of LINQ.

Essentially, LINQ to Objects allows you to replace iteration logic (such as a foreach block) with a
declarative LINQ expression. For example, imagine you want to get a list of all employees who have a last
name that starts with the letter D. Using functional C# code, you could loop through the full collection of
employees and add each matching employee to a second collection, as shown here:

CHAPTER 13 ■ LINQ

564

// Get the full collection of employees from a helper method.
List<EmployeeDetails> employees = db.GetEmployees();

// Find the matching employees.
List<EmployeeDetails> matches = new List<EmployeeDetails>();
foreach (EmployeeDetails employee in employees)
{
 if (employee.LastName.StartsWith("D"))
 {
 matches.Add(employee);
 }
}

You can then carry on to perform another task with the collection of matches or display it in a web
page, as shown here:

gridEmployees.DataSource = matches;
gridEmployees.DataBind();

You can perform the same task using a LINQ expression. The following example shows how you can
rewrite the code, replacing the foreach block with a LINQ query:

List<EmployeeDetails> employees = db.GetEmployees();
IEnumerable<EmployeeDetails> matches;

matches = from employee in employees
 where employee.LastName.StartsWith("D")
 select employee;

gridEmployees.DataSource = matches;
gridEmployees.DataBind();

The LINQ query uses a set of new keywords, including from, in, where, and select. It gives you a new
collection that contains just the matching results.

The end result is identical—you wind up with a collection named matches that’s filled with
employees who have last names starting with D, which is then displayed in a grid (see Figure 13-1).
However, there are some differences in the implementation, as you’ll learn in the following sections.

CHAPTER 13 ■ LINQ

565

Figure 13-1. Filtering a list of employees with LINQ

■ Note The LINQ keywords are a genuine part of the C# language. This fact distinguishes LINQ from technologies

like Embedded SQL, which forces you to switch between C# syntax and SQL syntax in a block of code.

Deferred Execution
One obvious difference between the foreach approach and the code that uses the LINQ expression is the
way the matches collection is typed. In the foreach code, the matches collection is created as a specific
type of collection—in this case, a strongly typed List<T>. In the LINQ example, the matches collection is
exposed only through the IEnumerable<T> interface that it implements.

This difference is because of the way that LINQ uses deferred execution. Contrary to what you might
expect, the matches object isn’t a straightforward collection that contains the matching
EmployeeDetails objects. Instead, it’s a specialized LINQ object that has the ability to fetch the data
when you need it.

In the previous example, the matches object is an instance of the WhereIterator<T> class, which is a
private class that’s nested inside the System.Linq.Enumerable class. Depending on the specific query
expression you use, a LINQ expression might return a different object. For example, a union expression
that combines data from two different collections would return an instance of the private
UnionIterator<T> class. Or, if you simplify the query by removing the where clause, you’ll wind up with a
simple SelectIterator<T>.

CHAPTER 13 ■ LINQ

566

■ Tip You don’t need to know the specific iterator class that your code uses because you interact with the results
through the IEnumerable<T> interface. But if you’re curious, you can determine the object type at runtime using

the Visual Studio debugger (just hover over the variables while in break mode).

The LINQ iterator objects add an extra layer between defining a LINQ expression and executing it.
As soon as you iterate over a LINQ iterator like WhereIterator<T>, it retrieves the data it needs. For
example, if you write a foreach block that moves through the matches collection, this action forces the
LINQ expression to be evaluated.

The previous example doesn’t use a foreach loop at all, because it relies on ASP.NET data binding.
However, the background behavior is the same. When you call the GridView.DataBind() method,
ASP.NET iterates over the matches collection to get the data that’s required and passes it along to the
GridView. This step triggers the evaluation of the LINQ expression in the same way as if you were
iterating over the results manually.

Depending on the exact type of expression, LINQ may execute it all in one go, or piece by piece as
you iterate. In the previous example, the data can be fetched piece by piece, but if you were retrieving
the results from a database or applying a sort order to the results, LINQ would use a different strategy
and get all the results at the beginning of your loop.

■ Note There’s no technical reason why LINQ needs to use deferred execution, but there are many reasons why
it’s a good approach. In many cases, it allows LINQ to use performance optimization techniques that wouldn’t
otherwise be possible. For example, when using database relationships with LINQ to Entities, you can avoid

loading related data that you don’t actually use.

How LINQ Works
Here’s a quick review of the LINQ basics you’ve learned so far:

• To use LINQ, you create a LINQ expression. You’ll see the rules of expression
building later.

• The return value of a LINQ expression is an iterator object that implements
IEnumerable<T>.

• When you enumerate over the iterator object, LINQ performs its work.

This raises a good question—namely, how does LINQ execute an expression? What work does it
perform to produce your filtered results? The answer depends on the type of data you’re querying. For
example, LINQ to Entities transforms LINQ expressions into database commands. As a result, the LINQ
to Entities plumbing needs to open a connection and execute a database query to get the data you’re
requesting.

If you’re using LINQ to Objects, as in the previous example, the process that LINQ performs is much
simpler. In fact, in this case LINQ simply uses a foreach loop to scan through your collections, traveling
sequentially from start to finish. Although this doesn’t sound terribly impressive, the real advantage of
LINQ is that it presents a flexible way to define queries that can be applied to a wide range of different
data sources. As you’ve already learned, the .NET Framework allows you to use LINQ expressions to

CHAPTER 13 ■ LINQ

567

query in-memory collections, the DataSet, XML documents, and (most usefully) SQL Server databases.
However, third-party developers have created their own LINQ providers that support the same
expression syntax but work with different data sources—there are data sources available for most
commercial and open source databases. LINQ providers simply need to translate LINQ expressions to
the appropriate lower-level series of steps. Examples include LINQ providers that query the file system,
No-SQL data stores, directory services such as LDAP, and so on.

■ Note The code that LINQ to Objects uses to retrieve data is almost always slower than writing a comparable
foreach block. Part of this overhead is because there are additional delegates and method calls at work (as you’ll
see later in this chapter). However, it’s extremely unlikely that in-memory object manipulation will be a bottleneck

in a server-side application like an ASP.NET website. Instead, tasks such as connecting to a database, contacting
a web service, or retrieving information from the file system are all orders of magnitude slower and are much more
likely to cause a slowdown. As a result, there’s rarely a performance reason to avoid LINQ to Objects. The one

exception is if you want to implement a more advanced search routine. For example, a search that drills through a
vast collection of ordered information using an index can be more efficient than a LINQ query, which scans through

the entire set of data from start to finish.

There’s an important symmetry to LINQ. LINQ expressions work on objects that implement
IEnumerable<T> (such as the List<EmployeeDetails> collection in the previous example), and LINQ
expressions return objects that implement IEnumerable<T> (such as the WhereIterator<T> in the
previous example). Thus, you can pass the result from one LINQ expression into another LINQ
expression, and so on. This chain of LINQ expressions is evaluated only at the end, when you iterate over
the final data. Depending on the type of data source that you’re querying, LINQ is often able to fuse your
expression chain together into one operation and thus perform it in the most efficient manner possible.

LINQ Expressions
Before you can go much further with LINQ, you need to understand how a LINQ expression is
composed. LINQ expressions have a superficial similarity to SQL queries, although the order of the
clauses is rearranged.

All LINQ expressions must have a from clause that indicates the data source and a select clause that
indicates the data you want to retrieve (or a group clause that defines a series of groups into which the
data should be placed). The from clause is placed first:

matches = from employee in employees
 ...;

The from clause identifies two pieces of information (shown in bold in the preceding code). The
word immediately after in identifies the data source—in this case, it’s the collection object named
employees that holds the EmployeeDetails instances. The word immediately after from assigns an alias
that represents individual items in the data source. For the purpose of the current expression, each
EmployeeDetails object is named employee. You can then use this alias later when you build other parts
of the expression, like the filtering and selection clauses.

Here’s the simplest possible LINQ query. It simply retrieves the full set of data from the employees
collection:

CHAPTER 13 ■ LINQ

568

IEnumerable<EmployeeDetails> matches;
matches = from employee in employees
 select employee;

The C# language includes many more LINQ operators that won’t be considered in detail in this
book. (Instead, this chapter provides an overview of LINQ and a closer examination of the aspects of
LINQ programming that are of particular interest to web developers, like LINQ to Entities.) In the
following sections, you’ll tackle the most important operators, including select, where, orderby, and
group. You can review all the LINQ operators in the .NET Framework Help. You can also find a wide
range of expression examples on Microsoft’s 101 LINQ Samples page at
http://msdn2.microsoft.com/en-us/vcsharp/aa336746.aspx.

Projections
You can change the select clause to get a subset of the data. For example, you could pull out a list of first-
name strings like this:

IEnumerable<string> matches;
matches = from employee in employees
 select employee.FirstName;

or a list of strings with both first and last names:

matches = from employee in employees
 select employee.FirstName + employee.LastName;

As shown here, you can use standard C# operators on numeric data or strings to modify the
information as you’re selecting it. Even more interestingly, you can dynamically define a new class that
wraps just the information you want to return. For example, if you want to get both the first and last
names but you want to store them in separate strings, you could create a stripped-down version of the
EmployeeDetails class that includes just a FirstName property and a LastName property. To do so, you
use the C# anonymous types feature. The basic technique is to add the new keyword to the select clause
and assign each property you want to create in terms of the object you’re selecting. Here’s an example:

var matches = from employee in employees
 select new {First = employee.FirstName, Last = employee.LastName};

This expression, when executed, returns a set of objects that uses an implicitly created class. Each
object has two properties: First and Last. You never see the class definition, and you can’t pass instances
to method calls, because the class is generated by the compiler and given a meaningless, automatically
created name. However, you can still use the class locally, access the First and Last properties, and even
use it with data binding (in which case ASP.NET extracts the appropriate values by property name, using
reflection). The ability to transform the data you’re querying into results with a different structure is
called projection.

There’s one trick at work in this example. As you’ve already learned, LINQ expressions return an
iterator object. The iterator class is generic, which means it’s locked into a specific type—in this case, an
anonymous class that has two properties, named First and Last. However, because you didn’t define this
class, you can’t define the correct IEnumerator<T> reference. The solution is to use the var keyword.

Figure 13-2 shows the result of binding the matches collection to a grid.

http://msdn2.microsoft.com/en-us/vcsharp/aa336746.aspx

CHAPTER 13 ■ LINQ

569

Figure 13-2. Projecting data to a new representation

You’ll also need to use the var keyword whenever you want to reference an individual object. One
example is when performing iteration code through the set of matches returned by the previous LINQ
expression:

foreach (var employee in matches)
{
 // (Do something here with employee.First and employee.Last.)
}

Remember, the var keyword is resolved at compile time and can’t be used as a class member
variable. As a result, this approach doesn’t give you the ability to pass an instance of an anonymous class
between methods.

■ Tip The var keyword is useful even if you aren’t using anonymous types. In this case, it’s a shortcut that saves

you from writing the full IEnumerable<T> type name.

Of course, you don’t need to use anonymous types when perform a projection. You can define
the type formally and then use it in your expression. For example, if you created the following
EmployeeName class:

CHAPTER 13 ■ LINQ

570

public class EmployeeName
{
 public string FirstName
 { get; set; }

 public string LastName
 { get; set; }
}

you could change EmployeeDetails objects into EmployeeName objects in your query expression like
this:

IEnumerable<EmployeeName> matches = from employee in employees
 select new EmployeeName {FirstName = employee.FirstName,
 LastName = employee.LastName};

This query expression works because the FirstName and LastName properties are publicly
accessible and aren’t read-only. After creating the EmployeeName object, LINQ sets these properties.
Alternatively, you could add a set of parentheses after the EmployeeName class name and supply
arguments for a parameterized constructor, like this:

IEnumerable<EmployeeName> matches = from employee in employees
 select new EmployeeName(employee.FirstName, employee.LastName);

Filtering and Sorting
In the first LINQ example in this chapter, you saw how a where clause can filter the results to include
only those that match a specific condition. For example, you can use this code to find employees who
have a last name that starts with a specific letter:

IEnumerable<EmployeeDetails> matches;
matches = from employee in employees
 where employee.LastName.StartsWith("D")
 select employee;

The where clause takes a conditional expression that’s evaluated for each item. If it’s true, the item
is included in the result. However, LINQ keeps the same deferred execution model, which means the
where clause isn’t evaluated until you actually attempt to iterate over the results.

As you probably already expect, you can combine multiple conditional expressions with the and
(&&) and or (||) operators, and you can use relational operators (such as <, <=, >, and >=). For example,
you could create a query like this to filter out products above a certain price threshold:

IEnumerable<Product> matches;
matches = from product in products
 where product.UnitsInStock > 0 && product.UnitPrice > 3.00M
 select product;

One interesting feature of LINQ expressions is that you can easily call your own methods inline. For
example, you could create a function named TestEmployee() that examines an employee and returns
true or false based on whether you want to include it in the results:

CHAPTER 13 ■ LINQ

571

private bool TestEmployee(EmployeeDetails employee)
{
 return employee.LastName.StartsWith("D");
}

You could then use the TestEmployee() method like this:

IEnumerable<EmployeeDetails> matches;
matches = from employee in employees
 where TestEmployee(employee)
 select employee;

The orderby operator is equally straightforward. It’s modeled after the syntax of the SELECT
statement in SQL. You simply provide a list of one or more values to use for sorting, separated by
commas. You can add the word descending after a field name to sort in the reverse order.

Here’s a basic sorting example:

IEnumerable<EmployeeDetails> matches;
matches = from employee in employees
 orderby employee.LastName, employee.FirstName
 select employee;

■ Note Sorting is supported on any types that implement IComparable, which includes most core .NET data types
(such as numeric data, dates, and strings). It is possible to sort using a piece of data that doesn’t implement

IComparable, but you need to use the explicit syntax described in the next section. This way, you can pass a

custom IComparer object that will be used to sort the data.

Grouping and Aggregation
Grouping allows you to condense a large set of information into a smaller set of summary results.

Grouping is a type of projection, because the objects in the results collections are different from the
objects in the source collection. For example, imagine you’re dealing with a collection of Product
objects, and you decide to place them into price-specific groups. The result is an IEnumerable<T>
collection of group objects, each of which represents a separate price range with a subset of products.
Each group implements the IGrouping<T, K> interface from the System.Linq namespace.

To use grouping, you need to make two decisions. First, you need to decide what criteria to use to
create the group. Second, you need to decide what information to display for each group.

The first task is easy. You use the group, by, and into keywords to choose what objects you’re
grouping, how groups are determined, and what alias you’ll use to refer to individual groups. Here’s an
example that works with a collection of EmployeeDetails objects and groups them based on the content
in the TitleOfCourtesy field (Mr., Ms., and so on):

var matches = from employee in employees
 group employee by employee.TitleOfCourtesy into g
 ...

CHAPTER 13 ■ LINQ

572

■ Tip It’s a common convention to give the alias g to your groups in a LINQ expression.

Objects are placed into the same group when they share some piece of data. To group data into
numeric ranges, you need to write a calculation that produces the same number for each group. For
example, if you want to group products by price into ranges like 0–50, 50–100, 100–150, and so on, you’d
need to write an expression like this:

var matches = from product in products
 group product by (int)(product.UnitPrice / 50) into g
 ...

All products less than 50 will have a grouping key of 0, all products from 50 to 100 will have a
grouping key of 1, and so on.

Once you’ve formed your groups, you need to decide what information about them is returned to
form your results. Each group is exposed to your code as an object that implements the IGrouping<T, K>
interface. For example, the previous LINQ expression created groups of type IGrouping<int, Product>,
which means the grouping key type is integer and the element type is Product.

This IGrouping<T, K> interface provides a single property, Key, which returns the value used to
create the group. For example, if you want to create a simple list of strings that shows the
TitleOfCourtesy of each TitleOfCourtesy group, this is the expression you need:

var matches = from employee in employees
 group employee by employee.TitleOfCourtesy into g
 select g.Key;

■ Tip You could replace the var keyword in this example with IEnumerable<string>, because the final result is a
list of strings (showing the different TitleOfCourtesy values). However, it’s common to use the var keyword in

grouping queries because you’ll often use projection and anonymous types to get more useful summary

information.

If you bind this to a GridView, you’ll see the result shown in Figure 13-3.

CHAPTER 13 ■ LINQ

573

Figure 13-3. A list of employee groups

Alternatively, you can choose to return the entire group, like this:

var matches = from employee in employees
 group employee by employee.TitleOfCourtesy into g
 select g;

This isn’t much help with data binding, because ASP.NET won’t be able to display anything useful
about each group. However, it gives you the freedom to iterate over each group in code, using code
like this:

// Look through all the groups.
foreach (IGrouping<string, EmployeeDetails> group in matches)
{
 // Loop through all the EmployeeDetails objects in the current group.
 foreach (EmployeeDetails employee in group)
 {
 // Do something with the employee in the group here.
 }
}

This demonstrates that even once you’ve created groups, you can still give yourself the flexibility to
access the individual items in the group.

More practically, you can use an aggregate function to perform a calculation with the data in your
group. The LINQ aggregate functions mimic the database aggregate functions you’ve probably used in
the past, allowing you to count and sum data in a group or find the minimum, maximum, and average
values. You can also filter out groups based on these calculated values.

The following example returns a new anonymous type that includes the group key value and the
number of objects in the group. To work its magic, it uses an inline method call to a method named
Count().

CHAPTER 13 ■ LINQ

574

var matches = from employee in employees
 group employee by employee.TitleOfCourtesy into g
 select new {Title = g.Key, Employees = g.Count()};

Figure 13-4 shows the result.

Figure 13-4. The number of employees in a group

The preceding LINQ expression is a bit different from the ones you’ve considered so far because it
uses an extension method. Essentially, extension methods are core bits of LINQ functionality that aren’t
exposed through dedicated C# operators. Instead, you need to invoke the method directly. The Count()
method is one example of an extension method.

What differentiates extension methods from ordinary methods is that extension methods aren’t
defined in the class that uses the method. Instead, LINQ includes a System.Linq.Enumerable class that
defines several dozen extension methods that can be called on any object that implements
IEnumerable<T>. (These extension methods also work with IGrouping<T, K>, because it extends
IEnumerable<T>.)

In other words, this part of the previous LINQ expression tells LINQ to call
System.Linq.Enumerable.Count() to calculate the number of items in the group:

select new {Title = g.Key, Employees = g.Count()};

Along with Count(), LINQ also defines more powerful extension methods that you’ll want to use in
grouping scenarios, such as the aggregation functions Max(), Min(), and Average(). The LINQ
expressions that use these methods are a bit more complicated, because they also use another C#
feature known as a lambda expression, which allows you to supply additional parameters to the
extension method. In the case of the Max(), Min(), and Average() methods, the lambda expression allows
you to indicate what property you want to use for the calculation.

Here’s an example that uses these extension methods to calculate the maximum, minimum, and
average prices of the items in each category:

CHAPTER 13 ■ LINQ

575

var categories = from p in products
 group p by p.Category into g
 select new {Category = g.Key,
 MaximumPrice = g.Max(p => p.UnitPrice),
 MinimumPrice = g.Min(p => p.UnitPrice),
 AveragePrice = g.Average(p => p.UnitPrice)};

Figure 13-5 shows this grouping.

Figure 13-5. Aggregate information about product groups

Although this example is fairly intuitive, the lambda syntax looks a little unusual. In the next section,
you’ll take a deeper look at extension methods and lambda expressions.

LINQ Expressions “Under the Hood”
Although LINQ uses C# keywords (such as from, in, and select), the implementation of these keywords is
provided by other classes. In fact, every LINQ query is translated to a series of method calls. Rather than
relying on this translation step, you can explicitly call the methods yourself. For example, this simple
LINQ expression:

matches = from employee in employees
 select employee;

can be rewritten using as follows:

CHAPTER 13 ■ LINQ

576

matches = employees.Select(employee => employee);

The syntax here is a bit unusual. It looks as though this code is calling a Select() method on the
employees collection. However, the employees collection is an ordinary List<T> collection, and it
doesn’t include this method. Instead, Select() is an extension method that’s automatically provided to all
IEnumerable<T> classes.

Extension Methods
Essentially, extension methods allow you to define a method in one class but call it as though it were
defined in a different class. The LINQ extension methods are defined in the System.Linq.Enumerable
class, but they can be called on any IEnumerable<T> object.

■ Note Because LINQ extension methods are defined in the System.Linq.Enumerable class, they’re available only
if this class is in scope. If you haven’t imported the System.Linq namespace, you won’t be able to write implicit or

explicit LINQ expressions—either way, you’ll get a compiler error because the necessary methods can’t be found.

The easiest way to understand this technique is to take a quick look at an extension method. Here’s
the definition for the Select() extension method in the System.Linq.Enumerable class:

public static IEnumerable<TResult> Select<TSource, TResult>(
 this IEnumerable<TSource> source, Func<TSource, TResult> selector)
{ ... }

There is a small set of rules that applies to extension methods. All extension methods must be static.
Extension methods can return any data type and take any number of parameters. However, the first
parameter is always a reference to the object on which the extension method was called (and it’s
preceded by the keyword this). The data type you use for this parameter determines the classes for which
the extension method is available.

For example, with the Select() extension method, the first parameter is IEnumerable<T>:

public static IEnumerable<TResult> Select<TSource, TResult>(
 this IEnumerable<TSource> source, Func<TSource, TResult> selector)

This indicates that the extension method can be called on an instance of any class that implements
IEnumerable<T> (including collections like List<T>). As you can see, the Select<T> method accepts one
other parameter—a delegate that’s used to pick out the subset of information you’re selecting. Finally,
the return value of the Select() method is an IEnumerable<T> object—in this case, it’s an instance of the
private SelectIterator class.

Here’s the full code that LINQ uses for the Enumerable.Select() method:

public static IEnumerable<TResult> Select<TSource, TResult>(
 this IEnumerable<TSource> source, Func<TSource, TResult> selector)
{
 if (source == null)
 {
 throw new ArgumentNullException("source");
 }

CHAPTER 13 ■ LINQ

577

 if (selector == null)
 {
 throw new ArgumentNullException("selector");
 }
 return SelectIterator<TSource, TResult>(source, selector);
}

Lambda Expressions
As mentioned, the lambda expression is another piece of C# syntax in the method-based LINQ
expression. The lambda expression is passed to the Select() method, as shown here:

matches = employees.Select(employee => employee);

As you already know, when the Select() method is called, the employees object is passed as the first
parameter. It’s the source of the query. The second parameter requires a delegate that points to a
method. This method performs the selection work, and it’s called once for each item in the collection.
The selection method accepts the original value (in this case, an employee object) and returns the
selected result. The previous example performs the most straightforward selection logic possible—it
takes the original employee object and returns it unchanged.

There’s some sleight of hand at work in this example. As described earlier, the Select() method
expects a delegate. You could supply an ordinary delegate that points to a named method that you’ve
created elsewhere in your class, but that would make your code much more long-winded.

One simpler approach is to use an anonymous method, which allows you to define the method
inline where you use it, as an argument for the Select() method. Anonymous methods start with the
word delegate, followed by the declaration of the method signature, followed by a set of braces that
contain the code for the method. Here’s what the previous expression would look like if you used an
anonymous method:

var matches = employees
 .Select(
 delegate(EmployeeDetails employee)
 { return employee; }
);

Lambda expressions are simply a way to make code like this even more concise. A lambda
expression consists of two portions separated by the => characters. The first portion identifies the
parameters that your anonymous method accepts. In the current example, the lambda expression
accepts each object from the collection and exposes it through a reference named employee. The second
part of the lambda expression defines the value you want to return.

To get a clearer understanding, consider what happens if you create more sophisticated selection
logic that performs a projection. You’ve already seen that LINQ gives you the flexibility to pull out just
the properties you want or even declare a new type. For example, this explicit LINQ expression extracts
the data from each employee and places it into an instance of a new anonymous type that includes only
name information:

var matches = employees
 .Select(
 delegate(EmployeeDetails employee)
 { return new { First = employee.FirstName,
 Last = employee.LastName };
 }
);

CHAPTER 13 ■ LINQ

578

Now you can compress the code by replacing the anonymous method with a lambda expression
that does the same thing:

var matches = employees
 .Select(employee =>
 new { First = employee.FirstName, Last = employee.LastName });

Multipart Expressions
Of course, most LINQ expressions are more complex than the examples you’ve considered in this
section. A more realistic LINQ expression might add sorting or filtering, as this one does:

IEnumerable<EmployeeDetails> matches = from employee in employees
 where employee.LastName.StartsWith("D")
 select employee;

You can rewrite this expression using explicit syntax, as shown here:

IEnumerable<EmployeeDetails> matches = employees
 .Where(employee => employee.LastName.StartsWith("D"))
 .Select(employee => employee);

One nice thing about the explicit LINQ syntax is that it makes the order of operations clearer. In the
previous example, it’s easy to see that you begin with the employees collection, then call the Where()
method, and finally call the Select() method. If you use more LINQ operators, you’ll wind up with a
longer series of method calls.

You’ll also notice that the Where() method works much like the Select() method. Both Where() and
Select() are extension methods, and both use lambda expressions to supply a simple method. The
Where() method supplies a lambda expression that tests each item and returns true if it should be
included in the results. The Select() method supplies a lambda expression that transforms each data
item to the representation you want. You’ll find many more extension methods that work the same way
in the System.Linq.Enumerable class.

For the most part, you’ll use the implicit syntax to create LINQ expressions. However, there may be
occasions when you need to use the explicit syntax—for example, if you need to pass a parameter to an
extension method that isn’t accommodated by the implicit LINQ syntax. In any case, understanding how
expressions map to method calls, how extension methods plug into IEnumerable<T> objects, and how
lambda expressions encapsulate filtering, sorting, projections, and other details clears up a fair bit about
the inner workings of LINQ.

LINQ to DataSet
As you learned in Chapter 8, you can use the DataTable.Select() method to extract a few records that
interest you from a DataTable using a SQL-like filter expression. Although the Select() method works
perfectly well, it has a few obvious limitations. First, it’s string-based, which means it’s subject to errors
that won’t be caught at compile time. It’s also limited to filtering and doesn’t provide the other features
that LINQ operators offer, such as sorting, grouping, and projections. If you need something more, you
can use the LINQ querying features with the DataTable.

When using LINQ to DataSet, you use essentially the same expressions that you use to query
collections of objects. After all, the DataSet is really just a collection of DataTable instances, each of
which is a collection of DataRow objects (along with additional schema information). However, there’s
one significant limitation to the DataSet—it doesn’t expose strongly typed data. Instead, it’s up to you to
cast field values to the appropriate types. This is a bit of a problem with LINQ expressions, because they

CHAPTER 13 ■ LINQ

579

return strongly typed data. In other words, the compiler needs to be able to determine at compile time
what data type your LINQ expression will return when you run it.

To make this possible, you need the Field<T> extension method, which is provided by the
DataRowExtensions class in the System.Data namespace. Essentially, the Field<T> method extends any
DataRow object and gives you a strongly typed way to access a field. Here’s an example that uses the
Field<T> method to avoid typecasting when retrieving the value from the FirstName field:

string value = dataRow.Field<string>("FirstName");

This isn’t the only limitation you need to overcome with the DataSet. As you’ve already learned,
LINQ works on collections that implement IEnumerable<T>. Neither the DataTable nor the
DataRowCollection implements this interface—instead, the DataRowCollection implements the weakly
typed IEnumerable interface, which isn’t sufficient. To bridge this gap, you need another extension
method, named AsEnumerable(), which exposes an IEnumerable<T> collection of DataRow objects for a
given DataTable. The AsEnumerable() method is defined in the DataTableExtensions class in the
System.Data namespace.

IEnumerable<DataRow> rows = dataTable.AsEnumerable();

To have the Field<T> and AsEnumerable() methods at your fingertips, you must make sure you’ve
imported the System.Data namespace. (You also need a reference to the
System.Data.DataSetExtensions.dll assembly, which is automatically added to the web.config file when
you create a web application.)

Using DataRowExtensions and DataTableExtensions, you can write a LINQ expression to query a
DataTable in a DataSet using the same underlying infrastructure as LINQ to Objects. Here’s an example
that extracts the employee records that have last names starting with the letter D as DataRow objects:

DataSet ds = db.GetEmployeesDataSet();

IEnumerable<DataRow> matches = from employee
 in ds.Tables["Employees"].AsEnumerable()
 where employee.Field<string>("LastName").StartsWith("D")
 select employee;

This collection isn’t suitable for data binding. (If you do bind this collection, the bound control will
show only the public properties of the DataRow object, rather than the collection of field values.) The
problem is that when data binding ADO.NET data, you need to include the schema. Binding a complete
DataTable works because it includes the Columns collection with column titles and other information.

There are two ways to solve this problem. One option is to use the
DataTableExtensions.AsDataView() method to get a DataView for the filtered set of rows:

DataSet ds = db.GetEmployeesDataSet();

var matches = from employee in ds.Tables["Employees"].AsEnumerable()
 where employee.Field<string>("LastName").StartsWith("D")
 select employee;

gridEmployees.DataSource = matches.AsDataView();
gridEmployees.DataBind();

CHAPTER 13 ■ LINQ

580

■ Note LINQ to DataSet expressions return instances of the EnumerableRowCollection<T> class (which

implements the familiar IEnumerable<T> interface). AsDataView() is an extension method that works only on
EnumerableRowCollection<T> objects. As a result, you must define the matches variable in the preceding

example using the var keyword or as an EnumerableRowCollection<DataRow>. If you declare it as a

IEnumerable<DataRow>, you won’t have access to the AsDataView() method.

Another equally effective option is to use a projection. For example, this LINQ expression wraps the
name details in a new anonymous type that can be bound:

DataSet ds = db.GetEmployeesDataSet();

var matches = from employee in ds.Tables["Employees"].AsEnumerable()
 where employee.Field<string>("LastName").StartsWith("D")
 select new { First = employee.Field<string>("FirstName"),
 Last = employee.Field<string>("LastName") };

gridEmployees.DataSource = matches;
gridEmployees.DataBind();

Figure 13-6 shows the rather modest result.

Figure 13-6. Filtering a DataSet with LINQ

Both approaches work equally well. The DataView approach is useful in disconnected rich clients,
because it gives you the option of manipulating the data without sacrificing DataSet change tracking.
The projection approach gives you the ability to reduce the number of fields to include just the ones you
want to see.

Of course, there’s no need to use LINQ to DataSet to achieve the result that’s shown in Figure 13-6.
You can accomplish the same thing by using the DataTable.Select() method to filter out the rows that
have the right last name and modifying the schema of the GridView so it shows only the two columns

CHAPTER 13 ■ LINQ

581

you want. However, LINQ to DataSet allows you to take advantage of operators that don’t have any
direct DataSet equivalent, such as the grouping features discussed earlier.

Typed DataSets
Typed DataSets offer another solution for solving the limitations of the DataSet. Because a typed DataSet
uses strongly typed classes, you no longer need to rely on the Field<T> and AsEnumerable() methods,
which make for much more readable expressions.

For example, if you use a strongly typed DataSet for the Employees table, you can rewrite the
expression in the previous example to this simpler code:

var matches = from employee in ds.Employees
 where employee.LastName.StartsWith("D")
 select new { First = employee.FirstName, employee.LastName };

Not only is this code simpler to understand, but it also looks a lot more like the expressions you used
for querying custom classes in ordinary collections.

Null Values
The Field<T> method plays an important role by giving you strongly typed access to your field values. It
also performs another useful trick: it converts null values (represented by DBNull.Value) to a true null
reference. (The DataSet doesn’t perform this step natively, because when it was created, nullable types
weren’t part of the framework.) As a result, you can check for a null reference rather than comparing
values against DBNull.Value, which streamlines your LINQ expressions.

Here’s an example:

 var matches = from product in ds.Tables["Products"].AsEnumerable()
 where product.Field<DateTime>("DiscontinuedDate") != null
 select product;

When using null values, make sure you don’t attempt to access a member of a value that could be
null. For example, if you want to get discontinued products in a certain date range, you’d need to test for
null values before performing the data comparison, as shown here:

var matches = from product in ds.Tables["Products"].AsEnumerable()
 where product.Field<DateTime>("DiscontinuedDate") != null &&
 product.Field<DateTime>("DiscontinuedDate").Year > 2006
 select product;

Null values aren’t handled as nicely with a typed DataSet. Sadly, the property procedures that are
hardwired into the custom DataRow classes in a typed DataSet throw exceptions when they encounter
null values. To get around this, you’ll need to use the more cumbersome Field<T> syntax when
accessing a field that might contain a null.

LINQ to Entities
For many developers, the most useful part of LINQ is LINQ to Entities, which allows you to work with the
structure and data of a database using standard C# objects. When using LINQ to Entities, your LINQ
queries are translated into SQL queries behind the scenes and executed when you need the data, in

CHAPTER 13 ■ LINQ

582

other words, when you begin enumerating the results. And, if that weren’t impressive enough, LINQ to
Entities includes change tracking for all the data you retrieve, which means that you can modify the
objects you have queries for and commit an entire batch of changes to the database at once.

LINQ to Entities is part of the Entity Framework and has replaced LINQ to SQL as the standard
mechanism for using LINQ on databases. The Entity Framework is an industrial-strength Object-
Relational Mapping (ORM) system that can be used with a range of databases and can support flexible
and complex data models. LINQ to Entities is the part of the Entity Framework that lets you perform
LINQ queries using an Entity Framework data model.

What happened to LINQ to SQL?

Microsoft has switched their development focus from LINQ to SQL to the Entity Framework and has
announced that no more updates to LINQ to SQL will be made, putting LINQ to SQL in the supported-but-
not-recommended category. Using the Entity Framework and LINQ to Entities is similar to using LINQ to
SQL, but the additional database support and some of the more advanced modeling features allow you to
work with data models that just weren’t possible to create with LINQ to SQL. Although you can still use
LINQ to SQL in your projects, we recommend you consider the Entity Framework wherever possible to
ensure your codebase has long-term support from Microsoft.

LINQ to Entities is an impressive technology, but it’s only a small win for most ASP.NET developers.
As with the DataSet, ASP.NET developers are far more likely to use the querying features in LINQ to
Entities than the batch update features. That’s because the updates in a web application usually take
place one at a time rather than in a batch. They also tend to take place immediately when the user posts
back the page. At this point, you have the original values and the new (updated) values on hand, which
makes it easy to use a straightforward ADO.NET command to commit the change.

In short, LINQ to Entities doesn’t provide any capability that you can’t duplicate with ADO.NET
code, your own custom objects, LINQ to Objects (for in-memory filtering), and the DataSet (when
change tracking is needed). However, although that is true, there are some compelling reasons to
consider using LINQ to Entities:

• Less code: You don’t need to write ADO.NET code for querying the database. You
can also use a tool to generate the data classes you need.

• Flexible querying capabilities: Rather than struggle with SQL, you can use the
LINQ querying model. Ultimately, you’ll be able to use one consistent model
(LINQ expressions) to access many different types of data, from databases to XML.

• Change tracking and batch updates: You can change multiple details about
the data you’ve queried and commit a batch update, again without writing
ADO.NET code.

Generating the Data Model
The Entity Framework relies on a data model to let you query using LINQ to Entities. Rows in tables are
converted to instances of C# objects with properties for each of the table columns. The mapping
between the schema of your database and the objects in the data model is at the heart of the Entity
Framework and essential to how LINQ to Entities works.

Most developers will use Visual Studio to generate the data model automatically—doing so is
quicker, and less prone to errors, than creating the mapping objects by hand. (The Entity Framework

CHAPTER 13 ■ LINQ

583

supports some advanced modeling features that Visual Studio can’t generate automatically, but those
features are beyond the scope of this book.)

To generate a model, right-click the App_Code folder, click Add New Item, and select ADO.NET
Entity Data Model from the list of project templates. Set the name for the file that will be created (like
NorthwindModel.edmx), and click Add.

You can generate an empty model and add classes to it manually, but we want to generate a model
from an existing database, in this case, the Microsoft Northwind sample database. Select Generate from
database in the Entity Data Model Wizard, and configure the connection to the database. You can
choose which tables, views, and stored procedures in the database will be included in your data model.
You can also pluralize or singularize object names (so that the object that represents a row in the
Products table will be called Product, for example) and to include foreign-key relationships. You should
select all the tables and then select the Pluralize/Singularize option.

Visual Studio creates a model diagram for the database elements you have selected, which shows
the mapping objects that have been created, the fields that each has, and the relationship between each
object. Two new files are created in the project:

• NorthwindModel.edmx: This XML file defines the schema for your data model.

• NorthwindModel.Designer.cs: This is a C# code file containing the mapping
objects for your data model.

The Data Model Classes
Of the two files created for the data model, it is NorthwindModel.Designer.cs that we will spend the most
time with, because it contains the data types we will query for using LINQ to Entities. You should not
made modifications to the NorthwindModel.Designer.cs file, because the contents of the file can be
regenerated from the data model and cause your changes to be lost. If you open the file, you will see that
there are two code regions, Contexts and Entities.

■ Tip You will see a lot of attributes applied to the data model classes; their relationship to the database and to
other entity classes is expressed through these attributes. We are not going to cover the meaning and use of the
attributes in this book. You will only need to use them if you are creating your own data model by hand, which is

something that most ASP.NET developers will never need to do.

The Derived Object Context Class
The first class defined in NorthwindModel.Designer.cs is derived from ObjectContext; ours is called
NorthwindEntities. This class has constructors that connect to the database from which the model was
generated or let you provide a connection string to connect to a different database (but that has the
same schema; otherwise, the data model won’t be applicable). The first step in using LINQ to Entities is
to create a new instance of the derived ObjectContext class. In our examples, we will use the default
constructor, which connects using the connection string we configured when generating the Entity
Data Model.

The derived ObjectContext class also contains properties for each of the tables that you included in
your data model. Each property is a strongly typed ObjectSet, typed for the entity class it refers to. For
example, the Products property is an ObjectSet<Product>, meaning that it can be used to access
instances of the Product entity class.

CHAPTER 13 ■ LINQ

584

The simplest way to demonstrate using the derived ObjectContext class is to create a new instance
and bind one of the ObjectSet properties to a GridView. Here is a sample class:

using System;
using NorthwindModel;

public partial class DerivedObjectContext : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 NorthwindEntities db = new NorthwindEntities();

 GridView1.DataSource = db.Products;
 GridView1.DataBind();
 }
}

You import the entity classes and the context using the namespace that was specified when the
model was generated, in our case, NorthwindModel. The code in the listing produces the results shown
in Figure 13-7.

Figure 13-7. Binding an ObjectSet to a GridView

The Entity Classes
The entity classes are used to map a record from a database table into a C# object. If you selected the
option to pluralize/singularize the entity object names, then a table such as Products will have been
used to create an entity object called Product. Each entity object contains the following:

• A factory method: You can create new instances of the entity object by calling the
default constructor or by using the factory method, which has arguments for the
required fields. This can be a useful way to avoid schema errors when you try to
store a new data element.

• Field properties: Entity objects contain a primitive field property for each column
in the database table they are derived from.

• Navigation properties: If you included foreign-key relationships in your data
model, your entity objects will contain navigation properties that help you access
related data. We’ll explain more about this in the “Navigation” section.

CHAPTER 13 ■ LINQ

585

■ Tip Entity classes are declared as partial, meaning that you can create a matching partial class and extend the

functionality without losing your changes when the data model is regenerated.

The most common kind of LINQ to Entities query selects objects from an ObjectSet that have specific
values for field parameters. For example, to find all the Product instances in the Product ObjectSet with a
value of false for the Discontinued field, select the ProductID and ProductName values:

using System;
using System.Linq;
using NorthwindModel;

public partial class SimpleLinqToEntitiesQuery : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 NorthwindEntities db = new NorthwindEntities();

 var results = from p in db.Products
 where p.Discontinued == false
 select new {
 ID = p.ProductID,
 Name = p.ProductName
 };

 GridView1.DataSource = results;
 GridView1.DataBind();
 }
}

You can see how we have used the derived ObjectContext class. First, by creating a new instance of
NorthwindEntities, we have implicitly established a connection to the database. Second, we have used
the Products property as the data source for our LINQ query. Since the Products ObjectSet is strongly
typed to contain the Product entity type, we are able to use the field parameters to filter the elements in
the data source and then to select the fields we want to display in the grid. Figure 13-8 shows the result of
binding the result of that query to a GridView.

Figure 13-8. The results of a simple LINQ to Entities query

CHAPTER 13 ■ LINQ

586

Entity Relationships
The entity classes contain navigation properties that allow you to move through the data model without
having to think about foreign-key relationships. Here is a query that uses the navigation properties:

using System;
using System.Linq;
using NorthwindModel;

public partial class OneToManyRelationships : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 NorthwindEntities db = new NorthwindEntities();

 var result = from c in db.Customers
 let o = from q in c.Orders
 where (q.Employee.LastName != "King")
 select (q)
 where c.City == "London" && o.Count() > 5
 select new {
 Name = c.CompanyName,
 Contact = c.ContactName,
 OrderCount = o.Count()
 };

 GridView1.DataSource = result;
 GridView1.DataBind();
 }
}

This query uses the Customers ObjectSet of the derived ObjectContext class and uses the Orders
navigation property to query all the Orders associated with each Customer. We use the Employee
navigation property of the Order entity type to check the last name of the employee who placed the
Order and exclude anywhere the value is King. The where clause of the query filters using fields from the
Customer and Order entity types, and the select clause creates a new anonymous type that selects fields
from the same types.

Using the navigation properties allowed us to move through the data model without needing to
create separate queries for each entity class. We ended up with selected details about customers based in
London who have placed more than five orders by employees who are not named King. We obtained
data from the Customers, Orders, and Employees tables without worrying about how they are related,
which is a great convenience and better than having to split out the query so that we can find all Orders
where the CustomerID field has the same value as the primary key of a given Customer instance. The
way that one-to-many and one-to-one relationships are implemented differs, as explained in the
following sections.

One-to-Many Relationships
The navigation properties for one-to-many relationships are handled using a strongly typed
EntityCollection. For example, the Customer entity class has a one-to-many relationship with the Order
entity class. To navigate to the Order instances associated with a given Customer, you would use the
Customer.Orders navigation property, which is an EntityCollection<Order>. You don’t have to worry
about selecting appropriate records for a relationship; this is done for you using the foreign keys, so that

CHAPTER 13 ■ LINQ

587

when you select the Orders for a Customer, for example, you get only the Order instances that have a
CustomerID value that matches the CustomerID value of the Customer.

You can use the EntityCollection class as a result directly in a LINQ to Entities query by using the
SelectMany extension method; this will include all of the objects contained in the collection in the
results collection. Here is an example:

NorthwindEntities db = new NorthwindEntities();

IEnumerable<Order> orders = db.Customers
 .Where(c => c.CustomerID == "LAZYK")
 .SelectMany(c => c.Orders);

GridView1.DataSource = orders;
GridView1.DataBind();

One-to-One Relationships
There are two navigation properties for one-to-one relationships. The first is always named TReference
that returns an EntityReference<T>, where T is the name of the entity type that the relationship refers to;
for example, the Order entity type has a navigation property called EmployeeReference, which returns
an EntityReference<Employee>. The second navigation property is more useful and is named T, where T
is the entity class it refers to; for example, the Order entity type has a convenience property called
Employee.

Querying Stored Procedures
You must import a stored procedure into the Entity Framework data model before you can use it with
LINQ to Entities. Fortunately, Visual Studio makes doing this pretty straightforward. Double-click the
NorthwindModel.edmx file in the Solution Explorer to open the data model diagram. Open the Entity
Data Model Browser window (you will find this under the View ~TRA Other Windows menu). Expand the
NorthwindModel.Store node, and open the Stored Procedures folder; you will see a list of the stored
procedures that have been imported into your model.

■ Tip If you did not check the Stored Procedures option when you created the data model, right-click in the
drawing surface of the data model diagram, and select Update Model From Database. Select Stored
Procedures on the Add tab (or check individual procedures if you don’t want them all), and click Finish to

regenerate the model.

To import a stored procedure, right-click the one you want, and select Add Function Import from
the pop-up menu. The Function Import Name allows you to specify the name of the property that will be
added to the derived ObjectContext to represent this stored procedure. We are going to import the
Customers_By_City procedure, and we’ll use the default name.

You can select which procedure will be imported from the drop-down list, but be careful, because
the name used for the ObjectContext property will not be updated automatically. You can end up with
the name of one procedure referring to another procedure entirely.

CHAPTER 13 ■ LINQ

588

The next step is to click the Get Column Information button; this will read the schema for the stored
procedure and infer the columns and data types that will be returned. We want to create a new entity
object that represents the result from the stored procedure, so click the Create New Complex Type
button. This will select the Complex option in the return type box and create a name for the new entity
object (which will be the name of the procedure with _Result appended). You can see the function
import dialog box in Figure 13-9. Click OK to import the function.

Figure 13-9. The Edit Function Import dialog

Once you have imported a function, you can treat it just the same as any of the EntityCollections in
the derived ObjectContext class. Here is an example:

using System;
using System.Collections.Generic;
using System.Linq;

CHAPTER 13 ■ LINQ

589

using NorthwindModel;

public partial class StoredProcedure : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 NorthwindEntities db = new NorthwindEntities();

 IEnumerable<Customers_By_City_Result> results =
 from c in db.Customers_By_City("London")
 select c;

 GridView1.DataSource = results;
 GridView1.DataBind();
 }
}

The Customers_By_City stored procedure takes one argument, which is the city to query for. The
query returns a collection of the entity class that was created when we imported the function, which we
have bound to a data grid.

LINQ to Entities Queries “Under the Hood”
The queries in the previous section showed you that LINQ to Entities is pretty much the same to use as
LINQ to Objects. And that is true—at least as a superficial level. One of the nice things about LINQ is that
it is largely consistent across data sources, so if you know how to make a basic LINQ query, you can use
that knowledge to query objects, databases, XML, and so on.

The drawback is that the similarity comes from hiding away a lot of complexity, and if you are not
careful, you can unintentionally generate a significant workload for your database. You should take the
time to determine what SQL queries are generated to service your LINQ to Entities queries. The Entity
Framework doesn’t make it easy to see SQL queries; you have to use some sleight of hand by casting the
result of your LINQ to Entities query to an instance of System.Data.Objects.ObjectQuery and calling the
ToTraceString method. Here is the technique applied to the query we used to demonstrate navigation
properties:

using System;
using System.Data.Objects;
using System.Linq;
using NorthwindModel;

public partial class ViewingSQLQuery : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 NorthwindEntities db = new NorthwindEntities();

 var result = from c in db.Customers
 let o = from q in c.Orders
 where (q.Employee.LastName != "King")
 select (q)
 where c.City == "London" && o.Count() > 5
 select new {
 Name = c.CompanyName,
 Contact = c.ContactName,

CHAPTER 13 ■ LINQ

590

 OrderCount = o.Count()
 };

 Label1.Text = (result as ObjectQuery).ToTraceString();
 }
}

View the page associated with this code shows us that the SQL generated to execute the query is as
follows:

SELECT 1 AS [C1], [Project2].[CompanyName] AS [CompanyName], [Project2].[ContactName] AS
[ContactName], [Project2].[C1] AS [C2] FROM (SELECT [Project1].[CompanyName] AS
[CompanyName], [Project1].[ContactName] AS [ContactName], (SELECT COUNT(1) AS [A1] FROM
[dbo].[Orders] AS [Extent4] LEFT OUTER JOIN [dbo].[Employees] AS [Extent5] ON
[Extent4].[EmployeeID] = [Extent5].[EmployeeID] WHERE ([Project1].[CustomerID] =
[Extent4].[CustomerID]) AND (N'King' <> [Extent5].[LastName])) AS [C1] FROM (SELECT
[Extent1].[CustomerID] AS [CustomerID], [Extent1].[CompanyName] AS [CompanyName],
[Extent1].[ContactName] AS [ContactName], [Extent1].[City] AS [City], (SELECT COUNT(1) AS
[A1] FROM [dbo].[Orders] AS [Extent2] LEFT OUTER JOIN [dbo].[Employees] AS [Extent3] ON
[Extent2].[EmployeeID] = [Extent3].[EmployeeID] WHERE ([Extent1].[CustomerID] =
[Extent2].[CustomerID]) AND (N'King' <> [Extent3].[LastName])) AS [C1] FROM
[dbo].[Customers] AS [Extent1]) AS [Project1] WHERE (N'London' = [Project1].[City]) AND
([Project1].[C1] > 5)) AS [Project2]

Often, it is not practical to print the SQL query like this. If you are using any version of SQL Server
other than Express, you can use the SQL Server Profiler tool. If you are using SQL Server Express, then we
recommend the excellent, free, and open source SQL Profiler from Anjlab, which you can find at
http://sites.google.com/site/sqlprofiler.

Filtering Too Late
One common cause of unnecessary database queries is to filter the data in a query too late. Here is a
sample query:

NorthwindEntities db = new NorthwindEntities();

IEnumerable<Customer> custs = from c in db.Customers
 where c.Country == "UK"
 select c;

IEnumerable<Customer> results = from c in custs
 where c.City == "London"
 select c;

GridView1.DataSource = results;
GridView1.DataBind();

The problem here is that the first query is performed at the database and retrieves all the records
where the Country property equals UK. The second query is applied to the results of the first, but uses
LINQ to Objects, which means that we are discarding much of the data that we requested from the
database. If you are in doubt, take a look at the SQL queries that are generated. There is only one for this
example, and it is as follows:

http://sites.google.com/site/sqlprofiler

CHAPTER 13 ■ LINQ

591

SELECT
[Extent1].[CustomerID] AS [CustomerID],
[Extent1].[CompanyName] AS [CompanyName],
[Extent1].[ContactName] AS [ContactName],
[Extent1].[ContactTitle] AS [ContactTitle],
[Extent1].[Address] AS [Address],
[Extent1].[City] AS [City],
[Extent1].[Region] AS [Region],
[Extent1].[PostalCode] AS [PostalCode],
[Extent1].[Country] AS [Country],
[Extent1].[Phone] AS [Phone],
[Extent1].[Fax] AS [Fax]
FROM [dbo].[Customers] AS [Extent1]
WHERE N'UK' = [Extent1].[Country]

The solution, of course, is to combine your filters into a single query. Spotting this problem when
the two parts of the query are next to each other is easy, but this problem generally arises when you are
consuming data that has been queried by another part of a large project. The wasted overhead can be
significant if you are working with large amounts of data.

Using Lazy and Eager Data Loading
To make the navigation properties work seamlessly, LINQ to Entities employs a technique called lazy
loading, where data is not loaded from the database until it is needed. When you move from one entity
type to another via a navigation property, the instances of the second entity type are not loaded until
they are needed. Here is an example:

using System;
using System.Collections.Generic;
using System.Linq;
using NorthwindModel;

public partial class LazyDataLoading : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 NorthwindEntities db = new NorthwindEntities();

 IEnumerable<Customer> custs = from c in db.Customers
 where c.City == "London" && c.Country == "UK"
 select c;

 List<string> names = new List<string>();

 foreach (Customer c in custs) {
 if (c.Orders.Count() > 2) {
 names.Add(c.CompanyName);
 }
 }

 GridView1.DataSource = names;
 GridView1.DataBind();
 }
}

CHAPTER 13 ■ LINQ

592

In this query, we filter the set of Customers and then iterate through the results, navigating to the
related Order instances for the current Customer. We end up with the names of the companies that are
based in the city of London in the UK and that have placed more than two orders. Unfortunately,
because of lazy loading, the data from the Orders table was only loaded just as it was needed, which
means that we generated a SQL query to get the order data for each Customer. That’s a lot of queries. Of
course, for this simple example, we could have combined everything into a single LINQ query, but we
actually want to demonstrate the eager loading feature, which allows you to load related data from other
tables in as part of your query. Here is an example:

using System;
using System.Collections.Generic;
using System.Linq;
using NorthwindModel;

public partial class EagerDataLoading : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 NorthwindEntities db = new NorthwindEntities();

 IEnumerable<Customer> custs = from c in db.Customers
 .Include("Orders")
 where c.City == "London" && c.Country == "UK"
 select c;

 List<string> names = new List<string>();

 foreach (Customer c in custs) {
 if (c.Orders.Count() > 2) {
 names.Add(c.CompanyName);
 }
 }

 GridView1.DataSource = names;
 GridView1.DataBind();
 }
}

To include related data, we use the Include extension method, marked in bold in the previous
listing. This tells the LINQ to Entities engine that the Order instances related to each Customer that we
query for should be loaded, even though there is nothing in the query that directly relates to the Orders
table. Here is the SQL query that was generated for the LINQ query, edited down for size:

SELECT
[Project1].[C1] AS [C1],
[Project1].[CustomerID] AS [CustomerID],
... other projection statements...
[Project1].[ShipCountry] AS [ShipCountry]
FROM (SELECT
 [Extent1].[CustomerID] AS [CustomerID],
 [Extent1].[CompanyName] AS [CompanyName],
 ...other fields from the customer table...
 [Extent1].[Fax] AS [Fax],

CHAPTER 13 ■ LINQ

593

 1 AS [C1],
 [Extent2].[OrderID] AS [OrderID],
 [Extent2].[CustomerID] AS [CustomerID1],
 ...other fields from the orders table...
 [Extent2].[ShipCountry] AS [ShipCountry],
 CASE WHEN ([Extent2].[OrderID] IS NULL) THEN CAST(NULL AS int) ELSE 1 END AS [C2]
 FROM [dbo].[Customers] AS [Extent1]
 LEFT OUTER JOIN [dbo].[Orders] AS [Extent2] ON [Extent1].[CustomerID] =
 [Extent2].[CustomerID]
 WHERE (N'London' = [Extent1].[City]) AND
 (N'UK' = [Extent1].[Country])
) AS [Project1]
ORDER BY [Project1].[CustomerID] ASC, [Project1].[C2] ASC

The Entity Framework caches the results, which means that when we come to iterate through the
Customer instances and inspect the related Orders, they have already been loaded, and no further
queries to the database are generated.

Using Explicit Loading
If you want total control over what data is loaded, then you can use explicit loading. You disable lazy
loading using the derived ObjectContext class and then use the EntityCollection.Load method to load
data as you require it. You can check to see whether data has already been loaded using the IsLoaded
method. Here’s an example:

using System;
using System.Collections.Generic;
using System.Linq;
using NorthwindModel;

public partial class ExplicitDataLoading : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 NorthwindEntities db = new NorthwindEntities();
 db.ContextOptions.LazyLoadingEnabled = false;

 IEnumerable<Customer> custs = from c in db.Customers
 where c.Country == "UK"
 select c;

 foreach (Customer c in custs) {
 if (c.City == "London") {
 c.Orders.Load();
 }
 }

 List<Order> orders = new List<Order>();

 foreach (Customer c in custs) {
 if (c.Orders.IsLoaded) {
 orders.Add(c.Orders.First());
 }

CHAPTER 13 ■ LINQ

594

 }

 GridView1.DataSource = orders;
 GridView1.DataBind();
 }
}

We have marked the key statements in bold. The first disabled lazy loading, which means that data
referred to by navigation property won’t be loaded. We perform a standard LINQ to Entities query to
find get the Customer instances that have a Country property with a value of UK. We then use LINQ to
Objects to iterate through the results and explicitly load the Orders data for those Customers who have a
City property value of London using the Load method; this loads the data from the database into the
Entity Framework cache. Finally, we iterate through the LINQ to Entities results again, but this time we
check to see which Customers have their Orders data loaded. For those that do, we put the first Order
into a collection that we use as the data source for the GridView control. This is a contrived example
because we enumerate the results repeatedly, but it should give you the knowledge you need to use
explicit data loading in your projects.

Compiling Queries
Another useful “under the hood” aspect of LINQ to Entities queries is the ability to create compiled
queries. A compiled query is a strongly typed Func, which takes arguments for a query. Compiling a
query performs the translation into a SQL statement, which is then reused each time the compiled query
is called. This is not as effective as using a stored procedure because the database still has to create a
query plan to execute the SQL, but it does stop the LINQ to Entities engine from having to parse the
LINQ query repeatedly. Here is an example of using a compiled query:

using System;
using System.Data.Objects;
using System.Linq;
using NorthwindModel;

public partial class CompiledLinqQuery : System.Web.UI.Page {
 Func<NorthwindEntities, string, IQueryable<Customer>> MyCompiledQuery;
 NorthwindEntities db;

 protected void Page_Load(object sender, EventArgs e) {

 MyCompiledQuery = CompiledQuery.Compile<NorthwindEntities, string,
 IQueryable<Customer>>((context, city) =>
 from c in context.Customers
 where c.City == city
 select c);

 db = new NorthwindEntities();

 GridView1.DataSource = MyCompiledQuery(db, "London");
 GridView1.DataBind();
 }

 protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e) {

 GridView1.DataSource = MyCompiledQuery(db, DropDownList1.SelectedValue);

CHAPTER 13 ■ LINQ

595

 GridView1.DataBind();
 }
}

We have compiled a query to load all the customers for a given city; the derived ObjectContext class
and the city to look for are passed in as arguments to our Func. We call the CompiledQuery.Compile
method, which is strongly typed to match the signature of our Func. Once the Func is generated, it can
be used to execute the compiled query again and again. We have reused the query each time a value is
selected from a drop-down list. Each time, we pass in an instance of the derived ObjectContext class and
the selected value from the list and bind the results to the GridView.

Database Operations
Although there are many projects that will rely only on querying for data, there often comes a point
where you need to make a change. In the following sections, we’ll show you how to create, modify, and
delete database records using the Entity Framework data model.

Inserts
To create a new record in the database, you need to create a new instance of the appropriate entity class,
populate the fields, add the entity class to the EntityCollection maintained by the derived ObjectContext,
and then write the new record by calling SaveChanges. Here is an example that creates a new Customer:

NorthwindEntities db = new NorthwindEntities();

Customer cust = new Customer() {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO"
};

db.Customers.AddObject(cust);

db.SaveChanges();

If you have several inserts (or any other kind of change) to make, then you can do all of the additions
and then call SaveChanges just once to write all the new records. The derived ObjectContext keeps track
of all the changes you make and applies them all to the database in one go.

Creating Partially Populated Entity Classes
In the previous example, we used the default constructor for the Customer entity class to create an
instance that was entirely unpopulated with data. However, we could have used an alternative approach,

CHAPTER 13 ■ LINQ

596

which minimizes the risk of a database error by forcing you to supply values for the required fields at
construction. Each entity class contains a factory method called CreateT, where T is the name of the
entity class. For example, the Customer entity class has a factory method called CreateCustomer. Here is
the previous example updated to use the factory method:

Customer cust = Customer.CreateCustomer("LAWN", "Lawn Wranglers");
cust.ContactName = "Mr. Abe Henry";
cust.ContactTitle = "Owner";
cust.Address = "1017 Maple Leaf Way";
cust.City = "Ft. Worth";
cust.Region = "TX";
cust.PostalCode = "76104";
cust.Country = "USA";
cust.Phone = "(800) MOW-LAWN";
cust.Fax = "(800) MOW-LAWO";

db.Customers.AddObject(cust);

db.SaveChanges();

We tend to use the default constructor because it means that we can specify values for properties in
a single statement, but the factory method can be useful if you are prone to forgetting to set values for
required fields. As you can see from the example, the factory method requires values for the CustomerID
and CompanyName fields, both of which will be rejected by the database if null values are supplied.

Inserting Associated Entities
You can use the navigation properties of the entity classes to create a set of related objects and store
them in the database in one go – the derived ObjectContext class keeps track of the additions and
handles the updates for you. Here is an example of creating a Customer and an Order at the same time:

NorthwindEntities db = new NorthwindEntities();

Customer cust = new Customer {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO",
 Orders = {
 new Order {
 CustomerID = "LAWN",
 EmployeeID = 4,
 OrderDate = DateTime.Now,
 RequiredDate = DateTime.Now.AddDays(7),
 ShipVia = 3,
 Freight = new Decimal(24.66),

CHAPTER 13 ■ LINQ

597

 ShipName = "Lawn Wranglers",
 ShipAddress = "1017 Maple Leaf Way",
 ShipCity = "Ft. Worth",
 ShipRegion = "TX",
 ShipPostalCode = "76104",
 ShipCountry = "USA"
 }
 }
};

// add the new Customer
db.Customers.AddObject(cust);

// save the changes
db.SaveChanges();

We created the Order and associated it with the new Customer using the navigation property. We
only had to add the Customer to the derived ObjectContext, which detected the relationship with the
new Order and ensured that it was written when we called SaveChanges.

However, if we had created the Order and Customer separately, we would have had to add the Order
explicitly, like this:

NorthwindEntities db = new NorthwindEntities();

Customer cust = new Customer {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO"
};

Order ord = new Order {
 CustomerID = "LAWN",
 EmployeeID = 4,
 OrderDate = DateTime.Now,
 RequiredDate = DateTime.Now.AddDays(7),
 ShipVia = 3,
 Freight = new Decimal(24.66),
 ShipName = "Lawn Wranglers",
 ShipAddress = "1017 Maple Leaf Way",
 ShipCity = "Ft. Worth",
 ShipRegion = "TX",
 ShipPostalCode = "76104",
 ShipCountry = "USA"
};

cust.Orders.Add(ord);

CHAPTER 13 ■ LINQ

598

db.Customers.AddObject(cust);
db.SaveChanges();

If we had not added the Order object explicitly, then it would not have been written to the database.
We would not have received an error; it just wouldn’t have been written. So, if you are creating sets of
associated entities, you must take care to ensure that they are registered with the derived ObjectContext
if you want them written to the database correctly.

Updates
Updating entity types is as simple as changing the properties of an entity object, calling the SaveChanges
method of the derived ObjectContext. Here is a simple example:

NorthwindEntities db = new NorthwindEntities();

Customer cust = (from c in db.Customers
 where c.CustomerID == "LAWN"
 select c).Single();

cust.ContactName = "John Smith";
cust.Fax = "(800) 123 1234";

db.SaveChanges();

Deletes
Deleting data via the Entity Framework relies on using the DeleteObject method. You can call this
method on the EntityCollection for the entity class you want to delete or on the derived ObjectContext.
Here is a simple example:

NorthwindEntities db = new NorthwindEntities();

IEnumerable<Order_Detail> ods = from o in db.Order_Details
 where o.OrderID == 10248
 select o;

foreach (Order_Detail od in ods) {
 db.Order_Details.DeleteObject(od);
}

db.SaveChanges();

As with the other database operations, no changes are made to the database until you call the
SaveChanges method. The Entity Framework doesn’t delete related entity objects, so you must take care
to remove any object that is related by an enforced foreign-key constrain before you call SaveChanges.

Managing Concurrency
The Entity Framework uses an optimistic concurrency model by default, meaning that it doesn’t check
to see whether anyone has modified the data in the database since you read the data. When you call

CHAPTER 13 ■ LINQ

599

SaveChanges, any changes that are pending will be written to the database, even if someone else has
updated the same records with conflicting information. If only one instance of your application exists
and you are the only user of the database, you might be willing to accept this arrangement, but as soon
as you deploy your application to a farm of servers or share the database with a different application,
optimistic concurrency will lead to painful data consistency issues.

You can have the Entity Framework check to see whether the database has been modified by
another party before it writes changes. This is still optimistic concurrency because nothing is locked in
the database while you are working with the entity objects, but it does help by at least alerting you to
concurrency issues when they occur.

You have to enable concurrency checking on a per-field basis. If you want all the fields of an entity
class to be checked for concurrency conflicts...well, then you need to be sure that you have edited all of
the fields—there is no way of telling the Entity Framework that you want every change to an entity type
or even every change to the entire Entity Data Model to be checked automatically.

To enable concurrency checking on a field, open the data model view by double-clicking the
NorthwindModel.edmx file, and select one of the fields from one of the displayed entity objects. For
example, click the CompanyName field in the Customer entity object. In the properties window, set the
value for Concurrency Mode to be fixed, as shown in Figure 13-10.

Figure 13-10. Setting the Concurrency Mode property

Handling Concurrency Conflicts
Once you have enabled concurrency conflict checking for an entity object field, you will receive an
OptimisticConcurrencyException when you try to update data that has been modified since you loaded
your entity objects. To simulate a concurrency exception, we have made a change using the Entity
Framework and then executed a conflicting change using a direct SQL statement using the
ExecuteStatementInDb method:

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

CHAPTER 13 ■ LINQ

600

Customer cust = context.Customers
 .Where(c => c.CustomerID == "LAZYK")
 .Select(c => c)
 .First();

Console.WriteLine("Initial value {0}", cust.ContactName);

// change the record outside of the entity framework
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

// modify the customer
cust.ContactName = "John Doe";

// save the changes
try {
 context.SaveChanges();
} catch (OptimisticConcurrencyException) {
 Console.WriteLine("Detected concurrency conflict - giving up");
} finally {
 string dbValue = GetStringFromDb(String.Format(
 @"select ContactName from Customers
 where CustomerID = 'LAZYK'"));
 Console.WriteLine("Database value: {0}", dbValue);
 Console.WriteLine("Cached value: {0}", cust.ContactName);
}

We obtain the Customer entity object for the record with the CustomerID of LAZYK, change the
ContactName field outside of the Entity Framework, make the same change using the Entity Framework,
and then call SaveChanges.

We have introduced two convenience methods that use ADO.NET calls to work directly with the
database. We don’t want to fill a chapter on LINQ with ADO.NET code, so we have included the methods
in the sample code for this chapter, which you can download from Apress.com. The methods are called
GetStringFromDb and ExecuteStatementInDb, and they do exactly what their names imply.

We wrap the SaveChanges call in a try...catch...finally block. Since we have enabled concurrency
checking on the ContactName field, we know that we will receive an OptimisticConcurrencyException
when we try to update the database. In the finally block, we print out the ContactName value in the
database and the value from the entity object. Running the example code gives us the following output:

Initial value John Doe
Executing SQL statement against database with ADO.NET ...
Database updated.
Detected concurrency conflict - giving up
Database value: Samuel Arthur Sanders
Cached value: John Doe

We end up with a database that has one value and a cached entity object that has a conflicting
value for the same data. That’s a step forward—at least we didn’t write back an update to the database
without checking first. But now we need to resolve the differences in the data values so we are back in

CHAPTER 13 ■ LINQ

601

sync and can (optionally) try to update again. We do this by using the ObjectContext.Refresh method, as
shown here:

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

Customer cust = context.Customers
 .Where(c => c.CustomerID == "LAZYK")
 .Select(c => c)
 .First();

Console.WriteLine("Initial value {0}", cust.ContactName);

// change the record outside of the entity framework
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

// modify the customer
cust.ContactName = "John Doe";

// save the changes
try {
 context.SaveChanges();
} catch (OptimisticConcurrencyException) {
 Console.WriteLine("Detected concurrency conflict - refreshing data");
 context.Refresh(RefreshMode.StoreWins, cust);
} finally {
 string dbValue = GetStringFromDb(String.Format(
 @"select ContactName from Customers
 where CustomerID = 'LAZYK'"));
 Console.WriteLine("Database value: {0}", dbValue);
 Console.WriteLine("Cached value: {0}", cust.ContactName);
}

In this example, we call the Refresh method when we catch the OptimisticConcurrencyException. The
Refresh method takes two arguments—the first is a value from the RefreshMode enumeration, and the
second is the object that you want to refresh. The RefreshMode enumeration has two values, StoreWins
and ClientWins. The StoreWins value refreshes the values for the object you specified using the data in the
database. So, in our example, we would expect both the value in the entity object and the value in the
database to be Samuel Arthur Adams. Compiling and running the code gives us the expected results:

Initial value John Steel
Executing SQL statement against database with ADO.NET ...
Database updated.
Detected concurrency conflict - refreshing data
Database value: Samuel Arthur Sanders
Cached value: Samuel Arthur Sanders

Let’s just recap what happened there. We tried to write an update on a database row that had been
modified by someone else. The Entity Framework detected a concurrency conflict and threw an

CHAPTER 13 ■ LINQ

602

OptimisticConcurrencyException to let us know that there was a problem. We refreshed the entity object
we modified using the data in the database, which put us back to a consistent state.

But what happened to our update? Well, nothing—we didn’t apply it. If you want to apply your
changes even when someone else has modified the same data you are using, then you need to use the
ClientWins value of the RefreshMode enumeration and call SaveChanges again. Here is an example:

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

Customer cust = context.Customers
 .Where(c => c.CustomerID == "LAZYK")
 .Select(c => c)
 .First();

Console.WriteLine("Initial value {0}", cust.ContactName);

// change the record outside of the entity framework
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

// modify the customer
cust.ContactName = "John Doe";

// save the changes
try {
 context.SaveChanges();
} catch (OptimisticConcurrencyException) {
 Console.WriteLine("Detected concurrency conflict - refreshing data");
 context.Refresh(RefreshMode.ClientWins, cust);
 context.SaveChanges();
} finally {
 string dbValue = GetStringFromDb(String.Format(
 @"select ContactName from Customers
 where CustomerID = 'LAZYK'"));
 Console.WriteLine("Database value: {0}", dbValue);
 Console.WriteLine("Cached value: {0}", cust.ContactName);
}

This time, we have specified the ClientWins value, which is like saying “I know there is a
concurrency conflict, but I want to keep my changes.” You need to call SaveChanges again; the call to
the Refresh method just clears the concurrency conflict for the Entity Framework and doesn’t write the
changes for you. Running the code gives us the following results:

Initial value John Steel
Executing SQL statement against database with ADO.NET ...
Database updated.
Detected concurrency conflict - refreshing data
Database value: John Doe
Cached value: John Doe

We can see that the change that we made using the Entity Framework has been written to the
database. There is one point we want to make about dealing with a concurrency conflict properly:

CHAPTER 13 ■ LINQ

603

someone may have changed the data again while we were refreshing our entity objects. That means that
our second call to SaveChanges may result in another OptimisticConcurrencyException. To deal with
this, we can use a loop that tries to apply our update repeatedly, as follows:

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

Customer cust = context.Customers
 .Where(c => c.CustomerID == "LAZYK")
 .Select(c => c)
 .First();

Console.WriteLine("Initial value {0}", cust.ContactName);

// change the record outside of the entity framework
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

// modify the customer
cust.ContactName = "John Doe";

int maxAttempts = 5;
bool recordsUpdated = false;

for (int i = 0; i < maxAttempts && !recordsUpdated; i++) {
 Console.WriteLine("Performing write attempt {0}", i);
 // save the changes
 try {
 context.SaveChanges();
 recordsUpdated = true;
 } catch (OptimisticConcurrencyException) {
 Console.WriteLine("Detected concurrency conflict - refreshing data");
 context.Refresh(RefreshMode.ClientWins, cust);
 }
}

We use a loop to try applying our update to the database several times. The bool recordsUpdated
will be set to true only if the SaveChanges method doesn’t throw an exception. This can be a useful
technique, but it should be used carefully.

First, the more attempts we make to write our changes, the more updates from others we are
ignoring. We have to be very confident that our update is more important than all the others to keep
trying to save our changes.

Second, you will see that we used a loop counter to try writing our update five times and no more.
There are very few situations in which you should try to save your changes in an infinite loop. Not only
do you have to be super-confident that you have the best data, but there comes a point where you have
to question the design of your code or the value of the data you are generating. If the same rows are
being updated again and again, the chances are that most of the updates are being discarded as
processes keep forcing their changes into the database. So, you should be very careful when
automatically trying to save changes when you encounter a concurrency conflict. Just for completeness,
here is the code we used in the ExecuteStatementInDb method:

CHAPTER 13 ■ LINQ

604

static private void ExecuteStatementInDb(string cmd) {
 string connection =
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated Security=SSPI;";

 System.Data.SqlClient.SqlConnection sqlConn =
 new System.Data.SqlClient.SqlConnection(connection);

 if (sqlConn.State != ConnectionState.Open) {
 sqlConn.Open();
 }

 System.Data.SqlClient.SqlCommand sqlComm =
 new System.Data.SqlClient.SqlCommand(cmd);

 sqlComm.Connection = sqlConn;
 try {
 Console.WriteLine("Executing SQL statement against database with ADO.NET ...");
 sqlComm.ExecuteNonQuery();
 Console.WriteLine("Database updated.");
 } finally {
 // Close the connection.
 sqlComm.Connection.Close();
 }
}

The EntityDataSource Control
The LINQ to Entities examples in this chapter so far have used pure code to retrieve, manipulate, and
bind data. However, ASP.NET also includes a EntityDataSource control that you can use to perform
many of these tasks automatically.

Before taking a look at the EntityDataSource control, it’s worth asking when it’s appropriate. The
EntityDataSource occupies a niche in rapid application development when combined with the Entity
Data Model generator we saw earlier.

Much like the SqlDataSource control, when you use the EntityDataSource control, you don’t need to
write any code. But the EntityDataSource control goes one step further—not only can you avoid writing
C# code, you can also avoid the messy details of writing SQL queries to select and update data. This
makes it a perfect tool for small- or medium-scale applications and applications that don’t need to be
carefully tuned to get every last ounce of performance. On the other hand, it’s also sure to exasperate
database purists who prefer to have complete control over every detail. If the EntityDataSource lacks the
features, performance, or flexibility you require, you’ll need to use custom data access code (possibly
with the help of the ObjectDataSource), as described in Chapter 9.

Displaying Data
To get a feel for the capabilities and overall goals of the EntityDataSource, it’s worth building a simple
example. In the following example, you’ll see how to build the web page shown in Figure 13-11, which
allows you to insert, delete, and update records in the Employees table of the Northwind sample
database.

CHAPTER 13 ■ LINQ

605

Figure 13-11. Managing a table with the LinqDataSource

The first step is to build an Entity Data Model, following the steps in the “Generating the Data
Model” section of this chapter. The second step is to create the controls you want to use to display your
data. In this example, two controls are used—a GridView that allows you to select an employee and a
DetailsView that allows you to change it, remove it, or create a new one. You can add both controls

CHAPTER 13 ■ LINQ

606

straight from the Toolbox and use the AutoFormat feature to give them a pleasant color scheme to
match Figure 13-11.

The third ingredient is the data source that links the derived ObjectContext class to your data
controls. In this example, you’ll need two data source controls—one that retrieves all the employee
records (for the GridView) and one that retrieves a single employee record (for the DetailsView). The
latter will also perform the editing, inserting, and deleting operations.

To create your first data source, drop an EntityDataSource control onto your web page. The quickest
way to configure it is to use the wizard (select the data source control, click the arrow in the top-right
corner, and choose Configure Data Source). The wizard has just two steps. The first step displays all the
connection strings known to your application and a list of the derived ObjectContext classes in your
project and prompts you to choose one. In this example, the connection and the derived class are both
called NorthwindEntities.

The second step asks you what columns you want to include. In most cases, you’ll check the Select
All option, which includes all the columns (see Figure 13-12). You can then cut down the columns that
are actually displayed by modifying the markup for your data-bound controls. If you don’t use all the
columns, you are essentially asking the EntityDataSource to perform a projection and convert your full-
fledged Employee object to an anonymous type. The limitation with this approach is that you won’t be
able to update the data or display related data from other tables.

Figure 13-12. Choosing columns

CHAPTER 13 ■ LINQ

607

If you have selected the Select All option, you can also select the options to enable inserts, updates,
and deletes using this wizard. When you’ve finished the wizard, you’ll end up with a fairly
straightforward control tag, like this:

<asp:EntityDataSource ID="sourceEmployees" runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities" EnableFlattening="False"
 EntitySetName="Employees">
</asp:EntityDataSource>

Clearly, the ConnectionString and DefaultContainerName properties relate to the Entity Data
Model being used. The EntitySetName specifies the name of the entity class that you are using. If you
selected a subset of columns in the second step of the wizard (Figure 13-12), you’ll also see a Select
property that defines a projection, like this:

<asp:EntityDataSource ID="sourceEmployees" runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities" EnableFlattening="False"
 EntitySetName="Employees"
 Select="it.[LastName], it.[FirstName], it.[EmployeeID], it.[TitleOfCourtesy],
 it.[City]">
</asp:EntityDataSource>

<asp:LinqDataSource ID="sourceEmployees" runat="server"
 ContextTypeName="DatabaseComponent.NorthwindDataContext"
 TableName="Employees"
 Select="new (EmployeeID, LastName, FirstName, TitleOfCourtesy)">
</asp:LinqDataSource>

You can use the sourceEmployees data source to fill the grid shown in Figure 13-11. Simply set the
GridView.DataSourceID property to sourceEmployees. Next, remove the columns you don’t want to
see by deleting the <asp:BoundField> elements from the GridView.Columns collection. Finally, make
sure that the GridView supports selection. The DataKeyNames property should be set to EmployeeID,
and a Select column should be visible in the grid (to add it, select the Enable Selection option in the
GridView smart tag).

The DetailsView shows the currently selected employee in the grid. You learned how to create this
design with the SqlDataSource, but the EntityDataSource works a bit differently because it doesn’t allow
you to define the SELECT command directly. To start, begin by creating a new EntityDataSource that has
the same characteristics as the first one. Then, you need to build the where operator for the LINQ
expression by setting the EntityDataSource.Where property, which you can edit once you have
configured the control with the smart tag. The easiest way to build this part is to click the ellipsis button
on the Where item in the Properties window for the EntityDataSource. This opens the Expression Editor,
as shown in Figure 13-13. Click the Add Parameter button, and set the name to EmployeeID.

CHAPTER 13 ■ LINQ

608

Figure 13-13. Setting the EntityDataSource Where property

Set the Parameter Source to be Control, and select the name of your GridView from the drop-down
list. Click the Show Advanced Properties link, and set the DbType parameter value to match the type in
the database. We are using the EmployeeID field, so we have selected Int32, as shown in Figure 13-14.

Figure 13-14. Setting the DbType property for the parameter

CHAPTER 13 ■ LINQ

609

The last step is to enter an expression that uses the parameter we created. The EntityDataSource
passes the current entity class to us using the name it, and we refer to the parameter we created by
prefixing the name with @, so our expression becomes this:

it.EmployeeID == @EmployeeID

This leaves you with the following easy-to-understand markup:

<asp:EntityDataSource ID="sourceSingleEmployee" runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities" EnableFlattening="False"
 EntitySetName="Employees" EntityTypeFilter="" Select=""
 Where="it.EmployeeID == @EmployeeID">
 <WhereParameters>
 <asp:ControlParameter ControlID="GridView1" DbType="Int32" Name="EmployeeID"
 PropertyName="SelectedValue" />
 </WhereParameters>
</asp:EntityDataSource>

Now, when you select an employee in the GridView, the full details will appear in the DetailsView.

Getting Related Data
When displaying data drawn from the EntityDataSource, you aren’t limited to the basic properties in
your data class. You can also branch out to consider related data. This is a powerful technique because it
allows you to use the LINQ to Entities navigation fields. The only consideration is that you can only use
this technique in a TemplateField—the ordinary BoundField doesn’t support it.

For example, imagine you want to display the total number of orders that are associated with every
employee. You know you can get this information by counting the number of records in the linked
Orders table. Here’s a TemplateField that uses this detail, which you can add to the end of the
<Columns> section of the GridView:

<asp:TemplateField HeaderText="Orders">
 <ItemTemplate>
 <%# Eval("Orders.Count") %>
 </ItemTemplate>
</asp:TemplateField>

Before you can use the TemplateField, you must tell the EntityDataSource to include records from
the Orders table. You do this by setting the Include property to “Orders” in the Properties window or by
adding the Include attribute by hand so that the definition for the data source is as follows:

<asp:EntityDataSource ID="sourceEmployees" runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities" EnableFlattening="False"
 EntitySetName="Employees" Include="Orders">
</asp:EntityDataSource>

Figure 13-15 shows the result of adding the TemplateField.

CHAPTER 13 ■ LINQ

610

Figure 13-15. Adding a TemplateField that uses a navigation property

If it is not set, you will also need to specify the DataKeyNames property for the GridView, as follows:

DataKeyNames="EmployeeID"

Editing Data
The final step in this example is to configure the DetailsView and second EntityDataSource to support
update, insert, and delete operations.

Select the second EntityDataSource, and use the smart tag to select Configure Data Source. Click the
Next button in the wizard, ensure that the Select All item is selected so that all the columns are used, and
select the options for Enable automatic inserts, Enable automatic updates, and Enable automatic
deletes. This updates the EntityDataSource tag:

<asp:EntityDataSource ID="sourceSingleEmployee" runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities" EnableFlattening="False"
 EntitySetName="Employees"
 Where="it.EmployeeID == @EmployeeID" EnableDelete="True"
 EnableInsert="True" EnableUpdate="True">
 <WhereParameters>
 <asp:ControlParameter ControlID="GridView1" DbType="Int32" Name="EmployeeID"
 PropertyName="SelectedValue" />
 </WhereParameters>
</asp:EntityDataSource>

Select the DetailsView and, using the smart tag, check the options for Enable Inserting, Enable
Editing, and Enable Deleting.

Remarkably, this is all you need to complete the example. The EntityDataSource will now
automatically use the derived ObjectContext class to perform these record operations against the
Northwind database.

CHAPTER 13 ■ LINQ

611

■ Note There’s one quirk in this example. Because there are two data sources at work, the grid isn’t properly
synchronized when records are inserted or deleted (although changes are handled correctly). To solve this
problem, you can set the GridView.EnableViewState property to false so that it always throws out the current data

and rebinds itself after every postback.

Validation
To make this example just a bit more realistic, it’s worth considering how to add a bit of validation logic
to catch invalid data.

As with any validation scenario, there are numerous possible techniques. You could set constraints
in the database itself, which will cause exceptions when the web page attempts to commit invalid data.
This approach works, but it’s fairly low-level, and it forces you to place validation logic where you might
not want it (the database) and where it might not perform as well or be as easy to write.

Most powerfully, you can use a TemplateField in conjunction with the ASP.NET validation controls
to prevent invalid data from being submitted in the first place. Unfortunately, this requires a lot more
work (which takes the EntityDataSource out of its ideal niche as a tool for rapid application
development), and it ties your validation code to a single control.

You could also handle the events of the bound DetailsView control or the EntityDataSource. Both of
these techniques work, but they constrain your validation unnaturally, limiting it to a single control or a
single page. This is less than ideal if you want to deal with the same data in several different places.

A better approach is to extend the Entity Data Model using partial classes. This way, you can plug
your own validation logic directly into the entity classes, ensuring that invalid data is impossible no
matter how the data objects are manipulated in your application. Each entity class contains two partial
methods for each field, one that is called when a new field value has been received (but not applied) and
one that is called when the new value has been applied. The partial method names are derived from the
names of the field. For example, for the LastName field in the Employee entity object, the partial
methods are called OnLastNameChanging and OnLastNameChanged.

If you wanted to prevent a record from being updated or inserted if it has a LastName field with
fewer than three characters, you could add the following partial class declaration for the Employee class,
which implements the OnLastNameChanging method:

using System;

namespace NorthwindModel {

 public partial class Employee {

 partial void OnLastNameChanging(string value) {
 if (value.Length < 3) {
 throw new ArgumentException(String.Format("'{0}' is too short. " +
 "The last name must be three characters", value));
 }
 }
 }
}

Notice that we have used the same namespace that contains the entity classes. The namespace, the
name of the class, and the method signature must all match for a partial method to be applied. In our
OnLastNameChanging method, we are passed the proposed value as the sole argument; we check the

CHAPTER 13 ■ LINQ

612

length of the value and throw an instance of ArgumentException if the value length is too short. The
Entity Framework wraps up our ArgumentException and rethrows it as a
EntityDataSourceValidationException.

Of course, the web page doesn’t handle the exception gracefully unless you take extra steps to catch
it. As you learned in Chapter 9, you can handle events in the data control, such as ItemUpdated,
ItemDeleted, and ItemInserted (or RowUpdated, RowDeleted, and RowInserted in the case of a
GridView) to catch and handle the exception. For example, the following code checks for an exception
and displays the exception message in a label, provided the exception is an instance of
EntityDataSourceValidationException. Either way, the DetailsViewUpdateEventArgs.ExceptionHandled
property is set to true to prevent the exception from derailing the current page processing.

protected void DetailsView1_ItemUpdated(object sender, DetailsViewUpdatedEventArgs e) {
 if (e.Exception != null) {
 EntityDataSourceValidationException ve = e.Exception
 as EntityDataSourceValidationException;
 if (ve == null) {
 Label1.Text = "Data error";
 } else {
 Label1.Text = ve.Message;
 }
 e.ExceptionHandled = true;
 } else {
 GridView1.DataBind();
 }
}

Figure 13-16 shows the error message that appears when the user attempts to supply a last name
that is too short.

Figure 13-16. Validating an attempted change

Using the QueryExtender Control
An alternative to specifying a where clause for an EntityDataSource control is to use the QueryExtender
control. The value in the QueryExtender control is flexibility; the control supports a range of different
approaches to how the data is selected, many of which are difficult or impossible to implement using the
EntityDataSource where clause directly. The QueryExtender control uses declarative syntax to specify
the filter, which can be frustrating until you get used to the format required, but the flexibility that arises
as a consequence is worth the effort. In the following sections, we’ll look at the most useful of the
filtering approaches available with the QueryExtender control.

CHAPTER 13 ■ LINQ

613

Using a SearchExpression
The first filter we’ll look at is a SearchExpression, which finds all the instances of an entity class where a
given property starts with, ends with, or contains an expression. Here is an example, which also
demonstrates the declaration of the QueryExtender:

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
 DataKeyNames="EmployeeID" DataSourceID="EntityDataSource1">
 <Columns>
 <asp:CommandField ShowSelectButton="True" />
 <asp:BoundField DataField="EmployeeID" HeaderText="EmployeeID" ReadOnly="True"
 SortExpression="EmployeeID" />
 <asp:BoundField DataField="LastName" HeaderText="LastName"
 SortExpression="LastName" />
 <asp:BoundField DataField="FirstName" HeaderText="FirstName"
 SortExpression="FirstName" />
 <asp:BoundField DataField="Title" HeaderText="Title" SortExpression="Title" />
 <asp:BoundField DataField="TitleOfCourtesy" HeaderText="TitleOfCourtesy"
 SortExpression="TitleOfCourtesy" />
 <asp:BoundField DataField="City" HeaderText="City" SortExpression="City" />
 </Columns>
</asp:GridView>

<asp:EntityDataSource ID="EntityDataSource1" runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities" EnableDelete="True"
 EnableFlattening="False" EnableInsert="True" EnableUpdate="True"
 EntitySetName="Employees">
</asp:EntityDataSource>

<asp:QueryExtender ID="QueryExtender1" runat="server"
 TargetControlID="EntityDataSource1">
 <asp:SearchExpression DataFields="City" SearchType="StartsWith">
 <asp:ControlParameter ControlID="TextBox1" />
 </asp:SearchExpression>
</asp:QueryExtender>

<asp:Label ID="Label1" runat="server" Text="City:"></asp:Label>
<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

In this example, we have a GridView, which has an EntityDataSource as its data source. The
QueryExtender is marked in bold. We use the TargetControlID to specify the data source that we want to
filter. We have declared the SearchExpression within the QueryExtender. The DataFields attribute
specifies the fields we want to search; the SearchType attribute allows us to choose from StartsWith,
EndsWith, and Contains as search options; and the ControlParameter attribute lets us pick up the term
to search for from a different control, in this case, a TextBox.

If we view the page, we see that the GridView is populated with the list of Employees. Type in a
string, such as the letter K in the TextBox and hit Return. The contents of the GridView are filtered so that
only those Employees whose City field starts with K are displayed.

If you specify more than one field in the DataFields attribute, then your search term will be applied
more widely. Here is an example that searches the City and LastName fields:

CHAPTER 13 ■ LINQ

614

<asp:QueryExtender ID="QueryExtender1" runat="server"
 TargetControlID="EntityDataSource1">
 <asp:SearchExpression DataFields="City, LastName" SearchType="StartsWith">
 <asp:ControlParameter ControlID="TextBox1" />
 </asp:SearchExpression>
</asp:QueryExtender>

Now when we enter K into the textbox, we see two results: one resident in the city of Kirkland and
one with a last name of King.

Using a RangeExpression
A range expression allows you to select data where the value of a field falls in a specific range. Here is an
example that filters for the EmployeeID field between values specified by a pair of TextBoxes:

<asp:QueryExtender ID="QueryExtender1" runat="server"
 TargetControlID="EntityDataSource1">
 <asp:RangeExpression DataField="EmployeeID" MinType="Inclusive"
 MaxType="Inclusive">
 <asp:ControlParameter ControlID="TextBox1"/>
 <asp:ControlParameter ControlID="TextBox2"/>
 </asp:RangeExpression>
</asp:QueryExtender>

Unlike the SearchExpression, a RangeExpression will work with only a single field, which is specified
using the DataField property. The MaxType and MinType properties let you specify whether the search
bounds are Inclusive or Exclusive. Figure 13-17 shows the effect of filtering in this way.

Figure 13-17. Applying a QueryExtender that uses a RangeExpression

Using a PropertyExpression
A PropertyExpression lets you filter for data where one or more properties exactly match values that you
specify. This is not like the SearchExpression that will make partial matches; the comparison is done
using the C# == keyword. Here is an example of a QueryExtender that matches values from two
TextBoxes to filter for the City and LastName fields:

CHAPTER 13 ■ LINQ

615

<asp:QueryExtender ID="QueryExtender1" runat="server"
 TargetControlID="EntityDataSource1">
 <asp:PropertyExpression>
 <asp:ControlParameter ControlID="TextBox1" Name="City" />
 <asp:ControlParameter ControlID="TextBox2" Name="LastName" />
 </asp:PropertyExpression>
</asp:QueryExtender>

If you specify more than one ControlParameter, as we have done, the filter looks for records that
match both conditions. Figure 13-18 shows the effect of filtering for records with a City value of London
and a LastName value of King.

Figure 13-18. Applying a property expression

Using a MethodExpression
The last filter option we will consider is the most flexible, in that you specify a method that will be called
to execute the filter operation. What you put in that method is entirely open, but it will usually be a LINQ
expression. The first step is to define the method. Here is an example:

using System.Linq;
using System.Web.UI.WebControls.Expressions;
using NorthwindModel;

public class QueryExtenderMethods {

 public static IQueryable<Employee> FilterEmployees(IQueryable<Employee> data) {

 return from d in data
 where d.City == "London" && d.Country == "UK"
 select d;
 }
}

The method you want to use to filter data must accept and return an IQueryable<T>, where T is the
entity class you are working with. In our example, we are working with the Employee class again. Our
LINQ query filters for instances that have a City value of London and a Country value of UK. Using the
method with the QueryExtender is simply a matter of using the TypeName to specify the name of the
class that contains your filter method and the MethodName to give the name of the method, as follows:

<asp:QueryExtender ID="QueryExtender1" runat="server"
 TargetControlID="EntityDataSource1">
 <asp:MethodExpression TypeName="QueryExtenderMethods" MethodName="FilterEmployees"/>
</asp:QueryExtender>

CHAPTER 13 ■ LINQ

616

Now when data is loaded into the GridView, it is first filtered through the LINQ expression
contained in our method.

Summary
In this chapter, you learned about LINQ, a core feature of the .NET Framework, with deep support in the
C# language. LINQ has a wide range of potential applications—simply stated, it provides a declarative
model for retrieving and processing data that allows you to use the same (or similar) syntax with a wide
range of different types of data. The one unifying principle that underlies all applications of LINQ is that
it emphasizes declarative programming over functional programming. In other words, your code states
the result it wants rather than the sequence of steps necessary to get that result. Ideally, this shift allows
developers to concentrate on business logic and gives the LINQ infrastructure more freedom to
automate low-level tasks and optimize how they’re performed.

Although LINQ is an exciting and impressive technology, it doesn’t suit all applications. LINQ to
Collections and LINQ to DataSet are harmless, and LINQ to XML—which you’ll examine in Chapter 14—
just might be the most practical part of LINQ, because it gives developers a modern, streamlined way to
load, search, and construct XML documents. But LINQ to Entities—the real showpiece of LINQ—offers a
tricky compromise. On one hand, it gives developers tools to dramatically simplify query logic and data
processing. On the other hand, it introduces new potential problems, such as the deferred loading
model, which means that database code can be executed at unexpected times (and therefore throw
database-related exceptions when you least expect it). At worst, this model breaks down the proper
division of layers in a carefully structured component-based application, confuses data retrieval with
data processing, and allows database exceptions to migrate to unexpected places where they might not
be effectively dealt with. It’s no exaggeration to say that LINQ to Entities gives developers the most
powerful tool for shooting themselves in the foot that they’ve had for a long time. If in doubt, and if you
don’t need the more powerful LINQ to Entities features, it’s best to stick to the more modest approach of
simple, straightforward ADO.NET commands.

C H A P T E R 14

■ ■ ■

617

XML

Ever since XML (Extensible Markup Language) first arrived on the scene in the late 1990s, it has been the
focus of intense activity and overenthusiastic speculation. Based on nothing but ordinary text, XML
offers a means of sharing data between just about any two applications, whether they’re new or old,
written in different languages, built by distinct companies, or even hosted on different operating
systems. Now that XML has come of age, it’s being steadily integrated into different applications,
problem domains, and industries.

The .NET Framework provides a range of options for using XML. But although XML is conceptually
simple, processing XML is often tedious (with reams of repetitive code to write) or tricky (with the
potential for easily overlooked details to cause future headaches). For this reason, .NET has a
constellation of complementary XML APIs, including classes for stream-based XML processing, classes
for manipulating XML content in memory, and web controls like Xml and XmlDataSource for quick and
convenient XML display and data binding. There’s also LINQ to XML, a surprisingly practical XML API
that’s based on the LINQ extensions described in Chapter 13.

In this chapter, you’ll cover a fair bit of ground. You’ll learn about the traditional .NET classes for
XML processing, LINQ to XML, XML data binding, and the XML support that’s built into the ADO.NET
DataSet. But first, you’ll begin by reviewing the key concepts of XML and its supporting standards.

When Does Using XML Make Sense?
The question that every new ASP.NET developer asks (and many XML proponents don’t answer) is when
does it make sense to use XML in an ASP.NET web application? It makes sense in a few core scenarios:

• You need to manipulate data that’s already stored in XML. This situation might
occur if you want to exchange data with an existing application that uses a specific
flavor of XML.

• You want to use XML to store your data and open the possibilities of future
integration. Because you use XML, you know other third-party applications can be
designed to read this data in the future.

• You want to use a technology that depends on XML. For example, web services use
various standards that are all based on XML.

Many .NET features use XML behind the scenes. For example, web services use a higher-level model
that’s built on top of the XML infrastructure. You don’t need to directly manipulate XML to use web
services—instead, you can work through an abstraction of objects. Similarly, you don’t need to
manipulate XML to read information from ASP.NET configuration files, save the DataSet to a file, or rely
on other .NET Framework features that have XML underpinnings. In all these situations, XML is quietly
at work, and you gain the benefits of XML without needing to deal with it by hand.

CHAPTER 14 ■ XML

618

XML makes the most sense in application integration scenarios. However, there’s no reason you
can’t use an XML format to store your own proprietary data. If you do, you’ll gain a few minor
conveniences, such as the ability to use .NET classes to read XML data from a file. When storing
complex, highly structured data, the convenience of using these classes rather than designing your own
custom format and writing your own file-parsing logic is significant. It will also make it easier for other
developers to understand the system you’ve created and to reuse or enhance your work.

■ Note One of the most important concepts developers must understand is that there are two decisions when
storing data—choosing the way data will be structured (the logical format) and choosing the way data will be
stored (the physical data store). XML is a choice of format, not a choice of storage. This means if you decide to

store data in an XML format, you still need to decide whether that XML will be inserted into a database field,

inserted into a file, or just kept in memory in a string or some other type of object.

An Introduction to XML
In its simplest form, the XML specification is a set of guidelines, defined by the W3C (World Wide
Web Consortium), for describing structured data in plain text. Like HTML, XML is a markup language
based on tags within angled brackets. As with HTML, the textual nature of XML makes the data highly
portable and broadly deployable. In addition, you can create and edit XML documents in any standard
text editor.

Unlike HTML, XML does not have a fixed set of tags. Instead, XML is a metalanguage that allows for
the creation of other markup languages. In other words, XML sets out a few simple rules for naming and
ordering elements, and you create your own data format with your own custom elements.

For example, the following document shows a custom XML format that stores a product catalog. It
starts with some generic product catalog information, followed by a product list with itemized
information about two products.

<?xml version="1.0" ?>
<productCatalog>
 <catalogName>Acme Fall 2008 Catalog</catalogName>
 <expiryDate>2008-01-01</expiryDate>
 <products>
 <product id="1001">
 <productName>Magic Ring</productName>
 <productPrice>342.10</productPrice>
 <inStock>true</inStock>
 </product>
 <product id="1002">
 <productName>Flying Carpet</productName>
 <productPrice>982.99</productPrice>
 <inStock>true</inStock>
 </product>
 </products>
</productCatalog>

This example uses elements such as <productCatalog>, <product>, and <catalogName> to indicate
the document structure. However, you’re free to use whatever element names describe your data best.

CHAPTER 14 ■ XML

619

It’s because of this flexibility that XML has become extremely successful. Of course, flexibility
also has drawbacks. Because XML doesn’t define any standard data formats, it’s up to you to create
data formats that represent product catalogs, invoices, customer lists, and so on. Different companies
can easily store similar data using completely different tag names and structures. And even though
any application can parse XML data, the writer and the reader of that data still need to agree on a
common set of tags and structure in order for the reader to be able to interpret that data and extract
meaningful information.

Usually, third-party organizations define standards for particular problem domains and industries.
For example, if you need to store a mathematical equation in XML, you’ll probably choose the MathML
format, which is an XML-based format that defines a specific set of tags and a specific structure.
Similarly, hundreds more standard XML formats exist for real estate listings, music notation, legal
documents, patient records, vector graphics, and much more. Creating a robust, usable XML format
takes some experience, so it’s always best to use a standardized, agreed-upon, XML-based markup
language when possible.

■ Note One obvious application XML-based language is XHTML, the modernized version of HTML. In essence,
XHTML is an XML-based language that indicates the structure of documents, by dividing text into sections,

headings, paragraphs, and lists.

The Advantages of XML
When XML was first introduced, its success was partly due to its simplicity. The rules of XML are much
shorter and simpler than the rules of its predecessor, SGML (Standard Generalized Markup Language),
and simple XML documents are human-readable. However, in the intervening years many other
supporting standards have been added to the XML mix, and as a result, using XML in a professional
application isn’t simple at all.

■ Note Although XML is human-readable in theory, it’s often difficult to understand complex documents, and only

computer applications, not developers, can read many types of XML.

But if anything, XML is much more useful today than it ever was before. The benefits of using XML
in a modern application include the following:

• Adoption: XML is ubiquitous. Many companies are using XML to store data or are
actively considering it. Whenever data needs to be shared, XML is automatically
the first (and often the only) choice that’s examined.

• Extensibility and flexibility: XML imposes no rules about data semantics and does
not tie companies into proprietary networks, unlike EDI (Electronic Data
Interchange). As a result, XML can fit any type of data and is cheaper to
implement.

• Related standards and tools: Another reason for XML’s success is the tools (such
as parsers) and the surrounding standards (such as XML Schema, XPath, and
XSLT) that help in creating and processing XML documents. As a result,

CHAPTER 14 ■ XML

620

programmers in nearly any language have ready-made components for reading
XML, verifying that XML is valid, verifying XML against a set of rules (known as a
schema), searching XML, and transforming one format of XML into another.

XML acts like the glue that allows different systems to work together. It helps standardize business
processes and transactions between organizations. But XML is not just suited for data exchange between
companies. Many programming tasks today are all about application integration—web applications
integrate multiple web services, e-commerce sites integrate legacy inventory and pricing systems, and
intranet applications integrate existing business applications. All these applications are held together by
the exchange of XML documents.

Well-Formed XML
XML is a fairly strict standard. This strictness is designed to preserve broad compatibility. If the rules of
XML weren’t as strict, it would be difficult to distinguish between a harmless variance and a serious
error. Even worse, some mistakes might be dealt with differently by different XML parsers, leading to
inconsistencies in the way that is processed (or even whether it can be processed at all). These are the
sort of quirks that affected one notorious language that isn’t based on XML—HTML.

To prevent this sort of problem, all XML parsers perform a few basic quality checks. If an XML
document does not meet these standards, it’s rejected outright. If the XML document does follow these
rules, it’s deemed to be well formed. Well-formed XML isn’t necessarily correct XML—for example, it
could still contain incorrect data—but an XML processor can parse it.

To be considered well formed, an XML document must meet these criteria:

• Every start tag must have an end tag.

• An empty element must end with />.

• Elements can nest but not overlap. In other words,
<person><firstName></firstName>_</person> is valid, but
<person><firstName></person></firstName> is not.

• Elements and attributes must use consistent case. For example, the tags
<FirstName></firstName> do not comprise a valid element because they have
different case.

• An element cannot have two attributes with the same name because there will be
no way to distinguish them from each other. However, an element can contain
two nested elements with the same name.

• A document can have only one root element. (The root element is the top-level
element that starts the document and contains all its content.)

• All attributes must have quotes around the value.

• Comments can’t be placed inside tags. (XML comments have the same format as
HTML comments and are bracketed with <!-- and --> markers.)

■ Tip To quickly test if an XML document is well formed, try opening it in Internet Explorer. If there is an error,

Internet Explorer will report a message and flag the offending line.

CHAPTER 14 ■ XML

621

XML Namespaces
As the XML standard gained ground, dozens of XML markup languages (often called XML grammars)
were created, and many of them are specific to certain industries, processes, and types of information.
In many cases, it becomes important to extend one type of markup with additional company-specific
elements, or even create XML documents that combine several different XML grammars. This poses a
problem. What happens if you need to combine two XML grammars that use elements with the same
names? How do you tell them apart? A related, but more typical, problem occurs when an application
needs to distinguish between XML grammars in a document. For example, consider an XML document
that has order-specific information using a standard called OrderML and client-specific information
using a standard called ClientML. This document is sent to an order-fulfillment application that’s
interested only in the OrderML details. How can it quickly filter out the information that it needs and
ignore the unrelated details?

The solution is the XML Namespaces standard. The core idea behind this standard is that every XML
markup language has its own namespace that uniquely identifies all related elements. Technically,
namespaces disambiguate elements by making it clear to which markup language they belong.

All XML namespaces use URIs (universal resource identifiers). Typically, these URIs look like a web-
page URL. For example, http://www.mycompany.com/mystandard is a typical name for a namespace.
Though the namespace looks like it points to a valid location on the Web, this isn’t required (and
shouldn’t be assumed). URIs are used for XML namespaces because they are more likely to be unique.
Usually, if you create a new XML language, you’ll use a URI that points to a domain or website you
control. That way, you can be sure that no one else is likely to use that URI. However, the namespace
doesn’t need to be a URI—any sequence of text is acceptable.

■ Note Sometimes URNs (uniform resource names) are used to prevent confusion with website addresses. URNs
start with the prefix urn: and can incorporate a domain name or unique identifier (such as a GUID). One example is

urn:schemas-microsoft-com. For more information, see http://en.wikipedia.org/wiki/Uniform_Resource_Name.

To specify that an element belongs to a specific namespace, you simply need to add the xmlns
attribute to the start tag and indicate the namespace. For example, the element shown here is part of the
http://mycompany/OrderML namespace. If you don’t take this step, the element will not be part of any
namespace.

<order xmlns="http://mycompany/OrderML"></order>

It would be cumbersome if you needed to type in the full namespace URI every time you wrote an
element in an XML document. Fortunately, when you assign a namespace in this fashion, it becomes the
default namespace for all child elements. For example, in the XML document shown here, the <order>
and <orderItem> elements are both placed in the http://mycompany/OrderML namespace:

<?xml version="1.0"?>
<order xmlns="http://mycompany/OrderML">
 <orderItem>...</orderItem>
 <orderItem>...</orderItem>
</order>

http://www.mycompany.com/mystandard
http://en.wikipedia.org/wiki/Uniform_Resource_Name
http://mycompany/OrderML
http://mycompany/OrderML
http://mycompany/OrderML
http://mycompany/OrderML

CHAPTER 14 ■ XML

622

■ Tip Namespace names must match exactly. If you change the capitalization in part of a namespace, add a

trailing / character, or modify any other detail, the XML parser will interpret it as a different namespace.

You can declare a new namespace for separate portions of the document. The easiest way to deal
with this is to use namespace prefixes. Namespace prefixes are short character sequences that you can
insert in front of a tag name to indicate its namespace. You define the prefix in the xmlns attribute by
inserting a colon (:) followed by the characters you want to use for the prefix.

Here’s an order document that uses namespace prefixes to map different elements into two
different namespaces:

<?xml version="1.0"?>
<ord:order xmlns:ord="http://mycompany/OrderML"
 xmlns:cli="http://mycompany/ClientML">
 <cli:client>
 <cli:firstName>...</cli:firstName>
 <cli:lastName>...</cli:lastName>
 </cli:client>

 <ord:orderItem>...</ord:orderItem>
 <ord:orderItem>...</ord:orderItem>
</ord:order>

Namespace prefixes are simply used to map an element to a namespace. The actual prefix you use
isn’t important as long as it remains consistent.

XML Schemas
A good part of the success of the XML standard is due to its remarkable flexibility. Using XML, you can
create exactly the markup language you need. This flexibility also raises a few problems. With developers
around the world using your XML format, how do you ensure that everyone is following the rules?

The solution is to create a formal document that states the rules of your custom markup language,
which is called a schema. These rules won’t include syntactical details (such as the requirement to use
angle brackets or properly nest tags) because these requirements are already part of the basic XML
standard. Instead, the schema document will list the logical rules that pertain to your type of data. They
include the following:

• Document vocabulary: This determines what element and attribute names are
used in your XML documents.

• Document structure: This determines where tags can be placed and can include
rules specifying that certain tags must be placed before, after, or inside others. You
can also specify how many times an element can occur.

• Supported data types: This allows you to specify whether data is ordinary text or
must be able to be interpreted as numeric data, date information, and so on.

• Allowed data ranges: This allows you to set constraints that restrict numbers to
certain ranges, limit text to a certain length, force regular expression pattern
matching, or allow only a small set of specified values.

http://mycompany/OrderML
http://mycompany/ClientML

CHAPTER 14 ■ XML

623

The XML Schema standard defines the rules you need to follow when creating a schema document.
The following is an XML schema that defines the rules for the product catalog document shown earlier:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="productCatalog">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="catalogName" type="xsd:string"/>
 <xsd:element name="expiryDate" type="xsd:date"/>

 <xsd:element name="products">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="product"
 type="productType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="productType">
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="productPrice" type="xsd:decimal"/>
 <xsd:element name="inStock" type="xsd:boolean"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer" use="required" />
 </xsd:complexType>
</xsd:schema>

Every schema document is an XML document that begins with a root <schema> element. These
elements are defined in the XML schema namespace (http://www.w3.org/2001/XMLSchema). Your
schema documents must use this exact namespace name. However, you’re free to map it to whatever
namespace prefix you’d like to use in your schema document, although xsd (used here) and xs are the
conventional choices.

Inside the <schema> element are two types of definitions—the <element> element, which defines
the structure the target document must follow, and one or more <complexType> elements, which define
smaller data structures that are used to define the document structure.

The <element> tag is really the heart of the schema, and it’s the starting point for all validation. In
this example, the <element> tag identifies that the product catalog must begin with a root element
named <productCatalog>. Inside the <productCatalog> element is a sequence of three elements. The
first, <catalogName>, contains ordinary text. The second, <expiryDate>, includes text that fits the rules
for date representation, as set out in the schema standard. The final element, <products>, contains a list
of <product> elements.

Each <product> element is a complex type, and the type is defined with the <complexType>
element at the end of the document. This complex type (named productType) consists of a sequence of
three elements with product information. The elements must store this information as text
(<productName>), a decimal value (<productPrice>), and a Boolean value (<inStock>), respectively. The
complex type includes one required attribute, named id.

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

CHAPTER 14 ■ XML

624

■ Note A full discussion of XML Schema is beyond the scope of this book. However, if you want to learn more,
you can consider the excellent online tutorials at http://www.w3schools.com/schema or the standard itself at

http://www.w3.org/XML/Schema.

Stream-Based XML Processing
The .NET Framework allows you to manipulate XML data with a set of classes in the System.Xml
namespace (and other namespaces that begin with System.Xml). Out of these, the most lightweight way
to read and write XML is through two stream-based classes: XmlTextReader and XmlTextWriter. These
classes are mandatory if you have huge XML files that make it impractical to hold the whole document in
memory at once. They may also be sufficient for simple XML processing.

Writing XML Files
The .NET Framework provides two approaches for writing XML data to a file:

• You can build the document in memory using the XmlDocument or XDocument
class and write it to a file when you’re finished.

• You can write the document directly to a stream using the XmlTextWriter. This
outputs data as you write it, node by node.

Constructing an XML document in memory is a good choice if you need to perform other
operations on XML content after you create it, such as searching it, transforming it, or validating it. It’s
also the only way to write an XML document in a nonlinear way, because it allows you to insert new
nodes anywhere. However, the XmlTextWriter provides a much simpler and better performing model for
writing directly to a file, because it doesn’t store the whole document in memory at once.

■ Tip You can use the XmlDocument, XDocument, and XmlTextWriter classes to create XML data that isn’t stored
in a file. That’s because all of these classes allow you to write information to any stream. Using techniques such
as these, you could build an XML document and then insert it into another storage location such as a text-based

field in a database table.

The next web-page example shows how to use the XmlTextWriter to create a well-formed XML file.
The first step is to create a private WriteXML() method that will handle the job. It begins by creating an
XmlTextWriter object and passing the physical path of the file you want to create as a constructor
argument.

private void WriteXML()
{
 string xmlFile = Server.MapPath("DvdList.xml");
 XmlTextWriter writer = new XmlTextWriter(xmlFile, null);
 ...

http://www.w3schools.com/schema
http://www.w3.org/XML/Schema

CHAPTER 14 ■ XML

625

The second parameter to the XML constructor specifies the encoding. You can pass a null reference
to use standard UTF-8 encoding.

■ Note Keep in mind that when you use the XmlTextWriter to create an XML file, you face all the limitations that
you face when writing any other type of file in a web application. In other words, you need to take safeguards
(such as generating unique filenames) to ensure that two different clients don’t run the same code and try to write

the same file at once.

The XmlTextWriter has properties such as Formatting and Indentation, which allow you to specify
whether the XML data will be automatically indented with the typical hierarchical structure and to
indicate the number of spaces to use as indentation. You can set these two properties as follows:

 ...
 writer.Formatting = Formatting.Indented;
 writer.Indentation = 3;
 ...

■ Tip Remember, in a datacentric XML document, whitespace is almost always ignored. But by adding

indentation, you create a file that is easier for a human to read and interpret, so it can’t hurt.

Now you’re ready to start writing the file. The WriteStartDocument() method writes the XML
declaration with version 1.0 (<?xml version="1.0"?>), as follows:

 writer.WriteStartDocument();

The WriteComment() method writes a comment. You can use it to add a message with the date and
time of creation:

 writer.WriteComment("Created @ " + DateTime.Now.ToString());

Next, you need to write the real content—the elements, attributes, and so on. This example builds
an XML document that represents a DVD list, with information such as the title, the director, the price,
and a list of actors for each DVD. These records will be child elements of a parent <DvdList> element,
which must be created first:

 writer.WriteStartElement("DvdList");

Now you can create the child nodes. The following code opens a new <DVD> element:

 writer.WriteStartElement("DVD");

Now the code writes two attributes, representing the ID and the related category. This information
is added to the start tag of the <DVD> element.

CHAPTER 14 ■ XML

626

 ...
 writer.WriteAttributeString("ID", "1");
 writer.WriteAttributeString("Category", "Science Fiction");
 ...

The next step is to add the elements with the information about the DVD inside the <DVD> element.
These elements won’t have child elements of their own, so you can write them and set their values more
efficiently with a single call to the WriteElementString() method. WriteElementString() accepts two
arguments: the element name and its value (always as string), as shown here:

 ...
 // Write some simple elements.
 writer.WriteElementString("Title", "The Matrix");
 writer.WriteElementString("Director", "Larry Wachowski");
 writer.WriteElementString("Price", "18.74");
 ...

Next is a child <Starring> element that lists one or more actors. Because this element contains other
elements, you need to open it and keep it open with the WriteStartElement() method. Then you can add
the contained child elements, as shown here:

 ...
 writer.WriteStartElement("Starring");
 writer.WriteElementString("Star", "Keanu Reeves");
 writer.WriteElementString("Star", "Laurence Fishburne");
 ...

At this point the code has written all the data for the current DVD. The next step is to close all the
opened tags, in reverse order. To do so, you just call the WriteEndElement() method once for each
element you’ve opened. You don’t need to specify the element name when you call WriteEndElement().
Instead, each time you call WriteEndElement() it will automatically write the closing tag for the last
opened element.

 ...
 // Close the <Starring> element.
 writer.WriteEndElement();

 // Close the <DVD> element.
 writer.WriteEndElement();
 ...

Now let’s create another <DVD> element using the same approach:

 ...
 writer.WriteStartElement("DVD");

 // Write a couple of attributes to the <DVD> element.
 writer.WriteAttributeString("ID", "2");
 writer.WriteAttributeString("Category", "Drama");

 // Write some simple elements.
 writer.WriteElementString("Title", "Forrest Gump");
 writer.WriteElementString("Director", "Robert Zemeckis");

CHAPTER 14 ■ XML

627

 writer.WriteElementString("Price", "23.99");

 // Open the <Starring> element.
 writer.WriteStartElement("Starring");

 // Write two elements.
 writer.WriteElementString("Star", "Tom Hanks");
 writer.WriteElementString("Star", "Robin Wright");

 // Close the <Starring> element.
 writer.WriteEndElement();

 // Close the <DVD> element.
 writer.WriteEndElement();
 ...

To complete the document, you simply need to close the <DvdList> item, with yet another call to
WriteEndElement(). You can then close the XmlTextWriter, as shown here:

 ...
 writer.WriteEndElement();
 writer.Close();
}

To try this code, call the WriteXML() procedure from the Page.Load event handler. It will generate
an XML file named DvdList.xml in the current folder, as shown in Figure 14-1.

Figure 14-1. A dynamically created XML document

CHAPTER 14 ■ XML

628

■ Note It’s always a good idea to identify your XML language by giving it a unique XML namespace, as described
earlier in this chapter. Once you do, you’ll then want to place your elements into that namespace. To do so, you
must first define the namespace prefix as an attribute using the WriteAttributeString() method to write an xmlns

attribute. Typically, you’ll add this attribute to the root element of your document or to the first element that uses
your namespace. Next, you must qualify your element names with the namespace prefix. To do so, you use the

overloaded version of the WriteStartElement() method that accepts a namespace URI and a namespace prefix.

Reading XML Files
As when writing XML content, there are two basic strategies when reading it:

• You can read it into memory in one burst using the XmlDocument,
XPathNavigator, or XDocument classes. Out of these three, only the
XPathNavigator is read-only.

• You can step through the content node by node using the XmlTextReader, which
is a stream-based reader.

The stream-based approach reduces the memory overhead and is usually—but not always—more
efficient. If you need to perform a time-consuming task with an XML document, you might choose to
use the in-memory approach to reduce the amount of time that the file is kept open, if you know other
users will also need to access it.

Although reading an XML file with an XmlTextReader object is the simplest approach, it also
provides the least flexibility. The file is read in sequential order, and you can’t freely move to the parent,
child, and sibling nodes as you can with in-memory XML processing. Instead, you read a node at a time
from a stream. Usually, you’ll write one or more nested loops to dig through the elements in the XML
document until you find the content that interests you.

The following code starts by loading the source file in an XmlTextReader object. It then begins a
loop that moves through the document one node at time. To move from one node to the next, you call
the XmlTextReader.Read() method. This method returns true until it moves past the last node, at which
point it returns false. This is similar to the approach used by the DataReader class, which retrieves query
results from a database.

Here’s the code you need:

private void ReadXML()
{
 string xmlFile = Server.MapPath("DvdList.xml");

 // Create the reader.
 XmlTextReader reader = new XmlTextReader(xmlFile);
 StringBuilder str = new StringBuilder();

 // Loop through all the nodes.
 while (reader.Read())
 {
 switch(reader.NodeType)
 {
 case XmlNodeType.XmlDeclaration:
 str.Append("XML Declaration: ");

CHAPTER 14 ■ XML

629

 str.Append(reader.Name);
 str.Append(" ");
 str.Append(reader.Value);
 str.Append("
");
 break;
 case XmlNodeType.Element:
 str.Append("Element: ");
 str.Append(reader.Name);
 str.Append("
");
 break;
 case XmlNodeType.Text:
 str.Append(" - Value: ");
 str.Append(reader.Value);
 str.Append("
");
 break;
 }
 ...

After handling the types of nodes you’re interested in, the next step is to check if the current node
has attributes. The XmlTextReader doesn’t have an Attributes collection, but an AttributeCount property
returns the number of attributes. You can continue moving the cursor forward to the next attribute until
MoveToNextAttribute() returns false.

 ...
 if (reader.AttributeCount > 0)
 {
 while (reader.MoveToNextAttribute())
 {
 str.Append(" - Attribute: ");
 str.Append(reader.Name);
 str.Append(" Value: ");
 str.Append(reader.Value);
 str.Append("
");
 }
 }
 }

 // Close the reader and show the text.
 reader.Close();
 lblXml.Text = str.ToString();
}

In the last two lines the procedure concludes by flushing the content in the buffer and closing the
reader. When using the XmlTextReader, it’s imperative you finish your task and close the reader as soon
as possible, because it retains a lock on the file.

The XmlTextReader provides additional methods that help make reading XML faster and more
convenient if you know what structure to expect. For example, you can use MoveToContent(), which
skips over irrelevant nodes (such as comments, whitespace, and the XML declaration) and stops on the
declaration of the next element.

You can also use the ReadStartElement() method, which reads a node and performs basic validation
at the same time. When you call ReadStartElement(), you specify the name of the element you expect to
appear next in the document. The XmlTextReader calls MoveToContent() and then verifies that the

CHAPTER 14 ■ XML

630

current element has the name you’ve specified. If it doesn’t, an exception is thrown. You can also use the
ReadEndElement() method to read the closing tag for the element.

Finally, if you want to read an element that contains only text data, you move over the start tag,
content, and end tag by using the ReadElementString() method and by specifying the element name.
The data you want is returned as a string.

Here’s the code that extracts data from the DVD list using this more streamlined approach:

// Create the reader.
string xmlFile = Server.MapPath("DvdList.xml");
XmlTextReader reader = new XmlTextReader(xmlFile);

StringBuilder str = new StringBuilder();
reader.ReadStartElement("DvdList");

// Read all the <DVD> elements.
while (reader.Read())
{
 if ((reader.Name == "DVD") && (reader.NodeType == XmlNodeType.Element))
 {
 reader.ReadStartElement("DVD");
 str.Append("");
 str.Append(reader.ReadElementString("Title"));
 str.Append("");
 str.Append(reader.ReadElementString("Director"));
 str.Append("");
 str.Append(String.Format("{0:C}",
 Decimal.Parse(reader.ReadElementString("Price"))));
 str.Append("");
 }
}
// Close the reader and show the text.
reader.Close();
lblXml.Text = str.ToString();

Figure 14-2 shows the result.

CHAPTER 14 ■ XML

631

Figure 14-2. Efficient XML reading

In-Memory XML Processing
Stream-based XML processing offers the least overhead but also gives you the least flexibility. In many
XML processing scenarios, you don’t want to work at such a low level. Instead, you’ll want an easy way to
pull out the element content you want with a few lines of code (rather than a few dozen). Furthermore,
the stream-based processing model makes it easy to make relatively trivial omissions that can cause
significant future problems, like failing to anticipate whitespace and comments.

In-memory XML processing is far more convenient. Unfortunately, there’s no single, standard
approach for in-memory XML processing. All the following classes allow you to read and navigate the
content of an XML file:

XmlDocument: The XmlDocument class implements the full XML DOM (Document Object Model)
Level 2 Core, as defined by the W3C. It’s the most standardized interface to XML data, but it’s also a
bit clunky at times.

XPathNavigator: Like the XmlDocument, the XPathNavigator holds the entire XML document in
memory. However, it offers a slightly faster, more streamlined model than the XML DOM, along
with enhanced searching features. Unlike the XmlDocument, it doesn’t provide the ability to make
changes and save them.

CHAPTER 14 ■ XML

632

XDocument: The XDocument provides an even more intuitive and efficient API for dealing with
XML. Technically, it’s part of LINQ to XML, but it’s useful even when you aren’t constructing LINQ
queries. However, because of the newness of the XDocument, it needs to work in conjunction with
the older .NET XML classes to perform tasks like validation. You’ll also find that some classes that
have been around for a long time—like the Xml web control that lets you display XML in a web page
more easily—are still based on the XmlDocument, and so won’t work with the XDocument.

The following sections demonstrate each of these approaches to loading the DVD list XML
document.

The XmlDocument
The XmlDocument stores. information as a tree of nodes. A node is the basic ingredient of an XML file
and can be an element, an attribute, a comment, or a value in an element. A separate XmlNode object
represents each node. The XmlDocument wraps groups of XmlNode objects that exist at the same level
into XmlNodeList collections.

You can retrieve the first level of nodes through the XmlDocument.ChildNodes property. In the
DVD list example, that property provides access to the initial comments and the <DvdList> element.
The <DvdList> element contains other child nodes, and these nodes contain still more nodes and the
actual values. To drill down through all the layers of the tree, you need to use recursive logic, as shown in
this example.

Figure 14-3 shows a web page that reads the DvdList.xml document and displays a list of elements.
This example uses different levels of indenting to show the overall structure.

When the example page loads, it creates an XmlDocument object and calls the Load() method,
which retrieves the XML data from the file. It then calls a recursive function in the page class named
GetChildNodesDescr() and displays the result in a Literal control named lblXml:

private void Page_Load(object sender, System.EventArgs e)
{
 string xmlFile = Server.MapPath("DvdList.xml");

 // Load the XML file into an XmlDocument.
 XmlDocument doc = new XmlDocument();
 doc.Load(xmlFile);

 // Write the description text to a label.
 lblXml.Text = GetChildNodesDescr(doc.ChildNodes, 0);
}

CHAPTER 14 ■ XML

633

Figure 14-3. Retrieving information from an XML document

CHAPTER 14 ■ XML

634

The XmlDocument and User Concurrency

In a web application, it’s extremely important to pay close attention to how your code accesses the file
system. If you aren’t careful, a web page that reads data from a file can become a disaster under heavy
user loads. The problem occurs when two users access a file at the same time. If the first user hasn’t
taken care to open a shareable stream, the second user will receive an error.

These issues are covered in more detail in Chapter 12. However, all of this raises an excellent question—
how does the XmlDocument.Load() method open a file? To find the answer, you need to dig into the IL
code of the .NET Framework. What you’ll find is that several steps actually unfold to load an XML
document into an XmlDocument object. First, the path you supply is examined by an XmlUrlResolver and
passed to an XmlDownloadResolver, which determines whether it needs to make a web request (if you’ve
supplied a URL) or can open a FileStream (if you’ve supplied a path). If it can use the FileStream, it
explicitly opens the FileStream with shareable reads enabled. As a result, if more than one user loads the
file with the XmlDocument.Load() method at once on different threads, no conflict will occur. Of course, the
best approach is to reduce contention by caching the retrieved XML content or the XmlDocument object
(see Chapter 11).

The GetChildNodesDescr() method takes two parameters: an XmlNodeList object (a collection of
nodes) and an integer that represents the nesting level. When the Page.Load event handler calls
GetChildNodesDescr(), it passes an XmlNodeList object that represents the first level of nodes. The code
also passes 0 as the second argument of GetChildNodesDescr() to indicate that this is the first level of
nesting in the XML document. The processed node content is then returned as a string.

■ Tip What if you want to create an XmlDocument and fill it based on XML content you’ve drawn from another
source, such as a field in a database table? In this case, instead of using the Load() method, you would use

LoadXml(), which accepts a string that contains the content of the XML document.

The interesting part is the GetChildNodesDescr() method. It first creates a string with three spaces
for each indentation level that it will later use as a prefix for each line added to the final HTML text.

private string GetChildNodesDescr(XmlNodeList nodeList, int level)
{
 string indent = "";
 for (int i=0; i<level; i++)
 indent += " ";
 ...

Next, the GetChildNodesDescr() method cycles through all the child nodes of the XmlNodeList. For
the first call, these nodes include the XML declaration, the comment, and the <DvdList> element. An
XmlNode object exposes properties such as NodeType, which identifies the type of item (for example,
Comment, Element, Attribute, CDATA, Text, EndElement, Name, and Value). The code checks for node
types that are relevant in this example and adds that information to the string, as shown here:

 ...
 StringBuilder str = new StringBuilder("");

CHAPTER 14 ■ XML

635

 foreach (XmlNode node in nodeList)
 {
 switch(node.NodeType)
 {
 case XmlNodeType.XmlDeclaration:
 str.Append("XML Declaration: ");
 str.Append(node.Name);
 str.Append(" ");
 str.Append(node.Value);
 str.Append("
");
 break;
 case XmlNodeType.Element:
 str.Append(indent);
 str.Append("Element: ");
 str.Append(node.Name);
 str.Append("
");
 break;
 case XmlNodeType.Text:
 str.Append(indent);
 str.Append(" - Value: ");
 str.Append(node.Value);
 str.Append("
");
 break;
 case XmlNodeType.Comment:
 str.Append(indent);
 str.Append("Comment: ");
 str.Append(node.Value);
 str.Append("
");
 break;
 }
 ...

Note that not all types of nodes have a name or a value. For example, for an element such as Title,
the name is Title, but the value is empty, because it’s stored in the following Text node.

Next, the code checks whether the current node has any attributes (by testing if its Attributes
collection is not null). If it does, the attributes are processed with a nested foreach loop:

 ...
 if (node.Attributes != null)
 {
 foreach (XmlAttribute attrib in node.Attributes)
 {
 str.Append(indent);
 str.Append(" - Attribute: ");
 str.Append(attrib.Name);
 str.Append(" Value: ");
 str.Append(attrib.Value);
 str.Append("
");
 }
 }
 ...

CHAPTER 14 ■ XML

636

Lastly, if the node has child nodes (according to its HasChildNodes property), the code recursively
calls the GetChildNodesDescr function, passing to it the current node’s ChildNodes collection and the
current indent level plus 1, as shown here:

 ...
 if (node.HasChildNodes)
 str.Append(GetChildNodesDescr(node.ChildNodes, level+1));
 }
 return str.ToString();
}

When the whole process is finished, the outer foreach block is closed, and the function returns the
content of the StringBuilder object.

The XmlDocument also allows you to modify node content (for example, you can change the
XmlNode.Name and XmlNode.Value properties) and make more dramatic changes, such as removing a
node from a collection by creating a new node. In fact, you can even construct an entire XML document in
memory as an XmlDocument and then save it after the fact. To save the current content of an
XmlDocument, you call the Save() method and supply the string name of the file or a ready-made stream.

The XPathNavigator
The XPathNavigator class (found in the System.Xml.XPath namespace) works similarly to the
XmlDocument class. It loads all the information into memory and then allows you to move through the
nodes. The key difference is that it uses a cursor-based approach that allows you to use methods such as
MoveToNext() to move through the XML data. An XPathNavigator can be positioned on only one node a
time.

You can create an XPathNavigator from an XmlDocument using the
XmlDocument.CreateNavigator() method. Here’s an example:

private void Page_Load(object sender, System.EventArgs e)
{
 string xmlFile = Server.MapPath("DvdList.xml");

 // Load the XML file in an XmlDocument.
 XmlDocument doc = new XmlDocument();
 doc.Load(xmlFile);

 // Create the navigator.
 XPathNavigator xnav = doc.CreateNavigator();
 lblXml.Text = GetXNavDescr(xnav, 0);
}

In this case, the returned object is passed to the GetXNavDescr() recursive method, which returns
the HTML code that represents the XML structure, as in the previous example.

The code of the GetXNavDescr() method is a bit different from the GetChildNodesDescr() method in
the previous example, because it takes an XPathNavigator object that is positioned on a single node, not
a collection of nodes. That means you don’t need to loop through any collections. Instead, you can
simply examine the information for the current node, as follows:

private string GetXNavDescr(XPathNavigator xnav, int level)
{
 string indent = "";
 for (int i=0; i<level; i++)

CHAPTER 14 ■ XML

637

 indent += " ";
 StringBuilder str = new StringBuilder("");
 switch(xnav.NodeType)
 {
 case XPathNodeType.Root:
 str.Append("ROOT");
 str.Append("
");
 break;
 case XPathNodeType.Element:
 str.Append(indent);
 str.Append("Element: ");
 str.Append(xnav.Name);
 str.Append("
");
 break;
 case XPathNodeType.Text:
 str.Append(indent);
 str.Append(" - Value: ");
 str.Append(xnav.Value);
 str.Append("
");
 break;
 case XPathNodeType.Comment:
 str.Append(indent);
 str.Append("Comment: ");
 str.Append(xnav.Value);
 str.Append("
");
 break;
 }
 ...

Note that the values for the NodeType property are almost the same, except for the enumeration
name, which is XPathNodeType instead of XmlNodeType. That’s because the XPathNavigator uses a
smaller, more streamlined set of nodes. One of the nodes it doesn’t support is the XmlDeclaration
node type.

The function checks if the current node has any attributes. If so, it moves to the first one with a call
to MoveToFirstAttribute() and loops through all the attributes until the MoveToNextAttribute() method
returns false. At that point it returns to the parent node, which is the node originally referenced by the
object. Here’s the code that carries this out:

 ...
 if (xnav.HasAttributes)
 {
 xnav.MoveToFirstAttribute();
 do {
 str.Append(indent);
 str.Append(" - Attribute: ");
 str.Append(xnav.Name);
 str.Append(" Value: ");
 str.Append(xnav.Value);
 str.Append("
");
 } while (xnav.MoveToNextAttribute());
 // Return to the parent.
 xnav.MoveToParent();
 }
 ...

CHAPTER 14 ■ XML

638

The function does a similar thing with the child nodes by moving to the first one with
MoveToFirstChild() and recursively calling itself until MoveToNext() returns false, at which point it
moves back to the original node, as follows:

 ...
 if (xnav.HasChildren)
 {
 xnav.MoveToFirstChild();
 do {
 str.Append(GetXNavDescr(xnav, level+1));
 } while (xnav.MoveToNext());

 // Return to the parent.
 xnav.MoveToParent();
 }
 return str.ToString();
}

This code produces almost the same output as shown in Figure 14-3.

The XDocument
The XDocument is an all-purpose model for managing in-memory XML. Unlike the XmlDocument and
XPathNavigator, it’s equally at home constructing XML content. (By comparison, the XmlDocument
makes XML construction unnecessarily complex, while the XPathNavigator doesn’t support it at all.) If
you need to generate XML in a nonlinear fashion—for example, you need to write a collection of
elements in the root element, and then add more information inside each of these elements, you’ll need
to use an in-memory class like XDocument.

Much as an XmlDocument object consists of XmlNode objects, an XDocument consists of XNode
objects. The XNode is an abstract base class. Other more specific classes, like XElement, XComment, and
XText, derive from it. One difference is that attributes are not treated as separate nodes in the LINQ to
XML model—instead, they are simply name value pairs that are attached to another element. For that
reason, the XAttribute class doesn’t derive from XNode.

Technically, the XDocument class is a part of LINQ. It’s found in the System.Xml.Linq name- space,
and it’s a part of the System.Xml.Linq.dll assembly introduced in .NET 3.5. You’ll need to add a reference
to this assembly to use the XDocument and related classes.

Creating XML with XDocument
You can use XDocument to generate XML content with clean and concise code. Alternatively, you can
create XML content that doesn’t represent a complete document using the XElement class.

All the LINQ to XML classes provide useful constructors that allow you to create and initialize them
in one step. For example, you can create an element and supply text content that should be placed
inside using code like this:

XElement element = new XElement("Price", "23.99");

This is already better than the XmlDocument, which forces you to create nodes and then configure
them in a separate statement. But the code savings become even more dramatic when you consider
another feature of the LINQ to XML classes—their ability to create a nested tree of nodes in a single code
statement.

Here’s how it works. Two LINQ to XML classes—XDocument and XElement—include constructors
that take a parameter array for the last argument. This parameter array holds a list of nested nodes.

CHAPTER 14 ■ XML

639

■ Note A parameter array is a parameter that’s preceded with the params keyword. This parameter is always the
last parameter, and it’s always an array. The advantage is that users don’t need to declare the array—instead,
they can simply tack on as many arguments as they want, which are grouped into a single array automatically.

String.Format() is an example of a method that uses a parameter array. It allows you to supply an unlimited

number of values that are inserted into the placeholders of a string.

Here’s an example that creates an element with two nested elements and their content:

XElement element = new XElement("Starring",
 new XElement("Star", "Tom Hanks"),
 new XElement("Star", "Robin Wright")
);

You can extend this technique to create an entire XML document, complete with elements, text
content, attributes, and comments. For example, here’s the complete code that creates the DvdList.xml
sample document:

private void WriteXML()
{
 XDocument doc = new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XComment("Created: " + DateTime.Now.ToString()),
 new XElement("DvdList",
 new XElement("DVD",
 new XAttribute("ID", "1"),
 new XAttribute("Category", "Science Fiction"),
 new XElement("Title", "The Matrix"),
 new XElement("Director", "Larry Wachowski"),
 new XElement("Price", "18.74"),
 new XElement("Starring",
 new XElement("Star", "Keanu Reeves"),
 new XElement("Star", "Laurence Fishburne")
)
),
 new XElement("DVD",
 new XAttribute("ID", "2"),
 new XAttribute("Category", "Drama"),
 new XElement("Title", "Forrest Gump"),
 new XElement("Director", "Robert Zemeckis"),
 new XElement("Price", "23.99"),
 new XElement("Starring",
 new XElement("Star", "Tom Hanks"),
 new XElement("Star", "Robin Wright")
)
),
 new XElement("DVD",
 new XAttribute("ID", "3"),
 new XAttribute("Category", "Horror"),

CHAPTER 14 ■ XML

640

 new XElement("Title", "The Others"),
 new XElement("Director", "Alejandro Amenábar"),
 new XElement("Price", "22.49"),
 new XElement("Starring",
 new XElement("Star", "Nicole Kidman"),
 new XElement("Star", "Christopher Eccleston")
)
),
 new XElement("DVD",
 new XAttribute("ID", "4"),
 new XAttribute("Category", "Mystery"),
 new XElement("Title", "Mulholland Drive"),
 new XElement("Director", "David Lynch"),
 new XElement("Price", "25.74"),
 new XElement("Starring",
 new XElement("Star", "Laura Harring")
)
),
 new XElement("DVD",
 new XAttribute("ID", "5"),
 new XAttribute("Category", "Science Fiction"),
 new XElement("Title", "A.I. Artificial Intelligence"),
 new XElement("Director", "Steven Spielberg"),
 new XElement("Price", "23.99"),
 new XElement("Starring",
 new XElement("Star", "Haley Joel Osment"),
 new XElement("Star", "Jude Law")
)
)
)
);

 doc.Save(Server.MapPath("DvdList.xml"));
}

This code exactly replicates the XmlTextWriter code you considered earlier. However, it’s shorter
and easier to read. It’s also far simpler than the equivalent code that you would use to create an in-
memory XmlDocument. Unlike the code that uses the XmlTextWriter, there’s no need to explicitly close
elements—instead, they are delineated by the constructor of the appropriate XElement. Another nice
detail is the way the indenting of the code statements mirrors the nesting of the elements in the XML
document, allowing you to quickly take in the overall shape of the XML content.

Once the XML content has been created, you can save it using the XDocument.Save() method. Like
XmlDocument.Save(), it allows you to supply a string that represents a file name (which is the technique
shown previously) or a stream.

Reading XML with XDocument
The XDocument also makes it easy to read and navigate XML content. You can use the
XDocument.Load() method to read XML documents from a file, URI, or stream, or you can use the
XDocument.Parse() method to load XML content from a string.

Once you have a live XDocument with your content, you can dig into the tree of nodes using a few
key properties and methods of the XElement class. Table 14-1 lists the most useful methods.

CHAPTER 14 ■ XML

641

Table 14-1. Essential Methods of the XElement Class

Method Description

Attributes() Gets the collection of XAttribute objects for this element.

Attribute() Gets the XAttribute with the specific name.

Elements() Gets the collection of XElement objects that are contained by this element. (This is
the top level only—these elements may in turn contain more elements.) Optionally,
you can specify an element name, and only those elements will be retrieved.

Element() Gets the single XElement contained by this element that has a specific name (or null if
there’s no match).

Nodes() Gets all the XNode objects contained by this elements. This includes elements and
other content, like comments.

Notice that there’s an important difference between the XmlDocument and the XDocument model.

With the XDocument class, nested elements are exposed through methods rather than properties. This
gives you added flexibility to filter out just the elements that interest you. For example, when using the
XDocument.Elements() method, you have two overloads to choose from. You can get all the child
elements (in which case you would supply no parameters) or get just those child elements that have a
specific element name (in which case you would specify the element name as a string).

The XElement class (and other LINQ to XML classes) offer quite a few more members. For example,
you’ll find members for quickly stepping from one node to the next (FirstNode, LastNode, NextNode,
PreviousNode, and Parent), properties for testing for the presence of children (HasElements), attributes
(HasAttributes), and content (IsEmpty), and methods for inserting, removing, and otherwise manipu-
lating the XML tree of nodes (Add(), AddAfterSelf(), AddBeforeSelf(), RemoveNodes(), Remove(),
ReplaceWith(), and so on).

One further simplification that LINQ to XML uses is that it doesn’t force you to distinguish between
elements and the text inside, which are represented as two separate nodes in the XML DOM. Instead,
you can retrieve the inner value from an XElement by simply casting it to the appropriate data type, as
shown here:

string title = (string)titleElement;
decimal price = (decimal)priceElement;

Setting the text content inside an element is nearly as easy. You simply assign the new content to the
Value property, as shown here:

priceElement.Value = (decimal)priceElement * 2;

You can use the same simplified approach to read and set attributes with the XAttribute class.
Here’s a straightforward code routine that mimics the XML processing code you saw earlier with the

XPathNavigator. It scans through the elements that are available, and adds title, director, and price
information to a bulleted list.

private void ReadXML()
{
 // Create the reader.
 string xmlFile = Server.MapPath("DvdList.xml");

CHAPTER 14 ■ XML

642

 XDocument doc = XDocument.Load(xmlFile);

 StringBuilder str = new StringBuilder();
 foreach (XElement element in doc.Element("DvdList").Elements())
 {
 str.Append("");
 str.Append((string)element.Element("Title"));
 str.Append("");
 str.Append((string)element.Element("Director"));
 str.Append("");
 str.Append(String.Format("{0:C}", (decimal)element.Element("Price")));
 str.Append("");
 }
 lblXml.Text = str.ToString();
}

This code pulls out individual elements of interest using the XElement.Element() method and
iterates over collections of nested XElement objects using the XElement.Elements() method. For
example, the opening declaration of the foreach block selects the collection
doc.Element("DvdList").Elements(). In other words, it grabs the nested <DvdList> element from the root
of the document and examines all the elements inside (which are <DVD> elements). It then retrieves the
content from the nested <Title> and <Director> elements inside. From start to finish, the code is
noticeably simpler and more intuitive than the XmlTextReader and XmlDocument approaches.

Namespaces
The XDocument class has a particularly elegant way of dealing with namespaces. You simply define an
XNamespace object, which you can then use when creating an XElement as part of the name. The
XElement class automatically creates the xmlns attribute for you (although you can use the XAttribute
object to create it manually, in which case the XElement is intelligent enough to use it).

Here’s an example that places some of the elements in the DvdList.xml sample document into a
namespace:

XNamespace ns = "http://www.somecompany.com/DVDList";
XDocument doc = new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XComment("Created: " + DateTime.Now.ToString()),
 new XElement(ns + "DvdList",
 new XElement(ns + "DVD",
 new XAttribute("ID", "1"),
 new XAttribute("Category", "Science Fiction"),
 new XElement(ns + "Title", "The Matrix"),
 new XElement(ns + "Director", "Larry Wachowski"),
 new XElement(ns + "Price", "18.74"),
 new XElement(ns + "Starring",
 new XElement(ns + "Star", "Keanu Reeves"),
 new XElement(ns + "Star", "Laurence Fishburne")
)
),
 ...
)

http://www.somecompany.com/DVDList

CHAPTER 14 ■ XML

643

You’ll notice that all the elements in this example are placed in the new XML namespace, but the
attributes aren’t. This isn’t a requirement, but it’s a common convention of XML languages. Because the
elements are already scoped to a specific namespace and the attributes are attached to an element, it’s
not considered necessary to specifically place the attributes in the same namespace.

Here’s the resulting markup with the namespace:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!-- Created: 6/19/2008 3:07:15 PM -->
<DvdList xmlns="http://www.somecompany.com/DVDList">
 <DVD ID="1" Category="Science Fiction">
 <Title>The Matrix</Title>
 <Director>Larry Wachowski</Director>
 <Price>18.74</Price>
 <Starring>
 <Star>Keanu Reeves</Star>
 <Star>Laurence Fishburne</Star>
 </Starring>
 </DVD>
 ...
</DvdList>

If your elements are in an XML namespace, you must also take that namespace into account when
navigating through the XML document. For example, when using the XmlElement.Element() method,
you must supply the fully qualified element name by adding an XNamespace object to the string with
the element name:

XNamespace ns = "http://www.somecompany.com/DVDList";
...
string title = (string)element.Element(ns + "Title");

■ Note Technically, you don’t need to use the XNamespace class, although it makes your code clearer. When you

add the XNamespace to an element name string, the namespace is simply wrapped in curly braces. In other
words, when you combine the namespace http://www.somecompany.com/DVDList with the element name

Title, it’s equivalent to the string {http://www.somecompany.com/DVDList}Title. This syntax works because

the curly brace characters aren’t allowed in ordinary element names, so there’s no possibility for confusion.

Searching XML Content
In many situations, you don’t need to process the entire XML document. Instead, you need to extract a
single piece of information. The exact approach you use depends on the class you’re using. With the
XmlDocument, you’ll use the GetElementsByTagName() for simple scenarios, and the XPath language
for more sophisticated cases. With the XDocument, you’ll use one of the built-in searching methods (like
the Elements() method) for simple scenarios and LINQ expressions when you need more power. In the
following sections, you’ll see all these approaches.

http://www.somecompany.com/DVDList
http://www.somecompany.com/DVDList
http://www.somecompany.com/DVDList
http://www.somecompany.com/DVDList

CHAPTER 14 ■ XML

644

■ Note If you’ve already learned the LINQ querying syntax, you’ll find that it gives you a powerful, strongly typed
way to search XML. However, that won’t save you from learning more traditional approaches like XPath, because

these standards still crop up in other places, including XSL transforms and ASP.NET’s XML data binding feature.

Searching with XmlDocument
The simplest way to perform a search with the XmlDocument is to use the
XmlDocument.GetElementsByTagName() method, which searches an entire document tree for
elements that have a specific name and returns an XmlNodeList that contains all the matches as
XmlNode objects.

For example, the following code retrieves the title of each DVD in the document:

// Load the XML file.
string xmlFile = Server.MapPath("DvdList.xml");
XmlDocument doc = new XmlDocument();
doc.Load(xmlFile);

// Find all the <Title> elements anywhere in the document.
StringBuilder str = new StringBuilder();
XmlNodeList nodes = doc.GetElementsByTagName("Title");
foreach (XmlNode node in nodes)
{
 str.Append("Found: ");

 // Show the text contained in this <Title> element.
 str.Append(node.ChildNodes[0].Value);
 str.Append("
");
}
lblXml.Text = str.ToString();

Figure 14-4 shows the result of running this code in a web page.

Figure 14-4. Searching for information in an XML document

CHAPTER 14 ■ XML

645

You can also search portions of an XML document by using the method
XmlElement.GetElementsByTagName() on a specific element. In this case, the XmlDocument searches
all the descendant nodes looking for a match. To use this method, first retrieve an XmlNode that
corresponds to an element and then cast this object to an XmlElement. The following example
demonstrates how to use this technique to find the stars of a specific movie:

// Load the XML file.
string xmlFile = Server.MapPath("DvdList.xml");
XmlDocument doc = new XmlDocument();
doc.Load(xmlFile);

// Find all the <Title> elements anywhere in the document.
StringBuilder str = new StringBuilder();
XmlNodeList nodes = doc.GetElementsByTagName("Title");
foreach (XmlNode node in nodes)
{
 str.Append("Found: ");

 // Show the text contained in this <Title> element.
 string name = node.ChildNodes[0].Value;
 str.Append(name);
 str.Append("
");

 if (name == "Forrest Gump")
 {
 // Find the stars for just this movie.
 // First you need to get the parent node
 // (which is the <DVD> element for the movie).
 XmlNode parent = node.ParentNode;

 // Then you need to search down the tree.
 XmlNodeList childNodes =
 ((XmlElement)parent).GetElementsByTagName("Star");
 foreach (XmlNode childNode in childNodes)
 {
 str.Append(" Found Star: ");
 str.Append(childNode.ChildNodes[0].Value);
 str.Append("
");
 }
 }
}
lblXml.Text = str.ToString();

Figure 14-5 shows the result of this test.

CHAPTER 14 ■ XML

646

Figure 14-5. Searching portions of an XML document

The code you’ve seen so far assumes that none of the elements has a namespace. More
sophisticated XML documents will always include a namespace and may even have several of them. In
this situation, you can use the overload of the method XmlDocument.GetElementsByTagName(), which
requires a namespace name as a string argument, as shown here:

// Retrieve all <order> elements in the OrderML namespace.
XmlNodeList nodes = doc.GetElementsByTagName("order",
 "http://mycompany/OrderML");

Additionally, you can supply an asterisk (*) for the element name if you want to match all tags in the
specified namespace:

// Retrieve all elements in the OrderML namespace.
XmlNodeList nodes = doc.GetElementsByTagName("*",
 "http://mycompany/OrderML");

Searching XmlDocument with XPath
The GetElementsByTagName() method is fairly limited. It allows you to search based on the name of an
element only. You can’t filter based on other criteria, such as the value of the element or attribute
content. XPath is a much more powerful standard that allows you to retrieve the portions of a document
that interest you.

XPath uses a pathlike notation. For example, the path / identifies the root of an XML document, and
/DvdList identifies the root <DvdList> element. The path /DvdList/DVD selects every <DVD> element
inside the <DvdList>. Finally, the period (.) always selects the current node. In addition, the path // is a
recursive path operator that searches all the descendants of a node. If you start a path with the //
characters, the XPath expression will search the entire document for nodes.

These ingredients are enough to build many basic templates, although the XPath standard also
defines special selection criteria that can filter out only the nodes in which you are interested. Table 14-2
provides a method overview of XPath characters.

http://mycompany/OrderML
http://mycompany/OrderML

CHAPTER 14 ■ XML

647

■ Note XML distinguishes between two related terms: child node and descendant node. Understanding the
difference is a key to understanding how XPath expressions work. A child node is a contained node that’s just
one level below the parent. A descendant node is a contained node that’s nested at any level. In other words,

the term descendant node includes child nodes, and the children of the child nodes, and their children, and so
on. In the DVD list example, <Title> is a child of <DVD> and a descendant of <DVD> and <DvdList>, but it’s

not a child of <DvdList>.

Table 14-2. Basic XPath Syntax

Expression Meaning

/ Searches for child nodes. If you place / at the beginning of an XPath expression, it
creates an absolute path that starts from the root node. /DvdList/DVD selects all
<DVD> elements that are children of the root <DvdList> element.

// Searches for child nodes recursively, digging through all the nested layers of nodes. If
you place // at the beginning of an XPath expression, it creates a relative path that
selects nodes anywhere. //DVD/Title selects all the <Title> elements that are
descendants of a <DVD> element.

@ Selects an attribute of a node. /DvdList/DVD/@ID selects the method attribute named
ID from all <DVD> elements.

* Selects any element in the path. /DvdList/DVD/* selects all the child nodes in the
<DVD> element (which include <Title>, <Director>, <Price>, and <Starring> in this
example).

| Combines multiple paths. /DvdList/DVD/Title/ DvdList/DVD/Director selects both
the <Title> and <Director> elements in the <DVD> element.

. Indicates the current (default) node.

.. Indicates the parent node. If the current node is <Title>, then .. refers to the <DVD>
node.

[] Defines selection criteria that can test a contained node or attribute value.
/DvdList/DVD[Title='Forrest Gump'] selects the <DVD> elements that contain a
<Title> element with the indicated value. /DvdList/DVD[@ID='1'] selects the <DVD>
elements with the indicated attribute value. You can use the and keyword and the or
keyword to combine criteria.

starts-with This method function retrieves elements based on what text a contained element starts
with. /DvdList/DVD[starts-with(Title, 'P')] finds all <DVD> elements that have a <Title>
element that contains text that starts with the letter P.

CHAPTER 14 ■ XML

648

Expression Meaning

position This function retrieves elements based on position, using 1-based counting.
/DvdList/DVD[position()=2] selects the second <DVD> element. You can also use the
shorthand /DvdList/DVD[2].

count This function counts the number of elements with the matching name. count(DVD)
returns the number of <DVD> elements.

To execute an XPath expression in .NET, you can use the Select() method of the XPathNavigator or

the SelectNodes() or SelectSingleNode() method of the XmlDocument class. The following code uses this
technique method to retrieve specific information:

// Load the XML file.
string xmlFile = Server.MapPath("DvdList.xml");
XmlDocument doc = new XmlDocument();
doc.Load(xmlFile);

// Retrieve the title of every science-fiction movie.
XmlNodeList nodes =
 doc.SelectNodes("/DvdList/DVD/Title[../@Category='Science Fiction']");

// Display the titles.
StringBuilder str = new StringBuilder();
foreach (XmlNode node in nodes)
{
 str.Append("Found: ");

 // Show the text contained in this <Title> element.
 str.Append(node.ChildNodes[0].Value);
 str.Append("
");
}
lblXml.Text = str.ToString();

Figure 14-6 shows the results.

Figure 14-6. Extracting information with XPath

mailto:Title[../@Category=

CHAPTER 14 ■ XML

649

■ Tip You can use XPath searches with the XDocument class as well, through extension methods. You simply
need to import the System.Xml.XPath namespace. This namespace includes an Extensions class which defines a

few methods that extend XNode—most notably, XPathSelectElement() and XPathSelectElements().

Searching XDocument with LINQ
You’ve already seen how to use the method the XElement.Element() and XElement.Elements() methods
to filter out elements that have a specific name. However, both these methods only go one level deep.
For example, you can use them on the XElement class that represents the <DVDList> element to find the
<DVD> elements, but you won’t be able to find the <Title> elements, because these are two levels deep.

There are several ways to resolve this problem. The easiest approach is to use a few more built-in
XElement methods that you haven’t considered yet, such as ElementsAfterSelf(), ElementsBeforeSelf(),
Ancestors(), and Descendants(). All of these return IEnumerable<T> collections of XElement objects.

ElementsAfterSelf() and ElementsBeforeSelf() find the sibling elements. The Ancestors() and
Descendants() methods are more noteworthy, because they traverse the XML hierarchy. For example,
using Descendants() on the root <DvdList> element returns all the elements in the document, including
the directly contained <DVD> elements and more deeply nested elements like <Title> and <Price>.

Using this knowledge, you can find all the movie titles in the document, at any level, using this code:

string xmlFile = Server.MapPath("DvdList.xml");
XDocument doc = XDocument.Load(xmlFile);

foreach (XElement element in doc.Descendants("Title"))
{ ... }

This gives you functionality that’s similar to the XmlDocument.GetElementsByTagName() method.
However, it doesn’t match the features of XPath. To do that, you need LINQ expressions.

As you learned in Chapter 13, LINQ expressions work with objects that implement IEnumerable<T>.
The various LINQ extensions provide ways of bridging the gap between IEnumerable<T> and other data
sources. For example, LINQ to DataSet adds extension methods that allow you to get IEnumerable<T>
collections of DataRow objects. LINQ to SQL adds the Table<T> class, which provides an
IEnumerable<T> implementation over a database query. And LINQ to XML provides the XDocument
and XElement classes, which include several ways for getting IEnumerable<T> collections of elements,
including the Elements() and Descendants() methods you’ve just considered.

Once you place your collection of elements in a LINQ expression, you can use all the familiar
operators. That means you can use sorting, filtering, grouping, and projections to get the data you want.
Here’s an example that gets the XElement objects for the <Title> elements that have an ID value less
than 3:

IEnumerable<XElement> matches = from DVD in doc.Descendants("DVD")
 where (int)DVD.Attribute("ID") < 3
 select DVD.Element("Title");

It’s often more useful to translate the data to some other form. For example, the following query
creates an anonymous type that combines title and price information. The results are sorted in
descending order by price and then bound to a GridView for display. Figure 14-7 shows the result.

var matches = from DVD in doc.Descendants("DVD")
 orderby (decimal)DVD.Element("Price") descending

CHAPTER 14 ■ XML

650

 select new { Movie = (string)DVD.Element("Title"),
 Price = (decimal)DVD.Element("Price")
 };
gridTitles.DataSource = matches;
gridTitles.DataBind();

Figure 14-7. Extracting information with a LINQ to XML expression

Notice the casting code that converts the XElement to the expected type (string for the title or
decimal for the price). This casting step is required to extract the value from the full XElement object.

The LINQ to XML infrastructure also includes a set of extension methods that work on collections of
elements. Here’s a query that uses one of them to get a list of titles:

IEnumerable<string> matches = from title in
 doc.Root.Elements("DVD").Elements("Title")
 select (string)title;

At first glance, this looks like a fairly ordinary usage of the XElement.Elements() method. But closer
inspection reveals that something else is happening.

The first call to Elements() gets all the <DVD> elements in the root <DvdList> element. The second
call is a bit different, because it’s not acting on an XElement object. Instead, it’s acting on the collection
of XElement objects that’s returned by the first Elements() call. In other words, the second call is actually
calling the Elements() method on an IEnumerable<T> collection. The IEnumerable<T> interface
obviously doesn’t include the Elements() method. Instead, the Extensions class in the System.Xml.Linq
namespace defines this extension method for any IEnumerable<XElement> type. The end result is that
this version of the Elements() method searches the collection and picks out the elements with the
matching name.

Of course, you’ve already seen that you don’t need to use this approach to create this query. You can
just as easily rely on the XElement.Descendants() method to dig through any branch of your XML
document. However, the Elements() extension method might be more useful in other scenarios where
you have IEnumerable<XElement> collections that have been constructed in a different way, from
different parts of an XML document.

CHAPTER 14 ■ XML

651

The Extensions class defines several additional extension methods that apply to XElement
collections, including Ancestors(), AncestorsAndSelf(), Attributes(), Descendants(), and
DescendantsAndSelf().

Validating XML Content
So far you’ve seen a number of strategies for reading and parsing XML data. If you try to read invalid
XML content using any of these approaches, you’ll receive an error. In other words, all these classes
require well-formed XML. However, none of the examples you’ve seen so far has validated the XML to
check that it follows any application-specific rules.

A Basic Schema
As described at the beginning of this chapter, XML formats are commonly codified with an XML schema
that lays out the required structure and data types. For the DVD list document, you can create an XML
schema that looks like this:

<?xml version="1.0" ?>
<xs:schema id="DvdList" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="DvdList">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="DVD" type="DVDType" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="DVDType">
 <xs:sequence>
 <xs:element name="Title" type="xs:string" />
 <xs:element name="Director" type="xs:string" />
 <xs:element name="Price" type="xs:decimal" />
 <xs:element name="Starring" type="StarringType" />
 </xs:sequence>
 <xs:attribute name="ID" type="xs:integer" />
 <xs:attribute name="Category" type="xs:string" />
 </xs:complexType>

 <xs:complexType name="StarringType">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Star" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

This schema defines two complex types, representing the list of stars (named StarringType) and the
list of DVDs (each of which is an instance of a complex type named DVDType). The structure of the
document is defined using an <element> tag.

http://www.w3.org/2001/XMLSchema

CHAPTER 14 ■ XML

652

Validating with XmlDocument
One approach for validating an XML document against a schema is to use an XmlValidatingReader. To
create one, you use the XmlReader.Create() method and pass in an XmlReaderSettings object that
specifies the XSD schema you want to use. The validating reader works like the XmlTextReader but
includes the ability to verify that the document follows schema rules. The validating reader throws an
exception (or raises an event) to indicate errors as you move through the XML file.

The first step when performing validation is to import the System.Xml.Schema namespace, which
contains types such as XmlSchema and XmlSchemaCollection:

using System.Xml.Schema;

The following example shows how you can create a validating reader that uses the DvdList.xsd file
and shows how you can use it to verify that the XML in DvdList.xml is valid. The first step is to create the
XmlReaderSettings object that specifies the schema you want to use:

XmlReaderSettings settings = new XmlReaderSettings();
settings.ValidationType = ValidationType.Schema;
string xsdFile = Server.MapPath("DvdList.xsd");
settings.Schemas.Add("", xsdFile);
...

Each schema is used to validate the elements in a specific namespace. If your document contains
elements from more than one namespace, you can use separate schemas to validate them. If you don’t
include a schema that validates the namespace your document uses, no validation will be performed.
You specify the namespace name and the schema file path when you call the
XmlReaderSettings.Schemas.Add() method.

The simple version of the DVD list that’s used in this example doesn’t use a namespace. As a result,
you need to pass an empty string as the first parameter.

Once you’ve configured your validation settings, you can create the validating reader and validate
the document:

...
// Create the validating reader.
string xmlFile = Server.MapPath("DvdList.xml");
FileStream fs = new FileStream(xmlFile, FileMode.Open);
XmlReader vr = XmlReader.Create(fs, settings);

// Read through the document.
while (vr.Read())
{
 // Process document here.
 // If an error is found, an exception will be thrown.
}
vr.Close();

Using the current file, this code will succeed, and you’ll be able to access the current node through
the validating reader in the same way that you can with an ordinary reader. However, consider what
happens if you make the minor modification shown here:

<DVD ID="A" Category="Science Fiction">

CHAPTER 14 ■ XML

653

Now when you try to validate the document, an XmlSchemaValidationException (from the
System.Xml.Schema namespace) will be thrown, alerting you to the invalid data type—the letter A in an
attribute that is designated for integer values.

Instead of catching errors, you can react to the ValidationEventHandler event. If you react to this
event, you’ll be provided with information about the error, but no exception will be thrown. To connect
an event handler to this event, assign the method to the XmlSettings.ValidationEventHandler property
before you create the validating reader:

// Connect to the method named MyValidateHandler.
settings.ValidationEventHandler += ValidateHandler;

The event handler receives a ValidationEventArgs class, which contains the exception, a message,
and a number representing the severity:

private void ValidateHandler(Object sender, ValidationEventArgs e)
{
 lblInfo.Text += "Error: " + e.Message + "
";
}

To try the validation, you can use the XmlValidation.aspx page in the online samples. This page
allows you to validate a valid DVD list as well as another version with incorrect data and an incorrect tag.
Figure 14-8 shows the result of a failed validation attempt.

Figure 14-8. The validation test page

CHAPTER 14 ■ XML

654

Validating with XDocument
Although XDocument doesn’t have baked-in validation functionality, .NET includes extension methods
that allow you to use it with the validation classes you saw in the previous section. To make these
available, you need to import the System.Xml.Schema namespace. This namespace contains an
Extensions class that includes a Validate() method you can use on an XElement or XDocument.

Here’s an example that uses the Validate() extension method to validate the DvdList.xml document:

string xmlFile = Server.MapPath("DvdList.xml");
string xsdFile = Server.MapPath("DvdList.xsd");

// Open the XML file.
XDocument doc = XDocument.Load(xmlFile);

// Load the schema.
XmlSchemaSet schemas = new XmlSchemaSet();
schemas.Add("", xsdFile);

// Validate the document (with event handling for errors).
doc.Validate(schemas, ValidateHandler);

■ Note The validation process is essentially the same with the XmlDocument class. The only difference is that

XmlDocument includes a Validate() method, and so it doesn’t require an extension method.

Transforming XML Content
XSL (Extensible Stylesheet Language) is an XML-based language for creating stylesheets. Stylesheets
(also known as transforms) are special documents that can be used (with the help of an XSLT processor)
to convert your XML documents into other documents. For example, you can use an XSLT stylesheet to
transform one type of XML to a different XML structure. Or you could use a stylesheet to convert your
data-only XML into another text-based document such as an HTML page, as you’ll see with the next
example.

■ Note Of course, XSL stylesheets shouldn’t be confused with CSS (Cascading Style Sheets), a standard used to

format HTML. Chapter 16 discusses CSS.

Before you can perform a transformation, you need to create an XSL stylesheet that defines how the
conversion should be applied. XSL is a complex standard—in fact, it can be considered a genuine
language of its own with conditional logic, looping structures, and more.

CHAPTER 14 ■ XML

655

■ Note A full discussion of XSLT is beyond the scope of this book. However, if you want to learn more, you can
consider a book such as Jeni Tennison’s Beginning XSLT 2.0: From Novice to Professional (Apress, 2005), the
excellent online tutorials at http://www.w3schools.com/xsl, or the standard itself at

http://www.w3.org/Style/XSL.

A Basic Stylesheet
To transform the DVD list into HTML, you’ll use the simple stylesheet shown here:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="/">
 <html>
 <body>
 <xsl:apply-templates select="DvdList/DVD" />

 </xsl:template>

 <xsl:template match="DVD">
 <hr/>
 <h3><u><xsl:value-of select="Title" /></u></h3>
 Price: <xsl:value-of select="Price" />

 Director: <xsl:value-of select="Director" />

 <xsl:apply-templates select="Starring" />
 </xsl:template>

 <xsl:template match="Starring">
 Starring:

 <xsl:apply-templates select="Star" />
 </xsl:template>

 <xsl:template match="Star">
 <xsl:value-of select="." />
 </xsl:template>
</xsl:stylesheet>

Every XSL file has a root <stylesheet> element. The <stylesheet> element can contain one or more
templates (the sample file has four). In this example, the first <template> element matches the root
element. When it finds it, it outputs the tags necessary to start an HTML page and then uses the <apply-
templates> command to branch off and perform processing for any <DVD> elements that are children of
<DvdList>, as follows:

<xsl:template match="/">
 <html>
 <body>
 <xsl:apply-templates select="DvdList/DVD" />
 </body>
 </html>
</xsl:template>

http://www.w3schools.com/xsl
http://www.w3.org/Style/XSL
http://www.w3.org/1999/XSL/Transform

CHAPTER 14 ■ XML

656

Each time the <DVD> tag is matched, a horizontal line is added, and a heading is created.
Information about the <Title>, <Price>, and <Director> tag is extracted and written to the page using the
<value-of> command. Here’s the full template for transforming <DVD> elements:

<xsl:template match="DVD">
 <hr/>
 <h3><u><xsl:value-of select="Title" /></u></h3>
 Price: <xsl:value-of select="Price" />

 Director: <xsl:value-of select="Director" />

 <xsl:apply-templates select="Starring" />
</xsl:template>

Using XslCompiledTransform
Using this stylesheet and the XslCompiledTransform class (contained in the System.Xml.Xsl
namespace), you can transform the DVD list into formatted HTML. Here’s the code that performs this
transformation and saves the result to a new file:

string xslFile = Server.MapPath("DvdList.xsl");
string xmlFile = Server.MapPath("DvdList.xml");
string htmlFile = Server.MapPath("DvdList.htm");
XslCompiledTransform transform = new XslCompiledTransform();
transform.Load(xslFile);
transform.Transform(xmlFile, htmlFile);

Of course, in a dynamic web application you’ll want to transform the XML file and return the
resulting code directly, without generating an HTML file. To do this you have to create an
XPathNavigator for the source XML file. You can then pass the XPathNavigator to the
XslCompiledTranform.Transform() method and retrieve the results in any stream object.

The following code demonstrates this technique:

// Create an XPathDocument.
string xmlFile = Server.MapPath("DvdList.xml");
XPathDocument xdoc = new XPathDocument(new XmlTextReader(xmlFile));

// Create an XPathNavigator.
XPathNavigator xnav = xdoc.CreateNavigator();

// Transform the XML.
MemoryStream ms = new MemoryStream();
XsltArgumentList args = new XsltArgumentList();
XslCompiledTransform transform = new XslCompiledTransform();
string xslFile = Server.MapPath("DvdList.xsl");
transform.Load(xslFile);
transform.Transform(xnav, args, ms);

Once you have the results in a MemoryStream, you can create a StreamReader to retrieve them as a
string:

StreamReader r = new StreamReader(ms);
ms.Position = 0;
Response.Write(r.ReadToEnd());
r.Close();

CHAPTER 14 ■ XML

657

Figure 14-9 shows the resulting page.

Figure 14-9. Transforming XML to HTML

Using the Xml Control
In some cases you might want to combine transformed HTML output with other content and web
controls. In this case, you can use the Xml control. The Xml control displays the result of an XSL
transformation in a discrete portion of a page.

For example, consider the previous XSLT example, which transformed DvdList.xml using
DvdList.xsl. Using the Xml control, all you need is a single tag that sets the DocumentSource and
TransformSource properties, as shown here:

CHAPTER 14 ■ XML

658

<asp:Xml runat="server"
 DocumentSource="DvdList.xml" TransformSource="DvdList.xsl" />

The best part of this example is that all you need to do is set the XML input and the XSL transform
file. You don’t need to manually initiate the conversion.

■ Note You don’t need separate files to use the Xml control. Instead of using the DocumentSource property, you
can assign an XmlDocument object to the Document property or assign a string containing the XML content to the

DocumentContent property. Similarly, you can supply the XSLT information by assigning an XslTransform object to
the Transform property. These techniques are useful if you need to supply XML and XSLT data programmatically

(for example, if you extract it from a database record).

Transforming XML with LINQ to XML
XSL is a well-entrenched standard for transforming XML into different representations. However, it’s
obviously not the only approach. There’s nothing that stops you from opening an XDocument,
rearranging its nodes manually, and then saving the result—aside from the intrinsic complexity of such
an approach, which makes your code difficult to maintain and subject to all kinds of easily missed errors.

So although XSL isn’t the only way to change the representation of XML, in the recent past it has
been the only reasonably practical way to do so. With LINQ, this reality changes a bit. Although XSL will
still continue to be used in a wide range of scenarios, LINQ to XML offers a compelling alternative.

To perform a transformation with LINQ to XML, you need to use a LINQ expression that uses a
projection. (As discussed in Chapter 13, a projection takes the data you’re searching and rearranges it
into a different representation.) The trick is that the projection must return an XElement rather than an
anonymous type.

As you’ve already seen, the XElement constructor allows you to create an entire tree of nodes in a
single statement. By using these constructors, your LINQ expression can build an XML tree complete
with elements, subelements, attributes, text content, and so on.

The easiest way to understand this technique is to consider an example. The following code extracts
some of the information from the DvdList.xml document and rearranges it into a different structure.

string xmlFile = Server.MapPath("DvdList.xml");
XDocument doc = XDocument.Load(xmlFile);

XDocument newDoc = new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XElement("Movies",
 from DVD in doc.Descendants("DVD")
 where (int)DVD.Attribute("ID") < 3
 select new XElement[] {
 new XElement("Movie",
 new XAttribute("Name", (string)DVD.Element("Title")),
 DVD.Descendants("Star")
)
 }
)
);

CHAPTER 14 ■ XML

659

This code does quite a bit in only a few lines. The first two statements open the original XML file and
load it into an XDocument object. The third and final code statement does the rest—it creates a new
XDocument and fills it with the transformed content.

The document starts with an XML declaration and is followed by the root element, which is named
<Movies>. The content for the node is an array of XElement objects, which are used to fill the <Movies>
element. The trick is that this array is constructed using a LINQ expression. This expression pulls out all
the <DVD> elements in the original documents (wherever they occur, using the Descendants() method)
and filters for those that have ID attribute values less than 3. Finally, the select clause applies a
projection that creates each nested XElement inside the <Movies> element. Each nested XElement
represents a <Movie> element, contains a Name attribute (which has the movie title), and holds a nested
collection of <Star> elements.

The final result is as follows:

<Movies>
 <Movie Name="The Matrix">
 <Star>Keanu Reeves</Star>
 <Star>Laurence Fishburne</Star>
 </Movie>
 <Movie Name="Forrest Gump">
 <Star>Tom Hanks</Star>
 <Star>Robin Wright</Star>
 </Movie>
</Movies>

The syntax for LINQ-based transforms is often easier to understand than an XSL stylesheet, and it’s
always more concise.

Even better is the fact that the source content doesn’t need to be drawn from an XML document. For
example, there’s no reason that you can’t use a LINQ expression that constructs the XElement nodes for
an XDocument, but pulls its information from a different type of data. In this example, the expression
gets its information from the XDocument by calling the Descendants() method, but you could just as
easily substitute another IEnumerable<T> collection, including an in-memory collection or a LINQ to
SQL database table. In fact, this feature could easily replace more proprietary technologies, like the
awkward FOR XML query syntax in SQL Server.

Here’s an example that queries the Employees table you’ve used in earlier chapters and packages
the result into an XML document:

public XDocument GetEmployeeXml()
{
 XDocument doc = new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XElement("Employees",
 from employee in dataContext.GetTable<EmployeeDetails>()
 select new XElement[] {
 new XElement("Employee",
 new XAttribute("ID", employee.EmployeeID),
 new XElement("Name", employee.FirstName + " " + employee.LastName)
)}
)
);
 return doc;
}

CHAPTER 14 ■ XML

660

And here’s the resulting XML that’s generated:

<Employees>
 <Employee ID="1">
 <Name>Nancy Davolio</Name>
 </Employee>
 <Employee ID="2">
 <Name>Andrew Fuller</Name>
 </Employee>
 <Employee ID="3">
 <Name>Janet Leverling</Name>
 </Employee>
 ...
</Employees>

The disadvantage of using LINQ to XML for transformation is that it’s not a standard technology,
whereas XSLT definitely is. Furthermore, the logic is programmatic, which means you’ll need to
recompile your code to change your transformation. Although the syntax of XSLT is more complex, its
declarative model adds valuable flexibility if you need to share, reuse, or modify the transform.

XML Data Binding
Now that you’ve learned how to read, write, and display XML by hand, it’s worth considering a shortcut
that can save a good deal of code—the XmlDataSource control.

The XmlDataSource control works in a declarative way that’s analogous to the SqlDataSource and
ObjectDataSource controls you learned about in Chapter 9. However, it has two key differences:

• The XmlDataSource extracts information from an XML file, rather than a database
or data access class. It provides other controls with an XmlDocument object for
data binding.

• XML content is hierarchical and can have an unlimited number of levels. By
contrast, the SqlDataSource and ObjectDataSource return flat tables of data.

The XmlDataSource also provides a few features in common with the other data source controls,
including caching and rich design support that shows the schema of your data in bound controls.

In the following sections, you’ll see how to use the XmlDataSource in simple and complex scenarios.

Nonhierarchical Binding
The simplest way to deal with the hierarchical nature of XML data is to ignore it. In other words, you can
bind the XML data source directly to an ordinary grid control such as the GridView.

The first step is to define the XML data source and point it to the file that has the content you want
to use:

<asp:XmlDataSource ID="sourceDVD" runat="server"
 DataFile="DvdList.xml" />

Now you can bind the GridView with automatically generated columns, in the same way you bind it
to any other data source:

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="True"
 DataSourceID="sourceDVD" />

CHAPTER 14 ■ XML

661

■ Note Remember, you don’t need to use automatically generated columns. If you refresh the schema at design

time, Visual Studio will read the DvdList.xml file, determine its structure, and define the corresponding GridView

columns explicitly.

Now, when you run the page, the XmlDataSource will extract the data from the DvdList.xml file,
provide it to the GridView as an XmlDocument object, and call DataBind(). Because the XmlDocument
implements the IEnumerable interface, the GridView can walk through its structure in much the same
way as it walks through a DataView. It traverses the XmlDocument.Nodes collection and gets all the
attributes for each XmlNode.

■ Tip You can use the XmlDataSource programmatically. Call XmlDataSource.GetXmlDocument() to cause it to

return the file’s content as an XmlDocument object.

However, this has a catch. As explained earlier, the XmlDocument.Nodes collection contains only
the first level of nodes. Each of these nodes can contain nested nodes through its own XmlNode.Nodes
collection. However, the IEnumerable implementation that the XmlDocument uses doesn’t take this
into account. It walks over only the upper level of XmlNode objects, and as a result you’ll see only the top
level of nodes, as shown in Figure 14-10.

Figure 14-10. Flattening XML with data binding

CHAPTER 14 ■ XML

662

You can make this binding explicit by defining columns for each attribute:

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
 DataSourceID="sourceDVD">
 <Columns>
 <asp:BoundField DataField="ID" HeaderText="ID" SortExpression="ID" />
 <asp:BoundField DataField="Category" HeaderText="Category"
 SortExpression="Category" />
 </Columns>
</asp:GridView>

In other words, if you don’t customize the XML data binding process, you can bind only to the top-
level of nodes, and you can display text only from the attributes of that node. Furthermore, if there is
more than one type of top-level node, the bound control uses the schema of the first node. In other
words, if you have a document like this:

<DvdList>
 <Retailer ID="..." Name="...">...</Retailer>
 <Retailer ID="..." Name="...">...</Retailer>

 <DVD ID="..." Category="...">...</DVD>
 <DVD ID="..." Category="...">...</DVD>
 <DVD ID="..." Category="...">...</DVD>
</DvdList>

the GridView will inspect the first node and create an ID and Name column. It will then attempt to
display ID and name information for each node. If no matching attribute is found (for example, the
<DVD> specifies a name), then that value will be left blank. Similarly, the Category attribute won’t be
used, unless you explicitly define it as a column.

All of this raises an obvious question—how do you display other information from deeper down in
the XML document? You have a few options:

• You can use XPath to filter out the important elements.

• You can use an XSL transformation to flatten the XML into the structure you want.

• You can nest one data control inside another (similar to the way that the master-
child details grid was created in Chapter 10).

• You can use a control that supports hierarchical data. The only ready-made .NET
control that fits is the TreeView.

You’ll see all of these techniques in the following sections.

Using XPath
Ordinarily, when you bind an XmlNode, you display only attribute values. However, you can get the text
from nested elements using XPath data binding expressions.

The most flexible way to do this is to use a template that defines XPath data binding expressions.
XPath data binding expressions are similar to Eval() expressions, except instead of supplying the name of
the field you want to display, you supply an XPath expression based on the current node.

For example, here’s an XPath expression that starts at the current node, looks for a nested node
named Title, and gets associated element text:

<%# XPath("Title")%>

CHAPTER 14 ■ XML

663

Here’s an XPath expression that filters out the text of an ID attribute for the current node:

<%# XPath("@ID")%>

■ Tip You can use the XPath data binding syntax with your own custom data objects, but it isn’t easy. The only

requirement is that the data item must implement the IXPathNavigable interface.

Finally, here’s a GridView with a simple set of XPath expressions:

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
 DataSourceID="sourceDVD">
 <Columns>
 <asp:TemplateField HeaderText="DVD">
 <ItemTemplate>
 <%# XPath("Title") %>

 <%# XPath("Director") %>

 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

Figure 14-11 shows the result.

Figure 14-11. XML data binding with templates

CHAPTER 14 ■ XML

664

As with the Eval() method, you can use an optional second parameter with a format string when
calling XPath():

<%# XPath("Price", "{0:c}") %>

■ Note Unfortunately, you need to use a template to gain the ability to write XPath data binding expressions. That
limits the usefulness of other controls (such as drop-down lists) in XML data binding scenarios. Although you can

bind them to attributes without any problem, you can’t bind them to show element content.

You can also use XPath to filter out the initial set of matches. For example, imagine you want to
create a grid that shows a list of stars rather than a list of movies. To accomplish this, you need to use the
XPath support that’s built into the XmlDataSource to prefilter the results.

To use XPath, you need to supply the XPath expression that selects the data you’re interested in by
using the XmlDataSource.XPath property. This XPath expression extracts an XmlNodeList, which is then
made available to the bound controls.

<asp:XmlDataSource ID="sourceDVD" runat="server" DataFile="DvdList.xml"
 XPath="/DvdList/DVD/Starring/Star" />

If that expression returns a list of nodes, and all the information you need to display is found in
attributes, you don’t need to perform any extra steps. However, if the information is in element text, you
need to create a template.

In this example, the template simply displays the text for each <Star> node:

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceDVD"
 AutoGenerateColumns="False">
 <Columns>
 <asp:TemplateField HeaderText="DVD">
 <ItemTemplate>
 <%# XPath(".") %>

 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

Figure 14-12 shows the result.

CHAPTER 14 ■ XML

665

Figure 14-12. Using XPath to filter results

You can create a simple record browser using the XmlDataSource.XPath property. Just let the user
choose an ID from another control (such as a drop-down list), and then set the XPath property
accordingly:

sourceDVD.XPath = "/DvdList/DVD[@ID=" + dropDownList1.SelectedValue + "]";

This works because data binding isn’t performed until the end of the page life cycle.

Nested Grids
Another option is to show nested elements by nesting one grid control inside another. This allows you to
deal with much more complex XML structures.

The remarkable part is that ASP.NET provides support for this approach without requiring you to
write any code. This is notable, especially because it does require code to create the nested master-
details grid display demonstrated in Chapter 10.

The next example uses nested grids to create a list of movies, with a separate list of starring actors in
each movie. To accomplish this, you begin by defining the outer grid. Using a template, you can display
the title and director information:

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
 DataSourceID="sourceDVD">
 <Columns>
 <asp:TemplateField HeaderText="DVD">
 <ItemTemplate>
 <% #XPath("Title") %>

 <%# XPath("Director") %>

<i>Starring...</i>

 ...

CHAPTER 14 ■ XML

666

Now, you need to define another GridView control inside the template of the first GridView. The
trick is in the DataSource property, which you can set using a new XPathSelect() data binding statement,
as shown here:

 ...
 <asp:GridView id="GridView2" AutoGenerateColumns="False"
 DataSource='<%# XPathSelect("Starring/Star") %>' runat="server">
 ...

When you call XPathSelect(), you supply the XPath expression that retrieves the XmlNodeList based
on a search starting at the current node. In this case, you need to drill down to the nested group of
<Star> elements.

Once you’ve set the right data source, all you need to do is define a template in the second GridView
that displays the appropriate information. In this case, you need only a single data binding expression to
get the element text:

 ...
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <%# XPath(".") %>

 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

Figure 14-13 shows the grid, with a little extra formatting added for good measure.

CHAPTER 14 ■ XML

667

Figure 14-13. Showing XML with nested grids

Hierarchical Binding with the TreeView
Some controls have the built-in smarts to show hierarchical data. In .NET, the principal example is the
TreeView. When you bind the TreeView to an XmlDataSource, it uses the
XmlDataSource.GetHierarchicalView() method and displays the full structure of the XML document (see
Figure 14-14).

The TreeView’s default XML representation still leaves a lot to be desired. It shows only the
document structure (the element names), not the document content (the element text). It also ignores
attributes. To improve this situation, you need to set the TreeView.AutoGenerateDataBindings property
to false, and you then need to explicitly map different parts of the XML document to TreeView nodes.

<asp:TreeView ID="TreeView1" runat="server" DataSourceID="sourceDVD"
 AutoGenerateDataBindings="False">
 ...
</asp:TreeView>

CHAPTER 14 ■ XML

668

Figure 14-14. Automatically generated TreeView bindings

To create a TreeView mapping, you need to add <TreeNodeBinding> elements to the
<DataBinding> section. You must start with the root element and then add a binding for each level you
want to show. You cannot skip any levels.

Each <TreeNodeBinding> must name the node it binds to (through the DataMember property), the
text it should display (TextField), and the hidden value for the node (ValueField). Unfortunately, both
TextField and ValueField are designed to bind to attributes. If you want to bind to element content, you
can use an ugly hack and specify the #InnerText code. However, this shows all the inner text, including
text inside other more deeply nested nodes.

The next example defines a basic set of nodes to show the movie title information:

<asp:TreeView ID="TreeView1" runat="server" DataSourceID="sourceDVD"
 AutoGenerateDataBindings="False">
 <DataBindings>
 <asp:TreeNodeBinding DataMember="DvdList" Text="Root" Value="Root" />
 <asp:TreeNodeBinding DataMember="DVD" TextField="ID" />
 <asp:TreeNodeBinding DataMember="Title" TextField="#InnerText" />
 </DataBindings>
</asp:TreeView>

CHAPTER 14 ■ XML

669

Figure 14-15 shows the result.
To get a more practical result with TreeView data binding, you need to use an XSL transform to

create a more suitable structure, as described in the next section.

■ Tip To learn how to format the TreeView, including how to tweak gridlines and node pictures, refer to

Chapter 17.

Figure 14-15. Binding to specific content

Using XSLT
The XmlDataSource has similar built-in support for XSL transformations. The difference is that you
don’t use the stylesheet to convert the XML to HTML. Instead, you use it to convert the source XML
document into an XML structure that’s easier to data bind. For example, you might generate an XML
document with just the results you want and generate a flattened structure (with elements converted
into attributes) for easier data binding.

To specify a stylesheet, you can set the XmlDataSource.TransformFile to point to a file with the XSL
transform, or you can supply the stylesheet as a single long string using the XmlDataSource.Transform
property. You can use both stylesheets and XPath expressions, but the stylesheet is always applied first.

<asp:XmlDataSource ID="sourceDVD" runat="server" DataFile="DvdList.xml"
 TransformFile="DVDTreeList.xsl" />

CHAPTER 14 ■ XML

670

One good reason to use the XSLT features of the XmlDataSource is to get your XML data ready for
display in a hierarchical control such as the TreeView. For example, imagine you want to create a list of
stars grouped by movie. You also want to put all the content into attributes so it’s easy to bind.

Here’s the final XML you’d like:

<Movies>
 <DVD ID="1" Title="The Matrix">
 <Star Name="Keanu Reeves" />
 <Star Name="Laurence Fishburne" />
 </DVD>
 <DVD ID="2" Title="Forest Gump">
 <Star Name="Tom Hanks" />
 <Star Name="Robin Wright" />
 </DVD>
 ...
</Movies>

You can transform the original XML into this markup using the following, more advanced XSL
stylesheet. It extracts every <DVD> element from the source document and creates a slightly rearranged
<DVD> element for it in the result document. The new <DVD> element uses attributes to expose the ID
and title information (rather than using nested elements). The transformed <DVD> element also
includes nested <Star> elements, but they’re also modified. Now, each <Star> element exposes the star
name as an attribute (rather than using text content).

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="xml"/>

 <xsl:template match="/">
 <!-- Rename the root element. -->
 <xsl:element name="Movies">
 <xsl:apply-templates select="DvdList/DVD" />
 </xsl:element>
 </xsl:template>

 <xsl:template match="DVD">
 <!-- Transform the <DVD> element into a new <DVD> element
 with a different structure. -->
 <xsl:element name="DVD">
 <!-- Keep the ID attribute. -->
 <xsl:attribute name="ID">
 <xsl:value-of select="@ID"/>
 </xsl:attribute>
 <!-- Put the nested <Title> text into an attribute. -->
 <xsl:attribute name="Title">
 <xsl:value-of select="Title/text()"/>
 </xsl:attribute>
 <xsl:apply-templates select="Starring/Star" />
 </xsl:element>
 </xsl:template>

 <xsl:template match="Star">
 <xsl:element name="Star">
 <!-- Put the nested <Star> text into an attribute. -->

http://www.w3.org/1999/XSL/Transform

CHAPTER 14 ■ XML

671

 <xsl:attribute name="Name">
 <xsl:value-of select="text()"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:template>

</xsl:stylesheet>

Now you can bind this to the TreeView and display it with this set of bindings:

<asp:TreeView ID="TreeView1" runat="server" DataSourceID="sourceDVD"
 AutoGenerateDataBindings="False">
 <DataBindings>
 <asp:TreeNodeBinding DataMember="Movies" Text="Movies" />
 <asp:TreeNodeBinding DataMember="DVD" TextField="Title" />
 <asp:TreeNodeBinding DataMember="Stars" TextField="Name" />
 </DataBindings>
</asp:TreeView>

Binding to XML Content from Other Sources
So far, all the examples you’ve seen have bound to XML content in a file. This is the standard scenario for
the XmlDataSource control, but it’s not your only possibility. The other option is to supply the XML as
text through the XmlDataSource.Data property.

You can set the Data property at any point before the binding takes place. One convenient time is
during the Page.Load event:

protected void Page_Load(object sender, EventArgs e)
{
 string xmlContent;
 // (Retrieve XML content from another location.)
 sourceDVD.Data = xmlContent;
}

■ Tip If you use this approach, you may find it’s still a good idea to set the XmlDataSource.DataFile property at

design time in order for Visual Studio to load the schema information about your XML document and make it
available to other controls. Just remember to remove this setting when you’re finished developing, as the DataFile

property overrides the Data property if they are both set.

This allows you to read XML content from another source (such as a database) and still work with
the bound data controls. However, it requires adding some custom code.

Even if you do use the XmlDataSource.Data property, XML data binding still isn’t nearly as flexible
as the .NET XML classes you learned about earlier in this chapter. One of the key limitations is that the
XML content needs to be loaded into memory all at once as a string object. If you’re dealing with large
XML documents, or you just need to ensure the best possible scalability for your web application, you
might be able to reduce the overhead considerably by using the XmlReader instead, even though it

CHAPTER 14 ■ XML

672

will require much more code. Handling the XML parsing process yourself also gives you unlimited
flexibility to rearrange and aggregate your data into a meaningful summary, which isn’t always easy
using XSLT alone.

■ Note If you do use the XmlDataSource to display XML data from a file, make sure you use caching to reduce the
number of times that the file needs to be opened. You can use the CacheDuration, CacheKeyDependency, and
CacheExpirationPolicy properties of the XmlDataSource. If your file changes infrequently, you’ll be able to keep it in

the cache indefinitely, which guarantees good performance. On the other hand, if you need to update the
underlying XML document frequently, you’re likely to run into multiuser concurrency headaches, as discussed in

Chapter 12.

Updating XML Through the XmlDataSource
Unlike the SqlDataSource and the ObjectDataSource, the XmlDataSource doesn’t support editable
binding. You can confirm this fact with a simple test—just bind the XmlDataSource to a GridView, and
add a CommandField with edit buttons. When you try to commit the update, you’ll get an error
informing you that the data source doesn’t support this feature.

However, the XmlDataSource does provide a Save() method. This method replaces the file specified
in the DataFile property with the current XML content. Although you need to add code to call the Save()
method, some developers have used this technique to provide editable XML data binding.

The basic technique is as follows: when the user commits a change in a control, your code retrieves
the current XML content as an XmlDocument object by calling the XmlDataSource.GetXmlDocument()
method. Then, your code finds the corresponding node and makes the change using the features of
XmlDocument (as described earlier in this chapter). You can find and edit specific nodes, remove nodes,
or add nodes. Finally, your code must call the XmlDataSource.Save() method to commit the change.

Although this approach works perfectly well, it’s not necessarily a great way to design a website. The
XML manipulation code can become quite long, and you’re likely to run into concurrency headaches if
two users make different changes to the same XmlDocument at once. If you need to change XML
content, it’s almost always a better idea to implement the logic you need in a separate component, using
the XML classes described earlier.

XML and the ADO.NET DataSet
Now that you’ve taken an exhaustive look at general-purpose XML and .NET, it’s worth taking a look at a
related topic—the XML support that’s built into ADO.NET.

ADO.NET supports XML through the disconnected DataSet and DataTable objects. Both have the
built-in intelligence to convert their collection rows into an XML document. You might use this
functionality for several reasons. For example, you might want to share data with another application on
another platform. Or you might simply use the XML format to serialize to disk so you can retrieve it later.
In this case, you still use the same methods, although the actual data format isn’t important.

Table 14-3 lists all the XML methods of the DataSet.

CHAPTER 14 ■ XML

673

Table 14-3. DataSet Methods for Using XML

Method Description

GetXml() Retrieves the XML representation of the data in the DataSet as a single string.

WriteXml() Writes the contents of the DataSet to a file or a TextWriter, XmlWriter, or
Stream object. You can choose a write mode that determines if change tracking
information and schema information is also written to the file.

ReadXml() Reads XML data from a file or a TextReader, XmlReader, or Stream object and
uses it to populate the DataSet.

GetXmlSchema() Retrieves the XML schema for the DataSet XML as a single string. No data is
returned.

WriteXmlSchema() Writes just the XML schema describing the structure of the DataSet to a file or a
TextWriter, XmlWriter, or Stream object.

ReadXmlSchema() Reads an XML schema from a file or a TextReader, XmlReader, or Stream object
and uses it to configure the structure of the DataSet.

InferXmlSchema() Reads an XML document with DataSet contents from a file or a TextReader,
XmlReader, or Stream object and uses it to infer what structure the DataSet
should have. This is an alternative approach to using the ReadXmlSchema()
method, but it doesn’t guarantee that all the data type information is preserved.

■ Tip You can also use the ReadXml(), WriteXml(), ReadXmlSchema(), and WriteXmlSchema() methods of the

DataTable to read or write XML for a single table in a DataSet.

Converting the DataSet to XML
Using the XML methods of the DataSet is quite straightforward, as you’ll see in the next example. This
example uses two GridView controls on a page. The first DataSet is filled directly from the Employees
table of the Northwind database. (The code isn’t shown here because it’s similar to what you’ve seen in
the previous chapters.) The second DataSet is filled using XML.

Here’s how it works: once the DataSet has been created, you can generate an XML schema file
describing the structure of the DataSet and an XML file containing the contents of every row. The easiest
approach is to use the WriteXmlSchema() and WriteXml() methods of the DataSet. These methods
provide several overloads, including a version that lets you write data directly to a physical file. When
you write the XML data, you can choose between several slightly different formats by specifying an
XmlWriteMode. You can indicate that you want to save both the data and the schema in a single file
(XmlWriteMode.WriteSchema), only the data (XmlWriteMode.IgnoreSchema), or the data with both the
current and the original values (XmlWriteMode.DiffGram).

CHAPTER 14 ■ XML

674

Here’s the code that you need to save a DataSet to an XML file:

string xmlFile = Server.MapPath("Employees.xml");
ds.WriteXml(xmlFile, XmlWriteMode.WriteSchema);

This code creates an Employees.xml file in the current folder.
Now you can perform the reverse step by creating a new DataSet object and filling it with the data

contained in the XML file using the DataSet.ReadXml() method as follows:

DataSet dsXml = new DataSet("Northwind");
dsXml.ReadXml(xmlFile);

This completely rehydrates the DataSet, returning it to its original state.
If you want to see the structure of the generated Employees.xml file, you can open it in Internet

Explorer, as shown in Figure 14-16. Notice how the first part contains the schema that describes the
structure of the table (name, type, and size of the fields), followed by the data itself.

The DataSet XML follows a predefined format with a few simple rules:

• The root document element is the DataSet.DataSetName (for example,
Northwind).

• Each row in every table is contained in a separate element, using the name of the
table. The example with one table means that there are multiple <Employees>
elements.

• Every field in the row is contained as a separate tag in the table row tag. The value
of the field is stored as text inside the tag.

Unfortunately, the DataSet doesn’t make it possible for you to alter the overall structure. If you need
to convert the DataSet to another form of XML, you need to manipulate it by using XSLT or by loading it
into an XmlDocument object.

CHAPTER 14 ■ XML

675

Figure 14-16. Examining the DataSet XML

Accessing a DataSet As XML
Another option provided by the DataSet is the ability to access it through an XML interface. This allows
you to perform XML-specific tasks (such as hunting for a tag or applying an XSL transformation) with
the data you’ve extracted from a database. To do so, you create an XmlDataDocument that wraps the
DataSet. When you create the XmlDataDocument, you supply the DataSet you want as a parameter,
as follows:

XmlDataDocument dataDocument = new XmlDataDocument(myDataSet);

CHAPTER 14 ■ XML

676

Now you can look at the DataSet in two ways. Because the XmlDataDocument inherits from the
XmlDocument class, it provides all the same properties and methods for examining nodes and
modifying content. You can use this XML-based approach to deal with your data, or you can manipulate
the DataSet through the XmlDataDocument.DataSet property. In either case, the two views are kept
automatically synchronized—when you change the DataSet, the XML is updated immediately, and vice
versa. This automatic synchronization introduces extra overhead, and as a result the XmlDataDocument
is not the most efficient in-memory approach to managing an XML document. (Both the XmlDocument
and XDocument classes are far faster.)

For example, consider the pubs database, which includes a table of authors. Using the
XmlDataDocument, you could examine a list of authors as an XML document and then apply an XSL
transformation with the help of the Xml web control. Here’s the complete code you’d need:

// Create the ADO.NET objects.
SqlConnection con = new SqlConnection(connectionString);
string SQL = "SELECT * FROM authors WHERE city='Oakland'";
SqlCommand cmd = new SqlCommand(SQL, con);
SqlDataAdapter adapter = new SqlDataAdapter(cmd);
DataSet ds = new DataSet("AuthorsDataSet");

// Retrieve the data.
con.Open();
adapter.Fill(ds, "AuthorsTable");
con.Close();

// Create the XmlDataDocument that wraps this DataSet.
XmlDataDocument dataDoc = new XmlDataDocument(ds);

// Display the XML data (with the help of an XSLT) in the XML web control.
XmlControl.XPathNavigator = dataDoc.CreateNavigator();
XmlControl.TransformSource = "authors.xsl" ;

Here’s the XSL stylesheet that does the work of converting the XML data into ready-to-display
HTML:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="AuthorsDataSet">
 <h1>The Author List
 <xsl:apply-templates select="AuthorsTable"/>
 <i>Created through XML and XSLT</i>
 </xsl:template>

 <xsl:template match="AuthorsTable">
 <p>Name: <xsl:value-of select="au_lname"/>,
 <xsl:value-of select="au_fname"/>

 Phone: <xsl:value-of select="phone"/></p>
 </xsl:template>
</xsl:stylesheet>

Figure 14-17 shows the processed data in HTML form.
Remember that when you interact with your data as XML, all the customary database-oriented

concepts such as relationships and unique constraints go out the window. The only reason you should
interact with your DataSet as XML is if you need to perform an XML-specific task. You shouldn’t use

http://www.w3.org/1999/XSL/Transform

CHAPTER 14 ■ XML

677

XML manipulation to replace the approaches used in earlier chapters to update data. In most cases,
you’ll find it easier to use advanced controls such as the GridView, rather than creating a dedicated XSL
stylesheet to transform data into the HTML you want to display.

Figure 14-17. Displaying the results of a query through XML and XSLT

■ Tip If you’re using a SQL Server database, you also have the option of performing a FOR XML query to retrieve
the results of your query as an XML document. (You’ll still be forced to use an XSL stylesheet or some other

mechanism to convert it to the HTML you want to show.) To learn more about FOR XML queries, refer to the SQL

Server Books Online.

CHAPTER 14 ■ XML

678

Summary
In this chapter, you got a taste of ASP.NET’s XML features. The class libraries for interacting with XML
are available to any .NET application, whether it’s a Windows application, a web application, or a simple
command-line tool. They provide one of the most fully featured toolkits for working with XML and other
standards such as XPath, XML Schema, and XSLT. The story gets even better with the XDocument
model, which adds streamlined XML processing and full support for LINQ expressions.
XML is a vast topic, and there is much more to cover, such as advanced navigation, search and selection
techniques, validation, and serialization. If you want to learn more about XML in .NET, consider a
dedicated book on the subject or scour the Visual Studio Help. But remember that you should use XML
only where it’s warranted. XML is a great tool for persisting file-based data in a readable format and for
sharing information with other application components and services. However, it doesn’t replace the
core data management techniques you’ve seen in previous chapters.

P A R T 3

■ ■ ■

679

Building ASP.NET Websites

Once you’ve learned to create solid web pages, you’ll begin to consider the big picture—in other words,
how to group together a large number of web pages to form a cohesive, integrated website. The previous
chapters in this book have already considered some of the fundamentals, like managing state when the
user moves from one page to another, and using separate components to factor data access code out of
your web pages so they’re available wherever you need them. However, web programmers face a few
more considerations, such as ensuring consistency on every page and streamlining website navigation.
In this part, you’ll consider the topics that become important when you stop thinking about individual
pages and starting planning an entire web application.

First, you’ll look at user controls (Chapter 15), which let you reuse a block of user interface in
multiple pages. In Chapter 16, you’ll get more sophisticated with two more tools: themes, which let you
set control properties automatically, and master pages, which let you reuse a single template to
standardize the layout and content in multiple pages. Taken together, these three tools ensure that your
web application appears as a single, coherent whole.

In Chapter 17, you’ll consider a related topic: how to use site maps and navigation controls to let
users move around your website. Finally, in Chapter 18 you’ll learn how to bring your web application
into a production environment by moving it off a development computer (or test server) to a full-fledged
web server running IIS.

C H A P T E R 15

■ ■ ■

681

User Controls

The core set of ASP.NET controls is broad and impressive. It includes controls that encapsulate basic
HTML tags and controls that provide a rich higher-level model, such as the Calendar, TreeView, and data
controls. Of course, even the best set of controls can’t meet the needs of every developer. Sooner or later,
you’ll want to get under the hood, start tinkering, and build your own user interface components.

In .NET, you can plug into the web forms framework with your own controls in two ways. You can
develop either of the following:

User controls: A user control is a small section of a page that can include static HTML code and web
server controls. The advantage of user controls is that once you create one, you can reuse it in
multiple pages in the same web application. You can even add your own properties, events, and
methods.

Custom server controls: Custom server controls are compiled classes that programmatically
generate their own HTML. Unlike user controls (which are declared like web-form pages in a plain-
text file), server controls are always precompiled into DLL assemblies. Depending on how you code
the server control, you can render the content from scratch, inherit the appearance and behavior
from an existing web control and extend its features, or build the interface by instantiating and
configuring a group of constituent controls.

In this chapter, you’ll explore the first option—user controls. User controls are a great way to
standardize repeated content across all the pages in a website. For example, imagine you want to
provide a consistent way for users to enter address information on several different pages. To solve this
problem, you could create an address user control that combines a group of text boxes and a few related
validators. You could then add this address control to any web form and program against it as a single
object.

User controls are also a good choice when you need to build and reuse site headers, footers, and
navigational aids. (Master pages, which are discussed in Chapter 16, complement user controls by giving
you a way to standardize web-page layout.) In all of these examples, you could avoid user controls
entirely and just copy and paste the code wherever you need to. However, if you do, you’ll run into
serious problems once you need to modify, debug, or enhance the controls in the future. Because
multiple copies of the user interface code will be scattered throughout your website, you’ll have the
unenviable task of tracking down each copy and repeating your changes. Clearly, user controls provide a
more elegant, object-oriented approach.

User Control Basics
User control (.ascx) files are similar to ASP.NET web-form (.aspx) files. Like web forms, user controls are
composed of a user interface portion with control tags (the .ascx file) and can use inline script or a .cs
code-behind file. User controls can contain just about anything a web page can, including static HTML

CHAPTER 15 ■ USER CONTROLS

682

content and ASP.NET controls, and they also receive the same events as the Page object (like Load and
PreRender) and expose the same set of intrinsic ASP.NET objects through properties (such as
Application, Session, Request, and Response).

The key differences between user controls and web pages are as follows:

• User controls begin with a Control directive instead of a Page directive.

• User controls use the file extension .ascx instead of .aspx, and their code-behind
files inherit from the System.Web.UI.UserControl class. In fact, the UserControl
class and the Page class both inherit from the same TemplateControl class, which
is why they share so many of the same methods and events.

• User controls can’t be requested directly by a client browser. (ASP.NET will give a
generic “that file type is not served” error message to anyone who tries.) Instead,
user controls are embedded inside other web pages.

Creating a Simple User Control
To create a user control in Visual Studio, select Website ➤ Add New Item, and choose the Web User
Control template.

The following is the simplest possible user control—one that merely contains static HTML. This user
control represents a header bar.

<%@ Control Language="C#" AutoEventWireup="true"
 CodeFile="Header.ascx.cs" Inherits="Header" %>
<table width="100%" border="0" style="background-color: Blue">
 <tr>
 <td style="...">
 User Control Test Page
 </td>
 </tr>
 <tr>
 <td align="right" style="...">
 An Apress Creation © 2008
 </td>
 </tr>
</table>

You’ll notice that the Control directive identifies the code-behind class. However, the simple header
control doesn’t require any custom code to work, so you can leave the class empty:

public partial class Header : System.Web.UI.UserControl
{}

As with ASP.NET web forms, the user control is a partial class, because it’s merged with a separate
portion generated by ASP.NET. That automatically generated portion has the member variables for all
the controls you add at design time.

Now to test the control, you need to place it on a web form. First, you need to tell the ASP.NET page
that you plan to use that user control with the Register directive, which you can place immediately after
the Page directive, as shown here:

<%@ Register TagPrefix="apress" TagName="Header" Src="Header.ascx" %>

CHAPTER 15 ■ USER CONTROLS

683

This line identifies the source file that contains the user control using the Src attribute. It also
defines a tag prefix and tag name that will be used to declare a new control on the page. In the same way
that ASP.NET server controls have the <asp: ... > prefix to declare the controls (for example,
<asp:TextBox>), you can use your own tag prefixes to help distinguish the controls you’ve created. This
example uses a tag prefix of apress and a tag named Header.

The full tag is shown in this page:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="HeaderTest.aspx.cs"
 Inherits="HeaderTest" %>
<%@ Register TagPrefix="apress" TagName="Header" Src="Header.ascx" %>
<html mlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>HeaderHost</title>
 </head>
 <body>
 <form id="Form1" method="post" runat="server">
 <apress:Header id="Header1" runat="server"></apress:Header>
 </form>
 </body>
</html>

At a bare minimum, when you add a user control to your page, you should give it a unique ID and
indicate that it runs on the server, like all ASP.NET controls. Figure 15-1 shows the sample page with the
custom header.

Figure 15-1. Testing the header user control

In Visual Studio, you don’t need to code the Register directive by hand. Instead, once you’ve created
your user control, simply select the .ascx file in the Solution Explorer and drag it onto the design area of a
web form (not the source view). Visual Studio will automatically add the Register directive for you as well
as an instance of the user control tag.

The header control is the simplest possible user control example, but it can already provide some
realistic benefits. Think about what might happen if you had to manually copy the header’s HTML code
into all your ASP.NET pages, and then you had to change the title, add a contact link, or something else.
You would need to change and upload all the pages again. With a separate user control, you just update

http://www.w3.org/1999/xhtml

CHAPTER 15 ■ USER CONTROLS

684

that one file. Best of all, you can use any combination of HTML, user controls, and server controls on an
ASP.NET web form.

Converting a Page to a User Control
Sometimes the easiest way to develop a user control is to put it in a web page first, test it on its own, and
then translate the page to a user control. Even if you don’t follow this approach, you might still end up
with a portion of a user interface that you want to extract from a page and reuse in multiple places.

Overall, this process is a straightforward cut-and-paste operation. However, you need to watch for a
few points:

• Remove all <html>, <head>, <body>, and <form> tags. These tags appear once in a
page, so they can’t be added to user controls (which might appear multiple times
in a single page). Also, remove the doctype.

• If there is a Page directive, change it to a Control directive and remove the
attributes that the Control directive does not support, such as AspCompat, Buffer,
ClientTarget, CodePage, Culture, EnableSessionState, EnableViewStateMac,
ErrorPage, LCID, ResponseEncoding, Trace, TraceMode, and Transaction.

• If you aren’t using the code-behind model, make sure you still include a class
name in the Control directive by supplying the ClassName attribute. This way, the
web page that consumes the control can be strongly typed, which allows it to
access properties and methods you’ve added to the control. If you are using the
code-behind model, you need to change your code-behind class so that it inherits
from UserControl rather than Page.

• Change the file extension from .aspx to .ascx.

Adding Code to a User Control
The previous user control didn’t include any code. Instead, it simply provided a useful way to reuse a
static block of a web-page user interface. In many cases, you’ll want to add some code to your user
control creation, either to handle events or to add functionality that the client can access. Just like a web
form, you can add this code to the user control class in a <script> block directly in the .ascx file, or you
can use a separate .cs code-behind file.

Handling Events
To get a better idea of how this works, the next example creates a simple TimeDisplay user control with
some event-handling logic. This user control encapsulates a single LinkButton control. Whenever the
link is clicked, the time displayed in the link is updated. The time is also refreshed when the control first
loads.

Here’s the user control markup:

<%@ Control Language="c#" AutoEventWireup="true"
 CodeFile="TimeDisplay.ascx.cs" Inherits="TimeDisplay" %>
<asp:LinkButton id="lnkTime" runat="server" OnClick="lnkTime_Click" />

CHAPTER 15 ■ USER CONTROLS

685

And here’s the corresponding code-behind class:

public partial class TimeDisplay : System.Web.UI.UserControl
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 RefreshTime();
 }
 protected void lnkTime_Click(object sender, EventArgs e)
 {
 RefreshTime();
 }
 public void RefreshTime()
 {
 lnkTime.Text = DateTime.Now.ToLongTimeString();
 }
}

Note that the lnkTime_Click event handler calls a method named RefreshTime(). Because this
method is public, the code on the hosting web form can trigger a label refresh programmatically by
calling RefreshTime().

Figure 15-2 shows the resulting control.

Figure 15-2. A user control that handles its own events

Note that in this example, the user control receives and handles a Page.Load event. This event and
event handler are completely separate from the Page.Load event that the web form can respond to
(although they are both raised as a consequence of the same thing—a page being created). This makes it
easy for you to add initialization code to a user control.

Adding Properties
Currently, the TimeDisplay user control allows only limited interaction with the page that hosts it. All
you can really do in your web-form code is call RefreshTime() to update the display. To make a user
control more flexible and much more reusable, developers often add properties.

CHAPTER 15 ■ USER CONTROLS

686

The next example shows a revised TimeDisplay control that adds a public Format property. This
property accepts a standard .NET format string, which configures the format of the displayed date. The
RefreshTime() method has been updated to take this information into account.

public class TimeDisplay : System.Web.UI.UserControl
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 RefreshTime();
 }

 private string format;
 public string Format
 {
 get { return format; }
 set { format = value; }
 }

 protected void lnkTime_Click(object sender, EventArgs e)
 {
 RefreshTime();
 }

 public void RefreshTime()
 {
 if (format == null)
 {
 lnkTime.Text = DateTime.Now.ToLongTimeString();
 }
 else
 {
 // This will throw an exception for invalid format strings,
 // which is acceptable.
 lnkTime.Text = DateTime.Now.ToString(format);
 }
 }
}

In the hosting page, you have two choices. For one, you can set the Format property at some point
in your code by manipulating the control object, as shown here:

TimeDisplay1.Format = "dddd, dd MMMM yyyy HH:mm:ss tt (GMT z)";

Your second option is to configure the user control when it’s first initialized by setting the value in
the control tag, as shown here:

<apress:TimeDisplay id="TimeDisplay1"
 Format="dddd, dd MMMM yyyy HH:mm:ss tt (GMT z)" runat="server" />
<hr />
<apress:TimeDisplay id="TimeDisplay2" runat="server" />

CHAPTER 15 ■ USER CONTROLS

687

In this example, two versions of the TimeDisplay control are created, one with a control that
displays the date in the default format and another one with a custom format applied. Figure 15-3 shows
the resulting page in the browser.

■ Tip If you use simple property types such as int, DateTime, float, and so on, you can still set them with string
values when declaring the control on the host page. ASP.NET will automatically convert the string to the property
type defined in the class. Technically, ASP.NET employs a type converter—a special type of object often used to

convert data types to and from string representations.

When you begin adding properties to a user control, it becomes more important to understand the
sequence of events. Essentially, page initialization follows this order:

1. The page is requested.

2. The user control is created. If you have any default values for your variables, or
if you perform any initialization in a class constructor, it’s applied now.

3. If any properties are set in the user control tag, these are applied now.

4. The Page.Load event in the page executes, potentially initializing the user
control.

5. The Page.Load event in the user control executes, potentially initializing the
user control.

Once you understand this sequence, you’ll realize that you shouldn’t perform user control
initialization in the Page.Load event of the user control that might overwrite the settings specified by the
client.

Figure 15-3. Two instances of a dynamic user control

CHAPTER 15 ■ USER CONTROLS

688

Using Custom Objects
Many user controls are designed to abstract away the details of common scenarios with a higher-level
control model. For example, if you need to enter address information, you might group several text box
controls into one higher-level AddressInput control. When you’re modeling this sort of control, you’ll
need to use more complex data than individual strings and numbers. Often, you’ll want to create custom
classes designed expressly for communication between your web page and your user control.

To demonstrate this idea, the next example develops a LinkTable control that renders a set of
hyperlinks in a formatted table. Figure 15-4 shows the LinkTable control.

Figure 15-4. A user control that displays a table of links

To support this control, you need a custom class that defines the information needed for each link:

public class LinkTableItem
{
 private string text;
 public string Text
 {
 get { return text; }
 set { text = value; }
 }

 private string url;
 public string Url
 {
 get { return url; }
 set { url = value; }
 }

 // Default constructor.

CHAPTER 15 ■ USER CONTROLS

689

 public LinkTableItem()
 {}

 public LinkTableItem(string text, string url)
 {
 this.text = text;
 this.url = url;
 }
}

This class could be expanded to include other details, such as an icon that should appear next to the
control. The LinkTable simply uses the same icon for every item.

Next, consider the code-behind class for the LinkTable user control. It defines a Title property that
allows you to set a caption and an Items collection that accepts an array of LinkTableItem objects, one
for each link that you want to display in the table.

public partial class LinkTable : System.Web.UI.UserControl
{
 public string Title
 {
 get { return lblTitle.Text; }
 set { lblTitle.Text = value; }
 }

 private LinkTableItem[] items;
 public LinkTableItem[] Items
 {
 get { return items; }
 set
 {
 items = value;

 // Refresh the grid.
 gridContent.DataSource = items;
 gridContent.DataBind();
 }
 }
}

The control itself uses data binding to render most of its user interface. Whenever the Items
property is set or changed, a GridView in the LinkTable control is rebound to the item collection. The
GridView contains a single template that, for each link, displays each HyperLink control, which appears
with an exclamation mark icon next to it.

<%@ Control Language="c#" AutoEventWireup="true" CodeFile="LinkTable.ascx.cs"
 Inherits="LinkTable" %>
<table border="1" cellpadding="2">
 <tr>
 <td>
 <asp:Label id="lblTitle" runat="server" ForeColor="#C00000"
 Font-Bold="True" Font-Names="Verdana" Font-Size="Small">
 [Title Goes Here]</asp:Label>
 </td>

CHAPTER 15 ■ USER CONTROLS

690

 </tr>
 <tr>
 <td>
 <asp:GridView id="gridLinkList" runat="server"
 AutoGenerateColumns="false" ShowHeader="false" GridLines="None">
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <img height="23" src="exclaim.gif"
 alt="Menu Item" style="vertical-align: middle" />
 <asp:HyperLink id="lnk" NavigateUrl=
 '<%# DataBinder.Eval(Container.DataItem, "Url") %>'
 Font-Names="Verdana" Font-Size="XX-Small" ForeColor="#0000cd"
 Text='<%# DataBinder.Eval(Container.DataItem, "Text") %>'
 runat="server" />
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>
 </td>
 </tr>
</table>

Finally, here’s the typical web-page code you would use to define a list of links and display it by
binding it to the LinkTable user control:

protected void Page_Load(object sender, EventArgs e)
{
 // Set the title.
 LinkTable1.Title = "A List of Links";

 // Set the hyperlinked item list.
 LinkTableItem[] items = new LinkTableItem[3];
 items[0] = new LinkTableItem("Apress", "http://www.apress.com");
 items[1] = new LinkTableItem("Microsoft", "http://www.microsoft.com");
 items[2] = new LinkTableItem("ProseTech", "http://www.prosetech.com");
 LinkTable1.Items = items;
}

Once it’s configured, the web-page code never needs to interact with this control again. When the
user clicks one of the links, the user is just forwarded to the new destination without needing any
additional code. Another approach would be to design the LinkTable so that it raises a server-side click
event. You’ll see that approach in the next section.

Adding Events
Another way that communication can occur between a user control and a web page is through events.
With methods and properties, the user control reacts to a change made by the web-page code. With
events, the story is reversed—the user control notifies the web page about an action, and the web-page
code responds.

Usually, you’ll delve into events when you create a user control that the user can interact with. After
the user takes a certain action—such as clicking a button or choosing an option from a list—your user
control intercepts a web control event and then raises a new, higher-level event to notify your web page.

http://www.apress.com
http://www.microsoft.com
http://www.prosetech.com

CHAPTER 15 ■ USER CONTROLS

691

The first version of the LinkTable control is fairly functional, but it doesn’t use events. Instead, it
simply creates the requested links. To demonstrate how events can be used, the next example revises the
LinkTable so that it notifies the user when an item is clicked. Your web page can then determine what
action to take based on which item was clicked.

The first step to implement this design is to define the events. Remember that to define an event you
must use the event keyword with a delegate that represents the signature of the event. The .NET
standard for events specifies that every event should use two parameters. The first one provides a
reference to the control that sent the event, and the second one incorporates any additional
information. This additional information is wrapped into a custom EventArgs object, which inherits
from the System.EventArgs class. (If your event doesn’t require any additional information, you can just
use the generic System.EventArgs class, which doesn’t contain any additional data. Many events in
ASP.NET, such as Page.Load or Button.Click, follow this pattern.)

In the LinkTable example, it makes sense to transmit basic information about what link was clicked.
To support this design, you can create the following custom EventArgs object, which adds a read-only
property that has the corresponding LinkTableItem object:

public class LinkTableEventArgs : EventArgs
{
 private LinkTableItem selectedItem;
 public LinkTableItem SelectedItem
 {
 get { return selectedItem; }
 }

 private bool cancel = false;
 public bool Cancel
 {
 get { return cancel; }
 set { cancel = value; }
 }

 public LinkTableEventArgs(LinkTableItem item)
 {
 selectedItem = item;
 }
}

Notice that the LinkTableEventArgs class defines two new details—a SelectedItem property that
allows the user to get information about the item that was clicked and a Cancel property that the user
can set to prevent the LinkTable from navigating to the new page. One reason you might set Cancel is if
you want to respond to the event in your web-page code and handle the redirect yourself. For example,
you might want to show the target link in a server-side <iframe> or use it to set the content for an
tag rather than navigating to a new page.

Next, you need to create a new delegate that represents the LinkClicked event signature. Here’s
what it should look like:

public delegate void LinkClickedEventHandler(object sender,
 LinkTableEventArgs e);

You can add the delegate definition anywhere you’d like, but it’s customary to place it at the
namespace level, just before or after the declaration of the class that uses it (in this case,
LinkTableEventArgs).

Using the LinkClickedEventHandler, the LinkTable class defines a single event:

CHAPTER 15 ■ USER CONTROLS

692

public event LinkClickedEventHandler LinkClicked;

To intercept the server click, you need to replace the HyperLink control with a LinkButton, because
only the LinkButton raises a server-side event. (The HyperLink simply renders as an anchor that directs
the user straight to the target when clicked.) Here’s the new template you need:

<ItemTemplate>
 <img height="23" src="exclaim.gif"
 alt="Menu Item" style="vertical-align: middle" />
 <asp:LinkButton ID="lnk" Font-Names="Verdana"
 Font-Size="XX-Small" ForeColor="#0000cd" runat="server"
 Text='<%# DataBinder.Eval(Container.DataItem, "Text") %>'
 CommandName="LinkClick"
 CommandArgument='<%# DataBinder.Eval(Container.DataItem, "Url") %>'>
 </asp:LinkButton>
</ItemTemplate>

You can then intercept the server-side click event by handling the GridView.RowCommand event,
which fires when a command is triggered by any control in the grid:

<asp:GridView id="gridLinkList" runat="server"
 OnRowCommand="gridLinkList_RowCommand" ... />

Then you can write the event-handling code that passes the event along to the web page as a
LinkClicked event:

protected void gridLinkList_RowCommand(object source,
 GridViewCommandEventArgs e)
{
 // Make sure there is at least one registered event handler before
 // raising the event.
 if (LinkClicked != null)
 {
 // Get the LinkButton object that was clicked.
 LinkButton link = (LinkButton)e.CommandSource;

 // Construct the event arguments.
 LinkTableItem item = new LinkTableItem(link.Text, link.CommandArgument);
 LinkTableEventArgs args = new LinkTableEventArgs(item);

 // Fire the event.
 LinkClicked(this, args);

 // Navigate to the link if the event recipient didn't
 // cancel the operation.
 if (!args.Cancel)
 {
 Response.Redirect(item.Url);
 }
 }
}

Note that when you raise an event, you must first check to see if the event variable contains a null
reference. If it does, it signifies that no event handlers are registered yet (perhaps the control hasn’t been
created). Trying to fire the event at this point will generate a null reference exception. If the event

CHAPTER 15 ■ USER CONTROLS

693

variable isn’t null, you can fire the event by using the name and passing along the appropriate event
parameters.

Consuming this event isn’t quite as easy as it is for the standard set of ASP.NET controls. The
problem is that user controls don’t provide much in the way of design-time support. (Custom controls,
which you’ll look at in Chapter 27, do provide design-time support.) As a result, you can’t use the
Properties window to wire up the event handler at design time. Instead, you need to write the event
handler and the code that attaches it yourself.

Here’s an example of an event handler that has the required signature (as defined by the
LinkClickedEventHandler delegate):

protected void LinkClicked(object sender, LinkTableEventArgs e)
{
 lblInfo.Text = "You clicked '" + e.SelectedItem.Text +

 "' but this page chose not to direct you to '" +
 e.SelectedItem.Url + "'.";
 e.Cancel = true;
}

You have two options to wire up the event handler. You can do it manually in the Page.Load event
handler using this code:

LinkTable1.LinkClicked += new LinkClicked;

Alternatively, you can do it in the control tag. Just add the prefix On in front of the event name, as
shown here:

<apress:LinkTable ID="LinkTable1" runat="server" OnLinkClicked="LinkClicked" />

Figure 15-5 shows the result when a link is clicked.

Figure 15-5. A user control that fires an event

CHAPTER 15 ■ USER CONTROLS

694

Exposing the Inner Web Control
One important detail to remember is that the user control’s constituent controls can be accessed only by
the user control. That means the web page that hosts the user control cannot receive the events, set the
properties, or call the methods of these contained controls. For example, in the TimeDisplay user
control, the web page has no ability to access the LinkButton control that it uses.

Usually, this behavior is exactly what you want. It means your user control can add public
properties to expose specific details without giving the web page free reign to tamper with everything
and potentially introduce invalid or inconsistent changes. For example, if you want to give the web page
the ability to tweak the foreground color of the LinkButton control, you might add a ForeColor property
to your user control. Here’s an example:

public Color ForeColor
{
 get { return lnkTime.ForeColor; }
 set { lnkTime.ForeColor = value; }
}

To change the foreground color in your web-page code, you would now use code like this:

TimeDisplay1.ForeColor = System.Drawing.Color.Green;

This example maps the lnkTime.ForeColor property to the ForeColor property of the user control.
This trick is usually the best approach, but it can become tedious if you need to expose a large number of
properties. For example, your user control might render a table, and you might want to let the user
configure the formatting of each table cell.

In this case, it might make sense to expose the complete control object. Here’s an example that
exposes the lnkTime control for the TimeDisplay user control:

public LinkButton InnerLink
{
 get { return lnkTime; }
}

Notice that you need to use a read-only property, because it’s not possible for the web page to
replace the control with something different.

Now you can use this code to set the foreground color in the hosting page:

TimeDisplay1.InnerLink.ForeColor = System.Drawing.Color.Green;

Keep in mind that when you use this practice, you expose all the details of the inner control. This
means the web page can call methods and receive events from that control. This approach gives
unlimited flexibility, but it reduces the reusability of the code. It also increases the chance that your web
page will become tightly coupled to the internal details of the current implementation of your control,
thereby making it less likely that you can revise or enhance the user control without disrupting the web
pages that use it. As a general rule, it’s always better to create dedicated methods, events, and properties
to expose just the functionality you need, rather than opening a back door that could be used to create
messy workarounds.

CHAPTER 15 ■ USER CONTROLS

695

Dynamically Loading User Controls
So far you’ve seen how you can add user controls to a page by registering the type of user control and
adding the corresponding tag. You can also create user controls dynamically—in other words, create
them on the fly using nothing but a little web-page code.

This technique is similar to the technique you used to add ordinary web controls dynamically (as
described in Chapter 3). As with ordinary controls, you should do the following:

• Add user controls when the Page.Load event fires (so that your user control can
properly restore its state and receive postback events).

• Use container controls and the PlaceHolder control to make sure the user controls
end up exactly where you want.

• Give the user control a unique name by setting its ID property. You can use this
information to retrieve a reference to the control when you need it with the
Page.FindControl() method.

This has one additional wrinkle. You can’t create a user control object directly, like you can with an
ordinary control. That’s because user controls aren’t entirely based on code—they also require the
control tags that are defined in the .ascx file. To use a user control, ASP.NET needs to process this file
and initialize the corresponding child control objects.

To perform this step, you need to call the Page.LoadControl() method. When you call LoadControl(),
you pass the filename of the .ascx user control markup file. LoadControl() returns a UserControl object,
which you can then add to the page and cast to the specific class type to access control-specific
functionality.

Here’s an example that loads the TimeDisplay user control dynamically and adds it to the page
using a PlaceHolder control:

protected void Page_Load(object sender, EventArgs e)
{
 TimeDisplay ctrl = (TimeDisplay)Page.LoadControl("TimeDisplay.ascx");
 PlaceHolder1.Controls.Add(ctrl);
}

Despite this slightly awkward detail, dynamically loading is a powerful technique when used in
conjunction with user controls. It’s commonly used to create highly configurable portal frameworks.

Portal Frameworks
Although it takes a fair bit of boilerplate code to create a complete portal framework, you can see the
most important principles with a simple example. Consider the page shown in Figure 15-6. It includes a
panel that contains three controls—a DropDownList (with its AutoPostBack property set to true), a
Label, and a PlaceHolder control.

CHAPTER 15 ■ USER CONTROLS

696

Figure 15-6. A panel for holding user controls

When the user selects an item from the drop-down list, the page posts back, and the appropriate
user control is loaded dynamically and inserted into the placeholder. Figure 15-7 shows the result.

Figure 15-7. A dynamically loaded user control

Here’s the code that loads the selected control:

protected void Page_Load(object sender, EventArgs e)
{
 // Remember that the control must be loaded in the Page.Load event handler.
 // The DropDownList.SelectedIndexChanged event fires too late.
 string ctrlName = listControls.SelectedItem.Value;

CHAPTER 15 ■ USER CONTROLS

697

 if (ctrlName.EndsWith(".ascx"))
 {
 placeHolder.Controls.Add(Page.LoadControl(ctrlName));
 }
 lbl.Text = "Loaded..." + ctrlName;
}

This example demonstrates a number of interesting features. First, because the PlaceHolder is
stored in a formatted container, the user controls you load automatically acquire the container’s font,
background color, and so on (unless they explicitly define their own fonts and colors).

Best of all, because you’re loading these controls when the Page.Load event fires, the control objects
are able to handle their own events. You can try this by loading the TimeDisplay user control and then
clicking the link to refresh the time.

■ Note Because the TimeDisplay control isn’t loaded until the page is posted back at least once, it won’t show the
time until you click the link at least once. Instead, it will start with the generic control name text. You can solve this
problem in a number of ways, including calling the RefreshTime() method from your web page when the control is
loaded. An even better approach is to create an interface for all your user controls that defines certain basic
methods, such as InitializeControl(). That way, you can initialize any control generically. Most portal frameworks
use interfaces to provide this type of standardization.

It’s not too difficult to extend this example to provide an entire configurable web page. All you need
to do is create more panels and organize them on your web page, possibly using tables and other panels
to group them. (The following example loads user controls into <div> elements that have the
runat="server" attribute set to make them server controls.)

This might seem like a tedious task, but you can actually use it quite effectively by writing some
generic code that deals with all the panels on your page. One option is to create a user control that loads
other user controls. Another approach is to use a custom method in the web-page class (as shown in the
following code) to handle user control loading for three panels.

protected void Page_Load(object sender, EventArgs e)
{
 LoadControls(div1);
 LoadControls(div2);
 LoadControls(div3);
}

private void LoadControls(Control container)
{
 DropDownList list = null;
 PlaceHolder ph = null;
 Label lbl = null;

 // Find the controls for this panel.
 foreach (Control ctrl in container.Controls)
 {
 if (ctrl is DropDownList)
 {
 list = (DropDownList)ctrl;

CHAPTER 15 ■ USER CONTROLS

698

 }
 else if (ctrl is PlaceHolder)
 {
 ph = (PlaceHolder)ctrl;
 }
 else if (ctrl is Label)
 {
 lbl = (Label)ctrl;
 }
 }

 // Load the dynamic content into this panel.
 string ctrlName = list.SelectedItem.Value;
 if (ctrlName.EndsWith(".ascx"))
 {
 ph.Controls.Add(Page.LoadControl(ctrlName));
 }
 lbl.Text = "Loaded..." + ctrlName;
}

Figure 15-8 shows this example in action.

Figure 15-8. A dynamic web page with multiple user controls

CHAPTER 15 ■ USER CONTROLS

699

Using this technique to build an entire web portal framework is possible, but it requires significant
work before it would be practical. Creating this framework is a tedious, time-consuming task. In Chapter
31 you’ll learn about web parts, a native ASP.NET solution for building web portals that doesn’t force
you to reinvent the wheel. Web parts are based, at least in part, on user controls.

Partial Page Caching
In Chapter 11, you learned how you can cache a web page by adding the OutputCache directive to the
.aspx page. This type of caching, called output caching, caches a rendered HTML version of the page,
which ASP.NET can reuse automatically for future requests without executing any of your page code.

One of the drawbacks with output caching is that it works on an all-or-nothing basis. It doesn’t work
if you need to render a portion of your page dynamically. For example, you might want to cache a table
that’s filled with records read from a data source so that you can limit the round-trips to the database
server, but you might still need to get fresh output for the rest of the page. If that’s your situation, user
controls can provide exactly what you’re looking for because they can cache their own output. This
feature is called partial caching, or fragment caching, and it works in almost the same way as output
caching. The only difference is that you add the OutputCache directive to the user control, instead of
the page.

To test this feature, add the following line to the .ascx portion of a user control such as the
TimeDisplay:

<%@ OutputCache Duration="10" VaryByParam="None" %>

Now in the hosting page you’ll see that the displayed time won’t change for 10 seconds. Refreshing
the page has no effect. The VaryByParam parameter has the same meaning as it did with web pages—it
allows to you to generate and cache fresh HTML output when the parameters in the query string portion
of the URL change.

Alternatively, you can enable caching by adding the following attribute to the declaration of your
user control class:

[PartialCaching(10)]
public class MyUserControl : System.Web.UI.UserControl
{ ... }

There’s one caveat when using fragment caching. When a user control is cached, the user control
essentially becomes a block of static HTML. As a result, the user control object won’t be available to your
web-page code. Instead, ASP.NET instantiates one of two more generic object types, depending on how
the user control was created. If the user control was created declaratively (by adding a user tag to the
web page), a StaticPartialCachingControl object is added. If the user control was created
programmatically (using the LoadControl() method), a PartialCachingControl object is added. ASP.NET
places the object into the logical position that a user control would occupy in the page’s control
hierarchy if it were not cached. However, these objects are just placeholders—they won’t allow you to
interact with the user control through its properties or methods. If you aren’t sure if caching is in effect,
you should test for a null reference before you attempt to use the user control object.

VaryByControl
If your user control contains input controls, it’s difficult to use caching. The problem occurs if the
content in the input controls affects the cached content that the user control displays. With ordinary
caching, you’re stuck reusing the same copy of the user control, regardless what the user types into an
input control. (A similar problem exists with web pages, which is why it seldom makes sense to cache a
web page that includes input controls.)

CHAPTER 15 ■ USER CONTROLS

700

The VaryByControl property solves this problem. VaryByControl takes a semicolon-delimited string
of control names that are used to vary the cached content in much the same way that VaryByParameter
varies the cached content for query string values.

For example, consider the following user control, named VaryingDate:

<%@ Control Language="C#" AutoEventWireup="true"
 CodeFile="VaryByControl.ascx.cs" Inherits="VaryingDate" %>

<asp:DropDownList id="lstMode" runat="server" Width="187px">
 <asp:ListItem>Large</asp:ListItem>
 <asp:ListItem>Small</asp:ListItem>
 <asp:ListItem>Medium</asp:ListItem>
</asp:DropDownList>

<asp:Button ID="cmdSubmit" text="Submit" runat="server" />

Control generated at:

<asp:Label id="TimeMsg" runat="server" />

When the button is clicked, it displays the current date in one of three formats.

protected void Page_Load(object sender, EventArgs e)
{
 switch (lstMode.SelectedIndex)
 {
 case 0:
 TimeMsg.Font.Size = FontUnit.Large;
 break;
 case 1:
 TimeMsg.Font.Size = FontUnit.Small;
 break;
 case 2:
 TimeMsg.Font.Size = FontUnit.Medium;
 break;
 }
 TimeMsg.Text = DateTime.Now.ToString("F");
}

It’s not sufficient to keep one cached copy of this page, because the display format changes
depending on the selection in the lstMode control (see Figure 15-9).

CHAPTER 15 ■ USER CONTROLS

701

Figure 15-9. Content that varies by control selection

You can handle this using the VaryByControl attribute in the .ascx file for the user control and
referring specifically to the property of the control that varies:

<%@ OutputCache Duration="30" VaryByControl="lstMode.SelectedItem" %>

When you try this example, you’ll see a different date for each option, which emphasizes that
ASP.NET maintains a separate cached copy for each list selection.

Sharing Cached Controls
If you use the same user control in ten different pages, ASP.NET will cache ten separate versions of that
control. This gives each page the chance to customize the user control the first time it’s executed, before
the user control is cached. However, in many cases you might find that you reuse the same user control
on multiple pages and you don’t need to introduce page-specific customizations. In this case, you can
save memory by telling ASP.NET to share the cached copy of the control.

ASP.NET enables this scenario through the Shared property of the OutputCache directive. The
Shared property works only when you are applying the directive to a user control, not a web form. Here’s
an example:

<%@ OutputCache Duration="10" VaryByParam="None" Shared="True" %>

You can also make the same request by adding the PartialCaching attribute to the class declaration
for the user control:

[PartialCaching(10, null, null, null, true)]
public class MyUserControl : System.Web.UI.UserControl
{ ... }

The null parameters here represent VaryByParam, VaryByControl, and VaryByCustom.

CHAPTER 15 ■ USER CONTROLS

702

Summary
In this chapter, you learned how to create some simple and some sophisticated user controls. You also
saw how to load user controls dynamically and how to use fragment caching.

Though user controls are easy to create, they don’t solve every custom control challenge. In fact,
user controls are quite limited in scope (they can’t be easily shared across applications), and they have
limited design-time support (for example, you can’t attach event handlers in the Properties window).
User controls also lack advanced features and aren’t well suited to rendering HTML and JavaScript on
the fly. To improve on this situation, you can step up to custom controls, which are much more
sophisticated and quite a bit more complicated to create. Chapter 27 describes custom controls.

■ Note Although server controls are more powerful than user controls, most of the concepts you’ve learned in this
chapter apply to server controls in the same way that they apply to user controls. For example, you can create

server controls that include properties and methods, use custom objects, fire events, and expose child controls.

C H A P T E R 16

■ ■ ■

703

Themes and Master Pages

Building a professional web application involves much more than designing individual web pages. You
also need the tools to integrate your web pages into a complete, unified website. In this chapter, you’ll
consider two ASP.NET features that let you do that.

First up is a feature called themes, which let you define the formatting details for various types of
controls and seamlessly reuse these formats in multiple pages. Themes make it much easier to
standardize your website’s look and feel and tweak it later. Once a theme is in place, you can give your
entire website a face-lift just by changing the theme definition.

A more impressive innovation is master pages, which let you create reusable page templates. Using a
master page, you can define the layout for your website pages, complete with all the usual details such as
headers, menu bars, and ad banners. Once you’ve formalized this structure, you can use the master page
throughout your website, ensuring that all pages have the same design. Visitors can then surf from one
section to another without noticing any change.

In this chapter, you’ll learn how to use themes and master pages to standardize your websites.

Cascading Style Sheets
The first step you can follow to create a seamless, unified website is to adopt a consistent visual style. In
other words, standardize ruthlessly. If you want to tweak the font or border of a button, make sure you
change it for every button you include. Being consistent isn’t always easy. To help manage the details,
you can use CSS or themes.

CSS provides a cross-platform solution for formatting web pages that works in conjunction with
HTML or XHTML and is supported by virtually all modern browsers. In fact, early versions of Visual
Studio automatically generated a Styles.css file for you to use in your website. (Later versions of Visual
Studio abandoned this practice in favor of less clutter.)

■ Tip You can get the technical lowdown on CSS at http://www.w3.org/Style/CSS, or you can visit

http://www.w3schools.com/css for a thorough tutorial.

Creating a Stylesheet
With CSS, you use a stylesheet to define a set of formatting presets. You then link this stylesheet to the
appropriate control using the CssClass property. To try it and add an (almost) empty stylesheet to your

http://www.w3.org/Style/CSS
http://www.w3schools.com/css

CHAPTER 16 ■ THEMES AND MASTER PAGES

704

web project, choose Website ➤ Add New Item in Visual Studio (or Project ➤ Add New Item if you’re
using the web project model). Then select Style Sheet, edit the filename, and click OK.

Stylesheets consist of rules. Each rule defines how a single ingredient in your web page should be
formatted. For example, if you want to define a rule for formatting headings, you start by defining a rule
with a descriptive name, like this:

.heading1
{
}

Each rule name has two parts. The portion before the period indicates the HTML element to which
the rule applies. In this example, nothing appears before the period, which means the rule can apply to
any tag. The portion after the period is a unique name (called the CSS class name) that you choose to
identify your rule. CSS class names are case-sensitive.

Once you’ve defined a rule, you can add the appropriate formatting information. Here’s an example
the sets the heading1 style to use large, bold text with a green foreground color. The font is set to
Verdana (if it’s available), Arial (if it’s not), or the browser’s default sans-serif typeface (if neither Verdana
nor Arial is installed).

.heading1
{
 font-weight: bold;
 font-size: large;
 color: lime;
 font-family: Verdana, Arial, Sans-Serif;
}

You can also create rules that are applied to HTML tags automatically. To do this, specify the tag
name for the rule name. Here’s a rule that affects all <h2> tags on the page that uses the stylesheet:

h2
{ ... }

Although this automatic stylesheet application sounds useful, it’s less convenient in ASP.NET
because you’re usually dealing with controls, not individual HTML tags. You can’t always be certain
what tags will be used to render a given control, so it’s best to explicitly specify the rule you want to use
through the class name.

■ Tip If hand-writing CSS rules seems like too much work, don’t worry—Visual Studio allows you to build a style
rule using the same designer you use to format HTML tags. To use this feature, start by adding your rule
declaration. Then, right-click between the two curly braces, and select Build Style. You’ll see the Modify Style

dialog box where you can point and click your way to custom fonts, borders, backgrounds, and alignment.

A typical stylesheet defines a slew of rules. In fact, stylesheets are often used to formally define the
formatting for every significant piece of a website’s user interface. The following stylesheet serves this
purpose by defining five rules. The first rule sets the font for the <body> element, which ensures that the
entire page shares a consistent default font. The rest of the rules are class-based, and need to be applied
explicitly to the elements that use them. Two rules define size and color formatting for headings, and the
final rule configures the formatting that’s needed to create a bordered, shaded box of text.

CHAPTER 16 ■ THEMES AND MASTER PAGES

705

body
{
 font-family: Verdana, Arial, Sans-Serif;
 font-size: small;
}

.heading1
{
 font-weight: bold;
 font-size: large;
 color: lime;
}

.heading2
{
 font-weight: bold;
 font-size: medium;
 font-style: italic;
 color: #C0BA72;
}

.blockText
{
 padding: 10px;
 background-color: #FFFFD9;
 border-style: solid;
 border-width: thin;
}

Visual Studio includes a CSS Outline window, which shows you an overview of the rules in your
stylesheet. To show the CSS Outline window when you’re editing a stylesheet, choose View ➤ Other
Windows ➤ Document Outline.

While you’re editing the stylesheet just shown, you’ll see the outline shown in Figure 16-1. It clearly
indicates that your stylesheet includes one element rule (the one that formats the body) and three class
rules. You can jump immediately to a specific rule by clicking it in the CSS Outline window.

Figure 16-1. Navigating a stylesheet with the CSS Outline window

CHAPTER 16 ■ THEMES AND MASTER PAGES

706

Rule names are technically known as selectors, because they identify the parts of an HTML
document that should be selected for formatting. You’ve seen how to write selectors that use element
types and selectors that use class names. CSS also supports a few more options for building advanced
selectors that aren’t described in this chapter. For example, you can create selectors that only apply to a
specific element type inside another element (for example, a link inside a specific <div> container). Or,
you can create selectors that apply formatting to individual elements that have a specific id values.
(These appear in the CSS Outline window under the Element IDs group.) To learn more about CSS,
consult a dedicated book such as CSS: The Definitive Guide, by Eric Meyer.

Applying Stylesheet Rules
To use a rule in a web page, you first need to link the page to the appropriate stylesheet. You do this by
adding a <link> element in the <head> section of your page. The <link> element references the file with
the styles you want to use. Here’s an example that allows the page to use styles defined in the file
StyleSheet.css, assuming it’s in the same folder as the web page:

<link href="StyleSheet.css" rel="stylesheet" type="text/css" />

Now you can bind any static HTML element or control to your style rules. For example, if you want
an ordinary label to use the heading1 format, set the Label.CssStyle property to heading1, as shown here:

<asp:Label ID="Label1" runat="server" Text="This Label uses the heading1 style."
 CssClass="heading1"></asp:Label>

To apply a style to an ordinary piece of HTML, you set the class attribute. Here’s an example that
applies a style to a <div> element, which groups together a paragraph of text for easy formatting:

<div class="blockText" id="paragraph" runat="server" >
 <p>This paragraph uses the blockText style.</p>
</div>

There’s no reason that you need to attach style sheets and apply styles by hand. You can also use the
support that’s built into Visual Studio. To add the <link> element to a web page, drag your stylesheet
from the Solution Explorer and drop it onto the design surface of the page (or the <head> section in
source view). To apply a style, you can use Visual Studio’s Apply Styles window.

To show the Apply Styles window, open a web page and choose View ➤ Apply Styles. The Apply
Styles window appears on the left with the Toolbox and Server Explorer, just like the other CSS windows
you’ve seen so far.

The Apply Styles window shows a list of all the styles that are available in the attached stylesheets,
along with a preview of each one (see Figure 16-2). To apply a style, simply select an element on your
web page and then click the appropriate style in the Apply Styles window.Visual Studio is intelligent
enough to figure out the appropriate way to apply a style based on what you’ve selected in your web
page:

• If you select a web control, it adds or changes the CssClass property.

• If you select an ordinary HTML element, it adds or changes the class attribute.

• If you select a section of HTML content, it adds a or <div> element
(depending on the type of content you’ve selected) and then sets its class
attribute.

CHAPTER 16 ■ THEMES AND MASTER PAGES

707

■ Tip Click the Options button to tweak the way the Apply Styles window works. For example, you can choose to

preview styles in a different order, or include just those styles that are being used in the current page.

Figure 16-2. Applying a style with the Apply Styles window

Visual Studio has even more stylesheet assistance for you to explore. Here are a few more features
that can help with the daily drudgery of managing styles:

• The Manage Styles window: This window gives you an at-a-glance overview of all
the styles that are in scope in the current web page, in a single list. To show it,
open a web page and choose View ➤ Manage Styles. Using this window, you can
view the style definition (hover over a style), edit it (right-click the style and
choose Go To Code), or design it with the style builder (right-click the style and
choose Modify).

• The Style Sheet toolbar: This toolbar is useful when designing a stylesheet, and
provides buttons for modifying an existing style or adding a new style. To show
this toolbar, right-click the toolbar strip and add a check mark next to Style Sheet.

• The CSS Properties window: This window allows you to examine a style in detail
and modify its formatting properties. To use it, choose View ➤ CSS Properties.
Then, select find an element that has a style, and select it on the design surface of
your web page. The CSS Properties window will show a detailed, sub-grouped list
of all the CSS style properties (see Figure 16-3), which looks similar to the list of
web control properties in the Properties window.

CHAPTER 16 ■ THEMES AND MASTER PAGES

708

■ Note If more than one style rule applies to the currently selected element, the CSS Properties window shows a
list of all the style rules in order of precedence. You can then select one to view or edit it. Properties that are set in
a parent but don’t apply to the currently selected element (either because they aren’t inherited or because they’re

overridden by another style) are crossed out with a red line.

Figure 16-3. Modifying a style with the CSS Properties window

Using stylesheets accomplishes two things. First, it standardizes your layout so that you can quickly
format pages without introducing minor mistakes or idiosyncrasies. Second, it separates the formatting
information so that it doesn’t appear in your web pages at all, allowing you to modify the format without

CHAPTER 16 ■ THEMES AND MASTER PAGES

709

tracking down each page or recompiling your code. And although CSS isn’t a .NET-centric standard,
Visual Studio still provides rich support for it.

Themes
With the convenience of CSS styles, you might wonder why developers need anything more. The
problem is that CSS rules are limited to a fixed set of style attributes. They allow you to reuse specific
formatting details (fonts, borders, foreground and background colors, and so on), but they obviously
can’t control other aspects of ASP.NET controls. For example, the CheckBoxList control includes
properties that control how it organizes items into rows and columns. Although these properties affect
the visual appearance of the control, they’re outside the scope of CSS, so you need to set them by hand.
Additionally, you might want to define part of the behavior of the control along with the formatting. For
example, you might want to standardize the selection mode of a Calendar control or the wrapping in a
TextBox. This obviously isn’t possible through CSS.

Themes fill this gap. Like CSS, themes allow you to define a set of style attributes that you can apply
to controls in multiple pages. However, unlike CSS, themes aren’t implemented by the browser. Instead,
they’re a native ASP.NET solution that’s implemented on the server. Although themes don’t replace
styles, they have some features that CSS can’t provide. Here are the key differences:

Themes are control-based, not HTML-based: As a result, themes allow you to define and reuse
almost any control property. For example, themes allow you to specify a set of common node
pictures and use them in numerous TreeView controls or to define a set of templates for multiple
GridView controls. CSS is limited to style attributes that apply directly to HTML.

Themes are applied on the server: When a theme is applied to a page, the final styled page is sent to
the user. When a stylesheet is used, the browser receives both the page and the style information
and then combines them on the client side.

Themes can be applied through configuration files: This lets you apply a theme to an entire folder
or your whole website without modifying a single web page.

Themes don’t cascade in the same way as CSS: Essentially, if you specify a property in a theme and
in the individual control, the value in the theme overwrites the property in the control. However,
you have the choice of changing this behavior and giving precedence to the properties in the page,
which makes themes behave more like stylesheets.

It would be overstating it to say that themes replace CSS. Instead, themes represent a higher-level
model. To implement your formatting properties, ASP.NET will frequently render inline style rules. In
addition, if you’ve crafted the perfect stylesheet, you can still use it. It’s up to you whether you want to
use one or both solutions. As you’ll see later in this chapter (in the section “Using CSS in a Theme”), it’s
possible to use a stylesheet as part of a theme.

Theme Folders and Skins
All themes are application-specific. To use a theme in a web application, you need to create a folder that
defines it. You need to place this folder in a folder named App_Themes, which must be inside the top-
level directory for your web application. In other words, a web application named SuperCommerce
might have a FunkyTheme theme in the SuperCommerce\App_Themes\FunkyTheme folder.

An application can contain definitions for multiple themes, as long as each theme is in a separate
folder. Only one theme can be active on a given page at a time. In the “Applying Themes Dynamically”
section, you’ll discover how you can dynamically change the active theme when your page is processing.

CHAPTER 16 ■ THEMES AND MASTER PAGES

710

To actually make your theme accomplish something, you need to create at least one skin file in the
theme folder. A skin file is a text file with the .skin extension. ASP.NET never serves skin files directly—
instead, they’re used behind the scenes to define a theme.

A skin file is essentially a list of control tags—with a twist. The control tags in a skin file don’t need to
completely define the control. Instead, they need to set only the properties you want to standardize. For
example, if you’re trying to apply a consistent color scheme, you might be interested in setting
properties such as ForeColor and BackColor only. When you add a control tag for the ListBox control in
the skin file, it might look like this:

<asp:ListBox runat="server" ForeColor="White" BackColor="Orange"/>

The runat="server" portion is always required. Everything else is optional. The id attribute is not
allowed in a theme, because it’s required to uniquely identify each control in the actual web page.

It’s up to you whether you create multiple skin files or place all your control tags in a single skin file.
Both approaches are equivalent, because ASP.NET treats all the skin files in a theme directory as part of
the same theme definition. Often, it makes sense to separate the control tags for complex controls (such
as the data controls) into separate skin files. Figure 16-4 shows the relationship between themes and
skins in more detail.

Figure 16-4. Themes and skins

ASP.NET also supports global themes. These are themes you place in the
c:\Inetpub\wwwroot\aspnet_client\system_web\[Version]\Themes directory (assuming
c:\Inetpub\wwwroot is the web root for the IIS web server, which is the default configuration). However,
it’s recommended that you use local themes, even if you want to create more than one website that has
the same theme. Using local themes makes it easier to deploy your web application, and it gives you the
flexibility of introducing site-specific differences in the future.

If you have a local theme with the same name as a global theme, the local theme takes precedence,
and the global theme is ignored. The themes are not merged together.

CHAPTER 16 ■ THEMES AND MASTER PAGES

711

■ Tip ASP.NET doesn’t ship with any predefined themes. That means you’ll need to create your own from scratch

or download sample themes from other websites such as http://www.asp.net.

Applying a Simple Theme
To add a theme to your project, select Website ➤ Add New Item (or Project ➤ Add New Item) and

choose Skin File. Visual Studio will warn you that skin files need to be placed in a subfolder of the
App_Themes folder and will ask you if that’s what you intended. If you choose Yes, Visual Studio will
create a folder with the same name as your theme file. You can then rename the folder and the file to
whatever you’d like to use. Figure 16-5 shows an example with a theme that contains a single skin file.

Visual Studio doesn’t include any design-time support for creating themes, so it’s up to you to copy
and paste control tags from other web pages. Here’s a sample skin that sets background and foreground
colors for several common controls:

<asp:ListBox runat="server" ForeColor="White" BackColor="Orange"/>
<asp:TextBox runat="server" ForeColor="White" BackColor="Orange"/>
<asp:Button runat="server" ForeColor="White" BackColor="Orange"/>

To apply the theme in a web page, you need to set the Theme attribute of the Page directive to the
folder name for your theme. (ASP.NET will automatically scan all the skin files in that theme.)

<%@ Page Language="C#" AutoEventWireup="true" ... Theme="FunkyTheme" %>

Figure 16-5. A theme in the Solution Explorer

You can make this change by hand, or you can select the DOCUMENT object in the Properties
window at design time and then set the Theme property (which provides a handy drop-down list of all
your web application’s themes). Visual Studio will modify the Page directive accordingly.

When you apply a theme to a page, ASP.NET considers each control on your web page and checks
your skin files to see if they define any properties for that control. If ASP.NET finds a matching tag in the
skin file, the information from the skin file overrides the current properties of the control.

Figure 16-6 shows the result of applying the FunkyTheme to a simple page. The first picture shows
the Themes.aspx page in its natural state, with no theme. The second picture shows the same page with
the FunkyTheme applied. All the settings in FunkyTheme are applied to the controls in Themes.aspx,

http://www.asp.net

CHAPTER 16 ■ THEMES AND MASTER PAGES

712

even if they overwrite values you’ve explicitly set in the page (such as the background for the list box).
However, details that were in the original page but that don’t conflict with the theme (such as the
custom font for the buttons) are left in place.

Figure 16-6. A simple page before and after applying a theme

Handling Theme Conflicts
As you’ve seen, when properties conflict between your controls and your theme, the theme wins.
However, in some cases you might want to change this behavior so that your controls can fine-tune a
theme by specifically overriding certain details. ASP.NET gives you this option, but it’s an all-or-nothing
setting that applies to all the controls on the entire page.

To make this change, just use the StyleSheetTheme attribute instead of the Theme attribute in the
Page directive. (The StyleSheetTheme setting works more like CSS.) Here’s an example:

<%@ Page Language="C#" AutoEventWireup="true" ... StyleSheetTheme="FunkyTheme" %>

Now the custom yellow background of the ListBox takes precedence over the background color
specified by the theme. Figure 16-7 shows the result—and a potential problem. Because the foreground
color has been changed to white, the lettering is now difficult to read. Overlapping formatting
specifications can cause glitches such as this, which is why it’s often better to let your themes take
complete control by using the Theme attribute.

■ Note It’s possible to use both the Theme attribute and the StyleSheetTheme attribute at the same time so that
some settings are always applied (those in the Theme) and others are applied only if they aren’t already specified
in the control (those in the StyleSheetTheme). Depending on your point of view (and level of comfort with themes

and styles), this is either a terribly confusing design or a useful way to make a distinction between settings you

want to enforce (Theme) and settings you want to use as defaults (StyleSheetTheme).

CHAPTER 16 ■ THEMES AND MASTER PAGES

713

Figure 16-7. Giving the control tag precedence over the theme

Another option is to configure specific controls so they opt out of the theming process entirely. To
do this, simply set the EnableTheming property of the control on the web page to false. ASP.NET will still
apply the theme to other controls on the page, but it will skip over the control you’ve configured.

<asp:Button ID="Button1" runat="server" ... EnableTheming="false" />

Creating Multiple Skins for the Same Control
Having each control locked into a single format is great for standardization, but it’s probably not flexible
enough for a real-world application. For example, you might have several types of text boxes that are
distinguished based on where they’re used or what type of data they contain. Labels are even more likely
to differ, depending on whether they’re being used for headings or for body text. Fortunately, ASP.NET
allows you to create multiple declarations for the same control.

Ordinarily, if you create more than one theme for the same control, ASP.NET will give you a build
error stating that you can have only a single default skin for each control. To get around this problem,
you need to create a named skin by supplying a SkinID attribute. Here’s an example:

<asp:ListBox runat="server" ForeColor="White" BackColor="Orange" />
<asp:TextBox runat="server" ForeColor="White" BackColor="Orange" />
<asp:Button runat="server" ForeColor="White" BackColor="Orange" />
<asp:TextBox runat="server" ForeColor="White" BackColor="DarkOrange"
 Font-Bold="True" SkinID="Dramatic" />
<asp:Button runat="server" ForeColor="White" BackColor="DarkOrange"
 Font-Bold="True" SkinID="Dramatic" />

The catch is that named skins aren’t applied automatically like default skins. To use a named skin,
you need to set the SkinID of the control on your web page to match. You can choose this value from a
drop-down list that Visual Studio creates based on all your defined skin names, or you can type it in
by hand:

<asp:Button ID="Button1" runat="server" ... SkinID="Dramatic" />

CHAPTER 16 ■ THEMES AND MASTER PAGES

714

If you don’t like the opt-in model for themes, you can make all your skins named. That way, they’ll
never be applied unless you set the control’s SkinID.

■ Note Using named themes is similar to using CSS rules that are based on class name (as shown at the
beginning of this chapter). CSS class rules are applied only if you set the class attribute of the corresponding

HTML tag.

ASP.NET is intelligent enough to catch if you try to use a skin name that doesn’t exist, in which case
you’ll get a build warning. The control will then behave as though you set EnableTheming to false, which
means it will ignore the corresponding default skin.

■ Tip The SkinID doesn’t need to be unique. It just has to be unique for each control. For example, imagine you
want to create an alternate set of skinned controls that use a slightly smaller font. These controls match your
overall theme, but they’re useful on pages that display a large amount of information. In this case, you can create

new Button, TextBox, and Label controls, and give each one the same skin name (such as Smaller).

Skins with Templates and Images
So far, the theme examples have applied relatively simple properties. However, you can create much
more detailed control tags in your skin file. Most control properties support themes. If a property can’t
be declared in a theme, you’ll receive a build error when you attempt to launch your application.

■ Note Control developers can choose which properties you can set in a skin file by applying the Themeable

attribute to the property declaration. If this attribute isn’t present, the property can’t be set in a theme.

For example, many controls support styles that specify a range of formatting information. The data
controls are one example, and the Calendar control provides another. Here’s how you might define
Calendar styles in a skin file to match your theme:

<asp:Calendar runat="server" BackColor="White" ForeColor="Black"
 BorderColor="Black" BorderStyle="Solid" CellSpacing="1"
 Font-Names="Verdana" Font-Size="9pt" Height="250px" Width="500px"
 NextPrevFormat="ShortMonth" SelectionMode="Day">
 <SelectedDayStyle BackColor="DarkOrange" ForeColor="White" />
 <DayStyle BackColor="Orange" Font-Bold="True" ForeColor="White" />
 <NextPrevStyle Font-Bold="True" Font-Size="8pt" ForeColor="White" />
 <DayHeaderStyle Font-Bold="True" Font-Size="8pt" ForeColor="#333333"
 Height="8pt" />

CHAPTER 16 ■ THEMES AND MASTER PAGES

715

 <TitleStyle BackColor="Firebrick" BorderStyle="None" Font-Bold="True"
 Font-Size="12pt" ForeColor="White" Height="12pt" />
 <OtherMonthDayStyle BackColor="NavajoWhite" Font-Bold="False"
 ForeColor="DarkGray" />
</asp:Calendar>

This skin defines the font, colors, and styles of the Calendar. It also sets the selection mode, the
formatting of the month navigation links, and the overall size of the calendar. As a result, all you need to
use this formatted calendar is the following streamlined tag:

<asp:Calendar ID="Calendar1" runat="server" />

Figure 16-8 shows how this Calendar control would ordinarily look and how it looks when the page
uses the corresponding theme.

■ Caution When you create skins that specify details such as sizing, be careful. When these settings are applied
to a page, they could cause the layout to change with unintended consequences. If you’re in doubt, set a SkinID so

that the skin is applied only if the control specifically opts in.

Figure 16-8. An unformatted Calendar on an unthemed and themed page

Another powerful technique is to reuse images by making them part of your theme. For example,
imagine you perfect an image that you want to use for OK buttons throughout your website and you
have another image for all the Cancel buttons. The first step in implementing this design is to add the
images to your theme folder. For the best organization, it makes sense to create one or more subfolders
just for holding images. In Figure 16-9, the images are stored in a folder named ButtonImages.

CHAPTER 16 ■ THEMES AND MASTER PAGES

716

Figure 16-9. Adding images to a theme

Now you need to create the skins that use these images. In this case, both of these tags should be
named skins. That’s because you’re defining a specific type of standardized button that should be
available to the page when needed. You aren’t defining a default style that should apply to all buttons.

<asp:ImageButton runat="server" SkinID="OKButton"
 ImageUrl="ButtonImages/buttonOK.jpg" />
<asp:ImageButton runat="server" SkinID="CancelButton"
 ImageUrl="ButtonImages/buttonCancel.jpg" />

When you add a reference to an image in a skin file, always make sure the image URL is relative to
the theme folder, not the folder where the page is stored. When this theme is applied to a control,
ASP.NET automatically inserts the Themes\ThemeName portion at the beginning of the URL.

Now to apply these images, simply create an ImageButton in your web page that references the
corresponding skin name:

<asp:ImageButton ID="ImageButton1" runat="server" SkinID="OKButton" />
<asp:ImageButton ID="ImageButton2" runat="server" SkinID="CancelButton" />

You can use the same technique to create skins for other controls that use images. For example, you
can standardize the node pictures used in a TreeView, the bullet image used for the BulletList control, or
the icons used in a GridView.

CHAPTER 16 ■ THEMES AND MASTER PAGES

717

Using CSS in a Theme
ASP.NET also gives you the ability to use a stylesheet as part of a theme. You might use this feature for a
few reasons:

• You want to style HTML elements that might not correspond to server controls.

• You prefer to use a stylesheet because it is more standardized or because it can
also be used to format static HTML pages.

• You have already invested effort in creating a stylesheet, and you don’t want to
create themes to implement the same formatting.

To use a stylesheet in a theme, you first need to add the stylesheet to your theme folder. ASP.NET
searches this folder for all .css files and dynamically binds them to any page that uses the theme.

This has one catch, however. To bind the page to the stylesheet, ASP.NET needs to be able to insert a
<link> tag in the <head> section of the web page. This is possible only if the <head> tag has the
runat="server" attribute (which is the default in the web pages generated by Visual Studio).

<head runat="server">
 <title>...</title>
</head>

This turns the <head> element into a server-side control that ASP.NET can modify to insert the
stylesheet links. Once this detail is in place, you simply need to set the Theme attribute of the page to
gain access to the stylesheet rules. You can then set the CssClass property of the controls you want to
format, as you saw earlier in the chapter. Any style rules that are linked directly to HTML tags are applied
automatically.

You can use as many stylesheets as you want in a theme. ASP.NET will add multiple <link> tags, one
for each stylesheet in the theme.

Applying Themes Through a Configuration File
Using the Page directive, you can bind a theme to a single page. However, you might decide that your
theme is ready to be rolled out for the entire web application. The cleanest way to apply this theme is to
configure the <pages> element in the web.config file for your application, as shown here:

<configuration>
 <system.web>
 <pages theme="FunkyTheme" />
 </system.web>
</configuration>

If you want to use the stylesheet behavior so that the theme doesn’t overwrite conflicting control
properties, use the styleSheetTheme attribute instead of the theme attribute:

<configuration>
 <system.web>
 <pages styleSheetTheme="FunkyTheme" />
 </system.web>
</configuration>

Either way, when you specify a theme in the web.config file, the theme you specify will be applied
throughout all the pages in your website, provided these pages don’t have their own theme settings. If a

CHAPTER 16 ■ THEMES AND MASTER PAGES

718

page specifies the Theme or StyleSheetTheme attribute, the page setting will take precedence over the
web.config setting.

Using this technique, it’s just as easy to apply a theme to part of a web application. For example, you
can create a separate web.config file for each subfolder and use the <pages> setting to configure
different themes.

■ Tip If you apply themes through a configuration file, you can still disable them for specific pages. Just include

the EnableTheming attribute in the Page directive, and set it to false. No themes will be applied to the page.

Applying Themes Dynamically
In some cases, themes aren’t used to standardize website appearance but to make that appearance
configurable for each user. In this scenario, your web application gives the user the chance to specify the
theme that your pages will use.

This technique is remarkably easy. All you need to do is set the Page.Theme or Page.StyleSheet
property dynamically in your code. The trick is that this step needs to be completed in the Page.PreInit
event stage. After this point, attempting to set the property causes an exception.

Here’s an example that applies a dynamic theme by reading the theme name from the current
Session collection:

protected void Page_PreInit(object sender, EventArgs e)
{
 if (Session["Theme"] == null)
 {
 // No theme has been chosen. Choose a default
 // (or set a blank string to make sure no theme
 // is used).
 Page.Theme = "";
 }
 else
 {
 Page.Theme = (string)Session["Theme"];
 }
}

Of course, you could also store the selected theme in a cookie, a session state, a profile (see Chapter
24), or any other user-specific location.

If you want to create a page that allows the user to choose a theme, you need a little more sleight of
hand. The problem is that the user’s selection can’t be read until after the page has been loaded and has
passed the PreInit stage. However, at this point, it is too late to set the theme. One way around this
problem is to trigger a refresh by redirecting the page back to itself. The most efficient way to accomplish
this is to use Server.Transfer() so that all the processing takes place on the server. (Response.Redirect()
sends a redirect header to the client and so requires an extra round-trip.) You’ll see this technique in the
next example.

CHAPTER 16 ■ THEMES AND MASTER PAGES

719

■ Note Other approaches are possible, but the best real-world solution is probably to make users perform theme
selection on a separate web page. You can store the theme selection in a cookie, session state, or some other type

of storage. The chosen theme will then always be available to the Page.PreInit event handler on other pages.

Here’s the code that presents the list of selections when the page loads and then records the
selection and transfers the page when a button is clicked:

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 // Fill the list box with available themes
 // by reading the folders in the App_Themes folder.
 DirectoryInfo themeDir = new DirectoryInfo(Server.MapPath("App_Themes"));
 lstThemes.DataTextField = "Name";
 lstThemes.DataSource = themeDir.GetDirectories();
 lstThemes.DataBind();
 }
}

protected void cmdApply_Click(object sender, EventArgs e)
{
 // Set the chosen theme.
 Session["Theme"] = lstThemes.SelectedValue;

 // Refresh the page (so the Page.PreInit event handler can apply the theme).
 Server.Transfer(Request.FilePath);
}

Remember, you still need the event handler for the Page.PreInit event to actually apply the selected
theme to the page. Figure 16-10 shows the result.

Figure 16-10. Allowing the user to choose a theme

CHAPTER 16 ■ THEMES AND MASTER PAGES

720

If you use named skins, you can set the SkinID of a control declaratively when you design the page,
or you can specify it dynamically in your code.

■ Caution If you use named skins, you’ll need to be careful that every theme uses the same names and provides
tags for the same controls. If a control specifies the SkinID attribute and ASP.NET can’t find a matching skin for

that control in the theme, the control won’t be themed, and it will keep its current formatting.

Standardizing Website Layout
Standardizing the formatting of your website is only half the battle. You also need to make sure that
common elements, such as your website header and site navigation controls, appear in the same
position on every page.

The challenge is to create a simple, flexible layout that can be replicated throughout your entire
website. You can use three basic approaches:

User controls: User controls allow you to define a “pagelet”—a portion of a web page, complete
with markup and server-side code, that can be reused on as many web forms as you want. User
controls are a great way to standardize a common page element. However, they can’t solve the
layout problem on their own, because there’s no way to ensure that user controls are placed in the
same position on every page. Chapter 15 describes user controls.

HTML frames: Frames are a basic tool of HTML that allow you to show more than one page in a
browser window at once. The key disadvantage of frames is that each page is retrieved through a
separate request to the server, and as a result the code on each page must be completely
independent. That means a page in one frame can’t communicate with or influence a page in
another frame (at least not through server-side code).

Master pages: Master pages are an ASP.NET feature that’s designed specifically for standardizing
web-page layout. Master pages are web-page templates that can define fixed content and declare
the portion of the web page where you can insert custom content. If you use the same master page
throughout your website, you’re guaranteed to keep the same layout. Best of all, if you change the
master page definition after applying it, all the web pages that use it acquire the change
automatically.

In ASP.NET, master pages are the preferred option for standardizing website layout, and you’ll see
them at work throughout the rest of this chapter. Frames offer a clumsier programming model but are
required if you want to fix a portion of your page in place while allowing scrolling in another section. If
you want to learn more about frames, refer to Chapter 29 for the basics and for several ASP.NET
workarounds.

Master Page Basics
To provide a practical, flexible solution for page templating, a number of requirements must be met:

• The ability to define a portion of a page separately and reuse it on multiple pages.

• The ability to create a locked-in layout that defines editable regions. Pages that
reuse this template are then constrained to adding or modifying content in the
allowed regions.

CHAPTER 16 ■ THEMES AND MASTER PAGES

721

• The ability to allow some customization of the elements you reuse on each page.

• The ability to bind a page to a page template declaratively (with no code) or to
bind to a page dynamically at runtime.

• The ability to design a page that uses a page template with a tool such as Visual
Studio.

Master pages meet all of these requirements. They provide a system for reusing templates, a way to
limit how templates can be modified, and rich design-time support.

For this to work, ASP.NET defines two specialized types of pages: master pages and content pages. A
master page is a page template. Like an ordinary ASP.NET web page, it can contain any combination of
HTML, web controls, and even code. In addition, master pages can include content placeholders—defined
regions that can be modified. Each content page references a single master page and acquires its layout and
content. In addition, the content page can add page-specific content in any of the placeholders. In other
words, the content page fills in the missing pieces that the master page doesn’t define.

For example, in a typical website, a master page might include a fixed element such as a header and
a content placeholder for the rest of the page. The content page then acquires the header for free and
supplies additional content.

To take a closer look at how this works, it helps to consider the example presented in the following
sections.

A Simple Master Page
To create a master page in Visual Studio, select Website ➤ Add New Item from the menu. Select Master
Page, give it a filename (such as SiteTemplate.master), and click Add.

A master page is similar to an ordinary ASP.NET web form. Like a web form, the master page can
include HTML, web controls, and code (either in an inline script block or in a separate file). One
difference is that while web forms start with the Page directive, a master page starts with a Master
directive that specifies the same information, as shown here:

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="SiteTemplate.master.cs"
 Inherits="SiteTemplate" %>

Another difference between master pages and ordinary web forms is that master pages can use the
ContentPlaceHolder control, which isn’t allowed in ordinary pages. The ContentPlaceHolder is a portion
of the page where the content page can insert content.

When you create a new master page in Visual Studio, you start with a blank page that includes two
ContentPlaceHolder controls. One is defined in the <head> section, which gives content pages the
ability to add page metadata, such as search keywords and stylesheet links. The second, more important
ContentPlaceHolder is defined in the <body> section, and represents the displayed content of the page.
It appears on the page as a faintly outlined box. If you click inside it or hover over it, the name of the
ContentPlaceHolder appears in a tooltip (see Figure 16-11). To create more sophisticated page layouts,
you can add additional markup and ContentPlaceHolder controls.

CHAPTER 16 ■ THEMES AND MASTER PAGES

722

Figure 16-11. A new master page

The ContentPlaceHolder doesn’t have any remarkable properties. Here’s an example that creates a
master page with a static banner followed by a ContentPlaceHolder and then a footer (shown in Figure
16-12):

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="SiteTemplate.master.cs"
 Inherits="SiteTemplate" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div style="...">

My Site

 </div>

 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>

 Copyright © 2008.
 </form>
</body>
</html>

http://www.w3.org/1999/xhtml

CHAPTER 16 ■ THEMES AND MASTER PAGES

723

Figure 16-12. A master page at design time

Master pages can’t be requested directly. To use a master page, you need to build a linked content
page.

A Simple Content Page
To use your master page in another web page, you need to add the MasterPageFile attribute to the Page
directive. This attribute indicates the filename of the master page you want to use:

<%@ Page Language="C#" MasterPageFile="./SiteTemplate.master" ... %>

Notice that the MasterPageFile attribute begins with the path ./ to specify the root website folder.
Setting the MasterPageFile attribute isn’t enough to transform an ordinary page into a content page.

The problem is that content pages have a single responsibility—to define the content that will be
inserted in one or more ContentPlaceHolder controls (and to write any code you need for these
controls). A content page doesn’t define the page, because the outer shell is already provided by the
master page. As a result, attempting to include elements such as <html>, <head>, and <body> will fail,
because they’re already defined in the master page.

To provide content for a ContentPlaceHolder, you use another specialized control, called Content.
The ContentPlaceHolder control and the Content control have a one-to-one relationship. For each
ContentPlaceHolder in the master page, the content page supplies a matching Content control (unless
you don’t want to supply any content at all for that region). ASP.NET links the Content control to the
appropriate ContentPlaceHolder by matching the ID of the ContentPlaceHolder with the
Content.ContentPlaceHolderID property of the corresponding Content control. If you create a Content
control that references a nonexistent ContentPlaceHolder, you’ll receive an error at runtime.

CHAPTER 16 ■ THEMES AND MASTER PAGES

724

■ Tip To make it even easier to create a new content page, let Visual Studio guide you. Just select Website ➤
Add New Item from the menu. Select Web Form, click the Select Master Page check box, and click OK. Visual
Studio will prompt you to choose a master page file from your current web project. When you take this step, Visual

Studio automatically creates a Content control for every ContentPlaceHolder in the master page.

Thus, to create a complete content page that uses the SiteTemplate master page, you simply need to
fill in the content for the ContentPlaceHolder with the ID ContentPlaceHolder1. Here’s an example that
shows the complete page code:

<%@ Page Language="C#" MasterPageFile="./SiteTemplate.master"
 AutoEventWireup="true" CodeFile="SimpleContentPage.aspx.cs"
 Inherits="SimpleContentPage" Title="Content Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 runat="Server">
 Far out in the uncharted backwaters of the unfashionable end
of the western spiral arm of the Galaxy lies a small unregarded yellow sun.
</asp:Content>

In this example, the Page directive sets the MasterPageFile attribute and the Title attribute. The Title
attribute allows you to specify the title for your content page, thereby overriding the title that’s set in the
master page. This works as long as the master page has the runat="server" attribute in the <head> tag,
which is the default.

As you can see, content pages are refreshingly clean, because they don’t include any of the details
defined in the master page. Even better, this makes it easy to update your website. All you need to is
modify a single master page. As long as you keep the same ContentPlaceHolder controls, the existing
content pages will keep working and will fit themselves into the new layout wherever you specify.

Figure 16-13 shows this sample content page.

Master Pages and Formatting

Master pages provide a few interesting possibilities for standardizing formatting. For example, you can link
to a stylesheet without using themes by adding a <link> element in the <head> section of the master
page. That way, the stylesheet is automatically applied to all the content pages that use this master page.

You can also use a more fine-grained model and have your master page help you apply different
formatting to different sections of a content page. All you need to do is set the appropriate foreground and
background colors, fonts, and alignment options using container tags in the master page. For example, you
might set these on a table, a table cell, a <div> tag, or a Panel control. The information from the content
page can then flow seamlessly into these containers, acquiring the appropriate style attributes
automatically.

CHAPTER 16 ■ THEMES AND MASTER PAGES

725

Figure 16-13. A content page at runtime

To get a better understanding of how master pages work under the hood, it’s worth taking a look at a
content page with tracing (add the Trace="true" attribute in the Page directive). That way you can study
the control hierarchy. What you’ll discover is that ASP.NET creates the control objects for the master
page first, including the ContentPlaceHolder, which acts as a container. It then adds the controls from
the content page into the ContentPlaceHolder.

If you need to dynamically configure your master page or content page, you can react to the
Page.Load event in either class. Sometimes you might use initialization code in both the master page
and the content page. In this situation, it’s important to understand the order in which the respective
events fire. ASP.NET begins by creating the master page controls and then the child controls for the
content page. It then fires the Page.Init event for the master page and follows it up by firing the Page.Init
event for the content page. The same step occurs with the Page.Load event. Thus, customizations that
you perform in the content page (such as changing the page title) will take precedence over changes you
make at the same stage in the master page, if they conflict.

Default Content
When the master page defines a ContentPlaceHolder, it can also include default content—content that
will be used only if the content page doesn’t supply a corresponding Content control.

To get this effect, all you need to do is place the appropriate HTML or web controls in the
ContentPlaceHolder tag. (You can do this by hand using the .aspx markup or just by dragging and
dropping controls into the ContentPlaceHolder.)

Here’s an example that adds default content to the banner text from the previous example:

<asp:ContentPlaceHolder id="TitleContent" runat="server">
Master Pages Website
</asp:ContentPlaceHolder>

CHAPTER 16 ■ THEMES AND MASTER PAGES

726

If you create a content page in Visual Studio, you won’t notice any immediate change. That’s
because Visual Studio automatically creates a <Content> tag for each ContentPlaceHolder. When a
content page includes a <Content> tag, it automatically overrides the default content. However, if you
delete the <Content> tag, you’ll see the default content in its place—the new “Master Pages Website”
banner text.

■ Note Content pages can’t use just a portion of the default content or just edit it slightly. This isn’t possible
because the default content is stored only in the master page, not in the content page. As a result, you need to

decide between using the default content as is or replacing it completely.

Master Pages with Tables and CSS Layout
For the most part, HTML uses a flow-based layout. That means as more content is added, the page is
reorganized and other content is bumped out of the way. This layout can make it difficult to get the
result you want with master pages. For example, if you aren’t careful, you could craft the perfect layout,
only to have the structure distorted by a huge block of information that’s inserted into a <Content> tag.

To control these problems, most master pages will use either HTML tables or CSS positioning to
control the layout.

With tables, the basic principle is to divide all or a portion of the page into columns and rows. You
can then add a ContentPlaceHolder in a single cell, ensuring that the other content is aligned more or
less the way you want. With CSS positioning, the idea is to separate your content into <div> tags and
position these <div> tags by using absolute coordinates or by floating them on one side of the page.
You’ll then place the ContentPlaceHolder in the <div> tag.

■ Tip For some great examples of CSS-based layout, see the sites http://www.csszengarden.com and

http://www.bluerobot.com/web/layouts.

The following example shows how you can use master pages to create a traditional web application
with a header, footer, and navigation bar, all of which are defined with tables. Figure 16-14 shows how
this structure is broken up into a table.

Here’s the markup for the table that contains the ContentPlaceHolder:

<table style="width: 100%">
 <tr><td colspan="2">My Header</td></tr>
 <tr>
 <td width="150px">Navigation Controls</td>
 <td>
 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </td>
 </tr>
 <tr><td colspan="2">My Footer</td></tr>
</table>

http://www.csszengarden.com
http://www.bluerobot.com/web/layouts

CHAPTER 16 ■ THEMES AND MASTER PAGES

727

Figure 16-14. A table-based layout

■ Tip To get a quick refresher on HTML tables, complete with information about how to specify borders, cell

sizes, alignment, and more, refer to the examples at http://www.w3schools.com/html/html_tables.asp.

Figure 16-15 shows the resulting master page and a content page that uses the master page. Using
style rules, dotted lines have been added around all the cells that are fixed (in other words, cells that
don’t have a ContentPlaceHolder control that the content page can use to insert additional content.)

Figure 16-15. A master page and content page that use a table

http://www.w3schools.com/html/html_tables.asp

CHAPTER 16 ■ THEMES AND MASTER PAGES

728

To convert this example into something more practical, just replace the static text in the master
page with the actual header, footer, and navigation controls (using the ASP.NET navigation features
discussed in Chapter 17). All the child pages will acquire these features automatically. This is the first
step for defining a practical structure for your entire website.

Many professional web developers prefer to use more modern CSS-based layout techniques. CSS-
based layout allows you to write markup that’s easier to read and easier to revise later on, which makes
for fewer long-term headaches.

Fortunately, it’s just as easy to use the ContentPlaceHolder with CSS-based layout as it is to use it
with tables. Instead of placing the ContentPlaceHolder objects in the cells of a table, you simply place
the ContentPlaceHolder objects in different <div> elements. Your stylesheet then applies the positioning
to each <div> using the position, left, right, top, and bottom attributes.

For example, one common page design is to divide the page into three columns. The columns on
either edge of the page are set to a fixed size, while the column in the middle takes the remaining space.
Here’s a simple stylesheet that puts this design into action by creating a 150-pixel-wide panel on either
side of the page:

.leftPanel
{
 position: absolute;
 top: 70px;
 left: 10px;
 width: 150px;
}

.rightPanel
{
 position: absolute;
 top: 70px;
 right: 10px;
 width: 150px;
}

.centerPanel
{
 margin-left: 151px;
 margin-right: 151px;
 padding-left: 12px;
 padding-right: 12px;
}

You can now divide your page into columns using the styles, and place a ContentPlaceHolder in the
appropriate region. For example, you might use the left panel for navigation controls, the right panel for
an advertisement, and the middle panel for the content that’s supplied by the content page:

<div class="leftPanel">...</div>
<div class="centerPanel">
 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
</div>
<div class="rightPanel">...</div>

Remember, in order for this technique to work, the master page must use the stylesheet you’ve
created—in other words, it needs to include the <link> element that attaches the stylesheet and makes

CHAPTER 16 ■ THEMES AND MASTER PAGES

729

the styles available to your web page markup, as described at the beginning of this chapter in the
“Applying Stylesheet Rules” section.

There are a variety of tutorials online about CSS-based layout. You can find a concise set of
examples for common layouts at http://www.glish.com/css, and some thought-provoking examples that
demonstrate how the same content can be given an entirely different layout and appearance with an
advanced stylesheet at http://www.csszengarden.com.

Master Pages and Relative Paths
One quirk that can catch unsuspecting developers is the way that master pages handle relative paths. If
all you’re using is static text, this issue won’t affect you. However, if you’ve added tags or any
other HTML tag that points to another resource, problems can occur.

The problem shows up if you place the master page in a different directory from the content page
that uses it. This is a recommended best practice for large websites. In fact, Microsoft encourages you to
use a dedicated folder for storing all your master pages. However, if you’re not suitably careful, this can
cause problems when you use relative paths.

For example, imagine you put a master page in a subfolder named MasterPages and add the
following tag to the master page:

Assuming the file \MasterPages\banner.jpg exists, this appears to work fine. The image will even
appear in the Visual Studio design environment. However, if you create a content page in another
subfolder, the path is interpreted relative to that folder. If the file doesn’t exist there, you’ll get a broken
link instead of your graphic. Even worse, you could conceivably get the wrong graphic if another image
has the same filename.

This problem occurs because the tag is ordinary HTML. As a result, ASP.NET won’t touch it.
Unfortunately, when ASP.NET builds your content page, this tag is no longer appropriate. The same
problem occurs with <a> tags that provide relative links to other pages, and with the <link> element,
which you can use to connect the master page to a stylesheet.

To solve your problem, you could try to think ahead and write your URL relative to the content page
where you want to use it. But this creates confusion, limits where your master page can be used, and has
the unwelcome side effect of displaying your master page incorrectly in the design environment.

Another quick fix is to make your image tag into a server-side control, in which case ASP.NET will fix
the mistake:

This works because ASP.NET uses this information to create an HtmlImage server control. This
object is created after the Page object for the master page is instantiated. At this point, ASP.NET
interprets all the paths relative to the location of the master page. You could use the same technique to
fix <a> tags that provide relative links to other pages.

You can also use the root path syntax and start your URL with the . character. For example, this
 tag points unambiguously to the banner.jpg file in the MasterPages subfolder of the website:

Unfortunately, this syntax works only with server-side controls. If you want a similar effect with
ordinary HTML, you need to change the link to a full relative path incorporating your domain name.
This makes for ugly, unportable HTML, and it’s not recommended.

http://www.glish.com/css
http://www.csszengarden.com

CHAPTER 16 ■ THEMES AND MASTER PAGES

730

Applying Master Pages Through a Configuration File
It’s worth noting that you can also apply a master page to all the pages in your website at once using the
web.config file. All you need to do is add the <pages> attribute and set its masterPageFile attribute, as
shown here:

<configuration>
 <system.web>
 <pages masterPageFile ="SiteTemplate.master"/>
 </system.web>
</configuration>

The problem is that this approach tends to be quite inflexible. Any web page you have that doesn’t
play by the rules (for example, that includes a root <html> tag or defines a content region that doesn’t
correspond to a ContentPlaceHolder) will be automatically broken. If you must use this feature, don’t
apply it site-wide. Instead, create a subfolder for your content pages, and create a web.config file in just
that subfolder to apply the master page.

■ Note Even if a master page is applied through the web.config, you have no guarantee that an individual page

won’t override your setting by supplying a MasterPageFile attribute in the Page directive. And if the MasterPageFile
attribute is specified with a blank string, the page won’t have any master page at all, regardless of what the

web.config file specifies.

Advanced Master Pages
Using what you’ve learned, you can create and reuse master pages across your website. However, you
can use other tricks and techniques to refine the way master pages work. In the following sections, you’ll
see how to interact with a master page from your content, how to set master pages dynamically, and how
to nest one master page inside another.

Interacting with the Master Page Class
One issue with master pages is how their model assumes you either want to copy something exactly
across every page (in which case you include it in the master page) or vary it on each and every page (in
which case you add a ContentPlaceHolder for it and include the information in each content page). This
distinction works well for many pages, but it runs into trouble if you want to allow a more nuanced
interaction between the master page and content pages.

For example, you might want the master page to give a choice of three display modes. The content
page would then choose the correct display mode, which would change the appearance of the master
page. However, the content page shouldn’t have complete freedom to change the master page
indiscriminately. Instead, anything other than these three presets should be disallowed.

To enable scenarios such as these, you need some level of programmatic interaction between the
content page and the master page. This isn’t too difficult, because you can access the current instance of
your master page using the Page.Master property, as described in the previous section.

The first step in allowing interaction between your content page and master page is to add public
properties or methods to your master page class. The content page can then set these properties or call

CHAPTER 16 ■ THEMES AND MASTER PAGES

731

these methods accordingly. For example, maybe you want to make the banner text customizable (as
shown in a previous example) but you don’t want to let the content page insert any type of content there.
Instead, you want to restrict it to a single descriptive string. To accomplish this, you can add a server-
side label control to the header and provide access to that control through a BannerText property in the
master page class:

public string BannerText
{
 get { return lblTitleContent.Text; }
 set { lblTitleContent.Text = value; }
}

The content page can now change the text. The only caveat is that the Master property returns an
object that’s typed as the generic MasterPage class. You need to cast it to your specific master page class
to get access to any custom members you’ve added.

protected void Page_Load(object sender, EventArgs e)
{
 SiteTemplate master =
 (SiteTemplate)Master;
 master.BannerText = "Content Page #1";
}

Another way to get strongly typed access to the master page is to add the MasterType directive to
the content page. All you need to do is indicate the virtual path of the corresponding .master file:

<%@ MasterType VirtualPath="./SiteTemplate.master" %>

Now you can use simpler strongly typed code when you access the master page:

protected void Page_Load(object sender, EventArgs e)
{
 Master.BannerText = "Content Page #1";
}

You should note one point about these examples: when you navigate from one page to another, all
the web-page objects are re-created. This means that even if you move to another content page that uses
the same master page, ASP.NET creates a different instance of the master page object. As a result, the
Text property of the Label control in the header is reset to its default value (a blank string) every time the
user navigates to a new page. To change this behavior, you need to store the information in another
location (such as a cookie) and write initialization code in the master page to check for it.

You can also get access to an individual control on a master page through brute force. The trick is to
use the MasterPage.FindControl() method to search for the object you want based on its unique name.
When you have the control, you can then modify it directly. Here’s an example that uses this technique
to look for a label:

Label lbl = Master.FindControl("lblTitleContent") as Label;
if (lbl != null)
{
 lbl.Text = "Content Page #1";
}

Of course, this type of interaction breaks all the rules of proper class-based design and
encapsulation. If you really need to access a control in a master page, you are far better off wrapping it

CHAPTER 16 ■ THEMES AND MASTER PAGES

732

(or, ideally, just the properties you’re interested in) by adding properties to your master page class. That
way, the interaction between the content page and the master page is clear, documented, and loosely
coupled. If your content page tinkers directly with the internals of another page, it’s likely to lead to
fragile code models with dependencies that break when you edit the master page.vb

Dynamically Setting a Master Page
Sometimes you might want to change your master page on the fly. This might occur in a couple of cases:

• Several types of users exist, and you want to adjust the complexity of the layout or
the visible features according to the user. You may perform this customization
based on accessibility considerations, available bandwidth, or user preferences.

• You are in partnership with another company, and you need your website to
adjust itself to have a different look and layout accordingly. For example, you
might cobrand your website, providing the same features with two or more
different layouts.

Changing the master page programmatically is easy. All you need to do is set the
Page.MasterPageFile property. The trick is that this step needs to be completed in the Page.Init event
stage. After this point, attempting to set this property causes an exception.

You can implement this technique in much the same way that you implemented dynamic themes
earlier in this chapter. However, this technique has a potential danger—a content page isn’t necessarily
compatible with an arbitrary master page. If your content page includes a Content tag that doesn’t
correspond to a ContentPlaceHolder in the master, an error will occur. To prevent this problem, you
need to ensure that all the master pages you set dynamically include the same placeholders.

Nesting Master Pages
You can nest master pages so that one master page uses another master page. This is not used too often,
but it could allow you to standardize your website to different degrees. For example, you might have two
sections of your website. Each section might warrant its separate navigation controls. However, both
sections may need the same header. In this case, you could create a top-level master page that adds the
header. Here’s an example:

<%@ Master Language="C#" AutoEventWireup="true"
 CodeFile="NestedMasterRoot.master.cs" Inherits="NestedMasterRoot" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body style="background: #ccffff">
 <form id="form1" runat="server">
 <div>
 <h1>The Root</h1>
 <asp:ContentPlaceHolder id="RootContent" runat="server">
 </asp:ContentPlaceHolder >
 </div>
 </form>
</body>
</html>

http://www.w3.org/1999/xhtml

CHAPTER 16 ■ THEMES AND MASTER PAGES

733

Next, you would create a second master page that uses the first master page (through the
MasterPageFile attribute). This second master page gets the header from the first master page and adds
the navigation controls in a panel on the left. Here’s an example:

<%@ Master Language="C#" AutoEventWireup="true"
 CodeFile="NestedMasterSecondLevel.master.cs"
 Inherits="NestedMasterSecondLevel"
 MasterPageFile="~/NestedMasterRoot.master"%>

<asp:Content ID="Content1" ContentPlaceHolderID="RootContent" Runat="Server">
 <table style="background: #ccff00; width: 100%">
 <tr>
 <td colspan="2">
 <h2>The Second Level</h2>
 </td>
 <tr>
 <td style="width: 200px"></td>
 <td style="background: white">
 <asp:ContentPlaceHolder id="NestedContent" runat="server">
 </asp:ContentPlaceHolder>
 </td>
 </tr>
 </table>
</asp:Content>

■ Tip You don’t need to add the MasterPageFile attribute to your master page by hand. Instead, you can use
the Select Master Page check box when creating the second master page, just as you can when creating a new

web page.

Presumably, your goal would be to create more than one version of the second master page—one
for each section of your website. These would acquire the same standard header.

Finally, each content page could use one of the second-level master pages to standardize its layout:

<%@ Page Language="C#" MasterPageFile="./NestedMasterSecondLevel.master"
 AutoEventWireup="true" CodeFile="NestedContentPage.aspx.cs"
 Inherits="NestedContentPage" Title="Nested Content Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="NestedContent" Runat="Server">

This is the nested content!

</asp:Content>

Figure 16-16 shows the result.

CHAPTER 16 ■ THEMES AND MASTER PAGES

734

Figure 16-16. A content page that uses a nested master page

You can use as many layers of nested master pages as you want. However, be careful when
implementing this approach—although it sounds like a nifty way to make a modular design, it can tie
you down more than you realize. For example, you’ll need to reword your master page hierarchy if you
decide later that the two website sections need similar but slightly different headers. For that reason, it
might be better to use only one level of master pages and copy the few common elements. In most cases,
you won’t be creating many master pages, so this won’t add a significant amount of duplication.

Summary
In this chapter, you tackled two key enhancements that were first introduced in ASP.NET 2.0—themes
and master pages. Both of these features remain unchanged in ASP.NET 4. Armed with these tools, you
can create a complete web application that has a unified look and feel and a consistent layout.
In the next chapter, you’ll learn how to add navigation controls to the mix.

C H A P T E R 17

■ ■ ■

735

Website Navigation

Navigation is a fundamental component of any website. Although it’s easy enough to transfer the user
from one page to another, creating a unified system of navigation that works across an entire website
takes more effort. While you could build your own navigation system with a few links (and a lot of work),
ASP.NET has a built-in navigation system that makes it easy.

In this chapter, you’ll tackle three core topics:

• The MultiView and Wizard controls: These let you boil down a series of steps into
a single page. With the help of these controls, you can combine several pages of
work into one place, simplifying your navigation needs.

• The site map model: This lets you define the navigation structure of your website
and bind it directly to rich controls. You’ll also learn how to extend this framework
to support different types of controls and different site map storage locations.

• The rich navigational controls: These include the TreeView and Menu. Although
these controls aren’t limited to navigation, they’re an ideal match. In this chapter,
you’ll learn about their wide range of features.

Using these controls, the site map model, and master pages, you can build a complete navigation
system with minimal effort. Best of all, ASP.NET cleanly separates the data (the information about the
structure of your website) from its implementation (the navigational controls). That means you can
reorganize, replace, and rename web pages without disturbing your website or editing any code. All you
need to do is make the corresponding changes to your application’s site map file.

Navigation Changes in ASP.NET 4

In this chapter, you’ll find one significant new feature and two minor refinements. They are:

• Routing: First introduced as a part of ASP.NET MVC, it’s now possible to use
routing to process URLs and redirect requests to a suitable web form. The chief
advantage is supporting a clearer, more logical URL system, which allows search
engines to discover and index the content of your web site more easily. You’ll
learn more in the “URL Mapping and Routing” section.

• A more flexible Wizard: The Wizard control sports a new LayoutTemplate that gives
you even more control if you want to replace its built-in layout with your own design.
You’ll get the details in the “Wizard Styles, Templates, and Layout” section.

• A more standardized Menu: The Menu control now creates its output using a list
with a proper set of CSS styles, rather than an HTML table. You’ll learn more in the
“Menu Templates” section.

CHAPTER 17 ■ WEBSITE NAVIGATION

736

Pages with Multiple Views
Most websites split tasks across several pages. For example, if you want to add an item to your shopping
cart and take it to the checkout in an e-commerce site, you’ll need to jump from one page to another.
This is the cleanest approach, and it’s easy to program—provided you use some sort of state
management technique (from query strings to session state) to transfer information from one page
to another.

In other situations, you might want to embed the code for several different pages inside a single
page. For example, you might want to provide several views of the same data (such as a grid-based view
and a chart-based view) and allow the user to switch from one view to the other without leaving the
page. Or, you might want to handle a small multistep task (such as supplying user information for an
account sign-up process), without worrying about how to transfer the relevant information between
web pages.

■ Tip From the user’s point of view, it probably doesn’t make much difference whether you use multiple pages or
a page with multiple views. In a well-designed site, the only difference the user will see is that the multiple view

approach keeps the same URL. The prime difference is the coding model. With multiple pages, you get improved
separation but extra work in determining how the pages should interact (the way they share or transmit

information). With multiple views, you lose your separation but get easier coding for small, nondivisible tasks.

In ASP.NET 1.x, the only way to model a page with multiple views was to add several Panel controls
to a page so that each panel represents a single view or a single step. You could then set the Visible
property of each Panel so that you see only one at a time. The problem with this approach is that it
clutters your page with extra code for managing the panels. Additionally, it’s not very robust—with a
minor mistake, you can end up with two panels showing at the same time.

With ASP.NET 4, there’s no need to design your own multiple view system from scratch. Instead,
you can use one of two higher-level controls that make these designs much easier—the MultiView and
the Wizard.

The MultiView Control
The MultiView is the simpler of the two multiple view controls. Essentially, the MultiView gives you a
way to declare multiple views and show only one at a time. It has no default user interface—you get only
whatever HTML and controls you add. The MultiView is equivalent to the custom panel approach
explained earlier.

Creating a MultiView is suitably straightforward. You add the <asp:MultiView> tag to your .aspx
page file and then add one <asp:View> tag inside it for each separate view.

<asp:MultiView ID="MultiView1" runat="server">
 <asp:View ID="View1" runat="server">...</asp:View>
 <asp:View ID="View2" runat="server">...</asp:View>
 <asp:View ID="View3" runat="server">...</asp:View>
</asp:MultiView>

CHAPTER 17 ■ WEBSITE NAVIGATION

737

Inside the <asp:View> tag, you add the HTML and web controls for that view.

<asp:MultiView ID="MultiView1" runat="server" ActiveViewIndex="0">
 <asp:View ID="View1" runat="server">
 Showing View #1

 <asp:Image ID="Image1" runat="server"
 ImageUrl="./cookies.jpg" />
 </asp:View>
 <asp:View ID="View2" runat="server">
 Showing View #2

 Text content.
 </asp:View>
 <asp:View ID="View3" runat="server">
 Showing View #3

 <asp:Calendar ID="Calendar1" runat="server"></asp:Calendar>
 </asp:View>
</asp:MultiView>

■ Tip You can also add views programmatically (like any other control) by instantiating a new view object and

adding it to the MultiView with the Add() or AddAt() methods of the Views collection.

Visual Studio shows all your views at design time, one after the other (see Figure 17-1). You can edit
these regions in the same way you design any other part of the page.

CHAPTER 17 ■ WEBSITE NAVIGATION

738

Figure 17-1. Designing multiple views

■ Note You can get a similar effect to the MultiView using the Accordion control, which is a part of the ASP.NET
AJAX Control Toolkit. The Accordion control allows you to create a group of collapsible panels. The user clicks a

header to expand one of the panels and close all the others. The Accordion has dramatically different
underpinnings than the MultiView, and does most of its work on the client. You’ll learn more about the Accordion in

Chapter 30.

The MultiView.ActiveViewIndex determines what view will be shown. This is the only view that’s
rendered in the page. The default ActiveViewIndex value is -1, which means no view is shown. One
option is to use a list control that lets users choose from the full list of views. Here’s some sample code
that binds the list of views to a list box:

CHAPTER 17 ■ WEBSITE NAVIGATION

739

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 DropDownList1.DataSource = MultiView1.Views;
 DropDownList1.DataTextField = "ID";
 DropDownList1.DataBind();
 }
}

And here’s the code that sets the current view based on the list index:

protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{
 MultiView1.ActiveViewIndex = DropDownList1.SelectedIndex;
}

Figure 17-2 shows the result.

Figure 17-2. Switching views with a list control

If you want to give the views more descriptive names, you simply fill the list box by hand. Just make
sure the order matches the order of views.

There’s actually no need to write this code, because the MultiView includes some built-in smarts.
Like some of the rich data controls, the MultiView recognizes specific command names in button
controls. (A button control is any control that implements IButtonControl, including the Button,
ImageButton, and LinkButton.) If you add a button control to the view that uses one of these recognized
command names, the button will have some automatic functionality. Table 17-1 lists all the recognized
command names. Each command name also has a corresponding static field in the MultiView class, so
you can easily get the right command name if you choose to set it programmatically.

CHAPTER 17 ■ WEBSITE NAVIGATION

740

Table 17-1. Recognized Command Names for the MultiView

Command Name MultiView Field Description

PrevView PreviousViewCommandName Moves to the previous view.

NextView NextViewCommandName Moves to the next view.

SwitchViewByID SwitchViewByIDCommandName Moves to the view with a specific ID
(string name). The ID is taken from
the CommandArgument property of
the button control.

SwitchViewByIndex SwitchViewByIndexCommandName Moves to the view with a specific
numeric index. The index is taken
from the CommandArgument
property of the button control.

To try this, add this button to your first two views (remembering to change the ID for each one):

<asp:Button ID="cmdNext" runat="server" Text="Next >" CommandName="NextView" />

And add this button to your second and third views:

<asp:Button ID="cmdPrev" runat="server" Text="< Prev" CommandName="PrevView" />

Finally, make sure the drop-down list shows the correct view when you use the buttons by adding this
code to handle the MultiView.ActiveViewIndexChanged event:

protected void MultiView1_ActiveViewChanged(object sender, EventArgs e)
{
 DropDownList1.SelectedIndex = MultiView1.ActiveViewIndex;
}

The Performance of MultiView Pages

The most important detail you need to know about the MultiView is that unlike the rich data controls (the
GridView, FormsView, and so on), the MultiView is not a naming container. This means that if you add a
control named textBox1 to a view, you can’t add another control named textBox1 to another view. In fact,
in terms of the page model, there’s no real difference between controls you add to a view and controls in
the rest of the page. Either way, the controls you create will be accessible through member variables in
your page class. This means it’s easy to configure a control in the second view when an event is raised by
a control in the first view.

As a result, the pages you create using the MultiView tend to be heavier than normal pages. That’s
because the entire control model—including the controls from every view—is created on every postback
and persisted to view state. For the most part, this won’t be a significant factor, unless you are
manipulating a large number of controls programmatically (in which case you might want to turn
EnableViewState off for these controls) or you are using several data sources. For example, if you have
three views and each view has a different data source control, each time the page is posted back all three

CHAPTER 17 ■ WEBSITE NAVIGATION

741

data source controls will perform their queries, and every view will be bound, including those that aren’t
currently visible. To avoid this overhead, you can use the techniques described in Chapter 9, such as
leaving your controls unbound and binding them programmatically, or canceling the binding process for
views that aren’t currently visible.

Of course, not all uses of the MultiView need to involve data binding. The perfect scenario for the MultiView
is an extended set of input controls—for example, an online survey form that’s split into separate views
just to spare the user a lot of scrolling. This example works well with the MultiView because at the end
when the survey is complete, you can read all the data from the controls of every view.

Now you can move from view to view using the buttons (see Figure 17-3).

Figure 17-3. Switching views with recognized command names

The Wizard Control
The Wizard control is a more glamorous version of the MultiView control. It also supports showing one
of several views at a time, but it includes a fair bit of built-in yet customizable behavior, including
navigation buttons, a sidebar with step links, styles, and templates.

Usually, wizards represent a single task, and the user moves linearly through them, moving from the
current step to the one immediately following it (or the one immediately preceding it in the case of a
correction). The ASP.NET Wizard control also supports nonlinear navigation, which means it allows you
to decide to ignore a step based on the information the user supplies.

By default, the Wizard control supplies navigation buttons and a sidebar with links for each step on
the left. You can hide the sidebar by setting the Wizard.DisplaySideBar property to false. Usually, you’ll
take this step if you want to enforce strict step-by-step navigation and prevent the user from jumping
out of sequence. You supply the content for each step using any HTML or ASP.NET controls. Figure 17-4
shows the region where you can add content to an out-of-the-box Wizard instance.

CHAPTER 17 ■ WEBSITE NAVIGATION

742

Figure 17-4. The region for step content

Wizard Steps
To create a wizard in ASP.NET, you simply define the steps and their content using <asp:WizardStep>
tags. Each step takes a few basic pieces of information. The most important ones are listed in Table 17-2.

Table 17-2. WizardStep Properties

Property Description

Title The descriptive name of the step. This name is used for the text of the links in
the sidebar.

StepType The type of step, as a value from the WizardStepType enumeration. This value
determines the type of navigation buttons that will be shown for this step. Choices
include Start (shows a Next button), Step (shows Next and Previous buttons),
Finish (shows a Finish and Previous button), Complete (show no buttons and
hides the sidebar, if it’s enabled), and Auto (the step type is inferred from the
position in the collection). The default is Auto, which means that the first step is
Start, the last step is Finish, and all other steps are Step.

AllowReturn Indicates whether the user can return to this step. If false, once the user has
passed this step, the user will not be able to return. The sidebar link for this step
will have no effect, and the Previous button of the following step will either skip
this step or be hidden completely (depending on the AllowReturn value of the
preceding steps).

CHAPTER 17 ■ WEBSITE NAVIGATION

743

The following wizard contains four steps that, taken together, represent a simple survey. The
StepType adds a Complete step at the end, with a summary. The navigation buttons and sidebar links
are added automatically.

<asp:Wizard ID="Wizard1" runat="server" Width="467px"
 BackColor="#EFF3FB" BorderColor="#B5C7DE" BorderWidth="1px">
 <WizardSteps>
 <asp:WizardStep ID="WizardStep1" runat="server" Title="Personal">
 <h3>Personal Profile</h3>
 Preferred Programming Language:
 <asp:DropDownList ID="lstLanguage" runat="server">
 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>VB</asp:ListItem>
 <asp:ListItem>J#</asp:ListItem>
 <asp:ListItem>Java</asp:ListItem>
 <asp:ListItem>C++</asp:ListItem>
 <asp:ListItem>C</asp:ListItem>
 </asp:DropDownList>

 </asp:WizardStep>
 <asp:WizardStep ID="WizardStep2" runat="server" Title="Company">
 <h3>Company Profile</h3>
 Number of Employees: <asp:TextBox ID="txtEmpCount" runat="server"/>
 Number of Locations: <asp:TextBox ID="txtLocCount" runat="server"/>
 </asp:WizardStep>
 <asp:WizardStep ID="WizardStep3" runat="server" Title="Software">
 <h3>Software Profile</h3>
 Licenses Required:
 <asp:CheckBoxList ID="lstTools" runat="server">
 <asp:ListItem>Visual Studio 2008</asp:ListItem>
 <asp:ListItem>Office 2007</asp:ListItem>
 <asp:ListItem>Windows Server 2008</asp:ListItem>
 <asp:ListItem>SQL Server 2008</asp:ListItem>
 </asp:CheckBoxList>
 </asp:WizardStep>
 <asp:WizardStep ID="Complete" runat="server" Title="Complete"
 StepType="Complete">

 Thank you for completing this survey.

 Your products will be delivered shortly.

 </asp:WizardStep>
 </WizardSteps>
</asp:Wizard>

Figure 17-5 shows the wizard steps.

CHAPTER 17 ■ WEBSITE NAVIGATION

744

Figure 17-5. A wizard with four steps

Unlike the MultiView control, you can see only one step at a time on the design surface of your web
page in Visual Studio. To choose which step you’re currently designing, select it from the smart tag, as
shown in Figure 17-6. But be warned—every time you do, Visual Studio changes the
Wizard.ActiveStepIndex property to the step you choose. Make sure you set this back to 0 before you run
your application so it starts at the first step.

CHAPTER 17 ■ WEBSITE NAVIGATION

745

Figure 17-6. Designing a step

■ Note Remember, when you add controls to separate steps on a wizard, they are all instantiated and persisted in
view state, regardless of the current step. If you need to slim down a complex wizard, you’ll need to split it into
separate pages, use the Server.Transfer() method to move from one page to the next, and tolerate a less elegant
programming model.

Wizard Events
You can write the code that underpins your wizard by responding to several events (as listed in Table
17-3).

Table 17-3. Wizard Events

Event Description
ActiveStepChanged Occurs when the control switches to a new step (either because the user has

clicked a navigation button or your code has changed the ActiveStepIndex
property).

CancelButtonClick Occurs when the Cancel button is clicked. The cancel button is not shown by
default, but you can add it to every step by setting the
Wizard.DisplayCancelButton property. Usually, a cancel button exits the
wizard. If you don’t have any cleanup code to perform, just set the
CancelDestinationPageUrl property, and the wizard will take care of the
redirection automatically.

CHAPTER 17 ■ WEBSITE NAVIGATION

746

Event Description

FinishButtonClick Occurs when the Finish button is clicked.

NextButtonClick and
PreviousButtonClick

Occurs when the Next or Previous button is clicked on any step. However,
because there is more than one way to move from one step to the next, it’s
better to handle the ActiveStepChanged event.

SideBarButtonClick Occurs when a button in the sidebar area is clicked.

On the whole, two wizard programming models exist:

Commit-as-you-go: This makes sense if each wizard step wraps an atomic operation that can’t be
reversed. For example, if you’re processing an order that involves a credit card authorization
followed by a final purchase, you can’t allow the user to step back and edit the credit card number.
To support this model, you set the AllowReturn property to false on some or all steps, and you
respond to the ActiveStepChanged event to commit changes for each step.

Commit-at-the-end: This makes sense if each wizard step is collecting information for an operation
that’s performed only at the end. For example, if you’re collecting user information and plan to
generate a new account once you have all the information, you’ll probably allow a user to make
changes midway through the process. You execute your code for generating the new account when
the wizard is finished by reacting to the FinishButtonClick event.

To implement commit-at-the-end with the current example, just respond to the FinishButtonClick
event. Here’s an example that simply displays every selection in the summary:

protected void Wizard1_FinishButtonClick(object sender, WizardNavigationEventArgs e)
{
 StringBuilder sb = new StringBuilder();
 sb.Append("You chose:
");
 sb.Append("Programming Language: ");
 sb.Append(lstLanguage.Text);
 sb.Append("
Total Employees: ");
 sb.Append(txtEmpCount.Text);
 sb.Append("
Total Locations: ");
 sb.Append(txtLocCount.Text);
 sb.Append("
Licenses Required: ");
 foreach (ListItem item in lstTools.Items)
 {
 if (item.Selected)
 {
 sb.Append(item.Text);
 sb.Append(" ");
 }
 }
 sb.Append("");
 lblSummary.Text = sb.ToString();
}

For this to work, you must add a Label control named lblSummary. In this example, lblSummary is
placed in the final summary step.

CHAPTER 17 ■ WEBSITE NAVIGATION

747

■ Tip If you want to find out the path the user has taken through your wizard, you can use the Wizard.GetHistory()
method. It returns a collection of WizardStepBase objects that have been accessed so far, arranged in reverse
chronological order. That means the first item in the collection represents the previous step, the second item

represents the step before that, and so on.

Wizard Styles, Templates, and Layout
Without a doubt, the Wizard control’s greatest strength is the way it lets you customize its appearance.
This means that if you want the basic model (a multistep process with navigation buttons and various
events), you aren’t locked into the default user interface.

Depending on how radically you want to change the wizard, you have different options. For less
dramatic modifications, you can set various top-level properties. For example, you can control the
colors, fonts, spacing, and border style, as you can with any ASP.NET control. You can also tweak the
appearance of every button. For example, to change the Next button, you can use the following
properties: StepNextButtonType (use a button, link, or clickable image), StepNextButtonText (customize
the text for a button or link), StepNextButtonImageUrl (set the image for an image button), and
StepNextButtonStyle (use a style from a stylesheet). You can also add a header using the HeaderText
property.

More control is available through styles. You can use styles to apply formatting options to various
portions of the Wizard control just as you can use styles to format different parts of rich data controls
such as the GridView. Table 17-4 lists all the styles you can use. As with other style-based controls, more
specific style settings (such as SideBarStyle) override more general style settings (such as ControlStyle)
when they conflict. Similarly, StartNextButtonStyle overrides NavigationButtonStyle on the first step.

Table 17-4. Wizard Styles

Style Description

ControlStyle Applies to all sections of the Wizard control

HeaderStyle Applies to the header section of the Wizard control, which is visible
only if you set some text in the HeaderText property

SideBarStyle Applies to the sidebar area of the Wizard control

SideBarButtonStyle Applies to just the buttons in the sidebar

StepStyle Applies to the section of the control where you define the step content

NavigationStyle Applies to the bottom area of the control where the navigation buttons
are displayed

NavigationButtonStyle Applies to just the navigation buttons in the navigation area

StartNextButtonStyle Applies to the next navigation button on the first step (when StepType
is Start)

CHAPTER 17 ■ WEBSITE NAVIGATION

748

Style Description

StepNextButtonStyle Applies to the next navigation button on intermediate steps (when
StepType is Step)

StepPreviousButtonStyle Applies to the previous navigation button on intermediate steps
(when StepType is Step)

FinishPreviousButtonStyle Applies to the previous navigation button on the last step (when
StepType is Finish)

CancelButtonStyle Applies to the cancel button, if you have Wizard.DisplayCancel-
Button set to true

Finally, if you can’t get the level of customization you want through properties and styles, you can
use templates to completely define the appearance of the Wizard control. Ordinarily, you can supply the
markup only for the step content (as shown in Figure 17-1). With templates, you supply the markup for
one of the other regions, such as the header, sidebar, or buttons. All templates are declared separately
from the step content. Figure 17-7 shows where templates fit in.

Figure 17-7. Template regions in the Wizard control

Table 17-5 shows the full list of templates.

CHAPTER 17 ■ WEBSITE NAVIGATION

749

Table 17-5. Wizard Templates

Style Description

HeaderTemplate Defines the content of the header region

SideBarTemplate Defines the sidebar, which typically includes navigation links for each
step

StartNavigationTemplate Defines the navigation buttons for the first step (when StepType is
Start)

StepNavigationTemplate Defines the navigation buttons for intermediate steps (when StepType
is Step)

FinishNavigationTemplate Defines the navigation buttons for the final step (when StepType is
Finish)

LayoutTemplate Defines the overall arrangement of the header, sidebar, step area, and
navigation buttons.

For example, here’s a header template that uses a data binding expression to show the title of the

current step:

<asp:Wizard ID="Wizard1" runat="server" ...>
 <WizardSteps>
 ...
 </WizardSteps>

 <HeaderTemplate>
 <i>Header Template</i> -
 <%= Wizard1.ActiveStep.Title %>

 </HeaderTemplate>
</asp:Wizard>

You can also add the following templates to customize the navigation buttons. This example keeps
the standard buttons (by declaring them explicitly) and adds a piece of italicized text so you can see
when each template is being used.

<StartNavigationTemplate>
 <i>StartNavigationTemplate</i>

 <asp:Button ID="StartNextButton" runat="server" Text="Next"
 CommandName="MoveNext" />
</StartNavigationTemplate>

<StepNavigationTemplate>
 <i>StepNavigationTemplate</i>

 <asp:Button ID="StepPreviousButton" runat="server" CausesValidation="False"
 CommandName="MovePrevious"
 Text="Previous" />

CHAPTER 17 ■ WEBSITE NAVIGATION

750

 <asp:Button ID="StepNextButton" runat="server" Text="Next"
 CommandName="MoveNext" />
</StepNavigationTemplate>

<FinishNavigationTemplate>
 <i>FinishNavigationTemplate</i>

 <asp:Button ID="FinishPreviousButton" runat="server" CausesValidation="False"
 Text="Previous" CommandName="MovePrevious" />
 <asp:Button ID="FinishButton" runat="server" Text="Finish"
 CommandName="MoveComplete" />
</FinishNavigationTemplate>

The secret to using templates is making sure you use the right command names so that the
Wizard control will hook up the standard logic. Otherwise, you’ll need to implement the navigation
and sequencing code, which is tedious and error-prone. For example, clicking on a button with a
command name of MoveNext automatically moves to the next step. If you are unsure about the
correct command name to use, you can use a convenient shortcut. Select the Wizard control in Visual
Studio, and choose one of the template generation links in the smart tag, such as Convert to
StartNavigationTemplate. When you do, Visual Studio inserts a template that duplicates the default
button appearance and behavior.

■ Note You can use the validation controls in a Wizard without any problem. If the validation controls detect
invalid data, they will prevent the user from clicking any of the sidebar links (to jump to another step) and they will
prevent the user from continuing by clicking the Next button. However, by default the Previous button has its

CausesValidation property set to false, which means the user will be allowed to step back to the previous step. If
this isn’t the behavior you want, you can create your own custom template and set the CausesValidation property

of your controls accordingly.

Finally, you can use the LayoutTemplate to break out of the tabular structure shown in Figure 17-7.
Essentially, the LayoutTemplate allows you to tell ASP.NET how to position the other templates relative
to each other. You insert each template using a PlaceHolder control with the right name
(headerPlaceholder, sideBarPlaceholder, wizardStepPlaceholder, and navigationPlaceholder). For
example, if you simply want to stack the header at the top, put the sidebar underneath, put the step
section under that, and add the navigation buttons at the bottom, all with no additional markup, you
would configure the LayoutTemplate like this:

<LayoutTemplate>
 <asp:PlaceHolder ID="headerPlaceholder" runat="server" />
 <asp:PlaceHolder ID="sideBarPlaceholder" runat="server" />
 <asp:PlaceHolder id="wizardStepPlaceholder" runat="server" />
 <asp:PlaceHolder id="navigationPlaceholder" runat="server" />
</LayoutTemplate>

To get a more sophisticated layout, you would arrange the individual Placeholder objects in the cells
of a table or in <div> elements that you position with CSS style attributes.

CHAPTER 17 ■ WEBSITE NAVIGATION

751

Site Maps
If your website has more than a handful of pages, you’ll probably need some sort of navigation system to
let the user move from one page to the next. As you saw in Chapter 16, you can use master pages to
define a template for your site that includes a navigation bar. However, it’s still up to you to fill this
navigation bar with content.

Obviously, you can use the ASP.NET toolkit of controls to implement almost any navigation system,
but it still requires you to perform all the hard work. Fortunately, ASP.NET includes a set of navigation
features that you can use to dramatically simplify the task.

As with all the best ASP.NET features, ASP.NET navigation is flexible, configurable, and pluggable. It
consists of three components:

• A way to define the navigational structure of your website. This part is the XML
site map, which is (by default) stored in a file.

• A convenient way to parse the site map file and convert its information into a
suitable object model. This part is performed by the SiteMapDataSource control
and the XmlSiteMapProvider.

• A way to use the site map information to display the user’s current position and
give the user the ability to easily move from one place to another. This part is
provided through the controls you bind to the SiteMapDataSource control, which
can include breadcrumb links, lists, menus, and trees.

You can customize or extend each of these ingredients separately. For example, if you want to
change the appearance of your navigation controls, you simply need to bind different controls to the
SiteMapDataSource. On the other hand, if you want to read a different format of site map information or
read it from a different location, you need to change your site map provider.

Figure 17-8 shows how these pieces fit together.

Figure 17-8. ASP.NET navigation with site maps

CHAPTER 17 ■ WEBSITE NAVIGATION

752

Defining a Site Map
The starting point in site map-based navigation is the site map provider. ASP.NET ships with a single site
map provider, named XmlSiteMapProvider, which is able to retrieve site map information from an XML
file. If you want to retrieve a site map from another location or in a custom format, you’ll need to create
your own site map provider—a topic covered in the section “Creating a Custom SiteMapProvider.”

The XmlSiteMapProvider looks for a file named Web.sitemap in the root of the virtual directory. Like
all site map providers, its task is to extract the site map data and create the corresponding SiteMap
object. This SiteMap object is then made available to other controls through the SiteMapDataSource.

To try this, you need to begin by creating a Web.sitemap file and defining the website structure
using the <siteMap> and <siteMapNode> elements. To add a site map using Visual Studio, choose
Website ➤ Add New Item (or Project ➤ Add New Item in a web project), choose the Site Map template,
and then click Add.

Here’s the bare-bones structure that the site map file uses:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
 <siteMapNode>
 <siteMapNode>...</siteMapNode>
 <siteMapNode>...</siteMapNode>
 ...
 </siteMapNode>
</siteMap>

To be valid, your site map must begin with the root <siteMap> node, followed by a single
<siteMapNode> element, representing the default home page. You can nest other <siteMapNode>
elements in the root <siteMapNode> as many layers deep as you want. Each site map node should have
a title, description, and URL, as shown here:

<siteMapNode title="Home" description="Home" url="./default.aspx">

In this example, the URL uses the ./ relative path syntax, which indicates the root of the web
application. This style isn’t necessary, but it is strongly recommended, as it ensures that your site map
links are interpreted correctly regardless of the current folder.

You can now use the <siteMapNode> to create a site map. The only other restriction is that you can’t
create two site map nodes with the same URL.

■ Note The restriction to avoid duplicate URLs is not baked into the navigation system. It’s simply required by the
XmlSiteMapProvider, because the XmlSiteMapProvider uses the URL as a unique key. If you create your own site
map provider or use a third-party provider, you may allow duplicate URLs and require separate key information.
However, you can’t get around the rule that every site must begin with one root node, because that’s implemented

in the base SiteMapProvider class. (As you’ll see shortly, you still have options for tailoring the display of the site

map tree, but you must start with a single home node.)

Here’s a sample site map:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
 <siteMapNode title="Home" description="Home" url="./default.aspx">
 <siteMapNode title="Products" description="Our products"

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0
http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

CHAPTER 17 ■ WEBSITE NAVIGATION

753

 url="./Products.aspx">
 <siteMapNode title="Hardware" description="Hardware choices"
 url="./Hardware.aspx" />
 <siteMapNode title="Software" description="Software choices"
 url="./Software.aspx" />
 </siteMapNode>
 <siteMapNode title="Services" description="Services we offer"
 url="./Services.aspx">
 <siteMapNode title="Training" description="Training classes"
 url="./Training.aspx" />
 <siteMapNode title="Consulting" description="Consulting services"
 url="./Consulting.aspx" />
 <siteMapNode title="Support" description="Support plans"
 url="./Support.aspx" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

■ Tip In this example, all the nodes have URLs, which means they are clickable (and take the user to specific

pages). However, if you simply want to use these nodes as categories to arrange other links, just omit the url

attribute. You’ll still see the node in your bound controls; it just won’t be rendered as a link.

Binding to a Site Map
Once you’ve defined the Web.sitemap file, you’re ready to use it in a page. This is a great place to use
master pages so that you can define the navigation controls as part of a template and reuse them with
every page. Here’s how you might define a basic structure in your master page that puts navigation
controls on the left and creates the SiteMapDataSource that provides navigational information to other
controls:

<form id="form1" runat="server">
 <table>
 <tr>
 <td style="width: 226px;vertical-align: top;">
 <!-- Navigation controls go here. -->
 </td>
 <td style="vertical-align: top;">
 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server" />
 </td>
 </tr>
 </table>
 <asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server" />
</form>

Then you can create a child page with some simple static content:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 runat="Server">

CHAPTER 17 ■ WEBSITE NAVIGATION

754

 Default.aspx page (home).
</asp:Content>

The only remaining task is to choose the controls you want to use to display the site map data. One
all-purpose solution is the TreeView control. You can add the TreeView and bind it to the
SiteMapDataSource in the master page using the DataSourceID, as shown here:

<asp:TreeView ID="treeNav" runat="server" DataSourceID="SiteMapDataSource1" />

Alternatively, you could use the fly-out Menu control just as easily:

<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1" />

Figure 17-9 shows both options.
You can do a lot more to customize the appearance of your navigation controls and the processing

of your site map. You’ll consider these more advanced topics in the following sections.

Figure 17-9. TreeView and Menu navigation

Breadcrumbs
ASP.NET actually defines three navigation controls: the TreeView, Menu, and SiteMapPath. The
SiteMapPath provides breadcrumb navigation, which means it shows the user’s current location and
allows the user to navigate back up the hierarchy to a higher level using links. Figure 17-10 shows an
example with a SiteMapPath control when the user is on the Software.aspx page. Using the SiteMapPath
control, the user can return to the Products.aspx page or the Home.aspx page.

CHAPTER 17 ■ WEBSITE NAVIGATION

755

Figure 17-10. Breadcrumb navigation with SiteMapPath

The SiteMapPath has a subtle but important difference from other navigational controls such as the
TreeView and Menu. Unlike these controls, the SiteMapPath works directly with the ASP.NET navigation
model—in other words, it doesn’t need to get its data through the SiteMapDataSource. As a result, you
can use the SiteMapPath on pages that don’t have a SiteMapDataSource, and changing the properties of
the SiteMapDataSource won’t affect the SiteMapPath.

Here’s how you define the SiteMapPath control:

<asp:SiteMapPath ID="SiteMapPath1" runat="server" />

Typically, you’ll place the SiteMapPath on your master page so it can be displayed on all your
content pages.

The SiteMapPath control is useful both for an at-a-glance view that provides the current position
and for a way to move up the hierarchy. However, you always need to combine it with other navigation
controls that let the user move down the site map hierarchy.

The SiteMapPath control is also thoroughly customizable. Table 17-6 lists some of its most
commonly configured properties.

Table 17-6. SiteMapPath Appearance-Related Properties

Property Description

ShowToolTips Set this to false if you don’t want the description text to appear when
the user hovers over a part of the site map path.

ParentLevelsDisplayed Sets the maximum number of parent levels that will be shown at once.
By default, this setting is -1, which means all levels will be shown.

RenderCurrentNodeAsLink If true, the portion of the page that indicates the current page is
turned into a clickable link. By default, this is false because the user is
already at the current page.

CHAPTER 17 ■ WEBSITE NAVIGATION

756

Property Description

PathDirection You have two choices: RootToCurrent (the default) and
CurrentToRoot (which reverses the order of levels in the path).

PathSeparator Indicates the characters that will be placed between each level in the
path. The default is the greater-than (>) symbol. Another common
path separator is the colon (:).

For even more control, you can configure the SiteMapPath control with styles or even redefine the

controls and HTML with templates (see Table 17-7).

Table 17-7. SiteMapPath Styles and Templates

Style Template Applies To

NodeStyle NodeTemplate All parts of the path except the root and current
node.

CurrentNodeStyle CurrentNodeTemplate The node representing the current page.

RootNodeStyle RootNodeTemplate The node representing the root. If the root node
is the same as the current node, the current
node template or styles are used.

PathSeparatorStyle PathSeparatorTemplate The separator between each node.

For example, the following SiteMapPath uses an arrow image as a separator and a fixed string of

bold text for the root node. The final part of the path, which represents the current page, is italicized.

<asp:SiteMapPath ID="SiteMapPath1" runat="server">
 <PathSeparatorTemplate>
 <asp:Image ID="Image1" ImageUrl="./images/arrow.jpg"
 runat="server" GenerateEmptyAlternateText="True" />
 </PathSeparatorTemplate>
 <RootNodeTemplate>
 Root
 </RootNodeTemplate>
 <CurrentNodeTemplate>
 <i><asp:Label ID="Label1" runat="server" Text='<%# Eval("title") %>'>
 </asp:Label></i>
 </CurrentNodeTemplate>
</asp:SiteMapPath>

Notice how the CurrentNodeTemplate uses a data binding expression to bind to the title property of
the current node. You can also get the url and description attributes that you declared in the site map file
in the same way.

CHAPTER 17 ■ WEBSITE NAVIGATION

757

Showing a Portion of the Site Map
In the examples so far, the page controls replicate the structure of the site map file exactly. However, this
isn’t always what you want. For example, showing a large site map might distract the user from the
portion of the website they’re currently exploring. Or, the site map might have so many levels that the
entire tree doesn’t fit neatly into your web page.

In this situation, you can choose to cut down on the total amount of information and show just a
portion of your site map. The following sections explain the different techniques you can use.

Skipping the Root Node
Ordinarily, the site map tree begins with the single root node from the site map. Often, this isn’t what
you want. It adds an extra layer of nesting to your site map structure, making it take more room), and
introduces a top-level link that might not be very useful.

In the previous example (Figure 17-10), you may not like the way the Home node sticks out. To
clean this up, you can set the SiteMapDataSource.ShowStartingNode property to false. If you still want
to show the Home entry, modify the site map file so it defines the Home node in the first group of pages
(just before Products). The real root node won’t be shown, so it doesn’t need any URL.

Here’s the revised site map:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
 <siteMapNode title="Root" description="Root">
 <siteMapNode title="Home" description="Home" url="./default.aspx"/>
 <siteMapNode title="Products" description="Our products"
 url="./Products.aspx">
 ...
 </siteMapNode>
</siteMap>

Figure 17-11 shows the nicer result.

Figure 17-11. A site map without the root node

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

CHAPTER 17 ■ WEBSITE NAVIGATION

758

Starting from the Current Node
The previous example shows how you can skip the root node. Another option you have is to show just a
portion of the complete site map, starting from the current node. For example, you might use a control
such as the TreeView to show everything in the hierarchy starting from the current node. If the user
wants to move up a level, they could use another control (such as a SiteMapPath).

To implement this design, simply set the SiteMapDataSource.StartFromCurrentNode property to
true. The SiteMapPath will still show the complete hierarchy, because it doesn’t use the
SiteMapDataSource. (Thus, the user can click a link in the SiteMapPath to move up to a higher-level
page.) However, bound navigational controls such as the TreeView will show only the pages beneath the
current page, allowing the user to move down the hierarchy.

You still have the choice of whether to use ShowStartingNode, but now it determines whether you
show the current node, because that’s the starting point for the navigation tree. Figure 17-12 shows an
example where both StartFromCurrentNode and ShowStartingNode are true. The current page is
Products.aspx. The SiteMapPath shows higher-level pages, and the TreeView shows the nodes
underneath the Products.aspx node (Hardware.aspx and Software.aspx).

Figure 17-12. Binding to child nodes only

For this technique to work, ASP.NET must be able to find a page in the Web.sitemap file that
matches the current URL. Otherwise, it won’t know where the current position is, and it won’t provide
any navigation information to the bound controls.

Starting from a Specific Node
The SiteMapDataSource has two more properties that can help you configure the navigation tree:
StartingNodeOffset and StartingNodeUrl.

StartingNodeUrl is the easiest to understand—it takes the URL of the node that should be the first
node in the tree. This value must match the url attribute of the node in the Web.sitemap file exactly. For
example, if you specify a StartingNodeUrl of "./home.aspx", then the first node in the tree is the Home
node, and you will see only nodes underneath that node.

The StartingNodeUrl property is particularly useful if you want to vary between a small number of
different site maps (say, fewer than ten). The ideal solution is to define multiple site map files and bind
to the one you want to use. Unfortunately, the default XmlSiteMapProvider supports only a single site

CHAPTER 17 ■ WEBSITE NAVIGATION

759

map file, so you need to find a different mechanism. In this case, the solution is to separate the different
site maps into distinct branches of the Web.sitemap file.

For example, imagine you want to have a dealer section and an employee section on your website.
You might split this into two different structures and define them both under different branches in the
same file, like this:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode title="Root" description="Root" url="./">
 <siteMapNode title="Dealer Home" description="Home" url="./default.aspx">
 ...
 </siteMapNode>
 <siteMapNode title="Employee Home" description="Home" url="./default_emp.aspx">
 ...
 </siteMapNode>
 </siteMapNode>
</siteMap>

Now, to bind the menu to the dealer view, you set the StartingNodeUrl property to "./default.aspx".
You can do this programmatically or, more likely, by creating an entirely different master page and
implementing it in all your dealer pages. In your employee pages, you set the StartingNodeUrl property
to "./default_emp.aspx". This way, you’ll show only the pages under the Employee Home branch of the
site map.

You can even make your life easier by breaking a single site map into separate files using the
siteMapFile attribute, like this:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode title="Root" description="Root" url="./">
 <siteMapNode siteMapFile="Dealers.sitemap" />
 <siteMapNode siteMapFile="Employees.sitemap" />
 </siteMapNode>
</siteMap>

Even with this technique, you’re still limited to a single site map tree, and it always starts with the
Web.sitemap file. However, you can manage your site map more easily because you can factor some of
its content into separate files. (You can also use security trimming, which is discussed later in the
“Security Trimming” section, to create user-specific, personalized site maps.)

■ Note This technique is greatly limited because the XmlSiteMapProvider doesn’t allow duplicate URLs. That

means there’s no way to reuse the same page in more than one branch of a site map. Although you can try to
work around this problem by creating different URLs that are equivalent (for example, by adding extra query string
parameters on the end), this raises more headaches. If these limitations won’t work in your scenario, the best

approach is to design your own site map provider.

The SiteMapDataSource.StartingNodeOffset property takes the most getting used to. It takes an
integer that instructs the SiteMapDataSource to move that many levels down the tree (if the number is
positive) or up the tree (if the number is negative). The important detail that’s often misunderstood is
that when the SiteMapDataSource moves down the tree, it moves toward the current node. If it’s already

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0
http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

CHAPTER 17 ■ WEBSITE NAVIGATION

760

at the current node, or your offset takes it beyond the current node, the SiteMapDataSource won’t know
where to go, and you’ll end up with a blank navigation control.

To understand how this works, it helps to consider an example. Imagine you’re at this location in
a website:

Home > Products > Software > Custom > Contact Us

If the SiteMapDataSource is starting at the Home node (the default), and you apply a
StartingNodeOffset of 2, it will move down the tree two levels and bind the tree from that node down. In
this example, that node is Software:

Software > Custom > Contact Us

That means you’ll be able to jump to any links in the Software or Custom groups, but you won’t be
able to go anywhere else (at least not without stepping up a level first or clicking another control).

If you attempt to move down too many levels—for example, if the user is on a second-level page and
you supply a StartingNodeOffset of 3—the SiteMapDataSource will run out of levels and your bound
controls will be left blank.

Another useful technique is to move up from the current node. For example, if you set
StartFromCurrentNode to true and use a StartingNodeOffset of -3, the SiteMapDataSource will move up
three levels from the current page (Contact Us) and bind to this tree:

Products > Software > Custom > Contact Us

This technique is a bit more useful, because it ensures that your navigational controls will always
show the same number of levels. If you attempt to step up past the root node, you’ll simply see as many
levels as possible. For example, if you specify a StartingNodeOffset of -3 and the user is currently at a
second-level page (such as Software), you’ll bind to this tree:

Products > Software

It may take a bit of experimenting to decide the right combination of SiteMapDataSource settings
that you want to use.

■ Note StartingNodeOffset and StartFromCurrentNode are specialized properties that many websites never use.
However, they can be useful if you have a deeply nested, complex site map tree. In this case, you can use these

properties to cut down the number of levels that are shown at once. This makes the navigation links easier to read
and understand (or at least more compact, so they don’t waste valuable web page space). To get a similar effect
with the SiteMapPath (which doesn’t use the SiteMapDataSource), you can set the

SiteMapPath.ParentLevelsDisplayed property.

The Site Map Objects
You aren’t limited to no-code data binding in order to display navigation hierarchies. You can interact
with the navigation information programmatically. Two reasons exist for using programmatic
navigation:

To change the display of the page: For example, you can retrieve the current node information and
use that to configure details such as the page heading and title.

CHAPTER 17 ■ WEBSITE NAVIGATION

761

To implement different navigation logic: For example, you might want to display just a portion of
the full list of child nodes for the current page in a newsreader, or you might want to create
previous/next navigation buttons.

The site map API is remarkably straightforward. To use it, you need to work with two classes from
the System.Web namespace. The starting point is the SiteMap class, which provides the static properties
CurrentNode (the site map node representing the current page) and RootNode (the root site map node).
Both of these properties return a SiteMapNode object. Using the SiteMapNode, you can retrieve
information from the site map, including the title, description, and URL values. You can branch out to
consider related nodes using the navigational properties in Table 17-8.

■ Note You can also search for nodes using the methods of the current SiteMapProvider object, which is available
through the SiteMap.Provider static property. For example, the SiteMap.Provider.FindSiteMapNode() method allows

you to search for a node by its URL.

Table 17-8. SiteMapNode Navigational Properties

Property Description

ParentNode Returns the node one level up in the navigation hierarchy, which contains the
current node. On the root node, this returns a null reference.

ChildNodes Provides a collection of all the child nodes. Check the HasChildNodes property to
determine if there are child nodes.

PreviousSibling Returns the previous node that’s at the same level (or a null reference if no such
node exists).

NextSibling Returns the next node that’s at the same level (or a null reference if no such node
exists).

To see this in action, consider the following code, which configures two labels on a page to show the

heading and description information retrieved from the current node:

protected void Page_Load(object sender, EventArgs e)
{
 lblHead.Text = SiteMap.CurrentNode.Title;
 lblDescription.Text = SiteMap.CurrentNode.Description;
}

The next example is a little more ambitious. It provides a Next button, which allows the user to
traverse an entire set of subnodes. The code checks for the existence of sibling nodes, and if there aren’t
any in the required position, it simply hides the link.

protected void Page_Load(object sender, EventArgs e)
{
 if (SiteMap.CurrentNode.NextSibling != null)

CHAPTER 17 ■ WEBSITE NAVIGATION

762

 {
 lnkNext.NavigateUrl = SiteMap.CurrentNode.NextSibling.Url;
 lnkNext.Visible = true;
 }
 else
 {
 lnkNext.Visible = false;
 }
}

Adding Custom Site Map Information
In the site maps you’ve seen so far, the only information that’s provided for a node is the title,
description, and URL. This is the bare minimum of information that you’ll want to use. However, the
schema for the XML site map is open, which means you’re free to insert custom attributes with your
own data.

You might want to insert additional node data for a number of reasons. This additional information
might be descriptive information that you intend to display or contextual information that describes
how the link should work. For example, you could add attributes that specify a target frame or indicate
that a link should be opened in a pop-up window. The only catch is that it’s up to you to act on the
information later. In other words, you need to configure your user interface so it uses this extra
information.

For example, the following code shows a site map that uses a target attribute to indicate the frame
where the link should be opened. This technique is useful if you’re using frames-based navigation
(rather than a master page), as described in Chapter 29. In this example, one link is set with a target of
_blank so it will open in a new (pop-up) browser window.

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode title="Home" description="Root" url="./Default.aspx">
 <siteMapNode title="Products" description="Our products"
 url="./Products.aspx" target="_blank" />
 ...
 </siteMapNode>
</siteMap>

Now in your code, you have several options. If you’re using a template in your navigation control,
you can bind directly to the new attribute you’ve added. If your navigation control doesn’t support
templates (or you don’t want to create one), you’ll need to find another approach. Both the TreeView
and Menu classes expose an event that fires when an individual item is bound (TreeNodeDataBound
and MenuItemDataBound). You can then customize the current item. To apply the new target, you use
this code:

protected void TreeView1_TreeNodeDataBound(object sender, TreeNodeEventArgs e)
{
 e.Node.Target = ((SiteMapNode)e.Node.DataItem)["target"];
}

Notice that you can’t retrieve the custom attribute from a strongly typed property. Instead, you
retrieve it by name using the SiteMapNode indexer.

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

CHAPTER 17 ■ WEBSITE NAVIGATION

763

Creating a Custom SiteMapProvider
To really change how the ASP.NET navigation model works, you need to create your own site map
provider. You might choose to create a custom site map provider for several reasons:

• You need to store site map information in a different data source (such as a
relational database).

• You need to store site map information with a different schema from the XML
format expected by ASP.NET. This is most likely if you have an existing system in
place for storing site maps.

• You need a highly dynamic site map that’s generated on the fly. For example, you
might want to generate a different site map based on the current user, the query
string parameters, and so on.

• You need to change one of the limitations in the XmlSiteMapProvider
implementation. For example, maybe you want the ability to have nodes with
duplicate URLs.

You have two choices when implementing a custom site map provider. All site map providers derive
from the abstract base class SiteMapProvider in the System.Web namespace. You can derive from this
class to implement a new provider from scratch. However, if you want to keep the same logic but use a
different data store, just derive from the StaticSiteMapProvider class instead. It gives you a basic
implementation of many methods, including the logic for node storing and searching.

In the following sections, you’ll see a custom provider that lets you store site map information in a
database.

Storing Site Map Information in a Database
In this example, all navigation links are stored in a single database table. Because databases don’t lend
themselves easily to hierarchical data, you need to be a little crafty. In this example, each navigation link
is linked to a parent link in the same table, except for the root node. This means that although the
navigational links are flattened into one table, you can re-create the right structure by starting with the
home page and then searching for the subset of rows at each level.

Figure 17-13 shows the SiteMap table with some sample data that roughly duplicates the site map
you saw earlier in this chapter.

Figure 17-13. The SiteMap table

CHAPTER 17 ■ WEBSITE NAVIGATION

764

In this solution, the site map provider won’t access the table directly. Instead, it will use a stored
procedure. This gives some added flexibility and potentially allows you to store your navigation
information with a different schema, as long as you return a table with the expected column names from
your stored procedure.

Here’s the stored procedure used in this example:

CREATE PROCEDURE GetSiteMap AS
SELECT * FROM SiteMap ORDER BY ParentID, Title

Creating the Site Map Provider
Because this site map provider doesn’t change the underlying logic of site map navigation, you can
derive from StaticSiteMapProvider instead of deriving from SiteMapProvider and reimplementing all the
tracking and navigation behavior (which is a much more tedious task).

Here’s the class declaration for the provider:

public class SqlSiteMapProvider : StaticSiteMapProvider
{ ... }

The first step is to override the Initialize() method to get all the sitemap-related information you
need from the web.config file. The Initialize() method gives you access to the configuration element in
the web.config that defines the site map provider.

In this example, your provider needs three pieces of information:

• The connection string for the database where the site map data is stored.

• The name of the stored procedure that returns the site map.

• The provider name for the database. This allows you to use provider-agnostic
coding (as described in Chapter 7). In other words, you can support SQL Server,
Oracle, or another database equally easily, as long as there’s a .NET provider
factory installed.

You can configure your web application to use the custom provider (SqlSiteMapProvider) and
supply the required three pieces of information using the <siteMap> section of the web.config file:

<configuration>
 <system.web>
 <siteMap defaultProvider="SqlSiteMapProvider">
 <providers>
 <add name="SqlSiteMapProvider" type="SqlSiteMapProvider"
 providerName="System.Data.SqlClient"
 connectionString=
"Data Source=localhost;Initial Catalog=SiteMap;Integrated Security=SSPI"
 storedProcedure="GetSiteMap" />
 </providers>
 </siteMap>
 ...
 </system.web>
 ...
</configuration>

Now in your provider you simply need to retrieve these three pieces of information and store them
for later. Here’s the code you need to add to the SqlSiteMapProvider class:

CHAPTER 17 ■ WEBSITE NAVIGATION

765

private string connectionString;
private string providerName;
private string storedProcedure;
private bool initialized = false;

public override void Initialize(string name,
 System.Collections.Specialized.NameValueCollection attributes)
{
 if (!IsInitialized)
 {
 base.Initialize(name, attributes);

 // Retrieve the web.config settings.
 providerName = attributes["providerName"];
 connectionString = attributes["connectionString"];
 storedProcedure = attributes["storedProcedure"];

 if (String.IsNullOrEmpty(providerName))
 throw new ArgumentException("The provider name was not found.");
 else if (String.IsNullOrEmpty(connectionString))
 throw new ArgumentException("The connection string was not found.");
 else if (String.IsNullOrEmpty(storedProcedure))
 throw new ArgumentException("The stored procedure name was not found.");

 initialized = true;
 }
}

public virtual bool IsInitialized
{
 get { return initialized; }
}

The real work that the provider does is in the BuildSiteMap() method, which constructs the
SiteMapNode objects that make up the navigation tree. In the lifetime of an application, you’ll typically
construct the SiteMapNode once and reuse it multiple times. To make that possible, the provider needs
to store the site map in memory, so add the following field to the SqlSiteMapProvider class:

private SiteMapNode rootNode;

The root SiteMapNode contains the first level of nodes, which then contain the next level of nodes,
and so on. Thus, the root node is the starting point for the whole navigation tree.

You override the BuildSiteMap() method to actually create the site map. The first step is to check if
the site map has already been generated and then create it. Because multiple pages could share the same
instance of the site map provider, it’s a good idea to lock the object before you update any shared
information (such as the in-memory navigation tree).

public override SiteMapNode BuildSiteMap()
{
 lock (this)
 {
 // Don't rebuild the map unless needed.
 // If your site map changes often, consider using caching.
 if (rootNode == null)

CHAPTER 17 ■ WEBSITE NAVIGATION

766

 {
 // Start with a clean slate.
 Clear();
 ...

Next, you need to create the database provider and use it to call the stored procedure that gets the
navigation history. The navigation history is stored in a DataSet (a DataReader won’t work because you
need back-and-forth navigation to traverse the structure of the site map).

Here’s the code you need (which assumes you’ve imported the System.Data.Common namespace):

 ...
 // Get all the data (using provider-agnostic code).
 DbProviderFactory provider =
 DbProviderFactories.GetFactory(providerName);

 // Use this factory to create a connection.
 DbConnection con = provider.CreateConnection();
 con.ConnectionString = connectionString;

 // Create the command.
 DbCommand cmd = provider.CreateCommand();
 cmd.CommandText = storedProcedure;
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Connection = con;

 // Create the DataAdapter.
 DbDataAdapter adapter = provider.CreateDataAdapter();
 adapter.SelectCommand = cmd;

 // Get the results in a DataSet.
 DataSet ds = new DataSet();
 adapter.Fill(ds, "SiteMap");
 DataTable dtSiteMap = ds.Tables["SiteMap"];
 ...

The next step is to navigate the DataTable to create the SiteMapNode objects, beginning with the
root node. You can find the root node by searching for the node with no parent (where ParentID is null).
In this example, no attempt is made to check for all the possible error conditions (such as duplicate root
nodes).

 ...
 // Get the root node.
 DataRow rowRoot = dtSiteMap.Select("ParentID IS NULL")[0];
 ...

Now to create a SiteMapNode, you need to supply the key, URL, title, and description. In the default
implementation of a site map provider, the key and URL are the same, which makes searching by URL
easier. The custom SqlSiteMapProvider also uses this convention.

 ...
 rootNode = new SiteMapNode(this,
 rowRoot["Url"].ToString(),
 rowRoot["Url"].ToString(),

CHAPTER 17 ■ WEBSITE NAVIGATION

767

 rowRoot["Title"].ToString(),
 rowRoot["Description"].ToString());
 ...

Now it’s time to fill in the rest of the hierarchy. This is a step that needs to be performed recursively
so that you can drill down through a hierarchy that’s an unlimited number of levels deep. To make this
work, the SqlSiteMapProvider uses a private AddChildren method, which fills in one level at a time. Once
this process is complete, the root node that provides access to the full site map is returned.

 ...
 string rootID = rowRoot["ID"].ToString();
 AddNode(rootNode);

 // Fill down the hierarchy.
 AddChildren(rootNode, rootID, dtSiteMap);
 }
 }
 return rootNode;
}

The AddChildren() method simply searches the DataTable for records where the ParentID is the
same as the current ID—in other words, it finds all the parents for the current node. Each time it finds a
child, it adds the child to the SiteMapNode.ChildNodes collection using the AddNode method that’s
inherited from StaticSiteMapProvider.

Here’s the complete code:

private void AddChildren(SiteMapNode rootNode, string rootID, DataTable dtSiteMap)
{
 DataRow[] childRows = dtSiteMap.Select("ParentID = " + rootID);
 foreach (DataRow row in childRows)
 {
 SiteMapNode childNode = new SiteMapNode(this,
 row["Url"].ToString(),
 row["Url"].ToString(),
 row["Title"].ToString(),
 row["Description"].ToString());
 string rowID = row["ID"].ToString();

 // Use the SiteMapNode AddNode method to add
 // the SiteMapNode to the ChildNodes collection.
 AddNode(childNode, rootNode);

 // Check for children in this node.
 AddChildren(childNode, rowID, dtSiteMap);
 }
}

The only remaining details are to fill a few other required overloads that retrieve the site map
information:

protected override SiteMapNode GetRootNodeCore()
{
 return BuildSiteMap();

CHAPTER 17 ■ WEBSITE NAVIGATION

768

}

public override SiteMapNode RootNode
{
 get { return BuildSiteMap(); }
}

protected override void Clear()
{
 lock (this)
 {
 rootNode = null;
 base.Clear();
 }
}

This completes the example. You can now request the same pages you created earlier, using the new
site map provider (as configured in the web.config file). In fact, you use exactly the same markup. The
custom provider plugs in easily and neatly. The new information will flow through the custom provider
and arrive in your pages without any indication that the underlying plumbing has changed.

Adding Sorting
Currently, the SqlSiteMapProvider returns the results ordered alphabetically by title. This means the
About page always appears before the Contact Us page. This make sense for a quick test, but it isn’t
practical in a real site, where you probably want the ability to control the order in which pages appear.

Fortunately, an easy solution exists. In fact, you don’t even need to touch the SqlSiteMapProvider
code. All you need to do is introduce a new field in the SiteMap table (say, OrdinalPosition) and modify
the GetSiteMap procedure to use it:

ALTER PROCEDURE GetSiteMap AS
SELECT * FROM SiteMap ORDER BY ParentID, OrdinalPosition, Title

First, records are sorted into groups based on the parent (which node they fall under). Next, they’re
ordered according to the OrdinalPosition values, if you’ve supplied them. Finally, they’re sorted by title.

Sorting is only applied with a group of pages that are at the same level. For example, you can use the
same ordinal numbers (say, 1, 2, 3) to order pages in the Products branch as you do in the Services
branch. If two pages in the same group have the same ordinal number, they’re ordered alphabetically by
title with respect to one another. (As a side effect, if you don’t set any ordinal numbers, the nodes will all
be sorted alphabetically by title, just like they were in the previous example.)

■ Note Strictly speaking, you don’t need to sort by ParentID. The SqlSiteMapDataProvider code processes nodes
one batch at a time, and each batch is made up of nodes that have the same ParentID. However, sorting by

ParentID makes it easier to test your sorting. This way, you can run the GetSiteMap stored procedure, look over the

results, and get a good overview of how your nodes are organized.

CHAPTER 17 ■ WEBSITE NAVIGATION

769

Adding Caching
One issue you might notice with the SqlSiteMapProvider is that it stores the root node for the current site
map in memory indefinitely. This means the SqlSiteMapProvider uses the same site map until the
application domain is restarted (for example, when you rebuild your website or change its configuration
settings). If you plan to change your site map regularly, you have several choices to make sure your
application notices the change and refreshes the site map. The best option is to use the data cache to
keep the root note around for a limited amount of time.

You can use time-based expiry (for example, so the site map is refreshed once an hour). The cache
time is added to the web.config file (as a value in seconds):

<add name="SqlSiteMapProvider" ... cacheTime="600" />

And it’s retrieved in the SqlSiteMapProvider constructor using this statement:

cacheTime = Int32.Parse(attributes["cacheTime"]);

Here’s a revised version of the BuildSiteMap() method that keeps the site map in the cache for the
desired period of time:

public override SiteMapNode BuildSiteMap()
{
 SiteMapNode rootNode;

 lock (this)
 {
 rootNode = HttpContext.Current.Cache["rootNode"] as SiteMapNode;
 if (rootNode == null)
 {
 ...
 // Store the root node in the cache.
 HttpContext.Current.Cache.Insert("rootNode", rootNode,
 null, DateTime.Now.AddSeconds(cacheTime), TimeSpan.Zero);
 }
 }
 return rootNode;
}

Lastly, the SqlSiteMapProvider.Clear() method requires minor changes so that it removes the site
map from the cache:

protected override void Clear()
{
 lock (this)
 {
 HttpContext.Current.Cache.Remove("rootNode");
 base.Clear();
 }
}

If you want to get even more sophisticated, you can use SQL Server cache invalidation to
automatically remove your cached site map when a change takes place in the SiteMap table. The only
disadvantage is that this is a SQL Server-specific feature, so it breaks the broad database compatibility

CHAPTER 17 ■ WEBSITE NAVIGATION

770

enjoyed by the SqlSiteMapProvider (which currently supports any data source that has an ADO.NET
data provider and data factory).

If you decide to implement database cache invalidation, you need to take care to ensure that it’s an
optional feature. For example, you might decide to use the time-based caching approach shown here
unless you find a specific attribute in the custom provider tag that indicates database cache invalidation
is supported.

■ Note Some developers have created custom site map providers that expose the directory structure of a website
using the site map model. These providers simply create nodes for every file and subdirectory they find in your
website directory. This approach allows you to provide basic navigation without actually creating a site map file (or

table). Of course, you sacrifice considerable flexibility, because you can’t control what pages are shown or how
they’re ordered. For an example of a custom provider that implements this file-and-folder approach, see

http://msdn2.microsoft.com/en-us/library/aa479338.aspx.

Security Trimming
In Chapter 23, you’ll learn how to protect specific pages and folders using authorization rules. These
authorization rules can prevent anonymous users from accessing sensitive content, regardless of what
type of authentication system you’re using. You can also use authorization rules to lock out specific
users, roles, or Windows groups.

This creates a bit of a challenge if you’re using a single site map for all users. The problem is that the
site map may include some pages that are accessible only to certain classes of users. For example, all
users will see a link to an Admin.aspx page, even though you may have used authorization rules that
explicitly prevent most people from accessing this page. To prevent the confusion, you can use an often-
overlooked site map feature called security trimming.

When security trimming is switched on, all the pages that a user wouldn’t be allowed to access
(based on authorization rules) are left out of the site map altogether. This means non-admin users won’t
see the link to the Admin.aspx page. And if you’ve used authorization rules to create separate groups of
pages for separate roles, every user will see just the appropriate pages.

To turn on security trimming, you need to use the securityTrimmingEnabled attribute when you
register the site map provider in the web.config file. Although you could edit the root web.config file on
the web server, the easiest option is to simply add the standard site map provider with the new
configuration settings, as shown here:

<configuration>
 <system.web>
 <providers>
 <siteMap defaultProvider="SecureSiteMapProvider" >
 <add name="SecureSiteMapProvider"
 type="System.Web.XmlSiteMapProvider "
 siteMapFile="Web.sitemap"
 securityTrimmingEnabled="true" />
 </providers>
 </siteMap>
 ...
 </system.web>
</configuration>

http://msdn2.microsoft.com/en-us/library/aa479338.aspx

CHAPTER 17 ■ WEBSITE NAVIGATION

771

When you switch on security trimming, it automatically applies to all the nodes in your site map file.
However, you can opt out. If you know specific sections of your site map should be shown to all people
or if you don’t want to use security trimming to hide certain pages, you can explicitly turn security
trimming off for a portion of the site map. To do so, you need to set the roles attribute for that node to an
asterisk (*), as shown here:

<siteMapNode title="Admin" description="Administration"
 url="./Admin.aspx" roles="*" >

Now the Services node is visible to everyone, regardless of their role, even if security trimming is
switched on. You might take this step for several reasons:

To ensure good performance: The fewer nodes ASP.NET needs to check, the less overhead it applies
to each request.

To make it easier for people to use a secure page as a starting point: For example, an administrator
might want to surf to your website and click the Admin.aspx link before logging in. At this point, the
administrator will be sent to a login page (assuming you’re using forms authentication),
authenticated, and then redirected back to the Admin.aspx page. But if the Admin.aspx page isn’t
visible, the site isn’t quite as easy to use. The administrator would need to surf to the login page first
and then surf to the Admin.aspx page.

To prevent child nodes from being hidden: For example, if the Administration node contains other
nodes that aren’t secured (such as Meet Our Administrators), these nodes will be hidden when the
Administration node is hidden. This problem usually indicates a poor site map design.

The value of the roles attribute is not passed down to nested nodes. This means if there are other
nodes contained inside the Administration node and these nodes point to protected pages that you want
to show in the site map, you’ll need to add the roles="*" attribute to each one.

■ Tip Security trimming imposes extra work on each request. If your site map contains a large number of nodes,
this additional overhead can reduce performance. Microsoft recommends using security trimming with site maps
that have fewer than 150 nodes. Or, to ensure good performance, turn off security trimming for sections of the site

map where it’s not needed using the roles attribute.

The roles node hints at another, less commonly used possibility. You can use it to explicitly set a
comma-separated list of roles (or, in the case of Windows authentication, Windows groups) that are
allowed to see the page. However, this usage is confusing. You can’t use it to limit access to a node;
instead, it only expands access. In other words, when you enable security trimming, ASP.NET
determines who should see a site map node based on the authorization settings for that page in the
web.config file. Then, it also shows the node for explicitly named roles.

■ Note Remember, the roles attribute controls whether a node appears in the site map. It has no effect on
whether a user can actually access the page, which is determined by the web.config authorization rules. To learn

more about authorization rules, refer to Chapter 23.

CHAPTER 17 ■ WEBSITE NAVIGATION

772

URL Mapping and Routing
The site map model is designed around a simple principle: each entry has a separate URL. Although you
can distinguish URLs by adding query string arguments, in many web sites, there is one-to-one
correspondence between web forms and site map entries.

When this doesn’t suit, ASP.NET has two tools that may be able to help you out. The first is URL
mapping, which is a clean, no-nonsense way to map one URL to another. The second is URL routing,
which is a slightly more elaborate but much more flexible system that performs a similar task. URL
mapping is an ideal way to deal with “one-off” redirection. For example, mapping is a quick way to deal
with old or recently moved pages, or to allow extra entry points for a few popular pages. On the other
hand, URL routing can serve as the basis for a more sophisticated redirection system that deals with
many more pages. For example, you could use it to replace long, complex product page URLs with a
simpler syntax, and implement that across your entire web site. Routing is particularly useful if you want
to offer cleaner URLs so that search engines can index your web site more easily and comprehensively.

URL Mapping
In some situations, you might want to have several URLs lead to the same page. This might be the case
for a number of reasons—maybe you want to implement your logic in one page and use query string
arguments but still provide shorter and easier-to-remember URLs to your website users (often called
friendly URLs). Or maybe you have renamed a page, but you want to keep the old URL functional so it
doesn’t break user bookmarks. Although web servers sometimes provide this type of functionality,
ASP.NET includes its own URL mapping feature.

The basic idea behind ASP.NET URL mapping is that you map a request URL to a different URL.
The mapping rules are stored in the web.config file, and they’re applied before any other processing
takes place. Of course, for ASP.NET to apply the remapping, it must be processing the request, which
means the request URL must use a file type extension that’s mapped to ASP.NET. (See Chapter 18
for more information about how to configure ASP.NET to handle file extensions that it wouldn’t
ordinarily handle.)

You define URL mapping in the <urlMappings> section of the web.config file. You supply two pieces
of information—the request URL (as the attribute url) and the new destination URL (mappedUrl). Here’s
an example:

<configuration>
 <system.web>
 <urlMappings enabled="true">
 <add url="./Category.aspx"
 mappedUrl="./Default.aspx?category=default" />
 <add url="./Software.aspx"
 mappedUrl="./Default.aspx?category=software" />
 </urlMappings>
 ...
 </system.web>
</configuration>

To make a match, the incoming URL must be requesting the same page. However, the case of the
request URL is ignored, as are query string arguments. Unfortunately, there’s no support for advanced
matching rules, such as wildcards or regular expressions.

When you use URL mapping, the redirection is performed in the same way as the Server.Transfer()
method, which means there is no round-trip and the URL in the browser will still show the original
request URL, not the remapped URL. In your code, the Request.Path and Request.QueryString

CHAPTER 17 ■ WEBSITE NAVIGATION

773

properties reflect the new (mapped) URL. The Request.RawUrl property returns the original friendly
request URL.

This can introduce some complexities if you use it in conjunction with site maps—namely, does the
site map provider try to use the original request URL or the destination URL when looking for the
current node in the site map? The answer is both. It begins by trying to match the request URL (provided
by the Request.RawUrl property), and if no value is found, it then uses the Request.Path property
instead. This is the behavior of the XmlSiteMapProvider, so you could change it in a custom provider
if desired.

URL Routing
Routing is a core feature for ASP.NET MVC, and you’ll consider it in detail in Chapter 32. However,
ASP.NET also allows you to use the same routing techniques in a traditional web application that
consists of web forms.

Unlike URL mapping, URL routing doesn’t take place in the web.config file. Instead, it’s
implemented using code. Typically, you’ll use the Application_Start() method in the global.asax file to
register all the routes for your application.

To register a route, you use the RouteTable class from the System.Web.Routing namespace. It
provies a static property named Routes, which holds a collection of Route objects that are defined for
your application. Initially, this collection is empty, but you can create your own custom routes by calling
the MapPageRoute() method, which takes three arguments:

routeName: This is a name that uniquely identifies the route. It can be whatever you want.

routeUrl: This specifies the URL format that browsers will use. Typically, a route URL consists of
one or more pieces of variable information, separated by slashes, which are extracted and provided
to your code. For example, you might request a product page using a URL such as /products/4312.

physicalFile: This is the target web form—the place where users will be redirected when they use
the route. The information from the original routeUrl will be parsed and made available to this page
as a collection through the Page.RouteData property.
Here’s an example that adds two routes to a web application when it first starts:

void Application_Start(object sender, EventArgs e)
{
 RouteTable.Routes.MapPageRoute("product-details",
 "product/{productID}", "~/productInfo.aspx");

 RouteTable.Routes.MapPageRoute("products-in-category",
 "products/category/{categoryID}", "~/products.aspx");
}

The route URL can include one or more parameters, which is represented by a placeholder in curly
brackets. For example, the first route shown here includes a parameter named productID. This piece of
information will be pulled out of the URL and passed along to the target page.

Here’s a URL that uses this route to request a product with the ID FI_00345:

http://localhost:[PortNumber]/Routing/product/FI_00345

The ASP.NET routing infrastructure then redirects the user to the productInfo.aspx page. All the
parameters are provided through the Page.RouteData property. Technically, Page.RouteData provides a
RouteData object. It’s most useful property is the Values collection, which provides all the parameters
from the original request, indexed by name.

http://localhost:

CHAPTER 17 ■ WEBSITE NAVIGATION

774

Here’s an example that shows how the productInfo.aspx page can retrieve the requested product ID
from the original URL:

protected void Page_Load(object sender, EventArgs e)
{
 string productID = (string)Page.RouteData.Values["productID"];
 lblInfo.Text = "You requested " + productID;
}

Similarly, the second route in this example acceptsURLs in this form:

http://localhost:[PortNumber]/Routing/products/category/342

Although you can hard-code this sort of URL, there’s a Page.GetRouteUrl() helper method that does
it for you automatically, avoiding potential mistakes. Here’s an example that looks up a route (using its
registered name), supplies the parameter information, and then retrieves the corresponding URL:

hyperLink.NavigateUrl = Page.GetRouteUrl("product-details", new { productID = "FI_00345" });

The result is a routed URL that points to the FI_00345 product, as shown in the first example.
You’ll learn quite a bit more about the routing system when you consider ASP.NET MVC in

Chapter 32.

The TreeView Control
The TreeView is one of the most impressive navigation controls. Not only does it allow you to render
rich tree views, it also supports filling portions of the tree on demand (and without refreshing the
entire page). But most important, it supports a wide range of styles that can transform its appearance.
By setting just a few basic properties, you can change the TreeView from a help topic index to a
file-and-folder directory listing. In fact, the TreeView doesn’t have to be rendered as a tree at all—it can
also tackle nonindented hierarchical data such as a table of contents with the application of just a few
style settings.

You’ve already seen two basic TreeView scenarios. In Chapter 14, you used a TreeView to display
bound XML data. In this chapter, you used a TreeView to display site map data. Both of these examples
used the ability of the TreeView to bind to hierarchical data sources. But you can also fill a TreeView by
binding to an ordinary data source (in which case you’ll get only a single level of nodes) or by creating
the nodes yourself, either programmatically or through the .aspx declaration.

The latter option is the simplest. For example, by adding <asp:TreeNode> tags to the <Nodes>
section of a TreeView control, you can create several nodes:

<asp:TreeView ID="TreeView1" runat="server">
 <Nodes>
 <asp:TreeNode Text="Products">
 <asp:TreeNode Text="Hardware"/>
 </asp:TreeNode>
 <asp:TreeNode Text="Services"/>
 </Nodes>
</asp:TreeView>

http://localhost:

CHAPTER 17 ■ WEBSITE NAVIGATION

775

And here’s how you can add a TreeNode programmatically when the page loads:

TreeNode newNode = new TreeNode("Software");

// Add as a child of the first root node
// (the Products node in the previous example).
TreeView1.Nodes[0].ChildNodes.Add(newNode);

When the TreeView is first displayed, all the nodes are shown. You can control this behavior by
setting the TreeView.ExpandDepth property. For example, if ExpandDepth is 2, only the first three levels
are shown (level 0, level 1, and level 2). To control how many levels the TreeView includes altogether
(collapsed or uncollapsed), you use the MaxDataBindDepth property. By default, MaxDataBindDepth is
-1, and you’ll see the entire tree. However, if you use a value such as 2, you’ll see only two levels under
the starting node. You can also programmatically collapse and expand individual nodes by setting the
TreeNode.Expanded property to true or false.

This just scratches the surface of how a TreeView works. To get the most out of the TreeView, you
need to understand how to customize several other details for a TreeNode.

The TreeNode
Each node in the tree is represented by a TreeNode object. As you already know, every TreeNode has an
associated piece of text, which is displayed in the tree. The TreeNode object also provides navigation
properties such as ChildNodes (the collection of nodes it contains) and Parent (the containing node, one
level up the tree). Along with this bare minimum, the TreeNode provides all the useful properties
detailed in Table 17-9.

Table 17-9. TreeNode Properties

Property Description

Text The text displayed in the tree for this node.

ToolTip The tooltip text that appears when you hover over the node text.

Value Stores a nondisplayed value with additional data about the node (such as a
unique ID you’ll use when handling click events to identify the node or look up
more information).

NavigateUrl If set, the user will be automatically forwarded to the corresponding URL when
this node is clicked. Otherwise, you’ll need to react to the
TreeView.SelectedNodeChanged event to decide what action you want to
perform.

Target If the NavigateUrl property is set, this sets the target window or frame for the link.
If Target isn’t set, the new page is opened in the current browser window. The
TreeView also exposes a Target property, which you can set to apply a default
target for all TreeNode instances.

ImageUrl The image that’s displayed next to this node.

ImageToolTip The tooltip text for the image displayed next to the node.

CHAPTER 17 ■ WEBSITE NAVIGATION

776

One unusual detail about the TreeNode is that it can be in one of two modes. In selection mode,
clicking the node posts back the page and raises the TreeView.SelectedNodeChanged event. This is the
default mode for all nodes. In navigation mode, clicking a node navigates to a new page, and the
SelectedNodeChanged event is not raised. The TreeNode is placed in navigation mode as soon as you set
the NavigateUrl property to anything other than an empty string. A TreeNode that’s bound to site map
data is in navigational mode, because each site map node supplies URL information.

The next example fills a TreeView with the results of a database query. You want to use the
TreeView’s ability to show hierarchical data to create a master-details list. Because ASP.NET doesn’t
include any data source control that can query a database and expose the results as a hierarchical data
source, you can’t use data binding. Instead, you need to programmatically query the table and create the
TreeNode structure by hand.

Here’s the code that implements this approach:

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 // Fill a DataSet with two DataTable objects, representing
 // the Products and Categories tables.
 DataSet ds = GetProductsAndCategories();

 // Loop through the category records.
 foreach (DataRow row in ds.Tables["Categories"].Rows)
 {
 // Use the constructor that requires just text
 // and a nondisplayed value.
 TreeNode nodeCategory = new TreeNode(
 row["CategoryName"].ToString(),
 row["CategoryID"].ToString());

 TreeView1.Nodes.Add(nodeCategory);

 // Get the children (products) for this parent (category).
 DataRow[] childRows = row.GetChildRows(ds.Relations[0]);

 // Loop through all the products in this category.
 foreach (DataRow childRow in childRows)
 {
 TreeNode nodeProduct = new TreeNode(
 childRow["ProductName"].ToString(),
 childRow["ProductID"].ToString());
 nodeCategory.ChildNodes.Add(nodeProduct);
 }

 // Keep all categories collapsed (initially).
 nodeCategory.Collapse();
 }
 }
}

CHAPTER 17 ■ WEBSITE NAVIGATION

777

Now when a node is clicked, you can handle the SelectedNodeChanged event to show the node
information:

protected void TreeView1_SelectedNodeChanged(object sender, EventArgs e)
{
 if (TreeView1.SelectedNode == null) return;
 if (TreeView1.SelectedNode.Depth == 0)
 {
 lblInfo.Text = "You selected Category ID: ";
 }
 else if (TreeView1.SelectedNode.Depth == 1)
 {
 lblInfo.Text = "You selected Product ID: ";
 }
 lblInfo.Text += TreeView1.SelectedNode.Value;
}

Figure 17-14 shows the result.

Figure 17-14. Filling a TreeView with database data

A few options exist to simplify the page code in this example. One option is to bind to XML data
instead of relational data. Seeing as SQL Server 2000 and later have the ability to perform XML queries
with FOR XML, you could retrieve the data shaped in a specific XML markup and then bind it through
the XmlDataSource control. The only trick is that because the XmlDataSource assumes you’ll be binding
to a file, you need to set the Data property by hand with the XML extracted from the database.

CHAPTER 17 ■ WEBSITE NAVIGATION

778

Populating Nodes on Demand
If you have an extremely large amount of data to display in a TreeView, you probably don’t want to fill it
in all at once. Not only will that increase the time taken to process the initial request for the page, it will
also dramatically increase the size of the page and the view state. Fortunately, the TreeView includes a
populate-on-demand feature that makes it easy to fill in branches of the tree as they are expanded. Even
better, you can use populate-on-demand on selected portions of the tree, as you see fit.

To use populate-on-demand, you set the PopulateOnDemand property to true for any TreeNode
that has content you want to fill in at the last minute. When the user expands this branch, the TreeView
will fire a TreeNodePopulate event, which you can use to add the next level of nodes. If you want, this
level of nodes can contain another level of nodes that are populated on demand.

Although the programming model remains fixed, the TreeView actually supports two techniques for
filling in the on-demand nodes. When the TreeView.PopulateNodesFromClient property is true (the
default), the TreeView performs a client-side callback to retrieve the nodes it needs from your event,
without posting back the entire page. If PopulateNodesFromClient is false, or if it’s true but the TreeView
detects that the current browser doesn’t appear to support client callbacks, the TreeView triggers a
normal postback to get the same result. The only difference is that the entire page will be refreshed in
the browser, generating a less seamless interface. (It also allows other page events to fire, such as control
change events.)

You can use the populate-on-demand feature with the previous example. Instead of filling the
whole tree when the page loads, you would begin by adding just the category nodes and setting them to
populate on demand:

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 DataTable dtCategories = GetCategories();

 // Loop through the category records.
 foreach (DataRow row in dtCategories.Rows)
 {
 TreeNode nodeCategory = new TreeNode(
 row["CategoryName"].ToString(),
 row["CategoryID"].ToString());

 // Use the populate-on-demand feature for this
 // node's children.
 nodeCategory.PopulateOnDemand = true;

 // Make sure the node is collapsed at first,
 // so it's not populated immediately.
 nodeCategory.Collapse();
 TreeView1.Nodes.Add(nodeCategory);
 }
 }
}

■ Note Chapter 29 has more information about how client callbacks work and how you can use them directly.
However, the TreeView support is particularly nice because it hides the underlying model, allowing you to write an
ordinary .NET event handler.

CHAPTER 17 ■ WEBSITE NAVIGATION

779

Now you need to react to the TreeNodePopulate event to fill a category when it’s expanded. In this
example, the only nodes that populate themselves on demand are the categories. However, if there were
several levels of nodes that use populate-on-demand, you could check the TreeNode.Depth to
determine what type of node is being expanded.

protected void TreeView1_TreeNodePopulate(object sender, TreeNodeEventArgs e)
{
 int categoryID = Int32.Parse(e.Node.Value);
 DataTable dtProducts = GetProducts(categoryID);

 // Loop through the product records.
 foreach (DataRow row in dtProducts.Rows)
 {
 // Use the constructor that requires just text
 // and a nondisplayed value.
 TreeNode nodeProduct = new TreeNode(
 row["ProductName"].ToString(),
 row["ProductID"].ToString());

 e.Node.ChildNodes.Add(nodeProduct);
 }
}

A given node is populated on demand only once. After that, the values remain available on the
client, and no callback is performed if the same node is collapsed and expanded.

TreeView Styles
The TreeView has a fine-grained style model that lets you completely control its appearance. Each style
applies to a type of node. Styles are represented by the TreeNodeStyle class, which derives from the
more conventional Style class.

As with other rich controls, the styles give you options to set background and foreground colors,
fonts, and borders. Additionally, the TreeNodeStyle class adds the node-specific style properties shown
in Table 17-10. These properties deal with the node image and the spacing around a node.

Table 17-10. TreeNodeStyle Added Properties

Property Description

ImageUrl The URL for the image shown next to the node

NodeSpacing The space (in pixels) between the current node and the node above and below

VerticalPadding The space (in pixels) between the top and bottom of the node text and border
around the text

HorizontalPadding The space (in pixels) between the left and right of the node text and border
around the text

ChildNodesPadding The space (in pixels) between the last child node of an expanded parent node
and the following sibling node

CHAPTER 17 ■ WEBSITE NAVIGATION

780

Because a TreeView is rendered using an HTML table, you can set the padding of various elements
to control the spacing around text, between nodes, and so on. One other property that comes into play is
TreeView.NodeIndent, which sets the number of pixels of indentation (from the left) in each subsequent
level of the tree hierarchy. Figure 17-15 shows how these settings apply to a single node.

The TreeView also allows you to configure some of its internal rendering through higher-level
properties. You can turn off the node lines in a tree using the TreeView.ShowExpandCollapse property.
You can also use the CollapseImageUrl and ExpandImageUrl properties to set the collapsed and
expanded indicators of the TreeView (usually represented by plus and minus icons) and the
NoExpandImageUrl property to set what’s displayed next to nodes that have no children. Finally, you
can show check boxes next to every node (set TreeView.ShowCheckBoxes to true) or individual nodes
(set TreeNode.ShowCheckBox to true). You can determine if a given node is checked by examining the
TreeNode.Checked property.

Figure 17-15. Node spacing

CHAPTER 17 ■ WEBSITE NAVIGATION

781

Applying Styles to Node Types
The TreeView allows you to individually control the styles for different types of nodes—for example, root
nodes, nodes that contain other nodes, selected nodes, and so on.

To apply node style settings to all the nodes of a tree, you can use the TreeView.NodeStyle property.
You can isolate individual regions of the TreeView using a more specific style, as listed in Table 17-11.

Styles are listed in this table in order of most general to most specific. That means the
SelectedNodeStyle style settings override any conflicting settings in a RootNodeStyle, for exam- ple. (If
you don’t want a node to be selectable, set TreeNode.SelectAction to None.) However, the
RootNodeStyle, ParentNodeStyle, and LeafNodeStyle settings never conflict, because the definitions for
root, parent, and leaf nodes are mutually exclusive. You can’t have a node that is simultaneously a
parent and a root node, for example—the TreeView simply designates this as a root node.

Table 17-11. TreeView Style Properties

Property Description

NodeStyle Applies to all nodes.

RootNodeStyle Applies only to the first-level (root) node.

ParentNodeStyle Applies to any node that contains other nodes, except root nodes.

LeafNodeStyle Applies to any node that doesn’t contain child nodes and isn’t a root node.

SelectedNodeStyle Applies to the currently selected node.

HoverNodeStyle Applies to the node the user is hovering over with the mouse. These settings are
applied only in up-level clients that support the necessary dynamic script.

Applying Styles to Node Levels
Being able to apply styles to different types of nodes is interesting, but a more useful feature is being able
to apply styles based on the node level. That’s because most trees use a rigid hierarchy (for example, the
first level of nodes represents categories, the second level represents products, the third represents
orders, and so on). In this case, it’s not so important to determine whether a node has children. Instead,
it’s important to determine the node’s depth.

The only problem is that a TreeView can have a theoretically unlimited number of node levels. Thus,
it doesn’t make sense to expose properties such as FirstLevelStyle, SecondLevelStyle, and so on. Instead,
the TreeView has a LevelStyles collection that can have as many entries as you want. The level is inferred
from the position of the style in the collection, so the first entry is considered the root level, the second
entry is the second node level, and so on. For this system to work, you must follow the same order, and
you must include an empty style placeholder if you want to skip a level without changing the formatting.

For example, here’s a TreeView that doesn’t use any indenting but instead differentiates levels by
applying different amounts of spacing and different fonts:

<asp:TreeView runat="server" HoverNodeStyle-Font-Underline="true"
 ShowExpandCollapse="false" NodeIndent="0">
 <LevelStyles>
 <asp:TreeNodeStyle ChildNodesPadding="10" Font-Bold="true" Font-Size="12pt"
 ForeColor="DarkGreen"/>

CHAPTER 17 ■ WEBSITE NAVIGATION

782

 <asp:TreeNodeStyle ChildNodesPadding="5" Font-Bold="true" Font-Size="10pt" />
 <asp:TreeNodeStyle ChildNodesPadding="5" Font-UnderLine="true"
 Font-Size="10pt" />
 </LevelStyles>
 ...
</asp:TreeView>

If you apply this to the category and product list shown in earlier examples, you’ll see a page like the
one shown in Figure 17-16.

Figure 17-16. A nonindented TreeView

TreeView Images
As you've already learned, you can set the image for a single node using the TreeViewNode.ImageUrl
property. Fortunately, you don't need to use this fine-grained approach if you want to assign a
consistent set of images to your entire tree. Instead, you can use three TreeView properties to set
images for all your nodes. You can choose the picture that is shown next to all collapsed nodes
(CollapseImageUrl), all expanded nodes (ExpandImageUrl), and all nodes that don't have any children
and thus aren't expandable (NoExpandImageUrl). If you set these properties and you specify an
image for a specific node using the TreeViewNode.ImageUrl property, the node-specific image
takes precedence.

CHAPTER 17 ■ WEBSITE NAVIGATION

783

The TreeView also has some stock images that you can use if you don’t want to go to the trouble of
creating your own custom node images. To access these images, you use the TreeView.ImageSet
property, which takes one of 16 values from the TreeViewImageSet enumeration. Each set includes an
image for collapsed, expanded, and no-children nodes. When using the ImageSet property, you don't
need to use any of the other image-related properties.

Figure 17-17 shows several of the available ImageSet options. For example, an ImageSet value of
TreeViewImageSet.Faq creates a tree with help-style icons that show a question mark (for nodes that
have no children) or a question mark superimposed over a folder (for nodes that do contain children).

Figure 17-17. Different looks for a TreeView

The Menu Control
The Menu control is another rich control that supports hierarchical data. Like the TreeView, you can
bind the Menu to a data source, or you can fill it by hand (declaratively or programmatically) using
MenuItem objects.

The MenuItem class isn’t quite as rich as the TreeNode class—for example, MenuItem objects don’t
support check boxes or the ability to programmatically set their expanded/collapsed state. However,
they still have many similar properties, including those for setting images, determining whether the item
is selectable, and specifying a target link. Table 17-12 has the defaults.

CHAPTER 17 ■ WEBSITE NAVIGATION

784

Table 17-12. MenuItem Properties

Property Description
Text The text displayed in the menu for this item (when displayed).

ToolTip The tooltip text that appears when you hover over the menu item.

Value Stores a nondisplayed value with additional data about the menu item (such
as a unique ID you’ll use when handling click events to identify the node or
look up more information).

NavigateUrl If set, when this node is clicked, it automatically forwards the user to this URL.
Otherwise, you’ll need to react to the Menu.MenuItemClick event to decide
what action you want to perform.

Target If the NavigateUrl property is set, this sets the target window or frame for the
link. If Target isn’t set, the new page is opened in the current browser
witndow. The Menu also exposes a Target property, which you can set to
apply a default target for all MenuItem instances.

Selectable If false, this item can’t be selected. Usually you’ll set this to false only if the
item is a subheading that contains selectable child items.

ImageUrl If set, it’s the image that’s displayed next to the menu item (on the right of the
text). By default, no image is used.

PopOutImageUrl The image that’s displayed next to the menu item (on the right) if it contains
subitems. By default, this is a small solid arrow.

SeparatorImageUrl The image that’s displayed immediately underneath this menu item, to
separate it from the following item.

You can walk over the structure of a Menu control in much the same way as the structure of a

TreeView. The Menu contains a collection of MenuItem objects in the Items property, and each
MenuItem has a ChildItems collection that contains nested items. For example, you could adapt the
previous example that used the TreeView to display a list of categories and products by simply changing
a few class names. Here’s the code you need, with the surprisingly few changes highlighted:

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 DataSet ds = GetProductsAndCategories();

 // Loop through the category records.
 foreach (DataRow row in ds.Tables["Categories"].Rows)
 {
 // Create the menu item for this category.
 MenuItem itemCategory = new MenuItem(
 row["CategoryName"].ToString(),
 row["CategoryID"].ToString());
 Menu1.Items.Add(itemCategory);

CHAPTER 17 ■ WEBSITE NAVIGATION

785

 // Create the menu items for the products in this category.
 DataRow[] childRows = row.GetChildRows(ds.Relations[0]);
 foreach (DataRow childRow in childRows)
 {
 MenuItem itemProduct = new MenuItem(
 childRow["ProductName"].ToString(),
 childRow["ProductID"].ToString());
 itemCategory.ChildItems.Add(itemProduct);
 }
 }
 }
}

protected void Menu1_MenuItemClick(object sender,
 System.Web.UI.WebControls.MenuEventArgs e)
{
 if (Menu1.SelectedItem.Depth == 0)
 {
 lblInfo.Text = "You selected Category ID: ";
 }
 else if (Menu1.SelectedItem.Depth == 1)
 {
 lblInfo.Text = "You selected Product ID: ";
 }
 lblInfo.Text += Menu1.SelectedItem.Value;
}

Figure 17-18 shows the result.

Figure 17-18. Displaying a menu with information from a database

CHAPTER 17 ■ WEBSITE NAVIGATION

786

Overall, the Menu and TreeView controls expose strikingly similar programming models, even
though they render themselves quite differently. They also have a similar style-based formatting model.
But a few noteworthy differences exist:

• The Menu displays a single submenu. The TreeView can expand an arbitrary
number of node branches at a time.

• The Menu displays a root level of links in the page. All other items are displayed
using fly-out menus that appear over any other content on the page. The TreeView
shows all its items inline in the page.

• The TreeView supports on-demand filling and client callbacks. The Menu does not.

• The Menu supports templates. The TreeView does not.

• The TreeView supports check boxes for any node. The Menu does not.

• The Menu supports horizontal and vertical layouts, depending on the Orientation
property. The TreeView supports only vertical layouts.

Menu Styles
The Menu control provides an overwhelming number of styles. Like the TreeView, the Menu derives a
custom class from the Style base class—in fact, it derives two (MenuStyle and MenuItemStyle). These
styles add spacing properties (ItemSpacing, HorizontalPadding, and VerticalPadding). However, you
can’t set menu item images through the style, because there is no ImageUrl property.

Much like the TreeView, the Menu supports defining different menu styles for different menu levels.
However, the key distinction that the Menu control encourages you to adopt is between static items (the
root level items that are displayed in the page when it’s first generated) and dynamic items (the items in
fly-out menus that are added when the user moves the mouse over a portion of the menu). In most
websites, there is a definite difference in the styling of these two elements. To support this, the Menu
class defines two parallel sets of styles, one that applies to static items and one that applies to dynamic
items, as shown in Table 17-13.

Table 17-13. Menu Styles

Static Style Dynamic Style Description

StaticMenuStyle DynamicMenuStyle Sets the appearance of the overall “box” in which
all the menu items appear. In the case of
StaticMenuStyle, this box is shown on the page,
whereas with DynamicMenuStyle it’s shown as a
pop-up.

StaticMenuItemStyle DynamicMenuItemStyle Sets the appearance of individual menu items.

StaticSelectedStyle DynamicSelectedStyle Sets the appearance of the selected item. Note
that the selected item isn’t the item that’s
currently being hovered over. It’s the item that
was previously clicked (and triggered the last
postback).

StaticHoverStyle DynamicHoverStyle Sets the appearance of the item that the user is
hovering over with the mouse.

CHAPTER 17 ■ WEBSITE NAVIGATION

787

Along with these styles, you can set level-specific styles so that each level of menu and submenu is
different. You do this using three collections: LevelMenuItemStyles, LevelSubMenuStyles, and
LevelSelectedStyles. These collections apply to ordinary menus, menus that contain other items, and
selected menu items, respectively.

It might seem like there’s a fair bit of unnecessary work here in separating dynamic and static styles.
The reason for this model becomes obvious when you consider another remarkable feature of the Menu
control—it allows you to choose the number of static levels. By default, there is only one static level, and
everything else is displayed as a fly-out menu when the user hovers over the corresponding parent. But
you can set the Menu.StaticDisplayLevels property to change all that. If you set it to 2, for example, the
first two levels of the menu will be rendered in the page, using the static styles. (You can control the
indentation of each level using the StaticSubMenuIndent property.)

Figure 17-19 shows the previous example with this change. Note that the items still change as
you hover over them, and selection works in the same way. If you want, you can make your entire
menu static.

Figure 17-19. A menu with two static levels

■ Tip The Menu control exposes many more top-level properties for tweaking specific rendering aspects. For
example, you can set the delay before a pop-up menu disappears (DisappearAfter), the default images used for

expansion icons and separators, the scrolling behavior (which kicks into gear when the browser window is too

small to fit a pop-up menu), and much more. Consult the Visual Studio help for a full list of properties.

CHAPTER 17 ■ WEBSITE NAVIGATION

788

Menu Templates
The Menu control also supports templates through the StaticMenuItemTemplate and
DynamicMenuItemTemplate properties. These templates determine the HTML that’s rendered for each
menu item, giving you complete control.

Interestingly, whether you fill the Menu class declaratively or programmatically, you can still use a
template. From the template’s point of view, you’re always binding to a MenuItem object. That means
your template always needs to extract the value for the item from the MenuItem.Text property, as
shown here:

<asp:Menu ID="Menu1" runat="server">
 <StaticItemTemplate>
 <%# Eval("Text") %>
 </StaticItemTemplate>
</asp:Menu>

One reason you might want to use the template features of the Menu is to show multiple pieces of
information from a data object. For example, you might want to show both the title and the description
from the SiteMapNode for this item (rather than just the title). Unfortunately, that’s not possible. The
problem is that the Menu binds directly to the MenuItem object. The MenuItem object does expose a
DataItem property, but by the time it’s being added into the menu, that DataItem no longer has the
reference to the SiteMapNode that was used to populate it. So, you’re mostly out of luck.

If you’re really desperate, you can write a custom method in your class that looks up the
SiteMapNode based on its URL. This is extra work that should be unnecessary, but it solves the problem.
The GetDescriptionFromTitle() method shown here demonstrates this technique:

private string matchingDescription = "";

protected string GetDescriptionFromTitle(string title)
{
 // This assumes there's only one node with this title.
 SiteMapNode node = SiteMap.RootNode;
 SearchNodes(node, title);
 return matchingDescription;
}

private void SearchNodes(SiteMapNode node, string title)
{
 if (node.Title == title)
 {
 matchingDescription = node.Description;
 return;
 }
 else
 {
 foreach (SiteMapNode child in node.ChildNodes)
 {
 // Perform recursive search.
 SearchNodes(child, title);
 }
 }
}

CHAPTER 17 ■ WEBSITE NAVIGATION

789

Now you can use the GetDescriptionFromTitle() method in a template:

<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1">
 <StaticItemTemplate>
 <%# Eval("Text") %>

 <small>
 <%# GetDescriptionFromTitle(((MenuItem)Container.DataItem).Text) %>
 </small>
 </StaticItemTemplate>
 <DynamicItemTemplate>
 <%# Eval("Text") %>

 <small>
 <%# GetDescriptionFromTitle(((MenuItem)Container.DataItem).Text) %>
 </small>
 </DynamicItemTemplate>
</asp:Menu>

Finally, you can declare data bindings for the Menu control that specifically map out what property
in the bound object should be used for the MenuItem text. This isn’t much help if you want to display
both the title and description, because it accepts only one field. However, it’s fairly easy to show the title
as the text and the description as the tooltip text:

<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1">
 <DataBindings>
 <asp:MenuItemBinding DataMember="SiteMapNode" TextField="Title"
 ToolTipField="Description" />
 </DataBindings>
</asp:Menu>

■ Note In ASP.NET 4, the Menu no longer renders itself using HTML tables. Instead, it renders itself as an unordered

list of items (using the and elements), and it applies style rules to create the correct formatting.

The Menu renders all its styles in a style block at the top of the page, rather than inline with the rendered HTML.
However, you can set the new Menu.IncludeStyleBlock property to false to tell the Menu not to render its styles at

all. This allows you to take full control over the Menu styling, and even apply styles from an external style sheet. (If
you need a starting point, run your web page with IncludeStyleBlock set to true, copy the styles from the rendered

HTML, and then adapt them to fit your needs.)

Summary
In this chapter, you explored a variety of navigation features. You started with the multipane MultiView
and Wizard controls. You then delved into ASP.NET’s navigation model and learned how to define site
maps, bind the navigation data, and extend the site map provider infrastructure. Finally, you considered
two rich controls that are especially suited for navigation data: the TreeView and Menu.

C H A P T E R 18

■ ■ ■

791

Website Deployment

In production projects, you will almost certainly have one of more servers that you will use to service
client requests for your website. These servers may be owned and operated by you or your infrastructure
team or by a third-party hosting company. Either way, there comes a time when the coding and testing is
complete and it is time to publish your work to the world, and you do that by deploying your website. In
this chapter, we’ll walk you through the different deployment options. The basic premise for all the
options is the same, though. You have a completed website on your development workstation that you
want to deploy to a server in order that it is available to clients. For ASP.NET, the server in this scenario is
Internet Information Services (IIS), and the current version is IIS 7. IIS started out as a basic web server
when it was first released. Over the years, IIS has evolved into a sophisticated application server with a
wide range of features, key among them being support for hosting ASP.NET applications.

We don’t have the space to cover all the features of IIS (and as an ASP.NET developer, we suspect
that you won’t be interested in the gory details). But we will show you how to get the basic IIS features up
and running and how to configure and use each of the approaches available for deployment.

The approach you use for deployment will be driven by your hosting arrangements. If you are using
a hosting company, they will send you details of their preferred technique. Similarly, if you have an IT
team that runs your server for you, they will have already set up an approach and expect you to use it. If
you have a free choice in which approach to use, then we suggest picking the simplest.

Installing and Configuring IIS
In this chapter, we focus on IIS 7. Although we refer to the machine running IIS 7 as the server in this
chapter, you can run IIS on both the workstation and server versions of Windows. Some features are not
available on workstations, but most of them are, and you can host complex websites this way. We
recommend using Windows Server if you can, but using Windows 7 or Windows Vista can be a
low-cost alternative.

Microsoft ties the release of IIS to the release of Windows. Windows Server 2008 and Windows Vista
run IIS version 7.0, while Windows Server 2008 R2 and Windows 7 run IIS version 7.5. Confusingly,
Microsoft refers collectively to versions 7.0 and 7.5 as IIS 7. You can’t change the version of IIS that your
operating system supports—Windows Server 2008 will only ever run IIS 7.0. You can’t upgrade to the
version 7.5 that Windows Server 2008 R2 uses, for example.

Installing IIS 7
IIS is included as part of the installation of Windows (both the server and workstation varieties) and
needs to be activated and configured. The simplest way of activating and configuring IIS 7 on any
version of Windows is using the Web Platform Installer (known as WebPI). WebPI provides a standard

CHAPTER 18 ■ WEBSITE DEPLOYMENT

792

interface and has a catalog of add-on components to expand the IIS feature set. In this section, we’ll
show you how to use WebPI to get IIS running. As we look at different deployment options, we’ll return
to WebPI to install additional features.

■ Note In this chapter, we assume that you have the Administrator password and are logged in to the server

using the Administrator account in order to install and manage IIS 7.

To get started with WebPI, open your server’s browser, and go to
http://www.microsoft.com/web/downloads/platform.aspx. You will see a link to download the installer.
Depending on your operating system and browser settings, you will see a number of security warnings.
Download and run the installer. This installs WebPI, not IIS. When the installation has completed,
WebPI will start, and you’ll see a window similar to Figure 18-1.

Figure 18-1. The WebPI What’s New? screen

Click the Web Platform tab. You will see that WebPI is able to install more than just IIS 7. It can also
install SQL Server Express, various web application frameworks, and some support tools. We are going to
keep things simple and install only the items we need for this chapter.

First select the IIS 7 components you want. Click the “Click to include the recommended products”
link in the Web Server section. A green check mark will appear. Now click the Customize link in the Web
Server section. This will show a list of the individual IIS 7 features available—select the ASP.NET option.

http://www.microsoft.com/web/downloads/platform.aspx

CHAPTER 18 ■ WEBSITE DEPLOYMENT

793

Return to the Web Platform tab, and select .NET Framework 4.0 from the Frameworks and Runtimes
section. We don’t need anything else for the moment, so now you can click the Install button. You will
see a list of the components that will be installed and the license terms that they require. Accept the
terms to begin the download and installation.

Much of the software you need is already included in the Windows installation. The WebPI
downloads any missing pieces and configures IIS for you. When the installation and configuration have
been completed, you will see a summary screen. Exit WebPI.

To test that everything has worked properly, open a web browser on the server, and go to localhost.
You should see the default IIS 7 welcome page.

Managing IIS 7
Now that you have IIS 7 installed and running, you can manage it. You do that through the IIS Manager
tool, which was installed on the server by WebPI. You can find IIS Manager in the Start menu. The
location can vary based on which version of Windows you use; it will be in the Programs section or the
Administrative Tools section. Figure 18-2 shows the IIS Manager’s Start Page.

Figure 18-2. IIS Manager’s Start Page

We now need to introduce some IIS terminology. If you look at the left side of IIS Manager, you will
see the Start Page and then an entry with the name of your server. Our server has the catchy name of

CHAPTER 18 ■ WEBSITE DEPLOYMENT

794

WIN-57VN3E98578—this is the default name generated for us by Windows Server 2008 R2, which we’ll
be using for most of the examples in this chapter. If you click the name, you’ll get the Server View, as
shown by Figure 18-3.

Figure 18-3. IIS Manager’s Server View

The Server View presents a series of icons that allow you to configure the settings for your server. On
the right side of the screen, you will see a series of actions. In this view, you can start, stop, and restart
your server, for example. If you expand the server item in the tree control on the left of the screen, you
will see an item named Sites, which contains a single entry called Default Web Site. A site is a collection
of files and directories that make up a website. IIS can support multiple sites on a single server, typically
on different TCP/IP ports (the default being port 80). The combination of the server name and the site
port give you the first part of the URL. For example, if you have a server called mywebserver with a site
on port 80, your URL would be as follows:

http://mywebserver:80

Each site can contain multiple files and directories. Each of these makes up part of the URL. If
you have a directory called myfiles that contains a static page called mypage.html, then you get the
following URL:

http://mywebserver:80/myfiles/mypage.html

http://mywebserver:80
http://mywebserver:80/myfiles/mypage.html

CHAPTER 18 ■ WEBSITE DEPLOYMENT

795

■ Note In some situations, the name that you know a server by and the name that clients use to retrieve content
will be different. We are going to gloss over this, but your server administrator or hosting company will give you

the details you need if this applies to your server.

So, to summarize, each server can support multiple sites, each running on a different port or IP
address. Each site can have multiple files and directories, and the combination of these items gives you
the information for the URL. We’ll return to the URL and using IIS Manager as we cover each
deployment approach.

Deploying a Website
Now that you have IIS 7 running and know how to manage it, you can begin to deploy websites. At its
simplest, you can deploy an ASP.NET web application by doing nothing more than copying the directory
structure of your application to the target machine and configuring the environment. For simple
applications, that’s almost always true. But if your application uses databases or accesses other
resources, you have to perform some additional steps. Here are some common factors that will require
additional configuration steps:

• Copy all required application files to the target machine. You don’t need to do
anything else. But if you are using global assemblies accessed through the GAC,
you have to verify whether these assemblies are in place. If not, you have to install
them using the gacutil.exe command-line utility of the .NET Framework.

• Create and configure the database for the application. It’s important not only to
create the database and its tables but to configure the database server logins and
database users. Don’t forget that if you are using integrated authentication for
connecting to a SQL Server database, you must configure the account under
which ASP.NET is executed (the application pool account or aspnet_wp.exe
account) as a user for the application’s database. The web deployment approach
can simplify your database deployment—see the “Using Web Deployment”
section later in the chapter. If you do not use web deployment, you will have to
configure and populate your databases manually.

• Configure IIS as required for the application. Therefore, create necessary
application pools, share the application directory as a virtual directory, and
configure the virtual directory appropriately. See the “Using Application Pools”
section later in this chapter for more details.

• Set up Windows account permissions for the worker process user. The user who is
used for running the worker process (w3wp.exe) needs read access to the
application directories. If your application accesses other resources such as the
registry or event log, you have to configure the permission for the worker process
account to access these resources.

• Add IIS file mappings if you want to process any URLs with filename extensions
that are different from the extensions registered on a default ASP.NET installation.

• Configure ASP.NET (and IIS 7.0 application-specific configuration settings)
through the web.config file for production environments. That means add (or
modify) any connection strings and application settings as well as security and
authorization settings, session state settings, and globalization settings
appropriately.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

796

• In some cases, it is also required to modify machine.config. For example, if you are
in a web hosting environment and your application runs on multiple web servers
for load balancing, you have to synchronize any encryption keys used for
encrypting forms authentication tickets or view state on all those machines. These
keys are stored in machine.config and need to be equal on every machine in the
web farm so that one machine is able to decrypt information encrypted by
another machine that previously processed the request.

The core activity is deploying the contents of your application to IIS7. In the following sections, we’ll
show you how to use the three most common deployment approaches.

■ Note In this chapter, we assume that you have the Administrator credentials and are logged in to the server
using the Administrator account. If you are using a shared server or a hosting provider, the provider will send you

account details to use when deploying websites. We have assumed Administrator for simplicity, but if you are

managing your own server, then you should consider using a less privileged account.

Deploying by Copying Files
The simplest way to deploy a website is to copy the files from your development workstation to the
server. Although simple, this approach does require you to have direct access to the server, which is why
some IT departments and hosting companies won’t support this option. But this could be your easiest
option if you control your own server or you have an especially understanding hosting arrangement.

■ Note This deployment technique works for all versions of IIS 7 running on all versions of Windows.

Preparing IIS
You must prepare IIS before you deploy your website. The main decision is where you want to place the
content and how this affects the URL you then end up with. Let’s start with an obvious approach—we
would like the URL for our example content to be as follows:

http://<servername>:80/WebsiteDeployment/FileCopy

We need to prepare IIS so we have somewhere to copy our file to. Using IIS Manager, select the
Default Web Site item. This is, as the name suggests, the default site on the server. Right-click and select
Explore to open a Windows Explorer window for the default IIS directory, which is the inetpub\wwwroot
directory of the system volume (typically C:\). Create a directory called WebsiteDeployment, and create
another, called FileCopy, nested inside of it (so the path
inetpub\wwwroot\WebsiteDeployment\FileCopy exists). Close the File Explorer window to return to IIS
Manager. Right-click the Default Web Site item, and select Refresh to see the new directories.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

797

The Website
We have created a very simple website to demonstrate this deployment technique. We have included all
the websites used in this chapter in the source code download, available from Apress.com. This project
contains a single ASP.NET form with a single label, as shown in Figure 18-4.

Figure 18-4. The ASP.NET form for the sample website

In the code behind the form, we set the label text to show us which version of the .NET Framework
is being used to host our site, as follows:

using System;

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 Label1.Text = System.Environment.Version.Major.ToString();
 }
}

Deploying the Website
In this deployment technique, we just copy the files into the directory we created. Transfer the website
files to the server by whatever means suits you—shared network drive, USB key, DVD, and so on—and
copy the Default.aspx and Default.aspx.cs files into the FileCopy directory you created on the server.
When you have copied the files into place, return to IIS Manager on the server, right-click the FileCopy
item in the tree control, and select Refresh. At the bottom of the screen, click the Content View button.
You should see the two website files in the center part of the display, as shown in Figure 18-5.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

798

Figure 18-5. The deployed website items

That’s the most important part of this deployment technique—you create the directory structure
that represents the URL you require and then copy your website files into place. Let’s see how it looks.
To do that, select the FileCopy item in IIS Manager, and click the Browse link on the right side of the
window. This will open a web browser and point it at the URL for the folder you created. You should see
something similar to Figure 18-6.

Figure 18-6. Browsing the deployed website

If we look at the URL, we can see that we got the result we were looking for. The browser has loaded
the website from here:

http://localhost/WebsiteDeployment/FileCopy/

You might already know that localhost is a special name that refers to the current machine and that
a URL that doesn’t specify a port will use port 80. Just to prove the point, we get the same result if we
point the browser at the following URL:

http://win-57vn3e9857:80/WebsiteDeployment/FileCopy/

http://localhost/WebsiteDeployment/FileCopy
http://win-57vn3e9857:80/WebsiteDeployment/FileCopy

CHAPTER 18 ■ WEBSITE DEPLOYMENT

799

Configuring the Deployment
You may have noticed that the .NET Framework version is being reported as 2 in Figure 18-6. This would
be a problem for any website that depends on ASP.NET 4 features. We are not quite done yet—we need
to configure the website we deployed to use .NET version 4. We do this by changing the settings for the
default application pool. Don’t worry about application pools for the moment; we explain more about
them in the “Managing a Website” section later in this chapter. For the moment, it is enough to know
that we need to make a change so that our website uses version 4 of the .NET Framework.

Using IIS Manager, expand the server item, and click Application Pools.
Click the Set Application Pool Defaults link, which is on the right side of the display. In the dialog box
that appears, change the .NET Framework Version setting to be 4.0, as shown in Figure 18-7.

Figure 18-7. Setting the .NET Framework version in the Application Pool Defaults dialog box

Return to your web browser, and reload the page. You should not see that the .NET Framework
version reported by the website page is 4, as shown in Figure 18-8.

Figure 18-8. The website running under version 4 of the .NET Framework

CHAPTER 18 ■ WEBSITE DEPLOYMENT

800

■ Tip If you see error 500.21 with the message “Handler "WebServiceHandlerFactory-Integrated" has a bad
module "ManagedPipelineHandler" in its module list,” then your ASP.NET installation has not completed properly.
We have noticed this happens most with Windows Vista. You can fix this by running the following command (for

32-bit systems):

C:\Windows\Microsoft.NET\Framework\v4.0.<build_number>\aspnet_regiis –i

You will need to correctly enter the build number where we have included <build_number> in the command

string. For 64-bit systems, the command is as follows:

C:\Windows\Microsoft.NET\Framework64\v4.0.<build_number>\aspnet_regiis –i

We also want to tell IIS that our deployed site is an application. This is optional, but you’ll almost
certainly want to do this when deploying ASP.NET applications—it enables session state and other
ASP.NET features. Right-click the FileCopy folder item in the IIS Manager Connections area, and select
Convert to Application, as shown in Figure 18-9.

Figure 18-9. Converting to an application

This will open the Add Application dialog box. You can change the application pool used for your
application by clicking the Select button. We will have more to say on applications pools later in the
chapter. You can configure the user account that IIS will use to access the content in your site using the
Connect as... and Test Settings... buttons. For now, though, simply click the OK button. You may have to
select Refresh from the View menu (or, as we often find, close and reopen IIS Manager), but the FileCopy
entry in the tree control should now have a different icon.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

801

Using Web Deployment
Web deployment allows you to deploy your website directly from Visual Studio 2010 using HTTP—but
only if you have created a project, rather than used the project-less website feature. Don’t confuse web
deployment with Front Page Server Extensions (FPSE). FPSE has been phased out, although you can
download and install them for IIS 7.0 on Windows Server 2008 and Windows Vista.

■ Note This deployment technique works only on the server versions of Windows.

Preparing IIS
You need to add two components to IIS to use the web deploy feature. You do this by using WebPI again.
When you installed and configured IIS 7 at the start of the chapter, WebPI was installed on your
machine. Start WebPI from your Start menu, and select Customize from the Web Server section of the
Web Platform tab.

In the Deployment and Publishing section, select the Web Deployment Tool option. At the time we
wrote this book, the current version was 1.1. In the Management section, check the Management Service
option. It is important that you install both of them to make this deployment approach works properly.

When installation has completed, start IIS Manager, and select the server item in the Connections
tree control. Scroll to the bottom of the screen, and if everything has been installed correctly, you should
see two new icons—one called Management Service and one called Management Service Delegation.

You need to configure and start a Windows Service that will listen for remote IIS management
requests. Double-click the Management Service icon to see the Management Service feature page. Select
the Enable remote connections option, click Apply, and then click Start.

By enabling remote connections, you are allowing other machines to perform management
operations on IIS. You will use this feature to publish directly from Visual Studio in this section and to
publish a package from IIS Manager in the next section. We’ll be demonstrating these features using the
Administrator account, but you can use other accounts and configure exactly what each can do using the
Management Service Delegation icon.

■ Tip By default, the Management Service does not start automatically when the server is booted. If you want it to

start automatically, you should change the setting of the Web Management Service in the Services tool.

The Website
You can use web deployment from Visual Studio 2010 for ASP.NET application projects—but not
project-less websites. To demonstrate this kind of deployment, we have created a project that contains a
single page that reports on the .NET Framework version, just like we used in the previous example. The
only difference between the website we created for this example and the previous one is the use of the
Visual Studio project.

To create this project yourself, create a new Visual Studio project using the ASP.NET Empty Web
Application template, and add a new web form to the project with the name Default.aspx. You can put
any components you like on this form—we have followed the same format as before, as shown in
Figure 18-10.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

802

Figure 18-10. The sample website

And, because we want to be sure that our site is run under the correct version of the .NET so we can
rely on ASP.NET 4, we have added code to display the major version of the framework, as follows:

using System;

namespace Web_Deploy {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {
 Label1.Text = System.Environment.Version.Major.ToString();
 }
 }
}

You can download the project from Apress.com as part of the source code for this book—this is the
simplest way of following along with this example.

Transforming web.config
Many projects go through a series of deployment phases as they move from development through
testing and into production, where each step involves deploying to staging servers that have different
configurations. The Web Deployment model includes a useful feature for simplifying this process by
transforming the web.config file to work at each stage as part of the deployment process.

If you expand web.config in the Solution Explorer, you’ll see that there are items listed for each build
configuration in your project; these are the web.config transformation files. By default, Visual Studio
2010 creates Debug and Release configurations, but you can add custom configurations using the
Configuration Manager.

During web deployment, XML statements in the transformation file for the active build
configuration are applied to the source web.config in your project to add, modify, and delete
configuration settings. When the project is deployed, the transformed settings are included, which
means that, for example, you don’t have to change connection strings by hand to work with the
databases in a different staging area. Not only is this convenient, but it reduces the chances of a
configuration error breaking your environment when you deploy. In the following sections, we’ll show
you the most useful transformations you can apply to a configuration file. We’ll use the same source
web.config file for each example, the contents of which are as follows:

CHAPTER 18 ■ WEBSITE DEPLOYMENT

803

<?xml version="1.0"?>
<configuration>

 <connectionStrings>
 <add name="NorthwindConnectionString" connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\Northwind.mdf;Integrated
Security=True;User Instance=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.0" />
 </system.web>
</configuration>

This contains the connection string for the Northwind database on our development workstation
and targets .NET 4 with debugging symbols.

Setting an Attribute

The most common transformation is to change an attribute for a setting in the source web.config—for
example, changing the connection string for a database. Here is a web.release.config transformation file
that changes the connection string so that it points at our Windows Server 2008 R2 machine:

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings>
 <add name="NorthwindConnectionString"
 connectionString="Data Source=WIN-57VN3E98578;Initial Catalog=Northwind;Integrated
 Security=True"
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"/>
 </connectionStrings>

</configuration>

To set an existing attribute, you use the same definition as the source file (in this case, adding a
named item to connectionStrings) and add the Transform and Locator elements. Setting the value of
Transform to SetAttributes replaces the matching elements with the transformed data—our revised
connection string in this example. The Locator element says that we want to match the element source
element using the name attribute, in this case NorthwindConnectionString. Being able to specify which
element to match is useful when there are multiple attributes of the same type.

We have included an example project in the source code download for this book that contains this
transformation and the ones that follow—you can download the source code from Apress.com. When
we deploy the project using the Release configuration, the transformation will be applied, and the
web.config that is installed on IIS will contain the new connection string value, as shown here:

<?xml version="1.0"?>
<configuration>

 <connectionStrings>
 <add name="NorthwindConnectionString" connectionString="Data Source=WIN-
57VN3E98578;Initial Catalog=Northwind;Integrated Security=True"
providerName="System.Data.SqlClient" />

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 18 ■ WEBSITE DEPLOYMENT

804

 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.0" />
 </system.web>
</configuration>

You can see that the transformation engine has replaced our development connection string (which
uses an attached file to SQL Server Express) with our deployment connection string (which connects to a
server). The transformation is not applied until deployment, so even if you switch the build
configuration and rebuild the project, the values in your project web.config will still be used on your
workstation.

Inserting Elements

You specify the Insert value for the Transform attribute to insert an element into the configuration file.
We’ve added a transformation that adds a second connection string, marked in bold:

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings>
 <add name="NorthwindConnectionString"
 connectionString="Data Source=WIN-57VN3E98578;Initial Catalog=Northwind;Integrated
Security=True"
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"/>
 </connectionStrings>

 <connectionStrings>
 <add name="Connection2"
 connectionString="Data Source=MyServer;Initial Catalog=MyDB;Integrated Security=True"
 xdt:Transform="Insert"/>
 </connectionStrings>

</configuration>

We have left the first example to show you the format for specifying multiple transformations. When
we deploy our project, we get the following transformed web.config, with the addition highlighted:

<?xml version="1.0"?>
<configuration>

 <connectionStrings>
 <add name="NorthwindConnectionString" connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\Northwind.mdf;Integrated
Security=True;User Instance=True" providerName="System.Data.SqlClient" />
 <add name="Connection2" connectionString="Data Source=MyServer;Initial
Catalog=MyDB;Integrated Security=True" />
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.0" />

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 18 ■ WEBSITE DEPLOYMENT

805

 </system.web>
</configuration>

Replacing Sections

To replace an entire section of web.config, use the Replace value for the Transform attribute, as follows:

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <system.web xdt:Transform="Replace">
 <customErrors defaultRedirect="GenericError.htm"
 mode="RemoteOnly">
 <error statusCode="500" redirect="InternalError.htm"/>
 </customErrors>
 </system.web>

</configuration>

This transformation specifies that the entire system.web block of web.config should be replaced
with the content in the transformation file. When we deploy the project, we get the following result:

<?xml version="1.0"?>
<configuration>

 <connectionStrings>
 <add name="NorthwindConnectionString" connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\Northwind.mdf;Integrated
Security=True;User Instance=True" providerName="System.Data.SqlClient" />
 </connectionStrings>

 <system.web>
 <customErrors defaultRedirect="GenericError.htm" mode="RemoteOnly">
 <error statusCode="500" redirect="InternalError.htm" />
 </customErrors>
 </system.web>
</configuration>

Our development connection string has been left untouched, but our target for the framework
version has been replaced.

Removing Elements

To remove a configuration section, you declare the section using the Remove value for the Transform
attribute, as follows:

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <connectionStrings xdt:Transform="Remove"/>
</configuration>

http://schemas.microsoft.com/XML-Document-Transform
http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 18 ■ WEBSITE DEPLOYMENT

806

This transformation removes the connectionStrings section, giving us the following when we
deploy:

<?xml version="1.0"?>
<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.0" />
 </system.web>
</configuration>

You can remove individual attributes with RemoveAttributes, specifying the attributes you want to
remove in a comma-separated list:

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <system.web>
 <compilation xdt:Transform="RemoveAttributes(debug,targetFramework)"/>
 </system.web>
</configuration>

This transformation removes the debug and targetFramework attributes from the compilation
element, giving us the following deployed result:

<?xml version="1.0"?>
<configuration>

 <connectionStrings>
 <add name="NorthwindConnectionString" connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\Northwind.mdf;Integrated
Security=True;User Instance=True" providerName="System.Data.SqlClient" />
 </connectionStrings>

 <system.web>
 <compilation />
 </system.web>
</configuration>

Publishing Databases
Another useful feature for web deployment is to publish your database when you publish your project. A
SQL script containing either the database scheme or the scheme and the data is generated as part of the
deployment process and used to populate your deployment environment. Some caution is required to
use this feature—it would be very easy to overwrite your production database with test data.

Configuring database publishing is a two-step process. On the Package/Publish Web properties
tab for your project, select “Include all databases configured in the Package/Publish SQL tab” to enable
the feature.

To specify the details, move to the Package/Publish SQL tab. The Database Entries table contains
one entry for each database that will be published. You can use the connection strings already defined in
your project by clicking the Import from web.config button. If you do import your connection strings,
many of the details in the form will be populated for you, leaving you to add only the connection string
for the target database. If you leave the target connection string blank, the value from web.config will be
used, and if you have specified a transformation for that connection string, the transformed result will be

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 18 ■ WEBSITE DEPLOYMENT

807

used. See the preceding section for details of web.config transformations. If you have multiple
databases, you can change the order in which they will be published using the up and down arrows for
the Database Entries table. You can specify what the SQL script will contain—just the schema for your
database or the schema and the data.

A useful option is to include statements in the SQL script that will drop the existing table and data
during deployment. To enable this, you have to enable the project file directly—there is no UI option
within Visual Studio. Open the file with the .csproj suffix, and look for the PublishDatabaseSettings
section. Find the PreSource tag and add ScriptData="False" to that line, as marked in bold here:

<PublishDatabaseSettings>
 <Objects>
 <ObjectGroup Name="NorthwindConnectionString-Deployment" Order="1">
 <Destination Path="Data Source=WIN-57VN3E98578\SQLEXPRESS%3bInitial
Catalog=Northwind%3bPersist Security Info=True%3bUser ID=sa_deploy%3bPassword=sa" />
 <Object Type="dbFullSql">
 <PreSource Path="Data Source=.\sqlexpress%3bInitial Catalog=Northwind%3bPersist
Security Info=True%3bUser ID=sa_deploy%3bPassword=sa" ScriptDropsFirst="true"
ScriptSchema="True" ScriptData="False" CopyAllFullTextCatalogs="False" />
 <Source Path="obj\Debug\AutoScripts\NorthwindConnectionString-
Deployment_SchemaOnly.sql" Transacted="True" />
 </Object>
 </ObjectGroup>
 </Objects>
</PublishDatabaseSettings>

Visual Studio will prompt you to reload the project file, at which point the new setting will take
effect. Once you have configured your publishing settings, you deploy your project as shown in the
following sections.

Be very, very careful with these features and options—an inadvertent selection will have you looking
for the backup tapes. There is nothing quite like the sick feeling in your stomach when you realize you
have wiped the deployment database.

Deploying the Website
To deploy the website from within Visual Studio, open the website project, and select the Publish item
from the Build menu. The exact name of the menu item will depend on the name you gave your project.
If you are using our sample project, the item will be called Publish Web_Deploy.

You will see the Publish dialog box, as shown in Figure 18-11. This is the heart of the Web Deploy
feature. For Publish method, select Web Deploy. In the Service URL box, enter the name of the server
you will publish to—our Windows Server 2008 R2 server has the catchy name of WIN-57VN3E98578.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

808

Figure 18-11. The Visual Studio Publish dialog box

The Site/application field lets you specify where the site will be deployed, and, as we have
explained, this forms the URL that clients will use. For this example, we want our URL to be as follows:

http://<servername>/WebsiteDeployment/WebDeploy/

This URL will place our example alongside the one we deployed by copying files in the previous
section. To achieve this, we have put Default Web Site/WebsiteDeployment/WebDeploy in the
Site/application field.

Select the “Mark as IIS application on destination” option; this is equivalent to the manual process
we followed with the previous technique.

In the Credentials section, enable “Allow untrusted certificate” if you have not installed a certificate
on IIS 7 from a certificate authority—we haven’t on our server, so we need to enable this option to be

CHAPTER 18 ■ WEBSITE DEPLOYMENT

809

able to publish using web deploy. Finally, enter the username and password for the account you want to
use to publish—we have used the Administrator account. Your hosting company or server administrator
will give you details of the account you should use.

That’s it—you can now deploy your site by clicking the Publish button. If you refresh (or restart) IIS
Manager, you can see the new application you have deployed, as shown in Figure 18-12. Any web.config
transformations will have been performed, and any databases you configured will have been published.

Figure 18-12. The web-deployed site

Finally, you can test the deployment to see whether your example application works. You use a web
browser to open the URL:

http://WIN-57VN3E98578/WebsiteDeployment/WebDeploy

If you have followed along with this example, you should see the result shown in Figure 18-13.

Figure 18-13. Testing the deployment

Using FTP Deployment
FTP deployment deploys your project to the server using the File Transfer Protocol (FTP). The main
advantage of FTP deploy is the wider range of platform support. The main disadvantage is that there can
be more firewall issues with FTP deployment than with web deployment.

http://WIN-57VN3E98578/WebsiteDeployment/WebDeploy

CHAPTER 18 ■ WEBSITE DEPLOYMENT

810

■ Note This deployment approach is supported on all versions of IIS 7 on all operating system versions.

Preparing IIS
The simplest way to install and configure FTP deployment is using our old friend, the Web Platform
Installer. Start WebPI, click the Web Platform tab, and select Customize in the Web Server section. Scroll
down, and select the FTP Publishing Service item. Click the Install button, accept the license terms, and
begin the installation. IIS won’t have detected the new changes if it was running during the installation,
so exit and restart it now if need be.

First, we need to enable FTP deployment to our IIS site; expand the Connections tree control in IIS
Manager, right-click Default Web Site, and select Add FTP Publishing. You will see the first page of the
Add FTP Site Publishing Wizard, as shown in Figure 18-14. If your server has more than one network
interface, you can use the settings in the Binding section of the screen to select the one that will be
listened to for deployment requests. If your server has only one interface or you want to listen for
requests on every interface installed, leave the IP Address value as All Unassigned. The Port field defaults
to 21, which is the standard TCP port for FTP.

Figure 18-14. The first page of the Add FTP Site Publishing Wizard

You can require that encryption is used to secure your FTP deployment network traffic in the SSL
section of the screen. We have not installed an SSL certificate on our test server, so we have selected the
No SSL option. Click Next to move to the next screen, which lets you specify who can use the FTP

CHAPTER 18 ■ WEBSITE DEPLOYMENT

811

deployment feature. We want to restrict access to the Administrator account, so we have enabled
authentication by selecting the Basic option, selecting Specified users, and entering Administrator in the
account name field. We want to be able to read and write content when we deploy, so we have selected
both of those options. Your configuration may differ depending on your server administration policy.
Click the Finish button to complete the configuration.

We have to create the target directory for our application before deploying it for the first time. This is
because we won’t be able to specify that the directory should be treated as an application as we can with
web deployment.

The Website
The website we will use for this deployment technique is identical to the one covered when discussing
web deployment, except we have changed the text of the (only) page, as shown in Figure 18-15.

Figure 18-15. The FTP Deploy website

This is a project-based website, and you can download everything in the project from the Apress
website. See the variation in the following section for details of how to use FTP to deploy a project-less
website.

Deploying the Website
Before we deploy our site for the first time, we need to create the destination directory on the server and
tell IIS that it contains a web application. We would like our URL for this example to be as follows:

http://<servername>/WebsiteDeployment/FTPDeploy

To achieve this, we use IIS Manager to right-click the Default Website item in the tree control and
select Explore. We then use the Explorer window to create a directory called WebsiteDeployment and
then one called FTPDeploy inside it.

Refresh IIS Manager, and open the tree control until you can see the FTPDeploy folder, right-click it,
and select the Convert to Application menu item. Accept the default values. We have now created a
destination for our deployment and told IIS that it will contain an application.

To perform the deployment, open the sample project in Visual Studio 2010, and select the Publish
FTP_Deploy from the Build menu. You will now see the same dialog box we used for Web Deployment.
Select FTP from the Publish Method list; the dialog box layout will change, as shown in Figure 18-16.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

812

Figure 18-16. The Publish Web dialog box

The Target Location format for FTP is slightly different from the previous example. It is of the
following form:

ftp://<servername>/targetlocation

The ftp and the servername parts are obvious enough, but the important thing is that we don’t
specify the site name in this URL. IIS knows which site we enabled FTP deployment for and so the
targetlocation part of the URL is relative to the root of that site. You can’t see it all on the figure, but the
URL we specified was as follows:

ftp://WIN-57VN3E98578/WebsiteDeployment/FTPDeploy

This URL is relative to the root of Default Web Site and corresponds to both the HTTP URL we want
for our content and the directories we created at the start of this section. Be careful with the options
under the Target Location field. You are likely to want the Replace option; the Delete option will remove
any files that are on the server but that are not part of your project.

ftp://WIN-57VN3E98578/WebsiteDeployment/FTPDeploy

CHAPTER 18 ■ WEBSITE DEPLOYMENT

813

You will see that we have selected the Passive Mode option; you will probably want to do the same
thing for your deployments to increase the chances of your deployment working through firewalls
without having to reconfigure them. Finally, we have specified the Administrator account and password
for our server. If you are using a different account to deploy your site, then you would enter the details
here. When you are ready to deploy, click the Publish button.

■ Tip One of the most common causes of problems when using FTP deployment is firewall configuration. If you
do encounter problems, check the configuration of the Windows firewall on both the server and the client as well

as the configuration of any physical firewalls in your infrastructure.

When the deployment is complete, we can check the deployed site by loading our desired URL. You
can see the result in Figure 18-17.

Figure 18-17. Testing the FTP deployment

Variation: Deploying a Project-less Website
You can use FTP to deploy your project-less website, although the process is not quite as effortless. To
demonstrate this deployment approach, we have created a very simple project-less site, following the
pattern of our other examples. You can find the website in the source code download for this book,
available from Apress.com. It is in the FTP_Projectless_Deploy folder. The Default.aspx.cs file contains
the code that sets the label text to the .NET Framework version used to run the application.

Prior to deploying for the first time, you must create the target directory on the server and convert it
to an application—just as we did for project-based FTP deployment previously. We won’t repeat the
instructions; you can see them in the previous section. To keep our examples separate, we created a
directory called FTPProjectlessDeploy inside the WebsiteDeployment directory.

Once that is done, you select Copy Web Site... from the Visual Studio Website menu, which opens
the Copy Web tab, as shown in Figure 18-18. On the left side of the display, you can see the files that
make up the site—it looks a little silly with just two files, but you can imagine how it would look for a
more complex site.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

814

Figure 18-18. The Visual Studio Copy Web tab

The next step is to connect to IIS. Click the Connect button at the top of the Copy Web tab. This will
display the Open Web Site dialog box, as shown by Figure 18-19. Select FTP Site by clicking the button
on the left side of the display.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

815

Figure 18-19. The Open Web Site dialog box

Filling out the fields uses the same information as for project-based site deployment. The server
field requires the name of the server you want to deploy to. The port defaults to 21, which is what is
generally used for FTP. The directory is the location you want to deploy your content to, relative to the
root of your site. In our case, we want to deploy to WebsiteDeployment/FTPProjectlessDeploy. Passive
Mode is selected by default; we recommend that you leave this selected, because it reduces the chances
of problems if there are firewalls between your workstation and the server.

Deselect the Anonymous Login option, and enter the account and password you are using for
deployment. We are using the Administrator account, as with our previous examples. When you have
filled out all of the details, click the Open button. The right side of the Copy Web tab will now show the
contents of the directory you created on the server. Since this is your initial deployment, there is nothing
on the server, so the right side of the display is empty.

Select both of the files on the left side of the display. Doing so will cause some of the buttons in the
middle of the tab to light up, as shown in Figure 18-20. This is where you need to pay particular
attention—only the files you select will be deployed. If you miss a file, it won’t be pushed to the server,
and you’ll get odd behavior from your site.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

816

Figure 18-20. Selecting the files to deploy

Click the topmost button in the middle of the tab—the one with the arrow pointing to the right. This
will copy the files to the server, and they will appear on the right side of the display. You can test the
deployment by using a browser to open your target URL. Figure 18-21 shows the results.

Figure 18-21. Testing the deployment

Although you need to be careful when selecting the files to deploy, Visual Studio does provide
some helpful hits. If we modify one of our site files and then select Copy Web Site..., again, the changes
are marked with an arrow, as shown in Figure 18-22. This is very useful in ensuring that you keep things
in sync.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

817

Figure 18-22. Highlighted changes in the Copy Web tab

Managing a Website
Once you have deployed a site, you can use the features of IIS to manage the way that it is hosted and
executed. In this part of the chapter, we’ll show you the most useful configuration options and how to
use them.

Creating a New Site
IIS 7 is able to support multiple sites on a single server. In our example deployments, we have added
content to the default server, but in this section, we’ll show you how to create a new one. To create a new
site, expand the tree control in IIS Manager, right-click Sites, and select the Add Web Site... menu item.
This will show the Add Web Site dialog box, as shown in Figure 18-23.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

818

Figure 18-23. The Add Web Site dialog box

The Site name field should be something meaningful to you. It is used to identify the site in IIS
Manager but does not affect the site content. We have left the application pool as it is (we’ll talk about
application pools later in this chapter). The Physical path setting specifies where IIS 7 will look for
content to service requests for your new site. We have created a new directory on the server,
C:\FileCopySite. The Connect as and Test Settings buttons allow you to specify different user credentials
to access the site content.

In the Bindings section of the dialog box, you can specify how IIS 7 will listen for requests from
clients. IIS 7 supports a wide range of network protocols, but we will focus on HTTP, since it is the most
widely used. To do that, we select the http option for Type. The IP address menu allows you to select
which network interface your server will listen to for requests. We have left this as All Unassigned,
meaning that IIS will listen on all interfaces except those where another site is being serviced using the
same TCP port. The Port value allows you to specify the TCP port on which IIS 7 will listen for client
requests; in general each site must be served on a unique port, so we have selected port 81 so as not to
conflict with the default website on port 80.

We have selected the Start Web site immediately option, which means that as soon as we click OK,
IIS will create the website and start listing for requests. There is nothing further you need to configure
here, so click OK to create and start the website. Each of the deployment options we have shown you in
this chapter allows you to specify the site to deploy to—remember that the sites are differentiated by
name for the purposes of deployment and you use the port numbers when deploying.

Creating Virtual Directories
When we set up the destinations for our example websites, we placed our content in the directory in
which IIS 7 looks for content by default. We could have done things differently by placing the content

CHAPTER 18 ■ WEBSITE DEPLOYMENT

819

elsewhere and then using a virtual directory to reference it. To demonstrate this, we’ll create a new
directory on our server and copy our site content there. The path for our new directory is as follows:

C:\WebsiteDeployment\VirtualDirectory

To associate our new directory with IIS, go to IIS Manager, expand the tree view, right-click the
Default Web Site item, and select the Add Virtual Directory... menu item. This will show the Add Virtual
Directory dialog box, which is shown in Figure 18-24.

Figure 18-24. The Add Virtual Directory dialog box

We would like the URL of this website to be as follows:

http://<servername>/virtual

In the Alias box, enter virtual. We selected the root of the default website, which means that
whatever we put in the Alias box will be appended directly to the URL after the server name. In the
Physical path box, enter the path to one of the deployment directories you created previously. Click the
OK button to create the virtual directory. To test the virtual directory, open a browser on the server, and
point it at the URL http://localhost/virtual. Once again, you see your simple website, but this time the
content was sourced from your new directory and accessed using the custom URL you specified.

Using the VirtualPathProvider
The VirtualPathProvider class provides an alternative approach to virtual directories, such that the content
can be generated programmatically or from a database, rather than sourced from the file system.

The best way to understand the capabilities of the VirtualPathProvider class is with an example. We
will show how to create a simple VirtualPathProvider class that can read ASPX files from a SQL Server table.

To do this, you need a database table like the one shown in Figure 18-25, which contains three pages
stored in a table. We have included the database in the source code download for this book, which you
can get from Apress.com.

http://localhost/virtual

CHAPTER 18 ■ WEBSITE DEPLOYMENT

820

Figure 18-25. The SQL Server database used for the VirtualPathProvider

As you can see, the table includes a filename (which is the primary key) and the actual content. The
content could be any type of code that ASP.NET understands—in this example, because we are going to
serve simple pages, the content could be anything that the page parser is capable of compiling.

The VirtualPathProvider class is defined in the System.Web.Hosting namespace. Just add a new
class to the App_Code directory and inherit from VirtualPathProvider. The class needs to implement at
least the following methods:

Using System;
using System.Data.SqlClient;
using System.IO;
using System.Text;
using System.Web.Hosting;

public class DBPathProvider : VirtualPathProvider {

 public static void AppInitialize() {
 HostingEnvironment.RegisterVirtualPathProvider(
 new DBPathProvider());
 }

 public override bool FileExists(string virtualPath) {
 throw new Exception("The method or operation is not implemented.");
 }

 public override VirtualFile GetFile(string virtualPath) {
 throw new Exception("The method or operation is not implemented.");
 }
}

CHAPTER 18 ■ WEBSITE DEPLOYMENT

821

A provider must implement the static AppInitialize method, in which you should create an instance
of your class and register it as a provider with the framework. The FileExists method is used to test
whether a path can be served by the provider, and the GetFile method is called to retrieve the content for
a path, returning an instance of the abstract VirtualFile class—there are no concrete implementations of
VirtualFile, meaning that you must extend the abstract class to support your provider.

The following is our implementation of the VirtualFile class to accompany our provider, which we
have placed in the same code file:

public class DBVirtualFile : VirtualFile {

 private string _FileContent;

 public DBVirtualFile(string virtualPath, string fileContent)
 : base(virtualPath) {
 _FileContent = fileContent;
 }

 public override Stream Open() {
 Stream stream = new MemoryStream();
 StreamWriter writer = new StreamWriter(stream, Encoding.Unicode);

 writer.Write(_FileContent);
 writer.Flush();
 stream.Seek(0, SeekOrigin.Begin);
 return stream;
 }
}

The constructor gets the virtual path as well as the content of the file. In the Open method, the
content string is stored in a MemoryStream, which is returned as the method result. ASP.NET uses the
stream for reading the contents as if they were read from the file system—thanks to the abstraction of
bytes through Stream classes.

Returning to complete our provider class, we need to add support to get the content from the
database. If a file doesn’t exist in the database, the provider just forwards the request to its previous
provider (which has been selected by the infrastructure while registering in the static AppInitialize
method). Add a method for retrieving the contents from the database to the DBPathProvider class:

private string GetFileFromDB(string virtualPath) {
 string contents;
 string fileName = virtualPath.Substring(
 virtualPath.IndexOf('/', 1) + 1);

 // Read the file from the database
 SqlConnection conn = new SqlConnection();
 conn.ConnectionString = "Data Source=.\\SQLEXPRESS;Initial
Catalog=\"ASPNETCONTENTS\";Integrated Security=True";
 conn.Open();

 try {
 SqlCommand cmd = new SqlCommand(
 "SELECT FileContents FROM AspContent " +
 "WHERE FileName=@fn", conn);
 cmd.Parameters.AddWithValue("@fn", fileName);

CHAPTER 18 ■ WEBSITE DEPLOYMENT

822

 contents = cmd.ExecuteScalar() as string;
 if (contents == null)
 contents = string.Empty;
 } catch {
 contents = string.Empty;
 } finally {
 conn.Close();
 }

 return contents;
}

The GetFileFromDB function gets the filename from the virtual path and reads the corresponding
content from the database. This method is then used by both the FileExists and GetFile methods, as
shown in the following code snippet:

public override bool FileExists(string virtualPath) {
 string contents = this.GetFileFromDB(virtualPath);
 if (contents.Equals(string.Empty)) {
 return false;
 } else {
 return true;
 }
}

public override VirtualFile GetFile(string virtualPath) {
 string contents = this.GetFileFromDB(virtualPath);
 if (contents.Equals(string.Empty)) {
 return Previous.GetFile(virtualPath);
 } else {
 return new DBVirtualFile(virtualPath, contents);
 }
}

You can implement a few additional methods in your provider that can be useful for more complex
models, such as verifying a directory exists (DirectoryExists), computing file hashes (GetFileHash), and
performing cache verification (GetCacheDependency). With the basic functions in place, we are ready
to test our provider. You can see three browsers in Figure 18-26—each displaying one of the pages from
the database.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

823

Figure 18-26. The VirtualPathProvider in action

Using Application Pools
Application pools let you group together similar or related applications to make configuration and
management easier. Equally, applications that are assigned to application pools are isolated so that
problems in one pool don’t affect applications in different pools. There are no hard and fast rules for
how you assign applications to pools. You can group applications together because they have similar
performance profiles or belong to the same department or, well, for any reason that makes sense in your
environment. One of the most useful features, as we’ll see, is the ability to have different application
pools use different versions of the .NET Framework. In this section, we’ll show you how to create,
configure, and assign your applications to application pools.

IIS 7 creates a number of application pools automatically, including one that is used by default
when you create a new application. You can see and manage application pools using IIS Manager—
expand the server item in the tree control, and click Application Pools. This will show you the pools on
your server. You can see the ones on our Windows Server 2008 R2 machine in Figure 18-27.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

824

Figure 18-27. The standard application pools

The application pools are listed in the table in the middle of the screen. The table columns show us
the most important characteristics of the pools, as we have described in Table 18-1. When you deploy an
application, it is assigned to the default application pool. When you deployed an application previously,
we had you change the settings for the default application pool so that it would use .NET 4.

Table 18-1. Application Pool Characteristics Shown in the Main IIS Manager Window

Column Description

Name This is the name of the application pool. You can’t change the name of a pool once it
has been created.

Status This shows whether the application pool is running—meaning that requests for
applications assigned to the pool will be responded to. See the “Starting and Stopping
an Application Pool” section for more information.

.NET
Framework
Version

The version of the .NET Framework that will be used to execute managed code—we
had you change the setting for the default pool during the deployment examples. See
the “Using Side-by-Side Execution” section for more information about specifying
framework versions.

Managed
Pipeline Mode

IIS 7 supports two pipeline modes for handling requests—Integrated and Classic. See the
“Extending the Integrated Pipeline” section for details of how to extend the pipeline.

Identity This is the Windows account used to run the applications in the pool.

Applications This is the number of applications assigned to the pool—you can see that we have
three applications in the DefaultAppPool.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

825

Creating a New Application Pool
You can create a custom application pool by clicking the Add Application Pool action on the right of the
IIS Manager screen. This shows the Add Application Pool dialog box, which is shown in Figure 18-28.
Enter the name for your new pool (we have used CustomAppPool), select the version of the .NET
Framework that will be used to run applications assigned to the pool, and choose whether you want to
use the Integrated or Classic pipeline mode (the Classic mode is for legacy applications—if you are
unsure, select Integrated here).

Figure 18-28. The Add Application Pool dialog box

Click OK, and the new pool will be created and added to the IIS Manager list. If you click the
Advanced Settings... action, you will be able to configure the fine detail of the pool (these settings are
beyond the scope of this book).

Assigning an Application to an Application Pool
To assign an application to an application pool, select the application using IIS Manager, and then click
the Basic Settings action on the right of the screen. This will open the Edit Application dialog box. Click
the Select button, and choose an application pool from the drop-down list, as shown in Figure 18-29. We
selected the custom application pool we created in the previous section.

Figure 18-29. The Select Application Pool dialog box

CHAPTER 18 ■ WEBSITE DEPLOYMENT

826

Click OK. Click the Application Pools item in IIS Manager, and you will see that one application is
listed in the Applications column for CustomAppPool and one fewer for DefaultAppPool.

Starting and Stopping an Application Pool
If you click an application pool, you will see three actions listed under Application Pool Tasks on the
right side of the IIS Manager window. The Start and Stop actions determine whether requests to the
applications assigned to the pool are serviced. If the pool is stopped, clients will receive an error. The
Recycle action resets the application pool; this is useful if you are encountering problems that build
gradually and that are difficult to diagnose.

Using Side-by-Side Execution
Application pools allow you to run applications that require different versions of ASP.NET on the same
server. If you have legacy applications or are upgrading applications to ASP.NET 4 gradually, you can
mix and match applications pools to ensure that each application operates with the right features.

In the example sites we deployed, we displayed the version of the .NET Framework that was used to
process requests—this is why. If you change the framework version for a pool to what you have assigned
one of the example deployments, you will see that the output changes to indicate which framework is
used by the pool.

■ Tip If you want to change the .NET version used for a site that you created with a Visual Studio project, you’ll
need to change the project settings to use that version and deploy again. If you don’t, you’ll see a configuration

error when making requests to the site.

Using Application Warm-Up
You may have noticed that when you tested the deployment techniques earlier in the chapter, the first
request you made took a while to return in the browser, but subsequent requests were faster. This is
because IIS 7 doesn’t do anything with the files you deployed until the first request for your content
arrives. At that point, IIS prepares your application; the code portions of your site are compiled,
database connections are created, data is loaded, and so on. This can take some time, which is why that
first request is so slow. If you restart IIS, the process is repeated.

For large and complex applications, the amount of time taken to respond to the initial request can
be significant. The application warm-up feature is new to IIS 7.5. For each application you configure to
use the warm-up feature, IIS 7 will perform a set of requests (which you specify) at startup. This means
that by the time the first request comes in from a real user, everything is ready to go.

■ Tip If you don’t want to use application warm-up, you can still improve the initial performance of your
application through precompilation using the aspnet_compiler.exe command-line tool. You can get more details at

http://msdn.microsoft.com/en-us/library/ms229863(VS.100).aspx.

http://msdn.microsoft.com/en-us/library/ms229863

CHAPTER 18 ■ WEBSITE DEPLOYMENT

827

Preparing IIS 7
The simplest way of preparing IIS 7 to use application warm-up is to use the Web Platform Installer
again. At the time we wrote this chapter, the component to configure warm-up was in beta and available
on the What’s New? tab of WebPI.

■ Note Application warm-up works with IIS 7.5 only, meaning that Windows Server 2008 and Windows Vista are

not supported by this feature.

Select Application Warm-Up for IIS 7.5, and click Install to begin the usual download and
installation process. When the installation has completed, refresh or restart IIS Manager so that you can
use the newly installed features.

Configuring Application Warm-Up
Select the application you want to configure in IIS Manager, and double-click the newly installed
Application Warm-Up icon, as shown in Figure 18-30.

Figure 18-30. Selecting the Application Warm-Up icon

CHAPTER 18 ■ WEBSITE DEPLOYMENT

828

This will display the empty Application Warm-Up summary screen. Click the Add Request action on
the right side of the screen, and fill out the form to add a request to be performed during warm-up.

Enter the URL for the application. Our samples in this chapter are all very simple, so we just want to
request the root, which is /. The Status Codes field allows you to specify the range of HTTP codes that
you expect in the response from your application—if the code is outside the expected range, an error will
be logged (but subsequent requests will still be made). You can use the Request Context Parameter field
to attach a string to the request URL so that you can differentiate between requests made by real clients
and warm-up requests.

The Request Send Mode allows you to choose between asynchronous and synchronous requests.
Application warm-up sends all the asynchronous requests, followed by synchronous requests, waiting
for the result from each synchronous response before making the next request. This feature can be
useful if you want to warm up your application via a series of related requests.

Returning to the main display, click the Settings action on the right side of the window and select
both the Enable Application Warm-Up and Start Application Pool options. This will ensure that your
application is warmed up when IIS is started or restarted and when the application pool is recycled.

Extending the Integrated Pipeline
IIS 7 supports two modes for processing requests. The first, known as Classic, is the model that earlier
versions used and is supported today for legacy applications. The second mode, known as Integrated,
offers better performance and a different model for extending IIS 7 using the IHttpHandler interface that
we covered in Chapter 5. You should use the integrated pipeline mode by default. In this section, we’ll
show you how to extend the integrated pipeline with the same handler we created in Chapter 5.

Creating the Handler
For simplicity, we created a Visual Studio project that just contains the SimpleHandler class we created
in Chapter 5. We have included this project in the source code for the book, which you can download
from Apress.com. To create the handler from scratch, select New and then Project in the Visual Studio
File menu; then select Class Library. Name the project SimpleHandler. Rename the C# code file to
SimplerHandler.cs, and paste the code in the listing into the file. See Chapter 5 for details of how this
code functions.

using System;
using System.Web;

public class SimpleHandler : IHttpHandler {
 public void ProcessRequest(System.Web.HttpContext context) {
 HttpResponse response = context.Response;
 response.Write("<html><body><h1>Rendered by the SimpleHandler");
 response.Write("</h1></body></html>");
 }

 public bool IsReusable {
 get { return true; }
 }
}

Select Build Solution from the Build menu to compile the code and create a DLL file.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

829

Deploying the Handler
Find the DLL that Visual Studio created; it will be in the bin/Debug or bin/Release directory of your
project and will be called SimpleHandler.dll. Copy this file to the server, placing it in the bin directory at
the root of your application. If the bin directory does not exist, create it. For example, if you want to
apply your handler to the FileCopy application you deployed earlier in the chapter, you would place the
DLL in the C:\inetpub\wwwroot\WebsiteDeployment\FileCopy\bin directory.

Configuring the Handler
Using IIS Manager, select the application you want to modify. For us that will be the FileCopy
application we deployed previously. Double-click the Handler Mappings icon to open the Handler
Mappings summary screen, as shown in Figure 18-31.

Figure 18-31. The Handler Mappings summary screen

Click the Add Managed Handler action on the right side of the window to open the Add Managed
Handler dialog box, shown in Figure 18-32. In the Request Path field, specify what requests the handler
will service. We want our simple handler to be used only for requests that end in .htest. In the Type field,
enter the name of the handler class. If you have used a namespace for your class, you must include it in
this field.

CHAPTER 18 ■ WEBSITE DEPLOYMENT

830

Figure 18-32. The Add Managed Handler dialog box

In the Name field, enter a name you will recognize in the handler summary page. We have called
ours SimpleHandler. You can configure additional options by clicking the Request Restrictions button,
but we don’t need these for our simple handler. Click OK to create the handler mapping.

Testing the Handler
To test our handler, we need to request a URL that ends with .htest and that is serviced by the FileCopy
application. We will use the following:

http://localhost/WebsiteDeployment/FileCopy/help.htest

When we open this URL in a browser, we see the results in Figure 18-33, confirming that our
integrated pipeline handler has been installed properly and is working.

Figure 18-33. Testing the integrated pipeline handler

http://localhost/WebsiteDeployment/FileCopy/help.htest

CHAPTER 18 ■ WEBSITE DEPLOYMENT

831

Summary
In this chapter, you learned how to install and configure IIS 7 and use the three most common
deployment techniques—copy files, web deployment, and FTP deployment. We also showed you how to
manage application pools, warm up an application so that the initial client request doesn’t take a long
time to execute, and extend the integrated pipeline with a simple request handler.

As we have mentioned a few times in this chapter, the deployment technique you use is driven by
your service environment. Unless you manage your own servers, you will have to fit in to whatever
approach has been adopted for other projects and users—increasingly this will be web deployment, but
a wide variety will remain.
IIS 7 is a complex and capable server that goes beyond ASP.NET and the scope of this book. We have
given you enough information to deploy and configure the basics for your application, but time spent
learning more about the advanced options can pay dividends.

P A R T 4

■ ■ ■

833

Security

Devising a proper security strategy is a key part of any distributed application, particularly a large-scale
web application that’s exposed over the public Internet. In this book, you’ll find no less than eight
chapters that cover ASP.NET security features.

In Chapter 19, you’ll begin with a high-level overview of three security fundamentals:
authentication, authorization, and confidentiality. Once you have this perspective in mind, you’re ready
to consider ASP.NET’s two key systems for authenticating users: forms authentication (Chapter 20),
which provides a simple yet flexible framework for securing a public website, and Windows
authentication (Chapter 22), which uses existing Windows accounts to authenticate users and is most
commonly used in local intranet sites. You’ll also explore ASP.NET’s higher-level security services, such
as membership, roles, and profiles. Membership (Chapter 21) provides prebuilt security controls and
allows ASP.NET to manage the back-end database that stores user credentials. Roles (Chapter 24) allows
you to place users into logical groups, which can then have different privileges. Profiles (Chapter 25)
allows you to store user-specific information in a server-side database without writing your own
ADO.NET code. Although these features are powerful, they drive many details behind the scenes. To
truly customize the way these features work, you need to build a custom provider, a topic you’ll tackle in
Chapter 26.

Finally, you’ll find that Chapter 25 takes a detour into .NET’s cryptography features, which are
essentially for securing sensitive information before you store it in a file or database. Unlike the other
security features that are described in this part, the .NET cryptography classes aren’t limited to ASP.NET,
although they’re frequently useful in web applications, allowing you to perform feats like building a
tamper-proof query string.

C H A P T E R 19

■ ■ ■

835

The ASP.NET Security Model

Security is an essential part of web applications and should be taken into consideration from the first
stage of the development process. Essentially, security is all about protecting your assets from
unauthorized actions. You use several mechanisms to this end, including identifying users, granting or
denying access to sensitive resources, and protecting the data that’s stored on the server and transmitted
over the wire. In all of these cases, you need an underlying framework that provides basic security
functionality. ASP.NET fills this need with built-in functionality that you can use for implementing
security in your web applications.

The ASP.NET security framework includes classes for authenticating and authorizing users as well
as for dealing with authenticated users in your applications. It also includes a higher-level model for
managing users and roles, both programmatically and with built-in administrative tools. Furthermore,
the .NET Framework on its own provides you with a set of base classes for implementing confidentiality
and integrity through encryption and digital signatures.

This chapter provides a road map to the security features in ASP.NET. In subsequent chapters, you’ll
dig deeper into each of the topics covered in this chapter. Here, you’ll get a quick introduction to the key
features of .NET security. Most importantly, you’ll get a basic understanding of how you can incorporate
security into your application architecture and design, and you’ll see what the most important factors
are for creating secure software.

What It Means to Create Secure Software
Although the security framework provided by .NET and ASP.NET is powerful, it’s essential to keep some
basic principles in mind and use the features correctly and at the right time. In all too many projects,
security is treated as an afterthought, and architects and developers fail to consider it in the early stages.
But when you don’t keep security in mind from the beginning—which means in your application
architecture and design—how can you use all the security features offered by the .NET Framework
correctly and at the right time?

Therefore, it’s essential to include security from the first moment of your development process.
That’s the only way to make the right security-related decisions when creating your architecture
and designs.

Understanding Potential Threats
Creating a secure architecture and design requires that you have an in-depth understanding of your
application’s environment. You can’t create secure software if you don’t know who has access to your
application and where possible points of attack might be. Therefore, the most important factor for
creating a secure application architecture and design lies in a good understanding of environmental
factors such as users, entry points, and potential possible threats with points of attack.

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

836

That’s why threat modeling has become more important in today’s software development
processes. Threat modeling is a structured way of analyzing your application’s environment for possible
threats, ranking those threats, and then deciding about mitigation techniques based on those threats.
With this approach, a decision for using a security technology (such as authentication or SSL encryption)
is always based on an actual reason: the threat itself.

But threat modeling is important for another reason. As you probably know, not all potential threats
can be mitigated with security technologies such as authentication or authorization. In other words,
some of them can’t be solved technically. For example, a bank’s online solution can use SSL for securing
traffic on its website. But how do users know they are actually using the bank’s page and not a hacker’s
fake website? Well, the only way to know this is to look at the certificate used for establishing the SSL
channel. But users have to be aware of that, and therefore you have to inform them of this somehow. So,
the “mitigation technique” is not a security technology. It just involves making sure all your registered
users know how to look at the certificate. (Of course, you can’t force them to do so, but if your
information is designed appropriately, you might get most of them to do it.) Threat modeling as an
analysis method helps you determine issues such as these, not merely the technical issues.

■ Tip Threat modeling is a big topic that is beyond the scope of this book. For more information, you can refer to
a number of books, including Michael Howard and David LeBlanc’s Writing Secure Code, Second Edition (Microsoft

Press, 2002) and Frank Swiderski and Window Snyder’s Threat Modeling (Microsoft Press, 2004). Additionally, the
book Security Development Lifecycle by Michael Howard and Steve Lipner (Microsoft Press, 2006) is extremely
useful for project managers and architects. This book focuses on how to make sure that security gets an integral

part in your software development life cycle, from the first planning steps through architecture, development,
testing, and maintenance. It summarizes how Microsoft’s project management makes sure security is an integral

part of the project in a smooth and pragmatic way.

Secure Coding Guidelines
Of course, a secure architecture and design alone doesn’t make your application completely secure. It’s
only one of the most important factors. After you have created a secure architecture and design, you
have to write secure code as well. Again, Writing Secure Code, Second Edition by Michael Howard and
David C. LeBlanc (Microsoft Press, 2002) and Threat Modeling by Frank Swiderski and Window Snyder
(Microsoft Press, 2004), as well as The Security Development Lifecycle by Michael Howard and Steve
Lipner (Microsoft Press, 2006) are excellent sources for detailed information for every developer. In
terms of web applications, you should always keep the following guidelines in mind when writing code:

Never trust user input: Assume that every user is evil until you have proven the opposite. Therefore,
always strongly validate user input. Write your validation code in a way that it verifies input against
only allowed values and not invalid values. (There are always more invalid values than you might be
aware of at the time of writing the application.)

Never use string concatenation for creating SQL statements: Always use parameterized statements
so that your application is not SQL injectable, as discussed in Chapter 7.

Never output data entered by a user directly on your web page before validating and encoding it:
The user might enter some HTML code fragments (for example, scripts) that lead to cross-site
scripting vulnerabilities. Therefore, always use HttpUtility.HtmlEncode() for escaping special

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

837

characters such as < or > before outputting them on the page, or use a web control that performs
this encoding automatically.

Never store sensitive data, business-critical data, or data that affects internal business rule
decisions made by your application in hidden fields on your web page: Hidden fields can be
changed easily by just viewing the source of the web page, modifying it, and saving it to a file. Then
an attacker simply needs to submit the locally saved, modified web page to the server. Browser plug-
ins are available to make this approach as easy as writing an e-mail with Microsoft Outlook.

Never store sensitive data or business-critical data in view state: View state is just another hidden
field on the page, and it can be decoded and viewed easily. View state encryption (as described in
Chapter 6) helps to protect information that’s only valuable for a limited interval of time, but keep in
mind that even encrypted data can eventually be cracked if an attacker has enough time, resources,
and motivation.

Enable SSL when using Basic authentication or ASP.NET forms authentication: Chapter 20
discusses forms authentication. SSL is discussed later in this chapter in the section
“Understanding SSL.”

Protect your cookies: Always protect your authentication cookies when using forms authentication,
and set timeouts as short as possible and only as long as necessary.

Use SSL: In general, if your web application processes sensitive data, secure your whole website
using SSL. Don’t forget to protect even image directories or directories with other files not managed
by the application directly through SSL.

Of course, these are just a few general, important issues. To get a complete picture of the situation in
terms of your concrete application, you have to create threat models in order to compile a complete list
of potential dangers. In addition, invest in ongoing education, because hackers’ techniques and
technologies evolve just as other techniques and technologies do.

If you forget about just one of these guidelines, all the other security features are more or less
useless. Never forget the following principle: Security is only as good as your weakest link.

Understanding Gatekeepers
A good way to increase the security of your application is to have many components in place that
enforce security. Gatekeepers are a conceptual pattern that apply a pipelining model to a security
infrastructure. This model helps you tighten your security.

The gatekeeper model assumes that a secure application always has more security mechanisms in
place than necessary. Each of these mechanisms is implemented as a gatekeeper that is responsible for
enforcing some security-related conditions. If one of these gatekeepers fails, the attacker will have to
face the next gatekeeper in the pipeline. The more gatekeepers you have in your application, the harder
the attacker’s life will be. Actually, this model supports a core principle for creating secure applications:
be as secure as possible, and make attackers’ lives as hard as possible.

In Figure 19-1, you can see a pipeline of gatekeepers. At the end of the pipeline, you can see the
protected resource (which can be anything, even your custom page code). The protected resource will be
accessed or executed only if every gatekeeper grants access. If just one gatekeeper denies access, the
request processing is returned to the caller with a security exception.

Implementing a central security component in such a way is generally a good idea. You can also
secure your business layer in this way. The ASP.NET application infrastructure leverages this mechanism
as well. ASP.NET includes several gatekeepers, each one enforcing a couple of security conditions and
therefore protecting your application. In the next sections of this chapter, you will learn which
gatekeepers the ASP.NET framework includes and what those gatekeepers’ responsibilities are.

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

838

Figure 19-1. A pipeline of gatekeepers

Understanding the Levels of Security
Basically, for mainstream web applications, the fundamental tasks for implementing security (besides
the issues you identify during your threat modeling session) are always the same:

Authentication: First, you have to authenticate users. Authentication asks the question, who goes
here? It determines who is working with your application on the other end.

Authorization: Second, as soon as you know who is working with your application, your application
has to decide which operations the user may execute and which resources the user may access. In
other words, authorization asks the question, what is your clearance level?

Confidentiality: While the user is working with the application, you have to ensure that nobody else
is able to view sensitive data processed by the user. Therefore, you have to encrypt the channel
between the client’s browser and the web server. Furthermore, you possibly have to encrypt data
stored on the backend (or in the form of cookies on the client) even if you have to prevent database
administrators or other staff of the company where the web application is hosted from viewing the
data of your application.

Integrity: Finally, you have to make sure data transmitted between the client and the server is not
changed by unauthorized actors. Digital signatures provide you with a way to mitigate this type of
threat.

ASP.NET includes a basic infrastructure for performing authentication and authorization. The .NET
Framework base class library includes some classes in the System.Security namespace for encrypting
and signing data. Furthermore, SSL is a standardized way for ensuring confidentiality and integrity of
data transmitted between the client browser and the web server. Now you will take a closer look at each
of these concepts.

Authentication
Authentication is the process of discovering a user’s identity and ensuring the authenticity of this
identity. The process of authentication is analogous to checking in at a conference registration table.
First, you provide some credentials to prove your identity (such as a driver’s license or a passport).
Second, once your identity is verified with this information, you are issued a conference badge, or token,

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

839

that you carry with you when you are at the conference. Anyone you meet at the conference can
immediately determine your identity by looking at your badge, which typically contains basic identity
information, such as your first and last name. This whole process is an example of authentication. Once
your identity is established, your token identifies you so that everywhere you go within a particular area,
your identity is known.

In an ASP.NET application, authentication is implemented through one of several possible
authentication systems:

• Windows authentication

• Forms authentication

• A custom authentication process

In each of these, the user provides credentials when logging in. The user’s identity is tracked in
different ways depending on the type of authentication. For example, the Windows operating system
uses a 96-bit number called an SID (security identifier) to identify each logged-on user. In ASP.NET
forms authentication (which is covered in detail in Chapter 20), the user is given a forms authentication
ticket, which is a combination of values that are encrypted and placed in a cookie.

All authentication does is allow the application to identify who a user is on each request. This works
well for personalization and customization, because you can use the identity information to render user-
specific messages on the web pages, alter the appearance of the website, add custom content based on
user preferences, and so on. However, on its own, authentication isn’t enough to restrict the tasks that a
user is allowed to perform based on that user’s identity. For that, you need authorization, described in a
moment. However, before you learn about authorization, you will take a look at impersonation, which is
related to authentication.

Impersonation
Impersonation is the process of executing code in the context (or on behalf) of another user identity. By
default, all ASP.NET code is executed using a fixed machine-specific account (typically the Network
Service on IIS 7.x). To execute code using another identity, you can use the built-in impersonation
capabilities of ASP.NET. You can use a predefined user account, or you can assume the user’s identity, if
the user has already been authenticated using a Windows account.

One reason you might want to use impersonation is to make use of existing Windows user accounts
and their permissions. For example, consider an application that retrieves information from various files
that already have user-specific or group-specific permissions set. Rather than code the authorization
logic in your ASP.NET application, you can use impersonation to assume the identity of the end user.
That way, Windows will perform the authorization for you, checking permissions as soon as you attempt
to access a file. You might event choose to switch on impersonation for a short period of time, rather
than the entire request. You’ll learn more about these options in Chapter 22.

Authorization
Authorization is the process of determining the rights and restrictions assigned to an authenticated user.
In the conference analogy, authorization is the process of being granted permission to a particular type
of session, such as the keynote speech. At most conferences it is possible to purchase different types of
access, such as full access, preconference only, or exhibition hall only. This means if you want to attend
the keynote address at Microsoft’s Professional Developer Conference to hear what Bill Gates has to say,
you must have the proper permissions (the correct conference pass). As you enter the keynote
presentation hall, a staff member will look at your conference badge. Based on the information on the
badge, the staff member will let you pass or will tell you that you cannot enter. This is an example of
authorization. Depending on information related to your identity, you are either granted or denied
access to the resources you request.

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

840

The conference example is a case of role-based authorization—authorization being based on the
role or group the user belongs to, not on who the user is. In other words, you are authorized to enter the
room for the keynote address based on the role (type of pass), not your specific identity information
(first and last name). In many cases, role-based authorization is preferable because it’s much easier to
implement. If the staff member needed to consult a list with the name of each allowed guest, the process
of authorization would be much more awkward. The same is true in a web application, although the
roles are more likely to be managers, administrators, guests, salespeople, clients, and so on.

In a web application, different types of authorization happen at different levels. For example, at the
topmost level, your code can examine the user identity and decide whether to continue with a given
operation. On a lower level, you can configure ASP.NET to deny access to specific web pages or
directories for certain users or roles. At an even lower level, when your code performs various tasks such
as connecting to a database, opening a file, writing to an event log, and so on, the Windows operating
system checks the permissions of the Windows account that’s executing the code. In most situations,
you won’t rely on this bottommost level, because your code will always run under a fixed account. In IIS
7.x, this is by default the fixed Network Service account.

Sound reasons exist for using a fixed account to run ASP.NET code. In almost all applications, the
rights allocated to the user don’t match the rights needed by your application, which works on behalf of
the user. Generally, your code needs a broader set of permissions to perform incidental tasks, and you
won’t want to give these permissions to every user who might access your web application. For example,
your code may need to create a log record when a failure occurs, even though the current user isn’t
allowed to directly write to the Windows event log, file, or database. Similarly, ASP.NET applications
always require rights to the c:\[WinDir]\Microsoft.NET\Framework\[Version]\Temporary ASP.NET Files
directory to create and cache a compiled machine-language version of your web pages. Finally, you
might want to use an authentication system that has nothing to do with Windows. For example, an e-
commerce application might verify user e-mail addresses against a server-side database. In this case, the
user’s identity doesn’t correspond to a Windows account.

In a few rare cases, you’ll want to give your code the ability to temporarily assume the identity of the
user. This type of approach is much more common when creating ASP.NET applications for local
networks where users already have a carefully defined set of Windows privileges. In this case, you need
to supplement your security arsenal with impersonation, as mentioned in the previous section and
described in Chapter 22.

Confidentiality and Integrity
Confidentiality means ensuring that data cannot be viewed by unauthorized users while being
transmitted over a network or stored in a data store such as a database. Integrity is all about ensuring
that nobody can change the data while it is transmitted over a network or stored in a data store. Both are
based on encryption.

Encryption is the process of scrambling data so that it’s unreadable by other users. Encryption in
ASP.NET is a completely separate feature from authentication, authorization, and impersonation. You
can use it in combination with these features or on its own.

As mentioned previously, you might want to use encryption in a web application for two reasons:

To protect communication (data over the wire): For example, you might want to make sure an
eavesdropper on the public Internet can’t read a credit card number that’s used to purchase an
item on your e-commerce site. The industry-standard approach to this problem is to use SSL. SSL
also implements digital signatures for ensuring integrity. SSL isn’t implemented by ASP.NET.
Instead, it’s a feature provided by IIS. Your web-page (or web service) code is identical whether or
not SSL is used.

To protect permanent information (data in a database or in a file): For example, you might want to
store a user’s credit card in a database record for future use. Although you could store this data in
plain text and assume the web server won’t be compromised, this is never a good idea. Instead, you

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

841

should use the encryption classes that are provided with .NET to manually encrypt data before you
store it.

It’s worth noting that the .NET encryption classes aren’t directly tied to ASP.NET. In fact, you can
use them in any type of .NET application. You’ll learn about encryption and digital signatures as well as
how to take control of custom encryption in Chapter 25.

Pulling It All Together
So, how do authentication, authorization, and impersonation all work together in a web application?

When users first come to your website, they are anonymous. In other words, your application
doesn’t know (and doesn’t care) who they are. Unless you authenticate them, this is the way it stays.

By default, anonymous users can access any ASP.NET web page. But when a user requests a web
page that doesn’t permit anonymous access, several steps take place (as shown in Figure 19-2):

1. The request is sent to the web server. Since the user identity is not known at
this time, the user is asked to log in (using a custom web page or a browser-
based login dialog box). The specific details of the login process depend on the
type of authentication you’re using.

2. The user provides his or her credentials, which are then verified, either by your
application (in the case of forms authentication) or automatically by IIS (in the
case of Windows authentication).

3. If the user credentials are legitimate, the user is granted access to the web
page. If his or her credentials are not legitimate, then the user is prompted to
log in again, or the user is redirected to a web page with an “access denied”
message.

Figure 19-2. Requesting a web page that requires authentication

When a user requests a secure web page that allows only specific users or users in specific roles, the
process is similar, but an extra step takes place (see Figure 19-3):

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

842

1. The request is sent to the web server. Since the user identity is not known at
this time, the user is asked to log in (using a custom web page or a browser-
based login dialog box). The specific details of the login process depend on the
type of authentication you’re using.

2. The user provides his or her credentials, which are verified with the
application. This is the authentication stage.

3. The authenticated user’s credentials or roles are compared to the list of
allowed users or roles. If the user is in the list, then the user is granted access to
the resource; otherwise, access is denied.

4. Users who have access denied are either prompted to log in again, or they are
redirected to a web page with an “access denied” message.

Figure 19-3. Requesting a web page that requires authentication and authorization

Understanding Secure Sockets Layer
The SSL technology encrypts communication over HTTP. SSL is supported by a wide range of browsers
and ensures that an eavesdropper can’t easily decipher information exchanged between a client and a
web server. SSL is important for hiding sensitive information such as credit card numbers and
confidential company details, but it’s also keenly important for user authentication. For example, if you
create a login page where the user submits a user name and password, you must use SSL to encrypt this
information. Otherwise, a malicious user could intercept the user credentials and use them to log on to
the system.

IIS provides SSL out of the box. Because SSL operates underneath HTTP, using SSL does not change
the way you deal with HTTP requests. All the encryption and decryption work is taken care of by the SSL
capabilities of the web server software (in this case, IIS). The only difference is that the URL for addresses
protected by SSL begins with https:// rather than http://. SSL traffic also flows over a different port
(typically web servers use port 443 for SSL requests and port 80 for normal requests).

For a server to support SSL connections, it must have an installed X.509 certificate (the name X.509
was chosen to correspond with the X.500 directory standard). To implement SSL, you need to purchase a
certificate, install it, and configure IIS appropriately. We’ll cover these steps in the following sections.

https://rather

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

843

Understanding Certificates
Before sending sensitive data, a client must decide whether to trust a website. Certificates were designed
to serve this purpose, by making it possible to partially verify a user’s identity. Certificates can be
installed on any type of computer, but they are most often found on web servers.

With certificates, an organization purchases a certificate from a known certificate authority (CA) and
installs it on its web server. The client implicitly trusts the CA and is therefore willing to trust certificate
information signed by the CA. This model works well because it is unlikely that a malicious user will go
to the expense of purchasing and installing a falsified certificate. The CA also retains information about
each registered user. However, a certificate does not in any way ensure the trustworthiness of the server,
the safety of the application, or the legitimacy of the business. In these ways, certificates are
fundamentally limited in scope.

The certificate itself contains certain identifying information. It is signed with the CA’s private key to
guarantee that it is authentic and has not been modified. The industry-standard certificate type, known
as x.509v3, contains the following basic information:

• The holder’s name, organization, and address

• The holder’s public key, which will be used to negotiate an SSL session key for
encrypting communication

• The certificate’s validation dates

• The certificate’s serial number

In addition, a certificate might also include business-specific information, such as the certificate
holder’s industry, the length of time they have been in business, and so on.

The two biggest CAs are as follows:

• Thawte: http://www.thawte.com

• VeriSign: http://www.verisign.com

If you don’t need the identity validation function of CAs (for example, if your certificates will be used
only on a local intranet), you can create and use your own certificates and configure all clients to trust
them. This requires Active Directory and Certificate Server (which is a built-in part of Windows 2003
Server and Windows 2000 Server). For more information, consult a dedicated book about Windows
network administration.

Understanding SSL
As described in the previous section, every certificate includes a public key. A public key is part of an
asymmetric key pair. The basic idea is that the public key is freely provided to anyone who is interested.
The corresponding private key is kept carefully locked away and is available only to the server. The
interesting twist is that anything that’s encrypted with one of the keys is decipherable with the other.
That means a client can retrieve the public key and use it to encode a secret message that can be
decrypted only with the corresponding private key. In other words, the client can create a message that
only the server can read.

This process is called asymmetric encryption, and it’s a basic building block of SSL. An important
principle of asymmetric encryption is that you can’t determine a private key by analyzing the
corresponding public key. To do so would be computationally expensive (even more difficult than
cracking one of the encrypted messages). However, asymmetric encryption also has its limitations—
namely, it’s much slower and generates much larger messages than symmetric encryption.

Symmetric encryption is the type of encryption that most people are intuitively familiar with. It uses
the same secret key to encrypt a message as to decrypt it. The drawback with symmetric encryption is
that both parties need to know the secret value in order to have a conversation. However, you can’t

http://www.thawte.com
http://www.verisign.com

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

844

transmit this information over the Internet, because a malicious user might intercept it and then be able
to decipher the following encrypted conversation. The great trick of SSL is to combine asymmetric and
symmetric encryption. Asymmetric encryption manages the initial key exchange—in other words, agrees
on a secret value. Then, this secret value symmetrically encrypts all subsequent messages, which ensures
the best possible performance.

The whole process works like this, where the client refers to the web browser running on the end user’s
machine and the server refers to the web server hosting the websites the user wants to get access to:

1. The client sends a request to connect to the server.

2. The server signs its certificate and sends it to the client. This concludes the
handshake portion of the exchange.

3. The client checks whether the certificate was issued by a CA it trusts. If so, it
proceeds to the next step. In a web browser scenario, the client may warn the
user with an ominous-sounding message if it does not recognize the CA, and
allows the user to decide whether to proceed. The client recognizes CAs when
their certificate is stored in the Trusted Root Certification Authorities store of the
operating system. You can find certificates stored in this store through the
Internet Explorer options by clicking the Certificates button on the Content tab.

4. The client compares the information in the certificate with the information
received from the site (including its domain name and its public key). The
client also verifies that the server-side certificate is valid, has not been revoked,
and is issued by a trusted CA. Then the client accepts the connection.

5. The client tells the server what encryption keys it supports for communication.

6. The server chooses the strongest shared key length and informs the client.

7. Using the indicated key length, the client randomly generates a symmetric
encryption key. This will be used for the duration of the transaction between
the server and the client. It ensures optimum performance, because symmetric
encryption is much faster than asymmetric encryption.

8. The client encrypts the session key using the server’s public key (from the
certificate), and then it sends the encrypted session key to the server.

9. The server receives the encrypted session key and decrypts it using its private
key. Both the client and server now have the shared secret key, and they can
use it to encrypt all communication for the duration of the session.

You’ll notice that the symmetric key is generated randomly and used only for the duration of a
session. This limits the security risk. First, it’s harder to break encrypted messages using cryptanalysis,
because messages from other sessions can’t be used. Second, even if the key is determined by a
malicious user, it will remain valid only for the course of the session.

Another interesting point is that the client must generate the symmetric key. This is because the client
has the server’s public key, which can be used to encrypt a message that only the server can read. The
server does not have corresponding information about the client and thus cannot yet encrypt a message.
This also means that if the client supplies a weak key, the entire interaction could be compromised. For
example, older versions of the Netscape browser used a weak random number generator to create the
symmetric key. This would make it much easier for a malicious user to guess the key.

When deploying an application, you will probably want to purchase certificates from a genuine CA
such as VeriSign. This is particularly the case with websites and Internet browsers, which recognize a
limited number of CAs automatically. If you use a test certificate to encrypt communication with a
secured portion of a website, for example, the client browser will display a warning that the certificate is
not from a known CA.

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

845

Configuring SSL in IIS 7.x
First of all, you need to issue a certificate for your web server. For this purpose you have to select the web
server root node in the navigation tree of the management console, and select the Server Certificates
feature, as shown in Figure 19-4.

Figure 19-4. The Server Certificates option in IIS 7.x

When opening the details, the management console will list all the server certificates installed on
your web server. The first interesting part in IIS 7.x is the fact that you can install multiple server
certificates on one web server, which can be used for different websites configured on your web server
(see Figure 19-5). This is a nice improvement compared to older IIS versions, which allowed you to
install just one server certificate per web server.

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

846

Figure 19-5. List of server certificates installed in IIS 7.x

In the Server Certificates feature details view, the task pane on the right side of the management
console shows the necessary task for installing server certificates. It allows you to create a certificate
request automatically that you can use for requesting a new certificate at a CA. To create a new request,
you just use the Create Certificate Request task link on the task pane, which creates the same Base64-
encoded request as the previous IIS versions did. You use this Base64-encoded request file to submit
your request at the CA. After you have retrieved the certificate from your CA, you can complete the
running request by clicking the Complete Certificate Request task link in the task pane within the server
certificates feature of the management console. This way you can request and configure an SSL
certificate for a standalone web server. If you want to request a certificate for your own CA, you can use
the Online Certification Authority wizard by clicking the Create Domain Certificate wizard. This
certificate is then configured in your own CA and is used for signing certificates issued by this CA.

Honestly, this process is really cumbersome if you are just a developer who wants to test SSL with
your own web applications. Therefore, IIS 7.x includes an additional option that was not available in
previous IIS versions out of the box: creating a self-signed certificate for your own machine. All you need
to specify for a self-signed certificate is a friendly name to be displayed in the list. Afterward, the wizard
creates a certificate by using cryptographic functions of your machine and installs that certificate in your
web server! It is important to understand that these certificates should be used for testing purposes only,
because no other browser than yours running on your developer machine will know the certificate, and
therefore will include warnings that the certificate is invalid.

After you have configured and installed your server certificates, you can leverage them for
SSL-based communication within the websites configured on your IIS. For this purpose you need
to configure protocol bindings for SSL, as well as the SSL options for your web applications within
the websites.

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

847

Configuring Bindings for SSL
As outlined in detail in Chapter 18, bindings are used for making contents of websites available through
specific protocols, IP addresses, and ports. Host headers for accessing several web applications through
the same IP address and port are configured in bindings, as well. If you want to leverage SSL for
applications configured within a website, you need to configure a protocol binding for SSL for the
website. For that purpose, just select your website (such as the Default Web Site) in the navigation
tree of the IIS management console and select the Bindings link from the task pane on the right-hand
side of the console. A dialog that allows you to configure your bindings appears. Now you can add new
bindings to make contents available through different IP addresses, ports, and protocols. Figure 19-6
shows this dialog.

Figure 19-6. Configuring bindings for a website

By clicking the Add button you can add new bindings to your website, and by clicking the Edit
button you can modify existing bindings in the list. Figure 19-7 shows the binding configuration for
enabling SSL on your website.

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

848

Figure 19-7. SSL binding configuration in IIS 7.x

As you can see, the protocol is configured to https running on the default IP address for your server,
using port 443 for SSL-based access (which is the default port for SSL). Furthermore, in the combo box
on the lower end of the window you can select the certificate that’s used for SSL traffic on the selected
website. Every certificate you installed previously is available for selection in this list, and you can
configure different certificates for each website on your web server. After you have configured the SSL
binding for your website, you can enable SSL for web applications within the website.

Encoding Information with SSL
Enabling SSL is configured on a per-web application basis in IIS. After you have configured your
bindings at a website level, you can select a web application of your choice in the navigation tree of the
IIS management console and activate the SSL feature configuration as shown in Figure 19-8.

Figure 19-8. Enabling SSL traffic on your website

CHAPTER 19 ■ THE ASP.NET SECURITY MODEL

849

You can specify if you want to require SSL encoding for the selected web application and whether
you require client certificates for authenticating users. When using client certificate authentication you
need to configure certificate mappings from certificates to users that are finally authenticated by IIS
when retrieving a certain certificate. Again, you need to configure these mappings in your web.config
configuration file through the <iisClientCertificateMapping> configuration section within the
<system.webServer> section. For more information on configuring client certificate mappings, refer to
the Microsoft documentation available at MSDN or TechNet: http://msdn2.microsoft.com/en-
us/library/Aa347495.aspx.

Summary
With ASP.NET, programmers finally have a comprehensive, full-featured set of security tools. As with
many other features in the world of ASP.NET, the presence of a security framework simply means that
there is less work for you to do to implement a variety of authentication and authorization scenarios.
ASP.NET provides two types of authentication providers: Windows authentication and forms
authentication. Additionally, ASP.NET also includes all the necessary interfaces and classes you need to
build your own authentication and authorization system. In the following chapters, you’ll learn about all
of these features.

http://msdn2.microsoft.com/en-us/library/Aa347495.aspx
http://msdn2.microsoft.com/en-us/library/Aa347495.aspx
http://msdn2.microsoft.com/en-us/library/Aa347495.aspx

C H A P T E R 20

■ ■ ■

851

Forms Authentication

In the previous chapter, you learned about the basic structure of ASP.NET security. In this chapter, you
will learn how you can authenticate your users using forms authentication. You should use this type of
authentication whenever there is a reason for not using Windows-based accounts in your applications.
We will discuss such reasons in this chapter, as well as in Chapter 22 when discussing Windows
authentication itself.

Forms authentication is an all-purpose authentication system that’s based around two concepts.
First is a login page that can validate users (usually, by comparing a user name and password
combination against a database or some other data store). Second, is a mechanism for preserving and
reestablishing the security context on each request (usually, using a cookie). This way, the user needs
log in only once.

As you’ll see in this chapter, ASP.NET includes all the infrastructure that you need. With forms
authentication, ASP.NET creates the security cookie for logged-in users, maintains it, and automatically
establishes the security context on subsequent requests. Best of all, it manages the process in a way
that’s efficient and highly resistant to tampering.

Introducing Forms Authentication
Forms authentication is a ticket-based (also called token-based) system. This means when users log in,
they receive a ticket with basic user information. This information is stored in an encrypted cookie that’s
attached to the response so it’s automatically submitted on each subsequent request.

When a user requests an ASP.NET page that is not available for anonymous users, the ASP.NET
runtime verifies whether the forms authentication ticket is available. If it’s not available, ASP.NET
automatically redirects the user to a login page. At that moment, it’s your turn. You have to create this
login page and validate the credentials within this login page. If the user is successfully validated, you
just tell the ASP.NET infrastructure about the success (by calling a method of the FormsAuthentication
class), and the runtime automatically sets the authentication cookie (which actually contains the ticket)
and redirects the user to the originally requested page. With this request, the runtime detects that the
authentication cookie with the ticket is available and grants access to the page. You can see this process
in Figure 20-1.

CHAPTER 20 ■ FORMS AUTHENTICATION

852

Figure 20-1. The forms authentication process

All you need to do is configure forms authentication in the web.config file, create the login page, and
validate the credentials in the login page.

Why Use Forms Authentication?
Forms authentication is an attractive option for developers for a number of reasons:

• You have full control over the authentication code.

• You have full control over the appearance of the login form.

• It works with any browser.

CHAPTER 20 ■ FORMS AUTHENTICATION

853

• It allows you to decide how to store user information.

Let’s look at each of these in turn.

Controlling the Authentication Code
Because forms authentication is implemented entirely within ASP.NET, you have complete control over
how authentication is performed. You don’t need to rely on any external systems, as you do with
Windows or Passport authentication. You can customize the behavior of forms authentication to suit
your needs, as you will see in the section “Persistent Cookies in Forms Authentication.”

Controlling the Appearance of the Login Form
You have the same degree of control over the appearance of forms authentication as you do over its
functionality. In other words, you can format the login form in any way you like. Or, if you don’t want to
do any of this work, you can use the higher-level membership API and the ASP.NET security controls.
These security controls contain a ready-to-use and highly customizable Login control. We will discuss
the membership API and the security controls in the next chapter in detail.

This flexibility in appearance is not available in the other authentication methods. Windows
authentication needs the browser to collect credentials, and Passport authentication requires that users
leave your website and visit the Passport site to enter their credentials.

Working with a Range of Browsers
Forms authentication uses standard HTML as its user interface, so all browsers can handle it. Because
you can format the login form in any way you like, you can even use forms authentication with browsers
that do not use HTML, such as those on mobile devices. To do this, you need to detect the browser being
used and provide a form in the correct format for the device (such as WML for most mobile phones).

■ Caution Forms authentication uses standard HTML forms for collecting and submitting the user’s credentials.
Therefore, you have to use SSL to encrypt and transmit the user’s credentials securely. If you don’t use SSL, the

information is transmitted as clear text in the postback data in the request to the server.

Storing User Information
Forms authentication stores users in the web.config file by default, but as you will see in the section
“Custom Credentials Store,” you can store the information anywhere you like. You just need to create
the code that accesses the data store and retrieves the required information. (And if you use the
membership API introduced in Chapter 21, you don’t even need to do that.) A common example is to
store the user information in a custom database.

This flexibility in the storage of user information also means you can control how user accounts are
created and administered, and you can attach additional information to user accounts, such as personal
preferences for customizing the appearance of your website. You can also attach business-specific
information such as, for example, encrypted credit card information if you have an online shop. In
addition to the membership API mentioned earlier and covered in Chapter 21, ASP.NET includes the
profiles API, which allows you to store additional user information independent from your user accounts
themselves. The profiles API is covered in Chapter 24. By comparison, Windows authentication
(discussed in Chapter 22) is much less flexible. It requires that you set up a Windows user account for

CHAPTER 20 ■ FORMS AUTHENTICATION

854

each user you want to authenticate. This is obviously a problem if you want to serve a large number of
users or if you want to register users programmatically. It also doesn’t allow you to store additional
information about users. (In the case of Active Directory, you have the possibility of extending the Active
Directory schema, which defines contents and types for data structures stored in an Active Directory.
However, this is something that needs to be planned well and is often not seen gladly by IT
administrators.) Instead, you have to store this information separately. Passport authentication has
similar limitations. Although Passport stores more user information, it doesn’t allow you to add custom
information, and it doesn’t allow you to take part in user registration or account management.

Why Would You Not Use Forms Authentication?
So far, you’ve considered the reasons that make forms authentication an attractive choice for user
authentication. However, forms authentication also has downsides:

• You have to create the user interface for users to log in. You can either create the
login page completely on your own or use the ASP.NET security controls (which
are covered in the next chapter).

• You have to maintain a catalog with user credentials.

• You have to take additional precautions against the interception of network traffic.

The following sections explore these issues. You can solve the first two of these downsides by using
the membership API framework, which offers prebuilt controls and a prebuilt schema for credential
storage and runs on SQL Server databases out of the box. You will learn about the membership API
framework in Chapter 21.

Creating Your Own Login Interface
As mentioned earlier, forms authentication gives you control over the interface that users use to log into
your web application. Along with its benefits, this approach also creates extra work, because you have to
build the login page. Other forms of authentication supply some prebuilt portions. For instance, if you’re
using Windows authentication, the browser provides a standard dialog box. In Passport authentication,
the user interface of the Passport site is always used for logging in.

Creating the login page for forms authentication doesn’t require a lot of work, though. It’s just worth
noting that forms authentication is merely a framework for building an authentication system, rather
than an all-in-one system that’s complete and ready to use.

The new membership API, on the other hand, includes a prebuilt Login control that can be used
either on a separate login page or within any page of your application that provides a prebuilt login user
interface. This user interface is customizable and communicates with the membership API to log the
user in automatically. The control does most of the work of creating custom login pages. In most cases,
creating a custom login page requires nothing more than adding an .aspx page to your solution with a
Login control on it. You don’t need to catch any events or write any code if you are fine with the default
behavior of the control (which will usually be the case). You will learn more details about this control in
Chapter 21.

Maintaining User Details
When you use forms authentication, you are responsible for maintaining the details of the users who
access your system. The most important details are the credentials that the user needs in order to log
into the system. Not only do you need to devise a way to store them, but you also need to ensure that
they are stored securely. Also, you need to provide some sort of administration tools for managing the
users stored in your custom store.

CHAPTER 20 ■ FORMS AUTHENTICATION

855

The membership API framework ships with a prebuilt schema for storing credentials in a SQL Server
database. So, you can save lots of time using this existing schema; furthermore, the schema is extensible.
Still, you are responsible for backing up the credentials store securely so that you can restore it in case of
a system failure.

All these considerations don’t apply to most other types of authentication. In Windows
authentication, user credentials are stored by the underlying operating system. Windows uses a variety
of techniques to keep them secure automatically so that you don’t need to perform any work of your
own. In Passport authentication, the credentials are stored securely on Passport servers.

Intercepting Network Traffic
When a user enters credentials for forms authentication, the credentials are sent from the browser to the
server in plain-text format. This means anyone intercepting them will be able to read them. This is
obviously an insecure situation.

The usual solution to this problem is to use SSL (as described in the previous chapter). Now, a valid
argument might be that you just need to use SSL for securing the login page, not the entire application.
You can configure forms authentication to encrypt and sign the cookie, and therefore it’s extremely
difficult for an attacker to get any information from it. In addition, the cookie should not contain any
sensitive information and therefore won’t include the password that was used for authentication.

But what if the attacker intercepts the unencrypted traffic and just picks the (already encrypted)
cookie and uses it for replay? The attacker doesn’t need to decrypt it; she just needs to send the cookie
with her own request across the wire. You can mitigate such a replay attack only if you run the entire
website with SSL.

Other authentication mechanisms don’t require this extra work. With Windows authentication, you
can use a protocol that automatically enforces a secure login process (with the caveat that this is not
supported by all browsers and all network environments). With Passport authentication, the login
process is handled transparently by the Passport servers, which always use SSL.

Why Not Implement Cookie Authentication Yourself?
Depending on the configuration you will learn about in the next sections of this chapter, forms
authentication uses cookies for assigning authentication tickets to clients and users. A more generic
term for this approach is cookie authentication. Cookie authentication is, on the surface, a fairly
straightforward system. You might wonder why you shouldn’t just implement it yourself using cookies
or session variables.

The answer is the same reason developers don’t implement features in ASP.NET ranging from
session state to the web control framework. Not only does ASP.NET save you the trouble, but it also
provides an implementation that’s secure, well tested, and extensible. Some of the advantages provided
by ASP.NET’s implementation of forms authentication include the following:

• The authentication cookie is secure.

• Forms authentication is a well-tested system.

• Forms authentication integrates with the .NET security classes.

Keeping the Authentication Cookie Secure
Cookie authentication seems simple, but if it’s not implemented correctly, you can be left with an
insecure system. On their own, cookies are not a safe place to store sensitive information, because a
malicious user can easily view and edit cookie data. If your authentication is based on unprotected
cookies, attackers can easily compromise your system.

CHAPTER 20 ■ FORMS AUTHENTICATION

856

By default, the forms authentication module encrypts its authentication information before placing
it in a cookie. It also attaches a hash code and validates the cookies when they return to the server to
verify that no changes have been made. The combination of these two processes makes these cookies
very secure and saves you from needing to write your own security code. Most examples of homemade
cookie authentication are far less secure.

Forms Authentication Is Well Tested
Forms authentication is an integral part of ASP.NET, so it has already been used in a number of web
applications and websites. Because so many people use the same system, flaws are quickly discovered,
publicized, and solved. As long as you keep up-to-date with patches, you have a high level of protection.
On the other hand, if you create your own cookie authentication system, you do not have the advantage
of this widespread testing. The first time you’ll notice a vulnerability will probably be when your system
is compromised.

Integrating with the ASP.NET Security Framework
All types of ASP.NET authentication use a consistent framework. Forms authentication is fully
integrated with this security framework. For example, it populates the security context (IPrincipal)
object and user identity (IIdentity) object, as it should. This makes it easy to customize the behavior of
forms authentication.

The Forms Authentication Classes
The most important part of the forms authentication framework is the FormsAuthenticationModule, which
is an HttpModule class that detects existing forms authentication tickets in the request. If the ticket is not
available and the user requests a protected resource, it automatically redirects the request to the login page
configured in your web.config file before this protected resource is even touched by the runtime.

If the ticket is present, the module automatically creates the security context by initializing the
HttpContext.Current.User property with a default instance of GenericPrincipal, which contains a
FormsIdentity instance with the name of the currently logged-in user. Basically, you don’t work with the
module directly. Your interface to the module consists of the classes in Table 20-1, which are part of the
System.Web.Security namespace.

Table 20-1. The Forms Authentication Framework Classes

Class Name Description

FormsAuthentication This is the primary class for interacting with the forms
authentication infrastructure. It provides basic information about
the configuration and allows you to create the ticket, set the
cookie, and redirect from the login page to the originally
requested page if the validation of credentials was successful.

FormsAuthenticationEventArgs The FormsAuthenticationModule raises an Authenticate event
that you can catch. The event arguments passed are encapsulated
in an instance of this class. It contains basic information about the
authenticated user.

FormsAuthenticationTicket This class represents the user information that will be encrypted
and stored in the authentication cookie.

CHAPTER 20 ■ FORMS AUTHENTICATION

857

Class Name Description

FormsIdentity This class is an implementation of IIdentity that is specific to
forms authentication. The key addition to the FormsIdentity class,
in addition to the members required when implementing the
IIdentity interface, is the Ticket property, which exposes the forms
authentication ticket. This allows you to store and retrieve
additional information in the ticket, such as caching role
information for simple scenarios.

FormsAuthenticationModule This is the core of the forms authentication infrastructure that
establishes the security context and performs the automatic page
redirects to the login page if necessary.

Mostly you will use the FormsAuthentication class and the FormsIdentity class, which represents a

successfully authenticated user in your application. Next you will learn how to use forms authentication
in your application.

Implementing Forms Authentication
You need to complete the following steps to use forms authentication in your application:

1. Configure forms authentication in the web.config file.

2. Configure IIS to allow anonymous access to the virtual directory, and
configure ASP.NET to restrict anonymous access to the web application.

3. Create a custom login page that collects and validates a user name and
password and then interacts with the forms authentication infrastructure for
creating the ticket.

The following sections describe these steps.

■ Note The cookie is encrypted with a machine-specific key that’s defined in the machine.config file. Usually, this

detail isn’t important. However, in a web farm you need to make sure all servers use the same key so that one

server can decrypt the cookie created by another.

Configuring Forms Authentication
You have to configure forms authentication appropriately in your web.config file. Remember from the
previous chapter that every web.config file includes the <authentication /> configuration section. Forms
authentication works if you configure this section with the value Forms for the mode attribute:

<authentication mode="Forms">
 <!-- Detailed configuration options -->
</authentication>

CHAPTER 20 ■ FORMS AUTHENTICATION

858

The <authentication /> configuration is limited to the top-level web.config file of your application. If
the mode attribute is set to Forms, ASP.NET loads and activates the FormsAuthenticationModule, which
does most of the work for you. The previous configuration uses default settings for forms authentication
that are hard-coded into the ASP.NET runtime. You can override any default settings by adding settings
to the <system.web> section of the machine.config file. You can override these default settings in your
application by specifying additional settings in the <forms /> child tag of this section. The following code
snippet shows the complete set of options for the forms tag:

<authentication mode="Forms">
 <!-- Detailed configuration options -->
 <forms name="MyCookieName"
 loginUrl="DbLogin.aspx"
 timeout="20"
 slidingExpiration="true"
 cookieless="AutoDetect"
 protection="All"
 requireSSL="false"
 enableCrossAppRedirects="false"
 defaultUrl="MyDefault.aspx"
 domain="www.mydomain.com"
 path="/" />
</authentication>

■ Note In the preceding example, the domain property is set to a value representing your domain. However,
usually when developing and debugging an application, you run your web application either on your local server or

a test server within your intranet (for example, by using the URL http://localhost:<port> when using the
integrated web development server). In that case the URL you use to access the application is different from your
actual domain. Therefore, forms authentication would not work, as it matches the name of the cookie domain with

the URL used for accessing the web server. If you need to test cross-application domain authentication, we
recommend setting the domain property to the name of your local machine or your test machine and accessing the
application by using your machine’s name instead of localhost (for example, http://your-machine-name:<port>

instead of http://localhost:<port>).

The properties are listed in the order you will use them in most cases. Table 20-2 describes the
details of these properties and their default configuration.

http://www.mydomain.com
http://localhost:
http://your-machine-name:
http://localhost:

CHAPTER 20 ■ FORMS AUTHENTICATION

859

Table 20-2. The Forms Authentication Options

Option Default Description

name .ASPXAUTH The name of the HTTP cookie to use for
authentication. If multiple applications are
running on the same web server, you should give
each application’s security cookie a unique name.

loginUrl login.aspx Defines which page the user should be redirected
to in order to log into the application. This could
be a page in the root folder of the application, or it
could be in a subdirectory.

timeout 30 The number of minutes before the authentication
cookie expires. ASP.NET will refresh the cookie
when it receives a request, as long as half of the
cookie’s lifetime has expired. The expiry of cookies
is a significant concern. If cookies expire too often,
users will have to log in often, and the usability of
your application may suffer. If they expire too
seldom, you run a greater risk of cookies being
stolen and misused.

slidingExpiration true This attribute enables or disables sliding expiration
of the authentication cookie. If enabled, the
expiration of an authentication cookie will be reset
by the runtime with every request a user submits to
the page. This means with every request the
expiration of the cookie will be extended.

cookieless UseDeviceProfile Allows you to specify whether the runtime uses
cookies for sending the forms authentication ticket
to the client. Possible options are AutoDetect,
UseCookies, UseUri, and UseDeviceProfile. These
settings are covered in detail in Table 20-3 later in
this chapter.

protection All Allows you to specify the level of protection for the
authentication cookie. The option All encrypts and
signs the authentication cookie. Other possible
options are None, Encryption (encrypts only), and
Validation (signs only).

requireSSL false If set to true, this property has the effect that the
browser simply doesn’t transmit the cookie if SSL
is not enabled on the web server. Therefore, forms
authentication will not work in this case if SSL is
not activated on the web server.

CHAPTER 20 ■ FORMS AUTHENTICATION

860

Option Default Description

enableCrossAppRedirects false Enables cross-application redirects when using
forms authentication for different applications on
your server. Of course, this makes sense only if
both applications rely on the same credential store
and use the same set of users and roles.

defaultUrl default.aspx If the FormsAuthenticationModule redirects a
request from the user to the login page, it includes
the originally requested page when calling the
login page. Therefore, when returning from the
login page, the module can use this URL for a
redirect after the credentials have been validated
successfully. But what if the user browses to the
login page directly? This option specifies the page
to redirect to if the user accesses the login page
directly by typing its URL into the address bar of
the browser.

domain <empty string> Specifies the domain for which this cookie is valid.
Overriding this property is useful if you want to
enable the cookie to be used for more applications
on your web server.

path / The path for cookies issued by the application. The
default value (/) is recommended, because case
mismatches can prevent the cookie from being
sent with a request.

As explained in Table 20-2, you can disable cookie validation and encryption. However, it’s

reasonable to wonder why you would want to remove this protection. The only case in which you might
make this choice is if you are not authenticating users for security reasons but simply identifying users
for personalization purposes. In these cases, it does not really matter if a user impersonates another
user, so you might decide that the overhead of encrypting, decrypting, and validating the authentication
cookies will adversely affect performance without offering any benefits. Think carefully before taking
this approach, however—you should use this approach only in situations where it really does not matter
if the authentication system is subverted.

Credentials Store in web.config
When using forms authentication, you have the choice of where to store credentials for the users. You
can store them in a custom file or in a database; basically, you can store them anywhere you want if you
provide the code for validating the user name and password entered by the user with the values stored in
your credential store.

The easiest place to store credentials is directly in the web.config file through the <credentials />
subelement of the <forms /> configuration tag introduced previously.

<authentication mode="Forms">
 <!-- Detailed configuration options -->
 <forms name="MyCookieName"

CHAPTER 20 ■ FORMS AUTHENTICATION

861

 loginUrl="DbLogin.aspx"
 timeout="20">
 <credentials passwordFormat="Clear">
 <user name="Admin" password="(Admin1)"/>
 <user name="Mario" password="Szpuszta"/>
 <user name="Matthew" password="MacDonald"/>
 </credentials>
 </forms>
</authentication>

■ Note First, using web.config as a credential store is possible for simple solutions with just a few users only. In
larger scenarios, you should use the membership API, which is described in Chapter 21. Second, you can hash

password values for credentials stored in the web.config file. Hashing is nothing more than applying one-way
encryption to the password. This means the password will be encrypted in a way that it can’t be decrypted
anymore. You will learn how you can hash passwords correctly when creating a custom membership provider in

Chapter 26.

Denying Access to Anonymous Users
As mentioned earlier, you do not need to restrict access to pages in order to use authentication. It is
possible to use authentication purely for personalization so that anonymous users view the same pages
as authenticated users (but see slightly different, personalized content). However, to demonstrate the
redirection functionality of forms authentication, it’s useful to create an example that denies access to
anonymous users. This will force ASP.NET to redirect anonymous users to the login page.

Chapter 23 describes authorization in detail. For now, you’ll use the simple technique of denying
access to all unauthenticated users. To do this, you must use the <authorization> element of the
web.config file to add a new authorization rule, as shown here:

<configuration>
 <system.web>
 <!-- Other settings omitted. -->
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

The question mark (?) is a wildcard character that matches all anonymous users. By including this
rule in your web.config file, you specify that anonymous users are not allowed. Every user must be
authenticated, and every user request will require the forms authentication ticket (which is a cookie). If
you request a page in the application directory now, ASP.NET will detect that the request isn’t
authenticated and attempt to redirect the request to the login page (which will probably cause an error,
unless you’ve already created this page).

CHAPTER 20 ■ FORMS AUTHENTICATION

862

■ Tip Unlike the <authentication> element, the <authorization> element is not limited to the web.config file in
the root of the web application. Instead, you can use it in any subdirectory, thereby allowing you to set different

authorization settings for different groups of pages. You’ll learn much more about authorization in Chapter 23.

Creating a Custom Login Page
Next, you have to create a custom login page. This page collects a user name and password from the user
and validates it against the credentials stored in the credential store. If credentials are stored in
web.config, this is extremely easy. However, at the same time, it is not much harder to store credentials
in any other store, such as an external database.

The login page you have to create must contain the parts shown in Figure 20-2. Furthermore, you
must include the code for validating the credentials. The ASP.NET page shown in Figure 20-2 contains
the text boxes for entering the values. Note that the URL in the address bar of the browser shown in
Figure 20-2 includes the originally requested page as a query parameter. This parameter is used by the
FormsAuthentication class later for redirecting to the originally requested page. If not present, it uses the
page configured in the defaultUrl attribute of the <forms /> configuration tag.

Figure 20-2. A typical login page for a web application

What you cannot see in Figure 20-2 are validation controls. Validation controls are especially
important to let the user enter only valid values for a user name and a password. Remember what we
mentioned in the previous chapter: never trust user input. Validation adheres to this principle by
ensuring that only valid values are entered. Here you can see all the controls contained on the
login page:

CHAPTER 20 ■ FORMS AUTHENTICATION

863

<form id="form1" runat="server">
 <div style="text-align: center">
 Please Log into the System

 <asp:Panel ID="MainPanel" runat="server" Height="90px" Width="380px"
 BorderColor="Silver" BorderStyle="Solid" BorderWidth="1px">

 <table width="100%" border="0" cellpadding="0" cellspacing="0">
 <td width="30%" style="height: 43px">
 User Name:
 <td width="70%" style="height: 43px">
 <asp:TextBox ID="UsernameText"
 runat="server" Width="80%" />
 <asp:RequiredFieldValidator
 ID="UsernameRequiredValidator" runat="server"
 ErrorMessage="*" ControlToValidate="UsernameText" />

 <asp:RegularExpressionValidator
 ID="UsernameValidator" runat="server"
 ControlToValidate="UsernameText"
 ErrorMessage="Invalid username"
 ValidationExpression="[\w|]*" />

 <td width="30%" style="height: 26px">
 Password:
 <td width="70%" style="height: 26px">
 <asp:TextBox ID="PasswordText" runat="server"
 Width="80%" TextMode="Password" />
 <asp:RequiredFieldValidator ID="PwdRequiredValidator"
 runat="server" ErrorMessage="*"
 ControlToValidate="PasswordText" />

 <asp:RegularExpressionValidator ID="PwdValidator"
 runat="server" ControlToValidate="PasswordText"
 ErrorMessage="Invalid password"
 ValidationExpression='[\w| !"§$%&/()=\-?*]*' />

 <asp:Button ID="LoginAction" runat="server"
 OnClick="LoginAction_Click" Text="Login" />

 <asp:Label ID="LegendStatus" runat="server"
 EnableViewState="false" Text="" />
 </asp:Panel>
 </div>
</form>

As mentioned previously, the validation controls serve two purposes. First, the Required-
FieldValidator controls ensure that both a user name and password are entered in a valid format
containing only the characters allowed for user names and passwords. Second, the Regular-
ExpressionValidator controls ensure that only valid values are entered in the User Name text field and in
the Password text field. For example, the user name may contain letters, digits, and spaces only.
Therefore, the validation expression looks like this:

CHAPTER 20 ■ FORMS AUTHENTICATION

864

ValidationExpression="[\w|]*"

The \w character class is equivalent to [a-zA-Z_0-9], and the space afterward allows spaces in the
user name. The password, for example, may also contain special characters. Therefore, the validation
expression looks different from the previous one, as shown here:

ValidationExpression='[\w| !"§$%&/()=\-?*]*'

Note that the single quote is used for enclosing the attribute value, because this uses the double
quote as the allowed special character. Furthermore, because the attribute is contained in the tag code
(and therefore the HTML entity), & indicates that the ampersand (&) character is allowed in the
password. You can see the validation controls in action in Figure 20-3.

As you can see in Figure 20-3, with validation controls in place you can stop users from entering
values for the user name or password that would lead to a SQL injection attack. In addition to using
parameterized SQL queries (introduced in Chapter 7 and Chapter 8), you should always use validation
controls to mitigate this type of attack in your applications.

Figure 20-3. Validation controls in action

The last step for creating the login page is to write the code for validating the credentials against
the values entered by the user. You have to add the necessary code to the Click event of the login button.
Because the following Click event is using the credentials store of the web.config file, validation is
fairly easy:

protected void LoginAction_Click(object sender, EventArgs e)
{
 Page.Validate();
 if (!Page.IsValid) return;

 if (FormsAuthentication.Authenticate(UsernameText.Text, PasswordText.Text))

CHAPTER 20 ■ FORMS AUTHENTICATION

865

 {
 // Create the ticket, add the cookie to the response,
 // and redirect to the originally requested page
 FormsAuthentication.RedirectFromLoginPage(UsernameText.Text, false);
 }
 else
 {
 // User name and password are not correct
 LegendStatus.Text = "Invalid username or password!";
 }
}

■ Note Because forms authentication uses standard HTML forms for entering credentials, the user name and

password are sent over the network as plain text. This is an obvious security risk—anyone who intercepts the
network traffic will be able to read the user names and passwords that are entered into the login form. For this
reason, it is strongly recommended that you encrypt the traffic between the browser and the server using SSL (as

described in Chapter 19), at least while the user is accessing the login page.

Furthermore, it’s important to include the Page.IsValid condition at the beginning of this procedure.
The reason for this is that validation controls by default use JavaScript for client-side validation. When
calling Page.Validate(), the validation takes place on the server. This is important for browsers that either
have JavaScript turned off or don’t support it. Therefore, if you don’t include this part, validation will not
happen if the browser doesn’t support JavaScript or doesn’t have JavaScript enabled. So, you should
always include server-side validation in your code.

The FormsAuthentication class provides two methods that are used in this example. The
Authenticate() method checks the specified user name and password against those stored in the
web.config file and returns a Boolean value indicating whether a match was found. Remember that the
methods of FormsAuthentication are static, so you do not need to create an instance of
FormsAuthentication to use them—you simply access them through the name of the class.

if (FormsAuthentication.Authenticate(UsernameText.Text, PasswordText.Text))

If a match is found for the supplied credentials, you can use the RedirectFromLoginPage() method,
as shown here:

FormsAuthentication.RedirectFromLoginPage(UsernameText.Text, false);

This method performs several tasks at once:

1. It creates an authentication ticket for the user.

2. It encrypts the information from the authentication ticket.

3. It creates a cookie to persist the encrypted ticket information.

4. It adds the cookie to the HTTP response, sending it to the client.

5. It redirects the user to the originally requested page (which is contained in the
query string parameter of the login page request’s URL).

CHAPTER 20 ■ FORMS AUTHENTICATION

866

The second parameter of RedirectFromLoginPage() indicates whether a persistent cookie should be
created. Persistent cookies are stored on the user’s hard drive and can be reused for later visits.
Persistent cookies are described in the section “Persistent Cookies in Forms Authentication” later in
this chapter.

Finally, if Authenticate() returns false, an error message is displayed on the page. Feedback such as
this is always useful. However, make sure it doesn’t compromise your security. For example, it’s all too
common for developers to create login pages that provide separate error messages depending on
whether the user has entered a user name that isn’t recognized or a correct user name with the wrong
password. This is usually not a good idea. If a malicious user is trying to guess a user name and
password, the user’s chances increase considerably if your application gives this sort of specific
feedback.

Logging Out
Logging a user out of forms authentication is as simple as calling the FormsAuthen- tication.SignOut()
method. You can create a logout button and add this code, as shown here:

protected void SignOutAction_Click(object sender, EventArgs e)
{
 FormsAuthentication.SignOut();
 FormsAuthentication.RedirectToLoginPage();
}

When you call the SignOut() method, you remove the authentication cookie. Depending on the
application, you may want to redirect the user to another page when the user logs out. If the user requests
another restricted page, the request will be redirected to the login page. You can also redirect to the login
page immediately after calling the SignOut method. Or you can use the Response.Redirect method.

■ Tip In a sophisticated application, your login page might not actually be a page at all. Instead, it might be a
separate portion of the page—either a distinct HTML frame or a separately coded user control. Using these

techniques, you can keep a login and logout control visible on every page. The membership API framework

includes ready-to-use controls for providing this type of functionality.

Hashing Passwords in web.config
Forms authentication includes the possibility of storing the password in different formats. In the
<credentials /> configuration section of the <forms /> element, the format of the password is specified
through the passwordFormat attribute, which has three valid values:

• Clear: The passwords are stored as clear text in the <user /> elements of the
<credentials /> section.

• MD5: The hashed version of the password is stored in the <user /> elements, and
the algorithm used for hashing the password is the MD5 hashing algorithm.

• SHA1: The <user /> elements in the <credentials /> section of the web.config file
contain the hashed password, and the algorithm used for hashing the password is
the SHA1 algorithm. This value is the default for the passwordFormat option.

CHAPTER 20 ■ FORMS AUTHENTICATION

867

When using the hashed version of the passwords, you have to write a tool or some code that hashes the
passwords for you and stores them in the web.config file. This could be either code such as the following,
included in some administrative applications for your web application, or a separate Windows application
for managing the users of your web application (which then needs to run on the web server). For storing
the password, you should then use the FormsAuthentica-tion.HashPasswordForStoringInConfigFile
method instead of passing in the clear-text password as follows:

string hashedPwd =
 FormsAuthentication.HashPasswordForStoringInConfigFile(
 clearTextPassword, "SHA1");

The first parameter specifies the clear-text password, and the second one specifies the hash
algorithm you should use. The result of the method call is the hashed version of the password.
This result needs to be stored in the web.config (when using web.config as a storage for your user
accounts) or can be stored in your own users database (when using a custom database for storing
user information).

If you want to modify users stored in web.config as shown previously, you have to use the
configuration API of the .NET Framework. You cannot edit this section with the web-based
configuration tool. The following code snippet shows how you can modify the section through the
configuration API. This code typically is implemented as part of an administrative application for
managing your web application, which should be available for administrators only.

Configuration MyConfig = WebConfigurationManager.OpenWebConfiguration("./");

ConfigurationSectionGroup SystemWeb = MyConfig.SectionGroups["system.web"];
AuthenticationSection AuthSec =
 (AuthenticationSection)SystemWeb.Sections["authentication"];
AuthSec.Forms.Credentials.Users.Add(
 new FormsAuthenticationUser(UsernameText.Text, PasswordText.Text));

MyConfig.Save();

To use this configuration API, you need to import the System.Web.Configuration namespace into
your application. Furthermore, you need to make sure to have a reference to the
System.Configuration.dll assembly (which is the case, by default).

Of course, only privileged users such as website administrators should be allowed to execute the
previous code, and the process executing the code must have write access to your web.config file. Also,
this sort of code should not be included in the actual web application. You should include it in an
administration application only. You will learn more about hashing passwords in Chapters 25 and 26.

Cookieless Forms Authentication
ASP.NET supports cookieless forms authentication out of the box. If you don’t want the runtime to use
cookies, you configure this through the cookieless attribute of the <forms /> tag in the <authentication
/> section:

<authentication mode="Forms">
 <!-- Detailed configuration options -->
 <forms name="MyCookieName"
 loginUrl="DbLogin.aspx"
 cookieless=“AutoDetect” />
</authentication>

CHAPTER 20 ■ FORMS AUTHENTICATION

868

The cookieless option includes the possible settings in Table 20-3.

Table 20-3. Cookieless Options in the <forms /> Configuration

Option Description
UseCookies Forces the runtime to use cookies when working with forms authentication. This

requires the client browser to support cookies. If the browser does not support
cookies, forms authentication will simply not work with that setting activated. As
it will never receive a valid authentication cookie from the browser, ASP.NET
redirects back to the login page over and over again, and you end up in an
endless loop of presented login pages.

UseUri If this configuration option is selected, cookies will not be used for
authentication. Instead, the runtime encodes the forms authentication ticket
into the request URL, and the infrastructure processes this specific portion of the
URL for establishing the security context.

AutoDetect Results in the use of cookies if the client browser supports cookies. Otherwise,
URL encoding of the ticket will be used. This is established through a probing
mechanism.

UseDeviceProfile Results in the use of cookies or URL encoding based on a device profile
configuration stored on the web server. These profiles are stored in .browser files
in the c:\[WinDir]\Microsoft.NET\Framework\[Version]\CONFIG\Browsers
directory.

Custom Credentials Store
As mentioned previously, the credential store in web.config is useful for simple scenarios only. You
won’t want to use web.config as the credential store for a number of reasons:

• Potential lack of security: Even though users aren’t able to directly request the
web.config file, you may still prefer to use a storage medium where you can secure
access more effectively. As long as this information is stored on the web server,
passwords are accessible to any administrator, developer, or tester who has
access.

• No support for adding user-specific information: For example, you might want to
store information such as addresses, credit cards, personal preferences, and so on.

• Poor performance with a large number of users: The web.config file is just a file,
and it can’t provide the efficient caching and multiuser access of a database.
Furthermore, whenever you change the web.config file, the HttpApplication is
restarted, which results in losing all AppDomains, Session state, and so on.
Reestablishing all these things affects performance.

Therefore, in most applications you will use your own custom credential store for user name and
password combinations, and mostly it will be a database such as SQL Server. In ASP.NET 1.x, you had to
implement this scenario on your own. In your login form you then had to connect to the database, verify
whether the user existed, compare the password stored in the database to the one entered by the user,
and then call FormsAuthentication.RedirectFromLoginPage if the user name and password entered by
the user were valid. The following example demonstrates this, and it assumes that you have written a
function MyAuthenticate that connects to a SQL Server database and reads the corresponding user
entry. It returns true if the entered user name and password match the ones stored in the database.

CHAPTER 20 ■ FORMS AUTHENTICATION

869

protected void LoginAction_Click(object sender, EventArgs e)
{
 Page.Validate();
 if (!Page.IsValid) return;

 if (this.MyAuthenticate(UsernameText.Text, PasswordText.Text))
 {
 FormsAuthentication.RedirectFromLoginPage(UsernameText.Text, false);
 }
 else
 {
 LegendStatus.Text = "Invalid username or password!";
 }
}

Fortunately, ASP.NET provides a ready-to-use infrastructure as well as a complete set of security-
related controls that do this for you. The membership API includes a SQL Server-based data store for
storing users and roles, and has functions for validating user names and passwords against users of this
store without knowing any details about the underlying database, as you will learn in Chapter 21. It also
includes powerful security controls, such as a ready-to-use Login control, which sits on top of the
membership API. Furthermore, this infrastructure is completely extensible through custom providers, as
you will learn in Chapter 26.

Persistent Cookies in Forms Authentication
The examples you’ve seen so far have used a nonpersistent authentication cookie to maintain the
authentication ticket between requests. This means that if the user closes the browser, the cookie is
immediately removed. This is a sensible step that ensures security. It’s particularly important with
shared computers to prevent another user from using a previous user’s ticket. Nonpersistent cookies
also make session hijacking attacks (where a malicious user gains access to the network and steals
another user’s cookie) more difficult and more limited.

Despite the increased security risks of using persistent authentication cookies, it is appropriate to
use them in certain situations. If you are performing authentication for personalization rather than for
controlling access to restricted resources, you may decide that the usability advantages of not requiring
users to log in on every visit outweigh the increased danger of unauthorized use.

Once you have decided to use persistent cookies, implementing them is easy. You simply need to
supply a value of true rather than false for the second parameter of the RedirectFromLoginPage() or
SetAuthCookie() method of the FormsAuthentication class. Here’s an example:

FormsAuthentication.RedirectFromLoginPage(UsernameText.Text,true);

Persistent cookies do not expire when the browser is closed. Like nonpersistent cookies, they do
expire when you call the FormsAuthentication.SignOut() method or when they reach the time limit set in
the timeout attribute of the <forms> element (by default, 30 minutes). This raises a potential problem. In
some applications, you might want to give users the choice of using a short-term nonpersistent cookie or
storing a long-lived persistent cookie. However, you can only set the timeout attribute to one value. The
solution is to use the GetAuthCookie() method of the FormsAuthentication class to create your
persistent cookie, set the expiry date and time by hand, and then write the persistent cookie to the HTTP
response yourself.

The following example rewrites the code that authenticates the user when the login button is
clicked. It creates a persistent cookie but performs additional steps to give the cookie a 10-day life span:

CHAPTER 20 ■ FORMS AUTHENTICATION

870

protected void LoginAction_Click(object sender, EventArgs e)
{
 Page.Validate();
 if (!Page.IsValid) return;

 if (FormsAuthentication.Authenticate(UsernameText.Text, PasswordText.Text))
 {
 // Create the authentication cookie
 HttpCookie AuthCookie;
 AuthCookie = FormsAuthentication.GetAuthCookie(
 UsernameText.Text, true);
 AuthCookie.Expires = DateTime.Now.AddDays(10);

 // Add the cookie to the response
 Response.Cookies.Add(AuthCookie);

 // Redirect to the originally requested page
 Response.Redirect(FormsAuthentication.GetRedirectUrl(
 UsernameText.Text, true));
 }
 else
 {
 // User name and password are not correct
 LegendStatus.Text = "Invalid username or password!";
 }
}

The code for checking the credentials is the same in this scenario. The only difference is that the
authentication cookie isn’t added automatically. Instead, it’s created with a call to GetAuthCookie(),
which returns a new instance of HttpCookie, as shown here:

HttpCookie AuthCookie;
AuthCookie = FormsAuthentication.GetAuthCookie(
 UsernameText.Text, true);

Once you’ve created the authentication cookie, you can retrieve the current date and time (using
the DateTime.Now static property), add ten days to it (using the DateTime.AddDays() method), and use
this value as the expiry date and time of the cookie:

AuthCookie.Expires = DateTime.Now.AddDays(10);

Next, you have to add the cookie to the HTTP response:

Response.Cookies.Add(AuthCookie);

Finally, you can redirect the user to the originally requested URL, which you can obtain by using the
GetRedirectUrl() method:

Response.Redirect(FormsAuthentication.GetRedirectUrl(
 UsernameText.Text, true));

The end result is a cookie that will persist beyond the closing of the browser but that will expire after
ten days, at which point the user will need to reenter credentials to log into the website.

CHAPTER 20 ■ FORMS AUTHENTICATION

871

IIS 7.x and Forms Authentication
IIS 7.x ships with an ASP.NET integrated mode that—among many other things—integrates the ASP.NET
HTTP processing pipeline with the IIS HTTP processing pipeline. This gives you a tremendous set of new
capabilities you can leverage with your existing ASP.NET knowledge. For example, one capability is the
possibility of using ASP.NET forms authentication for other web applications configured in IIS 7.x, which
do not necessarily need to be built with ASP.NET.

Furthermore, IIS 7.x leverages web.config files for storing many parts of its configuration for web
applications configured within the web server. That means you can configure many options of your web
application either by using the IIS 7.x management console or by directly modifying the web.config file.
Due to the tight integration of configuration features for ASP.NET and IIS 7.x, any changes made to the
web.config file directly are reflected to the management console immediately, and vice versa.

Let’s first take a look at the possibilities of configuring forms authentication from within the IIS 7.x
management console. You can configure forms authentication by using the authentication
configuration feature of the IIS 7.x management console, as you can see in Figure 20-4.

After enabling forms authentication in this way, you also need to configure the required
authorization rules. The most important one is to add a “deny” rule for all anonymous users using the
authorization configuration feature of the IIS 7.x management console, as shown in Figure 20-5.

Figure 20-4. Configuring forms authentication from the IIS 7.x management console

CHAPTER 20 ■ FORMS AUTHENTICATION

872

Figure 20-5. Denying access to all anonymous users using the IIS 7.x authorization feature

Both configuration settings affect your web.config file, and the web server takes this information
from the web.config file for its behavior as well, as you can see in the following code snippet:

<configuration>
 <!-- Other sections such as connectionStrings, etc. -->
 <system.web>
 <authentication mode="Forms">
 <forms name="MyCookieName"
 loginUrl="DbLogin.aspx"
 timeout="2" />
 </authentication>
 </system.web>
 <!-- Other configuration sections -->
 <system.webServer>
 <!-- Other modules, handlers configuration,
 but no security-related configuration according
 to configuration settings selected in Figures
 20-4 and 20-5.
 </system.webServer>
</configuration>

CHAPTER 20 ■ FORMS AUTHENTICATION

873

You will notice that IIS configured forms authentication for you as expected, in the <system.web>
section. But by default (and if you haven’t added it manually before), you won’t find any authorization
rule. As mentioned in Chapter 18, not all configuration options are directly placed in the web.config
configuration file by default. URL authorization is one of these configuration options. You will learn the
details about URL authorization in general and any IIS 7.x specifics in Chapter 23.

In any case, the unified management console is very neat, as you don’t need to configure IIS security
and ASP.NET security through different tools, and many options are stored directly in your web.config
by default. As you learned in Chapters 18 and 19, and as you will find in Chapter 23, you even can
configure IIS so that nearly all configuration options are stored directly in web.config. However, as
mentioned earlier, the ASP.NET integration gives us many more possibilities when running IIS 7.x in
ASP.NET integrated mode.

When running IIS 7.x in integrated mode (which is the default), IIS uses one HTTP processing
pipeline for processing both ASP.NET-based HTTP modules and IIS 7.x native HTTP modules. As forms
authentication is implemented as an ASP.NET HTTP module, you can use it for any web application and
virtual directory configured on IIS 7.x when running in integrated mode. That means you can even use
forms authentication together with other types of applications, such as static HTML sites, classic ASP
applications, or even PHP applications. All you need to do is configure the web application as a virtual
directory and then configure forms authentication through the IIS 7.x management console. That adds a
web.config configuration to your application automatically. You need to take care of one additional
detail, so let’s walk through configuring forms authentication for a non-ASP.NET application in this
section. Suppose you have the following classic ASP application running on your web server:

<%@ Language=VBScript %>
<html>
 <head>
 <title>Example 2</title>
 </head>
 <body>
 <%
 FirstVar = "Hello world!
"
 %>
 <%FOR i=1 TO 10%>
 <%=FirstVar%>
 <%NEXT%>
 </body>
</html>

Now just share the folder where you have stored this classic ASP page file (for example,
TestClassic.asp) as a virtual directory or web application from within IIS. Afterwards, you can configure
forms authentication and authorization settings as described earlier. As IIS 7.x natively supports forms
authentication by leveraging the HTTP forms authentication module delivered with ASP.NET, it works
the same way as it would work with an ASP.NET application itself. All you need is to make sure you have
the required login page, which on its own is an ASP.NET page. You also need the parts required by this
ASP.NET page, available within the web application (or within another virtual directory if you use cross-
application forms authentication cookies). Figure 20-6 .shows the classic ASP page together with an
ASP.NET login page in a virtual directory. Forms authentication is simply configured via the IIS 7.x
management console as outlined earlier.

CHAPTER 20 ■ FORMS AUTHENTICATION

874

Figure 20-6. ASP.NET content mixed together with classic ASP

However, just putting ASP content together with your ASP.NET-based login pages and configuring
forms authentication is not enough yet. When you try navigating to the classic ASP page, forms
authentication will not work yet. Depending on your authentication and authorization rules, you will either
get an “unauthorized” response or you will just be able to navigate to the classic ASP page without being
prompted for login (you will learn more about authorization rules and their behavior in Chapter 23).

The reason for that is that by default, managed HTTP modules such as the forms authentication
module are configured so that they are only executed for requests to ASP.NET-based code. Therefore, to
make forms authentication work you need to change this behavior by selecting the HTTP Modules
configuration feature of the IIS 7.x management console while having your web application selected.
Then, open the details for the FormsAuthentication module configured in the list of modules, as shown
in Figure 20-7 and Figure 20-8.

After you have opened the HTTP Modules configuration feature, you need to find the
FormsAuthentication entry and double-click it, or select the Edit link from the task pane on the right
border of the management console. In the settings dialog that opens, you just need to disable the option
Invoke Only for Requests to ASP.NET Applications or Managed Handlers, as shown in Figure 20-8.

After having completed this configuration when accessing the classic ASP page in your web
application directory, the request is authenticated by using ASP.NET forms authentication. The
web.config of your web application then looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms cookieless="UseCookies" loginUrl="dblogin.aspx" />
 </authentication>
 <authorization>

CHAPTER 20 ■ FORMS AUTHENTICATION

875

 <deny users="?" />
 </authorization>
 </system.web>
 <system.webServer>
 <modules>
 <remove name="FormsAuthentication" />
 <add name="FormsAuthentication"
 type="System.Web.Security.FormsAuthenticationModule"
 preCondition="" />
 </modules>
 </system.webServer>
 <connectionStrings>
 <add connectionString="..." name="..." />
 </connectionStrings>
</configuration>

Figure 20-7. Selecting the HTTP Modules configuration feature in your web application

CHAPTER 20 ■ FORMS AUTHENTICATION

876

Figure 20-8. Configuration details of the FormsAuthenticationModule

The configuration of the FormsAuthenticationModule is important. The check mark you configured
according to Figure 20-8 manifests itself in the setting preCondition="", which by default is set to
managedHandler.

In general, you can use this way to leverage powerful ASP.NET features, such as forms
authentication or even the membership API introduced in Chapter 21, with all your web applications
configured on your IIS 7.x-based web server.

Summary
In this chapter, you learned how to use forms authentication to implement authentication systems that
simplify life and provide a great deal of flexibility. You also learned how to protect passwords, and how
you can use any data source for credential storage. In the next chapter, you’ll learn about the new
features that are built on top of forms authentication and that make it even easier to create login pages
and deal with user authentication without writing all the code yourself.
Finally, you learned about how IIS 7.x allows you to configure forms authentication and the necessary
simple authorization rules directly from within the management console of IIS 7.x. The most interesting
part is that you can leverage ASP.NET-based forms authentication across all of your web applications on
the web server—independent from the platform they are developed with. You learned how you can
leverage the IIS 7.x integrated mode to use forms authentication with other web applications based on
static HTML pages, classic ASP, or even PHP. This is a powerful technology and a huge improvement
compared to older versions of IIS.

C H A P T E R 21

■ ■ ■

877

Membership

On one hand, forms authentication solves the critical fundamentals for implementing secure, custom
login forms for your ASP.NET applications. On the other hand, the tasks you have to accomplish for
implementing the login forms and communicating with the underlying credential store are almost
always the same for every web application, and they’re tedious. You should keep in mind one more
point: forms authentication provides the infrastructure for authenticating users only. If you are using a
custom credentials store, you have to write administration applications for managing users, which need
to implement functionality for adding users, removing users, resetting passwords, and much more.
Implementing such functionality is fairly similar for every web application and gets boring quickly.

To address this issue, ASP.NET 2.0 added a feature called the membership API, which remains
essentially unchanged in ASP.NET 4. The membership API is a framework based on top of the existing
forms authentication infrastructure. When using the membership API, you even don’t need to
implement login pages or credential storage. In this chapter, you will learn about the details of the
membership API.

Introducing the ASP.NET Membership API
The membership API framework provides you with a complete set of user management functions out of
the box:

• The ability to create and delete users either programmatically or through the
ASP.NET web configuration utility.

• The ability to reset passwords, with the possibility of automatically sending
password reset e-mails to the users if an e-mail address is stored for the
affected user.

• The ability to automatically generate passwords for users if these users are created
programmatically in the background. Of course, these passwords can be sent to
these users automatically if e-mail addresses are available for them.

• The ability to find users in the underlying data store as well as retrieve lists of users
and details for every user. This is necessary for typical management tasks, such
as assigning users to roles through a management user interface, or for simple
things such as creating statistics about how many users are leveraging your
website’s offerings.

• A set of prebuilt controls for creating login pages and registration pages and for
displaying login states and different views for authenticated and unauthenticated
users.

CHAPTER 21 ■ MEMBERSHIP

878

• A layer of abstraction for your application so that the application has no
dependency on the underlying data store through membership provider classes.
Any functionality listed until now therefore works completely independently from
the underlying data store, and the data store can be replaced with other types of
data stores without needing to modify the application at all. By default, the
membership API leverages a SQL Server Express database for storing user and role
information.

Figure 21-1 shows the fundamental architecture of the membership API, which consists of
providers, an API, and controls for creating appropriate user interfaces.

Figure 21-1. Architecture of the membership API

The membership API is designed to work completely independently from its underlying data store.
You, as the application developer, primarily work with the controls provided by ASP.NET as well as the
Membership class. The Membership class provides you with a set of static methods and static properties
for programmatically accessing users and roles of the store. These methods work with a membership
provider. This provider implements the access to the underlying data store. All membership API-related
classes are placed in the System.Web.Security namespace. Table 21-1 lists and describes these classes.

CHAPTER 21 ■ MEMBERSHIP

879

Table 21-1. The Membership API-Related Classes of the System.Web.Security Namespace

Component Description

Membership The Membership class is the primary point of interaction with
the membership API. It provides methods for managing
users, validating users, and resetting user passwords.

MembershipCreateUserException An exception is thrown if an error occurs when you try to
create a user through the Membership class.

MembershipUser Represents a single user stored in a membership API
credential store. This object contains all information about
this user and is returned through several methods of the
Membership class, such as GetUser.

MembershipUserCollection A collection of membership users. For example, the
GetAllUsers method of the Membership class returns an
instance of this collection.

MembershipProvider This is the base class that you derive from if you want to
create a custom membership provider that authenticates
users against your custom credential store.

MembershipProviderCollection A collection of available membership providers on the
machine and for this web application.

SqlMembershipProvider An implementation of the MembershipProvider class that
works with SQL Server databases.

ActiveDirectoryMembershipProvider An implementation of the MembershipProvider class that
works with Active Directory.

ActiveDirectoryMembershipUser This class inherits all the functionality from Membership-
User and adds some Active Directory-specific properties.

ASP.NET ships with a membership provider for SQL Server and Active Directory (which enables you
to create custom login pages for users stored in Active Directory). But the idea of providers is that they
give you the ability to completely extend the infrastructure. Therefore, you can write your own
membership provider, which is a class that inherits from System.Web.Security.MembershipProvider.
You configure membership providers primarily through your web.config configuration file, which
includes a <membership /> section. You will learn more about custom membership providers in
Chapter 26.

CHAPTER 21 ■ MEMBERSHIP

880

■ Note Although the membership API supports Active Directory as a provider, there is still a big difference
between using Windows authentication and using the membership API for authenticating users in your web
application. When you configure your application to use membership APIs, which are based on forms

authentication, credentials are sent as clear text across the line (except you should use SSL), and a forms
authentication ticket is used for authentication, as you learned in the previous chapter. On the other hand, when
configuring Windows authentication, the user is authenticated either through NTLM or through Kerberos (in the

case of Windows Server domains). Both methods are much more secure, because credentials are never sent

across the line.

■ Note In Table 21-1, you will find a dedicated class called ActiveDirectoryMembershipUser that is used in
conjunction with the ActiveDirectoryMembershipProvider. However, you won’t find a class called

SqlMembershipProviderUser, which means that the SqlMembershipProvider uses the base class MembershipUser
for representing users. This is simply because the Active Directory provider version extends the MembershipUser
class with a number of Active Directory-specific attributes that are available for AD-based users. There are no

such specific properties available for the SqlMembershipProvider; therefore, creating a separate

SqlMembershipUser class is simply unnecessary.

The membership API is just used for managing and authenticating users. It does not implement any
authorization functionality and doesn’t provide you with functionality for managing user roles. For this
purpose, you have to use the roles API. You will learn more about authorization and the role
management functionality in Chapter 23.

Using the Membership API
Before you can use the ASP.NET membership API and the security controls of ASP.NET, you have to
complete a couple of steps:

1. Configure forms authentication in your web.config file as usual, and deny
access to anonymous users.

2. Set up the membership data store. For example, if you are using SQL Server,
you have to create a couple of tables and stored procedures in a SQL Server
database of your choice.

3. Configure the database connection string and the membership provider you
want to use in the application’s web.config file.

4. Create users in your membership store using the ASP.NET web configuration
utility or using a custom administration page that you can implement in your
web application using the membership API functions.

CHAPTER 21 ■ MEMBERSHIP

881

5. Create a login page that uses the prebuilt Login control, or create a login page
that uses the Membership class for validating the entered credentials and
authenticating the user.

You can perform every configuration step except the provider configuration through the ASP.NET
WAT, which includes a security wizard. Just select the Web Site ➤ ASP.NET Configuration menu from
within Visual Studio. Figure 21-2 shows the WAT.

If you are using ASP.NET on a machine with SQL Server Express Edition, you don’t even need to set
up a data store and configure a membership provider. Just launch the security wizard in the WAT, as
shown in Figure 21-2, and start by adding users to your membership storage. The required underlying
data store will be created automatically for you when you create the first user. It will be created
automatically even if you programmatically access the membership store, because this functionality is
provided through the SqlMembershipProvider. However, be aware that this only works with the SQL
Server Express Edition! If you are using one of the other SQL Server editions, then you need to configure
your data store manually, as described later in the section “Creating the Data Store.”

When using SQL Server Express Edition, the SqlMembershipProvider automatically creates a new
database in the website’s App_Data special directory called ASPNETDB.MDB. This database implements
the complete schema, which is necessary for storing and managing user information, role information,
user-role assignments, or even more, such as personalization and user profiles. You’ll learn about this
database in Chapters 24 and 30.

Figure 21-2. Setting up security in the WAT

CHAPTER 21 ■ MEMBERSHIP

882

If you want to use your own database for storing user information and role information instead of
this automatically created one, you have to configure the membership provider and connection
information for the provider before you launch the security wizard in the WAT. You will learn more
about the configuration steps and how the membership API works behind the scenes in the next
sections of this chapter.

Configuring Forms Authentication
The membership API is based on top of forms authentication and provides you with an out-of-the-box
infrastructure for managing and authenticating users. Therefore, as the first step, you have to configure
your application for forms authentication as usual. But you will structure the solution a little bit
differently this time. Often, the root directory of the web application grants access to anonymous users,
while restricted resources are stored in subdirectories with restricted access. These subdirectories have
their own web.config file that denies access to anonymous users. As soon as someone tries to access
resources stored in this secured directory, the ASP.NET runtime automatically redirects the user to the
login page. Typically, the root directory, which is accessible to anonymous users, includes features such
as a login page and a registration page. You can see the structure of the web application in Figure 21-3,
which displays the Solution Explorer of an already structured Visual Studio project.

Figure 21-3. The folder and file structure of a web application with a secured area

Therefore, in the root directory of the web application, you just configure forms authentication by
including the following:

<system.web>
 <authentication mode="Forms" />
</system.web>

As you can see, this configuration specifies forms authentication and allows anonymous access to
the pages. In the secured subdirectory, you add an extra web.config file with the following contents:

<configuration>
 <system.web>
 <authorization>
 <deny users="?" />

CHAPTER 21 ■ MEMBERSHIP

883

 </authorization>
 </system.web>
</configuration>

This configuration denies any anonymous user access to the website’s secured subfolder. If
someone who is not authenticated tries to access resources placed in this directory, the ASP.NET run-
time automatically redirects the user to the (publicly available) login page. Of course, you have to create
the login page on your own, but it’s much easier and much less work with the membership API, as you
will see when you learn about the Login control in the section “Using the Security Controls.”

Creating the Data Store
When using the membership API, you have to set up a data store that will be used by your membership
provider. As mentioned earlier, when using SQL Server Express Edition in conjunction with ASP.NET,
the SqlMembershipProvider is able to create this storage automatically for you. However, when using
any other edition of SQL Server, you have to create this data storage manually. There are some other
reasons for not using these auto-attached, file-based databases: performance and concurrency. Let’s
give you some background. SQL Server Express Edition can leverage databases in two ways. The first way
is the classic way, which means you create or attach a database to the SQL Server Service as you are used
to from previous versions. SQL Server then has full control over the database and is able to provide this
database to multiple applications and multiple users concurrently. The second mode in which SQL
Server Express Edition can be used is a file-based mode. This means your application can access a SQL
Server database file directly without attaching it to your SQL Server instance. SQL Server dynamically
attaches and detaches the database to the locally running SQL Server Express Edition whenever data
from the database is needed. Therefore, the database file is just locked for a short amount of time
(compared to attached databases, which are locked by SQL Server all the time when the SQL Server
service is running). That makes copying the database file easy, as it is not locked (for example, if you
want to copy changes you’ve made to a deployment location, and so on). However, at the same time, it
requires some additional performance overhead when accessing the file-based database, as it needs to
be attached automatically. Furthermore, for the time the database is attached for a dedicated
application, no other application has access to it, as it is locked for the currently active application. The
file-based mode is neat for Windows-based client applications that are using SQL Server Express Edition
on the client as some kind of client-based storage, where one user and one application are accessing the
database at the same time. It is nice for development purposes as well, as you do not need to manage
databases for all projects in your SQL Server installation through Management Studio. However, this
option is not well suited for production environments where multiple users of your (and maybe other)
web application(s) access contents of the database.

Therefore, for production environments we recommend manual creation of the membership
database as described in this section. In the case of the SqlMembershipProvider, creating such a data
storage means creating a SQL Server database and a number of tables and stored procedures in this
database. ASP.NET ships with a number of SQL scripts that allow you to manually create the necessary
database and database tables required for storing user and role information used by the membership
API. However, ASP.NET also ships with a tool that creates these database tables and stored procedures in
a database of your choice for you. This tool is called aspnet_regsql.exe, and you can easily call it from
within a Visual Studio Command Prompt window. In the case of a custom provider, you have to prepare
and configure the data store used by the custom provider according to the custom provider’s
documentation and requirements.

You can use the aspnet_regsql.exe tool in two ways: either through a wizard interface or through the
command line using dedicated command-line switches. In any case, you should launch the tool from a
Visual Studio Command Prompt window, as it includes the necessary path information to the .NET
Framework directory containing the necessary tools. If you just launch the tool without any parameters,
the tool fires up the wizard interface that guides you through the process of creating a database, as
shown in Figure 21-4. In Figure 21-4 you are creating the database in a SQL Server Express Edition.

CHAPTER 21 ■ MEMBERSHIP

884

Therefore, you manually add the \SQLEXPRESS post-fix to the (local) machine identifier for identifying
the named instance SQLEXPRESS. That means your new database gets created in the SQL Server
instance named SQLEXPRESS. Also note that it gets created as a full-blown, attached database (rather
than the file-based version that gets created automatically). So, this would be the way you would create
the database manually for the full edition of SQL Server: you just would either skip the instance name (in
this case, SQLEXPRESS) or use your own instance name. You have the option of choosing an instance
name for your SQL Server when installing SQL Server on your target machine.

The wizard provides you with the option of either creating the necessary database or removing the
tables from an existing database. If you select the <default> option for the database, it looks for a
database called aspnetdb on the server you have specified. If it doesn’t exist already, aspnet_regsql.exe
creates this database and creates the tables in this database. If the tables already exist in the target
database, the wizard leaves them as they are.

As already mentioned, you can use the aspnet_regsql.exe tool from the command line as well.
Actually, that’s a good way to automate your application’s setup—just call this tool from the command
line and automatically set up the ASP.NET database tables required by your application. For example, to
set up the membership API database tables, you can execute the following command:

aspnet_regsql -S (local)\SQLEXPRESS -E -A all -d MyDatabase

Figure 21-4. The apsnet_regsql.exe wizard user interface

CHAPTER 21 ■ MEMBERSHIP

885

Figure 21-5 shows the result of executing this command. Again, note that you are working against a
local SQL Server instance called SQLEXPRESS (which is the SQL Server Express Edition installed on your
machine). However, as you are creating a full-blown, attached database here, this would work with any
version and edition of SQL Server. On a default installation of the full-blown SQL Server edition
(Standard or Enterprise Edition), you would just skip the instance name (\SQLEXPRESS), or use the
instance name you specified during the installation of your SQL Server, instead.

Figure 21-5. Executing aspnet_regsql.exe for installing the database

Table 21-2 describes the most important command-line switches of the aspnet_regsql.exe tool
needed for the membership API and related ASP.NET application services.

Table 21-2. Command-Line Switches of aspnet_regsql.exe

Switch Description

-S servername Specifies the SQL Server and instance for which you want to install the ASP.NET
database tables. You can use SQL Server 7.0 or newer as an under- lying storage for
the membership API.

-U username The SQL Server database user with which you want to connect to SQL Server. This
is required if you do not want to use Windows authentication to connect only to
SQL Server.

-P password If the -U switch is specified, you need to specify the password switch as well. This is
required if you do not want to use Windows authentication to connect only to SQL
Server.

CHAPTER 21 ■ MEMBERSHIP

886

Switch Description

-E If you don’t specify -U and -P, you automatically connect through Windows
authentication to the SQL Server instance specified in -S. With -E, you can
explicitly specify to connect through Windows authentication to the SQL Server.

-C Allows you to specify a full-fledged ODBC or OLEDB connection string for
connecting to the database.

-sqlexportonly Creates the SQL scripts for adding or removing the specified features to the
database without installing them on a dedicated SQL Server instance.

-A Installs application services. The valid options for this switch are all, m, r, p, c, and
w. The command in the previous example used the option all for installing all
application services; m is dedicated to membership. r means role services, p means
ASP.NET profiles for supporting user profiles, c stands for personalization of web
part pages, and finally, w means SQL web event provider.

-R Uninstalls application services. This switch supports the same option as -A and
uninstalls the corresponding database tables for the application services.

-d Lets you optionally specify the name of the database into which you want to install
the application services. If you don’t specify this parameter, a database named
aspnetdb is created automatically (as is the case with the <default> option for the
database in the wizard interface).

The aspnet_regsql.exe tool contains a couple of additional switches for installing SQL Server-based

session state as well as for configuring the SQL cache dependency. For session state, please refer to
Chapter 6. You will learn more about caching and cache dependencies in Chapter 11.

Database Scripts for ASP.NET Services
The aspnet_regsql.exe tool executes a couple of scripts for creating (or dropping) the membership-
related database and database tables. These scripts ship with the .NET Framework; you can find them in
the .NET Framework directory, as shown in Figure 21-6.

Two types of scripts exist: InstallXXX and the corresponding UninstallXXX scripts. When an
InstallXXX script installs a set of database tables such as the set needed for the membership API, the
corresponding UninstallXXX script drops the same tables and databases. Table 21-3 describes some of
the SQL scripts included with the .NET Framework.

CHAPTER 21 ■ MEMBERSHIP

887

Figure 21-6. The SQL scripts for installing and uninstalling SQL databases

Table 21-3. Membership API Installation Scripts

Script Description

InstallCommon.sql Installs some common tables and stored procedures necessary for both
the membership and roles APIs. This includes tables for identifying
ASP.NET applications that use other ASP.NET features, such as the
membership API, role service, or personalization.

InstallMembership.sql Installs the database tables, stored procedures, and triggers used by the
membership API. This includes tables for users, additional user
properties, and stored procedures for accessing this information.

InstallRoles.sql Installs all database tables and stored procedures required for
associating users with application roles. These roles will be used for
authorization, as you will learn in Chapter 23.

InstallPersonalization.sql Contains DDL for creating any table and stored procedure required for
creating personalized portal applications with web parts. You will learn
more about web part pages in Chapter 31.

CHAPTER 21 ■ MEMBERSHIP

888

Script Description

InstallProfile.sql Creates all the necessary tables and stored procedures for supporting
ASP.NET user profiles.

InstallSqlState.sql Installs tables for persistent session state in the TEMP database of SQL
Server. That means every time the SQL Server service is shut down, the
session state gets lost.

InstallPersistSqlState.sql Installs tables for persistent session state in a separate ASPState
database. That means the state stays alive even if the SQL Server service
gets restarted.

If you do not want to use aspnet_regsql.exe or you cannot use aspnet_regsql.exe, you can execute

these scripts by either using the sqlcmd.exe command-line tool. For example, to install the common
database tables on a SQL Server Express Edition, you can execute the following command:

sqlcmd -S (local)\SQLExpress -E -i InstallCommon.sql

Remember that you do not need to execute these scripts if you are using aspnet_regsql.exe, as it
executes these SQL scripts for you. We recommend using aspnet_regsql.exe whenever possible, and
explain this way only for situations where you cannot use aspnet_regsql.exe for some reason (whatever
that reason might be—IT policy, SQL script customization, or inclusion of the standard SQL scripts in
your own SQL scripts you use for deploying your application. But instead of including these SQL scripts
in your own SQL deployment scripts, we recommend including either custom code or batch files in your
deployment packages for calling aspnet_regsql.exe manually, as well).

The -S switch specifies the server and instance name for the target SQL Server. Usually you will not
use an instance name (which is specified after the \), but SQL Server Express Edition will be installed as a
named instance so that you can install more versions and instances of SQL Server on the same machine.
Remember that for SQL Server Express Edition, you have to specify the instance name, which is
SQLExpress by default. With the -E switch, you specify to access SQL Server through Windows
authentication, and finally through the -i switch you can specify the input SQL script that should be
executed. Figure 21-7 shows the result of executing the previous command.

CHAPTER 21 ■ MEMBERSHIP

889

Figure 21-7. Installing ASP.NET database tables on SQL Server Express

Don’t be confused by the error messages. Because the command was executed by the administrator,
the error messages appear because you cannot grant, revoke, or deny permissions to the system
administrator (sa, db owner, or system—the administrator owns all these permissions).

File-Based SQL Server Store
SQL Server Express Edition supports a file-only database mode that allows you to access SQL Server
databases directly through their MDF files without creating or attaching them in a SQL Server instance—
as explained briefly earlier in this chapter. With this feature it is possible to just copy the application’s
database file with the application files onto the target server and run the application. The SQL Server
provider then uses a connection string that accesses the database file directly. SQL Server automatically
attaches the database (temporarily) and allows you to access it directly through the file without any
additional configuration steps. The only prerequisite is that SQL Server Express Edition is installed on
the target machine. Also remember that file-based mode works only with the Express Edition. The large
editions do not support this mode (as it typically is not practicable for highly scalable production
environments).

These database files are located in the special App_Data subdirectory of the application. When
running ASP.NET with the default configuration, this file will be created automatically for you. But what
causes the file to be created for you? Well, the answer is simple: when a feature that requires a specific
type of functionality is used for the first time, the provider automatically creates the database file with
the necessary contents. Therefore, when you first run the security wizard of the web-based
administration tool WAT you saw previously, the database will be created automatically when you create
the first user. This functionality is provided by the SqlMembershipProvider class. (The actual
implementation is also included in a utility class used by all SQL provider classes, such as the

CHAPTER 21 ■ MEMBERSHIP

890

SqlRoleProvider.) Remember that we do not recommend this mode for production environments, as it
has some performance and concurrency drawbacks explained in the section “Creating the Data Store”
earlier in this chapter.

Configuring Connection String and Membership Provider
With the default configuration and SQL Server Express Edition installed, you don’t have to prepare the
data store and configure a membership provider, because the ASP.NET runtime uses the file-based SQL
Server provider and automatically creates the database file for you. When having no SQL Server Express
Edition installed, you need to create the storage manually, as outlined in the preceding section, and
configure the provider of the membership API as outlined in this section. Remember that a membership
provider should be configured at the root web.config file of your web application (meaning the
web.config that is placed in the root directory within your web application). That means the following
configuration happens in the root web.config, and not in a web.config in a subdirectory of your website,
as it affects the whole web application!

But if you want to use your own SQL Server database, or even your custom membership provider
and store, you have to configure the provider as well as the connection string to the membership store
database appropriately. For this purpose, you have to touch the web.config file directly or edit the
configuration through the IIS MMC snap-in if you are running your application on IIS.

In the case of using SQL Server storage (or other database-based storage), you have to configure the
connection string as your first step. You can do this through the <connectionStrings /> section of the
web.config file. For example, if you want to use a local database called MyDatabase where you have
installed the database tables through the aspnet_regsql.exe tool as shown previously, you have to
configure the connection string as follows (remember, the <connectionStrings /> section is located
directly below the <configuration /> element):

<connectionStrings>
 <add name="MyMembershipConnString"
 connectionString="data source=(local)\SQLEXPRESS;
 Integrated Security=SSPI;
 initial catalog=MyDatabase" />
</connectionStrings>

After you have configured the connection string for your custom membership storage, you must
configure the membership provider for the application. For this purpose, you have to add the
<membership> section to your web.config file (if it’s not already there) below the <system.web> section,
as follows (again in your root web.config as outlined at the beginning of this section—a rule of thumb is
that provider configurations are always placed in the root web.config, as they affect the whole web
application):

<system.web>

 <authentication mode="Forms" />

 <membership defaultProvider="MyMembershipProvider">
 <providers>
 <add name="MyMembershipProvider"
 connectionStringName="MyMembershipConnString"
 applicationName="MyMembership"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"

CHAPTER 21 ■ MEMBERSHIP

891

 requiresUniqueEmail="true"
 passwordFormat="Hashed"
 type="System.Web.Security.SqlMembershipProvider" />
 </providers>
 </membership>

</system.web>

Within the <membership> section, you can add multiple providers as child elements of the
<providers> section. In the previous code, you can see a valid configuration for the included
SqlMembershipProvider. It’s important not to forget about the defaultProvider attribute on the
<membership> element. This attribute indicates the membership provider that your application will
use. Configured providers are shown in the ASP.NET web configuration when selecting the option Select
a Different Provider for Each Feature in the provider configuration. This enables you selecting a separate
provider for each feature as shown in Figure 21-8.

Figure 21-8. The configured provider selected in the WAT

CHAPTER 21 ■ MEMBERSHIP

892

Table 21-4 describes the most important properties you can configure for the
SqlMembershipProvider.

Table 21-4. The SqlMembershipProvider’s Properties

Property Description

name Specifies a name for the membership provider. You can choose
any name you want. You can use this name later for referencing
the provider when programmatically accessing the list of
configured membership providers. Furthermore, the WAT will
use this name to display the provider.

applicationName String value of your choice that specifies the name of the
application for which the membership provider manages users
and their settings. This setting allows you to use one
membership database for multiple applications. Users and roles
are always associated with an application. If you do not specify
an application name, a root application name called “/” will be
used automatically. More details are outlined after the table.

description An optional description for the membership provider.

passwordFormat Gets or sets the format in which passwords will be stored in the
underlying credential store. Valid options are Clear for clear-text
password storage, Encrypted for encrypting passwords in the
data store (uses the locally configured machine key for
encryption), and Hashed for hashing passwords stored in the
underlying membership store.

minRequiredNonalphanumeric
Characters

Specifies the number of nonalphanumeric characters the
password needs to have. This is an important part for the
validation of the password and enables you to specify strength
requirements for the passwords used by your users.

minRequiredPasswordLength Allows you to specify the minimum length of passwords for users
of your application. This is also an important property for
specifying password strength properties.

passwordStrengthRegular
Expression

If the previously mentioned properties are not sufficient for
specifying password strength conditions, then you can use a
regular expression for specifying the format of valid passwords.
With this option you are completely flexible in terms of
specifying password format criteria.

enablePasswordReset The membership API contains functionality for resetting a user’s
password and optionally sending an e-mail if an SMTP server is
configured for the application.

enablePasswordRetrieval When set to true, you can retrieve the password of a
MembershipUser object by calling its GetPassword method. Of
course, this works only if the password is not hashed.

CHAPTER 21 ■ MEMBERSHIP

893

Property Description

maxInvalidPasswordAttempts Specifies the number of invalid validation attempts before the
user gets locked. The default value of this setting is 5. In many
cases, you’ll likely want to set this to a lower level depending on
your security policy.

passwordAttemptWindow Here you can set the number of minutes in which a maximum
number of invalid password or password question-answer
attempts are allowed before the user is completely locked out
from the application. In that case, the user gets locked out, so the
administrator must activate the account again. Again, the default
value is ten minutes. Depending on your security policies, you
might want to lower or raise the value.

requiresQuestionAndAnswer Specifies whether the password question with an answer is
required for this application. This question can be used if the
user has forgotten his password. With the answer he gets the
possibility of retrieving an automatically generated, new
password via e-mail.

requiresUniqueEmail Specifies whether e-mail addresses must be unique for every user
in the underlying membership store.

Now, after you have set up the data store and configured the membership provider, you can use
your configuration in your application, or for example, by creating users through the WAT. There is just
one last important thing you have to bear in mind: the effects of the applicationName property of the
membership configuration. You can use one membership provider database for more than one
application by leveraging this property. Every user, role, profile—actually, any object in the membership
database—is connected to an application entry. If you don’t specify an applicationName property in the
membership configuration, the API (and therefore any administration tool such as WAT) associates
objects to the root application with the “/” name. If you specify the applicationName property in the
membership provider configuration, any object created by the membership API will be associated with
an application specified with the name. Validation of credentials through the Login control (as outlined
in the section “Using the Security Controls”) or through the membership API (as you will learn in the
section “Using the Membership Class”) works only against objects associated with the application
configured in the applicationName property. That means if you configure your membership provider
with the application name TestApp and you try to log in, the membership API (and therefore any
controls sitting on top of it) will validate user names and passwords only against users associated
with the application entry TestApp—even if users with the same name and password exist in the
database, associated with other applications. This can be a little pitfall when switching from test
configuration to production system and changing the applicationName property but using the same
membership database.

Creating and Authenticating Users
To create new users in your previously created membership provider store, launch the WAT by selecting
the Website ➤ ASP.NET Web Configuration menu from within Visual Studio. Now switch to the Security
tab, and select Create User, as shown in Figure 21-9.

CHAPTER 21 ■ MEMBERSHIP

894

Figure 21-9. Creating users with the WAT

After you have created a couple of users, you can connect to the database through Visual Studio’s
Server Explorer (which requires you to add a database connection in Server Explorer to your
membership database) or with the SQL Server Management Studio, and look at the aspnet_Users and
aspnet_Membership tables in the database, as shown in Figure 21-10.

CHAPTER 21 ■ MEMBERSHIP

895

Figure 21-10. The aspnet_Users table in the membership database

Both the password and the answer for the password question are stored as a salted hash in the
database because you have selected the passwordFormat="Hashed" option for the provider in the
<membership> configuration section. You can see this when opening the aspnet_Membership table
where these values are stored as you can see in Figure 21-11.

CHAPTER 21 ■ MEMBERSHIP

896

Figure 21-11. The aspnet_Membership table with the password-hash and salt values

After you have added users to the membership store, you can authenticate those users with the
membership API. For that purpose, you have to create a login page that queries the user name and
password from the user and then validates those credentials against the credential store, as follows:

protected void LoginAction_Click(object sender, EventArgs e)
{
 if (Membership.ValidateUser(UsernameText.Text, PasswordText.Text))
 {
 FormsAuthentication.RedirectFromLoginPage(UsernameText.Text, false);
 }
 else
 {
 LegendStatus.Text = "Invalid user name or password!";
 }
}

You don’t need to know which provider is actually used by the application. If you want to use a
different membership provider, you just need to change the configuration so that the membership API
uses this different provider. Your application doesn’t know about any details of the underlying provider.
Furthermore, in the next section you will learn about the new security controls. You will see that you
don’t need to create the controls for the login page manually anymore.

CHAPTER 21 ■ MEMBERSHIP

897

Using the Security Controls
Now, after you have prepared your provider and storage for user information, you can start building the
user interfaces for authenticating users, registering users, or giving users the chance of resetting their
passwords. All these purposes require building some ASP.NET pages (such as login.aspx, as was
necessary with forms authentication, introduced in the previous chapter).

ASP.NET ships with several controls you can use in your ASP.NET pages that simplify the process of
creating login pages, for example, as well as other related pages (for example, registering users, resetting
passwords using password question and answer combinations, and so on). In this section, you will learn
more about these security controls included with ASP.NET. These security controls rely on the
underlying forms authentication and the membership API infrastructure. Table 21-5 describes the
security controls that ship with ASP.NET and summarizes their typical usage scenarios. We’ve also
included some hints where these controls are typically used. However, these are just recommendations.
You can use these controls on any ASP.NET page in your web application.

Table 21-5. The New ASP.NET Security Controls

Control Primary Purpose

Login The Login control is a composite control that solves the most common task
for forms authentication-based applications—displaying a user name and
password text box with a login button. Furthermore, if events are caught
through custom event procedures, it automatically validates the user against
the default membership provider. This control is typically placed on a
login.aspx page used for forms authentication. However, you can place it on
any page where you want to allow users to sign in to your website.

LoginStatus The login status is a simple control that validates the authentication state of
the current session. If the user is not authenticated, it offers a login button
that redirects to the configured login page. Otherwise, it displays a sign-out
button for the possibility of logging off. This control encapsulates behavior
that should typically be available on all your pages. Therefore, placing it on a
master page is very useful. However, you can use it on any page where you
think displaying the login status with direct links to a login page or for signing
out is useful for your users.

LoginView This is really a powerful control that allows you to display different sets of
controls for authenticated and unauthenticated users. Furthermore, it allows
you to display different controls for users who are in different roles, as you will
see in Chapter 23. This control is typically placed on content pages, as it
displays contents of your website depending on the user currently working
with a web page.

PasswordRecovery This allows the user to retrieve the password if the user has provided an e-
mail address during registration. It requests the user name from the user and
then automatically displays a user interface that displays the password
question and requests the appropriate answer from the user. If the answer is
correct, it uses the membership API to send the password to the user.
Typically, you put this control on a separate page in your website, which
allows the user to reset the password. This page can be referred from the login
page, for example, as you will see later in this chapter.

CHAPTER 21 ■ MEMBERSHIP

898

Control Primary Purpose

ChangePassword This control is a composite control that requests the old password from the
user and lets the user enter a new password, including the password
confirmation. Again, you usually put this on a separate ASP.NET page, which
allows the user to change his password.

CreateUserWizard Includes a complete wizard that guides the user (or an administrator) through
the process of creating a user. This control is typically placed on a separate
ASP.NET page in your website, which allows users to register themselves on
your website.

You can use these controls with any other control. For example, you can use the Login control either

on your main page or on a separate login page. Every control works in the same way: if you don’t handle
any custom events, all these controls work with the membership API by default. As soon as you handle
events provided by the controls, you are responsible for completing the task. For example, the Login
control supports an Authenticate event. If you don’t handle this event, it uses the membership API
automatically. But if you do handle this event, you are responsible for validating user credentials on
your own.

The Login Control
The Login control simplifies the creation of a login page for forms authentication in conjunction with
the membership API. It provides you with a ready-to-use user interface that queries the user name and
password from the user and offers a Log In button for logging the user in. Behind the scenes, it
encapsulates functionality you learned about in the previous chapter: validating user credentials against
the membership API and encapsulating the basic forms authentication functionality, such as redirecting
back to the originally requested page in a restricted area of your application after a successful login.

That means it encapsulates things such as Membership.ValidateUser() or FormsAuthentica-
tion.RedirectFromLoginPage() for you, and you do not have to write this code on your own. Figure 21-12
shows an example of the Login control in action.

CHAPTER 21 ■ MEMBERSHIP

899

Figure 21-12. The Login control in action

Whenever the user hits the Log In button, the control automatically validates the user name and
password using the membership API function Membership.ValidateUser(), and then calls
FormsAuthenication.RedirectFromLoginPage() if the validation was successful. All options on the UI of
the Login control affect the input delivered by the control to these methods. For example, if you click the
“Remember me next time” option, it passes the value true to the createPersistentCookie parameter of
the RedirectFromLoginPage() method. Therefore, the FormsAuthenticationModule creates a persistent
cookie, as you learned about in the previous chapter.

Behind the scenes, the UI of the Login control is nothing more than an ASP.NET composite control.
It’s completely extensible in that it allows you to override any layout styles and properties, as well as
handle events thrown by the control for overriding its default behavior. If you leave the Login control as
it is and you don’t handle any of its events, it automatically uses the membership provider configured for
your application. The simplest form of a Login control on your page is as follows:

<form id="form1" runat="server">
 <div style="text-align: center">
 <asp:Login ID="Login1" runat="server">
 </asp:Login>
 </div>
</form>

You can use several properties for changing the appearance of the control. You can use the different
style settings supported by the Login control as follows:

<form id="form1" runat="server">
<div style="text-align: center">
 <asp:Login ID="Login1" runat="server"
 BackColor="aliceblue" BorderColor="Black" BorderStyle="double">

CHAPTER 21 ■ MEMBERSHIP

900

 <LoginButtonStyle BackColor="darkblue" ForeColor="White" />
 <TextBoxStyle BackColor="LightCyan" ForeColor="Black" Font-Bold="true" />
 <TitleTextStyle Font-Italic="true" Font-Bold="true" Font-Names="Verdana" />
 </asp:Login>
</div>
</form>

You can also use CSS classes for customizing the Login control’s appearance. Every style property
supported by the Login control includes a CssClass property. As is the case for every other ASP.NET
control, this property allows you to set a CSS class name for your Login control that was added to the
website previously. Imagine you added the following CSS stylesheet with the filename MyStyles.css to
your project:

.MyLoginTextBoxStyle
{
 cursor: crosshair;
 background-color: yellow;
 text-align: center;
 border-left-color: black;
 border-bottom-color: black;
 border-top-style: dotted;
 border-top-color: black;
 border-right-style: dotted;
 border-left-style: dotted;
 border-right-color: black;
 border-bottom-style: dotted;
 font-family: Verdana;
 vertical-align: middle;
}

The content of the CSS file defines the style .MyLoginTextBoxStyle that you will use for the text
boxes displayed on your Login control. You can include this style file in your login page so that you can
use the style for the Login control as follows:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Your Login Page</title>
 <link href="MyStyles.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <form id="form1" runat="server">
 <div style="text-align: center">
 <asp:Login ID="Login1" runat="server"
 BackColor="aliceblue"
 BorderColor="Black" BorderStyle="double">
 <LoginButtonStyle BackColor="darkblue" ForeColor="White" />
 <TextBoxStyle CssClass="MyLoginTextBoxStyle" />
 <TitleTextStyle Font-Italic="true" Font-Bold="true"
 Font-Names="Verdana" />
 </asp:Login>
 </div>
 </form>

http://www.w3.org/1999/xhtml

CHAPTER 21 ■ MEMBERSHIP

901

Anonymous Access to StyleSheets Used by Your Login Page

If you try running the page and if the CSS file is placed in a directory where anonymous access is denied,
the styles will not be applied to the Login control because the CSS file is protected by the ASP.NET runtime
(because its file extension is mapped to ASP.NET). This is also the case if you deny access to anonymous
users in the root directory and put your CSS file there. Therefore, if you want to use CSS files with the
Login control (where the user is definitely the anonymous user), either you have to put the CSS file into a
directory that allows anonymous users access or you have to add the following configuration for the CSS
file to your web.config file:

<location path="MyStyles.css">
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
</location>

In the preceding example, assume you’re restricting access to the overall application, which means you
have an <authorization> element in the root web.config that restricts access to the whole application. That
means you have to add this configuration to the root web.config file to make the CSS file accessible to the
login page, which gets accessed anonymously. If you just have a restricted area in your web application in
a subfolder, and the root part of your web application is accessible to anonymous users as well (as shown
earlier in Figure 21-3), you do not need to add this configuration if you just put the CSS file in the root
folder of your application. If you put the CSS file in the restricted area of your web application and make it
accessible to the publicly accessible login page, you need to use the following configuration:

<location path="Restricted/MyStyles.css">
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
</location>

We prefer having publicly available resources in a separate folder and restricting access to any other
location of the web application, or the other way round. You will learn more about authorization and the
configuration steps for it in Chapter 23.

Table 21-6 lists the styles supported by the Login control. Every style works in the same way. You
can set color and font properties directly, or you use the CssClass property for assigning a CSS class.

Table 21-6. The Styles Supported by the Login Control

Style Description
CheckBoxStyle Defines the style properties for the Remember Me check box.

FailureTextStyle Defines the style for the text displayed if the login was not successful.

HyperLinkStyle The Login control allows you to define several types of hyperlinks, for
example, to a registration page. This style defines the appearance of these
hyperlinks.

CHAPTER 21 ■ MEMBERSHIP

902

Style Description

InstructionTextStyle The Login control allows you to specify help text that is displayed directly in
the Login control. This style defines the appearance of this text.

LabelStyle Defines the style for the UserName and Password labels.

LoginButtonStyle Defines the style for the login button.

TextBoxStyle Defines the style for the User Name and Password text boxes.

TitleTextStyle Defines a style for the title text of the Login control.

ValidatorTextStyle Defines styles for validation controls that are used for validating the user
name and password.

The UI of the Login control is not just customizable through these styles—other, additional

properties are dedicated to specific content parts of the control, such as the Log In button, which allows
you to customize the UI as well. For example, you can select the text displayed for the login button, and
you have the choice of displaying a login link instead of a login button (which is the default).
Furthermore, you can add several hyperlinks to your Login control, such as a hyperlink to a help text
page or a hyperlink to a registration page. Both pages must be available for anonymous users, because
the help should be provided to anonymous users (remember, if someone sees the Login control, she
potentially is an anonymous user). If you want to include some additional links in your Login control,
modify the previously displayed control as follows:

<asp:Login ID="Login1" runat="server"
 BackColor="aliceblue"
 BorderColor="Black" BorderStyle="double"
 CreateUserText="Register"
 CreateUserUrl="Register.aspx"
 HelpPageText="Additional Help"
 HelpPageUrl="HelpMe.htm"
 InstructionText="Please enter your user name and password for

 logging into the system.">
 <LoginButtonStyle BackColor="DarkBlue" ForeColor="White" />
 <TextBoxStyle CssClass="MyLoginTextBoxStyle" />
 <TitleTextStyle Font-Italic="True" Font-Bold="True" Font-Names="Verdana" />
</asp:Login>

This code displays two additional links—one for a help page and one for a registration page—and
adds some short, instructional text below the heading of the Login control. The styles discussed
previously are applied to these properties. Table 21-7 describes the most important properties for
customizing the Login control.

CHAPTER 21 ■ MEMBERSHIP

903

Table 21-7. The Relevant Customization Properties for the Login Control

Property Description

TitleText The text displayed as the heading of the control.

InstructionText You have already used this property in the previous code
snippet, which contains text that is displayed below the heading
of the control.

FailureText The text displayed by the Login control if the login attempt was
not successful.

UserNameLabelText The text displayed as a label in front of the user name text box.

PasswordLabelText The text displayed as a label in front of the password text box.

UserName Initial value filled into the user name text box.

UsernameRequiredErrorMessage Error message displayed if the user has not entered a user name.

PasswordRequiredErrorMessage Error message displayed if the user has not entered a password.

LoginButtonText The text displayed for the login button.

LoginButtonType The login button can be displayed as a link, button, or image.
For this purpose, you have to set this property appropriately.
Supported values are Link, Button, and Image.

LoginButtonImageUrl If you display the login button as an image, you have to provide
a URL to an image that is displayed for the button.

DestinationPageUrl If the login attempt was successful, the Login control redirects
the user to this page. This property is empty by default. If empty,
it uses the forms authentication infrastructure for redirecting
either to the originally requested page or to the defautlUrl
configured in web.config for forms authentication.

DisplayRememberMe Enables you to show and hide the Remember Me check box. By
default this property is set to true.

FailureAction Defines the action the control performs after a login attempt
failed. The two valid options are Refresh and
RedirectToLoginPage. The first one refreshes just the current
page, and the second one redirects to the configured login page.
The second one is useful if you use the control anywhere else
instead of the login page.

RememberMeSet Defines the default value for the Remember Me check box. By
default this option is set to false, which means the check box is
not checked by default.

CHAPTER 21 ■ MEMBERSHIP

904

Property Description

VisibleWhenLoggedIn If set to false, the control automatically hides itself if the user is
already logged in. If set to true (default), the Login control is
displayed even if the user is already logged in.

CreateUserUrl Defines a hyperlink to a page in the website that allows you to
create (register!) a user. Therefore, this is typically used for
enabling the user to access a registration page. Typically this
page displays the CreateUserWizard control.

CreateUserText Defines the text displayed for the CreateUserUrl hyperlink.

CreateUserIconUrl Defines a URL to an image displayed together with the text for
the CreateUserUrl hyperlink.

HelpPageUrl URL for redirecting the user to a help page.

HelpPageText Text displayed for the hyperlink configured in the HelpPageUrl
property.

HelpPageIconUrl URL to an icon displayed together with the text for the
HelpPageUrl hyperlink.

PasswordRecoveryUrl URL for redirecting the user to a password recovery page. This
page is used if the user has forgotten the password. Typically
this page displays the PasswordRecovery control.

PasswordRecoveryText The text displayed for the hyperlink configured in
PasswordRecoveryUrl.

PasswordRecoveryIconUrl Icon displayed together with the text for the
PasswordRecoveryUrl.

Templates and the Login Control
As you can see, the control is nearly completely customizable through these properties. But as you
probably have seen, you cannot define any validation expressions for validating the input. Of course,
you can do validation on the server side within the event procedures offered by the Login control.
However, generally, if you want to add any controls to the Login control, you can’t do that through the
properties introduced previously. For example, what if you have an additional text box for strong
authentication with a second password or user access key as on some governmental pages?

Fortunately, the Login control supports templates just as other controls such as the GridView
control do. With templates, you can customize the contents of the Login control without any limitations.
You can add any controls you want to your Login control. You can use a custom template for the Login
control through the LayoutTemplate tag as follows:

<asp:Login ID="LoginCtrl" runat="server"
 BackColor="aliceblue"
 BorderColor="Black"

CHAPTER 21 ■ MEMBERSHIP

905

 BorderStyle="double">
 <LayoutTemplate>
 <h4>Log-In to the System</h4>
 <td>
 User Name:

 <td>
 <asp:TextBox ID="UserName" runat="server" />
 <asp:RequiredFieldValidator ID="UserNameRequired"
 runat="server"
 ControlToValidate="UserName"
 ErrorMessage="*" />
 <asp:RegularExpressionValidator ID="UsernameValidator"
 runat="server"
 ControlToValidate="UserName"
 ValidationExpression="[\w|]*"
 ErrorMessage="Invalid User Name" />

 <td>
 Password:

 <td>
 <asp:TextBox ID="Password" runat="server" TextMode="Password" />
 <asp:RequiredFieldValidator ID="PasswordRequired"
 runat="server"
 ControlToValidate="Password"
 ErrorMessage="*" />
 <asp:RegularExpressionValidator ID="RegularExpressionValidator1"
 runat="server"
 ControlToValidate="Password"
 ValidationExpression='[\w| !"§$%&/()=\-?*]*'
 ErrorMessage="Invalid Password" />

 <asp:CheckBox ID="RememberMe" runat="server" Text="Remember Me" />
 <asp:Literal ID="FailureText" runat="server" />

 <asp:Button ID="Login" CommandName="Login"
 runat="server" Text="Login" />
 </LayoutTemplate>
</asp:Login>

Now, one question arises when taking a look at the preceding code: when customizing the template,
you have to write so much UI code (or design it in a visual designer)—so why not write a custom login
page without using the Login control? This is a valid question. However, as explained at the beginning of
this section, the UI part is just one part of the Login control. Under the hood, meaning whenever the
user clicks the login button, for example, the Login control contains all the code for automatically
validating the user against the membership API storage and redirecting the user back to the originally
requested page through the forms authentication infrastructure. So, you still save yourself from writing
this code.

With the right controls and the correct ID values for these controls in place, you don’t need to write
any code for handling events. The code just works as usual, except that you define the set of controls and
the layout of these controls. Actually, the Login control requires at least two text boxes with the IDs
UserName and Password. If those two text boxes are missing (or don’t have these ID values), the control

CHAPTER 21 ■ MEMBERSHIP

906

throws an exception. All the other controls are optional, but if you specify corresponding ID values (such
as Login for the login button), the Login control automatically handles their events and behaves as when
you used the predefined layouts for the control. Table 21-8 lists the special ID values, their required
control types, and whether they are required or optional.

Table 21-8. Special Controls for the Login Template

Control ID Control Type Required?

UserName System.Web.UI.WebControls.Textbox Yes

Password System.Web.UI.WebControls.Textbox Yes

RememberMe System.Web.UI.WebControls.CheckBox No

FailureText System.Web.UI.WebControls.Literal No

Login Any control that supports event bubbling and a CommandName No

The control with the ID Login can be any control that supports event bubbling (as you will learn in
Chapter 27 in detail) and a CommandName property. It is important that you set the CommandName
property to Login, because otherwise the Login control won’t recognize it in the event-handling process.
If you don’t add a control with the CommandName set to Login, you have to handle the event of the
control yourself and write the appropriate code for validating the user name and password and for
redirecting to the originally requested page. You can also add controls with other IDs that are not related
to the Login control at all. The previous code includes RequiredFieldValidator and
RegularExpressionValidator controls for validating the UserName and Password fields appropriately.

When using the LayoutTemplate, many of the properties originally offered by the Login control are
not available anymore. Only the following properties are available when using the template:

• DestinationPageUrl

• VisibleWhenLoggedIn

• FailureAction

• MembershipProvider

• Password

• Username

• RememberMeSet

All the style properties and several properties for configuring text contents of default controls are
not available in Visual Studio’s property editor anymore, because you can add them manually as
separate controls or static text to the template for the Login control. If you still add them to the Login
control when using the template mode, they simply get ignored because the template overrides the
default UI of the Login control, which leverages these properties.

Programming the Login Control
The Login control supports several events and properties that you can use to customize the behavior of
the control. This gives you complete control over customizing the Login control (used along with the
other customization possibilities such as templates or custom style properties). The Login control
supports the events listed in Table 21-9.

CHAPTER 21 ■ MEMBERSHIP

907

Table 21-9. The Events of the Login Control

Event Description

LoggingIn Raised before the user gets authenticated by the control.

LoggedIn Raised after the user has been authenticated by the control.

LoginError Raised when the login of the user failed for some reason (such as a wrong password
or user name).

Authenticate Raised to authenticate the user. If you handle this event, you have to authenticate
the user on your own, and the Login control completely relies on your
authentication code.

You can handle the first three events (in the previous table) to perform some actions before the user

gets authenticated, after the user has been authenticated, and if an error has happened during the
authentication process. For example, you can use the LoginError event to automatically redirect the user
to the password recovery page after a specific number of attempts, as follows:

protected void Page_Load(object sender, EventArgs e)
{
 if (!this.IsPostBack)
 ViewState["LoginErrors"] = 0;
}

protected void LoginCtrl_LoginError(object sender, EventArgs e)
{
 // If the "LoginErrors" state does not exist, create it
 If(ViewState["LoginErrors"] == null)
 ViewState["LoginErrors"] = 0;

 // Increase the number of invalid logins
 int ErrorCount = (int)ViewState["LoginErrors"] + 1;
 ViewState["LoginErrors"] = ErrorCount;

 // Now validate the number of errors
 if ((ErrorCount > 3) && (LoginCtrl.PasswordRecoveryUrl != string.Empty))
 Response.Redirect(LoginCtrl.PasswordRecoveryUrl);
}

The Login control fires the events in the order shown in Figure 21-13.
As mentioned previously, if you handle the event, you have to add your own code for validating the

user name and password. The Authenticate event receives an instance of AuthenticateEventArgs as a
parameter. This event argument class has a property called Authenticated. If you set this property to
true, the Login control assumes that authentication was successful and raises the LoggedIn event. If set
to false, it displays the FailureText and raises the LoginError event.

protected void LoginCtrl_Authenticate(object sender, AuthenticateEventArgs e)
{
 if (YourValidationFunction(LoginCtrl.UserName, LoginCtrl.Password))

CHAPTER 21 ■ MEMBERSHIP

908

 {
 e.Authenticated = true;
 }
 else
 {
 e.Authenticated = false;
 }
}

Figure 21-13. The order of the Login control events

As you can see, you have direct access to the entered values through the UserName and Password
properties that contain the text entered in the corresponding text boxes. If you are using template
controls and require the value of another control in addition to the controls with the IDs UserName and
Password, you can use the control’s FindControl method to get the control. This method requires the ID
of the control and returns an instance of System.Web.UI.Control. You then just cast the control to the
appropriate type and read the values you require for your custom credential validation method. The
following Login control uses a template with an additional control that you will use later in the
Authenticate event in your code:

<asp:Login ID="OtherLoginCtrl" runat="server"
 BackColor="aliceblue"
 BorderColor="Black"
 BorderStyle="double"
 PasswordRecoveryUrl="./pwdrecover.aspx"
 OnAuthenticate="OtherLoginCtrl_Authenticate">

 <LayoutTemplate>
 <div style="font-family: Courier New">
 Userskey: <asp:Textbox ID="AccessKey" runat="server" />

 User Name: <asp:TextBox ID="UserName" runat="server" />

 Password: <asp:TextBox ID="Password" runat="server"
 TextMode="password" Width="149px" />

CHAPTER 21 ■ MEMBERSHIP

909

 <asp:Button runat="server" ID="Login"
 CommandName="Login" Text="Login" />
 </div>
 </LayoutTemplate>

</asp:Login>

In the previous code example, the user’s key is an additional value that must be provided by the user
for successfully logging in. To include this value into your credential validation process, you have to
modify the contents of the Authenticate event as follows:

protected void OtherLoginCtrl_Authenticate(
 object sender, AuthenticateEventArgs e)
{
 TextBox AccessKeyText = (TextBox)OtherLoginCtrl.FindControl("AccessKey");

 if (YourValidation(AccessKeyText.Text,
 OtherLoginCtrl.UserName, OtherLoginCtrl.Password))
 {
 e.Authenticated = true;
 }
 else
 {
 e.Authenticated = false;
 }
}

Of course, in this case you cannot use any default membership provider. You have to implement
your own validation function that accepts these additional parameters. But the Login control forces you
not to use membership at all. The validation function can be any type of function you want. You just
need to set the e.Authenticated property appropriately. Then you can use the Login control for whatever
login mechanism you want.

The LoginStatus Control
The LoginStatus control is a simple control that displays either a login link if the user is not
authenticated or a logout link if the user is authenticated. The login link automatically redirects to the
configured login page, and the logout link automatically calls the method FormsAuthentication.SignOut
for logging off the user. The control is fairly simple, and therefore customization is simple as well.

<asp:LoginStatus ID="LoginStatus1" runat="server"
 LoginText="Sign In"
 LogoutText="Sign Out"
 LogoutPageUrl="./Default.aspx"
 LogoutAction="Redirect" />

The LoginStatus control offers a couple of properties for customizing the text shown for the links
and the URLs to redirect to when the user clicks the link. You can find the most important properties in
Table 21-10.

CHAPTER 21 ■ MEMBERSHIP

910

Table 21-10. Properties for Customizing the LoginStatus Control

Property Description

LoginText The text displayed if the user is not signed in.

LoginImageUrl A URL for an image displayed as an icon for the login link.

LogoutText The text displayed if the user is authenticated.

LogoutImageUrl A URL for an image displayed as an icon for the logout link.

LogoutAction Configures the action the control performs if the user clicks the logout link that is
displayed when the user is authenticated. Valid options are Refresh, Redirect, and
RedirectToLoginPage. The first option just refreshes the current page, the second
option redirects to the page configured in the LogoutPageUrl, and the last option
redirects to the login page.

LogoutPageUrl A page to redirect to if the user clicks the logout link and the LogoutAction is set
to Redirect.

The LoginView Control
This control is fairly simple but extremely powerful. It allows you to display a different set of controls for
anonymous and authenticated users. Further, it even allows you to display different content based on
which roles the currently logged-in user is assigned to. You will learn more about roles and their
connection to the LoginView control in Chapter 23. For now you will learn how to display different
content for anonymous users and for authenticated users.

The LoginView control is a template control with different types of templates—one for anonymous
users, one for authenticated users, and one for supporting role-based templates. Within those templates,
you just add the controls to display for the corresponding situation as follows (role-based templates are
encapsulated into RoleGroup controls, but you will learn more about them in Chapter 23):

<asp:LoginView ID="LoginViewCtrl" runat="server">
 <AnonymousTemplate>
 <h2>You are anonymous</h2>
 </AnonymousTemplate>
 <LoggedInTemplate>
 <h2>You are logged in</h2>
 Submit your comment: <asp:TextBox runat="server" ID="CommentText" />

 <asp:Button runat="server" ID="SubmitCommentAction" Text="Submit" />
 </LoggedInTemplate>
</asp:LoginView>

The previous control displays some simple text for anonymous users and some text in a text box
together with a button for logged-in users. Furthermore, the control supports two events you can handle
for initializing content controls of different templates appropriately before they are displayed:

CHAPTER 21 ■ MEMBERSHIP

911

• ViewChanging, which is raised before the control displays content defined in
another template

• ViewChanged, which is raised after the control has changed the content display
from one template to another

The PasswordRecovery Control
The PasswordRecovery control is useful if a user has forgotten his password. This queries the user name
from the user and afterward automatically displays the password question stored for the user in the
credential store. If the user enters the correct answer for the password question, the password is mailed
automatically to the e-mail address configured for the user. Figure 21-14 shows the PasswordRecovery
control in action.

Figure 21-14. The PasswordRecovery control in action

The control includes three customizable view modes. First, the user has to enter his user name.
When the user clicks the submit button, the control queries the password question through the
membership API from the underlying credential store. Second, this question is then displayed, and the
user is requested to enter the correct answer. When the user enters the correct answer, an automatically
generated password or the stored password is sent to the user’s e-mail address. This e-mail address was
specified during the registration process (or when the user was created through the WAT). If sent
successfully, the control displays a confirmation view. Any mail configuration takes place through the

CHAPTER 21 ■ MEMBERSHIP

912

control’s properties, as follows. Of course, the password can be sent to the user only if it is not hashed.
Therefore, the membership provider must be configured in a way that it stores the passwords either
encrypted or in clear-text format. If the membership provider stores the password in a hashed form, it
automatically generates a new, random password and sends the new password in the e-mail.

<asp:PasswordRecovery ID="PasswordRecoveryCtrl" runat="server"
 BackColor="Azure"
 BorderColor="Black" BorderStyle="solid">
 <MailDefinition From="proaspnet2@apress.com"
 Subject="Forgotten Password"
 Priority="high" />
 <TitleTextStyle Font-Bold="true" Font-Italic="true" BorderStyle="dotted" />
 <TextBoxStyle BackColor="Yellow" BorderStyle="double" />
 <FailureTextStyle Font-Bold="true" ForeColor="Red" />
</asp:PasswordRecovery>

The control requires an e-mail SMTP server for sending the e-mail message. It relies on the
SmtpClient class in the System.Net.Mail namespace, which you can use in any type of application. You
can configure this class in the <system.net> configuration section of your application’s configuration
file. Therefore, you have to configure the SMTP mail server in your web.config file, as follows:

<system.net>
 <mailSettings>
 <smtp deliveryMethod="Network" from="proaspnet@apress.com">
 <network
 host="localhost"
 port="25"
 defaultCredentials="true" />
 </smtp>
 </mailSettings>
</system.net>

The MailDefinition subelement of the PasswordRecovery control allows you to set basic properties,
as you can see in the first code snippet of this section. Also, through the BodyFileName of the
MailDefinition subelement, you can specify the name of a file containing the e-mail text. This file has to
be in the same directory as the page where the control is hosted. If the control is hosted within another
user control, the file has to be in the directory of the user control’s host page. The PasswordRecovery
control supports different style properties for specifying formatting and layout options for the different
parts of the control (just as the Login control does). For a complete list of the supported properties, refer
to the MSDN documentation; these properties are similar to the properties introduced with the Login
control. The control raises several different events during the password recovery process. You can
handle these events if you want to customize the actions completed by the control. Table 21-11 lists
these events.

mailto:proaspnet2@apress.com
mailto:proaspnet@apress.com

CHAPTER 21 ■ MEMBERSHIP

913

Table 21-11. Events of the PasswordRecovery Control

Event Description

VerifyingUser Raised before the control starts validating the user name entered. Validating
the user name means looking for the user in the membership store and
retrieving the password question information.

UserLookupError If the user name entered in the user name text box doesn’t exist in the
membership store, this event is raised before the failure text is displayed.

VerifyingAnswer When the user clicks the submit button in the second step, the answer for the
question is compared to the one stored in the membership store. This event
is raised before this action takes place.

AnswerLookupError If the answer provided by the user is not correct, this event is raised by the
control.

SendingMail This event is raised by the control after the answer submitted by the user has
been identified as the correct answer and before the e-mail is sent through
the mail server.

SendMailError If the e-mail cannot be sent for some reason (for example, the mail server is
not available), this event is raised by the control.

You can use these events for preparing information before that information gets processed by the

control. For example, if you want to convert all letters in the user name to lowercase letters before the
control compares contents with the data stored in the membership store, you can do this in the
VerifyingUser event. Similarly, you can use the VerifyingAnswer for preprocessing information before it
gets processed by the control. Both events get event arguments of type LoginCancelEventArgs, which
contains a Cancel property. If you set this property to true, you can cancel the whole processing step.

When handling the SendingMail event, you have the chance to modify the contents of the e-mail
message before the control actually sends the e-mail to the user. The passed MailMessageEventArgs
contains a Message property that represents the actual e-mail message. By modifying the Message’s
properties, such as the Attachments collection, you can add attachments, configure a CC address, or do
anything else related to the e-mail message.

PasswordRecovery Templates
Like the Login control, the PasswordRecovery control can be customized completely if customization
through the previously mentioned properties and styles is not sufficient for some reason. The control
supports templates for every view:

• The UserNameTemplate contains all the controls displayed for the first step of the
password recovery process when the user is required to enter the user name.

• Controls for the second step, the password question step, are placed in the
QuestionTemplate.

• Finally, the control supports a SuccessTemplate that consists of the controls
displayed for the confirmation, which are shown after the password has been sent
successfully to the user.

CHAPTER 21 ■ MEMBERSHIP

914

Every template has certain required controls. For example, the UserNameTemplate requires a text
box for entering the user name. The QuestionTemplate requires a text box for entering the question, and
the SuccessTemplate requires a Literal control for displaying the final confirmation message. A template
PasswordRecovery control might look like this:

<asp:PasswordRecovery ID="PasswordTemplateCtrl" runat="server">
 <MailDefinition From="pwd@apress.com"
 Priority="high"
 Subject="Important information" />
 <UserNameTemplate>

 <h2>Forgotten your Password?</h2>
 Please enter your user name:

 <asp:TextBox ID="UserName" runat="server" />

 <asp:Button ID="SubmitButton" CommandName="Submit"
 runat="server" Text="Next" />

 <asp:Literal ID="FailureText" runat="server" />

 </UserNameTemplate>
 <QuestionTemplate>

 <h2>Forgotten your Password?</h2>
 Hello <asp:Literal ID="UserName" runat="server" />!

 Please answer your password-question:

 <asp:Literal ID="Question" runat="server" />

 <asp:TextBox ID="Answer" runat="server" />

 <asp:Button ID="SubmitButton" CommandName="Submit"
 runat="Server" Text="Send Answer" />

 <asp:Literal ID="FailureText" runat="server" />

 </QuestionTemplate>
 <SuccessTemplate>
 Your password has been sent to your email address
 <asp:Label ID="EmailLabel" runat="server" />!
 </SuccessTemplate>
</asp:PasswordRecovery>

Again, if you use controls with the appropriate ID values and use the appropriate CommandName
values for buttons, you don’t have to write any code for the control to work, as in the previous examples
where you didn’t use templates. In the previous code, these special controls are in bold. Some of these
controls are required for the templates, and others are optional. Table 21-12 lists the controls for
PasswordRecovery templates.

mailto:pwd@apress.com

CHAPTER 21 ■ MEMBERSHIP

915

Table 21-12. Special Controls for PasswordRecovery Templates

Additional Template ID Control Type Required? Comments
UserNameTemplate UserName System.Web.UI.Web

Controls.
Yes TextBox

UserNameTemplate SubmitButton All controls that
support Command-
event bubbling.

No Name must be set
to Submit.

UserNameTemplate FailureText System.Web.UI.Web
Controls.

No Literal

QuestionTemplate UserName System.Web.UI.Web
Controls.

No Literal

QuestionTemplate Question System.Web.UI.Web
Controls.

No Literal

QuestionTemplate Answer System.Web.UI.Web
Controls.

Yes TextBox

QuestionTemplate SubmitButton All controls that
support Command-
event bubbling.

No Name must be set
to Submit.

QuestionTemplate FailureText System.Web.UI.Web
Controls.

No Literal

Again, the submit button can be any control that supports event bubbling and a CommandName
property. Typically you can use the controls Button, ImageButton, or LinkButton for this purpose. The
CommandName must be set to Submit; otherwise, the command is not recognized by the control (the
ID is not evaluated and can therefore be set to any value). The SuccessTemplate doesn’t require any type
of control with any special IDs. Therefore, you can add any control you want there; it’s just for displaying
the confirmation. In the previous example, it includes a Literal control that should display the e-mail
address to which the password has been sent. You can set this Literal control through the SendingMail
event procedure. Again, you can use the FindControl method for finding the control (which is actually a
child control of the PasswordRecovery template control) in the appropriate template, as follows:

protected void PasswordTemplateCtrl_SendingMail(object sender,
 MailMessageEventArgs e)
{
 Label lbl =
 (Label)PasswordTemplateCtrl.SuccessTemplateContainer.FindControl(
 "EmailLabel");
 lbl.Text = e.Message.To[0].Address;
}

Because the PasswordRecovery control includes more than one template, you cannot call the
FindControl method directly on the PasswordRecovery control instance. You have to select the
appropriate template container (UserNameTemplateContainer, QuestionTemplateContainer, or
SuccessTemplateContainer). Afterward, you can work with the control as usual. In the previous example,

CHAPTER 21 ■ MEMBERSHIP

916

you just set the text of the label to the first e-mail recipient. Usually for a password recovery, the list has
only one mail recipient.

The ChangePassword Control
You can use this control as a standard control for allowing the user to change her password. The
control simply queries the user name as well as the old password from the user. Then it requires the
user to enter the new password and confirm the new password. You can use the control on a secured
page as follows:

<asp:ChangePassword ID="ChangePwdCtrl" runat="server"
 BorderStyle="groove" BackColor="aliceblue">
 <MailDefinition From="pwd@apress.com"
 Subject="Changes in your profile"
 Priority="high" />
 <TitleTextStyle Font-Bold="true" Font-Underline="true"
 Font-Names="Verdana" ForeColor="blue" />
</asp:ChangePassword>

Again, the control includes a MailDefinition child element with the same settings as the
PasswordRecovery control. This is because after the password has been changed successfully, the
control automatically can send an e-mail to the user’s e-mail address if a mail server is configured for
the web application. As for all the other controls, this control is customizable through both properties
and styles and a template-based approach. But this time two templates are required when customizing
the control:

• The ChangePasswordTemplate displays the fields for entering the old user
name and password as well as the new password, including the password
confirmation field.

• The SuccessTemplate displays the success message, telling the user if the reset
completed successfully or not.

The ChangePasswordTemplate requires you to add some special controls with special IDs and
CommandName property values. You can find these control ID values and CommandName values in
bold in the following code snippet:

<asp:ChangePassword ID="ChangePwdCtrl" runat="server">
 <ChangePasswordTemplate>
 Old Password:
 <asp:TextBox ID="CurrentPassword" runat="server"
 TextMode="Password" />

 New Password:
 <asp:TextBox ID="NewPassword" runat="server"
 TextMode="Password" />

 Confirmation:
 <asp:TextBox ID="ConfirmNewPassword" runat="server"
 TextMode="Password" />

 <asp:Button ID="ChangePasswordPushButton" CommandName="ChangePassword"
 runat="server" Text="Change Password" />
 <asp:Button ID="CancelPushButton" CommandName="Cancel"
 runat="server" Text="Cancel" />

 <asp:Literal ID="FailureText" runat="server"
 EnableViewState="False" />

mailto:pwd@apress.com

CHAPTER 21 ■ MEMBERSHIP

917

 </ChangePasswordTemplate>
 <SuccessTemplate>
 Your password has been changed!
 <asp:Button ID="ContinuePushButton" CommandName="Continue"
 runat="server" Text="Continue" />
 </SuccessTemplate>
</asp:ChangePassword>

The text box controls of the ChangePasswordTemplate are all required. The other controls are
optional. If you select the ID properties and the CommandName properties for the buttons
appropriately, you don’t have to write any additional code.

The CreateUserWizard Control
The CreateUserWizard control is the most powerful control of the login controls. It enables you to create
registration pages within a couple of minutes. This control is a wizard control with two default steps: one
for querying general user information and one for displaying a confirmation message. As the
CreateUserWizard inherits from the base Wizard control, you can add as many wizard steps as you want.
But when you just add a CreateUserWizard control to your page as follows, the result is really amazing,
as shown in Figure 21-15.

<asp:CreateUserWizard ID="RegisterUser" runat="server"
 BorderStyle="ridge" BackColor="aquamarine">
 <TitleTextStyle Font-Bold="true" Font-Names="Verdana" />
 <WizardSteps>
 <asp:CreateUserWizardStep runat="server">
 </asp:CreateUserWizardStep>
 <asp:CompleteWizardStep runat="server">
 </asp:CompleteWizardStep>
 </WizardSteps>
</asp:CreateUserWizard>

CHAPTER 21 ■ MEMBERSHIP

918

Figure 21-15. A simple CreateUserWizard control

The default appearance of the control is, again, customizable through properties and styles. The
control offers lots of styles, but the meaning of the styles is similar to the styles covered for the previous
controls. In fact, this control includes the most complete list of styles, as it includes most of the fields
presented in the previous controls as well. When you use the CreateUserWizard control as shown
previously, you don’t need to perform any special configuration. It automatically uses the configured
membership provider for creating the user, and it includes two steps: the default CreateUserWizardStep
that creates controls for gathering the necessary information and the CompleteWizardStep for
displaying a confirmation message. Both steps are customizable through styles and properties or
through templates. Although you can customize these two steps, you cannot remove them. If you use
templates, you are responsible for creating the necessary controls, as follows:

<asp:CreateUserWizard ID="RegisterUser" runat="server"
 BorderStyle="ridge" BackColor="aquamarine">
 <TitleTextStyle Font-Bold="True" Font-Names="Verdana" />
 <WizardSteps>
 <asp:CreateUserWizardStep runat="server">
 <ContentTemplate>

CHAPTER 21 ■ MEMBERSHIP

919

 <div align="right">

 User Name:
 <asp:TextBox ID="UserName" runat="server" />

 Password:
 <asp:TextBox ID="Password" runat="server"
 TextMode="Password" />

 Conform Password:
 <asp:TextBox ID="ConfirmPassword" runat="server"
 TextMode="Password" />

 Email:
 <asp:TextBox ID="Email" runat="server" />

 Security Question:
 <asp:TextBox ID="Question" runat="server" />

 Security Answer:
 <asp:TextBox ID="Answer" runat="server" />

 <asp:Literal ID="ErrorMessage" runat="server"
 EnableViewState="False" />

 </div>
 </ContentTemplate>
 </asp:CreateUserWizardStep>
 <asp:CompleteWizardStep runat="server">
 <ContentTemplate>
 Your account has been successfully created.
 <asp:Button ID="ContinueButton" CommandName="Continue"
 runat="server" Text="Continue" />
 </ContentTemplate>
 </asp:CompleteWizardStep>
 </WizardSteps>
</asp:CreateUserWizard>

Because the control is a wizard control, the first step doesn’t require any buttons because a Next
button is automatically displayed by the hosting wizard control. Depending on the configuration of the
membership provider, some of the controls in the first step are required, and others are not, as listed in
Table 21-13.

Table 21-13. Required Controls and Optional Controls

ID Type Required? Comments
UserName System.Web.UI.WebControls.

TextBox
Yes Always required

Password System.Web.UI.WebControls.
TextBox

Yes Always required

ConfirmPassword System.Web.UI.WebControls.
TextBox

Yes Always required

Email System.Web.UI.WebControls.
TextBox

No Required only if the RequireEmail
property of the CreateUserWizard
control is set to true

CHAPTER 21 ■ MEMBERSHIP

920

ID Type Required? Comments

Question System.Web.UI.WebControls.
TextBox

No Required only if the underlying
membership provider requires a
password question

Answer System.Web.UI.WebControls.
TextBox

No Required only if the underlying
membership provider requires a
password question

ContinueButton Any control that supports
bubbling

No Not required at all, but if present,
you need to set the
CommandName to Continue

As soon as you start creating additional wizard steps, you will need to handle events and perform

some actions within the event procedures. For example, if you collect additional information from the
user with the wizard, you will have to store this information somewhere and therefore will need to
execute some SQL statements against your database (assuming you are storing the information in a SQL
Server database, for example). Table 21-14 lists the events specific to the CreateUserWizard control. The
control also inherits all the events you already know from the Wizard control.

Table 21-14. The CreateUserWizard Events

Event Description

ContinueButtonClick Raised when the user clicks the Continue button in the last wizard step.

CreatingUser Raised by the wizard before it creates the new user through the membership
API.

CreatedUser After the user has been created successfully, the control raises this event.

CreateUserError If the creation of the user was not successful, this event is raised.

SendingMail The control can send an e-mail to the created user if a mail server is
configured. This event is raised by the control before the e-mail is sent so
that you can modify the contents of the mail message.

SendMailError If the control was unable to send the message—for example, because the
mail server was unavailable—it raises this event.

Now you can just add a wizard step for querying additional user information, such as the first name

and the last name, and automatically save this information to a custom database table. A valid point
might be storing the information in the profile. But when running through the wizard, the user is not
authenticated yet, so you cannot store the information into the profile, as this is available for
authenticated users only. Therefore, you either have to store it in a custom database table or include a
way for the user to edit the profile after the registration process.

Furthermore, the CreatedUser event is raised immediately after the CreateUserWizardStep has been
completed successfully. Therefore, if you want to save additional data within this event, you have to
collect this information in previous steps. For this purpose, it’s sufficient to place other wizard steps

CHAPTER 21 ■ MEMBERSHIP

921

prior to the <asp:CreateUserWizardStep> tag. In any other case you have to save the information in one
of the other events (for example, the FinishButtonClick event). But because you cannot make sure that
the user really runs through the whole wizard and clicks the Finish button, it makes sense to collect all
the required information prior to the CreateUserWizardStep and then save any additional information
through the CreatedUser event.

<asp:CreateUserWizard ID="RegisterUser" runat="server"
 BorderStyle="ridge" BackColor="aquamarine"
 OnCreatedUser="RegisterUser_CreatedUser"
 <TitleTextStyle Font-Bold="True" Font-Names="Verdana" />
 <WizardSteps>
 <asp:WizardStep ID="NameStep" AllowReturn="true">
 Firstname:
 <asp:TextBox ID="FirstnameText" runat="server" />

 Lastname:
 <asp:TextBox ID="LastnameText" runat="server" />

 Age:
 <asp:TextBox ID="AgeText" runat="server" />
 </asp:WizardStep>
 <asp:CreateUserWizardStep runat="server">
 ...
 </asp:CreateUserWizardStep>
 <asp:CompleteWizardStep runat="server">
 ...
 </asp:CompleteWizardStep>
 </WizardSteps>
</asp:CreateUserWizard>

With the previous wizard step alignment, you now can store additional information in your data
store when the CreatedUser event is raised by the control, as follows:

protected void RegisterUser_CreatedUser(object sender, EventArgs e)
{
 short _Age;
 string _Firstname, _Lastname;

 // Find the correct wizard step
 WizardStepBase step = null;
 for (int i = 0; i < RegisterUser.WizardSteps.Count; i++)
 {
 if (RegisterUser.WizardSteps[i].ID == "NameStep")
 {
 step = RegisterUser.WizardSteps[i];
 break;
 }
 }

 if (step != null)
 {
 _Firstname = ((TextBox)step.FindControl("FirstnameText")).Text;
 _Lastname = ((TextBox)step.FindControl("LastnameText")).Text;
 _Age = short.Parse(((TextBox)step.FindControl("AgeText")).Text);

CHAPTER 21 ■ MEMBERSHIP

922

 // Store the information
 // This is just simple code you need to replace with code
 // for really storing the information
 System.Diagnostics.Debug.WriteLine(
 string.Format("{0} {1} {2}", _Firstname, _Lastname, _Age));
 }
}

In the CreatedUser event, the code just looks for the wizard step with the ID set to NameStep. Then
it uses the FindControl method several times for getting the controls with the actual content. As soon as
you have retrieved the controls where the user entered his first name, last name, and age, you can access
their properties and perform any action you want with them.

In summary, the CreateUserWizard control is a powerful control based on top of the membership
API and is customizable, just as the other login controls that ship with ASP.NET. With template controls,
you have complete flexibility and control over the appearance of the login controls, and the controls still
perform lots of work—especially interaction with membership—for you. And if you still want to perform
actions yourself, you can handle several events of the controls.

Configuring Membership in IIS 7.x
The management console of IIS 7.x includes a full set of administration tools for configuring the
ASP.NET membership API and providers. Furthermore, as the membership API is used in conjunction
with ASP.NET forms authentication, you also can use the membership API with web applications not
developed with ASP.NET, such as classic ASP or PHP applications.

Configuring Providers and Users
The first step for using the membership API after configuring forms authentication is the configuration
of a membership provider. For that purpose, the IIS 7.x management console offers the new “Providers”
feature configuration in the .NET category section, as outlined in Figure 21-16.

As you can see, this applet allows you to select different features through the combo box at the top
of the screen. The features you can select in this combo box map to appropriate providers in ASP.NET.
You can configure users, roles, and profiles this way directly from within the IIS management console
(roles and authorization are covered in Chapter 23 in detail, and profiles are covered in Chapter 24 in
detail). For example, the .NET Users feature shown in Figure 21-16 that’s selected in the combo box
maps to the membership API provider that is responsible for managing users of a web application. Just
click the Add link in the task pane on the right border of the management console to add a new provider.
This opens a dialog that lets you select the type of the provider supported by both the runtime and your
application if you have custom provider classes deployed with it (you will read more on custom
membership provider development in Chapter 26). Figure 21-17 shows the dialog for configuring a new
provider for your application.

CHAPTER 21 ■ MEMBERSHIP

923

Figure 21-16. The IIS 7.x .NET providers feature configuration

Figure 21-17. Adding a new provider to your application

CHAPTER 21 ■ MEMBERSHIP

924

This dialog allows you to configure the most common properties, including the applicationName
property, which affects the association of objects in the membership database to a dedicated application
if you share a database across multiple applications. After you have configured your provider
successfully for your feature (such as .NET Users in Figures 21-16 and 21-17), you can work with the
other administration features of the management console. For example, you can add and delete users
directly from within the IIS management console using the .NET Users configuration feature, as shown
in Figure 21-18. Within this configuration, the IIS 7.x management console uses the membership API for
retrieving and displaying all the users available, creating new users, modifying users, resetting a user’s
password, and deleting users.

Figure 21-18. Managing users directly from within IIS 7.x

Using the Membership API with Other Applications
As outlined in Chapter 20, it is possible to use forms authentication with any web application configured
in IIS 7.x when running IIS in ASP.NET integrated mode. That means you can use the membership API
with any web application as well. You do so by configuring forms authentication for your web
application (such as classic ASP or PHP), as explained in Chapter 20, and configuring membership
providers for .NET users as well as .NET users, as outlined in the previous section of this chapter. Figure
21-19 shows the classic ASP page introduced in the section “IIS 7.x and Forms Authentication” in
Chapter 20, together with an ASP.NET login page hosting the Login control.

CHAPTER 21 ■ MEMBERSHIP

925

Figure 21-19. An ASP.NET login page hosting the Login control with a classic ASP page

Using Basic Authentication with Membership API

The extensibility model of IIS 7.x goes one step further and allows you to use the ASP.NET membership API
and providers even for other types of authentication methods, such as HTTP Basic authentication. This is
only possible when running IIS 7.x in ASP.NET integrated mode. That’s because when running IIS in
ASP.NET integrated mode, native HTTP modules and managed HTTP modules are executed in the same
request-processing pipeline. This allows you to easily replace standard functionality implemented as an
HTTP module with your own implementations.

For example, this allows you to create a custom module that implements the HTTP Basic authentication
scheme and validates user accounts against your custom database using the membership API. You can
use this module to replace the existing Basic authentication module. You need to know how Basic
authentication works in detail to implement such a module. Unfortunately, you cannot extend the existing
modules by using a .NET-based language directly, as most of these modules are native implementations
(not even COM-based).

In the IIS online community at http://www.iis.net, you can find an article demonstrating how to
implement a Basic authentication module using C# and how to plug it into IIS 7.x to replace the default
Basic authentication module. This implementation allows you to use other accounts than Windows
accounts (which are the default) in conjunction with Basic authentication. You can find this article at
http://learn.iis.net/page.aspx/170/developing-a-module-using-net.

Now, you just configure the membership provider through the IIS management console as outlined

in the previous section and that’s it—membership is used together with forms authentication and a
classic ASP page. The web.config looks as follows after completing the configuration:

http://www.iis.net
http://learn.iis.net/page.aspx/170/developing-a-module-using-net

CHAPTER 21 ■ MEMBERSHIP

926

<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms cookieless="UseCookies" loginUrl="login.aspx" />
 </authentication>
 <authorization>
 <deny users="?" />
 </authorization>
 <membership defaultProvider="TestMembership">
 <providers>
 <add name="TestMembership"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="MembershipConn"
 enablePasswordRetrieval="false"
 enablePasswordReset="false"
 requiresQuestionAndAnswer="false"
 applicationName="MyMembership"
 requiresUniqueEmail="false"
 passwordFormat="Hashed" />
 </providers>
 </membership>
 </system.web>
 <system.webServer>
 <modules>
 <remove name="FormsAuthentication" />
 <add name="FormsAuthentication"
 type="System.Web.Security.FormsAuthenticationModule"
 preCondition="" />
 </modules>
 </system.webServer>
 <connectionStrings>
 <add connectionString="..." name="MembershipConn" />
 </connectionStrings>
</configuration>

You can integrate the membership API this way into any other web application configured on IIS 7.x
as well. That allows a unification of your authentication infrastructure across all web applications if you
want.

Using the Membership Class
In the following sections of this chapter, you will learn how you can use the underlying membership
programming interface that is used by all the controls and the whole membership API infrastructure you
just used. You will see that the programming interface is simple. It consists of a class called Membership
with various properties and methods, and a class called MembershipUser that encapsulates the
properties for a single user. The methods of the Membership class perform fundamental operations:

• Creating new users

• Deleting existing users

• Updating existing users

CHAPTER 21 ■ MEMBERSHIP

927

• Retrieving lists of users

• Retrieving details for one user

• Validating user credentials against the store

Many methods of the Membership class accept an instance of MembershipUser as a parameter or
return one or even a collection of MembershipUser instances. For example, by retrieving a user through
the Membership.GetUser method, setting properties on this instance, and then passing it to the
UpdateUser method of the Membership class, you can simply update user properties. The Membership
class and the MembershipUser class both provide the necessary abstraction layer between the actual
provider and your application. Everything you do with the Membership class depends on your provider.
This means if you exchange the underlying membership provider, this will not affect your application if
the implementation of the membership provider is complete and supports all features propagated by
the MembershipProvider base class.

All classes used for the membership API are defined in the System.Web.Security namespace. The
Membership class just contains lots of static methods and properties. We will now walk you through the
different types of tasks you can perform with the Membership class and related classes such as the
MembershipUser.

Retrieving Users from the Store
The first task you will do is retrieve a single user and a list of users through the Membership class from
the membership store. For this purpose, you just create a simple page with a GridView control for
binding the users to the grid, as follows:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Display Users Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:GridView ID="UsersGridView" runat="server"
 DataKeyNames="UserName"
 AutoGenerateColumns="False">
 <Columns>
 <asp:BoundField DataField="UserName" HeaderText="Username" />
 <asp:BoundField DataField="Email" HeaderText="Email" />
 <asp:BoundField DataField="CreationDate"
 HeaderText="Creation Date" />
 <asp:CommandField ShowSelectButton="True" />
 </Columns>
 </asp:GridView>
 </div>
 </form>

As you can see, the GridView defines the UserName field as DataKeyName. This enables you to
access the UserName value of the currently selected user directly through the grid’s SelectedValue
property. As most of the methods require the user name for retrieving more details, this is definitely
useful. With this page in place, you can now add the following code to the Page_Load event procedure
for loading the users from the membership store and binding them to the grid:

http://www.w3.org/1999/xhtml

CHAPTER 21 ■ MEMBERSHIP

928

public partial class _Default : System.Web.UI.Page
{
 MembershipUserCollection _MyUsers;

 protected void Page_Load(object sender, EventArgs e)
 {
 _MyUsers = Membership.GetAllUsers();
 UsersGridView.DataSource = _MyUsers;

 if (!this.IsPostBack)
 {
 UsersGridView.DataBind();
 }
 }
}

Figure 21-20 shows the application in action.

Figure 21-20. The custom user management application in action

As you can see, the Membership class includes a GetAllUsers method, which returns an instance of
type MembershipUserCollection. You can use this collection just like any other collection. Every entry
contains all the properties of a single user. Therefore, if you want to display the details of a selected user,
you just need to add a couple of controls for displaying the contents of the selected user in the previously
created page, as follows:

Selected User:

<table border="1" bordercolor="blue">
 <td>User Name:
 <td><asp:Label ID="UsernameLabel" runat="server" />
 <td>Email:
 <td><asp:TextBox ID="EmailText" runat="server" />
 <td>Password Question:

CHAPTER 21 ■ MEMBERSHIP

929

 <td><asp:Label ID="PwdQuestionLabel" runat="server" />
 <td>Last Login Date:
 <td><asp:Label ID="LastLoginLabel" runat="server" />
 <td>Comment:
 <td><asp:TextBox ID="CommentTextBox" runat="server"
 TextMode="multiline" />
 <td>
 <asp:CheckBox ID="IsApprovedCheck" runat="server" Text="Approved" />

 <td>
 <asp:CheckBox ID="IsLockedOutCheck" runat="Server" Text="Locked Out" />

You can then handle the SelectedIndexChanged event of the previously added GridView control for
filling these fields with the appropriate values, as follows:

protected void UsersGridView_SelectedIndexChanged(object sender, EventArgs e)
{
 if (UsersGridView.SelectedIndex >= 0)
 {
 MembershipUser Current = _MyUsers[(string)UsersGridView.SelectedValue];

 UsernameLabel.Text = Current.UserName;
 PwdQuestionLabel.Text = Current.PasswordQuestion;
 LastLoginLabel.Text = Current.LastLoginDate.ToShortDateString();
 EmailText.Text = Current.Email;
 CommentTextBox.Text = Current.Comment;
 IsApprovedCheck.Checked = Current.IsApproved;
 IsLockedOutCheck.Checked = Current.IsLockedOut;
 }
}

As you can see, the MembershipCollection object requires the user name for accessing users directly.
Methods from the Membership class such as GetUser require the user name as well. Therefore, you used
the UserName field as content for the DataKeyNames property in the GridView previously. With an
instance of the MembershipUser in your hands, you can access the properties of the user as usual.

Updating Users in the Store
Updating a user in the membership store is nearly as easy as retrieving the user from the store. As soon
as you have an instance of MembershipUser in your hands, you can update properties such as the e-mail
and comments as usual. Then you just call the UpdateUser method of the Membership class. You can do
that by extending the previous code by adding a button to your page and inserting the following code in
the button’s Click event-handling routine:

protected void ActionUpdateUser_Click(object sender, EventArgs e)
{
 if (UsersGridView.SelectedIndex >= 0)
 {
 MembershipUser Current = _MyUsers[(string)UsersGridView.SelectedValue];

 Current.Email = EmailText.Text;
 Current.Comment = CommentTextBox.Text;

CHAPTER 21 ■ MEMBERSHIP

930

 Current.IsApproved = IsApprovedCheck.Checked;

 Membership.UpdateUser(Current);

 // Refresh the GridView
 UsersGridView.DataBind();
 }
}

The UpdateUser method just accepts the modified MembershipUser you want to update. Before the
method is called, you have to update the properties on your instance. This has just one exception: the
IsLockedOut property cannot be set. This property gets automatically set if the user has too many failed
login attempts. If you want to unlock a user, you have to call the MembershipUser’s UnlockUser method
separately. Similar rules apply to the password. You cannot change the password directly by setting
some properties on the MembershipUser. Furthermore, the MembershipUser class has no property for
directly accessing the password at all. For this purpose, the Membership class itself supports a
GetPassword method and a ChangePassword method that requires you to pass in the old and the new
password. Retrieving the password through the GetPassword method is possible, but only if the
password is not hashed in the underlying store. Therefore, GetPassword works only if the membership
provider is configured to store the password either in clear text or encrypted in the underlying
membership store.

Creating and Deleting Users
Creating users is as simple as using the rest of the membership API. You can create users by just calling
the CreateUser method of the Membership class. Therefore, if you want to add the feature of creating
users to your website, you can add a new page containing the necessary text boxes for entering the
required information, then add a button, and finally handle the Click event of this button with the
following code:

protected void ActionAddUser_Click(object sender, EventArgs e)
{
 try
 {
 MembershipCreateStatus Status;

 Membership.CreateUser(UserNameText.Text,
 PasswordText.Text,
 UserEmailText.Text,
 PwdQuestionText.Text,
 PwdAnswerText.Text, true,
 out Status);

 StatusLabel.Text = "User created successfully!";
 }
 catch(Exception ex)
 {
 Debug.WriteLine("Exception: " + ex.Message);
 StatusLabel.Text = "Unable to create user!";
 }
}

CHAPTER 21 ■ MEMBERSHIP

931

The CreateUser method exists with several overloads. The easiest overload just accepts a user name
and a password, while the more complex versions require a password question and answer as well. The
CreateUser() method returns a new instance of MembershipUser representing the created user, while
the MembershipCreateStatus object returns additional information about the creation status of the user.
As the CreateUser() method already has a MembershipUser as a return value, the method returns the
status as an output parameter. Depending on the provider’s configuration, your call to simpler versions
of CreateUser will succeed or fail. For example, the default membership provider requires you to include
a password question and answer; therefore, if you don’t provide them, a call to CreateUser will result in
an exception.

Deleting users is as simple as creating users. The Membership class offers a DeleteUser() method
that requires you to pass the user name as a parameter. It deletes the user as well as all related
information, if you want, from the underlying membership store.

Validating Users
Last but not least, the Membership class provides a method for validating a membership user. If a user
has entered his user name and password in a login mask, you can use the ValidateUser() method for
programmatically validating the information entered by the user, as follows:

if (Membership.ValidateUser(UserNameText.Text, PasswordText.Text))
{
 FormsAuthentication.RedirectFromLoginPage(UserNameText.Text, false);
}
else
{
 // Invalid user name or password
}

Summary
In this chapter, you learned about the membership API, which provides you with a full-fledged
infrastructure for managing users of your application. You can either use the WAT, the new security
controls, or the membership API for accessing these base services. The membership API is provider-
based. In other words, you can exchange the underlying store by changing the underlying provider
without touching your application. In this chapter you used only SQL Server as a provider.
Furthermore, you learned how you can configure membership providers and users directly from within
the IIS 7.x management console, due to its tight integration with ASP.NET. You learned how to use the
membership API even with non-ASP.NET applications, such as classic ASP applications or PHP
applications. It is also possible to replace existing authentication modules of IIS 7.x to integrate the
membership API with them. In Chapter 26 you will learn the necessary details for creating and
configuring a custom membership provider. In the next chapter, you’ll look at a different approach to
validating user identity—Windows authentication.

C H A P T E R 22

■ ■ ■

933

Windows Authentication

Forms authentication is a great approach if you want to roll your own authentication system using a
back-end database and a custom login page. But what if you are creating a web application for a smaller
set of known users who already have Windows user accounts? In these situations, it makes sense to use
an authentication system that can leverage the existing user and group membership information.

The solution is Windows authentication, which matches web users to Windows user accounts that
are defined on the local computer or another domain on the network. In this chapter, you’ll learn how to
use Windows authentication in your web applications. You’ll also learn how to apply impersonation to
temporarily assume another identity.

Introducing Windows Authentication
Unlike forms authentication, Windows authentication isn’t built into ASP.NET. Instead, Windows
authentication hands over responsibility of authentication to IIS. IIS asks the browser to authenticate
itself by providing credentials that map to a Windows user account. If the user is successfully
authenticated, IIS allows the web-page request and passes the user and role information onto ASP.NET
so that your code can act on it in much the same way that it works with identity information in a forms
authentication scenario.

Figure 22-1 shows the end-to-end flow.

Why Use Windows Authentication?
You would want to use Windows authentication for four main reasons:

• It involves little programming work on the developer’s part.

• It allows you to use existing user logins.

• It provides a single authentication model for multiple types of applications.

• It allows you to use impersonation and Windows security.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

934

Figure 22-1. The Windows authentication process

The first reason is quite simple—using Windows authentication allows IIS and the client browser to
take care of the authentication process so you don’t need to create a login page, check a database, or
write any custom code. Similarly, Windows already supports basic user account features such as
password expiry, account lockout, and group membership.

The second, most important reason for using Windows authentication is that it allows you to
leverage existing Windows accounts. Typically, you use Windows authentication for applications where
the users are part of the same local network or intranet as your web server. This means you can

CHAPTER 22 ■ WINDOWS AUTHENTICATION

935

authenticate users with the same credentials they use to log into their computers. Best of all, depending
on the settings you use and the network architecture, you may be able to provide “invisible”
authentication that works without forcing a separate login step. Instead, the browser simply uses the
logged-in identity of the current user.

The third reason is really an appealing one. When working with Windows authentication, you have a
single authentication model across different types of applications. For example, you can use the same
authentication model for web services, ASP.NET applications, and Windows Communication
Foundation-based services (wherever they are hosted). Therefore, Windows authentication can save you
from the challenge of flowing identities between machine boundaries. With Kerberos in place, Windows
offers a well-established mechanism for such scenarios. Actually, this goes along with the fourth reason
for using Windows authentication.

Windows authentication allows you to take advantage of existing Windows security settings. For
example, you can control access to files by setting Windows file-access permissions. However, it’s
important to remember that these permissions don’t take effect automatically. That’s because by default
your web application runs using a fixed account (typically Network Service on IIS 7.x). You can change
this behavior by carefully using Windows authentication and impersonation, as described in the
“Impersonation” section of this chapter.

Why Would You Not Use Windows Authentication?
So, why would you not want to use Windows authentication?

• It’s tied to Windows users.

• It’s tied to Windows client machines.

• It doesn’t provide much flexibility or control and can’t be customized easily.

The first problem is that Windows authentication won’t work unless the users you are
authenticating already have valid Windows accounts. In a public website, this probably isn’t the case.
Even if you could create a Windows account for each visitor, it wouldn’t be as efficient as a database
approach for large numbers of users. It also has a potential security risk, because Windows user
accounts can have permissions to the web server computer or other network computers. You might not
want to risk granting these abilities to your website users.

The second problem is that some of the authentication methods that IIS uses require users to have
compatible software on their computers. This limits your ability to use Windows authentication for users
who are using non-Microsoft operating systems or for users who aren’t using Internet Explorer.

The final main problem is that Windows authentication doesn’t give you any control over the
authentication process. Also, you have no easy way to add, remove, and manage Windows account
information programmatically or to store other user-specific information with the user credentials. As
you learned in the previous chapter, all these features are easy to add to forms authentication, but they
don’t play any part in Windows authentication.

Mechanisms for Windows Authentication
When you implement Windows authentication, IIS uses one of three possible authentication strategies
to authenticate each request it receives:

Basic authentication: The user name and password are passed as clear text. This is the only form of
authentication supported by all browsers as part of the HTML standard.

Digest authentication: The user name and password are not transmitted. Instead, a
cryptographically secure hash with this information is sent.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

936

Integrated Windows authentication: The user name and password are not transmitted. Instead, the
identity of a user already logged into Windows is passed automatically as a token. This is the only
form of authentication that takes place transparently (without user intervention).

The following sections discuss these options.

■ Note There are other less commonly used protocols for Windows authentication. One example is certificate-
based authentication. If you use this approach, you must distribute a digital certificate to each client and map each
certificate to the appropriate Windows account. Unfortunately, this technique is rife with administrative and
deployment headaches. Another option is Advanced Digest authentication, which works essentially the same way
as Digest authentication but stores the passwords more securely.

Basic Authentication
The most widely supported authentication protocol is Basic authentication. Almost all web browsers
support it. When a website requests client authentication using Basic authentication, the web browser
displays a login dialog box for user name and password, like the one shown in Figure 22-2.

Figure 22-2. A login dialog box for Basic authentication

After a user provides this information, the data is transmitted to the web server (in this case
localhost). Once IIS receives the authentication data, it attempts to authenticate the user with the
corresponding Windows account.

The key limitation of Basic authentication is that it isn’t secure—at least not on its own. User name
and password credentials obtained via Basic authentication are transmitted between the client and
server as clear text. The data is encoded (not encrypted) into a Base64 string that eavesdroppers can
easily read. In Windows Vista Microsoft has even modified the login dialog to display a warning if the
connection is not secure (meaning SSL/TLS is not used for communicating with the web server), and

CHAPTER 22 ■ WINDOWS AUTHENTICATION

937

Basic authentication is used, as you can see in Figure 22-2. For this reason, you should use Basic
authentication only in situations where there’s no need to protect user credentials, or only in
conjunction with an HTTP wire encryption protocol such as SSL. This way, the data that would
otherwise be clearly visible to any network sniffing utility will be encrypted using complex algorithms.
(You can find more information on SSL in Chapter 19.)

Digest Authentication
Digest authentication, like Basic authentication, requires the user to provide account information using
a login dialog box that is displayed by the browser. Unlike Basic authentication, however, Digest
authentication passes a hash of the password, rather than the password. (Digest is another name for
hash, which explains the name of this authentication scheme.) Because a hash is used, the password is
never sent across the network, thereby preventing it from being stolen even if you aren’t using SSL.

The process of authenticating a user with Digest authentication works like this:

1. The unauthenticated client requests a restricted web page.

2. The server responds with an HTTP 401 response. This response includes a
nonce value—a randomly generated series of bytes. The web server ensures
that each nonce value is unique before it issues it.

3. The client uses the nonce, the password, the user name, and some other values
to create a hash. This hash value, known as the digest, is sent back to the
server along with the plain-text user name.

4. The server uses the nonce value, its stored password for the user name, and
the other values to create a hash. It then compares this hash to the one
provided by the client. If they match, then the authentication succeeds.

Since the nonce value changes with each authentication request, the digest is not very useful to an
attacker. The original password cannot be extracted from it. Similarly, because it incorporates a random
nonce, the digest cannot be used for replay attacks, in which an attacker attempts to gain access at a
later time by resending a previously intercepted digest.

In theory, Digest authentication is a standard, and web servers and web browsers should all be able
to use Digest authentication to exchange authentication information. Unfortunately, Microsoft
interpreted a part of the Digest authentication specification in a slightly different way than other
organizations, such as the Apache Foundation (which provides the Apache web server) and the Mozilla
project (which provides the Mozilla web browser). Currently, IIS Digest authentication works only with
Internet Explorer 5.0 and later.

Another limitation of Digest authentication in IIS is that it functions only when the virtual directory
being authenticated is running on or controlled by a Windows Active Directory domain controller.

Integrated Windows Authentication
Integrated Windows authentication is the most convenient authentication standard for WAN-based and
LAN-based intranet applications, because it performs authentication without requiring any client
interaction. When IIS asks the client to authenticate itself, the browser sends a token that represents the
Windows user account of the current user. If the web server fails to authenticate the user with this
information, a login dialog box is shown where the user can enter a different user name and password.

For Integrated Windows authentication to work, both the client and the web server must be on the
same local network or intranet. That’s because Integrated Windows authentication doesn’t actually
transmit the user name and password information. Instead, it coordinates with the domain server or
Active Directory instance where it is logged in and gets that computer to send the authentication
information to the web server.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

938

The protocol used for transmitting authentication information is either NTLM (NT LAN Manager)
authentication or Kerberos 5—depending on the operating system version of the client and the server. If
both are running Windows 2000 or higher and both machines are running in an Active Directory
domain, Kerberos is used as the authentication protocol; otherwise, NTLM authentication will be used.
Both protocols are extremely secure (Kerberos is the most secure protocol currently available), but they
are limited. Therefore, in general, integrated authentication works only on Internet Explorer and is not
supported in non-Internet Explorer clients. Kerberos works only for machines running Windows 2000 or
higher, and neither protocol can work across a proxy server. In addition, Kerberos requires some
additional ports to be open on firewalls. In the following section, you will learn the basics of the
authentication protocols used for Integrated Windows authentication. These concepts will help you
understand the configuration steps, especially for impersonation and delegation.

NT LAN Manager Authentication

NTLM authentication is integrated into the Windows operating system since it has built-in network
support. NTLM authenticates clients through a challenge/response mechanism that is based on a three-
way handshake between the client and the server. Everything you will learn about in this section takes
place on the operating system automatically. Of course, this works only if the client and the server are
running Windows.

The client starts the communication by sending a message to the server, which indicates that the
client wants to talk to the server. The server generates a 64-bit random value called the nonce. The server
responds to the client’s request by returning this nonce. This response is called the challenge. Now the
client operating system asks the user for a user name and password. Immediately after the user has
entered this information, the system hashes the password. This password hash—called the master key—
will then be used for encrypting the nonce. Together with the user name, the client transmits the
encrypted nonce in his response to the server (completing the challenge/response mechanism).

The server now needs to validate the returned nonce. Depending on whether the user is a local user
or a domain user, this validation takes place locally or remotely on the domain controller. In both cases,
the user’s master key, which is the hashed version of the password, is retrieved from the security account
database. This master key then encrypts the clear-text nonce again on the server (of course, the server
has cached the clear-text nonce before it transmits the data to the client). If the re-created encrypted
version of the nonce matches the encrypted version returned from the client, the user is authenticated
successfully, and a logon session is created on the server for the user. Figure 22-3 shows the process flow.

As you can see, the password is never transmitted across the wire. Even the hashed version of the
password is never transmitted. This makes NTLM really secure. But there is an even more secure
protocol with additional possibilities, as you will see in the next section.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

939

Figure 22-3. The NTLM protocol at a glance

Kerberos Authentication: A Short Introduction

Currently, Kerberos 5 is the most secure authentication protocol available. It is a well-known public
standard created by the IETF (Internet Engineering Task Force), and it implements a ticket-based
authentication protocol. When activating Integrated Windows authentication, Windows will use
Kerberos automatically under the following circumstances:

• The client and the server are running Windows 2000 or higher.

• An Active Directory Domain with a primary domain controller (which
automatically plays the role of the key distribution center) is available in the
network.

In any other case, Windows will select NTLM as the authentication protocol. Although covering
Kerberos in detail requires a book of its own, you will learn about the basic concepts in this chapter.
These concepts will help you understand the necessary configuration tasks and when each feature will

CHAPTER 22 ■ WINDOWS AUTHENTICATION

940

work. For example, one of the big differences between NTLM and Kerberos is that Kerberos supports
both impersonation and delegation, while NTLM supports impersonation only.

Delegation is based on the same concept as impersonation. It involves merely performing actions
on behalf of the client’s identity. But while impersonation just works within the scope of one machine,
delegation works across the network as well. This means the authentication ticket of the original client’s
identity can be passed to another server in the network if the originally accessed server machine has the
permission to do so. You will learn more about impersonation and delegation later, in the
“Impersonation” section. For now, it’s important to understand that Kerberos supports both
impersonation and delegation, while NTLM and other Windows authentication techniques such as Basic
or Digest authentication support impersonation only.

The core component of a Kerberos system is the KDC (key distribution center), which is responsible
for issuing tickets and managing credentials. In the Windows world, an Active Directory primary domain
controller plays the role of the KDC. Every actor (meaning all the clients and all the servers) involved in
the authentication process has to trust the KDC. It manages all the user and computer accounts and
issues so-called authentication tickets and session tickets. Authentication tickets are issued after a
successful authentication of a user or a machine, and are used for requesting any further tickets, such as
session tickets. Session tickets are then used for establishing secure communication sessions between
machines in the domain. This is another big difference when comparing Kerberos to NTLM: while NTLM
works for workgroup scenarios without a central authority, Kerberos requires a central authority for
issuing any type of ticket. Therefore, for Kerberos to work, you require a connection to an Active
Directory domain controller. Figure 22-4 shows the flow for authenticating a user and then establishing
a session between the client and the simple member server of a domain.

The following section explains the basics about Kerberos authentication and tickets, which are
demonstrated in Figure 22-4 (the steps in the numbered list map to the numbers in the figure):

1. Every user authentication process starts with submitting a request to the
authentication service, which runs on the KDC (Active Directory Domain
Controller in Figure 22-4). This request contains the user name of the user to
be authenticated. The KDC reads the user’s master key from the security
account database. Again, this is the hashed version of the user’s password.

2. Afterward, it creates a TGT (ticket-granting ticket). This ticket contains a session
key for the user’s session as well as an expiration date and time. Before the ticket
is returned to the client, the server encrypts it using the user’s master key.

3. With only the correct password entered on the client, the client operating
system can create the correct master key (the hash) for successfully decrypting
the TGT received from the server. If decryption of the TGT succeeds on the
client, the user is authenticated successfully.

4. Finally, the client caches the TGT locally.

5. When the client wants to communicate with another member server in the
network, it first has to ask the KDC for a session ticket. For this purpose, it
sends the locally cached TGT to a ticket-granting service that runs on the KDC.
This service validates the TGT, and if it’s still valid (not expired, not tampered
with, and so on), it generates a session key for the communication session
between the client and the member server. This session key is then encrypted
with the client’s master key. In addition, the session key is packaged into an ST
(session ticket), which contains additional expiration information for the
server. This session ticket is encrypted with the member server’s master key.
Of course, both the server and the client are well known to the KDC, as
somewhere in the past both have been joined to the domain (joining a
machine to a domain means establishing a trust relationship between this
machine and the KDC). Therefore, the KDC knows the client’s and the
member server’s master keys and can use them for encrypting the information
accordingly.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

941

6. Both the encrypted session key and the encrypted session ticket are forwarded
to the client.

7. The client decrypts the session key and keeps a local copy of this session key in
a local cache.

8. Afterwards the client forwards the encrypted session ticket to the server. The
KDC has encrypted the session ticket for the server using the server’s master
key, as outlined in step 5.

9. If the server can successfully decrypt and validate the session ticket received
from the client, the communication session will be established.

10. Both the client and the server use the previously generated session key for
encrypting the communication traffic. As soon as the session ticket has
expired, the whole operation takes place again.

Figure 22-4. Kerberos authentication and tickets

CHAPTER 22 ■ WINDOWS AUTHENTICATION

942

Every ticket—session tickets and ticket-granting tickets—is equipped with capabilities. Capabilities
of a ticket are a set of defined properties that are required for certain features, such as impersonation or
delegation. For example, equipped with the right set of properties (capabilities), tickets can be used for
impersonating the client user on the server or delegating the client’s identity to another server. If the
client and the KDC do not include these capabilities (set of properties) into the ticket, features related to
these capabilities would not work. For example, if the ticket does not include the necessary information
for impersonating a user, impersonation will not work. From the security perspective, this is a good
design, as the client and the server can decide whether certain features are allowed or not just by
including or not including certain properties in the ticket. Exactly for this purpose, the user account
and the server account need additional permissions, as you will see in the “Impersonation” section of
this chapter.

Covering these concepts in detail would require a book on its own. The idea of this discussion of the
basic concepts of NTLM and Kerberos is to give you enough understanding to complete the necessary
configuration steps to make impersonation and delegation work in your environment. In most cases, if
something doesn’t work with impersonation (or delegation), it’s because the domain controller or the
KDC is incorrectly configured (if you are not using Active Directory) or because the expiration date of the
ticket is not set appropriately (it should not be set too long, but not too short either).

Although covering these topics in great detail requires an entire book, this overview will allow you to
understand how the protocol works and what the requirements for different usage scenarios are.

Implementing Windows Authentication
To use Windows authentication in an ASP.NET application and have access to the user identity in
ASP.NET, you need to take three steps:

1. Configure the type of Windows authentication in IIS.

2. Configure ASP.NET to use the IIS authentication information using the
web.config file.

3. Restrict anonymous access for a web page, a subdirectory, or the entire
application.

The first two steps are just one step in IIS 7.x when running in ASP.NET integrated mode, as its new
management console directly configures your application’s web.config file as required, in addition to
the IIS configuration.

Configuring IIS 7.x
When running IIS 7.x, Windows authentication is implemented through a module in the HTTP modules
pipeline. This pipeline is a mixture of native modules shipping with IIS and managed modules shipping
with ASP.NET. The big advantage of this model is that you can use standard ASP.NET HTTP modules for
all applications configured in IIS 7.x—even applications not based on ASP.NET.

Another big advantage of IIS 7.x is a unification of the configuration system as introduced in
Chapter 18, which means you do not need to configure certain configuration options in IIS 7.x and
ASP.NET separately. You can do all the configuration directly through the IIS management console. IIS
performs the configuration in its central configuration store (applicationHost.config, as you learned in
Chapter 18) and in the application’s web.config as necessary. In IIS 7.x you can configure the
authentication methods via the authentication configuration feature of the management console, as you
can see in Figure 22-5.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

943

Figure 22-5. Authentication configuration feature of IIS 7.x

You can just enable or disable some authentication modules, such as the Windows authentication
module, by clicking the appropriate link in the Actions task pane on the right border of the console
(for example, Enable or Disable). Other authentication modules, such as the Basic authentication
module, offer more detailed settings by clicking the Edit link on the Actions task pane, as you can see in
Figure 22-6.

As shown in Figure 22-6, these are the default domain settings used for Basic authentication. This
domain is used as a default domain if the user logs into the website without specifying a domain in the
format DOMAIN\Username when logging in through the authentication dialog.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

944

Figure 22-6. Configuring Basic authentication details

Whenever performing this configuration, IIS 7.x updates your application’s web.config file, and if
necessary its central applicationHost.config configuration file, which you learned about in Chapter 18.
How the files get updated and which settings reside in which of these two files depends on the feature
delegation configuration you learned about in Chapter 18. By default, web server-specific modules are
configured centrally in the applicationHost.config configuration file, and ASP.NET-based configurations
are automatically updated in your application’s web.config file. In any case, that means after performing
this configuration through the IIS 7.x management console you do not need to perform any additional,
manual configuration steps in your application’s web.config.

Configuring ASP.NET
Once you’ve configured IIS, the authentication process happens automatically. However, if you are
using the Visual Studio test web server and you want to be able to access the identity information for the
authenticated user in your ASP.NET application, you need to manually configure the web.config file of
your ASP.NET application to use Windows. This configuration looks as follows:

<configuration>
 <system.web>
 <!-- Other settings omitted. -->
 <authentication mode="Windows"/>
 </system.web>
</configuration>

The preceding configuration tells ASP.NET that you want to use the Windows authentication
module. The WindowsAuthenticationModule HTTP module will then handle the AuthenticateRequest
event of the application to extract the identity previously authenticated by the web server and provide it
to the web application. This is true independent from the underlying version of IIS!

CHAPTER 22 ■ WINDOWS AUTHENTICATION

945

Deeper Into the IIS 7.x Pipeline
So far, you’ve considered the configuration essentials. However, when you configure IIS 7.x to use Basic
or Windows authentication, it actually perform a bit more configuration work that you probably realize.

To understand why, you first need to know that IIS uses two HTTP modules for performing
dedicated parts of the authentication process, as you can see in Figure 22-7. One of these modules is the
native one shipping with IIS 7.x, and the other one is the module shipping with ASP.NET itself.

Figure 22-7. Modules implementing Windows authentication

 The WindowsAuthenticationModule module is a native HTTP module provided by IIS 7.x, while the
module named only WindowsAuthentication is the managed module provided by ASP.NET. The native
module is the web server’s implementation of the authentication protocol itself. For Basic
authentication, this is the BasicAuthenticationModule, and for Windows authentication, it is the
WindowsAuthenticationModule. These modules are responsible for handling the native authentication
protocol. For example, in the case of Windows authentication, the module is responsible for handling
the NTLM challenge/response or the Kerberos handshake, as outlined in the section “Integrated
Windows Authentication” earlier in this chapter. The managed module ships with ASP.NET. The
managed module is responsible for extracting Windows user information for the user authenticated by
the native module. After extracted, the Windows user information is available in your application—as is
the case on any version of IIS.

That means that when configuring Windows, Basic, or Digest authentication through the IIS 7.x
management console, two configurations need to be performed: first it needs to configure ASP.NET for
Windows authentication as outlined earlier, and second it needs to configure the native authentication
module. The native module is configured either in the central applicationHost.config configuration of
the web server, or in the web.config file of your application, depending on the feature delegation
configuration of the web server. The central configuration applicationHost.config is located in the
inetsrv\config subdirectory of your system directory. For example, on a 32-bit Windows version this
would be \Windows\system32\inetsrv\config.

By default, IIS 7.x feature delegation is configured so that your web.config inherits the settings
from the central applicationHost.config configuration for the native authentication modules, such as
the native BasicAuthenticationModule. That means your web.config file contains only the ASP.NET-

CHAPTER 22 ■ WINDOWS AUTHENTICATION

946

specific configuration. You configure the native module in the central applicationHost.config
configuration, as follows:

<location path="Default Web Site/WinAuth">
 <system.webServer>
 <security>
 <authentication>
 <anonymousAuthentication enabled="true" />
 <windowsAuthentication enabled="false" />
 <basicAuthentication enabled="false"
 realm=""
 defaultLogonDomain="MSZCOOL-VAIO" />
 </authentication>
 </security>
 </system.webServer>
</location>

However, you can change your feature delegation configuration of IIS 7.x so that even these settings
are stored in your application’s web.config file. This would allow xcopy deployment of your application,
as any setting can be stored directly in the web.config file (if the feature configuration delegation of the
target web server is configured appropriately). Figure 22-8 shows the IIS 7.x feature configuration with
authentication modules selected. You can find the feature configuration option when clicking the top-
level node of the tree view on the left side of the management console. Feature delegation is always
configured for the whole web server, and therefore affects any web application or virtual directory!

Figure 22-8. The IIS 7.x feature configuration for authentication modules

As you can see, the feature delegation for authentication modules provided by IIS 7.x natively, such
as Basic, Digest, and Windows authentication, is set to Read Only. That means these settings are
configured by the management console in the central applicationHost.config configuration file, and

CHAPTER 22 ■ WINDOWS AUTHENTICATION

947

inherited by your local web.config file. It even means that configuration settings for these modules are
not allowed to appear in an application’s web.config configuration. Therefore, you will not find any
configuration settings for these modules in your local web.config file, by default.

If you change the feature delegation configuration for these modules (or one of these modules) to
Read/Write, the configuration will be included in your web.config file as well. That means if you
configure the feature delegation for Basic authentication and Windows authentication to the setting
Read/Write, the following section will be added to your web.config file. It will be added when
configuring one (or both) of these authentication methods for your web application using the
authentication configuration feature of the IIS 7.x management console:

<configuration>
 <appSettings />
 <connectionStrings />
 <system.web>
 <compilation debug="true" />
 <authentication mode="Windows" />
 </system.web>
 <system.webServer>
 <security>
 <authentication>
 <windowsAuthentication enabled="true" />
 <basicAuthentication enabled="true"
 realm=""
 defaultLogonDomain="TestDomain" />
 </authentication>
 </security>
 </system.webServer>
</configuration>

As you can see in the preceding web.config file, the configuration of the Windows authentication
HTTP module shipping with ASP.NET resides in the <system.web> section. Any configuration specific to
native HTTP modules typically shipping with IIS 7.x is added to the <system.webServer> configuration
section. However, you need to bear one additional thing in mind. If you configure settings for native
modules in the <system.webServer> section of your web.config, even though the central feature
delegation configuration is set to Read Only, you will retrieve an HTTP 500 internal server error when
trying to request the page. Even the IIS 7.x management console will respond with an error message
when trying to configure the affected features, as shown in Figure 22-9.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

948

Figure 22-9. Configuration error with invalid web.config according to feature delegation

In that case, you need to manually remove invalid web.config configuration entries from your
web.config file.

In general, unifying the configuration model and feature delegation is a powerful utility for
administrators and developers. Having feature delegation enabled as outlined earlier would allow xcopy
deployment of your web applications to IIS. All you need to do is add a virtual directory or web
application, and all the remaining configuration settings reside directly in your web.config file of your
application. At the same time, administrators can determine exactly which settings can be overridden in
web.config files to strengthen security. Remember that by default, feature delegation configuration is
disabled for many modules. These modules are configured in the central applicationHost.config
configuration of IIS 7.x and not through the application’s web.config. You can find a complete list just by
opening the feature configuration of your local web server, as outlined earlier and in Chapter 18.

Denying Access to Anonymous Users
As described earlier, you can force users to log on by modifying IIS virtual directory settings or by using
authorization rules in the web.config file. The second approach is generally preferred. Not only does it
give you more flexibility, but it also makes it easier to verify and modify authorization rules after the
application is deployed to a production web server.

Chapter 23 describes authorization in detail. For now, you’ll consider only the simple technique of
denying access to all unauthenticated users. To do this, you must use the <authorization> element of the
web.config file to add a new authorization rule, as follows:

CHAPTER 22 ■ WINDOWS AUTHENTICATION

949

<configuration>
 <system.web>
 <!-- Other settings omitted. -->
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

The question mark (?) is a wildcard character that matches all anonymous users. By including this
rule in your web.config file, you specify that anonymous users are not allowed. Every user must be
authenticated using one of the configured Windows authentication protocols.

When using IIS 7.x, you can configure authorization rules directly from within the IIS management
console, as shown in Figure 22-10.

Figure 22-10. IIS authorization configuration for Windows authentication

By default, the feature delegation configuration of IIS 7.x is configured so that authorization rules
are added to the central applicationHost.config configuration of the web server. That means if you
configure these rules with the IIS management console, they will not be reflected in your web.config file.
However, you can configure them manually in the <authorization> element of the <system.web> section
of your web.config as outlined earlier, and the resulting behavior will be exactly the same as when
configuring them through the IIS management console—at least from the user’s perspective. What does
that mean? Well, when configuring authorization rules through the IIS 7.x management console, they
will be configured in the <system.webServer> section, which is evaluated by the web server’s native
authorization module. That means the web server itself rejects the request. On the other hand, when

CHAPTER 22 ■ WINDOWS AUTHENTICATION

950

configuring the settings in the <system.web> section, ASP.NET will reject the request (which is at a later
point in time in the processing pipeline).

 Furthermore, when you disable the Anonymous Authentication module in IIS 7.x, you don’t even
need to configure any authorization rules, as the web server itself rejects the request before it even
comes to evaluating authorization rules. However, according to “defense in-depth” and “secure-by-
default,” we would recommend you configure authorization rules either through the management
console or your web.config file anyway.

Accessing Windows User Information
One of the nice things about Windows authentication is that no login page is required. When the user
requests a page that requires authentication, the browser transmits the credentials to IIS. Your web
application can then retrieve information directly from the User property of the web page.

Here’s an example that displays the currently authenticated user:

if (Request.IsAuthenticated)
{
 // Display generic identity information.
 lblInfo.Text = "Name: " + User.Identity.Name;
 lblInfo.Text += "
Authenticated With: ";
 lblInfo.Text += User.Identity.AuthenticationType;
}

This is the same code you can use to get information about the current identity when using forms
authentication. However, you’ll notice one slight difference. The user name is always in the form
DomainName\UserName or ComputerName\UserName. Figure 22-11 shows an example with a user
account named marioszp of the domain EUROPE.

Figure 22-11. Displaying user information

CHAPTER 22 ■ WINDOWS AUTHENTICATION

951

The WindowsPrincipal Class
As you’ve learned in the past two chapters, the User property returns an IPrincipal object. When you use
Windows authentication, this is an instance of the WindowsPrincipal class. The WindowsPrincipal class
provides access to a WindowsIdentity object through the Identity property.

The WindowsPrincipal class implements four overloads of IsInRole() that all check whether the user
is in a specified Windows user group. The IsInRole(string) overload (which is the only one required to be
implemented when implementing IPrincipal) is implemented so that it accepts the name of the user
group to be checked. IsInRole(int) expects an integer RID (Role Identifier) that refers to a user group.
Furthermore, an overload is provided that expects a member of the WindowsBuiltInRole enumeration,
which provides a list of predefined Windows account types (such as Guest, Administrator, and so on).
Finally, there is an overload accepting a SecurityIdentifier instance. You will learn more about the
SecurityIdentifier classes in the section “IdentityReference and Role Information” later in this chapter.
You can find the WindowsPrincipal, WindowsIdentity, and WindowsBuiltInRole types in the
System.Security.Principal namespace.

Here’s a simple example that tests whether the user is in a predefined Windows role:

if (Request.IsAuthenticated)
{
 lblInfo.Text = "Name: " + User.Identity.Name;
 if(User is WindowsPrincipal)
 {
 WindowsPrincipal principal = (WindowsPrincipal)User;
 lblInfo.Text += "
Power user? ";
 lblInfo.Text += principal.IsInRole(
 WindowsBuiltInRole.PowerUser).ToString();
 }
}

Note that you must cast the User object to a WindowsPrincipal to access this Windows-specific
functionality. Also notice that this cast will not work with forms authentication enabled and with the
roles API enabled. (Chapter 23 covers the roles API in detail.) When having the roles API enabled,
ASP.NET will create a RolePrincipal even when Windows authentication is configured for the
application. Figure 22-12 shows the result of the previous code sample.

Figure 22-12. Testing group membership

CHAPTER 22 ■ WINDOWS AUTHENTICATION

952

Table 22-1 lists all the possible roles provided through the WindowsBuiltInRole enumeration. You
can also test for membership with any arbitrary group you’ve created. Chapter 23 discusses this
technique.

Table 22-1. Values for the WindowsBuiltInRole Enumeration

Role Description

AccountOperator Users with the special responsibility of managing the user accounts on a
computer or domain.

Administrator Users with complete and unrestricted access to the computer or domain.

BackupOperator Users who can override certain security restrictions only as part of backing up
or restoring operations.

Guest Like the User role but even more restrictive.

PowerUser Similar to Administrator but with some restrictions.

PrintOperator Like a User but with additional privileges for taking control of a printer.

Replicator Like a User but with additional privileges to support file replication in a
domain.

SystemOperator Similar to Administrator but with some restrictions. Generally, system
operators manage a particular computer.

User Users are restricted accounts that are prevented from making system-wide
changes.

The WindowsIdentity Class
You can access some additional information about the currently authenticated user by casting the
general identity object to a WindowsIdentity object. WindowsIdentity provides a number of additional
members, as described in Table 22-2.

Table 22-2. Additional Members of the WindowsIdentity

Member Description

IsAnonymous This property returns true if the user is anonymous (has not been
authenticated).

IsGuest This property returns true if the user is using a Guest account. Guest accounts
are designed for public access and do not confer many privileges.

IsSystem Returns true if the user account has the Act As Part of the Operating System
permission, which means it is a highly privileged system account.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

953

Member Description

Groups Retrieves a collection that contains instances of IdentityReference classes,
which returns the SID values for the groups the user is in.

Token Returns the Windows account token for the identity.

Owner Gets the SID for the token owner.

User Gets the user’s SID. For example, you can use this SID if you want to modify
permissions for this user on ACLs through the classes provided in the
System.Security.AccessControl namespace.

Impersonate() This method instructs ASP.NET to run the following code under the
corresponding Windows account. You’ll learn much more about
impersonation in the next section.

GetAnonymous() This static method creates a WindowsIdentity that represents an anonymous
user.

GetCurrent() This static method creates a WindowsIdentity that represents the identity tied
to the current security context (the user whose identity the current code is
running under). If you use this method in an ASP.NET application, you’ll
retrieve the user account under which the code is running, not the user
account that was authenticated by IIS and is provided in the User object.

The following code displays extra Windows-specific information about the user:

if (Request.IsAuthenticated)
{
 lblInfo.Text = "Name: " + User.Identity.Name;

 WindowsIdentity identity = (WindowsIdentity)User.Identity;
 lblInfo.Text += "
Token: ";
 lblInfo.Text += identity.Token.ToString();
 lblInfo.Text += "
Guest? ";
 lblInfo.Text += identity.IsGuest.ToString();
 lblInfo.Text += "
System? ";
 lblInfo.Text += identity.IsSystem.ToString();
}

Figure 22-13 shows the result.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

954

Figure 22-13. Showing Windows-specific user information

IdentityReference and Role Information
The .NET Framework ships with a set of IdentityReference classes. An IdentityReference is a reference to
a valid Windows identity that is expressed through a SID. Valid Windows identities are computer and
user accounts as well as Windows groups. When you create a user, when you create a group, or when
you set up a new machine with Windows, it gets a worldwide unique SID assigned by the system.
Actually, this SID is used for uniquely identifying system objects such as users. You can find an
IdentityReference wherever a system object such as a user is referenced. For example, if you grant a user
on your machine access to a file through the Security tab of the file properties, an IdentityReference gets
added to the access control list of the file and contains the SID of the user to whom you are granting
access. When adding a user to a group, a reference to the user in the form of a SID gets added to the
group’s user list as well (and to the user’s group list).

The .NET Framework includes three classes for SID references in the System.Security.Principal
namespace: IdentityReference, SecurityIdentifier, and NTAccount. These classes are key for
enumerating groups of a Windows user through a WindowsIdentity instance. The IdentityReference is
an abstract base class for any class representing a SID. Therefore, it is the base class for two classes:
SecurityIdentifier and NTAccount. The first one represents the real, unique code of a SID—which looks
similar to a Universally Unique ID (UUID)—whereas the second one represents the human-readable
string for a SID (such as the readable name of the user or the group). The IdentityReference base class
defines a method called Translate that allows you to convert an existing IdentityReference instance from
one type to another, such as the conversion from NTAccount to SecurityIdentifier.

With that knowledge, enumerating the groups of the currently logged on Windows user account is
simple, as shown in the following code sample:

protected void Page_Load(object sender, EventArgs e)
{
 if (User is WindowsPrincipal)
 {
 // First of all, get general user information
 WindowsPrincipal principal = (WindowsPrincipal)User;
 // ...
 WindowsIdentity identity = (WindowsIdentity)principal.Identity;
 // ...

 // Now get the roles for the user

CHAPTER 22 ■ WINDOWS AUTHENTICATION

955

 lblInfo.Text += "<hr/>";
 lblInfo.Text += "<h2>Roles:</h2>";

 foreach (IdentityReference SIDRef in identity.Groups)
 {
 lblInfo.Text += "
—-";

 // Get the system code for the SID
 SecurityIdentifier sid =
 (SecurityIdentifier)SIDRef.Translate(
 typeof(SecurityIdentifier));
 lblInfo.Text += "
SID (code): </br>";
 lblInfo.Text += sid.Value;

 // Get the human-readable SID
 NTAccount account = (NTAccount)SIDRef.Translate(typeof(NTAccount));
 lblInfo.Text += "
SID (human-readable): </br>";
 lblInfo.Text += account.Value;
 }
 }
}

The WindowsIdentity class includes a property called Groups, which is nothing other than a
collection of IdentityReference objects. All you need to do is enumerate this collection and translate the
IdentityReference to the type of reference you need for your purpose. As already mentioned, the .NET
Framework comes with two types of representations of IdentityReferences: a SecurityIdentifier
representing the SID because it’s system-internal code, and the NTAccount representing the human-
readable version of the SID. Through the Value property of the IdentityReference classes, you can access
the actual value of the reference, which is the SID code for the SecurityIdentifier instance and the
readable name of the user or group for the NTAccount instancehe NTAccount instance.

■ Note The IdentityReference classes are used by the System.Security.AccessControl classes as well. These
classes provide a fully managed API that allows you to access file system access control lists programmatically

from .NET-based applications. Access control list entries always bind to IdentityReference instances in this API,
representing the user for which you have created the access control list entry. Finally, this is a great possibility for
setting file system or registry access rights correctly when installing your applications on target machines (or

modifying file system or registry access rights programmatically). Actually, you can use the
System.Security.AccessControl classes to secure even more than just file system objects or registry objects.
Indeed, you can secure any system object that can be secured through access control lists, such as named pipes,

that are used for interprocess communication.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

956

Impersonation
Everything that ASP.NET does is executed under a Windows account. When using IIS 7.x, this identity is
the identity of the worker processes created for an application pool configured in IIS. Each application
pool can have its own identity configured as you learned in Chapter 18. In any case, as each page request
is processed, the configured identity determines what ASP.NET can and cannot do.

Impersonation provides you with a way to make this system more flexible. Instead of using a fixed
account for all users, web pages, and applications, you can temporarily change the identity that ASP.NET
uses for certain tasks. This process of temporarily assuming the identity of another Windows account is
impersonation.

One potential reason to use impersonation is to use the permissions that are defined for the
currently authenticated user. This means the actions ASP.NET performs will be limited according to the
person who is using the application. For example, your web server might be set up with a number of
personalized directories, one for each user. By impersonating the user in your web application, you
ensure that your application cannot inadvertently give the user access to any files except the ones in that
user’s directory. If you attempt to access a restricted file, the Windows operating system will intervene,
and an exception will be raised in your code.

■ Note Impersonation does not give you the ability to circumvent Windows security. You must still have the
credentials for the user you want to impersonate, whether you write them into your code or a user provides them

at runtime.

ASP.NET has two types of impersonation. Configured (web.config) impersonation allows you to
specify that page requests should be run under the identity of the user who is making the request.
Programmatic impersonation gives you the ability to switch to another identity within the code and
switch back to the original identity when a specific task is finished. You’ll learn about both of these
techniques in the following sections.

Impersonation and Delegation in Windows
In order to use impersonation, the account that’s running your website requires a specific operating
system privilege, which is called “Impersonate a client after authentication.” You can configure this
privilege through the Local Security Policy management console (search for it in the Start menu), but
you usually won’t need to. That’s because the built-in accounts Local Service and Network Service both
have this privilege by default (see Figure 22-14). That means as long as you run your application pools
under Network Service or Local Service, you don’t need to configure anything for enabling
impersonation. If you run your applications under a custom user account, you need to configure this
privilege for the user you are going to use for the application pool.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

957

Figure 22-14. Impersonation privilege in Windows Vista

But delegation is different. As mentioned previously, delegation means that a server that has
authenticated the client can pass the client’s authentication ticket to another server in this network. This
means that this server (and therefore your application) acts on behalf of the client across the network.
Figure 22-15 shows this in detail.

Figure 22-15. Identity flows across network hops

In Figure 22-15, you can see the big difference of impersonation. While impersonation takes place
on the local machine only, delegation brings the concept of impersonation to calls across the network.
Of course, if every server could do that in an uncontrolled fashion, this feature would definitely lead to a
security risk. Therefore, Windows provides you with a way to specify which computer is trusted for
delegation. By default no computer in the network except the domain controller is trusted for
delegation. In Figure 22-15, the server you would configure for delegation would be the Web Application
Server, as this is the one that needs to pass the credentials on to the next server.

CHAPTER 22 ■ WINDOWS AUTHENTICATION

958

You need to configure delegation explicitly using the Windows Server 2008 Active Directory
Computers and Users configuration through the server management console. On the one hand, you
need to permit machines to pass Kerberos tickets to other machines that allow impersonation (this is the
“Trusted for delegation” privilege, which can be found in the local or global security policies
management console of the server), and on the other hand, you have to give the same permission to the
domain user under which your web application process is running. You need to do this configuration on
the domain controller on Windows Server 2008.

■ Caution We suggest not using impersonation or delegation if it’s not really necessary. If you use impersonation
or delegation, this includes flowing the original client user’s identity from the front-end to the backend. On the

backend, all the ACLs and operating system security-related authorization settings must be configured properly for
every single user. This configuration gets harder and harder with an increasing number of users. A simple
configuration mistake can lead to either an application that doesn’t work or a (probably huge) security leak. And

think about the additional security configurations necessary! Instead, you should group users to roles and perform

any security configuration based on roles or groups. You will learn more about roles and groups in Chapter 23.

■ Caution Enabling delegation for a server is something you should do carefully. Thoroughly review applications
running on such a server, because malicious applications can lead to repudiation attacks. Imagine a malicious
application (or a malicious part of an application that has not been reviewed) running on this server and performing

some “illegal” actions under an impersonated or delegated user’s identity. Applications (and therefore servers)
should be allowed only for performing delegation if it’s really necessary so that applications running on such

servers cannot do any “illegal” things based on other, impersonated or delegated user identities.

Configured Impersonation
The simplest form of impersonation is configured impersonation, where you use the web.config file to
define the impersonation behavior you want. You accomplish this by adding the <identity> element
shown here:

<configuration>
 <system.web>
 <!-- Other settings omitted. -->
 <identity impersonate="true" />
 </system.web>
</configuration>

You can configure the <identity> element in more than one way, depending on the result you want.
If you want to impersonate the Windows account authenticated by IIS, then you should use the setting
as shown in the previous code snippet—just set the impersonate attribute to true.

Keep in mind that if you allow anonymous access, you can use the IUSR_[ComputerName]
account. When using this approach, the impersonated account must have all the permissions

CHAPTER 22 ■ WINDOWS AUTHENTICATION

959

required to run ASP.NET code, including read-write access to the
c:\[WinDir]\Microsoft.NET\Framework\[Version]\Temporary ASP.NET Files directory where the
compiled ASP.NET files are stored. Otherwise, an error will occur and the page will not be served.

Programmatic Impersonation
Configured impersonation allows you to impersonate a user for the entire duration of a request. If you
want more control, such as the ability to impersonate a user for only part of the page request, you have
to do the impersonation yourself in your code.

The key to impersonating a user programmatically is the WindowsIdentity.Impersonate() method.
This method sets up impersonation for a specific account. You identify the account you want to
impersonate by using its account token. Account tokens are what Windows uses to track users once their
credentials are approved. If you have the token for a user, you can impersonate that user.

The general process is as follows:

1. Obtain an account token for the account you want to impersonate.

2. Use WindowsIdentity.Impersonate() to start impersonation. This method
returns a WindowsImpersonationContext object.

3. Call the Undo() method of the WindowsImpersonationContext object to revert
to the original identity.

Getting a Token
You can get an account token in two main ways. The most common approach is to retrieve the token for
the currently authenticated user. You can access this token through the current security context, using
the WindowsIdentity.Token property. Tokens are represented in .NET as IntPtr objects, which are
representations of pointers to unmanaged memory locations. However, you never need to interact with
this directly. Instead, you simply need to pass the token to the WindowsIdentity.Impersonate() method.

Here’s an example that extracts the token for the current user:

IntPtr token = ((WindowsIdentity)User.Identity).Token;

The only other way to get a user token is to programmatically log in with a specific user name and
password. Unfortunately, .NET does not provide managed classes for logging a user in. Instead, you
must use the LogonUser() function from the unmanaged Win32 security API.

To use the LogonUser() function, you must first declare it as shown in the following code snippet.
This code uses the DllImport attribute, which tells the runtime that you are going to access a native
Windows API located in the native DLL advapi32.dll in the Windows system directory. The types of the
parameters in the function prototype where this attribute is applied to need to map to the types of the
functions encapsulated into the native DLL. Although every call to this method in your code looks like a
call to any other static method of a .NET class, in reality the call gets routed to the native method
encapsulated in the DLL specified in the DllImport attribute, and the information transmitted gets
marshaled accordingly. For more information on consuming functionality implemented in a native
Windows DLL, take a look at the MSDN article at http://msdn2.microsoft.com/en-
us/library/26thfadc.aspx.

[DllImport(@"c:\Windows\System32\advapi32.dll")]
public static extern bool LogonUser(string lpszUserName,
 string lpszDomain, string lpszPassword, int dwLogonType,
 int dwLogonProvider, out int phToken);

http://msdn2.microsoft.com/en-us/library/26thfadc.aspx
http://msdn2.microsoft.com/en-us/library/26thfadc.aspx
http://msdn2.microsoft.com/en-us/library/26thfadc.aspx

CHAPTER 22 ■ WINDOWS AUTHENTICATION

960

As you can see, the LogonUser() function exists in advapi32.dll. It takes a user name, domain,
password, logon type, and logon provider input parameters, along with an output parameter that allows
you to access the token following a successful logon. The parameter names aren’t important. In this
example, the somewhat cryptic names from the Windows API reference are used. A Boolean result is
returned to indicate whether the logon was successful.

■ Note Windows XP or later operating systems impose restrictions on the use of blank passwords to prevent
network-based attacks. As a result of these restrictions, you won’t be able to use the LogonUser() function to

impersonate an account with a blank password.

Once you have imported the LogonUser() function, you can use it in your code to log the user in, as
shown here:

// Define required variables.
string user = "matthew";
string password = "secret";
string machine = "FARIAMAT";
int returnedToken;

// Try to log on.
if (LogonUser(user, machine, password, 3, 0, out returnedToken))
{
 // The attempt was successful. Get the token.
 IntPtr token = new IntPtr(returnedToken);
}

Note that you must convert the integer value returned by LogonUser() into an IntPtr in order to use
it with the WindowsIdentity.Impersonate() method.

Performing the Impersonation
Once you have an account token, you can use the WindowsIdentity.Impersonate() method to start
impersonating the corresponding identity. You can use the Impersonate() method in two ways. You can
use the static version, which requires an account token. Alternatively, you can use the instance version,
which impersonates the identity represented by the corresponding WindowsIdentity object. In either
case, the Impersonate() method returns a WindowsImpersonationContext object that has a single
function—it allows you to revert to the original identity by calling its Undo() method.

Here’s an example of programmatic impersonation at its simplest, using the static version of the
Impersonate() method:

WindowsImpersonationContext impersonateContext;
impersonateContext = WindowsIdentity.Impersonate(token);

// (Now perform tasks under the impersonated ID.
// This code will not be able to perform any task
// that the user would not be allowed to do.)

impersonateContext.Undo();

CHAPTER 22 ■ WINDOWS AUTHENTICATION

961

At any time, you can determine the identity that your code is currently executing under by calling
the WindowsIdentity.GetCurrent() method. Here’s a function that uses this technique to determine the
current identity and display the corresponding user name in a label on a web page:

private void DisplayIdentity()
{
 // Get the identity under which the code is currently executing.
 WindowsIdentity identity = WindowsIdentity.GetCurrent();
 lblInfo.Text += "Executing as: " + identity.Name + "
";
}

Using the method, you can create a simple test that impersonates the authenticated IIS identity and
then reverts to the standard identity:

private void Page_Load(object sender, System.EventArgs e)
{
 if (User is WindowsPrincipal)
 {
 DisplayIdentity();

 // Impersonate the IIS identity.
 WindowsIdentity id;
 id = (WindowsIdentity)User.Identity;
 WindowsImpersonationContext impersonateContext;
 impersonateContext = id.Impersonate();
 DisplayIdentity();

 // Revert to the original ID as shown here.
 impersonateContext.Undo();
 DisplayIdentity();
 }
 else
 {
 // User isn't Windows authenticated.
 // Throw an error or take other steps.
 }
}

Figure 22-16 shows the result.

Figure 22-16. Impersonating a user programmatically

CHAPTER 22 ■ WINDOWS AUTHENTICATION

962

Summary
In this chapter, you learned how to use Windows authentication with ASP.NET to let IIS validate user
identities. You also learned about the different types of authentication, how to retrieve user information,
and how to impersonate users so your code runs under a different Windows account. Furthermore, you
learned how IIS 7.x and ASP.NET work together when it comes to Windows authentication. The IIS 7.x
management console is able to configure both ASP.NET-specific and web server-specific settings for
you. This configuration is done in your web.config as well as in the web server’s central configuration
(applicationHost.config), depending on the feature delegation configuration. By default, features
shipping with the web server are configured centrally, and ASP.NET-specific features are configured in
web.config. However, you can change this behavior by modifying the feature delegation configuration.

In the next chapter, you’ll learn about using advanced authorization rules that apply to Windows
authentication and forms authentication.

C H A P T E R 23

■ ■ ■

963

Authorization and Roles

So far, you’ve seen how to confirm that users are who they say they are and how to retrieve information
about those authenticated identities. This gives your application the basic ability to distinguish between
different users, but it’s only a starting point. To create a truly secure web application, you need to act
upon that identity at various points using authorization.

Authorization is the process of determining whether an authenticated user has sufficient
permissions to perform a given action. This action could be requesting a web page, accessing a resource
controlled by the operating system (such as a file or database), or performing an application-specific
task (such as placing an order in an order management system or assigning a project in a project
management application such as Microsoft Project Server). Windows performs some of these checks
automatically, and you can code others declaratively using the web.config file. You’ll need to perform
still others directly in your code using the IPrincipal object.

In this chapter, you’ll learn how ASP.NET authorization works, how to protect different resources,
and how to implement your own role-based security.

URL Authorization
The most straightforward way to set security permissions is on individual web pages, web services, and
subdirectories. Ideally, a web application framework should support resource-specific authorization
without requiring you to change code and recompile the application. ASP.NET supports this
requirement with declarative authorization rules, which you can define in the web.config file.

The rules you define are acted upon by the UrlAuthorizationModule, a specific HTTP module. This
module examines these rules and checks each request to make sure users can’t access resources you’ve
specifically restricted. This type of authorization is called URL authorization because it considers only
two details—the security context of the user and the URL of the resource that the user is attempting to
access. If the page is forbidden and you’re using forms authentication, the user will be redirected to the
login page. If the page is forbidden and you’re using Windows authentication, the user will receive an
“access denied” (HTTP 401) error page, as shown in Figure 23-1, or a more generic error message or
custom error page, depending on the <customErrors> element.

CHAPTER 23 ■ AUTHORIZATION AND ROLES

964

Figure 23-1. Trying to request a forbidden web page

Authorization Rules
You define the authorization rules in the <authorization> element within the <system.web> section of
the web.config file. The basic structure is as follows:

<authorization>
 <allow users="comma-separated list of users"
 roles="comma-separated list of roles"
 verbs="comma-separated list of verbs" />
 <deny users="comma-separated list of users"
 roles="comma-separated list of roles"
 verbs="comma-separated list of verbs" />
</authorization>

In other words, two types of rules exist: allow and deny. You can add as many allow and deny rules
as you want. Each rule identifies one or more users or roles (groups of users). In addition, you can use
the verbs attribute to create a rule that applies only to specific types of HTTP requests (GET, POST,
HEAD, or DEBUG).

You’ve already seen the simplest example in the previous chapters. To deny access to all
anonymous users, you can use a <deny> rule like this:

<authorization>
 <deny users="?" />
</authorization>

CHAPTER 23 ■ AUTHORIZATION AND ROLES

965

In this case, the question mark (?) is a wildcard that represents all users with unknown identities.
This rule is almost always used in authentication scenarios. That’s because you can’t specifically deny
other, known users unless you first force all users to authenticate themselves.

You can use an additional wildcard—the asterisk (*), which represents all users. For example, the
following <authorization> section allows access by authenticated and anonymous users:

<authorization>
 <allow users="*" />
</authorization>

This rule is rarely required, because it’s already present in the machine.config file. After ASP.NET
applies all the rules in the web.config file, it applies rules from the machine.config file. As a result, any
user who is not explicitly denied access automatically gains access.

Now consider what happens if you add more than one rule in the authorization section:

<authorization>
 <allow users="*" />
 <deny users="?" />
</authorization>

When evaluating rules, ASP.NET scans through the list from top to bottom. As soon as it finds an
applicable rule, it stops its search. Thus, in the previous case, it will determine that the rule <allow
users="*"> applies to the current request and will not evaluate the second line. That means these
rules will allow all users, including anonymous users. Reversing the order of these two lines, however,
will deny anonymous users (by matching the first rule) and allow all other users (by matching the
second rule).

<authorization>
 <deny users="?" />
 <allow users="*" />
</authorization>

When you add authorization rules to the web.config file in the root directory of the web application,
the rules automatically apply to all the web resources that are part of the application. If you’ve denied
anonymous users, ASP.NET will examine the authentication mode. If you’ve selected forms
authentication, ASP.NET will direct the user to the login page. If you’re using Windows authentication,
IIS will request user credentials from the client browser, and a login dialog box may appear (depending
on the protocols you’ve enabled).

In the following sections, you’ll learn how to fine-tune authorization rules to give them a more
carefully defined scope.

Controlling Access for Specific Users
The <allow> and <deny> rules don’t need to use the asterisk or question mark wildcards. Instead, they
can specifically identify a user name or a list of comma-separated user names. For example, the
following authorization rule specifically restricts access from three users. These users will not be able to
access the pages in the directory having a web.config containing these entries in place. All other
authenticated users will be allowed.

<authorization>
 <deny users="?" />
 <deny users="dan" />
 <deny users="jenny" />

CHAPTER 23 ■ AUTHORIZATION AND ROLES

966

 <deny users="matthew" />
 <allow users="*" />
</authorization>

You can also use a comma-separated list to deny multiple users at once. Here’s an equivalent
version of the previous example that uses only two authorization rules:

<authorization>
 <deny users="?" />
 <deny users="dan,jenny,matthew" />
 <allow users="*" />
</authorization>

Note that in both these cases the order in which the three users are listed is unimportant. However,
it is important that these users are denied before you include the <allow> rule. For example, the
following authorization rules won’t affect the user jenny, because ASP.NET matches the rule that allows
all users and doesn’t read any further:

<authorization>
 <deny users="?" />
 <deny users="dan,matthew" />
 <allow users="*" />
 <deny users="jenny" />
</authorization>

When creating secure applications, it’s often a better approach to explicitly allow specific users or
groups and then deny all others (rather than denying specific users, as in the examples so far). Here’s an
example of authorization rules that explicitly allow two users. All other user requests will be denied
access, even if they are authenticated.

<authorization>
 <deny users="?" />
 <allow users="dan,matthew" />
 <deny users="*" />
</authorization>

You should consider one other detail. The format of user names in these examples assumes forms
authentication. In forms authentication, you assign a user name when you call the Redirect-
FromLoginPage() method. At this point, the UrlAuthorizationModule will use that name and check it
against the list of authorization rules. Windows authentication is a little different, because names are
entered in the format DomainName\UserName or ComputerName\UserName. You need to use the
same format when listing users in the authorization rules. For example, if you have the user accounts
dan and matthew on a computer named FARIAMAT, you can use these authorization rules:

<authorization>
 <deny users="?" />
 <allow users="FARIAMAT\dan,FARIAMAT\matthew" />
 <deny users="*" />
</authorization>

CHAPTER 23 ■ AUTHORIZATION AND ROLES

967

■ Note Make sure you specify the computer or domain name in the users attribute when you use Windows

authentication. You can’t use an alias such as localhost, because this will not be successfully matched.

Controlling Access to Specific Directories
A common application design is to place files that require authentication into a separate directory. With
ASP.NET configuration files, this approach is easy. Just leave the <authorization> element in the normal
parent directory empty, and add a web.config file that specifies stricter settings in the secured directory.

Remember that when you add the web.config file in the subdirectory, it shouldn’t contain any of
the application-specific settings. In fact, it should contain only the authorization information, as
shown here:

<configuration>
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

■ Note You cannot change the <authentication> tag settings in the web.config file of a subdirectory in your

application. Instead, all the directories in the application must use the same authentication system. However, each

directory can have its own authorization rules.

When using authorization rules in a subdirectory, ASP.NET still reads the authorization rules from
the parent directory. The difference is that it applies the rules in the subdirectory first. This is important,
because ASP.NET stops as soon as it matches an authorization rule. For example, consider an example in
which the root virtual directory contains this rule:

<allow users="dan" />

and a subdirectory contains this rule:

<deny users="dan" />

In this case, the user dan will be able to access any resource in the root directory but no resources in
the subdirectory. If you reverse these two rules, dan will be able to access resources in the subdirectory
but not the root directory.

To make life more interesting, ASP.NET allows an unlimited hierarchy of subdirectories and
authorization rules. For example, it’s quite possible to have a virtual directory with authorization rules, a
subdirectory that defines additional rules, and then a subdirectory inside that subdirectory that applies
even more rules. The easiest way to understand the authorization process in this case is to imagine all
the rules as a single list, starting with the directory where the requested page is located. If all those rules
are processed without a match, ASP.NET then begins reading the authorization rules in the parent

CHAPTER 23 ■ AUTHORIZATION AND ROLES

968

directory, and then its parent directory, and so on, until it finds a match. If no authorization rules match,
ASP.NET will ultimately match the <allow users="*"> rule in the machine.config file.

Controlling Access to Specific Files
Generally, setting file access permissions by directory is the cleanest and easiest approach. However, you
also have the option of restricting specific files by adding <location> tags to your web.config file.

The <location> tags sit outside the main <system.web> tag and are nested directly in the base
<configuration> tag, as shown here:

<configuration>
 <system.web>
 <!-- Other settings omitted. -->
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>

 <location path="SecuredPage.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>

 <location path="AnotherSecuredPage.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>

</configuration>

In this example, all files in the application are allowed, except SecuredPage.aspx and
AnotherSecuredPage.aspx, which have an access rule that denies anonymous users.

Controlling Access for Specific Roles
To make website security easier to understand and maintain, users are often grouped into categories,
called roles. If you need to manage an enterprise application that supports thousands of users, you can
understand the value of roles. If you needed to define permissions for each individual user, it would be
tiring, difficult to change, and nearly impossible to complete without error.

In Windows authentication, roles are automatically available and naturally integrated. In this case,
roles are actually Windows groups. You might use built-in groups (such as Administrator, Guest,
PowerUser, and so on), or you can create your own to represent application-specific categories (such as
Manager, Contractor, Supervisor, and so on). Roles aren’t provided intrinsically in forms authentication
alone, but together with membership, ASP.NET employs the roles API, which is an out-of-the-box
implementation for supporting and managing roles in your application. Furthermore, if you don’t want
to use this infrastructure, it’s fairly easy to create your own system that slots users into appropriate

CHAPTER 23 ■ AUTHORIZATION AND ROLES

969

groups based on their credentials. You’ll learn details about the two ways of supporting roles in the
section “Using the Roles API for Role-Based Authorization” in this chapter.

Once you have defined roles, you can create authorization rules that act on these roles. In fact, these
rules look essentially the same as the user-specific rules you’ve seen already.

For example, the following authorization rules deny all anonymous users, allow two specific users
(dan and matthew), and allow two specific groups (Manager and Supervisor). All other users are denied.

<authorization>
 <deny users="?" />
 <allow users="FARIAMAT\dan,FARIAMAT\matthew" />
 <allow roles="FARIAMAT\Manager,FARIAMAT\Supervisor" />
 <deny users="*" />
</authorization>

Using role-based authorization rules is simple conceptually, but it can become tricky in practice.
The issue is that when you use roles, your authorization rules can overlap. For example, consider what
happens if you allow a group that contains a specific user and then explicitly deny that user. Or consider
the reverse—allowing a user by name but denying the group to which the user belongs. In these
scenarios, you might expect the more fine-grained rule (the rule affecting the user) to take precedence
over the more general rule (the rule affecting the group). Or, you might expect the more restrictive rules
to always take precedence, as in the Windows operating system. However, neither of these approaches is
used in ASP.NET. Instead, ASP.NET simply uses the first matching rule. As a result, rule ordering can
become important.

Consider this example:

<authorization>
 <deny users="?" />
 <allow users="FARIAMAT\matthew" />
 <deny roles="FARIAMAT\Guest" />
 <allow roles="FARIAMAT\Manager" />
 <deny users="FARIAMAT\dan" />
 <allow roles="FARIAMAT\Supervisor" />
 <deny users="*" />
</authorization>

Here’s how ASP.NET parses these rules:

• In this example, the user matthew is allowed, regardless of the group to which he
belongs.

• All users in the Guest role are then denied. If matthew is in the Guest role,
matthew is still allowed because the user-specific rule is matched first.

• Next, all users in the Manager group are allowed. The only exception is users who
are in both the Manager and Guest groups. The Guest rule occurs earlier in the list,
so those users would have already been denied.

• Next, the user dan is denied access. But if dan belongs to the allowed Manager
group, dan will already have been allowed, because this rule won’t be executed.

• Any users who are in the Supervisor group, and who haven’t been explicitly
allowed or denied by one of the preceding rules, are allowed.

• Finally, all other users are denied.

CHAPTER 23 ■ AUTHORIZATION AND ROLES

970

Keep in mind that these overlapping rules can also span multiple directories. For example, a
subdirectory might deny a user, while a parent directory allows a user in that group. In this example,
when accessing files in the subdirectory, the user-specific rule is matched first.

File Authorization
URL authorization is one of the cornerstones of ASP.NET authorization. However, ASP.NET also uses
another type of authorization that’s often overlooked or ignored by many developers. This is file-based
authorization, and it’s implemented by the FileAuthorizationModule. File-based authorization takes
effect only if you’re using Windows authentication. If you’re using custom authentication or forms
authentication, it’s not used.

To understand file authorization, you need to understand how the Windows operating system
enforces file system security. If your file system uses the NTFS format, you can set ACLs that specifically
identify users and roles that are allowed or denied access to individual files. The
FileAuthorizationModule simply checks the Windows permissions for the file you’re requesting. For
example, if you request a web page, the FileAuthorizationModule checks that the currently
authenticated IIS user has the permissions required to access the underlying .aspx file. If the user
doesn’t, the page code is not executed, and the user receives an “access denied” message.

New ASP.NET users often wonder why file authorization needs to be implemented by a separate
module—shouldn’t it take place automatically at the hands of the operating system? To understand why
the FileAuthorizationModule is required, you need to remember how ASP.NET executes code. Unless
you’ve enabled impersonation, ASP.NET executes under a fixed user account, such as ASPNET. The
Windows operating system will check that the ASPNET account has the permissions it needs to access
the .aspx file, but it wouldn’t perform the same check for a user authenticated by IIS. The
FileAuthorizationModule fills the gap. It performs authorization checks using the security context of the
current user. As a result, the system administrator can set permissions to files or folders and control
access to portions of an ASP.NET application. Generally, it’s clearer and more straightforward to use
authorization rules in the web.config file. However, if you want to take advantage of existing Windows
permissions in a local network or an intranet scenario, you can.

Authorization Checks in Code
With URL authorization and file authorization, you can control access only to individual web pages. The
next step in ensuring a secure application is to build checks into your application before attempting
specific tasks or allowing certain operations. To use these techniques, you’ll need to write some code.

Using the IsInRole() Method
As you saw in earlier chapters, all IPrincipal objects provide an IsInRole() method, which lets you
evaluate whether a user is a member of a group. This method accepts the role name as a string name and
returns true if the user is a member of that role.

For example, here’s how you can check if the current user is a member of the Supervisors role:

if (User.IsInRole("Supervisors"))
{
 // Do nothing, the page should be accessed as normal because the
 // user has administrator privileges.
}
else
{

CHAPTER 23 ■ AUTHORIZATION AND ROLES

971

 // Don't allow this page. Instead, redirect to the home page.
 Response.Redirect("default.aspx");
}

Remember that when using Windows authentication, you need to use the format
DomainName\GroupName or ComputerName\GroupName. Here’s an example:

if (User.IsInRole(@"FARIAMAT\Supervisors"))
{ ... }

This approach works for custom groups you’ve created but not for built-in groups that are defined
by the operating system. If you want to check whether a user is a member of one of the built-in groups,
you use this syntax:

if (User.IsInRole(@"BUILTIN\Administrators"))
{ ... }

Of course, you can also cast the User object to a WindowsPrincipal and use the overloaded version
of IsInRole() that accepts the WindowsBuiltInRole enumeration, as described in Chapter 22.

■ Note The @ prefix when using strings in C# just enables you to use the backslash without escaping it with an
additional backslash. This is especially useful if you have strings with lots of backslashes. But this also means you
cannot use any escape sequence (such as \n or \r) in the string. If you want to use these escape sequences, you

may not use the @ prefix. However, in this case, you have to escape any backslash; otherwise, the backslash
would be used as the start of an escape sequence. This means with the @ prefix you would have to write

FARIAMAT\\Supervisors, for example.

Using the PrincipalPermission Class
.NET includes another way to enforce role and user rules. Instead of checking with the IsInRole()
method, you can use the PrincipalPermission class from the System.Security.Permissions namespace.

The basic strategy is to create a PrincipalPermission object that represents the user or role
information you require. Then, invoke the PrincipalPermission.Demand() method. If the current user
doesn’t meet the requirements, a SecurityException will be thrown, which you can catch (or deal with
using a custom error page).

There are four overloads of the constructor of the PrincipalPermission, from one up to three
parameters, which are in turn evaluated by the Demand() method of the class. One parameter is for the
user name, another one is for the role name, and the third one specifies a flag that asks the
PrincipalPermission’s Demand() method to verify if the user is authenticated or not (isAuthenticated).
The last and fourth overload accepts a PermissionState parameter as the only parameter. This parameter
is inherited by the base class of the PrincipalPermission class. It is out of scope for this book and not
relevant for the further sections in this chapter. You can omit either one of these parameters by
supplying a null reference in its place. For example, the following code tests whether the user is a
Windows administrator:

CHAPTER 23 ■ AUTHORIZATION AND ROLES

972

try
{
 PrincipalPermission pp = new PrincipalPermission(null,
 @"BUILTIN\Administrators");
 pp.Demand();

 // If the code reaches this point, the demand succeeded.
 // The current user is an administrator.
}
catch (SecurityException err)
{
 // The demand failed. The current user isn't an administrator.
}

The advantage of this approach is that you don’t need to write any conditional logic. Instead, you
can simply demand all the permissions you need. This works particularly well if you need to verify that a
user is a member of multiple groups. The disadvantage is that using exception handling to control the
flow of your application is slower. Often, PrincipalPermission checks are used in addition to web.config
rules as a failsafe. In other words, you can call Demand() to ensure that even if a web.config file has been
inadvertently modified, users in the wrong groups won’t be allowed.

Merging PrincipalPermission Objects
The PrincipalPermission approach also gives you the ability to evaluate more complex authentication
rules. For example, consider a situation where UserA and UserB, who belong to different groups, are
both allowed to access certain functionality. If you use the IPrincipal object, you need to call IsInRole()
twice. An alternate approach is to create multiple PrincipalPermission objects and merge them to get
one PrincipalPermission object. Then you can call Demand() on just this object.

Here’s an example that combines two roles:

try
{
 PrincipalPermission pp1 = new PrincipalPermission(null,
 @"BUILTIN\Administrators");
 PrincipalPermission pp2 = new PrincipalPermission(null,
 @"BUILTIN\Guests");

 // Combine these two permissions.
 PrincipalPermission pp3 = (PrincipalPermission)pp1.Union(pp2);
 pp3.Demand();

 // If the code reaches this point, the demand succeeded.
 // The current user is in one of these roles.
}
catch (SecurityException err)
{
 // The demand failed. The current user is in none of these roles.
}

This example checks that a user is a member of either one of the two Windows groups,
Administrators or Guests. You can also ensure that a user is a member of both groups. In this case, use
the PrincipalPermission.Intersect() method instead of PrincipalPermission.Union().

CHAPTER 23 ■ AUTHORIZATION AND ROLES

973

Using the PrincipalPermission Attribute
The PrincipalPermission attribute provides another way of validating the current user’s credentials. It
serves the same purpose as the PrincipalPermission class, but it’s used declaratively. In other words, you
attach it to a given class or method, and the CLR checks it automatically when the corresponding code
runs. The exception handling now works a little bit differently: this time you cannot catch the exception
within the function on which the attribute has been applied. You have to catch the exception in the
function that actually calls this function. If you apply the PrincipalPermission attribute on an event
procedure (such as Button_Click), you have to catch the exception in the global Application_Error event,
which you can find in the Global.asax file.

When you use a PrincipalPermission attribute, you can restrict access to a specific user or a specific
role. Here’s an example that requires the user accessing the page to be in the server’s Administrators
group. If the user is not member of the web server’s Administrators group, the ASP.NET runtime throws
a security exception.

[PrincipalPermission(SecurityAction.Demand,
 Role=@"BUILTIN\Administrators")]
public partial class MyWebPage : System.Web.UI.Page
{ ... }

Again, with the previous example you have to catch the exception in the global error handler
(Application_Error) because your code is not the caller of this web page. Otherwise, ASP.NET would raise
the exception and display the ASP.NET error page according to the web.config configuration. The
following example restricts a particular method to a specific role:

[PrincipalPermission(SecurityAction.Demand, Role=@"FARIAMAT\finance")]
private void DoSomething()
{ ... }

The caller of this method can catch the SecurityException with a try/catch block.
PrincipalPermission attributes give you another way to safeguard your code. You won’t use them to

make decisions at runtime, but you might use them to ensure that even if web.config rules are modified
or circumvented, a basic level of security remains.

■ Note Changing declarative permissions means that you need to recompile the application. But why use them if
every change requires recompilation? Don’t you want to have the possibility of managing roles in terms of adding,
deleting, and changing them? Yes, and that requires more generic code, but it can’t be done with declarative

permissions. So, when is it helpful to use declarative permissions? Well, declarative permissions are especially
suited for fixed roles in your application that cannot be deleted anyway. For example, an Administrators role is
required in most applications and therefore cannot be deleted. So, you can secure functionality that should be

accessible to only administrators with declarative permissions. Typical examples in Windows are all the built-in

groups such as Administrators, Power Users, Backup Operators, and Users.

CHAPTER 23 ■ AUTHORIZATION AND ROLES

974

Using the Roles API for Role-Based Authorization
ASP.NET ships with a ready-to-use infrastructure for managing and using roles (as well as the
membership API introduced in Chapter 21). This infrastructure—which is completely extensible through
providers such as the membership API—includes prebuilt functionality for managing roles, assigning
roles to users, and accessing all the role information from code. In more detail, the roles infrastructure
includes the following:

• A provider-based extensible mechanism for including different types of role data
stores.

• A ready-to-use implementation of a provider for SQL Server and the necessary
database tables based on the Membership database introduced in Chapter 21.
These tables associate membership user entries with roles in a many-to-many
relationship and are automatically created when calling the aspnet_regsql.exe tool
(also introduced in Chapter 21).

• The prebuilt RolePrincipal class that is automatically initialized for authenticated
users through the RoleManagerModule (also included with the roles
infrastructure).

• Complete programmatic access to the roles through the Roles class.

To use this infrastructure, you have to first enable it. You can do this either by checking the Enable
Roles for This Web Site box when running through the Security Setup Wizard or by clicking the Enable
Roles link in the Security tab of the WAT. Figure 23-2 shows both of these possibilities.

Figure 23-2. Configuring the roles API

CHAPTER 23 ■ AUTHORIZATION AND ROLES

975

In both cases, the tool adds a little configuration entry to the application’s web.config file. You can
do this manually, just as you can enable the roles API.

<configuration>
 <system.web>
 <roleManager enabled="true" />
 <!-- Note that you can use roles with Windows authentication
 as well; you do not need to use forms authentication. Often
 it is very useful to map Windows accounts to custom roles
 as well. But now we use forms auth. for our examples. -->
 <authentication mode="Forms" />
 </system.web>
</configuration>

With this configuration in place, ASP.NET automatically creates a file-based database,
ASPNETDB.MDF, in the application’s App_Data directory, as already described in Chapter 21. If you
want to use a custom store, you have to complete the following steps:

1. Create the data store either by using aspnet_regsql.exe or by executing the
TSQL command scripts included in the .NET Framework directory. Both were
introduced in Chapter 21.

2. Configure the roles provider to use the previously created custom store.

You can configure the roles provider through the <roleManager> tag. You can either use a different
database or use a completely different store if you want. In addition, you can configure certain
properties through the <roleManager> tag that can’t be configured in the WAT.

<configuration>
 <connectionStrings>
 <add name="MySqlStore"
 connectionString="data source=(local);
 Integrated Security=SSPI;initial catalog=MySqlDB"/>
 </connectionStrings>
 <system.web>
 <roleManager enabled="true"
 defaultProvider="CustomSqlProvider"
 cacheRolesInCookie="true"
 cookieName=".MyRolesCookie"
 cookieTimeout="30"
 cookieSlidingExpiration="true"
 cookieProtection="All">
 <providers>
 <add name="CustomSqlProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="MySqlStore"
 applicationName="RolesDemo"/>
 </providers>
 </roleManager>
 <authentication mode="Forms"/>
 <compilation debug="true"/>
 </system.web>
</configuration>

CHAPTER 23 ■ AUTHORIZATION AND ROLES

976

As soon as you have added this configuration entry to your web.config file, you can select the
provider through the WAT. Just switch to the Provider tab, and then click the link Select a Different
Provider for Each Feature. Figure 23-3 shows the provider selection in the WAT.

Figure 23-3. The roles provider in the web-based configuration tool

Table 23-1 lists the properties you can configure through the <roleManager> configuration tag.

Table 23-1. Options for the <roleManager> Configuration

Option Description

enabled Indicates whether the roles API is enabled (true) or not (false).

defaultProvider Optional attribute for specifying the currently active provider for storing
role information. If you want to use a different provider, you have to
configure it and set the defaultProvider attribute to the name of the
provider you want to use.

cacheRolesInCookie Instead of reading the roles every time from the back-end store, you can
store roles in a cookie. This attribute indicates whether a cookie is used.

CHAPTER 23 ■ AUTHORIZATION AND ROLES

977

Option Description

cookieName If roles are cached in a cookie, you can specify a name for this cookie
through this attribute.

cookiePath Specifies the path of the cookie where roles are cached for your application.
This allows you to specify the part of your application for which the cookie
is valid. The default value is /.

cookieProtection The roles cookie can be encrypted and signed. You specify the level of
protection through this attribute. Valid values are All (encrypt and sign),
Encryption, Validation, and None.

cookieRequireSSL Specifies whether the cookie will be returned by ASP.NET only if SSL is
enabled (true) or in any other case (false). If this attribute is set to true and
SSL is not activated, the runtime simply doesn’t return the cookie, and
therefore role checks always happen against the underlying roles provider.

cookieTimeout Gets or sets a timeout for the roles cookie in minutes with a default of 30
minutes.

cookieSlidingExpiration Specifies whether the cookie’s timeout will be extended with each request
the user is performing against the ASP.NET application (true) or not (false).
The default is true.

createPersistentCookie If set to true, the cookie will be stored persistently on the client machine.
Otherwise, the cookie is just a session cookie that will be deleted when the
user is closing the browser.

domain Specifies the valid domain for the role cookie.

maxCachedResults Specifies the maximum number of role names persisted in the cookie.

In the previous example, you configured the SqlRoleProvider. The provider includes a couple of

additional settings you can configure through web.config, as shown in Table 23-2.

Table 23-2. Additional Properties of the SqlRoleProvider

Property Description

name Name of the provider. This name can be used in the defaultProvider
attribute described in Table 23-1 for specifying the provider by the
application.

applicationName Name of the application for which the roles are managed.

description Short, friendly description of the provider.

connectionStringName Name of the connection string specified in the web.config file’s
<connectionStrings> section that will be used for connecting to the back-
end roles store.

CHAPTER 23 ■ AUTHORIZATION AND ROLES

978

In addition to the SqlRoleProvider, ASP.NET ships with a provider that can be used on Windows
Server 2003 with Authorization Manager. You can also create and use your own custom providers, as you
will learn in Chapter 26. Table 23-3 shows the classes included in the roles API framework.

Table 23-3. The Fundamental Roles API Classes

Class Description

RoleManagerModule This module ensures that roles will be assigned to the currently logged-on
user for every request. It attaches to the Application_AuthenticateRequest
event and creates an instance of RolePrincipal containing the roles the
user is assigned to automatically if the roles API is enabled in web.config.

RoleProvider Base class for every roles provider that defines the interface you must
implement for a custom RoleProvider. Every custom provider must be
inherited from this class.

RoleProviderCollection A collection of roles providers. This collection allows you to iterate through
the configured roles providers on your system and for your application,
which is handy when writing an administration application or pages for
your application.

SqlRoleProvider Implementation of a roles provider for SQL Server-based databases.

WindowsTokenRolePro
vider

Gets role information for an authenticated Windows user based on
Windows group associations.

AuthorizationStoreRole
Provider

Implementation of a roles provider for storing roles in an Authorization
Manager-based store. Authorization Manager ships with Windows Server
2003 and allows you to declaratively define application roles and
permissions for this role. Your application can use Authorization Manager
for programmatically authorizing users.

Roles You use the Roles class as your primary interface to the roles store. This
class includes methods for programmatically managing roles.

RolePrincipal This is a IPrincipal implementation that connects the configured roles
with the authenticated user. It is created automatically by the
RoleManagerModule if the roles API is enabled.

As soon as you have configured the roles API, you can create users and roles and then assign users to

these roles using either the WAT or the Roles class in your code. On the Security tab, just click the Create
or Manage Roles link. Then you can create roles and add users to roles, as shown in Figure 23-4.

CHAPTER 23 ■ AUTHORIZATION AND ROLES

979

Figure 23-4. Adding users to roles

After you have configured users and roles, you need to configure the authorization rules for your
application. You have already learned all the necessary details. Just configure the appropriate
<authorization> sections in the different directories of your application. Fortunately, you even don’t
have to do this manually. When selecting the Security tab, you just need to click one of the links in the
Add New Access Rule section, as shown in Figure 23-5.

When the roles API is enabled, the RoleManagerModule automatically creates a RolePrincipal
instance containing both the authenticated user’s identity and the roles of the user. The RolePrincipal is
just a custom implementation of IPrincipal, which is the base interface for all principal classes. It
therefore supports the default functionality, such as access to the authenticated identity and a method
for verifying a role membership condition through the IsInRole() method. Furthermore, it employs a
couple of additional properties for accessing more detailed information about the principal. You can use
the properties in the following code for extracting information from the instance as well as for
performing authorization checks by calling the IsInRole() method:

protected void Page_Load(object sender, EventArgs e)
{
 if (User.Identity.IsAuthenticated)
 {
 RolePrincipal rp = (RolePrincipal)User;

 StringBuilder RoleInfo = new StringBuilder();

CHAPTER 23 ■ AUTHORIZATION AND ROLES

980

 RoleInfo.AppendFormat("<h2>Welcome {0}</h2>", rp.Identity.Name);
 RoleInfo.AppendFormat("Provider: {0}
", rp.ProviderName);
 RoleInfo.AppendFormat("Version: {0}
", rp.Version);
 RoleInfo.AppendFormat("Expires at: {0}
", rp.ExpireDate);
 RoleInfo.Append("Roles: ");

 string[] roles = rp.GetRoles();
 for (int i = 0; i < roles.Length; i++)
 {
 if (i > 0) RoleInfo.Append(", ");
 RoleInfo.Append(roles[i]);
 }

 LabelRoleInformation.Text = RoleInfo.ToString();
 }
}

Figure 23-5. Configuring access rules with the WAT

CHAPTER 23 ■ AUTHORIZATION AND ROLES

981

Using the LoginView Control with Roles
In the previous chapter, you learned details about the security controls that ship with ASP.NET. One of
these controls is the LoginView control. You used this control in Chapter 21 for displaying different
controls for anonymous and logged-in users. The control uses templates for implementing this
functionality. In Chapter 21 you used the <LoggedInTemplate> and <AnonymousTemplate> templates.

The control supports one additional template that enables you to create different views based on
the roles to which a user belongs. For this purpose you need to add a RoleGroups template with
<asp:RoleGroup> controls. Within every <asp:RoleGroup> control, you specify a comma-separated list
of roles in the Roles attribute for which its <ContentTemplate> will be displayed, as follows:

<asp:LoginView runat="server" ID="MainView">
 <LoggedInTemplate>
 <h2>This is the logged in template</h2>
 </LoggedInTemplate>
 <RoleGroups>
 <asp:RoleGroup Roles="Admin">
 <ContentTemplate>
 <h2>Only Admins will see this</h2>
 </ContentTemplate>
 </asp:RoleGroup>
 <asp:RoleGroup Roles="Contributor">
 <ContentTemplate>
 <h2>This is for contributors!</h2>
 </ContentTemplate>
 </asp:RoleGroup>
 <asp:RoleGroup Roles="Reader, Designer">
 <ContentTemplate>
 <h2>This is for web designers and readers</h2>
 </ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
</asp:LoginView>

The LoginView control in the previous code displays different content for logged-in users and
for users assigned to specific roles. For example, for users in the Admin role the control displays the
text “Only Admins will see this,” while for users in the Contributor role it displays the text “This is
for contributors!” Also, for users who are associated with the Reader or Designer role, it displays
different content.

It’s important to understand that just one of these templates will be displayed. The control simply
displays the first template that fits the logged-in user. For example, if you have a user associated with the
Contributor, Reader, and Designer roles, the first matching template is the <asp:RoleGroup> for
contributors. The other role group will simply not be displayed. The LoggedInTemplate, for example,
will be displayed only for authenticated users with no matching <asp:RoleGroup> element. As soon as a
matching role group is found, the contents of the LoggedInTemplate will not be displayed.

Accessing Roles Programmatically
As is the case for the membership API introduced in Chapter 21, the roles API includes an API that allows
you to perform all tasks from code. You can programmatically add new roles, read role information, and
delete roles from your application. Furthermore, you can associate users with roles as well as get users
associated with a specific role. You can do all this by calling methods of the Roles class.

CHAPTER 23 ■ AUTHORIZATION AND ROLES

982

Most of the properties included in the Roles class just map to the settings for the <roleManager> tag
described in Table 23-1. Therefore, Table 23-4 includes the additional properties and the Roles class’s
methods that you can use for managing and accessing the roles API programmatically.

Table 23-4. Members of the Roles Class

Member Description

Provider Returns the provider currently used by your application.

Providers Returns a collection of all the available providers on the system and for
your application. It therefore returns the providers configured in
machine.config and in web.config of your application.

AddUserToRole Accepts a user name and a role name as a string parameter and adds the
specified user to the specified role.

AddUserToRoles Accepts a user name as a string parameter and role names as an array of
strings and adds the specified user to all the roles specified in the role
names parameter.

AddUsersToRole Accepts a string array with user names and a string parameter that
specifies a role name and adds all the specified users to the role specified
in the second parameter.

AddUsersToRoles Accepts a string array with user names and a second one with role names
and adds all the users in the user names parameter to all the roles in the
role names parameter.

CreateRole Creates a new role.

DeleteRole Deletes an existing role.

FindUsersInRole Accepts a string representing the role name and a second string
specifying a pattern for user names to match. The method returns a list
of users that are associated with the role, and matches the pattern of the
second parameter of the method (usernameToMatch).

GetAllRoles Returns a string array containing all the role names of the roles available
in the role store of the configured provider.

GetRolesForUser Returns a string array containing all the roles the specified user is
associated with. There is also a version that doesn’t take any parameters,
which gets the roles of the currently logged on user.

GetUsersInRole Returns a list of users who are associated with the role passed in as a
parameter.

IsUserInRole Returns true if the specified user is a member of the specified role.

RemoveUserFromRole Removes a single user from the specified role.

CHAPTER 23 ■ AUTHORIZATION AND ROLES

983

Member Description

RemoveUserFromRoles Removes the specified user from all roles specified.

RemoveUsersFromRole Removes all the specified users from a single role.

RemoveUsersFromRoles Removes all the specified users from all the specified roles.

RoleExists Returns true if a role exists and otherwise false.

A good use for accessing roles programmatically is to associate users to roles automatically when

they register themselves. Of course, this is useful only for specific roles. Imagine that your application
supports a role called Everyone, and every single user should be a member of this role. If you register
users on your own, you can enter this relationship manually. But if your application supports self-
registration for Internet users, you can’t do this. Therefore, you somehow have to make sure users will be
associated with the Everyone role automatically.

With your first attempt, you might want to catch the CreatedUser event of the CreateUserWizard
control, but that’s not sufficient. Remember the existence of the ASP.NET WAT, where you can create
users. In this case, catching the CreatedUser event of the control placed in your application won’t help.
Therefore, you have to find a different solution. You need an application-wide event for this purpose,
although this will not be raised by the configuration application because it is a different application. One
possibility is to catch the Application_AuthenticateRequest event; within the event you verify whether
the user is a member of the Everyone class. If not, you can add the user automatically. This shifts the task
of adding a user automatically to the role to the point of authentication, which affects every user. To do
so, you just have to add a global application class to your project and add the following code.

■ Caution You should do something like this only for the lowest privileged roles, such as Everyone. It’s never a

good idea to perform such an action for any other type of role.

protected void Application_AuthenticateRequest(Object sender, EventArgs e)
{
 if (User != null)
 {
 if (User.Identity.IsAuthenticated && Roles.Enabled)
 {
 string EveryoneRoleName =
 ConfigurationManager.AppSettings["EveryoneRoleName"];

 if (!Roles.IsUserInRole(EveryoneRoleName) &&
 Roles.RoleExists(EveryoneRoleName))
 {
 Roles.AddUserToRole(User.Identity.Name, EveryoneRoleName);
 }
 }
 }
}

CHAPTER 23 ■ AUTHORIZATION AND ROLES

984

The previous code reads the name of the Everyone role from the configuration file so that it is not
hard-coded into the application. It then uses the Roles class to check whether the user is already
associated with the role, and if not, it checks whether the role exists. If the user is not associated with the
role, and the user exists in the system, it uses the Roles.AddUsersToRole method for programmatically
adding the user to the Everyone role.

■ Caution You might want to use User.IsInRole() in the previous code; however, this is not valid. When the
application-wide Application_AuthenticateRequest is called, the RoleManagerModule itself has not been called yet.
Therefore, the RolePrincipal with the association of the user and its roles has not been created yet, so a call such
as User.IsInRole("Everyone") would return false. Later in your page code—for example, in a Page_Load routine—
the RolePrincipal is already initialized, and the call to User.IsInRole("Everyone") will work appropriately.

Using the Roles API with Windows Authentication
The roles API comes with a provider that integrates with Windows roles for Windows authentication: the
WindowsTokenRoleProvider. This provider retrieves the Windows group membership information for the
currently logged-on user and provides it in the same way for your application as you saw previously with
the SqlRoleProvider. When using the WindowsTokenRoleProvider, you have to configure your application
using Windows authentication and then configure the WindowsTokenRoleProvider as follows:

<configuration>
 <system.web>
 <authentication mode="Windows"/>
 <authorization>
 <deny users="?" />
 </authorization>
 <roleManager enabled="true"
 cacheRolesInCookie="false"
 defaultProvider="WindowsRoles">
 <providers>
 <add name="WindowsRoles"
 type="System.Web.Security.WindowsTokenRoleProvider" />
 </providers>
 </roleManager>
 </system.web>
</configuration>

With this configuration in place, the user is authenticated through Windows authentication. The
RoleManagerModule automatically creates an instance of RolePrincipal and associates it with the
HttpContext.Current.User property. Therefore, you can use the RolePrincipal as follows—there is no
difference compared to other roles providers in terms of usage:

protected void Page_Load(object sender, EventArgs e)
{
 if ((User != null) && (User.Identity.IsAuthenticated))
 {
 RolePrincipal rp = (RolePrincipal)User;

 StringBuilder Info = new StringBuilder();
 Info.AppendFormat("<h2>Welcome {0}!</h2>", User.Identity.Name);
 Info.AppendFormat("Provider: {0}
", rp.ProviderName);

CHAPTER 23 ■ AUTHORIZATION AND ROLES

985

 Info.AppendFormat("Version: {0}
", rp.Version);
 Info.AppendFormat("Expiration: {0}
", rp.ExpireDate);
 Info.AppendFormat("Roles:
");

 string[] Roles = rp.GetRoles();
 foreach (string role in Roles)
 {
 if (!role.Equals(string.Empty))
 Info.AppendFormat("-) {0}
", role);
 }

 LabelPrincipalInfo.Text = Info.ToString();
 }
}

You can see the result of the previous code in Figure 23-6.
The provider-based architecture enables you to use Windows authentication with Windows groups

without changing the inner logic of your application. Everything works the same as with the
SqlRoleProvider. The same is true for the membership API introduced in Chapter 21. When configuring
another provider, you don’t have to change your code; however, you should have some programmatic
authorization checks with hard-coded role names in your code, because the Windows groups include
the domain qualifier and the custom roles do not. To avoid this, you can add functionality to your
application that allows you to associate roles with permissions in either a database or a configuration
file. The way you do this depends on the requirements of your application.

Figure 23-6. Results of querying the RolePrincipal with Windows authentication

CHAPTER 23 ■ AUTHORIZATION AND ROLES

986

We suggest not using Windows groups for authorization in your application directly except for a few
of the built-in groups such as the Administrators group. In most cases, it’s useful to define roles that are
specific to your application. This is why:

• Windows groups other than the built-in groups depend on the name of the
domain or machine on which they exist.

• In most cases, Windows groups in a domain are structured according to the
organizational and network management requirements of the enterprise. Often
these requirements do not map to the application requirements.

• Structuring application roles independently from the network groups makes your
application more flexible and usable across multiple types of network structures.

A good example that introduces such a design is Windows SharePoint Services. SharePoint
(currently available in version 2007) is a ready-to-use portal solution built on ASP.NET that can be used
for free with Windows Server. SharePoint includes prebuilt functionality for document libraries, meeting
workspaces, and lists. You can use SharePoint for collaboratively working in teams—sharing documents,
planning meetings, and more.

For example, SharePoint defines application-specific roles that are typical for a collaborative portal
solution. You can assign both Windows users and Windows groups to these roles. SharePoint by default
includes the roles Administrator, Web Author, Designer, and Reader. All of these roles are optimized for
performing authorization within the portal. For example, while a Web Author automatically gets
permission to create new workspaces for meetings and to structure contents displayed on the portal, a
Reader is just able to view information on the portal. Every Windows user assigned to one of these roles,
or every Windows user who is a member of a Windows group assigned to one of these roles,
automatically gets the appropriate permissions. Therefore, SharePoint is independent of the network
structure deployed in the Windows network where it is used. You will learn more details about
implementing such concepts in your own application in Chapter 26, where you will learn details about
custom membership and roles providers.

Authorization and Roles in IIS 7.x
IIS 7.x natively supports the same URL-based authorization mechanisms as ASP.NET does. On the one
hand, IIS 7.x ships with its own UrlAuthorizationModule. This allows configuration of URL-based
authorization in the <authorization> configuration option as a part of the <system.webServer> section of
the web.config configuration file. On the other hand, when running IIS in ASP.NET integrated mode you
can also configure web applications hosted in IIS 7.x to leverage the ASP.NET-based URL authorization
module directly. You can therefore leverage existing <authorization> configurations within the
<system.web> section.

IIS 7.x allows you to manage access rules for your own, native authorization module for websites
directly from within the management console. Even more, you can manage roles stored in your
configured roles API provider’s data store directly from the management console, as well. You already
saw how to configure access rules using the IIS management console on IIS 7.x in Chapter 20, where
you configured some Basic authentication rules for enabling forms authentication for ASP.NET and
non-ASP.NET applications. Figure 23-7 shows the authorization configuration feature of the IIS 7.x
management console, again. In this section we will drill into some details about IIS 7.x authorization
mechanisms.

CHAPTER 23 ■ AUTHORIZATION AND ROLES

987

Figure 23-7. Configuring authorization rules in IIS 7.x

The IIS 7.x URL authorization feature works completely independently of ASP.NET; it is
implemented in its own, native HTTP module shipping with IIS 7.x. As mentioned earlier, it is configured
in a separate configuration section within your web.config configuration file. Any authorization rule you
configure through the IIS 7.x management console gets added to an <authorization> configuration
section within the <system.webServer> section of the web.config file. You learned about the details of
the IIS 7.x configuration architecture in Chapter 18. A typical IIS 7.x authorization configuration in a
web.config file looks similar to the following one and conceptually works the same way as ASP.NET
authorization rules do.

<system.webServer>
 <security>
 <authorization>
 <remove users="*" roles="" verbs="" />
 <add accessType="Deny" users="?" />
 <add accessType="Allow" users="*" />
 </authorization>
 </security>

CHAPTER 23 ■ AUTHORIZATION AND ROLES

988

 ...
 <!-- Other system.webServer related configuration -->
 ...
</system.webServer>

The configuration within that section adheres to the same rules that the authorization configuration
of ASP.NET introduced at the beginning of this chapter does. IIS 7.x evaluates these rules from top to
bottom, and as soon as it finds an applicable rule it stops searching immediately. Again, don’t forget that
the authorization is implemented in its own, native UrlAuthorizationModule.dll module, which ships
with IIS 7.x (see Figure 23-8).

Figure 23-8. The native and the managed URL authorization modules

Why is it important to understand this difference? First of all, you can use the IIS 7.x
UrlAuthorizationModule.dll independently from ASP.NET. When you install IIS 7.x on a machine
without installing ASP.NET in the web server, you still could use URL-based authorization through the
native module. However, a second reason is much more important for an ASP.NET developer. The
native URL authorization module shipping with IIS 7.x is able to correctly identify logged in users
authenticated by all possible authentication modules, including Basic authentication, Windows
authentication, and even forms authentication. This is because the module has been developed so that it
understands the forms authentication ticket (either encoded in a cookie or the query string) correctly.
But unfortunately it has not been implemented with ASP.NET roles in mind.

What is the reason for that? Well, roles are extracted by the ASP.NET infrastructure at a certain stage
within the application’s life cycle from a storage (for example, a database configured for the roles
provider). Role information is then encapsulated in managed objects implementing the IPrincipal
interface, and therefore stored in pure, managed .NET objects that are not accessible to native modules
of IIS 7.x. Therefore, native modules of IIS 7.x such as the UrlAuthorizationModule cannot make use of
this information. So, you cannot configure any ASP.NET-based roles in conjunction with the native IIS
7.x URL authorization module within the <authorization> configuration of the <system.webServer>
section. In reality, that means you can use only Windows Roles principal names when using the native
UrlAuthorizationModule shipping with IIS 7.x.

As mentioned before, in the case of user names you can fully leverage the authorization
management of IIS 7.x. This is because the native module is implemented in a way that recognizes users

CHAPTER 23 ■ AUTHORIZATION AND ROLES

989

authenticated by native modules and users authenticated by managed modules such as the
FormsAuthenticationModule. To make use of the FormsAuthentication module in conjunction with the
native UrlAuthorizationModule, the FormsAuthentication module needs to be enabled for the native
processing queue, as you learned in Chapter 20.

Finally, that means role-based authorization is one of the few exceptions where you still have to
keep IIS-based and ASP.NET-based configuration in mind separately.

Authorization with ASP.NET Roles in IIS 7.x
Now we know that the native URL authorization module shipping with IIS 7.x does not understand
ASP.NET-specific role information, as this information is only encapsulated into managed objects
implementing managed interfaces. On the other hand, running IIS 7.x in ASP.NET integrated mode
provides a unified HTTP processing pipeline where native and managed modules are processed within
the same HTTP module pipeline. Therefore, you can use any managed HTTP module written with the
.NET language of your choice to extend the default behavior of IIS 7.x.

That means you can write your own HTTP modules with .NET and integrate them into the IIS 7.x
processing pipeline. But it also means that you can integrate existing ASP.NET modules such as the
FormsAuthentication or even the UrlAuthorization modules directly into the processing pipeline. That
enables you to achieve the following two things much more easily compared to previous versions of IIS:

• Protect non-ASP.NET resources as outlined in the previous section

• Use ASP.NET security for any other web application, even if it’s not written with
ASP.NET

Both targets can be achieved the same way—you just need to enable the managed UrlAuthorization
module shipping with ASP.NET to be processed in the native pipeline together with other IIS 7.x
modules (and ASP.NET modules) as well. You can enable this configuration option in the IIS 7.x modules
configuration feature, as outlined in Figure 23-9.

Figure 23-9. Enabling the UrlAuthorization managed module for native processing

CHAPTER 23 ■ AUTHORIZATION AND ROLES

990

As soon as you have enabled the managed UrlAuthorization module, any resource of the website
gets protected by ASP.NET security, as well. That’s true for images, text files, or any other type of file
such as classic ASP pages or even PHP pages. Now you can configure authorization roles for accessing all
of these resources through the <authorization> configuration section within the <system.web> section
of your web.config file. Figure 23-10 illustrates the power of this IIS 7.x and ASP.NET integrated way of
security. Even though IIS 7.x authorization is configured to allow anyone access to the site, whenever the
browser is accessing an image, it gets redirected to the forms authentication login page because of
ASP.NET authorization configuration.

The configuration within the web.config file looks similar to the following one for the case
demonstrated in Figure 23-10.

<configuration>
 <!-- More configuration settings here ... -->
 <system.web>
 <authentication mode="Forms">
 <forms cookieless="UseUri" />
 </authentication>
 <authorization>
 <deny users="?" />
 </authorization>
 <!-- More configuration settings here ... -->
 </system.web>

 <system.webServer>
 <validation validateIntegratedModeConfiguration="false" />
 <security>
 <authorization>
 <remove users="*" roles="" verbs="" />
 <add accessType="Allow" users="*" roles="" />
 </authorization>
 </security>
 <modules>
 <remove name="UrlAuthorization" />
 <remove name="FormsAuthentication" />
 <add name="FormsAuthentication"
 type="System.Web.Security.FormsAuthenticationModule"
 preCondition="" />
 <add name="UrlAuthorization"
 type="System.Web.Security.UrlAuthorizationModule"
 preCondition="" />
 </modules>
 <!-- More configuration settings here ... -->
 </system.webServer>
</configuration>

CHAPTER 23 ■ AUTHORIZATION AND ROLES

991

Figure 23-10. The ASP.NET UrlAuthorization module in action for other file types

As you can see in the preceding configuration, the IIS 7.x authorization allows access to the website
to any user, whereas the ASP.NET authorization clearly denies access to anonymous users. Furthermore,
the IIS 7.x configuration includes both the ASP.NET FormsAuthenticationModule and the ASP.NET
UrlAuthorizationModule in its processing pipeline, which means they will affect access to any
resource—whether ASP.NET-based or not ASP.NET-based—within the web application directory. This
also means that you can leverage roles managed by ASP.NET through the roles API and roles API
framework for any resource hosted in an IIS 7.x web application.

Using the UrlAuthorization module of ASP.NET for the native processing pipeline only makes
sense when not using Windows authentication. That’s because with Windows authentication you can
configure any declarative authorization rules directly through the IIS 7.x management console to
leverage the out-of-the-box functionality provided by the native UrlAuthorizationModule shipping
with IIS 7.x.

Managing ASP.NET Roles with IIS 7.x
Although the native UrlAuthorization module shipping with IIS 7.x does not understand application
roles managed by ASP.NET through the roles API or through any other managed-only mechanism, it
allows you to manage roles for the roles API with any provider configured in your web.config directly
through its management console. You can do this through the .NET Roles configuration feature, as
shown in Figure 23-11.

You can add, delete, or modify roles directly through the IIS management console using this feature,
whereas IIS leverages the roles API provider configured in your web.config. You can use any provider,
even custom providers, as you will learn in Chapter 26. You can configure providers through the
Providers configuration feature of the IIS 7.x management console, as shown in Figure 23-12.

CHAPTER 23 ■ AUTHORIZATION AND ROLES

992

Figure 23-11. The .NET Roles configuration feature in action

Figure 23-12. Configuring roles providers with IIS 7.x

CHAPTER 23 ■ AUTHORIZATION AND ROLES

993

The provider feature allows you to configure providers for .NET users (membership API, Chapter
21), .NET Roles as shown in Figure 23-12, and .NET Profiles (see Chapter 24 for more details). The
configuration feature shown in Figure 23-11 leverages the provider configured for .NET Roles for any
management operation.

Together with the possibilities introduced in the previous section of this chapter (authorization with
ASP.NET Roles in IIS 7.x) and the possibilities introduced in Chapters 20 and 21, this allows you to
leverage the full power of the ASP.NET framework, including forms authentication, the membership API,
and the roles API for any web application hosted in IIS 7.x—even if it is not ASP.NET-based. This is an
extremely useful and powerful possibility provided by IIS 7.x, thanks to its new architecture.

Summary
Authorization provides an effective way to control access to resources. In this chapter, you learned how
to safeguard different pages, directories, and code routines in your web application using authorization.
You also saw how to use the roles API for managing and associating users with roles for simpler
authorization. Finally, you learned about the new authorization possibilities introduced with IIS 7.x. IIS
7.x ships with its own, native UrlAuthorization module that allows declarative authorization even
without ASP.NET being involved. Although the native authorization module shipping with IIS 7.x is able
to understand all types of authenticated users (Basic, Windows, and forms), it is unable to extract
ASP.NET roles from managed applications, as they are encapsulated behind pure managed objects.
However, you learned how to solve this problem by leveraging the ASP.NET integrated mode of IIS 7.x
and configuring the UrlAuthorization module shipping with ASP.NET. You configured these to be
available even for applications that aren’t ASP.NET-based as a general authorization mechanism across
many IIS 7.x-based web applications.

In the next chapter, you’ll take a look at a few advanced security techniques that you can use to
extend ASP.NET authentication and authorization.

C H A P T E R 24

■ ■ ■

995

Profiles

In previous chapters, you learned how to use a range of ASP.NET security features. Many of these
features are geared to identifying individual users (authentication) and then determining what actions
they should be able to perform (authorization). But you need to uniquely identify and authenticate users
for another important reason—to keep track of user-specific information.

In ASP.NET 1.x, the only practical option to store user-specific information was to create your own
data access component (a topic covered in Chapter 8). Your web page could call the methods of your
data access component to retrieve the current user’s data and then save any changes. As you’ll see in this
chapter, this approach still makes a lot of sense in many scenarios. However, ASP.NET 2.0 introduced
another option with the profiles feature, which remains unchanged in ASP.NET 4. When you use profiles,
ASP.NET handles retrieving and updating user-specific data automatically by using a back-end data
source (typically a database).

Conceptually, the profiles feature is a lot like creating your own database component. However, it
adds some neat conveniences. Most impressively, it integrates with the ASP.NET authentication model
in such a way that user information is automatically retrieved for the current user when needed and (if
this information is changed) written back to the database at the end of the current request. Best of all,
your web-page code can access the current user’s profile data using strongly typed properties.

In this chapter, you’ll learn how to use profiles, how the profiles system works, and when profiles
make the most sense. You’ll also learn how to extend the Profiles API with a custom profile provider.

Understanding Profiles
One of the most significant differences between profiles and other types of state management (as
discussed in Chapter 6) is that profiles are designed to store information permanently by using a back-
end data source such as a database. Most other types of state management are designed to maintain
information for a series of requests that occur in a relatively short space of time (such as session state
and caching) or in the current browser session (such as non-persistent cookies and view state) or to
transfer information from one page to another (such as the query string and cross-page posting). If you
need to store information for the longer term in a database, profiles simply provide a convenient model
that manages the retrieval and persistence of this information for you.

Before you begin using profiles, you need to assess them carefully. In the following sections, you’ll
learn how they stack up.

CHAPTER 24 ■ PROFILES

996

Profile Performance
The goal of ASP.NET’s profiles feature is to provide a transparent way to manage user-specific
information, without forcing you to write custom data access code using the ADO.NET data classes.
Unfortunately, many features that seem convenient suffer from poor performance or scalability. This is
particularly a concern with profiles, because they involve database access, and database access can
easily become a scalability bottleneck for any distributed application.

So, do profiles suffer from scalability problems? This question has no simple answer. It all depends
on how much data you need to store and how often you plan to access it. To make an informed decision,
you need to know a little more about how profiles work.

Profiles plug into the page life cycle in two ways:

• The first time you access the Profile object in your code, ASP.NET retrieves the
complete profile data for the current user from the database. From this point
onward, you can read the profile information in your code without any further
database work (until the next postback).

• If you change any profile data, the update is deferred until the page processing is
complete. At that point (after the PreRender, PreRenderComplete, and Unload
events have fired for the page), the profile is written back to the database. This
way, multiple changes are batched into one operation. If you don’t change the
profile data, no extra database work is incurred.

■ Note Profile reading and saving is implemented by a dedicated ProfileModule, which runs during each request.

Chapter 5 discusses HTTP modules in more detail.

Overall, the profiles feature could result in two extra database trips for each request (in a read-write
scenario) or one extra database trip (if you are simply reading profile data). The profiles feature doesn’t
integrate with caching, so every request that uses profile data requires a database connection.

From a performance standpoint, profiles work best when the following is true:

• You have a relatively small number of pages that access the profile data.

• You are storing small amounts of data.

• They tend to work less well when the following is true:

• You have a large number of pages that need to use profile information.

• You are storing large amounts of data. This is particularly inefficient if you need to
use only some of that data in a given request (because the profile model always
retrieves the full block of profile data).

Of course, you can combine profiles with another type of state management. For example, imagine
your website includes an order wizard that walks the user through several steps. At the beginning of this
process, you could retrieve the profile information and store it in session state. You could then use the
Session collection for the remainder of the process. Assuming you’re using the in-process or out-of-
process state server to maintain session data, this approach is more efficient because it saves you from
needing to connect to the database repeatedly.

CHAPTER 24 ■ PROFILES

997

How Profiles Store Data
The most significant limitation with profiles doesn’t have anything to do with performance—instead, it’s
a limitation of how the profiles are serialized. The default profile provider included with ASP.NET
serializes profile information into a block of data that’s inserted into a single field in a database record.
For example, if you serialize address information, you’ll end up with something like this:

Marty Soren315 Southpart DriveLompocCalifornia93436U.S.A.

Another field indicates where each value starts and stops, using a format like this:

Name:S:0:11:Street:S:11:19:City:S:30:6:State:S:36:10:ZipCode:S:46:5:Country:S:51:6

Although this approach gives you the flexibility to store just about any type of data, it makes it more
difficult to use this data in other applications. You can write custom code to parse the profile data in
order to find the information you want, but depending on the amount of data and the data types you’re
using, this can be an extremely tedious process. And even if you do this, you’re still limited in the ways
you can reuse this information. For example, imagine you use profiles to store customer address
information. Because of the proprietary format, it’s no longer possible to generate customer lists in an
application such as Microsoft Word or perform queries that filter or sort records using this profile data.
(For example, you can’t easily perform a query to get all the customers living in a specific city.)

This problem has two solutions:

• Use custom data access components instead of profiles to store and retrieve data
in a database.

• Create a custom profile provider that’s designed to store information using your
database schema.

Out of the two options, creating a custom data access component is easier, and it gives you more
flexibility. You can design your data component to have any interface you want, and you can then reuse
that component with other .NET applications. Currently, ASP.NET developers are more likely to use this
approach because it has been around since .NET 1.0 and is well understood.

The second option is interesting because it allows your page to keep using the profile model. In fact,
you could create an application that uses the standard profile serialization with the SqlProfileProvider
and then switch it later to use a custom provider. To make this switch, you don’t need to change any
code. Instead, you simply modify the profile settings in the web.config file. As it becomes more common
for websites to use profiles, custom profile providers will become more attractive.

■ Note It’s also important to consider the type of data that works best in a profile. As with many other types of

state management, you can store any serializable types into a profile, including simple types and custom classes.

CHAPTER 24 ■ PROFILES

998

Profiles and Authentication
One significant difference between profiles and other types of state management is that profiles are
stored as individual records, each of which is uniquely identified by user name. This means that profiles
require you to use some sort of authentication system. It makes no difference what type of
authentication system you use (Windows, forms, or a custom authentication system)—the only
requirement is that authenticated users are assigned a unique user name. That user name is used to find
the matching profile record in the database.

■ Note Later in this chapter (in the section “Anonymous Profiles”), you’ll also learn how the anonymous

identification feature lets you temporarily store profile information for users who haven’t logged in.

Profiles vs. Custom Data Components
Profiles are a natural competitor with custom data components of the kind you saw in Chapter 8.
Clearly, data components are far more flexible. They allow you not only to maintain user-specific
information but also to store other types of information and perform more complex business tasks.

For example, an e-commerce website could realistically use profiles to maintain customer address
information (with the limitations discussed in the previous section). However, you wouldn’t use a profile
to store information about previous orders. Not only is it far too much information to store efficiently,
it’s also awkward to manipulate.

The standard profile provider that’s included with ASP.NET (named SqlProfileProvider) doesn’t
provide any features beyond basic database storage and retrieval. The following list includes some
features that you can easily add through a custom database component but aren’t available if you’re
using the SqlProfileProvider. If you need any of these features, you’ll need to abandon profiles and create
your own data access component, or you’ll need to design a custom profile provider.

Encryption: Profile data can be serialized into a string, XML, or a binary representation. But no
matter what you choose, you’ll always end up storing the raw text. If you have sensitive information,
your only option is to encrypt it manually before you store it, which has the undesirable result of
putting encryption logic in your UI code.

Validation: You can’t restrict the type of information that can be placed in a profile. You need to use
other tools (such as validator controls and custom data classes) to prevent invalid data.

Caching: If profile information is used in a page, it’s always retrieved from the database. You can’t
keep profile information around in memory. Although you can copy profile information into the
cache, it becomes more difficult to track this information.

Auditing: When you design a custom database component, you have the ability to add any logging
or tracing code you want. You can use this to diagnose unexpected errors or monitor the
performance of your web application. However, if you want these features with profiles, you’ll need
to build a custom profile provider that has the logging code.
Now that you know the ins and outs of profiles, you’re ready to try them.

Using the SqlProfileProvider
The SqlProfileProvider allows you to store profile information in a SQL Server 7.0 or later database. You
can choose to create the profile tables in any database. However, you can’t change any of the other

CHAPTER 24 ■ PROFILES

999

database schema details, which means you’re locked into specific table names, column names, and
serialization formats.

From start to finish, you need to perform the following steps to use profiles:

1. Create the profile tables. (If you’re using SQL Server Express Edition, this step
happens automatically.)

2. Configure the profile provider.

3. Define some profile properties.

4. Enable authentication for a portion of your website.

5. Use the profile properties in your web-page code.

You’ll tackle these steps in the following sections.

Creating the Profile Tables
If you’re not using SQL Server Express, you must create the profile tables manually. To do so, you use the
aspnet_regsql.exe command-line utility, which is the same tool that allows you to generate databases for
other ASP.NET features, such as SQL Server-based session state, membership, roles, database cache
dependencies, and web parts personalization. You can find the aspnet_regsql.exe tool in the
c:\Windows\Microsoft.NET\Framework\[Version] folder.

■ Note If you’re using SQL Server Express Edition, you don’t need to create your database by hand. Instead, the

first time you use the profiles feature, ASP.NET will create a new database named aspnetdb.mdf, place it in the
App_Data subdirectory of your web application, and add the profiles tables. If you already have an aspnetdb.mdf
database (because you’re using it for another feature), ASP.NET will simply add the profiles tables to the existing

aspnetdb.mdf database.

To create the tables, views, and stored procedures required for profiles, you use aspnet_regsql.exe
with the -A p command-line option. The only other detail you need to supply is the server location (-S),
database name (-d), and authentication information for connecting to the database (use -U and -P to
supply a password and user name, or use -E to use the current Windows account). If you leave the other
server location and database name, aspnet_regsql.exe uses the default instance on the current computer
and creates a database named aspnetdb.

Here’s an example that creates the aspnetdb database with the default name on the current
computer by logging into the database using the current Windows account:

aspnet_regsql.exe -A p -E

Table 24-1 shows the tables that aspnet_regsql.exe creates. (The rather unexciting views aren’t
included.)

CHAPTER 24 ■ PROFILES

1000

Table 24-1. Database Tables Used for Profiles

Table Name Description

aspnet_Applications Lists all the web applications that have records in this database. It’s
possible for several ASP.NET applications to use the same aspnetdb
database. In this case, you have the option of separating the profile
information so that it’s distinct for each application (by giving each
application a different application name when you register the profile
provider), or of sharing it (by giving each application the same application
name).

aspnet_Profile Stores the user-specific profile information. Each record contains the
complete profile information for a single user. The PropertyNames field
lists the property names, and the PropertyValuesString and
PropertyValuesBinary fields list all the property data, although you’ll need
to do some work if you want to parse this information for use in other non-
ASP.NET programs. Each record also includes the last update date and
time (LastUpdatedDate).

aspnet_SchemaVersions Lists the supported schemas for storing profile information. In the future,
this could allow new versions of ASP.NET to provide new ways of storing
profile information without breaking support for old profile databases that
are still in use.

aspnet_Users Lists user names and maps them to one of the applications in
aspnet_Applications. Also records the last request date and time
(LastActivityDate) and whether the record was generated automatically for
an anonymous user (IsAnonymous). Anonymous user support is discussed
later in this chapter (in the section “Anonymous Profiles”).

■ Note Even if you don’t use the default database name (aspnetdb), you should use a new, blank database that
doesn’t include any other custom tables. That’s because aspnet_regsql.exe creates several tables for profiles (see
Table 24-1), and you shouldn’t risk confusing them with business data. The examples in the rest of this chapter

assume you’re using aspnetdb.

Figure 24-1 shows the relationships between the most important profile tables.

CHAPTER 24 ■ PROFILES

1001

Figure 24-1. The profile tables

ASP.NET also creates several stored procedures that allow it to manage the information in these
tables more easily. Table 24-2 lists the most noteworthy stored procedures.

Table 24-2. Database Stored Procedures Used for Profiles

Stored Procedure Description

aspnet_Applications_CreateApplications Checks whether a specific application name exists
in the aspnet_Applications table and creates the
record if needed.

aspnet_CheckSchemaVersion Checks for support of a specific schema version for
a specific feature (such as profiles) using the
aspnet_SchemaVersions table.

aspnet_Profile_GetProfiles Retrieves the user name and update times for all the
profile records in the aspnet_Profile table for a
specific web application. Doesn’t return the actual
profile data.

aspnet_Profile_GetProperties Retrieves the profile information for a specific user
(which you specify by user name). The information
is not parsed in any way—instead, this stored
procedure simply returns the underlying fields
(PropertyNames, PropertyValuesString,
PropertyValuesBinary).

CHAPTER 24 ■ PROFILES

1002

Stored Procedure Description

aspnet_Profile_SetProperties Sets the profile information for a specific user
(which you specify by user name). This stored
procedure requires values for the PropertyNames,
PropertyValuesStrings, and PropertyValuesBinary
fields. There’s no way to update just a single
property in a profile.

aspnet_Profile_GetNumberOfInactiveProfiles Returns profile records that haven’t been used
within a time window you specify.

aspnet_Profile_DeleteInactiveProfiles Removes profile records that haven’t been used
within a time window you specify.

aspnet_Users_CreateUser Creates a new record in the aspnet_Users table for a
specific user. Checks whether the user exists (in
which case no action is taken) and creates a GUID
to use for the UserID field if none is specified.

aspnet_Users_DeleteUser Removes a specific user record from the
aspnet_Users table.

Configuring the Provider
Now that you have the database in place, you can register the SqlProfileProvider using the web.config
file. First, define a connection string for the profile database. Then, use the <profile> section to remove
any existing providers (with the <clear> element), and add a new instance of the
System.Web.Profile.SqlProfileProvider class (with the <add> element). Here are the configuration
settings you need:

<configuration>
 <connectionStrings>
 <add name="SqlServices" connectionString=
 "Data Source=localhost;Integrated Security=SSPI;Initial Catalog=aspnetdb;" />
 </connectionStrings>

 <system.web>
 <profile defaultProvider="SqlProvider">
 <providers>
 <clear />
 <add name="SqlProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="SqlServices"
 applicationName="TestApplication" />
 </providers>
 </profile>
 ...
 </system.web>
</configuration>

CHAPTER 24 ■ PROFILES

1003

When you define a profile provider, you need to supply a name (which the <profile> element can
then reference as the default provider), the exact type name, a connection string, and a web application
name. Use different application names to separate the profile information between web applications (or
use the same application name to share it).

Defining Profile Properties
Before you can store anything in the aspnet_Profile table, you need to define it specifically. You do this
by adding the <properties> element inside the <profile> section of the web.config file. Inside the
<properties> element, you place one <add> tag for each user-specific piece of information you want to
store. At a minimum, the <add> element supplies the name for the property, like this:

<profile defaultProvider="SqlProvider">
 <providers>
 ...
 </providers>
 <properties>
 <add name="FirstName"/>
 <add name="LastName"/>
 </properties>
</profile>

Usually, you’ll also supply the data type. (If you don’t, the property is treated as a string.) You can
specify any serializable .NET class as the type, as shown here:

<add name="FirstName" type="String"/>
<add name="LastName" type="String"/>
<add name="DateOfBirth" type="DateTime"/>

You can set a few more property attributes to create the more advanced properties shown in
Table 24-3.

Table 24-3. Profile Property Attributes

Attribute (for the <add> Element) Description

name The name of the property.

type The fully qualified class name that represents the data type for
this property. By default, this is System.String.

serializeAs Indicates the format to use when serializing this value (String,
Binary, Xml, or ProviderSpecific). You’ll look more closely at
the serialization model in the section “Profile Serialization.”

readOnly Add this attribute with a value of true to create a property that
can be read but not changed. (Attempting to change the
property will cause a compile-time error.) By default, this is
false.

CHAPTER 24 ■ PROFILES

1004

Attribute (for the <add> Element) Description

defaultValue A default value that will be used if the profile doesn’t exist or
doesn’t include this particular piece of information. The
default value has no effect on serialization—if you set a profile
property, the ProfileModule will commit the current values to
the database, even if they match the default values.

allowAnonymous A Boolean value that indicates whether this property can be
used with the anonymous profiles feature discussed later in
this chapter. By default, this is false.

provider The profile provider that should be used to manage just this
property. By default, all properties are managed using the
provider specified in the <profile> element, but you can assign
different properties to different providers.

Using Profile Properties
Because profiles are stored in a user-specific record, you need to authenticate the current user before
you can read or write profile information. You can use any type of authentication system (Windows,
forms, or custom). You simply need to add an authorization rule to prevent anonymous access for the
page or folder where you plan to use the profile. Here’s an example:

<configuration>
 ...
 <system.web>
 <authentication mode="Windows"/>
 <authorization>
 <deny users="?"/>
 </authorization>
 ...
 </system.web>
</configuration>

Chapter 23 has much more information about authorization rules.
With these details in place, you’re ready to access the profile information using the Profile property

of the current page. When you run your application, ASP.NET creates a new class to represent the profile
by deriving from System.Web.Profile.ProfileBase, which wraps a collection of profile settings. ASP.NET
adds a strongly typed property to this class for each profile property you’ve defined in the web.config
file. These strongly typed properties simply call the GetPropertyValue() and SetPropertyValue() methods
of the ProfileBase base class to retrieve and set the corresponding profile values.

For example, if you’ve defined a string property named FirstName, you can set it in your page like
this:

Profile.FirstName = "Henry";

Figure 24-2 presents a complete test page that allows the user to display the profile information for
the current user or set new profile information.

CHAPTER 24 ■ PROFILES

1005

Figure 24-2. Testing profiles

The first time this page runs, no profile information is retrieved, and no database connection is
used. However, if you click the Show Profile Data button, the profile information is retrieved and
displayed on the page:

protected void cmdShow_Click(object sender, EventArgs e)
{
 lbl.Text = "First Name: " + Profile.FirstName + "
" +
 "Last Name: " + Profile.LastName + "
" +
 "Date of Birth: " + Profile.DateOfBirth.ToShortDateString();
}

At this point, an error will occur if the profile database is missing or the connection can’t be opened.
Otherwise, your page will run without a hitch, and you’ll see the newly retrieved profile information.
Technically, the complete profile is retrieved when your code accesses the Profile.FirstName property in
the first line and is used for the subsequent code statements.

■ Note Profile properties behave like any other class member variable. That means if you read a profile value that

hasn’t been set, you’ll get a default initialized value (like an empty string or the number 0).

If you click the Set Profile Data button, the profile information is set based on the current control
values:

CHAPTER 24 ■ PROFILES

1006

protected void cmdSet_Click(object sender, EventArgs e)
{
 Profile.FirstName = txtFirst.Text;
 Profile.LastName = txtLast.Text;
 Profile.DateOfBirth = Calendar1.SelectedDate;
}

Now the profile information is committed to the database when the page request finishes. If you
want to commit some or all of the information earlier (and possibly incur multiple database trips), just
call the Profile.Save() method. As you can see, the profiles feature is unmatched for simplicity.

■ Tip The Profile object doesn’t include just the properties you’ve defined. It also provides LastActivityDate and

LastUpdatedDate properties with information drawn from the database.

Profile Serialization
Earlier, you learned how properties are serialized into a single string. For example, if you save a
FirstName of Harriet and a LastName of Smythe, both values are crowded together in the
PropertyValuesString field, saving space:

HarrietSmythe

The PropertyNames field gives the information you need to parse each value from the
PropertyValuesString field. Here’s what you’ll see in the PropertyNames field in this example:

FirstName:S:0:7:LastName:S:7:6:

The colons (:) are used as delimiters. The basic format is as follows:

PropertyName:StringOrBinarySerialization:StartingCharacterIndex:Length:

Something interesting happens if you create a profile with a DateTime data type. When you look at
the PropertyValuesString field, you’ll see something like this:

<?xml version="1.0" encoding="utf-16"?><dateTime>2007-07-12T00:00:00-04:00
</dateTime>HarrietSmythe

Initially, it looks like the profile data is serialized as XML, but the PropertyValuesString clearly
doesn’t contain a valid XML document (because of the text at the end). What has actually happened is
that the first piece of information, the DateTime, is serialized (by default) as XML. The following two
profile properties are serialized as ordinary strings.

The PropertyNames field makes it slightly clearer:

DateOfBirth:S:0:81:FirstName:S:87:7:LastName:S:94:6:

Interestingly, you have the ability to change the serialization format of any profile property by
adding the serializeAs attribute to its declaration in the web.config file. Table 24-4 lists your choices.

CHAPTER 24 ■ PROFILES

1007

Table 24-4. Serialization Options

SerializeAs Description

String Converts the type to a string representation. Requires a type converter that
can handle the job. (See Chapter 28 for more information about type
converters.)

Xml Converts the type to an XML representation, which is stored in a string,
using the System.Xml.XmlSerialization.XmlSerializer (the same class that’s
used with web services).

Binary Converts the type to a proprietary binary representation that only .NET
understands using the
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter. This is
the most compact option but the least flexible. Binary data is stored in the
PropertyValuesBinary field instead of the PropertyValues.

ProviderSpecific Performs customized serialization that’s implemented in a custom provider.

For example, here’s how you can change the serialization for the profile settings:

<add name="FirstName" type="String" serializeAs="Xml"/>
<add name="LastName" type="String" serializeAs="Xml"/>
<add name="DateOfBirth" type="DateTime" serializeAs="String"/>

Now the next time you set the profile, the serialized representation in the PropertyValuesString field
will take this form:

2007-07-12<?xml version="1.0" encoding="utf-16"?><string>Harriet</string>
<?xml version="1.0" encoding="utf-16"?><string>Smythe</string>

If you use the binary serialization mode, the property value will be placed in the
PropertyValuesBinary field instead of the PropertyValuesString field. The only indication of this shift is
the use of the letter B instead of S in the PropertyNames field. Here’s an example where the FirstName
property is serialized in the PropertyValuesBinary field:

DateOfBirth:S:0:9:FirstName:B:0:31:LastName:S:9:64:

All of these serialization details raise an important question—what happens when you change
profile properties or the way they are serialized? Profile properties don’t have any support for versioning.
However, you can add or remove properties with relatively minor consequences. For example, the
ProfileModule will ignore properties that are present in the aspnet_Profile table but not defined in the
web.config file. The next time you modify part of the profile, these properties will be replaced with the
new profile information. Similarly, if you define a profile in the web.config file that doesn’t exist in the
serialized profile information, the ProfileModule will just use the default value. However, more dramatic
changes—such as renaming a property, changing its data type, and so on, are likely to cause an
exception when you attempt to read the profile information. Even worse, because the serialized format
of the profile information is proprietary, you have no easy way to migrate existing profile data to a new
profile structure.

CHAPTER 24 ■ PROFILES

1008

■ Tip Not all types are serializable in all ways. For example, classes that don’t provide a parameterless constructor
can’t be serialized in Xml mode. Classes that don’t have the Serializable attribute can’t be serialized in Binary mode.
You’ll consider this distinction when you learn how to use custom types with profiles, but for now just keep in mind

that you may run across types that can be serialized only if you choose a different serialization mode.

Profile Groups
If you have a large number of profile settings, and some settings are logically related to each other, you
may want to use profile groups to achieve better organization.

For example, you may have some properties that deal with user preferences and others that deal
with shipping information. Here’s how you could organize these profile properties using the <group>
element:

<profile defaultProvider="SqlProvider">
 <properties>
 <group name="Preferences">
 <add name="LongDisplayMode" defaultValue="true" type="Boolean" />
 <add name="ShowSummary" defaultValue="true" type="Boolean" />
 </group>
 <group name="Address">
 <add name="Name" type="String" />
 <add name="Street" type="String" />
 <add name="City" type="String" />
 <add name="ZipCode" type="String" />
 <add name="State" type="String" />
 <add name="Country" type="String" />
 </group>
 </properties>
</profile>

Now you can access the properties through the group name in your code. For example, here’s how
you retrieve the country information:

lblCountry.Text = Profile.Address.Country;

Groups are really just a poor man’s substitute for a full-fledged custom structure or class. For
example, you could achieve the same effect as in the previous example by declaring a custom Address
class. You’d also have the ability to add other features (such as validation in the property procedures).
The next section shows how.

Profiles and Custom Data Types
Using a custom class with profiles is easy. You need to begin by creating the class that wraps the
information you need. In your class, you can use public member variables or full-fledged property
procedures. The latter choice, though longer, is the preferred option because it ensures your class will
support data binding and gives you the flexibility to add property procedure code later.

CHAPTER 24 ■ PROFILES

1009

Here’s a slightly abbreviated Address class that ties together the same information you saw in the
previous example. For the sake of conciseness, it uses automatic properties (which store data in
automatically generated private fields).

[Serializable()]
public class Address
{
 public string Name {get; set;}
 public string Street {get; set;}
 public string City {get; set;}
 public string ZipCode {get; set;}
 public string State {get; set;}
 public string Country {get; set;}

 public Address(string name, string street, string city,
 string zipCode, string state, string country)
 {
 Name = name;
 Street = street;
 City = city;
 ZipCode = zipCode;
 State = state;
 Country = country;
 }
 public Address() { }
}

You can place this class in the App_Code directory (or compile it and place the DLL assembly in the
Bin directory). The final step is to add a property that uses it:

<properties>
 <add name="Address" type="Address" />
 ...
</properties>

Now you can manipulate it in your code like this:

Profile.Address = new Address("Joe Pasta", "34 Parkside Ave", "New York",
 "10002", "New York", "U.S.A.");
lbl.Text = "You are in " + Profile.Address.Country;

Custom Type Serialization
You need to keep in mind a few points, depending on how you decide to serialize your custom class. By
default, all custom data types use XML serialization with the XmlSerializer. This class is relatively limited
in its serialization ability. It simply copies the value from every public property or member variable into
a straightforward XML format like this:

<Address ...>
 <Name>...</Name>
 <Street>...</Street>
 <City>...</City>
 <ZipCode>...</ZipCode>

CHAPTER 24 ■ PROFILES

1010

 <State>...</State>
 <Country>...</Country>
</Address>

You can alter this XML representation by adding attributes from the System.Xml.Serialization
namespace to the public properties in your class. For example, you can use XmlElement to change the
XML element name that’s used to store a property, XmlAttribute to make sure a property is stored as an
XML attribute instead of an XML element, and XmlIgnore to prevent a property value from being
serialized altogether. For more information, refer to the .NET Framework reference for the
System.Xml.Serialization namespace.

When deserializing your class, the XmlSerializer needs to be able to find a parameterless public
constructor. In addition, none of your properties can be read-only. If you violate either of these rules, the
deserialization process will fail.

If you decide to use binary serialization instead of XmlSerialization, .NET uses a completely different
approach.

<add name="Address" type="Address" serializeAs="Binary"/>

In this case, the ProfileModule enlists the help of the BinaryFormatter. The BinaryFormatter can
serialize the full public and private contents of any class, provided the class is decorated with the
Serializable attributes. (Additionally, any class it derives from or references must also be serializable.)
You can learn much more about the binary formatter in Chapter 12.

Finally, you can decide to use string serialization:

<add name="Address" type="Address" serializeAs="String"/>

In this case, you need a type converter that can translate between an instance of your class and its
string representation.

Automatic Saves
The ProfileModule that saves profile information isn’t able to detect changes in complex data types
(anything other than strings, simple numeric types, Boolean values, and so on). This means if your
profile includes complex data types, the ProfileModule saves the profile information at the end of every
request that accesses the Profile object.

This behavior obviously adds unnecessary overhead. To optimize performance when working with
complex types, you have several choices. One option is to set the corresponding profile property to be
read-only (if you know it never changes). Another approach is to disable the autosave behavior
completely by adding the automaticSaveEnabled attribute on the <profile> element and setting it to
false, as shown here:

<profile defaultProvider="SqlProvider" automaticSaveEnabled="false">...</profile>

If you choose this approach, it’s up to you to call Profile.Save() to explicitly commit changes.
Generally, this approach is the most convenient, because it’s easy to spot the places in your code where
you modify the profile. Just add the Profile.Save() call at the end:

Profile.Address = new Address(txtName.Text, txtStreet.Text, txtCity.Text,
 txtZip.Text, txtState.Text, txtCountry.Text);
Profile.Save();

One final option is to handle the ProfileModule.ProfileAutoSaving event in the global.asax file. At
this point, you can check to see if a save is really necessary and cancel the save if it isn’t.

With this technique, the obvious problem is determining whether the automatic save should be
cancelled. You could store the original profile data in memory and then compare these objects with the

CHAPTER 24 ■ PROFILES

1011

current objects when the ProfileAutoSaving event fires. However, this approach would be awkward and
slow. A better option is to make the page keep track of whether a change has been made. If a change has
been made, your code can then set a flag to indicate that the update should go ahead.

For example, consider the test page shown in Figure 24-3 that allows you to retrieve and modify
address information.

Figure 24-3. Modifying a complex type in a profile

All the text boxes on this page use the same event handler for their TextChanged event. This event
handler indicates that a change has been made by storing a Boolean value in the context for the current
request:

protected void txt_TextChanged(object sender, EventArgs e)
{
 Context.Items["AddressDirtyFlag"] = true;
}

■ Tip The Page.Context property provides an HttpContext object. The HttpContext.Items collection provides a

handy place where you can temporarily store data that needs to be used later during the same postback. View

state and session state can be used to similar effect, but they assume longer-term storage.

Keep in mind that a value stored in this way lasts only for the duration of the current request. In this
example, that’s not a problem because the user has only two options after making a change—rejecting
the change (by clicking Get) or applying the change (by clicking Save). However, if you create a page
where the user can make changes over several steps and then apply them later, you would need to do
more work to maintain the flag. Storing the flag in other locations such as session state or view state
won’t work, because they aren’t available when the ProfileAutoSaving event fires in the global.asax file.

CHAPTER 24 ■ PROFILES

1012

Finally, here’s the event handler you need that allows the autosave to carry on only if a change has
been made:

void Profile_ProfileAutoSaving(Object sender, ProfileAutoSaveEventArgs e)
{
 if ((e.Context.Items["AddressDirtyFlag"] == null) ||
 ((bool)e.Context.Items["AddressDirtyFlag"] == false))
 {
 e.ContinueWithProfileAutoSave = false;
 }
}

Remember, the ProfileAutoSaving event fires for any change. If you have more than one page that
modifies different profile details, you might need to write conditional code that checks which page was
requested and restricts or permits the save accordingly. In this situation, it’s usually easier to turn off
automatic saving altogether and force the page to use the Profile.Save() method.

The Profiles API
Although your page automatically gets the profile information for the current user, that doesn’t prevent
you from retrieving and modifying the profiles of other users. In fact, you have two tools to help you—
the ProfileBase class and the ProfileManager class.

The ProfileBase object (provided by the Page.Profile property) includes a useful GetProfile()
function that retrieves, by user name, the profile information for a specific user. Figure 24-4 shows an
example with a Windows authenticated user.

Here’s the code that gets the profile:

protected void cmdGet_Click(object sender, EventArgs e)
{
 ProfileCommon profile = Profile.GetProfile(txtUserName.Text);
 lbl.Text = "This user lives in " + profile.Address.Country;
}

Figure 24-4. Retrieving a profile manually

CHAPTER 24 ■ PROFILES

1013

GetProfile() returns a ProfileCommon object. However, you won’t find ProfileCommon in the .NET
class library. That’s because ProfileCommon is a dynamically generated class that ASP.NET creates to
hold the profile information for your web application. In this example, the profile defines a property
named Address so that you can retrieve this information using the ProfileCommon.Address property.

Notice that once you have a ProfileCommon object, you can interact with it in the same way as you
interact with the profile for the current user. You can even make changes. The only difference is that
changes aren’t saved automatically. If you want to save a change, you need to call the Save() method of
the ProfileCommon object. The ProfileCommon also adds the LastActivityDate and LastUpdatedDate
properties, which you can use to determine the last time a specific profile was accessed and modified.

■ Note If you try to retrieve a profile that doesn’t exist, you won’t get an error. Instead, you’ll simply end up with
blank data. If you change and save the profile, a new profile record will be created. You can test for this condition

by examining the ProfileCommon.LastUpdatedDate property. If the profile hasn’t been created yet, this value will

be a zero-date value (in other words, day 0 on month 0 in year 0000).

If you need to perform other tasks with profiles, you can use the ProfileManager class in the
System.Web.Profile namespace, which exposes the useful static methods described in Table 24-5. Many
of these methods work with a ProfileInfo class, which provides information about a profile. The
ProfileInfo includes the user name (UserName), last update and last activity dates (LastActivityDate and
LastUpdateDate), the size of the profile in bytes (Size), and whether the profile is for an anonymous user
(IsAnonymous). It doesn’t provide the actual profile values.

Table 24-5. ProfileManager Methods

Method Description

DeleteProfile() Deletes the profile for the user you specify.

DeleteProfiles() Deletes multiple profiles at once. You supply a collection of
user names.

DeleteInactiveProfiles() Deletes profiles that haven’t been used since a time you
specify. You also must supply a value from the Profile-
AuthenticationOption enumeration to indicate what type of
profiles you want to remove (All, Anonymous, or
Authenticated).

GetNumberOfProfiles() Returns the number of profile records in the data source.

GetNumberOfInactiveProfiles() Returns the number of profiles that haven’t been used since
the time you specify.

GetAllInactiveProfiles() Retrieves profile information for profiles that haven’t been
used since the time you specify. The profiles are returned as
ProfileInfo objects.

CHAPTER 24 ■ PROFILES

1014

Method Description

GetAllProfiles() Retrieves all the profile data from the data source as a
collection of ProfileInfo objects. You can choose what type of
profiles you want to retrieve (All, Anonymous, or
Authenticated). You can also use an overloaded version of this
method that uses paging and retrieves only a portion of the
full set of records based on the starting index and page size
you request.

FindProfilesByUserName() Retrieves a collection of ProfileInfo objects that match a
specific user name. The SqlProfileProvider uses a LIKE clause
when it attempts to match user names. That means you can
use wildcards such as the % symbol. For example, if you
search for the user name user%, you’ll return values like user1,
user2, user_guest, and so on. You can use an overloaded
version of this method that uses paging.

FindInactiveProfilesByUserName() Retrieves profile information for profiles that haven’t been
used since the time you specify. You can also filter out certain
types of profiles (All, Anonymous, or Authenticated) or look for
a specific user name (with wildcard matching). The return
value is a collection of ProfileInfo objects.

For example, if you want to remove the profile for the current user, you need only a single line of

code:

ProfileManager.DeleteProfile(User.Identity.Name);

And if you want to display the full list of users in a web page (not including anonymous users), just
add a GridView with AutoGenerateColumns set to true and use this code:

protected void Page_Load(object sender, EventArgs e)
{
 GridView1.DataSource = ProfileManager.GetAllProfiles(
 ProfileAuthenticationOption.Authenticated);
 GridView1.DataBind();
}

Figure 24-5 shows the result.

CHAPTER 24 ■ PROFILES

1015

Figure 24-5. Retrieving information about all the profiles in the data source

Anonymous Profiles
So far, all the examples have assumed that the user is authenticated before any profile information is
accessed or stored. Usually, this is the case. However, sometimes it’s useful to create a temporary profile
for a new, unknown user. For example, most e-commerce websites allow new users to begin adding
items to a shopping cart before registering. If you want to provide this type of behavior and you choose
to store shopping cart items in a profile, you’ll need some way to uniquely identify anonymous users.

ASP.NET provides an anonymous identification feature that fills this gap. The basic idea is that the
anonymous identification feature automatically generates a random identifier for any anonymous user.
This random identifier stores the profile information in the database, even though no user ID is
available. The user ID is tracked on the client side using a cookie (or in the URL, if you’ve enable
cookieless mode). Once this cookie disappears (for example, if the anonymous user closes and reopens
the browser), the anonymous session is lost and a new anonymous session is created.

Anonymous identification has the potential to leave a lot of abandoned profiles, which wastes space
in the database. For that reason, anonymous identification is disabled by default. However, you can
enable it using the <anonymousIdentification> element in the web.config file, as shown here:

<configuration>
 ...
 <system.web>
 <anonymousIdentification enabled="true" />
 ...
 </system.web>
</configuration>

You also need to flag each profile property that will be retained for anonymous users by adding the
allowAnonymous attribute and setting it to true. This allows you to store just some basic information
and restrict larger objects to authenticated users.

<properties>
 <add name="Address" type="Address" allowAnonymous="true" />
 ...
</properties>

CHAPTER 24 ■ PROFILES

1016

If you’re using a complex type, the allowAnonymous attribute is an all-or-nothing setting. You
configure the entire object to support anonymous storage or not.

The <anonymousIdentification> element also supports numerous optional attributes that let you
set the cookie name and timeout, specify whether the cookie will be issued only over an SSL connection,
control whether cookie protection (validation and encryption) is used to prevent tampering and
eavesdropping, and configure support for cookieless ID tracking. Here’s an example:

<anonymousIdentification enabled="true" cookieName=".ASPXANONYMOUS"
 cookieTimeout="43200" cookiePath="/" cookieRequireSSL="false"
 cookieSlidingExpiration="true" cookieProtection="All"
 cookieless="UseCookies"/>

For more information, refer to the configuration settings for forms authentication (Chapter 20) and
role management (Chapter 23), which use the same settings.

■ Tip If you use anonymous identification, it’s a good idea to delete old anonymous sessions regularly using the
aspnet_Profile_DeleteInactiveProfiles stored procedure, which you can run at scheduled intervals using the SQL

Server Agent. You can also delete old profiles using the ProfileManager class, as described in the previous section.

Migrating Anonymous Profiles
A challenge that occurs with anonymous profiles is what to do with the profile information when a
previously anonymous user logs in. For example, in an e-commerce website a user might select several
items and then register or log in to complete the transaction. At this point, you need to make sure the
shopping cart information is copied from the anonymous user’s profile to the appropriate authenticated
(user) profile.

Fortunately, ASP.NET provides a solution through the ProfileModule.MigrateAnonymous event.
This event (which can be handled in the global.asax file) fires whenever an anonymous identifier is
available (either as a cookie or in the URL if you’re using cookieless mode) and the current user is
authenticated.

The basic technique when handling the MigrateAnonymous event is to load the profile for the
anonymous user by calling Profile.GetProfile() and passing in the anonymous ID, which is provided to
your event handler through the ProfileMigrateEventArgs.

Once you’ve loaded this data, you can then transfer the settings to the new profile manually. You
can choose to transfer as few or as many settings as you want, and you can perform any other processing
that’s required. Finally, your code should remove the anonymous profile data from the database and
clear the anonymous identifier so the MigrateAnonymous event won’t fire again.

void Profile_MigrateAnonymous(Object sender, ProfileMigrateEventArgs pe)
{
 // Get the anonymous profile.
 ProfileCommon anonProfile = Profile.GetProfile(pe.AnonymousID);

 // Copy information to the authenticated profile
 // (but only if there's information there).
 if (anonProfile.Address.Name != null && anonProfile.Address.Name != "")
 {
 Profile.Address = anonProfile.Address;

CHAPTER 24 ■ PROFILES

1017

 }

 // Delete the anonymous profile from the database.
 // (You could decide to skip this step to increase performance
 // if you have a dedicated job scheduled on the database server
 // to remove old anonymous profiles.)
 System.Web.Profile.ProfileManager.DeleteProfile(pe.AnonymousID);

 // Remove the anonymous identifier.
 AnonymousIdentificationModule.ClearAnonymousIdentifier();
}

You need to handle this task with some caution. If you’ve enabled anonymous identification, every
time a user logs in, the MigrateAnonymous event fires, even if the user hasn’t entered any information
into the anonymous profile. That’s a problem, because if you’re not careful, you could easily overwrite
the real (saved) profile for the user with the blank anonymous profile. The problem is further
complicated because complex types (such as the Address object) are created automatically by the
ProfileModule, so you can’t just check for a null reference to determine whether the user has
anonymous address information.

In the previous example, the code tests for a missing Name property in the Address object. If this
information isn’t a part of the anonymous profile, no information is migrated. A more sophisticated
example might test for individual properties separately or might migrate an anonymous profile only if
the information in the user profile is missing or out of date.

A Shopping Cart Example

To see a more comprehensive end-to-end example of profiles, you can refer to the online samples. They
include a page named ShoppingCartTest.aspx (in the SqlProfileProviderWindowsAuthentication website),
which uses profiles to store a complete shopping cart stocked full of items.

The ShoppingCartTest.aspx example provides a good demonstration of how you can store complex objects
in a profile. However, most professional websites won’t use profiles in this way, because it forces you to
give up too much control over data storage. You’re more likely to use session state instead (and possibly
use SQL Server-backed session storage if you want partially complete shopping carts to persist between
user visits). In fact, the ShoppingCart and ShoppingCartItem classes that the ShoppingCartTest.aspx page
uses work equally well if you want to store shopping cart data in session state.

Custom Profile Providers
The profile model plugs neatly into ASP.NET web pages. However, it isn’t very configurable. You might
decide you need to create a custom profile provider for a number of reasons:

• You need to store profile information in a data source other than a SQL Server
database, such as an Oracle database.

• You need your profile data to be available to other applications. Parsing the
information in the PropertyValuesString and PropertyValuesBinary fields is
tedious, error-prone, and inflexible. If you need to use this information in other
queries or applications, you need to store your profile information in a database
table that’s split into distinct fields.

CHAPTER 24 ■ PROFILES

1018

• You need to implement additional logic when storing or retrieving profile data.
For example, you could apply validation, caching, logging, encryption, or
compression. (In some cases, you can get these features by simply extending the
ProfileBase class that wraps profile settings, rather than creating an entirely new
ProfileProvider.)

In the following sections, you’ll focus on the second scenario. You’ll see how to build a custom
provider that keeps its property values in separate fields and can be adapted to fit any existing database.

The Custom Profile Provider Classes
To implement a profile provider, you need to create a class that derives from the ProfileProvider abstract
class from the System.Web.Profile namespace. The ProfileProvider abstract class itself inherits the
SettingsProvider abstract class from the System.Configuration namespace, which inherits from the
ProviderBase abstract class from the System.Configuration.Provider namespace. As a result, you also
need to implement members from the SettingsProvider and ProviderBase classes. Altogether, more than
a dozen members must be implemented before you can compile your custom profile provider.

However, these methods aren’t all of equal importance. For example, you can create a basic
provider that saves and retrieves profile information by implementing two or three of these methods.
Many of the other methods support functionality that’s exposed by the ProfileManager class, such as the
ability to delete profiles or find inactive profiles.

In the following example, you’ll consider a simple profile provider that includes the core logic that’s
needed to plug into a page but doesn’t support most other parts of the Profiles API. Methods that aren’t
supported should simply throw a NotImplementedException, like this:

public override int DeleteProfiles(string[] usernames)
{
 throw new NotImplementedException("The method or operation is not implemented.");
}

All of these methods are conceptually easy to implement (all you need is some basic ADO.NET
code). However, properly coding each method requires a fairly substantial amount of code.

Table 24-6 lists the overridable properties and methods and indicates which class defines them.
Those that are implemented in the following example are marked with an asterisk. To be considered
truly complete, a provider must implement all of these members.

Table 24-6. Abstract Members for Profile Providers

Class Member Description
*ProviderBase Name A read-only property that returns the

name (set in the web.config file) for the
current provider.

*ProviderBase Initialize() Gets the configuration element from
the web.config file that initializes this
provider. Gives you the chance to read
custom settings and store the
information in member variables.

SettingsProvider ApplicationName A name (set in the web.config file) that
allows you to separate the users of
different applications that are stored in
the same database.

CHAPTER 24 ■ PROFILES

1019

Class Member Description

*SettingsProvider GetPropertyValues() Retrieves the profile information for a
single user. This method is called
automatically when a web page
accesses the Page.Profile property. This
method is provided with a list of all the
profile properties that are defined in
the application. You must return a
value for each of these properties.

*SettingsProvider SetPropertyValues() Updates the profile information for a
single user. This method is called
automatically at the end of a request
when profile information is changed.
This method is provided with a list of all
the profile properties that are defined
in the application and their current
values.

ProfileProvider DeleteProfiles() Deletes one or more user profile
records from the database.

ProfileProvider DeleteInactiveProfiles() Similar to DeleteProfiles() but looks for
profiles that haven’t been accessed
since a specific time. To support this
method, you must keep track of when
profiles are accessed or updated in your
database.

ProfileProvider GetAllProfiles() Returns information about a group of
profile records. This method must
support paging so that it returns only a
subset of the total records. Refer to the
aspnet_Profile_GetProfiles stored
procedure that aspnet_regsql creates
for a sample paging implementation.

ProfileProvider GetAllInactiveProfiles() Similar to GetAllProfiles() but looks for
profiles that haven’t been accessed
since a specific time. To support this
method, you must keep track of when
profiles are accessed or updated in your
database.

ProfileProvider FindProfilesByUserName() Retrieves profile information based on
the user name of one or more (if you
support wildcard matching) users. The
actual profile information isn’t
returned—only some standard
information such as the last activity
date is returned.

CHAPTER 24 ■ PROFILES

1020

Class Member Description

ProfileProvider FindInactiveProfilesByUserName() Similar to FindProfilesByUserName()
but looks for profiles that haven’t been
accessed since a specific time.

ProfileProvider GetNumberOfInactive Profiles() Counts the number of profiles that
haven’t been accessed since a specific
time.

* Implemented in the following example

Designing the FactoredProfileProvider
The FactoredProfileProvider stores property values in a series of fields in a database table, rather than in
a single block. This makes the values easier to use in different applications and with different queries.
Essentially, the FactoredProfileProvider unlocks the profiles table so that it’s no longer using a
proprietary schema. The only disadvantage to this approach is that it’s no longer possible to change the
profile or add information to it without modifying the schema of your database.

When implementing a custom profile provider, you need to determine how generic you want your
solution to be. For example, if you decide to implement compression using the classes in the
System.IO.Compression namespace (see Chapter 12) or encryption with the classes in the
System.Security.Cryptography namespace (see Chapter 25), you’ll also need to decide whether you want
to create an all-purpose solution or a more limited provider that’s fine-tuned for your specific scenario.

Similarly, the FactoredProfileProvider has two possible designs:

• You can create a provider that’s designed specifically for your database schema.

• You can create a generic provider that can work with any database table by
making certain assumptions. For example, you can simply assume that profile
properties match field names.

The first approach is the most straightforward and in some cases will be the easiest to secure and
optimize. However, it also limits your ability to reuse your provider or change your database schema
later. The second approach is the one you’ll see in the following example.

The basic idea behind the FactoredProfileProvider is that it will perform its two key tasks (retrieving
and updating profile information) through two stored procedures. That gives you a powerful layer of
flexibility, because you can modify the stored procedures at any time to use different tables, field names,
data types, and even serialization choices.

The critical detail in this example is that the web application chooses which stored procedures to
use by using the provider declaration in the web.config file. Here’s an example of how you might use the
FactoredProfileProvider in an application:

<profile defaultProvider="FactoredProfileProvider">
 <providers >
 <clear />
 <add name="FactoredProfileProvider"
 type="FactoredProfileProvider"
 connectionStringName="SqlServices"
 updateUserProcedure="Users_Update"
 getUserProcedure="Users_GetByUserName"/>
 </providers>
 <properties>...</properties>
</profile>

CHAPTER 24 ■ PROFILES

1021

Along with the expected attributes (name, type, and connectionStringName), the <add> tag includes
two new attributes: updateUserProcedure and getUserProcedure. The updateUserProcedure indicates
the name of the stored procedure that’s used to insert and update profile information. The
getUserProcedure indicates the name of the stored procedure that’s used to retrieve profile information.

This design allows you to use the FactoredProfileProvider with any database table. But what about
mapping the properties to the appropriate columns? You could take a variety of approaches to make this
possible, but the FactoredProfileProvider takes a convenient shortcut. When updating, it simply assumes
that every profile property you define corresponds to the name of a stored procedure parameter. So, if
you define the following properties:

<properties>
 <add name="FirstName"/>
 <add name="LastName"/>
</properties>

the FactoredProfileProvider will call the update stored procedure you’ve specified and pass the value in
for parameters named @FirstName and @LastName. When querying profile information, the
FactoredProfileProvider will look for the field names FirstName and LastName.

This is similar to the design used by the SqlDataSource and ObjectDataSource controls. Although it
forces you to follow certain conventions in your two stored procedures, it imposes no other restrictions
on the rest of your database. For example, the update stored procedure can insert the information into
any series of fields in any table, and the stored procedure used to query profile information can use
aliases or joins to construct the expected table.

Coding the FactoredProfileProvider
The first step of creating the FactoredProfileProvider is to derive the class from ProfileProvider:

public class FactoredProfileProvider : ProfileProvider
{ ... }

All the methods that aren’t implemented in this example (see Table 24-6) are simply filled with a
single line of code that throws an exception.

■ Tip One quick way to fill all the methods with exception-throwing logic is to right-click ProfileProvider in the

class declaration and choose Refactor ➤ Implement Abstract Class.

Initialization
The FactoredProfileProvider needs to keep track of a few basic details, such as the provider name, the
connection string, and the two stored procedures. These details are all exposed through read-only
properties, as shown here:

private string name;
public override string Name
{
 get { return name; }
}

CHAPTER 24 ■ PROFILES

1022

private string connectionString;
public string ConnectionString
{
 get { return connectionString; }
}

private string updateProcedure;
public string UpdateUserProcedure
{
 get { return updateProcedure; }
}

private string getProcedure;
public string GetUserProcedure
{
 get { return getProcedure; }
}

To set these details, you need to override the Initialize() method. At this point, you receive a
collection that contains all the attributes of the <add> element that registered the provider. If any of the
necessary details are absent, you should raise an exception. The following code demonstrates this (and
assumes you’ve imported the System.Collections.Specialized namespace).

public override void Initialize(string name, NameValueCollection config)
{
 this.name = name;

 // Initialize values from web.config.
 ConnectionStringSettings connectionStringSettings =
 ConfigurationManager.ConnectionStrings[config["connectionStringName"]];
 if (connectionStringSettings == null ||
 connectionStringSettings.ConnectionString.Trim() == "")
 {
 throw new HttpException("You must supply a connection string.");
 }
 else
 {
 connectionString = connectionStringSettings.ConnectionString;
 }

 updateProcedure = config["updateUserProcedure"];
 if (updateProcedure.Trim() == "")
 {
 throw new HttpException(
 "You must specify a stored procedure to use for updates.");
 }

 getProcedure = config["getUserProcedure"];
 if (getProcedure.Trim() == "")
 {
 throw new HttpException(
 "You must specify a stored procedure to use for retrieving user records.");
 }
}

CHAPTER 24 ■ PROFILES

1023

Reading Profile Information
When the web page accesses any profile information, ASP.NET calls the GetPropertyValues() method. It
passes in two parameters—a SettingsContext object that includes the current user name and a
SettingsPropertyCollection object that contains a collection of all the profile properties that the
application has defined (and expects to be able to access). You need to return a
SettingsPropertyValueCollection with the corresponding values.

Before doing anything, you should create a new SettingsPropertyValueCollection:

public override SettingsPropertyValueCollection GetPropertyValues(
 SettingsContext context, SettingsPropertyCollection properties)
{
 // This collection will store the retrieved values.
 SettingsPropertyValueCollection values = new SettingsPropertyValueCollection();
 ...

Now create the ADO.NET objects that you need in order to execute the stored procedure that
retrieves the profile information. The connection string and stored procedure name are specified
through the configuration attributes that were retrieved in the Initialize() method.

 ...
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand(getProcedure, con);
 cmd.CommandType = CommandType.StoredProcedure;
 ...

The only nonconfigurable assumption in this code is that the stored procedure accepts a parameter
named @UserName. You could add other configuration attributes to make this parameter name
configurable.

 ...
 cmd.Parameters.Add(new SqlParameter("@UserName", (string)context["UserName"]));
 ...

This code retrieves the current user name from the SettingsContext dictionary that’s passed as an
argument to the GetPropertyValues() method. The SettingsContext object includes two pieces of
information—a Boolean flag that indicates if the user was authenticated (indexed under the name
IsAuthenticated) and the user name of the currently authenticated user (indexed under the name
UserName).

Now you’re ready to execute the command and retrieve the matching record. Depending on the
design of the database, this record may actually represent the joining of two tables (one with a list of
users and one with profile information), or all the information may come from a single table.

 ...
 try
 {
 con.Open();
 SqlDataReader reader = cmd.ExecuteReader(CommandBehavior.SingleRow);

 // Get the first row.
 reader.Read();
 ...

CHAPTER 24 ■ PROFILES

1024

Once you have the row, the next task is to loop through the SettingsPropertyCollection. For each
defined property, you should retrieve the value from the corresponding field. However, it’s perfectly
valid for a user to exist without any profile information. In this case (when reader.HasRows is false), you
should still create the SettingsPropertyValue objects for each requested property, but don’t bother
setting the property values. They’ll simply keep their defaults.

 ...
 foreach (SettingsProperty property in properties)
 {
 SettingsPropertyValue value = new SettingsPropertyValue(property);

 if (reader.HasRows)
 {
 value.PropertyValue = reader[property.Name];
 }
 values.Add(value);
 }
 ...

The final step is to close the reader and connection and to return the collection of values.

 ...
 reader.Close();
 }
 finally
 {
 con.Close();
 }
 return values;
}

■ Note If you want to mimic the behavior of the SqlProfileProvider, you should also update the database with the

last activity time whenever the GetPropertyValues() method is called.

Updating Profile Information
The job of updating profile properties in SetPropertyValues() is just as straightforward as reading
property values. This time, the update stored procedure is used, and every supplied value is translated
into a parameter with the same name.

Here’s the complete code:

public override void SetPropertyValues(SettingsContext context,
 SettingsPropertyValueCollection values)
{
 // Prepare the command.
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand(updateProcedure, con);
 cmd.CommandType = CommandType.StoredProcedure;

CHAPTER 24 ■ PROFILES

1025

 // Add the parameters.
 // The assumption is that every property maps exactly
 // to a single stored procedure parameter name.
 foreach (SettingsPropertyValue value in values)
 {
 cmd.Parameters.Add(new SqlParameter(value.Name, value.PropertyValue));
 }
 // Again, this provider assumes the stored procedure accepts a parameter named
 // @UserName.
 cmd.Parameters.Add(new SqlParameter("@UserName", (string)context["UserName"]));

 // Execute the command.
 try
 {
 con.Open();
 cmd.ExecuteNonQuery();
 }
 finally
 {
 con.Close();
 }
}

This completes the code you need for the simple implementation of the FactoredProfileProvider.

■ Note If you want to mimic the behavior of the SqlProfileProvider, you should also update the database with the

last update time whenever the SetPropertyValues() method is called.

Testing the FactoredProfileProvider
To try this example, you need to create, at a bare minimum, a database with a Users table and the two
stored procedures. The following example demonstrates an example with a Users table that provides
address information (see Figure 24-6).

Figure 24-6. A custom Users table

CHAPTER 24 ■ PROFILES

1026

A straightforward procedure named Users_GetByUserName queries the profile information from
the table:

CREATE PROCEDURE Users_GetByUserName
 @UserName varchar(50)
AS
 SELECT * FROM Users WHERE UserName = @UserName

The Users_Update stored procedure is a little more interesting. It begins by checking for the
existence of the specified user. If the user doesn’t exist, a record is created with the profile information. If
the user does exist, that record is updated. This design meshes with the behavior of the
SqlProfileProvider.

■ Note Remember, all profile providers assume the user has already been authenticated. If you’re using the same
table to store user authentication information and profile information, an unauthenticated user must have a record

in this table. However, this isn’t the case if you use separate tables or Windows authentication.

Here’s the complete code for the Users_Update stored procedure:

CREATE PROCEDURE [Users_Update]
 (@UserName [varchar](50),
 @AddressName [varchar](50),
 @AddressStreet [varchar](50),
 @AddressCity [varchar](50),
 @AddressState [varchar](50),
 @AddressZipCode [varchar](50),
 @AddressCountry [varchar](50))
AS
 DECLARE @Match int
 SELECT @Match = COUNT(*) FROM Users
 WHERE UserName = @UserName

 IF (@Match = 0)
 INSERT INTO Users
 (UserName, AddressName, AddressStreet, AddressCity,
 AddressState, AddressZipCode, AddressCountry)
 VALUES
 (@UserName, @AddressName, @AddressStreet, @AddressCity,
 @AddressState, @AddressZipCode, @AddressCountry)

 IF (@Match = 1)
 UPDATE Users SET
 [UserName] = @UserName,
 [AddressName] = @AddressName,
 [AddressStreet] = @AddressStreet,
 [AddressCity] = @AddressCity,
 [AddressState] = @AddressState,
 [AddressZipCode] = @AddressZipCode,

CHAPTER 24 ■ PROFILES

1027

 [AddressCountry] = @AddressCountry
 WHERE
 (UserName = @UserName)

■ Note You can download a script to create this table and the corresponding stored procedures with the sample

code for this chapter.

To use this table, you simply need to configure the FactoredProfileProvider, identify the stored
procedures you’re using, and define all the fields of the Users table that you need to access. Here are the
complete web.config configuration details:

<profile defaultProvider="FactoredProfileProvider">
 <providers >
 <clear />
 <add name="FactoredProfileProvider"
 type="FactoredProfileProvider"
 connectionStringName="ProfileService"
 updateUserProcedure="Users_Update"
 getUserProcedure="Users_GetByUserName"/>
 </providers>
 <properties>
 <add name="AddressName"/>
 <add name="AddressStreet"/>
 <add name="AddressCity"/>
 <add name="AddressState"/>
 <add name="AddressZipCode"/>
 <add name="AddressCountry"/>
 </properties>
</profile>

It assumes you’ve added a connection string named ProfileServer to the <connectionStrings>
section of your web.config file:

<connectionStrings>
 <add name="ProfileService" connectionString=
"Data Source=localhost;Integrated Security=SSPI;Initial Catalog=CustomProfiles;" />
</connectionStrings>

From this point, you can access the profile details exactly as you would with the SqlProfile- Provider.
For example, here’s the code you need to copy the information in a series of text boxes into the profile
record:

protected void cmdSave_Click(object sender, EventArgs e)
{
 Profile.AddressName = txtName.Text;
 Profile.AddressStreet = txtStreet.Text;
 Profile.AddressCity = txtCity.Text;
 Profile.AddressZipCode = txtZip.Text;

CHAPTER 24 ■ PROFILES

1028

 Profile.AddressState = txtState.Text;
 Profile.AddressCountry = txtCountry.Text;
}

And here’s the code that reads the current values in the text boxes and applies them to the profile,
completing the test page:

protected void cmdGet_Click(object sender, EventArgs e)
{
 txtName.Text = Profile.AddressName;
 txtStreet.Text = Profile.AddressStreet;
 txtCity.Text = Profile.AddressCity;
 txtZip.Text = Profile.AddressZipCode;
 txtState.Text = Profile.AddressState;
 txtCountry.Text = Profile.AddressCountry;
}

Figure 24-7 shows the test page.

Figure 24-7. Testing a custom profile provider

Summary
In this chapter, you took a detailed look at the profiles feature. You considered how it works behind the
scenes, when it makes the most sense, and how to configure its behavior.
The final part of this chapter explored how to create a simple profile provider of your own. Using these
techniques, you can overcome many of the limitations of the profiles feature (such as the way it
serializes all information into a single, opaque field). The ultimate decision of whether to use profiles or
a custom database component still depends on several factors, but with this ability profiles become a
valid alternative.

C H A P T E R 25

■ ■ ■

1029

Cryptography

In Chapters 19–23, you learned how to identify users through several supported authentication
mechanisms and how to implement authorization for those users in your applications. ASP.NET
supports rich services, such as the membership and roles APIs, that help you implement this
functionality. However, although authentication and authorization are two important factors for
securing applications, you have to keep much more in mind. Therefore, .NET has a bit more
functionality in store. One of the most important examples is .NET’s support for cryptography—the
science of scrambling data to ensure confidentiality and adding hash codes to detect tampering.

.NET includes the rich CryptoAPI for a wide range of cryptographic tasks, such as creating hashes of
different types (MD5, SHA1, and so on) and implementing the most important symmetric and
asymmetric encryption algorithms. And if that’s not enough, the .NET Framework ships with separate
functions for protecting secrets on the local machine or on a per-user basis through a completely
managed wrapper for the Windows data protection API (DPAPI). In this chapter, you’ll learn when to use
these APIs and how to use them correctly.

Encrypting Data: Confidentiality Matters
In Chapter 20, you learned how to use hashing to protect passwords using methods of the
FormsAuthentication class. With hashing, you store a digital fingerprint of the original data, not the data
itself. As a result, you have no way to reverse the hashing process to retrieve the original data. All you can
do is hash new data and perform a comparison.

The hashing approach is the most secure practice for validating passwords. However, it’s not much
help when you want to protect sensitive data that you need to decrypt later. For example, if you’re
creating an e-commerce application, you probably want to store a user’s credit card information so it
can be reused in later orders. In this scenario, your application needs to be able to retrieve the credit
card details on its own. Hashing doesn’t give you what you really need.

Often developers deal with this situation by storing sensitive data in clear text. They assume that
because the data is kept in a secure server-side storage location, they don’t need to go to the additional
work of encrypting it. However, security experts know this is not true. Without encryption, a malicious
user needs to gain access to the server for only a matter of minutes or even seconds to retrieve
passwords or credit card numbers for every customer. Security breaches can occur because of poor
administrative policies, weak administrator passwords, or other exploitable software on the server.
Problems can even occur because of hardware maintenance; in fact, dozens of companies have reported
selling or discarding old server hard drives without properly erasing the sensitive customer data they
contained. Finally, many organizations have a privacy policy that explicitly pledges to keep customer
information confidential and encrypted at all times. If a security breach occurs and the company is
forced to notify users that their data is at risk because it wasn’t properly encrypted, the company can
face significant embarrassment and loss of trust. To avoid these problems and ensure that data is safe,
you need to encrypt sensitive information stored by your application.

CHAPTER 25 ■ CRYPTOGRAPHY

1030

The .NET Cryptography Namespace
In the System.Security.Cryptography namespace, you can find the necessary classes for encrypting and
decrypting information in your application. Furthermore, you find all the fundamental classes for
creating different types of hashes in this namespace. If you then reference the additional assembly
System.Security.dll, you have access to even more advanced security functionality such as an API for
modifying Windows ACLs (the System.Security.AccessControl namespace), the DPAPI, and classes for
creating key-hashed message authentication codes (HMAC). Table 25-1 shows the categories of classes.

Table 25-1. Categories of Security Classes in the System.Security.Cryptography Namespace

Category Description
Encryption algorithms The namespace includes the most important hashing and encryption

algorithms and classes for creating digital signatures. You will learn more
about the details of these classes in the section “Understanding the .NET
Cryptography Classes.”

Helper classes If you need to create true cryptographic random numbers, you will find
helper classes in the System.Security.Cryptography namespace. The
helper classes are for interacting with the underlying Windows
cryptography system (the CryptoAPI).

X509 certificates In the namespace System.Security.Cryptography.X509Certificates, you
will find all the necessary classes for working with X509 certificates and
classes for accessing the Windows certificate store.

XML signature and
encryption

You can find complete support of the XML signature and encryption
standards in the System.Security.Cryptography.Xml namespace. The
classes in this namespace are used for encrypting and signing XML
documents according to the standards published by the W3C.

CMS/PKCS#7 The framework has managed support for creating CMS/PKCS-enveloped
messages directly without unmanaged calls. (CMS stands for
Cryptographic Message Syntax, and PKCS stands for Public-Key
Cryptography Standard.)

In the world of the Web, X509 certificates play an important role. They establish SSL

communications and perform certificate authentication to secure traffic between the web server and its
clients. An X509 certificate is a binary standard for encapsulating keys for asymmetric encryption
algorithms together with a signature of a special organization that has issued the certificate (usually such
organizations are called certificate authorities).

For simple SSL connections, you don’t need access to the certificate store, but if you want to call
web services or web applications in your code hosted on a different server that requires you to
authenticate with an X509 certificate, your application has to read the certificate from the Windows
certificate store and then add the certificate to the web request (or the web service proxy) before actually
sending the request. For this purpose, the System.Security.Cryptography.X509Certificates namespace
includes several classes you can use, as follows:

• X509Certificate and X509Certificate2: These classes encapsulate X509 certificates.
They allow you to load certificates from various stores such as the file system and
give you access to the properties of a certificate. The X509Certificate class is the
one provided originally with the very first versions of the .NET Framework. The
X509Certificate2 is an extension to the X509Certificate class and includes a
number of additional methods and properties.

CHAPTER 25 ■ CRYPTOGRAPHY

1031

• X509Store: This class gives you access to the Windows certificate storage, which is
a special storage area where Windows stores all certificates. For every user,
Windows creates such a store (accessible through StoreLocation.CurrentUser),
and for the machine it manages exactly one store (StoreLocation.LocalMachine).
User storages are accessible only for the users they are created for, while
the machine store stores certificates that are accessible for all users working
with a machine.

• X509CertificateCollection: This is a simple class representing a collection of
X509Certificate and X509Certificate2 instances that represent single certificates.
The X509Store allows you to retrieve either a list of certificates or single certificates
based on one of their unique identifiers (such as the certificate’s subject key,
subject name, or hash).

You can read a certificate from the store and assign it to a web request in your application, as
follows:

X509Certificate2 Certificate = null;

// Read the certificate from the store
X509Store store = new X509Store(StoreName.My, StoreLocation.LocalMachine);
store.Open(OpenFlags.ReadOnly);
try
{
 // Try to find the certificate
 // based on its common name
 X509Certificate2Collection Results =
 store.Certificates.Find(
 X509FindType.FindBySubjectDistinguishedName,
 "CN=Mario, CN=Szpuszta", false);

 if (Results.Count == 0)
 throw new Exception("Unable to find certificate!");
 else
 Certificate = Results[0];
}
finally
{
 store.Close();
}

This code opens the personal certificate store of the local machine by using the X509Store class. It
then tries to find a certificate with the subject name "CN=Mario, CN=Szpuszta" in this store. The syntax
used here is the common name syntax that you probably know from LDAP directory systems as well.

Windows supports several types of certificate stores that are called store locations. The local
machine store, for example, is accessible to all applications running on the local machine with the
appropriate permissions. You can create a separate store for each Windows service of a machine, and
every user has a separate certificate store. Certificates are stored securely in those stores. While the local
machine store is encrypted with a key managed by the local security authority of the machine, the user
store is encrypted with a key stored in the user’s profile. Within a store location, Windows differentiates
between stores used for different purposes. The most important stores are the Personal (“my”) store and
the Trusted Root Certification Authorities. Usually, the “my” store contains all the certificates used by
applications (and users if it’s a user store), while the Trusted Root Certification Authorities store contains
certificates of authorities issuing certificates. VeriSign is an example of a well-known authority from

CHAPTER 25 ■ CRYPTOGRAPHY

1032

which you can buy certificates. If you place a certificate into the Trusted Root Certification Authorities
store, you indicate that any certificates issued by this authority are trusted by the system and therefore
can be used by any application without any fear. Other certificates by default are not trusted and
therefore marked with a special flag. Of course, you should use only valid certificates issued by a trusted
authority for critical operations such as authenticating or setting up SSL on the server, because any other
certificate could lead to a potential security risk.

In ASP.NET web applications, you have to use either the local machine store or a service account’s
store (which is nothing more than the user store of the service account under which a Windows service is
executed). Therefore, the code introduced previously opens the store with the flag
StoreLocation.LocalMachine. The second possible flag for this option is StoreLocation.CurrentUser,
which opens a current user’s or service account’s store. Because the certificate is a “usage” certificate,
you will read it from the personal store. You can view the certificates of a store by opening a Microsoft
Management Console and then adding the Certificates snap-in, as shown in Figure 25-1.You can open
this console by starting the management console (mmc.exe) and then selecting File ➤ Add/Remove
Snap In. In the dialog box that appears after selecting this menu entry, you select the Certificates snap-in
from the list of available snap-ins and add it to the selected snap-ins list. When doing so, you have to
select the store you want to display in the snap-in. Afterward, you can close the dialog, and the
certificates snap-in displaying all stores and certificates in these stores for the selected account appears
in the management console. You can create test certificates through the makecert.exe command. For
example, the following command creates a certificate in the personal store of the local machine:

makecert -ss my -sr LocalMachine -n "CN=Mario, CN=Szpuszta"

As soon as you have the certificate from the store in place, you can use it when sending requests
through SSL to a server that requires certificate authentication, as follows:

// Now create the web request
HttpWebRequest Request = (HttpWebRequest)WebRequest.Create(url);
Request.ClientCertificates.Add(Certificate);
HttpWebResponse Response = (HttpWebResponse)Request.GetResponse();
// ...

For the preceding code, you need to import the System.Net namespace in your code file. Useful
cases where this code makes sense are, for example, use cases where your application needs to retrieve
data from another web application or send data to another web application using HTTP GET/POST
requests and the other web application requires authentication through certificates.

Another useful example of security is a class for generating cryptographically strong random
numbers. This class is important for generating random key values or salt values when you want to store
salted password hashes. A salted password hash is a hash created from a password and a so-called salt. A
salt is a random value. This ensures that even if two users select the same passwords, the results stored
in the back-end store will look different, because the random salt value is hashed with the password. It
also requires you to store the salt value in a separate field together with the password, because you will
need it for password validation. You will learn more about salted hash values when creating a custom
membership provider in Chapter 26. For now, this shows how you can create random number values
with the System.Security.Cryptography.RandomNumberGenerator class:

byte[] RandomValue = new byte[16];
RandomNumberGenerator RndGen = RandomNumberGenerator.Create();
RndGen.GetBytes(RandomValue);
ResultLabel.Text = Convert.ToBase64String(RandomValue);

For more information about the random number generator, refer to the Cryptographic Service
Provider documentation of Windows, because this class is just a wrapper around the native
implementation (http://msdn2.microsoft.com/en-us/library/aa380245.aspx).

http://msdn2.microsoft.com/en-us/library/aa380245.aspx

CHAPTER 25 ■ CRYPTOGRAPHY

1033

Figure 25-1. The Windows Certificates snap-in

Understanding the .NET Cryptography Classes
Before you can perform cryptography in .NET, you need to understand a little more about the
underlying plumbing. The .NET encryption classes are divided into three layers. The first layer is a set of
abstract base classes; these classes represent an encryption task. These include the following:

• AsymmetricAlgorithm: This class represents asymmetric encryption, which uses a
public/private key pair. Data encrypted with one key can be decrypted only with
the other key.

• SymmetricAlgorithm: This class represents symmetric encryption, which uses a
shared secret value. Data encrypted with the key can be decrypted using only the
same key.

CHAPTER 25 ■ CRYPTOGRAPHY

1034

• HashAlgorithm: This class represents hash generation and verification. Hashes
are also known as one-way encryption algorithms, because you can only encrypt
but not decrypt data. You can use hashes to ensure that data is not tampered with.

The second level includes classes that represent a specific encryption algorithm. They derive from
the encryption base classes, but they are also abstract classes. For example, the DES algorithm class,
which represents the DES (Data Encryption Standard) algorithm, derives from SymmetricAlgorithm.

The third level of classes is a set of encryption implementations. Each implementation class derives
from an algorithm class. This means a specific encryption algorithm such as DES could have multiple
implementation classes. Although some .NET Framework encryption classes are implemented entirely
in managed code, most are actually thin wrappers over the CryptoAPI library. The classes that wrap the
CryptoAPI functions have CryptoServiceProvider in their name (for example,
DESCryptoServiceProvider), while the managed classes typically have Managed in their name (for
example, RijndaelManaged). Essentially, the managed classes perform all their work in the .NET world
under the supervision of the CLR, while the unmanaged classes use calls to the unmanaged CryptoAPI
library. This might seem like a limitation, but it’s actually an efficient reuse of existing technology.

The CryptoAPI has never been faulted for its technology, just for its awkward programming
interface. Figure 25-2 shows the classes in the System.Security.Cryptography namespace. This three-
layer organization allows almost unlimited extensibility. You can create a new implementation for an
existing cryptography class by deriving from an existing algorithm class. For example, you could create a
class that implements the DES algorithm entirely in managed code by creating a new DESManaged class
and inheriting from DESCryptoServiceProvider. Similarly, you can add support for a new encryption
algorithm by adding an abstract algorithm class (for example, the CAST128 algorithm, which is similar to
the DES algorithm but is not provided in the framework) and a concrete implementation class (such as,
for example, CAST128Managed if you want to implement the CAST128 algorithm).

■ Note The encryption classes are one of the few examples in the .NET class library where the standard naming
and case rules are not followed. For example, you’ll find classes such as TripleDES and RSA rather than TripleDes

and Rsa.

Figure 25-2. The cryptographic class hierarchy

CHAPTER 25 ■ CRYPTOGRAPHY

1035

Symmetric Encryption Algorithms
As mentioned in the previous section, the .NET Framework supports three types of encryption:
symmetric, asymmetric, and one-way encryption (hashes). Symmetric algorithms always use the same
key for encryption and decryption. Symmetric algorithms are fast for encryption and decryption. Table
25-2 lists the most important symmetric algorithms supported by the .NET Framework.

Table 25-2. Symmetric Algorithms Supported by .NET

 Abstract Algorithm Default Implementation Valid Key Size
Maximum
Key Size

DES DES DESCryptoServiceProvider 64 64

TripleDES TripleDES TripleDESCryptoServiceProvider 128, 192 192

RC2 RC2 RC2CryptoServiceProvider 40-128 128

Rijndael Rijndael RijndaelManaged 128, 192, 256 256

The strength of the encryption corresponds to the length of the key. Keep in mind that the greater

the key size, the harder it is for a brute-force attack to succeed, because there are far more possible key
values to test. Of course, greater symmetric key sizes also lead to larger messages and slower encryption
times. For most purposes, a good standard choice is Rijndael. It offers solid performance and support for
large key sizes.

■ Note DES, TripleDES, and RC2 are all implemented using the CryptoAPI and thus need the high encryption pack
on Windows 2000. Note also that the key length for DES and TripleDES includes parity bits that don’t contribute to
the strength of the encryption. TripleDES with a 192-bit key uses only 168 bits, while a 128-bit key uses 112 bits.

In DES, the 64-bit key uses only 56 bits. For that reason, it’s considered fairly weak, and you should use other key
algorithms instead. For additional information about the relative strengths of these algorithms, consult a dedicated
book or Internet resource about encryption theory, such as Bruce Schneier’s Applied Cryptography: Protocols,

Algorithms, and Source Code in C, Second Edition (Wiley, 1995).

As mentioned, the big advantage of symmetric algorithms is performance. Conversely, the major
problems with symmetric algorithms are as follows:

Key exchange: If you are using symmetric algorithms to exchange data between two applications
hosted by different parties, you have to exchange the key in a secure way.

Brute-force attacks: If you use the symmetric key for a longer period of time, attackers might have
enough time to decrypt traffic by just trying any valid combination of bits in a key. Therefore, with
an increasing bit size, the strength of the key increases, as explained previously. But generally this
means you should use a different key in regular intervals anyway.

CHAPTER 25 ■ CRYPTOGRAPHY

1036

Long-term key management: If you have to update keys in regular intervals, you have to exchange
them in regular intervals, which might lead to additional security risks. Furthermore, you have to
store the key in a secure place.

Symmetric algorithms are not enough for secure systems, and that’s why asymmetric algorithms

exist.

Asymmetric Encryption
Asymmetric algorithms try to solve some of the problems of symmetric algorithms. They are based on
mathematical methods that require different keys for encryption and decryption. Usually the key used
for encryption is called a public key. You can give this key to anyone who wants to send encrypted
information to you. On the other hand, the private key is the only key that can be used for decryption.
Therefore, if you are the only one with access to the private key, you are the only person who is able to
decrypt the information. This fact makes key exchange between parties definitely easier, because you
don’t need to transmit the key that can decrypt sensitive data. Table 25-3 lists the asymmetric algorithms
supported by the .NET Framework.

Table 25-3. Asymmetric Algorithms Supported by .NET

Abstract
Algorithm Default Implementation Valid Key Size

Default
Key Size

RSA RSA RSACryptoServiceProvider 384-16384 (8-bit increments) 1024

DSA DSA DSACryptoServiceProvider 512-1024 (64-bit increments) 1024

When you use RSA (its name comes from the inventors of the algorithm—Ron Rivest, Adi Shamir,

and Leonard Adleman) and DSA (Digital Signature Algorithm), you will recognize that only RSA supports
the direct encryption and decryption of values. The DSA algorithm—as its name Digital Signature
Algorithm implies—can be used only for signing information and verifying signatures.

The big problem is that asymmetric algorithms are much slower (depending on the size of the data
you want to encrypt) than symmetric algorithms. This will affect the performance of your application if
you need to exchange data through lots of requests. Therefore, technologies such as SSL use asymmetric
algorithms at the beginning when establishing a connection session. Through the first communication
steps, traffic between the client and the server is secured through asymmetric encryption (the client
encrypts with a public key, and the server decrypts with a private key). With these steps, the client and
the server can exchange a symmetric key securely. This symmetric key then secures traffic for any
subsequent communication through symmetric encryption. This combines the advantages of symmetric
and asymmetric encryption. You do have to find a way to securely store the private key so that
unauthorized people don’t have a chance to access it.

■ Note If you don’t store the private key on an external device such as a smart card, you create a chance of
someone gaining unauthorized access (and even the smart card is not completely secure, because you can lose
it), especially users who have administrative privileges on machines. However, you should always make your
solution as secure as possible and “raise the bar” for attackers. Therefore, any additional security mechanism
(gatekeeper) will make life for a potential attacker harder.

CHAPTER 25 ■ CRYPTOGRAPHY

1037

The Abstract Encryption Classes
The abstract encryption classes serve two purposes. First, they define the basic members that encryption
implementations need to support. Second, they provide some functionality through the static Create()
method, which you can use to indirectly create a class instance for you. This method allows you to create
one of the concrete implementation classes without needing to know how it is implemented.

For example, consider the following line of code:

DES crypt = DES.Create();

The static Create() method returns an instance of the default DES implementation class. In this
case, the class is DESCryptoServiceProvider. The advantage of this technique is that you can code
generically, without creating a dependency on a specific implementation. Best of all, if Microsoft
updates the framework and the default DES implementation class changes, your code will pick up the
change seamlessly. This is particularly useful if you are using a CryptoAPI class, which could be replaced
with a managed class equivalent in the future.

In fact, you can work at an even higher level if you want by using the static Create() method in one of
the cryptographic task classes. For example, consider this code:

SymmetricAlgorithm crypt = SymmetricAlgorithm.Create();

This creates an instance of whatever cryptography class is defined as the default symmetric
algorithm. In this case, it isn’t DES but is Rijndael. The object returned is an instance of the
RijndaelManaged implementation class. For more information on configuring default implementations
and configuring friendly names used with the Create() method, take a look at the document about
“Mapping Algorithm Names to Cryptography Classes” on MSDN at http://msdn2.microsoft.com/en-
us/library/693aff9y.aspx.

■ Tip It is good practice to code generically using the abstract algorithm classes. This allows you to know which
type of algorithm you are using (and any limitations it may have) without worrying about the underlying

implementation.

Note that most of the algorithm classes support a GenerateKey() method as well, in addition to
methods for encrypting and decrypting data with an algorithm. This method generates a random key
that adheres to the key requirements of the corresponding algorithm. The key is generated on strong
cryptographic random number generators that are part of the Windows platform so that the value is
really unpredictable and random.

The ICryptoTransform Interface
.NET uses a stream-based architecture for encryption and decryption, which makes it easy to encrypt
and decrypt different types of data from different types of sources. This architecture also makes it easy to
perform multiple cryptographic operations in succession, on the fly, independent of the low-level details
of the actual cryptography algorithm you’re using (such as the block size).

To understand how all this works, you need to consider the core types—the ICryptoTransform
interface and the CryptoStream class. The ICryptoTransform interface represents blockwise
cryptographic transformation. This could be an encryption, decryption, hashing, Base64
encoding/decoding, or formatting operation. To create an ICryptoTransform object for a given

http://msdn2.microsoft.com/en-us/library/693aff9y.aspx
http://msdn2.microsoft.com/en-us/library/693aff9y.aspx
http://msdn2.microsoft.com/en-us/library/693aff9y.aspx

CHAPTER 25 ■ CRYPTOGRAPHY

1038

algorithm, you use the CreateEncryptor() and CreateDecryptor() methods on the cryptography
algorithm class instance (such as an instance of DES or any other algorithm you have created earlier).

Use the CreateEncryptor() method if you want to encrypt data, and use the CreateDecryptor()
method if you want to decrypt data. Here’s a code snippet that creates an ICryptoTransform for
encrypting with the DES algorithm:

DES crypt = DES.Create();
ICryptoTransform transform = crypt.CreateEncryptor();

Various cryptographic tasks execute in the same way, even though the actual cryptographic function
performing the transformation may be different. Every cryptographic operation requires that data be
subdivided into blocks of a fixed size before it can be processed. You can use an ICryptoTransform
instance directly, but in most cases you’ll take an easier approach and simply pass it to another class: the
CryptoStream.

The CryptoStream Class
The CryptoStream wraps an ordinary stream and uses an ICryptoTransform to perform its work behind
the scenes. The key advantage is that the CryptoStream uses buffered access, thereby allowing you to
perform automatic encryption without worrying about the block size required by the algorithm. The
other advantage of the CryptoStream is that, because it wraps an ordinary .NET stream-derived class, it
can easily “piggyback” on another operation, such as file access (through a FileStream), memory access
(through a MemoryStream), a low-level network call (through a NetworkStream), and so on.

To create a CryptoStream, you need three pieces of information: the underlying stream, the mode
(read or write), and the ICryptoTransform you want to use. For example, the following code snippet
creates an ICryptoTransform using the DES algorithm implementation class and then uses it with an
existing stream to create a CryptoStream:

DES crypt = DES.Create();
ICryptoTransform transform = crypt.CreateEncryptor();
CryptoStream cs = new CryptoStream(fileStream, transform,
 CryptoStreamMode.Write);

// (Now you can use cs to write encrypted information to the file.)

Note that the CryptoStream can be in one of two modes: read mode or write mode, as defined by the
CryptoStreamMode enumeration. In read mode, the transformation is performed as it is retrieved from
the underlying stream (as shown in Figure 25-3).

Figure 25-3. Reading and decrypting data

CHAPTER 25 ■ CRYPTOGRAPHY

1039

In write mode, the transformation is performed before the data is written to the underlying stream
(as shown in Figure 25-4).

Figure 25-4. Writing and encrypting data

You cannot combine both modes to make a readable and writable CryptoStream (which would have
no meaning anyway). Similarly, the Seek() method and the Position property of the CryptoStream class,
which are used to move to different positions in a stream, are not supported for the CryptoStream and
will throw a NotSupportedException if called. However, you can often use these members with the
underlying stream.

Encrypting Sensitive Data
Now that you’ve taken an in-depth look at .NET cryptography, it’s time to put it all together. In the
following sections, you will create two utility classes that use symmetric and asymmetric algorithms. In
the section “Encrypting Sensitive Data in a Database,” you will use one of these classes to encrypt
sensitive information such as a credit card number stored in a database, and in the section “Encrypting
the Query String” you will learn how to encrypt the URL query string of an HTTP GET/POST request. You
need to perform the following steps to encrypt and decrypt sensitive information; we will cover these
steps in this and the subsequent sections:

1. Choose and create an algorithm.

2. Generate and store the secret key.

3. Encrypt or decrypt information through a CryptoStream.

4. Close the source and target streams appropriately.

After you have created and tested your encryption utility classes, you will prepare a database to
store secret information and then write the code for encrypting and decrypting this secret information in
the database.

Managing Secrets
Before you learn the details of using the encryption classes, you have to think about one additional
thing: where do you store the key? The key used for encryption and decryption is a secret, so it must be
stored securely. Often developers think the best way to store such a key is in source code. However,
storing secrets in source code is one of the biggest mistakes you can make in your application. Imagine
that you have the following code in the code of a class library that will be compiled into a binary DLL:

CHAPTER 25 ■ CRYPTOGRAPHY

1040

public static class MyEncryptionUtility
{
 // Shhh!!! Don't tell anybody!
 private const string MyKey = "m$%&kljasldk$%/65asjdl";

 public static byte[] Encrypt(string data)
 {
 // Use "MyKey" to encrypt data
 return null;
 }
}

Keys such as this can easily be revealed through disassembling tools. You just need to open ILDASM
and analyze your class. Of course, you definitely will be able to find this secret, as shown in Figure 25-5.

Figure 25-5. ILDASM with the previous class and the secret

If you think this is a problem in the managed world only, try something similar with an unmanaged
C++ application. Create a class, and include the secret as a constant value in your application. Because
constant values are stored in a special section of native executables, perform the following steps:

1. Install the Microsoft platform SDK.

2. Open a command shell, and execute the following command:

dumpbin /all BadProtectCPlus.exe /out:test.txt

3. Open the generated file test.txt with Notepad, and scroll to the .rdata section.
Somewhere in this section you will find your hard-coded secret.

CHAPTER 25 ■ CRYPTOGRAPHY

1041

So, you definitely have to protect the key somehow. You might want to encrypt the key on its own,
but then you need another encryption key.

Windows supports a built-in mechanism for storing and protecting secrets. This mechanism uses a
machine key generated with the system installation for encrypting data. Only the local operating system
(the system’s local security authority) has access to this machine key. Of course, the machine key is unique
for every installation. Windows supports the DPAPI for protecting data with this key. You don’t have direct
access to the key when using this API; you just tell the system to encrypt or decrypt something with the
machine’s key. So, this solves the problem of key management: your application could encrypt the key
used by your application through the DPAPI. For this purpose, the .NET Framework supports the class
System.Security.Cryptography.ProtectedData, which you can use as follows:

byte[] ProtData = ProtectedData.Protect(
 ClearBytes, null, DataProtectionScope.LocalMachine);

You need to add a reference to the System.Security.dll assembly and import the
System.Security.Cryptography namespace when you want to use the ProtectedData class for protecting
sensitive information. Possible scopes are LocalMachine and CurrentUser. While the first option uses
the machine key, the second one uses a key generated for the currently logged-on user’s profile. (In the
case of Active Directory roaming profiles that allow reusing a Windows user profile on several Windows
machines within an Active Directory domain, this key is machine independent.) If a user is the
administrator of the machine and has the necessary know-how, he can decrypt the data by writing a
program that calls the previous function. However, this definitely “raises the bar” and makes it harder to
access the key. And if the user is not the administrator and has no permission to use the DPAPI, she
cannot decrypt data encrypted with the machine key.

■ Caution Don’t use the DPAPI to encrypt information in your database. Although it is easy to use the DPAPI with
the .NET Framework, this method has one problem: encrypted data is bound to the machine if you use the
DataProtectionScope.LocalMachine setting. Therefore, if the machine crashes and you have to restore your data

on another machine, you will lose all the encrypted information. If you use the DPAPI for encrypting the key as
described previously, you should have a backup of the key in another secure place. If you want to use the DPAPI in
web farm scenarios, you have to run your application under a domain user account and use the key created for the

user’s profile (DataProtectionScope.CurrentUser). We recommend creating a separate domain for your web farm so

that you don’t have to use a domain user of your company’s internal domain network.

Using Symmetric Algorithms
As mentioned, symmetric encryption algorithms use one key for encrypting and decrypting data. In the
next section, you will learn the details by creating a utility class that performs the encryption and
decryption of sensitive data. You can then reuse this class across several web applications. The utility
class you will create has the following structure and can be used for encrypting and decrypting string
data. (Note that based on the _ProtectKey Boolean, you will write code later that decides whether to
protect the key using the DPAPI or not by querying this Boolean value. A true value means it should
protect the key using the DPAPI, as you will see when you implement the class.)

CHAPTER 25 ■ CRYPTOGRAPHY

1042

public static class SymmetricEncryptionUtility
{
 private static bool _ProtectKey;
 private static string _AlgorithmName;

 public static string AlgorithmName
 {
 get { return _AlgorithmName; }
 set { _AlgorithmName = value; }
 }

 public static bool ProtectKey
 {
 get { return _ProtectKey; }
 set { _ProtectKey = value; }
 }

 public static void GenerateKey(string targetFile) { }
 public static void ReadKey(SymmetricAlgorithm algorithm, string file) { }
 public static byte[] EncryptData(string data, string keyFile) { }
 public static string DecryptData(byte[] data, string keyFile) { }
}

Because the class is just a utility class with static members only, you can make it a static class so that
nobody can create an instance of it. You can specify the name of the algorithm (DES, TripleDES,
RijnDael, or RC2) through the AlgorithmName property. It also supports operations for generating a new
key, reading this key from the file specified directly into the key property of an algorithm instance, and
encrypting and decrypting data. To use this class, you must set the algorithm name appropriately and
then generate a key if none exists already. Then you need to call the EncryptData and DecryptData
methods, which internally will call the ReadKey method for initializing the algorithm. The ProtectKey
property allows the user of the class to specify whether the key should be protected through the DPAPI.

You can generate encryption keys through the algorithm classes. The GenerateKey() method looks
like this:

public static void GenerateKey(string targetFile)
{
 // Create the algorithm
 SymmetricAlgorithm Algorithm = SymmetricAlgorithm.Create(AlgorithmName);
 Algorithm.GenerateKey();

 // Now get the key
 byte[] Key = Algorithm.Key;

 if (ProtectKey)
 {
 // Use DPAPI to encrypt key
 Key = ProtectedData.Protect(
 Key, null, DataProtectionScope.LocalMachine);
 }

 // Store the key in a file called key.config
 using (FileStream fs = new FileStream(targetFile, FileMode.Create))
 {

CHAPTER 25 ■ CRYPTOGRAPHY

1043

 fs.Write(Key, 0, Key.Length);
 }
}

The GenerateKey() method of the SymmetricAlgorithm class generates a new key through
cryptographically strong random number algorithms via the GenerateKey() method supplied by the
created algorithm and initializes the Key property with this new key. If the calling code has set the
ProtectKey flag of your utility class to true, your implementation encrypts the key using the DPAPI.

The ReadKey method reads the key from the file created by the GenerateKey method, as follows:

public static void ReadKey(SymmetricAlgorithm algorithm, string keyFile)
{
 byte[] Key;

 using (FileStream fs = new FileStream(keyFile, FileMode.Open))
 {
 Key = new byte[fs.Length];
 fs.Read(Key, 0, (int)fs.Length);
 }

 if (ProtectKey)
 algorithm.Key = ProtectedData.Unprotect(
 Key, null, DataProtectionScope.LocalMachine);
 else
 algorithm.Key = Key;
}

If the key was protected previously, the ReadKey method uses the DPAPI for unprotecting the
encrypted key when reading it from the file. Furthermore, ReadKey() requires you to pass in an existing
instance of a symmetric algorithm. It directly initializes the key property of the algorithm so that this key
will be used automatically for all subsequent operations. Finally, both the EncryptData() and
DecryptData() functions use the ReadKey() function.

public static byte[] EncryptData(string data, string keyFile) { }
public static string DecryptData(byte[] data, string keyFile) { }

As you can see, both methods require a keyFile parameter with the path to the file that stores the
key. They subsequently call the ReadKey method for initializing their algorithm instance with the key.
While the EncryptData method accepts a string and returns a byte array with the encrypted
representation, the DecryptData method accepts the encrypted byte array and returns the clear-text
string.

Let’s get started with the EncryptData method:

public static byte[] EncryptData(string data, string keyFile)
{
 // Convert string data to byte array
 byte[] ClearData = System.Text.Encoding.UTF8.GetBytes(data);

 // Now create the algorithm
 SymmetricAlgorithm Algorithm = SymmetricAlgorithm.Create(AlgorithmName);
 ReadKey(Algorithm, keyFile);

 // Encrypt information

CHAPTER 25 ■ CRYPTOGRAPHY

1044

 MemoryStream Target = new MemoryStream();

 // Generate a random initialization vector (IV) to use for the algorithm
 Algorithm.GenerateIV();
 Target.Write(Algorithm.IV, 0, Algorithm.IV.Length);

 // Encrypt actual data
 CryptoStream cs = new CryptoStream(Target,
 Algorithm.CreateEncryptor(), CryptoStreamMode.Write);
 cs.Write(ClearData, 0, ClearData.Length);
 cs.FlushFinalBlock();

 // Return the encrypted stream of data as a byte array
 return Target.ToArray();
}

First, the method converts the incoming clear-text string value into a byte array because all the
encryption functions of the algorithms require byte arrays as input parameters. You can use the
Encoding class of the System.Text namespace to do this easily. Next, the method creates the algorithm
according to the AlgorithmName property of the class. This value can be one of the names RC2, Rijndael,
DES, or TripleDES. The factory method of the SymmetricAlgorithm creates the appropriate instance,
while you can register additional cryptography classes through the <cryptographySettings> section in
the machine.config file. You can read more about configuring cryptography providers at
http://msdn2.microsoft.com/en-us/library/bke5we9a.aspx.

Afterward, the method creates a memory stream that will be the target of your encryption operation
in this case. Before the class starts with the encryption operation through the CryptoStream class, it
generates an initialization vector (IV) and writes the IV to the target stream on the first position. The IV
adds random data to the encrypted stream of data.

Imagine the following situation: if your application exchanges the same information multiple times
between a client and a server, simple encryption will always result in the same encrypted representation
of the information. This makes brute-force attacks easier. To add some sort of random information,
symmetric algorithms support IV. These IVs are not only added to the encrypted stream of bytes
themselves but are also used as input for encrypting the first block of data. When using the
CryptoStream for encrypting information, don’t forget to call the FlushFinalBlock method to make sure
the last block of encrypted data is written appropriately to the target.

You have to add the IV itself to the encrypted set of bytes because you need the information later to
be able to decrypt the encrypted content completely:

public static string DecryptData(byte[] data, string keyFile)
{
 // Create the algorithm
 SymmetricAlgorithm Algorithm = SymmetricAlgorithm.Create(AlgorithmName);
 ReadKey(Algorithm, keyFile);

 // Decrypt information
 MemoryStream Target = new MemoryStream();

 // Read IV and initialize the algorithm with it
 int ReadPos = 0;
 byte[] IV = new byte[Algorithm.IV.Length];
 Array.Copy(data, IV, IV.Length);
 Algorithm.IV = IV;
 ReadPos += Algorithm.IV.Length;

http://msdn2.microsoft.com/en-us/library/bke5we9a.aspx

CHAPTER 25 ■ CRYPTOGRAPHY

1045

 CryptoStream cs = new CryptoStream(Target,
 Algorithm.CreateDecryptor(), CryptoStreamMode.Write);
 cs.Write(data, ReadPos, data.Length - ReadPos);
 cs.FlushFinalBlock();

 // Get the bytes from the memory stream and convert them to text
 return Encoding.UTF8.GetString(Target.ToArray());
}

The decryption function is structured the other way around. It creates the algorithm and creates a
stream for the decrypted target information. Before you can start decrypting the data, you have to read
the IV from the encrypted stream, because it is used by the algorithm for the last transformation. You
then use the CryptoStream as you did previously, except you create a decryptor transformer this time.
Finally, you get the decrypted byte representation of the string you have created through
Encoding.UTF8.GetBytes(). To reverse this operation, you need to call the GetString() method of the
UTF-8 encoding class for getting the clear-text representation of the string.

Using the SymmetricEncryptionUtility Class
Now you can create a page for testing the class you created previously. Just create a page that allows you
to generate a key and enter clear-text data through a text box. You can output the encrypted data
through Convert.ToBase64String() easily. For decryption, you need to decode the Base64-encoded
portion back to its byte array. You do so by calling the counterpart method called
Convert.FromBase64String() to get the encrypted bytes back and pass them into the DecryptData
method.

private string KeyFileName;
private string AlgorithmName = "DES";

protected void Page_Load(object sender, EventArgs e)
{
 SymmetricEncryptionUtility.AlgorithmName = AlgorithmName;
 KeyFileName = Server.MapPath("./") + "\\symmetric_key.config";
}

protected void GenerateKeyCommand_Click(object sender, EventArgs e)
{
 SymmetricEncryptionUtility.ProtectKey = EncryptKeyCheck.Checked;
 SymmetricEncryptionUtility.GenerateKey(KeyFileName);
 Response.Write("Key generated successfully!");
}

protected void EncryptCommand_Click(object sender, EventArgs e)
{
 // Check for encryption key
 if (!File.Exists(KeyFileName))
 {
 Response.Write("Missing encryption key. Please generate key!");
 }

 byte[] data = SymmetricEncryptionUtility.EncryptData(
 ClearDataText.Text, KeyFileName);
 EncryptedDataText.Text = Convert.ToBase64String(data);

CHAPTER 25 ■ CRYPTOGRAPHY

1046

}

protected void DecryptCommand_Click(object sender, EventArgs e)
{
 // Check for encryption key
 if (!File.Exists(KeyFileName))
 {
 Response.Write("Missing encryption key. Please generate key!");
 }

 byte[] data = Convert.FromBase64String(EncryptedDataText.Text);
 ClearDataText.Text = SymmetricEncryptionUtility.DecryptData(
 data, KeyFileName);
}

The previous page uses the DES algorithm because you set the AlgorithmName of your utility class
appropriately. Within the Click event of the GenerateKeyCommand button, it calls the GenerateKey()
method. Depending on the check box of the page, it encrypts the key itself through the DPAPI or not.
After the data has been encrypted through your utility class within the Click event of the
EncryptCommand button, it converts the encrypted bytes to a Base64 string and then writes it to the
EncryptedDataText text box. Therefore, if you want to decrypt information again, you have to create a
byte array based on this Base64 string representation and then call the method for decryption. You can
see the result in Figure 25-6.

Figure 25-6. The resulting test page for symmetric algorithms

CHAPTER 25 ■ CRYPTOGRAPHY

1047

Using Asymmetric Algorithms
Using asymmetric algorithms is similar to using symmetric algorithms. You will see just a handful of
differences. The major difference has to do with key management. Symmetric algorithms just have one
key, and asymmetric algorithms have two keys: one for encrypting data (public key) and one for
decrypting data (private key). While the public key can be available to everyone who wants to encrypt
data, the private key should be available only to those decrypting information. In this section, you will
create a utility class similar to the previous one.

Because the .NET Framework ships with only one asymmetric algorithm for real data encryption
(RSA; remember, DSA is used for digital signatures only), you don’t need to include a way to select the
algorithm (for a while).

public static class AsymmetricEncryptionUtility
{
 public static string GenerateKey(string targetFile) { }
 private static void ReadKey(
 RSACryptoServiceProvider algorithm, string keyFile) { }
 public static byte[] EncryptData(string data, string publicKey) { }
 public static string DecryptData(byte[] data, string keyFile) { }

}

The GenerateKey method creates an instance of the RSA algorithm for generating the key. It stores
only the private key in the file secured through the DPAPI and returns the public key representation as
an XML string using the ToXmlString() method of the algorithm. This is a fairly realistic concept—the
private key is usually kept as a secret by the application, while the public key is shared with others to be
able to encrypt information that then is decrypted by the application using its secret private key.

public static string GenerateKey(string targetFile)
{
 RSACryptoServiceProvider Algorithm = new RSACryptoServiceProvider();

 // Save the private key
 string CompleteKey = Algorithm.ToXmlString(true);
 byte[] KeyBytes = Encoding.UTF8.GetBytes(CompleteKey);

 KeyBytes = ProtectedData.Protect(KeyBytes,
 null, DataProtectionScope.LocalMachine);

 using (FileStream fs = new FileStream(targetFile, FileMode.Create))
 {
 fs.Write(KeyBytes, 0, KeyBytes.Length);
 }

 // Return the public key
 return Algorithm.ToXmlString(false);
}

The caller of the function needs to store the public key somewhere; this is necessary for encrypting
information. You can retrieve the key as an XML representation through a method called ToXmlString().
The parameter specifies whether private key information is included (true) or not (false). Therefore, the
GenerateKey function first calls the ToXmlString() function with the true parameter to store the
complete key information in the file and then calls it with the false parameter to include the public key

CHAPTER 25 ■ CRYPTOGRAPHY

1048

only. Subsequently, the ReadKey() method just reads the key from the file and then initializes the passed
algorithm instance through FromXml(), the opposite of the ToXmlString() method:

private static void ReadKey(RSACryptoServiceProvider algorithm, string keyFile)
{
 byte[] KeyBytes;

 using(FileStream fs = new FileStream(keyFile, FileMode.Open))
 {
 KeyBytes = new byte[fs.Length];
 fs.Read(KeyBytes, 0, (int)fs.Length);
 }

 KeyBytes = ProtectedData.Unprotect(KeyBytes,
 null, DataProtectionScope.LocalMachine);

 algorithm.FromXmlString(Encoding.UTF8.GetString(KeyBytes));
}

This time the ReadKey() method is used by the decryption function only. The EncryptData()
function requires the caller to pass in the XML string representation of the public key returned by the
GenerateKey() method, because the private key is not required for encryption. Encryption and
decryption with RSA takes place as follows:

public static byte[] EncryptData(string data, string publicKey)
{
 // Create the algorithm based on the public key
 RSACryptoServiceProvider Algorithm = new RSACryptoServiceProvider();
 Algorithm.FromXmlString(publicKey);

 // Now encrypt the data
 return Algorithm.Encrypt(
 Encoding.UTF8.GetBytes(data), true);
}

public static string DecryptData(byte[] data, string keyFile)
{
 RSACryptoServiceProvider Algorithm = new RSACryptoServiceProvider();
 ReadKey(Algorithm, keyFile);

 byte[] ClearData = Algorithm.Decrypt(data, true);
 return Convert.ToString(
 Encoding.UTF8.GetString(ClearData));
}

Now you can build a test page, as shown in Figure 25-7. (You can find the source code of this page in
the book’s downloadable code in the Source Code/Download area on the Apress website at
http://www.apress.com.)

http://www.apress.com

CHAPTER 25 ■ CRYPTOGRAPHY

1049

Figure 25-7. A sample test page for asymmetric algorithms

Encrypting Sensitive Data in a Database
In this section, you will learn how to create a simple test page for encrypting information stored in a
database table. This table will be connected to a user registered in the Membership Service. We suggest
not creating a custom membership provider with custom implementations of MembershipUser that
support additional properties. As long as you stay loosely coupled with your own logic, you can use it
with multiple membership providers. In this sample, you will create a database table that stores
additional information for a MembershipUser without creating a custom provider. It just connects to the
MembershipUser through the ProviderUserKey—this means the actual primary key of the underlying
data store. Therefore, you have to create a table on your SQL Server as follows:

CREATE DATABASE ExtendedUser
GO
USE ExtendedUser
GO
CREATE TABLE ShopInfo
(
 UserId UNIQUEIDENTIFIER PRIMARY KEY,
 CreditCard VARBINARY(80),
 Street VARCHAR(80),
 ZipCode VARCHAR(6),
 City VARCHAR(60)
)

CHAPTER 25 ■ CRYPTOGRAPHY

1050

The primary key, UserId, will contain the same key as the MembershipUser for which this
information is created. That’s the only connection to the underlying Membership Service. As mentioned,
the advantage of not creating a custom provider for just these additional fields is that you can use it for
other membership providers. We suggest creating custom providers only for supporting additional types
of data stores for the Membership Service. The sensitive information is the CreditCard field, which now
is not stored as VARCHAR but as VARBINARY instead. Now you can create a page that looks like this:

<form id="form1" runat="server">
<div>
<asp:LoginView runat="server" ID="MainLoginView">
 <AnonymousTemplate>
 <asp:Login ID="MainLogin" runat="server" />
 </AnonymousTemplate>
 <LoggedInTemplate>
 Credit Card: <asp:TextBox ID="CreditCardText" runat="server" />

 Street: <asp:TextBox ID="StreetText" runat="server" />

 Zip Code: <asp:TextBox ID="ZipCodeText" runat="server" />

 City: <asp:TextBox ID="CityText" runat="server" />

 <asp:Button runat="server" ID="LoadCommand" Text="Load"
 OnClick="LoadCommand_Click" />
 <asp:Button runat="server" ID="SaveCommand" Text="Save"
 OnClick="SaveCommand_Click" />
 </LoggedInTemplate>
</asp:LoginView>
</div>
</form>

The page includes a LoginView control to display the Login control for anonymous users and
display some text fields for the information introduced with the CREATE TABLE statement. Within the
Load button’s Click event handler, you will write code for retrieving and decrypting information from
the database, and within the Save button’s Click event handler, you will obviously do the opposite.
Before doing that, though, don’t forget to configure the connection string appropriately.

<configuration>
 <connectionStrings>
 <add name="DemoSql"
 connectionString="data source=(local);
 Integrated Security=SSPI;
 initial catalog=ExtendedUser"/>
 </connectionStrings>
 <system.web>
 <authentication mode="Forms" />
 </system.web>
</configuration>

Now you should use the ASP.NET WAT to create a couple of users in your membership store. After
you have done that, you can start writing the actual code for reading and writing data to the database.
The code doesn’t include anything special. It just uses the previously created encryption utility class for
encrypting the data before updating the database and decrypting the data stored on the database.

Let’s take a look at the Page_Load method, which initializes the ADO.NET Connection instance, and
then at the update method implemented in the SaveCommand’s Click event handler first. Remember
that you leverage the previously created utility class (SymmetricEncryptionUtility), which requires you
to specify a filename for storing the protected private key. Also note that in the previous ASP.NET page

CHAPTER 25 ■ CRYPTOGRAPHY

1051

code, you used the LoginView control. This means that you have to manually find the TextBox controls
using FindControl() on the LoginView control and associate them to your own members, as shown in the
following code snippet:

// Private member of our current page representing the Connection
// to our custom database configured in the previous web.config
SqlConnection DemoDb;

// We need some TextBox controls that we find in the
// LoginView control template through FindControl() because
// they are only contained in a template of the LoginView
private TextBox CreditCardText;
private TextBox StreetText;
private TextBox ZipCodeText;
private TextBox CityText;

// Used for storing the encryption key based on the code
// introduced previously with our SymmetricEncryptionUtility class
private string EncryptionKeyFile;

protected void Page_Load(object sender, EventArgs e)
{
 // Configure Encryption Utility
 EncryptionKeyFile = Server.MapPath("key.config");
 SymmetricEncryptionUtility.AlgorithmName = "DES";
 if (!System.IO.File.Exists(EncryptionKeyFile))
 {
 SymmetricEncryptionUtility.GenerateKey(EncryptionKeyFile);
 }

 // Create the connection
 DemoDb = new SqlConnection(
 ConfigurationManager.ConnectionStrings["DemoSql"].ConnectionString);

 // Associate with Textfields
 CreditCardText = (TextBox)MainLoginView.FindControl("CreditCardText");
 StreetText = (TextBox)MainLoginView.FindControl("StreetText");
 ZipCodeText = (TextBox)MainLoginView.FindControl("ZipCodeText");
 CityText = (TextBox)MainLoginView.FindControl("CityText");
}

protected void SaveCommand_Click(object sender, EventArgs e)
{
 DemoDb.Open();

 try
 {
 string SqlText = "UPDATE ShopInfo " +
 "SET Street=@street, ZipCode=@zip, " +
 "City=@city, CreditCard=@card " +
 "WHERE UserId=@key";

 SqlCommand Cmd = new SqlCommand(SqlText, DemoDb);

 // Add simple values

CHAPTER 25 ■ CRYPTOGRAPHY

1052

 Cmd.Parameters.AddWithValue("@street", StreetText.Text);
 Cmd.Parameters.AddWithValue("@zip", ZipCodeText.Text);
 Cmd.Parameters.AddWithValue("@city", CityText.Text);
 Cmd.Parameters.AddWithValue("@key",
 Membership.GetUser().ProviderUserKey);

 // Now add the encrypted value
 byte[] EncryptedData =
 SymmetricEncryptionUtility.EncryptData(
 CreditCardText.Text, EncryptionKeyFile);
 Cmd.Parameters.AddWithValue("@card", EncryptedData);

 // Execute the command
 int results = Cmd.ExecuteNonQuery();
 if (results == 0)
 {
 Cmd.CommandText = "INSERT INTO ShopInfo VALUES" +
 "(@key, @card, @street, @zip, @city)";
 Cmd.ExecuteNonQuery();
 }
 }
 finally
 {
 DemoDb.Close();
 }
}

The two key parts of the previous code are the part that retrieves the ProviderUserKey from the
currently logged-on MembershipUser for connecting the information to a membership user and the
position where the credit card information is encrypted through the previously created encryption utility
class. Only the encrypted byte array is passed as a parameter to the SQL command. Therefore, the data is
stored encrypted in the database.

The opposite of this function, reading data, looks quite similar, as shown here:

protected void LoadCommand_Click(object sender, EventArgs e)
{
 DemoDb.Open();

 try
 {
 string SqlText = "SELECT * FROM ShopInfo WHERE UserId=@key";
 SqlCommand Cmd = new SqlCommand(SqlText, DemoDb);
 Cmd.Parameters.AddWithValue("@key",
 Membership.GetUser().ProviderUserKey);
 using (SqlDataReader Reader = Cmd.ExecuteReader())
 {
 if (Reader.Read())
 {
 // Cleartext Data
 StreetText.Text = Reader["City"].ToString();
 ZipCodeText.Text = Reader["ZipCode"].ToString();
 CityText.Text = Reader["City"].ToString();

CHAPTER 25 ■ CRYPTOGRAPHY

1053

 // Encrypted Data
 byte[] SecretCard = (byte[])Reader["CreditCard"];
 CreditCardText.Text =
 SymmetricEncryptionUtility.DecryptData(
 SecretCard, EncryptionKeyFile);
 }
 }
 }
 finally
 {
 DemoDb.Close();
 }
}

Again, the function uses the currently logged-on MembershipUser’s ProviderUserKey property for
retrieving the information. If successfully retrieved, it reads the clear-text data and then retrieves the
encrypted bytes from the database table. These bytes are then decrypted and displayed in the credit card
text box. You can see the results in Figure 25-8.

Figure 25-8. Encrypting sensitive information on the database

CHAPTER 25 ■ CRYPTOGRAPHY

1054

Encrypting the Query String
In this book, you’ve seen several examples in which ASP.NET security works behind the scenes to protect
your data. For example, in Chapter 20 you learned how ASP.NET uses encryption and hash codes to
ensure that the data in the form cookie is always protected. You have also learned how you can use the
same tools to protect view state. Unfortunately, ASP.NET doesn’t provide a similar way to enable
automatic encryption for the query string (which is the extra bit of information you add to URLs to
transmit information from one page to another). In many cases, the URL query information corresponds
to user-supplied data, and it doesn’t matter whether the user can see or modify it. In other cases,
however, the query string contains information that should remain hidden from the user. In this case,
the only option is to switch to another form of state management (which may have other limitations) or
devise a system to encrypt the query string.

In the next example, you’ll see a simple way to tighten security by scrambling data before you place
it in the query string. Once again, you can rely on the cryptography classes provided with .NET. In fact,
you can leverage the DPAPI. (You can do this only if you are not in a server farm environment. In that
case, you could use the previously created encryption classes and deploy the same key file to any
machine in the server farm.)

Wrapping the Query String
The starting point is to build an EncryptedQueryString class. This class should accept a collection of
string-based information (just like the query string) and allow you to retrieve it in another page. Behind
the scenes, the EncryptedQueryString class needs to encrypt the data before it’s placed in the query
string and decrypt it seamlessly on the way out.

Here’s the starting point for the EncryptedQueryString class you need:

public class EncryptedQueryString :
 System.Collections.Specialized.StringDictionary
{
 public EncryptedQueryString()
 {
 // Nothing to do here
 }

 public EncryptedQueryString(string encryptedData)
 {
 // Decrypt information and add to
 // the dictionary
 }

 public override string ToString()
 {
 // Encrypt information and return as
 // HEX-encoded string
 }
}

You should notice one detail immediately about the EncryptedQueryString class: it derives from the
StringDictionary class, which represents a collection of strings indexed by strings. By deriving from
StringDictionary, you gain the ability to use the EncryptedQueryString like an ordinary string collection.
As a result, you can add information to the EncryptedQueryString in the same way you add information
to the Request.QueryString collection. Here’s an example:

CHAPTER 25 ■ CRYPTOGRAPHY

1055

encryptedQueryString["value1"] = "Sample Value";

Best of all, you get this functionality for free, without needing to write any additional code. So, with
just this rudimentary class, you have the ability to store a collection of name/value strings. But how do
you actually place this information into the query string? The EncryptedQueryString class provides a
ToString() method that examines all the collection data and combines it in a single encrypted string.

First, the EncryptedQueryString class needs to combine the separate collection values into a
delimited string so that it’s easy to split the string back into a collection on the destination page. In this
case, the ToString() method uses the conventions of the query string, separating each value from the
name with an equal sign (=) and separating each subsequent name/value pair with the ampersand (&).
However, for this to work, you need to make sure the names and values of the actual item in the
collection don’t include these special characters. To solve this problem, the ToString() method uses the
HttpServerUtility.UrlEncode() method to escape the strings before joining them.

Here’s the first portion of the ToString() method, which escapes and joins the collection settings
into one string:

public override string ToString()
{
 StringBuilder Content = new StringBuilder();

 // Go through the contents and build a
 // typical query string
 foreach (string key in base.Keys)
 {
 Content.Append(HttpUtility.UrlEncode(key));
 Content.Append("=");
 Content.Append(HttpUtility.UrlEncode(base[key]));
 Content.Append("&");
 }

 // Remove the last '&'
 Content.Remove(Content.Length-1, 1);
 ...

The next step is to use the ProtectedData class to encrypt the data. This class uses the DPAPI to
encrypt the information and its Protect method to return a byte array, so you need to take additional
steps to convert the byte array to a string form that’s suitable for the query string. One approach that
seems reasonable is the static Convert.ToBase64String() method, which creates a Base64-encoded
string. Unfortunately, Base64 strings can include symbols that aren’t allowed in the query string
(namely, the equal sign). Although you could create a Base64 string and then URL-encode it, this further
complicates the decoding stage. The problem is that the ToBase64String() method may also introduce a
series of characters that look like URL-encoded character sequences. These character sequences will
then be incorrectly replaced when you decode the string.

A simpler approach is to use a different form of encoding. This example uses hex encoding, which
replaces each character with an alphanumeric code. The following example shows the simple
implementation of such a helper class implementing hexadecimal-based encodings:

public static class HexEncoding
{
 public static string GetString(byte[] data)
 {
 StringBuilder Results = new StringBuilder();
 foreach (byte b in data)
 {

CHAPTER 25 ■ CRYPTOGRAPHY

1056

 Results.Append(b.ToString("X2"));
 }

 return Results.ToString();
 }

 public static byte[] GetBytes(string data)
 {
 // GetString encodes the hex numbers with two digits
 byte[] Results = new byte[data.Length / 2];
 for (int i = 0; i < data.Length; i += 2)
 {
 Results[i / 2] = Convert.ToByte(data.Substring(i, 2), 16);
 }

 return Results;
 }
}

The GetString() method just returns a string with hexadecimal digits created from a byte array, while
GetBytes() converts a string with hexadecimal digits back to the byte array for further processing. This is
fairly simple to implement, because it uses existing conversion methods encapsulated in the .NET
Framework’s convert class. These methods are then simple to use, as the following code excerpt shows:

 ...
 // Now encrypt the contents using DPAPI
 byte[] EncryptedData = ProtectedData.Protect(
 Encoding.UTF8.GetBytes(Content.ToString()),
 null, DataProtectionScope.LocalMachine);

 // Convert encrypted byte array to a URL-legal string
 // This would also be a good place to check that data
 // is not larger than typical 4 KB query string
 return HexEncoding.GetString(EncryptedData);
}

You can place the string returned from EncryptedQueryString.ToString() directly into a query string
using the Response.Redirect() method.

The destination page that receives the query data needs a way to deserialize and decrypt the string.
The first step is to create a new EncryptedQueryString object and supply the encrypted data. To make
this step easier, it makes sense to add a new constructor to the EncryptedQueryString class that accepts
the encrypted string, as follows:

public EncryptedQueryString(string encryptedData)
{
 // Decrypt data passed in using DPAPI
 byte[] RawData = HexEncoding.GetBytes(encryptedData);
 byte[] ClearRawData = ProtectedData.Unprotect(
 RawData, null, DataProtectionScope.LocalMachine);
 string StringData = Encoding.UTF8.GetString(ClearRawData);

 // Split the data and add the contents
 int Index;

CHAPTER 25 ■ CRYPTOGRAPHY

1057

 string[] SplittedData = StringData.Split(new char[] { '&' });
 foreach (string SingleData in SplittedData)
 {
 Index = SingleData.IndexOf('=');
 base.Add(
 HttpUtility.UrlDecode(SingleData.Substring(0, Index)),
 HttpUtility.UrlDecode(SingleData.Substring(Index + 1))
);
 }
}

This constructor first decodes the hexadecimal information from the string passed in and uses the
DPAPI to decrypt information stored in the query string. It then splits the information back into its parts
and adds the key/value pairs to the base StringCollection.

Now you have the entire infrastructure in place to create a simple test page and transmit
information from one page to another in a secure fashion.

Creating a Test Page
To try the EncryptedQueryString class, you need two pages—one that sets the query string and redirects
the user and another that retrieves the query string. The first one contains a text box for entering
information, as follows:

<form id="form1" runat="server">
<div>
Enter some data here: <asp:TextBox runat="server" ID="MyData" />

<asp:Button ID="SendCommand" runat="server" Text="Send Info"
 OnClick="SendCommand_Click" />
</div>
</form>

When the user clicks the SendCommand button, the page sends the encrypted query string to the
receiving page, as follows:

protected void SendCommand_Click(object sender, EventArgs e)
{
 EncryptedQueryString QueryString = new EncryptedQueryString();

 QueryString.Add("MyData", MyData.Text);
 QueryString.Add("MyTime", DateTime.Now.ToLongTimeString());
 QueryString.Add("MyDate", DateTime.Now.ToLongDateString());

 Response.Redirect("QueryStringRecipient.aspx?data=" +
 QueryString.ToString());
}

Notice that the page enters the complete encrypted data string as one parameter called data into the
query string for the destination page. Figure 25-9 shows the page in action.

CHAPTER 25 ■ CRYPTOGRAPHY

1058

Figure 25-9. The source page in action

The destination page deserializes the query string passed in through the data query string
parameter with the previously created class, as follows:

protected void Page_Load(object sender, EventArgs e)
{
 // Deserialize the encrypted query string
 EncryptedQueryString QueryString =
 new EncryptedQueryString(Request.QueryString["data"]);

 // Write information to the screen
 StringBuilder Info = new StringBuilder();
 foreach (String key in QueryString.Keys)
 {
 Info.AppendFormat("{0} = {1}
", key, QueryString[key]);
 }
 QueryStringLabel.Text = Info.ToString();
}

This code adds the information to a label on the page. You can see the result of the previously
posted information in Figure 25-10.

CHAPTER 25 ■ CRYPTOGRAPHY

1059

Figure 25-10. The results of the received query string information

Summary
In this chapter, you learned how to take control of .NET security with advanced techniques. You saw
how to use stream-based encryption to protect stored data and the query string. In the next chapter,
you’ll learn how to use powerful techniques to extend the ASP.NET security model.

C H A P T E R 26

■ ■ ■

1061

Custom Membership Providers

In the previous chapters, you learned all the necessary details for authenticating and authorizing users
with ASP.NET through both forms authentication and Windows authentication. You learned that with
forms authentication on its own, you are responsible for managing users (and roles if you want to
implement role-based authorization in your application) in a custom store.

Fortunately, ASP.NET ships with the membership API and the roles API, which provide you with a
framework for user and roles management. You learned the details about the membership API in
Chapter 21, and you learned about the roles API in Chapter 23. You can extend the framework through
providers that implement the actual access to the underlying data store. In both of those chapters, you
used the default provider for SQL Server that ships with ASP.NET.

You can exchange the default implementation that works with SQL Server by implementing custom
membership and roles providers. This gives you the possibility of exchanging the underlying storage
used for user and role information, without affecting your web application.

In this chapter, you will learn how you can extend the membership API and the roles API by
implementing custom membership and roles providers. Furthermore, you will learn how you can
configure and debug your custom provider for web applications. With the information in this chapter,
you will also be equipped to create other custom providers—for example, providers for the profiles API
and the personalization engine of web parts (see Chapter 31)—because the creation process is always
the same.

Architecture of Custom Providers
In Chapters 21 and 23 you learned many details about the integrated membership and roles services.
These services provide you with an out-of-the-box solution for managing users and roles with forms
authentication. As explained earlier, you can extend the model through providers, as shown in Figure
26-1. When implementing custom providers, you should always keep the architecture shown in Figure
26-1 in mind. A custom provider is always based on the lowest level in the layered model introduced by
the ASP.NET membership and roles framework. It’s important to know that every other provider-based
API in ASP.NET is structured in the same way. Therefore, implementing custom providers for the
profiles API or the personalization engine of ASP.NET is similar.

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1062

Figure 26-1. The membership and roles framework

As you can see from their basic architectures, the membership and roles services are independent
from each other. Therefore, membership providers and roles providers have separate base classes; in
addition, you can store membership users and roles in different back-end systems. A good example is
when using the roles service with Windows authentication. Remember what you learned in Chapter 23
about application-specific roles that are used for authorization within the application instead of within
Windows groups: this provides you with a way to decouple your application from an underlying Active
Directory infrastructure.

Before you learn about the details of implementing custom providers, it’s important to understand
why you might want to create a custom membership provider. Some common reasons include the
following:

• You want to use an existing user and roles database that has a different schema
than the ASP.NET standard.

• You want to use a database other than Microsoft SQL Server.

• You want to use an unusual data store (such as an XML file, web service, or LDAP
directories of your choice).

• You want to implement additional authentication logic. A good example of this is
often implemented for governmental websites where users have to authenticate
by specifying three values: a user name, a subscription ID, and a password.

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1063

If you just want to store your own information in addition to the information stored by the default
implementation, we recommend not implementing a custom provider. Because the membership API
gives you access to a key that uniquely identifies a user in the store, we recommend adding your own
tables for storing your additional information and connecting information stored in your tables through
the user’s unique key with the actual user of the membership provider’s storage; alternatively, you could
implement user profiles for these additional properties. This is far easier than implementing a custom
provider for adding a few extra values.

From within the application, you can access the user’s unique key through the ProviderUserKey
property of the MembershipUser class. In this chapter, you will learn how the unique key is propagated
to the ProviderUserKey of the MembershipUser class.

Basic Steps for Creating Custom Providers
You will now learn how to implement your custom provider for the membership and roles services.
Creating a custom provider involves the following steps:

1. Design and create the underlying data store.

2. Create utility classes for accessing the underlying data store.

3. Create a class that inherits from the MembershipProvider.

4. Create a class that inherits from the RoleProvider.

5. Create a provider test application.

6. Configure the custom providers in your test application.

7. Use the custom providers in your custom application.

Implementing custom providers is fairly straightforward but will require some time, because you
have to implement lots of methods and properties. In the following sections, you will create a custom
membership and roles provider that uses an XML file as the underlying data store. XML files are not a
good solution for highly scalable applications but may be a nice alternative if you write a simple
application and need to host this application on a provider site and don’t have access to a database such
as SQL Server.

Overall Design of the Custom Provider
Before creating a custom provider, you have to think about the overall design of the solution. Your goal is
to keep the underlying functionality as simple as possible so that you can concentrate on the actual
membership and roles provider implementation. In terms of XML, the easiest way to load and save data
to XML files is XML serialization. This allows you to store a complete object graph with just one function
call in a file and to read it with one function call.

Serializer = new XmlSerializer(typeof(List<SimpleUser>));
using (XmlTextReader reader = new XmlTextReader(fileName))
{
 _Users = (List<SimpleUser>)Serializer.Deserialize(reader);
}

Remember that you have to tell the XmlSerializer the type you want to serialize and deserialize at
the time of instance creation of the serializer. Also don’t forget that you need to import the System.Xml
and System.Xml.Serialization namespaces in your code before you can use the XmlTextReader,
XmlTextWriter, and XmlSerializer classes.

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1064

Because classes such as MembershipUser don’t allow you to access some information—for
example, the password—you cannot use them with XML serialization directly; XML serialization
requires all properties and members that need to be stored as public properties or members. Therefore,
you will create your own representation of users and roles as utility classes for the back-end store. These
classes will never be passed to the application, which simply relies on the existing membership classes.
(You will include some mapping logic, which is fairly simple, between this internal user representation
and the MembershipUser class.) Figure 26-2 shows the overall design of the custom provider solution.

As mentioned, the SimpleUser and SimpleRole classes make XML serialization possible. Although
this requires some mapping logic for supporting MembershipUser, this makes the whole
implementation much easier. UserStore and RoleStore are both utility classes for encapsulating the
access to the XML file. These classes include functions for loading and saving XML files as well as some
basic utility functions for searching information in the store.

Finally, the model includes the XmlMembershipProvider and XmlRoleProvider classes.
XmlMembershipProvider inherits basic functionality from MembershipProvider, while XmlRoleProvider
is inherited from RoleProvider. Both base classes are defined in the System.Web.Security namespace.

Figure 26-2. The design of your custom provider solution

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1065

Designing and Implementing the Custom Store
After you have designed your overall architecture, you can start thinking about the underlying data store.
In the example, the data store will consist of an XML file for the users and an XML file for the roles. To
make access to these files as simple as possible, you will use XML serialization as the primary
mechanism for reading from and writing to these files. Therefore, you need some classes to hold the data
stored to the XML files either as public fields or as properties, as follows:

public class SimpleUser
{
 public Guid UserKey = Guid.Empty;

 public string UserName = "";
 public string Password = "";

 public string Email = "";
 public DateTime CreationDate = DateTime.Now;
 public DateTime LastActivityDate = DateTime.MinValue;
 public DateTime LastLoginDate = DateTime.MinValue;
 public DateTime LastPasswordChangeDate = DateTime.MinValue;
 public string PasswordQuestion = "";
 public string PasswordAnswer = "";
 public string Comment;
}

public class SimpleRole
{
 public string RoleName = "";
 public System.Collections.Specialized.StringCollection AssignedUsers
 = new System.Collections.Specialized.StringCollection();
}

In this example, you will use a GUID as ProviderUserKey for uniquely identifying users in your store,
similar to a primary key used for uniquely identifying records in a table of a database. For every user you
will then store a user name, a password (hashed), an e-mail, some date information, a password
question and answer, and some comments. For the roles, you will store a name as well as the association
to the users. For simplicity, every role will contain an array of user names (which are strings) that are
associated with this role. The serialized version of an array of users will be the user store, while the
serialized version of an array of roles will be the roles store, as shown in Figure 26-3.

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1066

Figure 26-3. Serialized versions of the SimpleUser and SimpleRole arrays

Note that Figure 26-3 shows a serialized version of your users and roles from the finished version of
the provider you are developing. You are using passwords with a salted hash, as you will see in this
chapter. Furthermore, you might ask why no comment has been serialized to the XML file. Well, the
XmlSerializer serializes fields only if they have another value than null (except if specified through
XmlSerializer attributes applied to properties of your class).

Another design aspect you have to think about is how to access the store. You need only one
instance of each store class in memory (UserStore and RoleStore) to save resources and avoid loading
the XML files too often. You can implement this through the Singleton pattern, which is a solution for
ensuring that only one instance of a class exists within a process. It does this by making the constructor
private and providing a static public method for retrieving an instance. This public method verifies
whether the instance already exists, and if not, it automatically creates an instance of its own, which is
then returned. Now, you might ask why you are not just using a static class with lots of static methods
and members. When looking at the following code snippet, you will recognize that you’re keeping
storage information in memory, and that way you would support opening more, isolated storages at the
same time without reloading XML files all the time. This logic is encapsulated through the singleton
pattern implementation of your storage classes, as you can see in the following code. Taking a look at the
following code snippet, for each XML file storage—for example, of a set of users—you keep one
UserStore instance in memory, which encapsulates access to one store in an isolated fashion (the same

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1067

logic applies to the RoleStore for roles). Although you do not use this feature in your provider, it might be
an interesting pattern for other scenarios.

Let’s examine all these aspects based on the UserStore class introduced in Figure 26-3:

public class UserStore
{
 private string _FileName;
 private List<SimpleUser> _Users;
 private XmlSerializer _Serializer;

 private static Dictionary<string, UserStore> _RegisteredStores;

 private UserStore(string fileName)
 {
 _FileName = fileName;
 _Users = new List<SimpleUser>();
 _Serializer = new XmlSerializer(typeof(List<SimpleUser>));

 LoadStore(_FileName);
 }

 public static UserStore GetStore(string fileName)
 {
 // Create the registered store if it does not exist yet
 if (_RegisteredStores == null)
 _RegisteredStores = new Dictionary<string, UserStore>();

 // Now return the appropriate store for the filename passed in
 if (!_RegisteredStores.ContainsKey(fileName))
 {
 _RegisteredStores.Add(fileName, new UserStore(fileName));
 }

 return _RegisteredStores[fileName];
 }
}

The class includes a few private members for the filename of the store, the list of users, and an
XmlSerializer instance used for reading and writing data.

Because the constructor is private, instances can’t be created outside the class. Outside classes can
retrieve instances only by calling the public static GetStore() method. The implementation of the
Singleton pattern is special in this case. It creates single instances based on the filenames. For every file
processed by the provider, one instance of the UserStore class is created. If more than one web
application using this provider is running in the same process, you need to ensure that different
instances are created for different filenames. Therefore, the class doesn’t manage one static variable for
a single instance; instead, it has a dictionary containing all the instances of the class, one for every
filename.

Because you are using XML serialization to save and load data to and from the store, the functions
for loading the store and saving data back to the store are fairly easy:

private void LoadStore(string fileName)
{
 try

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1068

 {
 // Note that if the file does not exist we ignore it at this
 // point in time. On a save operation, the storage file gets
 // created automatically by our store implementation
 if (System.IO.File.Exists(fileName))
 {
 using (XmlTextReader reader = new XmlTextReader(fileName))
 {
 _Users = (List<SimpleUser>)_Serializer.Deserialize(reader);
 }
 }
 }
 catch (Exception ex)
 {
 throw new Exception(
 string.Format("Unable to load file {0}", fileName), ex);
 }
}

private void SaveStore(string fileName)
{
 try
 {
 if (System.IO.File.Exists(fileName))
 System.IO.File.Delete(fileName);

 using (XmlTextWriter writer =
 new XmlTextWriter(fileName, System.Text.Encoding.UTF8))
 {
 _Serializer.Serialize(writer, _Users);
 }
 }
 catch (Exception ex)
 {
 throw new Exception(
 string.Format("Unable to save file {0}", fileName), ex);
 }
}

Both functions are private, because they are called only within the class itself. The LoadStore()
method is called within the constructor of the UserStore class. Within the method, the private variable
_Users is initialized. Every subsequent query happens based on querying the _Users collection of the
store class. The SaveStore() method, on the other hand, just serializes the _Users collection to the file
specified in the private _FileName member, which is passed in through the constructor (and indirectly
through the static GetStore() method). Finally, the class supports a couple of methods for querying
information in the _Users collection.

public List<SimpleUser> Users
{
 get { return _Users; }
}

public void Save()
{

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1069

 SaveStore(_FileName);
}

public SimpleUser GetUserByName(string name)
{
 return _Users.Find(delegate(SimpleUser user)
 {
 return string.Equals(name, user.UserName);
 });
}

public SimpleUser GetUserByEmail(string email)
{
 return _Users.Find(delegate(SimpleUser user)
 {
 return string.Equals(email, user.Email);
 });
}

public SimpleUser GetUserByKey(Guid key)
{
 return _Users.Find(delegate(SimpleUser user)
 {
 return (user.UserKey.CompareTo(key) == 0);
 });
}

The Users property is a simple property that allows the actual provider (XmlMembership Provider)
to access users of the store. After the provider implementation has changed something within the store
(has changed properties of a user, for example), it calls the public Save() method, which internally calls
the SaveStore() to serialize information back to the file specified in the private _FileName variable of this
instance. The remaining methods are for searching users based on different criteria. For this purpose,
the generic List<> includes a find method. This find method accepts a reference to another method that
is called for every element while iterating through the list for comparison. If the comparison function
returns true for an element, the element is included in the results.

public SimpleUser GetUserByKey(Guid key)
{
 return _Users.Find(delegate(SimpleUser user)
 {
 return (user.UserKey.CompareTo(key) == 0);
 });
}

In this code, you pass in a delegate (which is a reference to a function) that compares the internal
SimpleUser’s key with the key passed in. If this is true, the current user that is passed in as a parameter
from the List<> is returned as a result; otherwise, the List<> continues iterating through its elements.
The inline implementation of the method, without explicitly creating a method with a separate
prototype, is called an anonymous method and is a special feature of C# for saving additional code for
short algorithm parameters.

The UserStore includes the implementation for saving user information only. Roles are not
included. For this purpose, you have to implement the RoleStore class (which is similar to the UserStore
class), as shown here:

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1070

public class RoleStore
{
 XmlSerializer _Serializer;
 private string _FileName;
 List<SimpleRole> _Roles;

 #region "Singleton Implementation"

 private static Dictionary<string, RoleStore> _RegisteredStores;

 private RoleStore(string fileName)
 {
 _FileName = fileName;
 _Roles = new List<SimpleRole>();
 _Serializer = new XmlSerializer(typeof(List<SimpleRole>));

 LoadStore(_FileName);
 }

 public static RoleStore GetStore(string fileName)
 {
 // Create the registered stores
 if (_RegisteredStores == null)
 _RegisteredStores = new Dictionary<string, RoleStore>();

 // Now return the appropriate store
 if (!_RegisteredStores.ContainsKey(fileName))
 {
 _RegisteredStores.Add(fileName, new RoleStore(fileName));
 }

 return _RegisteredStores[fileName];
 }

 #endregion

 #region "Private Helper Methods"

 private void LoadStore(string fileName)
 {
 try
 {
 // Again we create the storage automatically when
 // saving it - see SaveStorage method.
 if (System.IO.File.Exists(fileName))
 {
 using (XmlTextReader reader = new XmlTextReader(fileName))
 {
 _Roles = (List<SimpleRole>)_Serializer.Deserialize(reader);
 }
 }
 }
 catch (Exception ex)

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1071

 {
 throw new Exception(string.Format(
 "Unable to load file {0}", fileName), ex);
 }
 }

 private void SaveStore(string fileName)
 {
 try
 {
 if (System.IO.File.Exists(fileName))
 System.IO.File.Delete(fileName);

 using (XmlTextWriter writer =
 new XmlTextWriter(fileName, Encoding.UTF8))
 {
 _Serializer.Serialize(writer, _Roles);
 }
 }
 catch (Exception ex)
 {
 throw new Exception(string.Format(
 "Unable to save file {0}", fileName), ex);
 }
 }

 #endregion

 public List<SimpleRole> Roles
 {
 get { return _Roles; }
 }

 public void Save()
 {
 SaveStore(_FileName);
 }

 public List<SimpleRole> GetRolesForUser(string userName)
 {
 List<SimpleRole> Results = new List<SimpleRole>();
 foreach (SimpleRole r in Roles)
 {
 if (r.AssignedUsers.Contains(userName))
 Results.Add(r);
 }
 return Results;
 }

 public string[] GetUsersInRole(string roleName)
 {
 SimpleRole Role = GetRole(roleName);
 if (Role != null)
 {

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1072

 string[] Results = new string[Role.AssignedUsers.Count];
 Role.AssignedUsers.CopyTo(Results, 0);
 return Results;
 }
 else
 {
 throw new Exception(string.Format(
 "Role with name {0} does not exist!", roleName));
 }
 }

 public SimpleRole GetRole(string roleName)
 {
 return Roles.Find(delegate(SimpleRole role)
 {
 return role.RoleName.Equals(
 roleName, StringComparison.OrdinalIgnoreCase);
 });
 }
}

This implementation looks fairly similar to the UserStore. The major differences are that it uses the
SimpleRole class instead of the SimpleUser class, and it initializes the XmlSerializer class with a different
type. Also, the functions for querying the store are different. While the UserStore implements functions
for finding users by e-mail, by unique IDs, or by names, this store class finds roles by name, enables
returning users of a role, and queries all roles for one dedicated user. Note that in the preceding
GetRole() method, you compare the role names using the Equals method of the string instance by
passing in the parameter StringComparison.OrdinalIgnoreCase. This means you compare the role
names without case sensitivity. So, if a role name gets passed in with different case letters, you still find it
in your method.

Now the classes for accessing the underlying stores are complete, which means you can start
implementing the custom provider classes.

Implementing the Provider Classes
In this section, you will create the XmlMembershipProvider class, which fulfills the role of an adapter
between your custom store and the requirements of the membership API. (The code for the complete
provider implementation is included in this book’s downloads on the Apress website at
http://www.apress.com.) In this section you will go through the most important parts of creating a
membership provider.

Every custom membership provider must be inherited from
System.Web.Security.MembershipProvider, as follows:

public class XmlMembershipProvider : MembershipProvider
{
 // ...
}

When inheriting from MembershipProvider, you have to implement lots of properties and methods
to fulfill the requirements of the membership API. These properties and methods are used for querying,
creating, updating, and deleting users as well as retrieving specific information about the provider such
as password requirements. These types of properties are queried by the security controls introduced in

http://www.apress.com

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1073

Chapter 21. (For example, the RequiresQuestionAndAnswer property is queried by the
CreateUserWizard to decide whether to display the text boxes for entering password questions and
answers.) You should start by implementing the properties of the provider, because this is the easiest
part of the whole task. For every property, you should provide one private variable that contains the state
of the appropriate property.

public override string ApplicationName { }
public override bool EnablePasswordReset { }
public override bool EnablePasswordRetrieval { }
public override int MaxInvalidPasswordAttempts { }
public override int MinRequiredNonAlphanumericCharacters { }
public override int MinRequiredPasswordLength { }
public override int PasswordAttemptWindow { }
public override MembershipPasswordFormat PasswordFormat { }
public override string PasswordStrengthRegularExpression { }
public override bool RequiresQuestionAndAnswer { }
public override bool RequiresUniqueEmail { }

For a detailed description of these properties, you can refer to Chapter 21. The properties of
providers are described there, and they have the same meaning as in the underlying provider
implementation. Many of these properties just have get accessors and no setters. So, how can the
ASP.NET infrastructure initialize these properties with values configured in web.config? You can find the
answer in the original base class for all providers, which is in the
System.Configuration.Provider.ProviderBase class. The ProviderBase class in turn is the base class for
the MembershipProvider class, and therefore all classes that inherit from MembershipProvider are
indirectly inherited from ProviderBase and have the basic properties of ProviderBase. All you have to do
is override the Initialize method. This method accepts two parameters: a name (which is configured
through the name attribute in web.config) and a NameValueCollection (which contains keys and their
appropriate values for all settings configured through web.config). Within this method you can initialize
the private members of the properties shown previously.

Let’s examine the contents of this function for the XmlMembershipProvider step-by-step:

public override void Initialize(string name,
 System.Collections.Specialized.NameValueCollection config)
{
 if (config == null)
 {
 throw new ArgumentNullException("config");
 }
 if (string.IsNullOrEmpty(name))
 {
 name = "XmlMembershipProvider";
 }
 if (string.IsNullOrEmpty(config["description"]))
 {
 config.Remove("description");
 config.Add("description", "XML Membership Provider");
 }

 // Initialize the base class
 base.Initialize(name, config);
 ...

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1074

First, you have to verify whether any configuration is passed in. If nothing is configured for the
provider, it won’t work. Second, if no name is specified, you have to initialize a default name, which is
required by the configuration tool for displaying the provider in the list of providers. Finally, you have to
add a default description if no description is configured for the provider. This final step is optional but
useful for configuration tools that query provider information.

Don’t forget to call the base class’s Initialize implementation for initializing basic properties
properly. You do this in the last line of code in the previous code.

Next, you can start initializing your properties:

...

// Initialize default values
_ApplicationName = "DefaultApp";
_EnablePasswordReset = false;
_PasswordStrengthRegEx = @"[\w| !§$%&/()=\-?*]*";
_MaxInvalidPasswordAttempts = 3;
_MinRequiredNonAlphanumericChars = 1;
_MinRequiredPasswordLength = 5;
_RequiresQuestionAndAnswer = false;
_PasswordFormat = MembershipPasswordFormat.Hashed;

// Now go through the properties and initialize custom values
foreach (string key in config.Keys)
{
 switch(key.ToLower())
 {
 case "name":
 _Name = config[key];
 break;
 case "applicationname":
 _ApplicationName = config[key];
 break;
 case "filename":
 _FileName = config[key];
 break;
 case "enablepasswordreset":
 _EnablePasswordReset = bool.Parse(config[key]);
 break;
 case "passwordstrengthregex":
 _PasswordStrengthRegEx = config[key];
 break;
 case "maxinvalidpasswordattempts":
 _MaxInvalidPasswordAttempts = int.Parse(config[key]);
 break;
 case "minrequirednonalphanumericchars":
 _MinRequiredNonAlphanumericChars = int.Parse(config[key]);
 break;
 case "minrequiredpasswordlength":
 _MinRequiredPasswordLength = int.Parse(config[key]);
 break;
 case "passwordformat":
 _PasswordFormat = (MembershipPasswordFormat)Enum.Parse(
 typeof(MembershipPasswordFormat), config[key]);
 break;

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1075

 case "requiresquestionandanswer":
 _RequiresQuestionAndAnswer = bool.Parse(config[key]);
 break;
 }

■ Caution In our first implementation, we tried to derive the default application name from the current HTTP

context automatically based on the virtual root directory. The effect was that our provider worked properly as long
as we used the management functions from within the application. As soon as we tried to use it from the ASP.NET
WAT, though, it failed with an exception. When debugging, we discovered that in this case the provider doesn’t

have access to members of the application’s HTTP context. Therefore, you should avoid using the

HttpContext.Current in your membership provider and instead keep it as simple as possible.

The previous code starts by initializing some default values for your options, just in case they are not
included in the web.config configuration file. After initializing these default values, you can go through
the entries of the config parameter passed into the method (which is a simple NameValueCollection). As
you can see, you even can include custom settings such as the filename setting, which is not included in
the default set of properties of the membership provider. This filename property is a custom property for
your specific provider that points to the XML file that contains the user information. You will pass this
filename to the UserStore class in a separate property that you will use in the remaining functions of the
implementation.

private UserStore CurrentStore
{
 get
 {
 if (_CurrentStore == null)
 _CurrentStore = UserStore.GetStore(_FileName);
 return _CurrentStore;
 }
}

Next, you have a large number of methods in your provider. These methods are for creating,
updating, and deleting users as well as for accessing and retrieving user details. The methods access the
information through the previously created store classes. The following code snippet lists these methods
to give you an overview of what you have to implement while reading through the subsequent sections.

public override MembershipUser CreateUser(string username, string password,
 string email, string passwordQuestion,
 string passwordAnswer, bool isApproved,
 object providerUserKey,
 out MembershipCreateStatus status)
public override bool DeleteUser(string username, bool deleteAllRelatedData)
public override MembershipUser GetUser(string username, bool userIsOnline)
public override MembershipUser GetUser(object providerUserKey,
 bool userIsOnline)
public override string GetUserNameByEmail(string email)
public override void UpdateUser(MembershipUser user)

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1076

public override bool ValidateUser(string username, string password)
public override bool ChangePassword(string username,
 string oldPassword, string newPassword)
public override bool ChangePasswordQuestionAndAnswer(string username,
 string password, string newPasswordQuestion, string newPasswordAnswer)
public override MembershipUserCollection FindUsersByEmail(string emailToMatch,
 int pageIndex, int pageSize, out int totalRecords)
public override MembershipUserCollection FindUsersByName(
 string usernameToMatch,
 int pageIndex, int pageSize, out int totalRecords)
public override MembershipUserCollection GetAllUsers(int pageIndex,
 int pageSize, out int totalRecords)
public override int GetNumberOfUsersOnline()
public override string GetPassword(string username, string answer)
public override string ResetPassword(string username, string answer)
public override bool UnlockUser(string userName)

Within those methods, you just have to call the appropriate methods of the UserStore class through
the previously introduced CurrentStore property. These are the only methods defined by the provider.
Any additional method introduced in this chapter is a helper method that you have to include on your
own. (In this book, you will see the most important implementations of these methods but not all of
them. The complete code is available with the book’s downloadable code.)

Let’s get started with the CreateUser method.

Creating Users and Adding Them to the Store
The CreateUser method is interesting because it needs to make sure that the user name and e-mail are
unique and that the password is valid and adheres to the password strength requirements.

public override MembershipUser CreateUser(string username, string password,
 string email, string passwordQuestion,
 string passwordAnswer, bool isApproved,
 object providerUserKey, out MembershipCreateStatus status)
{
 try
 {
 // Validate the user name and e-mail
 if (!ValidateUsername(username, email, Guid.Empty))
 {
 // If the user name is invalid because it already
 // exists or the e-mail is duplicated and the provider
 // is configured to not allow duplicated e-mails, then
 // we return the InvalidUserName status through the
 // output parameter "status"
 status = MembershipCreateStatus.InvalidUserName;
 return null;
 }

 // Raise the event before validating the password
 // This event is handled by the membership API class, which
 // in turn forwards the event to any subscribers in custom code
 // to allow writing custom code for validating password formats
 // without the need to understand the internals of

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1077

 // the membership provider implementation
 base.OnValidatingPassword(
 new ValidatePasswordEventArgs(
 username, password, true));

 // Validate the password
 if (!ValidatePassword(password))
 {
 status = MembershipCreateStatus.InvalidPassword;
 return null;
 }
 ...

In the first section, the function calls the private methods ValidateUserName and ValidatePassword.
These methods make sure the user name and e-mail are unique in the store and the password adheres to
the password strength requirements. After these checks succeed, you can create the user for the
underlying store (SimpleUser), add the user to the store, and then save the store.

 ...
 // Everything is valid, create the user
 SimpleUser user = new SimpleUser();
 user.UserKey = Guid.NewGuid();
 user.UserName = username;
 // Note - the TransformPassword() method creates
 // the salted hash value for storing the password
 user.Password = this.TransformPassword(password);
 user.Email = email;
 user.PasswordQuestion = passwordQuestion;
 user.PasswordAnswer = passwordAnswer;
 user.CreationDate = DateTime.Now;
 user.LastActivityDate = DateTime.Now;
 user.LastPasswordChangeDate = DateTime.Now;

 // Add the user to the store
 CurrentStore.Users.Add(user);
 CurrentStore.Save();

 status = MembershipCreateStatus.Success;
 return CreateMembershipFromInternalUser(user);
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception
 // classes here and pass more detailed information to the caller
 // but we leave as is for simplicity.
 throw;
 }
}

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1078

Finally, the method needs to return an instance of MembershipUser to the calling Membership
class with the details of the created user. For this purpose, you just need to match the properties of your
SimpleUser instance to the properties of the MembershipUser, as shown in the following function:

private MembershipUser CreateMembershipFromInternalUser(SimpleUser user)
{
 MembershipUser muser = new MembershipUser(base.Name,
 user.UserName, user.UserKey, user.Email, user.PasswordQuestion,
 string.Empty, true, false, user.CreationDate, user.LastLoginDate,
 user.LastActivityDate, user.LastPasswordChangeDate, DateTime.MaxValue);

 return muser;
}

As you can see, this mapping creates an instance of MembershipUser and passes the appropriate
properties from your own SimpleUser as constructor parameters.

Next, take a look at the validation functions for validating the user name, e-mail, and password:

private bool ValidatePassword(string password)
{
 bool IsValid = true;
 System.Text.RegularExpressions.Regex HelpExpression;

 // Validate simple properties
 IsValid = (password.Length >= this.MinRequiredPasswordLength);

 // Validate non-alphanumeric characters
 HelpExpression = new Regex(@"\W");
 IsValid = IsValid && (
 HelpExpression.Matches(password).Count >=
 this.MinRequiredNonAlphanumericCharacters);

 // Validate regular expression
 HelpExpression = new Regex(this.PasswordStrengthRegularExpression);
 IsValid = IsValid && (HelpExpression.Matches(password).Count > 0);

 return IsValid;
}

The password validation first verifies the length of the password. If the password is too short, it
returns false. Through the .NET Framework, it then verifies regular expression classes to see whether the
number of nonalphanumeric characters in the password is high enough according to the
MinRequireNonAlphanumericCharacters. Afterward, the password validation function performs a check
on the password through regular expression functions of the .NET Framework of the
System.Text.RegularExpressions namespace against the PasswordStrengthRegularExpression. If all these
checks pass, the function returns true. If these checks don’t pass, it returns false.

Now let’s take a closer look at the method for validating the user name and the e-mail. Both need to
be unique in the underlying store.

private bool ValidateUsername(string userName, string email, Guid excludeKey)
{
 bool IsValid = true;

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1079

 UserStore store = UserStore.GetStore(_FileName);
 foreach (SimpleUser user in store.Users)
 {
 if (user.UserKey.CompareTo(excludeKey) != 0)
 {
 if (string.Equals(user.UserName, userName,
 StringComparison.OrdinalIgnoreCase))
 {
 IsValid = false;
 break;
 }

 if (string.Equals(user.Email, email,
 StringComparison.OrdinalIgnoreCase))
 {
 IsValid = false;
 break;
 }
 }
 }

 return IsValid;
}

As you can see in the previous snippet, user validation is fairly simple. The code goes through the
users in the CurrentStore and verifies whether there is any user with the same user name or e-mail. If
that’s the case, the function returns false or otherwise true.

The last interesting part in the CreateUser method is how the password is set for the user. Through
the PasswordFormat property, every provider has three types for storing the password: clear, hashed,
and encrypted. The CreateUser method uses a private helper method of the XmlMembershipProvider
class called TransformPassword, as follows:

user.Password = this.TransformPassword(password);

This method queries the current setting for the PasswordFormat property, and according to the
setting it leaves the password as clear text, creates a hash for the password, or encrypts the password,
as follows:

private string TransformPassword(string password)
{
 string ret = string.Empty;

 switch (PasswordFormat)
 {
 case MembershipPasswordFormat.Clear:
 ret = password;
 break;
 case MembershipPasswordFormat.Hashed:
 ret = FormsAuthentication.HashPasswordForStoringInConfigFile(
 password, "SHA1");
 break;
 case MembershipPasswordFormat.Encrypted:
 byte[] ClearText = Encoding.UTF8.GetBytes(password);
 byte[] EncryptedText = base.EncryptPassword(ClearText);

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1080

 ret = Convert.ToBase64String(EncryptedText);
 break;
 }

 return ret;
}

If the password format is set to Clear, the method just returns the clear-text password. In the case of
the Hashed setting, it creates the simple hash through the forms authentication utility method and then
returns the hash for the password. The last possible option encrypts the password with a two-way
encryption algorithm, which has the advantage that the password can be retrieved from the underlying
storage through decryption. In that case, the method uses the EncryptPassword method from the base
class implementation for encrypting the password. This method uses a key stored in machine.config for
encrypting the password. If you are using this in a web farm environment, you have to sync the key
stored in machine.config on every machine so that a password encrypted on one machine of the farm
can be decrypted on another machine on the web farm properly.

Validating Users on Login
The Membership class supports a method for programmatically validating a password entered by a user.
This method is used by the Login control as well. This means every time the user tries to log in, the
ValidateUser method of the Membership class is involved. This method on its own calls the ValidateUser
method of the underlying membership provider. According to the settings of the PasswordFormat
property, the method has to retrieve the user from the store based on the user name and then somehow
validate the password. If the password is clear text, validating the password involves a simple string
comparison. Encrypted passwords have to be decrypted and compared afterward, while last but not
least validating hashed passwords means re-creating the hash and then comparing the hash values.

public override bool ValidateUser(string username, string password)
{
 try
 {
 SimpleUser user = CurrentStore.GetUserByName(username);
 if(user == null)
 return false;

 if (ValidateUserInternal(user, password))
 {
 user.LastLoginDate = DateTime.Now;
 user.LastActivityDate = DateTime.Now;
 CurrentStore.Save();
 return true;
 }
 else
 {
 return false;
 }
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1081

 // classes here and pass more detailed information to the caller
 // but we leave as is for simplicity.
 throw;
 }
}

This method retrieves the user from the store. It then validates the password against the password
passed in (which is the one entered by the user for login) through a private helper method called
ValidateUserInternal. Finally, if the user name and password are fine, it updates the LastLoginDate and
the LastActivityDate for the user and then returns true. It’s always useful to encapsulate password
validation functionality into a separate function, because it may be used more than once in your
provider. A typical example for reusing this functionality is the ChangePassword method, where the user
has to enter the old password and the new password. If validation of the old password fails, the provider
should not change the password, as shown here:

public override bool ChangePassword(string username,
 string oldPassword, string newPassword)
{
 try
 {
 // Get the user from the store
 SimpleUser user = CurrentStore.GetUserByName(username);
 if (user == null)
 throw new Exception("User does not exist!")

 if (ValidateUserInternal(user, oldPassword))
 {
 // Raise the event before validating the password
 base.OnValidatingPassword(
 new ValidatePasswordEventArgs(
 username, newPassword, false));

 if (!ValidatePassword(newPassword))
 throw new ArgumentException(
 "Password doesn't meet password strength requirements!");

 user.Password = TransformPassword(newPassword);
 user.LastPasswordChangeDate = DateTime.Now;
 CurrentStore.Save();

 return true;
 }

 return false;
 }
 catch
 {
 throw;
 }
}

Only if the old password is entered correctly by the user does the change take place. The
ChangePassword method again uses the TransformPassword method to generate the protected version
(hashed, encrypted) of the password if necessary. You can reuse the function introduced previously with
the CreateUser method. But now let’s take a look at the password validation functionality:

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1082

private bool ValidateUserInternal(SimpleUser user, string password)
{
 if (user != null)
 {
 string passwordValidate = TransformPassword(password);
 if (string.Compare(passwordValidate, user.Password) == 0)
 {
 return true;
 }
 }

 return false;
}

This method uses the TransformPassword method for creating the protected version of the
password (hashed, encrypted) if necessary. The results are then compared through simple string
comparison. (Even the encrypted version returns a Base64-encoded string that will be stored in the XML
file; therefore, string comparison is fine.) This is why validating hashed passwords works at all, for
example. Just re-create the hash, and then compare the hashed version of the password.

Using Salted Password Hashes
If you want to change this to include a salt value as mentioned, you have to complete the following steps:

1. Add a new field to your SimpleUser class called PasswordSalt.

2. Extend your TransformPassword method to accept a salt value. This salt is
necessary for re-creating the hash, which actually will be based on both the
password and the salt.

3. When creating a new password, you simply have to create the random salt
value and then store it with your user. For any validation, pass the previously
generated salt value to the TransformPassword function for validation.

The best way to do this is to extend the TransformPassword so that it generates the salt value
automatically if necessary. Therefore, it accepts the salt as a second parameter. This parameter is not
just a simple parameter—it’s a reference parameter, as shown here:

private string TransformPassword(string password, ref string salt)
{
 ...
}

Whenever you pass in string.Empty or null for the salt value, the function automatically generates a
new salt. The method therefore is called as follows from other methods that create the new password
hash. These methods are CreateUser, ChangePassword, and ResetPassword, as they all update the
password value of your SimpleUser class.

SimpleUser user = ...
...
user.PasswordSalt = string.Empty;
user.Password = this.TransformPassword(password, ref user.PasswordSalt);
...

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1083

This means every method that updates the password field of your user store sets the PasswordSalt
value to string.Empty before it calls TransformPassword and passes in a reference to the
user.PasswordSalt field. When validating the password, you don’t want the method to regenerate a new
salt value. Therefore, you have to pass in the salt value stored with the hashed version of the password in
the data store. Having said that, the previously introduced ValidateUserInternal() method now looks
like this:

private bool ValidateUserInternal(SimpleUser user, string password)
{
 if (user != null)
 {
 string passwordValidate = TransformPassword(
 password, ref user.PasswordSalt);
 if (string.Compare(passwordValidate, user.Password) == 0)
 {
 return true;
 }
 }

 return false;
}

The only thing that changes compared to the original version is that the method now passes in an
initialized version of the salt value that will be used by the TransformPassword method to regenerate the
password hash based on the existing salt and the password entered by the user. Therefore, internally the
TransformPassword method now looks as follows for validating and optionally generating a salt value:

private string TransformPassword(string password, ref string salt)
{
 string ret = string.Empty;

 switch (PasswordFormat)
 {
 case MembershipPasswordFormat.Clear:
 ret = password;
 break;

 case MembershipPasswordFormat.Hashed:

 // Generate the salt if not passed in
 if (string.IsNullOrEmpty(salt))
 {
 byte[] saltBytes = new byte[16];
 System.Security.Cryptography.RandomNumberGenerator rng =
 System.Security.Cryptography.RandomNumberGenerator.Create();
 rng.GetBytes(saltBytes);
 salt = Convert.ToBase64String(saltBytes);
 }
 ret = FormsAuthentication.HashPasswordForStoringInConfigFile(
 (salt + password), "SHA1");
 break;

 case MembershipPasswordFormat.Encrypted:

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1084

 byte[] ClearText = Encoding.UTF8.GetBytes(password);
 byte[] EncryptedText = base.EncryptPassword(ClearText);
 ret = Convert.ToBase64String(EncryptedText);
 break;
 }

 return ret;
}

When the provider is configured for storing the passwords as salted hashes, it verifies whether the
passed-in salt value is empty or null. If the provider is configured for using salted hashes, it generates a
new salt value using the cryptographic random number generator of the System.Security.Cryptography
namespace to generate a real random number. The functions CreateUser, ChangePassword, and
ResetPassword will pass in null or string.Empty to generate a new salt value, while the
ValidateUserInternal method passes in the already initialized salt value from the underlying data store
of the provider. Afterward, the method again uses the HashPasswordForStoringInConfigFile, but this
time it passes a combination of the random salt value and the actual password. The result is returned to
the caller.

The Remaining Functions of the Provider
Initializing the provider and creating and validating users are the most important and hardest functions
to implement in the provider. The rest of the functions are just for reading information from the store
and for updating the users in the store. These functions call the underlying methods of the UserStore
class or try to find users in the UserStore.Users collection. A typical example is the GetUser() method,
which retrieves a single user from the data store based on its user name or key:

public override MembershipUser GetUser(string username, bool userIsOnline)
{
 try
 {
 SimpleUser user = CurrentStore.GetUserByName(username);
 if (user != null)
 {
 if (userIsOnline)
 {
 user.LastActivityDate = DateTime.Now;
 CurrentStore.Save();
 }
 return CreateMembershipFromInternalUser(user);
 }
 else
 {
 return null;
 }
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception
 // classes here and pass more detailed information to the caller

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1085

 // but we leave as is for simplicity.
 throw;
 }
}

This example accepts the name of the user as a parameter and another parameter that indicates
whether the user is online. The Membership class automatically initializes this parameter when it calls
your provider’s method. In your method, you can query this parameter; if it is set to true, you must
update the LastActivityDate of your user in the store. The function does nothing other than find the user
in the underlying store by calling the UserStore’s GetUserByName method. It then creates an instance of
MembershipUser based on the information of the store by calling the private
CreateMembershipFromInternalUser utility method. The provider implementation requires you to
implement a couple of methods that work this way. You just need to call the methods of the UserStore
appropriately. Some of the methods require you to return not just a MembershipUser but a whole
MembershipUserCollection, as follows:

public override MembershipUserCollection FindUsersByEmail(string emailToMatch,
 int pageIndex, int pageSize, out int totalRecords)
{
 try
 {
 List<SimpleUser> matchingUsers =
 CurrentStore.Users.FindAll(delegate(SimpleUser user)
 {
 return user.Email.Equals(emailToMatch,
 StringComparison.OrdinalIgnoreCase);
 });

 totalRecords = matchingUsers.Count;
 return CreateMembershipCollectionFromInternalList(matchingUsers);
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception
 // classes here and pass more detailed information to the caller
 // but we leave as is for simplicity.
 throw;
 }
}

For example, the FindUsersByEmail method finds all users with a specific e-mail (which is possible
only if you have configured the provider to not require the e-mail to be unique or if you use pattern
matching for e-mails through regular expressions). It returns a collection of Membership users. But as
you can see, the method again leverages the FindAll method of the List<> class and an anonymous
method for specifying the filter criteria. Therefore, the collection returned from this method is a
collection of SimpleUser instances that you use in the back-end store. You can create another helper
method for mapping this type of collection to a MembershipUserCollection, as follows:

private MembershipUserCollection CreateMembershipCollectionFromInternalList(
 List<SimpleUser> users)
{

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1086

 MembershipUserCollection ReturnCollection = new MembershipUserCollection();

 foreach (SimpleUser user in users)
 {
 ReturnCollection.Add(CreateMembershipFromInternalUser(user));
 }

 return ReturnCollection;
}

Finally, the LastActivityDate property stored for every user is used by the Membership class to
determine the number of current users online in the application. You have to implement this method in
your custom provider through the GetNumberOfUsersOnline method, as follows:

public override int GetNumberOfUsersOnline()
{
 int ret = 0;

 foreach (SimpleUser user in CurrentStore.Users)
 {
 if (user.LastActivityDate.AddMinutes(
 Membership.UserIsOnlineTimeWindow) >= DateTime.Now)
 {
 ret++;
 }
 }

 return ret;
}

This method just goes through all users in the store and uses the UserIsOnlineTimeWindow, which
is a property managed through the Membership class and specifies the number of minutes a user is
online without any activity. As long as the LastActivityDate with this number of minutes is larger than
the current date and time, the user is considered to be online. The LastActivityDate is updated
automatically by the different overloads of the GetUser method and the ValidateUser method.

Implementing the remaining functions of the provider does not involve any new concepts, and
therefore we will skip them. They merely update some values on users and then call the
CurrentStore.Save method to save it to the XML file on the file system. You can download the complete
implementation of this provider with the source code for the book.

Implementing the XmlRoleProvider
Implementing the roles provider is much easier than implementing the membership provider, because
the structures are much simpler for managing roles. Implementing the roles provider does not introduce
any new concepts. It merely requires calling the appropriate methods of the previously introduced
RoleStore class for creating roles, deleting roles, assigning users to roles, and deleting users from roles.
The complete interface of the roles provider looks like this:

public class XmlRoleProvider : RoleProvider
{
 public override void Initialize(string name, NameValueCollection config)

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1087

 public override string ApplicationName { get; set; }

 public override void CreateRole(string roleName)
 public override bool DeleteRole(string roleName, bool throwOnPopulatedRole)
 public override bool RoleExists(string roleName)
 public override void AddUsersToRoles(
 string[] usernames, string[] roleNames)
 public override void RemoveUsersFromRoles(
 string[] usernames, string[] roleNames)
 public override string[] GetAllRoles()
 public override string[] GetRolesForUser(string username)
 public override string[] GetUsersInRole(string roleName)
 public override bool IsUserInRole(string username, string roleName)
 public override string[] FindUsersInRole(
 string roleName, string usernameToMatch)
}

As you can see, the class derives from the base class RoleProvider. Again, it overrides the Initialize
method for initializing custom properties. But this time initialization of the provider is much simpler
because the roles provider supports only a handful of properties. The only property provided by the base
class is the ApplicationName property. Everything else is up to you. Therefore, initialization is fairly
simple here:

public override void Initialize(string name, NameValueCollection config)
{
 if (config == null)
 {
 throw new ArgumentNullException("config");
 }
 if (string.IsNullOrEmpty(name))
 {
 name = "XmlRoleProvider";
 }
 if (string.IsNullOrEmpty(config["description"]))
 {
 config.Remove("description");
 config.Add("description", "XML Role Provider");
 }

 // Base initialization
 base.Initialize(name, config);

 // Initialize properties
 _ApplicationName = "DefaultApp";
 foreach (string key in config.Keys)
 {
 if (key.ToLower().Equals("applicationname"))
 ApplicationName = config[key];
 else if (key.ToLower().Equals("filename"))
 _FileName = config[key];
 }
}

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1088

Again, the initialization routine checks the name and description configuration parameters and
initializes them with default values if they are not configured. It then calls the base class’s Initialize
implementation. Do not forget to call the base class’s Initialize method; otherwise, the default
configuration values managed by the base class will not be initialized. Next it initializes the properties while
your implementation of the XmlRoleProvider just knows about the ApplicationName and FileName
settings. Again, the FileName specifies the name of the XML file where role information is stored.

Next, the class supports a few methods for managing the roles: CreateRole, DeleteRole, and
RoleExists. Within these methods, you have to access the underlying RoleStore’s methods, as you can see
in this example of CreateRole:

public override void CreateRole(string roleName)
{
 try
 {
 SimpleRole NewRole = new SimpleRole();
 NewRole.RoleName = roleName;
 NewRole.AssignedUsers = new StringCollection();

 CurrentStore.Roles.Add(NewRole);
 CurrentStore.Save();
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception
 // classes here and pass more detailed information to the caller
 // but we leave as is for simplicity.
 throw;
 }
}

Compared to the CreateUser method introduced previously, this method is fairly simple. It creates a
new instance of SimpleRole and then adds this new role to the underlying RoleStore. Again, it is useful to
add a CurrentStore property to your membership provider’s implementation. This gives you easy access
to the underlying store, as shown in the following code snippet (this property was already used in the
previous snippet).

private RoleStore CurrentStore
{
 get
 {
 if (_CurrentStore == null)
 _CurrentStore = RoleStore.GetStore(_FileName);
 return _CurrentStore;
 }
}

The RoleExists method goes through the CurrentStore.Roles list and verifies whether the role with
the name passed in through its parameter exists in the list. The DeleteRole tries to find the role in the
roles list of the underlying role store, and if it exists, it deletes the role from the store and then saves the
store back to the file system by calling CurrentStore.Save. Most of the methods for your custom roles
provider are that simple. The most complex operations are adding a user to a role and removing the user
from the role. The following is the first method—adding users to roles:

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1089

public override void AddUsersToRoles(string[] usernames, string[] roleNames)
{
 try
 {
 // Get the roles to be modified
 foreach (string roleName in roleNames)
 {
 SimpleRole Role = CurrentStore.GetRole(roleName);
 if (Role != null)
 {
 foreach (string userName in usernames)
 {
 if (!Role.AssignedUsers.Contains(userName))
 {
 Role.AssignedUsers.Add(userName);
 }
 }
 }
 }

 CurrentStore.Save();
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception
 // classes here and pass more detailed information to the caller
 // but we leave as is for simplicity.
 throw;
 }
}

Although the Roles class you used in Chapter 23 provides more overloads for this type of method,
your provider has to implement the most flexible one: adding all users specified in the first parameter
array to all roles specified in the second parameter array. Therefore, you have go through the list of
supported roles stored in your XML file, and for every role specified in the roleNames parameter you
have to add all users specified in the usernames parameter to the corresponding role. That’s what this
method is doing. Within the first foreach, it iterates through the array of role names passed in. It
retrieves the role from the store by calling the RoleStore’s GetRole method and then adds all the users
specified in the usernames parameter to this role. Finally, it calls CurrentStore.Save() for serializing the
roles back to the XML file. The RemoveUsersFromRoles method is doing the opposite, as follows:

public override void RemoveUsersFromRoles(string[] usernames, string[] roleNames)
{
 try
 {
 // Get the roles to be modified
 List<SimpleRole> TargetRoles = new List<SimpleRole>();
 foreach (string roleName in roleNames)
 {
 SimpleRole Role = CurrentStore.GetRole(roleName);
 if (Role != null)

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1090

 {
 foreach (string userName in usernames)
 {
 if (Role.AssignedUsers.Contains(userName))
 {
 Role.AssignedUsers.Remove(userName);
 }
 }
 }
 }

 CurrentStore.Save();
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception
 // classes here and pass more detailed information to the caller
 // but we leave as is for simplicity.
 throw;
 }
}

The only difference in this method from the one introduced previously is that it removes the users
specified in the usernames parameter from all the roles specified in the roleNames parameter. The
remaining logic of the method is the same. The remaining methods of the custom roles provider are easy
to implement; in most cases, they just iterate through the roles that exist in the store and return some
information, mostly arrays of strings with user names or role names, as shown here:

public override string[] GetRolesForUser(string username)
{
 try
 {
 List<SimpleRole> RolesForUser = CurrentStore.GetRolesForUser(username);
 string[] Results = new string[RolesForUser.Count];
 for (int i = 0; i < Results.Length; i++)
 Results[i] = RolesForUser[i].RoleName;
 return Results;
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception
 // classes here and pass more detailed information to the caller
 // but we leave as is for simplicity.
 throw;
 }
}

public override string[] GetUsersInRole(string roleName)
{
 try

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1091

 {
 return CurrentStore.GetUsersInRole(roleName);
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception
 // classes here and pass more detailed information to the caller
 // but we leave as is for simplicity.
 throw;
 }
}

public override bool IsUserInRole(string username, string roleName)
{
 try
 {
 SimpleRole Role = CurrentStore.GetRole(roleName);
 if (Role != null)
 {
 return Role.AssignedUsers.Contains(username);
 }
 else
 {
 // Requires import of System.Configuration.Provider
 throw new ProviderException("Role does not exist!");
 }
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception
 // classes here and pass more detailed information to the caller
 // but we leave as is for simplicity.
 throw;
 }
}

The first method returns all roles for a single user. It therefore calls the RoleStore’s
GetRolesForUsers method, which returns a list of SimpleRole objects. The result is then mapped to an
array of strings and returned to the caller. Retrieving users for one role is even simpler, because the
functionality is provided by the RoleStore class. Finally, the IsUserInRole method verifies whether a user
is assigned to a role by retrieving the role and then calling the StringCollection’s Contains method to
verify whether the user exists in the SimpleRole’s AssignedUsers collection.

You should take a look at one last method—FindUsersInRoles:

public override string[] FindUsersInRole(string roleName, string usernameToMatch)
{
 try
 {
 List<string> Results = new List<string>();
 Regex Expression = new Regex(usernameToMatch.Replace("%", @"\w*"));

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1092

 SimpleRole Role = CurrentStore.GetRole(roleName);
 if (Role != null)
 {
 foreach (string userName in Role.AssignedUsers)
 {
 if (Expression.IsMatch(userName))
 Results.Add(userName);
 }
 }
 else
 {
 throw new ProviderException("Role does not exist!");
 }

 return Results.ToArray();
 }
 catch
 {
 // If an exception is raised while saving the storage
 // or while serializing contents we just forward it to the
 // caller. It would be cleaner to work with custom exception
 // classes here and pass more detailed information to the caller
 // but we leave as is for simplicity.
 throw;
 }
}

This method tries to find users based on pattern matching in the role specified through the
roleName parameter. For this purpose, it retrieves the role from the store and then creates a regular
expression. The SQL membership provider uses the % character for pattern matching, and because it is a
good idea to have a provider that is compatible to existing implementations, you will use it for pattern
matching again in your provider. But regular expressions don’t understand the % as a placeholder for
any characters in the string; therefore, you need to replace it with a representation that regular
expressions understand: \w*. When the Membership class now passes in this character as a placeholder,
your pattern matching function will still work, and therefore this function is compatible with the
SqlMembershipProvider’s implementation (which also uses the % as a placeholder). The remaining part
of the function goes through the users assigned to the role; if the user name matches the pattern, it is
added to the resulting list of strings that will be returned as a simple string array.

As you can see, implementing the custom roles provider is easy if you have previously implemented
the custom membership provider. The process does not require you to understand any new concepts. In
general, when you know how to implement one provider, you know how to implement another provider.
Therefore, it should be easy for you to implement custom profile and personalization providers. Again,
you can download the complete source code for the roles provider from the Apress website
(http://www.apress.com). Now it’s time to discuss how you can use these providers.

Using the Custom Provider Classes
Using providers in a custom web application is fairly easy. The steps for using custom providers are as
follows (besides the typical ones such as configuring forms authentication):

http://www.apress.com

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1093

1. If you have encapsulated the custom provider in a separate class library (which
is definitely useful, because you want to use it in several web applications), you
need to add a reference to this class library through the Visual Studio Add
References dialog box.

2. Afterward, you must configure the custom provider appropriately in your
web.config file.

3. Next you have to select your custom provider as the default provider either
through the ASP.NET WAT or through web.config manually.

4. After you have completed these configuration steps, you are ready to use the
provider. If you have not added any special functionality and have just
implemented the inherited classes straightforwardly as shown in this chapter,
you don’t even need to change any code in your application.

The configuration of the previously created XmlMembershipProvider and XmlRoleProvider in the
web.config configuration file within the <system.web> section looks like this:

<membership defaultProvider="XmlMembership">
 <providers>
 <add name="XmlMembership"
 applicationName="MyTestApp"
 fileName="C:\Work\MyTestApp_Users.config"
 type="Apress.ProAspNet.Providers.XmlMembershipProvider,
 Apress.ProAspNet.Providers"
 requiresQuestionAndAnswer="true"/>
 </providers>
</membership>

<roleManager enabled="true"
 defaultProvider="XmlRoles">
 <providers>
 <add name="XmlRoles"
 applicationName="MyTestApp"
 fileName="C:\Work\MyTestApp_Roles.config"
 type="Apress.ProAspNet.Providers.XmlRoleProvider,
 Apress.ProAspNet.Providers" />
 </providers>
</roleManager>

In the previous example, the providers will be configured to use files stored on c:\Work for saving
user and role information appropriately. With this configuration, you will find the providers in the
ASP.NET WAT (under Providers/Advanced Configuration), as shown in Figure 26-4.

Don’t try to test the provider in the WAT; it will fail in this case. Testing providers in the WAT is just
supported for providers that are using database connection strings to connect to the underlying back-
end store. Because you are using XML files, testing will not work for the custom provider in this case.

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1094

Figure 26-4. Custom providers in the ASP.NET WAT

■ Caution You should use absolute filenames and path values when storing the provider configuration settings. If
you use a relative path, the provider will attempt to create the configuration files in the working directory of the
web server. This will cause an exception if the account running your web application doesn’t have permission to

access this folder.

Debugging Using the WAT
The ASP.NET WAT uses the Membership and Roles classes for retrieving and updating data stored
through the membership provider. Although we suggest building your own test driver classes by calling
all the methods of the Membership and Roles classes, it is definitely useful to have the possibility of
debugging from within the ASP.NET WAT, especially if you experience any problems you did not
encounter while testing with your own applications.

For debugging through the WAT, you just need to launch the configuration utility through the
Website ➤ ASP.NET Configuration menu and then attach to the web server process hosting the
configuration tool. If you are using the file-based web server for development purposes, launch Visual
Studio’s Attach to Process dialog box by selecting Debug ➤ Attach to Process. Next, find the appropriate
web server process. As in most cases, two of these processes will run when using the file-based web
server, so you have to attach to the one with the right port number. Match the port number displayed in
the address bar of the browser using the ASP.NET WAT with the one displayed in the Attach to Process

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1095

dialog box. Then your breakpoints in the provider classes will be hit appropriately. Figure 26-5 shows
how to attach to the web service process that hosts the ASP.NET WAT.

Figure 26-5. Attaching to the Configuration utility web server process

Using Custom Providers with IIS 7.x
Using custom membership providers through IIS is fairly straightforward and is exactly the same as
configuring membership providers the way you learned in Chapter 21.

As soon as you have a custom membership provider or roles API provider implementation in your
application’s bin directory (or installed globally in the global assembly cache), IIS allows you to
configure this provider through its management console, as you can see in Figure 26-6.

After you have configured your custom provider for .NET Users (as in Figure 26-6) and for .NET
roles, you can add, edit, and remove users directly from within the management console of IIS 7.x. You
don’t need to fulfill any special requirements in your provider implementations. The only exception is
that you may not include any dependencies to a running instance of a web application, such as
accessing the HttpContext, which is not available from within the management console. However, you
should always adhere to this rule when implementing custom providers.

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1096

Figure 26-6. Adding your custom provider through the IIS 7.x management console

The final question we need to answer right now is, “How can you debug custom membership
providers when they are used from within the IIS management console?” Why? Well, it can happen that
your program logic works fine from within WAT but does not work properly from within the IIS
management console (for example, you accidentally use a dependency to a running web application
such as the HttpContext). Finding these errors is easier when you can debug the application. Again, this
is fairly straightforward. Instead of attaching to the web server process hosting WAT, you attach to the IIS
management process (called InetMgr.exe), as you can see in Figure 26-7.

CHAPTER 26 ■ CUSTOM MEMBERSHIP PROVIDERS

1097

Figure 26-7. Debugging a provider from within the IIS management console

You need to be aware of a few things. Usually you run the IIS management console with
administrative privileges. Debugging an application running with administrative privileges requires
running Visual Studio with administrative privileges as well. To do so, right-click the Visual Studio
shortcut and choose Run As Administrator. Next—as shown in Figure 26-7—you need to make sure to
check the check marks on the bottom of the Attach to Process dialog from Visual Studio.

Summary
In this chapter, you saw how to extend the ASP.NET membership API and roles API through custom
membership providers and roles providers. As an example, you developed a custom, XML-based provider
for the membership and roles services. An XML-based provider is appropriate only for simple applications,
but you learned the most important concepts for developing a custom membership and roles provider.
These providers should conform as much as possible to the suggested interfaces so that you don’t have to
change your application when using a different provider. Furthermore, when using IIS 7.x in ASP.NET
integrated mode, you can use your custom provider to manage users and roles directly from within the IIS
7.x management console. You don’t need to fulfill any special requirements, because this is new
functionality included with IIS out of the box. You should always test your custom providers against both
the IIS 7.x management console and WAT to ensure the broadest availability of your custom providers.

P A R T 5

■ ■ ■

1099

Advanced User Interface

As you already know, one of ASP.NET’s greatest strengths is its extensible architecture. Throughout this
book, you’ve learned how to customize the way ASP.NET processes requests, reads configuration files,
and uses countless provider-based features from membership to profiles. Custom controls are one more
avenue of advancement—they allow you to build your own well-encapsulated graphical widgets that
you can drop into any page in any web application. Sometimes, the goal of a first-rate custom control is
to provide a nice wrapper around a fancy piece of HTML markup. More often, custom controls are used
to standardize a piece of page functionality and formalize the way it interacts with the page code so that
you can reuse it effortlessly.

In Chapter 27, you’ll learn how to build basic ASP.NET controls. You’ll begin with simple controls
that render their HTML from scratch. You’ll learn a host of important techniques, including mechanisms
to retain state information, support style attributes, preserve compatibility with different browsers, and
trigger postback events. Later, you’ll consider other types of custom controls, such as composite controls
that are built out of smaller pieces and derived controls that extend ASP.NET staples.

In Chapter 28, you’ll tackle a different technique for web-page design and learn how you can render
custom image content that you can then place in a web page (with the help of the familiar tag).
You’ll also learn how to streamline the process by wrapping your drawing logic in a custom control.

In Chapter 29 and Chapter 30, you’ll dive into client-side programming and see how you can outfit
your pages with JavaScript and use Ajax techniques to create more dynamic, responsive user interfaces.

Finally, in Chapter 31 you’ll consider a whole new family of web controls—the web parts that allow
you to build flexible portal-style web pages. You’ll learn how to use the existing set of ASP.NET web parts
and how to create your own reusable web parts.

C H A P T E R 27

■ ■ ■

1101

Custom Server Controls

Each type of custom control has its own advantages and disadvantages. In Chapter 15, you learned
about user controls. User controls are easier to create than custom server controls, but server controls
are far more powerful. Server controls beat user controls in two key areas:

Server controls give you complete control over the HTML you generate: In other words, you can
create a control such as the ASP.NET Calendar, which provides a single object interface but renders
itself as a complex combination of elements.

Server controls provide better design-time support: You can add them to the Toolbox in Visual
Studio and set properties and add event handlers at design time. You can even configure the
description that Visual Studio will show for each property, along with other design-time niceties.

All of ASP.NET’s web controls are server controls. In this chapter, you’ll learn how you can build

your own.

Custom Server Control Basics
Server controls are .NET classes that derive directly or indirectly from System.Web.UI.Control. The
Control class provides properties and methods that are common across all server controls (such as ID,
ViewState, and the Controls collection). Most controls don’t derive directly from Control; instead, they
derive from System.Web.UI.WebControls.WebControl, which adds a few features that help you
implement standard styles. These include properties such as Font, ForeColor, and BackColor.

Ideally, you’ll create your server controls in a separate class library project and compile the project
into a separate DLL assembly. Although you can create a custom control and place the source code
directly in the App_Code directory of a web application, this limits your ability to reuse the control in
pages written in different languages. If you place controls in a separate assembly, you’ll also have better
design-time support, which makes it easier to add them to web pages using Visual Studio.

To get a better idea of how custom controls work, the following sections demonstrate a few simple
custom control examples.

■ Tip To create a new assembly for your custom server controls, start by creating a new project in Visual
Studio by choosing File ➤ New ➤ Project. In the New Project dialog box, browse to the Visual C# ➤ Web
section. Then, choose the ASP.NET Server Control project type. The ASP.NET Server Control project template is

essentially the same as an ordinary class library assembly project, except it already has the references you

need to the ASP.NET assemblies.

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1102

Creating a Bare-Bones Custom Control
To create a basic custom control, you derive from the Control class and override the Render() method.
The Render() method receives an HtmlTextWriter object that you use to generate the HTML for the
control.

The simplest way to generate your HTML is to use the HtmlTextWriter.Write() method, which
writes a string of raw HTML into the page. Obviously, you can’t use Write() to output ASP.NET tags and
other server-side content, because you’re rendering the content for the final page just before it’s sent to
the client.

Here’s an example control that generates a simple hyperlink using the HtmlTextWriter in the
Render() method:

public class LinkControl : Control
{
 protected override void Render(HtmlTextWriter output)
 {
 output.Write(
 "Click to visit Apress");
 }
}

The HtmlTextWriter class not only lets you write raw HTML but also provides some helpful methods
to help you manage style attributes and tags. The next example presents the same control, with a couple
of minor differences. First, it renders the start tag and the end tag for the anchor separately, using the
RenderBeginTag() and RenderEndTag() methods. Second, it adds style attributes that configure how the
control will appear. Here’s the complete code:

public class LinkControl : Control
{
 protected override void Render(HtmlTextWriter output)
 {
 // Specify the URL for the upcoming anchor tag.
 output.AddAttribute(HtmlTextWriterAttribute.Href,
 "http://www.apress.com");

 // Add the style attributes.
 output.AddStyleAttribute(HtmlTextWriterStyle.FontSize, "20");
 output.AddStyleAttribute(HtmlTextWriterStyle.Color, "Blue");

 // Create the anchor tag.
 output.RenderBeginTag(HtmlTextWriterTag.A);

 // Write the text inside the tag.
 output.Write("Click to visit Apress");

 // Close the tag.
 output.RenderEndTag();

 }
}

http://www.apress.com
http://www.apress.com

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1103

You should note a few important points in this example. First, to make life easier, the example uses
several enumerations. These enumerations help avoid minor typographic mistakes that would cause
unexpected problems. The enumerations include the following:

HtmlTextWriterTag: This enumeration defines dozens of HTML tags, such as <a>, <p>, , and
many more.

HtmlTextWriterAttribute: This enumeration defines a large set of common HTML tag attributes
such as onClick, href, align, alt, and more.

HtmlTextWriterStyle: This enumeration defines 14 style attributes, including BackgroundColor,
BackgroundImage, BorderColor, BorderStyle, BorderWidth, Color, FontFamily, FontSize, FontStyle,
FontWeight, Height, and Width. All these pieces of information are joined in a semicolon-delimited
list of CSS style information, which is used to set the style attribute of the rendered tag.

When the Render() method executes, it begins by defining all the attributes that will be added to the

upcoming tag. Then when the start tag is created (using the RenderBeginTag() method), all of these
attributes are placed into the tag. The final rendered tag looks like this:

Click to visit Apress

Table 27-1 provides an overview of the key methods of the HtmlTextWriter.

Table 27-1. HtmlTextWriter Methods

Method Description

AddAttribute() Adds any HTML attribute and its value to an HtmlTextWriter output stream.
This attribute is automatically used for the next tag you create by calling
RenderBeginTag(). Instead of using the exact attribute name, you can choose
a value from the HtmlTextWriterAttribute enumeration.

AddStyleAttribute() Adds an HTML style attribute and its value to an HtmlTextWriter output
stream. This attribute is automatically used for the next tag you create by
calling RenderBeginTag(). Instead of using the exact style name, you can
choose a value from the HtmlTextWriterStyle enumeration, and it will be
rendered appropriately depending on whether the browser is an up-level or
down-level client.

RenderBeginTag() Writes the start tag for the HTML element. For example, if you are writing an
anchor tag, this writes <a>. Instead of using the exact tag name, you can
choose a value from the HtmlTextWriterTag enumeration.

RenderEndTag() Writes the end tag for the current HTML element. For example, if you are in
the process of writing an anchor tag, this writes the closing . You don’t
need to specify the tag name.

WriteBeginTag() This method is similar to the RenderBeginTag() method, except it doesn’t
write the closing > character for the start tag. That means you can call
WriteAttribute() to add more attributes to the tag. To close the start tag, you
can call Write(HtmlTextWriter.TagRightChar), which writes the closing >.

http://www.apress.com

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1104

Method Description

WriteAttribute() Writes an HTML attribute to the output stream. This must follow the
WriteBeginTag() method.

WriteEndTag() Writes the end tag for the current HTML element (the one that was last
opened using the WriteBeginTag() method).

Using a Custom Control
To use a custom control, you need to make it available to your web application. You have two choices—
you can copy the source code to the App_Code directory, or you can compile in a separate assembly,
which you will then place in the Bin directory (using Visual Studio’s Add Reference command).

For the page to have access to a custom control, you must use the Register directive, just as you did
with user controls in Chapter 15. However, this time you need to indicate slightly different information.
Not only must you include a TagPrefix, but you also need to specify the assembly file (without the DLL
extension) and the namespace where the control class is located. You don’t need to specify the
TagName, because the server control’s class name is used automatically.

Here’s an example of the Register directive:

<%@ Register TagPrefix="apress" Namespace="CustomServerControlsLibrary"
 Assembly="CustomServerControlsLibrary" %>

If the control is in the App_Code directory of the current web application, you don’t need to include
the Assembly attribute:

<%@ Register TagPrefix="apress" Namespace="CustomServerControlsLibrary" %>

You can reuse tag prefixes. In other words, it’s completely valid to map two different namespaces or
two completely different assemblies to the same tag prefix.

If you want to use a control in several pages of the same web application, ASP.NET has a helpful
shortcut—you can register the tag prefix in the web.config file like this:

<configuration>
 <system.web>
 <pages>
 <controls>
 <add tagPrefix="apress" namespace="CustomServerControlsLibrary"
 assembly="CustomServerControlsLibrary" />
 </controls>
 </pages>
 ...
 </system.web>
</configuration>

This is particularly handy if you want to standardize on a specific tag prefix. Otherwise, Visual
Studio chooses a default prefix (such as cc1 for custom control 1) when you drop a control from the
Toolbox.

Once you’ve registered the control, you can declare it with a standard control tag, as shown here:

<apress:LinkControl id="LinkControl1" runat="server"/>

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1105

Figure 27-1 shows the custom LinkControl in action.

Figure 27-1. A bare-bones server control

Custom Controls in the Toolbox
To make it easier to use your custom control, you probably want to allow it to appear in the Toolbox.
Impressively, Visual Studio has built-in Toolbox support for custom controls, provided you create them
in a separate assembly.

■ Note Remember, Visual Studio supports projectless development, which means it hides solution files away in a
user-specific directory. This means that it’s fairly easy to lose the solution file (for example, by moving the website
to another computer or renaming the website directory outside of Visual Studio). If you lose your solution file, the
next time you open your website, the custom control project won’t appear in the design environment—instead,

you’ll need to choose File ➤ Add ➤ Existing Project to get it back. To avoid this problem in a solution that has
multiple projects, you can explicitly save a solution file to a well-known location and use the solution file to open
your web application later. To do so, select the first line in the Solution Explorer (which has text such as Solution

“MyWebApp” (2 projects)), and then choose File ➤ Save [SolutionName].sln As.

Once you’ve created your project, you can define your controls. You develop your control library
project in the same way you work with any other DLL component. You can build the project at any time,
but you can’t start it directly because it isn’t an actual application.

To test your controls, you need to use them in another application. You can use two approaches.
First, you can add a reference in the same way that you add a reference to any other .NET assembly. Just
right-click your website in the Solution Explorer, and choose Add Reference. Choose the Projects tab,
pick the custom control project you’ve created, and click OK. This copies the compiled control assembly
to your Bin directory in your website, making it available to your pages.

An easier approach is to use the automatic Toolbox support in Visual Studio. When you compile a
project that contains custom server controls, Visual Studio examines each control and adds each one
dynamically to a temporary, project-specific section of the Toolbox at the top (see Figure 27-2). That
means you can easily add controls to any page. When you drop the control on the page, Visual Studio

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1106

automatically copies the assembly to the Bin directory if you haven’t already created a reference, adds
the Register directive if it’s not already present in the page, and then adds the control tag.

Figure 27-2. A custom control in the Toolbox

■ Tip As with any other type of reference in Visual Studio, every time you compile your project, the most recent
version of the referenced assembly is copied into your web application’s Bin directory. This means that if you

change and recompile a custom control after adding it to the Toolbox, you have no reason to remove and re-add it.

The only limitation of the automatic Toolbox support is that your custom controls will appear in the
Toolbox only when the custom control project is loaded in the design environment. If you want to make
a control available to any web application but you don’t want the web application developers to be able
to change your custom control code, you need another approach. In this case, it makes sense to deploy
just the compiled assembly. You can then add the controls to the Toolbox permanently so the
application developers don’t need to worry about finding the control.

To do this, right-click the Toolbox, and select Choose Items. On the .NET Framework Components
tab, click the Browse button. Then choose the custom control assembly from the file browser. The
controls will be added to the list of available .NET controls, as shown in Figure 27-3.

All checked controls will appear in the Toolbox. Note that controls aren’t added on a per-project
basis. Instead, they will remain in the Toolbox until you delete them. To remove a control, right-click it,
and select Delete. This action removes the icon only, not the referenced assembly.

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1107

Visual Studio gives you quite a bit of basic design-time support. For example, after you add a custom
control to a web page, you can modify its properties in the Properties window (they will appear under
the Misc group) and attach event handlers.

■ Tip You can extend the design-time support of your control using special .NET attributes, control designer
classes, and other techniques. However, design-time programming is complex, it’s out of the scope of this
chapter, and it’s often best left to developers who want to create and sell custom controls packages. If you want to

learn more, you can get started with the “Design-Time Support” chapter from the previous edition of this book,
which is provided as downloadable bonus content on the web page for this book. See the introduction for more

details.

Figure 27-3. Adding a custom control to the Toolbox

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1108

Creating a Web Control That Supports Style Properties
The previous custom control example doesn’t allow the web page to customize the control’s
appearance. The LinkControl doesn’t provide any properties for setting foreground or background
colors, the font, or other attributes of the HTML tag that you generate. In other words, the LinkControl is
in complete control of its rendering and doesn’t allow outside code (the web page) to alter the HTML it
generates. To make the LinkControl more flexible, you need to explicitly add public properties for
various formatting-related details. You then need to read these properties in the Render() method and
generate the appropriate HTML code.

Of course, style properties are a basic part of infrastructure that many HTML controls need to use.
Ideally, all controls should follow a single, streamlined model for style information and not force custom
control developers to write this generic functionality themselves. ASP.NET does this with the WebControl
base class (in the System.Web.UI.WebControls namespace). Every web control that’s included with
ASP.NET derives from WebControl, and you can derive your custom controls from it as well.

Not only does the WebControl class include basic style-related properties such as Font, ForeColor,
BackColor, and so on, but it also renders them automatically in the control tag. Here’s how it works: the
WebControl assumes that it should add the attributes to a single HTML tag, called the base tag. If you’re
writing multiple elements, the attributes are added to the outermost element that contains the other
elements. You specify the base tag for your web control in the constructor.

Finally, you don’t override the Render() method. The WebControl already includes an
implementation of Render() that farms out the work to the following three methods:

RenderBeginTag(): This method writes the opening tag for your control, along with the attributes
you’ve specified.

RenderContents(): This method writes everything between the start and end tag, which can include
text content or other HTML tags. This is the method you’ll override most often to write your custom
control content.

RenderEndTag(): This method writes the closing tag for your control.

Of course, you can change this behavior by overriding the Render() method, if needed. But if this

basic framework suits your needs, you’ll be able to accomplish quite a bit with little custom code.
The next example demonstrates a new link control that derives from WebControl and thereby gains

automatic support for style properties.

public class LinkWebControl : WebControl
{ ... }

The default constructor calls the WebControl constructor. More than one version of the WebControl
constructor exists—this code uses the version that allows you to specify a base control tag. In this
example, the base control tag is the <a> anchor, as shown here:

public LinkWebControl() : base(HtmlTextWriterTag.A)
{}

The LinkWebControl constructor doesn’t require any actual code. It’s just important that you use
this opportunity to call the WebControl constructor to set the base control tag. If you use the default
(zero-parameter) WebControl constructor, a tag is used automatically. You can then render
additional HTML inside this tag, which ensures that all elements will have the same style
attributes.

The LinkWebControl also defines two properties that allow the web page to set the text and the
target URL:

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1109

private string text;
public string Text
{
 get {return text;}
 set {text = value;}
}

private string hyperLink;
public string HyperLink
{
 get {return hyperLink;}
 set
 {
 if (value.IndexOf("http://") == -1)
 {
 throw new ApplicationException("Specify HTTP as the protocol.");
 }
 else
 {
 hyperLink = value;
 }
 }
}

You could set the text and hyperLink variables to empty strings when you define them. However,
this example overrides the OnInit() method to demonstrate how you can initialize a control
programmatically:

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);

 // If no values were set in the control tag, apply the defaults now.
 if (hyperLink == null)
 hyperLink = "http://www.google.com";
 if (text == null)
 text = "Click to search";
}

The LinkWebControl presents a minor challenge. To successfully create an <a> tag, you need to
specify a target URL and some text. The text is placed between the start and end tags. However, the URL
is added as an attribute (named href) to the start tag. As you’ve already learned, the WebControl
manages the attributes for the start tag automatically. Fortunately, the WebControl class gives you the
ability to add extra tags by overriding the method AddAttributesToRender(), as shown here:

protected override void AddAttributesToRender(HtmlTextWriter output)
{
 output.AddAttribute(HtmlTextWriterAttribute.Href, HyperLink);
 base.AddAttributesToRender(output);
}

Note that whenever a custom control overrides a method, it should call the base class
implementation using the base keyword. This ensures that you don’t inadvertently suppress any code

http://www.google.com

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1110

that needs to run. Often, all the base method does is fire a related event, but that’s not always the case.
For example, if you override RenderBeginTag() and don’t call the base implementation, the rendering
code will fail with an unhandled exception because the tag isn’t opened.

Finally, the RenderContents() method adds the text inside the anchor:

protected override void RenderContents(HtmlTextWriter output)
{
 output.Write(Text);
 base.RenderContents(output);
}

Custom Server Controls in Visual Studio

When you create an ASP.NET server control project, it begins with one server control (named, rather
unhelpfully, WebCustomControl1). You can create additional controls by adding new code files and writing
the code by hand, as in the previous example. Or, you can create a new control with a bit more help from
Visual Studio by choosing Project ➤ Add New Item, browsing to the Visual C# Items ➤ Web section, and
choosing the ASP.NET Server Control template.

There’s one important difference between the controls you create by hand and the ones Visual Studio
generates. Controls created by Visual Studio include some automatically generated boilerplate code:

• The file begins with a number of using statements that import useful ASP.NET
namespaces.

• The control class adds a Text property, which is stored in view state (a technique
you’ll start using later in this chapter).

• The control class overrides the RenderContents() method to write out the contents
of the Text property.

• The control class declaration and the Text property are decorated with attributes
that configure design-time support. (For example, the control class declaration
begins with a DefaultProperty attribute that indicates what property Visual Studio
should highlight in the Properties window when you select the control at design
time.)

It’s quite easy to add these details without Visual Studio’s help, so don’t be afraid to begin with a blank
code file and write your custom control class by hand (as many control developers do).

Note that the code doesn’t use the style properties. Instead, ASP.NET applies these automatically
when it renders the base tag.

Now that you have created the control, you can use it in any ASP.NET web page. You can set the style
properties in code or in the control tag. You can even use the Properties window. Here’s an example:

<apress:LinkWebControl id="LinkWebControl1" runat="server"
 BackColor="#FFFF80" Font-Names="Verdana" Font-Size="Large"
 ForeColor="#C00000" Text="Click to visit Apress"
 HyperLink="http://www.apress.com"></apress:LinkWebControl>

http://www.apress.com

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1111

The HyperLink and Text attributes are automatically mapped to the corresponding public
properties of the custom control. The same is true of the style-related properties, which are defined in
the base WebControl class.

Figure 27-4 shows this control in a web browser.

Figure 27-4. A custom control that supports style properties

■ Tip As a general guideline, you should derive from the WebControl class if your control needs to add any visible
content to the page. Of course, exceptions exist. For example, if you know you want only a subset of the UI

features or you want to combine multiple controls, which will each have their own specific style properties, you
might want to derive from Control instead of WebControl. However, the basic rule of thumb that the .NET class

library follows is always to derive from WebControl, even if some of the properties aren’t relevant.

The Rendering Process
The previous example introduced several new rendering methods. Before going any further, it’s a good
idea to look at how they all work together.

The starting point for the rendering process is the RenderControl() method. The RenderControl()
method is the public rendering method that ASP.NET uses to render each control on a web page to
HTML. You should not override RenderControl(). Instead, RenderControl() calls the protected Render()
method that starts the rendering process. You can override Render(), as demonstrated in the first
example in this chapter. However, if you override Render() and don’t call the base implementation of the
Render() method, none of the other rendering methods will fire.

The base implementation of the Render() method calls RenderBeginTag(), RenderContents(), and
then RenderEndTag(), as you saw in the previous example. However, this has one more twist. The base
implementation of the RenderContents() method calls another rendering method—RenderChildren().
This method loops through the collection of child controls in the Controls collection and calls the
RenderControl() method for each individual control. By taking advantage of this behavior, you can easily
build a control from other controls. This approach is demonstrated later in this chapter with composite
controls (see the section “Composite Controls”).

So, which rendering method should you override? If you want to replace the entire rendering
process with something new or if you want to add HTML content before your base control tag (such as a
block of JavaScript code), you can override Render(). If you want to take advantage of the automatic style

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1112

attributes, you should define a base tag (by specifying a tag name parameter such as
HtmlTextWriterTag.A when you call the base constructor) and then override RenderContents(). If you
want to prevent child controls from being displayed or customize how they are rendered (for example,
by rendering them in the reverse order), you can override RenderChildren().

Figure 27-5 summarizes the rendering process.

Figure 27-5. The control rendering methods

It’s worth noting that you can call RenderControl() yourself to examine the HTML output for a
control. In fact, this technique can be a convenient shortcut when debugging. Here’s an example that
gets the rendered HTML for a control and displays it in a label on a web page:

// Create the in-memory objects that will catch the rendered output.
StringWriter writer = new StringWriter();
HtmlTextWriter output = new HtmlTextWriter(writer);

// Render the control to an in-memory string.
LinkWebControl1.RenderControl(output);

// Display the HTML (and encode it properly so that
// it appears as text in the browser).
lblHtml.Text = "The HTML for LinkWebControl1 is
<blockquote>" +
 Server.HtmlEncode(writer.ToString()) + "</blockquote>";

Figure 27-6 shows the page with the control and its HTML.

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1113

Figure 27-6. Getting the HTML representation of a control

■ Tip This technique isn’t just for debugging. You could also use it to simplify your rendering code. For example,
you might find it easier to create and configure an HtmlTable control and then call its RenderControl() method,

rather than write tags such as <table>, <td>, and <tr> directly to the output stream.

Dealing with Different Browsers
Because of the wide variation in the features supported by different browsers, it’s a challenge to create
applications that work across all the browsers and still provide the best possible user experience.
ASP.NET provides a few features that can help you write the correct type of markup for different devices.

The HtmlTextWriter
First, ASP.NET makes a broad distinction in the type of markup that a client sees so that some clients get
HTML 3.2, others get HTML 4.0, and others get XHTML 1.1. You might not even realize that this
differentiation is taking place.

It all works through the HtmlTextWriter class, which has several derived classes. HtmlTextWriter
itself is designed to write HTML 4.0 markup. But its derived classes are different—so, the
Html32TextWriter writes HTML 3.2 markup for down-level clients, and the XhtmlTextWriter writes
XHTML 1.1. Because all these classes derive from HtmlTextWriter, you’re free to use the same basic set
of HtmlTextWriter methods in your rendering code. However, the implementations of many of these
methods differ, so depending on which object you get, the output might not be the same.

For example, if you use this rendering code:

output.RenderBeginTag(HtmlTextWriterTag.Div);

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1114

you expect the following:

<div>

But here’s the result you’ll see with the Html32TextWriter (assuming
Html32TextWriter.ShouldPerformDivTableSubstitution is true):

<table cellpadding="0" cellspacing="0" border="0" width="100%"><tr><td>

On the other hand, if you use the following code, your rendered output is completely inflexible and
never changes, regardless of the capabilities of the target device:

output.Write("<div>");

Similarly, if you derive from WebControl to get automatic support for style properties, this support
is implemented differently depending on the renderer.

The lesson here is that you should avoid writing raw HTML (using the Write() method) and instead
use higher-level methods (such as RenderBeginTag(), RenderEndTag(), and so on) wherever possible.
That way, your controls are more flexible. ASP.NET will create and pass in the correct HtmlTextWriter,
based on the capabilities of the browser that’s requesting the page, and your HTML markup can adapt
itself. This issue isn’t quite as critical as it was in the past, because the most commonly used browsers
all support XHTML. However, it’s still good design, and it ensures your code will continue to work
flawlessly if ASP.NET is updated to support newer types of rendering that don’t have the same broad
range of support.

Browser Detection
So, how does ASP.NET decide which type of text writer suits a particular client? It’s all based on the user-
agent string that the client supplies when it makes a request. ASP.NET tries to match this string against a
large catalog of known browsers. You can find this catalog in
c:\[WinDir]\Microsoft.NET\Framework\[Version]\Config\Browsers. There you’ll see a number of
.browser files. Each one is an XML file that maps a user-agent string to a set of capabilities and a text
writer.

Every .browser file has this basic structure:

<browsers>
 <browser id="..." parentID="...">
 <identification>
 <!-- Here is one regular expression that attempts to match the
 user-agent string.
 There may also be multiple nonmatches, which disqualify
 user-agent strings that otherwise match the desired pattern. -->
 <userAgent match="..." />
 <userAgent nonMatch="..." />
 </identification>

 <capabilities>
 <!-- Assuming the user-agent string matches, here are the
 capabilities ASP.NET should assume that the client has. -->
 </capabilities>

 <controlAdapters>
 <!-- For this client, some controls may need nondefault rendering
 of specific controls. This is made possible through adapters.

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1115

 Here is a list of all the control-specific adapters ASP.NET
 should use. -->
 </controlAdapters>
 </browser>

 <!-- More browsers can be defined here. -->
</browsers>

Further complicating the model is that you can create subcategories of browsers. To do this, the
<browser> element includes the parentID attribute, which refers to another <browser> definition from
which it should inherit settings.

You probably think this is a somewhat brittle system—and unfortunately, it is. You have no
guarantee that a browser won’t appear with a browser string that doesn’t match any of the known
patterns or that a browser won’t submit the wrong string. However, this is a necessary compromise in
the loosely coupled world of the Web, and the ASP.NET team has worked hard to make sure the browser
information that ships with ASP.NET 4 is much more reliable and up-to-date than the information from
any earlier versions of ASP.NET. You’re also free to customize the browser presets completely or even
add new definitions for different user-agent strings.

Browser Properties
You can detect the current browser configuration using the Browser property of the HttpRequest object,
which returns a reference to an HttpBrowserCapabilities object. (You can also get the user-agent string
from the UserAgent property.) When a client makes an HTTP request, an HttpBrowserCapabilities object
is created and filled with information about the capabilities of the browser based on the corresponding
.browser file. The information provided in the HttpBrowserCapabilities class includes the kind of
browser and its version, whether scripting support is available on the client side, and so on. By detecting
the capabilities of the browser, you can choose to customize your output to provide different behaviors
on different browsers. This way, you can fully exploit the potential capabilities of up-level clients without
breaking down-level clients.

Table 27-2 summarizes the properties of HttpBrowserCapabilities class.

Table 27-2. HttpBrowserCapabilities Properties

Property Description

Browser Gets the browser string that was sent with the request in the user-agent
header.

MajorVersion Gets the major version number of the client browser. (For example, this
returns 4 for version 4.5.)

MinorVersion Gets the minor version number of the client browser. (For example, this
returns 5 for version 4.5.)

Type Gets the name and the major version number of the client browser.

Version Gets the full version number of the client browser.

Beta Returns true if the client browser is a beta release.

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1116

Property Description

AOL Returns true if the client is an AOL (America Online) browser.

Platform Provides the name of the operating system platform that the client uses.

Win16 Returns true if the client is a Win16-based computer.

Win32 Returns true if the client is a Win32-based computer.

ClrVersion Provides the highest version number of the .NET CLR installed on the client
computer. You can also use the GetClrVersions() method to retrieve
information about all the installed CLR versions. This setting is significant
only if you have embedded .NET Windows Forms controls in your web page.
Client browsers don’t need the CLR to run ordinary ASP.NET web pages.

ActiveXControls Returns true if the client browser supports ActiveX controls.

BackgroundSounds Returns true if the client browser supports background sounds.

Cookies Returns true if the client browser supports cookies.

Frames Returns true if the client browser supports frames.

Tables Returns true if the client browser supports HTML tables.

JavaScript Indicates whether the client browser supports JavaScript. This is considered
obsolete, and it’s recommended that you test the EcmaScriptVersion
property instead.

VBScript Returns true if the client browser supports VBScript.

JavaApplets Returns true if the client browser supports embedded Java applets.

EcmaScriptVersion Gets the version number of ECMA script that the client browser supports.

MSDomVersion Gets the version of Microsoft HTML DOM that the client browser supports.

Crawler Returns true if the client browser is a web crawler search engine.

The HttpBrowserCapabilities class has one glaring limitation—it’s limited to evaluating the expected

built-in functionality of the browser. It does not evaluate the current state of a browser’s functionality.
For example, imagine you are evaluating the client-side JavaScript support provided by the browser. If
the requesting browser is Internet Explorer 7, this will return true since the browser supports client-side
JavaScript support. However, if the user has the scripting capabilities turned off, the JavaScript property
still returns true. In other words, you don’t learn what the browser is capable of doing, just what it should
be capable of doing. In fact, all ASP.NET really does is read the user-agent information that’s passed
from the browser to the server during the request and compare this string against the predefined user-
agent information in the .browser files. It’s the .browser files that list the corresponding browser

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1117

capabilities, such as whether the browser supports scripting, styles, frames, and so on. Unfortunately,
the client just doesn’t send any information about how the browser is configured.

This situation leaves you with two options. You can rely on the HttpBrowserCapabilities class to tell
you whether certain browser features should be available and base your programming logic on that
information. In this case, you may need to tolerate the occasional error. If you need a more robust
approach, you need to write your own code to actually test the support for the features you need. For
example, with cookies you could (over two web pages) attempt to set a cookie and then attempt to
read it. If the second test doesn’t succeed, cookie support isn’t enabled. You could use similar
workarounds to check for other features such as JavaScript support. For example, you could add a piece
of JavaScript code to the page that writes to a hidden form variable and then check it on the server.
These steps are awkward and messy, but they’re the only way to be absolutely certain of specific browser
features. Unfortunately, when creating custom controls, you usually don’t have the luxury of performing
these tests.

Overriding Browser Type Detection
ASP.NET gives you the ability to explicitly set how a page is rendered instead of relying on automatic
browser detection. The trick is to set the Page.ClientTarget property either programmatically (in the
Page.PreInit stage) or declaratively (using the Page directive). When you set the ClientTarget property,
automatic browser detection is disabled, and ASP.NET uses the browser setting you specified for the
remainder of the request.

The only trick to using the ClientTarget property is that you can use only defined aliases. Each alias
is mapped to a specific user-agent string (and the browser settings for that user agent are declared in the
corresponding .browser file).

For example, imagine you want to test how your page will render with a legacy browser such as
Internet Explorer 5. First, you need to create an alias in the <clientTarget> section that maps the right
user agent string to any name you pick. In this case, the alias is ie5:

<configuration>
 <system.web>
 <clientTarget>
 <add alias="ie5" userAgent="Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)" />
 </clientTarget>
 ...
 </system.web>
</configuration>

Now you can force a page to use this alias and render itself as though Internet Explorer 5 were
making the request by setting the ClientTarget attribute in the Page directive. Here’s how:

<%@ Page ClientTarget="ie5" ... />

Adaptive Rendering
Ideally, you’ll be able to render markup that works on all major browsers. But in some cases, you may
find yourself writing browser-specific rendering logic. At its worst, that looks like this:

protected override void RenderContents(HtmlTextWriter output)
{
 base.RenderContents(output);

 if (Page.Request.Browser.EcmaScriptVersion.Major >= 1)

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1118

 {
 output.Write("<i>You support JavaScript.</i>
");
 }
 if (Page.Request.Browser.Browser == "IE")
 {
 output.Write("<i>Output configured for IE.</i>
");
 }
 else if (Page.Request.Browser.Browser == "Netscape")
 {
 output.Write("<i>Output configured for Netscape.</i>
");
 }
}

A better approach is to use the control to output standard rendering and create a control adapter
that uses specialized rendering for a specific browser. The control adapter model makes it possible to
create a single control that can be adapted for multiple types of devices. Best of all, because of the
separation between controls and control adapters, third-party developers can write adapters for existing
controls, allowing them to work with other platforms.

You can link any control to an adapter through the .browser file. For example, you could create a
FirefoxSlideMenuAdapter that changes the rendered code for your SlideMenu control so that it works
better with Firefox. You would then edit the mozilla.browser file to specifically indicate that this adapter
should be used for your control with all Firefox browsers.

The control adapter works by plugging into the rendering process. ASP.NET calls the adapter at each
state of the web control’s life cycle, which allows the adapter to adjust the rendering process and handle
other details, such as device-specific view state logic.

To create an adapter, derive a new class from System.Web.UI.Adapters.ControlAdapter (if your
custom control derives from Control) or System.Web.UI.WebControls.Adapters.WebControlAdapter (if
your custom control derives from WebControl). You can then implement the functionality you want by
overriding methods. Each method corresponds to a method in the custom control class, and when you
override the method in a control adapter, the control adapter method is used instead of the control
method.

■ Note As with server controls, you should place your control adapters in a separate DLL assembly. If your
adapters are relatively simple, you may choose to place them in the same assembly that contains your controls.

However, if your adapters are complex and they’re designed to support a specialized usage scenario, you might

choose to place them in a dedicated assembly of their own.

For example, in the ControlAdapter you can override methods such as OnInit(), Render(), and
RenderChildren(). In the WebControlAdapter you can also override RenderBeginTag(), RenderEndTag(),
and RenderContents(). Here’s an example:

public class LinkControlAdapter : ControlAdapter
{
 // Replace the ordinary rendering logic so it uses different color
 // and doesn't change the font.
 protected override void Render(HtmlTextWriter output)
 {
 // Specify the URL for the upcoming anchor tag.

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1119

 output.AddAttribute(HtmlTextWriterAttribute.Href,
 "http://www.apress.com");

 // Add the style attributes.
 output.AddStyleAttribute(HtmlTextWriterStyle.Color, "Red");

 // Create the anchor tag.
 output.RenderBeginTag(HtmlTextWriterTag.A);
 output.Write("Click to visit Apress");
 output.RenderEndTag();
 }
}

Control State and Events
ASP.NET uses web controls to create an object-oriented layer of abstraction over the lower-level details
of HTML and HTTP. Two cornerstones of this abstraction are view state (the mechanism that lets you
store information between requests) and postback (the technique wherein a web page posts back to the
same URL with a collection of form data). To create realistic server controls, you need to know how to
create classes that plug into both of these parts of the web-page infrastructure.

View State
Controls need to store information in state just like your web pages. Fortunately, all controls provide a
ViewState property that you can use to store and retrieve information just as you do with a web page.
You’ll need to use the ViewState collection to restore private information after a postback.

A common design pattern with web controls is to access the ViewState collection in your property
procedures. For example, consider the LinkWebControl presented earlier. Currently, this control doesn’t
use view state, which means that if you change its Text and HyperLink properties programmatically, the
changes will be lost in subsequent postbacks. (This isn’t true of the style properties such as Font,
ForeColor, and BackColor, which are stored in view state automatically.) To change the LinkWebControl
to ensure that state information is retained for the Text and HyperLink properties, you need to remove
the text and hyperLink fields from the LinkButton class and rewrite the Text and HyperLink properties as
shown here:

public string Text
{
 get {return (string)ViewState["Text"];}
 set {ViewState["Text"] = value;}
}

public string HyperLink
{
 get {return (string)ViewState["HyperLink"];}
 set
 {
 if (value.IndexOf("http://") == -1)
 {
 throw new ApplicationException("Specify HTTP as the protocol.");
 }
 else

http://www.apress.com

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1120

 {
 ViewState["HyperLink"] = value;
 }
 }
}

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);
 if (ViewState["HyperLink"] == null)
 ViewState["HyperLink"] = "http://www.apress.com";

 if (ViewState["Text"] == null)
 ViewState["Text"] = "Click here to visit Apress";
}

You can also request that the page encrypts the view state information by calling
Page.RegisterRequiresViewStateEncryption() when your control initializes. This is useful if you need to
store potentially sensitive data.

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);
 Page.RegisterRequiresViewStateEncryption();
}

It’s important to realize that the ViewState property of a control is separate from the ViewState
property of the page. In other words, if you add an item in your control code, you can’t access it in your
web page, and vice versa. When the page is rendered to HTML, ASP.NET takes the view state of the page
and all the combined controls and then merges it into a special tree structure.

Although view state is easy to use in a control, you have to consider a couple of issues. First, you
shouldn’t store large objects because they will reduce page transmission times. For example, the
ASP.NET controls that support data binding don’t store the DataSource property in view state. They
simply hold it in memory until you call the DataBind() method. This makes programming a little more
awkward—for example, it forces you to rebind data controls after every postback—but it ensures that
pages don’t become ridiculously bloated.

Another consideration with view state is that it’s at the mercy of the containing page. If the page sets
the EnableViewState property of your control to false, all your view state information will be lost after
each postback. If you have critical information that you require in order for your control to work, you
should store it in control state instead (see the next section).

■ Note Even if the EnableViewState property is set to false, the ViewState collection will still be accessible to your
code. The only difference is that the information you place in that collection will be discarded once the control is

finished processing and the page is rendered.

Finally, keep in mind that you can’t assume data is in the ViewState collection. If you try to retrieve
an item that doesn’t exist, you’ll run into a NullReferenceException. To prevent this problem, you should
check for null values or set default view state information in the OnInit() method or the custom control

http://www.apress.com

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1121

constructor. For example, the LinkWebControl won’t run into null references because it uses OnInit() to
set initial view state values.

■ Note Although the WebControl provides a ViewState property, it doesn’t provide properties such as Cache,
Session, and Application. However, if you need to use these objects to store or retrieve data, you can access them

through the static HttpContext.Current property.

Occasionally, you might want more flexibility to customize how view state information is stored.
You can take control by overriding the LoadViewState() and SaveViewState() methods. The
SaveViewState() method is always called before a control is rendered to HTML. You can return a single
serializable object from this method, which will be stored in view state. Similarly, the LoadViewState()
method is called when your control is re-created on subsequent postbacks. You receive the object you
stored as a parameter, and you can now use it to configure control properties. In most simple controls,
you’ll have no reason to override these methods. However, sometimes it does become useful, such as
when you’ve developed a more compact way of storing multiple pieces of information in view state
using a single object or when you’re deriving from an existing control and you want to prevent it from
saving its state. You also need this method when you’re managing how a complex control saves the state
of nested child controls. You’ll see an example of this last technique at the end of this chapter

Control State
ASP.NET includes a feature called control state for storing the data a control is currently using.
Technically, control state works in the same way as view state—it stores serializable information that’s
stuffed into a hidden field when the page is rendered. In fact, ASP.NET puts the view state information
and the control state information into the same hidden field. The difference is that control state is not
affected by the EnableViewState property. Even if this is set to false, your control can still store and
retrieve information from control state.

■ Note The LinkWebControl doesn’t require control state. If the developer sets EnableViewState to true, it’s

probably because the developer expects to set the HyperLink and Text properties in every postback.

Because control state cannot be disabled, you should carefully restrict the amount of information
you store. Usually, it should be limited to something critical such as a current page index or a data key
value. To use control state, you must begin by overriding the OnInit() method and call
Page.RegisterRequiresControlState() to signal that your control needs to access control state.

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);
 Page.RegisterRequiresControlState(this);
}

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1122

Unlike view state, you can’t access control state directly through a collection. (This limitation is
likely in place to prevent developers from overusing control state when view state is better suited.)
Instead, you must override two methods: SaveControlState() and LoadControlState().

These methods use a slightly unusual pattern. The basic idea is that you want to take any control
state that has been serialized by the base class and combine that with an object that contains your new
serializable object. You can accomplish this with the System.Web.Pair class, as shown here:

string someData;

protected override object SaveControlState()
{
 // Get the state from the base class.
 object baseState = base.SaveControlState();

 // Combine it with the state object you want to store,
 // and return final object.
 return new Pair(baseState, someData);
}

This technique allows you to store only a single object. If you need to store several pieces of
information, consider making a custom class that encapsulates all these details (and make sure it
includes the Serializable attribute, as discussed in Chapter 6). Alternatively, you can create a chain of
Pair objects:

private string stringData;
private int intData;

protected override object SaveControlState()
{
 // Get the state from the base class.
 object baseState = base.SaveControlState();

 // Combine it with the state objects you want to store,
 // and return final object.
 Pair pair1 = new Pair(stringData, intData);
 Pair pair2 = new Pair(baseState, pair1);
 return pair2;
}

Unfortunately, this approach quickly becomes confusing.
In the LoadControlState(), you pass on the base class control state and then cast your part of the

Pair object to the appropriate type:

protected override void LoadControlState(object state)
{
 Pair p = state As Pair;
 if (p != null)
 {
 // Give the base class its state (from p.First).
 base.LoadControlState(p.First);

 // Now you can process the state you saved (from p.Second).
 Pair pair1 = p.Second;

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1123

 stringData = (string)pair1.First
 intData = (int)pair2.Second;
 }
}

Postback Data and Change Events
View state and control state help you keep track of your control’s contents, but they’re not enough for
input controls. That’s because input controls have an additional ability—they allow users to change their
data. For example, consider a text box that’s represented as an <input> tag in a form. When the page
posts back, the data from the <input> tag is part of the information in the control collection. The
TextBox control needs to retrieve this information and update its state accordingly.

To process the data that’s posted to the page in your custom control, you need to implement the
IPostBackDataHandler interface. By implementing this interface, you indicate to ASP.NET that when a
postback occurs, your control needs a chance to examine the postback data. Your control will get this
opportunity regardless of which control actually triggers the postback.

The IPostBackDataHandler interface defines two methods:

LoadPostData(): ASP.NET calls this method when the page is posted back, before any control events
are raised. It allows you to examine the data that’s been posted back and update the state of the
control accordingly. However, you shouldn’t fire change events at this point, because other controls
won’t be updated yet.

RaisePostDataChangedEvent(): After all the input controls on a page have been initialized,
ASP.NET gives you the chance to fire a change event, if necessary, by calling the
RaisePostDataChangedEvent() method.

The best way to understand how these methods work is to examine a basic example. The next

control emulates the basic TextBox control. Here’s the basic control definition:

public class CustomTextBox : WebControl, IPostBackDataHandler
{ ... }

As you can see, the control inherits from WebControl and implements IPostBackDataHandler.
The control requires only a single property, Text. The Text is stored in view state and initialized to an

empty string in the control constructor. The constructor also sets the base tag to <input>.

public CustomTextBox() : base(HtmlTextWriterTag.Input)
{
 Text = "";
}

public string Text
{
 get {return (string)ViewState["Text"];}
 set {ViewState["Text"] = value;}
}

Because the base tag is already set to <input>, there’s little extra rendering work required. You can
handle everything by overriding the AddAttributesToRender() method and adding a type attribute that
indicates the <input> control represents a text box and a value attribute that contains the text you want
to display in the text box, as follows:

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1124

protected override void AddAttributesToRender(HtmlTextWriter output)
{
 output.AddAttribute(HtmlTextWriterAttribute.Type, "text");
 output.AddAttribute(HtmlTextWriterAttribute.Value, Text);
 output.AddAttribute("name", this.UniqueID);
 base.AddAttributesToRender(output);
}

You must also add the UniqueID for the control using the name attribute. That’s because ASP.NET
matches this string against the posted data. If you don’t add the UniqueID, the LoadPostData() method
will never be called, and you won’t be able to retrieve posted data.

■ Tip Alternatively, you can call the Page.RegisterRequiresPostback() method in the OnInit() method of your
custom control. In this case, ASP.NET will add the unique ID if you don’t explicitly render it, ensuring that you can

still receive the postback.

All that’s left is to implement the IPostBackDataHandler methods to give the control the ability to
respond to user changes.

The first step is to implement the LoadPostData() method. This method uses two parameters. The
second parameter is a collection of values posted to the page. The first parameter is the key value that
identifies the data for the current control. Thus, you can access the data for your control using syntax
like this:

string postedValue = postData[postDataKey];

The LoadPostData() also needs to tell ASP.NET whether a change event is required. You can’t fire an
event at this point, because the other controls may not be properly updated with the posted data.
However, you can tell ASP.NET that a change has occurred by returning true. If you return true, ASP.NET
will call the RaisePostDataChangedEvent() method after all the controls are initialized. If you return
false, ASP.NET will not call this method.

Here’s the complete code for the LoadPostData() method in the CustomTextBox:

public bool LoadPostData(string postDataKey, NameValueCollection postData)
{
 // Get the posted value and the most recent view state value.
 string postedValue = postData[postDataKey];
 string viewstateValue = Text;

 // If the value changed, then reset the value of the text property
 // and return true so the RaisePostDataChangedEvent will be fired.
 if (viewstateValue != postedValue)
 {
 Text = postedValue;
 return true;
 }
 else
 {
 return false;
 }
}

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1125

The RaisePostDataChangedEvent() has the relatively simple task of firing the event. However, most
ASP.NET controls use an extra layer, whereby the RaisePostDataChangedEvent() calls an OnXxx()
method and the OnXxx() method actually raises the event. This extra layer gives other developers
the ability to derive a new control from your control and alter its behavior by overriding the
OnXxx() method.

Here’s the remaining code:

public event EventHandler TextChanged;

public void RaisePostDataChangedEvent()
{
 // Call the method to raise the change event.
 OnTextChanged(new EventArgs());
}

protected virtual void OnTextChanged(EventArgs e)
{
 // Check for at least one listener, and then raise the event.
 if (TextChanged != null)
 TextChanged(this, e);
}

Figure 27-7 shows a sample page that tests the CustomTextBox control and responds to its event.

Figure 27-7. Retrieving posted data in a custom control

Triggering a Postback
By implementing IPostBackDataHandler, you’re able to participate in every postback and retrieve the
posted data that belongs to your control. But what if you want to trigger a postback? The simplest
example of such a control is the Button control. Here, the support is automatic, because according to the
HTML Forms standard, a submit button always posts back the page. However, many other rich web
controls—including the Calendar and GridView—allow you to trigger a postback by clicking an element
or a link somewhere in the rendered HTML. The support for this behavior is provided through another
ASP.NET mechanism: a JavaScript function named __doPostBack(). The __doPostBack() function
accepts two parameters: the name of the control that’s triggering the postback and a string representing
additional postback data.

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1126

ASP.NET makes it easy to access the __doPostBack() function with the
Page.ClientScript.GetPostBackEventReference() method. This method creates a reference to the client-
side __doPostBack() function, which you can then render into your control. Usually, you’ll place this
reference in the onClick attribute of one of the HTML elements in your control. That way, when that
HTML element is clicked, the __doPostBack() function is triggered. Of course, JavaScript provides other
attributes that you can use, some of which you’ll see in Chapter 29.

The best way to see postbacks in action is to create a simple control. The following example
demonstrates a clickable image. When clicked, the page is posted back without any additional data.

This control is based on the tag and requires just a single property:

public CustomImageButton() : base(HtmlTextWriterTag.Img)
{
 ImageUrl = "";
}

public string ImageUrl
{
 get {return (string)ViewState["ImageUrl"];}
 set {ViewState["ImageUrl"] = value;}
}

The only customization you need to do is add a few additional attributes to render. These include
the unique control name, the image URL, and the onClick attribute that wires the image up to the
__doPostBack() function, as follows:

protected override void AddAttributesToRender(HtmlTextWriter output)
{
 output.AddAttribute("name", UniqueID);
 output.AddAttribute("src", ImageUrl);
 output.AddAttribute("onClick",
 Page.ClientScript.GetPostBackEventReference(this, String.Empty));
}

This is enough to trigger the postback, but you need to take additional steps to participate in the
postback and raise an event. This time, you need to implement the IPostBackEventHandler interface.
This interface defines a single method named RaisePostBackEvent():

public class CustomImageButton : WebControl, IPostBackEventHandler
{ ... }

When the page is posted back, ASP.NET determines which control triggered the postback (by
looking at each control’s UniqueID property), and if that control implements IPostBackEventHandler,
ASP.NET then calls the RaisePostBackEvent() method with the event data. At this point, all the controls
on the page have been initialized, and it’s safe to fire an event, as shown here:

public event EventHandler ImageClicked;

public void RaisePostBackEvent(string eventArgument)
{
 OnImageClicked(new EventArgs());
}

protected virtual void OnImageClicked(EventArgs e)
{

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1127

 // Check for at least one listener, and then raise the event.
 if (ImageClicked != null)
 ImageClicked(this, e);
}

Figure 27-8 shows a sample page that tests the CustomImageButton control and responds to its
event.

Figure 27-8. Triggering a postback in a custom control

This control doesn’t offer any functionality you can’t already get with existing ASP.NET web
controls, such as the ImageButton. However, it’s a great starting point for building something that’s
much more useful. In Chapter 29, you’ll see how to extend this control with JavaScript code to create a
rollover button—something with no equivalent in the .NET class library.

■ Note Rather than posting back the entire page, you can use a callback to fetch some specific information from

the server. Callbacks are described in Chapter 29.

Extending Existing Web Controls
In many situations, you don’t need to create a new control from scratch. Some of the functionality
might already exist in the basic set of ASP.NET web controls. Because all ASP.NET controls are
ordinary classes, you can use their functionality with basic object-oriented practices such as
composition (creating a class that uses instances of other classes) and inheritance (creating a class
that extends an existing class to change its functionality). In the following sections, you’ll see how
both tasks apply to custom control design.

Composite Controls
So far you’ve seen a few custom controls that programmatically generate all the HTML code they need
(except for the style properties, which can be inherited from the WebControl class). If you want to write a
series of controls, you need to output all the HTML tags, one after the other. Fortunately, ASP.NET
includes a feature that can save you this work by allowing you to build your control class out of other,
existing web controls.

The basic technique is to create a control class that derives from
System.Web.UI.WebControls.CompositeControl (which itself derives from WebControl). Then, you

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1128

must override the CreateChildControls() method to add the child controls. At this point, you can create
one or more control objects, set their properties and event handlers, and finally add them to the
Controls collection of the current control. The best part about this approach is that you don’t need to
customize the rendering code at all. Instead, the rendering work is delegated to the constituent server
controls. You also don’t need to worry about details such as triggering postbacks and getting postback
data, because the child controls will handle these details themselves.

The following example creates a TitledTextBox control that pairs a label (on the left) with a text box
(on the right). Here’s the class definition for the control:

public class TitledTextBox : CompositeControl
{ ... }

The CompositeControl implements the INamingContainer interface. This interface doesn’t have any
methods. It simply instructs ASP.NET to make sure all the child controls have unique ID values. ASP.NET
does this by prepending the ID of the server control before the ID of the control. This ensures that there
won’t be any naming conflict, even if you add several instances of the TitleTextBox control to a web form.

To make life easier, you should track the constituent controls with member variables. This allows
you to access them in any method in your control. However, you shouldn’t create these controls yet,
because that’s the function of the CreateChildControls() method.

protected Label label;
protected TextBox textBox;

The web page won’t be able to directly access either of these controls. If you want to allow access to
certain properties, you need to add property procedures to your custom control class, as follows:

public string Title
{
 get {return (string)ViewState["Title"];}
 set {ViewState["Title"] = value;}
}

public string Text
{
 get {return (string)ViewState["Text"];}
 set {ViewState["Text"] = value;}
}

Note that these properties simply store information in view state—they don’t directly access the
child controls. That’s because the child controls might not yet exist. These properties will be applied to
the child controls in the CreateChildControls() method. All the controls are rendered in a , which
works well. It ensures that if the web page applies font, color, or position attributes to the TitledTextBox
control, it will have the desired effect on all the child controls.

Now you can override the CreateChildControls() method to create the Label and TextBox control
objects. These objects are separated with one additional control object—a LiteralControl, which simply
represents a scrap of HTML. In this example, the LiteralControl wraps two nonbreaking spaces. Here’s
the complete code for the CreateChildControls() method:

protected override void CreateChildControls()
{
 // Add the label.
 label = new Label();
 label.EnableViewState = false;

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1129

 label.Text = Title;
 Controls.Add(label);

 // Add a space.
 Controls.Add(new LiteralControl(" "));

 // Add the text box.
 textBox = new TextBox();
 textBox.EnableViewState = false;
 textBox.Text = Text;
 textBox.TextChanged += new EventHandler(OnTextChanged);
 Controls.Add(textBox);
}

The CreateChildControls() code attaches an event handler to the TextBox.TextChanged event. When
this event fires, your TitledTextBox should pass it along to the web page as the
TitledTextBox.TextChanged event. Here’s the code you need to implement the rest of this design:

public event EventHandler TextChanged;

protected virtual void OnTextChanged(object sender, EventArgs e)
{
 if (TextChanged != null)
 TextChanged(this, e);
}

Figure 27-9 shows a sample page that tests the TitledTextBox control and responds to its event.
You may prefer to follow the earlier approach and use an HtmlTextWriter to get full control over the

HTML markup you render. But if you want to handle postbacks and events and create complex controls
(such as an extended GridView or a navigational aid), using composite controls can simplify your life
dramatically.

Better Design Support for the TitledTextBox

There’s one more detail worth adding to this example. If you change the Title or Text properties after the
CreateChildControls() method has been called to render the control, you need to make sure that the child
controls are regenerated. Although this won’t happen in most scenarios (because the controls won’t be
rendered until the page is rendered), it can happen in the design environment when you tweak the control
in the Properties window.

Here’s the code that deals with this scenario when the Title property is set. It calls the
RecreateChildControls() method, which ensures that the HTML is updated after each change.

public string Title
{
 get {return (string)ViewState["Title"];}
 set
 {
 ViewState["Title"] = value;
 if (this.ChildControlsCreated) this.RecreateChildControls();
 }
}

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1130

Figure 27-9. Creating a composite control with a label and text box

Derived Controls
Another approach to creating controls is to derive a more specialized control from one of the existing
control classes. You can then override or add just the functionality you need, rather than re-creating the
whole control. This approach isn’t always possible, because some controls keep key pieces of their
infrastructure out of site in private methods you can’t override. However, when it does work, it can save
a lot of work.

Sometimes, you might create a derived control so that you can preinitialize an existing control with
certain styles or formatting properties. For example, you could create a custom Calendar or GridView
that sets styles in the OnInit() method. That way, when you add this Calendar control, it’s already
formatted with the look you need. In other cases, you might add entirely new functionality in the form of
new methods or properties, as demonstrated in the following example.

Creating a Label for Specific Data
One common reason for creating customized controls is to fine-tune a control for specific types of data.
For example, consider the Label control. In its standard form, it’s a flexible all-purpose tool that you can
use to render text content and insert arbitrary HTML. However, in many situations it would be nice to
have a higher-level way to output text—a way that automatically takes care of some of the presentation
by applying some built-in rules to translate your content to an HTML-worthy representation. The
following example is designed for one of these scenarios. It shows how you can customize the rendering
of a derived Label control for a specific type of content.

In Chapter 14, you learned about the Xml control, which allows you to display XML content in a
page using an XSLT stylesheet. However, the Xml control doesn’t give you any way to show XML content
without using an XSLT stylesheet to transform it first. So, what should you do if you want to duplicate the
Internet Explorer behavior, which shows a color-coded tree of XML tags? You could implement this
approach using an XSLT stylesheet. However, another interesting choice is to create a custom Label
control that’s designed for XML content. This Label control can apply the formatting you want
automatically.

First, consider what happens if you try to display XML content without taking any extra steps. In this
case, all the XML tags will be interpreted as meaningless HTML tags, and they won’t be shown. The
display will simply show a jumbled block of text that represents all the content of all elements from start
to finish. You can improve upon this situation slightly by using the HttpServerUtility.HtmlEncode()
method, which replaces all special HTML characters with the equivalent character entities. However, the
XML display you’ll create with this approach is still far from ideal. For one thing, all the whitespace will

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1131

be collapsed, and all the line breaks will be ignored, leading to a long string of text that’s not easy to
interpret. Figure 27-10 shows this approach with the DvdList.xml document used in Chapter 14.

Figure 27-10. Displaying XML data with HTML escaping

The custom XmlLabel control solves this problem by applying formatting to XML start and end tags.
This functionality is wrapped into a static method called ConvertXmlTextToHtmlText(), which accepts a
string with XML content and returns a string with formatted HTML content. This functionality is
implemented as a static method rather than an instance method so that you can call it to format text for
display in other controls.

The ConvertXmlTextToHtmlText() method uses a regular expression to find all the XML tags in the
string. Here’s the expression you need:

<([^>]+)>

This expression matches the less-than sign (<) that starts the tag, followed by a sequence of one or
more characters that aren’t greater-than signs (>). The match ends as soon as a greater-than sign is
found. This expression matches both start tags (such as <DvdList>) and end tags (such as </DvdList>).

■ Tip You might think you could use a simpler regular expression such as <.+> to match a tag. The problem is
that regular expressions use greedy matching, which means they often match as much as possible. As a result, an
expression such as <.+> will match everything between the less-than sign of the first tag and the greater-than
sign in the last tag at the end of document. In other words, you’ll end up with a single match that obscures other
embedded matches. To prevent this behavior, you need to create a regular expression that explicitly specifies what
characters you don’t want to match.

Once you have a match, the next step is to replace this text with the text you really want. The
replacement expression is as follows:

<$1>

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1132

This replacement uses the HTML entities for the less-than and greater-than signs (< and >),
and it adds an HTML tag to format the text in bold. The $1 is a back reference that refers to the
bracketed text in the search expression. In this example, the bracketed text includes the full opening tag
of the XML element—everything between the opening < and the closing >.

Once the tags are in bold, the last step is to replace the spaces in the string with the character
entity so that whitespace will be preserved. At the same time, it makes sense to replace all the line feeds
with an HTML
.

Here’s the complete code for formatting the XML text. To use this code as written, you must import
the System.Text.RegularExpressions namespace.

public static string ConvertXmlTextToHtmlText(string inputText)
{
 // Replace all start and end tags.
 string startPattern = @"<([^>]+)>";
 Regex regEx = new Regex(startPattern);
 string outputText = regEx.Replace(inputText, "<$1>");

 outputText = outputText.Replace(" ", " ");
 outputText = outputText.Replace("\r\n", "
");
 return outputText;
}

The rest of the XmlLabel code is remarkably simple. It doesn’t add any new properties. Instead, it
simply overrides RenderContents() to ensure that the formatted text is rendered instead of the ordinary
text:

protected override void RenderContents(HtmlTextWriter output)
{
 string xmlText = XmlLabel.ConvertXmlTextToHtmlText(Text);
 output.Write(xmlText);
}

Note that this code doesn’t call the base implementation of RenderContents(). That’s because the
goal of the XmlLabel control is to replace the rendering logic for the label text, not to supplement it.

Figure 27-11 shows what ordinary XML data looks like when displayed in the XmlLabel control. Of
course, now that you have the basic framework in place, you could do a lot more to perfect this output,
including color-coding and automatic indenting.

CHAPTER 27 ■ CUSTOM SERVER CONTROLS

1133

Figure 27-11. Displaying formatted XML data

■ Tip You can use a similar technique to create a label that automatically converts mail addresses and URLs to

links (wrapped by the <a> tag), formats multiple lines of text into a bulleted list, and so on.

Summary
In this chapter, you learned how to use a variety of techniques to create custom controls. In Chapter 28
and Chapter 29, you’ll see examples of custom controls that use GDI+ and JavaScript for advanced
solutions.

Even after you’ve read all these chapters, you still will not have learned everything there is to know
about ASP.NET custom control creation. If you want to continue your exploration into the tricks,
techniques, and idiosyncrasies of custom control programming, you might be interested in a dedicated
book about the topic. You may also be interested in examining third-party control offers at the ASP.NET
control gallery (http://www.asp.net/community/control-gallery). If you want to learn more about
designing proper design-time support for your controls, refer to the bonus “Design-Time Support”
chapter that’s available for download from the book web page.

http://www.asp.net/community/control-gallery

C H A P T E R 28

■ ■ ■

1135

Graphics, GDI+, and Charting

In Chapter 4, you learned about basic web controls for displaying graphics, such as the Image and
ImageButton controls. Both allow you to display an image, and the ImageButton control also fires a Click
event that gives you the exact mouse coordinates. But in a modern web application, you’ll often want
much more.

In this chapter, you’ll learn about three features that give you greater control over the look and feel
of your website. First, you’ll learn about the ImageMap control, which allows you to define invisible
shaped regions over an image and react when they’re clicked. Next you’ll tackle GDI+, a .NET model for
rendering dynamic graphics. You’ll learn how to render custom graphics with GDI+, how to embed these
graphics in a web page, and how to create custom controls that use GDI+. Finally, we’ll show you the
Chart control, which allows you to create complex and sophisticated charts.

The ImageMap Control
Web pages commonly include complex graphics, where different actions are taken depending on what
part of the graphic is clicked. ASP.NET developers can use several tricks to implement this design:

Stacked image controls: Multiple borderless pictures will look like one graphic when carefully
positioned next to each other. You can then handle the clicks of each control separately. This
approach works well for buttons and navigational controls that have defined, rectangular edges.

ImageButton: When an ImageButton control is clicked, it provides the coordinates where the click
was made. You can examine these coordinates in your server-side code and determine what region
was clicked programmatically. This technique is flexible but tedious and error-prone to code.

ImageMap: With the ImageMap control, you can define separate regions and give each one a
unique name. One advantage of this approach is that as the user moves the mouse pointer over the
image, it changes to a hand only when the user is positioned over a defined region. Thus, this
approach works particularly well for detailed images that have small hotspots.

The ImageMap control provides a server-side abstraction over the HTML <map> and <area> tags,

which define an image map. The ImageMap control renders itself as a <map> tag. You define regions by
adding HotSpot objects to the ImageMap.HotSpots collection, and each region is rendered as an <area>
tag inside the <map> tag. Just before the <map> tag, ASP.NET renders the linked tag that shows
the picture and uses the image map.

For example, if you create a map named ImageMap1 with three circular hotspots, the ImageMap
control will render markup like this:

<img id="ImageMap1" src="cds.jpg" usemap="#ImageMapImageMap1"
 style="border-width:0px;" />

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1136

<map name="ImageMapImageMap1">
 <area shape="circle" coords="272,83,83"
 href="javascript:__doPostBack('ImageMap1','0')" title="DVDs" alt="DVDs" />
 <area shape="circle" coords="217,221,83"
 href="javascript:__doPostBack('ImageMap1','1')" title="Media" alt="Media" />
 <area shape="circle" coords="92,173,83"
 href="javascript:__doPostBack('ImageMap1','2')" title="CDs" alt="CDs" />
</map>

Creating Hotspots
You can add an ImageMap control to a form in much the same way as an Image control. Just drop it onto
the page, and set the ImageUrl property to the name of the image file you want to use. You can also use
the usual ImageAlign, BorderStyle, BorderWidth, and BorderColor properties.

To define the clickable regions, you need to add HotSpot objects to the ImageMap.HotSpots
property. You can use three derived classes: CircleHotSpot, RectangleHotSpot, and PolygonHotSpot,
matching the three shape types defined by HTML.

You need to know the exact coordinates of the hotspot you want to create. The Visual Studio
ImageMap designer doesn’t let you define regions visually. We tend to use Expression Web, as shown in
Figure 28-1, but any HTML authoring program will do.

Figure 28-1. Configuring hotspots in Microsoft Expression Web

Once you’ve tweaked the hotspots to perfection, you can look at the source code to find the
coordinates. When defining a rectangle, you define the top-left and bottom-right corners. The order of
coordinates is left X, top Y, right X, and bottom Y. When defining a polygon, you can have as many points

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1137

as you like. The browser draws a line from one point to another to create the shape. You list the X and Y
coordinates for your points in pairs like this: X1, Y1, X2, Y2, X3, Y3, and so on. The HTML standard
recommends that you end at the same point with which you started.

In the case of a circle, three details are important: the X coordinate, the Y coordinate, and the radius.
They appear in that order in the <area> tag:

<area shape="circle" coords="272, 83, 83" ...>

The circles center is at (272, 83), and the radius is 83 pixels.

■ Tip You can define overlapping hotspots, but the hotspot that is defined first will handle the click.

Once you’ve determined your hotspots, you can add the corresponding HotSpot objects. Here’s the
ImageMap for Figure 28-1, with three hotspots:

<asp:ImageMap ID="ImageMap1" runat="server" ImageUrl="CoverShot.png" HotSpotMode="PostBack"
 OnClick="ImageMap1_Click">
 <asp:RectangleHotSpot Top="41" Left="16" Bottom="285" Right="206"/>
 <asp:RectangleHotSpot Top="125" Left="475" Bottom="160" Right="659"/>
 <asp:RectangleHotSpot Top="10" Left="222" Bottom="41" Right="671"/>
</asp:ImageMap>

Rather than coding this by hand, you can select your ImageMap and click the ellipsis next to the
HotSpots property in the Properties window. This opens a collection editor where you can add and
modify each hotspot.

Once you’ve defined the hotspots, you can test them in a browser. When you move the mouse
pointer over a hotspot, it changes into a hand.

Handling Hotspot Clicks
The next step is to make the hotspots clickable. A hotspot can trigger one of two actions—it can navigate
to a new page, or it can post back your page (and fire the ImageMap.Click event). To choose which
option you prefer, simply set the ImageMap.HotSpotMode property.

■ Tip When you set the ImageMap.HotSpotMode property, it applies to all hotspots. You can also override this
setting for individual hotspots by setting the HotSpot.HotSpotMode property. This allows you to have some

hotspots that post back the page and others that trigger page navigation.

To disable hotspots completely, use HotSpotMode.Inactive. If you use HotSpotMode.Navigate, you
need to set the URL for each hotspot using the HotSpot.NavigateUrl property. If you use
HotSpotMode.PostBack, you should give each hotspot a unique HotSpot.PostBackValue. This allows you
to identify which hotspot triggered the postback in the Click event.

Here’s the revised ImageMap control declaration that adds these details:

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1138

<asp:ImageMap ID="ImageMap1" runat="server" ImageUrl="CoverShot.png"
 HotSpotMode="PostBack" OnClick="ImageMap1_Click">
 <asp:RectangleHotSpot Top="41" Left="16" Bottom="285" Right="206"
 PostBackValue="Cover" />
 <asp:RectangleHotSpot Top="125" Left="475" Bottom="160" Right="659"
 PostBackValue="Name" />
 <asp:RectangleHotSpot Top="10" Left="222" Bottom="41" Right="671"
 PostBackValue="Subtitle" />
</asp:ImageMap>

Here’s the Click event handler, which simply displays the name of the clicked hotspot:

protected void ImageMap1_Click(object sender, ImageMapEventArgs e)
{
 Label1.Text = "You clicked: " + e.PostBackValue;
}

Figure 28-2 shows the resulting page.

Figure 28-2. Handling a hotspot click

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1139

A Custom Hotspot
The ImageMap control supports any HotSpot-derived class. ASP.NET includes the three that correspond
to the basic types of <area> shapes defined by HTML. However, you can create your own hotspots by
deriving your own custom class from HotSpot.

Obviously, a custom hotspot class can’t do anything that falls outside the HTML standard. For
example, it would be nice to have an ellipse and other curved shapes, but that just isn’t available.
However, you can create a variety of complex multisided shapes, such as triangles, octagons, diamonds,
and so on, using the polygon type. By deriving a custom HotSpot, you can create a higher-level model
that generates the appropriate polygon based on a few basic pieces of information (such as the center
coordinate and the radius).

For example, the following class presents a simple custom triangle. This triangle is created based on
a center point, width, and height.

namespace CustomHotSpots
{
 public class TriangleHotSpot : HotSpot
 {
 public TriangleHotSpot()
 {
 Width = 0;
 Height = 0;
 X = 0;
 Y = 0;
 }

 public int Width
 {
 get { return (int)ViewState["Width"]; }
 set { ViewState["Width"] = value; }
 }

 public int Height
 {
 get { return (int)ViewState["Height"]; }
 set { ViewState["Height"] = value; }
 }

 // X and Y are the coordinates of the center point.
 public int X
 {
 get { return (int)ViewState["X"]; }
 set { ViewState["X"] = value; }
 }

 public int Y
 {
 get { return (int)ViewState["Y"]; }
 set { ViewState["Y"] = value; }
 }
 ...

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1140

When creating a custom HotSpot, you must override the MarkupName property to return the type
of shape you are creating. The valid choices are circle, rectangle, and polygon. This information is placed
into the shape attribute of the <area> tag.

 ...
 protected override string MarkupName
 {
 get { return "polygon"; }
 }
 ...

Finally, you need to override the GetCoordinates() method to return the string for the cords
attribute. For a polygon, this must be a comma-separated series of points in X, Y pairs. Here’s the code
that creates a simple triangle, with a bottom edge and a single point in the top center:

 ...
 public override string GetCoordinates()
 {
 // Top coordinate.
 int topX = X;
 int topY = Y - Height / 2;

 // Bottom-left coordinate.
 int btmLeftX = X - Width / 2;
 int btmLeftY = Y + Height / 2;

 // Bottom-right coordinate.
 int btmRightX = X + Width / 2;
 int btmRightY = Y + Height / 2;

 return topX.ToString() + "," + topY.ToString() + "," +
 btmLeftX.ToString() + "," + btmLeftY.ToString() + "," +
 btmRightX.ToString() + "," + btmRightY.ToString();
 }
 }
}

Now you can use your custom hotspot much as you use a custom control. The first step is to register
a tag prefix for your namespace, as shown here:

<%@ Register TagPrefix="chs" Namespace="CustomHotSpots" %>

And here’s an ImageMap that uses the TriangleHotSpot and redirects users to a new URL when the
triangle is clicked:

<asp:ImageMap ID="ImageMap1" runat="server" ImageUrl="./triangle.gif">
 <chs:TriangleHotSpot AlternateText="Triangle"
 NavigateUrl="http://en.wikipedia.org/wiki/Triangle"
 X="140" Y="50" Height="75" Width="85" />
</asp:ImageMap>

http://en.wikipedia.org/wiki/Triangle

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1141

Drawing with GDI+
GDI+ is an general-purpose drawing model for .NET applications. GDI+ has a number of uses in .NET,
including writing documents to the printer, displaying graphics in a Windows application, and
rendering graphics in a web page.

Using GDI+ code to draw a graphic is slower than using a static image file. However, it gives you
much more freedom and enables several possibilities that weren’t possible (or were prohibitively
difficult) in earlier web development platforms, such as classic ASP. For example, you can create
graphics that incorporate user-specific information, and you can render charts and graphs on the fly
based on the records in a database.

The heart of GDI+ programming is the System.Drawing.Graphics class. The Graphics class
encapsulates a GDI+ drawing surface, whether it is a window, a print document, or an in-memory
bitmap. ASP.NET developers rarely have the need to paint windows or print documents, so it is the last
option that is the most commonly used in web applications.

To use GDI+ in ASP.NET, you need to follow a sequence of four steps:

1. Create an in-memory bitmap image where you’ll perform all your drawing.

2. Create a GDI+ graphics context for the image. This gives you an instance of
System.Drawing.Graphics.

3. Perform the drawing using the methods of the Graphics instance. You can
draw and fill lines and shapes, and you can copy bitmap content from
existing files.

4. Write the image to the browser, using the Response.OutputStream property.

In the following sections, you’ll see several examples of web pages that use GDI+. Before continuing,
you may want to ensure that the following namespaces are imported:

using System.Drawing;
using System.Drawing.Drawing2D;
using System.Drawing.Imaging;

The System.Drawing namespace defines many of the fundamental ingredients for drawing,
including pens, brushes, and bitmaps. The System.Drawing.Drawing2D namespace adds other useful
details such as the flexible GraphicsPath class, while System.Drawing.Imaging includes the
ImageFormat namespace that lets you choose the graphics format in which your bitmap will be
rendered when it is sent to the client.

Simple Drawing
The following example demonstrates the simplest possible GDI+ page. All the work is performed in the
event handler for the Page.Load event.

The first step is to create the in-memory bitmap by creating an instance of the
System.Drawing.Bitmap class. When you create this object, you need to specify the height and width of
the image in pixels as constructor arguments. You should make the size as small as possible. Not only
will a larger bitmap consume additional server memory while your code is executing, but the size of the
rendered content you send to the client will also increase, slowing down the transmission.

// Create the in-memory bitmap where you will draw the image.
// This bitmap is 300 pixels wide and 50 pixels high.
Bitmap image = new Bitmap(300, 50);

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1142

The next step is to create a GDI+ graphics context for the image, which is represented by the
System.Drawing.Graphics object. This object provides the methods that allow you to draw on the in-
memory bitmap. To create a Graphics object from an Bitmap object, you use the static
Graphics.FromImage method, as shown here:

Graphics g = Graphics.FromImage(image);

Now comes the interesting part. Using the methods of the Graphics class, you can draw text, shapes,
and images on the bitmap. In this example, the drawing code is exceedingly simple. It fills the graphic
with a solid white background using the FillRectangle method of the Graphics object. (Every pixel is
initially set to black in a new bitmap.)

// Draw a solid white rectangle.
// Start from point (1, 1).
// Make it 298 pixels wide and 48 pixels high.
g.FillRectangle(Brushes.White, 1, 1, 298, 48);

The FillRectangle method requires several arguments. The first argument sets the color, the next
two parameters set the starting point, and the final two parameters set the width and height. When
measuring pixels, the point (0, 0) is the top-left corner of your image in (X, Y) coordinates. The X
coordinate increases as you go farther to the right, and the Y coordinate increases as you go farther
down. In the example, the image is 300 pixels wide and 50 pixels high, which means the point (299, 49) is
the bottom-right corner.

In the example, we have left a 1-pixel border unfilled. This has the effect of leaving a narrow border
of the original black color. The next portion of the drawing code renders a static label message. To do
this, we create a System.Drawing.Font object representing the font we want to use. This shouldn’t be
confused with the FontInfo object you use with ASP.NET controls to specify the requested font for a web
page. Unlike FontInfo, Font represents a single, specific font (including typeface, size, and style) that’s
installed on the current computer. When you create a Font object, you specify the font name, point size,
and style, as shown here:

Font font = new Font("Impact", 20, FontStyle.Regular);

■ Tip Because this image is generated on the server, you can use any font that the server has installed when
creating the graphic. The client won’t need to have the same font, because the client receives the text as a

rendered image.

To render the text, you use the DrawString method of the Graphics object. As with the FillRectangle
object, you need to specify the coordinates where the drawing should begin. This point represents the
top-left corner of the text block. In this case, the point (10, 5) is used, which gives a distance of 10 pixels
from the left and 5 pixels from the top.

g.DrawString("This is a test.", font, Brushes.Blue, 10, 5);

Once the image is complete, you can send it to the browser using the Image.Save method. You are
saving the image to the browser’s response stream. It gets sent to the client and displayed in the browser.
When you write directly to the response stream like this, your image replaces any other web-page data
and bypasses the web control model.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1143

// Render the image to the output stream.
image.Save(Response.OutputStream,
 System.Drawing.Imaging.ImageFormat.Gif);

■ Tip You can save an image to any valid stream, including a FileStream. This technique allows you to save

dynamically generated images to disk so you can use them later in other web pages.

Finally, call the Dispose method for the image and graphics context as shown next. Both hold onto
some unmanaged resources that won’t be released right away, and if you are generating a high volume
of images, the resource demands can impact your server.

g.Dispose();
image.Dispose();

Figure 28-3 shows the completed web page created by this code.

Figure 28-3. A graphical label

Image Format and Quality
When you save the image, you can choose the format you want to use. JPEG offers the best color support
and graphics, although it uses compression that can lose detail and make text look fuzzy. GIF is often a
better choice for graphics containing text, but it doesn’t offer good support for color. In .NET, every GIF
uses a fixed palette with 256 generic colors. If you use a color that doesn’t map to one of these presets,
the color will be dithered, leading to a less-than-optimal graphic.

■ Tip Another choice is the PNG format, which gives you the best of both the JPEG and GIF formats. However, the
PNG format doesn’t work directly in a web page—instead, you need to wrap it in an tag. Later, in the
section “Embedding Dynamic Graphics in a Web Page,” you’ll see how to take this step.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1144

Quality isn’t just determined by the image format. It also depends on the way you render the
original bitmap. GDI+ allows you to choose between optimizing your drawing code for appearance or
speed. When you choose to optimize for the best appearance, .NET uses rendering techniques such as
antialiasing to improve the drawing.

Antialiasing smoothes jagged edges in shapes and text. It works by adding shading at the border of
an edge. For example, gray shading might be added to the edge of a black curve to make a corner look
smoother. Figure 28-4 shows a close-up of an antialiased ellipse.

Figure 28-4. Antialiasing with an ellipse

To use smoothing in your applications, you set the SmoothingMode property of the Graphics object.
You can choose between None (the default), HighSpeed, AntiAlias, and HighQuality (which is similar to
AntiAlias but uses other, slower optimizations that improve the display on LCD screens). The
Graphics.SmoothingMode property is one of the few stateful Graphics members. This means you set it
before you begin drawing, and it applies to any text or shapes you draw until the Graphics object is
disposed of.

g.SmoothingMode = SmoothingMode.AntiAlias;

■ Tip Antialiasing makes the most difference when you’re displaying curves. That means it will dramatically
improve the appearance of ellipses, circles, and arcs, but it won’t make any difference with straight lines, squares,

and rectangles.

You can also use antialiasing with fonts to soften jagged edges on text. You can set the
Graphics.Text-RenderingHint property to ensure optimized text. You can choose between
SingleBitPerPixelGridFit (fastest performance and lowest quality), AntiAlias (good quality due to
smoothing), AntiAliasGridFit (better quality due to smoothing and hinting but slower performance), and
ClearTypeGridFit (the best quality on an LCD display). Or you can use the SystemDefault value to apply
whatever font-smoothing settings the user has configured. SystemDefault is the default setting, and the
default system settings for most computers enable text antialiasing. Even if you don’t set this, your
dynamically rendered text will usually be drawn in high quality. However, because you can’t necessarily
control the system settings of the web server, it’s a good practice to specify this setting explicitly if you
need to draw text in an image.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1145

The Graphics Class
The Graphics class also provides methods for drawing specific kinds of shapes, images, and text. Table
28-1 describes these methods, some of which are used in the examples in this chapter.

Table 28-1. Graphics Class Methods for Drawing

Method Description

DrawArc() Draws an arc representing a portion of an ellipse specified by
a pair of coordinates, a width, and a height.

DrawBezier() and DrawBeziers() Draws the infamous and attractive Bezier curve, which is
defined by four control points.

DrawClosedCurve() Draws a curve and then closes it off by connecting the
endpoints.

DrawCurve() Draws a curve (technically, a cardinal spline).

DrawEllipse() Draws an ellipse defined by a bounding rectangle specified by
a pair of coordinates, a height, and a width.

DrawIcon() and
DrawIconUnstreched()

Draws the icon represented by an Icon object and (optionally)
stretches it to fit a given rectangle.

DrawImage Draws the image represented by an Image-derived object (for
example, a Bitmap object that’s been loaded from a file) and
stretches it to fit a rectangular region.

DrawImageUnscaled() and
DrawImageUnscaledAndClipped()

Draws the image represented by an Image-derived object
with no scaling and (optionally) clips it to fit the rectangular
region you specify.

DrawLine() and DrawLines() Draws one or more lines. Each line connects the two points
specified by coordinate pairs.

DrawPath() Draws a GraphicsPath object, which can represent a
combination of curves and shapes.

DrawPie() Draws a “piece-of-pie” shape defined by an ellipse specified
by a coordinate pair, a width, a height, and two radial lines.

DrawPolygon() Draws a multisided polygon defined by an array of points.

DrawRectangle() and
DrawRectangles()

Draws one or more rectangles. Each rectangle is defined by a
starting coordinate pair and width and height.

DrawString() Draws a string of text in a given font.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1146

Method Description

FillClosedCurve() Draws a curve, closes it off by connecting the endpoints, and
fills it.

FillEllipse() Fills the interior of an ellipse.

FillPath() Fills the shape represented by a GraphicsPath object.

FillPie() Fills the interior of a “piece-of-pie” shape.

FillPolygon() Fills the interior of a polygon.

FillRectangle() and FillRectangles() Fills the interior of one or more rectangles.

The DrawXxx() methods draw outlines (for example, the edge around a rectangle). The FillXxx()

methods paint solid regions (for example, the actual surface inside the borders of a rectangle). The only
exception is the DrawString() method, which draws filled-in text using a font you specify, and
DrawIcon() and DrawImage(), which copy bitmap images onto the drawing surface.

If you want to create a shape that has both an outline in one color and a fill in another color, you
need to combine both a draw and a fill method. Here’s an example that first paints a white rectangle and
then adds a green border around it:

g.FillRectangle(Brushes.White, 0, 0, 300, 50);
g.DrawRectangle(Pens.Green, 0, 0, 299, 49);

■ Note You won’t receive an exception if you specify coordinates that are not in the drawing area, but the

content you draw that’s off the edge won’t appear in the final image. In some cases, this means a partial shape

may appear (which might be exactly the effect you want).

You’ll notice that when you use a fill method, you need to specify a Brush object. When you use a
draw method, you need to specify a Pen object. In the example, the code uses a prebuilt Pen and Brush
object, which can be retrieved from the Pens and Brushes classes, respectively. Brushes retrieved in this
way always correspond to solid colors. Pens retrieved in this way are always 1 pixel wide. Later in this
chapter (in the Pens and Brushes sections), you’ll learn how to create your own custom pens and
brushes.

Using the techniques you’ve learned, it’s easy to create a simple web page that draws a more
complex GDI+ image. The next example uses the Graphics class to draw an ellipse, a text message, and
an image from a file.

Here’s the code you’ll need:

protected void Page_Load(Object sender, EventArgs e)
{
 // Create the in-memory bitmap where you will draw the image.
 // This bitmap is 450 pixels wide and 100 pixels high.
 Bitmap image = new Bitmap(450, 100);

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1147

 Graphics g = Graphics.FromImage(image);

 // Ensure high-quality curves.
 g.SmoothingMode = SmoothingMode.AntiAlias;

 // Paint the background.
 g.FillRectangle(Brushes.White, 0, 0, 450, 100);

 // Add an ellipse.
 g.FillEllipse(Brushes.PaleGoldenrod, 120, 13, 300, 50);
 g.DrawEllipse(Pens.Green, 120, 13, 299, 49);

 // Draw some text using a fancy font.
 Font font = new Font("Harrington", 20, FontStyle.Bold);
 g.DrawString("Oranges are tasty!", font, Brushes.DarkOrange, 150, 20);

 // Add a graphic from a file.
 System.Drawing.Image orangeImage =
 System.Drawing.Image.FromFile(Server.MapPath("oranges.gif"));
 g.DrawImageUnscaled(orangeImage, 0, 0);

 // Render the image to the output stream.
 image.Save(Response.OutputStream,
 System.Drawing.Imaging.ImageFormat.Jpeg);

 // Clean up.
 g.Dispose();
 image.Dispose();
}

Figure 28-5 shows the resulting web page.

Figure 28-5. Using multiple elements in a drawing

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1148

Using a GraphicsPath
Two interesting methods that we haven’t covered yet are DrawPath and FillPath, which work with the
GraphicsPath class in the System.Drawing.Drawing2D namespace.

The GraphicsPath class encapsulates a series of connected lines, curves, and text. To build a
GraphicsPath object, you simply create a new instance and use the methods in Table 28-2 to add all the
required elements.

GraphicsPath path = new GraphicsPath();
path.AddEllipse(0, 0, 100, 50);
path.AddRectangle(new Rectangle(100, 50, 100, 50));

Once you’ve created a GraphicsPath object, you can use the Graphics.DrawPath method to draw its
outline and the Graphics.FillPath method to paint its fill region:

g.DrawPath(Pens.Black, path);
g.FillPath(Brushes.Yellow, path);

Table 28-2. GraphicsPath Methods

Method Description

AddArc() Draws an arc representing a portion of an ellipse specified by a pair of
coordinates, a width, and a height.

AddBezier() and
AddBeziers()

Draws the infamous and attractive Bezier curve, which is defined by four
control points.

AddClosedCurve() Draws a curve and then closes it off by connecting the endpoints.

AddCurve() Draws a curve (technically, a cardinal spline).

AddEllipse() Draws an ellipse defined by a bounding rectangle specified by a pair of
coordinates, a height, and a width.

AddLine() and
AddLines()

Draws a line connecting the two points specified by coordinate pairs.

AddPath() Adds another GraphicsPath object to this GraphicsPath object.

AddPie() Draws a “piece-of-pie” shape defined by an ellipse specified by a
coordinate pair, a width, a height, and two radial lines.

AddPolygon() Draws a multisided polygon defined by an array of points.

AddRectangle() and
AddRectangles()

Draws an ordinary rectangle specified by a starting coordinate pair and
width and height.

AddString() Draws a string of text in a given font.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1149

Method Description

StartFigure() and
CloseFigure()

StartFigure() defines the start of a new closed figure. When you use
CloseFigure(), the starting point will be joined to the endpoint by an
additional line.

Transform(), Warp(),
and Widen()

Applies a matrix transform, a warp transform (defined by a rectangle and
parallelogram), and an expansion, respectively.

Optionally, you can also create a solid, filled figure from separate line segments. To do this, you first

call the StartFigure method. Then you add the required curves and lines using the appropriate methods.
When finished, you call the CloseFigure method to close off the shape by drawing a line from the
endpoint to the starting point. You can use these methods multiple times to add several closed figures to
a single GraphicsPath object. Here’s an example that draws a single figure based on an arc and a line:

GraphicsPath path = new GraphicsPath();
path.StartFigure();
path.AddArc(10, 10, 100, 100, 20, 50);
path.AddLine(20, 100, 70, 230);
path.CloseFigure();

Pens
When you use the DrawXxx methods from the Graphics class, the border of the shape or curve is drawn
with the Pen object you supply. You can retrieve a standard pen using one of the static properties from
the System.Drawing.Pens class. These pens all have a width of 1 pixel and differ only in their color.

Pen myPen = Pens.Black;

You can create a custom Pen object to configure all the properties described in Table 28-3. Here’s an
example:

Pen myPen = new Pen(Color.Red);
myPen.DashCap = DashCap.Triangle;
myPen.DashStyle = DashStyle.DashDotDot;
g.DrawLine(myPen, 0, 0, 10, 0);

Table 28-3. Pen Members

Member Description

DashPattern Defines a dash style for broken lines using an array of dashes and spaces.

DashStyle Defines a dash style for broken lines using the DashStyle enumeration.

LineJoin Defines how connecting lines in a shape will be joined.

PenType Defines the type of fill that will be used for the line. Typically this will be
SolidColor, but you can also use a gradient, bitmap texture, or hatch pattern by
supplying a brush object when you create the pen. You cannot set the PenType
through this property, however, because it is read-only.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1150

Member Description

StartCap and
EndCap

Determines how the beginning and ends of lines will be rendered. You can also
define a custom line cap by creating a CustomLineCap object (typically by
using a GraphicsPath) and then assigning it to the CustomStartCap or
CustomEndCap property.

Width Defines the pixel width of lines drawn by this pen.

The easiest way to understand the different LineCap and DashStyle properties is to create a test

page that enumerates the options. The following web-page code creates a drawing that does exactly that:

protected void Page_Load(object sender, System.EventArgs e)
{
 // Create the in-memory bitmap where you will draw the image.
 // This bitmap is 500 pixels wide and 400 pixels high.
 Bitmap image = new Bitmap(500, 400);
 Graphics g = Graphics.FromImage(image);

 // Paint the background.
 g.FillRectangle(Brushes.White, 0, 0, 500, 400);

 // Create a pen to use for all the examples.
 Pen myPen = new Pen(Color.Blue, 10);

 // The y variable tracks the current y (up/down) position
 // in the image.
 int y = 60;

 // Draw an example of each LineCap style in the first column (left).
 g.DrawString("LineCap Choices", new Font("Tahoma", 15, FontStyle.Bold),
 Brushes.Blue, 0, 10);
 foreach (LineCap cap in System.Enum.GetValues(typeof(LineCap)))
 {
 myPen.StartCap = cap;
 myPen.EndCap = cap;
 g.DrawLine(myPen, 20, y, 100, y);
 g.DrawString(cap.ToString(), new Font("Tahoma", 8),
 Brushes.Black, 120, y - 10);
 y += 30;
 }

 // Draw an example of each DashStyle in the second column (right).
 y = 60;
 g.DrawString("DashStyle Choices", new Font("Tahoma", 15,
 FontStyle.Bold), Brushes.Blue, 200, 10);
 foreach (DashStyle dash in System.Enum.GetValues(typeof(DashStyle)))
 {
 // Configure the pen.
 myPen.DashStyle = dash;

 // Draw a short line segment.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1151

 g.DrawLine(myPen, 220, y, 300, y);

 // Add a text label.
 g.DrawString(dash.ToString(), new Font("Tahoma", 8), Brushes.Black,
 320, y - 10);

 // Move down one line.
 y += 30;
 }

 // Render the image to the output stream.
 image.Save(Response.OutputStream,
 System.Drawing.Imaging.ImageFormat.Gif);

 g.Dispose();
 image.Dispose();
}

Figure 28-6 shows the resulting web page.

Figure 28-6. Different pen options

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1152

Brushes
Brushes are used to fill the space between lines. Brushes are used when drawing text or when using any
of the FillXxx methods of the Graphics class for painting the inside a shape. You can quickly retrieve a
predefined solid brush using a static property from the Brushes class, as shown here:

Brush myBrush = Brushes.White;

You can also create a custom brush. Simple solid brushes are created from the SolidBrush class, and
more complex brushes are available through other classes:

HatchBrush: A HatchBrush has a foreground color, a background color, and a hatch style that
determines how these colors are combined. Typically, colors are interspersed using stripes, grids, or
dots, but you can even select unusual pattern styles such as bricks, confetti, weave, and shingles.

LinearGradientBrush: The LinearGradientBrush allows you to blend two colors in a gradient
pattern. You can choose any two colors (as with the hatch brush) and then choose to blend
horizontally (from left to right), vertically (from top to bottom), diagonally (from the top-left corner
to the bottom-right corner), or diagonally backward (from the top-right corner to the bottom-left
corner). You can also specify the origin point for either side of the gradient.

TextureBrush: The TextureBrush attaches a bitmap to a brush. The image is tiled in the painted
portion of the brush, whether it is text or a simple rectangle.

Here’s an example of the drawing logic you need to test all the styles of LinearGradientBrush:

protected void Page_Load(object sender, System.EventArgs e)
{
 // Create the in-memory bitmap.
 Bitmap image = new Bitmap(300, 300);
 Graphics g = Graphics.FromImage(image);

 // Paint the background.
 g.FillRectangle(Brushes.White, 0, 0, 300, 300);

 // Show a rectangle with each type of gradient.
 LinearGradientBrush myBrush;
 int y = 20;
 foreach (LinearGradientMode gradientStyle in
 System.Enum.GetValues(typeof(LinearGradientMode)))
 {
 // Configure the brush.
 myBrush = new LinearGradientBrush(new Rectangle(20, y, 100, 60),
 Color.Violet, Color.White, gradientStyle);

 // Draw a small rectangle and add a text label.
 g.FillRectangle(myBrush, 20, y, 100, 60);
 g.DrawString(gradientStyle.ToString(), new Font("Tahoma", 8),
 Brushes.Black, 130, y + 20);

 // Move to the next line.
 y += 70;
 }

 // Render the image to the output stream.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1153

 image.Save(Response.OutputStream,
 System.Drawing.Imaging.ImageFormat.Jpeg);

 g.Dispose();
 image.Dispose();
}

Figure 28-7 shows the result.

■ Tip You can also create a pen that draws using the fill style of a brush. This allows you to draw lines that are
filled with gradients and textures. To do so, begin by creating the appropriate brush and then create a new pen.

One of the overloaded pen constructor methods accepts a reference to a brush—that’s the one you need to use

for a brush-based pen.

Figure 28-7. Testing gradient styles

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1154

Embedding Dynamic Graphics in a Web Page
Using the Image.Save method to write the image to the response stream overwrites whatever
information ASP.NET would otherwise use. Fortunately, a simple solution exists. You can use the HTML
 tag or the Image web control, but instead of specifying a static image as the source, you link to the
.aspx file that generates a dynamic image.

For example, consider the graphic shown earlier in Figure 28-1. It’s stored in a file named
SimpleDrawing.aspx, and it writes a dynamically generated image to the response stream. In another
page, you could show the dynamic image by adding an Image web control and setting the ImageUrl
property to SimpleDrawing.aspx. You could then add other controls or even multiple Image controls
that link to the same content.

Figure 28-8 shows an example that uses two tags that point to SimpleDrawing.aspx, along
with additional ASP.NET web controls in between.

Figure 28-8. Mixing dynamically drawn content and ordinary web controls

■ Tip Remember that creating a GDI+ drawing is usually an order of magnitude slower than serving a static

image. As a result, it’s probably not a good idea to implement graphical buttons and other elements that you’ll
repeat multiple times on a page using GDI+. (If you do, consider caching or saving the image file once you’ve

generated it to increase performance.)

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1155

Using the PNG Format
PNG is an all-purpose format that always provides high quality by combining the lossless compression
of GIFs with the rich color support of JPEGs. Some browsers (especially older version of Internet
Explorer) don’t display PNG images correctly when they are returned dynamically from a page. Instead
of seeing the picture content, the user receives a message prompting them to download the picture
content and open it in another program. You can use the tag approach discussed previously to
address this problem.

The other issue with dynamically generating PNG images is that you can’t use the Bitmap.Save
method shown in earlier examples. Response.OutputStream is a linear stream, meaning data must be
written sequentially from beginning to end. To create a PNG file, .NET needs to be able to move back
and forth in a file, which requires a stream that can seek specific locations. The solution is fairly simple.
Instead of saving directly to Response.OutputStream, you create a System.IO.MemoryStream, which is
an in-memory buffer of data. Use Bitmap.Save your image to the MemoryStream and then write the
MemoryStream to the Response.OutputStream.

Here’s the code you need to implement this solution, assuming you’ve imported the System.IO
namespace:

Response.ContentType = "image/png";

// Create the PNG in memory.
MemoryStream mem = new MemoryStream();
image.Save(mem, System.Drawing.Imaging.ImageFormat.Png);

// Write the MemoryStream data to the output stream.
mem.WriteTo(Response.OutputStream);

// Clean up.
g.Dispose();
image.Dispose();

Passing Information to Dynamic Images
When you generate graphics in web pages, you can send information from the page to the code that
generates the graphic to create truly dynamic images. The following example creates a data-bound list
that shows a thumbnail of every bitmap in a given directory. Figure 28-9 shows the final result.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1156

Figure 28-9. A data-bound thumbnail list

This page needs to be designed in two parts: the page that contains the GridView and the page that
dynamically renders a single thumbnail. The GridView page will call the thumbnail page multiple times
(using tags) to fill the list.

It makes sense to design the page that creates the thumbnail first. In this example, the page is
named ThumbnailViewer.aspx. To make this component as generic as possible, you shouldn’t hard-
code any information about the directory to use or the size of a thumbnail. Instead, this information will
be retrieved through three query string arguments. The first step that you need to perform is to check
that all this information is supplied when the page first loads, as shown here:

protected void Page_Load(object sender, System.EventArgs e)
{
 if ((String.IsNullOrEmpty(Request.QueryString["X"])) ||
 (String.IsNullOrEmpty(Request.QueryString["Y"])) ||
 (String.IsNullOrEmpty(Request.QueryString["FilePath"])))
 {
 // There is missing data, so don't display anything.
 // Other options include choosing reasonable defaults
 // or returning an image with some static error text.
 }
 else

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1157

 {
 int x = Int32.Parse(Request.QueryString["X"]);
 int y = Int32.Parse(Request.QueryString["Y"]);
 string file = Server.UrlDecode(Request.QueryString["FilePath"]);
 ...

Once you have the basic set of data, you can create your Bitmap and Graphics objects as always. In
this case, the Bitmap dimensions should correspond to the size of the thumbnail, because you don’t
want to add any additional content:

 ...
 // Create the in-memory bitmap where you will draw the image.
 Bitmap image = new Bitmap(x, y);
 Graphics g = Graphics.FromImage(image);
 ...

Creating the thumbnail is easy. All you need to do is load the image (using the static Image.FromFile
method) and then draw it on the drawing surface. When you draw the image, you specify the starting
point, (0, 0), and the height and width. The height and width correspond to the size of the Bitmap object.
The Graphics class will automatically scale your image to fit these dimensions, using antialiasing to
create a high-quality thumbnail:

 ...
 // Load the file data.
 System.Drawing.Image thumbnail =
 System.Drawing.Image.FromFile(file);

 // Draw the thumbnail.
 g.DrawImage(thumbnail, 0, 0, x, y);
 ...

Lastly, you can render the image and clean up, as follows:

 ...
 // Render the image.
 image.Save(Response.OutputStream, ImageFormat.Jpeg);
 g.Dispose();
 image.Dispose();
 }
}

The next step is to use this page in the page that contains the GridView. In this example, the page
that uses ThumbnailViewer.aspx is named ThumbnailsInDirectory.aspx.

The basic idea behind ThumbnailsInDirectory.aspx is that the user will enter a directory path and
click the submit button. At this point, your code can perform a little work with the System.IO classes.
First, you need to create a DirectoryInfo object that represents the user’s choice of directory. Second,
you need to retrieve a collection of FileInfo objects that represent files in that directory using the
DirectoryInfo.GetFiles method. Finally, the code binds the array of FileInfo objects to a GridView, as
shown here:

protected void cmdShow_Click(object sender, EventArgs e)
{
 // Get a string array with all the image files.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1158

 DirectoryInfo dir = new DirectoryInfo(txtDir.Text);
 gridThumbs.DataSource = dir.GetFiles();

 // Bind the string array.
 gridThumbs.DataBind();
}

It’s up to the GridView template to determine how the bound FileInfo objects are displayed. In this
example, you need to show two pieces of information—the short name of the file and the corresponding
thumbnail. Showing the short name is straightforward. You simply need to bind to the FileInfo.Name
property. Showing the thumbnail requires using an tag to invoke the ThumbnailViewer.aspx
page. However, constructing the right URL can be a little tricky, so the best solution is to hand the work
off to a method in the web-page class called GetImageUrl.

Here’s the complete GridView declaration with the template:

<asp:GridView ID="gridThumbs" runat="server"
 AutoGenerateColumns="False" Font-Names="Verdana"
 Font-Size="X-Small" GridLines="None">
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <img src='<%# GetImageUrl(Eval("FullName")) %>' />
 <%# Eval("Name") %>
 <hr/>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

The GetImageUrl method examines the full file path, encodes it, and adds it to the query string so
ThumbnailViewer.aspx can find the required file. At the same time, the GetImageUrl method also
chooses a thumbnail size of 50 by 50 pixels. Note that the file path is URL-encoded. That’s because
filenames commonly include characters that aren’t allowed in URLs, like the space:

protected string GetImageUrl(object path)
{
 return "ThumbnailViewer.aspx?x=50&y=50&FilePath=" +
 Server.UrlEncode((string)path);
}

Custom Controls That Use GDI+
Based on everything you learned in Chapter 27, you’re probably eager to use GDI+ to create your own
well-encapsulated custom controls. Unfortunately, ASP.NET doesn’t make it easy, because of the way
you need to embed GDI+ images in a page.

As you’ve seen, if you want to use GDI+, you need to create a separate web page. You can then
embed the content of this page in another page by using an tag. As a result, you can’t just drop a
custom control that uses GDI+ onto a web page. What you can do is create a custom control that wraps
an tag. This control can then provide a convenient programming interface, complete with
properties, methods, and events. But the custom control won’t actually generate the image. It will
collect the data from its properties, use it to build the query string portion of a URL, and then render

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1159

itself as an tag pointing to a page that generates the dynamic image. The custom control provides
a higher-level wrapper that abstracts the process of transferring information to your GDI+ page.

Figure 28-10 shows how this process works for the example we’ll use to demonstrate this technique.
We use custom control approach to create a simple label that renders with a gradient background. The
custom control is named GradientLabel and the GDI+ code in a separate page named
GradientLabel.aspx. To see this example at work, you can request the GradientTest.aspx web page,
which hosts a single instance of the GradientLabel control.

Figure 28-10. Using custom controls with GDI+

■ Tip If you’re worried about confusing your real web pages with the web pages you use to supply GDI+ drawing,
consider using a custom HTTP handler to generate the image. With an HTTP handler, your image generators can
have a custom extension and use essentially the same code in the ProcessRequest() method. HTTP handlers were

first demonstrated in Chapter 5.

The Custom Control Class
The first step is to create the control class. As with any custom control, you can place it in the App_Code
folder of a website or, ideally, in a separate class library project, as described in Chapter 27.

The custom control class (named GradientLabel) derives from Control rather than WebControl.
That’s because it won’t be able to support the rich set of style properties because it renders a dynamic
graphic, not an HTML tag.

public class GradientLabel : Control
{ ... }

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1160

The GradientLabel class provides five properties, which allow the user to specify the text, the font
size, and the colors that are used for the gradient and text, as follows:

public string Text
{
 get { return (string)ViewState["Text"]; }
 set { ViewState["Text"] = value; }
}

public int TextSize
{
 get { return (int)ViewState["TextSize"]; }
 set { ViewState["TextSize"] = value; }
}

public Color GradientColorStart
{
 get { return (Color)ViewState["ColorStart"]; }
 set { ViewState["ColorStart"] = value; }
}

public Color GradientColorEnd
{
 get { return (Color)ViewState["ColorEnd"]; }
 set { ViewState["ColorEnd"] = value; }
}

public Color TextColor
{
 get { return (Color)ViewState["TextColor"]; }
 set { ViewState["TextColor"] = value; }
}

The properties are set to some sensible defaults in the GradientLabel constructor, as shown here:

public GradientLabel()
{
 Text = "";
 TextColor = Color.White;
 GradientColorStart = Color.Blue;
 GradientColorEnd = Color.DarkBlue;
 TextSize = 14;
}

The GradientLabel renders itself as an tag that points to the GradientLabel.aspx page. It’s the
GradientLabel.aspx page that contains the GDI+ drawing code. When the GradientLabel is rendered, it
reads the information from all the properties and supplies the information in the query string.

protected override void Render(HtmlTextWriter writer)
{
 HttpContext context = HttpContext.Current;
 writer.Write("<img src='" + "GradientLabel.aspx?" +
 "Text=" + context.Server.UrlEncode(Text) +

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1161

 "&TextSize=" + TextSize.ToString() +
 "&TextColor=" + TextColor.ToArgb() +
 "&GradientColorStart=" + GradientColorStart.ToArgb() +
 "&GradientColorEnd=" + GradientColorEnd.ToArgb() +
 "'>");
}

The Rendering Page
The first step for the GradientLabel.aspx page is to retrieve the properties from the query string,
as follows:

protected void Page_Load(object sender, System.EventArgs e)
{
 string text = Server.UrlDecode(Request.QueryString["Text"]);
 int textSize = Int32.Parse(Request.QueryString["TextSize"]);
 Color textColor = Color.FromArgb(
 Int32.Parse(Request.QueryString["TextColor"]));
 Color gradientColorStart = Color.FromArgb(
 Int32.Parse(Request.QueryString["GradientColorStart"]));
 Color gradientColorEnd = Color.FromArgb(
 Int32.Parse(Request.QueryString["GradientColorEnd"]));
 ...

The GradientLabel.aspx page has an interesting challenge. The text and font size are supplied
dynamically, so it’s impossible to use a fixed bitmap size without running the risk of making it too small
(so that some text content is cut off) or too large (so that extra server memory is wasted and the image
takes longer to send to the client). One way to try to resolve this problem is to create the Font object you
want to use and then invoke the Graphics.MeasureString argument to determine how many pixels are
required to display the desired text. The only caveat is that you need to be careful not to allow the
bitmap to become too large. For example, if the user submits a string with hundreds of characters, you
don’t want to create a bitmap that’s dozens of megabytes in size! To avoid this risk, the rendering code
imposes a maximum height and width of 800 pixels.

■ Tip You can also use an alternative version of the DrawString method that accepts a rectangle in which you
want to place the text. This version of DrawString automatically wraps the text if there’s room for more than one

line. You could use this approach to allow the display of large amounts of text over several lines.

Here’s the portion of the drawing code that retrieves the query string information and measures
the text:

 ...
 // Define the font.
 Font font = new Font("Tahoma", textSize, FontStyle.Bold);

 // Use a test image to measure the text.
 Bitmap image = new Bitmap(1, 1);
 Graphics g = Graphics.FromImage(image);

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1162

 SizeF size = g.MeasureString(text, font);
 g.Dispose();
 image.Dispose();

 // Using these measurements, try to choose a reasonable bitmap size.
 // If the text is large, cap the size at some maximum to
 // prevent causing a serious server slowdown.
 int width = (int)Math.Min(size.Width + 20, 800);
 int height = (int)Math.Min(size.Height + 20, 800);
 image = new Bitmap(width, height);
 g = Graphics.FromImage(image);
 ...

You’ll see that in addition to the size needed for the text, an extra 20 pixels are added to each
dimension. This allows for a padding of 10 pixels on each side.

Finally, you can create the LinearGradientBrush, paint the drawing surface, and then add the text,
as follows:

 ...
 LinearGradientBrush brush = new LinearGradientBrush(
 new Rectangle(new Point(0,0), image.Size),
 gradientColorStart, gradientColorEnd, LinearGradientMode.ForwardDiagonal);

 // Draw the gradient background.
 g.FillRectangle(brush, 0, 0, width, height);

 // Draw the label text.
 g.DrawString(text, font, new SolidBrush(textColor), 10, 10);

 // Render the image to the output stream.
 image.Save(Response.OutputStream,
 System.Drawing.Imaging.ImageFormat.Jpeg);

 g.Dispose();
 image.Dispose();
}

To test the label, you can create a control tag like this:

<cc1:gradientlabel id="GradientLabel1" runat="server"
 Text="Test String" GradientColorStart="MediumSpringGreen"
 GradientColorEnd="RoyalBlue"></cc1:gradientlabel>

Figure 28-11 shows the rendered result.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1163

Figure 28-11. A GDI+ label custom control

■ Tip Passing information from one page to another is a useful way of using GDI+, but the limits on the size of the
query string means that it works only for relatively small amounts of data. For larger amounts of data, we can use
the Session collection. This has more overhead because everything you put in the Session collection uses server

memory, but it allows you to transmit any serializable data.

Using the Chart Control
One of the most common graphics tasks is to create a chart. The ASP.NET Chart control provides a very
wide range of chart types and configuration options. The Chart control was available as a download for
.NET version 3.5 SP1 but is included in.NET version 4.0.

The Chart Control has so many different features and options that we can’t cover them all in this
section. We’ll show you how to create some of the different types of types available, bind the chart to
different data sources, and perform some useful charting functions, but if you want a more
comprehensive set of examples, take a look at the samples library at
http://code.msdn.microsoft.com/mschart, which contains more than 200 different Chart control
examples.

Creating a Basic Chart
As with much of ASP.NET, the best place to start with the Chart control is with an example. Figure 28-12
shows a simple chart. We’ll show you how we created this chart and then show some of different ways to
customize and adapt the chart. To help explain how the Chart control works, we have annotated the
figure to indicate the major elements.

http://code.msdn.microsoft.com/mschart

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1164

Figure 28-12. A simple ASP.NET Chart control

You can add a chart by dragging the Chart control from the design palette (it is in the Data group) or
by adding the <asp:Chart> tag to your markup. Here is the basic declaration for our sample chart:

<asp:Chart ID="Chart1" runat="server" Width="900px">
 <ChartAreas>
 <asp:ChartArea Name="ChartArea1" />
 </ChartAreas>
</asp:Chart>

Each chart has one or more chart areas where data can be plotted. Our basic declaration has one
chart, which we will use to plot two sets of data. As with most ASP.NET controls, you can use a code-
behind file to drive the control or continue to use the markup. We’ll show you the code-behind approach
first. We start by configuring the chart appearance, as follows:

■ Note When using a code file with the Chart control, you’ll need to import the System.Web.UI.DataVisualization.

Charting namespace.

using System;
using System.Drawing;
using System.Web.UI.DataVisualization.Charting;

public partial class Charting_BasicChart : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1165

 // format the chart
 Chart1.BackColor = Color.Gray;
 Chart1.BackSecondaryColor = Color.WhiteSmoke;
 Chart1.BackGradientStyle = GradientStyle.DiagonalRight;
 ...

The chart background is the area that surrounds the chart area. We decided that our chart
background should be a graduated fill from Gray to WhiteSmoke in a diagonal pattern, which we
specified using the BackColor, BackSecondaryColor, and BackGradientStyle properties. When the chart
is rendered, the background is created using our chosen color scheme. We then move on to the border.
The BorderlineDashStyle controls the very edge of the border. The Solid value from the ChartDashStyle
enumeration gives us a single pixel line drawn around edge of the chart, drawn in the color specified by
the BorderlineColor property, which we have set to Gray. The BorderSkin property has many options,
but we have set the SkinStyle to be Emboss, which gives us the raised 3D effect with a shadow.

 ...
 Chart1.BorderlineDashStyle = ChartDashStyle.Solid;
 Chart1.BorderlineColor = Color.Gray;
 Chart1.BorderSkin.SkinStyle = BorderSkinStyle.Emboss;
 ...

Our next step is to set the color we want for the background of the chart area and set our title. You’ll
notice that we refer to the chart area by an index value. This is because charts can have more than one
area in which data can be plotted. We’ll show you how to do this later in the section. Our chart has only
one area, and we have chosen to use the Wheat color.

 // format the chart area
 Chart1.ChartAreas[0].BackColor = Color.Wheat;

 // add and format the title
 Chart1.Titles.Add("ASP.NET Chart");
 Chart1.Titles[0].Font = new Font("Utopia", 16);

A chart can have more than one title, so we must add a new title to the Titles collection using the
Add method and then refer to the title by index in order to format it. The formatting is simply to set a
font and size. Figure 28-13 shows our chart so far.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1166

Figure 28-13. The formatted, but empty, chart

There are many different ways of formatting a chart, and it can take a while to find the permutation
of options that you are looking for. We have started with the appearance of our example chart because,
ironically, the process of adding in the data is easier than finding a satisfactory color scheme. The Chart
control is so flexible and has so many options that the tyranny of choice makes itself felt.

Once we have the basic presentation settings out of the way, we can start to work on the data. We
represent sets of data using the Series class, and each Series class we create must be added to the
Chart.Series collection using the Add method. We usually combine creating and adding the Series class
in a single step, as follows:

 ...
 Chart1.Series.Add(new Series("ColumnSeries") {
 ChartType = SeriesChartType.Column,
 });
 ...

We created a new series with the name ColumnSeries and specified that the data in the series
should be plotted using a column chart by setting the Series.ChartType property to
SeriesChartType.Column. The SeriesChartType has 35 different values, each representing a different
kind of chart. We’ll stick to the basic types in this book, but they are worth exploring. The ChartType
property defaults to Column if you don’t specify a value.

You can configure a range of properties on the series. Here is the code we used to create the second
Series for our chart, which contains some customizations:

 Chart1.Series.Add(new Series("SplineSeries") {
 ChartType = SeriesChartType.Spline,
 BorderWidth = 3,
 ShadowOffset = 2,
 Color = Color.PaleVioletRed
 });

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1167

We have set the chart type to be Spline (a smoothed line plot). The BorderWidth value control the
width of the line plot and setting a value for the ShadowOffset property creates a 3D shadow effect under
the line when it is drawn. The Color property sets the color used to draw the plot. We have picked the
fetching PaleVioletRed shade.

The last step is to add the data to the series. There are lots of different ways of associating data with
your chart. We use the simplest in this example, which is to specify static values, as follows:

 Chart1.Series[0].Points.DataBindY(
 new int[] { 5, 3, 12, 14, 11, 7, 3, 5, 9, 12, 11, 10 });
 Chart1.Series[1].Points.DataBindY(
 new int[] { 3, 7, 13, 2, 7, 15, 23, 20, 1, 5, 7, 6 });

Each Series has a Points collection. We have used the DataBindY method, which consumes an
IEnumerable, allowing us to use an array of integers to specify the data. The index into the data is used
as the x-axis value for each Y value in the data arrays. When we load the page containing our chart
control, we see the result shown in Figure 28-12.

The Chart control is fully configurable using markup as well. Here is the same chart defined in that
form:

<asp:Chart ID="Chart2" runat="server" Width="900px" BackColor="Gray"
 BackSecondaryColor="WhiteSmoke" BackGradientStyle="DiagonalRight"
 BorderlineDashStyle="Solid" BorderlineColor="Gray">
 <BorderSkin SkinStyle="Emboss" />
 <Titles>
 <asp:Title Text="ASP.NET Chart" Font="Utopia,16" />
 </Titles>
 <Series>
 <asp:Series Name="ColumnSeries" ChartType="Column">
 <Points>
 <asp:DataPoint YValues="5" />
 <asp:DataPoint YValues="3" />
 <asp:DataPoint YValues="12" />
 <asp:DataPoint YValues="14" />
 <asp:DataPoint YValues="11" />
 <asp:DataPoint YValues="7" />
 <asp:DataPoint YValues="3" />
 <asp:DataPoint YValues="5" />
 <asp:DataPoint YValues="9" />
 <asp:DataPoint YValues="12" />
 <asp:DataPoint YValues="11" />
 <asp:DataPoint YValues="10" />
 </Points>
 </asp:Series>
 <asp:Series Name="SplineSeries" ChartType="Spline" BorderWidth="3" ShadowOffset="2"
 Color="PaleVioletRed">
 <Points>
 <asp:DataPoint YValues="3" />
 <asp:DataPoint YValues="7" />
 <asp:DataPoint YValues="13" />
 <asp:DataPoint YValues="2" />
 <asp:DataPoint YValues="7" />
 <asp:DataPoint YValues="15" />
 <asp:DataPoint YValues="23" />

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1168

 <asp:DataPoint YValues="20" />
 <asp:DataPoint YValues="1" />
 <asp:DataPoint YValues="5" />
 <asp:DataPoint YValues="7" />
 <asp:DataPoint YValues="6" />
 </Points>
 </asp:Series>
 </Series>
 <ChartAreas>
 <asp:ChartArea Name="ChartArea1" BackColor="Wheat" />
 </ChartAreas>
</asp:Chart>

Part of the flexibility of the Chart control is that the various elements are isolated from one another.
To demonstrate this, we’ll show you how to create a second chart area in the same chart and have one
data series drawn on each. Here’s the additional code we need to add to the Page_Load method:

Chart1.ChartAreas.Add("SecondArea");
Chart1.Series[1].ChartArea = "SecondArea";

To get the same effect using markup, we make the following additions:

 <asp:Series Name="SplineSeries" ChartType="Spline" BorderWidth="3" ShadowOffset="2"
 Color="PaleVioletRed" ChartArea="ChartArea2">
 <Points>
 <asp:DataPoint YValues="3" />
 <asp:DataPoint YValues="7" />
 <asp:DataPoint YValues="13" />
 <asp:DataPoint YValues="2" />
 <asp:DataPoint YValues="7" />
 <asp:DataPoint YValues="15" />
 <asp:DataPoint YValues="23" />
 <asp:DataPoint YValues="20" />
 <asp:DataPoint YValues="1" />
 <asp:DataPoint YValues="5" />
 <asp:DataPoint YValues="7" />
 <asp:DataPoint YValues="6" />
 </Points>
 </asp:Series>
 </Series>
 <ChartAreas>
 <asp:ChartArea Name="ChartArea1" BackColor="Wheat" />
 <asp:ChartArea Name="ChartArea2"/>
 </ChartAreas>

That’s it. And if we look at the web page, we get the result shown in Figure 28-14.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1169

Figure 28-14. A chart with two chart areas

We are not going to dig into all the presentation options available, but one common task is to
generate 3D charts. To transform our simple chart into a 3D chart, we add the following to the
Page_Load method:

Chart1.ChartAreas[0].Area3DStyle.Enable3D = true;

You enable 3D at the ChartArea level. If you have a chart with multiple ChartAreas, then you can
elect to mix and match 2D and 3D plots as you need. Figure 28-15 shows our basic chart in 3D. The
equivalent change in markup is as follows:

<ChartAreas>
 <asp:ChartArea Name="ChartArea1" BackColor="Wheat" Area3DStyle-Enable3D="true"/>
</ChartAreas>

Figure 28-15. The example chart in 3D

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1170

Populating a Chart with Data
In addition to the static data we used in the previous example, the Chart control can be populated with
data from a range of different sources. In this section, we’ll show you the most commonly used.

Binding to a Database Table
In this example, we’ll use the Products table in the Northwind database to demonstrate binding a chart
to a database table. We have started by formatting our Chart control, largely as in the previous example:

using System;
using System.Configuration;
using System.Data.SqlClient;
using System.Drawing;
using System.Web.UI.DataVisualization.Charting;

public partial class Charting_TableBinding : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 // format the chart
 Chart1.BackColor = Color.Gray;
 Chart1.BackSecondaryColor = Color.WhiteSmoke;
 Chart1.BackGradientStyle = GradientStyle.DiagonalRight;

 Chart1.BorderlineDashStyle = ChartDashStyle.Solid;
 Chart1.BorderSkin.SkinStyle = BorderSkinStyle.Emboss;
 Chart1.BorderlineColor = Color.Gray;

 // format the chart area
 Chart1.ChartAreas[0].BackColor = Color.Wheat;
 // add and format the title
 Chart1.Titles.Add("Table Bound Chart");
 Chart1.Titles[0].Font = new Font("Utopia", 16);
 ...

We use the standard ADO.NET classes from the System.Data.SqlClient namespace to define a
connection to the Northwind database using a connection string property. We then define the query that
will be used to generate the data in the chart. We have chosen to query for the ProductName and
UnitsInStock columns of the Products table, selecting products that have not been discontinued and
limiting our results to five rows. We open the connection and create an SqlDataReader—all standard
ADO.NET code.

 ...
 // create the connection to the database
 SqlConnection conn = new SqlConnection(
 ConfigurationManager.ConnectionStrings["Northwind"].ConnectionString);

 // define the command
 SqlCommand command = new SqlCommand("SELECT TOP (5) ProductName, UnitsInStock "
 + "FROM Products WHERE (Discontinued = 'FALSE')", conn);

 // open the command and create the reader
 command.Connection.Open();
 SqlDataReader reader = command.ExecuteReader();
 ...

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1171

We have formatted our chart and created a connection to our data. Now it is time to bind the data to
the chart. We start by clearing the Chart.Series collection. This is because when we bind a table, the
Chart control automatically creates a new Series instance for each numeric column that it finds in the
data. We will end up with a Series called UnitsInStock. But the default Series isn’t removed (it is called
Series1), and this can cause problems if you change the Series.ChartType property to a value that cannot
be plotted on the same ChartArea as a Column chart, which is the default chart type of the default series.
It is good practice to remove the default Series class before binding to the data so that you end up only
with the Series class associated with your data.

 // clear the chart series and bind to the table
 Chart1.Series.Clear();
 Chart1.DataBindTable(reader);
 Chart1.Series["UnitsInStock"].ChartType = SeriesChartType.StackedBar;

 // close the reader and the connection
 reader.Close();
 conn.Close();
 }
}

We then perform the binding, using the DataBindTable method, which takes our previously created
SqlDataReader as its argument. As we mentioned previously, binding to a table automatically creates
one data series per numeric column in the data. In our case, we query for the ProductName and
UnitsInStock columns. The Chart control will ignore the text ProductName column and create a new
Series for the UnitsInStock column. We can’t format the Series until after it has been created, so we set
the ChartType property after we have bound the table to the control. Finally, we close the SqlDataReader
and the SqlCommand. The chart we get from this code is shown in Figure 28-16.

Figure 28-16. A chart bound to a database table

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1172

The problem with this chart is that the ProductName column was ignored. During the binding
process, the Chart control worked on the basis that all the SQL data was intended to be interpreted as
values on the y-axis and discarded anything that couldn’t be used that way.

If we want to use one of the columns as x-axis values, then we must explicitly instruct the Chart
control by binding the data using the Points.DataBindXY method of the Series class. To adapt the
previous example, comment out the first three lines, and add two new lines to the code-behind file
as follows:

// clear the chart series and bind to the table
//Chart1.Series.Clear();
//Chart1.DataBindTable(reader);
//Chart1.Series["UnitsInStock"].ChartType = SeriesChartType.StackedBar;

// bind the X and Y values to the default series and format the chart
Chart1.Series[0].Points.DataBindXY(reader, "ProductName", reader, "UnitsInStock");
Chart1.Series[0].ChartType = SeriesChartType.StackedBar;

The DataBindXY method allows you to supply the source of the data and the column name that
should be used for the x- and y-axes. For our example, the source of the data for both axes is our
SqlDataReader, and the column names are ProductName and UnitsInStock. Notice that we didn’t clear
the Series collection this time. The DataBindXY method is applied to an already-existing Series (and
doesn’t create a new one), and in our example, we used the one that is created by default. When we view
our revised page, we get the chart shown in Figure 28-17.

Figure 28-17. Explicitly binding X and Y values to a chart

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1173

Binding to a Object DataSource
One of the most flexible mechanisms for populating a chart is to use an object data source, such that you
define an object that can retrieve your data and use an ObjectDataSource to bridge between the retrieval
logic in your code and the Chart control. You should create your retrieval class in the App_Code folder.
Here is our example, which returns some simple static data:

public class MyObjectDataSource {

 public class DataItem {
 public string Name {get; set;}
 public double Popularity {get; set;}
 }

 public DataItem[] GetData() {
 return new DataItem[] {
 new DataItem() {Name = "Cheesecake", Popularity = 30},
 new DataItem() {Name = "Ice Cream", Popularity = 30},
 new DataItem() {Name = "Fudge", Popularity = 20},
 new DataItem() {Name = "Milkshake", Popularity = 20}
 };
 }
}

We have defined a DataItem class that has a Name and Popularity properties. The GetData method
generates and returns an array of DataItems. This binding technique will also work with methods that
return DataSets and DataTables. The flexibility of using an ObjectDataSource is that the means by which
you source your data are abstracted from the chart, so you can change your business logic freely. To use
our data, we create a new instance of ObjectDataSource, passing the name of the retrieval class we have
created and the name of the method that should be called to get the data. In our case that is
MyObjectDataSource and GetData, respectively. We have marked the important statements, which
appear after the usual chart formatting preamble:

using System;
using System.Drawing;
using System.Web.UI.DataVisualization.Charting;
using System.Web.UI.WebControls;

public partial class Charting_ObjectAdaptorBinding : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 // format the chart
 Chart1.BackColor = Color.Gray;
 Chart1.BackSecondaryColor = Color.WhiteSmoke;
 Chart1.BackGradientStyle = GradientStyle.DiagonalRight;

 Chart1.BorderlineDashStyle = ChartDashStyle.Solid;
 Chart1.BorderSkin.SkinStyle = BorderSkinStyle.Emboss;
 Chart1.BorderlineColor = Color.Gray;

 // format the chart area
 Chart1.ChartAreas[0].BackColor = Color.Wheat;

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1174

 Chart1.ChartAreas[0].Area3DStyle.Enable3D = true;

 // add and format the title
 Chart1.Titles.Add("Table Object Adaptor Chart");
 Chart1.Titles[0].Font = new Font("Utopia", 16);

 // create the object data source
 ObjectDataSource ds = new ObjectDataSource("MyObjectDataSource", "GetData");
 // bind the source to the chart
 Chart1.DataSource = ds;
 Chart1.Series[0].XValueMember = "Name";
 Chart1.Series[0].YValueMembers = "Popularity";

 // format the series
 Chart1.Series[0].ChartType = SeriesChartType.Pie;
 }
}

Once we have created the ObjectDataSource, we bind it to the control using the Chart.DataSource
property. At this point, the data source is acting as a bridge between our retrieval class and the chart, but
the chart doesn’t know what to do with the data that is available. We provide that information using the
Series.XValueMember and Series.YValueMember properties, which allows us to specify which of the
members in the type provided by the ObjectDataSource should be used for the x- and y-axes. Figure 28-
18 shows the chart that we produced using this technique.

Figure 28-18. A chart creating with an object data source

Binding to an XML File
You can populate your chart with data from an XML file by using the System.Data.DataSet class. Here is
a simple XML file that we will use as an example:

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1175

<?xml version="1.0" encoding="utf-8" ?>
<Data>
 <Product>
 <Name>Apple</Name>
 <Quantity>40</Quantity>
 </Product>
 <Product>
 <Name>Orange</Name>
 <Quantity>20</Quantity>
 </Product>
 <Product>
 <Name>Banana</Name>
 <Quantity>30</Quantity>
 </Product>
 <Product>
 <Name>Mango</Name>
 <Quantity>22</Quantity>
 </Product>
 <Product>
 <Name>Cherry</Name>
 <Quantity>38</Quantity>
 </Product>
</Data>

To demonstrate using XML data to populate a chart, we have created an example in the
XMLBinding.aspx file. In the associated code-behind file, we have added the following to the Page_Load
method:

using System;
using System.Data;
using System.Drawing;
using System.Web.UI.DataVisualization.Charting;

public partial class Charting_XMLBinding : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 // format the chart
 Chart1.BackColor = Color.Gray;
 Chart1.BackSecondaryColor = Color.WhiteSmoke;
 Chart1.BackGradientStyle = GradientStyle.DiagonalRight;

 Chart1.BorderlineDashStyle = ChartDashStyle.Solid;
 Chart1.BorderSkin.SkinStyle = BorderSkinStyle.Emboss;
 Chart1.BorderlineColor = Color.Gray;

 // format the chart area
 Chart1.ChartAreas[0].BackColor = Color.Wheat;
 Chart1.ChartAreas[0].Area3DStyle.Enable3D = true;

 // add and format the title
 Chart1.Titles.Add("XML Chart");
 Chart1.Titles[0].Font = new Font("Utopia", 16);

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1176

 // format the data series
 Chart1.Series[0].ChartType = SeriesChartType.Radar;

 // define the path to the xml file
 string dataPath = MapPath(".") + "\\sampledata.xml";

 // create a DataSet and read the XML data
 DataSet dataSet = new DataSet();
 dataSet.ReadXml(dataPath);
 // create a DataView from the DataSet
 DataView dataView = new DataView(dataSet.Tables[0]);
 // bind the XML ata to the chart
 Chart1.Series[0].Points.DataBindXY(dataView, "Name", dataView, "Quantity");
 }
}

Once the chart has been formatted, we create a new DataSet and use the ReadXml method to load
our file, which we have placed alongside our web page. We then create a DataView, using the first item in
the DataSet.Tables collection as the constructor argument. To bind the data, we use DataBindXY
method of the Points collection of the default Series, specifying that the Name property should be used
for the x-axis and the Quantity property should be used for the y-axis. The chart that this creates is
shown in Figure 28-19.

Figure 28-19. A chart populated with XML data

Binding to LINQ
Another flexible way to bind data to a chart is to use LINQ, and you can do this consistently whether you
are using LINQ to Objects, LINQ to XML, or LINQ to Entities. In this section, we’ll show you how to use
LINQ to Entities. We started by creating a data model for the Northwind database; see Chapter 13 for
details of how to do this.

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1177

We then created a new web page that contains a Chart control and added the following to the
Page_Load method. As ever with the Chart control, it takes more effort to format the chart than it does to
bind the data; we have highlighted the binding statements:

using System;
using System.Drawing;
using System.Linq;
using System.Web.UI.DataVisualization.Charting;
using NorthwindModel;

public partial class Charting_LINQBinding : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 // format the chart
 Chart1.BackColor = Color.Gray;
 Chart1.BackSecondaryColor = Color.WhiteSmoke;
 Chart1.BackGradientStyle = GradientStyle.DiagonalRight;

 Chart1.BorderlineDashStyle = ChartDashStyle.Solid;
 Chart1.BorderSkin.SkinStyle = BorderSkinStyle.Emboss;
 Chart1.BorderlineColor = Color.Gray;

 // format the chart area
 Chart1.ChartAreas[0].BackColor = Color.Wheat;

 // add and format the title
 Chart1.Titles.Add("LINQ Chart");
 Chart1.Titles[0].Font = new Font("Utopia", 16);

 // add and format a new data series
 Chart1.Series.Add("StockLevel");
 Chart1.Series["StockLevel"].ChartType = SeriesChartType.Spline;
 Chart1.Series["StockLevel"].BorderWidth = 3;
 Chart1.Series["StockLevel"].Color = Color.PaleVioletRed;

 // create a new EF context
 NorthwindEntities context = new NorthwindEntities();

 // perform a query
 var data = context.Products
 .Where(item => !item.Discontinued)
 .Select(item => item)
 .Take(5);

 // bind the default data series to the data
 Chart1.Series[0].Points.DataBind(data, "ProductName", "UnitPrice", "");
 Chart1.Series[1].Points.DataBind(data, "ProductName", "UnitsInStock", "");
 }
}

CHAPTER 28 ■ GRAPHICS, GDI+, AND CHARTING

1178

We create a new instance of the NorthwindEntities class, which was generated when we created the
Entity Framework data model. Then, using LINQ, we query for all products that have not been
discontinued, limiting the results to five items.

We then bind the results of the query to two Series in the Chart using the DataBind method. This lets
us specify the source of the data (the result of the LINQ query) and the members of the result type that
should be used for the x-axis and y-axis. We bind the UnitPrice values to one Series and the UnitsInStock
values to another, both of them using the ProductName values as x-axis values. The chart that we
produced is shown in Figure 28-20.

Figure 28-20. A LINQ populated chart

Summary
In this chapter, you learned how to master GDI+. Although GDI+ isn’t right for every web page, it does
give you a set of features that can’t be matched by many other web application programming
frameworks. You also explored how to create server-side image maps with the ImageMap control. For
more graphical power, you might be interested in using the client-side drawing features of Silverlight, a
next-generation browser plug-in discussed in Chapter 33. Finally, we showed you how to use the Chart
control, a powerful and flexible charting tool that offers many different chart formats and can consume
data from a wide range of sources. We showed you that with very little effort, it is possible to use the
Chart control to create high-quality results.

C H A P T E R 29

■ ■ ■

1179

JavaScript and Ajax Techniques

ASP.NET provides a rich server-based programming model. The postback architecture allows you to
perform all your work with object-oriented programming languages on the server, which ensures that
your code is secure and compatible with all browsers. However, the postback architecture has its
weaknesses. Because posting back the page always involves some small but noticeable overhead, it’s
impossible to react efficiently to mouse movements and key presses. Additionally, certain tasks—such as
showing pop-up windows, providing a real-time status messages, and communicating between
frames—need browser interaction and just aren’t possible with server-side programming.

To compensate for these problems, experienced ASP.NET developers often use client-side
programming to supplement their server-side web-page code. This client-side script allows you to make
more responsive pages and accomplish some feats that wouldn’t otherwise be possible. Often, these
considerations occur when creating custom controls that render rich user interfaces (such as rollover
buttons). For the greatest browser compatibility, the client-side script language of choice is JavaScript.

In this chapter, you’ll learn some tried-and-true techniques for integrating JavaScript with ASP.NET.
You’ll even build a few JavaScript-fortified controls and learn how to strengthen your pages with Ajax, a
particularly savvy style of JavaScript coding. These examples will also provide you with valuable insight
into the workings of ASP.NET AJAX works, which you’ll consider in the next chapter.

■ What’s New ASP.NET’s request validation feature—which catches suspicious values in query strings, cookies,
headers, and posted-back form values—is now extensible. That means you can write a class that adds your own

validation logic or overrides the built-in behavior. You’ll learn more in the “Script Injection Attacks” section.

JavaScript Essentials
JavaScript is an embedded language. This means that JavaScript code is inserted directly into another
document—typically, an HTML web page. The code is downloaded to the client computer and executed
by the browser.

You have two ways to embed JavaScript code in a web page:

• You can embed the code directly in an event attribute for an HTML element. This
is the most straightforward approach for small amounts of code.

• You can add a <script> tag that contains the JavaScript code. You can choose to
run this code automatically when the page loads, or you can create a JavaScript
function that will be called in response to a client-side event.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1180

■ Note By convention, named JavaScript code routines are called functions, even when they don’t explicitly
return a value. JavaScript code routines are not called methods, because the JavaScript language doesn’t support

true object-oriented programming.

In many cases, you’ll use both of these techniques at the same time. For example, you might define
a function in a <script> block and then wire this function up to a client-side event using an event
attribute. ASP.NET follows this pattern when it performs automatic postbacks. The __doPostBack()
function includes the code needed to trigger a postback and send the event information for every
control. It’s rendered inside a <script> block. The __doPostBack() function is then connected to different
controls using JavaScript event attributes, such as onchange, so that a client-side change causes a
postback to the server.

It’s important to realize that whether you use <script> blocks, event attributes, or both, you still have
two choices about how you create your JavaScript code. Your first option is to embed fixed JavaScript
code in the .aspx portion of your page. This is the simplest approach. Your second option is to add
JavaScript code dynamically by using the methods of the Page class. This gives you the greatest
flexibility, including the ability to tweak the JavaScript code on the fly and decide what you want to
render at runtime. For example, you could tailor the JavaScript code to suit different browsers or
different property settings. When you create custom controls, the controls render the JavaScript code
they need in this way.

The followings sections explore the basic techniques for using JavaScript. You’ll learn how to
interact with the objects in your web page, handle client-side events, set properties, and move your
script into a separate .js file.

■ Note You can also use VBScript if your web application exists on a company intranet where Internet Explorer is

the standard. However, JavaScript is the only standard supported by a wide range of browsers.

The HTML Document Object Model
As a server-side programmer, you’re used to interacting with your web pages as a collection of control
objects. As a client-side programmer, you’ll work with a similar abstraction. The difference is that each
object you work with maps directly to an individual HTML tag. This means there aren’t any higher-level
controls, such as ASP.NET’s Calendar and GridView. Instead, almost everything boils down to
paragraphs, headings, images, form controls, and tables. For example, if you create a page with an <h1>
tag for a heading, two <p> tags for paragraphs, and an <input> tag for a text box, you’ll wind up with four
controls that you can manipulate individually on the client side. It makes no difference whether you
created these tags by writing raw HTML in the .aspx file or whether they were rendered by ASP.NET
server controls.

The ability to interact with your web page as a tree of objects is provided by the HTML DOM
(Document Object Model). The combination of JavaScript and the HTML DOM is called DHTML
(Dynamic HTML). In other words, DHTML isn’t a separate technology. Instead, it’s a name that
encompasses a specific way to use JavaScript. You’ll see a similar distinction when you learn about Ajax
later in this chapter. Ajax isn’t a new technology—it’s a small set of client-side programming techniques.

As is common in the world of the Web, not all browsers support the same level of JavaScript and
HTML DOM functionality. However, in this chapter, you’ll focus on techniques that are known to work

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1181

on the majority of modern browsers (including Firefox). As usual, if you are creating a web application
for a large number of users, you should perform extensive testing.

■ Tip You can find event compatibility tables on the Internet (see, for example,
www.quirksmode.org/js/events_compinfo.html). For a comprehensive introduction to DHTML, you can refer to

the MSDN website, at http://msdn2.microsoft.com/en-us/library/ms533044.aspx.

Client-Side Events
JavaScript supports a rich set of client-side events, which are listed in Table 29-1.

Table 29-1. Common Events of HTML Objects

Event Description Applies To

onchange Occurs when the user changes the value in an input control. In text
controls, this event fires after the user changes focus to another
control.

select, text,
text area

onclick Occurs when the user clicks a control. button,
check box,
radio, link,
area

onmouseover Occurs when the user moves the mouse pointer over a control. link, area

onmouseout Occurs when the user moves the mouse pointer away from a control. link, area

onkeydown Occurs when the user presses a key. text, text
area

onkeyup Occurs when the user releases a pressed key. text, text
area

onselect Occurs when the user selects a portion of text in an input control. text, text
area

onfocus Occurs when a control receives focus. select, text,
text area

onblur Occurs when focus leaves a control. select, text,
text area

onabort Occurs when the user cancels an image download. image

http://www.quirksmode.org/js/events_compinfo.html
http://msdn2.microsoft.com/en-us/library/ms533044.aspx

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1182

Event Description Applies To

onerror Occurs when an image can’t be downloaded (probably because of an
incorrect URL).

image

onload Occurs when a new page finishes downloading. window,
location

onunload Occurs when a page is unloaded. (This typically occurs after a new URL
has been entered or a link has been clicked. It fires just before the new
page is downloaded.)

window

■ Note If you’re coding your pages in XHTML, you must write the JavaScript names in all lowercase, as in

onmouseover. If you aren’t using XHTML, you can use mixed-case, as in onMouseOver, which is easier to read.

Using the event attributes listed in Table 29-1, you can insert JavaScript code that will be triggered
when a specific action occurs. For example, the following web-page code adds the onmouseover
attribute to two TextBox controls:

protected void Page_Load(object sender, EventArgs e)
{
 TextBox1.Attributes.Add("onmouseover",
 "alert('Your mouse is hovering on TextBox1.');");
 TextBox2.Attributes.Add("onmouseover",
 "alert('Your mouse is hovering on TextBox2.');");
}

When the user moves the mouse over the appropriate text box, the client-side onmouseover event
occurs and the JavaScript alert() function is called, which shows a message box (as shown in Figure 29-1).

Figure 29-1. Responding to a JavaScript event

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1183

■ Note Keep in mind that ASP.NET already uses the onchange event to support the automatic postback feature. If
you add the onchange attribute and set the AutoPostBack property to true, ASP.NET is intelligent enough to add
both your JavaScript and the __doPostBack() function call to the attribute. Your client-side JavaScript code will be

executed first, followed by the __doPostBack() function.

Adding JavaScript Attributes Declaratively
The example you just looked at adds the JavaScript code programmatically, by manipulating the
Attributes collection that’s provided by every server control. Another option is to add your event
attributes declaratively to the control tag, like so:

<asp:TextBox id="TextBox1" runat="server"
 onmouseover="alert('Your mouse is hovering on TextBox1.');" />

In this example, ASP.NET is unable to match the onmouseover attribute to a control property or
server-side event, so it simply passes it along to the rendered tag (although Visual Studio IntelliSense will
flag this as an error). This technique obviously won’t work if the JavaScript event name matches a C#
event, like the onclick attribute on a button.

The OnClientClick Property
Usually, you attach client-side JavaScript events to the appropriate event-handling functions by adding
attributes. If you’re using ordinary HTML elements, you can set the attributes directly. If you’re using
web controls, you can manipulate them through the Attributes collection.

However, ASP.NET provides an alternative way to handle button clicks with JavaScript code. Instead
of using the Attributes collection in code, you can set the OnClientClick property, which is defined in the
Button, ImageButton, and LinkButton web controls. The OnClientClick property accepts a string with
JavaScript code. It’s up to you whether this code does its work directly or calls another JavaScript
function.

Here’s an example that uses OnClientClick to display a confirmation message before a page is
posted back:

<asp:Button id="btnClick" runat="server"
 OnClientClick="return confirm('Post back to the server?');"
 Text="Click Me"/>

The button click still posts back the page and raises server-side events. The difference is that the
OnClientClick client-side logic fires first and then triggers the server-side postback.

■ Tip You can use the OnClientClick attribute to cancel a postback. The basic pattern is to call a JavaScript

method. If this method returns false, the postback is canceled.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1184

Script Blocks
It’s impractical to place a large amount of JavaScript code in an attribute, particularly if you need to use
the same code for several controls. A more common approach is to place a JavaScript function in a
<script> block and then call that function using an event attribute. The <script> tag can appear
anywhere in the header or the body of an HTML document, and a single document can have any
number of <script> tags in it.

The <script> tag takes a type attribute that specifies the script language. Browsers will ignore
<script> blocks for languages they don’t support.

A typical inline script looks like this:

<script type="text/javascript">
 <!--
 window.alert('This window displayed through JavaScript.');
 // -->
</script>

In this case, the HTML comment markers (<!-- and -->) hide the content from browsers that don’t
understand script. Additionally, the closing HTML comment marker (-->) is preceded by a JavaScript
comment (//). This is because extremely old versions of Netscape will throw a JavaScript parsing
exception when encountering the closing HTML comment marker. Modern browsers don’t suffer from
these problems, and most browsers now recognize the <script> tag (even if they don’t support
JavaScript).

In this example, the script code is processed as soon as the browser encounters it while rendering
the page. If you want your code to occur later, when a specific event occurs, it makes more sense to wrap
it inside a function in the script block, like so:

<script type="text/javascript">
 function ShowAlert()
 {
 window.alert('This window displayed through JavaScript.');
 }
</script>

Now you can hook it up to one or more HTML elements using an event attribute:

<asp:TextBox id="TextBox1" runat="server" onmouseover="ShowAlert();" />

A script block can contain any number of functions. You can also declare page-level variables that
you can access in any function:

<script type="text/javascript">
 var counter = 0;
 ...
</script>

■ Note Although JavaScript code has a superficial similarity to C#, it’s a much looser language. When declaring

variables and function parameters, you don’t need to specify their data types. Similarly, when defining a function,

you don’t indicate its return type.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1185

If you have too much JavaScript to fit neatly in a page or if you need to reuse the same set of
functions in more than one page, it makes sense to move your code to another file. Once you make the
transition, you can create a <script> block that points to your external file. The trick is to set the src
attribute to point to the file, as shown here:

<script type="text/javascript" src="ExternalJavaScript.js">
</script>

The .js file will contain the contents of the <script> block. In other words, it will include the functions
and variable declarations, but it won’t include the opening <script> tag and closing </script> tag.

Moving JavaScript code to an external file is a common technique when dealing with complex
JavaScript routines. You can also embed a JavaScript resource in a DLL assembly when you build a
custom control using the WebResource attribute.

Placing the Script Block

The content in an HTML document is processed in the order in which it appears, from top to bottom. If you
have a script block that uses immediate JavaScript code (loose JavaScript statements that are not
wrapped in a function), this code is executed as soon as it is processed. In order to avoid problems, you
must place this script block after any elements that it manipulates.

 However, if your script block uses functions that are called later in the page life cycle (for example, event-
handling functions that are triggered in response to a client-side event), you don’t need to worry. In this
situation, the browser will process the entire page before your functions are triggered. As a result, you can
place your script block anywhere in the HTML document, with the <head> section being a popular choice.

■ Note Placing JavaScript in a separate file or even embedding it in an assembly doesn’t prevent users from
retrieving it and examining it (and even modifying their local copy of the web page to use a tampered version of
the script file). Therefore, you should never include any secret algorithms or sensitive information in your
JavaScript code. You should also make sure you repeat any JavaScript validation steps on the server, because the
user can circumvent client-side code.

Manipulating HTML Elements
Reacting to events is only half the story. Most JavaScript-enabled pages also need the ability to change
the content in the page. For example, you might want to refresh a label with up-to-date text or inject
entirely new content somewhere on a page. The HTML DOM makes this easy—all you need to do is find
the element you want and manipulate its innerHTML property.

■ Note The innerHTML property represents the content between the start and end tag of an HTML element. Some
web pages use the innerText property instead, which automatically escapes HTML tags (for example, it converts
 to). However, innerText is discouraged because it isn’t supported on Mozilla-based browsers such
as Firefox.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1186

Unlike in your server-side code, JavaScript doesn’t provide member variables that give you access to
the HTML elements on your page. Instead, you need to look up the element you need using the
document.getElementById() method. Here’s an example:

var paragraph = document.getElementById("textParagraph1");

This task is exceedingly common in JavaScript code. The only consideration is that you need to
make sure the elements you want to manipulate have unique identifiers (as set in the ID attribute).

Once you’ve retrieved the object that represents the HTML tag you want to change, you read and set
its properties. All HTML objects have a wide range of basic properties, as well as a number of tag-specific
properties. Table 29-2 lists just a few that you may want to manipulate.

Table 29-2. Common Properties of HTML Objects

Event Description

innerHTML The HTML content between the start and end tag. May include other elements.

style Returns a style object that exposes all the CSS style properties for your element.
For example, you could use myObject.style.fontSize to change the font size of an
element. You can use the style object to set colors, borders, fonts, and even
positioning.

value In HTML form controls, the value attribute indicates the current state of the
control. For example, in a check box it indicates whether the check box is checked,
in a text box it indicates the text inside the box, and so on.

tagName Provides the name of the HTML tag for this object (without the angle brackets).

parentElement The HTML object for the tag that contains this tag. For example, if the current
element is a tag in a paragraph, this gets the object for the <p> tag. You can use
this property (and other related properties) to move from one element to another.

Debugging JavaScript
Visual Studio includes integrated JavaScript debugging. If you’re using Internet Explorer 8, you don’t
need to take any steps to switch on client-side debugging. Visual Studio sets it up automatically,
regardless of your Internet Explorer settings.

Debugging JavaScript with Older Versions of IE

With versions of Internet Explorer before IE 8, you need to explicitly enable script debugging. To do so,
follow these steps:

1. Choose Tools ➤ Internet Options from the menu in Internet Explorer.

2. In the Internet Options dialog box, choose the Advanced tab.

3. In the list of settings, under the Browsing group, remove the check mark next to
Disable Script Debugging (Internet Explorer). You can also remove the check mark

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1187

next to Disable Script Debugging (Other) to allow debugging for Internet Explorer
windows hosted in other applications.

4. Click OK to apply your change.

When script debugging is switched on, you’ll be prompted to debug web pages with script errors, even on
websites that you don’t control. This can be more than a little annoying because script errors are common,
and one script error usually leads to more. In other words, it won’t be long before your web browsing is
interrupted with a series of dialog boxes, each one prompting you to begin debugging the current page.

You might think you can solve this problem by turning off the Display a Notification About Every Script Error
setting, which appears just under the Disable Script Debugging settings. Unfortunately, this setting only
applies when debugging is off. For this reason, most developers who test and surf in Internet Explorer
switch the script debugging option on while testing and off while surfing.

You can try script debugging out by placing a breakpoint in a JavaScript block, as shown in Figure
29-2. Now, when the browser reaches this point in the code, it enters debug mode in Visual Studio. You
can now single-step through your code, hover over variables to see their contents, use the Watch
window, and so on, just as you would with server-side C# code.

There’s a bit of magic that makes this work. When you place a breakpoint in your JavaScript, you
add it to the server-side ASP.NET page (the .aspx source file). However, when the browser reaches your
breakpoint, it’s using the rendered client-side HTML, which is a bit different. If you look closely at a page
while you’re debugging it in Visual Studio, you’ll notice that you’re dealing with the client-side version.
For that reason, you won’t see ASP.NET control tags—instead, you’ll see the HTML that they’ve
rendered. (This is the reason the breakpoint in Figure 29-2 looks a bit different than normal, and has a
white dot in the center. The white dot indicates that this isn’t the actual breakpoint, just a marker that
tells the browser where to place its breakpoint in the rendered HTML.) If your web page markup uses the
JavaScript code in a separate .js file, you’ll also see that file appear in the Solution Explorer. You can use
all the same debugging tools with .js files, including breakpoints and single-step debugging.

The Solution Explorer makes this distinction a bit clearer. It shows both versions of your page, with
the runtime version added under a special section named Windows Internet Explorer (as shown in
Figure 29-3). You can’t modify the rendered version of your page (because doing so wouldn’t make any
lasting change), but you can edit the original server-side version and then run your page to see the
changes.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1188

Figure 29-2. A client-side breakpoint

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1189

Figure 29-3. Debugging the rendered page

There’s one more neat trick you can pull off using Visual Studio’s JavaScript debugging. You can add
a reference to the JavaScript document object in the Watch window to take a look at the DOM for the
current web page. You can then browse through its properties (and even take a look at its methods and
events). For example, Figure 29-3 shows an expanded view of the document.childNodes collection,
which contains the nested elements of the page. This first node contains the doctype, while the second
node is the top-level <html> element. Expand it and look at its childNodes collection, and you’ll find the
next level of elements (the <head> and <body> elements). You can continue this process to dig deeper
into your page until you arrive at the form and its controls.

Basic JavaScript Examples
Now that you’ve learned the key points of JavaScript, it’s easy to enhance your pages with a dash of
client-side code. In the following sections, you’ll use JavaScript to put a pretty face on pages and pictures
that take a long time to download.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1190

Creating a JavaScript Page Processor
How many times have you clicked a web page just to watch the Internet Explorer globe spin for what
seems like an eternity? Did your Internet connection go down? Was there any error connecting to a back-
end system? Or is the system just that slow? These issues often complicate new web-based solutions,
particularly if you’re replacing a more responsive rich client application (such as a Windows
application). In this situation, the easiest way to reassure your application users is to provide them with
progress messages that let them know the system is currently working on their request.

One common way to give a status message is to use JavaScript to create a standard page processor.
When the user navigates to a page that takes a long time to process, the page processor appears
immediately and shows a standard message (perhaps with scrolling text). At the same time, the
requested page is downloaded in the background. Once the results are available, the page processor
message is replaced by the requested page.

You can’t solve the processing delay problem by adding JavaScript code to the target page, because
this code won’t be processed until the page has finished processing and the rendered HTML is returned
to the user. However, you can create a generic page processor that handles requests for any time-
consuming page in your site.

To create a page processor, you need to react to the onload and onunload events. Here’s a page
(named PageProcessor.aspx) that demonstrates this pattern. It shows a table with the message text
“Loading Page - Please Wait.” The <body> element is wired up to two functions, which you’ll consider
shortly.

<html>
 <head>
 <title>LoadPage</title>
 <script type="text/javascript" >
 <!-- JavaScript functions go here. -->
 </script>
 </head>

 <body onload="BeginPageLoad();"
 onunload="EndPageLoad();">
 <form id="frmPageLoader" method="post" runat="server">
 <table border="0" width="99%">
 <tr><td align="center" valign="center">
 Loading Page - Please Wait

 </td></tr>
 </table>
 </form>
 </body>
</html>

To use the page processor, you request this page and pass the desired page as a query string
argument. For example, if you want to load TimeConsumingPage.aspx in the background, you would
use this URL:

PageProcessor.aspx?Page=TimeConsumingPage.aspx

The page processor needs very little server-side code. In fact, all it does is retrieve the originally
requested page from the query string and store it in a protected page class variable. (This is useful because
you can then expose this variable to your JavaScript code using an ASP.NET data binding expression, as
you’ll see in a moment.) Here’s the complete server-side code for the PageProcessor.aspx page:

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1191

public partial class PageProcessor : System.Web.UI.Page
{
 protected string PageToLoad;

 protected void Page_Load(object sender, EventArgs e)
 {
 PageToLoad = Request.QueryString["Page"];
 }
}

The rest of the work is performed with client-side JavaScript. When the page processor first loads,
the onload event fires, which calls the client-side BeginPageLoad() function. The BeginPageLoad()
function keeps the current window open and begins retrieving the page that the user requested. To
accomplish this, it uses the window.setInterval() method, which sets a timer that calls the custom
UpdateProgressMeter() function periodically.

Here’s the code for the BeginPageLoad() JavaScript function:

var iLoopCounter = 1;
var iMaxLoop = 6;
var iIntervalId;

function BeginPageLoad()
{
 // Redirect the browser to another page while keeping focus.
 location.href = "<%=PageToLoad %>";

 // Update progress meter every 1/2 second.
 iIntervalId = window.setInterval
 ("iLoopCounter=UpdateProgressMeter(iLoopCounter,iMaxLoop);", 500);
}

The first code statement points the page to its new URL. Notice that the page you want to download
isn’t hard-coded in the JavaScript code. Instead, it’s set with the data binding expression
<%=PageToLoad %>. When the page is rendered on the server, ASP.NET automatically inserts the value
of the PageToLoad variable in its place.

The last code statement starts a timer using the window.setInterval() function. Every 500 milliseconds,
this timer fires and executes the line of code that’s specified. This line of code calls another JavaScript
function, which is named UpdateProgressMeter(), and keeps track of the current loop counter.

The UpdateProgressMeter() function simply changes the status message periodically to make it look
more like an animated progress meter. The status message cycles repeatedly from 0 to 5 periods. Here’s
the JavaScript code that makes it work:

function UpdateProgressMeter(iCurrentLoopCounter, iMaximumLoops)
{
 // Find the object for the element with the progress text.
 var progressMeter = document.getElementById("ProgressMeter")

 iCurrentLoopCounter += 1;
 if(iCurrentLoopCounter <= iMaximumLoops)
 {
 progressMeter.innerText += ".";
 return iCurrentLoopCounter;
 }

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1192

 else
 {
 // Reset the progress meter.
 ProgressMeter.innerText = "";
 return 1;
 }
}

Finally, when the page is fully loaded, the client-side onunload event fires. In this example, the
onunload event is hooked up to a function named EndPageLoad(). This function stops the timer, clears
the progress message, and sets a temporary transfer message that disappears as soon as the new page is
rendered in the browser. Here’s the code:

function EndPageLoad()
{
 window.clearInterval(iIntervalId);

 var progressMeter = document.getElementById("ProgressMeter")
 progressMeter.innerText = "Page Loaded - Now Transferring";
}

No postbacks are made through the whole process. The end result is a progress message (see Figure
29-4) that remains until the target page is fully processed and loaded.

Figure 29-4. An automated progress meter

To test the page processor, you simply need to use a target page that takes a long time to execute on
the server (because of the work performed by the code) or to be downloaded in the client (because of the
size of the page). You can simulate a slow page by placing the following time delay code in the target
page, like this:

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1193

protected void Page_Load(object sender, EventArgs e)
{
 // Simulate a slow page loading (wait five seconds).
 System.Threading.Thread.Sleep(5000);
}

Now when you request this page through the page processor, you’ll have five seconds to study the
progress message.

■ Note To try this with the sample code included for this chapter, request the PageProcessor_Start.aspx page,
which includes a button that takes you to the time-consuming PageProcessor_Target.aspx using the page

processor.

As you can see, with just a small amount of client-side JavaScript code, you can keep the user
informed that a page is processing. By keeping users informed, the level of perceived performance
increases.

Using JavaScript to Download Images Asynchronously
The previous example demonstrated how JavaScript can help you create a more responsive interface.
This advantage isn’t limited to page processors. You can also use JavaScript to download time-
consuming portions of a page in the background. Often, this requires a little more work, but it can
provide a much better user experience.

For example, consider a case where you’re displaying a list of records in a GridView. One of the
fields displays a small image. This technique, which was demonstrated in Chapter 10, requires a
dedicated page to retrieve the image, and, depending on your design, it may require a separate trip to
the file system or database for each record. In many cases, you can optimize this design (for example, by
preloading images in the cache before you bind the grid), but this isn’t possible if the images are
retrieved from a third-party source. This is the case in the next example, which displays a list of books
and retrieves the associated images from the Amazon website.

Rendering the full table can take a significant amount of time, especially if it has a large number of
records. You can deal with this situation more effectively by using placeholder images that appear
immediately. The actual images can be retrieved in the background and displayed once they’re
available. The time required to display the complete grid with all its pictures won’t change, but the user
will be able to start reading and scrolling through the data before the images have been downloaded,
which makes the slowdown easier to bear.

The first step in this example is to create the page (named IncrementalDownloadGrid.aspx) that
displays the GridView. For the purposes of this example, the code fills a DataSet with a static list of books
from an XML file.

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 // Get data.
 DataSet ds = new DataSet();
 ds.ReadXml(Server.MapPath("Books.xml"));

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1194

 GridView1.DataSource = ds.Tables["Book"];
 GridView1.DataBind();
 }
}

Here’s the content of the XML file:

<?xml version="1.0" encoding="utf-8" ?>
<Books>
 <Book Title="Expert C# Business Objects" isbn="1590593448"
 Publisher="Apress"></Book>
 <Book Title="C# and the .NET Platform" isbn="1590590554"
 Publisher="Apress"></Book>
 <Book Title="Beginning XSLT" isbn="1590592603"
 Publisher="Apress"></Book>
 <Book Title="SQL Server Security Distilled" isbn="1590592190"
 Publisher="Apress"></Book>
</Books>

As you can see, the XML data doesn’t include any picture information. Instead, these details need to
be retrieved from the Amazon website. The GridView binds directly to the columns that are available
(Title, isbn, and Publisher) and then uses another page (named GetBookImage.aspx) to find the
corresponding image for this ISBN.

Here’s the GridView control tag without the style information:

<asp:GridView id="GridView1" runat="server" AutoGenerateColumns="False">
 <Columns>
 <asp:BoundField DataField="Title" HeaderText="Title"/>
 <asp:BoundField DataField="isbn" HeaderText="ISBN"/>
 <asp:BoundField DataField="Publisher" HeaderText="Publisher"/>
 <asp:TemplateField>
 <HeaderTemplate>
 Book Cover
 </HeaderTemplate>
 <ItemTemplate>
 <img src="UnknownBook.gif"
 onerror="this.src='Unknownbook.gif';"
 onload=
"GetBookImage(this, '<%# DataBinder.Eval(Container.DataItem, "isbn") %>');"
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

The innovative part is the last column, which contains an tag. Rather than pointing this tag
directly to GetBookImage.aspx, the src attribute is set to a local image file (UnknownBook.gif), which can
be quickly downloaded and displayed. Then the onload event (which occurs as soon as the
UnknownBook.gif image is first displayed) begins downloading the real image in the background. When
the real image is retrieved, it’s displayed, unless an error occurs during the download process. The
onerror event is handled in order to ensure that if an error occurs, the UnknownBook.gif image remains
(rather than the red X error icon).

The onload event completes its work with the help of a custom JavaScript function named
GetBookImage(). When the page calls GetBookImage(), it passes a reference to the current image control

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1195

(the one that needs the new picture) and the ISBN for the book, which is extracted through a data
binding expression. The GetBookImage() function calls another page, named GetBookImage.aspx, to get
the picture for the book. It indicates the picture it wants by passing the ISBN as a query string argument.

<script language="javascript" type="text/javascript">
 function GetBookImage(img, url)
 {
 // Detach the event handler (the code makes just one attempt
 // to get the picture).
 img.onload = null;

 // Try to get the picture from the GetBookImage.aspx page.
 img.src = 'GetBookImage.aspx?isbn=' + url;
 }
</script>

The GetBookImage.aspx page performs the time-consuming task of retrieving the image you want,
which might involve contacting a web service or connecting to a database. In this case, the
GetBookImage.aspx page simply hands the work off to a dedicated class named FindBook that does the
work. Once the URL is retrieved, it redirects the page:

protected void Page_Load(object sender, System.EventArgs e)
{
 FindBook findBook = new FindBook();
 string imageUrl = findBook.GetImageUrl(Request.QueryString["isbn"]);
 Response.Redirect(imageUrl);
}

The FindBook class is more complex. It uses screen scraping to find the tag for the picture on
the Amazon website. Unfortunately, Amazon’s image thumbnails don’t have a clear naming convention
that would allow you to retrieve the URL directly. However, based on the ISBN you can find the book
detail page, and you can look through the HTML of the book detail page to find the image URL. That’s
the task the FindBook class performs.

Two methods are at work in the FindBook class. The GetWebPageAsString() method requests a URL,
retrieves the HTML content, and converts it to a string, as shown here:

public string GetWebPageAsString(string url)
{
 // Create the request.
 WebRequest requestHtml = WebRequest.Create(url);

 // Get the response.
 WebResponse responseHtml = requestHtml.GetResponse();

 // Read the response stream.
 StreamReader r = new StreamReader(responseHtml.GetResponseStream());
 string htmlContent = r.ReadToEnd();
 r.Close();
 return htmlContent;
}

The GetImageUrl() method uses GetWebPageAsString() and a little regular expression wizardry.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1196

Amazon image URLs are notoriously cryptic. However, most currently take the following form:

http://ec1.images-amazon.com/images/I/[ImageName].jpg.

For example, a typical URL is

http://ec1.images-amazon.com/images/I/51M6SPXWT5L._BO2,204,203,200_PIsitb-dp-500-
arrow,TopRight,45,-64_OU01_AA240_SH20_.jpg.

Using the regular expression, the code matches the full URL for the book image (with the ending
character sequence) and returns it. Here’s the complete code for the GetImageUrl() method:

public string GetImageUrl(string isbn)
{
 try
 {
 // Find the pointer to the book cover image.
 // Amazon.com has the most cover images,
 // so go there to look for it.
 // Start with the book details page.
 isbn = isbn.Replace("-", "");
 string bookUrl = "http://www.amazon.com/exec/obidos/ASIN/" + isbn;

 // Now retrieve the HTML content of the book details page.
 string bookHtml = GetWebPageAsString(bookUrl);

 // Search the page for an image tag that has the requested ISBN.
 string imgTagPattern =
 "<img src=\"(http://ec1.images-amazon.com/images/I/[^\"]+)\"";
 Match imgTagMatch = Regex.Match(bookHtml, imgTagPattern);
 return imgTagMatch.Groups[1].Value;
 }
 catch
 {
 return "";
 }
}

■ Note Using the dedicated Amazon web service would obviously be a more flexible and robust approach,

although it wouldn’t change this example, which demonstrates the performance enhancements of a little

JavaScript. You can get information about Amazon’s offerings at http://www.amazon.com/gp/aws/landing.html.

The end result is a page that initially loads with default images, as shown in Figure 29-5.
After a short delay, the images will begin to appear, as shown in Figure 29-6.

http://ec1.images-amazon.com/images/I
http://ec1.images-amazon.com/images/I/51M6SPXWT5L._BO2,204,203,200_PIsitb-dp-500-arrow
http://ec1.images-amazon.com/images/I/51M6SPXWT5L._BO2,204,203,200_PIsitb-dp-500-arrow
http://www.amazon.com/exec/obidos/ASIN
http://ec1.images-amazon.com/images/I/[^\"]+)\
http://www.amazon.com/gp/aws/landing.html

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1197

Figure 29-5. The initial view of the page

Figure 29-6. The page with image thumbnails

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1198

Once loaded, the real book images will load in the background, but the user can begin using the
page immediately.

Rendering Script Blocks
So far, the examples you’ve seen have used static <script> blocks that are inserted directly in the .aspx
portion of your page. However, it’s often more flexible to render the script using the Page.ClientScript
property, which exposes a ClientScriptManager object that provides several useful methods for
managing script blocks. Two of the most useful are as follows:

• RegisterClientScriptBlock(): Writes a script block at the beginning of the web
form, right after the <form runat="server"> tag

• RegisterStartupScript(): Writes a script block at the end of the web form, right
before the closing </form> tag

These two methods perform the same task—they take a string input with the <script> block and add
it to the rendered HTML. RegisterClientScriptBlock() is designed for functions that are called in response
to JavaScript events. You can place these <script> blocks anywhere in the HTML document. Placing
them at the beginning of the web form is just a matter of convention and makes them easy to find. The
RegisterStartupScript() method is meant to add JavaScript code that will be executed immediately when
the page loads. This code might manipulate other controls on the page, so to be safe you should place it
at the end of the web form. Otherwise, it might try to access elements that haven’t been created yet.

When you use RegisterClientScriptBlock() and RegisterStartupScript(), you also specify a key name
for the script block. For example, if your function opens a pop-up window, you might use the key name
ShowPopUp. The actual key name isn’t important as long as it’s unique. The purpose is to ensure that
ASP.NET doesn’t add the same script function more than once. This scenario is most important when
dealing with server controls that render JavaScript. For example, consider the ASP.NET validation
controls. Every validation control requires the use of certain validation functions, but it doesn’t make
sense for each control to add a duplicate <script> block. But because each control uses the same key
name when it calls RegisterClientScriptBlock(), ASP.NET realizes they are duplicate definitions, and it
renders only a single copy.

For example, the following code registers a JavaScript function named confirmSubmit(). This
function displays a confirmation box and, depending on whether the user clicks OK or Cancel, either
posts back the page or does nothing. This function is then attached to the form through the onsubmit
attribute.

protected void Page_Load(object sender, EventArgs e)
{
 string script = @"<script type='text/javascript'>
 function ConfirmSubmit() {
 var msg = 'Are you sure you want to submit this data?';
 return confirm(msg);
 }
 </script>";

 Page.ClientScript.RegisterClientScriptBlock(this.GetType(), "Confirm", script);
 form1.Attributes.Add("onsubmit", "return ConfirmSubmit();");
}

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1199

■ Note To make it easier to define a JavaScript function over multiple lines, you can precede the string with the

@ symbol. That way, all the characters are treated as string literals, and you can span multiple lines.

Figure 29-7 shows the result.

Figure 29-7. Using a JavaScript confirmation message

In this example, there’s no real benefit from using the RegisterClientScriptBlock() method.
However, the ClientScriptManager methods become essential when you’re developing a custom control
that uses JavaScript. Later in this chapter, you’ll see a control that uses RegisterStartupScript() to show a
pop-up window.

Script Injection Attacks
Often, developers aren’t aware of the security vulnerabilities they introduce in a page. That’s because
many common dangers—including script injection and SQL injection—are surprisingly easy to stumble
into. To minimize these risks, technology vendors such as Microsoft strive to find ways to integrate
safety checks into the programming framework itself, thereby insulating application programmers.

One attack to which web pages are commonly vulnerable is a script injection attack. A script
injection attack occurs when malicious tags or script code are submitted by a user (usually through a
simple control such as a TextBox control) and then rendered into an HTML page later. Although this
rendering process is intended to display the user-supplied data, it actually executes the script. A script
injection attack can have any of a number of different effects from trivial to significant. If the user-
supplied data is stored in a database and inserted later into pages used by other people, the attack may
affect the operation of the website for all users.

The basic technique for a script injection attack is for the client to submit content with embedded
scripting tags. These scripting tags can include <script>, <object>, <applet>, and <embed>. Although the
application can specifically check for these tags and use HTML encoding to replace the tags with
harmless HTML entities, that basic validation often isn’t performed.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1200

Request Validation
Script injection attacks are a concern of all web developers, whether they are using ASP.NET, ASP, or
other web development technologies. ASP.NET includes a feature designed to automatically combat
script injection attacks, called request validation. Request validation checks the posted form input and
raises an error if any potentially malicious tags (such as <script>) are found. In fact, request validation
disallows any nonnumeric tags, including HTML tags (such as and), and tags that don’t
correspond to anything (such as <abcd>).

To test the script validation features, you can create a simple web page like the one shown in Figure
29-8. This simple example contains a text box and a button.

Figure 29-8. Testing a script injection attack

Now, try to enter a block of content with a script tag and then click the button. ASP.NET will detect
the potentially dangerous value and generate an error. If you’re running the code locally, you’ll see the
rich error page with detailed information, as shown in Figure 29-9. (If you’re requesting the page
remotely, you’ll see only a generic error page.)

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1201

Figure 29-9. A failed script injection attack

Disabling Request Validation
In some situations, the request validation rules are just too restrictive. For example, you might have an
application where users have a genuine need to specify HTML tags or a block of XML data. (For example,
consider a web application that requires that the user submit a block of formatted HTML that represents
an auction listing or an advertisement.) In these situations, you can specifically disable script validation
by following two steps.

First, you need to set the ValidateRequest property of the Page directive, as shown here:

<%@ Page ValidateRequest="false" ... %>

However, this change alone has no effect. That’s because ASP.NET 4 changes the way request
validation works, by applying it earlier in the page processing lifecycle. The goal of this change is to let
request validation work with other, non-ASP.NET file types (which it does). However, the drawback is
that request validation always runs, even if you set ValidateRequest to false.

To change this behavior, you can either add custom validation code (as explained in the next
section), or you can tell ASP.NET to revert to its pre-version-4 validation behavior. To do that, you need
to add the <httpRuntime> element to your web.config file, and set requestValidationMode to 2.0, as
shown here:

<configuration>
 <system.web>
 <httpRuntime requestValidationMode="2.0" />
 ...
 </system.web>
</configuration>

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1202

Now, consider what happens if you attempt to display the user-supplied value in a label with this
code:

protected void cmdSubmit_Click(object sender, EventArgs e)
{
 lblInfo.Text = "You entered: " + txtInput.Text;
}

If a malicious user enters the text <script>alert('Script Injection');</script>, the returned web page
will execute the script, as shown in Figure 29-10.

Figure 29-10. A successful script injection attack

You can also disable request validation for an entire web application by modifying the web.config
file. Add or set the validateRequest attribute of the <pages> element, as shown here:

<configuration>
 <system.web>
 <pages validateRequest="false" />
 <httpRuntime requestValidationMode="2.0" />
 ...
 </system.web>
</configuration>

Keep in mind that the script in a script injection attack is always executed on the client end.
However, this doesn’t mean it’s limited to a single user. In many situations, user-supplied data is stored
in a location such as a database and can be viewed by other users. For example, if a user supplies a script
block for a business name when adding a business to a registry, another user who requests a full list of all
businesses in the registry will be affected.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1203

To prevent a script injection attack from happening when request validation is turned off, you need
to explicitly encode the content before you display it using the Server object, as described earlier in this
chapter.

Here’s a rewritten version of the Button.Click event handler that isn’t susceptible to script injection
attacks:

protected void cmdSubmit_Click(object sender, EventArgs e)
{
 lblInfo.Text = "You entered: " + Server.HtmlEncode(txtInput.Text);
}

Figure 29-11 shows the result of an attempted script injection attack on this page.

Figure 29-11. A disarmed script injection attack

Extending Request Validation
For the majority of web applications, ASP.NET’s standard request validation will work perfectly well. But
in situations where you need to selectively allow certain values that are usually denied or deny
additional values, you can extend the request validation system with your own custom code.

■ Note If you’re faced with the choice between disabling request validation completely and adding an exception
through code, it’s almost always better to add the exception. Otherwise, your application is left open to a wide

variety of scripting attacks and other mischief.

To extend the request validation system, you need to create a class that derives from
RequestValidator (which is found in the System.Web.Util namespace) and overrides
IsValidRequestString:

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1204

public class CustomRequestValidator : RequestValidator
{
 protected override bool IsValidRequestString(
 HttpContext context, string value,
 RequestValidationSource requestValidationSource,
 string collectionKey, out int validationFailureIndex)
 {
 ...
 }
}

The IsValidRequestString() method accepts five arguments:

context: This is the HttpContext for the request, which allows you to access built-in ASP.NET objects
like Request, Response, Application, Server, Session, and Cache.

value: This is the string with the text that needs to be validated.

requestValidationSource: This identifies the type of information that’s being validated using the
RequestValidationSource enumeration. Possible values include Cookies, File, Form, Headers, Path,
and QueryString.

collectionKey: If the data source comes from a collection, collectionKey returns the name that’s
used to index the value. For example, in the case of form data, the collectionKey is the
corresponding input control that posted the value.

validationFailureIndex: If the validation runs successfully, validationFailureIndex should be set to 0
and the IsValidRequestString() method should return true. If validation fails, the
IsValidRequestString() method should return false and the validationFailureIndex can be set to
point to the location in the string where the invalid data begins.

Using this information, it’s easy to build a quick-and-dirty validation routine that changes

ASP.NET’s built-on behavior. In the following example, the validator checks if it’s performing form
validation. If it isn’t, the validator triggers the default implementation, passing the work along. If it is, the
validator then searches for <script> tags in the posted input. It rejects values that include this detail, but
accepts everything else, making it far more permissive than ASP.NET’s usual validation.

public class CustomRequestValidator : RequestValidator
{
 protected override bool IsValidRequestString(
 HttpContext context, string value,
 RequestValidationSource requestValidationSource,
 string collectionKey, out int validationFailureIndex)
 {
 if (requestValidationSource == RequestValidationSource.Form)
 {
 int errorIndex = value.ToLower().IndexOf("<script>");
 if (errorIndex != -1)
 {
 validationFailureIndex = errorIndex;
 return false;
 }
 else
 {
 validationFailureIndex = 0;

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1205

 return true;
 }
 }
 else
 {
 return base.IsValidRequestString(context, value,
 requestValidationSource, collectionKey, out validationFailureIndex);
 }
 }
}

This example is simply a demonstration that shows how custom validation works. However, it’s
enough for you to see how you can plug it as much or as little custom validation code as you want.

Tip If you want to augment the standard ASP.NET validation, it’s a good idea to chain your implementation. After
the value passes your checks, you can then call the base IsValidRequestString() implementation to perform the

additional built-in checks.

To use the CustomRequestValidator, you simply need to register it in the web.config file with the
requestValidationType attribute of the <httpRuntime> element:

<configuration>
 <system.web>
 <httpRuntime requestValidationType="CustomRequestValidator" />
 ...
 </system.web>
</configuration>

Custom Controls with JavaScript
JavaScript plays an important role in many advanced web controls. In an ideal world, the web-page
developer never needs to worry about JavaScript. Instead, web-page developers would program with
neat object-oriented controls that render the JavaScript they need to optimize their appearance and
their performance. This gives you the best of both worlds—object-oriented programming on the server
and the client-side frills of JavaScript.

You can create any number of controls with JavaScript and the HTML document model. Common
examples include rich menus, specialized trees, and advanced grids, many of which are available (some
for free) at Microsoft’s http://www.asp.net community site. In the following sections, you’ll consider two
custom controls that use JavaScript—a pop-up window generator and a rollover button.

Pop-Up Windows
For most people, pop-up windows are one of the Web’s most annoying characteristics. Usually, they
deliver advertisements, but sometimes they serve the slightly more valid purpose of providing helpful
information or inviting the user to participate in a survey or promotional offer. A related variant is the

http://www.asp.net

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1206

pop-under window, which displays the new window underneath the current window. This way, the
advertisement doesn’t distract the user until the original browser window is closed.

It’s fairly easy to show a pop-up window by using the window.open() function in a JavaScript block.
Here’s an example:

<script type="text/javascript">
 window.open('http://www.apress.com', 'myWindow',
 'toolbar=0, height=500, width=800, resizable=1, scrollbars=1');
 window.focus();
</script>

The window.open() function accepts several parameters. They include the link for the new page and
the frame name of the window (which is important if you want to load a new document into that frame
later, through another link). The third parameter is a comma-separated string of attributes that
configure the style and size of the pop-up window. These attributes can include any of the following:

• height and width, which are set to pixel values

• toolbar and menuBar, which can be set to 1 or 0 (or yes or no) depending on
whether you want to display these elements

• resizable, which can be set to 1 or 0 depending on whether you want a fixed or
resizable window border

• scrollbars, which can be set to 1 or 0 depending on whether you want to show
scrollbars in the pop-up window

As with any other JavaScript code, you can add a <script> block that uses the window.open()
function, or you can use the window.open() function directly with a JavaScript event attribute.

You may want to use the same pop-up functionality for several pages and tailor the pop-up URL
based on user-specific information. For example, you might want to check whether the user has already
seen an advertisement before showing it, or you might want to pass the user name to the new window as
a query string argument so that it can be incorporated in the pop-up message. In these scenarios, you
need some level of programmatic control over the pop-up, so it makes sense to create a component that
wraps all these details. The next example develops a PopUp control to fill this role. As with the custom
controls you considered in Chapter 27, you can place the code for this control in the App_Code
directory, but a more robust approach is to put it in a separate class library assembly (which is the
approach you’ll find in the sample code).

Here’s the definition for the PopUp control:

public class PopUp : Control
{ ... }

By deriving this component from Control, you gain the ability to add your pop-up to the Toolbox
and drop it on a web form at design time.

To ensure that the PopUp control is as reusable as possible, it provides properties such as
PopUnder, Url, WindowHeight, WindowWidth, Resizable, and Scrollbars, which allow you to configure
the JavaScript that it generates. Here’s the code for the PopUp properties:

public bool PopUnder
{
 get {return (bool)ViewState["PopUnder"];}
 set {ViewState["PopUnder"] = value;}
}

public string Url

http://www.apress.com

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1207

{
 get {return (string)ViewState["Url"];}
 set {ViewState["Url"] = value;}
}

public int WindowHeight
{
 get {return (int)ViewState["WindowHeight"];}
 set
 {
 if (value < 1)
 throw new ArgumentException("WindowHeight must be greater than 0");
 ViewState["WindowHeight"] = value;
 }
}

public int WindowWidth
{
 get {return (int)ViewState["WindowWidth"];}
 set
 {
 if (value < 1)
 throw new ArgumentException("WindowWidth must be greater than 0");
 ViewState["WindowWidth"] = value;
 }
}

public bool Resizable
{
 get {return (bool)ViewState["Resizable"];}
 set {ViewState["Resizable"] = value;}
}

public bool Scrollbars
{
 get {return (bool)ViewState["Scrollbars"];}
 set {ViewState["Scrollbars"] = value;}
}

// Constructor sets default values.
public PopUp()
{
 PopUnder = true;
 Url = "about:blank";
 WindowHeight = 300;
 WindowWidth = 300;
 Resizable = false;
 Scrollbars = false;
}

Now that the control has defined these properties, it’s time to put them to work in the Render()
method, which writes the JavaScript code to the page. The first step is to make sure the browser supports
JavaScript. You can examine the Page.Request.Browser.JavaScript property, which returns true or false,
but this approach is considered obsolete (because it doesn’t give you the flexibility to distinguish

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1208

between different levels of JavaScript and HTML DOM support). The recommended solution is to check
that the Page.Request.Browser.EcmaScriptVersion is greater than or equal to 1, which implies JavaScript
support.

If JavaScript is supported, the code uses a StringBuilder to build the script block. This code is fairly
straightforward—the only unusual detail is that the Boolean Scrollbars and Resizable values need to be
converted to integers and then to strings. That’s because the required syntax is scrollbars=1 rather than
scrollbars=true (which is the text you end up with if you convert a Boolean value directly to a string).

Here’s the complete rendering code:

protected override void Render(HtmlTextWriter writer)
{
 if (Page.Request.Browser.EcmaScriptVersion.Major >= 1)
 {
 StringBuilder javaScriptString = new StringBuilder();
 javaScriptString.Append("<script type='text/javascript'>");
 javaScriptString.Append("\n<!-- ");
 javaScriptString.Append("\nwindow.open('");
 javaScriptString.Append(Url + "', '" + ID);
 javaScriptString.Append("','toolbar=0,");
 javaScriptString.Append("height=" + WindowHeight + ",");
 javaScriptString.Append("width=" + WindowWidth + ",");
 javaScriptString.Append("resizable=" +
 Convert.ToInt16(Resizable).ToString() + ",");
 javaScriptString.Append("scrollbars=" +
 Convert.ToInt16(Scrollbars).ToString());
 javaScriptString.Append("');\n");
 if (PopUnder) javaScriptString.Append("window.focus();");
 javaScriptString.Append("\n-->\n");
 javaScriptString.Append("</script>\n");
 writer.Write(javaScriptString.ToString());
 }
 else
 {
 writer.Write("<!-- This browser does not support JavaScript -->");
 }
}

To use the PopUp control, you need to register the control assembly and map it to a control prefix
with the Register directive. You can then declare the PopUp control on a page. Here’s a sample web page
that does this:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="PopUpTest.aspx.cs"
 Inherits="PopUpTest" %>
<%@ Register Assembly="JavaScriptCustomControls"
 Namespace="CustomServerControlsLibrary" TagPrefix="cc1" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

http://www.w3.org/1999/xhtml

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1209

 <cc1:popup id="PopUp1" runat="server"
 Url="PopUpAd.aspx" Scrollbars="True" Resizable="True"/>
 </div>
 </form>

Figure 29-12 shows the PopUp control in action.

■ Tip Usually, custom controls register JavaScript blocks in the OnPreRender() method, rather than writing it
directly in the Render() method. However, the PopUp control bypasses this approach and takes direct control of

writing the script block. That’s because you don’t want the usual behavior, which is to create one script block
regardless of how many PopUp controls you place on the page. Instead, if you add more than one PopUp control,
you want the page to include a separate script block for each control. This gives you the ability to create pages

that display multiple pop-up windows.

Figure 29-12. Showing a pop-up window

If you want to enhance the PopUp component, you can add more properties. For example, you
could add properties that allow you to specify the position where the window will be displayed. Some
websites use advertisements that don’t appear for several seconds. You could use this technique with
this component by adding a JavaScript timer (and wrapping it with a control property that allows you to
specify the number of seconds to wait). Once again, the basic idea is to give the page developer a neat
object to program with and the ability to use the rendering methods to generate the required JavaScript
in the page.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1210

Rollover Buttons
Rollover buttons are another useful JavaScript trick that has no equivalent in the ASP.NET world. A
rollover button displays one image when it first appears and another image when the mouse hovers over
it (and sometimes a third image when the image is clicked).

To provide the rollover effect, a rollover button usually consists of an tag that handles the
onclick, onmouseover, and onmouseout JavaScript events. These events will call a function that swaps
images for the current button, like this:

<script language='JavaScript'>
 function swapImg(id, url)
 {
 var elm = document.getElementById(id);
 elm.src = url;
 }
</script>

A configured tag would then look like this (where RollOverButton1 is the name of the
rendered element for the control):

<img src="buttonOriginal.jpg"
 onmouseover="swapImg('RollOverButton1', 'buttonMouseOver.jpg');"
 onmouseout="swapImg('RollOverButton1', 'buttonOriginal.jpg');" />

Rollover buttons are a mainstay on the Web, and it’s fairly easy to fill the gap in ASP.NET with a
custom control. The easiest way to create this control is to derive from the WebControl class and use
 as the base tag. You also need to implement the IPostBackEventHandler to allow the button to
trigger a server-side event when clicked.

Here’s the declaration for the RollOverButton control class and its constructor:

public class RollOverButton : WebControl, IPostBackEventHandler
{
 public RollOverButton() : base(HtmlTextWriterTag.Img)
 { ... }

 // Other code omitted.
}

The RollOverButton class provides two properties—one URL for the original image and another
URL for the image that should be shown when the user moves the mouse over the button. Here are the
property definitions:

public string ImageUrl
{
 get {return (string)ViewState["ImageUrl"];}
 set {ViewState["ImageUrl"] = value;}
}

public string MouseOverImageUrl
{
 get {return (string)ViewState["MouseOverImageUrl"];}
 set {ViewState["MouseOverImageUrl"] = value;}
}

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1211

The next step is to have the control emit the client-side JavaScript that can swap between the two
pictures. In this case, it’s quite likely that there will be multiple RollOverButton instances on the same
page. That means you need to register the script block with a control-specific key so that no matter how
many buttons you add there’s only a single instance of the function. By convention, this script block is
registered by overriding the OnPreRender() method, which is called just before the rendering process
starts, as shown here:

protected override void OnPreRender(EventArgs e)
{
 if (!Page.ClientScript.IsClientScriptBlockRegistered("swapImg"))
 {
 string script =
 "<script type='text/javascript'> " +
 "function swapImg(id, url) { " +
 "var elm = document.getElementById(id); " +
 "elm.src = url; }" +
 "</script> ";
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "swapImg", script);
 }
 base.OnPreRender(e);
}

This code explicitly checks whether the script block has been registered using the
IsClientScriptBlockRegistered() method. You don’t actually need to test this property; as long as you use
the same key, ASP.NET will render only a single instance of the script block. However, you can use the
IsClientScriptBlockRegistered() and IsStartupScriptRegistered() methods to avoid performing
potentially time-consuming work. In this example, it saves the minor overhead of constructing the script
block string if you don’t need it.

■ Tip To really streamline your custom control code, put all your JavaScript code into a separate file, embed that
file into your compiled control assembly, and then expose it through a URL using the WebResource attribute. This
is the approach that ASP.NET uses with its validation controls, for example. To learn more about the WebResource

attribute, refer to the “Design-Time Support” chapter that’s included on the only book page as part of the Bonus

Content for this book.

Remember that because RollOverButton derives from WebControl and uses as the base tag, it
already has the rendering smarts to output an tag. The only parts you need to supply are the
attributes, such as name and src. Additionally, you need to handle the onclick event (to post back the
page) and the onmouseover and onmouseout events to swap the image. You can do this by overriding
the AddAttributesToRender() method, as follows:

protected override void AddAttributesToRender(HtmlTextWriter output)
{
 output.AddAttribute("id", ClientID);
 output.AddAttribute("src", ImageUrl);
 output.AddAttribute("onclick", Page.ClientScript.GetPostBackEventReference(

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1212

 new PostBackOptions(this)));

 output.AddAttribute("onmouseover",
 "swapImg('" + this.ClientID + "', '" + MouseOverImageUrl + "');");

 output.AddAttribute("onmouseout",
 "swapImg('" + this.ClientID + "', '" + ImageUrl + "');");
}

As you learned in Chapter 27, the Page.ClientScript.GetPostBackEventReference() method returns a
reference to the client-side __doPostBack() function. Using this detail, you can build a control that
triggers a postback. You also need to be sure to specify the id attribute for your control so that the server
can identify it as the source of the postback.

The final ingredient is to create the RaisePostBackEvent() method, as required by the
IPostBackEventHandler interface, and use it to raise a server-side event, as shown here:

public void RaisePostBackEvent(string eventArgument)
{
 OnImageClicked(new EventArgs());
}

public event EventHandler ImageClicked;
protected virtual void OnImageClicked(EventArgs e)
{
 // Check for at least one listener and then raise the event.
 if (ImageClicked != null)
 ImageClicked(this, e);
}

Figure 29-13 shows a page with two rollover buttons.

Figure 29-13. Using a rollover button

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1213

One way to improve this control is to add image preloading, so the rollover image is downloaded
when the page is first rendered (rather than when the mouse moves over the image). Without image
preloading, you may notice a delay the first time you move your mouse over the button.

The easiest way to perform preloading is to create a script that runs when the page is loaded. This
script needs to create a JavaScript Image object and set the Image.src property to the image you want to
preload. (If you have several images to preload, you can simply assign the src property to each image,
one after the other.) The Image object won’t actually be used in your page, but the image files you’ve
preloaded will be automatically stored in the browser’s cache. If you use the same URL elsewhere in the
page (for example, in the swapImg() function), the cached version will be used.

Here’s the code you need to add to the OnPreRender() method to implement image preloading:

if (!Page.ClientScript.IsStartupScriptRegistered("preload" + this.ClientID))
{
 string script =
 "<script type='text/javascript'> " +
 "var preloadedImage = new Image(); " +
 "preloadedImage.src = '" + MouseOverImageUrl + "'; " +
 "</script> ";

 Page.ClientScript.RegisterStartupScript(this.GetType(),
 "preload" + this.ClientID, script);
}

Frames
Frames allow you to display more than one HTML document in the same browser window. Frames can
be used to provide navigational controls (such as a menu with links) that remain visible on every page.
Frames also give you the ability to independently scroll the content frame while keeping the navigational
controls fixed in place.

In modern day website design, frames are considered outdated. They have a notable list of quirks,
including poor support for varying screen sizes and devices (such as mobile phones). The most obvious
limitation with frames is the fact that the URL shown in the browser reflects the frame’s page, but it
doesn’t convey any information about what documents are currently loaded in each frame. Thus,
bookmarks and the browser history may not capture the current state of a page. Frames are also
deprecated in XHTML 1.1.

In ASP.NET development, it’s far more common to create multipart pages using the master pages
feature discussed in Chapter 16 than to use frames. However, frames may still have some specialized
uses, such as when bringing together existing documents from different websites into a single window.

■ Tip For more information about frames, refer to the tutorial at
http://www.w3schools.com/html/html_frames.asp or the FAQ at http://www.htmlhelp.com/faq/html/frames.html.

Frames, like JavaScript, are completely independent of ASP.NET. They are simply a part of the HTML standard.

http://www.w3schools.com/html/html_frames.asp
http://www.htmlhelp.com/faq/html/frames.html

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1214

Frame Navigation
Frames aren’t always that easy to integrate into an ASP.NET page. Showing separate frames is easy—you
simply need to create an HTML frames page that references the ASP.NET pages you want to show and
defines their positioning. However, developers often want an action in one frame to have a result in
another frame, and this interaction is not as straightforward. The problem is that each frame loads a
different page, and from the point of view of the web server, these pages are completely separate. That
means that the only way one frame can interact with another is through the browser, using client-side
script. (Another way to solve this problem is to avoid frames altogether, and use the ASP.NET master
pages feature instead. That way, the separate pages are combined into one HTML document on the
server, rather than simply displayed together on the client.)

For example, consider the following HTML page, which defines a frameset with two frames (a
sidebar on the left and a content frame on the right):

<html>
 <head>
 <title>Frame Test</title>
 </head>
 <frameset framespacing="1" cols="200,*">
 <frame name="menu" src="Frame1.aspx" scrolling="no" />
 <frame name="content" src="" scrolling="auto" />
 <noframes>
 <body>
 <p>This page uses frames, but your browser doesn't support them.</p>
 </noframes>
 </frameset>

The left frame shows the Frame1.aspx page. In this page, you might want to add controls that set the
content in the other frame. This is easy to do using static HTML, such as an anchor tag. For example, if a
user clicks the following hyperlink, it will automatically load the target NewPage.aspx in the frame on the
right, which is named content:

Click here

You can also perform the same feat when a JavaScript event occurs by setting the
parent.[FrameName].location property. For example, you could add an tag on the left frame and
use it to set the content on the right frame, as shown here:

However, navigation becomes more complicated if you want to perform programmatic frame
navigation in response to a server-side event. For example, you might want to log the user’s action,
examine security credentials, or commit data to a database and then perform the frame navigation. The
only way to accomplish frame navigation from the server side is to write a snippet of JavaScript that
instructs the browser to change the location of the other frame when the page first loads on the client.

For example, imagine you add a button to the leftmost frame, as shown in Figure 29-14. When this
button is clicked, the following server-side code runs. It defines the <script> block and then registers it in
the page. When the page is posted back, the script executes and redirects the rightmost frame to the
requested page.

protected void Button1_Click(object sender, EventArgs e)
{
 string url = "http://www.google.com";

http://www.google.com

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1215

 string frameScript = "<script type='text/javascript'>" +
 "window.parent.content.location='" + url + "';</script>";
 Page.ClientScript.RegisterStartupScript(this.GetType(),
 "FrameScript", frameScript);
}

Figure 29-14. Using server-side code to control frame navigation

■ Tip Oddly enough, in this example the RegisterClientScriptBlock() method probably works slightly better than
the RegisterStartupScript() block method. No matter how you implement this approach, you will get a slight delay
before the new frame is refreshed. Because the script block doesn’t depend on any of the controls on the page,

you can render it immediately after the opening <form> tag using RegisterClientScriptBlock(), rather than at the
end. This ensures that the JavaScript code that triggers the navigation is executed immediately, rather than after

all the other content in the page has been downloaded.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1216

Inline Frames
One solution that combines server-side programming with frame-like functionality is the <iframe> tag
(which is defined as part of the HTML 4.0 standard). The <iframe> is an inline, or embedded, frame that
you can position anywhere inside an HTML document. Both the main document and the embedded
page are treated as complete, separate documents.

Here’s an example of an <iframe> tag:

<iframe src="page.aspx" width="40%" height="80">
</iframe>

The key problem with the <iframe> tag is that support is not universal across all browsers. Internet
Explorer has supported it since version 3, but Netscape added it only in version 6. However, you can
define static text that will be displayed in browsers that don’t recognize the tag, as shown here:

<iframe src="page.aspx" width="40%" height="80">
 <p>See the content at page.aspx.</p>
</iframe>

Once you’ve added an <iframe> to your page, you can define it in the code-behind to access it
programmatically by adding the runat="server" attribute and ID attribute. ASP.NET doesn’t have a
control class that specifically represents the <iframe>, so the <iframe> will be represented as an
HtmlGenericControl.

Now you can set the src attribute at any point to redirect the frame:

IFrame1.Attributes["src"] = "page.aspx";

Of course, you can’t actually interact with the page objects of the embedded page. In fact, the page
isn’t even generated in the same pass. Instead, the browser will request the page referenced by the src
attribute separately and then display it in the frame. However, you can use a variety of techniques for
passing information between the pages, including session state and the query string.

Figure 29-15 shows a page with two embedded frames, one of which has a border. The topmost
<iframe> is using the page processor from earlier in this chapter, which indicates to the user that a part
of the page is still being processed.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1217

Figure 29-15. Using inline frames

Understanding Ajax
One of the main reasons developers use JavaScript code is to avoid a postback. For example, consider
the TreeView control, which lets users expand and collapse nodes at will. When you expand a node, the
TreeView uses JavaScript to fetch the child node information from the server, and then it quietly inserts
the new nodes. Without JavaScript, the page would need to be posted back so the TreeView could be
rebuilt. The user would notice a slightly sluggish delay, and the page would flicker and possibly scroll
back to the beginning. On the server side, a considerable amount of effort would be wasted serializing
and deserializing the view state information in each pass.

You’ve already seen how you can avoid this overhead and create smoother, more streamlined pages
with a little JavaScript. However, most of the JavaScript examples you’ve seen so far have been self-
contained—in other words, they’ve implemented a distinct task that doesn’t require interaction with the
rest of the page model. This approach is great when it suits your needs. For example, if all you need to do
is show a pop-up message or a scrolling status display, you don’t need to interact with the server-side
code. However, what happens if you want to make a truly dynamic page like in the TreeView example,
one that can call a server-side method, wait for a response, and insert the new information dynamically,
without triggering a full-page postback? To design this solution, you need to think of a way for your
client-side script to communicate with your server-side code.

Recently, a new buzzword has appeared in web programming circles. It’s Ajax (which was originally
shorthand for Asynchronous JavaScript and XML), and it’s an application of JavaScript that’s
distinguished by one special characteristic. Namely, Ajax-style pages communicate with the server in the
background to request additional information. When the client-side code receives this information
(which may be transmitted as an XML package), it carries out additional actions. For example, a page
that uses Ajax techniques might grab a live stock quote and refresh a portion of the page, all without

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1218

triggering a full-page postback. Furthermore, the communication between the client and server happens
asynchronously, so the client isn’t interrupted. The advantages are greater responsiveness and a
seamless browsing experience that’s free of page refreshes.

■ Note Conceptually, these examples are similar to the asynchronous image-downloading example you saw
earlier, which fetched additional information (the images) asynchronously and then updated the page. However,
the image grid worked because images are really separate resources, not part of the page. You can’t use the same

technique to insert dynamic text or arbitrary HTML. Instead, you need to use Ajax techniques.

Programming Ajax pages can be complicated, not because the JavaScript techniques are particularly
difficult (they aren’t), but because you sometimes need messy workarounds to ensure browser
compatibility. In an ideal world, ASP.NET programmers wouldn’t need to worry about writing Ajax-style
pages at all. Instead, you would use a higher-level framework on the server that could emit the JavaScript
code you need. ASP.NET is heading in this direction, but it’s moving slowly—after all, Microsoft needs
time to carefully consider the different ways these client-side features can be integrated into ASP.NET’s
server-side model. Later in this chapter, you’ll learn about client callbacks, which are the first
rudimentary example of Ajax in ASP.NET.

■ Note In the next chapter, you’ll learn about ASP.NET AJAX, which offers a higher-level way to build Ajax-style

pages.

The XMLHttpRequest Object
The cornerstone of Ajax is the XMLHttpRequest object. XMLHttpRequest is both incredibly useful and
deceptively simple. Essentially, it allows you to send requests to the server asynchronously and retrieve
the results as text. It’s up to you to decide what you request, how you handle the request on the server
side, and what you return to the client.

Although there is wide support for the XMLHttpRequest object in modern browsers, there’s a subtle
difference in how you access the object. In some browsers, including Internet Explorer 7, Firefox, Safari,
and Opera, the XMLHttpRequest object is implemented as a native JavaScript object. In versions of
Internet Explorer before version 7, it’s implemented as an ActiveX object. Because of these differences,
your JavaScript code needs to be intelligent enough to use the correct approach when creating an
instance of XMLHttpRequest. Here’s the client-side JavaScript code that Microsoft uses to perform this
task for the client callback feature you’ll consider later in this chapter:

var xmlRequest;
try
{
 // This works if XMLHttpRequest is part of JavaScript.
 xmlRequest = new XMLHttpRequest();
}
catch(err)
{

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1219

 // Otherwise, the ActiveX object is required.
 xmlRequest = new ActiveXObject("Microsoft.XMLHTTP");
}
// Either way, by this point xmlRequest should refer to a live instance.

■ Note This code fails if the browser doesn’t provide the native or ActiveX version of the XMLHttpRequest object.

This problem occurs with really old browsers, such as Internet Explorer 4 and Safari 1. If you need to support old
clients like these, Ajax programming is not suitable. Pages that rely heavily on Ajax also fail if JavaScript is not
enabled in the browser. One option is to test for JavaScript support (by examining the Request.Browser.

EcmaScriptVersion property) and redirect the user to a simpler version of the page if JavaScript is not supported.

Sending a Request
You’ll use two key methods to send a request with the XMLHttpRequest: open() and send().

The open() method sets up your call—it defines the request you want to send to the server. It has
two required parameters: the type of HTTP command (GET, POST, or PUT) and the URL. Here’s an
example:

xmlRequest.open("GET" , myURL);

Additionally, you can supply a third parameter to indicate whether the request should be performed
asynchronously and two more parameters to supply user name and password information for
authentication. It’s unlikely you’ll use the user name and password parameters, because this
information can’t be safely hard-coded in your JavaScript code. Client-side code is never the right place
to implement security.

■ Note By default, all requests you make with the XMLHttpRequest object are asynchronous. There is almost
never a reason to change this behavior. If you choose to make the call synchronously, you may as well force a
postback—after all, the user will be unable to do anything while the page is stalled waiting for a response. If it’s

not asynchronous, it’s not Ajax.

The send() method fires off the request. Assuming your request is asynchronous, it returns
immediately.

xmlRequest.send(null);

Optionally, the send() method takes a single string parameter. You can use this to supply additional
information that’s sent with the request, like the values that are sent with a POST request.

On Internet Explorer browsers, it’s acceptable to leave out the parameter for the send() method.
However, in Firefox you must supply a null reference, or the callback will behave erratically. This is one
of the many quirks you’ll find in cross-browser compatibility when writing client-side script.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1220

Handling the Response
Clearly, one detail is missing here. You’ve learned how to send a request, but how do you handle the
response? The secret is to attach an event handler using the onreadystatechange property. This property
points to a client-side JavaScript function that is called when the request is finished and the data is
available:

xmlRequest.onreadystatechange = UpdatePage;

Of course, you need to attach the event handler before you call the send() method to start the
request.

When the response is returned from the server and your function is triggered, you can extract the
information you need from the xmlRequest object using the responseText and responseXML properties.
The responseText property gives you all the content in a single long string. The responseXML property
returns it as a tree of node objects.

■ Note Even though the name Ajax implies XML content, you can also return something else from the server,
including plain text. For example, if the server is returning a single piece of data, there’s no reason to wrap it up in

a complete XML document.

An Ajax Example
Now that you’ve taken a quick tour of the XMLHttpRequest object, you’re ready to use it in a simple
page. To build an Ajax-style page in ASP.NET, you need two pieces:

• The Ajax-enabled web page, which includes the client-side code for making the
request through the XMLHttpRequest object

• Another page or resource that can handle the requests from the first page and
send the appropriate response

The first ingredient is obviously an .aspx web page. The second ingredient could be another .aspx
web page, or it could be a custom HTTP handler. The HTTP handler is a more lightweight option,
because it doesn’t use the full-page model.

■ Tip For a quick refresher about custom HTTP handlers, refer to Chapter 5.

The following example implements the server-side functionality as an HTTP handler. The HTTP
handler accepts information through the query string (in this case, it checks for two parameters) and
then returns two pieces of information. The first piece of information is the sum of the two arguments
that were passed in through the query string. The second piece of information is the current time on the
web server. The information is not a legitimate XML document—instead, the two values are simply
separated by a comma.

Here’s the complete code for the HTTP handler:

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1221

public class CalculatorCallbackHandler : IHttpHandler
{
 public void ProcessRequest (HttpContext context)
 {
 HttpResponse response = context.Response;

 // Write ordinary text.
 response.ContentType = "text/plain";

 // Get the query string arguments.
 float value1, value2;
 if (Single.TryParse(context.Request.QueryString["value1"], out value1) &&
 Single.TryParse(context.Request.QueryString["value2"], out value2))
 {
 // Calculate the total.
 response.Write(value1 + value2);
 response.Write(",");

 // Return the current time.
 DateTime now = DateTime.Now;
 response.Write(now.ToLongTimeString());
 }
 else
 {
 // The values weren't supplied or they weren't numbers.
 // Indicate an error.
 response.Write("-");
 }
 }

 public bool IsReusable
 {
 get
 {
 return true;
 }
 }
}

■ Note In this example, the HTTP handler has an unrealistically easy job. After all, if you were simply interested in

adding two numbers, your client-side code could accomplish the task without the Ajax request. This pattern
becomes more important when the server-side code needs to do something the client can’t, such as look up
information in a server-side resource (a file or database), use sensitive information (such as secret numbers), or

perform complex operations using classes that are available only in the .NET Framework.

Now that you have the HTTP handler in place, you can call it at any time using the XMLHttpRequest
object. Figure 29-16 shows a sample page (named AjaxCalculatorPage.aspx) that fires off a request every
time the user presses a key in either text box. The request supplies the values from the two text boxes,
and the result is displayed in the shaded box at the bottom of the page. Just to prove that Ajax is at work,

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1222

an animated GIF appears at the top of the page. You’ll notice that the lava lamp keeps flowing without a
pause while the callback takes place.

Figure 29-16. An Ajax-style page

Here’s the basic outline of the page, without the JavaScript code. You’ll notice that the page plugs
into the client-side JavaScript in two ways. First, the onload event in the <body> tag launches the
CreateXMLHttpRequest() function, which creates the XMLHttpRequest object. Second, the two text
boxes use the onKeyUp event to trigger the CallServerForUpdate() function.

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Ajax Page</title>
 <script type="text/javascript">
 <!-- JavaScript functions go here. -->
 </script>
 </head>
 <body onload="CreateXMLHttpRequest();">
 <form id="form1" runat="server">
 <div>
 <table style="width: 296px">
 <td>
 <td>This animated GIF won't pause, demonstrating that
 your page isn't posting back to the server.

 Value 1:
 <asp:TextBox id="txt1" runat="server"
 onKeyUp="CallServerForUpdate();" />

 Value 2:
 <asp:TextBox id="txt2" runat="server"
 onKeyUp="CallServerForUpdate();" />

http://www.w3.org/1999/xhtml

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1223

 <asp:Label id="lblResponse" runat="server" ... />
 </div>
 </form>

The CreateXMLHttpRequest() function uses the technique you saw earlier to instantiate the
appropriate version of the XMLHttpRequest object:

var XmlRequest;

function CreateXMLHttpRequest()
{
 try
 {
 // This works if XMLHttpRequest is part of JavaScript.
 xmlRequest = new XMLHttpRequest();
 }
 catch(err)
 {
 // Otherwise, the ActiveX object is required.
 xmlRequest = new ActiveXObject("Microsoft.XMLHTTP");
 }
}

The CallServerForUpdate() function finds the text box objects, grabs their current values, and uses
them to build a URL that points to the HTTP handler. The code then sends an asynchronous GET
request to the HTTP handler.

function CallServerForUpdate()
{
 var txt1 = document.getElementById("txt1");
 var txt2 = document.getElementById("txt2");

 var url = "CalculatorCallbackHandler.ashx?value1=" +
 txt1.value + "&value2=" + txt2.value;
 xmlRequest.open("GET", url);
 xmlRequest.onreadystatechange = ApplyUpdate;
 xmlRequest.send();
}

Finally, the ApplyUpdate() function runs when the response is received. Assuming no error
occurred, the new information is parsed out of the returned text and used to create a message that’s
displayed in the label:

function ApplyUpdate()
{
 // Check that the response was received successfully.
 if (xmlRequest.readyState == 4)
 {
 if (xmlRequest.status == 200)
 {
 var lbl = document.getElementById("lblResponse");

 var response = xmlRequest.responseText;
 if (response == "-")

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1224

 {
 lbl.innerHTML = "You've entered invalid numbers.";
 }
 else
 {
 var responseStrings = response.split(",");
 lbl.innerHTML = "The server returned the sum: " +
 responseStrings[0] + " at " + responseStrings[1];
 }
 }
 }
}

This code checks the readyState value to ensure that the response has been received. readyState
begins at 0 when you create the XMLHttpRequest object, then changes to 1 when you call open(), then
changes to 2 when the request is sent, then changes to 3 when the response is being received, and finally
changes to 4 when the response has been completely loaded. If readyState is 4, the code then checks the
status property, which provides the HTTP response code. A value of 200 indicates the response was
received successfully; other codes indicate some sort of error (like a missing page, a busy web server, and
so on).

■ Note It’s worth pointing out that Ajax doesn’t save you from any server round-trips, and it rarely reduces the
server processing time. The real difference is that round-trips occur silently in the background, which gives the

application a more responsive feel.

Using Ajax with Client Callbacks
Using the Ajax approach, you can create impressive, highly responsive web pages. However, writing the
client-side script is time-consuming. Visual Studio can’t provide the same rich design experience you get
when writing server-side code, and it doesn’t provide debugging tools to help you track down the
inevitable errors that crop up in the loosely typed JavaScript language. And even when you’ve
successfully completed your task, you’ll need to test on a wide range of other browsers, unless you’re
intimately familiar with the minor variations in JavaScript support on different browsers.

For these reasons, many developers don’t write their client-side script by hand, even when
designing an Ajax-style page. Instead, they prefer to deal with a higher-level component that can
generate the script code they need. One example is the free third-party Ajax.NET library, which is
available at http://ajax.schwarz-interactive.de/csharpsample. Ajax.NET uses attributes to flag methods,
which then become remotely callable through a client callback and a custom HTTP handler. Another
example is ASP.NET AJAX, the more comprehensive Ajax toolkit that’s discussed in the next chapter.

Although both ASP.NET AJAX and Ajax.NET are good choices, you can perform the most essential
Ajax task—sending an asynchronous request to the server—using ASP.NET’s more straightforward client
callback feature. Client callbacks give you a way to refresh a portion of data in a web page without
triggering a full postback. Best of all, you don’t need the script code that uses the XMLHttpRequest
object. However, you do still need to write the client-side script that processes the server response.

http://ajax.schwarz-interactive.de/csharpsample

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1225

Creating a Client Callback
To create a client callback in ASP.NET, you first need to plan how the communication will work. Here’s
the basic model:

1. At some point, a JavaScript event fires, triggering the server callback.

2. At this point, the normal page life cycle occurs, which means all the normal
server-side events fire, such as Page.Load.

3. When this process is complete (and the page is properly initialized), ASP.NET
executes the server-side callback method. This method must have a fixed
signature—it accepts a single string parameter and returns a single string.

4. Once the page receives the response from the server-side method, it uses
JavaScript code to modify the web page accordingly.

The ASP.NET architecture is designed to abstract away the communication process, so you can
build a page that uses callbacks without worrying about this lower level, in much the same way you can
take advantage of view state and the page life cycle.

In the next example, you’ll see a page with two drop-down lists boxes. The first list is populated with
a list of regions from the Northwind database. This happens when the page first loads. The second list is
left empty until the user makes a selection from the first list. At this point, the content for the second list
is retrieved by a callback and inserted into the list (see Figure 29-17).

Figure 29-17. Filling in a list with a callback

Figure 29-18 diagrams how this process unfolds.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1226

Figure 29-18. The stages of a callback

Building the Basic Page
The first step is to create the basic page, with two lists. It’s easy enough to fill the first list—you can tackle
this task by binding the list declaratively to a data source control. In this example, the following
SqlDataSource is used:

<asp:SqlDataSource id="sourceRegions" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT * FROM Region" />

And here’s the list that binds to the data source:

<asp:DropDownList id="lstRegions" Runat="server" DataSourceID="sourceRegions"
 DataTextField="RegionDescription" DataValueField="RegionID"/>

Implementing the Callback
To receive a callback, you need a class that implements the ICallbackEventHandler interface. If you
know your callback will be used in several pages, it makes sense to create a dedicated class (much like
the custom HTTP handler used in the previous Ajax example). However, if you want to define
functionality that’s intended for a single page, you can implement ICallbackEventHandler in your web
page, as shown here:

public partial class ClientCallback : System.Web.UI.Page, ICallbackEventHandler
{ ... }

The ICallbackEventHandler interface defines two methods. RaiseCallbackEvent() receives event
data from the browser as a string parameter. It’s triggered first. GetCallbackResult() is triggered next, and
it returns the result back to the page.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1227

■ Note The key limitation of ASP.NET client callbacks is that they force you to transmit data as single strings. If
you need to pass more complex information (such as the result set with territory information, as in this example),
you need to design a way to serialize your information into a string and deserialize it on the other side. Depending
on the complexity of your task, you may be better off using ASP.NET AJAX, as discussed in Chapter 30.

In this example, the string parameter passed to RaiseCallbackEvent() contains the RegionID for the
selected region. Using this information, the GetCallbackResult() method connects to the database and
retrieves a list of all the territory records in that region. These results are joined into a single long string
separated by the | character.

Here’s the complete code:

private string eventArgument;

public void RaiseCallbackEvent(string eventArgument)
{
 this.eventArgument = eventArgument;
}

public string GetCallbackResult()
{
 // Create the ADO.NET objects.
 SqlConnection con = new SqlConnection(
 WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString);
 SqlCommand cmd = new SqlCommand(
 "SELECT * FROM Territories WHERE RegionID=@RegionID", con);
 cmd.Parameters.Add(new SqlParameter("@RegionID", SqlDbType.Int, 4));
 cmd.Parameters["@RegionID"].Value = Int32.Parse(eventArgument);

 // Create a StringBuilder that contains the response string.
 StringBuilder results = new StringBuilder();
 try
 {
 con.Open();
 SqlDataReader reader = cmd.ExecuteReader();
 // Build the response string.
 while (reader.Read())
 {
 results.Append(reader["TerritoryDescription"]);
 results.Append("|");
 results.Append(reader["TerritoryID"]);
 results.Append("||");
 }
 reader.Close();
 }
 finally
 {
 con.Close();
 }
 return results.ToString();
}

mailto:Parameters["@RegionID"].Value

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1228

You can’t use declarative data binding in this example, because the callback method can’t directly
access the controls on the page. Unlike in a postback scenario, when RaiseCallbackEvent() is called, the
page isn’t in the process of being rebuilt. Instead, the RaiseCallbackEvent() method is called out-of-band
to request some additional information. It’s up to your callback method to perform all the heavy lifting
on its own.

Because the results need to be returned as a single string (and seeing as this string has to be reverse-
engineered in JavaScript code), the code is a little awkward. A single pipe (|) separates the
TerritoryDescription field from the TerritoryID field. Two pipes in a row (||) denote the start of a new
row. For example, if you request RegionID 1, you might get a response like this:

Westboro|01581||Bedford|01730||Georgetow|01833|| ...

Clearly, this approach is somewhat fragile—if any of the territory records contain the pipe character,
this will cause significant problems.

Writing the Client-Side Script
Client-side scripts involve an exchange between the server and the client. Just as the server needs a
method to prepare the results, the client needs a function to receive and process them. The JavaScript
function that handles the server response can take any name, but it needs to accept two parameters, as
shown here:

function ClientCallback(result, context)
{ ... }

The result parameter has the serialized string. In this example, it’s up to the client-side script to
parse this string and fill the appropriate list box.

Here’s the complete client script code that you need for this task:

<script type="text/javascript">
function ClientCallback(result, context)
{
 // Find the list box.
 var lstTerritories = document.getElementById("lstTerritories");

 // Clear out any content in the list.
 lstTerritories.innerHTML= "";

 // Get an array with a list of territory records.
 var rows = result.split("||");

 for (var i = 0; i < rows.length - 1; ++i)
 {
 // Split each record into two fields.
 var fields = rows[i].split("|");
 var territoryDesc = fields[0];
 var territoryID = fields[1];

 // Create the list item.
 var option = document.createElement("option");

 // Store the ID in the value attribute.
 option.value = territoryID;

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1229

 // Show the description in the text of the list item.
 option.innerHTML = territoryDesc;

 // Add the item to the end of the list.
 lstTerritories.appendChild(option);
 }
}
</script>

One detail is missing. Although you’ve defined both sides of the message exchange, you haven’t
actually hooked it up yet. What you need is a client-side trigger that calls the callback. In this case, you
want to react to the onchange event of the region list:

protected void Page_Load(object sender, EventArgs e)
{
 lstRegions.Attributes["onchange"] = callbackRef;
 ...

The callbackRef is the JavaScript code that calls the callback. But how exactly do you need to write
this line of code? Fortunately, ASP.NET gives you a handy GetCallbackEventReference() method that can
construct the callback reference you need. Here’s how you use it in this example:

 ...
 string callbackRef = Page.ClientScript.GetCallbackEventReference(
 this, "document.getElementById('lstRegions').value",
 "ClientCallback", "null", true);
}

The first parameter is a reference to the ICallbackEventHandler object that will handle the
callback—in this case, the containing page. The second parameter is the information that the client will
pass to the server. In this example, a snippet of JavaScript is required to look up the appropriate control
(lstRegions) and extract the currently selected value.

■ Tip Many client callback samples use the JavaScript collection document.all to retrieve control objects. This is
not recommended, because document.all is an extension to JavaScript supported in Internet Explorer but not in

other browsers (such as Firefox). Instead, use the document.getElementById() method shown previously.

The third parameter is the name of the client-side JavaScript function that will receive the results
from the server callback. The fourth parameter includes any context information that you want to pass
to the client-side function. This is helpful if you handle several callbacks with the same JavaScript
function and you need to distinguish which response is which. Finally, the last parameter indicates
whether you want to perform the callback asynchronously. This should always be true to prevent locking
up the page in the event of a network problem.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1230

Disabling Event Validation
In Chapter 7, you considered SQL injection attacks and POST injection attacks. POST injection attacks
are attacks in which a malicious user alters the HTTP POST request that’s sent to the server so it includes
a value that isn’t available in the corresponding control. For example, a user might change a posted
parameter to indicate a list selection that isn’t actually in the list. Left unchecked, this can trick your
code into revealing sensitive data.

ASP.NET defends against POST injection attacks using event validation. Event validation works by
verifying that all posted data makes sense before ASP.NET executes the page life cycle. Unfortunately,
event validation often causes problems with Ajax-style pages. In the current example, items are
dynamically added to the territory list. When the user chooses a territory and posts back the page,
ASP.NET will raise an “Invalid postback or callback argument” error because the selected territory isn’t
defined in the server-side control.

■ Note The event validation feature isn’t necessarily a feature of all controls. It’s implemented only for control
classes that are decorated with the SupportsEventValidation attribute. In ASP.NET, most controls that rely on
posted data use this attribute (such as the ListBox, DropDownList, CheckBox, TreeView, Calendar, and so on). The

exception is controls that don’t restrict allowed values. For example, the TextBox control doesn’t use event

validation, because the user is allowed to type any value in it.

You can work around the event validation problem in two ways. The safest approach is to explicitly
tell ASP.NET about additional values that it should allow in the control. (ASP.NET keeps track of all the
allowed values using a hidden input tag named __EVENTVALIDATION.) Unfortunately, this approach is
tedious and often impractical.

To use this approach, you must call the Page.ClientScript.RegisterForEventValidation() method for
each possible value. You need to perform this task at the rendering stage by overriding the Page.Render()
method as shown here. Here’s an example that allows the user to select a territory with a TerritoryID of
10 in the lstTerritories control:

protected override void Render(HtmlTextWriter writer)
{
 ClientScript.RegisterForEventValidation(lstTerritories.UniqueID, "10");
 base.Render(writer);
}

The obvious problem with this approach is that in many cases you won’t know all the possible
values. They may be generated dynamically or retrieved from another source (such as a web service). In
the current example, you’d need to retrieve the full list of possible TerritoryID values from the database,
loop through them, and register each one. Not only does this create extra work, but it also introduces
problems if more regions are added after the page is served.

Instead, the only realistic approach in this situation is to disable event validation. Unfortunately,
you can’t disable event validation for a single control, so you must switch it off for the entire page using
the EnableEventValidation property of the Page directive:

<%@ Page ... EnableEventValidation="false" %>

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1231

■ Note You can also disable event validation for an entire website by setting the enableEventValidation attribute of
the pages element to false. However, this isn’t recommended because it can introduce security risks to other

pages.

To retrieve the selected territory in your code, you can’t use the lstTerritories control. That’s because
the lstTerritories control is the server-side version of the list, so it doesn’t contain the dynamically added
values. Instead, you need to retrieve the selection directly from the Request.Forms collection:

lblInfo.Text = "You selected territory ID #" + Request.Form["lstTerritories"];

Once you disable event validation, you need to think carefully about security. In this example, you
need to consider whether there is a possibility that a hacker might submit a TerritoryID selection that
isn’t in the list. If some territories or regions shouldn’t be available to all users, you need to make sure
your code includes the necessary security checks. Namely, when a user chooses a territory, your code
must check to make sure the requesting user is allowed to view that territory before you go any further.
This isn’t a concern in the current example, because the full list of territories is available to all users. In
this example, the only potential problem is the possibility that an attacker will supply a territory ID that
doesn’t exist and generate an error that you must catch.

■ Note Clearly, client callbacks represent a powerful feature that lets you build more seamless, dynamic pages.
But remember, client callbacks rely on the XMLHttpRequest functionality, which limits them to modern browsers.
Some browsers may support JavaScript but not client callbacks. If in doubt, you can check whether a browser

appears to support Ajax callbacks using the Request.Browser.SupportsCallback property.

Client Callbacks “Under the Hood”
It’s worth noting that when the callback is performed, the target page actually starts executing a
trimmed-down life cycle. Most control events won’t execute, but the Page.Load and Page.Init event
handlers will. The Page.IsPostBack property will return true, but you can distinguish this callback from a
genuine postback by testing the Page.IsCallback property, which will also be true. The page rendering
process is bypassed completely. View state information is retrieved and made available to your callback
method, but any changes you make are not sent back to the page. Figure 29-19 shows the life cycle
events.

The only problem with the current implementation of client callbacks is that the programming
interface is still fairly primitive, especially in its requirement that you exchange only strings. The current
trend in ASP.NET is to use the callback features to build dynamic features into dynamic controls, rather
than consuming them directly in the page. You’ll see an example of this technique in the next section.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1232

Figure 29-19. Comparing postbacks and callbacks

Client Callbacks in Custom Controls
Integrating client callbacks into a page is a fair bit of work. However, a much better option is to use them
to build rich controls. You can then use these controls in as many pages as you want. Best of all, you’ll
get the Windows-style responsiveness without having to delve into the lower-level callback
infrastructure.

Although there’s no limit to the type of controls you might build with dynamic callbacks, many
controls use callbacks to simply refresh a portion of their user interface (such as the TreeView). With a
little ingenuity, you can create a container control that provides this functionality for free.

The basic idea is to create a new control that derives from Panel. This panel contains content that
you want to refresh. At some point, a client-side JavaScript event will occur that causes the panel to
perform a callback. At this point, the panel will fire a server-side event to notify your code. You can
handle this event and tweak any of the controls inside the panel. When the event finishes, the panel gets
the new HTML for its contents and returns it. A client-side script replaces the current panel contents
with the new HTML using a little DHTML.

Figure 29-20 shows the process for a custom control named DynamicPanel.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1233

■ Note This control presents a straightforward example of how you can integrate Ajax techniques into a custom
control. The end result is also a relatively practical control. However, you probably won’t use the DynamicPanel in
a real web application. That’s because ASP.NET AJAX includes a similar but more powerful version called the

UpdatePanel, which you’ll learn how to use in Chapter 30.

Figure 29-20. Refreshing a portion of the page through a callback

The DynamicPanel
The first step is to derive a class from Panel and implement ICallbackEventHandler:

public class DynamicPanel : Panel, ICallbackEventHandler
{ ... }

As part of the ICallbackEventHandler, the DynamicPanel needs to implement the
Raise_CallbackEvent() and GetCallbackResult() methods. At this point it’s a two-step process. First, the
DynamicPanel needs to fire an event to notify your page. Your page can handle this event and perform
the appropriate modifications. Next, the DynamicPanel needs to render the HTML for its contents. It
can then return that information (along with its client ID) to the client-side web page.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1234

public event EventHandler Refresh;

public void RaiseCallbackEvent(string eventArgument)
{
 // Fire an event to notify the client a refresh has been requested.
 if (Refresh != null)
 {
 Refresh(this, EventArgs.Empty);
 }
}

public string GetCallbackResult()
{
 // Prepare the text response that will be sent back to the page.
 EnsureChildControls();
 using (StringWriter sw = new StringWriter())
 {
 using (HtmlTextWriter writer = new HtmlTextWriter(sw))
 {
 // Add the ID that identifies this panel.
 writer.Write(this.ClientID + "_");

 // Render just the part of the page inside the panel.
 this.RenderContents(writer);
 }
 return w.ToString();
 }
}

Here’s the client-side script code that finds the panel on the page and then replaces its content with
new HTML:

<script type="text/javascript">
 function RefreshPanel(result, context)
 {
 if (result != '')
 {
 // Split the string back into two pieces of information:
 // the panel ID and the HTML content.
 var separator = result.indexOf('_');
 var elementName = result.substr(0, separator);
 // Look up the panel.
 var panel = document.getElementById(elementName);
 // Replace its content.
 panel.innerHTML = result.substr(separator+1);
 }
 }
</script>

Rather than hard-code this script into every page in which you use the panel, it makes sense to
register it programmatically in the DynamicPanel.OnInit() method:

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1235

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);
 string script = @"<script type='text/javascript'>...</script>";

 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "RefreshPanel", script);
}

This completes the basics of the DynamicPanel. However, this example still has a significant
limitation—the page has no way to trigger the callback and cause the panel to refresh. That means it’s up
to your page code to retrieve the callback reference and insert it into your page.

Fortunately, you can simplify this process by creating other controls that work with the
DynamicPanel. For example, you can create a DynamicPanelRefreshLink that, when clicked,
automatically triggers a refresh in the associated panel.

The first step in implementing this solution is to revisit the DynamicPanel and implement the
ICallbackContainer interface.

public class DynamicPanel : Panel, ICallbackEventHandler, ICallbackContainer
{ ... }

This interface allows the DynamicPanel to provide the callback reference, rather than forcing you to
go through the page.

To implement ICallbackContainer, you need to provide a GetCallbackScript() method that returns
the reference. Here the Panel can rely on the page, making sure to specify itself as the callback target,
and on RefreshPanel() as the client-side script that will handle the response.

public string GetCallbackScript(IButtonControl buttonControl, string argument)
{
 return Page.ClientScript.GetCallbackEventReference(
 this, "", "RefreshPanel", "null", true);
}

The DynamicPanelRefreshLink
Now you’re ready to implement the much simpler refresh button. This control, named
DynamicPanelRefreshLink, derives from LinkButton.

public class DynamicPanelRefreshLink : LinkButton
{ ... }

You specify the panel that it should work with by setting a PanelID property:

public string PanelID
{
 get { return (string)ViewState["DynamicPanelID"]; }
 set { ViewState["DynamicPanelID"] = value; }
}

Finally, when it’s time to render itself, the DynamicPanelRefreshLink finds the associated
DynamicPanel control using FindControl() and then adds the callback script reference to the onclick
attribute.

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1236

protected override void AddAttributesToRender(HtmlTextWriter writer)
{
 DynamicPanel pnl = (DynamicPanel)Page.FindControl(PanelID);
 if (pnl != null)
 {
 writer.AddAttribute("onclick", pnl.GetCallbackScript(this, ""));
 }
}

The Client Page
To complete this example, create a simple text page, and add a DynamicPanel and a
DynamicPanelRefreshLink underneath it. Set the DynamicPanelRefreshLink.PanelID property to create
the link.

Next, place some content and controls in the panel. Finally, add an event handler for the
DynamicPanel.Refresh event and use it to change the content or formatting of the controls in the panel.

protected void Panel1_Refresh(object sender, EventArgs e)
{
 Label1.Text = "This was refreshed without a postback at " +
 DateTime.Now.ToString();
}

Now when you run the page, you’ll see that you can click the DynamicPanelRefreshLink to refresh
the panel without posting back the page (see Figure 29-21).

Figure 29-21. The DynamicPanel

CHAPTER 29 ■ JAVASCRIPT AND AJAX TECHNIQUES

1237

Summary
In this chapter, you saw how a bit of carefully chosen JavaScript code can extend your ASP.NET web
pages with more responsive interfaces and more dynamic effects. Along the way, you saw how to
develop .NET solutions for some traditional HTML and JavaScript techniques, such as page processors,
rollover buttons, and frames. You also explored Ajax and the new client callback feature that helps you
implement seamless page updates. You can do a lot more by creatively applying a little JavaScript. For
more ideas, check out some of the custom controls available at Microsoft’s http://www.asp.net
community website, or continue to the next chapter where you’ll dip into ASP.NET AJAX, a server-side
programming framework for developing Ajax-style pages.

http://www.asp.net

C H A P T E R 30

■ ■ ■

1239

ASP.NET AJAX

In the previous chapter, you entered the world of client-side programming. You learned a few essential
techniques for using JavaScript, and you considered how to create more responsive pages with Ajax
techniques, either on your own or through the client callback feature in ASP.NET.

These examples presented a fairly well-rounded foundation that you can use to build a variety of
advanced pages. Unfortunately, the programming model leaves a lot to be desired. If you rely on pure
JavaScript, it’s up to you to bridge the gap between ASP.NET’s server-side abstraction and the more
limited HTML DOM. Sadly, it’s not easy. Without the benefit of Visual Studio’s IntelliSense and its
debugging tools, it’s difficult to write error-free code and diagnose problems. It’s also a challenge to
create script code that works on all modern browsers, because minor quirks and implementation
differences abound.

The ASP.NET client callback feature partially addresses these problems by giving you a server-side
model that you can use to generate some of the client-side code you need (namely, the code that
performs asynchronous requests using the XMLHttpRequest object). However, the client callback model
is far from perfect. The interfaces feel a bit clunky, the integration into the page model is a bit awkward,
and data typing is nonexistent. It’s up to you to devise a way to serialize the information you need to
transmit into a single string, and it’s up to you to write the JavaScript code that receives the callback,
deserializes the string, and updates the page. All in all, the client callback feature is an excellent tool for
building Ajax-enabled controls but a less appealing way to design complete web pages.

ASP.NET developers have another option. They can use the ASP.NET AJAX toolkit, which provides
several features that can help you build Ajax-style pages. In this chapter, you’ll explore ASP.NET AJAX
and learn how to use it to create the next generation of highly interactive, dynamic web pages.

Introducing ASP.NET AJAX
ASP.NET AJAX consists of two key parts: a client-side portion and a server-side portion.

The client-side portion is a set of JavaScript libraries. These libraries aren’t tied to ASP.NET in any
way—in fact, non-ASP.NET developers can use them in their own web pages. The client libraries don’t
expose much in the way of features (for example, there aren’t any prebuilt pieces of functionality you can
drop into your web pages). Rather, they establish a basic foundation you can use to develop ASP.NET
AJAX pages. This foundation extends the JavaScript language to fill in a few of its gaps (for example, by
adding support for inheritance), and provides some basic infrastructure (for example, methods for
managing component lifetime, manipulating common data types, and performing reflection).

The server-side portion of ASP.NET AJAX works at a higher level. It includes controls and
components that use the client-side JavaScript libraries. For example, a web form that contains the
DragPanel component (from the ASP.NET AJAX Control Toolkit) gives users the ability to drag a panel
around in the browser window. Behind the scenes, there’s some custom JavaScript at work, and that
JavaScript uses the client-side ASP.NET AJAX libraries. However, the DragPanel renders all the JavaScript
code it needs, saving you the trouble of writing it yourself.

CHAPTER 30 ■ ASP.NET AJAX

1240

Clearly, ASP.NET AJAX is the start of a new direction in ASP.NET development. Before going any
further, it’s worth getting an overview of all the features that ASP.NET AJAX provides. Here’s a quick
rundown:

• JavaScript language extensions: These extensions make JavaScript work a little
more like a modern object-oriented language, with support for namespaces,
inheritance, interfaces, enumerations, and reflection.

• Remote method calls: ASP.NET AJAX pages can call web services that you design.
This feature allows you to get information from the server without performing a
full-page postback. It solves the same problem as the client callback feature you
learned about in Chapter 29, but it lets you work with strongly typed methods
instead of stuffing all your data into a single string.

• ASP.NET services: This feature allows you to call the server to use one of two
ASP.NET services—one that uses forms authentication information and one that
gets data from the current user profile.

• Partial page refreshes: The new UpdatePanel control gives you a way to define a
portion of a page that will be updated without requiring a full-page postback. Best
of all, you don’t need to write any JavaScript code to manage the updating
process.

• Prebuilt controls: The popular ASP.NET AJAX Control Toolkit is stocked with
more than 30 controls and control extenders that use ASP.NET AJAX to great
effect. They allow you to make controls collapse and expand, add dynamic
animations, and support autocompletion and drag-and-drop. And once again,
these classes handle the low-level JavaScript details so you don’t need to.

You’ll explore all of these features in this chapter.

ASP.NET AJAX on the Client: The Script Libraries
The client-side portion of ASP.NET AJAX relies on a small collection of JavaScript files. There are two
ways to deploy the ASP.NET AJAX script files. If you build an ASP.NET 3.5 application, they’re available
through the System.Web.Extensions.dll assembly and served out on demand. If you’re creating a non-
ASP.NET application or adding client-side features to an ordinary HTML page, you can download the
JavaScript files separately from the ASP.NET AJAX website (http://www.asp.net/ajax/downloads) as part
of the Microsoft AJAX Library.

■ Tip The Microsoft AJAX Library is also a worthwhile download if you want to take a closer look at the actual
JavaScript code. This download includes “debug” versions of each of the three core files, as well as the final
production versions. The production versions strip out all whitespace and comments in order to make the file as

small as possible. By comparison, the largest file is MicrosoftAjax.js, which is just under 300 KB in its debug

version but requires about 90 KB in its production version.

If you download the Microsoft AJAX Library, you’ll find that ASP.NET AJAX uses just three core
JavaScript files—MicrosoftAjax.js, MicrosoftAjaxWebForms.js, and MicrosoftAjaxTimer.js. Along with

http://www.asp.net/ajax/downloads

CHAPTER 30 ■ ASP.NET AJAX

1241

these essentials are over 100 very small JavaScript files that store globalization information (for example,
data formats that apply to different cultures).

In ASP.NET, you won’t find individual JavaScript files for the client libraries. Instead, the client
libraries are embedded in the System.Web.Extensions.dll assembly and served up as a script resource.
Script resources allow you to map a URL to a resource that’s embedded in an assembly. For example,
here’s a sample script block that extracts the ASP.NET AJAX script library:

<script src="/YourWebSite/ScriptResource.axd?d=RUSU1mIv69CJ9H5JUAOSw8L4674
LfxGOQg6Nw7HtNHheB3bMiw7Ov16bX1KPG6N1oTYEi65ggRoIP1-hWapSttV3udoNXGrk095YGEzuX0M1&am
p;t=633127440334523405" type="text/javascript">
</script>

ASP.NET includes a script resource handler that response to these requests. It examines the passed-
in query string argument and returns the requested script file.

ASP.NET AJAX on the Server: The ScriptManager
Obviously, you wouldn’t want to type long URLs that point to script resources on every page that
requires ASP.NET AJAX. The solution is to use an ASP.NET control called the ScriptManager.

The ScriptManager is the brains of the server-side ASP.NET AJAX model. It’s a web control that
doesn’t have any visual appearance on the page. However, it performs a key task—it renders the links to
the ASP.NET AJAX JavaScript libraries.

To add the ScriptManager to a page, you can drag it from the AJAX Extensions tab of the Toolbox.
Here’s how the ScriptManager is declared in the .aspx file:

<asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>

Each page that uses ASP.NET AJAX features requires an instance of the ScriptManager. You can only
use one ScriptManager on a page.

Along with rendering the links for the ASP.NET AJAX client libraries, the ScriptManager also
performs several other important tasks. It can render references to other script files (often at the request
of other ASP.NET AJAX-enabled controls and components), create proxies that allow you to call web
services asynchronously from the browser, and manage the way UpdatePanel controls refresh their
content. You’ll explore all of these topics in this chapter.

■ Tip If you’re using ASP.NET AJAX features throughout your website, it makes sense to place the ScriptManager
in a master page. However, this can occasionally cause problems, because different content pages may want to
configure the properties of the ScriptManager differently (for example, adding new scripts and web service
references). In this scenario, the solution is to use the ScriptManager in the master page and the

ScriptManagerProxy in your content page. Each content page can configure the ScriptManagerProxy control in the

same way it would configure the ScriptManager.

Now that you’ve seen the bare essentials of the ASP.NET AJAX model—the client-side libraries and
the server-side ScriptManager control—you’re ready to begin building pages that use ASP.NET AJAX
features. You’ll begin by using ASP.NET AJAX as an alternative to the client callback technique to get
information from the server. Next, you’ll see how to use ASP.NET AJAX-enabled web controls to get rich

CHAPTER 30 ■ ASP.NET AJAX

1242

Ajax-style effects (such as drag-and-drop and autocompletion) with little extra effort. Finally, you’ll take
a deeper look at the ASP.NET AJAX client libraries that support these features and learn how to build
your own ASP.NET AJAX component.

Server Callbacks
The first ASP.NET AJAX example you’ll consider is a revised version of the client callback page from
Chapter 29. This page includes two drop-down list boxes (see Figure 30-1). The first shows a list of
regions, and the second displays the territories in the selected region. The trick is that the second list is
filled each time the user makes a selection in the first. The process of filling the list box requires a call to
the server, which performs the database lookup and supplies the list.

Figure 30-1. The dynamic list example revisited

To make this page work using the ASP.NET client callback feature, you need to implement the
slightly cumbersome ICallbackEventHandler interface. ASP.NET AJAX uses a different approach. In
ASP.NET AJAX, callbacks are always made to a separate server-side method—technically, a web service.
This design improves the separation of logic, helping you organize your code. More important, it takes
care of the serialization work. That means you don’t need to devise your own method to send complex
data (like the string-splitting system that you saw in Chapter 29, which clumsily separated values with
the pipe character).

In the following sections, you’ll see how to build the web service you need, and you’ll consider
several options for consuming it.

CHAPTER 30 ■ ASP.NET AJAX

1243

Web Services in ASP.NET AJAX
When performing a server callback with ASP.NET AJAX, your client-side JavaScript code calls a method
in a server-side web service.

A web service is a collection of one or more server-side methods that can be called by remote clients.
To call a web service, that client sends a request message over HTTP. This is similar to the process of
performing a web-page postback, except the body of the request contains the arguments that are being
passed to the method. ASP.NET then creates the web service object, runs the code in the corresponding
web method, returns the result, and destroys the web service object. The request and response message
format varies—traditionally, it’s an XML-based standard called SOAP, but in ASP.NET AJAX, it’s a lighter-
weight text-based alternative called JSON (JavaScript Object Notation), primarily for browser
compatibility reasons.

ASMX and WCF Web Services

.NET has two web service technologies, .asmx and WCF.

In this chapter, you’ll see how to use the original ASP.NET web service model, often known as .asmx web
services, in accordance with its file extension. It’s also possible to use a WCF (Windows Communication
Foundation) service as the backend for an ASP.NET AJAX page. Conceptually, this approach is the same as
using an ordinary .asmx web service. WCF is in many ways the successor to .asmx web services—it’s a
more comprehensive platform that encompasses a host of scenarios that .asmx web services don’t take
into account. However, none of these advanced scenarios are usable with ASP.NET AJAX pages. From a
practical point of view, both web service technologies give you exactly the same capabilities in an ASP.NET
AJAX page.

WCF services require slightly more work to implement because they must be registered correctly in the
web.config file. This registration step configures the WCF service to use JSON serialization. (The same
configuration step is performed through an attribute with .asmx web services.) The easiest way to create a
WCF service that has the required configuration settings is to choose Website ➤ Add New Item from the
Visual Studio menu, and then pick the AJAX-Enabled WCF Service template. However, there’s nothing
wrong with using .asmx services to avoid the web.config configuration hassles, as done with the examples
in this chapter.

It’s important to realize that although the ASP.NET AJAX callback mechanism uses web services, it’s
a specialized implementation. If you’re familiar with web services, you’ll find that ASP.NET AJAX
imposes some extra limitations. First, your web page can’t call non-ASP.NET AJAX web services (for
example, third-party web services created on other platforms). This is because they won’t support the
stripped-down, simplified JSON model that ASP.NET AJAX uses. Second, your web page can’t call web
services in different domains (on other web servers). This is because most web browsers prevent cross-
domain use of the XMLHttpRequest object to stop potential cross-site scripting attacks.

These limitations don’t prevent you from using the ASP.NET AJAX callback feature the way it’s
intended—as a mechanism for a page to perform server-side application tasks. However, if you’ve used
web services to expose server-side functionality to rich clients, third-party developers, and non-.NET
applications, you need to realize that the use of web services in ASP.NET AJAX is less ambitious.

CHAPTER 30 ■ ASP.NET AJAX

1244

■ Note There are ways around these limitations. For example, you could call a web method in your web
application, and have that web method call a web method that exists in another domain. This bridging technique
works because the web server code doesn’t have the same restriction as the browser—it’s free to launch cross-

domain calls to other web services.

Creating the Web Service
The web services you’ll use with ASP.NET AJAX consist of two pieces: an .asmx file that acts as the web
service endpoint, and a .cs file that has the actual C# code. You add these files to the website that
contains the ASP.NET AJAX page that will use the web service.

The quickest way to create a web service in Visual Studio is to choose Website ➤ Add New Item (or
Project ➤ Add New Item for web projects), choose the Web Service template, supply a filename (in the
following example it’s TerritoriesService), and click Add. If you’re creating a projectless website, the
.asmx file will be placed in the web application directory, while the matching .cs file is placed in the
App_Code folder so that it will be compiled automatically.

■ Note You don’t need to host your web application in an IIS virtual directory in order to use web services with
ASP.NET AJAX. Instead, you can test it using the integrated web server in Visual Studio. This works because the
script code that calls your web service automatically uses a relative path. As a result, no matter what port the

Visual Studio web server chooses, the web page will be able to construct the right URL.

The .asmx file is unremarkable—if you open it, you’ll find a single line with a WebService directive
that identifies the language of the code, the location of the code-behind file, and the name of the class:

<%@ WebService Language="C#" CodeBehind="./App_Code/TerritoriesService.cs"
 Class="TerritoriesService" %>

In this example, a web service named TerritoriesService.asmx was created, with a code-behind file
named TerritoriesService.cs. The code-behind class defines a class named TerritoriesService, which
looks something like this:

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class TerritoriesService : System.Web.Services.WebService
{...}

■ Note By default, the ScriptService attribute is commented out. Make sure you remove the comment markers to

create a web service that can be called from an ASP.NET AJAX page.

http://tempuri.org

CHAPTER 30 ■ ASP.NET AJAX

1245

The class derives from System.Web.Services.WebService, which is the traditional base class for web
services. However, this is just a convenience, and it isn’t necessary. By deriving from WebService, you
gain access to certain built-in objects (such as Application, Server, Session, and User) without needing to
go through the static HttpContext.Current property.

You’ll also notice that the web service class declaration is decorated with three attributes. The first
two—WebService (which sets an XML namespace that’s used in web service messages) and
WebServiceBinding (which indicates the level of standards compliance that the web service supports)—
only apply when you’re calling the web service using SOAP messages, and aren’t relevant in ASP.NET
AJAX pages. However, the third attribute—ScriptService—is much more important. It configures the web
service to allow JSON calls from JavaScript clients. Without this detail, you won’t be able to use your web
service in an ASP.NET AJAX page.

Creating the Web Method
With these details in place, you’re ready to write the code for your web service. Every web service
contains one or more methods that are marked with the WebMethod attribute. The WebMethod
attribute makes the method remotely callable. If you add a method that doesn’t include the web method
attribute, your server-side code will be able to use it, but your client-side JavaScript won’t be able to call
it directly.

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class TerritoriesService : System.Web.Services.WebService
{
 [WebMethod()]
 public void DoSomething()
 { ... }
}

It’s not necessary to make the method public (as done here), but it’s usually done as a matter of
convention and clarity.

Web methods have certain restrictions. The data types you use for parameter values and return
values must use one of the data types listed in Table 30-1.

Table 30-1. Web Service Data Types for Parameters and Return Values

Data Type Description
The basics Basic C# data types such as integers (short, int, long), unsigned integers

(ushort, uint, ulong), nonintegral numeric types (float, double, decimal),
and a few other miscellaneous types (bool, string, char, byte, DateTime).

Enumerations Enumeration types (defined in C# with the enum keyword) are
supported. However, the web service uses the string name of the
enumeration value (not the underlying integer).

Custom objects You can pass any object you create based on a custom class or structure.
The only limitation is that only public data members and properties are
transmitted, and all public members and properties must use one of the
other supported data types. If you use a class that includes custom
methods, these methods will not be transmitted to the client, and they
will not be accessible to the client.

http://tempuri.org

CHAPTER 30 ■ ASP.NET AJAX

1246

Data Type Description

Arrays and collections You can use arrays of any supported type. You can also use an ArrayList
(which is simply converted into an array), but you can’t use more
specialized collections such as the Hashtable. You can use generic
collections. In all these cases, the objects in the collection must also be
serializable.

XmlNode Objects based on System.Xml.XmlNode are representations of a portion
of an XML document. You can use this to send arbitrary XML.

DataSet and DataTable You can use DataSet and DataTable to return information from a
relational database. Other ADO.NET data objects, such as DataColumns
and DataRows, aren’t supported. When you use a DataSet or DataTable,
it’s automatically converted to XML in a similar way to using the
GetXml() or WriteXml() methods.

Session State in a Web Service

The WebMethod attribute accepts a number of parameters, most of which have little bearing in ASP.NET
AJAX pages. One exception is the EnableSession property, which is false by default, thereby rendering
session state inaccessible in your web service. This default makes sense in a traditional non-ASP.NET
AJAX web service, because there might not be any session information, and the client might not maintain
the session cookie at all. But with an ASP.NET AJAX web service, the web service calls are always being
made from the context of an ASP.NET web page, which is executing in the context of the current web
application user, and that user has a live session and a session cookie that’s transmitted automatically
along with the web service call.

Here’s an example that gives a web method access to the Session object:

[WebMethod(EnableSession = true)]
public void DoSomething()
{
 if (Session["myObject"] != null)
 {
 // (Use the object in session state.)
 }
 else
 {
 // (Create a new object and store it in session state.)
 }
}

For the drop-down list example, the web service must provide a way to retrieve the regions that fall
in a given territory. The following code shows a web service that contains a web method named
GetTerritoriesInRegion(), which retrieves the regions:

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

http://tempuri.org

CHAPTER 30 ■ ASP.NET AJAX

1247

[System.Web.Script.Services.ScriptService]
public class TerritoriesService : System.Web.Services.WebService
{
 [WebMethod()]
 public List<Territory> GetTerritoriesInRegion(int regionID)
 {
 SqlConnection con = new SqlConnection(
 WebConfigurationManager.ConnectionStrings[
 "Northwind"].ConnectionString);
 SqlCommand cmd = new SqlCommand(
 "SELECT * FROM Territories WHERE RegionID=@RegionID", con);
 cmd.Parameters.Add(new SqlParameter("@RegionID", SqlDbType.Int, 4));
 cmd.Parameters["@RegionID"].Value = regionID;

 List<Territory> territories = new List<Territory>();
 try
 {
 con.Open();
 SqlDataReader reader = cmd.ExecuteReader();

 while (reader.Read())
 {
 territories.Add(new Territory(
 reader["TerritoryID"].ToString(),
 reader["TerritoryDescription"].ToString()));
 }
 reader.Close();
 }
 catch (SqlException err)
 {
 // Mask errors.
 throw new ApplicationException("Data error.");
 }
 finally
 {
 con.Close();
 }
 return territories;
 }
}

The code in the GetTerritoriesInRegion() method is similar to the code you used in Chapter 29 to
serve the client callback. However, this code has a key difference—instead of returning a single long
string with the results, the information is returned using a strongly typed list of Territory objects. This is
a much tidier approach that prevents casual errors.

The Territory class wraps two pieces of string information. It uses public member variables rather
than properties because it’s intended solely as a data package that transports information over the wire:

public class Territory
{
 public string ID;
 public string Description;

 public Territory(string id, string description)

mailto:Parameters["@RegionID"].Value

CHAPTER 30 ■ ASP.NET AJAX

1248

 {
 this.ID = id;
 this.Description = description;
 }

 public Territory() { }
}

You can place this class definition in the same code file as the web service, or in a separate file in the
App_Code directory.

Calling the Web Service
Now that you’ve created the web service you need, the next step is to configure your page so it knows
about TerritoriesService. To do this, you need to add the ScriptManager control to your page. Then, add
the <Services> section in the tag for the ScriptManager control. This section lists all the services your
page uses and their locations, using ServiceReference elements. Here’s how you add a reference for the
TerritoriesService.asmx file shown earlier:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="./TerritoriesService.asmx" />
 </Services>
</asp:ScriptManager>

When the page is rendered on the server, the ScriptManager will generate a JavaScript proxy. In your
client-side code, you can use this JavaScript proxy to make your calls.

Here are the two lists in the web form:

<asp:DropDownList ID="lstRegions" Runat="server" DataSourceID="sourceRegions"
 DataTextField="RegionDescription" DataValueField="RegionID"
 onchange="GetTerritories(this.value);">
</asp:DropDownList>

<asp:DropDownList ID="lstTerritories" Runat="server">
</asp:DropDownList>

The first list is filled through ordinary ASP.NET data binding, using a data source control. More
interestingly, it uses the onchange attribute to hook up a client-side event handler. This way, when the
user picks a new territory, the JavaScript function GetTerritories() is triggered, and the current list value
is passed in as an argument.

Technically, you could place all the code from the GetTerritories() function directly in the onchange
event attribute and reduce the number of JavaScript functions you need to write. However, separating
the code that calls the web service improves the readability of your code and makes it easier to maintain.

Here’s the JavaScript code for the GetTerritories() function:

function GetTerritories(regionID)
{
 TerritoriesService.GetTerritoriesInRegion(regionID,
 OnRequestComplete, OnError);
}

CHAPTER 30 ■ ASP.NET AJAX

1249

If you’ve programmed with ASP.NET web services before, you’ll notice that the client-side syntax for
calling a web service in ASP.NET AJAX is different than the .NET syntax. In a .NET application, you must
create the proxy object first, and then call the web service on that object. In an ASP.NET AJAX page, you
use a ready-made proxy object that has the same name as your web service class.

Client-side web service calls are asynchronous, so you always need to supply the original web
method parameters along with one extra parameter, which identifies the client-side JavaScript function
that should be called when the result is received. (In this example, it’s the function named
OnRequestComplete.) Optionally, you can add another reference that points out the function to use if an
error occurs. (In this example, that’s the function OnError.)

To complete this example, you need to supply the client-side function that handles the response. In
this example, the function is named OnRequestComplete(). It receives the return value through its single
parameter and then adds the information to the second drop-down list box on the web page:

function OnRequestComplete(result)
{
 var lstTerritories = document.getElementById("lstTerritories");
 lstTerritories.innerHTML = "";

 for (var n = 0; n < result.length; n++)
 {
 var option = document.createElement("option");
 option.value = result[n].ID;
 option.innerHTML = result[n].Description;
 lstTerritories.appendChild(option);
 }
}

The remarkable feature of this code is that it’s able to work with the result returned from the web
method without any extra deserialization work. That’s all the more impressive considering that the web
method returns a generic list of Territory objects, which obviously has no equivalent in JavaScript code.
Instead, ASP.NET AJAX creates a definition for the Territory object and returns the full list in an array.
This allows your JavaScript code to loop over the array and examine the ID and Description properties of
each item.

■ Tip There’s one minor tweak that you can introduce here. Instead of using the document.getElementById()
method, you can use ASP.NET AJAX’s $get alias, which performs the same function and looks like this:

var lstTerritories = $get("lstTerritories");

This is a common convention in ASP.NET AJAX pages.

Now this example works exactly as the client callback version in Chapter 29. The difference is that
this version uses a strongly typed web method, with no messy string serialization code. Also, you don’t
need to add any server-side code to retrieve the callback reference and insert it dynamically. Instead,
you can use a straightforward proxy that provides access to your web service.

CHAPTER 30 ■ ASP.NET AJAX

1250

As a finishing touch, you can add timeout and error-handling functions, as shown here:

function OnError(result)
{
 var lbl = document.getElementById("lblInfo");
 lbl.innerHTML = "" + result.get_message() + "";
}

The OnError() function receives an error object, complete with a get_message() method that
retrieves the error text and a get_stacktrace() method that returns a detailed call stack showing where the
error occurred. Figure 30-2 shows what happens when the web method fails to connect to the database
and throws a standard ApplicationException with this code:

throw new ApplicationException("Data error.");

Figure 30-2. Dealing with server-side errors on the client

This demonstrates the ASP.NET AJAX version of the client callback model. Although it has the same
plumbing as the ASP.NET client callback feature, the ASP.NET AJAX version provides a stronger
foundation that’s built on web services. However, both approaches have one feature in common—no
matter which technique you use, you still need to write your own JavaScript code to update the page.

Placing a Web Method in a Page
In most cases, it makes sense to create a separate web service to handle your ASP.NET AJAX callbacks.
This approach generally results in clearer pages and makes it easier to debug and refine your code.
However, in some situations you may decide you have one or more web methods that are designed
explicitly for use on a single page and that really shouldn’t be reused in other parts of the application. In
this case, you may choose to create a dedicated web service for each page, or you might choose to move
the web service code into the page.

CHAPTER 30 ■ ASP.NET AJAX

1251

Placing the web method code in the page is easy—in fact, all you need is a simple bit of cut-and-
paste. First, copy your web method (complete with the WebMethod attribute) into the code-behind class
for your page. Then, change it to a static method, and add the System.Web.Script.Services.ScriptMethod
attribute. Here’s an example where the web method (named GetTerritoriesInRegion) is placed in a web
page named WebServiceCallback_PageMethods:

public partial class WebServiceCallback_PageMethods : System.Web.UI.Page
{
 [System.Web.Services.WebMethod()]
 [System.Web.Script.Services.ScriptMethod()]
 public static List<Territory> GetTerritoriesInRegion(int regionID)
 {
 // Farm the work out to the web service class.
 TerritoriesService service = new TerritoriesService();
 return service.GetTerritoriesInRegion(regionID);
 }

 ...
}

Next, set the ScriptManager.EnablePageMethods property to true, and remove the reference in the
<Services> section of the ScriptManager (assuming you don’t want to use any non-page web services):

<asp:ScriptManager ID="ScriptManager1" runat="server" EnablePageMethods="true">
</asp:ScriptManager>

Finally, change your JavaScript code so it calls the method through the PageMethods object, as
shown here:

PageMethods.GetTerritoriesInRegion(regionID, OnRequestComplete, OnError);

The PageMethods object exposes all the web methods you’ve added to the current web page.
One advantage of placing a web method in a page is that the method is no longer exposed through

an .asmx file. As a result, it’s not considered part of a public web service, and it’s not as easy for someone
else to discover. This is appealing if you’re trying to hide your web services from curious users.

Another reason you might choose to code your web methods in the page class is to read values from
view state or the controls on the page. When you trigger a page method, a stripped-down version of the
page life cycle executes, just like with the ASP.NET client callback feature you saw in Chapter 29. Of
course, there’s no point in trying to modify page details because the page isn’t being rerendered, so any
changes you make will simply be discarded.

■ Note It makes no difference to the security of your application whether you place your web methods in a page
or a dedicated web service. Placing your web method in the page may hide it from casual users, but a real
attacker will start by looking at the HTML of your page, which includes a reference to the JavaScript proxy.
Malicious users can easily use the JavaScript proxy to make spurious calls to the web method. To defend against
threats like these, your web methods should always implement the same security measures you use in your web
pages. For example, any input you accept should be validated, your code should refuse to return sensitive
information to users who aren’t authenticated, and database access should use parameterized commands to
prevent SQL injection attacks.

CHAPTER 30 ■ ASP.NET AJAX

1252

ASP.NET AJAX Application Services
Creating and calling custom web services is clearly a valuable technique in ASP.NET AJAX. You can use
web services to return additional data from a server-side database (as in the TerritoriesService example),
to trigger a server-side task, to get user-specific session information, and so on. To make your life easier,
ASP.NET AJAX also includes built-in services that you can use to access three commonly used features:
forms authentication (Chapter 20), membership roles (Chapter 21), and user profiles (Chapter 24).
Although you could build similar services of your own, it makes more sense for ASP.NET AJAX to provide
a consistent web service model. In the future, it’s quite likely that ASP.NET AJAX will provide more built-
in services.

Before you can use any of these services, you need to add the <system.web.extensions> section to
the web.config file. Inside, you need to add an element for each service you want to use:

<?xml version="1.0"?>
<configuration>
 ...
 <system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService ... />
 <profileService ... />
 <roleService ... />
 </webServices>
 </scripting>
 </system.web.extensions>
 ...
</configuration>

When using the services in your client-side JavaScript, you call them through the Sys.Services
property. For example, Sys.Services.AuthenticationService provides access to the methods of the
authentication service.

The following sections show you how to enable and use each of these three services. To see these
services in action, you can refer to the downloadable code for this chapter, which includes a sample
website that demonstrates all three services.

Authentication Service
The authentication service allows you to use forms authentication by calling a web service. To enable it,
you use the <authenticationService> element in the web.config file, as shown here:

<authenticationService enabled="true" requireSSL="false" />

If requireSSL is set to true, the cookie is only transmitted back to the server when the browser is
requesting a page over SSL. Otherwise, the cookie is sent with every request.

■ Note One limitation of the authentication service is that it only supports cookie-based authentication.

When using the authentication service, you must also be using forms authentication. Here’s a
web.config file that supplies these details:

CHAPTER 30 ■ ASP.NET AJAX

1253

<?xml version="1.0"?>
<configuration>
 <configSections>...</configSections>
 <system.codedom>... </system.codedom>

 <system.web>
 <authentication mode="Forms">
 <forms loginUrl="./Login.aspx" />
 </authentication>
 ...
 </system.web>

 <system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled="true" requireSSL ="false" />
 </webServices>
 <scriptResourceHandler enableCompression="true" enableCaching="true" />
 </scripting>
 </system.web.extensions>

 <system.webServer>...</system.webServer>
</configuration>

Once you’ve enabled the authentication service, you can use the members that are listed in Table
30-2 in your client-side JavaScript code.

Table 30-2. Authentication Service Members

Member Description

login() Tests the supplied user name and password and logs the user in if they are
valid. The forms authentication ticket is generated and the authentication
cookie is returned, just as when logging in through server-side code on a login
page. When calling login(), you can use additional parameters to specify if a
persistent cookie should be used, and to provide a URL where the user will be
redirected after a successful login. The actual login process is asynchronous, so
you must supply callbacks to respond when the login process completes or
fails.

logout() Removes the current user’s authentication ticket using an asynchronous call.
You can supply callbacks that are triggered when the logout process completes
or fails.

get_isLoggedIn() Returns true if the user is currently logged in, and false otherwise.

CHAPTER 30 ■ ASP.NET AJAX

1254

■ Note You might wonder if the asynchronous login() method is actually useful. After all, a user usually needs to
complete the login process before going on to the next task, so there’s not much else to do while an asynchronous
login request is under way. One minor advantage of the login() control is that it allows users to log in without

refreshing the page. (This is particularly significant because the server-side Login control isn’t supported by the

UpdatePanel control, which you’ll learn about later.)

As with all the application services, the authentication service does its work asynchronously. That
means your code carries on while the login process is under way. To react when the login has completed,
you must supply a redirect URL (in the fourth parameter) or a JavaScript callback (in the sixth
parameter).

Here’s an example that uses the latter approach and calls the onLoginCompleted() function after
the server responds, and onLoginFailed to inform the user when the asynchronous call fails:

// Pull the user name and password from two text boxes
// (using the $get shortcut).
var username = $get("txtUserName");
var password = $get("txtPassword");

// Log in using the authentication service.
Sys.Services.AuthenticationService.login(username.value, password.value,
 false, null, null, onLoginCompleted, onLoginFailed, null);

The last argument of the login() method accepts any object. It’s known as the user context object,
and this pattern is preserved in all of the ASP.NET asynchronous AJAX application service calls.
Essentially, the user context object is passed to your callbacks. Here’s what the login callback functions
look like:

function onLoginCompleted(validCredentials, userContext, methodName)
{
 // The asynchronous login attempt has finished, but you still need to check
 // the Boolean validCredentials parameter to determine if it succeeded.
 if (validCredentials == false)
 {
 $get("lblStatus").innerHTML = "Login failed.";
 }
 else
 {
 $get("lblStatus").innerHTML = "Currently logged in.";
 }
}

function onLoginFailed(error, userContext, methodName)
{
 alert(error.get_message());
}

CHAPTER 30 ■ ASP.NET AJAX

1255

Notice that a complete login process simply means you’ve received the server response. It doesn’t
indicate that the user was successfully logged in. In order to determine if the user was logged in, you
must check the validCredentials parameter, as shown in this example.

Role Service
The role service allows you to use role-based authorization (as described in Chapter 23) by calling a web
service. To enable it, you use the <roleService> element in the web.config file, as shown here:

<roleService enabled="true" />

To use the role service, the user must already be authenticated (through forms authentication or
Windows authentication). Although you don’t need to perform this authentication through the forms
authentication service, in many cases you’ll choose to implement both the authentication service and
role service at the same time.

Here’s a web.config that uses forms authentication (with the authentication service) and roles (with
the role service):

<?xml version="1.0"?>
<configuration>
 <configSections>...</configSections>
 <system.codedom>... </system.codedom>

 <system.web>
 <authentication mode="Forms">
 <forms loginUrl="./Login.aspx" />
 </authentication>
 <roleManager enabled="true"/>
 ...
 </system.web>

 <system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled="true" requireSSL="false" />
 <roleService enabled="true"/>
 </webServices>
 <scriptResourceHandler enableCompression="true" enableCaching="true" />
 </scripting>
 </system.web.extensions>

 <system.webServer>...</system.webServer>
</configuration>

Once you’ve enabled the role service, you can use the members of the Sys.Services.RoleService
class, which are listed in Table 30-3, in your client-side JavaScript code.

CHAPTER 30 ■ ASP.NET AJAX

1256

Table 30-3. Role Service Members

Member Description

load() Retrieves the role information for the current user on the client side. You must do
this before you call isUserInRole() or get_roles(). The load process is
asynchronous, so you must supply callbacks to react when the process completes
or fails.

isUserInRole() Returns true if the user has been assigned the role that you indicate. You must call
load() before using this method.

get_roles() Returns an array of strings, one for each role that’s assigned to the current user.
You must call load() before using this property procedure.

The first step to using the role service is calling load() and supplying the appropriate callbacks. You

can then test the user’s role membership when the completed callback fires.
The following code shows the most common way to implement this pattern. It shows a specific

<div> (named adminControls) when the current user is an administrator:

function pageLoad()
{
 // The page is loading. Get the current user's roles.
 Sys.Services.RoleService.load(onLoadRolesCompleted, onLoadRolesFailed,
 null);
}

function onLoadRolesCompleted(result, userContext, methodName)
{
 // The roles have been retrieved.
 // Test role membership and configure the page.
 if (Sys.Services.RoleService.isUserInRole("Administrator"))
 {
 $get("adminControls").style.display = "block";
 }
}

function onLoadRolesFailed(error, userContext, methodName)
{
 alert(error.get_message());
}

■ Note As you’ll learn later in this chapter, ASP.NET AJAX automatically calls the pageLoad() function (if you’ve

added it) after the page is loaded and the client-side ASP.NET AJAX framework has been initialized. It’s similar to

handling the JavaScript onload event.

CHAPTER 30 ■ ASP.NET AJAX

1257

Remember, you should only call RoleService.load() if you know the current user is authenticated.
That means you can safely call load() on a secured (non-anonymous) page, or after calling
Sys.Services.AuthenticationService.get_isLoggedIn() and verifying it’s true. If you call load() and the user
isn’t authenticated, the operation will appear to complete successfully, but no role information will be
returned.

Maintaining Security when Using Application Services

When using forms authentication and role-based authorization, you must keep good security practices in
mind. For example, when you enable the role service, you must assume it’s possible for end users to
discover their role membership (in other words, to determine the exact name of each role they belong to).
If this isn’t acceptable, you need to limit your role checking to server-side code.

Most importantly, you should never rely on client-side code to hide sensitive information. In the previous
example, a <div> is displayed or hidden based on a role test. However, the content of that <div> is easily
retrievable in the client-side markup of the page, even if it’s not currently displayed. For that reason, this
<div> isn’t an acceptable place to put sensitive content (such as information that only administrators
should be able to see). It is a reasonable place to put controls that only apply to administrators (for
example, links that will fail with security exceptions for other types of users), provided they don’t indirectly
provide information that might be useful to a hacker.

Lastly, if you provide a client-callable web method, you must assume it can be called by users in any role
(and even anonymous users if it’s in an unsecured part of your website). Your client-side code might check
role membership before allowing a call to a specific web method, but malicious users can call the same
method through other mechanisms. Thus, if you need to create a secure web method, your web method
needs to perform its own role checking, as described in Chapter 23.

Profile Service
The profile service allows you to use the profiles feature to retrieve user-specific information that
ASP.NET automatically stores in a server-side database (as described in Chapter 24).

To enable the profile service, you use the <profileService> element in the web.config file.

<profileService enabled="true" writeAccessProperties="..."
 readAccessProperties="..." />

You must supply a comma-separated list of properties that will be made accessible on the client (in
the readAccessProperties attribute) and changeable on the client (in the writeAccessProperties
attribute). Remember, there are security implications to your choice. If you allow read access, logged-in
users can hack the system to read these properties in their profile at any time. If you allow write access,
logged-in users can circumvent your client-side code to arbitrarily change these values in their profiles,
avoiding any sort of validation or data checking. Neither one of these possibilities is necessarily cause for
alarm, but depending on the type of information you store in a profile and the way you act on it, it may
introduce a problem in some scenarios. Caution—and a detailed threat analysis—is a good idea if you
plan to use these services in a website that has high security requirements.

Here’s a web.config file using the profile service (and the forms authentication service to log the
user in):

<?xml version="1.0"?>
<configuration>
 <configSections>...</configSections>

CHAPTER 30 ■ ASP.NET AJAX

1258

 <system.codedom>... </system.codedom>

 <system.web>
 <authentication mode="Forms">
 <forms loginUrl="./Login.aspx" />
 </authentication>
 <profile enabled="true">
 <properties>
 <add name="FirstName" />
 <add name="LastName" />
 <add name="CustomerCode" />
 </properties>
 </profile>
 ...
 </system.web>

 <system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled="true" requireSSL="false" />
 <profileService enabled="true"
 readAccessProperties="FirstName,LastName,CustomerCode"
 writeAccessProperties="FirstName,LastName" />
 </webServices>
 <scriptResourceHandler enableCompression="true" enableCaching="true" />
 </scripting>
 </system.web.extensions>

 <system.webServer>...</system.webServer>
</configuration>

Once you’ve enabled the profile service, you can use the members of the Sys.Services.Profile-Service
class, which are listed in Table 30-4, in your client-side JavaScript code.

Table 30-4. Profile Service Members

Member Description

load() Retrieves the profile properties (that you’ve listed in the readAccessProperties
attribute) for the current user on the client side. You must do this before you can
access the profile data through the properties collection. The load process is
asynchronous, so you must supply callbacks to react when the process completes
or fails.

properties Provides a collection of profile data that you can read or change. You access
individual properties by name, as in Sys.ProfileService.properties.FirstName.

save() Passes the current values in the properties collection back to the web server,
where they will be updated. Values that aren’t listed in the writeAccessProperties
attribute won’t be passed back to the server—they’re simply ignored.

CHAPTER 30 ■ ASP.NET AJAX

1259

Here’s a small portion of client-side JavaScript that uses the profile service to display property data
in an alert box:

function pageLoad()
{
 Sys.Services.ProfileService.load(null,
 onProfileLoadCompleted, onLoadFailed, null);
}

function onProfileLoadCompleted(numProperties, userContext, methodName)
{
 var profile = Sys.Services.ProfileService.properties;
 alert ("Your name is " + profile.FirstName + " " + profile.LastName);
}

function onProfileLoadFailed(error, userContext, methodName)
{
 alert(error.get_message());
}

You can modify any value in the properties code and then use a similar call to save the updated
profile:

Sys.Services.ProfileService.save(null, onSaveCompleted, onSaveFailed, null);

This gives you the ability to retrieve and change profile data without triggering a full-page postback.

ASP.NET AJAX Server Controls
The web service features in ASP.NET AJAX give your client-side code a valuable window to the server.
However, they force you to shoulder most of the hard work. It’s up to you to craft the right web methods,
call them at the right times, and update the page appropriately using nothing but JavaScript. In a
complex application, this can be quite tedious.

For this reason, ASP.NET provides a higher-level server-side model that provides controls and
components you can use in a web form. Using these ingredients, you can work entirely with server-side
code. The ASP.NET AJAX controls will emit the ASP.NET AJAX script they need, and they’ll use the
ASP.NET AJAX script libraries behind the scenes. The potential drawback to this approach is reduced
flexibility compared to do-it-yourself JavaScript programming. Although server-side controls are more
productive than JavaScript, even with the help of the ASP.NET AJAX client libraries, server-side controls
also limit what you’re able to do. For example, if you want to have several controls interact with one
another on the client side, you’ll almost certainly need to write some client-side script.

In the following sections, you’ll see how to use the three ASP.NET AJAX controls that are included as
part of the core ASP.NET framework. These controls include the remarkably powerful UpdatePanel, the
Timer, and the UpdateProgress control. All of these controls support partial rendering, which is a key
Ajax concept. Using partial rendering, you can seamlessly update content on a page without forcing a
full postback.

■ Note All the ASP.NET AJAX controls require a ScriptManager. If you place them on a page that doesn’t contain a

ScriptManager, they won’t work and will throw an InvalidOperationException.

CHAPTER 30 ■ ASP.NET AJAX

1260

Partial Rendering with the UpdatePanel
The UpdatePanel is a handy control that lets you take an ordinary page with server-side logic and make
sure it refreshes itself in flicker-free Ajax style.

The basic idea is that you divide your web page into one or more distinct regions, each of which is
wrapped inside an invisible UpdatePanel. When an event occurs in an UpdatePanel that would normally
trigger a postback, the UpdatePanel intercepts the event and performs an asynchronous callback
instead. Here’s an example of how it happens:

1. The user clicks a button inside an UpdatePanel.

2. Some client-side JavaScript code (that has been generated by ASP.NET AJAX)
intercepts the client-side click event and performs an asynchronous callback
to the server.

3. On the server, your normal page life cycle executes, with all the usual events.
Finally, the page is rendered to HTML and returned to the browser.

4. The client-side JavaScript code receives the full HTML and updates every
UpdatePanel on the page by replacing its current HTML with the new content.
(If a change has occurred to content that’s not inside an UpdatePanel, it’s
ignored.)

■ Note The ASP.NET AJAX UpdatePanel serves a similar purpose to the DynamicPanel custom control that was

developed using ASP.NET’s client callback feature in Chapter 29. Both controls use an asynchronous call to fetch
new content and update part of the page without a full-page postback. However, the DynamicPanel in Chapter 29
is more limited, because you must use it with the DynamicPanelRefreshLink in order to trigger the asynchronous

update. The UpdatePanel can intercept a postback that’s triggered by any control inside the panel. Also,
UpdatePanels work in concert—by default, every UpdatePanel is updated after every postback, although you can

change this behavior.

The UpdatePanel control works in conjunction with the ScriptManager control. When using the
UpdatePanel, you must be sure that the ScriptManager.EnablePartialRendering property is set to true
(which is the default value). You can then add one or more UpdatePanel controls to your page, after the
ScriptManager.

As you drag and drop controls in an UpdatePanel, the content appears in the <ContentTemplate>
section. Here’s an example of an UpdatePanel that contains a label and a button:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>
 <asp:Button ID="Button1" runat="server" Text="Button" />
 </ContentTemplate>
</asp:UpdatePanel>

The UpdatePanel is a template-based control. When it renders itself, if copies the content from its
ContentTemplate into the page. As a result, you can’t dynamically add controls to the UpdatePanel

CHAPTER 30 ■ ASP.NET AJAX

1261

using the UpdatePanels.Controls collection. However, you can insert controls dynamically using the
UpdatePanels.ContentTemplateContainer.Controls collection.

The UpdatePanel doesn’t derive from Panel. Instead, it derives directly from Control. The
UpdatePanel has one role in life—to serve as a container for content that you want to refresh
asynchronously. Unlike the standard ASP.NET Panel, an UpdatePanel has no visual appearance and
doesn’t support style settings. If you want to display a border around your UpdatePanel or change the
background color, you’ll need to place an ordinary Panel (or just a static <div> tag) in your UpdatePanel.

■ Tip Later in this chapter, you’ll learn about the ASP.NET AJAX Control Toolkit, which includes a component
called UpdatePanelAnimationExtender. This component extends the UpdatePanel with animated effects that signal

when the panel’s content is refreshed. For example, one possible animated effect is to fade in the new content

over the old content.

On the page, the UpdatePanel renders itself as a <div> tag. However, you can configure the
UpdatePanel so it renders itself as an inline element by changing the RenderMode property from Block
to Inline. For example, you could take this step when you want to create an UpdatePanel that wraps text
inside a paragraph or some other block element.

Figure 30-3 shows a sample web page that consists of three UpdatePanel controls (which have been
highlighted using an off-white background color). Each UpdatePanel features the same content: a Label
control and a Button control. Every time the page is posted to the server, the Page.Load event fills all
three labels with the current time:

protected void Page_Load(object sender, EventArgs e)
{
 Label1.Text = DateTime.Now.ToLongTimeString();
 Label2.Text = DateTime.Now.ToLongTimeString();
 Label3.Text = DateTime.Now.ToLongTimeString();
}

This page demonstrates the flicker-free refreshing of an asynchronous callback. Click any button,
and all three labels will be quietly updated. The one exception is if the client browser doesn’t support the
XMLHttpRequest object. In this situation, the UpdatePanel will downgrade to using full-page postbacks.

CHAPTER 30 ■ ASP.NET AJAX

1262

Figure 30-3. Using the UpdatePanel to avoid full-page postbacks

Handling Errors
When the UpdatePanel performs as asynchronous callback, the web-page code runs in exactly the same
way as if the page had been posted back. The only difference is the means of communication (the page
uses as asynchronous XMLHttpRequest call to get the new data) and the way the received data is dealt
with (the UpdatePanel refreshes its inner content, but the remainder of the page is not changed). For
that reason, you don’t need to make significant changes to your server-side code or deal with new error
conditions.

That said, problems can occur when performing an asynchronous postback just as they do when
performing a synchronous postback.

You can test this behavior by adding code like this to the event handler for the server-side Page.Load
event:

if (IsPostBack)
 throw new ApplicationException("This operation failed.");

When the web page throws an unhandled exception, the error is caught by the ScriptManager and
passed back to the client. The ASP.NET AJAX client libraries then throw a JavaScript error in the page.

What happens next depends on your browser settings. If you’ve enabled script debugging (as
described in Chapter 29), Visual Studio breaks on the line that caused the error. However, because this
error is being deliberately thrown by the ASP.NET AJAX infrastructure to notify you about a server-side

CHAPTER 30 ■ ASP.NET AJAX

1263

problem, this behavior isn’t much help. You can’t correct the server-side problem by changing the
client-side code that throws the error. Instead, you’ll simply need to stop the application or continue
running it and ignore the problem.

If you aren’t using script debugging, the browser may or may not notify you that a problem has
occurred. Usually, most browsers are configured to quietly suppress JavaScript errors. In Internet
Explorer, an “Error on page” message appears in the bottom-left corner of the status bar, indicating the
problem. If you double-click this notification icon, a dialog box will appear with the full error details, as
shown in Figure 30-4. Alternatively, if you’ve enabled the Display a Notification About Every Script Error
setting in Internet Explorer, you’ll see the message shown in Figure 30-4 when the error occurs, and you
won’t need to double-click the notification icon. (Choose Tools ➤ Internet Options, then click the
Advanced tab, and then look in the Browsing section to find this setting.)

Figure 30-4. Displaying a client-side message about a server-side error

You can change this behavior by handling the error with client-side JavaScript. To do so, you need to
register a callback for the endRequest event of the System.Web.PageRequestManager class. (The
PageRequestManager is a core part of the application model in ASP.NET AJAX. It manages the refresh
process for the UpdatePanel controls and fires client-side events as the page moves through the stages in
its lifetime.)

Here’s a client-side script block that does exactly that. First, it defines a function that’s triggered
automatically when the page is first loaded. There’s no need to use the onload event here, because
ASP.NET AJAX automatically calls the pageLoad() function, if it exists. Similarly, ASP.NET AJAX calls the
pageUnload() function when the page is being unloaded. All other events need to be hooked up

CHAPTER 30 ■ ASP.NET AJAX

1264

manually—and that’s what this pageLoad() function does. It gets a reference to the current instance of
the PageRequestManager, and attaches a second function to the endRequest event:

function pageLoad()
{
 var pageManager = Sys.WebForms.PageRequestManager.getInstance();
 pageManager.add_endRequest(endRequest);
}

The endRequest event fires at the end of every asynchronous postback. In this example, the
endRequest() function checks if an error has occurred. If it has, the error message is displayed in another
control, and the set_errorHandled() method is called to suppress the standard ASP.NET AJAX error-
handling behavior (the error message box). Alternate steps you could take include hiding or displaying a
content region, displaying additional information, disabling controls, prompting the user to try again,
and so on.

function endRequest(sender, args)
{
 // Handle the error.
 if (args.get_error() != null)
 {
 $get("lblError").innerHTML = args.get_error().message;

 // Suppress the message box.
 args.set_errorHandled(true);
 }
}

Figure 30-5 shows the new result of this error-handling code.

■ Note ASP.NET includes two controls that can’t be used in an UpdatePanel: the FileUpload control and the
HtmlInputFile control. However, these controls can be used on a page that contains an UpdatePanel, so long as

they aren’t actually in the UpdatePanel.

Conditional Updates
If you have more than one UpdatePanel and each is completely self-contained, you can configure the
panels to update themselves independently of one another. Simply change the Update-
Panel.UpdateMode property from Always to Conditional. Now, that UpdatePanel will refresh itself when
you click a button inside it, but not when you click a button inside another UpdatePanel. If you modify
the example shown in Figure 30-3 so that all the UpdatePanel controls are conditional, they’ll all work
independently. When you click a button, the label in that panel will be updated. The other panels will
remain untouched.

There’s an interesting quirk here. Technically, when you click the button, all the labels will be
updated, but only part of the page will be refreshed on the client side to show that fact. Most of the time,
this distinction isn’t important. However, it can lead to possible anomalies because the new updated
value of each label will be stored in view state. As a result, the next time the page is sent back to the
server, the labels will all be set to their most recent values.

CHAPTER 30 ■ ASP.NET AJAX

1265

Figure 30-5. Showing error information in the page

■ Tip For more complex page designs, you can nest one conditional UpdatePanel in another. When the parent
panel updates itself, all the contained panels will also update themselves. However, if one of the controls in a child

panel triggers an update in that child panel, the rest of the parent panel won’t be updated.

Interrupted Updates
There’s one caveat with the approach shown in the previous example. If you perform an update that
takes a long time, it could be interrupted by another update. As you know, ASP.NET AJAX posts the page
back asynchronously, so the user is free to click other buttons while the postback is under way. ASP.NET
AJAX doesn’t allow concurrent updates, because it needs to ensure that other information—such as the
page view state information, the session cookie, and so on—remains consistent. Instead, when a new
asynchronous postback is started, the previous asynchronous postback is abandoned.

For the most part, this is the behavior you want. If you want to prevent the user from interrupting an
asynchronous postback, you can add JavaScript code that disables controls while the asynchronous
postback is under way. To do this, you need to attach an event handler to the beginRequest event, in the

CHAPTER 30 ■ ASP.NET AJAX

1266

same way that you added an event handler to the endRequest event in the error handling example.
Another option is to use the UpdateProgress control discussed later in this chapter.

Triggers
When you use conditional update mode, you have a few other options for triggering an update. One
option is to use triggers to tell an UpdatePanel to render itself when a specific event occurs in a specific
control on the page.

Technically, the UpdatePanel always uses triggers. All the controls inside an UpdatePanel
automatically become the triggers for the UpdatePanel. In the current example, you’ve seen how this
works with nested buttons—when the Button.Click event occurs, an asynchronous postback takes place.
However, it also works with the default event of any web control (as designated by the DefaultEvent
attribute in that control’s code), provided that event posts back the page. For example, if you place a
TextBox inside an UpdatePanel and set the TextBox.AutoPostBack property to true, the
TextBox.TextChanged event will trigger an asynchronous postback and the UpdatePanel will be
updated.

Triggers allow you to change this behavior in two ways. For one, they allow you to set up triggers to
link to controls outside the panel. For example, imagine you have this button elsewhere on your page:

<asp:Button ID="cmdOutsideUpdate" runat="server" Text="Update" />

Ordinarily, this button would trigger a full postback. But by linking it to an UpdatePanel, you can
change it to perform an asynchronous postback. To implement this design, you need to add an
AsyncPostBackTrigger to the UpdatePanel that specifies the ID of the control you’re monitoring and the
event that triggers the refresh:

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
 <ContentTemplate>
 <asp:Label ID="Label1" runat="server" Font-Bold="True"></asp:Label>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="cmdOutsideUpdate" EventName="Click" />
 </Triggers>
</asp:UpdatePanel>

The EventName attribute specifies the event you want to monitor. Usually, you don’t need to set
this because you’ll be monitoring the default event, which is used automatically. However, it’s a good
practice to be explicit.

Now, when you click the cmdOutsideUpdate button, the click will be intercepted on the client side,
and the PageRequestManager will perform an asynchronous postback. All the UpdatePanel controls that
have UpdateMode set to Always will be refreshed. All the UpdatePanel controls that have UpdateMode
set to Conditional and have an AsyncPostBackTrigger for cmdOutsideUpdate will also be refreshed.

■ Note You can add multiple triggers to the same UpdatePanel, in which case any of those events will trigger an
update. You can add the same trigger to several different conditional UpdatePanel controls, in which case that
event will update them all. You can also mix and match triggers and nested controls in a conditional UpdatePanel.

In this case, both the events in the nested controls and the events in the trigger controls will cause an update.

CHAPTER 30 ■ ASP.NET AJAX

1267

You can use triggers in one other way. Instead of using them to monitor more controls, you can use
them to tell the UpdatePanel to ignore certain controls. For example, imagine you have a button in your
UpdatePanel. Ordinarily, clicking that button will trigger an asynchronous request and partial update. If
you want it to trigger a full-page postback instead, you simply need to add a PostBackTrigger (instead of
an AsyncPostBackTrigger).

For example, here’s an UpdatePanel that contains a nested button that triggers a full postback
rather than an asynchronous postback:

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
 <ContentTemplate>
 <asp:Label ID="Label1" runat="server" Font-Bold="True"></asp:Label>

 <asp:Button ID="cmdPostback" runat="server" Text="Refresh Full Page" />
 </ContentTemplate>
 <Triggers>
 <asp:PostBackTrigger ControlID="cmdPostback" />
 </Triggers>
</asp:UpdatePanel>

This technique isn’t as common, but it can be useful if you have several controls in an UpdatePanel
that perform limited updates (and so use asynchronous postbacks) and one that performs more
significant changes to the whole page (and so uses a full postback).

Optimizing the UpdatePanel
The UpdatePanel sometimes gets a bad reputation for bandwidth. That’s because the UpdatePanel
almost always transmits more information than you need.

For example, imagine you’re creating a page that shows a table from a server-side database. The
most efficient option is to implement the page with ASP.NET AJAX and web services. If you take this
approach, your page will call a server-side web service to get exactly the information it wants—in this
case, the records in the table. The drawback is that you need to write the client-side JavaScript that
examines this information and converts it to HTML.

Compare this to a similar solution that uses an UpdatePanel with a rich data control like the
GridView. In this scenario, you can avoid writing almost any code. However, the UpdatePanel needs to
request much more information to refresh itself. Instead of getting just the raw data, it needs the
complete user interface. In this example, that means the web server needs to send the entire rendered
content of the GridView, the rendered content for any other controls inside the UpdatePanel, and the
complete view state for the page. Clearly, this is far more information than what’s required for the do-it-
yourself web service approach.

To get the best performance from the UpdatePanel, it helps to understand this sometimes painful
reality. You should also keep a few best practices in mind:

• Before introducing an UpdatePanel to your page, strive to reduce the view state as
much as possible. Use the EnableViewState property to turn off view state for
every control that has variable content but doesn’t need to use view state to
maintain it.

• Place the least amount of content possible inside each UpdatePanel. In the
example described here, that means the UpdatePanel should only include the
GridView. Use the triggers feature to place any other controls that may trigger an
update outside of the UpdatePanel.

CHAPTER 30 ■ ASP.NET AJAX

1268

• If you have several updateable areas in your page, place them in separate
UpdatePanel controls, and make each one conditional. When the web server
answers an UpdatePanel callback, it sends the rendered markup for that
UpdatePanel and any other non-conditional UpdatePanel controls on the page. If
you only need new content for one panel, there’s no need to get it for any others.

• In complex pages with multiple update panels, consider refreshing them
manually. To put this technique into practice, make your panels conditional and
set the ChildrenAsTriggers property to false. Now, the only way to cause a refresh
is to explicitly call the Update() method on one or more UpdatePanel controls
during a callback.

And remember, the UpdatePanel approach will never be worse than the postback approach,
because the postback approach always posts back the entire page. The UpdatePanel approach only
pales in comparison to hands-on ASP.NET AJAX coding.

Timed Refreshes with the Timer
The previous section showed you how to refresh self-contained portions of the page. Of course, in order
for this technique to work, the user needs to initiate an action that would ordinarily cause a postback,
such as clicking a button.

In some situations, you might want to force a full- or partial-page refresh without waiting for a user
action. For example, you might create a page that includes a stock ticker, and you might want to refresh
this ticker periodically (say, every 5 minutes) to ensure it doesn’t become drastically outdated. ASP.NET
AJAX includes a Timer control that can help you implement this design.

The Timer control is refreshingly straightforward. You simply add it to a page and set its Interval
property to the maximum number of milliseconds that should elapse before an update. For example, if
you set Interval to 60000, the timer will force a postback after one minute elapses.

<asp:Timer ID="Timer1" runat="server" Interval="60000" />

If the Timer is in an UpdatePanel, it will trigger an asynchronous postback. If it’s not, and it’s not
linked to an UpdatePanel with a trigger, the Timer will trigger an ordinary full-page postback.

■ Note Obviously, the timer has the potential to greatly increase the overhead of your web application and reduce
its scalability. Think carefully before introducing an automatic postback feature, and make the intervals long rather

than short.

The timer raises a server-side Tick event, which you can handle to update your page. However, you
don’t necessarily need to use the Tick event, because the full-page life cycle executes when the timer
fires. This means you can respond to other page and control events, such as Page.Load.

The timer is particularly well suited to pages that use partial rendering, as discussed in the previous
section. That’s because a refresh in a partially rendered page might just need to change a single portion
of the page. Furthermore, partial rendering makes sure your refreshes are much less intrusive. Unlike a
full postback, a callback with partial rendering won’t cause flicker and won’t interrupt the user in the
middle of a task.

To use the timer with partial rendering, wrap the updateable portions of the page in UpdatePanel
controls with the UpdateMode set to Conditional, and add a trigger that forces an update whenever the
timer fires:

CHAPTER 30 ■ ASP.NET AJAX

1269

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
 <ContentTemplate>
 ...
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" />
 </Triggers>
</asp:UpdatePanel>

<asp:Timer ID="Timer1" runat="server" Interval="60000" OnTick="Timer1_Tick" />

All the other portions of the page can be left as is, or you can wrap them in conditional UpdatePanel
controls with different triggers if you need to update them in response to other actions.

To stop the timer, you simply need to set the Enabled property to false in server-side code. For
example, here’s how you could disable the timer after ten updates:

protected void Timer1_Tick(object sender, EventArgs e)
{
 // Update the tick count and store it in view state.
 int tickCount = 0;
 if (ViewState["TickCount"] != null)
 {
 tickCount = (int)ViewState["TickCount"];
 }
 tickCount++;
 ViewState["TickCount"] = tickCount;

 // Decide whether to disable the timer.
 if (tickCount > 10)
 {
 Timer1.Enabled = false;
 }
}

Time-Consuming Updates with UpdateProgress
ASP.NET AJAX also includes an UpdateProgress control that works in conjunction with partial rendering
at the UpdatePanel. Essentially, the UpdateProgress control allows you to show a message while a time-
consuming update is under way.

■ Note The UpdateProgress control is slightly misnamed. It doesn’t actually indicate progress; instead, it provides

a wait message that reassures the user that the page is still working and the last request is still being processed.

You saw one implementation of this technique with a JavaScript page processor in Chapter 29.

When you add the UpdateProgress control to a page, you get the ability to specify some content that
will appear as soon as an asynchronous request is started and disappear as soon as the request is
finished. This content can include a fixed message or image. Often, an animated GIF is used to simulate
some sort of progress indicator.

CHAPTER 30 ■ ASP.NET AJAX

1270

Figure 30-6 shows a page that uses the UpdateProgress control at three different points in its life
cycle. The top figure shows the page as it first appears, with a straightforward UpdatePanel control
containing a button. When the button is clicked, the asynchronous callback process begins. At this
point, the contents of the UpdateProgress control appear underneath (as shown in the middle figure). In
this example, the UpdateProgress includes a text message, an animated GIF that appears as progress
bar, and a cancel button. When the callback is complete, the UpdateProgress disappears and the
UpdatePanel is updated, as shown in the bottom image of Figure 30-6.

Figure 30-6. A wait indicator

The markup for this page defines an UpdatePanel followed by an UpdateProgress. The
UpdateProgress control includes a cancel button, which you’ll examine in the next section.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <div style="background-color:#FFFFE0;padding: 20px">
 <asp:Label ID="lblTime" runat="server" Font-Bold="True"></asp:Label>

 <asp:Button ID="cmdRefreshTime" runat="server"
 OnClick="cmdRefreshTime_Click"
 Text="Start the Refresh Process" />
 </div>
 </ContentTemplate>
</asp:UpdatePanel>

<asp:UpdateProgress runat="server" id="updateProgress1">

CHAPTER 30 ■ ASP.NET AJAX

1271

 <ProgressTemplate>
 <div style="font-size: xx-small">
 Contacting Server ...
 <input id="cmdCancel" onclick="AbortPostBack()" type="button"
 value="Cancel" />
 </div>
 </ProgressTemplate>
</asp:UpdateProgress>

This isn’t the only possible arrangement. Depending on the layout you want, you can place your
UpdateProgress control somewhere inside your UpdatePanel control.

The code for this page has a slight modification from the earlier examples. Because the
UpdateProgress control only shows its content while the asynchronous callback is under way, it only
makes sense to use it with an operation that takes time. Otherwise, the UpdateProgress will only show its
ProgressTemplate for a few fractions of a second. To simulate a slow process, you can add a line to delay
your code 10 seconds, as shown here:

protected void cmdRefreshTime_Click(object sender, EventArgs e)
{
 System.Threading.Thread.Sleep(TimeSpan.FromSeconds(10));
 lblTime.Text = DateTime.Now.ToLongTimeString();
}

There’s no need to explicitly link the UpdateProgress control to your UpdatePanel control. The
UpdateProgress automatically shows its ProgressTemplate whenever any UpdatePanel begins a
callback. However, if you have a complex page with more than one UpdatePanel, you can choose to limit
your UpdateProgress to pay attention to just one of them. To do so, simply set the
UpdateProgress.AssociatedUpdatePanelID property with the ID of the appropriate UpdatePanel. You
can even add multiple UpdateProgress controls to the same page, and link each one to a different
UpdatePanel.

Cancellation
The UpdateProgress control supports one other detail: a cancel button. When the user clicks a cancel
button, the asynchronous callback will be canceled immediately, the UpdateProgress content will
disappear, and the page will revert to its original state.

Adding a cancel button is a two-step process. First, you need to add the JavaScript code that
performs the cancellation. Here’s the code you need (which you must place after the ScriptManager
control):

var pageManager = Sys.WebForms.PageRequestManager.getInstance();
pageManager.add_initializeRequest(InitializeRequest);

function InitializeRequest(sender, args)
{
 if (pageManager.get_isInAsyncPostBack())
 {
 args.set_cancel(true);
 }
}

function AbortPostBack()
{

CHAPTER 30 ■ ASP.NET AJAX

1272

 if (pageManager.get_isInAsyncPostBack()) {
 pageManager.abortPostBack();
 }
}

Once you’ve added this code, you can use JavaScript code to call the AbortPostBack() function on
the page at any time and cancel the callback. Here’s the HTML button in the current example that calls
the AbortPostBack() function when it’s clicked:

<input id="cmdCancel" onclick="AbortPostBack()" type="button" value="Cancel" />

Typically, you’ll place this button (or an element like this) in the ProgressTemplate of the
UpdateProgress control, because it only applies while the callback is under way.

■ Tip It makes sense to use an abort button for tasks that can be safely canceled because they don’t affect
external state. For example, users should be able to cancel time-consuming queries. However, it’s not a good idea
to add cancellation to an update operation, because the server will continue until it finishes the update, even if the

client has stopped listening for the response.

Managing Browser History
Every time your page performs a full-page postback, the web browser treats it as a page navigation and
adds a new entry to the history list. However, when you use the UpdatePanel to perform an
asynchronous callback, the history list isn’t touched. This drawback becomes particularly apparent in an
ASP.NET AJAX page that performs a complex process with multiple steps. If the user inadvertently clicks
the Back button in an attempt to return to a previous step, the browser will jump back to the previous
page, and all the work the user has done to that point will be lost.

Fortunately, ASP.NET 4 has an elegant solution. Using the ScriptManager, you can take control of
the browser’s history list. You can add items to the list at will, and react when the user clicks the Back or
Forward button to make sure the page state is correctly restored. In fact, this process is so seamless that
it works better than navigation with an ordinary web form, because the user won’t ever be prompted to
repost the previous set of values to restore the page. And as with most of the ASP.NET AJAX features, the
history support gives you a painless way to get functionality that would be extremely difficult to code on
your own without running into quirks and browser compatibility headaches.

To see how the ScriptManager’s browser history feature works, you can create a straightforward
example with the Wizard control. Here’s a stripped-down example that places a three-step wizard inside
an UpdatePanel:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Wizard ID="Wizard1" runat="server" ...>
 <WizardSteps>
 <asp:WizardStep runat="server" title="Step 1">
 This is Step 1.
 </asp:WizardStep>
 <asp:WizardStep runat="server" title="Step 2">
 This is Step 2.
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Step 3">

CHAPTER 30 ■ ASP.NET AJAX

1273

 This is Step 3.
 </asp:WizardStep>
 </WizardSteps>
 ...
 </asp:Wizard>
 </ContentTemplate>
</asp:UpdatePanel>

As it’s currently written, this page gives you the benefits of ASP.NET AJAX. You can click the links in
the wizard to move from one step to another seamlessly, without page flicker. However, the history list
won’t change.

Adding History Points
To solve this problem, you must start by setting the ScriptManager.EnableHistory property to true. This
allows you to use the ScriptManager to add history points and react to history navigation.

Next, you need to call the ScriptManager.AddHistoryPoint() method in your server-side code to add
an item to the history list. When you call AddHistoryPoint(), you supply three arguments: the state, the
key, and the page title. Here’s what these values signify:

• State: The state is a string that stores some information that relates to your
history point. When the user returns to this history point (using the Back or
Forward buttons in the browser), you can retrieve the associated state. For
example, in the wizard example it makes sense to store the wizard’s current step
index. That way, when the user returns to a state point, you can switch back to
the corresponding step.

• Key: The key is a unique string name that’s used to store your state information. It
allows your page to store multiple state values without a conflict. This is primarily
useful if you have multiple controls that use the history list. For example, imagine
you have two Wizard controls on the same page. As long as each one uses a
different key, they can both store their current step index at the same time.

• Title: The page title is displayed at the top of the browser window and recorded in
the history list. By choosing a suitable title, you can clearly indicate what each
history item represents and make the history list far more practical. Alternatively,
you can choose to omit the title argument, in which case the history point will use
the current page title.

In the wizard example, it makes sense to add the history point when the control changes to a new
step. You can do this by reacting to the wizard’s ActiveStepChanged event. Here’s the code that does
the trick:

protected void Wizard1_ActiveStepChanged(object sender, EventArgs e)
{
 // Verify this is an asynchronous postback, and ensure that it's
 // not a navigation attempt.
 if ((ScriptManager1.IsInAsyncPostBack) && (!ScriptManager1.IsNavigating))
 {
 string currentStep = Wizard1.ActiveStepIndex.ToString();

 ScriptManager1.AddHistoryPoint("Wizard1",
 Wizard1.ActiveStepIndex.ToString(),
 "Step " + (Wizard1.ActiveStepIndex + 1).ToString());
 }
}

CHAPTER 30 ■ ASP.NET AJAX

1274

Before adding the history point, the code checks two details. First, the code checks the
IsAsyncPostBack property to verify that the step is changing as part of an asynchronous callback
operation. This ensures that the history point won’t be added when the page is first created and the
ActiveStepIndex property is set for this first time, or if the step changes during a regular post back.
Second, the code checks the IsNavigating property, which is true when the user clicks the Forward or
Back button to move to a new state point in your page. When this happens, you don’t need to store
state—instead, you need to restore it by handling the ScriptManager.Navigate event. (You’ll see how to
do this shortly.)

When adding the history point, the code uses the index name Wizard1 (to match the name of the
Wizard control). It stores the current step index and sets the page title to a descriptive string like “Step
1.” You’ll notice that the page title adds 1 to the ActiveStepIndex property, because the ActiveStepIndex
uses standard zero-based counting.

If you run the page now and move from step to step, you’ll see the new items appear in the history list,
as shown in Figure 30-7. However, if you click a history item or use the Back or Forward button to return to
one of them, nothing happens, because you haven’t yet written the code to restore your page state.

Figure 30-7. Custom history points

Restoring Page State
When the user moves forward or back in the history list, the ScriptManager performs an asynchronous
callback to refresh the page. At this point, you handle the ScriptManager.Navigate event and modify
the page.

When handling the Navigate event, it’s up to you to retrieve the state you need using the
HistoryEventArgs.State collection and the state key you used when you first added the history point. If
you can’t find the appropriate state value, the user has probably returned to your page’s first bookmark.
This means you should return the wizard to its initial state.

Here’s the code that the wizard example uses to return the appropriate step:

protected void ScriptManager1_Navigate(object sender, HistoryEventArgs e)
{
 if (e.State["Wizard1"] == null)
 {

CHAPTER 30 ■ ASP.NET AJAX

1275

 // Restore default state of page (for example, for first page).
 Wizard1.ActiveStepIndex = 0;
 }
 else
 {
 Wizard1.ActiveStepIndex = Int32.Parse(e.State["Wizard1"]);
 }
 Page.Title = "Step " + (Wizard1.ActiveStepIndex + 1).ToString();
}

This code also updates the page title to match the history, because the ScriptManager won’t
perform this step on its own. With this event handler in place, the wizard example now works perfectly.

How State Is Stored in the URL
At this point, you might be wondering where state values are stored. Interestingly, the ScriptManager
places them in the page URL. It uses Base64 encoding to obfuscate the value and tacks a hash code on
the end for verification.

Here’s the sort of URL you’ll see in the wizard example:

http://localhost:64662/Ajax/BrowserHistory.aspx#&&/wEXAQUHV2l6YXJkMQUBMmLWUszDqKb/+4
7LFQFHDQfzfzoo

■ Note The state information is placed after the URL fragment marker (#). As a result, the state information won’t

disturb any query string arguments you might be using, which will appear before the fragment marker.

The history state uses the same encoding mechanism as view state. This means that users can, with
minimal effort, retrieve your state values. However, users can’t tamper with these values, because they
won’t be able to generate a proper hash code without the web server’s private key.

Unlike with view state, you can’t apply encryption to the state values. However, you can remove the
encoding and hash code if you want to see them more clearly. Just set the
ScriptManager.EnableSecureHistoryState property to false, and your URL will change to something
like this:

http://localhost:64662/Ajax/BrowserHistory.aspx#&&Wizard1=2

Of course, this opens up the possibility that the user might change a state value by modifying
the URL.

http://localhost:64662/Ajax/BrowserHistory.aspx#&&/wEXAQUHV2l6YXJkMQUBMmLWUszDqKb/+4
http://localhost:64662/Ajax/BrowserHistory.aspx#&&Wizard1=2

CHAPTER 30 ■ ASP.NET AJAX

1276

■ Note The URL storage mechanism has interesting ramifications for bookmarking. For example, if a user adds a
bookmark for an ASP.NET AJAX page that uses the history list, that bookmark will capture the current page state.
However, other details will be lost, like the view state of all the controls on the page. With careless design, this

could cause a problem. For example, imagine a wizard that forces users to fill out certain details before allowing
them to advance to the final step. If you store the current step as a history item, the user could return to the final

step through a bookmark, even though all the controls that belong to earlier steps will be empty.

Deeper into the Client Libraries
So far, you’ve spent most of your time using the higher-level features that the ASP.NET AJAX framework
provides. You began by considering web service support, and then you explored key server controls like
the UpdatePanel, Timer, and UpdateProgress. Along the way you’ve seen a few details of the client-side
ASP.NET AJAX model—for example, the $get alias and the events of PageRequestManager. However, you
haven’t explored the underlying plumbing.

Many developers will prefer this approach. They’ll rely most on the server-side features in ASP.NET
AJAX and dip into the client model to handle the occasional event. However, there’s one task that
requires a better understanding of the client-side model: creating custom controls that use ASP.NET
AJAX features.

In the following sections, you’ll take a tour of the client libraries and learn how to use them. Once
you have a solid grasp of these basics, you’ll learn about how you can create a basic client-side ASP.NET
AJAX control. However, you won’t learn how to extend this example into a full-blown ASP.NET web
control. Custom control development with ASP.NET AJAX is a complex, detailed topic. If you’re a
business developer, you’ll probably prefer to use existing ASP.NET AJAX controls rather than code your
own. If you’re a component developer, you can continue down the path to custom control development
with another book. Two good choices are ASP.NET AJAX in Action (Manning, 2010), which illuminates
the entire ASP.NET AJAX toolkit in detail, and Advanced ASP.NET AJAX Server Controls For .NET
Framework 3.5 (Addison-Wesley, 2008), which focuses on control design.

Understanding the Client Model
The fundamental building block of ASP.NET AJAX is the client-side JavaScript libraries. They provide the
glue that holds all the other features together. Figure 30-8 shows a high-level look at ASP.NET AJAX that
shows where the client libraries fit in.

The client libraries add a dash of .NET flavor to the JavaScript world. They consist of three central
parts:

• JavaScript extensions: These give you a way to use object-oriented techniques
with ordinary JavaScript code.

• Core JavaScript classes: These establish a stripped-down framework with basic
client-side functionality that’s required in an Ajax application. The core classes
include classes for string manipulation, components, networking, and web
services.

• UI Framework: This sits on top of the infrastructure established by the core
classes. The UI Framework adds the concept of client-side controls and the client-
side page.

CHAPTER 30 ■ ASP.NET AJAX

1277

Figure 30-8. The ASP.NET AJAX architecture

■ Note Altogether, the client libraries are quite compact, requiring the client to download less than 200 KB of
script code. When visiting an ASP.NET-powered site, this script code is only downloaded once, and then cached by

the browser. In addition, ASP.NET sends a compressed version of the script document if the browser supports it.
(ASP.NET only uses compression when receiving requests from Internet Explorer 7 or later. Even though earlier
versions of Internet Explorer support compression, there is a bug that causes browser cache settings to sometimes

be ignored.)

Object-Oriented Programming in JavaScript
JavaScript is not a true object-oriented language, because it lacks support for core object-oriented
features like inheritance and interfaces. However, JavaScript is often described as an object-based

CHAPTER 30 ■ ASP.NET AJAX

1278

language, because JavaScript provides built-in objects (representing browser windows, the current
HTML document, and so on).

Unfortunately, JavaScript doesn’t include the ability to define custom classes. However, there are
popular workarounds that developers use to create code constructs that approximate classes.

First, it’s easy enough to create a one-off object with any set of properties you choose. You simply
need to create an ordinary object (using the var keyword) and then create the properties you want by
assigning to them. For example, this code creates an employee object with two attached string variables:
FirstName and LastName.

var emp = new Object;
emp.FirstName = "Joe";
emp.LastName = "Higgens";

The problem with this code is that it doesn’t use a class. As a result, there’s no way to verify that the
object you’re using is truly an employee, and there’s no way to be sure that two employee objects really
expose the same set of members.

■ Note JavaScript is a very flexible and loose language. In the preceding example, the FirstName and LastName
properties are created automatically as soon as the code assigns values to them—there’s no need to explicitly
declare the properties first. This trick makes it easy to create objects, but it’s also rife with many potential

problems. For example, it’s easy to accidentally create a new property by referring to one of the existing properties

but inadvertently using the wrong name.

To create a more standardized object definition, JavaScript developers usually fall back on one of
two tricks: closures or prototypes.

Closures
Essentially, a closure is a function that encapsulates a class. You don’t actually run a closure function.
Instead, you run the nested functions inside it. These functions are effectively the methods (and
property procedures) of the class. They have access to any variables defined inside the closure function.

The easiest way to understand the closure model is to consider an example. Here’s a closure that
effectively defines an Employee class with a first and last name:

function Employee(first, last)
{
 // The private section.
 var _firstName = first;
 var _lastName = last;

 // The public section.
 this.set_FirstName = function(first) {
 _firstName = first;
 }
 this.get_FirstName = function() {
 return _firstName;
 }

CHAPTER 30 ■ ASP.NET AJAX

1279

 this.set_LastName = function(last) {
 _lastName = last;
 }
 this.get_LastName = function() {
 return _lastName;
 }
}

The variables that you define in the closure (in this example, _firstName and _lastName) are local to
the Employee() function, and can’t be accessed outside the function. On the other hand, the methods (in
this example, set_FirstName(), get_FirstName(), and so on) can be called at any time.

To create an employee object, you’d use code like this in the same script block or in a different script
block that occurs later on the page:

var emp = new Employee("Joe", "Higgens");
var name = emp.get_FirstName() + " " + emp.get_LastName();
alert(name);

The first line creates a variable named emp, and sets emp to hold a reference to the Employee()
function. In other words, your object instance is really just a function pointer—one that points to the
constructor that creates the object. Figure 30-9 shows the result.

Figure 30-9. Creating a custom object in JavaScript

Early builds of ASP.NET AJAX used closures for object-oriented programming. However, later builds
switched to the prototype system.

CHAPTER 30 ■ ASP.NET AJAX

1280

■ Note Technically, the Employee() function gives itself four new properties: set_FirstName, get_FirstName,
set_LastName, and get_LastName. It assigns a function to each property. This allows you to invoke each property
as though it were a method. In other words, when you write emp.get_FirstName(), you are accessing the
get_FirstName() property, which is actually a function.

This system introduces some possible errors. For example, you might refer to a function when you mean to invoke
it (by omitting the parentheses), or inadvertently remove a method from an object (by assigning to the property).
Developers must balance the value of objects in client-side script against the extra complexity they entail.

Prototypes
The other approach developers use to define classes in JavaScript is with prototypes. For various
technical reasons, prototypes are preferred in ASP.NET AJAX. Prototypes offer better performance in
some browsers (such as Firefox), and they provide better support for reflection, IntelliSense, and
debugging. These differences are because prototypes have their members “baked in,” while closures
create their members each time an object is instantiated.

To use a prototype, you rely on the public prototype property that every JavaScript object has. This
property exposes the public interface for the object. To add publicly callable methods to an object, you
assign new properties to the prototype.

Here’s a refactoring of the code you saw earlier that defines an Employee object using the prototype:

Employee = function(first, last)
{
 // The private section.
 this._firstName = first;
 this._lastName = last;
}

// The public section.
Employee.prototype.set_FirstName = function(first) {
 this._firstName = first;
}
Employee.prototype.get_FirstName = function() {
 return this._firstName;
}
Employee.prototype.set_LastName = function(last) {
 this._lastName = last;
}
Employee.prototype.get_LastName = function() {
 return this._lastName;
}

The Employee object itself is actually a reference to a function that plays the role of a constructor.
This function initializes all the private members. The public members are defined separately, by adding
to the prototype. The code that uses the prototype version of the Employee class remains the same:

var emp = new Employee("Joe", "Higgens");
var name = emp.get_FirstName() + " " + emp.get_LastName();
alert(name);

CHAPTER 30 ■ ASP.NET AJAX

1281

There’s a subtle difference in the way that closures and prototypes work. Essentially, a closure
creates the specialized members for your object (set_FirstName, get_FirstName, and so on) every time a
new object is created based on that closure. But with the prototype approach, the prototype object is
created and configured once, and then copied into each new object. This is the reason for the
performance improvement on some browsers.

Just as importantly, prototypes make certain tasks, such as reflection, easier in ASP.NET AJAX. Thus,
the prototype approach is preferred.

Registering Classes with ASP.NET AJAX
Closures and prototypes are already available in the JavaScript language. In the following sections, you’ll
see three ingredients that ASP.NET AJAX adds for object-oriented development: namespaces,
inheritance, and interfaces. But before you can use any of these features, you need to register your
JavaScript class with the ASP.NET AJAX framework.

This step is easy. First, make sure your JavaScript code is on a web page that includes the ASP.NET
AJAX client libraries. (The easiest way to do this is to add the ScriptManager control to the page, and
make sure you script blocks fall after the ScriptManager control.) Once the ASP.NET AJAX client libraries
are available, you simply need to call the registerClass() method on your constructor function after
you’ve defined your prototype, as shown here:

Employee = function(first, last)
{ ... }

Employee.prototype.set_FirstName = ...
Employee.prototype.get_FirstName = ...
...

Employee.registerClass("Employee");

Remember, technically the Employee variable is a reference to the constructor function that you use
to create employee objects. You can call the registerClass() method because the ASP.NET AJAX client
libraries add methods for registering classes, namespaces, interfaces, and enumerations.

■ Note In the rest of this chapter, we’ll refer to the code structures you can create with ASP.NET AJAX as classes.
These aren’t the full-fledged, typesafe classes you see in .NET. More accurately, they are class-like constructs that

are registered as classes with the ASP.NET AJAX client libraries.

Even once you’ve registered the Employee class, you still use the same code to create employee
objects. However, ASP.NET AJAX is now aware of your class and provides it with a bit more built-in
functionality. One example is reflection, which allows you to get type information from your class using
code like this:

var emp = new Employee("Joe", "Higgens");
alert(Object.getTypeName(emp));

If you use this code with an instance of an unregistered class, you’ll see the class name Object.
However, if you’ve registered your Employee class, you’ll see the more precise name Employee.

CHAPTER 30 ■ ASP.NET AJAX

1282

The Object class provides several more members that you can use to get type information from a
registered custom class, including implementsInterface (to test if the class implements a specific
interface), getInterfaces (to find out all the interfaces a class implements), inheritsFrom (to test if the
class inherits from a specific class directly or indirectly), and isInstanceOfType (to test if an object is an
instance of a specified class or a class derived from that class).

■ Tip When debugging, you can step into the JavaScript for the ASP.NET AJAX client libraries. For example, if you
enable client script debugging (as described in Chapter 29) and place a breakpoint on the code statement that
invokes registerClass(), you can step into the code for the registerClass() function. Best of all, the ScriptManager is

intelligent enough to realize that you’re running in debug mode, so it uses the debug version of the JavaScript
client libraries, which means you can look at a nicely formatted, commented version of the JavaScript code. Using

this trick is a great way to learn more about how ASP.NET AJAX works.

Base Types
The ASP.NET AJAX client libraries extend several core JavaScript types with helper functions. In many
cases, these extensions make these types work more a little more like their .NET counterparts.

Table 30-5 lists the JavaScript types that ASP.NET AJAX extends.

Table 30-5. Extended JavaScript Types in ASP.NET AJAX

Type Description

Array Adds static methods that allow you to add, remove, clear, and search the elements
of an array.

Boolean Adds a parse() method that allows you to convert a string representation of a
Boolean into a Boolean.

Date Adds formatting and parsing methods that allow you to convert a date to and from
a string representation, either using an invariant representation or using the
appropriate representation for the current locale.

Number Adds formatting and parsing methods that allow you to convert a number to and
from a string representation, either using an invariant representation or using the
appropriate representation for the current locale.

String Adds a very small set of string manipulation methods for trimming strings and
comparing the start or end of a string with another string. (The Sys.StringBuilder
class adds another way to build strings.)

Error Adds a number of properties for common error types, which return the appropriate
exception objects. For example, Error.argument returns a Sys.ArgumentException
object.

CHAPTER 30 ■ ASP.NET AJAX

1283

Type Description

Object Adds a getType() and getTypeName() method, which are the starting points for
reflecting on type information (as demonstrated in the previous section).

Function Adds methods for managing classes, including the methods for defining
namespaces, classes, and interfaces, as demonstrated in the following sections.

In the following sections, you’ll see how to build smarter classes that live in distinct namespaces,

inherit from other classes, and implement interfaces. Then, you’ll consider some of the more advanced
classes in the ASP.NET AJAX client libraries.

Namespaces
Traditionally, all JavaScript functions exist in the same global namespace. However, ASP.NET AJAX adds
the ability to separate the functions that represent classes into separate, logical namespaces. This is
particularly useful for preventing any conflict between the built-in ASP.NET AJAX classes and your own.

To register a namespace, you use the Type.registerNamespace() method before you create your
class. You then place the type in the namespace using a fully qualified name (as in Business.Employee).
Here’s an example:

Type.registerNamespace("Business");

Business.Employee = function Employee(first, last)
{ ... }

Business.Employee.prototype.set_FirstName = ...
Business.Employee.prototype.get_FirstName = ...
...

Business.Employee.registerClass("Business.Employee");

And here’s how you create an instance:

var emp = new Business.Employee("Joe", "Higgens");

If you use the Object.getTypeName() method now, you’ll get the fully qualified class name.
The need to put the namespace name before each member makes the code more verbose than it

was before. To save some space, it’s a common convention to define each method separately and then
assign all the methods to the prototype in one step. Here’s an example of this technique:

Type.registerNamespace("Business");

Business.Employee = function(first, last)
{ ... }

function Business$Employee$set_FirstName(first) {
 this._firstName = first;
}
function Business$Employee$get_FirstName() {
 return this._firstName;
}
function Business$Employee$set_LastName(last) {

CHAPTER 30 ■ ASP.NET AJAX

1284

 this._lastName = last;
}
function Business$Employee$get_LastName() {
 return this._lastName;
}

Business.Employee.prototype = {
 set_FirstName: Business$Employee$set_FirstName,
 get_FirstName: Business$Employee$get_FirstName,
 set_LastName: Business$Employee$set_LastName,
 get_LastName: Business$Employee$get_LastName
};

Business.Employee.registerClass("Business.Employee");

Both approaches are acceptable, but the one shown in the preceding example is the most common
approach, and the one you’ll find if you explore the ASP.NET AJAX JavaScript files. Just remember that if
you choose to use this two-part approach, the convention is to name each member using the fully
qualified namespace and class, but substituting the dollar sign ($) for the dot (.), as in
Business$Employee$set_FirstName.

Inheritance
ASP.NET AJAX also provides support for creating classes that inherit from other classes. When you
register the derived class, you provide the name of the base class as a second argument. Here’s an
example that creates a SalesEmployee class that derives from Employee. Note that in order for this to
work, the Employee class must be defined earlier in the script block (or in a previous script block):

Business.SalesEmployee = function(first, last, salesDepartment)
{
 // Call the base constructor to initialize the parent class data.
 // The base class constructor accepts two parameters,
 // which represent the first and last name.
 Business.SalesEmployee.initializeBase(this, [first, last]);

 // Initialize the derived class data.
 this._salesDepartment = salesDepartment;
}

Business.SalesEmployee.prototype.get_SalesDepartment = function() {
 return this._salesDepartment;
}

Business.SalesEmployee.registerClass("Business.SalesEmployee",
 Business.Employee);

The registerClass() call passes in the name of the new class (as a string) and the name of the parent
class (as a reference to the parent class function). When you register a class in this way, it gains all of the
members in the parent class, along with its own members. Thus, you can set and get the department,
first name, and last name information from any SalesEmployee object:

CHAPTER 30 ■ ASP.NET AJAX

1285

var salesEmp = new Business.SalesEmployee("Joe", "Higgens", "Western");
var desc = salesEmp.get_FirstName() + " " + salesEmp.get_LastName() +
 " " + salesEmp.get_SalesDepartment();
alert(desc);

If the derived class supplies a member with the same name as the parent class, the version in the
parent class is automatically overridden. Unlike the C# language, there’s no way to create members that
must be overridden or prevent members from being overridden. Furthermore, the derived class has
access to all the variables that are defined in the parent class (although you should avoid accessing them
directly, and use the property accessor methods instead).

The only magic in the SalesEmployee code is the initializeBase() call, which allows the constructor
to call the constructor of the base class so it can initialize the first and last name. The initializeBase()
method is one of the members that ASP.NET AJAX adds to the basic function type. Along with
initializeBase(), you can callBaseMethod() to trigger a method that’s present in the base class but
overridden in the derived class.

Interfaces
To define an interface in JavaScript, you use the same prototype pattern you use to create a class. The
prototype property exposes the members of the interface. However, you need to go to additional lengths
to ensure that your interface can’t be used like an object. These rules aren’t enforced, so it’s up to you to
create an interface that behaves properly.

First, the interface constructor should not contain any code, nor should it assign any data. Instead, it
should simply throw a NotImplementedException to prevent it from being instantiated. Similarly, the
members that are defined in the prototype should not contain any code, and should throw a
NotImplementedException when called. This requirement makes JavaScript interface definitions quite a
bit longer than C# interface definitions.

The easiest way to understand the ASP.NET AJAX interface model is to look at one of the interfaces
defined in ASP.NET AJAX. The Sys.IDisposable interface provides an ASP.NET AJAX equivalent to the
.NET System.IDisposable interface, which gives objects a way to release the resources they’re using
immediately. The Sys.IDisposable interface defines a single method, named dispose().

Here’s the full code for the IDisposable interface:

Type.registerNamespace("Sys");

Sys.IDisposable = function Sys$IDisposable() {
 throw Error.notImplemented();
}
function Sys$IDisposable$dispose() {
 throw Error.notImplemented();
}

Sys.IDisposable.prototype = {
 dispose: Sys$IDisposable$dispose
}

To register an interface, you use the registerInterface() method instead of registerClass():

Sys.IDisposable.registerInterface("Sys.IDisposable");

CHAPTER 30 ■ ASP.NET AJAX

1286

To use an interface, you must first ensure that your class includes the members with the required
names:

Business.SalesEmployee.prototype.dispose = function() {
 alert("Disposed");
}

If they do, you can implement the interface by changing the way you register your class. When you
call registerClass(), simply supply the interface you want to implement as the third argument.

Business.SalesEmployee.registerClass("Business.SalesEmployee",
 Business.Employee, Sys.IDisposable);

If you want to implement several namespaces, add as many additional arguments as you need after
the third argument—one for each interface.

Here’s some code you can use to test the dispose behavior. When the SalesEmployee object is
disposed, you’ll see the disposal message appear:

var salesEmp = new Business.SalesEmployee("Joe", "Higgens", "Western");
salesEmp.dispose();

The Web-Page Framework
As you’ve learned, the ASP.NET AJAX client libraries use a multilayered design. At the lowest level are a
set of JavaScript language enhancements that allow object-oriented patterns, and a set of extensions to
the core JavaScript data types. ASP.NET AJAX also includes a set of core client-side classes and a client-
side page model that’s built on top of this infrastructure. This model includes classes for the web service
callback feature you considered at the beginning of this chapter, specific classes to support web controls
like the UpdatePanel, and control classes that wrap the page and its elements.

The Application Class
The starting point for the web-page model is the Sys.Application class. When an ASP.NET AJAX-enabled
web page is loaded in the web browser, an instance of the Sys.Application class is created. The
Application object manages the components on the page and loads any external script files that are
registered with the ScriptManager. The ScriptManager inserts the code that creates the Application
object, and the Application object does all the client-side work for the server-side ScriptManager.

The Application object raises two key events. The load event occurs after the page is first processed
on the browser and after every postback, including asynchronous postbacks. The unload event occurs
when the user navigates away to a new page. To handle these events, you simply need to add JavaScript
functions with the names shown here:

<script type="text/JavaScript">
function pageLoad()
{
 alert("Being loaded");
}
function pageUnload()
{
 alert("Being unloaded");
}
</script>

CHAPTER 30 ■ ASP.NET AJAX

1287

Many of the earlier examples in this chapter have used the pageLoad() function—and now you
understand how it plugs into the ASP.NET AJAX infrastructure.

The Application class also provides an init event, which fires when all the scripts have been loaded
for the page but before its objects have been created. The init event fires once, when the page is first
processed. It doesn’t fire after asynchronous postbacks. You can attach an event handler to the init event
using the Application.add_init() method. ASP.NET AJAX components react to the init event to create
client-side controls.

The PageRequestManager Class
Another keenly important class is the PageRequestManager. The PageRequestManager is created if the
page supports partial rendering, and uses one or more UpdatePanel controls on the server side.

The PageRequestManager class fires a series of events that you can respond to with client-side
JavaScript code. Table 30-6 lists these events. In previous examples in this chapter, you’ve used the
PageRequestManager to handle asynchronous callback errors with the UpdatePanel control (by handing
endRequest) and to implement cancellation with the UpdateProgress control (by handling
initializeRequest).

Table 30-6. PageRequestManager Events

Event Description

initializeRequest Occurs before an asynchronous postback begins. At this point, you can cancel
the postback using the Cancel property of the
Sys.WebForms.InitializeRequestEventArgs object that’s passed to the event
handler.

beginRequest Occurs before the asynchronous postback request is sent (but after
initializeRequest). At this point, you can initialize wait indicators on the page
(for example, start a “please wait” animation). This event provides a
Sys.WebForms.BeginRequestEventArgs object, which you can use to
determine what element caused the postback.

pageLoading Occurs after the response is received for an asynchronous callback, but
before the page is updated. At this point, you can remove wait indicators. This
event provides a Sys.WebForms.PageLoadingEventArgs object that provides
information about the panels that will be updated as a result of the
asynchronous postback response.

pageLoaded Occurs after the response is received for an asynchronous callback and the
page has been updated. This event provides a Sys.Web-
Forms.PageLoadedEventArgs object that details which panels were updated
and created.

EndRequest Occurs after the asynchronous response has been processed (after the
pageLoaded event), or during the processing of the response if there is an
error. You can check for an error at this point and provide a customized error
notification. This event provides a Sys.WebForms.End-RequestEventArgs
object that details the error that occurred.

CHAPTER 30 ■ ASP.NET AJAX

1288

A Client-Side AJAX Control
The full web-page framework is beyond the scope of this chapter. (To learn more about the client-side
model, refer to the documentation at http://go.microsoft.com/fwlink/?LinkId=116063.) However, you
can learn a lot by considering a quick crash-course example. In this section, you’ll explore one of the
examples from the ASP.NET AJAX documentation: a client-side button that updates its appearance when
the mouse moves over it. For better organization, all the code for this button is placed in a separate
JavaScript file named HoverButton.js.

To create this control, you use the prototype pattern shown earlier. You begin by registering the
namespace, you define the constructor for the control (with the private data), and then you define the
public interface using the prototype property. In this example, the class is named HoverButton, and it
exposes events that fire when the button is clicked, when the mouse moves over it, and when the mouse
moves away.

Here’s the overall structure of the code:

Type.registerNamespace("CustomControls");

// Define the constructor.
CustomControls.HoverButton = function(element) {
 CustomControls.HoverButton.initializeBase(this, [element]);

 this._clickDelegate = null;
 this._hoverDelegate = null;
 this._unhoverDelegate = null;
}

CustomControls.HoverButton.prototype = { ... }

CustomControls.HoverButton.registerClass('CustomControls.HoverButton',
 Sys.UI.Control);

Notice that custom controls must always begin their constructor with a call to initializeBase(), which
triggers the constructor in the base Control class.

The prototype includes methods for getting and setting the button text, and methods for attaching
event handlers to the three events. ASP.NET AJAX includes a higher-level event model than pure
JavaScript. One of the advantages of this event model is that it deals with browser compatibility issues.

To attach and detach event handlers in JavaScript, you use the addHandler() and removeHandler()
methods. Here’s the implementation code:

CustomControls.HoverButton.prototype = {
 get_text: function() {
 return this.get_element().innerHTML;
 },
 set_text: function(value) {
 this.get_element().innerHTML = value;
 },

 add_click: function(handler) {
 this.get_events().addHandler('click', handler);
 },
 remove_click: function(handler) {
 this.get_events().removeHandler('click', handler);

http://go.microsoft.com/fwlink/?LinkId=116063

CHAPTER 30 ■ ASP.NET AJAX

1289

 },

 add_hover: function(handler) {
 this.get_events().addHandler('hover', handler);
 },
 remove_hover: function(handler) {
 this.get_events().removeHandler('hover', handler);
 },

 add_unhover: function(handler) {
 this.get_events().addHandler('unhover', handler);
 },
 remove_unhover: function(handler) {
 this.get_events().removeHandler('unhover', handler);
 },

 initialize: function() { ... },
 dispose: function() { ... },

 ...
}

There are two more methods in the prototype for the HoverButton class: an initialize() method
that’s called automatically when a HoverButton object is being created, and a dispose() method that’s
called when it’s being released.

The initialize() method sets up the link between the custom events that are defined in the
HoverButton class and the JavaScript events that exist in the page. For example, here’s the code that sets
up the hover event so it fires when the mouse moves over the button or when focus passes to the button:

var element = this.get_element();

if (this._hoverDelegate === null) {
 this._hoverDelegate = Function.createDelegate(this, this._hoverHandler);
}
Sys.UI.DomEvent.addHandler(element, 'mouseover', this._hoverDelegate);
Sys.UI.DomEvent.addHandler(element, 'focus', this._hoverDelegate);

This code states that when the mouseover or focus events occur for the client-side element, the
_hoverHandler delegate should be triggered.

The _hoverHandler delegate is defined at the end of the prototype. It simply triggers the linked
event handler, as shown here:

_hoverHandler: function(event) {
 var h = this.get_events().getHandler('hover');
 if (h) h(this, Sys.EventArgs.Empty);
}

Finally, the initialize() method calls the base initialize() method in the Control class:

CustomControls.HoverButton.callBaseMethod(this, 'initialize');

The dispose() method has an easier task. It simply checks if the event handlers exist, and removes
them if they do. Here’s how it does its work for the hover event:

CHAPTER 30 ■ ASP.NET AJAX

1290

var element = this.get_element();

if (this._hoverDelegate) {
 Sys.UI.DomEvent.removeHandler(element, 'hover', this._hoverDelegate);
 delete this._hoverDelegate;
}

It ends by calling the base class implementation of the dispose() method, using this code:

CustomControls.HoverButton.callBaseMethod(this, 'dispose');

There’s one final detail. The script must notify the Application class when it reaches the end of its
code. To make this happen, you need to add this code statement to the end of the page:

if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

This isn’t necessary if your script code is placed in the page or embedded in an assembly. In these
cases, the notifyScriptLoaded() method is called automatically. But in this example, the JavaScript code
is placed in the HoverButton.js file, so this line is necessary.

■ Tip To look at the full script code, you can refer to the downloadable samples for this chapter.

Now that you have the JavaScript code for your client-side component, you’re ready to use it in a
page. The first step is to register your script with the ScriptManager, as shown here:

<asp:ScriptManager runat="server" ID="ScriptManager01">
 <Scripts>
 <asp:ScriptReference Path="HoverButton.js" />
 </Scripts>
</asp:ScriptManager>

This ensures that your script will be loaded after the ASP.NET AJAX client libraries, and will have full
access to the client-side model.

Next, you need to add the HTML element that will serve as the basis for your client-side control. In
this example, it’s the modest button shown here:

<button type="button" id="Button1" value="Click Me"></button>

Lastly, you need to create the client-side control and hook up event handlers. To create the control,
you use the ASP.NET AJAX $create alias (which triggers the Sys.UI.Component.create() method) when
the page is first loaded. At this point, you supply the fully qualified class name of the control, other
properties you want to set (such as the text, style, and event handlers), and a reference to the underlying
object in the page (which you can retrieve using the $get alias).

Here’s the script code that creates the HoverButton, sets its initial properties, and attaches an event
handler to the hover event:

function pageLoad(sender, args) {
 $create(CustomControls.HoverButton,
 {text: 'A HoverButton Control',element: {style: {fontWeight: "bold",

CHAPTER 30 ■ ASP.NET AJAX

1291

borderWidth: "2px"}}},{hover: doSomethingOnHover },
 null, $get('Button1'));
}

Once you’ve registered a component by calling $create, you can retrieve a reference to it at any later
point by using $find. Here’s an event handler that changes the text of the button when it’s hovered over:

function doSomethingOnHover(sender, args) {
 var hoverButton = $find('Button1');
 hoverButton.set_text("In hover mode.");
}

It’s important to realize the difference between $find and $get. The $get alias retrieves an HTML
element from the page (like the <button> element). The $find alias retrieves a full ASP.NET AJAX client
component (like the HoverButton object). Clearly, if you want to interact with the properties you’ve
defined in your custom control, you need to use $find to retrieve the control object.

As you can see from this example, creating client-side ASP.NET AJAX components isn’t a trivial
process. Although there isn’t a high level of complexity, there are a lot of details to manage, and the poor
error-catching abilities of the loosely typed JavaScript language can make debugging into a serious
chore. For this reason, most ASP.NET developers will prefer to use ready-made server-side controls and
components that have ASP.NET AJAX plumbing, rather than write their own. In future releases of Visual
Studio, there may be better design support for creating client-side ASP.NET AJAX classes.

■ Note Custom controls aren’t the only type of client-side ASP.NET AJAX ingredient that you can use. You can also
create custom components, which have no visual appearance. (For example, the ASP.NET Timer web control uses a
client-side component.) Or, you can use behaviors (classes that derive from Behavior) that extend the behavior of

existing page elements. Behaviors are used by control extenders, which are the topic of the next section.

Control Extenders
At this point, it might occur to you that you could build a custom ASP.NET control that renders client-
side JavaScript code that uses the ASP.NET AJAX client libraries. In fact, that’s essentially what the
ASP.NET AJAX controls you’ve seen so far (the UpdatePanel, UpdateProgress, and Timer) do.
Implementing this design is fairly straightforward. You simply need to add the code that registers your
custom JavaScript with the ScriptManager in the page, and render the basic HTML that you need and
the JavaScript that creates the control.

Although this approach works, it’s tedious and unnecessarily limiting. The problem is that ASP.NET
AJAX doesn’t just allow you to design new types of controls, it also allows you to design effects that could
apply to countless controls. In fact, these multipurpose effects—such as automatic completion, drag-
and-drop, animation, resizing, collapsing, masked editing, and so on—represent the most common way
to use ASP.NET AJAX.

For that reason, ASP.NET AJAX encourages a different model—one that uses control extenders to
add ASP.NET AJAX features to existing controls. Using control extenders, you can add Ajax effects to an
existing page without needing to change the control set that it uses.

ASP.NET doesn’t include any control extenders. However, the ASP.NET AJAX Control Toolkit does.
The ASP.NET AJAX Control Toolkit is a remarkable collection of controls and control extenders that use
ASP.NET AJAX features but can be dropped onto your web page like any ordinary server control.

CHAPTER 30 ■ ASP.NET AJAX

1292

The most remarkable part of the ASP.NET AJAX toolkit is that it’s being developed using a
collaborative, open-source model that allows community participation. The ASP.NET AJAX Control
Toolkit is free and includes full source code, which makes it a great tool for developers looking to outfit
their web pages with Ajax effects and developers who want to learn to build their own control extenders.

In the following sections, you’ll try out the AutoCompleteExtender from the ASP.NET Control
Toolkit, and you’ll take a quick look at what else it offers.

Installing the ASP.NET AJAX Control Toolkit
To get the ASP.NET AJAX Control Toolkit, surf to http://www.asp.net/ajaxlibrary/act.ashx. You can
follow the links to the CodePlex download page, where you’ll see several download options, depending
on your version of .NET and whether you want the source code. At the time of this writing, the simplest
download option is a 6.4 MB ZIP file named AjaxControlToolkit.Binary.NET4.zip, which is designed for
ASP.NET 4 and doesn’t include the source code. Once you’ve downloaded this ZIP file, you can extract
the files it contains to a more permanent location on your hard drive.

Inside the ZIP file, you’ll find a a central assembly named AjaxControlToolkit.dll and a host of
smaller satellite assemblies that support localization for different cultures. You’ll also see a zipped folder
named AjaxControlToolkitSampleSite, which contains a huge sample website that demonstrates all the
ASP.NET AJAX Control Toolkit ingredients, and a ReadMe.html file with installation instructions.

To get started developing with the ASP.NET AJAX Control Toolkit, you could simply copy the
AjaxControlToolkit.dll assembly (and the culture-specific subfolders) to the Bin folder of your own web
application. However, life is much easier if you get Visual Studio to help you out by adding the new
components to the Toolbox. Here’s how:

1. Make sure the SampleWebSite folder is in a reasonably permanent location on
your hard drive. If you move the SampleWebSite folder after you complete this
process, Visual Studio won’t be able to find the AjaxControlToolkit.dll
assembly. As a result, it won’t be able to add the necessary assembly reference
when you drag the controls onto a web page. (The only way to fix this problem
is to remove the controls from the Toolbox and then repeat the process to add
them from their new location.)

2. First, you need to create a new Toolbox tab in Visual Studio to hold the
controls. Right-click the Toolbox and choose Add Tab. Then, enter a name (like
AJAX Toolkit) and press Enter.

3. Now, you need to add the controls to the new tab. Right-click the blank tab
you’ve created and select Choose Items.

4. In the Choose Toolbox Items dialog box, click Browse. Find the
AjaxControlToolkit.dll (which is in the SampleWebSite\Bin folder) and click OK.

5. Now, all the components from AjaxControlToolkit.dll will appear in the list,
selected and with checkmarks next to each one. To add all the controls to the
Toolbox in one step, just click OK.

Figure 30-10 shows some of the controls that will appear in the new Toolbox tab.

http://www.asp.net/ajaxlibrary/act.ashx

CHAPTER 30 ■ ASP.NET AJAX

1293

Figure 30-10. Adding the ASP.NET AJAX Control Toolkit to the Toolbox

Now you can use the components from the ASP.NET AJAX Control Toolkit in any web page in any
website. First, begin by adding the ScriptManager control to the web page. Then, head to the new
Toolbox tab you created and drag the ASP.NET AJAX control you want onto your page. The first time you
add a component from the ASP.NET AJAX Control Toolkit, Visual Studio will copy the
AjaxControlToolkit.dll assembly to the Bin folder of your web application, along with the localization
assemblies.

The ASP.NET AJAX Control Toolkit is stuffed full of useful components. In the following sections,
you’ll get your feet wet by considering the useful AutoCompleteExtender.

CHAPTER 30 ■ ASP.NET AJAX

1294

The AutoCompleteExtender
The ASP.NET team has been careful to avoid duplicating existing controls with ASP.NET AJAX variants.
For example, it might seem tempting to create an AutoCompleteTextBox server control. However, this
design introduces several problems:

• You need to replace your existing TextBox controls with AutoCompleteTextBox
controls to use this functionality. This is a major (and potentially disruptive)
change to make in an established page.

• If you have already extended the TextBox control or are using a third-party
component that extends the TextBox control, you need to sacrifice these features.

• If another ASP.NET AJAX feature is implemented in a different TextBox-derived
class (say, a NumericOnlyTextBox that discards any key press that isn’t a digit),
you won’t be able to use both features at once.

• If you want to use the autocomplete feature with a different control, you need to
wait for someone to create a control that encapsulates that functionality. A
significant amount of duplicated work is required to support all text-based
controls.

• Developers need to learn two similar but different control models and switch back
and forth between them depending on the scenario.

A better solution would allow you to add dynamic features to your website without replacing the
controls you’re already using. ASP.NET AJAX enables this with another new concept, called control
extenders. Control extenders are bits of Ajax-style functionality that plug into ordinary server controls.
To use a specific feature, you simply need to add the right control extender and attach it to the
appropriate control.

One example is the AutoCompleteExtender, which allows you to show a list of suggestions while a
user types in another control (such as a text box).

■ Note Although the AutoCompleteExtender, like many extender controls, ends with the word “Extender,” not all
extenders do. In the following section, you’ll get an overview that lists all the extenders and all the ordinary

controls in the ASP.NET AJAX Control Toolkit.

Figure 30-11 shows the AutoCompleteExtender at work on an ordinary TextBox server control. As
the user types, the drop-down list offers suggestions. If the user clicks one of these items in the list, the
corresponding text is copied to the text box.

Creating this example is fairly easy. First, you need to add a ScriptManager to the page. Next, you
need to add an ordinary text box, like this:

Contact Name:<asp:TextBox ID="txtName" runat="server"></asp:TextBox>

CHAPTER 30 ■ ASP.NET AJAX

1295

Figure 30-11. Providing an autocomplete list of names

Next, you need to add an AutoCompleteExtender control that extends the text box with the
autocomplete feature. The trick is that the list of suggestions needs to be retrieved from a web method,
which you need to create. Here’s an example web service named AutoCompleteService with a method
named GetNames() that provides the list of suggestions:

[WebService]
[System.Web.Script.Services.ScriptService]
public class AutoCompleteService : System.Web.Services.WebService
{
 [WebMethod()]
 public List<string> GetNames(string prefixText, int count)
 { ... }
}

Here’s the tag you need to call this service:

<ajaxToolkit:AutoCompleteExtender runat="server"
 ID="autoComplete1" TargetControlID="txtName"
 ServicePath="AutoCompleteService.asmx" ServiceMethod="GetNames"
 MinimumPrefixLength="1">
</ajaxToolkit:AutoCompleteExtender>

This assumes that the ajaxToolkit namespace is registered at the top of your web form:

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
 TagPrefix="ajaxToolkit " %>

The easiest way to add an ingredient from the ASP.NET AJAX Control Toolkit is to drag it from the
Toolbox. That adds both the Register directive (if it’s not already there) and the control tag.

CHAPTER 30 ■ ASP.NET AJAX

1296

You’ll notice that the AutoCompleteExtender links to the corresponding server control through the
AutoCompleteExtender.TargetControlID property. It also uses a MinimumPrefixLength property, which
allows you to wait until the user has entered a specific number of letters before using the list of
suggestions. This is a handy feature if the list is so long that a single character won’t provide a useful list
of suggestions.

The most time-consuming part of this example is creating the GetNames() web method. It accepts
two parameters, which indicate the text the user has typed so far and the desired number of matches
(which is ten by default).

[WebMethod]
public List<string> GetNames(string prefixText, int count)
{
 ...

Next, the code retrieves the complete list of possible suggestions, which is drawn from the
Northwind database. This list is cached for an hour to ensure quick retrieval:

 ...
 if (Context.Cache["NameList"] == null)
 {
 Context.Cache.Insert("NameList", QueryNames(), null,
 DateTime.Now.AddMinutes(60), TimeSpan.Zero);
 }
 List<string> names = (List<string>)Context.Cache["NameList"];
 ...

With the list in hand, the next step is to cut down the list so it provides only the ten closest
suggestions. In this example, the list is already sorted. This means you simply need to find the starting
position—the first match that starts with the same letters as the prefix text. Here’s the code that does it:

 ...
 int index = -1;
 for (int i = 0; i < names.Count; i++)
 {
 if (names[i].StartsWith(prefixText))
 {
 index = i;
 break;
 }

 // Give up if the search has passed to the next letter.
 // (This improves performance.)
 if (String.Compare(names[0], prefixText) == 1) break;
 }

 // Give up if there isn't a match.
 if (index == -1) return new List<string>();
 ...

The search code then begins at the index number position and moves through the list in an attempt
to get ten matches. However, if it reaches the end of the list or finds a value that doesn’t match the prefix,
the search stops.

CHAPTER 30 ■ ASP.NET AJAX

1297

 ...
 List<string> wordList = new List<string>();
 for (int i = index; i < (index + count); i++)
 {
 // Stop when the end of the list is reached.
 if (i >= names.Count) break;

 // Stop if the names stop matching.
 if (!names[i].StartsWith(prefixText)) break;

 wordList.Add(names[i]);
 }
 ...

Finally, all the matches that were found are returned:

 ...
 return wordList;
}

The ASP.NET AJAX Control Toolkit
The AutoCompleteExtender is only one of the many components that are included in the ASP.NET AJAX
Control Toolkit. Table 30-7 lists the control extenders that are currently available, and Table 30-8 lists
the controls.

Table 30-7. Control Extenders in the ASP.NET AJAX Control Toolkit

Name Description

AlwaysVisibleControlExtender This extender keeps a control fixed in a specific position (such as the
top-left corner of the web page) even as you scroll through the
content in a page.

AnimationExtender This powerful and remarkably flexible extender allows you to add
animated effects such as resizing, moving, fading, color changing,
and many more, on their own or in combination.

AutoCompleteExtender This extender allows you to supply a list of suggested entries based
on partial user input. The list of entries is generated by a web service
method, as described in the previous section.

CalendarExtender This extender shows a pop-up calendar that can be attached to a
text box for easier entry of dates. When the user chooses a date, it’s
inserted in the linked control.

CascadingDropDown This extender lets you link drop-down lists without coding the
solution by hand (as shown in the first example of this chapter).

CollapsiblePanelExtender This extender lets you collapse and expand panels on your page. The
rest of the page content reflows around them automatically.

CHAPTER 30 ■ ASP.NET AJAX

1298

Name Description

ColorPickerExtender This extender shows a pop-up color picker that can be attached to a
text box for easy color selection.

ConfirmButtonExtender This extender intercepts button clicks on a Button, LinkButton, or
ImageButton control and displays a confirmation message. The click
event is suppressed if the user chooses to cancel the operation in the
confirmation dialog box.

DragPanelExtender This extender allows you to drag a panel around the page.

DropDownExtender This extender turns almost any control into a drop-down list when
the mouse moves over it. For example, you can use the
DropDownExtender in conjunction with an ordinary Label control.
The user can then move the mouse over it, pick a different item from
the list (thereby changing the text in the label), and then move the
mouse away (allowing the label to revert to its ordinary appearance).

DropShadowExtender This extender adds a graphical drop shadow effect around a panel.
The drop shadow can be partially transparent, and you can control
the size and roundness of its corners.

DynamicPopulateExtender This simple extender replaces the contents of a control with the
result of a web service method call.

FilteredTextBoxExtender This extender allows you to restrict certain characters from being
entered in a text box (such as letters in a text box that contains
numeric data). This is meant to supplement validation, not replace
it, as malicious users could circumvent the filtering by tampering
with the rendered page or disabling JavaScript in the browser.

HoverMenuExtender This extender allows content to pop up next to a control when the
user hovers over it.

ListSearchExtender This extender allows the user to search for items in a ListBox or
DropDownList by typing the first few letters of the item text. The
control searches the items and jumps to the first match as the user
types.

MaskedEditExtender This extender restricts the kind of input that can be entered in a text
box using a mask. (A mask is a string that defines a pattern for fixed-
length text, and supplies prompt characters to help the user enter
the value. For example, a phone number mask might display (___)
___-____ in the text box. As the user types, the placeholders are
replaced with the valid numeric characters, and nonnumeric
characters are rejected.) You can use the MaskedEditExtender in
conjunction with the MaskedEditValidator to make sure that the
user can’t circumvent the JavaScript code and enter an invalid value.

CHAPTER 30 ■ ASP.NET AJAX

1299

Name Description

ModalPopupExtender This extender allows you to create the illusion of a modal dialog box
by darkening the page, disabling controls, and showing a
superimposed panel on top.

MultiHandleSliderExtender This extender transforms an ordinary TextBox control into a slider.
However, this slider has features beyond the standard ASP.NET
server-side equivalent. Most notable, it supports multiple thumbs
that can be dragged independently along the slider track. This is
useful when using a slider to indicate a range of values.

MutuallyExclusiveCheckBox-
Extender

This extender allows you to associate a “key” with multiple
CheckBox controls. When the user clicks a check box that’s extended
in this way, any other check box with the same key will be
unchecked automatically.

NumericUpDownExtender This extender attaches to a text box to provide configurable up and
down arrow buttons (at the right side). These buttons increment the
numeric or date value in the text box.

PagingBulletedListExtender This extender attaches to a BulletedList and gives it client-side
paging capabilities so that it can split a long list into smaller
sections.

PasswordStrength This extender attaches to a text box. As you type, it ranks the
cryptographic strength of the text box value (the higher the ranking,
the more difficult the password is to crack). It’s meant to be used as
a guideline for a password-creation box.

PopupControlExtender This extender provides pop-up content that can be displayed next to
any control.

ResizableControlExtender This extender allows the user to resize a control with a configurable
handle that appears in the bottom-right corner.

RoundedCornersExtender This extender rounds the corners of any control for a clean,
professional look.

SliderExtender This extender converts a text box into a graphical slider that allows
the user to choose a numeric value by dragging a thumb to a
position on a track.

SlideShowExtender This extender attaches to an image and causes it to display a
sequence of images. The images are supplied using a web service
method, and the slide show can loop endlessly or use play, pause,
previous, and next buttons that you create.

CHAPTER 30 ■ ASP.NET AJAX

1300

Name Description

TextBoxWatermarkExtender This extender allows you to automatically change the background
color and supply specific text when a TextBox control is empty. For
example, your text box might include the text Enter Value in light
gray writing on a pale blue background. This text disappears while
the cursor is positioned in the text box or once you’ve entered a
value.

ToggleButtonExtender This extender turns the ordinary ASP.NET CheckBox into an image
check box.

UpdatePanelAnimation-
Extender

This extender allows you to use the same animations as the
AnimationExtender. However, it’s designed to work with an
UpdatePanel and perform these animations automatically when an
update is in progress or once the panel has been refreshed.

ValidatorCalloutExtender This extender extends the client-side logic of the ASP.NET validation
controls so that they use pop-up validation callouts that point to the
control with the invalid input.

Table 30-8. Controls in the ASP.NET AJAX Control Toolkit

Name Description

Accordion This control stacks several content panels, and allows you to view one at a
time. When you click a panel, that panel is expanded and the other panels are
collapsed (so that just the header is visible). Additional features include an
automatic fading effect and an option to limit the size of the control (in which
case large content regions use scrolling when visible).

AsyncFileUpload This control is similar to the FileUpload web control, except it does its work
asynchronously, allowing the user to continue interacting with the page.
(Obviously, posting back the page or navigating to a new page will interrupt
the asynchronous file transfer.) The AsyncFileUpload control can also be
configured to show another control while the upload is taking place. Usually,
this second control (which is referenced by the ThrobberID property) shows a
simple animation so the user knows that an upload is underway.

ComboBox This control is inspired by the Windows combo box, which provides a drop-
down list (like the ASP.NET DropDownList control) and allows the user to
type in arbitrary text (like the ASP.NET TextBox control). It adopts much of
the programing interface and most of the conventions of its Windows
counterpart.

Editor This remarkably powerful control provides HTML editing, complete with a
toolbar of commands. The user can switch between three views: Html (which
shows the markup), Design (which shows a correctly rendered preview, like a
word processor), and Preview (which is similar to Design, but not editable).

CHAPTER 30 ■ ASP.NET AJAX

1301

Name Description
NoBot This control performs several checks to attempt to detect whether an

automated program (a bot) is accessing the page rather than a human. If
NoBot determines that a bot is accessing the page, the request will be denied.
This technique is used to prevent programs that steal content or submit
comment spam to blog postings, although it can obviously be circumvented.
For example, NoBot forces the browser to perform a JavaScript calculation
that uses the HTML DOM and submit the result, which aims to catch a non-
browser application accessing the page. NoBot can also reject requests that
post the form back extremely quickly, or post it back a large number of times
in a specific time interval. Both behaviors suggest that an automated program
is at work rather than a human.

Rating This control allows users to set a rating by moving the mouse over a series of
stars until the desired number of stars are highlighted.

ReorderList This control creates a scrollable template list that allows the user to rearrange
the order of items by dragging and dropping them.

Seadragon This advanced control allows the user to zoom into a massively magifiable
image. Behind the scenes, these images are composed out of a series of
much smaller tiles, which are managed on the web server. To create a
Seadragon image, you need the free Deep Zoom Composer tool
(http://tinyurl.com/26wjeqt). It’s also worth noting that these zoomable
images are a much hyped feature that’s built into Silverlight.

TabContainer This control resembles the tabs shown in a Windows. Each tab has a header,
and the user moves from one tab to another by clicking the header.

To use any of these controls or control extenders, you simply need to drop them onto a form, set the

appropriate properties, and run your page. Figure 30-12 shows the collapsible panel in both expanded
and collapsed states. Figure 30-13 shows a draggable panel, both before and after dragging.

Figure 30-12. A collapsible panel

http://tinyurl.com/26wjeqt

CHAPTER 30 ■ ASP.NET AJAX

1302

Figure 30-13. A draggable panel

You can test drive all of the ASP.NET AJAX Control Toolkit components online at
http://www.asp.net/ajax/ajaxcontroltoolkit.

Summary
The most exciting feature of ASP.NET AJAX is that it isn’t just another JavaScript library or a simple .NET
component that simplifies callbacks. Instead, it’s a multilayered platform that allows you to build more
responsive and dynamic pages—and, ultimately, an altogether different type of web application.

As you saw in this chapter, you can plug into the ASP.NET AJAX framework on three separate levels:

• You can write your own JavaScript code that calls server-side functionality. In this
case, you expose the web methods you need and use automatically generated
JSON proxies to call them.

• You can keep using ordinary ASP.NET server controls but extend them with
ASP.NET AJAX-fortified ingredients such as the UpdatePanel, or use the snazzy
controls and control extenders that are included with the ASP.NET AJAX Control
Toolkit. This approach offers the most value without requiring too much effort or
introducing too much complexity to your project.

• You can create your own client-side components, controls, and behaviors, and use
them independently or in conjunction with a custom ASP.NET server control. This
is by far the most complex approach. To truly master it, you’ll need a fine-grained
understanding of the client-side ASP.NET AJAX model, which is almost a platform
of its own. That means you’ll need to dig deep into the ASP.NET AJAX
documentation, or consider a dedicated book on the subject like Advanced
ASP.NET AJAX Server Controls For .NET Framework 3.5 (Addison-Wesley, 2008).

Remember, the ASP.NET AJAX platform is still evolving rapidly. To keep up with the latest developments,
be sure to visit http://www.asp.net/ajax. You may also want to consult a dedicated book that delves
deeper into more specialized ASP.NET AJAX features.

http://www.asp.net/ajax/ajaxcontroltoolkit
http://www.asp.net/ajax

C H A P T E R 31

■ ■ ■

1303

Portals with Web Part Pages

Websites are more sophisticated than ever. Nowadays it’s not enough if a website has a great look and
feel. It has to be easy to use and must present exactly the information that users want to see. In addition,
users want websites to present this information in a specific way—based on their individual preferences.
Therefore, personalization and user profiles have become more important in web development.

But users want to be able to customize more than simple profile information. They want to be able
to customize the website’s user interface to fit their requirements, with the goal of accessing the
information they need for their daily business as soon as they are logged in. So, in this chapter, you will
learn how you can create modular and dynamically configurable web pages to fulfill these sorts of
requirements using the ASP.NET Web Parts Framework and personalization features.

Web Parts vs. ASP.NET AJAX

There is some overlap between the functionality included with the ASP.NET AJAX extensions and Web
Parts. For example, the Accordion control (which is included with the ASP.NET Control Toolkit), allows you
to minimize and restore parts of your web page, much as you can with web parts. Similarly, the DragPanel
control allows you to reposition content regions by dragging them the mouse, also like web parts. Now the
question arises: when should you use which functionality?

The answer to that question is simple: web part pages are much more than just a single piece of
functionality such as the one provided with the Accordion control or the DragPanel control. The Web Parts
Framework is a complete framework for personalization. If you need this complete framework, then you
should use the Web Parts Framework. This functionality includes personalization of the appearance of your
page for groups of users and single users, personalization with custom settings for each module plugged
into your web application, dynamic extensibility with the possibility of adding new modules to your website
at runtime and without the need of recompilation, and so on. If you need all this together, then web parts
are the right way to go. If you just need a single piece of functionality, such as minimizing and restoring
parts of your web page, or functionality such as dragging content around the space of your web page, then
the Web Parts Framework is probably too oversized for your application. If that’s the case, you’ll be better
off just using the appropriate ASP.NET AJAX controls. You can combine the two technologies as well, if you
need both. You will learn more about ASP.NET AJAX in Chapter 30.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1304

Typical Portal Pages
In a personalized environment, users want specific information stored in a profile, as you learned in
Chapter 24. Furthermore, users want to be able to customize most of a website’s appearance and the
information it displays.

A good example of a personalized website is Microsoft’s MSN. As soon as you log into MSN, you can
configure the information displayed on your personal home page. For example, MSN allows you to
select the types of information items you can see and then displays those pieces of information on your
personal home page, as shown in Figure 31-1.

Some of the information items you can select are simple, such as the search item displayed in the
upper-right corner of Figure 31-1, and others are more complex, such as the stock quotes listed in the
bottom-right corner. Interestingly, you have many more possibilities than just selecting information
items. You can specify where the information is displayed on the page by dragging items into different
positions on the web page. When you log off and then later return to the page and log in, all the changes
you have made will be present—the page design will appear exactly how you left it.

Figure 31-1. MSN: a good example of a personalized home page

These types of pages define content areas where the user can add or remove information items. The
user can select the information items from a list of available items, which are nothing more than

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1305

reusable user interface elements (or controls in ASP.NET), and add them to the specified content areas
of the web page. In most cases, a portal page defines multiple content areas: a main area in the center of
the page for displaying the most important information, a navigational area in the left or right section of
the page, and optionally another area (either on the left or right side of the page) for small items (such as
a weather item or a quick-links list). Most web pages also include a header and footer (which you can
create easily with master pages).

Using the ASP.NET Web Parts Framework, you can create customizable web pages on your own
easily. The framework consists of controls and components that perform the following work for you:

Defining customizable sections: The framework allows you to structure your page and specify
customizable sections of the page through web part zones.

Offering components for item selection: In addition to customizable sections, the framework ships
with special sections that allow you to edit properties for information items displayed on the page,
or to add and remove information items to or from the page.

Customizing the web page: As soon as the user is logged into your application, she can customize
the web page by dragging and dropping items displayed on the web page onto different
customizable sections. The user can even close or minimize content to create more space for other,
more interesting content.

Saving the customized appearance: ASP.NET automatically saves the user’s personalized
appearance of the web page through its personalization infrastructure.

A page that uses this framework is called a web part page, and the information items that can be

displayed on the page are called web parts. All the pieces you put together to display on the page are
controls, as you will see in the next section. Therefore, to create web part pages, you just need to know
how to put all your custom and prebuilt controls together to create a customizable page. You will learn
the details of how to do this in this chapter.

Basic Web Part Pages
The first thing you need to know is how to create a basic web part page. In the following sections, you
will learn the major steps for creating such a page. After that, you will learn how to create web parts: the
information items that go on the web part page.

The steps for creating a web part page are as follows:

1. Create the page: Create a simple ASP.NET page as usual with Visual Studio
.NET. You don’t need any special type of page—this is an .aspx page just like
any other page. Before you continue, you can structure the layout of your page
using HTML tables to create, for example, a page with a navigation area, a
main area, and a side panel for additional information (similar to the MSN
page presented in Figure 31-1). This page could be a master page to provide a
consistent look and feel across your pages.

2. Add a WebPartManager control: Next, you need to add a WebPartManager
control to your page. The WebPartManager control is available in the Web
Parts toolbox of Visual Studio when you have the visual designer for ASP.NET
pages opened. This is an invisible control that knows about all the available
web parts on a page and manages personalization. The WebPartManager
needs to be the first control created on a web part page, because every other
web part-related control depends on it.

3. Add WebPartZone controls: Every section on the page that should display your
custom web parts is encapsulated in an instance of the WebPartZone control.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1306

Add a WebPartZone control on every section of your page that should contain
web parts and be customizable.

4. Add web parts: You can use simple user controls, prebuilt user controls,
custom server controls, or controls directly inherited from the WebPart base
class. You can place all these controls into a web part zone using the Visual
Studio designer, by writing the tag code manually or by writing custom code.
The ASP.NET infrastructure does the rest automatically.

5. Add prebuilt zones and parts: If the user wants to add or remove web parts at
runtime or edit properties of web parts, you need to add prebuilt zones to your
web page, such as the CatalogZone (which allows the user to add web parts to
the page).

After you have completed these steps, your web part page is ready to use. Remember that you need
to include authentication (either Windows or forms authentication) to your application so that the
framework can store personalized information on a per-user basis. By default, this information is stored
in the file-based database ASPNETDB.MDF, which is automatically created in the App_Data directory if
you have SQL Server Express installed. Otherwise, you need to create the database in the full version of
SQL Server using aspnet_regsql.exe, as described in Chapter 21 (personalization information is stored in
the same database as user information). As is the case with any other part of the framework, and as you
have learned for the membership and roles APIs, your custom provider can replace the personalization
infrastructure without affecting the application itself.

Creating the Page Design
The first step of creating a web part page is to create an .aspx page in your solution. You don’t have to
add a special item—just add a simple web form to your project. Afterward, you can structure the basic
layout of your page as you’d like.

The following example uses a simple HTML table to structure the page with a main center area, a
configuration area on the left, and a simple information area on the right:

<form id="form1" runat="server">
<div>
<table style="width: 100%">
 <tr valign="middle" style="background: #00ccff">
 <td colspan="2">

 Welcome to Web Part pages!

 <td style="height: 22px">
 Menu

 <tr valign="top">
 <td style="width: 20%">
 <td style="width: 60%">
 <td style="width: 20%">

</div>
</form>

The first table row is just a simple header for the application. Within the second row, the table
contains three columns. The left one is used as a column for configuration controls (such as a control for

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1307

selecting available web parts), the center column is used for displaying the main information, and the
right column is used for little web parts with additional information. Notice that the first row includes a
second column for a menu; you will use this menu later for switching between the modes of the page
(for example, from the Browse mode that merely displays information to the Design mode that allows
the user to move web parts from one zone to another). You can see the page layout in Figure 31-2.

Figure 31-2. The basic layout of the page

WebPartManager and WebPartZone Controls
After you have created the web page’s design, you can continue adding the first web part controls to your
page. These controls are summarized in the WebParts section of Visual Studio’s Toolbox. For this
example, the first control to add at the top of your page is the WebPartManager control. The
WebPartManager works with all the zones added to the web page and knows about all the web parts
available for the page. Furthermore, it manages the personalization and makes sure the web page is
customized for the currently logged-on user. The following code snippet shows the modified portion of
the page code:

<form id="form1" runat="server">
<div>
<asp:WebPartManager runat="server" ID="MyPartManager" />
<table style="width: 100%">
 ...

</div>
</form>

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1308

The WebPartManager also throws events that you can catch in your application to perform actions
when the user adds or deletes a web part or when a web part communicates with another web part. (You
will learn more about web part communication later, in the “Connecting Web Parts” section.)

After you have added the WebPartManager to the page, you can add customizable sections to your
web part. These sections are called web part zones, and every zone can contain as many web parts as the
user wants. With the web part zones added, the complete code looks as follows:

<form id="form1" runat="server">
<div>
<asp:WebPartManager runat="server" ID="MyPartManager" />
<table style="width: 100%">
 <tr valign="middle" style="background: #00ccff">
 <td colspan="2">

 Welcome to Web Part pages!

 <td style="height: 22px">Menu
 <tr valign="top">
 <td style="width: 20%">
 <asp:CatalogZone ID="SimpleCatalog" runat="server">
 </asp:CatalogZone>

 <td style="width: 60%">
 <asp:WebPartZone ID="MainZone" runat="server">
 </asp:WebPartZone>

 <td style="width: 20%">
 <asp:WebPartZone ID="HelpZone" runat="server">
 </asp:WebPartZone>

</div>
</form>

As you can see, the page now contains three zones: two zones for adding custom web parts to the
page and one special zone. The special zone is a CatalogZone, which displays every web part that is
available for the current page. It displays the list of available web parts and allows the user to select web
parts from this list and add them to the page. In the designer, the code presented previously looks like
Figure 31-3.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1309

Figure 31-3. Web part pages in the Visual Studio designer

Adding Web Parts to the Page
Now you can start adding web parts to the web page. A web part is an ASP.NET control. You can use any
type of control as a web part on your web parts page, including existing server controls, existing user
controls, and custom server controls you have created on your own. You don’t even need to implement
any special interfaces if you don’t need to interact with the web parts infrastructure or with other web
parts on the page. Adding controls to a web part page is as simple as adding controls to a basic page. The
only difference is that you add the controls to one of the previously added web part zones instead of to
the page directly. For this purpose, web part zones use templates. The concept is the same as with grid
controls, where you can specify a template that is created for every row in the grid. The template just
defines the appearance of the web part. You can add existing server controls to a zone as follows:

<asp:WebPartZone runat="server" ID="HelpZone">
 <ZoneTemplate>
 <asp:Calendar runat="server" ID="MyCalendar" />
 <asp:FileUpload ID="FileUpload1" runat="server" />
 </ZoneTemplate>
</asp:WebPartZone>

The previous example shows the web part zone you added earlier in this chapter for the right
section of your page. This zone now contains two controls: the standard Calendar control as well as a

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1310

FileUpload control. Figure 31-4 shows the page in the Visual Studio designer after you have added this
zone template.

Figure 31-4. A web part zone with controls added

You can create one or more user controls and add them to one of the web part zones. For example,
create the database tables shown in Figure 31-5, and fill in some test records so that you can use these
records to extend the sample later. The database is included in the book’s downloads as a file-based SQL
Server Express database as a part of the web part samples in the App_Data ASP.NET directory. You can
either use this database as a file-based database for your training or attach it to your SQL Server
instance—both approaches are possible.

Based on the Customer table, we will show you how to create your first web part now. Just add a
new user control to your solution, open the database in the Server Explorer, and drag and drop the
Customer table from the Server Explorer on your ASP.NET user control. The designer automatically
creates the data source as well as a GridView that displays the data. (Don’t autoformat the GridView; this
will happen automatically later, based on the WebPartZone controls.)

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1311

Figure 31-5. Database tables for the sample solution

Now you can add the newly created user control to your main web part zone by dragging it from the
Solution Explorer onto the web part zone. The designer creates the necessary entries for registering the
control in your page and then adds the control to the web part zone, including adding the
<ZoneTemplate> tags containing the content for a web part zone for you, as follows:

<asp:WebPartZone runat="server" ID="MainZone">
 <ZoneTemplate>
 <uc1:Customers ID="MyCustomers" runat="server" />
 </ZoneTemplate>
</asp:WebPartZone>

Finally, you can add a special web part to the previously added CatalogZone control. Because this
zone is used to display catalogs of web parts, you can add only special controls such as the
PageCatalogPart to this zone. You add special controls in the same way that you add normal
WebPartZone controls—through a ZoneTemplate.

<asp:CatalogZone runat="server" ID="SimpleCatalog">
 <ZoneTemplate>
 <asp:PageCatalogPart runat="server" ID="MyCatalog" />
 </ZoneTemplate>
</asp:CatalogZone>

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1312

Before you start the web application, you can autoformat WebPartZone controls by opening the
smart tag for the corresponding zone. Note that in the Visual Studio designer, the buttons for opening
the smart tag sometimes overlap a little bit. Therefore, be careful to really select the smart tag of the zone
itself and not of its containing web parts. You will see that formatting applies automatically to every
control that is placed directly into a zone. Also note that every formatting action you perform on the web
part itself overrides the formatting selected on the web part zone. Next, test the application by running
your created web part page, and then you can debug the page. When you start the solution for
debugging the page, you will see the screen in Figure 31-6 (depending on your autoformat selections).

You may notice that for every web part a title and a box for minimizing, restoring, and closing the
web part is displayed with default captions. Later, in the “Customizing the Page” section, you will learn
how to customize these captions.

Because you have not configured any authentication method yet, by default the application uses
Windows authentication. Therefore, you can customize the web part page in terms of minimizing single
parts and closing single parts. Without any additional effort, the same is true when you authenticate
your users through forms authentication (either with or without using the membership API introduced
in Chapter 21). So far, you cannot move web parts from one zone to another. To do this, you have to
switch to a special page mode that you will learn about in the next section. When you close the browser
and start another browser session, the page appears in the same layout as when you left it. That’s
because the WebPartManager stores your changes in the personalization store.

Figure 31-6. The web part page displayed in the browser

Again, by default these settings are stored in the SQL Server Express Edition-based aspnetdb.mdf
database that is stored in the App_Data directory if you have not changed any configuration settings.
You can change this default behavior by creating a database on the server of your choice using
aspnet_regsql.exe. (This tool works with SQL Server only; for other databases, you have to create your

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1313

own provider.) You can configure the provider with this database in your web.config configuration file as
follows:

<webParts>
<personalization defaultProvider="MyProvider">
 <providers>
 <add name="MyProvider"
 type="System.Web.UI.WebControls.WebParts.SqlPersonalizationProvider"
 connectionStringName="CustomSqlConnection" />
 </providers>
</personalization>
</webParts>

You have to add the connection string (CustomSqlConnection in this example) to the
<connectionStrings> section of the configuration file, and it should point to the database created with
aspnet_regsql.exe.

Customizing the Page
At this point in the example, you can customize some parts of the web part page, you can minimize and
restore web parts, and you can close web parts. However, adding web parts previously closed to the web
part page is not possible, as the CatalogZone with the PageCatalogPart does not display automatically. In
addition, you are not able to change the position of web parts by simply dragging and dropping them
from one zone to another.

The reason for this is that a web part page supports multiple display modes, and you have to be in
the correct mode to do this. You can configure these display modes through the WebPartManager’s
DisplayMode property. Table 31-1 lists the available display modes that are available as static properties
of the WebPartManager class.

Table 31-1. Web Part Page Display Modes

Mode Description

BrowseDisplayMode This is the default mode and is used for displaying contents of a web part
page.

DesignDisplayMode When activating this mode, the user can change the position of web parts
by dragging and dropping.

CatalogDisplayMode If activated, the WebPartManager displays the catalog web part, which
allows the user to add web parts to the web part page.

ConnectDisplayMode When activated, the user can configure connections between connectable
web parts (more about this later in this section).

EditDisplayMode Allows the user to edit properties of web parts. This mode displays web
parts of an editor. The EditorZone control is one of the prebuilt web part
zones that allow you to display web part editor controls, which allow the
user to modify settings for web parts.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1314

Now, add a Menu control to the first row of your layout table, as follows:

<table style="width: 100%">
 <tr valign="middle" style="background: #00ccff">
 <td colspan="2">

 Welcome to Web Part pages!

 <td style="height: 22px">
 <asp:Menu ID="PartsMenu" runat="server"
 OnMenuItemClick="PartsMenu_MenuItemClick">
 </asp:Menu>

 ...

Next, you can create code in your page that populates the menu with all the available display modes
for the WebPartManager. To do this, you just need to iterate through the DisplayModes property, which
is a collection of WebPartDisplayMode items, and verify whether the mode is enabled. This is necessary
because certain modes are available only if personalization is enabled. If personalization is disabled but
a mode requires personalization to be enabled, this property returns false and you cannot use the
display mode. In addition, you can query the property RequiresPersonalization of a
WebPartDisplayMode to see whether a display mode requires personalization to be enabled or not.
Finally, if the display mode is enabled, just add it to the menu.

protected void Page_Load(object sender, EventArgs e)
{
 if (!this.IsPostBack)
 {
 MenuItem Root = new MenuItem("Select Mode");

 foreach (WebPartDisplayMode mode in MyPartManager.DisplayModes)
 {
 if (mode.IsEnabled(MyPartManager))
 {
 Root.ChildItems.Add(new MenuItem(mode.Name));
 }
 }

 PartsMenu.Items.Add(Root);
 }
}

Remember that you need to populate the menu only on the first request, because with view state
enabled, it remembers its state and therefore its child menu items. When the user clicks the menu item,
you have to switch to the appropriate web part page mode. You can do this by setting the
WebPartManager’s DisplayMode property to the selected WebPartDisplayMode, as follows:

protected void PartsMenu_MenuItemClick(object sender, MenuEventArgs e)
{
 MyPartManager.DisplayMode =
 MyPartManager.DisplayModes[e.Item.Text];
}

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1315

Now when the user selects the Catalog mode from the menu, the CatalogZone with the
PageCatalogPart will be visible, and you can add web parts you closed previously to the web part page
again (see Figure 31-7).

Figure 31-7. The CatalogZone displayed in the Catalog mode

■ Note Customizing the page via dragging and dropping uses special DHTML features of Internet Explorer and
therefore works only for Internet Explorer. All the other features—such as adding personalization, minimizing
and maximizing windows, and adding web parts from the catalog to specific zones—work with any browser of

your choice.

All the changes you make will be stored persistently in the personalization store based on the
personalization provider. Later, in the “Final Tasks for Personalization” section, you will learn how you
can enable and disable personalization at a per-page level. Furthermore, if you are developing a custom
web part from scratch, you can define properties on the class that are stored in the personalization store.
By doing this, you can specify whether personalization happens on a per-user basis or is shared across
authenticated users. You will learn how to do this in the next section.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1316

Creating Web Parts
Now that you know the steps for creating web part pages with ASP.NET, it’s time to take a closer look at
web part development. As you know, a web part can be any type of ASP.NET control, including user
controls, built-in or custom server controls, and ASP.NET controls directly inherited from the WebPart
base class of the new namespace System.Web.UI.WebControls.WebParts.

You have seen that every web part on your page automatically gets a default caption and default
menus for minimizing and restoring the web part. Now it’s time to learn how you can customize this text
and add menu entries (called verbs) to your custom web part. Any web part can provide custom public
properties that the user can modify through an editor web part, which you can add to a web part called
EditorZone. This EditorZone is displayed when the web part page is switched to the Edit mode, as
introduced in Table 31-1. To do this, you have to create a separate editor part for your web part and
somehow connect them. The next section shows how to do this.

Finally, web parts can communicate with other web parts through a well-defined mechanism.
Therefore, these web parts exchange data and display information based on events that happen in other
web parts. You will learn how to connect web parts in the “Connecting Web Parts” section.

Simple Web Part Tasks
You have already seen that the simplest way to create custom web parts is to create user controls. The
only difference is that you add these controls to the ZoneTemplate section of a web part zone instead of
directly to the page. The ASP.NET Web Parts Framework wraps your user control into an instance of
GenericWebPart. This GenericWebPart class makes sure your user control gets the frame and the verbs
menu for minimizing, restoring, and closing the web part. The same is true for any other server control
(either built-in or custom): as long as an ASP.NET control is not inherited from
System.Web.UI.WebControls.WebParts.WebPart, the Web Parts Framework wraps this control into an
instance of GenericWebPart.

If you want to access the properties and events of the controls you have added as web parts to your
page, you can do this as you do usually. For example, if you want to catch the Calendar’s
SelectionChanged event of your previously created web part page, double-click the Calendar in the
visual designer of Visual Studio. You’ll see your event procedure and can add some code. The following
code shows an example that sets the previously added Calendar control’s SelectedDate property on the
first request to the page:

protected void Page_Load(object sender, EventArgs e)
{
 if (!this.IsPostBack)
 {
 // This is a strange workaround for
 // the calendar... but it's the only way it works
 // whether the calendar is in a Web Part zone or not...
 Calendar helper = new Calendar();
 helper.SelectedDate = DateTime.Now.AddDays(30);
 helper.VisibleDate = DateTime.Now.AddDays(30);

 MyCalendar.SelectedDate = helper.VisibleDate;
 MyCalendar.VisibleDate = helper.VisibleDate;
 }

 ...
}

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1317

So, you have complete access to the controls added as web parts and don’t have to do anything
special here. But what if you want to access web part-specific properties such as the title of the web part
or web part-specific events? As mentioned, every web part that is not inherited from
System.Web.UI.WebControls.WebParts.WebPart is wrapped automatically into an instance of
GenericWebPart. If you want to access web part-specific properties, you somehow have to retrieve the
web part and then set or get the properties you need. Fortunately, the WebPartManager class includes a
WebParts collection property that contains all the web parts available for the page. The advantage of
accessing web parts directly through the WebPartManager is that you don’t have to know which Web
Part zone they have been added to (remember that the user can change this as she wants).

The following example uses the WebPartManager’s WebParts collection to iterate through the web
part and assign a default title for every web part that has been wrapped into a GenericWebPart class by
the framework:

protected void Page_Load(object sender, EventArgs e)
{
 if (!this.IsPostBack)
 {
 int i = 1;
 foreach (WebPart part in MyPartManager.WebParts)
 {
 if (part is GenericWebPart)
 {
 part.Title = string.Format("Web Part Nr. {0}", i);
 i++;
 }
 }
 }

 ...
}

You can also modify other aspects through the web part properties. Table 31-2 shows some typical
examples and gives you an overview of the most important properties of a WebPart control.

Table 31-2. Important Properties of the WebPart Class

Property Description

AllowClose Specifies whether the user can close the web part. If set to false, the
close menu verb is not displayed in the web part’s verbs menu.

AllowConnect Enables or disables connecting functionality of the web part.

AllowEdit Enables or disables editing properties of the web part through a custom
EditorPart.

AllowHide If set to true, the user can hide the web part on the page.

AllowMinimize If set to true, the user can minimize the web part through the web part’s
minimize menu entry.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1318

Property Description

AllowZoneChange When the user should be able to change the position of the web part by
dragging it from one WebPartZone to another, you have to set this
property to true and otherwise to false (the default is true).

CatalogIconImageUrl As you have seen previously, the PageCatalogPart displays a list of web
parts available for a page. If you want to add a special icon to be
displayed in the PageCatalogPart in the CatalogZone, you can set the
CatalogIconImageUrl to a valid image.

ChromeType Customizes the appearance. You can specify whether the web part
should have a border, a title bar, and the verbs menu that contains the
menu actions for minimizing or closing your web part. This property is
of type PartChromeType, which supports the values None, BorderOnly,
TitleOnly, TitleAndBorder, and Default.

ChromeState Defines the web part’s initial appearance state. This property is of type
PartChromeState and can have the values Minimized or Normal so that
the web part initially is minimized or displayed.

ConnectErrorMessage Specifies the error message that is displayed if an error occurs when
connecting one web part to another. This could happen if the target web
part throws an exception when being connected to another web part.

Controls This important collection gives you access to all the controls that are
contained in the web part. You’ll learn more about this immediately
following this table.

Description Specifies a friendly, user-ready description for the web part.

Direction Specifies the content flow direction (LeftToRight or RightToLeft) within
the web part. If left at its default NotSet, it will use the default for the
current culture.

DisplayTitle Gets a string that returns the title that is displayed in the web part. If you
haven’t set the Title property, it returns either the automatically
generated title or the title specified from the containing control.

ExportMode As you will see later in this chapter, in the “Uploading Web Parts
Dynamically” section, you can export and import information and
settings from web parts. This property specifies which parts of a web
part can be exported or imported.

HasSharedData Specifies whether the web part contains personalized properties that
are persisted for multiple users.

HasUserData Specifies whether the web part contains personalized properties that
are persisted on a per-user bases.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1319

Property Description

HelpUrl Through the HelpUrl property, you can specify a URL that returns
contents to be displayed as help for the web part. This can point to a
static HTML page or to any other type of page, including an .aspx page.
As soon as you specify this URL, the web part displays an additional
verb menu for opening the help of this web part.

HelpMode When a HelpUrl is specified, you can determine where the help is
displayed. The help can be displayed in a modal or modeless pop-up
window, or you can specify to navigate to the help page directly.

Hidden Gets or sets a value that determines whether the web part is hidden on
the page.

IsClosed Gets or sets a value that determines whether the web part is closed.

IsShared Gets or sets a value that determines whether the web part is visible for
all users or for specific users only. You will learn more about this in the
“Authorizing Web Parts” section.

IsStandalone Determines whether the web part is contained in a WebPartZone (false)
or is a stand-alone web part without being a part of a WebPartZone
(true).

IsStatic Gets or sets a value that determines whether the web page is statically
added to the web page through the designer (true) or dynamically
imported to the web page (which means that the part is added
programmatically to the page).

Title Gets or sets the title to be displayed in the title bar of the web part.

TitleUrl The title can be displayed as a URL to point to a details page for the web
part. If this URL is specified, the web part renders the title as a link that
points to this URL instead of static text.

Verbs Returns the entries in the web part’s menu that typically contains the
Minimize, Close, or Help verb. You can customize the verbs by
modifying this collection.

Zone Returns a reference to the WebPartZone to which the web part is
currently added.

ZoneIndex Returns the WebPartZone’s index to which the web part is currently
added.

As mentioned in Table 31-2, the Controls collection of the WebPart control contains all the controls

hosted within the web part. When it comes to the GenericWebPart, this collection contains the controls
you have added to the WebPartZone. So, you can iterate through the WebPart controls stored in the
Controls collection to find your control and do something with it. The following example shows how you

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1320

can access the controls of the whole ASP.NET page (through the WebPartManager added to the page) to
set properties of the web part that contains the Calendar control added earlier in this chapter:

foreach (WebPart part in MyPartManager.WebParts)
{
 if (part.Controls.Contains(MyCalendar))
 {
 part.AllowClose = false;
 part.HelpMode = WebPartHelpMode.Modeless;
 part.HelpUrl = "CalendarHelp.htm";
 }
}

Controls added to the WebPartZone are available directly from within the page. Therefore, if you
want to set any web part-specific properties when loading the page, you can do this the other way
around as well. Instead of iterating through the WebPartManager’s WebParts and then accessing every
web part’s Controls collection, it might be faster to catch the control’s events and then access the web
part’s properties through the control’s Parent property, as follows:

protected void MyCalendar_Load(object sender, EventArgs e)
{
 GenericWebPart part = (GenericWebPart)MyCalendar.Parent;
 part.AllowClose = false;
 part.HelpMode = WebPartHelpMode.Modeless;
 part.HelpUrl = "CalendarHelp.htm";
}

This is definitely faster than searching controls in collections of controls as shown previously. The
previous example is doing the same initialization work as shown in the other example: it disables the
close function for the web part that contains the calendar MyCalendar and then specifies a help page for
the calendar that can be displayed in a modeless pop-up browser window. Figure 31-8 shows the result
of these modifications. Take a close look at the menu displayed for the web part. Because you have
initialized the HelpUrl, it now displays an additional Help menu entry. On the other hand, because you
have set the AllowClose property to false, it doesn’t contain a Close menu entry anymore.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1321

Figure 31-8. The previously made changes in action

Note that the Help window you see in Figure 31-8 is just a simple HTML page displayed in a browser
pop-up. You can see that by taking a look at the previous code snippet as well, where you specify
CalendarHelp.htm as a help page. The help page could be a dynamic page such as an ASP.NET page, as
well, because the Web Parts Framework is doing nothing other than adding necessary client-side script
code for opening a pop-up window that just executes an HTTP GET request to the URL configured in the
HelpUrl property.

Implementing the IWebPart Interface
Until now you have accessed web parts from the outside only. But when creating a user control that will
be used as a web part on a web part page, you can access properties of the web part from inside the user
control as well. To a certain degree, you can control the web part’s appearance and behavior in a more
detailed manner by implementing the IWebPart interface.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1322

The IWebPart interface defines a contract between your control (a server control or user control),
which is used by the GenericWebPart wrapper class to communicate with your control for specific things
such as automatically retrieving a control’s title so that you don’t need to set it from outside every page
where you are going to use this web part. Table 31-3 lists the members you have to provide in your web
part when implementing the IWebPart interface.

Table 31-3. The Members of the IWebPart Interface

Member Description

CatalogIconImageUrl Gets or sets the URL to an image displayed for the web part in the
PageCatalogPart of a CatalogZone.

Description Gets or sets a string that contains a user-friendly description of the web
part.

Subtitle Specifies the user-friendly subtitle of the web part. This one is
concatenated with the title contained in the Title property of the web part.

Title Specifies a title displayed for the web part. With this property specified,
you don’t need to set the title from outside, as previously described.

TitleIconImageUrl URL that points to an image displayed as an icon within the title bar of the
web part.

TitleUrl Specifies the URL to which the browser should navigate when the user
clicks the title of the web part. If this URL is set, the title renders as a link;
otherwise, the title renders as static text.

As you can see, implementing this interface is not too much work. You can now implement the

interface in the previously created Customers user control as follows:

public partial class Customers :
 System.Web.UI.UserControl, IWebPart
{
 private string _CatalogImageUrl;
 public string CatalogIconImageUrl
 {
 get
 {
 return _CatalogImageUrl;
 }
 set
 {
 _CatalogImageUrl = value;
 }
 }

 private string _Description;
 public string Description
 {

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1323

 get
 {
 return _Description;
 }
 set
 {
 _Description = value;
 }
 }

 public string Subtitle
 {
 get { return "Internal Customer List"; }
 }

 private string _TitleImage;
 public string TitleIconImageUrl
 {
 get
 {
 if (_TitleImage == null)
 return "CustomersSmall.jpg";
 else
 return _TitleImage;
 }
 set
 {
 _TitleImage = value;
 }
 }

 private string _TitleUrl;
 public string TitleUrl
 {
 get
 {
 return _TitleUrl;
 }
 set
 {
 _TitleUrl = value;
 }
 }

 public string Title
 {
 get
 {
 if (ViewState["Title"] == null)
 return string.Empty;
 else
 return (string)ViewState["Title"];
 }
 set

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1324

 {
 ViewState["Title"] = value;
 }
 }
}

When implementing the IWebPart interface, you should think about which property values you
want to put into view state and which values are sufficient as private members. To save bytes sent across
the wire with the page, you should add as little information as possible to the view state. You should use
view state only for information that the user can edit while browsing and that you don’t want to lose
between page postbacks. In the previous example, you used private members for every property of the
web part, but not for the title property, because it might change while browsing (for example, if you want
to display the current page of the GridView in the title bar as well). When implementing this interface,
the information (which is set from outside) is automatically passed in by the GenericWebPart to your
control’s implementation. Consider the following code in the code-beside of your Default.aspx page,
assuming that you have added an instance of the previously created Customer control and associated
the following event-handling procedure to its Load event:

protected void MyCustomers_Load(object sender, EventArgs e)
{
 // Some of the properties are set; others like the TitleImageUrl are not!
 GenericWebPart part = (GenericWebPart)MyCustomers.Parent;
 part.Title = "Customers";
 part.TitleUrl = "http://www.apress.com";
 part.Description = "Displays all customers in the database!";
}

When someone sets the web part’s title this way from outside, the GenericWebPart class passes the
value to the interface implementation of the Title property so that you can handle the information. On
the other hand, if someone queries information such as the Title or TitleUrl, the GenericWebPart
retrieves the information from your control by calling the appropriate property in your IWebPart
implementation. This way your control can return default values even for properties that have not been
explicitly set. Your implementation of the TitleIconImageUrl is doing this. To reiterate, here is the
fragment of the previous IWebPart implementation:

...
private string _TitleImage;
public string TitleIconImageUrl
{
 get
 {
 if (_TitleImage == null)
 return "CustomersSmall.jpg";
 else
 return _TitleImage;
 }
 set
 {
 _TitleImage = value;
 }
}
...

http://www.apress.com

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1325

This property returns a default image URL if no TitleImage has been set. This means even if you
don’t set this property in the previously shown Load event procedure of your web part page, the web
part displays the CustomersSmall.jpg image as a title image (see Figure 31-9). Although you have not set
the TitleImageUrl in the MyCustomers_Load event procedure in the web part page, the icon for the title
is displayed because of its default value provided through your implementation of IWebPart.

Figure 31-9. Customized Customers web part through the interface implementation

Developing Advanced Web Parts
Implementing web parts through user controls is a fairly easy way to create web parts. But user controls
have some disadvantages as well:

Restricted reusability: You cannot add them dynamically to web part pages of other web
applications without manually copying the ASCX file to the directories of the other web application.
You can encapsulate manually implemented WebPart classes in separate assembly DLLs, and you
therefore can reuse them in multiple web applications by referencing them through Add References
or by copying the DLL into the target web application’s Bin directory.

Restricted personalization: Personalization with user controls is restricted to common properties
such as title, title URL, and so on. You cannot have custom properties in the user control that are
stored in the personalization store. Only classes that inherit from web part can have this sort of
functionality.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1326

Better control over rendering and behavior: When using custom server controls, you have better
control over the rendering process and can generate user interfaces more dynamically.

Therefore, sometimes implementing advanced web parts as server controls inherited from

System.Web.UI.WebControls.WebParts.WebPart is useful. With the basic know-how for creating custom
ASP.NET server controls, you are ready to create this sort of web part. All you have to keep in mind when
creating a custom web part this way is that ASP.NET pages and ASP.NET controls are processed by the
runtime (which determines the order of control and page events and what to do in each of these events).
This makes it much easier, because you always have the steps for the implementation in mind. For more
information about creating custom server controls, refer to Chapter 27.

The steps for creating a custom web part are as follows. (These steps will be familiar to you if you
keep the ASP.NET page and control life cycle from Chapter 27 in mind.)

1. Inherit from WebPart: First you have to create a simple class that inherits from
System.Web.UI.WebControls.WebParts.WebPart.

2. Add custom properties: Next, add custom properties of your web part and
specify through attributes which of those properties can be edited by the user
and which of these properties are stored on a per-user or shared basis in the
personalization store.

3. Write initialization and loading code: Override any initialization procedure
you need. Typically you will override the OnInit method and the
CreateChildControls method if you want to create a composite
control/WebPart. In most cases, you should create composite controls,
because that saves you from rendering HTML code manually. During the
initialization phase, you can also load data from databases; in the loading
phase (catching the Load event or overriding the OnLoad method), you can
initialize other properties of the web part (or server control).

4. Catch events of child controls: After the loading phase has been completed,
controls will raise their events. Next you can add the event handlers for your
child controls to your custom web part.

5. Prerender: Before the rendering phase starts, you should perform the last
tasks, such as setting the properties of your controls and building the control
structure based on data sources they are bound to (for example, calling the
DataBind method if you don’t use the DataSources programming model).

6. Render the HTML: Finally, you have to write code to render your web part.
This time you don’t override the RenderControl method (as is the case for
server controls). You have to override the RenderContents method that is
called from the base class in between rendering the border, title bar, and title
menu with the appropriate verbs.

Keeping these steps in mind, creating a custom web part is easy (although it’s not as easy as creating
web parts based on user controls). Let’s create a simple web part using this technique. The web part
allows customers to add notes to the CustomerNotes table presented in Figures 30-5 and 30-10.

Before You Start: Creating Typed DataSets
Before you dig into the details of developing the web part, you have to add special components for easily
accessing the data stored in the database. (You also need these components to complete the code
samples shown in this chapter.)

In the web parts that you will develop in this chapter, you need to access data from the Customer
table and the CustomerNotes table shown in Figure 31-5. You’ll create a simple typed DataSet to access

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1327

both tables (you can find more information about DataSets in Chapter 8), which you’ll add to your web
application project, as shown in Figure 31-10. To do so, right-click your project, select Add New Item,
and then select DataSet from the Add New Item dialog. Name the DataSet CustomerSet. After you have
added the DataSet to your project (remember that Visual Studio will add it to the App_Code directory if
you’re developing a projectless website), you can drag both the Customer table and the CustomerNotes
table from the Server Explorer of Visual Studio onto the DataSet surface. (You need to have a connection
configured in the Server Explorer for that purpose. Note that if you use the database as a SQL Server
Express file-based database, you will find this connection in the Server Explorer automatically. Also note
that we provide the required database introduced in Figure 31-5 as a part of the samples download for
this chapter.)

Figure 31-10. The typed DataSets necessary for the solution

The typed DataSet extends the DataSet class and provides typed table adapters that you will use to
develop the remaining parts of the web application in this chapter. For the CustomerNotes table, we
added a second query to the typed DataSet, as you can see in Figure 31-10 (right-click the DataTable in
the designer and select Add ➤ Query). You’ll use this later for querying notes that belong to a dedicated
customer. Therefore, the query has a parameter called customerId that enables you to pass in the
customer’s ID for which you want to retrieve notes. Just one last note: in general, you should always
create the business layer and data access layer before you start creating the actual user interface

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1328

components—and web parts are definitely user interface components. Components in the business
layer and data access layer are reusable across different applications, just as this typed DataSet is.

The Custom WebPart’s Skeleton
First, you have to create a custom class that inherits from WebPart. Also, you need to import the
System.Web.UI.WebControls.WebParts namespace so you have easy access to the Web Parts Framework
classes.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace Apress.WebParts.Samples
{
 public class CustomerNotesPart : WebPart
 {
 public CustomerNotesPart ()
 {

 }
 }
}

Next, add some properties to your web part. For every property procedure in your class, you can
specify whether the property is personalizable on a per-user or on a shared basis, as well as whether the
property is accessible to users. For example, in your CustomerNotesPart, you can include a property that
specifies the default customer for which you want to display the notes, as follows:

private string _Customer = string.Empty;

[WebBrowsable(true)]
[Personalizable(PersonalizationScope.User)]
public string Customer
{
 get
 {
 return _Customer;
 }
 set
 {
 _Customer = value;
 }
}

The WebBrowsable attribute specifies that the property is visible to end users, and the
Personalizable attribute specifies that the personalization scope for the property is on a per-user basis.

Initializing the Web Part
To write the initialization code, you can optionally create child controls; you do this just as you would
create a composite web part. You can render the web part on your own if you don’t want to use prebuilt

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1329

controls in the RenderContents method; however, using composite controls makes life much easier,
because you don’t have to worry about the HTML details. To create controls, you have to override the
CreateChildControls method as follows. Don’t forget to declare instance variables for every control you
are going to create in your WebPart class.

private TextBox NewNoteText;
private Button InsertNewNote;
private GridView CustomerNotesGrid;

protected override void CreateChildControls()
{
 // Create a text box for adding new notes
 NewNoteText = new TextBox();

 // Create a button for submitting new notes
 InsertNewNote = new Button();
 InsertNewNote.Text = "Insert...";
 InsertNewNote.Click += InsertNewNote_Click;

 // Create the grid for displaying customer notes
 CustomerNotesGrid = new GridView();
 CustomerNotesGrid.HeaderStyle.BackColor = System.Drawing.Color.LightBlue;
 CustomerNotesGrid.RowStyle.BackColor = System.Drawing.Color.LightGreen;
 CustomerNotesGrid.AlternatingRowStyle.BackColor =
 System.Drawing.Color.LightGray;
 CustomerNotesGrid.AllowPaging = true;
 CustomerNotesGrid.PageSize = 5;
 CustomerNotesGrid.PageIndexChanging += CustomerNotesGrid_PageIndexChanging;

 // Add all controls to the controls collection
 Controls.Add(NewNoteText);
 Controls.Add(InsertNewNote);
 Controls.Add(CustomerNotesGrid);
}

void CustomerNotesGrid_PageIndexChanging(object sender,
 GridViewPageEventArgs e)
{
 // Insert Page Change Logic
 // ...
}

void InsertNewNote_Click(object sender, EventArgs e)
{
 // Insert new note here
 // ...
}

Within the CreateChildControls method, all controls used by the custom web part are created. Don’t
forget to add them to the Controls collection of the web part so that the ASP.NET runtime is aware of
these controls and can manage view state and all the other things that happen in the life cycle of the
page (as described in Chapter 27). Furthermore, the method sets up the event-handling routines as
shown with the InsertNewNote button or the CustomerNotesGrid GridView control.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1330

Loading Data and Processing Events
The next phase in the control’s (web part’s) life cycle is the loading phase. Here you can connect to your
database and load data into your control. To do this, you have to override the OnInit and OnLoad
methods or catch the Init and Load events of the web part. Both ways have the same effect. But when
overriding the OnLoad method, for example, don’t forget to call base.Onload() so that the base class’s
loading functionality is executed as well. Therefore, it makes sense to set up event handlers once and
catch the events of your custom control so that you can’t forget this, as follows:

public CustomerNotesPart()
{
 this.Init += CustomerNotesPart_Init;
 this.Load += CustomerNotesPart_Load;
 this.PreRender += CustomerNotesPart_PreRender;
}

void CustomerNotesPart_Init(object sender, EventArgs e)
{
 // Load data from the database...
}

void CustomerNotesPart_Load(object sender, EventArgs e)
{
 // Initialize other properties ...
}

You will see how to implement the PreRender event later. Now you can write functionality for
loading the data from the database. Let’s assume that you have already created a typed DataSet for your
CustomerNotes table. You can create a helper method for binding the previously created GridView to the
data from the database and then call this method in the Load event as follows. For simplicity, the
method binds the information directly to the GridView and doesn’t use caching for optimizing data
access, because you should concentrate on web part creation now. Note that you need to import the
CustomersSetTableAdapters namespace created with the previously designed, typed DataSet.

void BindGrid()
{
 EnsureChildControls();

 CustomerNotesTableAdapter adapter =
 new CustomerNotesTableAdapter();

 if (Customer.Equals(string.Empty))
 CustomerNotesGrid.DataSource = adapter.GetData ();
 else
 CustomerNotesGrid.DataSource = adapter.GetDataByCustomer(Customer);
}

void CustomerNotesPart_Load(object sender, EventArgs e)
{
 // Initialize web part properties
 this.Title = "Customer Notes";
 this.TitleIconImageUrl = "NotesImage.jpg";
}

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1331

void CustomerNotesPart_Init(object sender, EventArgs e)
{
 // Don't try to load data in Design mode
 if (!this.DesignMode)
 {
 BindGrid();
 }
}

Remember the call to EnsureChildControls; as you don’t know when ASP.NET really calls
CreateChildControls() and therefore creates the child controls (because it creates them as they are
needed), you need to make sure controls are available from within this method by calling
EnsureChildControls. (You can find more information about this in Chapter 27.)

Now you have loaded the data into the grid. During the next phase of the life cycle, events are
processed by the ASP.NET runtime. Your custom web part has to catch the event for the previously
added InsertNewNote button that submits a new note to the database and the CustomerNotesGrid that
changes the page, as follows:

void InsertNewNote_Click(object sender, EventArgs e)
{
 CustomerNotesTableAdapter adapter =
 new CustomerNotesTableAdapter();

 // Note that the NoteID is an identity column in the
 // database and therefore is not required as a parameter
 // in the method generated by the DataSet!
 adapter.Insert(Customer, DateTime.Now, NewNoteText.Text);

 // Refresh the Grid with the new row as well
 BindGrid();
}

void CustomerNotesGrid_PageIndexChanging(object sender,
 GridViewPageEventArgs e)
{
 CustomerNotesGrid.PageIndex = e.NewPageIndex;
}

Finally, you have to load the data into the GridView in one more place in your code. As soon as
someone changes the value for the Customer property, you want your web part to display information
associated with the newly selected customer. Therefore, you have to modify the property’s code as
follows:

[WebBrowsable(true)]
[Personalizable(PersonalizationScope.User)]
public string Customer
{
 get
 {
 return _Customer;
 }
 set
 {

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1332

 _Customer = value;

 // Don't try to load data in Design mode
 if (!this.DesignMode)
 {
 EnsureChildControls();
 CustomerNotesGrid.PageIndex = 0;
 CustomerNotesGrid.SelectedIndex = -1;
 BindGrid();
 }
 }
}

You should reset the page index in case the new data displayed will not fill as many pages as the
previous data source filled.

The Final Rendering
You have now initialized the web part, created controls, wrote code for loading data, and caught control
events. So, it’s time to render the web part. Immediately before you render the web part, you can set
final property values on your controls that affect rendering. For example, you should disable the
InsertNewNote button if the user has not initialized the Customer property. And of course the GridView
can now create the necessary HTML controls for displaying the data to which it is bound. To do this, you
need to call the DataBind method as follows:

void CustomerNotesPart_PreRender(object sender, EventArgs e)
{
 if (Customer.Equals(string.Empty))
 InsertNewNote.Enabled = false;
 else
 InsertNewNote.Enabled = true;

 CustomerNotesGrid.DataBind();
}

In the RenderContents method, you can create the HTML code to lay out your web part. If you don’t
override the method, the web part automatically renders the previously added controls in the order they
have been inserted into the web part’s Controls collection within the CreateChildControls method.
Because this layout is simple (just a sequence of the controls), you will now override the RenderContents
method to create a better, table-based layout, as follows:

protected override void RenderContents(HtmlTextWriter writer)
{
 writer.Write("<table>");

 writer.Write("<tr>");
 writer.Write("<td>");
 NewNoteText.RenderControl(writer);
 InsertNewNote.RenderControl(writer);
 writer.Write("");
 writer.Write("</tr>");

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1333

 writer.Write("<tr>");
 writer.Write("<td>");
 CustomerNotesGrid.RenderControl(writer);
 writer.Write("");
 writer.Write("</tr>");

 writer.Write("");
}

This code renders an HTML table through the HtmlTextWriter with two rows and one column. The
first row contains the text box and the button, and the second row contains the GridView with the notes.
Finally, your RenderControl method uses the RenderControl methods of the child controls to render the
text box, button, and grid in a specific position within the table. Therefore, you have easily overridden
the default rendering of the WebPart base class.

More Customization Steps
As previously shown, with the IWebPart interface a custom web part implemented this way can override
properties such as the title or description. Furthermore, you can specify default values for other
properties of the web part by just setting the values for them (which works best in the Load method). You
can even override the implementations of default properties and methods from the web part. The
following example shows how you can initialize the web part and override web part properties:

void CustomerNotesPart_Load(object sender, EventArgs e)
{
 // Initialize web part properties
 this.Title = "Customer Notes";
 this.TitleIconImageUrl = "NotesImage.jpg";
}

public override bool AllowClose
{
 get
 {
 return false;
 }
 set
 {
 // Don't want this to be set
 }
}

This code initializes some of the web part’s properties in the Load event with default values. It then
overrides the AllowClose property to always return false, and it ignores any set operation by just leaving
the logic here. This way, you have created a web part where the caller cannot override this behavior by
just setting this property from outside. You really have complete customization and control over what
can and can’t be done with your web part. This is the sort of power you can never get when working with
user controls.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1334

Using the Web Part
Now it’s time to see how to use the custom web part in your web part page. To do this, register the web
part on your web part page using the <%@ Register%> directive at the top of the web page, as follows:

<%@ Register TagPrefix="apress" Namespace="Apress.WebParts.Samples" %>

Remember that you used the namespace Apress.WebParts.Samples in the class file of the custom
web part. The <%@ Register %> directive assigns the prefix Apress to this namespace. Therefore, you can
use the web part in one of the previously created WebPartZone controls, as follows:

<asp:WebPartZone runat="server" ID="MainZone">
 <ZoneTemplate>
 <uc1:Customers ID="MyCustomers"
 runat="server" OnLoad="MyCustomers_Load" />
 <apress:CustomerNotesPart ID="MyCustomerNotes" runat="server" />
 </ZoneTemplate>
</asp:WebPartZone>

Now you can test your newly created web part by starting your web application. Figure 31-11 shows
the results of your work.

Figure 31-11. The custom web part in action with the other web parts

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1335

Web Part Editors
In the previous example, you created a custom web part with a personalizable property called Customer.
This property determined whether the content of the GridView in the web part displays information for
just one customer or for all customers. You were not able to change this property through the web part
page’s user interface, so you will now see how you can accomplish this.

The ASP.NET Web Parts Framework provides functionality for editing properties of web parts. As
you saw when creating the Menu control for switching the page’s DisplayMode, it includes an Edit
mode. However, if you try to activate it now, you will get an exception about missing controls on the
page. The missing pieces for the Edit mode are the EditorWebZone and some appropriate editor parts.
Both are prebuilt; the WebPartZone hosts editor parts. You can use them by adding an EditorZone and
one of the prebuilt editor parts to your page, as follows:

<asp:EditorZone runat="server" ID="SimpleEditor">
 <ZoneTemplate>
 <asp:AppearanceEditorPart ID="MyMainEditor" runat="server" />
 </ZoneTemplate>
</asp:EditorZone>

This code adds an AppearanceEditorPart to the zone, which allows you to configure the appearance of
the web part, including its title and chrome settings (see Table 31-2). Now you can switch to the Edit mode
on your page; Figure 31-12 shows the steps required for opening an appropriate editor on your page.

Table 31-4 lists the available editor web parts of the framework.
The PropertyGridEditorPart editor part is a suitable way to enable the user to modify the previously

implemented Customer property of your web part. Just add the editor part to your page as follows, and
edit your custom web part:

<asp:EditorZone runat="server" ID="SimpleEditor">
 <ZoneTemplate>
 <asp:PropertyGridEditorPart ID="MyPropertyEditor" runat="server" />
 <asp:AppearanceEditorPart ID="MyMainEditor" runat="server" />
 </ZoneTemplate>
</asp:EditorZone>

Table 31-4. Editor Web Parts Shipping with ASP.NET

Editor Part Description
AppearanceEditorPart Allows you to configure basic properties of the web part, including its title

and its ChromeStyle.

BehaviorEditorPart Includes editors for modifying properties that affect the behavior of the
web part. Typical examples of such properties are the AllowClose or
AllowMinimize properties, as well as properties such as TitleUrl,
HelpMode, and HelpUrl. Every property modifies behavior such as
whether the web part can be minimized.

LayoutEditorPart Allows the user to change the web part’s zone as well as its ChromeState.
By the way, this editor enables browsers where changing a web part’s
zone through dragging and dropping doesn’t work manually through the
controls of this editor part.

PropertyGridEditorPart Displays a text box for every public property of your custom web part that
includes the attribute [WebBrowsable(true)].

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1336

Figure 31-12. Editing properties of your web parts

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1337

Figure 31-13 shows the results. As soon as you switch to the Edit mode and edit your custom web
part, you can change the value for the Customer property.

Figure 31-13. The PropertyGridEditorPart in action

Because you have called BindGrid in the property’s set method previously, the appearance of the
web part changes as soon as you hit the Apply button of the EditorZone. Additionally, if you add a
[WebDisplayName] in addition to the [WebBrowsable] attribute to your custom property, you can
control the name of the property that the editor will display.

Creating a Custom Editor
Displaying a text box, where the user has to manually enter the customer ID to select a customer, is not a
great ergonomic solution. Creating a custom editor that enables the user to select the customer from a
list would be more helpful. That’s what you’ll learn in this section.

Creating a custom editor for a web part page is as easy as creating a custom web part or a custom
server control. The only difference is that you need to inherit from EditorPart instead of WebPart or
WebControl, as follows:

public class CustomerEditor : EditorPart
{
 public CustomerEditor()
 {

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1338

 //
 // TODO: Add constructor logic here
 //
 }

 public override void SyncChanges()
 {
 // Initialize EditorPart with values from WebPart
 }

 public override bool ApplyChanges()
 {
 // Apply changes to the WebPart's properties
 }
}

Again, because the custom editor is nothing more than a composite control, you can add child
controls by overriding the CreateChildControls method. In this case, you need to create a list for
displaying the customers available in the database, as follows:

private ListBox CustomersList;

protected override void CreateChildControls()
{
 CustomersList = new ListBox();
 CustomersList.Rows = 4;

 Controls.Add(CustomersList);
}

Now that you have created the list, you can load the data in the initialization phase of the EditorPart
control. Again, assuming you have already a typed DataSet for working with customers in place, you can
catch the Load event and then load the customers, as follows:

public CustomerEditor()
{
 this.Init += CustomerEditor_Init;
}

void CustomerEditor_Init(object sender, EventArgs e)
{
 EnsureChildControls();

 // Adapter requires importing the CustomersSetTableAdapters namespace
 CustomerTableAdapter adapter = new CustomerTableAdapter();
 CustomersList.DataSource = adapter.GetData();
 CustomersList.DataTextField = "CompanyName";
 CustomersList.DataValueField = "CustomerID";
 CustomersList.DataBind();

 // Add an "empty" item to the list at the first position
 // so that the user has the option to select "no specific" customer
 // to be displayed in the results list. That means when the user
 // selects this empty entry, all customers should be displayed in

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1339

 // the GridView for the customers
 CustomersList.Items.Insert(0, "");
}

Finally, you have to synchronize changes between the EditorPart and the actual web part. First we’ll
show how to retrieve information from the web part. To do this, you have to add code to your
SyncChanges method, which you have to override when inheriting from EditorPart. Within this method,
you get access to the web part that will be edited through the base class’s WebPartToEdit property. Then
you have access to all the properties of your web part as usual.

public override void SyncChanges()
{
 // Make sure that all controls are available
 EnsureChildControls();

 // Get the property from the WebPart
 CustomerNotesPart part = (CustomerNotesPart)WebPartToEdit;
 if (part != null)
 {
 CustomersList.SelectedValue = part.Customer;
 }
}

When the user updates the value in the editor by clicking Apply, you have to update the web part’s
property. You can do this in the ApplyChanges method, where again you can access the web part
through the base class’s WebPartToEdit property, as follows:

public override bool ApplyChanges()
{
 // Make sure that all controls are available
 EnsureChildControls();

 // Get the property from the WebPart
 CustomerNotesPart part = (CustomerNotesPart)WebPartToEdit;
 if (part != null)
 {
 if (CustomersList.SelectedIndex >= 0)
 part.Customer = CustomersList.SelectedValue;
 else
 part.Customer = string.Empty;
 }
 else
 {
 return false;
 }

 return true;
}

The method returns true if the value has been updated successfully and returns false otherwise.
That’s it—you have created a custom editor. But how can you use it? Somehow the infrastructure has to
know that this editor has to be used with only specific web parts—in this case with the

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1340

CustomerNotesPart. To do this, modify the originally created web part. It has to implement the
IWebEditable interface as follows:

public class CustomerNotesPart : WebPart, IWebEditable
{
 #region IWebEditable Members

 EditorPartCollection IWebEditable.CreateEditorParts()
 {
 // Create editor parts
 List<EditorPart> Editors = new List<EditorPart>();
 CustomerEditor Editor = new CustomerEditor();
 Editor.ID = this.ID + "_CustomerEditor_1";
 Editors.Add(Editor);
 return new EditorPartCollection(Editors);
 }

 object IWebEditable.WebBrowsableObject
 {
 get { return this; }
 }

 #endregion

 // Rest of the implementation
 ...

This method works for user controls and server controls. The GenericWebPart that wraps user
controls and server controls verifies whether the wrapped control implements the IWebEditable
interface. If the control implements the interface, it calls the control’s implementation of the interface
for providing the custom editors. The CreateEditorParts method just returns a collection of EditorParts
to be displayed for this WebPart, and the WebBrowsableObject property returns an instance of a class
(typically the editable WebPart control) containing the personalizable properties. Figure 31-14 shows
the results.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1341

Figure 31-14. The custom editor part in action

Connecting Web Parts
Web parts can also exchange information in a well-defined manner. For example, a web part that
displays a list of customers could notify another web part (or many other web parts) if a specific
customer has been selected so that the other web part can display information according to the selection
in the customer web part. The ASP.NET framework lets you create such “connectable” web parts and
offers the possibility of statically or dynamically connecting web parts. For creating connectable web
parts, you have to create and combine several pieces. Figure 31-15 shows these pieces and how they
relate to one another.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1342

Figure 31-15. The pieces for creating connectable web parts

You can see that Figure 31-15 has two primary types of web parts: providers make information
available to other web parts, and every web part that requires information from a provider web part is a
consumer web part. Finally, you have to establish a standardized way for exchanging the information,
which leads to the final missing piece: the communication contract. Technically, the communication
contract is an interface that has to be implemented by the provider web part. This interface defines how
a consumer web part can access information from the provider web part. In other words, the provider
web part makes its data available through this interface. The steps for creating and connecting web parts
are as follows:

1. Create a communication contract: The first thing you should think about is,
which information needs to be exchanged? Based on the response to this
question, you can design an interface for data exchange that has to be
implemented by the provider web part.

2. Create a provider web part: Next you can create the provider web part. This
web part has to perform two tasks: it needs to implement the previously
defined communication contract interface or know a class implementing this
interface, and it needs to provide a method that returns an instance of a class
implementing the interface. This method must be marked with the
[ConnectionProvider] attribute.

3. Create a consumer web part: Next, you can create a consumer web part. The
consumer web part does not need to implement any interfaces, but it needs to
know how to communicate with the provider. Therefore, it needs to know
about the interface (which means if you have the consumer in a separate
DLL, it needs to reference an assembly that defines this interface). A consumer
web part then needs to implement a method that is marked with the
[ConnectionConsumer] attribute. This method accepts a variable as a
parameter that implements the previously defined communication
contract interface.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1343

4. Configure the connection: Finally, you have to configure the connection
between the consumer and the provider web part. You can do that statically
through the <StaticConnections> section within the <WebPartManager>
control tag in your markup code of the .aspx page, or the user can configure
connections at runtime. You will learn more details about how to implement
both ways later, in the “Static Connections Between WebParts” section.

You can connect only web parts inherited from WebPart; because user controls and custom server
controls are wrapped by the GenericWebPart, the framework has no direct access to the methods
marked with the [ConnectionProvider] and [ConnectionConsumer] attributes.

Previously you created a web part for displaying customer notes in a grid. Because notes can get
long (remember, the column is a text column), it might be nice to have a larger text box for editing the
value of this field. To learn about web part connections, in the next sections you will create a simple web
part that displays the text for the notes, and then you will modify the old web part to become a provider
web part.

Defining the Communication Contract
The first step is to design the communication contract. Because your web part will provide just simple
text and date information, the communication contract is fairly simple:

namespace Apress.WebParts.Samples
{
 public interface INotesContract
 {
 string Notes { get; set; }
 DateTime SubmittedDate { get; }
 }
}

This contract defines two properties: one for retrieving and updating the notes text for a customer
and the second for retrieving the date of a submitted entry. Now the provider has to implement this
interface, while the consumer needs be aware of the interface only.

Implementing the Provider Web Part
Now you will implement the provider that needs to implement the previously created connection
contract. In our example, the provider web part will be the previously created CustomerNotesPart. You
need to modify the CustomerNotesPart so it implements the INotesContract communication contract
interface and contains a public method with the [ConnectionProvider] attribute. The code is as follows:

public class CustomerNotesPart
 : WebPart, IWebEditable, INotesContract
{
 #region INotesContract Members

 public string Notes
 {
 get
 {
 // Get the NoteContent value from the grid's data source
 // ...
 }

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1344

 set
 {
 // Update value to the grid's data source
 // ...
 }
 }

 public DateTime SubmittedDate
 {
 get
 {
 // Get the NoteDate value from the grid's data source
 // ...
 }
 }

 #endregion

// Rest of the implementation
...

Within the property procedures, you need to add the appropriate code for retrieving the values from
the data source you have bound to the GridView in the web part’s original version. Updating the data in
the property’s set procedure means updating the value in the GridView’s data source and then using, for
example, a SqlCommand or a SqlDataAdapter for updating the values on the database. Retrieving the
SubmittedDate from the GridView’s data source might look like this:

public DateTime SubmittedDate
{
 get
 {
 EnsureChildControls();

 if (CustomerNotesGrid.SelectedIndex >= 0)
 {
 int RowIndex = CustomerNotesGrid.SelectedRow.DataItemIndex;

 DataTable dt = (DataTable)CustomerNotesGrid.DataSource;
 return (DateTime)dt.Rows[RowIndex]["NoteDate"];
 }
 else
 {
 return DateTime.MinValue;
 }
 }
}

You can verify whether an item has been selected in the GridView. (To do this, you need to enable
selection on the GridView.) If an item is selected, you retrieve the DataItemIndex, which you then can
use as an index for accessing the DataRow of the DataTable, which is bound to the GridView. You can
read the value from the DataRow and return it.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1345

The next thing your provider web part has to support is a method marked with the
[ConnectionProvider] attribute. This method returns the actual implementation of the communication
contract interface, which is the web part in this case. Therefore, you need to implement it as follows:

[ConnectionProvider("Notes Text")]
public INotesContract GetNotesCommunicationPoint()
{
 return (INotesContract)this;
}

That’s it! Your provider web part is ready to use. Next you need to implement the consumer web
part, which is much easier.

Creating the Consumer Web Part
The consumer web part retrieves information from the provider web parts for its own purposes. In this
example, you just display the text for the currently selected note in the CustomerNotesPart that you have
implemented as the provider.

For this purpose, you create a new web part server control from scratch. This control acts as a
consumer to your previously created CustomerNotesPart. Just add a new class that inherits from the
WebPart base class. The web part uses the CreateChildControls for creating a label that displays the date,
a text box that displays the notes text, and a button that updates the notes text.

public class CustomerNotesConsumer : WebPart
{
 private Label NotesTextLabel;
 private TextBox NotesContentText;
 private Button UpdateNotesContent;

 protected override void CreateChildControls()
 {
 NotesTextLabel = new Label();
 NotesTextLabel.Text = DateTime.Now.ToString();

 NotesContentText = new TextBox();
 NotesContentText.TextMode = TextBoxMode.MultiLine;
 NotesContentText.Rows = 5;
 NotesContentText.Columns = 20;

 UpdateNotesContent = new Button();
 UpdateNotesContent.Text = "Update";
 UpdateNotesContent.Click += UpdateNotesContent_Click;

 Controls.Add(NotesTextLabel);
 Controls.Add(NotesContentText);
 Controls.Add(UpdateNotesContent);
 }

 void UpdateNotesContent_Click(object sender, EventArgs e)
 {
 // Update code needs to be implemented later
 }
}

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1346

Next, you have to add a simple method that is called by the ASP.NET Web Parts Framework
automatically if the web part is connected to another web part. This method accepts the other
connection point (which is the provider) as a parameter and needs to be marked with the
[ConnectionConsumer] attribute so that the runtime knows this is the method to be called for passing in
the provider.

private INotesContract _NotesProvider = null;

[ConnectionConsumer("Customer Notes")]
public void InitializeProvider(INotesContract provider)
{
 _NotesProvider = provider;
}

With the provider initialized, the web part can consume information from the provider by just
calling properties (or methods) defined in the communication contract. For example, in the PreRender
event you can initialize your controls, whereas in the button’s event procedure you might think you can
directly update the notes content by setting the Notes property appropriately. But it is not that easy:
actually you cannot predict when the Web Parts infrastructure is going to initialize your provider, as you
don’t know in which order web parts are added to the page. You need to be aware of this. Therefore,
whenever the user clicks the button, you just set a flag telling your web part that it should not take the
data out from the provider and that it should update the provider instead of retrieving the value.

private bool UpdateFormTextBox = false;

void UpdateNotesContent_Click(object sender, EventArgs e)
{
 UpdateFormTextBox = true;
}

protected override void OnPreRender(EventArgs e)
{
 // Don't forget to call base implementation
 base.OnPreRender(e);

 // Initialize control
 if (_NotesProvider != null)
 {
 if (UpdateFormTextBox)
 _NotesProvider.Notes = NotesContentText.Text;
 else
 NotesContentText.Text = _NotesProvider.Notes;

 NotesTextLabel.Text =
 _NotesProvider.SubmittedDate.ToShortDateString();
 }
}

You have to validate whether the provider has been initialized. If it hasn’t been, the web part is not
connected with any other web part, and therefore you cannot access any information. However, with
this code in place, you are basically finished. You have created a consumer web part and a provider web
part, and communication between the two takes place through the communication contract interface.
Next, you can connect these web parts either manually or dynamically at runtime.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1347

When testing the previous code, you will probably figure out that the connection provider’s user
interface might not be updated appropriately when you call the provider in the prerendering phase of
the life cycle. Again, you don’t know when your prerendering stage and when the provider’s
prerendering stage will be completed. Therefore, you have to complete the update earlier. Because the
infrastructure ensures that connection points will be initialized appropriately before the prerendering
stage takes place, you can perform the update in your connection consumer method as follows:

[ConnectionConsumer("Customer Notes")]
public void InitializeProvider(INotesContract provider)
{
 _NotesProvider = provider;
 if (UpdateFormTextBox)
 _NotesProvider.Notes = NotesContentText.Text;
}

Now that you have created both a connection consumer and a connection provider, you will modify
the web part page to support the connections between these two web parts.

Static Connections Between Web Parts
The simple way to connect web parts is through static connections. How can you do that? Well, let’s
think about the roles of the different controls involved in web part pages again. The WebPartManager
knows about all the web parts and manages features such as personalization. WebPartZones are areas
on your web page that can contain web parts, while the web parts are independent controls. If you think
about it a moment, you will recognize that the WebPartManager might be a good starting point for
taking a closer look at connection points. You are right: static connection points are configured through
the WebPartManager as follows:

<asp:WebPartManager runat="server" ID="MyPartManager">
 <StaticConnections>
 <asp:WebPartConnection ID="SimpleConnection"
 ProviderID="MyCustomerNotes"
 ConsumerID="MyNotesConsumer" />
 </StaticConnections>
</asp:WebPartManager>

The ID values used for the ProviderID and ConsumerID are just the ID values of the web parts as
they have been added to the WebPartZone. You can find these web parts in the zones of your web part
page, as you can see in the following code fragment:

<table width="100%">
...
 <asp:WebPartZone runat="server" ID="MainZone" >
 <ZoneTemplate>
 <uc1:Customers ID="MyCustomers"
 runat="server"
 OnLoad="MyCustomers_Load" />
 <apress:CustomerNotesPart
 ID="MyCustomerNotes" runat="server" />
 </ZoneTemplate>
 </asp:WebPartZone>
...
 <asp:WebPartZone runat="server" ID="HelpZone>

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1348

 <ZoneTemplate>
 <apress:CustomerNotesConsumer
 ID="MyNotesConsumer" runat="server" />
 <asp:Calendar runat="server" ID="MyCalendar"
 OnLoad="MyCalendar_Load" />
 <asp:FileUpload ID="MyUpload" runat="server" />
 </ZoneTemplate>
 </asp:WebPartZone>
...

When configuring this connection point, you will recognize that the consumer web part always
displays information from the selected entry of the CustomerNotes web part.

Dynamically Configuring Connection Points
If you don’t want to connect web parts statically but want the user to have the possibility of connecting
web parts at runtime, you cannot use the WebPartManager’s StaticConnections configuration. But
providing dynamic configuration of connection points is nearly as simple as configuring static
connection points. All you need to add to your page is a special zone called ConnectionsZone, as follows:

<asp:ConnectionsZone ID="MyConnections" runat="server">
 <ConnectVerb Text="Connect Now..." />
 <CancelVerb Text="Don't connect" />
 <DisconnectVerb Text="Release connection" />
</asp:ConnectionsZone>

The child tags of ConnectionsZone are optional and allow you to customize the default user
interface created for editing the connections. When having added such a zone onto your web part page,
the Web Parts Framework allows you to switch the DisplayMode to the ConnectDisplayMode (which is
not possible otherwise). If you want to edit connections for a web part in the running web application at
runtime, users need to perform the following tasks to connect web parts:

1. Switch to the Connect mode.

2. Select the consumer web part, and select Connect from the web part’s menu.

3. Now the connection editor appears in the previously added ConnectionsZone.
Here you can select a provider and click the Connect button.

4. The web parts are connected now. You can release the connection by clicking
the Release button.

Figure 31-16 shows ConnectionsZone in action.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1349

Figure 31-16. ConnectionsZone in action

Multiple Connection Points
A web part provider can make multiple connection points available, while a web part consumer can
consume multiple provider connection points. In that case, every connection point requires a unique ID
on both the consumer side and the provider side. On the provider side, you specify the connection point
ID in the [ConnectionProvider] attribute, as follows. Compared to your previously created provider
CustomerNotesPart, you just add a unique ID as a second parameter to the ConnectionProvider
attribute construction:

[ConnectionProvider("Notes Text", "MyProviderID")]
public INotesContract GetNotesCommunicationPoint()
{
 return (INotesContract)this;
}

Similar to the provider, you can specify an ID for consumer endpoints in the same way if a web part
is a consumer of multiple providers, as follows (again, compared to the previously created consumer
CustomerNotesConsumer, you just add the unique ID as a second parameter of the attribute’s
constructor):

[ConnectionConsumer("Customer Notes", "MyConsumerID")]
public void InitializeProvider(INotesContract provider)
{
 _NotesProvider = provider;
}

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1350

These IDs have to be unique within the web part. This means other web parts can define connection
points with the same ID. When configuring static connections for web parts that support multiple
connection points, you have to specify those through additional ProviderConnectionPointID and
ConsumerConnectionPointID parameters, as follows:

<asp:WebPartManager runat="server" ID="MyPartManager">
 <StaticConnections>
 <asp:WebPartConnection ProviderID="MyCustomerNotes"
 ProviderConnectionPointID="MyProviderID"
 ConsumerID="MyCustomerNotesConsumer"
 ConsumerConnectionPointID="MyConsumerID" />
 </StaticConnections>
</asp:WebPartManager>

In the case of dynamic configuration, the user can select the connection point to connect to based
on the name specified as the first parameter in the previously used [ConnectionProvider] and
[ConnectionConsumer] attributes.

Custom Verbs and Web Parts
Web part verbs appear in the menu of the title bar that each web part supports. You have used verbs
frequently throughout this chapter because web parts come with lots of default verbs. For example, if
you close or minimize a web part, you have to click a verb in the web part’s menu. Fortunately, verbs
don’t require space on the screen when you don’t open the web part’s verb menu. You can extend verbs
as well—and it’s much simpler than you might think.

To extend verbs, you just need to override the Verbs property of your custom web part. Within your
overridden version of the Verbs property, you can create and return an array of WebPartVerb objects
where each represents one entry in the web part’s verb menu. You can catch the click event of each verb
in a web part event handler.

The following example is an extension of your previously implemented CustomerNotesConsumer
web part and shows how simple extending the verbs menu is:

public override WebPartVerbCollection Verbs
{
 get
 {
 WebPartVerb RefreshVerb =
 new WebPartVerb("Refresh",
 new WebPartEventHandler(RefreshVerb_Click)
);
 RefreshVerb.Text = "Refresh Now";
 WebPartVerb[] NewVerbs = new WebPartVerb[] { RefreshVerb };

 WebPartVerbCollection vc =
 new WebPartVerbCollection(base.Verbs, NewVerbs);
 return vc;
 }
}

protected void RefreshVerb_Click(object sender, WebPartEventArgs e)
{
 UpdateFormTextBox = true;
}

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1351

The previous code adds a new verb, Refresh Now, to the previously created CustomerNotes-
Consumer web part. This verb provides the same update functionality as the button added previously.
For every verb you want to display for your web part, you need to create an instance of WebPartVerb.
This instance requires you to specify an ID for the verb as well as a delegate reference to the event
handler that is called when the user clicks the verb. Finally, you need to create and return an instance of
WebPartVerbCollection that contains all the verbs you want to display for your web part. Because you
have to make sure standard verbs such as Edit, Minimize, and Close will not get lost, you create a
WebPartVerbCollection containing the verbs from the base class implementation as well as an array of
new verbs. That’s it! When you now launch and test your web part page, you will recognize a new verb in
the verbs menu of the CustomerNotesConsumer web part.

User Controls and Advanced Web Parts
You have seen lots of cool features of the ASP.NET Web Parts Framework. But when you want to use
built-in functionality such as web part connections or custom editors, you have to deal with one
essential drawback: the lack of designer support. The advanced web parts you created in the previous
sections have all been from scratch by inheriting from System.Web.UI.WebControls.WebParts.WebPart.
In your web part implementation, you have to code all control instantiations as well as the layout of
those controls. That’s funny for geeks, but honestly, this approach really lacks in terms of productivity,
doesn’t it? So, the question is, how can you deal with this problem? How can you integrate the design-
time support you get from user controls with the powerful infrastructure of the Web Parts Framework
with all of its nice features such as web part connections, custom editors, and custom verbs? The answer
is much simpler than it seems.

On its own, a user control is just another ASP.NET control that is partially compiled at runtime by the
infrastructure. That’s why user controls have some limitations. Still, ASP.NET allows you to load user
controls dynamically through the Page.LoadControl method. This means all you have to do is create a low-
level web part directly inherited from WebPart as before, and in its CreateChildControls method you just
need to load the user control of your choice through Page.LoadControl. The following example shows a
simple web part that allows you to dynamically select a user control that should be loaded into this web
part. The user control needs to be referenced through its relative virtual path within the web application.

public class UserControlHostPart : WebPart
{
 private bool _ControlUpdated = false;
 private string _CurrentUserControlPath = string.Empty;

 [WebBrowsable(true)]
 [Personalizable(PersonalizationScope.User)]
 public string CurrentUserControlPath
 {
 get { return _CurrentUserControlPath; }
 set
 {
 if (!_CurrentUserControlPath.Equals(string.Empty))
 _ControlUpdated = true;

 _CurrentUserControlPath = value;
 }
 }

 private Label FallBackLabel = null;
 private Control CurrentControl = null;

 protected override void CreateChildControls()

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1352

 {
 // Label showing a default text if no control is loaded
 FallBackLabel = new Label();
 FallBackLabel.Text = "No control selected";
 FallBackLabel.EnableViewState = false;

 // If a user control is selected, you need to
 // load this control through Page.Load
 LoadSelectedControl();

 // Add the controls to the parent
 Controls.Add(FallBackLabel);
 if (CurrentControl != null)
 Controls.Add(CurrentControl);
 }

 private void LoadSelectedControl()
 {
 if (!_CurrentUserControlPath.Equals(string.Empty))
 {
 try
 {
 CurrentControl =
 Page.LoadControl(_CurrentUserControlPath);
 }
 catch (Exception ex)
 {
 FallBackLabel.Text =
 "Unable to load control: " + ex.Message;
 }
 }
 }

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);

 if (_ControlUpdated)
 {
 // Remove the currently loaded control
 Controls.Remove(CurrentControl);
 LoadSelectedControl();
 Controls.Add(CurrentControl);
 }
 }

 public override void RenderControl(HtmlTextWriter writer)
 {
 if (CurrentControl != null)
 CurrentControl.RenderControl(writer);
 else
 FallBackLabel.RenderControl(writer);
 }
}

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1353

As you can see, loading the user control dynamically is easy. The previous control provides a
property that you can modify through an editor web part and that allows the selection of a user control
that needs to be loaded. In the CreateChildControls method, the web part checks whether a user control
path is provided through the property, and if it is, it calls Page.LoadControl for dynamically loading the
user control and adding it to the controls collection. That’s it.

However, you do need to know when a control currently loaded into your web part host gets replaced
with another control. Think about the life cycle of an ASP.NET server control, for example. When a control
is loaded and the page is posted to the server, the control gets created early in the life cycle of a page right
before the view state is loaded into the control if there is one (typically on postbacks a view state is available
for a control). This means when hitting the Apply button in the editor web part (for example, the property
grid editor), CreateChildControls is called early in the processing stage of the postback—eventually before
the property CurrentUserControlPath is set in the UserControlHostPart. Therefore, you need to capture
this update and reload the newly selected control before the view state and properties get serialized, if the
property has been updated by an editor web part. The right time to do this is at the OnPreRender event,
which is raised right before ASP.NET starts serializing ViewState and ControlState into the page and before
the actual rendering takes place. Figure 31-17 shows the control in action.

Figure 31-17. The UserControlHost web part in action

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1354

This technique provides you with the power of using web part connections, custom editors, or
custom verbs offered by the Web Parts infrastructure, which originally are not available for user control-
based web parts. For example, if you want to connect a user control loaded into the user control host,
the UserControlHostPart just needs to implement the communication contract (if it is a provider) or
needs to implement a ConnectionConsumer method as introduced in the “Connecting Web Parts”
section. You can establish the communication to the hosted user control either by casting the control to
its specific code-beside (or code-behind) type or—in our opinion a better approach—by letting the user
control implement an interface that can be used as a communication contract between your
UserControlHost web part and the contained user control. Finally, this is really a powerful technique to
bring the full power of the Web Parts Framework to user controls and therefore combine this power with
the convenience of the user control designer in Visual Studio 2005.

Uploading Web Parts Dynamically
Web part pages are all about personalization. But so far, the web parts you have used in your pages are
statically defined. You have added those web parts to ZoneTemplate controls of several WebPartZone
controls added to the page. Wouldn’t it be nice to have the ability to dynamically upload web part
definitions and new web parts onto an existing web part page? If you take a close look at the Toolbox in
Visual Studio 2005, you will recognize an ImportCatalogPart web part offered by ASP.NET. That’s the key
for what you will do next—dynamically add a web part to your previously created web part page.

First you must develop a custom web part—once again. But this time you will encapsulate the web
part in a class library project. All you need to do is create a class library project and add a reference to the
System.Web.dll assembly. Afterward, you can create a web part like the following one:

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

public class ExternalPart : WebPart
{
 public ExternalPart()
 {
 this.ExportMode = WebPartExportMode.All;
 }

 private Label TestLabel;
 private TextBox TestTextBox;
 private Button TestButton;
 private ListBox TestList;

 protected override void CreateChildControls()
 {
 TestLabel = new Label();
 TestTextBox = new TextBox();
 TestButton = new Button();
 TestList = new ListBox();

 Controls.Add(TestLabel);
 Controls.Add(TestTextBox);

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1355

 Controls.Add(TestButton);
 Controls.Add(TestList);

 TestButton.Click += TestButton_Click;
 }

 void TestButton_Click(object sender, EventArgs e)
 {
 TestList.Items.Add(TestTextBox.Text);
 }

 public override void RenderControl(HtmlTextWriter writer)
 {
 TestLabel.Text = "Enter value:";
 TestLabel.RenderControl(writer);
 writer.WriteBreak();
 TestTextBox.RenderControl(writer);
 writer.WriteBreak();
 TestButton.Text = "Add";
 TestButton.RenderControl(writer);
 writer.WriteBreak();
 TestList.RenderControl(writer);
 }
}

This is really a simple web part, but it is interesting: take a close look at the constructor. You need to
mark web parts as exportable by setting their ExportMode property to an appropriate value. The
ExportMode property is of the type WebPartExportMode and can be set to None (meaning no property
values will be exported at all), All (meaning all properties will be exported), or NonSensitiveData.
(NonSensitiveData means that only properties marked as non-sensitive—by specifying the value false
for the isSensitive parameter of the Personalizable attribute’s constructor when applied on a property—
will be included in the export. The default value of the isSensitive parameter of the Personalizable
attribute is false.) Note that export means exporting the metainformation and current property values
for a web part into an XML file. In other words, it is not about downloading the binary with all the
settings; it’s just about downloading the current state of the web part. This means when you import an
exported web part on another web part page, you have to deploy the binary to this target website before
you can import the web part through the CatalogZone. You’ll learn more about that after you have tested
the web part and its exportability.

To test the web part, we recommend you create a simple web part page where you add a reference
to the web part class library created previously and load the web part into a simple WebPartZone as
follows:

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Default.aspx.cs" Inherits="_Default" %>
<%@ Register TagPrefix="apress"
 Assembly="ExternalWebPart"
 Namespace="Apress.ExternalWebParts" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>

http://www.w3.org/1999/xhtml

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1356

 <form id="form1" runat="server">
 <div>
 <asp:WebPartManager ID="TestPartManager" runat="server" />
 <asp:WebPartZone runat="server" ID="TestZone">
 <ZoneTemplate>
 <apress:ExternalPart runat="server" ID="TestExport" />
 </ZoneTemplate>
 </asp:WebPartZone>
 </div>
 </form>

To be able to export the description of the web part, you need to enable export for the web part page
in your web.config file as follows:

<system.web>
 <compilation debug="true"/>
 <authentication mode="Windows"/>
 <webParts enableExport="true" />
 ...
 <!— other parts of system.web related configuration —>
 ...
</system.web>

When you now start the web part page created previously, you will recognize a new menu verb in
the title bar of the web part page, as shown in Figure 31-18. When you click this new Export verb in the
web part menu, ASP.NET will create an XML description file for your web part, which you need to save
on your hard disk as a .WebPart file. This .WebPart file contains all the current property settings of your
web part, as well as the basic type description of the web part (namespace and class name), and looks as
follows:

<?xml version="1.0" encoding="utf-8"?>
<webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
 <type name="Apress.ExternalWebParts.ExternalPart" />
 <importErrorMessage>Cannot import this Web Part.</importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name="AllowClose" type="bool">True</property>
 <property name="Width" type="unit" />
 <property name="AllowMinimize" type="bool">True</property>
 <property name="AllowConnect" type="bool">True</property>
 <property name="ChromeType" type="chrometype">Default</property>
 <property name="TitleIconImageUrl" type="string" />
 <property name="Description" type="string" />
 <property name="Hidden" type="bool">False</property>
 <property name="TitleUrl" type="string" />
 <property name="AllowEdit" type="bool">True</property>
 <property name="Height" type="unit" />
 <property name="HelpUrl" type="string" />
 <property name="Title" type="string" />
 <property name="CatalogIconImageUrl" type="string" />

http://schemas.microsoft.com/WebPart/v3

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1357

 <property name="Direction" type="direction">NotSet</property>
 <property name="ChromeState" type="chromestate">Normal</property>
 <property name="AllowZoneChange" type="bool">True</property>
 <property name="AllowHide" type="bool">True</property>
 <property name="HelpMode" type="helpmode">Navigate</property>
 <!—property name="ExportMode" type="exportmode">All</property—>
 </properties>
 </data>
 </webPart>
</webParts>

Figure 31-18. Exporting the previously created web part

You use this .WebPart file to import a web part description into an existing portal page. But it is not
as easy as just importing the .WebPart file. Before you can import a .WebPart file successfully on the
target page, you need to deploy the assembly DLL containing the implementation of the WebPart class
into the Bin directory of your web application. Furthermore, you need to modify the .WebPart file so the
<type> tag in the <metadata> section contains the assembly name in addition to the namespace name
and class name. Furthermore, you have to make sure the properties do not conflict with the settings of
the target web part page. With the default properties supported by every web part, the only property you
have to take into account for avoiding problems is the ExportMode property. If the target site does not
allow exports (which is the default setting if you do not set the enableExport attribute in your web.config
file as demonstrated earlier) and the .WebPart file defines All or NonSensitive for the ExportMode
property, the import will fail. Therefore, you might need to modify the .WebPart file as follows:

<?xml version="1.0" encoding="utf-8"?>
<webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
 <type name="Apress.ExternalWebParts.ExternalPart, ExternalWebPart" />

http://schemas.microsoft.com/WebPart/v3

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1358

 <importErrorMessage>Cannot import this Web Part.</importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name="AllowClose" type="bool">True</property>
 <property name="Width" type="unit" />
 ...
 <property name="HelpMode" type="helpmode">Navigate</property>
 <!—property name="ExportMode" type="exportmode">All</property—>
 </properties>
 </data>
 </webPart>
</webParts>

Now you are ready to import the web part on your target website. To complete the import, you have
to perform the following steps after you have created the web part and exported (or manually created)
the web part description introduced earlier:

1. Add a CatalogZone with an ImportCatalogPart to your target web parts page.

2. Deploy the assembly of your web part to the target site’s Bin directory.

3. Launch the web part page, switch to the catalog mode, and upload the
.WebPart file.

4. Now you can add the web part through the PageCatalogPart to your page.

The easiest part is adding an ImportCatalogPart to the CatalogZone of your web part page as
follows:

<asp:CatalogZone runat="server" ID="SimpleCatalog">
 <ZoneTemplate>
 <asp:PageCatalogPart runat="server" ID="MyCatalog" />
 <asp:ImportCatalogPart runat="server" ID="MyImport" />
 </ZoneTemplate>
</asp:CatalogZone>

Actually, in a real-world scenario, deploying the web part assembly you want to import is the
hardest challenge. For this simple example, it is sufficient to copy the class library’s assembly DLL
containing the implementation of the web part created earlier into the target site’s Bin directory. In real-
world scenarios, you would need to establish a well-defined process for uploading web parts. You could
also dynamically upload web parts, but that can become a huge security risk for your website if you do
not establish well-defined reviewing and testing processes up front. You don’t ever want to let anyone
upload web parts you have not reviewed as the owner of a site. This should always be done by a website
administrator or website owner. As soon as you have copied the assembly, you can import the web part
by switching to the catalog zone and uploading the .WebPart file to the web part page. If the Web Parts
Framework cannot load the type for the web part defined in the .WebPart file, the import will fail. Figure
31-19 shows the ImportCatalogPart in action, and Figure 31-20 shows the imported web part added to
the page.

If you take a closer look at the Figures 30-19 and 30-20, you will recognize that ASP.NET supports
two types of web part catalogs by default: a page catalog and an imported web part catalog. The first one
shows all statically added web parts that are currently closed, and the second catalog shows web parts
that have been imported dynamically to the web part page. Before you can import a web part, you need
to switch to the imported web part catalog.

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1359

Figure 31-19. ImportCatalog web part in action

Figure 31-20. The imported web part in action

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1360

Authorizing Web Parts
When you have all your web parts on your page, you might want to make some available to specific
groups of users. Fortunately, the ASP.NET Web Parts Framework includes a way to specify such
authorization information for web parts. All you need to do is catch one specific event of the
WebPartManager class called AuthorizeWebPart. Within this event procedure, you can encapsulate logic
for deciding whether a user is authorized to view a web part.

The following example shows how to display the CustomerNotes web part only if the user browsing
to the page is member of the local Administrators group:

protected void MyPartManager_AuthorizeWebPart(
 object sender, WebPartAuthorizationEventArgs e)
{
 // Ignore authorization in Visual Studio Design Mode
 if (this.DesignMode)
 return;

 // Authorize a web part or not
 Type PartType = e.Type;
 if (PartType == typeof(CustomerNotesPart))
 {
 e.IsAuthorized = false;
 if (User.Identity.IsAuthenticated)
 {
 if (User.IsInRole("BUILTIN\\Administrators"))
 e.IsAuthorized = true;
 }
 }
}

Because authorization takes place on types of web parts and not on individual instances of web
parts, you get the type of the web part to be authorized from the WebPartManager in the event
arguments. You then can make authorization decisions based on the type of the web part as
demonstrated previously. As soon as you set the IsAuthorized property of the
WebPartAuthorizationEventArgs structure passed in to false, the WebPartManager will not display web
parts of this type—neither on the page nor in other situations such as a PageCatalogPart of a
CatalogZone.

Final Tasks for Personalization
Finally, you should keep in mind a couple of final tasks for personalization. You can configure
personalization properties on a per-page level through the WebPartManager, as follows:

<asp:WebPartManager runat="server" ID="MyPartManager">
 <Personalization Enabled="true" ProviderName="YourProvider" />
</asp:WebPartManager>

If you want to configure personalization settings for the whole application, you have to do that
through the <webParts> configuration element of the <system.web> section in the web.config
application configuration, as follows:

<webParts>

CHAPTER 31 ■ PORTALS WITH WEB PART PAGES

1361

<personalization defaultProvider="MyProvider">
 <authorization>
 <allow roles="BUILTIN\Administrators"/>
 <deny roles="BUILTIN\Guests" />
 </authorization>
 <providers>
 <add name="MyProvider"
 type="System.Web.UI.WebControls.WebParts.SqlPersonalizationProvider"
 connectionStringName="CustomSqlConnection" />
 </providers>
</personalization>
</webParts>

This code also shows that you can even configure the specific users for which personalization is
enabled or disabled. You do this through the <authorization> element; this element works the same way
as the <authorization> element you learned about in Chapter 23.

Clearing Personalization
How can you delete personalization information from the store? To do this, you can use the
Personalization property of the WebPartManager class; this gives you access to the personalization
provider, the settings, and the functions for resetting personalization information. You can do this as
follows:

if (MyPartManager.Personalization.HasPersonalizationState)
 MyPartManager.Personalization.ResetPersonalizationState();

You can then include functionality in your application for resetting personalization in this way. This
could be an administration page, for example.

Summary
In this chapter, you learned how to create real-world web part pages. Such pages include requirements
such as personalization, as well as a modularized structure through web parts that enable the user to
select exactly the information that should be displayed. You also learned what WebPartManagers,
WebPartZones, and WebParts are and what their tasks are.

Then you learned about important advanced features such as connecting web parts and authorizing
web parts. You also learned how to add custom properties to WebParts that will be stored on a per-user
or shared basis, and you created custom editors for editing those properties.

The ASP.NET Web Parts Framework provides you with a huge set of functionality. You never have to
implement your own portal framework, as it is already included with the framework.

C H A P T E R 32

■ ■ ■

1363

MVC

Microsoft has introduced MVC as an alternative to web forms (covered in Chapter 3). MVC is based on
ASP.NET, so all the skills you have learned in previous chapters can be applied to an MVC application.
MVC is a framework that lets you leverage your ASP.NET knowledge to build applications quickly—
much like web forms and much like the dynamic data framework covered in Chapter 33.

MVC stands for Model-View-Controller—the names of the three major components of this style of
application development. Model refers to a data model, which is something that you can use to perform
create, read, update, delete (CRUD) operations on your persistent application data.

We’ll be using the Entity Framework to create a data model for a SQL Server database in this
chapter, but you could use other database modeling technologies (such as LINQ to SQL or a different
kind of storage altogether (such as the file system). The abstraction of functionality is a key theme in
MVC. Your model is the only part of the application that interacts with the data store.

A view is what is presented to the user; it is an ASP.NET .aspx page. The content of the page will
usually be tied to the CRUD operation the user is trying to perform and so will generally contain the
details of one or more data items or the means to edit or delete data items. Of course, the content and
purpose of a view will depend on your project.

Controllers are C# code files that bridge between views and models. A controller receives a request
from a client (such as a request for the default page for the application to view the details of a specific
data record) and selects the view that will service the request.

Choosing Between MVC and Web Forms
MVC has a number of advantages over web forms. The separation between the model, view, and
controller allows for easier unit testing of each aspect of your application. You can get a lot more control
over the fine detail of an MVC application. Most important, it avoids the large amount of state data
transfer between the server and client that has made the adoption of web forms outside the Internet so
troublesome.

But the web forms framework remains a very strong platform. There are rich libraries of controls
that allow you to create powerful applications quickly and simply. It is easier to get a web forms
application up and running, and the skills to create web forms applications are widespread and readily
available in the marketplace. Web forms aren’t going away—the features will continue to be developed
and updated.

We expect that web forms will remain dominant for intranet applications but that ASP.NET
applications developed for the Internet will (gradually) gravitate toward MVC for the better testing
support and increased control it offers.

CHAPTER 32 ■ MVC

1364

Creating a Basic MVC Application
We will start by creating a simple MVC application. This allows us to show you the structure of an MVC
project and explain how the core elements work together. To start, create a new project in Visual Studio
2010, selecting ASP.NET MVC2 Web Application from the set of project templates. We have named our
project BasicMVCApplication—we have included this project and all the other examples from this
chapter in the source code download for this book, available for free at Apress.com.

When you create the project, you’ll be prompted to create a unit test project. The MVC model is
well-suited to unit testing because the model, view, and controller can be tested separately. We won’t be
covering unit testing in this book, so there is no need to create the unit tests. If you have used our project
name, you’ll see a project structure like the one shown in Figure 32-1.

Figure 32-1. The MVC project structure

The names of the project folders match their functions. The Content folder contains static items for
your application, such as images. Likewise, the Scripts folder is where JavaScript files are stored; the
MVC project template creates files for jQuery and some basic validation and Ajax features.

The Controllers folder contains your controller classes. As you’ll see when you start to create
controllers, there is a specific structure that you should use inside this folder, which Visual Studio 2010
will handle for you.

The Models folder contains the data models you are using; there can be more than one. We will use
the Entity Framework to generate a model for our example, and it is in this folder that we will place the
type definitions and context classes.

Finally, the Views folder contains the .aspx files that will be used to render content to the user. Like
the Controllers folder, there is a specific structure that is used in this folder. The structure of an MVC
project is a convention. You don’t have to place items in the default folders, but by doing so, you’ll be
able to take advantage of some of the built-in MVC convenience features.

CHAPTER 32 ■ MVC

1365

Creating the Model
The model part of an MVC application can be anything that is able to operate on your application data.
Typically, it is either a LINQ to SQL or Entity Framework model, which is what we will use in this
chapter. Repeating the theme of abstraction that runs through MVC, separating the model from the
other components allows you to change the model with minimum effort—moving from storing data in a
series of text files to using SQL Server, for example. The classes that contain the logic to work with your
data live in the Models folder.

We will use the Microsoft Northwind sample database and create an Entity Framework model for
our sample application. Right-clicking the Models folder and selecting Add New Item allows you to pick
the ADO.NET Entity Data Model from the list of templates. From then on, we followed the steps
described in Chapter 13 to create the model from the database. We called the data model
Northwind.edmx and selected all the database tables for inclusion in the model. Because we created the
model in the Models folder, the namespace for our derived context is BasicMVCApplication.Models. You
should compile your project once you have created the data model. This makes the model data types
available for use when you come to create the controllers and means you can use IntelliSense to
complete the class names for you.

Creating the Controller
Controllers process requests and determine which view should be returned to the client. Many of the
requests will come from views. For example, a user might request the default page for your MVC
application, which the controller will choose to service with a view that lists all the records in a given
database table. The HTML generated by the view may contain links that make further requests to the
controller—for example, a link that requests a detailed view for a specific table row.

The simplest way to create a controller is to right-click the Controllers folder and select Add and
Controller from the pop-up menus. You will be prompted for the name of the new controller, which
should follow the naming convention of ending with Controller. For example, we are going to create a
controller to work with the Products table of the Northwind database, so we used the name
ProductController. There is a check box to add action methods for Create, Update, Delete, and Details
scenarios. Select this box so that Visual Studio creates the template methods with the right naming
conventions. A new file called ProductController.cs has been created in the Controllers folder. Here is
the first part of the new file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using BasicMVCApplication.Models;

namespace BasicMVCApplication.Controllers {
 public class ProductController : Controller {
 //
 // GET: /Product/

 public ActionResult Index() {
 return View();
 }

 //
 // GET: /Product/Details/5

CHAPTER 32 ■ MVC

1366

 public ActionResult Details(int id)
 {
 return View();
 }

The comments before each method tell you the format of the request that will lead to a controller
method being called. For example, the Index method will be called when the user requests the
/Product/ URL.

For our basic application, we want this method to return all the items in the Northwind Products
table. That means it is the job of the Index controller method to get the records from the Product table
and to select the view that will be used to display them. Here is the completed method:

public ActionResult Index() {
 NorthwindEntities db = new NorthwindEntities();
 var data = db.Products;
 return View(data);
}

It is a pretty simple method. You create a new instance of the NorthwindEntities context class, get
the contents of the table through the Products property, and finish by calling the View method and
returning the result. We’ll explain the View method in the “Customizing Views” section later in the
chapter, but it selects the default view used to display the index of the Products table. You’ll complete
the remaining controller methods later; next you will create the Index view you just referenced.

Creating the Index View
When you called View from inside the controller Index method, you passed a collection of Product
instances as the method argument. This has the effect of telling the MVC framework that the Index
view for the Product type should be used to display the data, which is a problem because that view
doesn’t exist.

To create that view, right-click anywhere in the code for the controller Index method, and select Add
View. You will see that the name of the view has been inferred from the controller method name. Select
the Create a strongly typed view option, and select the BasicMVCApplication.Models.Product type from
the list; this will create a view that uses the members of your data model type. If there are no types
available, compile the project and try again. You can see the Add View dialog box in Figure 32-2.

CHAPTER 32 ■ MVC

1367

Figure 32-2. The Add View dialog box

Select List for the view content, which selects the kind of view that will be created for you. Options
exist to match each of the template methods created in the controller class. You’ll come back to the
other view types when you build the rest of the views in the “Completing the Controller and Views”
section that follows. When you click the Add button, Visual Studio creates a Views/Products folder and
generates the view as the Index.aspx file. You’ll see some new tags in that file, but don’t worry about
them for the moment; we cover them in the “Customizing Views” section.

Testing the (Incomplete) Application
You have a model, a partially coded controller, and a single view. That’s just enough for you to check that
everything is working. Select Start Without Debugging from the Debug menu. Your browser will show
the default view for the application, which was created by the MVC template when you created the
project. You’ll change the default view later. To reach the controller, append /Product to the URL that
the browser has loaded. For example, the URL is as follows:

http://localhost:51895/Product

The port number for testing is assigned at random. You will have a different one when you test your
project. This will call the Index method of the controller, which will get the product information from the
data model and select the Products/Index.aspx view to display them. Figure 32-3 shows the result.

http://localhost:51895/Product

CHAPTER 32 ■ MVC

1368

Figure 32-3. Testing the application

You can see that each row is listed and that there are Edit, Delete, and Details links for each one. At
the bottom of the screen is a Create New link. If you click any of these links, you will see an error. That’s
because you have not created the views that support these links or implemented the associated
controller methods. You’ll do that in the next section.

Completing the Controller and Views
Now that you have the basic framework in place, you can implement the rest of the controller methods
and add the views that go with them. Let’s start with the controller methods. The pattern for the first few
is the same—get the Product data, pass it to the View method, and return the result:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using BasicMVCApplication.Models;

namespace BasicMVCApplication.Controllers {
 public class ProductController : Controller {
 //
 // GET: /Product/

 public ActionResult Index() {
 NorthwindEntities db = new NorthwindEntities();
 var data = db.Products;
 return View(data);

CHAPTER 32 ■ MVC

1369

 }

 //
 // GET: /Product/Details/5

 public ActionResult Details(int id) {
 NorthwindEntities db = new NorthwindEntities();
 var data = db.Products.Where(e => e.ProductID == id).Select(e => e).Single();
 return View(data);
 }

 //
 // GET: /Product/Create

 public ActionResult Create() {
 return View(new Product());
 }

For the Details method, you get the ID of the record that is wanted as an argument to the method;
you use that in the LINQ query to find the matching product, which you pass to the View method.

There are two Create methods. The first was shown earlier and is called when the user clicks the
Create New link on the Index view. Your job is to create a new Product instance and pass it to the View
method. The second method is called when the user has filled out the details of the new product and
submitted the form. Here is the template method that was created for you:

[HttpPost]
public ActionResult Create(FormCollection collection) {
 try {

 return RedirectToAction("Index");
 } catch {
 return View();
 }
}

You are going to change the argument to the Create method so that it is an instance of Product. This
is a convenience feature of MVC where the attributes in the HTTP POST operation are transformed into
the data type that the controller is working with—in our case the Product class from the Northwind data
model:

[HttpPost]
public ActionResult Create(Product prod) {
 try {
 NorthwindEntities db = new NorthwindEntities();
 db.AddToProducts(prod);
 db.SaveChanges();
 return RedirectToAction("Index");
 } catch {
 return View();
 }
}

CHAPTER 32 ■ MVC

1370

In the Create method, you add the Product passed in as the argument to the database using the data
model and redirect the user to the Index view. We’ll explain the different types of ActionResult you can
return in a while.

The remaining methods for the Edit and Delete functions come in matched pairs, just like the
Create methods. The pattern in each case is the same—one method called when the user wants to start
the Edit or Delete process and one method called when the user has finished the process and wants to
change the data. Here is the Edit pair:

public ActionResult Edit(int id) {
 NorthwindEntities db = new NorthwindEntities();
 var data = db.Products.Where(e => e.ProductID == id).Select(e => e).Single();
 return View(data);
}

[HttpPost]
public ActionResult Edit(int id, FormCollection collection) {
 try {
 NorthwindEntities db = new NorthwindEntities();
 Product prod = db.Products.Where(e => e.ProductID == id).Select(e => e).Single();

 UpdateModel(prod);
 db.SaveChanges();

 return RedirectToAction("Index");
 } catch {
 return View();
 }
}

The first Edit method is simple enough. You are passed the ID of the product that the user wants to
edit. You get the product data from the model and pass it to the view for display. The second method is
more interesting—you are passed the ID of the product that the user has edited and a FormCollection
that contains the name/value pairs that describe the product. You obtain the unedited version of the
data from the database and then call the UpdateModel method. This is a very useful convenience
method that updates the object you obtained from the model using the fields that the user has
submitted. You then save the changes in the data model. Lastly, here are the Delete methods—nothing
new in these:

public ActionResult Delete(int id) {
 NorthwindEntities db = new NorthwindEntities();
 var data = db.Products.Where(e => e.ProductID == id).Select(e => e).Single();
 return View(data);
}

[HttpPost]
public ActionResult Delete(int id, FormCollection collection) {
 try {
 NorthwindEntities db = new NorthwindEntities();
 Product prod = db.Products.Where(e => e.ProductID == id).Select(e => e).Single();
 db.Products.DeleteObject(prod);
 db.SaveChanges();
 return RedirectToAction("Index");
 } catch {

CHAPTER 32 ■ MVC

1371

 return View();
 }
}

For each of the controller methods, right-click the code statements, and add the view as you did for
the Index view. You need only add a view for the first of the paired methods. You should end up with five
views in the Views/Product folder—Create.aspx, Delete.aspx, Details.aspx, Edit.aspx, and Index.aspx.

Now you have a complete, albeit basic, MVC application. If you select Start Without Debugging from
the Debug menu, you’ll see the list of products, and now that you have implemented the controller
methods and created the views, the links to edit products, see the details, and delete products all
function.

Modifying the Site.Master File
The final task is to update the Site.Master file in the Views/Shared directory so that it no longer
references the HomeController that was created by the Visual Studio MVC project template. Edit the file,
and change the first action link so that the last argument in is Product, as follows:

<%: Html.ActionLink("Home", "Index", "Product")%>

Delete the second link; it refers to an About action method that you are not going to implement in
this chapter.

Extending the Basic MVC Application
The MVC application created in the previous section is basic because, although the core features work,
the application has some pretty big holes. We wanted to get the core features up and running to show
you how the model, views, and controller work together and to demonstrate how easy it is to get
something simple working. In the following sections, you’ll build on the basic MVC application to create
something more robust and useful.

■ Note So that you can see the effect of different features, we have duplicated the project we created in the
previous section and called it ExtendedModel. You can get the projects from this chapter and the examples from

all the other chapters in the source code download for this book, available for free at Apress.com.

Configuring Routing
To test our MVC application, we have to select Start Without Debugging from the Debug menu and then
append /Product to the URL that the browser loads. That’s not ideal, especially since the default page
doesn’t contain anything we are interested in.

The MVC framework maps URL requests to controllers using ASP.NET routing. We explain more
about how routing works in Chapter 33, where we cover dynamic data. In the Global.asax file, you will
see the RegisterRoutes method, which contains the following statement:

CHAPTER 32 ■ MVC

1372

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);

This statement calls the MapRoute method to register a route that does two important things for our
application. First, it sets the format for requests so that when views are rendered, links back to the MVC
application are in the form controller/action/ID. For example, if you wanted to see the details of a
product whose ProductID is 7, the URL would be /product/details/7. If you want to change the format of
the URLs for your MVC application, this is where you do it.

The second important part of the statement is the last argument to the MapRoute method, which
specifies the default values that will be used when they are not supplied as part of the URL. This is why
the Index controller method is invoked when you make a request to /product—you have not supplied an
action, so the default value Index is used. By specifying id = UrlParameter.Optional, you are saying don’t
append a record ID if one isn’t supplied in the request.

You want the ProductController to be the one that is used by default, so change the MapRoute call
as follows:

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Product", action = "Index", id = UrlParameter.Optional }
);

Notice that although the controller class is called ProductController, you specify Product in the
route. Save the change, and select Start Without Debugging from the Debug menu. The default URL for
the application will be loaded in the browser, and you should see the list of products from the database,
as generated by the controller Index method. The previous setting used the HomeController class and
the views in the Views/Home folder. You don’t need those anymore, so you can delete them from the
project. You should also delete the Controllers/HomeControllerTest.cs file from the unit test project.

You can do more with routing. For example, if you want to see the details of a particular product,
you use a URL such as /Product/Details/1, which will invoke the Details method in your controller and
select the Product/Details.aspx view to display the Product with the ProductID of 1. If you omit the ID,
such that you call /Product/Details, you get an exception. You can use routing as one technique to
prevent this kind of problem—we’ll show you another in the “Validating Data” section. Add the
following statement to the Global.asax file:

routes.MapRoute(
 "DefaultDetails",
 "{controller}/Details",
 new { controller = "Product", action = "Index", id = UrlParameter.Optional }
);

This route, called DefaultDetails, is applied when you receive a request with a URL aimed at any
controller, ending with /Details (and therefore omitting the ID). The route maps the URL to our
ProductController class and sets the action to Index, which will generate the default list of product
records.

This new route must be placed before the Default route that was already present. This is because
routes are applied in order until a match is made, and the default route will match any URL received.
Now when you call /Product/Details, you don’t see the exception—you see the list of product
records instead.

CHAPTER 32 ■ MVC

1373

Adding Error Handling
You used routing in the previous section to avoid one kind of error, but that technique works for only
one kind of problem. You need a general error handling capability, which is what we will demonstrate in
this section. MVC supports method filters, which let you annotate controller methods to change the way
they behave. One of the most useful filters is HandleError, which specifies how exceptions thrown in a
controller method are dealt with. Before you can use the HandleError filter, you must enable custom
error handling for your MVC application in web.config. Add the following line in the system.web section:

<customErrors mode="On" />

Here is the HandleError filter applied to the controller class. This means that any exception that is
thrown by any of the action methods in the controller will be handled using the custom error policy.

namespace BasicMVCApplication.Controllers {
 [HandleError]
 public class ProductController : Controller {

When you apply the HandleError filter with no arguments, you are specifying that any exception
thrown by the methods covered by the filter will result in the Views/Shared/Error.aspx view being used.
This view simply displays the message “Sorry, an error occurred while processing your request.” To test
this, try to view the details of a product that doesn’t exist, such as with a URL similar to the following (the
port number used will differ):

http://localhost:51895/Product/Details/100

You can be more specific. It is useful to display the generic error view as a backstop, but you might
want to give the user more specific information. Create a view in the Views/Shared folder called
NoSuchRecordError.aspx with the following content:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<System.Web.Mvc.HandleErrorInfo>" %>

<asp:Content ID="errorTitle" ContentPlaceHolderID="TitleContent" runat="server">
 Error
</asp:Content>

<asp:Content ID="errorContent" ContentPlaceHolderID="MainContent" runat="server">
 <h2>
 Sorry, you requested a record that doesn't exist.
 </h2>
</asp:Content>

This is a variation on the default error view but with a message that is specific to requesting a
product that doesn’t exist in the database. Now apply the HandleError filter to the Details controller
method like this:

[HandleError(View="NoSuchRecordError")]
public ActionResult Details(int id) {

The filter instructs the MVC framework to use the NoSuchRecordError view for any exception
thrown by the Details method. You have to change the backstop filter to be as follows:

http://localhost:51895/Product/Details/100

CHAPTER 32 ■ MVC

1374

[HandleError(Order=2)]
public class ProductController : Controller {

An Order value of 2 will ensure that the controller-wide filter will be applied only if there isn’t a
HandleError filter with a higher order available. If you had not set a value for Order, the default error
view would have taken precedence.

Now if you try to get the details for a nonexistent product, you will be shown the new error view. If
any of the other controller methods throw an exception, then the default error view will be used.

The problem you face now is that the user will be told they requested a nonexistent record even if a
different kind of problem arises in the Details method. Not to worry—you can be even more specific.
First you create an exception in the ProductController class that you will use when you can’t find a
record the user has requested:

class NoSuchRecordException : Exception {
}

You then modify the Details method to explicitly check to see whether a record was returned by the
LINQ query and throw the new exception if there isn’t one.

[HandleError(View="NoSuchRecordError",
 ExceptionType=typeof(NoSuchRecordException))]
public ActionResult Details(int id) {
 NorthwindEntities db = new NorthwindEntities();
 var data = db.Products.Where(e => e.ProductID == id).Select(e => e);
 if (data.Count() == 0) {
 throw new NoSuchRecordException();
 } else {
 Product record = data.Single();
 return View(record);
 }
}

You have changed the HandleError filter by adding a value for the ExceptionType property,
specifying the type of the exception you want the filter to apply to. Now when you throw a
NoSuchRecordException(), the NoSuchRecordError.aspx view will be used, but the more generic
Error.aspx will be used for all other types of exception (because you have applied the controller-wide
backstop filter).

Adding Authentication
The default MVC project created by the Visual Studio template contains a controller for user
authentication—it is the AccountController class. Before you can use this controller, you need to modify
it so that it doesn’t refer to the HomeController that you removed earlier. To do that, replace each of
these three instances:

return RedirectToAction("Index", "Home");

so that they are as follows:

return RedirectToAction("Index", "Product");

CHAPTER 32 ■ MVC

1375

This change causes the authentication controller to redirect the user to the product controller at the
end of each authentication action. The default master page contains links for users to log in, log out, and
register a new account.

The Authorize filter allows you to control which users can access your controller methods. Here is
the Authorize filter applied to the Delete method in the product controller class:

[Authorize]
public ActionResult Delete(int id) {
 NorthwindEntities db = new NorthwindEntities();
 var data = db.Products.Where(e => e.ProductID == id).Select(e => e).Single();
 return View(data);
}

When the user clicks a link to delete a product record, the MVC framework is checked. If the user
has logged in, then the action will proceed—but if they have not, they will be prompted to provide their
username and password or to create a new account.

You can be more restrictive by specifying user names as part of the filter. Here is the Authorize filter
applied so that the Delete method is available only to the user John Doe:

[Authorize(Users="John Doe")]

public ActionResult Delete(int id) {

Now only John Doe can perform delete actions—every other user will be prompted for credentials.
The Authorize filter can also be applied to the entire controller class. Here is the Authorize filter
applied to the ProductController class, which means that only authenticated users can access the
controller actions:

[HandleError(Order=2)]
[Authorize]
public class ProductController : Controller {

The Authorize filter has an Order property that works just like the HandleError Order property. If
you apply the Authorize filter for the entire controller level and for a specific action method, the
controller-wide setting will take precedence unless you use the Order property.

Consolidating Data Store Access
Each method in the controller creates a new instance of the data model context and contains its own
logic for reading and writing data. You want to consolidate and abstract access to the data model so that
you have less code repetition and improve connection performance. To do that, create a class called
NorthwindAccessConsolidator that handles the interactions with the model in one central place. Put this
class in the ProductController.cs file, as follows:

class NorthwindAccessConsolidator {
 private NorthwindEntities db = new NorthwindEntities();

 public IEnumerable<Product> ListProducts() {
 return db.Products;
 }

 public Product GetProduct(int id) {
 IEnumerable<Product> data = db.Products

CHAPTER 32 ■ MVC

1376

 .Where(e => e.ProductID == id)
 .Select(e => e);
 return data.Count() > 0 ? data.Single() : null;
 }

 public void DeleteProduct(int id) {
 Product prod = GetProduct(id);
 if (prod != null) {
 db.Products.DeleteObject(prod);
 SaveChanges();
 }
 }

 public void StoreNewProduct(Product prod) {
 db.Products.AddObject(prod);
 SaveChanges();
 }

 public void SaveChanges() {
 db.SaveChanges();
 }
}

The only oddity in this class is that the SaveChanges method is publicly accessible. We have done
this to support the model update feature we rely on in the Edit action method. You can refactor the
controller class to make use of the new model access consolidator class:

public class ProductController : Controller {
 private NorthwindAccessConsolidator nwa
 = new NorthwindAccessConsolidator();

 //
 // GET: /Product/

 public ActionResult Index() {
 return View(nwa.ListProducts());
 }

 //
 // GET: /Product/Details/5

 [HandleError(View = "NoSuchRecordError", ExceptionType = typeof(NoSuchRecordException))]
 public ActionResult Details(int id) {
 Product prod = nwa.GetProduct(id);
 if (prod == null) {
 throw new NoSuchRecordException();
 } else {
 return View(prod);
 }
 }

 //
 // GET: /Product/Create

CHAPTER 32 ■ MVC

1377

 public ActionResult Create() {
 return View(new Product());
 }

 //
 // POST: /Product/Create

 [HttpPost]
 public ActionResult Create(Product prod) {
 try {
 nwa.StoreNewProduct(prod);
 return RedirectToAction("Index");
 } catch {
 return View();
 }
 }

 //
 // GET: /Product/Edit/5

 public ActionResult Edit(int id) {
 return View(nwa.GetProduct(id));
 }

 //
 // POST: /Product/Edit/5

 [HttpPost]
 public ActionResult Edit(int id, FormCollection collection) {
 try {
 Product prod = nwa.GetProduct(id);
 if (prod != null) {
 UpdateModel(prod);
 nwa.SaveChanges();
 return RedirectToAction("Index");
 } else {
 throw new NoSuchRecordException();
 }
 } catch {
 return View();
 }
 }

 //
 // GET: /Product/Delete/5

 public ActionResult Delete(int id) {
 return View(nwa.GetProduct(id));
 }

 //
 // POST: /Product/Delete/5

 [HttpPost]

CHAPTER 32 ■ MVC

1378

 public ActionResult Delete(int id, FormCollection collection) {
 try {
 nwa.DeleteProduct(id);
 return RedirectToAction("Index");
 } catch (Exception ex) {
 Console.WriteLine(ex);
 return View();
 }
 }
}

The refactored controller creates an instance of the NorthwindAccessConsolidator class and then
uses it in each of the action methods.

Adding Support for Foreign Key Constraints
You may have noticed that everything works fine if you create a new product and then delete it but that
you get an exception if you try to delete one of the existing product entries. This happens because there
is a foreign-key constraint between the Northwind Products and Order_Details tables, such that rows in
Order_Details must have valid ProductID values taken from the Products table. To fix this, when you are
asked to delete a product, you need to delete any Order_Detail instances that use the ProductID as well.
Update the DeleteProduct in the NorthwindAccessConsolidator class like so:

public void DeleteProduct(int id) {
 Product prod = GetProduct(id);
 if (prod != null) {
 IEnumerable<Order_Detail> ods =
 db.Order_Details
 .Where(e => e.ProductID == id)
 .Select(e => e);
 foreach (Order_Detail od in ods) {
 db.Order_Details.DeleteObject(od);
 }

 db.Products.DeleteObject(prod);
 SaveChanges();
 }
}

Customizing Views
When you created your basic MVC application, you had Visual Studio generate the views for you
automatically. This is a useful feature, but the views that you end up with are pretty simplistic and
should be tailored to the specifics of your data model types. For example, if you start the MVC
application and click the Create New link, you’ll see that the view contains a field for the user to enter a
ProductID value and field for the Discontinued value. We don’t want the user to enter a ProductID—this
is the primary key for the Products database table and will be generated automatically for you. And you
don’t want the user to be able to enter text freely for a Boolean field. In this section, we’ll show you how
to work with the MVC views so that they work better with the constraints of your data model and better
suit your overall application. There are three components that you need to know about in order to
master MVC views—they are the model data, the view data, and the HTML helpers.

CHAPTER 32 ■ MVC

1379

Modifying the View
Take a look at the Product/Details.aspx view that Visual Studio created for you. The page definition for
an MVC view specifies what data model type it will use. Here is the page definition for the Details view,
which will be used to display an instance of the Product class in the Entity Framework data model
created at the start of the chapter:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<BasicMVCApplication.Models.Product>" %>

The members of the type that will be displayed are available via the Model reference, which you can
see throughout the Details view:

<div class="display-label">ProductID</div>
<div class="display-field"><%: Model.ProductID %></div>

<div class="display-label">ProductName</div>
<div class="display-field"><%: Model.ProductName %></div>

<div class="display-label">SupplierID</div>
<div class="display-field"><%: Model.SupplierID %></div>

It is through these calls to Model that the Details view is created. For each element of the Product
data model type, there is a call to get the value of that type in the Details.aspx file. The first thing you
want to do is tidy up the display. Rather than just listing the field names and values, you will display the
product details in a table:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<BasicMVCApplication.Models.Product>" %>

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
 Details
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Details</h2>

 <fieldset>
 <legend>Product Details</legend>
 <table>
 <tr><td>Product Name:</td><td><%: Model.ProductName%></td></tr>
 <tr><td>Supplier ID:</td><td><%: Model.SupplierID%></td></tr>
 <tr><td>Category ID:</td><td><%: Model.CategoryID%></td></tr>
 <tr><td>Quantity per Unit:</td><td><%: Model.QuantityPerUnit%></td></tr>
 <tr><td>Unit Price:</td><td><%: Model.UnitPrice %></td></tr>
 <tr><td>Units in Stock:</td><td><%: Model.UnitsInStock%></td></tr>
 <tr><td>Units on Order:</td><td><%: Model.UnitsOnOrder%></td></tr>
 <tr><td>Reorder Level:</td><td><%: Model.ReorderLevel%></td></tr>
 <tr><td>Discontinued:</td><td><%: Model.Discontinued%></td></tr>
 </table>
 </fieldset>
 <p>

CHAPTER 32 ■ MVC

1380

 <%: Html.ActionLink("Edit", "Edit", new { id=Model.ProductID }) %> |
 <%: Html.ActionLink("Back to List", "Index") %>
 </p>

</asp:Content>

You’ll notice that you have removed the reference to the primary key. You need this to work with the
data model, but you don’t need to display it to the user. When you refactored the view, you simply took
out the call to Model.ProductID.

The next step is to change the way that some of the fields are displayed. You will start with the
UnitPrice field. Change the view so that the markup for the unit price is as follows:

<tr>
 <td>Unit Price:</td>
 <td><%= String.Format("{0:F2}", Model.UnitPrice) %></td>
</tr>

You can use the standard ASP.NET features in your MVC views. In this case, you call the
String.Format method to display the UnitPrice field in a suitable form for a monetary amount. You just
pass in the Model.UnitPrice value as the argument to the method call.

One of the nicest features of MVC are the HTML helper methods, which make it easy to generate
HTML using the model data. You don’t want to display Boolean values as text strings, so you modify the
tags for the Discontinued field to be as follows:

<tr>
 <td>Discontinued:</td>
 <td><%= Html.CheckBoxFor(e => e.Discontinued, new {disabled="true"}) %></td>
</tr>

Here you are using the Html.CheckBoxFor helper method. This method takes a lambda expression
that identifies which field the check box relates to and an object that you can use to specify additional
HTML attributes. The lambda expression selects the Discontinued field and sets the disabled attribute
(because you are displaying static details). When the Details view is rendered, the call to the HTML
helper method will generate a fragment of HTML that defines the check box and sets the state to match
your model data.

There are HTML helper methods to create most types of HTML inputs, including drop-down lists,
password controls, and text areas—you’ll use some of these features in the next section. Table 32-1 lists
the most commonly used HTML helper methods.

Table 32-1. MVC HTML Helper Methods

Helper Method Description

ActionLink Creates a link that calls a controller method in the MVC application

BeginForm Creates a form that will post back to a controller method

CheckBoxFor Creates a check box for a Boolean value

DropDownListFor Uses a SelectList to create a drop-down list

CHAPTER 32 ■ MVC

1381

Helper Method Description

ListBoxFor Creates a list that allows multiple selections

PasswordFor Creates a text box suitable for entering a password

RadioButtonFor Creates a radio button

TextAreaFor Creates a multiline text entry area

TextBoxFor Creates a single-line text entry box

The helper methods listed in Table 32-1 are known as the strongly typed helper methods and were

introduced as part of MVC 2. They accept lambda expressions to identify the data field they will generate
HTML for and generate compile-time errors if the field does not exist or cannot be rendered into the
requested kind of HTML.

The ActionLink helper method, which is used to generate links that call back into the MVC
application, is also very useful. The default Details view contains two links at the bottom of the page—
one to edit the record being viewed and one to return to the Index view. You can modify the template to
add a new link that calls the Delete method in the controller:

<%: Html.ActionLink("Edit", "Edit", new { id=Model.ProductID }) %> |
<%: Html.ActionLink("Delete", "Delete", new { id=Model.ProductID }) %> |
<%: Html.ActionLink("Back to List", "Index") %>

Now when you view the details page, you have the option to delete the product record without
going back to the Index view. The ActionLink method takes care of generating a link that will target the
right action in the controller, as defined by the routing set up earlier.

Adding View Data
We still have a couple of issues with the Details view. The SupplierID and CategoryID fields are keys into
other tables, and displaying the field values directly doesn’t help the user. It would be nice if you could
supply the user-friendly values from the other Northwind tables. We will show how to do this using the
view data feature, which lets controllers pass information to views alongside the model data.

First, you need to add methods to the NorthwindAccessConsolidator class so that you can get the
user-friendly names for the category and supplier:

public string GetSupplierName(Product prod) {
 return db.Suppliers
 .Where(e => e.SupplierID == prod.SupplierID)
 .Select(e => e.CompanyName)
 .Single();
}

public string GetCategoryName(Product prod) {
 return db.Categories
 .Where(e => e.CategoryID == prod.CategoryID)
 .Select(e => e.CategoryName)
 .Single();
}

CHAPTER 32 ■ MVC

1382

You then need to update the controller to get the category and supplier and pass them to the view.
Here is the revised Details method:

public ActionResult Details(int id) {
 Product prod = nwa.GetProduct(id);
 if (prod == null) {
 throw new NoSuchRecordException();
 } else {
 ViewData["CatName"] = nwa.GetCategoryName(prod);
 ViewData["SupName"] = nwa.GetSupplierName(prod);
 return View(prod);
 }
}

You can pass arbitrary data to the view by using the ViewData collection, which you inherit from the
default controller class. All you need to do is define a key and a value. In our Details method, we have
defined the CatName key to be the category string we want to use and the SupName key to be the
supplier name.

To access the data in the view, you access the keys you defined in the controller. Here are the
modified tags from the Details.aspx view:

<tr>
 <td>Supplier:</td>
 <td><%: ViewData["SupName"] %></td>
</tr>
<tr>
 <td>Category:</td>
 <td><%: ViewData["CatName"] %></td>
</tr>

The values that you set in the controller will now be displayed in the view when it is rendered. The
SupplierID and CategoryID fields are still available via the model data, but you have just chosen not to
use them.

The combination of being able to access the model data fields and easily generate HTML around
them means you can tailor views easily. With very little effort you have improved the Details view to
remove unwanted elements, format some of the data elements more clearly, and add extra functionality,
as shown in Figure 32-4.

CHAPTER 32 ■ MVC

1383

Figure 32-4. Customizing the Details MVC view

Adding to the Model
We are going to move on to the Edit view now. Much of what we covered can be applied to this view, but
there are a couple of wrinkles that let us demonstrate some other useful MVC features in this section and
the next one. Here is the updated Edit.aspx:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<ExtendedModel.Models.Product>" %>
<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
 Edit
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Edit</h2>

 <% using (Html.BeginForm()) {%>

 <fieldset>
 <legend>Edit Product Details</legend>
 <table>
<tr><td>Product Name:</td><td><%: Html.TextBoxFor(model => model.ProductName) %></td></tr>
<tr><td>Supplier:</td><td><%: Html.TextBoxFor(model => model.SupplierID) %></td></tr>
<tr><td>Category:</td><td><%: Html.TextBoxFor(model => model.CategoryID) %></td></tr>
<tr><td>Quantity per Unit:</td>
 <td><%: Html.TextBoxFor(model => model.QuantityPerUnit) %></td></tr>
<tr>

CHAPTER 32 ■ MVC

1384

 <td>Unit Price:</td>
 <td><%: Html.TextBoxFor(model => model.UnitPrice,
 new {Value = String.Format("{0:F2}", Model.UnitPrice)})%></td>
 </tr>
<tr><td>Units in Stock:</td>
 <td><%: Html.TextBoxFor(model => model.UnitsInStock) %></td></tr>
<tr><td>Units on Order:</td>
 <td><%: Html.TextBoxFor(model => model.UnitsOnOrder) %></td></tr>
<tr><td>Reorder Level:</td><td><%: Html.TextBoxFor(model => model.ReorderLevel) %></td></tr>
<tr><td>Discontinued:</td><td><%: Html.CheckBoxFor(model => model.Discontinued) %></td></tr>
 </table>
 </fieldset>
 <p>
 <input type="submit" value="Save" />
 </p>
 <% } %>
 <div>
 <%: Html.ActionLink("Back to List", "Index") %>
 </div>
</asp:Content>

There are a couple of differences to mention straightaway. We have used the BeginForm HTML
helper method. This generates the HTML required for a form that will post back to our controller with a
URL—in this case /Product/Edit/<ProductID>. The second difference is that we have used the
TextBoxFor HTML helper method for most of the data fields—this method creates an editable text box
that contains the value for the data model field you specify. You supply the formatted UnitPrice value by
overriding the value attribute of the text box.

■ Tip When using the result of String.Format to set the value for a text box, be sure to specify the HTML
attribute as Value (not value, with a lowercase v). If you do not, the MVC HTML helper method will ignore your

formatted string.

If you start the application and click one of the Edit links, you can see how the view is rendered,
shown by Figure 32-5.

CHAPTER 32 ■ MVC

1385

Figure 32-5. The modified Edit view

There is a problem with the Supplier and Category fields again. The previous solution won’t work
because the user needs to pick from a list, rather than see a single value. You are going to solve this by
extending the data model and using some useful view data and HTML helper methods.

First you must extend your NorthwindAccessConsolidator class to let you get a complete list of
supplier and category names and then get a SupplierID or CategoryID from a name string:

public IEnumerable<string> GetAllSuppliers() {
 return db.Suppliers.Select(e => e.CompanyName);
}

public int GetSupplierID(string name) {
 return db.Suppliers
 .Where(e => e.CompanyName == name)
 .Select(e => e.SupplierID).Single();
}

public IEnumerable<string> GetAllCategories() {
 return db.Categories.Select(e => e.CategoryName);
}

public int GetCategoryID(string name) {

CHAPTER 32 ■ MVC

1386

 return db.Categories
 .Where(e => e.CategoryName == name)
 .Select(e => e.CategoryID).Single();
}

Now you are going to extend the data model by adding a new class in the Models folder called
ProductListWrapper. This class is a simple wrapper that encompasses a Product instance and defines
two new fields to track the supplier and category names:

namespace ExtendedModel.Models {

 public class ProductListWrapper {
 public Product product { get; set; }
 public string SelectedSupplier { get; set; }
 public string SelectedCategory { get; set; }
 }
}

You now modify the first Edit method in the controller so that it creates an instance of
ProductListWrapper that is returned using the View method. This is the Edit method that is called when
the user clicks the Edit link in the Index view. You use the ViewData feature to pass instances of the
SelectList class to the view. This is a special MVC type that you can use to send lists of objects for
rendering.

public ActionResult Edit(int id) {

 ViewData["categories"] = new SelectList(nwa.GetAllCategories());
 ViewData["suppliers"] = new SelectList(nwa.GetAllSuppliers());

 Product prod = nwa.GetProduct(id);

 ProductListWrapper wrap = new ProductListWrapper() {
 product = prod,
 SelectedCategory = prod.Category.CategoryName,
 SelectedSupplier = prod.Supplier.CompanyName,

 };
 return View(wrap);
}

Having changed the controller Edit method so that it creates and returns an instance of the wrapper
class, you need to update Edit.aspx so that the view knows how to render the new type. You start by
changing the page definition so that it refers to the wrapper type, as shown in bold:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<ExtendedModel.Models.ProductListWrapper>"
%>

The model references in the view need to be updated from model.Fieldname to
model.product.Fieldname to reflect the structure of the wrapper type. Here is an example of a modified
declaration:

CHAPTER 32 ■ MVC

1387

<tr><td>Product Name:</td><td>
 <%: Html.TextBoxFor(model => model.product.ProductName) %></td></tr>
<tr>

To complete the changes to Edit.aspx, you need to use the SelectList instances that you added to
the view data. You do that by using the DropDownListFor HTML helper method, which takes a field
from the model data and an instance of SelectList from ViewData (which you have to cast to SelectList
explicitly).

<tr><td>Supplier:</td>
<td><%: Html.DropDownListFor(model =>
 model.SelectedSupplier, ViewData["suppliers"] as SelectList) %></td></tr>
<tr><td>Category:</td>
<td><%: Html.DropDownListFor(model =>
 model.SelectedCategory, ViewData["categories"] as SelectList) %></td></tr>

The HTML helper generates a drop-down list with each of the values you supplied in the SelectList
and ensures that the values in the SelectedSupplier and SelectedCategory fields are initially selected in
the list.

The last step is to modify the controller Edit method that is called when you post back the changes.
In this method, you need to unpack the wrapper Product instance, update the SupplierID and
CategoryID values so that they match the user selections, and store the Product record via the data
model. Here is the new method:

[HttpPost]
public ActionResult Edit(int id, FormCollection collection) {
 try {
 Product prod = nwa.GetProduct(id);
 if (prod != null) {
 ProductListWrapper wrapper = new ProductListWrapper() {
 product = prod
 };
 UpdateModel(wrapper);
 prod.SupplierID = nwa.GetSupplierID(wrapper.SelectedSupplier);
 prod.CategoryID = nwa.GetCategoryID(wrapper.SelectedCategory);
 nwa.SaveChanges();
 return RedirectToAction("Index");
 } else {
 throw new NoSuchRecordException();
 }
 } catch {
 return View();
 }
}

By creating a simple addition to the data model and updating the controller and view, you have
been able to map the numeric foreign-key values into something that the user can understand and
change by selecting from a list. You could use this same approach to mix data from two different data
models into a single application—creating data types that combine elements from two different data
stores, for example. We picked this example because it demonstrates the flexibility of the MVC
framework. Small adaptations can create a lot of value for little effort.

CHAPTER 32 ■ MVC

1388

Validating Data
Now that you have tidied up the view that the user edits data with, it is time to add support for validating
what is entered. You get some validation support from the data model. If the user tries to enter a string
value in a field that the database is expecting a numeric value for, then the user will be shown an error
screen—either the default ASP.NET stack trace screen or a custom error page if you have enabled
custom error handling in your controller and application. Most users won’t be able to unpick a stack
trace to determine that they entered an unexpected value—and nor should they, which is why there are
some solid validation features built into the MVC framework.

Performing Basic Validation
The MVC framework makes it very easy to check for validation errors when data is posted back from the
client to the controller. We have changed the signature of the Edit method that receives the user data so
that the MVC framework will automatically create an instance of ProductListWrapper from the form
values.

To check for validation errors, you call ModelState.IsValid. If there are validation problems, you
return from the method early, specifying that the ProductListWrapper instance pass to the Edit method
be viewed using the Edit view. Notice that you included the lists of supplier and category names as view
data again. This is because Edit.aspx depends on this data to render the display. If you do not include the
lists of names, an exception will be thrown when the view is rendered. We have shown the changes to
the Edit controller method in bold:

public ActionResult Edit(int id, ProductListWrapper pwrap) {
 try {
 if (!ModelState.IsValid) {
 ViewData["categories"] = new SelectList(nwa.GetAllCategories());
 ViewData["suppliers"] = new SelectList(nwa.GetAllSuppliers());
 return View("Edit", pwrap);
 }

 Product prod = nwa.GetProduct(id);
 if (prod != null) {
 ProductListWrapper wrapper = new ProductListWrapper() {
 product = prod
 };
 UpdateModel(wrapper);
 prod.SupplierID = nwa.GetSupplierID(wrapper.SelectedSupplier);
 prod.CategoryID = nwa.GetCategoryID(wrapper.SelectedCategory);
 nwa.SaveChanges();
 return RedirectToAction("Index");
 } else {
 throw new NoSuchRecordException();
 }
 } catch {
 return View();
 }
}

CHAPTER 32 ■ MVC

1389

In Edit.aspx you need to add a statement to take advantage of the validation support:

...
<legend>Edit Product Details</legend>

<%= Html.ValidationSummary("Edit was unsuccessful. Please correct the errors and
 try again.") %>

 <table>
...

Now if you submit data that does not match the field types in the data model, you will see the result
of the validation check. As an illustration, Figure 32-6 shows the result of entering non-numeric values
for the UnitsOnOrder and ReorderLevel fields. You can see that the message you included to the
Html.ValidationSummary method is displayed as well as a message for each problem that was
encountered. The text boxes for the problem items are highlighted for the user as well.

Figure 32-6. Data validation summary

CHAPTER 32 ■ MVC

1390

If you want to embed validation warnings alongside the data field, you can use the
ValidationMessageFor helper method, which will generate a validation warning for a specific data item.
For example, here is the helper method applied to the ReorderLevel field:

<tr>
 <td>Reorder Level:</td>
 <td>
 <%: Html.TextBoxFor(model => model.product.ReorderLevel)%>
 <%: Html.ValidationMessageFor(model => model.product.ReorderLevel) %>
 </td>
</tr>

If you try to submit an edit using a non-numeric value for the reorder level, you see the field-specific
error shown in Figure 32-7. The validation helper methods have a number of overrides that let you
control the messages that are displayed.

Figure 32-7. A field-specific validation error

Adding Validation Annotations
The MVC framework supports metadata annotation for validation, which allows you to use some
standard annotations to enforce common validation rules and to define custom constraints. You can use
the partial class feature to associate a metadata class with the data model types and then apply C#
annotations to it.

To jump right in, here is the metadata class that applies a range validation check to the UnitsInStock
property from the Product model data type, which was created in the Models project folder:

using System.ComponentModel.DataAnnotations;

namespace ExtendedModel.Models {

 [MetadataType(typeof(ProductMetaData))]
 public partial class Product {

 public class ProductMetaData {
 [Range(1, 50)]
 public object UnitsInStock { get; set; }
 }
 }
}

You define the partial class to have the same signature as the Product class generated when you
created the Entity Framework data model. We have applied the MetaDataType attribute to our partial
class, specifying that the ProductMetaData class will hold the metadata for the Product class (this is
indirect, you know, but stay with us—you need to do this only once for each data model type you want
to annotate).

In the ProductMetaData class, you define a property with the same name as the field you want to
perform validation on. You don’t have to match the property type—the metadata system works on the

CHAPTER 32 ■ MVC

1391

member names. You define a property called UnitsInStock and annotate it with the Range attribute,
specifying that the valid ranges for the UnitsInStock field are between 1 and 50.

If you try to edit a record and provide a value for UnitsInStock that is outside the specified range, a
validation error is generated, as shown in Figure 32-8.

Figure 32-8. A validation error generated from a Range annotation

The validation attributes are in the System.ComponentModel.DataAnnotations namespace. We
used the RangeAttribute, which allows us to specify a range for a numeric value; there are other
attributes that let you specify the length of a string (StringLengthAttribute), match a regular expression
(RegularExpressionAttribute), ensure a value is supplied (RequiredAttribute), and specify that a value of
a certain type (DataTypeAttribute).

You can also create custom validation attributes by deriving from the ValidationAttribute class. Here
is a simple attribute that ensures a numeric value is either odd or even:

using System.ComponentModel.DataAnnotations;

namespace ExtendedModel.Models {

 public class OddOrEvenAttribute: ValidationAttribute {
 public Mode mode {get; set;}

CHAPTER 32 ■ MVC

1392

 public OddOrEvenAttribute(Mode m) {
 mode = m;
 }

 public override bool IsValid(object value) {
 try {
 if (int.Parse(value.ToString()) % 2 == 0) {
 return mode == Mode.Even;
 } else {
 return mode == Mode.Odd;
 }
 } catch {
 return false;
 }
 }

 public enum Mode {
 Odd,
 Even
 };
 }
}

The IsValid method is called by the MVC framework when data is submitted for the data model field
to which the attribute has been applied. Try to cast the object to an integer and then check to see
whether it is odd or even. If you get an error performing the cast or the number isn’t correctly odd or
even, you return false, indicating that the value hasn’t passed validation. If you return true, you indicate
that the value is valid. Here is the custom attribute applied to UnitsInStock via the metadata class:

using System.ComponentModel.DataAnnotations;

namespace ExtendedModel.Models {

 [MetadataType(typeof(ProductMetaData))]
 public partial class Product {

 public class ProductMetaData {
 [Range(1, 50)]
 [OddOrEven(OddOrEvenAttribute.Mode.Even,
 ErrorMessage="Units In Stock must be even")]
 public object UnitsInStock { get; set; }
 }
 }
}

We have supplied a value for the ErrorMessage property, which will be shown to the user as the
validation warning if an unsuitable value is submitted, as shown in Figure 32-9.

CHAPTER 32 ■ MVC

1393

Figure 32-9. A validation message from a custom validation attribute

Using Action Results
In the controller methods, you return the result of the View method or, in one case, the RedirectToRoute
method. In this section, we’ll explain the significance of these methods and show you how to can use
them to control your MVC application.

The MVC framework requires all controller action methods to return an instance of ActionResult—
this is how the framework knows what to do—render a view for the user, call another action method,
and so on. To make life easier for the MVC programmer, Microsoft has included a number of helper
methods that you can use to create instances of subclasses of ActionResult to achieve different effects.

For example, to tell the MVC framework to render a view to the user, you return an instance of
ViewResult. This is the subclass of ActionResult that tells MVC that a view is required. The helper
method to create a ViewResult is View, which is why we have been using it so liberally. View has a
number of overloads. Pass an object to View as the sole argument, and the MVC framework will
determine the view to use based on the action method name and use it to display the object you
supplied. Other overrides let you specify the master page, the view, and the object to display.

If you want to return the results of another controller method, then you can return the
RedirectToRouteResult class, which you can easily create using the RedirectToAction help method.
Table 32-2 describes the most useful controller helper methods and the types they return, two of which
we demonstrate in the following sections.

CHAPTER 32 ■ MVC

1394

Table 32-2. Controller ActionResult Helper Methods

Helper Method ActionResult Subclass Description

Views ViewResult Renders a view

RedirectToAction RedirectResult Returns the result of another controller method

Json JsonResult Serializes a data model object using JSON

Javascript JavaScriptResult Returns a script to be executed by the client

FileResult FileResult Returns the contents of a file

Returning JSON Data
Returning data from the model in JSON format is commonly required when using scripts, including
those written using jQuery. You can return data as JSON simply by passing an object to the JSON helper
method—although you should be careful when doing this using data model classes created by the Entity
Framework or LINQ to SQL wizards. The automatically generated data models contain circular
references that make navigation between data from different tables easy but that upset the JSON emitter.
We have added a new action method to our controller that writes out details of a product as JSON:

public ActionResult JsonDetails(int id) {
 Product prod = nwa.GetProduct(id);
 if (prod == null) {
 throw new NoSuchRecordException();
 } else {
 return Json(new {
 ProductId = prod.ProductID,
 ProductName = prod.ProductName,
 SupplierID = prod.SupplierID,
 CategoryID = prod.CategoryID,
 UnitPrice = prod.UnitPrice,
 UnitsInStock = prod.UnitsInStock,
 UnitsOnOrder = prod.UnitsOnOrder,
 ReorderLevel = prod.ReorderLevel,
 Discontinued = prod.Discontinued
 }, JsonRequestBehavior.AllowGet);
 }
}

If you had passed in the Product instance as the argument to the Json method, you would have
received an exception reporting the circular dependency. We have avoided this by creating a new
anonymous type that contains just the properties we want serialized. You call this method by requesting
a URL such as the following:

http://localhost:7474/Product/JsonDetails/1

http://localhost:7474/Product/JsonDetails/1

CHAPTER 32 ■ MVC

1395

You receive the following JSON data as the result:

{
 "ProductId":1,
 "ProductName":"Chai Tea",
 "SupplierID":1,
 "CategoryID":1,
 "UnitPrice":19.2256,
 "UnitsInStock":12,
 "UnitsOnOrder":0,
 "ReorderLevel":10,"
 Discontinued":false
}

When you called Json in the JsonDetails method, you supplied an additional argument with the
AllowGet value from the JsonRequestBehavior enumeration. This is a security measure added to MVC 2
that requires you to explicitly enable returning JSON data for HTTP GET requests.

Calling Another Controller Method
Earlier in the chapter we showed you how to create a custom error view. That was a useful example but
would have required a different view to be created for each kind of application exception—fine for a
simple example but cumbersome for a real project.

We will revisit error handling to demonstrate the use of the RedirectToAction helper method. Say
you want to create a more general error view that displays two strings—one to indicate the kind of
problem the user has encountered and one that will be helpful to the programmer in figuring out what
happened in the code. You start by creating a new method in your ProductController class:

public ActionResult CustomError(string message, string detail) {
 ViewData["ErrorMessage"] = message;
 ViewData["ErrorDetail"] = detail;
 return View("CustomError");
}

This is a very simple method—you provide a message string and a detail string that are passed to the
view using the view data feature. You then call the View helper method to display a view called
CustomError. Here are the contents of Views/Shared/CustomError.aspx:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<System.Web.Mvc.HandleErrorInfo>" %>

<asp:Content ID="errorTitle" ContentPlaceHolderID="TitleContent" runat="server">
 Error
</asp:Content>

<asp:Content ID="errorContent" ContentPlaceHolderID="MainContent" runat="server">
 <h2>
 Sorry, an error occurred while processing your request.
 </h2>
 <h3><%: ViewData["ErrorMessage"] %> </h3>
 <h4><%: ViewData["ErrorDetail"]%></h4>
</asp:Content>

CHAPTER 32 ■ MVC

1396

To demonstrate the use of the new controller method, you will update the Details method so that
you use the CustomError view when dealing with a request for a nonexistent record:

public ActionResult Details(int id) {
 Product prod = nwa.GetProduct(id);
 if (prod == null) {
 return RedirectToAction("CustomError",
 new {
 message = "You requested an unknown product",
 detail = String.Format("No record for ID of {0}", id)
 });
 } else {
 ViewData["CatName"] = nwa.GetCategoryName(prod);
 ViewData["SupName"] = nwa.GetSupplierName(prod);
 return View(prod);
 }
}

When using the RedirectToAction helper method, you must supply the name of the controller
method you want to call and provide an object that has properties whose names match the parameters
of the target method—in our case, you created properties for message and detail since they are the
parameter names for the CustomError controller method. Requesting a record that doesn’t exist causes
the Details method to call the CustomError method and generate the view shown in Figure 32-10.

Figure 32-10. A general-purpose error view

Summary
In this chapter, we showed how to create a basic MVC application using the Northwind database to
generate the model. We explained how to create controller classes and views and how all three
components fit together. We showed you how to extend the basic application to include validation and
authentication and how to route requests between controller methods—all you need to know to get up
and running with MVC.
We like MVC a lot, but when starting a project, you should think carefully about what you are trying to
achieve before adopting MVC in preference to web forms. And, if you are building a simple data-centric
application, you should read Chapter 33 of this book, where we cover the dynamic data system—yet
another alternative that mixes design elements of both MVC and web forms.

C H A P T E R 33

■ ■ ■

1397

Dynamic Data

ASP.NET Dynamic Data allows you to build data-centric web applications quickly and with very little
effort. Template pages are populated by inferring type information from a data model schema, and little
or no coding is required. The amount of functionality you can get with 15 minutes of work can be pretty
impressive, and once the basic features have been created for you, there are extensive options for
customization.

Creating a Dynamic Data Application
The best place to start with ASP.NET Dynamic Data is to create an example website. Only then can you
see how easy it is to get up and running and how much functionality is available out of the box. For the
examples in this chapter, we will be using the Microsoft Northwind sample database, which we have
included with the source code download for this book. You can get the data and all the sample projects
from Apress.com.

At the heart of an ASP.NET Dynamic Data website is a database model. You can generate the model
using LINQ to SQL or the Entity Framework, which we described in Chapter 13. We will use LINQ to SQL
in this chapter; we demonstrated creating the Entity Framework model in Chapter 13. The basic
approach to Dynamic Data remains the same irrespective of which you use for your projects.

Creating the Dynamic Data Site
The first step is to create a new ASP.NET Dynamic Data project. Select File ➤ New ➤ Website in Visual
Studio. Select the ASP.NET Dynamic Data Linq to SQL Web Site template, as shown in Figure 33-1.
Clicking OK creates the project.

■ Tip If you have downloaded the source code to accompany this book from Apress.com, you can find the

website created in this section in the Northwind1 directory for this chapter.

CHAPTER 33 ■ DYNAMIC DATA

1398

Figure 33-1. Selecting the ASP.NET Dynamic Data Linq to SQL Web Site template

Next, you need to import the data. Right-click the App_Data folder in the Solution Explorer, and
select the Add Existing Item menu item. Navigate to where you downloaded the sample files, select the
Northwind.mdf file, and click the Add button. You will see that a Northwind item will be added to the
App_Data folder.

To create the data model that the Dynamic Data system will use, right-click the website icon in the
Solution Explorer, select Add New Item, and choose LINQ to SQL Classes from the template list. Since
you are using the Northwind database in this example, name the new item Northwind.dbml. You will see
a warning dialog box prompting you to put the LINQ to SQL classes in the App_Code folder, as shown in
Figure 33-2.

Figure 33-2. Placing the data model classes in the App_Code folder

Click the Yes button. The Northwind.dbml file will be created in your project, and the Object
Relational Designer window will open. You now need to populate the data model with the tables you

CHAPTER 33 ■ DYNAMIC DATA

1399

want to use from the database. Right-click the Northwind.mdf file you added earlier, and select the Open
menu item to open the Server Explorer. Expand the Northwind.mdf Tables item, and drag the Customer,
Order, Order_Detail, and Product tables into the designer window. Visual Studio should look like Figure
33-3, showing the tables you have imported into the data model and the foreign-key relationships
between them.

Figure 33-3. The visual representation of the data model

The last step is to register the data model you just created with the ASP.NET Dynamic Data system.
Open the Global.asax file, and uncomment the line in the RegisterRoutes method that calls
DefaultModel.RegisterContext, shown here:

public static void RegisterRoutes(RouteCollection routes) {
 // IMPORTANT: DATA MODEL REGISTRATION
 // Uncomment this line to register a LINQ to SQL model for ASP.NET Dynamic Data.
 // Set ScaffoldAllTables = true only if you are sure that you want all tables in the
 // data model to support a scaffold (i.e. templates) view. To control scaffolding for
 // individual tables, create a partial class for the table and apply the
 // [ScaffoldTable(true)] attribute to the partial class.
 // Note: Make sure that you change "YourDataContextType" to the name of the data context
 // class in your application.
 DefaultModel.RegisterContext(typeof(YourDataContextType),
 new ContextConfiguration() { ScaffoldAllTables = false });

CHAPTER 33 ■ DYNAMIC DATA

1400

We have highlighted the two other changes you need to make to this line. Change
YouDataContextType to NorthwindDataContext and change false to true so that the uncommented line
looks like this:

DefaultModel.RegisterContext(typeof(NorthwindDataContext),
 new ContextConfiguration() { ScaffoldAllTables = true});

Changing the type registers the data model. Changing the value of the ScaffoldAllTable property
asks the ASP.NET Dynamic Data system to expose all four of the tables that you included in the data
model to the web application. We’ll show you how to be more restrictive about the tables you expose in
the “Customizing with Routes” section later in the chapter. And that’s it—you’ve created an ASP.NET
Dynamic Data site. In the next section, you’ll explore the result.

Exploring the Dynamic Data Site
You can look at what you created by selecting Debug ➤ Start Without Debugging in Visual Studio. A

new browser window will open, and the URL for your development web server will be loaded. If you
followed the instructions in the previous section, you should see something very similar to Figure 33-4.

Figure 33-4. The home page of the ASP.NET Dynamic Data site

What you can see is scaffolding—the ASP.NET Dynamic Data system has taken the four tables from
your data model and built a structure around them. You can see a link for each of the tables in the
default page for the site, which is Default.aspx.

CHAPTER 33 ■ DYNAMIC DATA

1401

Click the Customers link. You will see a page that contains the first ten records from the Northwind
Customers table, as shown in Figure 33-5.

Figure 33-5. The Customers page

The ASP.NET Dynamic Data system has created the table from the data model. You can see that the
columns of the table on the web page match the columns of the Customers table in the database.

The scaffolding that has been created for you lets you do some interesting things. At the bottom of
the screen, you can change how many records are displayed on a page. You can also move between
pages or go to a specific page.

At the left of each row are three links—Edit, Delete, and Details. Clicking Edit opens a new page
where you can edit a record (and save the changes by clicking the Update link). The Details link shows
you a similar page but without the ability to change the data. Delete, as you might expect, allows you to
remove the data from the database. If you click one of the column headers, the data will be sorted using
that column as the key.

All well and good—but take a look at the right side of the browser window. The ASP.NET Dynamic
Data system has recognized the foreign-key relationship between the Customers table and the Orders
table and has automatically added a View Orders link for each record. Click one of those links, and you
see a page that contains all the orders for the customer you selected, as shown in Figure 33-6.

CHAPTER 33 ■ DYNAMIC DATA

1402

Figure 33-6. The filtered Orders page for a customer

Notice how on the right side of this page, the ASP.NET Dynamic Data system has used the data
model to determine that there are two foreign-key relationships in the Orders table—one to Customers,
which you used to get to this page and one with Order_Details, which shows the specifics of what a
customer has ordered. Clicking an Order_Details link moves you to another page, where each record has
a link to a record in the Order table and to a record in the Product table. You get the idea.

Click the Back to home page link= at the top of the page to return to the list of tables, and click the
Orders link. Notice that there is a Customer drop-down box, as shown in Figure 33-7.

Figure 33-7. The Customer filter on the Orders page

The drop-down list contains the names of all the customers, and selecting a customer filters the
data on the page to show only orders from that customer. Last, but not least, at the bottom of the page is
the Insert new item link, which opens a page you can use to create new records. Once again, the
ASP.NET Dynamic Data system uses the relationships between tables to make the Customer field a
drop-down box that contains the names of all the customers in the database.

CHAPTER 33 ■ DYNAMIC DATA

1403

Understanding the Anatomy of a Dynamic Data Project
By generating a data model and changing a single line of code, you were able to create a web application
that exposes tables from a database—and does so in an intelligent and useful way. You got full CRUD
support and a clever use of foreign keys to make the interface more usable. We thought this was pretty
cool when we first started using ASP.NET Dynamic Data, and we hope you feel the same way.

Now that you have seen what an ASP.NET Dynamic Data application looks like, it is time to take a
moment to look at the project to understand the major parts.

The ASP.NET Dynamic Data system is not, as you might expect, a code-generation feature. It is
actually a very flexible and configurable template system. If you look at the Visual Studio Solution
Explorer window for your project, you can start to see how it works.

The App_Code directory contains the code for the application. There is nothing in there at the
moment aside from the data model classes, but you’ll add some code as you begin to customize the site
in the following sections. The Add_Data folder contains the data source. In the case of the example
project, it contains the Northwind data files.

Things start to get interesting with the DynamicData folder. Expand this in the Solution Explorer
view, and then open the PageTemplates folder, which is shown in Figure 33-8.

Figure 33-8. The default page templates directory

You will see five files. These are the pages that the ASP.NET Dynamic Data system uses to display
your data. The List.aspx page is the template used to list the records in a table, the Details.aspx page is
used to view the detail of a record, and so on. The one page you have not seen yet is ListDetails.aspx,
which you’ll use in the “Customizing with Routes” section later in the chapter. Page templates are all
user controls built using the rich data controls that we discussed earlier in this book.

CHAPTER 33 ■ DYNAMIC DATA

1404

If you expand the other folders, you’ll get a sense of how the pieces of an ASP.NET Dynamic Data
site fit together. The Filters folder contains the control used to filter the rows shown in a list of records.
The FieldTemplates folder contains the controls used to display different kinds of data field.

The EntityTemplates folder supports a Dynamic Data feature that is new to ASP.NET 4, called entity
templates. Entity templates are markup consumed by the DynamicData control to format data elements.
We’ll show you how to use these in the “Using Entity Templates” section of this chapter.

The CustomPages folder supports one of the mechanisms for customizing an ASP.NET Dynamic
Data site. You can place your own page templates in this folder to customize the way that data is
displayed. We explain the use of this folder in the “Creating Custom Templates” section.

The final folder, Content, contains the static elements used to render the display as well the control
that is used to page through lists of records.

The remaining item of note is the Global.asax file. This file is especially important in an ASP.NET
Dynamic Data project because it is used to register the data model, as you saw when you created a site
earlier in the chapter. It is also used to register routes, a topic we explore in the “Customizing with
Routes” section of this chapter.

Customizing a Dynamic Data Site
We want to make three points by breaking out the project structure in the previous section. The first

is that a Dynamic Data application is built on ASP.NET, just like all the other sites you have built in this
book. Second, Dynamic Data relies on a series of templates, which are used to display and edit your
data. The third point, which is the topic this section, is that just about everything in a Dynamic Data
application can be customized. In fact, there are so many different ways of extending, changing, and
tailoring a Dynamic Data application that it can be difficult to decide which to use. In the following
sections, we’ll show you some of the different techniques available to change the appearance and
behavior of a Dynamic Data application.

■ Tip If you have downloaded the source code to accompany this book from Apress.com, you can find the

website we create in this section in the Northwind2 directory for this chapter.

Customizing with Templates
Templates are essential to Dynamic Data applications, and in this section we’ll show you some of the
different ways that you can use templates to customize the way your data is presented to clients. Some of
these techniques modify existing templates, others require new templates, and some use code to extend
the behavior of the application. All of these methods help underline the flexibility of the ASP.NET
Dynamic Data system, which has been designed to make these tasks (relatively) painless.

Editing the Default Templates
The DynamicData\PageTemplates folder contains the templates that are used by default to display, edit,
and create data records. A change to one of these templates affects all the tables in the data model that
use the defaults.

As a simple example, open the List.aspx default template, and switch to the Design view. Click the
GridView in the middle of the page, and then click the small edit arrow that appears at the right edge of
the grid to open the GridView Tasks menu, as shown in Figure 33-9.

CHAPTER 33 ■ DYNAMIC DATA

1405

Figure 33-9. The GridView Tasks menu

Using this menu, you can change the basic behavior of the GridView. For example, if you deselect
the Enable Paging option, then all the records will be displayed in a long list when you view a table. If
you deselect the Enable Sorting option, then you won’t be able to sort the rows by clicking a column
header.

Let’s make a simple but distinctive change by selecting the Auto Format option. This will open the
AutoFormat dialog box, which allows you to apply predefined styles to the GridView. Select the Classic
style from the list, and click OK. Select Start Without Debugging from the Debug menu, and click any of
the table names from the main page when it loads in the browser.

■ Tip Before you select Start Without Debugging, right-click the Default.aspx page in the Solution Explorer
window, and select Set As Start Page from the menu. If you are editing a template page and start debugging,

Visual Studio will try to load the page you are editing, which will usually throw an exception.

If you look at the tables one by one, you will see that the formatting change you applied has affected
the list view for all the tables in the data model. This is what you would hope for when you modify a
default template. The other views—Edit, Update, and so on—remain unchanged, as does Default.aspx.

Creating a Custom Page Template
Changing the default template is all well and good, but what if you want to customize the way that just
one table is handled? One approach is to create a custom page template and place it in the
DynamicData\CustomPages folder.

Let’s say that you want to use different templates for the Products table. Expand the Solution
Explorer so that you can see the DynamicData\CustomPages folder. Right-click CustomPages, select
New Folder from the menu, and name the folder Products. Open the PageTemplates folder, copy the
List.aspx page, and paste a copy into the newly created Products folder.

CHAPTER 33 ■ DYNAMIC DATA

1406

Double-click the copy you just made of List.aspx—take care to ensure that you are editing the file
you just copied and not the default template. Click the tasks arrow on the right side of the GridView
control, and deselect Enable Paging. Click the tasks arrow again, select Auto Format, and pick the Brown
Sugar scheme from the list. Click OK to apply the style and close the AutoFormat dialog.

Save the page file, and select Start Without Debugging from the Debug menu. When the default
page loads in the browser, select the Products table from the list. You’ll see that the custom template you
created is applied. The brown color scheme has been used, and because you disabled paging, all the
records are shown in a long list, as shown by Figure 33-10. Return to the main page, and select one of the
other tables. You’ll see that the default template is for all the other tables.

Figure 33-10. Applying a custom template

That’s how simple it is to create a custom page template. First, create a folder with the name of the
table you want the new template to apply to. Second, copy one of the default templates into the folder
and modify it. You can have a custom template to match each of the default templates. For example, if
you copied the default Edit.aspx template into the Products folder, you would have created custom
templates for the List and Edit actions.

CHAPTER 33 ■ DYNAMIC DATA

1407

Using Entity Templates
Entity templates are new to ASP.NET 4 and allow you to control the layout of data elements on a page
without needing to create an entirely new template.

If you look at the default Edit.aspx, Insert.aspx, and Details.aspx templates, you will see that they use
the DynamicEntity control. Figure 33-11 shows the component in the Design view of the Edit.aspx
template.

Figure 33-11. The DynamicEntity component in the Edit.aspx template

If you look at the Source view, you will see the following statement:

<asp:DynamicEntity runat="server" Mode="Edit" />

The DynamicEntity control generates the view for each data element to be displayed. There are
three modes (Default, Edit, and Insert), which correspond to the three files in the
DynamicData\EntityTemplates folder (Default.ascx, Default_Edit.ascx, Default_Insert.ascx).

Changing one of these control templates changes the way that data elements are displayed for all
tables. Take a look at Default.ascx, which you can see here:

<%@ Control Language="C#" CodeFile="Default.ascx.cs" Inherits="DefaultEntityTemplate" %>

<asp:EntityTemplate runat="server" ID="EntityTemplate1">
 <ItemTemplate>
 <tr class="td">
 <td class="DDLightHeader">
 <asp:Label runat="server" OnInit="Label_Init" />
 </td>

CHAPTER 33 ■ DYNAMIC DATA

1408

 <td>
 <asp:DynamicControl runat="server" OnInit="DynamicControl_Init" />
 </td>
 </tr>
 </ItemTemplate>
</asp:EntityTemplate>

In a page template where this entity template is used, each field will be displayed in two columns.
The first column will list the name of the field (the database table column name), and the second
column will list the value. The Details.aspx page template uses the Default.ascx element template, so
when you click the Details link for a row in any of your tables, you get something similar to Figure 33-12.

Figure 33-12. The standard Default.ascx entity template

If you change this entity template, you will change the appearance of every data element that is
rendered in this way. Let’s edit the template to add some additional structure, shown here:

<%@ Control Language="C#" CodeFile="Default.ascx.cs" Inherits="DefaultEntityTemplate" %>

<asp:EntityTemplate runat="server" ID="EntityTemplate1">
 <ItemTemplate>
 <tr class="td">
 <td class="DDLightHeader">
 <asp:Label runat="server" Text="Field name:" />
 </td>
 <td>
 <asp:Label runat="server" OnInit="Label_Init" />
 </td>
 <td class="DDLightHeader">
 <asp:Label runat="server" Text="Field value:" />
 </td>

CHAPTER 33 ■ DYNAMIC DATA

1409

 <td>
 <asp:DynamicControl runat="server" OnInit="DynamicControl_Init" />
 </td>
 </tr>
 </ItemTemplate>
</asp:EntityTemplate>

All you have done here is add a Field name and Field value header. If you save these changes and
then view the details of a data record, you can see the effect of the changes, as shown in Figure 33-13.

Figure 33-13. The results of changing the entity template

If you look at the details view for different tables, you’ll see that all of them were affected when you
changed the entity template. If you want to change the way data elements are displayed for a single
table, then you need to create a new entity template.

When changing a generic entity template, you must be careful to leave the DynamicControl in
place. This is because the template will be used with a range of tables, and you don’t know in advance
what the structure of the table will be. In creating a template for a single table, you can make reference to
individual columns of the table and be incredibly specific in what you include or exclude.

Let’s create a custom entity template for the Products table. To do this, right-click the
EntityTemplates folder, select Add New Item, and pick Web User Control from the templates list. The
name of the entity template must match the database table that you want it to apply to, in this case, use
Products.ascx.

Copy the following markup into Products.ascx. The listing contains four table rows, each of which
contains a named reference to a column in the Products database table, specified using the DataField
property of DynamicControl.

CHAPTER 33 ■ DYNAMIC DATA

1410

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="Products.ascx.cs"
Inherits="DynamicData_EntityTemplates_Products" %>

<tr class="td">
 <td class="DDLightHeader">
 <asp:Label ID="Label1" runat="server" Text="Product Name" />
 </td>
 <td>
 <asp:DynamicControl ID="DynamicControl1" runat="server" DataField="ProductName" />
 </td>
</tr>
<tr class="td">
 <td class="DDLightHeader">
 <asp:Label ID="Label2" runat="server" Text="Price per Unit" />
 </td>
 <td>
 <asp:DynamicControl ID="DynamicControl2" runat="server" DataField="UnitPrice" />
 </td>
</tr>
<tr class="td">
 <td class="DDLightHeader">
 <asp:Label ID="Label3" runat="server" Text="Discontinued?" />
 </td>
 <td>
 <asp:DynamicControl ID="DynamicControl3" runat="server" DataField="Discontinued" />
 </td>
</tr>
<tr class="td">
 <td class="DDLightHeader">
 <asp:Label ID="Label4" runat="server" Text="Units in Stock" />
 </td>
 <td>
 <asp:DynamicControl ID="DynamicControl4" runat="server" DataField="UnitsInStock" />
 </td>
</tr>

Open the code-behind file Products.ascx.cs, add a using statement for the
System.Web.DynamicData namespace, and change the base class to EntityTemplateUserControl, as
shown here:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.DynamicData;

public partial class DynamicData_EntityTemplates_Products : EntityTemplateUserControl
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
}

CHAPTER 33 ■ DYNAMIC DATA

1411

Save all the changes, and select Start Without Debugging from the Debug menu. When the browser
has loaded the Default.aspx page, select the Products table from the list, and click Details for one of the
records shown. If you have followed along, the custom entity template should be applied, and you
should see something very similar to Figure 33-14.

Figure 33-14. Applying a custom entity template

■ Tip In this case, you created a default entity template for the Products table. If you wanted to create a custom

replacement for one of the other defaults, you would have had to follow the naming convention. For example, to
create a custom entity template for editing the Products table, you would have had to create a template called

Products_Edit.ascx in the EntityTemplates folder.

Customizing Field Templates
If you expand the DynamicData\FieldTemplates folder in the Solution Explorer, you will see the set of
default field templates, as shown in Figure 33-15. In the same way that entity templates control the
appearance of data rows, field templates control the appearance of individual data types.

CHAPTER 33 ■ DYNAMIC DATA

1412

Figure 33-15. The default field templates

The Dynamic Data system uses the types in the data model to infer which template should be used
to display a field. The best way to understand this is to make a customization. Open the Text_Edit.ascx
template, which we have highlighted in Figure 33-15. Change your template so that it matches the
following one. We have highlighted the required changes, which set the background color to gray and
the foreground color to white.

<%@ Control Language="C#" CodeFile="Text_Edit.ascx.cs" Inherits="Text_EditField" %>

<asp:TextBox ID="TextBox1" runat="server" Text='<%# FieldValueEditString %>'
CssClass="DDTextBox" BackColor="Gray" ForeColor="White"></asp:TextBox>

<asp:RequiredFieldValidator runat="server" ID="RequiredFieldValidator1" CssClass="DDControl
DDValidator" ControlToValidate="TextBox1" Display="Static" Enabled="false" />
<asp:RegularExpressionValidator runat="server" ID="RegularExpressionValidator1"
CssClass="DDControl DDValidator" ControlToValidate="TextBox1" Display="Static"
Enabled="false" />
<asp:DynamicValidator runat="server" ID="DynamicValidator1" CssClass="DDControl DDValidator"
ControlToValidate="TextBox1" Display="Static" />

Save the changes, and select Start Without Debugging from the Debug menu. When the browser has
loaded the project start page, select one of the tables from the list, and click Edit for one of the data rows.
You will see something similar to Figure 33-16.

CHAPTER 33 ■ DYNAMIC DATA

1413

Figure 33-16. Changing a field template

You will see that some of the fields have the new color scheme. These are the text fields, which
makes sense since you modified the Text_Edit field template. If you had wanted to change all the fields,
you would have had to change Decimal_Edit, Integer_Edit, and so on, as well.

By modifying the field templates whose name ends with _Edit, you specify how certain kinds of
fields are displayed when you are editing or inserting a record. If you want to change the display for the
details view, you need to edit the field templates that don’t have an _Edit suffix, such as Text.ascx or
Boolean.ascx.

Double-click the Boolean.ascx template, and add a BackColor attribute to the markup so that the
content of the file matches the following:

<%@ Control Language="C#" CodeFile="Boolean.ascx.cs" Inherits="BooleanField" %>

<asp:CheckBox runat="server" ID="CheckBox1" Enabled="false" BackColor="Blue"/>

Save the changes, and select Start Without Debugging from the Debug menu. Select the Products table
from the list when the browser has loaded the start page, and then click the Details link for one of the
records in the list. You should see something similar to Figure 33-17, depending on the row you picked.

CHAPTER 33 ■ DYNAMIC DATA

1414

Figure 33-17. Modifying a nonediting field template

You can’t create a field template that applies only to a given type in a given table just by creating a
new file. You can’t create a template that is used only for Booleans in the Products table, for example.
But you can achieve this effect by using metadata. See the “Customizing with Metadata” section for
details.

Customizing with Routes
The ASP.NET Dynamic Data system uses the ASP.NET routes feature to map requests to page templates.
You can use this feature to customize a number of aspects of your data-driven site. Routes can be hard to
get your head around. Certainly, it took us some time to get comfortable with them. In the following
sections, we’ll explain how they work and the kinds of customization you can perform with them.

■ Tip If you have downloaded the source code to accompany this book from Apress.com, you can find the

website we create in this section in the Northwind3 directory for this chapter.

CHAPTER 33 ■ DYNAMIC DATA

1415

Understanding Routes
Routes allow you to define the URLs that your Dynamic Data applications will support and the

conditions under which they will be used. Here is a sample route:

routes.Add(new DynamicDataRoute("AllRows.aspx") {
 Action = PageAction.List,
 ViewName = "List",
 Model = DefaultModel
});

Routes are mappings between URLs that clients call and page templates. The constructor argument
to the DynamicDataRoute class specifies the client URL that you want to map, relative to the application
URL, which in this case is AllRows.aspx. This means that any URL that reaches your Dynamic Data
application and ends with AllRows.aspx should use this mapping. The properties you set on the
DynamicDataRoute tell ASP.NET what the mapping is for and when it should be applied.

The Action property specifies what the route is for, expressed as a value from the PageAction
enumeration. The values in the enumeration are Details, Edit, Insert, and List. By setting the Action
property to PageAction.List, you are telling the ASP.NET Dynamic Data system that it can use this URL to
list the rows in a table.

The ViewName property is the name of the page template to which you want to map the URL. You
have specified the List template, which is mapped to the List.aspx template in the PageTemplates folder
or, if you have supplied a table-specific custom template, to the matching List.aspx template in the
CustomTemplates folder.

The Model property is the data model to which you want this URL to apply. We are using only one
data model in this chapter, although the ASP.NET Dynamic Data system will work with more than one.
For all of our examples, you will set this value to DefaultModel.

In an ASP.NET Dynamic Data application, routes are defined in the RegisterRoutes method in the
Global.asax file. You call the Add method on the RouteCollection instance that is passed in as an
argument to the RegisterRoutes method with the name routes.

When the ASP.NET Dynamic Data system creates the scaffolding for your application, it tries to find
a route that can be used for each of the CRUD actions for each of the tables in your data model. If it finds
a route, it knows it can enable that CRUD action on that table. No route found means that the action is
not available on that table.

The simplest way to explain this is with an example.
Open the Global.asax file, and scroll down until you see the RegisterRoutes method. Comment out

the route definition that starts with routes.Add, the one that defines the URL {table}/{action}.aspx. Make
sure you comment out all four code lines. Copy the sample route definition shown previously into the
RegisterRoutes method so that your method looks exactly the same as the following one. We have
highlighted the sections that you need to add or comment out.

public static void RegisterRoutes(RouteCollection routes) {
 // IMPORTANT: DATA MODEL REGISTRATION
 // Uncomment this line to register a LINQ to SQL model for ASP.NET Dynamic Data.
 // Set ScaffoldAllTables = true only if you are sure that you want all tables in the
 // data model to support a scaffold (i.e. templates) view. To control scaffolding for
 // individual tables, create a partial class for the table and apply the
 // [ScaffoldTable(true)] attribute to the partial class.
 // Note: Make sure that you change "YourDataContextType" to the name of the data context
 // class in your application.
 DefaultModel.RegisterContext(typeof(NorthwindDataContext),
 new ContextConfiguration() { ScaffoldAllTables = true});

CHAPTER 33 ■ DYNAMIC DATA

1416

 routes.Add(new DynamicDataRoute("AllRows.aspx") {
 Action = PageAction.List,
 ViewName = "List",
 Model = DefaultModel
 });

 // The following statement supports separate-page mode, where the List, Detail, Insert,
 // and Update tasks are performed by using separate pages. To enable this mode,
 // uncomment the following route definition, and comment out the route definitions in
 // the combined-page mode section that follows.
 //routes.Add(new DynamicDataRoute("{table}/{action}.aspx") {
 // Constraints = new RouteValueDictionary(new { action = "List|Details|Edit|Insert" }),
 // Model = DefaultModel,
 //});

 // The following statements support combined-page mode, where the List, Detail, Insert,
 // and Update tasks are performed by using the same page. To enable this mode, uncomment
 // the following routes and comment out the route definition in the separate-page mode
 // section above.
 //routes.Add(new DynamicDataRoute("{table}/ListDetails.aspx") {
 // Action = PageAction.List,
 // ViewName = "ListDetails",
 // Model = DefaultModel
 //});

 //routes.Add(new DynamicDataRoute("{table}/ListDetails.aspx") {
 // Action = PageAction.Details,
 // ViewName = "ListDetails",
 // Model = DefaultModel
 //});
}

Save the changes, and select Run Without Debugging from the Debug menu. Hover the mouse over
the names of the tables in the list. You should see that the URL is something like this:

http://localhost:27294/Northwind3/AllRows.aspx?Table=Customers

This is the URL you mapped with your route in Global.asax. The ASP.NET Dynamic Data system has
looked for routes that map URLs with the PageAction.List action and has found the one you defined.
Click the link for the Customers table. Although the list display may look familiar, there is a significant
change. Try clicking the Edit or Details link for one of the rows. They don’t go anywhere, which is
because you have not defined any routes that provide access to the page templates for editing or viewing
the details of data rows.

Changing the URL Format

One of the customizations you can do with routes is to change the URL format. You can see that the
sample route we opened this section with led to the previously shown URL, with the ASP.NET Dynamic
Data system supplying the name of the table to work on as a URL parameter. Change the route in
Global.asax so that it looks like the following one (we have emphasized the change):

http://localhost:27294/Northwind3/AllRows.aspx?Table=Customers

CHAPTER 33 ■ DYNAMIC DATA

1417

routes.Add(new DynamicDataRoute("{table}/{action}/AllRows.aspx") {

 Action = PageAction.List,
 ViewName = "List",
 Model = DefaultModel
});

Save the changes, and start the application again. This time, when you hover over the table names
in the list, the URL format will be as follows:

http://localhost:27294/Northwind3/Products/List/AllRows.aspx

The {table} and {action} tags are used to construct the URL. Once the table name has been included
in the URL, the ASP.NET Dynamic Data system doesn’t need to include it as a parameter. If this all seems
odd, it is because the way a route appears in a code listing creates an impression that you are defining an
action to go with a URL. In fact, a route defines a URL that can be used to reach one or more templates,
and the ASP.NET Dynamic Data system looks through all the routes you have defined to work out which
ones have to be called to perform the actions required for the scaffolding.

Constraining a Route

You can also make routes apply to only one table by supplying a value to the Table property of the
DynamicDataRoute class. Change the route in Global.asax to match the following:

routes.Add(new DynamicDataRoute("AllRows.aspx") {
 Action = PageAction.List,
 ViewName = "List",
 Model = DefaultModel,
 Table = "Products"
});

We’ve highlighted the addition to the route, which now applies only to the Products table. Select
Start Without Debugging from the Debug menu, and you should see something similar to Figure 33-18.

Figure 33-18. The effect of constraining the single route to a single table

http://localhost:27294/Northwind3/Products/List/AllRows.aspx

CHAPTER 33 ■ DYNAMIC DATA

1418

Only the Products table has been exposed. This is because the only route you have created is now
limited to the Products table. Remember, the ASP.NET Dynamic Data system looks for routes for each of
the CRUD actions for each of the tables. In this case, it has found a route that supports the List (“read” in
CRUD terms) action on the Products table. Since no routes are available for any actions for the other
tables, they cannot be exposed.

If you want to create a route that applies to multiple actions or multiple tables, you need to use the
DynamicDataRoute.Constraints property, which requires an instance of the RouteValueDictionary class.
To make a route work for the List and Details actions for the Products and Orders tables, you would use
the Constraints property, as shown here:

routes.Add(new DynamicDataRoute("{table}/{action}.aspx") {
 Model = DefaultModel,
 Constraints = new RouteValueDictionary(
 new {
 action = "List|Details",
 table = "Products|Orders"
 })
});

You pass a new anonymous type to the constructor for RouteValueDictionary that contains string
properties with the names of the DynamicDataRoute properties you want to set. Unlike the
DynamicDataRoute properties, you can specify multiple values in the RouteValueDictionary by using
the bar sign as a separator. You assign the RouteValueDictionary you have created to the
DynamicDataRoute.Constraints property.

This route exposes the List and Details page templates for the Products and Orders tables. Two little
tricks make this route work. First, when using constraints like this, you have to use the {table} and
{action} tags in the URL format; otherwise, the ASP.NET Dynamic Data system doesn’t construct the
URLs properly. Second, the template name defaults to the action name if you omit the ViewName
property (which specifies the name of the page template to use). So, in this route, the List action is
mapped to the List.aspx template, which is exactly the behavior you want.

If you make the route the only one in Global.asax and select Start Without Debugging from the
Debug menu, you’ll see the new route take effect. You will see that both the Orders and Products tables
appear in the main list and that the Details links in the lists of rows work.

You now know enough about routes to understand the default route we had you comment out at
the start of this section, which we have repeated here:

routes.Add(new DynamicDataRoute("{table}/{action}.aspx") {
 Constraints = new RouteValueDictionary(new { action = "List|Details|Edit|Insert" }),
 Model = DefaultModel,
});

This route applies to all tables (because there is no Table property or constraint) and can be used for
the List, Details, Edit, and Insert actions. These actions will be mapped to the default page template
names, and the URL format that the route supports includes both the action and the name of the table to
which it applies.

So, that’s how routes work. If you don’t quite understand what we’ve shown you here, don’t worry.
Carry on reading, and you’ll see more examples of how routes can be used, which will help make the way
that routes function clearer.

CHAPTER 33 ■ DYNAMIC DATA

1419

Switching to Single-Page Editing
When you create a new Dynamic Data project, Global.asax contains three routes, two of which are
commented out. In this section, you are going to change two of the default routes to change the editing
mode of your site. Comment out all the routes in Global.asax except for the two shown here, and save
the changes:

routes.Add(new DynamicDataRoute("{table}/ListDetails.aspx") {
 Action = PageAction.List,
 ViewName = "ListDetails",
 Model = DefaultModel
});

routes.Add(new DynamicDataRoute("{table}/ListDetails.aspx") {
 Action = PageAction.Details,
 ViewName = "ListDetails",
 Model = DefaultModel
});

The first route exposes the ListDetails.asax template for use with the List action for all tables. The
second route exposes the same template for use with the Details action, also for all tables. (As a
reminder, you know that these routes apply to all tables because there is no value set for the Tables and
Constraints properties.)

These routes might seem odd. After all, they point to the same page template but support different
actions. And what happened to the other actions? The answer is all in the template. The ListDetails.aspx
page template handles all the actions in a single page. Select Start Without Debugging from the Debug
menu, and you can take a look.

Click one of the table names, and you’ll see the familiar records listing. But click the Edit button, and
you’ll see the first change. Editing is now done in-line, as opposed to being handled by a different page
template. It’s the same with the Select link; click Select for a data row, and scroll down the page. You’ll
see the record details in a box beneath the table rows.

The reason you have two routes using the same page template is because the template has been
designed to support multiple actions in-line. The reason that you only need routes for the Details and
List actions is that the others are handled by Ajax in the ListDetails page template. This is a good
example of how the features of a page template and the Dynamic Data routes can be combined.

Using Different Templates for Tables
When the ASP.NET Dynamic Data system processes routes, it looks at each of the page actions for each
of the tables and stops when it finds a match for each one. This means that the first route that supports
an action for a table is the one that will be used. You can use this to exert fine-grained control over which
templates are used. Edit Global.asax so that the RegisterRoutes method matches the one shown here:

public static void RegisterRoutes(RouteCollection routes) {

 DefaultModel.RegisterContext(typeof(NorthwindDataContext),
 new ContextConfiguration() { ScaffoldAllTables = true});

 // route 1
 routes.Add(new DynamicDataRoute("Products/{action}.aspx") {
 Constraints = new RouteValueDictionary(new { action = "List|Details|Edit|Insert" }),
 Model = DefaultModel,
 Table = "Products"
 });

CHAPTER 33 ■ DYNAMIC DATA

1420

 // route 2
 routes.Add(new DynamicDataRoute("{table}/ListDetails.aspx") {
 Action = PageAction.List,
 ViewName = "ListDetails",
 Model = DefaultModel
 });

 // route 3
 routes.Add(new DynamicDataRoute("{table}/ListDetails.aspx") {
 Action = PageAction.Details,
 ViewName = "ListDetails",
 Model = DefaultModel
 });
}

To understand what effect these routes will have, let’s walk through the discovery process that the

ASP.NET Dynamic Data system follows, looking for each of the actions for each of the tables in the data
model. We have numbered each route in the comments in the listing.

Let’s start with the Customers table. Working down the list of routes, can you find a match for the
Details, Edit, Insert, and List actions? Route 1 applies only to the Products table, so no match there.
Route 2 applies to all tables and supports the List action—that’s a match. Route 3 applies to all tables
and supports the Details action—that’s another match. There are no matches for the Edit and Insert
actions.

Repeating the process for the Orders and Order_Details tables gives you the same result. Route 1
doesn’t match, but routes 2 and 3 each support one of the actions you are looking for.

For the Products table, you get a different result. Route 1 applies to this table (because of the value
of the Table property), and for each of the four actions, you get a match (because of the values in the
RouteValueDictionary). Following this through gives you the results shown in Table 33-1.

Table 33-1. Route Discovery by Table

Tables Action Route Page Template

Customers, Orders, Order_Details List 2 ListDetails.aspx

Customers, Orders, Order_Details Details 3 ListDetails.aspx

Customers, Orders, Order_Details Edit No match

Customers, Orders, Order_Details Insert No match

Products List 1 List.aspx

Products Details 1 Details.aspx

Products Edit 1 Edit.aspx

Products Insert 1 Insert.aspx

CHAPTER 33 ■ DYNAMIC DATA

1421

Select Start Without Debugging from the Debug menu, and explore the results. If you click the
Products table, you will see that it is displayed using the multipage templates, such that editing or
viewing the details of a record takes you to different pages. The other tables use the single-page Ajax-
enabled template.

Using routes to match tables to templates is compatible with creating custom page templates. The
routes determine the name of the template that will be used, but the CustomTemplates folder is still
checked to see whether a custom template exists. To demonstrate this, let’s create a custom template for
the Orders table.

Right-click the DynamicData\CustomPages folder in the Solution Explorer, select New Folder, and
change the name of the folder to Orders. Copy the List.aspx file from the DynamicData\PageTemplates
folder, copy the List.aspx file, and paste it into the Orders folder you just created so that your Solution
Explorer window looks like the one shown in Figure 33-19.

Figure 33-19. Copying the List.aspx page template

Edit the newly copied template so that you can tell it is the custom one; we have added a text
message, as shown in Figure 33-20.

CHAPTER 33 ■ DYNAMIC DATA

1422

Figure 33-20. Modifying the custom page template

Now that you have your custom template, you can define your routes. Replace the RegisterRoutes
method in Global.asax with the following one. We have modified route 1 to support both the Products
and Orders tables; this included changing the URL format that the route maps so that the ASP.NET
Dynamic Data system can include both the table name and the action without conflicting with the
formats mapped by the other routes.

public static void RegisterRoutes(RouteCollection routes) {

 DefaultModel.RegisterContext(typeof(NorthwindDataContext),
 new ContextConfiguration() { ScaffoldAllTables = true});

 // route 1
 routes.Add(new DynamicDataRoute("{table}/{action}/Custom.aspx") {
 Constraints = new RouteValueDictionary(new {
 action = "List|Details|Edit|Insert",
 table = "Products|Orders"
 }),
 Model = DefaultModel,
 });

 // route 2
 routes.Add(new DynamicDataRoute("{table}/ListDetails.aspx") {
 Action = PageAction.List,
 ViewName = "ListDetails",

CHAPTER 33 ■ DYNAMIC DATA

1423

 Model = DefaultModel
 });

 // route 3
 routes.Add(new DynamicDataRoute("{table}/ListDetails.aspx") {
 Action = PageAction.Details,
 ViewName = "ListDetails",
 Model = DefaultModel
 });
}

Select Start Without Debugging from the Debug menu. If you click the Customers or Order_Details
table, the single-page ListDetails.aspx template will be used. If you click the Products table, the standard
multipage List.aspx template will be used. If you click the Orders table, your newly created custom
List.aspx template is used, as you can see in Figure 33-21.

Figure 33-21. Checking that the custom page template has been used

Customizing with Metadata
The ASP.NET Dynamic Data system supports defining metadata classes. These customizations are
applied at the data model and allow some exceptionally fine-grained control.

■ Tip If you have downloaded the source code to accompany this book from Apress.com, you can find the

website created in this section in the Northwind4 directory for this chapter.

CHAPTER 33 ■ DYNAMIC DATA

1424

Creating a Metadata Class
The ASP.NET Dynamic Data system for metadata relies on partial classes. You create a partial class for
the data model type you want to customize and a separate class that will be used for metadata, and you
associate the two together using an annotation. This is easier to understand through an example.

Right-click the App_Code folder in the Solution Explorer, select Add New Item from the pop-up
menu, and click Class in the list of templates. The name you give the class file is not important—we used
Metadata.cs. Click the Add button to create the new file. Open the file for editing and remove all the
content, replacing it with the following code:

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

[MetadataType(typeof(Order_DetailMetadata))]
public partial class Order_Detail {
}

public class Order_DetailMetadata {
}

The using statements reference namespaces that contain the attributes that you will use in the
following sections. The interesting part is the Order_Detail class. This is a partial class that extends the
Order_Detail class generated in the data model. Notice that we use the singular form; we are referring to
the data type, not the table.

You apply the MetadataType attribute to the partial class to indicate that you want to provide
metadata for this data type. The argument to this attribute is the type of the class you will use. We have
created another class in the same file called Order_DetailMetadata. That’s all there is to creating a
metadata class. You can define multiple metadata relationships in the same class file. For example, if
you wanted to declare metadata for the Products table, you would create a partial Product class, as
shown here:

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

[MetadataType(typeof(Order_DetailMetadata))]
public partial class Order_Detail {
}

public class Order_DetailMetadata {
}

[MetadataType(typeof(ProductMetadata))]
public partial class Product {
}

public class ProductMetadata {
}

Changing Display Names
Having created the metadata classes, you can start to use them to customize your Dynamic Data
application. A good starting point is to change the display name of the Order_Details table—just because

CHAPTER 33 ■ DYNAMIC DATA

1425

the database doesn’t allow spaces in table names doesn’t mean that your users should have to see the
underscore in the name.

You perform customizations with metadata by applying attributes to the class named in the
MetadataType attribute—the Order_DetailMetadata type for the Order_Details table in the example. To
change the display name of the table, you use the DisplayName attribute, as follows:

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

[MetadataType(typeof(Order_DetailMetadata))]
public partial class Order_Detail {
}

[DisplayName("Order Details")]
public class Order_DetailMetadata {
}

[MetadataType(typeof(ProductMetadata))]
public partial class Product {
}

public class ProductMetadata {
}

In the listing, we have specified a display name of Order Details (without the underscore). If you
select Start Without Debugging from the Debug menu, you’ll see the change on the start page for the
application, as shown in Figure 33-22.

Figure 33-22. The modified table display name

And because you have made the modification in the data model, it applies to wherever the table
name is used in the page templates. If you click the link for the table in the main page, you’ll see that the
display name has changed here as well.

You can also change the name of columns in a table. To do this, you need to add properties to your
metadata class with the same names as the columns you want to modify. As an example, let’s use the
UnitsInStock and UnitPrice columns from the Products table, as follows:

CHAPTER 33 ■ DYNAMIC DATA

1426

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

[MetadataType(typeof(Order_DetailMetadata))]
public partial class Order_Detail {
}

[DisplayName("Order Details")]
public class Order_DetailMetadata {
}

[MetadataType(typeof(ProductMetadata))]
public partial class Product {
}

public class ProductMetadata {

 [DisplayName("In Stock")]
 public object UnitsInStock {get; set;}

 [DisplayName("Price")]
 public object UnitPrice {get; set;}
}

You don’t need to worry about the type for the properties—we have used object. What is important
is that the property name matches the name of the table column. Once you have defined the properties
in the metadata class, you can apply the DisplayName attribute, just as you did for the table name.

Save the changes to the Metadata.cs file, and select Start Without Debugging from the Debug menu.
Click the link for the Products table in the start page, and note the changes in the column names, as
shown in Figure 33-23.

Figure 33-23. Changing the display name of columns

Once again, these changes take effect wherever the column names are used. If you click the Details
link for one of the records, you’ll see that the new Price and In Stock titles are used there as well.

Changing Visibility
You can use attributes to control the visibility of columns and tables in the scaffolding templates. To
hide a column, you apply the ScaffoldColumn attribute with a false argument, as follows:

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

CHAPTER 33 ■ DYNAMIC DATA

1427

[MetadataType(typeof(Order_DetailMetadata))]
public partial class Order_Detail {
}

[DisplayName("Order Details")]
public class Order_DetailMetadata {
}

[MetadataType(typeof(ProductMetadata))]
public partial class Product {
}

public class ProductMetadata {

 [DisplayName("In Stock")]
 public object UnitsInStock { get; set; }

 [DisplayName("Price")]
 public object UnitPrice {get; set;}

 [ScaffoldColumn(false)]
 public object SupplierID { get; set; }
}

You have defined a property for the SupplierID column and applied the ScaffoldColumn attribute. If
you start the Dynamic Data application now and select the Products table, you will see that the
SupplierID column has disappeared.

You can do the same thing for tables using the ScaffoldTable attribute. The following code defines a
metadata class for the Customers table and uses the attribute to hide the entire table:

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

[MetadataType(typeof(Order_DetailMetadata))]
public partial class Order_Detail {
}

[DisplayName("Order Details")]
public class Order_DetailMetadata {
}

[MetadataType(typeof(ProductMetadata))]
public partial class Product {
}

public class ProductMetadata {

 [DisplayName("In Stock")]
 public object UnitsInStock { get; set; }

 [DisplayName("Price")]
 public object UnitPrice {get; set;}

CHAPTER 33 ■ DYNAMIC DATA

1428

 [ScaffoldColumn(false)]
 public object SupplierID { get; set; }
}

[MetadataType(typeof(CustomerMetadata))]
public partial class Customer {
}

[ScaffoldTable(false)]
public class CustomerMetadata {
}

If you view the home page for the application, you’ll see that there is no link for the Customers table.
Using this attribute has a different effect than omitting a table using routes. Even though there is no link
for the table, the ASP.NET Dynamic Data system still uses the table for foreign-key relationships. Click to
view the Orders table, and you’ll see that you can still filter by Customer.

Customizing Field Formatting
If you look at the records in the Orders table, you will see that the OrderDate, RequiredDate, and
ShippedDate columns all have timestamps that are set to midnight. This is because the default
formatting for time stamps includes both the date and time, as shown in Figure 33-24.

Figure 33-24. Unformatted time stamps in the Orders table

You can change the formatting with the DisplayFormat string, which allows you to supply a
standard .NET format string to be used to display the field. The following code shows how we have
applied this to the three date fields in the Orders table:

 [MetadataType(typeof(OrderMetadata))]
public partial class Order {
}

public class OrderMetadata {

 [DisplayFormat(DataFormatString = "{0:yy-MM-dd}")]

CHAPTER 33 ■ DYNAMIC DATA

1429

 public object OrderDate { get; set; }

 [DisplayFormat(DataFormatString = "{0:yy-MM-dd}")]
 public object RequiredDate { get; set; }

 [DisplayFormat(DataFormatString = "{0:yy-MM-dd}")]
 public object ShippedDate{ get; set; }
}

The format string we have selected shows the date in a compact form and omits the time entirely. If
you save these changes to your Metadata.cs code file and select Start Without Debugging from the
Debug menu, you’ll be able to see the display changes, as shown in Figure 33-25.

Figure 33-25. The formatted date fields

Using a Custom Field Template
In the “Customizing with Templates” section, we showed you how to change the appearance of all fields
of a given type. Using metadata, you can change the appearance of a given data column. First you need
to create a new field template. You copy and paste the Text.ascx file in the FieldTemplates folder and
rename the copy REDText.ascx. Then change the content to match the following code—a simple label
that displays white text on a red background:

<%@ Control Language="C#" CodeFile="REDText.ascx.cs" Inherits="TextField" %>

<asp:Label ID="Literal1" runat="server" Text="<%# FieldValueString %>" BackColor="Red"
ForeColor="White"/>

You can then use the UIHint attribute to tell the ASP.NET Dynamic Data system that your custom
field template should be used to display a column. In the following code, we have used the attribute to
apply our REDText template to the ShipName column:

public class OrderMetadata {

 [DisplayFormat(DataFormatString = "{0:yy-MM-dd}")]
 public object OrderDate { get; set; }

 [DisplayFormat(DataFormatString = "{0:yy-MM-dd}")]

CHAPTER 33 ■ DYNAMIC DATA

1430

 public object RequiredDate { get; set; }

 [DisplayFormat(DataFormatString = "{0:yy-MM-dd}")]
 public object ShippedDate{ get; set; }

 [UIHint("REDText")]
 public object ShipName { get; set; }
}

When you start the application and view the Orders table, you see that the ShipName fields are
displayed using your template, as shown in Figure 33-26.

Figure 33-26. Testing the use of the custom field template

Customizing Validation
You can use the metadata system to customize validation for data fields. In the following sections, we
give you some examples of how to do this.

Requiring a Field Value
The Required attribute indicates that a value must be provided for a given field. The following code
shows the application of the Required attribute for the UnitsInStock column from the Metadata.cs code
file. We have used the ErrorMessage property to provide a message to be shown to the user if they try to
add a record without a UnitsInStock value.

[MetadataType(typeof(ProductMetadata))]
public partial class Product {
}

public class ProductMetadata {

 [DisplayName("In Stock")]
 [Required(ErrorMessage = "You must enter how many items we have in stock")]
 public object UnitsInStock { get; set; }

 [DisplayName("Price")]
 public object UnitPrice {get; set;}

 [ScaffoldColumn(false)]
 public object SupplierID { get; set; }
}

CHAPTER 33 ■ DYNAMIC DATA

1431

You’ll notice that we have applied this alongside the DisplayName attribute. To test the validation,
select Start Without Debugging from the Debug menu, click the link for the Products table, and click the
Insert new item link at the bottom of the page. You’ll see the Insert page; click Insert without filling any
of the fields. The validation errors for the insert are shown on the page, as illustrated by Figure 33-27.

Figure 33-27. The validation error created by the Required attribute

You’ll see that there are two validation errors. The first has been picked up by the ASP.NET Dynamic
Data system from the data model schema: the ProductName column doesn’t allow null values. The
second error comes from the use of the Required attribute, which has allowed you to supplement the
schema constraints without changing the data model or the underlying database.

Specifying a Valid Range
The Range attribute allows the range of valid field values to be specified for numeric types. The following
classes show the Range attribute applied to the UnitsInStock column of the Products table:

[MetadataType(typeof(ProductMetadata))]
public partial class Product {
}

CHAPTER 33 ■ DYNAMIC DATA

1432

public class ProductMetadata {

 [DisplayName("In Stock")]
 [Required(ErrorMessage = "You must enter how many items we have in stock")]
 [Range(0, 100)]
 public object UnitsInStock { get; set; }

 [DisplayName("Price")]
 public object UnitPrice {get; set;}

 [ScaffoldColumn(false)]
 public object SupplierID { get; set; }
}

We have specified that only values from 1 to 100 are allowed. If you try to create or edit a record in
the Products table and supply a value that is outside the range, a validation error is displayed, as
illustrated by Figure 33-28.

Figure 33-28. A range-based validation error

Customizing Validation Using Extensibility Methods
If you expand the Northwind.dbml item in the App_Code folder, you will see the Northwind.designer.cs
code file. If you open this file, you will see the classes that have been generated by LINQ to SQL. This is
the data model that your Dynamic Data application has been driven by. Each type has a region that is

CHAPTER 33 ■ DYNAMIC DATA

1433

labeled Extensibility Method Definitions. You will use these methods to perform custom field validation.
Here are the partial methods or the Product type:

partial void OnLoaded();
partial void OnValidate(System.Data.Linq.ChangeAction action);
partial void OnCreated();
partial void OnProductIDChanging(int value);
partial void OnProductIDChanged();
partial void OnProductNameChanging(string value);
partial void OnProductNameChanged();
partial void OnSupplierIDChanging(System.Nullable<int> value);
partial void OnSupplierIDChanged();
partial void OnCategoryIDChanging(System.Nullable<int> value);
partial void OnCategoryIDChanged();
partial void OnQuantityPerUnitChanging(string value);
partial void OnQuantityPerUnitChanged();
partial void OnUnitPriceChanging(System.Nullable<decimal> value);
partial void OnUnitPriceChanged();
partial void OnUnitsInStockChanging(System.Nullable<short> value);
partial void OnUnitsInStockChanged();
partial void OnUnitsOnOrderChanging(System.Nullable<short> value);
partial void OnUnitsOnOrderChanged();
partial void OnReorderLevelChanging(System.Nullable<short> value);
partial void OnReorderLevelChanged();
partial void OnDiscontinuedChanging(bool value);
partial void OnDiscontinuedChanged();

The methods you are interested in are the ones that have the form On<FieldName>Changing. If you
implement these methods in your partial classes, they will be called when the user provides a field value.
Let’s imagine that you want to complement the use of the Range attribute in the previous example by
ensuring that only even numbers can be used in the UnitsInStock field. To do that, you must implement
the extensibility method for the field. It is the one with the following signature:

partial void OnUnitsInStockChanging(System.Nullable<short> value);

To implement this, you add an implementation of this method to the Product class you created in
the Metadata.cs code file, as follows:

public partial class Product {

 partial void OnUnitsInStockChanging(System.Nullable<short> value) {
 if (value % 2 == 1)
 throw new ValidationException("Stock level must be an even number");
 }
}

public class ProductMetadata {

 [DisplayName("In Stock")]
 [Required(ErrorMessage = "You must enter how many items we have in stock")]
 [Range(0, 100)]
 public object UnitsInStock { get; set; }

 [DisplayName("Price")]

CHAPTER 33 ■ DYNAMIC DATA

1434

 public object UnitPrice {get; set;}

 [ScaffoldColumn(false)]
 public object SupplierID { get; set; }
}

If you throw an exception in your implementation of the OnUnitsInStockChanging method, then it
will be used to present the user with a validation error. Save the additions to the Metadata.cs file, and
start the application by selecting Start Without Debugging from the Debug menu.

Click the link for the Products table, and click Edit for one of the data rows. Set the In Stock field
value to be an odd number, and click Update. If the value you entered was outside the range you applied
in the metadata, then you will see a range validation error. If the value you entered was in range but odd,
then you will see the message you passed into the exception you threw in the OnUnitsInStockChanging
method, as shown in Figure 33-29.

Figure 33-29. A validation error created via the extensibility methods

CHAPTER 33 ■ DYNAMIC DATA

1435

Summary
In this chapter, you learned about ASP.NET Dynamic Data support. We hope you agree that this feature
allows you to easily create data-centric applications with a minimum of effort. We showed you how to
use LINQ to SQL to generate the data model, but the same approach works equally as well with the
Entity Framework.

One of the most striking aspects of Dynamic Data is the way in which it can be customized. Page
templates, field templates, metadata, attributes, and extensibility methods can be used to change the
appearance, functionality, and validation methods of a Dynamic Data application—often with little or
no coding required.
We think that this capability is a useful component of ASP.NET, and we hope that the examples we have
demonstrated in this chapter have led you to agree.

C H A P T E R 34

■ ■ ■

1437

Silverlight

Although the Web is easily the most popular environment for business software, there are some things
that web applications just can’t do, or can’t do very well. Even if you outfit your ASP.NET web pages with
the latest cutting-edge JavaScript and Ajax you won’t be able to duplicate many of the capabilities that
desktop applications take for granted, such as animation, sound and video playback, and 3D graphics.
And although you can use JavaScript to respond on the client to focus changes, mouse movements, and
other “real-time” events, you still can’t build a complex interface that’s anywhere near as responsive as a
window in a rich client application. (The saving grace of web programming is that you usually don’t
need these frills. The benefits you gain—broad compatibility, high security, no deployment cost, and a
scalable server-side model—outweigh the loss of a few niceties.)

That said, developers are continuously pushing the limits of the Web. These days, it’s not
uncommon to watch an animated commercial or play a simple but richly designed game directly in
your browser. This capability obviously isn’t a part of the ordinary HTML, CSS, and JavaScript
standards. Instead, it’s enabled by a browser plug-in, sometimes for a Java applet, but most commonly
for Flash content.

Microsoft’s Silverlight technology is a direct competitor to Flash. Like Flash, Silverlight allows you to
create interactive content that runs on the client, with support for dynamic graphics, media, and
animation that goes far beyond ordinary HTML. Also like Flash, Silverlight is deployed using a
lightweight browser plug-in and supports a wide range of different browsers and operating systems. At
the moment, Flash has the edge over Silverlight, because of its widespread adoption and its maturity.
However, Silverlight boasts a few architectural features that Flash can’t match—most importantly, the
fact that it’s based on a scaled-down version of .NET’s common language runtime (CLR) and thus allows
developers to write client-side code using pure C#.

In this chapter, you’ll take a detailed tour of Silverlight. You’ll learn how it works, what features it
supports, and what features aren’t quite there yet. You’ll also consider how you can use Silverlight to
supplement ASP.NET websites.

Silverlight Versions

Silverlight exists in several versions. The first version, Silverlight 1, was a relatively modest technology. It
included the 2D drawing features and the media playback features. However, it didn’t include the CLR
engine or support for .NET languages, so developers were forced to use JavaScript.

The second version, Silverlight 2, added the .NET-powered features that have generated the most
developer excitement. It introduced a scaled-down CLR, a subset of .NET Framework classes, and a user
interface based on Windows Presentation Foundation (WPF), which desktop developers use to build
cutting-edge Windows applications.

CHAPTER 34 ■ SILVERLIGHT

1438

The versions that have followed—Silverlight 3 and Silverlight 4—keep the same underlying infrastructure
and simply add more features.

This chapter assumes that you’re using Silverlight 3, which is the version that’s bundled with Visual Studio
2010. However, almost all the material you’ll learn in this chapter applies to Silverlight 2 or later. For a
more comprehensive look at the full range of Silverlight features, refer to Pro Silverlight 3 in C# 2010
(Apress, 2009).

Understanding Silverlight
Silverlight uses a familiar technique to go beyond the capabilities of standard web pages—it uses a
lightweight browser plug-in.

The advantage of the plug-in model is that the user needs to install just a single component to see
content created by a range of different people and companies. Installing the plug-in requires a small
download and forces the user to confirm the operation in at least one security dialog box (and usually
more). It takes a short but definite amount of time, and it’s an inconvenience. However, once the plug-in
is installed, the browser can process any content that uses the plug-in seamlessly, with no further
prompting.

Figure 34-1 shows two views of a page with Silverlight content. On the top is the page you’ll see if
you don’t have the Silverlight plug-in installed. At this point, you can click the Get Microsoft Silverlight
picture to be taken to Microsoft’s website (http://silverlight.net), where you’ll be prompted to install
the plug-in and then sent back to the original page. On the bottom is the page you’ll see once the
Silverlight plug-in is installed.

■ Note Silverlight is designed to overcome the limitations of ordinary HTML to allow developers to create more

graphical and interactive applications. However, Silverlight isn’t a way for developers to break out of the browser’s
security sandbox. For the most part, Silverlight applications are limited in equivalent ways to ordinary web pages.
For example, a Silverlight application is allowed to create and access files, but only those files that are stored in a

special walled-off isolated storage area. Conceptually, isolated storage works like the cookies in an ordinary web

page. Files are separated by website and the current user, and size is severely limited.

A key point to keep in mind when considering the Silverlight development model is that in most
cases you’ll use Silverlight to augment the existing content of your website (which is still based on
HTML, CSS, and JavaScript). For example, you might add Silverlight content that shows an
advertisement or allows an enhanced experience for a portion of a website (such as playing a game,
completing a survey, interacting with a product, taking a virtual tour, and so on). Your Silverlight pages
may present content that’s already available in your website in a more engaging way, or they may
represent a value-added feature for users who have the Silverlight plug-in.

Although it’s easily possible to create a Silverlight-only website, it’s unlikely that you’ll take that
approach. The fact that Silverlight is still relatively new, and the fact that it doesn’t support legacy clients
(most notably, it has no support for users of Windows ME and Windows 98) mean it doesn’t have nearly
the same reach as ordinary HTML. Many businesses that are adopting Silverlight are using it to
distinguish themselves from other online competitors with cutting-edge content.

http://silverlight.net

CHAPTER 34 ■ SILVERLIGHT

1439

Figure 34-1. Installing the Silverlight plug-in

Silverlight vs. Flash
The most successful browser plug-in is Adobe Flash, which is installed on over 90 percent of the
world’s web browsers. Flash has a long history that spans more than ten years, beginning as a
straightforward tool for adding animated graphics and gradually evolving into a platform for developing
interactive content.

It’s perfectly reasonable for ASP.NET developers to extend their websites using Flash content.
However, doing so requires a separate design tool, and a completely different programming language
(ActionScript) and programming environment (Flex). Furthermore, there’s no straightforward way to
generate Flash content using server-side .NET code, which means it’s difficult to integrate ASP.NET
content and Flash content—instead, they exist in separate islands.

Silverlight aims to give .NET developers a better option for creating rich web content. Silverlight
provides a browser plug-in with many similar features to Flash, but one that’s designed from the ground
up for .NET. Silverlight natively supports the C# language and uses a range of .NET concepts. As a result,
developers can write client-side code for Silverlight in the same language they use for server-side code
(such as C# and VB), and use many of the same abstractions (including streams, controls, collections,
generics, and LINQ).

The Silverlight plug-in has an impressive list of features, some of which are shared in common with
Flash, and some which are entirely new and even revolutionary. They include the following:

• 2D Drawing: Silverlight provides a rich model for 2D drawing. Best of all, the
content you draw is defined as shapes and paths, so you can manipulate this
content on the client side. You can even respond to events (like a mouse click
on a portion of a graphic), which makes it easy to add interactivity to anything
you draw.

CHAPTER 34 ■ SILVERLIGHT

1440

• Controls: Developers don’t want to reinvent the wheel, so Silverlight is stocked
with the essentials, including buttons, text boxes, lists, and a grid. Best of all, these
basic building blocks can be restyled with custom visuals if you want all of the
functionality but none of the stock look.

• Animation: Silverlight has a time-based animation model that lets you define
what should happen and how long it should take. The Silverlight plug-in handles
the sticky details, like interpolating intermediary values and calculating the
frame rate.

• Media: Silverlight provides playback of Windows Media Audio (WMA), Windows
Media Video (WMV7-9), MP3 audio, and VC-1 (which supports high-definition).
You aren’t tied to the Windows Media Player ActiveX control or browser plug-in—
instead, you can create any front-end you want, and you can even show video in
full-screen mode.

• The Common Language Runtime: Most impressively, Silverlight includes a
scaled-down version of the CLR, complete with an essential set of core classes, a
garbage collector, a JIT (just-in-time) compiler, support for generics, threading,
and so on. In many cases, developers can take code written for the full .NET CLR
and use it in a Silverlight application with only moderate changes.

• Networking: Silverlight applications can call old-style ASP.NET web services
(.asmx) or WCF (Windows Communication Foundation) web services. They can
also send manually created XML requests over HTTP and even open direct socket
connections for fast two-way communication. This gives developers a great way to
combine rich client-side code with secure server-side routines.

• Data binding: Although it’s not as capable as in its big brother (WPF), Silverlight
data binding provides a convenient way to display large amounts of data with
minimal code. You can pull your data from XML or in-memory objects, giving you
the ability to call a web service, receive a collection of objects, and display their
data in a web page—often with just a couple of lines of code.

Of course, it’s just as important to note what Silverlight doesn’t include. Silverlight is a new
technology that’s evolving rapidly, and it’s full of stumbling blocks for developers who are used to
relying on .NET’s rich libraries of prebuilt functionality. Prominent gaps include lack of database
support (there’s no ADO.NET), no support for 3D drawing, and fewer rich controls (although many
developers and component companies are building their own). All of these features are available in
Windows-centric WPF applications, and they may someday migrate to the Silverlight universe—or not.

■ Note In essence, Silverlight is a .NET-based Flash competitor. It aims to compete with Flash today, but provide
a path to far more features in the future. Unlike the Flash development model, which is limited in several ways due
to the way it’s evolved over the years, Silverlight is a starting-from-scratch attempt that’s thoroughly based on

.NET and WPF, and will therefore allow .NET developers to be far more productive. In many ways, Silverlight is the
culmination of two trends: the drive to extend web pages to incorporate more and more rich client features, and

the drive to give the .NET Framework a broader reach.

CHAPTER 34 ■ SILVERLIGHT

1441

Silverlight System Requirements
With any web-centric technology, it’s keenly important to have compatibility with the widest possible
range of computers and devices. Although Silverlight is still evolving, it already stacks up fairly well in
this department:

• Windows computers: Silverlight works on PCs with Windows 7, Windows Vista
and Windows XP. The minimum browser versions that Silverlight 2 supports are
Internet Explorer 6 and Firefox 1.5. Silverlight will also work in Windows 2000, but
only with Internet Explorer 6.

• Mac computers: Silverlight works on Mac computers with OS X 10.4.8 or later,
provided they have Intel hardware (as opposed to the older PowerPC hardware).
The minimum browser versions that Silverlight 2 supports are Firefox 1.5 and
Safari.

• Linux computers: Although Silverlight doesn’t currently work on Linux, the Mono
team is creating an open-source Linux implementation of Silverlight 1 and
Silverlight 2. This project is known as Moonlight, and it’s being developed with key
support from Microsoft. To learn more, visit http://www.mono-
project.com/Moonlight.

■ Note The system requirements for Silverlight may change as Microsoft releases plug-ins for other browsers.
For example, the Opera browser currently works on PCs through an unsupported hack, but better support is
planned in the future. To see the latest system requirements, check

http://www.microsoft.com/silverlight/resources/install.aspx.

Installing Silverlight requires a small-sized setup (about 5 MB) that’s easy to download. (You can get
it at http://silverlight.net.) That allows Silverlight to provide an all-important “frictionless” setup
experience, much like Flash, but quite different from Java.

■ Note In order to run Silverlight applications, you simply need the Silverlight browser plug-in. In order to create
Silverlight applications (and open the sample project for this book), you need Visual Studio 2010, which includes

full support for Silverlight 3. Alternatively, you can use Expression Blend—a graphically oriented design tool—to
build and test Silverlight applications. Overall, Expression Blend is intended for graphic designers who spend their

time creating serious eye candy, while Visual Studio is ideal for code-heavy application programmers.

http://www.mono-project.com/Moonlight
http://www.mono-project.com/Moonlight
http://www.mono-project.com/Moonlight
http://www.microsoft.com/silverlight/resources/install.aspx
http://silverlight.net

CHAPTER 34 ■ SILVERLIGHT

1442

Creating a Silverlight Solution
Now that you’ve installed the Silverlight Tools for Visual Studio, you’re ready to create your first
Silverlight project. Here’s what you need to do:

1. Select File ➤ New ➤ Project in Visual Studio, choose the Visual C# group of
project types, and then choose Silverlight subgroup (on the left). Finally, select
the Silverlight Application template (in the middle). It’s a good idea to use the
“Create directory for solution” option, so you can group together the two
projects that Visual Studio will create—one for the Silverlight assembly and
one for the ASP.NET website.

2. Once you’ve picked the solution name and project name, click OK to create it.

3. You’ll be asked whether you want to create a host website. To create an
ASP.NET website for hosting your Silverlight application (rather than a simple
HTML file), make sure the setting “Host the Silverlight application in a new
Web site” is checked. You’ll also need to supply a project name for the
ASP.NET website. By default, it’s your project name with the added text “.Web”
at the end, as shown in Figure 34-2.

Figure 34-2. Creating an ASP.NET website to host Silverlight content

4. You can choose to create a projectless ASP.NET website or an ASP.NET web
project by selecting the appropriate option in the Project Type list box. Either
approach gives you the same ability to host Silverlight content. Chapter 2
describes the difference.

5. Finally, click OK to create the two projects.

CHAPTER 34 ■ SILVERLIGHT

1443

When you follow these steps, you’ll end up with a single solution that holds two projects—a familiar
ASP.NET website, and a dedicated Silverlight project, as shown in Figure 34-3.

Figure 34-3. Creating an ASP.NET website to host Silverlight content

Silverlight Compilation
When you create a Silverlight solution, Visual Studio generates a new ASP.NET website that can hold
ordinary web forms, HTML pages, and web services. However, there’s a difference between this website
and the ones you’ve seen throughout this book—namely, it’s already set up with the ability to host
Silverlight content.

To understand how this works, you need to know a bit more about the Silverlight compilation
process. When you compile the solution shown in Figure 34-3, here’s what happens:

1. First, the Silverlight project is compiled into a DLL file. For example, if you
have a project named SilverlightApplication1, the csc.exe compiler will create
the file SilverlightApplication1.dll, with all the code and markup that the
Silverlight project contains.

2. Next, the assembly is placed into a special application package called a XAP
file. (You’ll learn a bit more about XAP files in the following sidebar,
“Understanding XAP Files.”) The XAP file includes the DLL assembly for your
project, any other dependent assemblies you’re using (except for the ones that
are a part of the core Silverlight runtime), and the application manifest file
AppManifest.xml, which lists the files that comprise your application. If you
add other content files to your Silverlight project (for example, images), they
will be automatically embedded in the XAP file.

CHAPTER 34 ■ SILVERLIGHT

1444

3. Finally, Visual Studio copies the XAP file to the ClientBin folder in the ASP.NET
website, as shown in Figure 34-4. (This is similar to assembly references—if an
ASP.NET website references a private DLL, Visual Studio automatically copies
this DLL to the Bin folder.) Once your Silverlight application is in the ClientBin
folder, it’s accessible to the pages in your ASP.NET website.

These steps ensure that your ASP.NET application always gets the most recent version of your
Silverlight project. Technically, you don’t need to place the XAP file in the ClientBin folder—it’s just a
convenient standard that separates the Silverlight content from the rest of your website.

Figure 34-4. The compiled Silverlight application

Understanding XAP Files

Technically, the XAP file is a ZIP archive. To verify this, rename a XAP file like SilverlightApplication1.xap to
SilverlightApplication1.xap.zip. You can then open the archive and view the files inside.

The XAP file system has two obvious benefits:

• It compresses your content: Because this content isn’t decompressed until it
reaches the client, it reduces the time required to download your application. This
is particularly important if your application contains large static resources that can
be easily compressed, like XML documents or blocks of text.

• It simplifies deployment: When you’re ready to take your Silverlight application
live, you simply need to copy the XAP file to the web server, along with
TestPage.html or a similar HTML file that includes a Silverlight content region. You
don’t need to worry about keeping track of the assemblies and resources.

CHAPTER 34 ■ SILVERLIGHT

1445

However, there’s one potential stumbling block. When hosting a Silverlight application, your web server
must be configured to allow requests for the XAP file type. This file type is included by default in IIS 7,
provided you’re using Windows Server 2008, Windows 7, or Windows Vista with Service Pack 1. If you
have Windows Vista without Service Pack 1, you have an earlier version of IIS, or you have another type of
web server, you’ll need to add a file type that maps the .xap extension to the MIME type application/x-
silverlight-app. For IIS instructions, see http://learn.iis.net/page.aspx/262/silverlight.

The Entry Page
Although the XAP package makes deployment easy, you still need to take an extra step to allow users to
run your Silverlight application. That’s because users can’t run a Silverlight application by directly
requesting the XAP file. Instead, they need to surf to an entry page that instantiates the Silverlight
plug-in.

In an ASP.NET website, you have two options for your entry page:

• Create HTML files with Silverlight content: You place these files in your ASP.NET
website folder, just as you would with any other ordinary HTML file. The only
limitation of this approach is that your HTML file obviously can’t include ASP.NET
controls, because it won’t be processed on the server.

• Place Silverlight content inside an ASP.NET web form: In this case, the <object>
element that loads the Silverlight plug-in is inserted into a dynamic .aspx page.
You can add other ASP.NET controls to different regions of this page. The only
disadvantage to this approach is that the page is always processed on the server. If
you aren’t actually using any server-side ASP.NET content, this creates an extra bit
of overhead that you don’t need when the page is first requested.

Of course, you’re also free to mingle both of these approaches, and use Silverlight content in
dedicated HTML pages and inside ASP.NET web pages in the same site. When you create a Silverlight
project with an ASP.NET website in Visual Studio, you’ll start with both. For example, if your Silverlight
project is named SilverlightApplication1, you can use SilverlightApplication1TestPage.html or
SilverlightApplication1TestPage.aspx., as shown in Figure 34-4.

Either way, the Silverlight plug-in is defined in exactly the same way—using an <object> element
that’s wrapped in a <div> element. You position that <div> element where you want the Silverlight
content region to appear on your page.

Here’s a shortened version of the the default .aspx entry page, without the styles and the JavaScript
error-handling code:

<%@ Page Language="C#" AutoEventWireup="true" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>SilverlightApplication1</title>
 <style type="text/css">...</style>
 <script type="text/javascript" src="Silverlight.js"></script>
 <script type="text/javascript">
 function onSilverlightError(sender, args) { ... }
 </script>
</head>

<body>
 <form id="form1" runat="server" style="height:100%">

http://learn.iis.net/page.aspx/262/silverlight
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 34 ■ SILVERLIGHT

1446

 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2," type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/SilverlightApplication1.xap"/>
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="3.0.40818.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=3.0.40818.0"
 style="text-decoration:none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=161376"
 alt="Get Microsoft Silverlight" style="border-style:none"/>

 </object>
 <iframe id="_sl_historyFrame"
 style="visibility:hidden;height:0px;width:0px;border:0px"></iframe>
 </div>
 </form>
</body>
</html>

The key detail in this markup is the highlighted <div> element. This element is a placeholder that
represents the Silverlight content region. It contains an <object> element that loads the Silverlight plug-
in and an <iframe> element that’s used to display it in certain browsers. The <object> element includes
four key attributes: data (which indentifies it as a Silverlight content region), type (which indicates the
required Silverlight version), and height and width (which determine the dimensions of the Silverlight
content region).

<object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" width="100%" height="100%">
 ...
</object>

The <object> element also contains a series of <param> elements that specify additional options to
the Silverlight plug-in, such as the location of the XAP file that contains the Silverlight application you
want to run, the JavaScript routine to run if the plug-in can’t be loaded, the background color of the
Silverlight region, and the minimum required verson of Silverlight:

<param name="source" value="ClientBin/SilverlightApplication1.xap"/>

<param name="onerror" value="onSilverlightError" />
<param name="background" value="white" />
<param name="minRuntimeVersion" value="3.0.40818.0" />
<param name="autoUpgrade" value="true" />

Finally, the <object> element has some HTML markup that will be shown if the <object> tag isn’t
understood or the plug-in isn’t available. In the standard test page, this markup consists of a “Get
Silverlight” picture, which is wrapped in a hyperlink that, when clicked, takes the user to the Silverlight
download page.

<a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=3.0.40818.0"
 style="text-decoration:none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=161376"
 alt="Get Microsoft Silverlight" style="border-style:none"/>

http://go.microsoft.com/fwlink/?LinkID=149156&v=3.0.40818.0
http://go.microsoft.com/fwlink/?LinkId=161376
http://go.microsoft.com/fwlink/?LinkID=149156&v=3.0.40818.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 34 ■ SILVERLIGHT

1447

■ Note By default, the entry page configures the Silverlight content region to take up the entire space in the web

browser window. If you want to display other content in your page, you’ll need to tweak the style rules that appear

at the top of the entry page.

Here’s what happens when this page is requested:

1. The server creates all the server-side objects (in this example, that includes the
ScriptManager and Silverlight controls) and begins the ordinary ASP.NET page
lifecycle.

2. After all the events have fired (and any event handling code has finished), the
server renders the page to ordinary HTML, one web control at a time..

3. When the page is fully rendered, it’s sent to the client. The server-side objects
are released from memory.

4. When the browser receives the page, it begins processing it. When the browser
encounters the <object> element, it initializes the Silverlight plug-in,
downloads the XAP file for the Silverlight application, and starts the
application.

5. The Silverlight application runs in the client browser. No more server-side web
page code will be executed, unless the user navigates to another page or
refreshes the current page (both of which will shut down the current Silverlight
application and restart the entire process). If the user interacts with an
ASP.NET control elsewhere on the page, that control may post back the page
(which will effectively end the currently running Silverlight application) or call
back to the web server using ASP.NET AJAX (which won’t disturb it). As you’ll
see later in this chapter, the Silverlight application also has the ability to trigger
web server code by calling a web service.

You can add a number of parameters to the <object> element that represents the Silverlight content
region. Table 34-1 lists the most important.

Table 34-1. Basic Parameters for the Silverlight Plug-In

Name Value

source A URI that points to the XAP file for your Silverlight application. This
parameter is required.

onError A JavaScript event handler that’s triggered when a unhandled error occurs in
the Silverlight plug-in or in your code. The onError event handler is also
called if the user has Silverlight installed but doesn’t meet the
minRuntimeVersion parameter.

background The color that’s used to paint the background of the Silverlight content
region, behind any content that you display (but in front of any HTML
content that occupies the same space). If you set the Background property of
a page, it’s painted over this background.

CHAPTER 34 ■ SILVERLIGHT

1448

Name Value

minRuntimeVersion This is the minimum version of Silverlight that the client must have in order
to run your application. If you need the features of Silverlight 3, set this to
3.0.40818.0 (as slightly earlier versions may correspond to beta builds). If
Silverlight 2 is sufficient, use 2.0.31005.0.

autoUpgrade A Boolean that specifies whether Silverlight should (if it’s installed and has an
insufficient version number) attempt to update itself. The default is true.

enableHtmlAccess A Boolean that specifies whether the Silverlight plug-in has access to the
HTML object model. Use true if you want to be able to interact with the
HTML elements on the test page through your Silverlight code.

initParams A string that you can use to pass custom initialization information. This
technique is useful if you plan to use the same Silverlight application in
different ways on different pages.

splashScreenSource The location of a XAML splash screen to show while the XAP file is
downloading.

windowless A Boolean that specifies whether the plug-in renders in windowed mode (the
default) or windowless mode. If you set this true, the HTML content
underneath your Silverlight content region can show through. This is ideal if
you’re planning to create a shaped Silverlight control that integrates with
HTML content.

onSourceDownload-
ProgressChanged

A JavaScript event handler that’s triggered when a piece of the XAP file
has been downloaded. You can use this event handler to build a startup
progress bar.

onSourceDownload-
Complete

A JavaScript event handler that’s triggered when the entire XAP file has been
downloaded.

onLoad A JavaScript event handler that’s triggered when the markup in the XAP file
has been processed and your first page has been loaded.

onResize A JavaScript event handler that’s triggered when the size of a Silverlight
content region has changed.

Hybrid Pages

Ambitious ASP.NET developers might use Silverlight to add new functionality (or just sugarcoat) existing
ASP.NET pages. Examples include Silverlight-powered ad content, menu systems, and embedded applets
(like calculators or games).

When dealing with this sort of interaction, it’s important to understand the lifetime of a Silverlight application.
Ordinarily, ASP.NET code runs on the web server, and ASP.NET controls post the page back to the server. The
problem is that when the page is posted back, the current Silverlight application ends. The web server code

CHAPTER 34 ■ SILVERLIGHT

1449

runs, a new version of the page is sent to the browser, and the browser loads this new page, at which point
your Silverlight application restarts. Not only does this send the user back to the starting point, it also takes
additional time because the Silverlight environment must be initialized all over again.

If you want to avoid this disruption, you can use ASP.NET AJAX techniques. A particularly useful tool is the
UpdatePanel that’s described in Chapter 30. The basic technique is to wrap the controls that would
ordinarily trigger a post back and any other controls that they modify into one or more UpdatePanel
controls. Then, when the user clicks a button, an asynchronous request is sent to the web server instead
of a full post back. When the browser receives the reply, it updates the corresponding portions of the page,
without disrupting the Silverlight content.

Creating a Silverlight Project
Now that you understand how your ASP.NET website can host a Silverlight application, you’re ready to
start designing that application.

Every Silverlight project starts with a small set of essential files, as shown in Figure 34-5. All the files
that end with the extension .xaml use a flexible markup standard called XAML, which you’ll dissect in
this chapter. All the files that end with the extension .cs hold the C# source code that powers your
application.

Figure 34-5. A Silverlight project

Here’s a rundown of the files shown in Figure 34-5:

• App.xaml and App.xaml.cs: These files allow you to configure your Silverlight
application. They allow you to define resources that will be made available to all
the pages in your application, and they allow you react to application events such
as startup, shutdown, and error conditions. In a newly generated project, the
startup code in the App.xaml.cs file specifies that your application should begin by
showing Page.xaml.

CHAPTER 34 ■ SILVERLIGHT

1450

• MainPage.xaml: This file defines the user interface (the collection of controls,
images, and text) that will be shown for your first page. Technically, Silverlight
pages are user controls—custom classes that derive from UserControl. A Silverlight
application can contain as many pages as you need—to add more, simply choose
Project ➤ Add New Item, pick the Silverlight User Control template, choose a file
name, and click Add.

• MainPage.xaml.cs: This file includes the code that underpins your first page,
including the event handlers that react to user actions. Like all the code in a
Silverlight application, these events run on the client side.

Along with these four essential files, there are a few more ingredients that you’ll only find if you dig
around. Under the Properties node in the Solution Explorer, you’ll find a file named AppManifest.xml,
which lists the assemblies that your application uses. You’ll also find a file named AssemblyInfo.cs,
which contains information about your project (such as its name, version, and publisher) that’s
embedded into your Silverlight assembly when it’s compiled. Neither of these files should be edited by
hand—instead, they’re modified by Visual Studio when you add references or set projects properties.

Designing a Silverlight Page
Every Silverlight page includes a markup portion that defines the visual appearance (the XAML file) and
a source code file that contains event handlers. To customize your first Silverlight application, you
simply need to open the Page.xaml file and begin adding markup.

Visual Studio gives you two ways to look at every XAML file—as a visual preview (known as the
design surface) or the underlying markup (known as the source view). By default, Visual Studio shows
both parts, stacked one on the other. Figure 34-6 shows this view and points out the buttons you can use
to change your vantage point.

Figure 34-6. Viewing XAML pages

As you’ve no doubt guessed, you can start designing your XAML page by dragging controls from the
Toolbox and dropping them onto the design surface. However, this convenience won’t save you from
learning the full intricacies of XAML. In order to organize your elements into the right layout containers,

CHAPTER 34 ■ SILVERLIGHT

1451

change their properties, wire up event handlers, and use Silverlight features like animation, styles,
templates, and data binding, you’ll need to edit the XAML markup by hand.

To get started, you can try creating the page shown here, which defines a block of text and a button.
The portions in bold have been added to the basic page template that Visual Studio generated when you
created the project.

<UserControl x:Class="SilverlightApplication1.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="100">

 <StackPanel Background="White">
 <TextBlock x:Name="lblMessage" Text="Hello world." Margin="5"></TextBlock>
 <Button x:Name="cmdClickMe" Content="Click Me!" Margin="5"></Button>
 </StackPanel>
</UserControl>

This creates a page that has a stacked arrangement of two elements. On the top is a block of text
with a simple message. Underneath it is a button. These three elements are just a sampling of what
Silverlight provides—for more, just scan the Visual Studio Toolbox. You’ll find the essential graphical
widgets that rich client developers rely on, like text boxes, check boxes, list boxes, and buttons. Table 34-
2 gives you an at-a-glance look at some of your options, many of which you’ll study in this chapter.

■ Note In Silverlight terminology, each graphical widget that meets these criteria (appears in a window and is
represented by a .NET class) is called an element. The term control is generally reserved for elements that receive

focus and allow user interaction. For example, a TextBox is a control, but the TextBlock is not.

Table 34-2. Basic Silverlight Elements

Class Description Type of Element

TextBlock An all-purpose text display control. If you wish to give
different formatting to multiple pieces of inline text,
you can nest one or more Run elements inside the
TextBlock element.

Text display

Image An element that displays a supported image file.
Silverlight supports JPEG and PNG, but not GIF
images.

Image display

Button The familiar button, complete with a shaded gray
background, which the user clicks to launch a task.

Common control

TextBox The familiar text-entry control. Common control

PasswordBox A text box that masks the text the user enters. Common control

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 34 ■ SILVERLIGHT

1452

Class Description Type of Element

CheckBox A box that can be checked or unchecked, with optional
content displayed next to it.

Common control

RadioButton A small circle that represents one choice out of a
group of options, with optional content displayed next
to it.

Common control

ListBox A list of items, out of which a single one can be
selected.

Common control

ComboBox A drop-down list of items, out of which a single one
can be selected.

Common control

HyperlinkButton A link that directs the user to another web page. Common control

Slider An input control that lets the user set a numeric value
by dragging a thumb along a track.

Common control

ProgressBar A colored bar that indicates the percent completion of
a given task.

Common control

Calendar* A one-month-at-a-time calendar view that allows the
user to select a single date.

Date control

DatePicker* A text box for date entry, with a drop-down calendar
for easy selection.

Date control

Border A rectangular or rounded border, which is drawn
around the contained element.

Simple container

ScrollViewer A container that holds another element with large
content and provides a scrollable view onto it.

Simple container

TabControl A container that places items into separate tabs, and
allows the user to view just one tab at a time.

Layout container

StackPanel A layout container that stacks a group of child
elements from top to bottom or left to right.

Layout container

Canvas A layout container that allows you to lay out a group of
child elements with precise coordinates.

Layout container

Grid A layout container that arranges child elements in an
invisible grid of cells.

Layout container

GridSplitter* A resizing bar that allows users to change the height or
adjacent rows or the width of adjacent columns in a
Grid.

Layout tool

Line A shape element that draws a line. Shape primitive

CHAPTER 34 ■ SILVERLIGHT

1453

Class Description Type of Element

Rectangle A shape element that draws a rectangle. Shape primitive

Ellipse A shape element that draws an ellipse. Shape primitive

Path A shape element that draws the shape that’s defined
by a geometry object.

Shape primitive

MultiScaleImage An element that supports Silverlight’s Deep Zoom
feature, and allows the user to zoom into a precise
location in a massive image.

Rich control

MediaElement A media file, such as a sound (which has no visual
appearance) or a video window.

Rich control

DataGrid* A multicolumn, multirow list filled with a collection of
data objects.

Rich control

* These elements are not a part of the core Silverlight runtime. When you add them to a page, Visual Studio adds a
reference to a separate assembly, which will be deployed in the compiled XAP file with your application.

Silverlight’s Add-On Assemblies

The architects of Silverlight have set out to keep the core framework as small as possible. This design
makes the initial Silverlight plug-in small to download and quick to install—an obvious selling point to web
surfers everywhere.

To achieve this lean-and-mean goal, the Silverlight designers have removed some functionality from the
core Silverlight runtime and placed it in separate add-on assemblies. These assemblies are still considered
to be part of the Silverlight platform, but if you want to use them, you’ll need to package them with your
application. This represents is an obvious trade-off, because it will increase the download size of your
application. (The effect is mitigated by Silverlight’s built-in compression, which you’ll learn about later in
this chapter.)

Two commonly used Silverlight assemblies are

• System.Windows.Controls.dll: This assembly contains a few new controls,
including the Calendar, DatePicker, TabControl, and GridSplitter.

• System.Windows.Controls.Data.dll: This assembly has Silverlight’s new built-
from-scratch DataGrid.

Both of these assemblies add new controls to your Silverlight toolkit. In the near future, Microsoft plans to
make many more add-on controls available. Eventually, the number of add-on controls will dwarf the
number of core controls.

When you drag a control from an add-on assembly onto a Silverlight page, Visual Studio automatically
adds the assembly reference you need. If you select that reference and look in the Properties window,
you’ll see that the Copy Local property is set to true, which is different from the other assemblies that
make up the core Silverlight runtime. As a result, when you compile your application, the assembly will be
embedded in the final package. Visual Studio is intelligent enough to recognize assemblies that aren’t a
part of the core Silverlight runtime—even if you add them by hand, it automatically sets Copy Local to true.

CHAPTER 34 ■ SILVERLIGHT

1454

Understanding XAML
To understand the markup that underpins this page, you need to know a bit more about XAML.
Conceptually, XAML is a markup language that plays an analogous role to HTML. HTML allows you to
define the elements that make up an ordinary web page.

Every element in a XAML document maps to an instance of a Silverlight class. The name of the
element matches the name of the class exactly. For example, consider the elements that were added in
the previous example. The <StackPanel> element instructs Silverlight to create a StackPanel object
(which lays out a group of elements in a horizontal or vertical stack, one next to the other). The
<TextBlock> element instructs Silverlight to create a TextBlock object (which displays a block of
formatted text). As in HTML, the way you nest elements in XAML is important. Because the <TextBlock>
element is nested inside the <StackPanel> element, and because the StackPanel is a container control,
the TextBlock is rendered inside the StackPanel.

When you use an element like <TextBlock> in a XAML file, the Silverlight parser recognizes that you
want to create an instance of the TextBlock class. However, it doesn’t necessarily know what TextBlock
class to use. After all, even if the Silverlight namespaces only include a single class with that name,
there’s no guarantee that you won’t create a similarly named class of your own. Clearly, you need a way
to indicate the Silverlight namespace information in order to use an element.

In Silverlight, classes are resolved by mapping XML namespaces to Silverlight namespaces. In the
sample document shown earlier, two namespaces are defined in the root <UserControl> element
(followed by the Width and Height attributes that set the dimensions of the Silverlight page):

<UserControl x:Class="SilverlightApplication1.Page"
 xmlns="http://schema.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="100">

You’ll find these two namespaces in every XAML document you create for Silverlight:

• http://schema.microsoft.com/winfx/2006/xaml/presentation is the core
Silverlight namespace. It encompasses all the Silverlight classes, including the
Grid, StackPanel, TextBlock, and Button used in this example. Ordinarily, this
namespace is declared without a namespace prefix, so it becomes the default
namespace for the entire document. In other words, every element is
automatically placed in this namespace unless you specify otherwise.

• http://schemas.microsoft.com/winfx/2006/xaml is the XAML namespace. It
includes various XAML utility features that allow you to influence how your
document is interpreted. This namespace is typically mapped to the prefix x.

These two namespaces give you access to the core library of Silverlight elements.

Mapping Additional Namespaces

In many situations, you’ll want to have access to different namespaces in a XAML file. For example, you
might create a custom Silverlight control. Or, you might choose to use one of the few Silverlight controls
that aren’t a part of the core framework (such as the Calendar, DataGrid, or DatePicker). In this case, you
need to define a new XML namespace prefix and map it to the right assembly. Here’s the syntax you need:

<UserControl x:Class="SilverlightApplication1.Page"
 xmlns:w="clr-namespace:Widgets;assembly=Widgets"
 ...

http://schema.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schema.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 34 ■ SILVERLIGHT

1455

The XML namespace declaration sets three pieces of information:

• The XML namespace prefix: You’ll use the namespace prefix to refer to the
namespace in your XAML page. In this example, that’s w, although you can
choose anything you want that doesn’t conflict with another namespace prefix.

• The .NET namespace: In this example, the classes are located in the Widgets
namespace. If you have classes that you want to use in multiple namespaces, you
can map them to different XML namespaces or to the same XML namespace (as
long as there aren’t any conflicting class names).

• The assembly: In this example, the classes are part of the Widgets.dll assembly.
Assuming you’ve added a reference to your Silverlight application that points to
the Widgets assembly, it will be automatically included in the final XAP package.
This assembly can’t be an ordinary .NET assembly—instead, it must be a
Silverlight class library assembly (which you can easily create with Visual Studio).

Once you’ve mapped your .NET namespace to an XML namespace, you can use it anywhere in your XAML
document. For example, if the Widgets namespace contains a control named HotButton, you could create
an instance like this:

<w:HotButton Text="Click Me!" Click="DoSomething"></w:HotButton>

Setting Properties
Each element in a XAML document corresponds to a class. Similarly, each attribute you set corresponds
to a property or event, just as in ASP.NET. Silverlight uses type converters to convert the string value to
the appropriate data type. In many cases, this is an easy task—for example, there’s no difficulty in
changing a string with a number into a number or a string with a color name into the corresponding
color value:

<StackPanel Background="Red">

However, in other situations you need to set a property using an object that can’t be easily
represented as a single string. For example, instead of filling the page with a solid color background, you
might prefer to create a more advanced brush that can paint a gradient.

In Silverlight, complex properties are handled with a nested element syntax. The nested element
takes a two-part name in the form ClassName.PropertyName. Inside this element, you can instantiate
the object you want with the appropriate element.

For example, the following markup sets the StackPanel.Background property by creating a
RadialGradientBrush. It does this using a <StackPanel.Background> element (rather than setting the
Background attribute of the <StackPanel> element, as in the previous example). To configure the
RadialGradientBrush, you need to supply a center point for the gradient, and the gradient stops (the
colors in the gradient). Figure 34-7 shows the result.

<UserControl ... >
 <StackPanel>
 <StackPanel.Background>
 <RadialGradientBrush Center="0.5,0.5">
 <GradientStop Offset="0" Color="LightSteelBlue" />
 <GradientStop Offset="1" Color="White" />
 </RadialGradientBrush>
 </StackPanel.Background>

CHAPTER 34 ■ SILVERLIGHT

1456

 <TextBlock x:Name="lblMessage" Text="Hello world." Margin="5"></TextBlock>
 <Button x:Name="cmdClickMe" Content="Click Me!" Margin="5"></Button>
 </StackPanel>
</UserControl>

Figure 34-7. A Silverlight page with a RadialGradientBrush background

The XAML Code-Behind
XAML allows you to construct a user interface, but in order to make a functioning application, you need
a way to connect the event handlers that have your application code. XAML makes this easy using the
Class attribute shown here:

<UserControl x:Class="SilverlightApplication1.Page"
 xmlns=http://schema.microsoft.com/winfx/2006/xaml/presentation
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="100">

The x namespace prefix places the Class attribute in the XAML namespace, which means the Class
attribute is a more general part of the XAML language, not a specific Silverlight ingredient.

In fact, the Class attribute tells the Silverlight parser to generate a new class with the specified name.
That class derives from the class that’s named by the XML element. In other words, this example creates
a new class named SilverlightApplication1.Page, which derives from the base UserControl class. The
automatically generated portion of this class is merged with the code you’ve supplied in the code-
behind file.

http://schema.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 34 ■ SILVERLIGHT

1457

Usually, every XAML file will have a corresponding code-behind class with client-side C# code.
Visual Studio creates a code-behind class for the Page.xaml file named Page.xaml.cs. Here’s what you’ll
see in the Page.xaml.cs file (not including the namespace imports):

namespace SilverlightApplication1
{
 public partial class Page : UserControl
 {
 public Page()
 {
 InitializeComponent();
 }
 }
}

Currently, the Page class code doesn’t include any real functionality. However, it does include one
important detail—the default constructor, which calls InitializeComponent() when you create an
instance of the class. This parses your markup, creates the corresponding objects, sets their properties,
and attaches any event handlers you’ve defined.

■ Note The InitializeComponent() method plays a key role in Silverlight content. For that reason, you should never
delete the InitializeComponent() call from the constructor. Similarly, if you add another constructor, make sure it

also calls InitializeComponent().

There’s one more detail to consider. In your code-behind class, you’ll often want to manipulate
controls programmatically. For example, you might want to read or change properties or attach and
detach event handlers on the fly. To make this possible, the control must include the Name attribute:

<TextBlock x:Name="lblMessage" Text="Hello world." Margin="5"></TextBlock>

This model is surprisingly like developing an ASP.NET web page. However, the underlying plumbing
is completely different. XAML markup is parsed on the client side by the Silverlight engine using a
scaled-down version of the CLR. The final content is rendered using a specialized Silverlight control
that’s embedded in the page. ASP.NET markup is processed by the ASP.NET engine on the server, along
with any ordinary HTML that the page contains. The final result is rendered to HTML and then sent to
the client.

Handling Events
To attach an event, you use attributes. However, now you need to assign the name of your event handler
to the name of the event. This is similar to the approach used in ASP.NET web pages, except for that fact
that event attributes do not begin with the word On.

For example, the Button element exposes an event named Click that fires when the button is
triggered with the mouse or keyboard. To react to this event, you add the Click attribute to the Button
element, and set it to the name of a method in your code:

<Button x:Name="cmdClickMe" Click="cmdClickMe_Click" Content="Click Me!"
 Margin="5"></Button>

CHAPTER 34 ■ SILVERLIGHT

1458

■ Tip Although it’s not required, it’s a common convention to name event handler methods in the form

ElementName_EventName. If the element doesn’t have a defined name (presumably because you don’t need to

interact with it in any other place in your code), consider using the name it would have.

This example assumes that you’ve created an event handling method named cmdClickMe_Click.
Here’s what it looks like in the Page.xaml.cs file:

private void cmdClickMe_Click(object sender, RoutedEventArgs e)
{
 lblMessage.Text = "Goodbye, cruel world.";
}

Figure 34-8 shows the previous example at work. When you click the button, the event handling
code runs and the text changes. This process happens entirely on the client—there is no need to contact
the server or post back the page, as there is in a server-side programming framework like ASP.NET. All
the Silverlight code is executed on the client side by the scaled-down version of .NET that’s embedded in
the Silverlight plug-in.

You’ll find that Silverlight elements provide a subset of the full set of events found in rich client
platforms like WPF and Windows Forms. You’ll find most of the events that you expect, including
change events (like TextChanged and SelectionChanged), keyboard events (KeyDown, KeyUp, GotFocus,
and LostFocus), mouse events (MouseLeftButtonDown, MouseLeftButtonUp, MouseEnter,
MouseLeave, and MouseMove), and initialization events (Loaded).

Figure 34-8. Running a Silverlight application (in Firefox)

CHAPTER 34 ■ SILVERLIGHT

1459

Browsing the Silverlight Class Libraries
In order to write practical code, you need to know quite a bit about the classes you have to work with.
That means acquiring a thorough knowledge of the core class libraries that ship with Silverlight.

Silverlight includes a subset of the classes from the full .NET Framework. Although it would be
impossible to cram the entire .NET Framework into Silverlight—after all, it’s a 5 MB download that
needs to support a variety of browsers and operating systems—Silverlight includes a remarkable amount
of functionality.

The Silverlight version of the .NET Framework is simplified in two ways. First, it doesn’t provide the
sheer number of types you’ll find in the full .NET Framework. Second, the classes that it does include
often don’t provide the full complement of constructors, methods, properties, and events. Instead,
Silverlight keeps only the most practical members of the most important classes, which leaves it with
enough functionality to create surprisingly compelling code.

■ Note The Silverlight classes are designed to have public interfaces that resemble their full-fledged counterparts
in the .NET Framework. However, the actual plumbing of these classes is quite different. All the Silverlight classes

have been rewritten from the ground up to be as streamlined and efficient as possible.

Before you start doing any serious Silverlight programming, you might like to browse the Silverlight
version of the .NET Framework. One way to do so is to open a Silverlight project, and then show the
Object Browser in Visual Studio (choose View ➤ Object Browser). Along with the assembly for the code
in your project, you’ll see the following Silverlight assemblies:

• mscorlib.dll: This assembly is the Silverlight equivalent of the mscorlib.dll
assembly that includes the most fundamental parts of the .NET Framework. The
Silverlight version includes core data types, exceptions, and interfaces in the
System namespace, ordinary and generic collections, file management classes,
and support for globalization, reflection, resources, debugging, and
multithreading.

• System.dll: This assembly contains additional generic collections, classes for
dealing with URIs, and classes for dealing with regular expressions.

• System.Core.dll: This assembly contains support for LINQ. The name of the
assembly matches the full .NET Framework, which implements features that were
added in .NET 3.5 in an assembly named System.Core.dll.

• System.Net.dll: This assembly contains classes that support networking, allowing
you to download web pages and create socket-based connections.

• System.Windows.dll: This assembly includes many of the classes for building
Silverlight user interfaces, including basic elements, shapes and brushes, classes
that support animation and data binding, and a version of the OpenFileDialog
that works with isolated storage.

• System.Windows.Browser.dll: This assembly contains classes for interacting with
HTML elements.

• System.Xml.dll: This assembly includes the bare minimum classes you need for
XML processing: XmlReader and XmlWriter.

CHAPTER 34 ■ SILVERLIGHT

1460

■ Note Some of the members in the Silverlight assemblies are only available to .NET Framework code, and aren’t
callable from your code. These members are marked with the SecurityCritical attribute. However, this attribute
does not appear in the Object Browser, so you won’t be able to determine whether a specific feature is usable in a

Silverlight application until you try to use it. (If you attempt to use a member that has the SecurityCritical attribute,
you’ll get a SecurityException.) For example, Silverlight applications are only allowed to access the file system
through the isolated storage API or the OpenFileDialog class. For that reason, the constructor for the FileStream

class is decorated with the SecurityCritical attribute.

Layout
Silverlight inherits the most important part of WPF’s extremely flexible layout model. Using the layout
model, you organize your content in a set of different layout containers. Each container has its own
layout logic—one stacks elements, another arranges them in a grid of invisible cells, and another uses a
hard-coded coordinate system. If you’re ambitious, you can even create your own containers with
custom layout logic.

This is important, because the top-level UserControl that defines a Silverlight page can hold only a
single element. To fit in more than one element and create a more practical user interface, you need to
place a container in your page and then add other elements to that container.

Silverlight provides three Panel-derived classes that you can use to arrange layout: StackPanel,
Canvas, and Grid. You’ve already seen the StackPanel, which places items in a top-to-bottom or left-to-
right stack (depending on the value of the Orientation property). In the following sections, you’ll
consider the Canvas and the Grid.

The Canvas
The Canvas is the simplest of Silverlight’s three layout containers. It allows you to place elements using
exact coordinates, which is a poor choice for designing rich data-driven forms and standard dialogs, but
a valuable tool if you need to build something a little different (such as a drawing surface for a
diagramming tool). The Canvas is also the most lightweight of the layout containers. That’s because it
doesn’t include any complex layout logic to negotiate the sizing preferences of its children. Instead, it
simply lays them all out at the position they specify, with the exact size they want.

To position an element in the Canvas, you use attached properties. Attached properties are another
concept that’s brought over from WPF. Essentially, an attached property is a property that’s defined by
one class but used by another. Attached properties are a key extensibility mechanism, because they
allow classes to interact in flexible ways even without prior planning.

The Canvas provides a good example. To position elements in a Canvas, you need to set three
details: the Left coordinate, the Top coordinate, and the ZIndex layer. The simplest possible design,
which Silverlight doesn’t use, is to define Left, Top, and ZIndex properties in the base
FrameworkElement class. Because all elements inherit from FrameworkElement, this would ensure that
all elements have the layout properties that the Canvas needs. However, this apparently straightforward
solution quickly runs into serious problems. First, it risks cluttering the FrameworkElement with dozens
of properties, because different layout containers need to track different details. Confusingly, many of
these properties will have no effect unless the element is being used with a specific container. And if you
want to devise a new layout container that uses a different layout mechanism, you’re out of luck,
because you can’t revise the FrameworkElement class on your own.

CHAPTER 34 ■ SILVERLIGHT

1461

Attached properties offer a solution to this problem. With attached properties, the Left, Top, and
ZIndex properties are defined with the element that uses them—the Canvas. However, the elements
inside the Canvas can “borrow” these properties to position themselves. This way, elements don’t need
to be specifically designed to work with the Canvas—they just do. It also makes more sense conceptually
for the properties to be “attached” to the Canvas, because it’s the Canvas that reads these values and acts
on them, not the contained element.

To set an attached property in XAML, you use a two-part syntax with a period. The portion on the
left of the period is the name of the class where the property is defined (like Canvas), while the portion
on the right of the period is the name of the property (like Top). Here’s an example that places a
TextBlock in a specific location in a Canvas:

<Canvas>
 <TextBlock x:Name="lblMessage" Text="Hello world."
 Canvas.Top="30" Canvas.Left="30"></TextBlock>
</Canvas>

Coordinates are measured from the top-left corner, so this places the element 30 pixels from the top
and left edges. If you don’t set the Top and Left properties, they default to 0, which places the element in
the top-left corner.

■ Note Because the Canvas uses absolute positioning, there’s no need to use properties that can influence other
layout containers, such as Margin, Padding, HorizontalAlignment, and VerticalAlignment. These have no effect on

the layout logic that the Canvas uses.

If you want to modify an attached property programmatically, you need to use a slightly more
convoluted syntax. You must call a method that’s named in the form ClassName.SetPropertyName(). In
other words, to set the Canvas.Top property you can call Canvas.SetTop(). When calling this method,
you must pass in two parameters: the element you want to modify and the new value you want to set.
You can call the corresponding Get method (in this case, Canvas.GetTop()) to retrieve the current value
of an attached property.

The following line of code uses this technique to change the Canvas.Top property that’s applied to
the TextBlock to 100:

Canvas.SetTop(lblMessage, 100);

■ Note Confusingly, you can set attached properties on an element even if it’s not in the right container. For
example, you can set Canvas.Top and Canvas.Left on elements that aren’t placed in a Canvas. In this case, the

attached property is set, but it has no effect.

Layering Elements in a Canvas
If you have more than one overlapping element, you can set the attached Canvas.ZIndex property to
control how they are layered.

CHAPTER 34 ■ SILVERLIGHT

1462

Ordinarily, all the elements you add have the same ZIndex: 0. When elements have the same ZIndex,
they’re displayed in the same order that they’re declared in the XAML markup. Elements declared later
in the markup are displayed on top of elements that are declared earlier.

However, you can promote any element to a higher level by increasing its ZIndex. That’s because
higher ZIndex elements always appear over lower ZIndex elements. Here’s an example that uses this
technique to reverse the layering of two rectangles:

<Rectangle Canvas.Left="60" Canvas.Top="80" Canvas.ZIndex="1"
 Fill="Blue" Width="50" Height="50" />
<Rectangle Canvas.Left="70" Canvas.Top="120" Width="100" Height="50"
 Fill="Yellow" />

Now the blue rectangle will be superimposed over the yellow rectangle, despite the fact that it’s
declared earlier in the markup.

■ Note The actual values you use for the Canvas.ZIndex property have no meaning. The important detail is how
the ZIndex value of one element compares to the ZIndex value of another. You can set the ZIndex using any

positive or negative integer.

The ZIndex property is particularly useful if you need to change the position of an element
programmatically. Just call the Canvas.SetZIndex() method with the element you want to modify and the
new ZIndex value you want to apply. Unfortunately, there is no BringToFront() or SendToBack()
method—it’s up to you to keep track of the highest and lowest ZIndex values if you want to implement
this behavior.

Dragging Circles
You can put these concepts together using a simple example.

Figure 34-9 shows a Silverlight application that allows you to draw and move small circles. Every
time you click the Canvas, a red circle appears. To move a circle, you simply click and drag it to a new
position. When you click a circle, it changes color from red to green. Finally, when you release your
circle, it changes color to orange. There’s no practical limit to how many circles you can add or how
many times you can move them around your drawing surface.

CHAPTER 34 ■ SILVERLIGHT

1463

Figure 34-9. Dragging shapes

Each circle is an instance of the Ellipse element, which is simply a colored shape that’s a basic
ingredient in 2D drawing. Obviously, you can’t define all the ellipses you need in your XAML markup.
Instead, you need a way to generate the Ellipse objects dynamically each time the user clicks the Canvas.

Creating an Ellipse object isn’t terribly difficult—after all, you can instantiate it like any other .NET
object, set its properties, and attach event handlers. You can even use the SetValue() method to set
attached properties to place it in the correct location in the Canvas. However, there’s one more detail to
take care of—you need a way to place the Ellipse in the Canvas. This is easy enough, as all layout
containers include a Children property that holds a collection of child elements. Once you’ve added an
element to this collection, it will appear in the Canvas.

The XAML page for this example uses a single event handler for the Canvas.MouseLeftButtonDown
event. No other elements are defined.

<Canvas x:Name="parentCanvas" MouseLeftButtonDown="canvas_Click"
 Background="BlanchedAlmond">

 </Canvas>

In the code-behind class, you need two member variables to keep track of whether or not an ellipse-
dragging operation is currently taking place:

// Keep track of when an ellipse is being dragged.
private bool isDragging = false;

CHAPTER 34 ■ SILVERLIGHT

1464

// When an ellipse is clicked, record the exact position
// where the click is made.
private Point mouseOffset;

■ Note Unlike ASP.NET, it’s perfectly acceptable to use instance variables to retain state in a Silverlight
application. That’s because a Silverlight application remains in memory for its entire lifetime. This is quite different

from the code-behind classes that you create for ASP.NET pages. Here, instance variables are unreliable, because
they’re dropped from memory every time the page is rendered and they aren’t available in subsequent post backs

(unless you take additional steps to store them somewhere else).

Here’s the event-handling code that creates an ellipse when the Canvas is clicked:

private void canvas_Click(object sender, MouseButtonEventArgs e)
{
 // Create an ellipse (unless the user is in the process
 // of dragging another one).
 if (!isDragging)
 {
 // Give the ellipse a 50-pixel diameter and a red fill.
 Ellipse ellipse = new Ellipse();
 ellipse.Fill = new SolidColorBrush(Colors.Red);
 ellipse.Width = 50;
 ellipse.Height = 50;

 // Use the current mouse position for the center of
 // the ellipse.
 Point point = e.GetPosition(this);
 ellipse.SetValue(Canvas.TopProperty, point.Y - ellipse.Height/2);
 ellipse.SetValue(Canvas.LeftProperty, point.X - ellipse.Width/2);

 // Watch for left-button clicks.
 ellipse.MouseLeftButtonDown += ellipse_MouseDown;

 // Add the ellipse to the Canvas.
 parentCanvas.Children.Add(ellipse);
 }
}

Not only does this code create the ellipse, it also connects an event handler that responds when the
ellipse is clicked. This event handler changes the ellipse color and initiates the ellipse-dragging
operation:

private void ellipse_MouseDown(object sender, MouseButtonEventArgs e)
{
 // Dragging mode begins.
 isDragging = true;
 Ellipse ellipse = (Ellipse)sender;

CHAPTER 34 ■ SILVERLIGHT

1465

 // Get the position of the click relative to the ellipse
 // so the top-left corner of the ellipse is (0,0).
 mouseOffset = e.GetPosition(ellipse);

 // Change the ellipse color.
 ellipse.Fill = new SolidColorBrush(Colors.Green);

 // Watch this ellipse for more mouse events.
 ellipse.MouseMove += ellipse_MouseMove;
 ellipse.MouseLeftButtonUp += ellipse_MouseUp;

 // Capture the mouse. This way you'll keep receiveing
 // the MouseMove event even if the user jerks the mouse
 // off the ellipse.
 ellipse.CaptureMouse();
}

The ellipse isn’t actually moved until the MouseMove event occurs. At this point, the Canvas.Left
and Canvas.Top attached properties are set on the ellipse to move it to its new position. The coordinates
are set based on the current position of the mouse, taking into account the point where the user initially
clicked. This ellipse then moves seamlessly with the mouse, until the left mouse button is released.

private void ellipse_MouseMove(object sender, MouseEventArgs e)
{
 if (isDragging)
 {
 Ellipse ellipse = (Ellipse)sender;

 // Get the position of the ellipse relative to the Canvas.
 Point point = e.GetPosition(this);

 // Move the ellipse.
 ellipse.SetValue(Canvas.TopProperty, point.Y - mouseOffset.Y);
 ellipse.SetValue(Canvas.LeftProperty, point.X - mouseOffset.X);
 }
}

When the left mouse button is released, the code changes the color of the ellipse, releases the mouse
capture, and stops listening for the MouseMove and MouseUp events. The user can click the ellipse
again to start the whole process over.

private void ellipse_MouseUp(object sender, MouseButtonEventArgs e)
{
 if (isDragging)
 {
 Ellipse ellipse = (Ellipse)sender;

 // Change the ellipse color.
 ellipse.Fill = new SolidColorBrush(Colors.Orange);

 // Don't watch the mouse events any longer.
 ellipse.MouseMove -= ellipse_MouseMove;
 ellipse.MouseLeftButtonUp -= ellipse_MouseUp;

CHAPTER 34 ■ SILVERLIGHT

1466

 ellipse.ReleaseMouseCapture();

 isDragging = false;
 }
}

The Grid
The Grid is the most powerful layout container in Silverlight. In fact, the Grid is so useful that when you
add a new XAML document for a page in Visual Studio, it automatically adds the Grid tags as the first-
level container, nested inside the root UserControl element.

The Grid separates elements into an invisible grid of rows and columns. Although more than one
element can be placed in a single cell (in which case they overlap), it generally makes sense to place just
a single element per cell. Of course, that element may itself be another layout container that organizes
its own group of contained controls.

■ Tip Although the Grid is designed to be invisible, you can set the Grid.ShowGridLines property to true to take a
closer look. This feature isn’t really intended for prettying up a page. Instead, it’s a debugging convenience that’s
designed to help you understand how the Grid has subdivided itself into smaller regions. This feature is important

because you have the ability to control exactly how the Grid chooses column widths and row heights.

Creating a Grid-based layout is a two-step process. First, you choose the number of columns and
rows that you want. Next, you assign the appropriate row and column to each contained element,
thereby placing it in just the right spot.

You create grids and rows by filling the Grid.ColumnDefinitions and Grid.RowDefinitions
collections with objects. For example, if you decide you need two rows and three columns, you’d add the
following tags:

<Grid ShowGridLines="True" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 ...
</Grid>

As this example shows, it’s not necessary to supply any information in a RowDefinition or
ColumnDefinition element. If you leave them empty (as shown here), the Grid will share the space
evenly between all rows and columns. In this example, each cell will be exactly the same size, depending
on the size of the containing page.

CHAPTER 34 ■ SILVERLIGHT

1467

To place individual elements into a cell, you use the Row and Column attached properties. Both
these properties take 0-based index numbers. For example, here’s how you could create a partially filled
grid of buttons:

<Grid ShowGridLines="True" Background="White">
 ...

 <Button Grid.Row="0" Grid.Column="0" Content="Top Left"></Button>
 <Button Grid.Row="0" Grid.Column="1" Content="Middle Left"></Button>
 <Button Grid.Row="1" Grid.Column="2" Content="Bottom Right"></Button>
 <Button Grid.Row="1" Grid.Column="1" Content="Bottom Middle"></Button>
</Grid>

Each element must be placed into its cell explicitly. This allows you to place more than one element
into a cell (which rarely makes sense) or leave certain cells blank (which is often useful). It also means
you can declare your elements out of order, as with the final two buttons in this example. However, it
makes for clearer markup if you define your controls row by row, and from right to left in each row.

There is one exception. If you don’t specify the Grid.Row property, the Grid assumes that it’s 0. The
same behavior applies to the Grid.Column property. Thus, you leave both attributes off of an element to
place it in the first cell of the Grid.

Figure 34-10 shows how this simple grid appears at two different sizes. Notice that the
ShowGridLines property is set to true so that you can see the separation between each column and row.

Figure 34-10. A simple grid

■ Tip In Figure 34-10, the grid grows to fit the available size in the web page. To use this design, you must
remove the Height and Width attributes from the UserControl start tag at the top of your page. That way, the

UserControl will use all the available space on the page.

CHAPTER 34 ■ SILVERLIGHT

1468

Fine-Tuning Rows and Columns
As you’ve seen, the Grid gives you the ability to create a proportionately sized collection of rows and
columns, which is often quite useful. However, to unlock the full potential of the Grid, you can change
the way each row and column is sized.

The Grid supports three sizing strategies:

• Absolute sizes: You choose the exact size using pixels. This is the least useful
strategy because it’s not flexible enough to deal with changing content size,
changing container size, or localization.

• Automatic sizes: Each row or column is given exactly the amount of space it
needs, and no more. This is one of the most useful sizing modes.

• Proportional sizes: Space is divided between a group of rows or columns. This is
the standard setting for all rows and columns. For example, in Figure 34-10 you
can see that all cells increase in size proportionately as the Grid expands.

For maximum flexibility, you can mix and match these different sizing modes. For example, it’s
often useful to create several automatically sized rows and then let one or two remaining rows get the
leftover space through proportional sizing.

You set the sizing mode using the Width property of the ColumnDefinition object or the Height
property of the RowDefinition object to a number. For example, here’s how you set an absolute width of
100 pixels:

<ColumnDefinition Width="100"></ColumnDefinition>

To use automatic sizing, you use a value of Auto:

<ColumnDefinition Width="Auto"></ColumnDefinition>

Finally, to use proportional sizing, you use an asterisk (*):

<ColumnDefinition Width="*"></ColumnDefinition>

This syntax stems from the world of the Web, where it’s used with HTML frames pages. If you use a
mix of proportional sizing and other sizing modes, the proportionally sized rows or columns get
whatever space is left over.

If you want to divide the remaining space unequally, you can assign a weight, which you must place
before the asterisk. For example, if you have two proportionately sized rows and you want the first to be
half as high as the second, you could share the remaining space like this:

<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="2*"></RowDefinition>

This tells the Grid that the height of the second row should be twice the height of the first row. You
can use whatever numbers you like to portion out the extra space.

Nesting Layout Containers
The Grid is impressive on its own, but most realistic user interfaces combine several layout containers.
They may use an arrangement with more than one Grid, or mix the Grid with other layout containers like
the StackPanel.

The following markup presents a simple example of this principle. It creates a basic dialog box with
an OK and Cancel button in the bottom-right corner, and a large content region that’s sized to fit its

CHAPTER 34 ■ SILVERLIGHT

1469

content (the text in a TextBlock). The entire package is centered in the middle of the page by setting the
alignment properties on the Grid.

<Grid ShowGridLines="True" Background="SteelBlue"
 HorizontalAlignment="Center" VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>

 <TextBlock Margin="10" Grid.Row="0" Foreground="White"
 Text="This is simply a test of nested containers."></TextBlock>
 <StackPanel Grid.Row="1" HorizontalAlignment="Right" Orientation="Horizontal">
 <Button Margin="10,10,2,10" Padding="3" Content="OK"></Button>
 <Button Margin="2,10,10,10" Padding="3" Content="Cancel"></Button>
 </StackPanel>
</Grid>

You’ll notice that this Grid doesn’t declare any columns. This is a shortcut you can take if your grid
uses just one column and that column is proportionately sized (so it fills the entire width of the Grid).
Figure 34-11 shows the rather pedestrian dialog box this markup creates.

■ Note In this example, the Padding adds some minimum space between the button border and the content
inside (the word OK or Cancel). In controls that provide a Padding property, like the Button, it acts as an internal

margin between the control borders and the inner content.

Figure 34-11. A basic dialog box

CHAPTER 34 ■ SILVERLIGHT

1470

At first glance, nesting layout containers seems like a fair bit more work than placing controls in
precise positions using coordinates. And in many cases, it is. However, the longer setup time is
compensated by the ease with which you can change the user interface in the future. For example, if you
decide you want the OK and Cancel buttons to be centered at the bottom of the page, you simply need to
change the alignment of the StackPanel that contains them:

<StackPanel Grid.Row="1" HorizontalAlignment="Center" ... >

Similarly, if you need to change the amount of content in the first row, the entire Grid will be
enlarged to fit and the buttons will move obligingly out of the way.

Spanning Rows and Columns
You’ve already seen how you place elements in cells using the Row and Column attached properties.
You can also use two more attached properties to make an element stretch over several cells:
RowSpan and ColumnSpan. These properties take the number of rows or columns that the element
should occupy.

For example, this button will take all the space that’s available in the first and second cell of the
first row:

<Button Grid.Row="0" Grid.Column="0" Grid.RowSpan="2" Content="Span Button">
</Button>

And this button will stretch over four cells in total by spanning two columns and two rows:

<Button Grid.Row="0" Grid.Column="0" Grid.RowSpan="2" Grid.ColumnSpan="2"
 Content="Span Button"></Button>

Row and column spanning can achieve some interesting effects and are particularly handy when
you need to fit elements in a tabular structure that’s broken up by dividers or longer sections of content.

Using column spanning, you could rewrite the simple dialog box example from Figure 34-11 using
just a single Grid. This Grid divides the page into three columns, spreads the text box over all three, and
uses the last two columns to align the OK and Cancel buttons.

<Grid ShowGridLines="True" Background="SteelBlue"
 HorizontalAlignment="Center" VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock Margin="10" Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3"
 Foreground="White"
 Text="This is simply a test of nested containers."></TextBlock>

 <Button Margin="10,10,2,10" Padding="3"
 Grid.Row="1" Grid.Column="1" Content="OK"></Button>
 <Button Margin="2,10,10,10" Padding="3"
 Grid.Row="1" Grid.Column="2" Content="Cancel"></Button>
</Grid>

CHAPTER 34 ■ SILVERLIGHT

1471

Most developers will agree that this layout isn’t clear or sensible. The column widths are determined
by the size of the two buttons at the bottom of the page, which makes it difficult to add new content into
the existing Grid structure. If you make even a minor addition to this page, you’ll probably be forced to
create a new set of columns.

As this shows, when you choose the layout containers for a page, you aren’t simply interested in
getting the correct layout behavior—you also want to build a layout structure that’s easy to maintain and
enhance in the future. A good rule of thumb is to use smaller layout containers such as the StackPanel
for one-off layout tasks, such as arranging a group of buttons. On the other hand, if you need to apply a
consistent structure to more than one area of your page, the Grid is an indispensable tool for
standardizing your layout.

Animation
Animation is a key feature in Silverlight, as it provides some visual glitz that a server-based programming
framework (like ASP.NET) can’t easily emulate. In Silverlight, animation can be used to apply effects—
for example, icons that grow when you move over them, logos that spin, text that scrolls into view, and
so on—or as a way to design more ambitious commercials and browser-based games.

Animations are a core part of the Silverlight model. That means you don’t need to use timers and
event-handling code to put them into action. Instead, you can create them declaratively, configure them
using one of a handful of classes, and put them into action without writing a single line of C# code.

Animation Basics
Silverlight animation is a scaled-down version of the WPF animation system. In order to understand
Silverlight animation, you need to understand the following key rules:

• Silverlight performs time-based animation. Thus, you set the initial state, the final
state, and the duration of your animation. Silverlight calculates the frame rate.

• Silverlight uses a property-based animation model. That means a Silverlight
animation can do only one thing: modify the value of a property over an interval of
time. This sounds like a significant limitation (and in many ways it is), but there’s
a surprisingly large range of effects you can create by simply modifying properties.

• To animate a property, you need to have an animation class that supports its data
type. For example, if you want to change a property that uses the double data type
(which is one of the most common scenarios), you must use the DoubleAnimation
class. If you want to modify the color that’s used to paint the background of your
Canvas, you need to use the ColorAnimation class.

Silverlight has relatively few animation classes, so you’re limited in the data types you can use. At
present, you can use animations to modify properties with the following data types: double, object,
Color, and Point.

As a rule of thumb, the property-based animation is a great way to add dynamic effects to an
otherwise ordinary application. However, if you need to use animations as part of the core purpose of
your application and you want them to continue running over the lifetime of your application, you
probably need something more flexible and more powerful. For example, if you’re creating a basic
arcade game or using complex physics calculations to model collisions, you’ll need greater control over
the animation. Unfortunately, Silverlight doesn’t have an option for frame-based animation, so you’ll be
forced to create this sort of application the old-fashioned way—using a timer that fires periodically to
update your visuals.

CHAPTER 34 ■ SILVERLIGHT

1472

Defining an Animation
Creating an animation is a multistep process. You need to create three separate ingredients: an
animation object to perform your animation, a storyboard to manage your animation, and an event
trigger to start your storyboard. In the following sections, you’ll tackle each of these steps.

The Animation Class
There are actually two types of animation classes in Silverlight. Each type of animation uses a different
strategy for varying a property value.

• Linear interpolation: With linear interpretation, the property value varies
gradually over the duration of the animation. Examples include DoubleAnimation,
PointAnimation, and ColorAnimation.

• Key frame animation: With key frame animation, values can jump abruptly from
one value to another, or they can combine jumps and periods of linear
interpolation. Examples include ColorAnimationUsingKeyFrames,
DoubleAnimationUsingKeyFrames, and PointAnimationUsingKeyFrames.

In this chapter, you’ll focus exclusively on the most commonly used animation class: the
DoubleAnimation class. The DoubleAnimation class uses linear interpolation to change a double from a
starting value to its ending value. Like all animation classes, it’s defined in the
System.Windows.Media.Animation namespace.

Animations are defined using XAML markup. Although the animation classes aren’t elements, they
can still be created with the same XAML syntax. For example, here’s the markup required to create a
DoubleAnimation:

<DoubleAnimation From="160" To="300" Duration="0:0:5"></DoubleAnimation>

This animation lasts 5 seconds (as indicated by the Duration property, which takes a time value in
the format Hours:Minutes:Seconds.FractionalSeconds). While the animation is running, it changes the
target value from 160 to 300. If the DoubleAnimation is able to run at Silverlight’s default maximum
frame rate, it will adjust the value 60 times per second. Each time, it sets a value that’s proportionately
between the starting and ending values. For example, a fast-paced animation might change 160 to 160.4,
then 160.8, then 161.2, and so on, making each change after just a fraction of a second. The overall
effect is that the double value will appear to change smoothly and continuously for the entire duration
of the animation.

There’s one important detail that’s missing from this markup. The animation indicates how the
property will be changed, but it doesn’t indicate what property to use. This detail is supplied by another
ingredient, which is represented by the Storyboard class.

The Storyboard Class
The storyboard manages the timeline of your animation. You can use a storyboard to group multiple
animations, and it also has the ability to control the playback of animation—pausing it, stopping it,
and changing its position. However, the most basic feature provided by the Storyboard class is its ability
to point to a specific property and specific element using the TargetProperty and TargetName
properties. In other words, the storyboard bridges the gap between your animation and the property you
want to animate.

Here’s how you might define a storyboard that applies a DoubleAnimation to the Width property of
a button named cmdGrow:

CHAPTER 34 ■ SILVERLIGHT

1473

<Storyboard x:Name="storyboard"
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="Width">
 <DoubleAnimation From="160" To="300" Duration="0:0:5"></DoubleAnimation>
</Storyboard>

The Storyboard.TargetProperty property identifies the property you want to change in the target
element. (In the previous example, it’s Width.) If you don’t supply a class name, the storyboard uses the
parent element. If you want to set an attached property (for example, Canvas.Left or Canvas.Top), you
need to wrap the entire property in brackets, like this:

<Storyboard x:Name="storyboard"
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="(Canvas.Left)">
 ...
</Storyboard>

Both TargetName and TargetProperty are attached properties. That means you can apply them
directly to the animation, as shown here:

<Storyboard x:Name="storyboard">
 <DoubleAnimation
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="Width"
 From="160" To="300" Duration="0:0:5"></DoubleAnimation>
</Storyboard>

This syntax is more common, because it allows you to put several animations in the same
storyboard but allow each animation to act on a different element and property. Although you can’t
animate the same property at the same time with multiple animations, you can (and often will) animate
different properties of the same element at once.

All Silverlight elements provide a Resources property, which holds a collection where you can store
miscellaneous objects. The primary purpose of the Resources collection is to allow you to define objects
in XAML that aren’t elements, and so can’t be placed into the visual layout of your content region.
Resources can be retrieved in your code or used elsewhere in your markup. The Resources collection is a
convenient storage place for the button-growing animation:

<UserControl ... >
 <UserControl.Resources>
 <Storyboard x:Name="storyboard">
 <DoubleAnimation
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="Width"
 From="160" To="300" Duration="0:0:5"></DoubleAnimation>
 </Storyboard>
 </UserControl.Resources>

 <Grid>
 <Button x:Name="cmdGrow" Width="160" Height="30"
 Content="This button grows" Click="cmdGrow_Click"></Button>
 </Grid>
</UserControl>

Notice that it’s now given a name, so you can manipulate it in your code. (You can also add a name
to the DoubleAnimation if you want to tweak its properties programmatically before launching the
animation.) You’ll also notice that you need to explicitly specify the Storyboard.TargetName property to
connect it to the right element when you’re using this approach.

CHAPTER 34 ■ SILVERLIGHT

1474

Now you simply need to call the methods of the Storyboard object in an event handler in your
Silverlight code-behind file. The methods you can use include Begin(), Stop(), Pause(), Resume(), and
Seek(), all of which are fairly self-explanatory.

private void cmdGrow_Click(object sender, RoutedEventArgs e)
{
 storyboard.Begin();
}

Now, clicking the button launches the animation, and the button stretches from 160 to 300 pixels, as
shown in Figure 34-12.

Figure 34-12. Animating a button’s width

Configuring Animation Properties
To get the most out of your animations, you need to look a little closer at the base Animation class,
which defines the properties that are provided by all animation classes. Table 34-3 describes them.

Table 34-3. Properties of the Animation Class

Name Description

From Sets the starting values for your animation. In many situations, you won’t set
From. In this case, Silverlight uses the current value of your element. For example,
if you didn’t set the initial width in the growing rectangle example, it would start at
whatever it is currently. This is particularly useful if you’re animating a value that
might be changed by other code or other animations. In this situation, you want
the animation to start from the current value, not jump abruptly to a preset From
value.

To Sets the ending value for your animation. In some situations, you won’t set From
or To. In this case, the property returns to whatever initial value is set in the XAML
markup. For example, you could use this technique to shrink the rectangle in the
previous example back to its original size when it’s clicked.

CHAPTER 34 ■ SILVERLIGHT

1475

Name Description

By Instead of using To, you can use By to create a cumulative animation. By sets a
number that will be added to the initial value. For example, if you replace the To
value in the rectangle-growing example with a By value of 10, the rectangle will
grow 10 pixels wider than its current width over the course of the animation. If you
run this animation every time the rectangle is clicked, it will continue to grow and
grow.

Duration The length of time the animation runs, from start to finish, as a Duration object.

AutoReverse If true, the animation will play out in reverse once it’s complete, reverting to the
original value. This also doubles the time the animation takes.

RepeatBehavior Allows you to repeat an animation a specific number of times. Or, you can use
Forever to repeat the animation endlessly.

BeginTime Sets a delay that will be added before the animation starts (as a TimeSpan). This
delay is added to the total time, so a 5-second animation with a 5-second delay
takes 10 seconds. BeginTime is useful when synchronizing different animations
that start at the same time but should apply their effects in sequence.

SpeedRatio Increases or decreases the speed of the animation. Ordinarily, SpeedRatio is 1. If
you increase it, the animation completes more quickly (for example, a SpeedRatio
of 5 completes five times faster). If you decrease it, the animation is slowed down
(for example, a SpeedRatio of 0.5 takes twice as long). You can change the duration
of your animation for an equivalent result. The SpeedRatio is not taken into
account when applying the BeginTime delay.

FillBehavior Determines what happens when the animation ends. Usually, it keeps the
property fixed at the ending value (FillBehavior.HoldEnd), but you can also choose
to return it to its original value (FillBehavior.Stop).

An Interactive Animation Example
Sometimes, you’ll need to create every detail of an animation programmatically in code. In fact, this
scenario is fairly common. It occurs anytime you have multiple animations to deal with, and you don’t
know in advance how many animations there will be or how they should be configured. It also occurs if
you want to use the same animation in different pages, or you simply want the flexibility to separate all
the animation-related details from your markup for easier reuse.

It isn’t difficult to create, configure, and launch an animation programmatically. You begin by
creating the animation and storyboard objects you need and adding the animations to the storyboard.
You should also clean up your animations by reacting to the Storyboard.Completed event that fires
when they finish.

The following example demonstrates a slightly more realistic use of animation, which is shown in
Figure 34-13. It begins with a content region that’s filled with irregularly shaped rectangles. When you
click a rectangle, it begins to fall toward the bottom of the Canvas, and simultaneously begins to change
color. You can click several rectangles in quick succession to start several simultaneous animations. To
make this work, the page uses multiple storyboards, one for each rectangle that’s currently falling. The
storyboards are created as they’re needed using code.

CHAPTER 34 ■ SILVERLIGHT

1476

Figure 34-13. Falling rectangles

The markup for this example defines a simple page with a Border and a Canvas inside. The markup
doesn’t include a storyboard, because that detail needs to be created dynamically when the rectangle is
clicked.

<UserControl x:Class="SilverlightApplication1.FallingRectangles"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Loaded="Page_Loaded"
 Width="500" Height="500">
 <Border BorderBrush="SteelBlue" BorderThickness="1">
 <Canvas x:Name="canvas" Background="AliceBlue"></Canvas>
 </Border>
</UserControl>

You’ll also notice that the Canvas doesn’t contain any other elements. That’s because this example
uses a more flexible approach—it generates the rectangles dynamically. When the Canvas is loaded, it
creates 20 rectangles of random size, at random locations. It wires the MouseLeftButtonDown event of
each one to the same event handler.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 34 ■ SILVERLIGHT

1477

public void Page_Loaded(object o, EventArgs e)
{
 // Generate some rectangles.
 Random rand = new Random();
 for (int i = 0; i < 20; i++)
 {
 // Create a new rectangle.
 Rectangle rect = new Rectangle();
 rect.Fill = new SolidColorBrush(Colors.Red);

 // Size and place it randomly.
 rect.Width = rand.Next(10, 40);
 rect.Height = rand.Next(10, 40);
 Canvas.SetTop(rect, rand.Next((int)(this.Height - rect.Height)));
 Canvas.SetLeft(rect, rand.Next((int)(this.Width - rect.Width)));

 // Handle clicks.
 rect.MouseLeftButtonDown += rect_MouseLeftButtonDown;

 // Add it to the Canvas.
 canvas.Children.Add(rect);
 }
}

When a rectangle is clicked, the new storyboard needs to be created, along with the appropriate
animations. In this case, you need two animations, one for each property you plan to modify. The first
animation is a DoubleAnimation that changes the Canvas.Top property to shift the rectangle down the
page, while the second animation is a ColorAnimation that blends its color.

This storyboard is added to a collection so you can easily track the currently running storyboards
(and the corresponding animated elements). An event handler is hooked up so your code can receive
notification when the animation ends. Then the animation is started.

// Collection for tracking animations.
private Dictionary<Storyboard, Rectangle> animatedShapes =
 new Dictionary<Storyboard, Rectangle>();

private void rect_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 Rectangle rect = (Rectangle)sender;

 // Create the storyboard for the rectangle.
 Storyboard storyboard = new Storyboard();

 // Create the animation for moving the rectangle.
 DoubleAnimation fallingAnimation = new DoubleAnimation();
 Storyboard.SetTarget(fallingAnimation, rect);
 Storyboard.SetTargetProperty(fallingAnimation,
 new PropertyPath("(Canvas.Top)"));
 fallingAnimation.To = this.Height - rect.Height;
 fallingAnimation.Duration = TimeSpan.FromSeconds(2);
 storyboard.Children.Add(fallingAnimation);

 // Create the animation for changing the rectangle's color.

CHAPTER 34 ■ SILVERLIGHT

1478

 ColorAnimation colorAnimation = new ColorAnimation();
 Storyboard.SetTarget(colorAnimation, rect.Fill);
 Storyboard.SetTargetProperty(colorAnimation, new PropertyPath("Color"));
 colorAnimation.To = Colors.Blue;
 colorAnimation.Duration = fallingAnimation.Duration;
 storyboard.Children.Add(colorAnimation);

 // Track the rectangle.
 animatedShapes.Add(storyboard, rect);

 // React when the storyboard is finished.
 storyboard.Completed += storyboard_Completed;

 // Start the storyboard.
 storyboard.Begin();
}

This storyboard wraps two animations: a DoubleAnimation that moves the rectangle, and a
ColorAnimation that changes the color of the associated brush object. The ColorAnimation uses linear
interpolation, which means it will progressively blend the color from its initial value (in this example,
red) to its final value (blue). The code for setting up the animations is fairly straightforward, once you’re
used to the attached property syntax (which is used to set Storyboard.Target and
Storyboard.TargetProperty) and the PropertyPath object (which is used to provide the string that points
to the property you want to animate).

When the storyboard ends, it’s time to clean up. Here’s the simplest code you could use to
accomplish this task:

private void storyboard_Completed(object sender, EventArgs e)
{
 // Stop the storyboard.
 Storyboard storyboard = (Storyboard)sender;
 storyboard.Stop();

 // Remove it from the tracking collection.
 animatedShapes.Remove(storyboard);
}

However, there’s a problem here. Animations don’t actually change the underlying value of a
property; they simply override it temporarily. But you won’t necessarily notice this fact, because
completed animations don’t actually stop. Instead, when an animation reaches its end, it continues to
hold the property at its final animated value. This means that after a storyboard has finished, the
animated rectangle remains at the bottom of the page, and is still colored blue.

Here’s the problem. When you create storyboards dynamically, you open up the possibility that
there could be a significant number of storyboards running at the same time. To ensure good
performance, it’s important to explicitly stop the storyboard when its animations are finished. The code
just shown does exactly that. However, stopping the animation returns your animated properties to their
original values. In this example, that means each time you stop the animation of a falling rectangle it will
jump back up to its original position and revert to the color red.

The solution is to retrieve the current value of the Canvas.Top property for the rectangle, then stop
the animation, and then set the animated value. This last step moves the rectangle to its most recent
animated position. The result is that every time a storyboard ends, the rectangle remains in its new
position. Here’s the code that implements this design:

CHAPTER 34 ■ SILVERLIGHT

1479

private void storyboard_Completed(object sender, EventArgs e)
{
 // Stop the animation but keep the new position.
 Storyboard storyboard = (Storyboard)sender;
 Rectangle rect = animatedShapes[storyboard];
 double newTop = Canvas.GetTop(rect);
 storyboard.Stop();
 Canvas.SetTop(rect, newTop);

 // Remove it from the tracking collection.
 animatedShapes.Remove(storyboard);
}

Although the Canvas.Top property is set manually after the animation is stopped, the color is not. As
a result, the rectangle reverts to its initial red color as soon as the storyboard is stopped.

■ Note There is one possible exception to the behavior described here. If you set the FillBehavior property of the
animation class to FillBehavior.Stop, the storyboard will stop holding values when it ends. In the rectangle-
dropping example, that means the rectangle would spring back to its original position and revert to the color red,

even if you don’t explicitly stop the storyboard.

There’s another interesting quirk in this example. The animation always uses the same duration (2
seconds). However, the square you click may be close to the bottom or far from the bottom. As a result,
squares closer to the bottom will fall more slowly, and squares farther from the bottom will fall faster.

Transforms
As you’ve already learned, Silverlight animations work by modifying the value of a property. Elements
have several properties that can be usefully changed. For example, you can use Canvas.Left and
Canvas.Top to move an element around. Or, you can alter the Opacity setting to make an element fade
into or out of view. However, it’s not immediately clear how you can perform more exciting alterations,
like rotations.

The secret is transforms. A transform is an object that alters the way a shape or other element is
drawn by shifting the coordinate system it uses. You can use transforms to stretch, rotate, skew, and
otherwise manipulate the shapes, images, and text in your Silverlight user interface. Transforms are
useful for getting the right shape you want, but they’re even more interesting when you’re animating. By
animating a property in a transform, you can rotate a shape, move it from one place to another, or warp
it dynamically.

Table 34-4 lists the transforms that are supported in Silverlight.

CHAPTER 34 ■ SILVERLIGHT

1480

Table 34-4. Transform Classes

Name Description Important
Properties

TranslateTransform Displaces your coordinate system by some amount. This
transform is useful if you want to draw the same shape in
different places.

X, Y

RotateTransform Rotates your coordinate system. The shapes you draw
normally are turned around a center point you choose.

Angle,
CenterX,
CenterY

ScaleTransform Scales your coordinate system up or down so that your
shapes are drawn smaller or larger. You can apply different
degrees of scaling in the X and Y dimensions, thereby
stretching or compressing your shape.

ScaleX,
ScaleY,
CenterX,
CenterY

SkewTransform Warps your coordinate system by slanting it a number of
degrees. For example, if you draw a square, it becomes a
parallelogram.

AngleX,
AngleY,
CenterX,
CenterY

MatrixTransform Modifies your coordinate system using matrix
multiplication with the matrix you supply. This is the most
complex option—it requires some mathematical skill.

Matrix

TransformGroup Combines multiple transforms so they can all be applied at
once. The order in which you apply trans-formations is
important—it affects the final result. For example, rotating
a shape (with RotateTransform) and then moving it (with
TranslateTransform) sends the shape off in a different
direction than if you move it and then rotate it.

N/A

Technically, all transforms use matrix math to alter the coordinates of your shape. However, using

prebuilt transforms such as TranslateTransform, RotateTransform, ScaleTransform, and SkewTransform
is far simpler than using the MatrixTransform and trying to work out the right matrix for the operation
you want to perform. When you perform a series of transforms with TransformGroup, Silverlight fuses
your transforms together into a single MatrixTransform, ensuring optimal performance.

Using a Transform
To transform an element, you set its RenderTransform property with the transform object you want to
use. Depending on the type of transform you’re using, you’ll need to fill in different properties to
configure it, as detailed in Table 34-4.

For example, if you’re rotating an element, you need to use the RotateTransform and supply the
angle in degrees. Here’s an example that rotates a button clockwise by 25 degrees:

<Button Content="A Button">
 <Button.RenderTransform>
 <RotateTransform Angle="25"></RotateTransform>

CHAPTER 34 ■ SILVERLIGHT

1481

 </Button.RenderTransform>
</Button>

When you rotate an element in this way, you rotate it about the element’s origin (the top-left
corner). If you want to rotate a shape around a different point, you can use the handy
RenderTransformOrigin property. This property sets the center point using a proportional coordinate
system that stretches from 0 to 1 in both dimensions. In other words, the point (0, 0) is designated as the
top-left corner, and (1, 1) is the bottom-right corner. (If the shape region isn’t square, the coordinate
system is stretched accordingly.)

With the help of the RenderTransformOrigin property, you can rotate any element around its center
point using markup like this:

<Button Content="One" Margin="5" RenderTransformOrigin="0.5,0.5">
 <Button.RenderTransform>
 <RotateTransform Angle="25"></RotateTransform>
 </Button.RenderTransform>
</Button>

This works because the point (0.5, 0.5) designates the center of the shape, regardless of its size.

■ Tip You can use values greater than 1 or less than 0 when setting the RenderTransformOrigin property to
designate a point that appears outside the bounding box of your shape. For example, you can use this technique

with a RotateTransform to rotate a shape in a large arc around a very distant point, such as (5, 5).

Animating a Transform
To use a transform in animation, the first step is to define the transform. (An animation can change an
existing transform but not create a new one.) For example, imagine you want to allow a button to rotate.
This requires the RotateTransform, which you can add like this:

<Button x:Name="cmd" Content="A Button" RenderTransformOrigin="0.5,0.5">
 <Button.RenderTransform>
 <RotateTransform x:Name="buttonTransform"></RotateTransform>
 </Button.RenderTransform>
</Button>

■ Tip You can easily use transforms in combination. In fact, it’s easy—you simply need to use the

TransformGroup to set the RenderTransform property. You can nest as many transforms as you need inside the

TransformGroup. You’ll see an example in the bomb game that’s shown later in this chapter.

CHAPTER 34 ■ SILVERLIGHT

1482

Now here’s an animation that makes a button rotate when the mouse moves over it. It acts on the
Button.RotateTransform object, and uses the target property Angle. The fact that the RenderTransform
property can hold a variety of different transform objects, each with different properties, doesn’t cause a
problem. As long as you’re using a transform that has an angle property, this animation will work.

<Storyboard x:Name="rotateStoryboard">
 <DoubleAnimation Storyboard.TargetName="buttonTransform"
 Storyboard.TargetProperty="Angle"
 To="360" Duration="0:0:0.8" RepeatBehavior="Forever"></DoubleAnimation>
</Storyboard>

The button rotates one revolution every 0.8 seconds and continues rotating perpetually. While the
button is rotating, it’s still completely usable—for example, you can click it and handle the Click event.

If you place this animation in the Resources collection of the page, you can trigger it when the user
moves the mouse over the button:

private void cmd_MouseEnter(object sender, MouseEventArgs e)
{
 rotateStoryboard.Begin();
}

To stop the rotation, you can react to the MouseLeave event. At this point, you could stop the
storyboard that performs the rotation, but this causes the button to jump back to its original orientation
in one step. A better approach is to start a second animation that replaces the first. This animation leaves
out the From property, which allows it to seamlessly rotate the button from its current angle to its
original orientation in a snappy 0.2 seconds:

<Storyboard x:Name="unrotateStoryboard">
 <DoubleAnimation Storyboard.TargetElement="cmd.RenderTransform"
 Storyboard.TargetProperty="Angle" Duration="0:0:0.2"></DoubleAnimation>
</Storyboard>

Here’s the event handler:

private void cmd_MouseLeave(object sender, MouseEventArgs e)
{
 unrotateStoryboard.Begin();
}

With a little more work, you can make these two animations and the two event handlers work for a
whole stack of rotatable buttons, like the one shown in Figure 34-14. The trick is to handle the events of
all the buttons with the same code, and dynamically assign the target of the storyboard to the current
button using the Storyboard.SetTarget() method:

private void cmd_MouseEnter(object sender, MouseEventArgs e)
{
 rotateStoryboard.Stop();
 Storyboard.SetTarget(rotateStoryboard, ((Button)sender).RenderTransform);
 rotateStoryboard.Begin();
}

private void cmd_MouseLeave(object sender, MouseEventArgs e)
{

CHAPTER 34 ■ SILVERLIGHT

1483

 unrotateStoryboard.Stop();
 Storyboard.SetTarget(unrotateStoryboard, ((Button)sender).RenderTransform);
 unrotateStoryboard.Begin();
}

Figure 34-14. Using a render transform

There are two limitations to this approach. First, because the code reuses the same storyboards for
all the buttons, there’s no way to have two buttons rotating at once. For example, if you quickly slide the
mouse over several buttons, the buttons you leave first might not rotate all the way back to their initial
position, because the storyboard is commandeered by another button. If this behavior is a problem, you
can code around it by creating the storyboards you need dynamically in code, as demonstrated with the
falling squares example.

Using Web Services with Silverlight
The examples you’ve seen in this chapter have focused on the features of the Silverlight platform. The
entry pages you’ve used haven’t contained any additional content, and the ASP.NET website has been
little more than a thin shell that serves out the real package—the client-side Silverlight application.

Although it’s perfectly legitimate to have a website that includes Silverlight-only pages, there are
other techniques that allow you to extend the interaction between the client-side Silverlight world and
the server-side ASP.NET world.

Without a doubt, the most effective way for a Silverlight application to tap into server-side code is
through web services. The basic idea is simple—you include a web service with your ASP.NET website,
and your Silverlight application calls the methods in that web service. The web service code can perform
server-side tasks, access server-side databases, and so on. With a little extra work, it can even use
ASP.NET services like authentication and session state. Best of all, because the page isn’t posted back,
your Silverlight application continues running without interruption.

CHAPTER 34 ■ SILVERLIGHT

1484

Silverlight applications support a variety of web service technologies, including SOAP-based
services, simple REST services that return XML or JSON data, and full-featured WCF services that are
built with .NET.

In this chapter, you’ll concentrate on WCF (Windows Communication Foundation) services, which
are the best choice for Silverlight applications. The other networking options are often more work, but
they’re useful if you need to access third-party web services that are outside your control.

Creating the Web Service
Much like the JavaScript in an ASP.NET AJAX page, Silverlight applications can call WCF services. To
create a WCF service for a Silverlight application, right-click your ASP.NET website in the Solution
Explorer and choose Add New Item. Choose the “Silverlight-enabled WCF Service” template, enter a file
name, and click Add.

■ Note A Silverlight-enabled WCF service is a WCF service that supports basic HTTP binding (rather than the
more stringent WS-* standards, which Silverlight doesn’t support). Silverlight-enabled services can also access the

HTTP context for the current request, which provides everything from cookies to caching. To interact with the

current HTTP content, use the HttpContext.Current static property.

To add a new web service method, you simply add a new method to the code file, and make sure
that it’s decorated with the OperationContract attribute. For example, if you want to add a method that
returns the current time on the server, you might modify the interface like this:

[ServiceContract]
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class TestService
{
 [OperationContract]
 public DateTime GetServerTime()
 {
 return DateTime.Now;
 }
}

Adding a Web Reference
You consume a web service in a Silverlight application in much the same way that you consume one in a
full-fledged.NET application. The first step is to create a proxy class by adding a Visual Studio web
reference.

To add the web reference, follow these steps:

1. Right-click your Silverlight project in the Solution Explorer and choose Add
Service Reference. The Add Service Reference dialog box will appear (see
Figure 34-15).

CHAPTER 34 ■ SILVERLIGHT

1485

Figure 34-15. Adding a service reference

2. In the Address box, enter the URL that points to the web service and click Go.
(Or, just click the Discover button to automatically find all the web services
that are in your current solution.)

3. In the Namespace box, enter the C# namespace that Visual Studio should use
for the automatically generated classes.

4. Click OK. Visual Studio will create a proxy class—a class that you can interact
with to call your web service. The proxy class is named after the original web
service class—for example, Visual Studio will create a proxy class named
TestServiceClient for the TestService shown earlier. The proxy class contains
methods that allow you to trigger the appropriate web service calls, and it
takes care of the heavy lifting (creating the request message, sending it in an
HTTP request, getting the response, and then notifying your code).

5. To see the file that contains the proxy class code, select the Silverlight project
in the Solution Explorer, click the Show All Files button, expand the Service
References node, the service reference, and the Reference.svcmap node inside,
and open the Reference.cs file.

Calling the Web Service
To use the proxy class in a Silverlight page, open the code-behind file for your XAML page. Then import
the namespace that you specified for the service reference in step 3. Assuming you used the namespace
MyWebServer and your project is named MySilverlightProject, you’ll need this statement:

using MySilverlightProject.MyWebServer;

CHAPTER 34 ■ SILVERLIGHT

1486

In Silverlight, all web service calls must be asynchronous. That means you call a method to start the
call (and send off the request). This method is named in the form MethodNameAsync(). For example, if
your web service includes a method named GetServerTime(), your proxy class will provide a method
named GetServerTimeAsync(). This method returns immediately.

After you call an asynchronous method, your code can carry on to perform other tasks, or the user
can continue to interact with the application. When the response is received from the web service, the
proxy will trigger an event, which is named in the form MethodNameCompleted (as in
GetServerTimeCompleted). You must handle this event to process the results.

■ Note This two-part communication process means that it takes a bit more work to handle a web service call
then to interact with an ordinary local object. However, it also ensures that developers create responsive Silverlight

applications. After all, making an HTTP call to a web service can take as long as one minute (using the default
timeout setting), so it’s not safe to make the user wait. (And yes, Microsoft imposes this limitation to ensure your

code can’t give their platform a bad name.)

Here’s how to call the TestService.GetServerTime() method shown earlier when a button is clicked:

private void cmdGetTime_Click(object sender, RoutedEventArgs e)
{
 // Create the proxy.
 TestServiceClient proxy = new TestServiceClient();

 // Attach an event handler to the completed event.
 proxy.GetServerTimeCompleted += new
 EventHandler<GetServerTimeCompletedEventArgs>(GetServerTimeCompleted);

 // Start the web service call.
 proxy.GetServerTimeAsync();
}

To get the results, you need to handle the completed event and examine the corresponding
EventArgs object. When generating the proxy class, Visual Studio also creates a different EventArgs class
for each method. The only difference is the Result property, which is typed to match the return value of
the method. For example, the GetServerTime() method works in conjunction with a
GetServerTimeCompletedEventArgs class that provides a DateTime object through its Result property.

When accessing the Result property for the first time, you need to use exception handling code.
That’s because this is the point where an exception will be thrown if the web service call failed—
for example, if the server couldn’t be found, the web method returned an error, or the connection
timed out.

Here’s an event handler that reads the result (the current date and time on the server) and displays
it in a TextBlock:

private void GetServerTimeCompleted(object sender,
 GetServerTimeCompletedEventArgs e)
{
 try
 {

CHAPTER 34 ■ SILVERLIGHT

1487

 lblTime.Text = e.Result.ToLongTimeString();
 }
 catch (Exception err)
 {
 lblTime.Text = "Error contacting web service";
 }
}

■ Tip Even though web service calls are performed on a background thread, there’s no need to worry about thread

marhsalling when the completed event fires. That’s because the web service proxy ensures that the completed event

fires on the main user interface thread, allowing you to access the controls in your page without worry.

By default, the web service proxy waits for one minute before giving up if it doesn’t receive a response.
You can configure the timeout length by using code like this before you make the web service call:

proxy.InnerChannel.OperationTimeout = TimeSpan.FromSeconds(30);

Configuring the Web Service URL
When you add a service reference, the automatically generated code includes the web service URL. As a
result, you don’t need to specify the URL when you create an instance of the proxy class.

However, this raises a potential problem. All web service URLs are fully qualified—relative paths
aren’t allowed. If you’re using the test web server in Visual Studio, that means you’ll run into trouble if
you try to run your application at a later point, when the test web server has chosen a different port
number. Similarly, you’ll need to update the URL when you deploy your final application to a
production web server.

You can solve this problem by regenerating the service reference, but it’s usually easier to change
the address dynamically in your code. To do so, you need to create a new EndpointAddress object with
the appropriate URL, and then pass that as a constructor argument when creating an instance of the
proxy class.

For example, the following code ensures that the web service call always works, no matter what port
number the Visual Studio test web server chooses (assuming the web service is named TestService.svc
and is placed in a website with the virtual directory named SilverlightApplication1.Web).

 // Create the proxy.
TestServiceClient proxy = new TestServiceClient();

// Create a new URL for the TestService.svc service using the current port number.
proxy.Endpoint.Address = new EndpointAddress("http://localhost:" +
 HtmlPage.Document.DocumentUri.Port + "/SilverlightApplication1.Web/TestService.svc");

You could use similar code to create a URL based on the current Silverlight page, so that the web
service continues to work no matter where you deploy it, so long as you keep the web service and
Silverlight application together in the same web folder.

http://localhost:

CHAPTER 34 ■ SILVERLIGHT

1488

Cross-Domain Web Service Calls
Silverlight allows you to make web service calls to web services that are a part of the same website with
no restrictions. Additionally, Silverlight allows you to call web services on other web services if they
explicitly allow it with a policy file.

To make this possible, you must create a file named clientaccesspolicy.xml, and place that in the
root of your website (for example, in the c:\inetpub\wwwroot directory of an IIS web server). The
ClientAccessPolicy.xml file indicates what domains are allowed to access your web service. Here’s an
example that allows any Silverlight application that’s been downloaded from any web server to access
your website:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

When you take this step, third-party Silverlight applications will be able to call your web services
and make arbitrary HTTP requests (for example, download web pages). Ordinarily, neither task would be
allowed in a Silverlight application. (Desktop applications and server-side applications face no such
restrictions—no matter what policy file you create, they will be able to do everything an ordinary user
can do, which means they can download any public content.)

Alternatively, you can limit to access to Silverlight applications that are running on web pages in
specific domains. Here’s an example that allows requests from Silverlight applications that are hosted at
www.sompecompany.com or www.someothercompany.com:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="http://www.somecompany.com" />
 <domain uri="http://www.someothercompany.com" />
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

You can use wildcards in the domain names to allow subdomains. For example, *.somecompany.com
allows requests from mail.somecompany.com, admin.somecompany.com, and so on.

http://www.sompecompany.com
http://www.someothercompany.com:
http://www.somecompany.com
http://www.someothercompany.com

CHAPTER 34 ■ SILVERLIGHT

1489

Furthermore, you can selectively allow access to part of your website. Here’s an example that allows
Silverlight applications to access the services folder in your root web domain, which is presumably
where you’ll place all your cross-domain web services:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/services/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

Custom Controls that use Silverlight

By this point, it may have occurred to you that crafty ASP.NET developers could devise custom ASP.NET
controls that render themselves into Silverlight applications. For example, you could build a Silverlight
version of the ASP.NET AdRotator control that renders a Silverlight-powered ad bar, suitable for inclusion
on an ordinary ASP.NET page.

Unfortunately, this model isn’t quite as simple as it seems at first. One challenge is the fact that Silverlight
applications depend on separate resources, like XAML files. These files can be embedded in your ASP.NET
assembly and retrieved when needed using the ASP.NET web resources model, but this design
complicates life. Furthermore, you need a way to customize the Silverlight content based on the properties
of the custom control. For example, you may need to examine properties set on the server control and use
that to change the details in the embedded XAML. ASP.NET AJAX has possible solutions for this sort of
challenge, but they’re fairly involved and out of the scope of this chapter.

In the future, developers will get better tools that make this scenario—building custom ASP.NET controls
that generate Silverlight content—easier and more practical. In the meantime, cutting-edge developers
who are planning to experiment can check out http://msdn.microsoft.com/en-us/magazine/cc135987.aspx
for an example that works with Silverlight 1.0.

Summary
In this chapter, you took a thorough look at Silverlight, a programming platform that runs in the browser
and is modeled after .NET and WPF.

Silverlight is one of Microsoft’s most closely followed new technologies. In fact, the relase of
Silverlight 2 inspired more developer interest than virtually any other Microsoft product since .NET 1.0.
Subsequent versions of Silverlight continue to build upon this framework and extend it with new
features. Increasingly, Microsoft is closing the gap between rich WPF-based desktop applications and
Silverlight-powered web content.

http://msdn.microsoft.com/en-us/magazine/cc135987.aspx

CHAPTER 34 ■ SILVERLIGHT

1490

■ Tip In this chapter, you received a rapid tour that included some of Silverlight’s most important features.
However, there are entire feature areas that this chapter doesn’t have room to cover, including styles, control
templates, isolated storage, and data binding. To undertake a more comprehensive exploration of Silverlight,

check out Pro Silverlight 3 in C# 2010 (Apress, 2009).

1491

Index
■ ■ ■

■ Special Characters
$ expressions, 356, 357, 371
$create alias, 1291
$find alias, 1291
$get alias, 1249, 1276, 1290, 1291
%> delimiter, 354
<%# character, 354, 356, 357

■ A
-A command-line switch, 886
A form variable parameter, 376
-A p command-line option, 999
A route value parameter, 377
<a> tag, 729, 1109, 1133
Abandon() method, 261
<abcd> tag, 1200
AbortPostBack() function, 1272
About action method, 1371
about.aspx page, 25
AboveNormal value, CacheItemPriority

enumeration, 498
absolute positioning, 29–30
absoluteExpiration parameter, 495
abstract encryption classes, 1037
access

denying to anonymous users, 861
to directories, 967–968
to files, 968
for roles, 968–970, 981–984
for users, 965–966

access control list (ACL), 528
access denied message, 842, 963
AccessDataSource control, 369
AccessKey property, 144
Accordion control, 738, 1300, 1303
account token, 959
AccountController class, 1374
AccountOperator role, 952
Accounts folder, 25

ACID (Atomic Consistent Isolated
Durable), 307

ACID properties, 307
ACL (access control list), 528
Action property, 1415
action results

calling controller methods, 1395–1396
overview, 1393
returning JSON data, 1394–1395

{action} tag, 1417, 1418
ActionLink method, 1380, 1381
ActionResult class, 1393
Active Directory schema, 854
ActiveDirectoryMembershipProvider class,

879, 880
ActiveDirectoryMembershipUser class,

879, 880
ActiveStepChanged event, 745, 1273
ActiveStepIndex property, 1274
ActiveXControls property, 1116
<Ad> element, 178
adaptive rendering, 1117–1118
Add Application dialog box, 800
Add Application Pool dialog box, 825
Add As New Root option, 54
Add ASP.NET Folder submenu, Visual

Studio, 38
Add FTP Site Publishing Wizard, 810
Add Function Import option, 587
Add Managed Handler dialog box, 829, 830
Add() method, 350, 490, 491
Add method, 1165, 1166, 1415
Add New Access Rule section, 979
Add New Item dialog box, Visual

Studio, 1327
Add New Project dialog box, 217
Add Parameter button, Expression

Editor, 607
Add Reference command, Visual

Studio, 1104
Add Reference dialog box, 45, 217

■ INDEX

1492

Add Reference window, Visual Studio, 45
Add References dialog box, Visual

Studio, 1093
Add Service Reference dialog box, Visual

Studio, 1484
Add Tab option, 39, 1292
Add View dialog box, 1366, 1367
Add Virtual Directory dialog box, 819
Add Watch option, 73
Add Web Site dialog box, 817, 818
Add_Data folder, 1403
<add> element, 201, 219, 220, 487, 1002,

1003, 1021, 1022
AddArc() method, GraphicsPath

class, 1148
AddAttribute() method, HtmlTextWriter

class, 1103
AddAttributesToRender() method, 1109,

1123, 1211
AddBezier() merthod, GraphicsPath

class, 1148
AddBeziers() method, GraphicsPath

class, 1148
AddChildren() method, 767
AddClosedCurve() method, GraphicsPath

class, 1148
AddCurve() method, GraphicsPath

class, 1148
AddEllipse() method, GraphicsPath

class, 1148
addHandler() method, 1288
AddHistoryPoint() method, 1273
AddLine() method, GraphicsPath

class, 1148
AddNode method, 767
AddOnPreRenderCompleteAsync()

method, 515, 516, 525, 526
AddPath() method, GraphicsPath

class, 1148
AddPie() method, GraphicsPath

class, 1148
AddPolygon() method, GraphicsPath

class, 1148
AddRectangle() method, GraphicsPath

class, 1148
Address class, 1008, 1009, 1017
AddString() method, GraphicsPath

class, 1148
AddStyleAttribute() method,

HtmlTextWriter class, 1103
AddUsersToRole method, 982
AddUsersToRoles method, 982
AddUserToRole method, 982

AddUserToRoles method, 982
AddWithValue() method, 306
Adleman, Leonard, 1036
Admin.aspx page, 770
Administration node, 771
administrator privileges, 93
administrator rights, 93
Administrators group, 973, 986
ADO.NET

architecture of
data providers, 278–280
fundamental classes, 281
standardization in, 280–281

calling stored procedures, 304–307
commands, 290
Connection class

pooling, 287–289
strings, 283–285
testing, 286–287
user instances features, 284–285

DataReader class, 291
ExecuteNonQuery() method, 298–299
ExecuteReader() method and

DataReader
CommandBehavior, 295
null values, 294–295
overview, 292–293
processing multiple result sets,

295–298
ExecuteScalar() method, 298
overview, 277
parameterized commands, 303
provider-agnostic code

creating factories, 316–317
creating objects with factories, 317
overview, 315
queries with, 318–319

SQL injection attacks, 299–302
transactions and ASP.NET applications

client-initiated, 311–312
overview, 307–308
stored procedure, 309–310

transactions isolation levels, 312–314
transactions savepoints, 314–315

ADO.NET DataSet
accessing as XML, 675–678
converting to XML, 673–674

AdRotator class, 178
AdRotator control, 177, 178–179
AdRotator.AdCreated event, 179
advanced breakpoints, 74
advanced HTTP handlers, creating,

223–225

■ INDEX

1493

advanced master pages
dynamically setting, 732
interacting with master page class,

730–732
nesting, 732–734

Advanced tab, Internet Options dialog
box, 1186

advapi32.dll file, 959, 960
AdvertisementFile property, 178
[aeiou] character, 169
AffectedRows property, 472
aggregate dependencies, 503–504
AggregateCacheDependency class, 503, 504
AggregateCacheDependency.Add()

method, 503, 504
aggregation, 571–575
Ajax

client callbacks in custom controls
client page, 1236–1237
DynamicPanel, 1233–1235
DynamicPanelRefreshLink, 1235
overview, 1232

creating client callbacks
building basic pages, 1226
disabling event validation feature, 1230–

1231
implementing callbacks, 1226–1228
overview, 1225, 1231
writing client-side scripts, 1228–1229

example of, 1220–1224
overview, 1217
XMLHttpRequest object

handling responses, 1220
overview, 1218
sending requests, 1219

AJAX (asynchronous JavaScript and XML),
and ASP.NET. See ASP.NET AJAX

AJAX Extensions Toolbox tab, 39, 1241
AjaxCalculatorPage.aspx page, 1221
AjaxControlToolkit.Binary.NET4.zip

file, 1292
AjaxControlToolkit.dll assembly, 1292, 1293
AjaxControlToolkitSampleSite folder, 1292
ajaxToolkit namespace, 1295
alert() function, 1182
AlgorithmName property, 1042, 1044, 1046
algorithms, symmetric, 1035–1036,

1041–1048
Alias box, Add Virtual Directory dialog

box, 819
All Cities option, 400
<allow> rule, 965, 966, 968
allowAnonymous attribute, 1004, 1015, 1016

AllowClose property, 1317, 1320, 1333, 1335
AllowConnect property, WebPart

Class, 1317
Allowed data ranges, 622
Allowed data types option, 236, 237
AllowEdit property, WebPart Class, 1317
AllowGet value, 1395
AllowHide property, WebPart Class, 1317
AllowMinimize property, WebPart Class,

1317, 1335
allowOverride attribute, 198, 199
AllowPaging property, 427, 428, 454
AllowReturn property, 742
AllowSorting property, 422
AllowZoneChange property, WebPart

Class, 1318
AllRows.aspx page, 1415
alpha, red, green, blue (ARGB) color

value, 148
alt attribute, 439
AlternateText element, 178
AlternatingItemTemplate, 436, 448
AlternatingRowStyle format string, 411
AlwaysVisibleControlExtender, 1297
ampersand character, 864
Ancestors() method, 649
AND operator, 348, 570
animation

defining, 1472
example of, 1475–1479
overview, 1471
Storyboard class, 1472–1474
transforms, 1479–1483

animation class, 1479
animation properties, 1474
AnimationExtender, 1297, 1300
annotations, adding validation, 1390–1392
anonymous access, 857
Anonymous Authentication module, 950
Anonymous Login option, 815
anonymous profiles

migrating, 1016–1017
overview, 1015

anonymous users, denying access to, 861,
948–950

AnonymousID property, 113
<anonymousIdentification> element,

1015, 1016
<AnonymousTemplate> template, 981
AnotherSecuredPage.aspx file, 968
AnswerLookupError event, 913
AOL property, HttpBrowserCapabilities

class, 1116

■ INDEX

1494

API (Application Programming Interface),
855, 1012–1014

-app switch, 213
App_Browsers directory, 187
App_Code directory, 215–216, 820, 1009,

1101, 1104, 1206, 1248, 1327, 1403
App_Data directory, 187, 285, 889, 975,

1306, 1312, 1398
App_GlobalResources directory, 187
App_LocalResources directory, 187
App_Themes folder, 187, 709, 711
App_WebReferences directory, 187
AppearanceEditorPart, 1335
Append value, 546
AppFabric, Windows Server, 488, 489
AppInitialize method, 821
<applet> tag, 1199
Application class, 1286–1287
application events, 189–192
Application object, 112, 493, 1286
Application Pool Defaults dialog box, 799
Application Pool Defaults link, 799
application pools

assigning applications to, 825–826
creating new, 825
overview, 823–824
starting and stopping, 826
using side-by-side executions, 826

Application Programming Interface (API),
855, 1012–1014

Application property, 1121
application services

authentication service, 1252–1255
profile service, 1257–1259
role service, 1255–1257

Application tab, Visual Studio, 25
application tracing, 125–126
application warm-up

configuring, 827–828
overview, 826
preparing IIS 7, 827

Application_AcquireRequestState()
method, 189

Application_AuthenticateRequest event,
983, 984

Application_AuthenticateRequest()
method, 189

Application_AuthorizeRequest() method, 189
Application_BeginRequest() method, 117, 189
Application_Disposed() method, 191
Application_End() method, 191, 192, 510
Application_EndRequest() method, 190
Application_Error event, 973

Application_Error() method, 190, 192
Application_OnEndRequest() event

handler, 188
Application_PostRequestHandlerExecute()

method, 189
Application_PreRequestHandlerExecute()

method, 189
Application_ReleaseRequestState()

method, 190
Application_ResolveRequestCache()

method, 189
Application_Start() method, 190, 192,

509, 773
Application_UpdateRequestCache()

method, 190
Application.add_init() method, 1287
ApplicationException exception, 1250
applicationHost.config file, 942, 944,

945, 946
ApplicationName() method, 1018
applicationName property, 892, 893, 924,

977, 1087
ApplicationName setting, 1088
ApplicationPath property, 113
applications

creating
creating sites, 1397–1400
exploring sites, 1400–1402

MVC, creating
completing controllers and views, 1368–

1371
creating controllers, 1365–1366
creating Index View, 1366–1367
creating models, 1365
modifying Site.Master file, 1371
overview, 1364
testing (incomplete) applications, 1367–

1368
MVC, extending

adding authentication, 1374–1375
adding error handling, 1373–1374
adding support for foreign key

constraints, 1378
configuring routing, 1371–1372
consolidating data store access, 1375–

1378
static variables, 271–273
transactions and ASP.NET

client-initiated ADO.NET, 311–312
overview, 307–308
stored procedure, 309–310

using membership API with, 924–926
web, 841

■ INDEX

1495

Applications column
Application Pool, 824
CustomAppPool, 826

Apply button, 1337, 1353
Apply Styles window, Visual Studio, 36
ApplyChanges method, 1339
ApplyFormatInEditMode property, 406
<apply-templates> command, 655
ApplyUpdate() function, 1223
AppManifest.xml file, 1443, 1450
appName setting, 357
AppSettings collection, 201
AppSettings member, 203
AppSettings property, 203
<appSettings> element, 196, 201–202, 204,

207, 208, 212
AppSettings:appName expression, 357
AppSettingsExpressionBuilder, 357
App.xaml file, 1449
App.xaml.cs file, 1449
Apress.WebParts.Samples

namespace, 1334
Archive value, 535
<area> tag, 1135, 1137, 1140
ARGB (alpha, red, green, blue) color

value, 148
ArgumentException exception, 612
Array type, 1282
Array.IndexOf() method, 443
ASC attribute, 347
ASCII encoding, 548
.ascx files, 37, 683, 1325
AsDataView() method, 580
AsEnumerable() method, 579, 581
.asmx files, 37, 1244, 1251
.asmx services, 1243
ASP page file, 873
<asp:BoundField> element, 156, 405, 607
<asp:Button> tag, 145
<asp:Chart> tag, 1164
<asp:CheckBox > tag, 145
<asp:CheckBoxList> control, 156
<asp:CompareValidator> validation

control, 163
<asp:ControlParameter> tag, 376
<asp:CreateUserWizardStep> tag, 921
<asp:CustomValidator> validation

control, 163
<asp:DropDownList> control, 156
<asp:FileUpload> tag, 145
<asp:FormParameter> tag, 376
<asp:HiddenField> tag, 145
<asp:HyperLink> tag, 145

<asp:Image> tag, 145
<asp:ImageButton> tag, 145
<asp:ImageMap> tag, 145
<asp:Label> tag, 145
<asp:LinkButton> tag, 145
<asp:ListBox> control, 156
<asp:MultiView> tag, 736
ASP.NET

browser support, 11
compiled, not interpreted, 4–5
configuring, 944
database scripts for services, 886–889
deploying and configuring, 11
event model, 81–82
evolution of

ASP.NET 1.0 and 1.1, 12
ASP.NET 2.0, 12
ASP.NET 3.5, 13–16
ASP.NET 4, 16–18
Silverlight technology, 18–19

forms authentication, 837
hosted by CLR, 8
integrated with .NET framework, 3–4
multilanguage, 6–7
object-oriented, 9–10
overview, 3
roles, 989–991
security framework, 856
state management, 236–238

ASP.NET AJAX, 14–16
client libraries

Application class, 1286–1287
base types, 1282–1283
client models, 1276
client-side AJAX control, 1288–1291
closures, 1278–1279
inheritance, 1284–1285
interfaces, 1285–1286
namespaces, 1283–1284
object-oriented programming in

JavaScript, 1277–1286
PageRequestManager class, 1287
prototypes, 1280–1281
registering classes with ASP.NET AJAX,

1281–1282
web-page framework, 1286–1291

control extenders
ASP.NET AJAX Control Toolkit,

1297–1302
AutoCompleteExtender, 1294–1297
installing ASP.NET AJAX Control Toolkit,

1292–1293
overview, 1291

■ INDEX

1496

ASP.NET AJAX (continued)
overview, 1239
server callbacks

application services, 1252–1259
authentication service, 1252–1255
calling web services in, 1248–1250
creating web methods, 1245–1248
creating web services in, 1244–1245
overview, 1242
placing web methods in pages,

1250–1251
profile service, 1257–1259
role service, 1255–1257
web services in, 1243–1250

server controls, 1259–1275. See also
Update panel server control

browser history feature, 1272–1275
Timer, 1268–1269
UpdateProgress, 1269–1272

ASP.NET applications
anatomy of

directory structure, 186
domain, 184–185
lifetime, 185
overview, 183
updates, 186

components
creating component, 214–215
overview, 213
using component through App_Code

directory, 215–216
using component through bin directory,

216–218
configuration

<appSettings>, 201–202
<connectionStrings>, 202–203
<system.web>, 199
<system.webServer>, 200
encrypting sections, 211–213
extending file structures, 207–211
machine.config file, 193–195
overview, 192
reading and writing sections

programmatically, 203–205
web.config file, 195–199
Website Administration Tool (WAT), 206–

207
extending HTTP pipeline

configuring custom handlers,
222–223

creating advanced handlers, 223–225
creating custom handlers, 221
creating custom modules, 231

creating handler for non-HTML content,
226–228

handlers, 219–220
modules, 229–230
using configuration-free handlers, 223

global.asax application file, 187–192
transactions

client-initiated ADO.NET, 311–312
overview, 307–308
stored procedure, 309–310

ASP.NET Control Toolkit, 1292
ASP.NET Crystal Reports Web Site

template, 26
ASP.NET Dynamic Data controls, 17, 130
ASP.NET Dynamic Data Entites Web Site

template, 26
ASP.NET Dynamic Data LINQ to SQL Web

Site template, 26, 1397
ASP.NET Dynamic Data project, 1397
ASP.NET Empty Web Application

template, 801
ASP.NET Empty Web Site template, 25, 28
ASP.NET error page, 973
ASP.NET MVC website template, 26
ASP.NET Reports Web Site template, 26
ASP.NET Server Control template,

1101, 1110
ASP.NET Web Application option, 64
ASP.NET Web Site template, 25, 96
ASP.NET worker process, 68, 74
aspnet_Applications table, 1000, 1001
aspnet_Applications_CreateApplications

procedure, 1001
aspnet_CheckSchemaVersion procedure, 1001
aspnet_compiler.exe command-line

tool, 826
aspnet_Membership table, 895
aspnet_Profile table, 1000, 1001, 1007
aspnet_Profile_DeleteInactiveProfiles

procedure, 1002, 1016
aspnet_Profile_GetNumberOfInactiveProfiles

procedure, 1002
aspnet_Profile_GetProfiles procedure,

1001, 1019
aspnet_Profile_GetProperties

procedure, 1001
aspnet_Profile_SetProperties

procedure, 1002
aspnet_regsql.exe tool, 265, 883, 885, 886,

974, 975, 999, 1000, 1306, 1312
aspnet_SchemaVersions table, 1000, 1001
aspnet_Users table, 1000, 1002
aspnet_Users_CreateUser procedure, 1002

■ INDEX

1497

aspnet_Users_DeleteUser procedure, 1002
aspnet_wp.exe account, 795
aspnetdb database, 999, 1000
ASPNETDB.MDB directory, 881
aspnetdb.mdf database, 1312
ASPNETDB.MDF file, 1306
<asp:Panel> tag, 145
<asp:Parameter> tag, 377
<asp:ProfileParameter> tag, 376
<asp:QueryStringParameter> tag, 376
<asp:RadioButton> tag, 145
<asp:RadioButtonList> control, 156
<asp:RangeValidator> validation

control, 163
<asp:RegularExpressionValidator>

validation control, 163
<asp:RequiredFieldValidator> validation

control, 163
<asp:RoleGroup> element, 981
<asp:RouteParameter> tag, 377
<asp:SessionParameter> tag, 376
<asp:Table> tag, 145
<asp:TableCell> tag, 145
<asp:TableRow> tag, 146
<asp:TextBox> tag, 146
<asp:TreeNode> tag, 774
<asp:ValidationSummary> validation

control, 163
<asp:View> tag, 736
.aspx.designer.cs file extension, 65
Assembly attribute, 1104
assembly references, adding, 43–46
AssemblyInfo.cs file, 1450
assessing view state, 243–244
AssignedUsers collection, 1091
assigning applications, to application pools,

825–826
associated entities, inserting, 596–598
asterisk character, 965
asymmetric algorithms, 1047–1048
asymmetric encryptions, 843, 844, 1036
asymmetric key pair, 843
AsymmetricAlgorithm class, 1033
AsyncDataReaderRefactored.aspx page, 524
AsyncFileUpload control, 1300
asynchronous JavaScript and XML (AJAX),

and ASP.NET. See ASP.NET AJAX
asynchronous loading, Add Reference

window, 45
asynchronous pages

creating, 515–517
handling errors, 519–521

multiple asynchronous tasks and
timeouts, 524

overview, 514
querying data in, 517–519
using caching with asynchronous tasks,

522–524
AsyncPostBackTrigger, 1266, 1267
AsyncQueryResult class, 524
AsyncTimeout property, 525
Atomic Consistent Isolated Durable

(ACID), 307
Attach to Process dialog box, Visual Studio,

1094, 1095, 1097
AttachDBFilename property, 285
attacks

script injection
disabling request validation feature,

1201–1203
extending request validation feature,

1203–1205
overview, 1199
request validation feature, 1200

SQL injection, 299–302
Attribute() method, 641
AttributeCount property, 629
attributes

JavaScript, adding declaratively, 1183
overview, 534–536
PrincipalPermission, 973
setting, 803–804

Attributes collection, 136, 1183
Attributes() method, 641
Attributes property, 133, 530, 535
auditing feature, 998
Authenticate event, 856, 898, 907, 908
Authenticate() method, 865, 866
Authenticated property, 907
AuthenticateEventArgs parameter, 907
AuthenticateRequest event, 944
authentication. See also forms

authentication; Windows
authentication

adding, 1374–1375
code, controlling, 853
forms, configuring, 882–883
overview, 838–839
and profiles, 998
of users, 893–896

<authentication /> section, 857, 858, 867
authentication cookies, 837, 851
authentication service, 1252–1255
<authentication> tag, 967
AuthenticationOption enumeration, 1013

■ INDEX

1498

<authenticationService> element, 1252
authorization

checks of, in code
merging PrincipalPermission objects, 972
using IsInRole() method, 970–971
using PrincipalPermission attribute, 973
using PrincipalPermission class, 971–973

of files, 970
in IIS 7.x

with ASP.NET roles, 989–991
managing ASP.NET roles with IIS

7.x, 991
overview, 986–988

overview, 839–840
role-based, 974–986

accessing roles programmatically, 981–
984

using LoginView control with
roles, 981

using Roles API with Windows
authentication, 984–986

URL
controlling access for specific roles, 968–

970
controlling access for specific users, 965–

966
controlling access to specific directories,

967–968
controlling access to specific

files, 968
overview, 963–964

Authorization Manager, 978
authorization rules, 770, 963
<authorization> element, 861, 862, 901, 948,

949, 964, 965, 967, 979, 1361
AuthorizationStoreRoleProvider class, 978
Authorize filter, 1375
AuthorizeWebPart event, 1360
authorizing web parts, 1360
Auto Format link, 414
Auto Format option, Visual Studio, 1405
AutoCompleteExtender, 1294–1297
AutoCompleteExtender componenet, 1297
AutoCompleteExtender control, 1295
AutoCompleteExtender.TargetControlID

property, 1296
AutoCompleteService web service, 1295
AutoCompleteTextBox controls, 1294
AutoDetect option, 859, 868
AutoDetect value, 267
AutoEventWireup property, 102
AutoFormat dialog box, Visual Studio,

1405, 1406

AutoFormat feature, 606
AutoGenerateColumns property, 367, 404,

405, 1014
AutoGenerateDeleteButton property, 456
AutoGenerateEditButton property, 456
AutoGenerateInsertButton property,

385, 456
AutoGenerate,IsolateApps value, 193
AutoGenerateRows property, 391, 455
automatic data binding, 100–101
automatic GridView paging, 427–428
automatic postbacks, 82–83, 154
automatic properties, 323
automatic saves, 1010–1012
automaticSaveEnabled attribute, 1010
AutoPostBack feature, 153
AutoPostBack property, 82, 83, 100,

156, 1183
AutoReverse property, Animation

class, 1475
Autos window, Visual Studio, 72, 73
AvailableFreeSpace, DriveInfo member, 533
Average() method, 509, 574
AVG() method, 350, 351

■ B
\b character, 169
 tag, 102, 119, 124, 133, 355, 1132, 1200
back reference, 1132
BackColor attribute, 1413
BackColor property, 144, 411, 417, 710,

1101, 1108, 1165
BackGradientStyle property, 1165
Background property, 1447, 1455
BackgroundSounds property,

HttpBrowserCapabilities
class, 1116

BackSecondaryColor property, 1165
BackupOperator role, 952
BannerText property, 731
base tag, 1108
base types, 1282–1283
Base64-encoded file, 846
base.Onload() method, 1330
BaseValidator class, 165–167
Basic authentication, 837, 936–937, 986
BasicAuthenticationModule module, 945
BasicMVCApplication.Models

namespace, 1365
BasicMVCApplication.Models.Product

type, 1366

■ INDEX

1499

Begin() method, 1474
BeginExecuteReader() method, 518, 520,

522, 524
BeginForm method, 1380, 1384
BeginInvoke() method, 517
BeginPageLoad() function, 1191
BeginRead() method, 517
BeginReader() method, 517
beginRequest event, 1265, 1287
BeginTask() method, 518
BeginTime property, Animation

class, 1475
BeginTransaction() method, 311, 312
BeginXxx() method, 517
Behavior class, 1291
BehaviorEditorPart editor part, 1335
BelowNormal value, 498
Beta property, HttpBrowserCapabilities

class, 1115
BETWEEN operator, 348
Bin directory

target site, 1358
using component through, 216–218
web application, 1325, 1357

Bin folder, 65, 360, 387, 1292, 1293
binary data

displaying, 467
reading efficiently, 468–469

binary files, streams, 549
Binary mode, 1008
Binary option, 1007
BinaryFormatter class, 559, 560, 1010
BinaryWrite() method, 116, 467, 469
BinaryWriter class, 549
Bind() method, 441, 444
BindGrid method, 1337
binding

adding new, 847
configuring for SSL, 847–848
data, 345
to database tables, 1170–1172
to LINQ, 1176–1178
modifing, 847
to object datasources, 1173–1174
site maps, 753–754
to XML content from other sources,

671–672
to XML files, 1174–1176

Bindings link, 847
Bitmap object, 1142, 1145, 1157
Bitmap.Save method, 1155
blocks, script, 1184–1185, 1198–1199
<body> element, 704, 1189, 1190, 1222

BodyContent region, Default.aspx page, 96
BodyFileName control, 912
Bold property, 149
Boolean type, 1282
Boolean.ascx template, 1413
Border class, 1452, 1476
BorderColor property, 144, 411
BorderlineColor property, 1165
BorderlineDashStyle property, 1165
BorderSkin property, 1165
BorderStyle enumeration, 147
BorderStyle property, 144, 147, 411
BorderWidth property, 144, 411, 1167
BoundField column, 404, 405, 422, 609
BoundField tag, 455, 456

 element, 92, 120
breadcrumb navigation, 754–756
Break All option, 71
break mode, Visual Studio, 70, 71, 72, 73, 566
breakpoints, 69, 70, 72, 74
Breakpoints window, Visual Studio, 74
BringToFront() method, 1462
Browse button, 550, 1106
Browse link, IIS Manager, 798
Browse tab, 45, 218
BrowseDisplayMode property,

WebPartManager class, 1313
browser detection, ASP.NET 4, 16
browser history feature

adding history points, 1273–1274
history state stored in URL, 1275
overview, 1272
restoring page state, 1274–1275

browser plug-in, Web Development Helper,
75, 76

Browser property
HttpBrowserCapabilities class, 1115
Request object, 113

browser support, of ASP.NET, 11
<browser> definition, 1115
<browser> element, 1115
browser-based login dialog box, 842
browsers

adaptive rendering, 1117–1118
detection of, 1114–1115
HtmlTextWriter class, 1113–1114
overriding type detection, 1117
properties of, 1115–1117
range of, 853

Browsing group, Internet Options dialog
box, 1186

Brush object, 1146, 1149
brushes, 1152–1153

■ INDEX

1500

Brushes class, 1146
BufferOutput property, 115
BuildSiteMap() method, 765, 769
BulletedList control, 161, 361, 1299
BulletImageUrl property, 161
BulletStyle property, 161
Business.PlaceOrder() method, 386
Button class, 1451, 1454, 1469
Button control, 458, 550, 1125, 1261, 1298
Button element, 1457
<button runat="server"> tag, 134
Button web control, 1183
Button_Click event, 973
<button> element, 1291
Button.Click event, 42, 101, 103, 550, 1203, 1266
ButtonField column, 404, 421, 422, 455
ButtonImages folder, 715
Button.RotateTransform object, 1482
buttons

default, 151–152
rollover, 1210–1213

ButtonType property, 416
By property, Animation class, 1475

■ C
-C command-line switch, 886
C# anonymous types feature, 568
C# compiler, 324
C# lock statement, 271
CA (certificate authority), 843, 1030
cache callback, 504, 506
Cache collection, 493
Cache object, 112, 271, 493, 495
Cache property, 115, 1121
cache scavenging, 498
<cache> element, 487
cached controls, sharing, 701–702
CacheDependency class, 507, 511
CacheDependency objects, 494, 502, 503, 504
CacheDependency.NotifyDependencyChan

ged() method, 510, 511
CacheDuration property, 374, 499, 672
CacheExpirationPolicy property, 374,

499, 672
CacheExtensibility assembly, 493
Cache.Insert() method, 494, 511
CacheItem class, 490
CacheItemPriority enumeration, 498
CacheItemRemovedReason, 506
CacheKeyDependency property, 499, 672
cachePath attribute, 493
CacheProfile attribute, 487

Cache.Remove() method, 505, 507
cacheRolesInCookie property, 976
caching

adding, 769–770
asynchronous pages

creating, 515–517
handling errors, 519–521
multiple asynchronous tasks and

timeouts, 524
overview, 514
querying data in, 517–519
using caching with asynchronous tasks,

522–524
cache dependencies

aggregate, 503–504
creating, 509–510
enabling notifications, 508–509
and file items, 502–503
how cache notifications work, 508
item removed callback, 504–506
understanding SQL cache notifications,

507
custom cache dependencies

overview, 510–511
using message queues, 512–514

data
adding items to, 494–496
caching with ObjectDataSource, 501
caching with SqlDataSource, 499–501
with data source controls, 498–501
overview, 493
priorities, 498
simple test, 496–497

output
building custom providers, 489–492
configuration, 487–488
custom control, 481–483
declarative, 479–480
extensibility, 488–493
fragment, 484
with HttpCachePolicy class, 483–484
overview, 478
post-cache substitution, 485–486
profiles, 487
and query string, 480–481
with specific query string parameters, 481
using custom providers, 492–493

overview, 477–478
<caching> element, 487, 492
calculated columns, 350
Calendar autoformatting, 30
Calendar class, 1452, 1453

■ INDEX

1501

Calendar control, 30, 31, 177, 180–182, 1125,
1130, 1309, 1316

CalendarExtender, 1297
Calendar.FirstDayOfWeek property, 180
CalendarHelp.htm page, 1321
Calendar.SelectionMode property, 180
Call Hierarchy window, Visual Studio, 53, 54
callbacks

implementing, 1226–1228
item removed, 504–506
server, application services

authentication, 1252–1255
profile, 1257–1259
role, 1255–1257

server, placing web methods in pages,
1250–1251

server, web services in
creating, 1244–1245
creating web methods, 1245–1248
overview, 1243

callBaseMethod() method, 1285
Calls From node, 53
Calls To node, 53
CallServerForUpdate() function, 1222, 1223
cancel button, UpdateProgress control,

1270, 1271
Cancel command, 458
Cancel link, 380
Cancel property, 913, 1287
CancelButtonClick event, 745
CancelButtonStyle style, 748
canonicalization errors, 539
Canvas class, 1452, 1460, 1476
Canvas layout container

dragging circles, 1462–1465
layering elements in, 1461–1462
overview, 1460

Canvas.GetTop() method, 1461
Canvas.Left property, 1461, 1465, 1473, 1479
Canvas.MouseLeftButtonDown event, 1463
Canvas.SetTop() method, 1461
Canvas.SetZIndex() method, 1462
Canvas.Top property, 1461, 1465, 1473,

1477, 1478, 1479
Canvas.ZIndex property, 1461, 1462
cascading style sheets (CSS)

applying rules, 706–709
creating, 703–706
master pages, 726–729
using in theme, 717

CascadingDropDown ectender, 1297
Catalog mode, 1315, 1358

CatalogDisplayMode property,
WebPartManager class, 1313

CatalogIconImageUrl property, 1318, 1322
<catalogName> element, 623
CatalogZone control, 1306, 1308, 1311, 1313,

1315, 1318, 1322, 1355, 1358, 1360
Categories table, Northwind database,

340, 464
Category attribute, 662
Category field, 1385
CategoryID field, 341, 463, 465, 1381, 1382,

1385, 1387
CatName key, 1382
CausesValidation property, 164, 175, 750
CellPadding property, 158
Cells collection, 138
CellSpacing property, 158
certificate authority (CA), 843, 1030
certificates, 843
change events, 1123–1125
ChangeExtension() method, 539
ChangeMode() method, 456, 457
ChangePassword control, 898, 916–917
ChangePassword method, 930, 1081, 1082, 1084
ChangePasswordTemplate, 916, 917
Chart control

creating basic charts, 1163–1169
overview, 1163
populating charts with data

binding to database tables, 1170–1172
binding to LINQ, 1176–1178
binding to object datasources, 1173–1174
binding to XML files, 1174–1176

ChartAreas, 1169, 1171
ChartDashStyle enumeration, 1165
Chart.DataSource property, 1174
charts

creating, 1163–1169
populating with data, 1170–1178

binding to database tables, 1170–1172
binding to LINQ, 1176–1178
binding to object datasources, 1173–1174
binding to XML files, 1174–1176

Chart.Series collection, 1166, 1171
ChartType property, 1166, 1171
CheckBox class, 1452
CheckBox controls, 163, 1299, 1300
CheckBoxField column, 404
CheckBoxFor Helper Method, 1380
CheckBoxList control, 95, 157, 361, 709
CheckBoxStyle style, 901
child node, 647
child pages, 92

■ INDEX

1502

ChildItems collection, 784
childNodes collection, 1189
ChildNodes property, 761
ChildNodesPadding property, 779
Children property, 1463
ChildrenAsTriggers property, 1268
Choose Items option, 39
Choose Location dialog box, 26
Choose Toolbox Items dialog box, 1292
ChromeState property, 1318, 1335
ChromeStyle property, 1335
ChromeType property, 1318
chunking view state, 88
CircleHotSpot class, 1136
circles, dragging, 1462–1465
City field, 613
City property, 594
City value, 615
class attribute, 706, 1456
class libraries, Silverlight, 1459
Class Library template, 217
Class View window, Visual Studio, 36
classes, 134–146

accessing HTTP context in, 127–128
ADO.NET, 281
animation, 1472
Application, 1286–1287
BaseValidator, 165–167
Connection

pooling, 287–289
strings, 283–285
testing, 286–287
user instances features, 284–285

custom control, 1159–1160
custom profile provider, 1018
custom provider, using

debugging using WAT, 1094–1095
with IIS 7.x, 1095
overview, 1092–1093

custom SiteMapProvider, creating
adding caching, 769–770
adding sorting, 768
creating provider, 764–768
storing information in databases,

763–764
data model

derived object context class, 583–584
entity classes, 584–585

data utility, 325–331
DataAdapter

data binding, 345
filling DataSet, 338–339
overview, 337

searching for specific rows, 343
using DataSet in data access class,

344–345
working with multiple tables and

relationships, 340–342
DataReader, 291
DataView

advanced filtering with relationships, 350
calculated columns, 350
filtering with, 348–349
overview, 345
sorting with, 346–347

forms authentication, 856–857
Graphics, 1145–1147
HtmlContainerControl, 133
HtmlControl, 133
HtmlInputControl, 134
HtmlTextWriter, 1113–1114
HttpCachePolicy, 483–484
IdentityReference, and role information,

954–955
membership

creating and deleting users, 930–931
overview, 926
retrieving users from stores, 927–929
updating users in stores, 929–930
validating users, 931

metadata, creating, 1424
.NET cryptography

abstract encryption, 1037
asymmetric encryptions, 1036
CryptoStream, 1038–1039
ICryptoTransform interface, 1037–1038
overview, 1033–1034
symmetric encryption algorithms,

1035–1036
PageRequestManager, 1287
partially populated entity, creating,

595–596
PrincipalPermission

merging objects, 972
overview, 971
using attributes, 973

provider, implementing
creating and adding users to stores,

1076–1080
function providers, 1084–1086
overview, 1072–1075
using salted password hashes, 1082–1084
validating users on Login control,

1080–1082
XmlRoleProvider, 1086–1092

■ INDEX

1503

registering with ASP.NET AJAX,
1281–1282

Section
creating, 208–209
registering, 209–211

Storyboard, 1472–1474
SymmetricEncryptionUtility, 1045–1046
VirtualPathProvider, 819–822
WebControl Base, 143–144
WindowsIdentity, 952–953
WindowsPrincipal, 951–952

Classic pipeline mode, 824, 825, 828
ClassName attribute, 684
ClassName property, 271
ClassName.SetPropertyName()

method, 1461
cleanup stage, 101
Clear() method, 261, 337
Clear vlaue, 866
ClearAllPools() method, 289
clearing personalization, 1361
ClearPool() method, 289
Click attribute, Button element, 1457
Click event, 154–155, 864, 1046, 1050, 1135,

1137, 1138, 1482
clicks, handling in hotspots, 1137–1138
client callbacks

creating
building basic pages, 1226
disabling event validation feature,

1230–1231
implementing callbacks, 1226–1228
overview, 1225, 1231
writing client-side scripts, 1228–1229

in custom controls
client page, 1236–1237
DynamicPanel, 1233–1235
DynamicPanelRefreshLink, 1235
overview, 1232

Client IDs, in GridView templates, 447
client libraries

client models, 1276
object-oriented programming in

JavaScript
base types, 1282–1283
closures, 1278–1279
inheritance, 1284–1285
interfaces, 1285–1286
namespaces, 1283–1284
overview, 1277
prototypes, 1280–1281
registering classes with ASP.NET AJAX,

1281–1282

web-page framework
Application class, 1286–1287
client-side AJAX control, 1288–1291
PageRequestManager class, 1287

client models, 1276
client page, 1236–1237
clientaccesspolicy.xml file, 1488
ClientBin folder, 1444
ClientCertificate property, 113
ClientID property, 131
ClientIDMode property, 95, 96, 97, 403, 447
ClientIDRowSuffix property, 96, 97, 403, 447
client-initiated ADO.NET transactions,

311–312
ClientML standard, 621
ClientScriptManager methods, 1199
ClientScriptManager object, 1198
client-side AJAX control, 1288–1291
client-side control IDs, 68, 94–97
client-side events

adding JavaScript attributes
declaratively, 1183

OnClientClick property, 1183
overview, 1181–1182

client-side scripts, writing, 1228–1229
ClientTarget property, 1117
<clientTarget> section, 1117
ClientValidationFunction property, 172
ClientWins value, RefreshMode

enumeration, 601, 602
Clone() method, 337
Close() method, 281, 286, 287, 288, 292
Close verb, 1319, 1351
CloseFigure() method, GraphicsPath

class, 1149
closures, 1278–1279
CLR (Common Language Runtime), 8, 1437
ClrVersion property, 1116
CLS (Common Language Specification), 7
cmdClickMe_Click method, 1458
cmdGrow button, 1472
cmdOutsideUpdate button, 1266
CMS (Cryptographic Message Syntax), 1030
code

adding to user control
adding events, 690–693
adding properties, 685–687
exposing inner web control, 694
handling events, 684–685
using custom objects, 688–690

authentication, controlling, 853
checks of authorization in

merging PrincipalPermission objects, 972

■ INDEX

1504

code (continued)
checks of authorization in (continued)

using IsInRole() method, 970–971
using PrincipalPermission attribute, 973
using PrincipalPermission class, 971–973

provider-agnostic
create objects with factories, 317
creating factories, 316–317
overview, 315
queries with, 318–319

user, initialization, 99
Code Document Object Model (CodeDOM),

358, 359
code editor

adding assembly references, 43–46
improvements

draggable document windows, 56
IntelliSense, 51–52
overview, 50
search and navigation tools, 52–55

IntelliSense and outlining
error underlining, 49–50
member list, 47–48
overview, 46

overview, 42
code model

connecting code-behind files to pages,
59–60

connecting control tags to page
variables, 60–61

connecting events to event handlers,
61–62

code window, Visual Studio, 70
CodeBehind attribute, 65
code-behind class, 60, 62, 103, 112
code-behind files, connecting to pages,

59–60
Code-behind model, Visual Studio, 57,

59, 65
Code-behind view, Visual Studio, 42
code-behind, XAML, 1456–1457
CodeDOM (Code Document Object Model),

358, 359
CodeExpression class, 359
CodeFile attribute, 59, 65
code-free scenarios, 404
CodeMethodInvokeExpression class, 359
CodePlex download page, 1292
coding FactoredProfileProvider

initialization, 1021–1022
reading profile information, 1023–1024
updating profile information, 1024–1025

coding guidelines, 836–837

coding style, Visual Studio, 22
Collapse to Definitions option, 47
CollapseImageUrl property, 780
CollapsiblePanelExtender, 1297
collectionKey argument, 1204
Color property, 148, 1167, 1471
ColorAnimation class, 1471, 1472, 1477, 1478
ColorAnimationUsingKeyFrames class, 1472
ColorPickerExtender, 1298
Column chart, 1171
Column property, 1467, 1470
ColumnDefinition element, 1466
ColumnDefinition object, 1468
columns

calculated, 350
defining, 404–407
fine-tuning, 1468
spanning, 1470–1471

Columns collection, 336, 579
Columns property, 414
<Columns> section, 404, 609
ColumnSeries class, 1166
ColumnSpan property, 461, 1470
COM component, 217
COM tab, 217
Combine() method, 539, 540
ComboBox class, 1300, 1452
Command class, 278, 282, 317
command column, editing with GridView

templates, 445
Command objects, 281, 312, 338
CommandArgument property, 439
CommandBehavior, 295
CommandBehavior.SequentialAccess

value, 468
Command.ExecuteReader() method, 468
CommandField class, 445, 456, 458
CommandField column, 384, 404, 416,

422, 440
command-line encryption, 213
CommandName property, 439, 445, 446,

458, 906, 915, 916
Command.Parameters collection, 305
commands, 290, 303
CommandText property, 290, 312
Command.Transaction property, 312
CommandType Enumeration, 290
CommandType property, 290
CommandType.StoredProcedure, 290
CommandType.TableDirect, 290
CommandType.Text, 290
Comments property, 538
Commit() method, 311, 312

■ INDEX

1505

Commit-as-you-go programming model, 746
Commit-at-the-end programming

model, 746
Common Language Runtime (CLR), 8, 1437
Common Language Specification (CLS), 7
communication contracts, 1343
CompanyName field, 596, 599
CompanyName property, 537
CompareAllValues, 474
CompareValidator control, 163, 168
CompiledQuery.Compile method, 595
compiling queries, 594–595
Complete Certificate Request task link, 846
CompletedSyncResult class, 522, 523, 524
CompletedSyncResult.OperationException

property, 522
CompletedSyncResult.Result property, 523
CompleteWizardStep control, 918
Complex option, return type box, 588
components, .NET

creating component, 214–215
overview, 213
using component through App_Code

directory, 215–216
using component through bin directory,

216–218
composite controls, 1127–1129
CompositeControl class, 1128
Compressed value, 535
compression

feature, 266–267
file, 557–558

CompressionMode value, 557
CompressionMode.Decompress option, 558
Computer Management tool, 262
concurrency

checking, SqlDataSource, 381–382
conflicts, detecting, 472–476
handling conflicts, 599–603
managing, 598–599
strategies, 330–331

Concurrency Mode property, 599
Condition option, 74
conditional updates, 1264
conference badge, 838
confidentiality

encrypting data, 1029
and integrity, 840–841

Config directory, 197
<configSections> element, 208, 209
configuration file

applying master pages, 730
applying themes, 717–718

configuration inheritance, 197–198
Configuration Manager, Visual Studio, 802
Configuration object, 205
<configuration> tag, 968
configuration-free HTTP handlers, 223
Configuration.GetSection() method, 204
ConfigurationManager.GetSection()

method, 210
ConfigurationProperty attribute, 209
Configuration.Save() method, 204, 205
ConfigurationSaveMode enumeration, 205
ConfigurationSection object, 204
Configure Data Source link, 397
Configure Data Source option, 371, 610
Configure Data Source Wizard, 397, 606
configured impersonation, 958–959
configuring ASP.NET applications

<appSettings>, 201–202
<connectionStrings>, 202–203
<system.web>, 199
<system.webServer>, 200
configuring, 944
deploying, 11
encrypting sections

command-line encryption, 213
overview, 211
programmatic encryption, 212

extending file structures
creating Section class, 208–209
overview, 207
registering Section class, 209–211

machine.config file, 193–195
overview, 192
reading and writing sections

programmatically, 203–205
web.config file

configuration inheritance, 197–198
overview, 195–196
using <location> elements,

198–199
Website Administration Tool (WAT),

206–207
confirmation dialog box, 1298
ConfirmButtonExtender, 1298
ConfirmPassword control, 919
confirmSubmit() function, 1198
ConflictDetection property, 385, 394
ConflictOptions.CompareAllValues, 381,

384, 394
ConflictOptions.OverwriteChanges, 381
conflicts

concurrency, handling, 599–603
theme, 712–713

■ INDEX

1506

Connect as button, 800
Connect button, 1348
Connect mode, 1348
Connect Timeout setting, 284
ConnectDisplayMode property,

WebPartManager class, 1313, 1348
ConnectErrorMessage property, WebPart

Class, 1318
connecting web parts

communication contracts, 1343
consumer, 1345–1347
dynamically configuring connection

points, 1348
multiple connection points, 1349–1350
overview, 1341–1342
provider, 1343–1345
static connections between, 1347–1348

Connection class
pooling, 287–289
strings, 283–285
testing, 286–287

Connection Lifetime setting, 288
Connection object, 281, 282, 287, 317
connection points

dynamically configuring, 1348
multiple, 1349–1350

Connection property, 290
connection string, configuring, 890–893
connection string property, 1170
Connection-based objects, 281
Connection.BeginTransaction()

method, 313
ConnectionConsumer method, 1354
[ConnectionConsumer] attribute, 1342,

1343, 1346, 1350
Connection.Open() method, 339
ConnectionProvider attribute, 1342, 1343,

1345, 1349, 1350
Connections area, IIS Manager, 800
Connections tree control, 801, 810
ConnectionString property, 607
connectionStringName property, 977
ConnectionStrings collection, 203
ConnectionStrings member, 203
ConnectionStrings property, 203
<connectionStrings> section, 196, 202–203,

204, 284, 288, 322, 370, 977, 1027
ConnectionStringsExpressionBuilder, 357
ConnectionsZone, 1348, 1349
consolidating data store access,

1375–1378
Constraints property, 1418, 1419
consumer web parts, 1345–1347

ConsumerConnectionPointID
parameter, 1350

ConsumerID property, 1347
ContactName field, 600
ContactName value, 600
containers

Canvas layout
dragging circles, 1462–1465
layering elements in, 1461–1462
overview, 1460

Grid layout
fine-tuning rows and columns, 1468
nesting, 1468–1470
overview, 1466–1467
spanning rows and columns, 1470–1471

Contains method, StringCollection
class, 1091

Contains search option, 613
Content control, 96, 723
content, creating HTTP handler for non-

HTML, 226–228
Content folder, 1364, 1404
Content naming containers, 95
content placeholders, 721
Content View button, IIS Manager, 797
<Content> tag, 726
content-based objects, 281
Content.ContentPlaceHolderID

property, 723
ContentPlaceHolder control, 721, 727
<ContentTemplate> section, 981, 1260
ContentType property, HttpResponse

class, 116
Continue command (F5), 72
ContinueButton control, 920
ContinueButtonClick event, 920
contracts, communication, 1343
control adapter, 1118
Control class, 95, 130, 1101, 1102, 1111,

1118, 1159, 1261, 1288, 1289
control containers, pages as

dynamic control creation, 110–111
page header, 109
showing control tree, 104–108

control creation, dynamic, 110–111
control declaration, 146
control IDs, client-side, 94–97
Control Model, 116
Control over HTML, ASP.NET MVC, 17
Control over URLs, ASP.NET MVC, 17
control properties, 85, 147
Control property parameter, 376
control state, 85, 1121–1122

■ INDEX

1507

control tags, connecting to page variables,
60–61

Control Tree section, 244
control tree, showing, 104–108
Control Tree, Trace Log, 121
ControlAdapter, 1118
controller class, 17, 1373
controller method, calling another,

1395–1396
controllers

completing, 1368–1371
creating, 1365–1366

Controllers folder, 1364, 1365
Controllers/HomeControllerTest.cs file, 1372
controlling authentication code,

controlling, 853
Control.Page property, 356
ControlParameter attribute, 613, 615
ControlParameter tag, 375
controlRenderingCompatibility attribute, 91
controlRenderingCompatibilityVersion

attribute, 91, 92
controls. See also server controls

AdRotator, 178–182
BulletedList, 161
cache, custom, 481–483
ChangePassword, 916–917
Chart, 1163–1178. See also charts,

populating with data
client-side AJAX, 1288–1291
CompareValidator, 168
CreateUserWizard, 917–922
creating multiple skins for, 713–714
custom

pop-up windows, 1205–1209
rollover buttons, 1210–1213

custom, client callbacks in
client page, 1236–1237
DynamicPanel, 1233–1235
DynamicPanelRefreshLink, 1235
overview, 1232

custom server. See custom server
controls

CustomValidator, 171–172
data source

caching with ObjectDataSource, 501
caching with SqlDataSource, 499–501
overview, 498

EntityDataSource
displaying data, 604–609
editing data, 610
getting related data, 609–610
validation, 611–612

extenders
ASP.NET AJAX Control Toolkit,

1297–1302
AutoCompleteExtender, 1294–1297
installing ASP.NET AJAX Control Toolkit,

1292–1293
overview, 1291

ImageButton, 154–155
ImageMap

creating hotspots, 1136–1137
custom hotspots, 1139–1140
handling hotspot clicks, 1137–1138
overview, 1135

Login, 898–909
programming, 906–909
templates, 904–906
validating users on, 1080–1082

LoginStatus, 909–910
LoginView, using with roles, 981
Menu

overview, 783–785
styles, 786–787
templates, 788–789

MultiView, 736–741
PasswordRecovery, 911–916
QueryExtender

overview, 612
using MethodExpression, 615
using PropertyExpression, 614–615
using RangeExpression, 614
using SearchExpression, 613–614

RangeValidator, 167
RegularExpressionValidator, 168–170
RequiredFieldValidator, 167
ScriptManager, 1241–1242
security, 897–922
that use GDI+

custom control class, 1159–1160
overview, 1158
rendering pages, 1161–1162

TreeView. See TreeView control
user, and advanced web parts,

1351–1354
validation, 163–164
ValidationSummary, 172–173
WebPartManager and WebPartZone,

1307–1308
Wizard

events, 745–746
overview, 741
steps, 742–744
styles, templates, and layout, 747–750

■ INDEX

1508

Controls collection, 107, 110, 138, 1111,
1128, 1319, 1320, 1332

Controls properties, 107, 131, 1318
ControlStyle property, 407, 747, 1353
ControlToCompare property, 168
ControlToValidate member, 166
Conversion Wizard, Visual Studio, 66
Convert to Application option, 800
ConvertEmptyStringToNull property, 407
Convert.FromBase64String() method, 1045
ConvertKeyToPath() method, 491
Convert.ToBase64String() method,

1045, 1055
ConvertXmlTextToHtmlText() method, 1131
cookie authentication

fixing flaws, 856
integrating with ASP.NET security

framework, 856
keeping secure, 855–856

Cookie value parameter, 376
cookieless property, 859
cookieless setting, 267–268
cookieName property, 977
cookiePath property, 977
cookieProtection property, 977
cookieRequireSSL property, 977
cookies, 256–257, 259, 837, 867–868,

869–870
Cookies collection, 122, 256
Cookies property

HttpBrowserCapabilities class, 1116
Request object, 113
Response object, 115

cookieSlidingExpiration property, 977
cookieTimeout property, 977
Copy Local property, 1453
Copy() method, 337, 529
Copy Web tab, Visual Studio, 813, 814,

815, 817
CopyTo() method, 532
COUNT() method, 291, 298, 350, 351, 509,

573, 574
CountEmployees() method, 329, 429
counting records, GridView paging, 429–430
Crawler property, HttpBrowserCapabilities

class, 1116
Create a strongly typed view option, 1366
Create Certificate Request task link, 846
Create Domain Certificate wizard, 846
CREATE EVENT NOTIFICATION command,

508
Create() method, 529, 531, 532, 1037
Create methods, 1369, 1370

Create New Complex Type button, 588
Create New link, 1368, 1369
Create New Web Application icon, 26
Create or Manage Roles link, 978
create, read, update, delete (CRUD), 1363
Create User Task icon, 40
Create value, 546
Create.aspx file, 1371
CreateChildControls() method, 1128, 1129,

1326, 1329, 1331, 1332, 1338, 1345,
1351, 1353

CreateCommand() method, 317
CreateConnection() method, 317
createConstraints parameter, 343
CreateCustomer factory method, 596
CreateDataAdapter() method, 317
CreateDecryptor() method, 1038
CreateDirectory() method, 528
CreatedUser event, 920, 921, 983
CreateEditorParts method, 1340
CreateEncryptor() method, 1038
CreateMachineKey() method, 194
CreateMembershipFromInternalUser

method, 1085
CreateNew value, 546
CreateParameter() method, 317
createPersistentCookie property, 977
CreateRole method, 982, 1088
CreateStyleRule() method, 109
CreateSubdirectory() method, 531
CreateT factory method, 596
CreateText() method, 529, 532, 547
CreateUser() method, 930, 931, 1076, 1079,

1081, 1082, 1084, 1088
CreateUserError event, 920
CreateUserIconUrl property, 904
CreateUserText property, 904
CreateUserUrl property, 904
CreateUserWizard control, 898, 917–922, 983
CreateUserWizardStep control, 921
CreateXMLHttpRequest() function,

1222, 1223
CreatingUser event, 920
<credentials /> section, 860, 866
credentials store, custom, 868–869
cross-domain web service calls, 1488–1489
cross-page posting

getting page-specific information, 251–252
IsPostBack and IsCrossPagePostBack

properties, 253–254
overview, 249–250
performing in any event handlers, 252–253
validation, 254–256

■ INDEX

1509

CRUD (create, read, update, delete), 1363
cryptanalysis, 844
CryptoAPI, 1034, 1037
Cryptographic Message Syntax (CMS), 1030
cryptography

confidentiality encrypting data, 1029
encrypting query strings, 1054–1057
encrypting sensitive data

in databases, 1049–1053
managing secrets, 1039–1041
using asymmetric algorithms, 1047–1048
using symmetric algorithms, 1041–1046
using SymmetricEncryptionUtility class,

1045–1046
.NET classes

abstract encryption, 1037
asymmetric encryptions, 1036
CryptoStream, 1038–1039
ICryptoTransform interface, 1037–1038
overview, 1033–1034
symmetric encryption algorithms,

1035–1036
.NET namespaces, 1030–1032

<cryptographySettings> section, 1044
CryptoStream class, 1037, 1038–1039,

1044, 1045
CryptoStreamMode enumeration, 1038
Crystal Reports software, 26
.cs files, 38, 57, 60, 63, 1244
csc.exe compiler, 1443
.csproj project file, 22, 63
CSS. See cascading style sheets (CSS)
CSS class, 704, 900
CSS Outline window, 705
CSS Properties window, 707
CSS style attribute, 137
CSS style properties, 31
CssClass property, 144, 411, 703, 706, 900, 901
c:\temp directory, 536
curly braces, Visual Studio, 22
Currency format string, 409
current nodes, starting from, 758
Current property, System.Web.HttpContext

class, 128
CurrentExecutionFilePath property, 113
CurrentMode property, 456
CurrentNode property, 761
CurrentNodeStyle style, 756
CurrentNodeTemplate template, 756
CurrentStore property, 1076, 1079, 1088
CurrentStore.Roles list, 1088
CurrentStore.Save() method, 1086, 1088, 1089
CurrentUserControlPath property, 1353

custom cache dependencies, 510–514
custom classes, using provider

debugging using WAT, 1094–1095
with IIS 7.x, 1095–1097
overview, 1092–1093

custom controls
client callbacks in

client page, 1236–1237
DynamicPanel, 1233–1235
DynamicPanelRefreshLink, 1235
overview, 1232

overview, 481–483
pop-up windows, 1205–1209
rollover buttons, 1210–1213
that use GDI+

custom control class, 1159–1160
overview, 1158
rendering page, 1161–1162

custom credentials store, 868–869
custom data components, 998
custom data types, and profiles

automatic saves, 1010–1012
custom type serialization, 1009–1010
overview, 1008

custom editors, creating, 1337–1340
custom field templates, 1429–1430
custom hotspots, 1139–1140
custom HTTP handlers

configuring, 222–223
creating, 221

custom HTTP modules, creating, 231
custom information, adding, 762
custom login pages, creating

cookieless forms authentication, 867–868
hashing passwords in web.config, 866–867
logging out, 866
overview, 862–865

custom membership providers
architecture of, 1061–1063
creating

debugging using WAT, 1094–1095
designing and implementing custom

stores, 1065–1072
overall design of, 1063–1064
using custom provider classes, 1092–1097
using custom provider classes with IIS

7.x, 1095
custom mode, 266
custom objects, 688–690
custom profile providers

coding FactoredProfileProvider
initialization, 1021–1022
reading profile information, 1023–1024

■ INDEX

1510

custom profile providers (continued)
coding FactoredProfileProvider

(continued)
updating profile information, 1024–1025

custom profile provider classes, 1018
designing FactoredProfileProvider,

1020–1021
overview, 1017
testing FactoredProfileProvider,

1025–1028
custom providers

building, 489–492
using, 492–493

custom server controls
browsers

adaptive rendering, 1117–1118
detection of, 1114–1115
HtmlTextWriter class, 1113–1114
overriding type detection, 1117
properties of, 1115–1117

control states and events
control, 1121–1122
postback data and change, 1123–1125
triggering postbacks, 1125–1127
view, 1119–1121

extending existing web controls
composite, 1127–1129
creating labels for specific data, 1130
derived, 1130–1133

overview
creating, 1102–1103
creating web controls that support style

properties, 1108–1111
rendering process, 1111–1112
in Toolbox, 1105–1107
using, 1104–1105

custom SiteMapProvider class, creating
adding caching, 769–770
adding sorting, 768
creating provider, 764–768
storing information in databases,

763–764
custom type serialization, 1009–1010
custom verbs, 1350–1351
CustomCacheProvider, 490
CustomCaching namespace, 493
CustomEndCap property, 1150
Customer class, 241
Customer drop-down box, 1402
Customer entity class, 586, 595, 596, 599, 600
Customer field drop-down box, 1402
Customer instances, 586, 593
Customer property, 1331, 1332, 1335, 1337

CustomerID field, 586, 596
CustomerID property, Customer entity

object, 600
CustomerID value, 587
CustomerNotes table, 1326, 1327, 1330
CustomerNotes web part, 1348, 1360
CustomerNotesConsumer web part, 1349,

1350, 1351
CustomerNotesGrid control, 1329, 1331
CustomerNotesPart, 1328, 1340, 1343, 1345,

1349
Customer.Orders navigation property, 586
CustomError controller method, 1396
CustomError method, 1396
CustomError view, 1395, 1396
customErrors element, 200, 963
Customers ObjectSet, ObjectContext

class, 586
Customers table, Northwind database, 1401,

1402, 1416, 1420, 1423, 1427, 1428
Customers user control, 1322
Customers_By_City stored procedure, 589
CustomersSetTableAdapters namespace, 1330
CustomersSmall.jpg image, 1325
CustomImageButton control, 1127
customization steps, 1333
CustomLineCap object, 1150
CustomPages folder, 1404
customProvider attribute, 266
CustomRequestValidator class, 1205
CustomStartCap property, 1150
CustomTemplates folder, 1415, 1421
CustomTextBox class, 1124
CustomTextBox control, 1125
CustomValidator control, 171–172
CustomValidator.ServerValidate event, 172

■ D
\d character, 170
-d command-line switch, 886
DashPattern property, Pens class, 1149
DashStyle enumeration, 1149
DashStyle properties, 1149, 1150
data

automatic binding, 100–101
confidentiality encrypting, 1029
creating labels for, 1130
custom components, 998
displaying, 604–609
editing, 610
encrypting in databases, 1049–1053
JSON, returning, 1394–1395

■ INDEX

1511

loading, 1330–1332
loading using lazy and eager, 591–593
models, generating, 582–583
populating charts with

binding to database tables, 1170–1172
binding to LINQ, 1176–1178
binding to object datasources,

1173–1174
binding to XML files, 1174–1176

postback, 1123–1125
querying in asynchronous pages, 517–519
related, getting, 609–610
sensitive, encrypting

in databases, 1049–1053
managing secrets, 1039–1041
using asymmetric algorithms, 1047–1048
using symmetric algorithms, 1041–1046
using SymmetricEncryptionUtility class,

1045–1046
store access, consolidating, 1375–1378
stored in profiles, 997
validating

adding validation annotations,
1390–1392

performing basic validation,
1388–1390

data binding
automatic, 100–101
data source controls

limits of, 397–401
ObjectDataSource, 386–396
overview, 368
page life cycle, 369–370
SqlDataSource, 370–386

expressions
custom expression builders, 357–360
overview, 356

to method, GridView templates, 437–439
overview, 353–355
repeated-value

to DataReader object, 363–366
to DataView object, 368
overview, 360–362
rich data controls, 366–367

single-value, 354–356
XML

binding to XML content from other
sources, 671–672

hierarchical binding with TreeView,
667–669

nested grids, 665–666
nonhierarchical binding, 660–662

updating XML through
XmlDataSource, 672

XPath, 662–665
XSLT, 669–671

data caching
adding items to, 494–496
with data source controls

caching with ObjectDataSource, 501
caching with SqlDataSource, 499–501
overview, 498

overview, 493
priorities, 498
simple test, 496–497

data components
building

concurrency strategies, 330–331
data packages, 323–324
data utility class, 325–331
overview, 321–322
stored procedures, 324
testing, 331–332

DataAdapter class
data binding, 345
filling DataSet, 338–339
overview, 337
searching for specific rows, 343
using DataSet in data access class,

344–345
working with multiple tables and

relationships, 340–342
DataSet, 335–336
DataView class

advanced filtering with relationships, 350
calculated columns, 350
filtering with, 348–349
overview, 345
sorting with, 346–347

disconnected data
overview, 333
web applications and DataSet, 334–335
XML integration, 335

Data Encryption Standard (DES), 194, 1034
data model classes

derived object context class, 583–584
entity classes, 584–585

data model diagram, Visual Studio, 587
Data property, 671, 777
data protection API (DPAPI), 212, 1029
data providers, 278–280
data source controls

ASP.NET 2.0, 12
caching with ObjectDataSource, 501
caching with SqlDataSource, 499–501

■ INDEX

1512

data source controls (continued)
limits of

adding extra items, 399
handling extra options with

ObjectDataSource, 400–401
handling extra options with

SqlDataSource, 399–400
overview, 397–398

ObjectDataSource
overview, 386
selecting records, 387–391
updating records, 392–396

page life cycle, 369–370
SqlDataSource

deleting records, 384
disadvantages of, 385–386
error handling, 379
inserting records, 384–385
overview, 370
parameterized commands, 374–379
selecting records, 371–374
updating records, 379–384

Data Sources icon, 282
data stores, creating

database scripts for ASP.NET services,
886–889

file-based SQL server stores, 889–890
overview, 883–885

Data Toolbox Tab, 38
DataAdapter class

data binding, 345
filling DataSet, 338–339
overview, 337
searching for specific rows, 343
using DataSet in data access class,

344–345
working with multiple tables and

relationships, 340–342
DataAdapter constructor, 339
DataAdapter object, 281
DataAdapter.Fill() method, 339
DataAdapter.SelectCommand property, 339
Database Entries table, 806, 807
database operations

deletes, 598
handling concurrency conflicts, 599–603
inserts

creating partially populated entity
classes, 595–596

inserting associated entities, 596–598
managing concurrency, 598–599
updates, 598

DatabaseComponent.EmployeeDB class, 387

databases
encrypting sensitive data in, 1049–1053
publishing, 806–807
scripts, for ASP.NET services, 886–889
storing information in, 763–764
tables, binding to, 1170–1172

DataBind() method, 132, 345, 354, 355, 356,
357, 362, 365, 366, 372, 1120

DataBinder.Eval() method, 416, 443
DataBindTable method, 1171
DataBindXY method, 1172, 1176
DataBindY method, 1167
data-bound controls, 96, 97
DataColumn objects, 281, 336
DataColumn.Expression property, 343
DataField property, 406, 422, 614, 1409
DataFields attribute, 613
DataFile property, 672
DataFormatString property, 406, 408,

409, 413
DataGrid class, 1453
DataItem class, 1173
DataItem property, 788
DataItemIndex class, 1344
DataKeyName field, 927
DataKeyNames property, 382, 419, 607,

610, 929
DataMember property, 157, 345
DataObject attribute, 397
DataObjectMethod attribute, 397
DataObjectTypeName, 393
DataPager control, 453
DataProtectionScope.CurrentUser

setting, 1041
DataProtectionScope.LocalMachine

setting, 1041
DataReader class

and ExecuteReader() method
CommandBehavior, 295
null values, 294–295
overview, 292–293
processing multiple result sets, 295–298

overview, 291
DataReader mode, 373, 416, 428, 434
DataReader object, repeated-value data

binding to, 363–366
DataReader.FieldCount property, 292
DataReader.GetBytes() method, 468
DataRelation object, 281, 342
DataRow class, 581, 1344
DataRow objects, 281, 336, 434, 578, 579
DataRowCollection class, 579
DataRowExtensions class, 579

■ INDEX

1513

DataRow.GetChildRows() method, 341
DataSet class, 281, 1173, 1176, 1327
DataSet mode, 373, 416, 428, 434
DataSet object, 13, 281, 334, 368
DataSet.DataSetName element, 674
DataSet.EnforceConstraints property, 343
DataSet.ReadXml() method, 674
DataSet.Relations collection, 341
DataSets

filling, 338–339
LINQ to, 578–581
overview, 335–336
typed, 1326–1328
using in data access class, 344–345
and web applications, 334–335

DataSet.Tables collection, 336, 1176
DataSource property, 157, 345, 354, 361,

366, 666, 1120
DataSourceCacheExpiry enumeration, 499
DataSourceID property, 361, 463, 607
DataSourceMode property, 373, 422, 500
datasources, binding to, 1173–1174
DataSources programming model, 1326
DataTable class, 578, 1173, 1344
DataTable object, 338, 364, 368
DataTable.CaseSensitive property, 347, 423
DataTable.DefaultView property, 346, 368
DataTableExtensions class, 579
DataTableExtensions.AsDataView()

method, 579
DataTable.Load() method, 523
DataTable.Select() method, 578, 580
DataTextField property, 157, 361, 363, 364,

366, 466
DataTextFormatString property, 157, 361
DataTypeAttribute, 1391
DataValueField property, 157, 361, 363,

366, 466
DataView approach, 579, 580
DataView class

advanced filtering with relationships, 350
calculated columns, 350
filtering with, 348–349
overview, 345
sorting with, 346–347

DataView object, repeated-value data
binding to, 368

DataView.RowFilter property, 500
DataView.Sort property, 346, 422
DatePicker class, 1452, 1453
DateTime object, 1486
DateTime.AddDays() method, 870
DateTime.Max property, 495

DateTime.Now static property, 870
DayRender event, 181
DbCommand class, 282, 317
DbConnection class, 282, 317
DbDataAdapter class, 317
DbDataFactories class, 319
DbDataReader class, 317
DBNull.Value, 292, 295, 306, 581
DbParameter class, 317
DBPathProvider class, 821
DbProviderFactories class, 316
DbProviderFactories.GetFactory()

method, 316
DbProviderFactory class, 316
DbProviderFactory.CreateXxx()

method, 317
<DbProviders> section, machine.config

file, 317
DbType parameter, 608
DbType property, 608
debug mode, web page, 74
DEBUG request, 964
Debug toolbar, Visual Studio, 70
Debug window, Visual Studio, 74
debugging

advanced breakpoints, 74
files, 63
JavaScript, 1186–1189
overview, 68
projectless development, 63
single-step, 69–71
using WAT, 1094–1095
variable watches, 72–73

Debugging tools, Visual Studio, 22
Debug.Write() statements, 74
Decimal_Edit template, 1413
declarative characteristic, 354
declarative output caching, 479–480
Decrypt() method, 536
DecryptData() function, 1042, 1043, 1045
decryptionKey attribute, 195
decryptionKey value, 194
Deep Zoom Composer tool, 1301
Deep Zoom feature, 1453
default button, 151–152
default content, 725–726
default doctype, 92
Default mode, DynamicEntity control, 1407
default page templates directory, 1403
Default route, 1372
default web page template, Visual Studio, 92
Default Web Site item, IIS Manager, 796
Default Web Site node, Visual Studio, 26

■ INDEX

1514

Default_Edit.ascx file, 1407
Default_Insert.ascx file, 1407
<default> option, 884
DefaultAppPool, 824
Default.ascx file, 1400, 1407, 1408
Default.aspx file, 797
default.aspx page, 25, 68, 96, 1324, 1405, 1411
DefaultButton property, 152
DefaultContainerName property, 607
DefaultDetails route, 1372
DefaultEvent attribute, 1266
DefaultMode property, 385, 456, 458
DefaultModel.RegisterContext method, 1399
DefaultProperty attribute, 1110
defaultProvider attribute, 493, 891, 976, 977
defaultProvider property, 976
defaultUrl attribute, 862
defaultUrl property, 860
defaultValue attribute, 1004
deferred execution, 565–566
definitions, document type, 89–90
DeflateStream class, 557
delegation, and impresonation, 956–958
Delete button, 456
DELETE command, 330, 459
Delete link, 1368, 1401
Delete() method, 399, 528, 529, 531
Delete option, Publish Web dialog box, 812
Delete Tab option, 39
Delete.aspx file, 1371
DeleteCommand property, 337, 338, 371,

379, 384
Deleted event, 369
DeleteEmployee() method, 329
DeleteInactiveProfiles() method, 1013, 1019
DeleteMethod property, 387
DeleteObject method, 598
DeleteProduct method,

NorthwindAccessConsolidator
class, 1378

DeleteProfiles() method, 1013, 1019
DeleteRole method, 982, 1088
deletes database operations, 598
DeleteUser() method, 931
deleting

records, SqlDataSource, 384
users, 930–931

Deleting event, 369, 378
Demand() method, 971, 972
demonstrating application events, 191–192
<deny> rules, 871, 964, 965
dependencies, cache

aggregate, 503–504

creating, 509–510
custom, 510–514
enabling notifications, 508–509
and file items, 502–503
how cache notifications work, 508
item removed callback, 504–506
understanding SQL cache

notifications, 507
DependencyChanged value, 506
DependencyDispose() method, 511
deploying ASP.NET, 11
deploying websites. See website deployment
derived controls, 1130–1133
derived object context class, 583–584
DES (Data Encryption Standard), 194, 1034
DES algorithm class, 1034
DESC attribute, 347
descendant node, 647
Descendants() method, 649, 659
description metatag, 109
Description property, 892, 977, 1318, 1322
DESCryptoServiceProvider class, 1034,

1035, 1037
design, of custom membership providers,

1063–1064
design surface, Visual Studio, 101
Design view, 28, 34, 61, 1404, 1407
DesignDisplayMode property,

WebPartManager class, 1313
designing custom stores, 1065–1072
DESManaged class, 1034
DestinationPageUrl property, 903
Details action, 1418, 1419, 1420
Details control, 95
Details controller method, 1373
Details link, 1368, 1401
Details method, 1369, 1372, 1373, 1374,

1382, 1396
Details MVC view, 1383
Details page templates, 1418
Details view, 1379, 1380, 1381, 1382
Details.aspx file, 1371, 1379, 1382, 1403,

1407, 1408, 1420
DetailsView

defining fields, 455–456
overview, 454
record operations, 456

DetailsView.ItemUpdated event, 474
DetailsViewMode enumeration, 456
DetailsViewUpdateEventArgs.Exception-

Handled property, 612
development language, 24
development time, Visual Studio, 22

■ INDEX

1515

Device value, 535
DHTML (Dynamic HTML), 11, 1180
Dictionary class, 241, 242
DictionaryEntry class, 496
DictionaryStructure class, 363
Digest authentication, 937
Digital Signature Algorithm (DSA), 1036
Direction property

Parameter object, 306
WebPart Class, 1318

<Director> element, 642
directories

controlling access to, 967–968
virtual, creating, 818–819

Directory class, 527, 528–530
directory separation character, 530
directory structure, of ASP.NET

applications, 186
Directory value, 535
DirectoryExists method, 822
DirectoryInfo class, 527, 530–533, 541,

542, 1157
DirectoryInfo.FullName property, 542
DirectoryInfo.GetDirectories()

method, 537
DirectoryInfo.GetFiles method, 1157
Disable Script Debugging (Internet

Explorer) option, 1186
Disable Script Debugging (Other)

option, 1187
Disable Script Debugging settings, 1187
disabled attribute, 1380
Disabled property, 133
Disabled value, 245
disableExpiration, 488
disableMemoryCollection class, 488
disabling event validation feature, 1230–1231
disabling view state, 244–246
disconnected data

overview, 333
web applications and DataSet, 334–335
XML integration, 335

Discover button, Add Service Reference
dialog box, 1485

Display a Notification About Every Script
Error setting, 1187, 1263

display names, changing, 1424–1426
DisplayFormat string, 1428
displaying data, 604–609
DisplayMode property, 161, 173, 1313, 1314,

1335, 1348
DisplayName attribute, 1425, 1426, 1431
DisplayRememberMe property, 903

DisplayTitle property, WebPart Class, 1318
Dispose() method, 231, 287, 288, 390, 519,

1143, 1285, 1289, 1290
Distributed Transaction Coordinator

(DTC), 310
<div> elements, 30, 31, 34, 95, 133, 697, 706,

724, 726, 750, 1261, 1445, 1446
DLL assembly, 217, 221, 360, 1009
DllImport attribute, 959
doctype, default, 92
doctype definition, 89, 90, 92, 93
DOCUMENT object, 711
Document Object Model (DOM), 75,

1180–1181
Document Object Model (XML DOM), 631
document type definitions, 89–90
document windows, 38, 56
DocumentContent property, 658
document.getElementById() method, 1186,

1229, 1249
Documents directory, 539
DocumentSource property, 657, 658
DOM (Document Object Model), 75,

1180–1181
domain, of ASP.NET applications, 184–185
domain property, 860, 977
DotNetNuke portal framework, 26
double property type, 1471
double quote character, 864
DoubleAnimation class, 1471, 1472, 1473,

1477, 1478
DoubleAnimationUsingKeyFrames

class, 1472
DPAPI (data protection API), 212, 1029
dragging circles, 1462–1465
DragPanel control, 1303
DragPanelExtender, 1298
DrawArc() method, 1145
DrawBezier() method, 1145
DrawBeziers() method, 1145
DrawClosedCurve() method, 1145
DrawCurve() method, 1145
DrawEllipse() method, 1145
DrawIcon() method, 1145, 1146
DrawIconUnstreched() method, 1145
DrawImage() method, 1145, 1146
DrawImageUnscaled() method, 1145
DrawImageUnscaledAndClipped()

method, 1145
drawing with GDI+

brushes, 1152–1153
Graphics class, 1145–1147
image format and quality, 1143–1144

■ INDEX

1516

drawing with GDI+ (continued)
pens, 1149–1151
simple drawing, 1141–1143
using GraphicsPath, 1148–1149

DrawLine() method, 1145
DrawLines() method, 1145
DrawPath method, 1145, 1148
DrawPie() method, 1145
DrawPolygon() method, 1145
DrawRectangle() method, 1145
DrawRectangles() method, 1145
DrawString method, 1142
DrawString() method, 1145, 1146
DrawString method, 1161
DrawXxx() methods, 1146, 1149
DriveFormat, DriveInfo member, 534
DriveInfo class, 527, 533
DriveType, DriveInfo member, 534
DropDownExtender, 1298
DropDownList control, 157, 360, 398, 399,

466, 1298
DropDownList.DataSource property, 443
DropDownList.DataSourceID property, 399
DropDownListFor Helper Method, 1380
DropDownListFor HTML helper

method, 1387
DropShadowExtender, 1298
DSA (Digital Signature Algorithm), 1036
DSACryptoServiceProvider class, 1036
DTC (Distributed Transaction

Coordinator), 310
durable caching, 489
Duration object, 1475
Duration property, 1472, 1475
<DVD> element, 625
<DvdList> element, 625, 632, 634, 646
DvdList.xml document, 658, 1131
DvdList.xml file, 627, 661
DvdList.xsd file, 652
dynamic control creation, 110–111
Dynamic Data

creating applications
creating sites, 1397–1400
exploring sites, 1400–1402

customizing site validation
requiring field values, 1430–1431
specifying valid ranges, 1431–1432
using extensibility methods, 1432–1435

customizing sites with metadata
changing display names, 1424–1426
changing visibility, 1426–1428
creating class, 1424
customizing field formatting, 1428–1429

overview, 1423
using custom field templates, 1429–1430

customizing sites with routes
changing URL format, 1416–1417
constraining, 1417–1418
overview, 1414, 1415–1418
switching to single-page editing, 1419
for tables, 1419

customizing sites with templates
custom page, creating, 1405–1406
editing default, 1404–1405
entity, 1407–1411
field, 1411–1414

framework, and ASP.NET, 18
understanding projects, 1403–1404

Dynamic Data Toolbox Tab, 39
dynamic graphics, embedding in web pages

custom controls that use GDI+, 1158–1162
overview, 1154
passing information to dynamic images,

1155–1158
using PNG format, 1155

Dynamic HTML (DHTML), 11, 1180
dynamic images, passing information to,

1155–1158
dynamic user interface, 80–81
dynamically loading user controls, portal

frameworks, 695–699
DynamicControl control, 1409
DynamicData control, 1404
DynamicData folder, 1403
DynamicData\CustomPages folder,

1405, 1421
DynamicData\EntityTemplates folder, 1407
DynamicData\FieldTemplates folder, 1411
DynamicData\PageTemplates folder,

1404, 1421
DynamicDataRoute class, 1415, 1417
DynamicDataRoute properties, 1418
DynamicDataRoute.Constraints

property, 1418
DynamicEntity component, 1407
DynamicEntity control, 1407
DynamicMenuItemTemplate property, 788
DynamicPanel control, 1233–1235,

1236, 1260
DynamicPanel.OnInit() method, 1234
DynamicPanel.Refresh event, 1236
DynamicPanelRefreshLink class, 1235,

1236, 1260
DynamicPanelRefreshLink.PanelID

property, 1236
DynamicPopulateExtender class, 1298

■ INDEX

1517

■ E
-E command-line switch, 886
-E parameter, 265
eager data loading, 591–593
e.Authenticated property, 909
e.Cell property, 181
EcmaScriptVersion property,

HttpBrowserCapabilities
class, 1116

Edit action method, 1376, 1406, 1418, 1420
Edit Application dialog box, 825
Edit command, 458
Edit controller method, 1388
Edit Function Import dialog box, 588
Edit links, 380, 440, 447, 874, 1368, 1384,

1386, 1401
Edit method, 1370, 1386, 1387, 1388
Edit mode, 456, 1316, 1335, 1337, 1407
Edit Templates option, 436
Edit verb, 1351
Edit view, 1383, 1385, 1388
Edit.aspx file, 1371, 1383, 1388, 1406,

1407, 1420
EditDisplayMode property,

WebPartManager class, 1313
editing

data, 610
single-page, switching to, 1419

EditItemTemplate, 436, 440, 445, 448,
457, 458

EditorPart class, 1317, 1337, 1339
EditorPart control, 1338
editors, 1335–1340
EditorWebZone, 1335
EditorZone, 1313, 1316
EditRowStyle format string, 411
EFS (Encrypting File System), 536
Element() method, 641
<element> tag, 623, 651
elements

<location>, using, 198–199
HTML, manipulating, 1185–1186
inserting, 804
layering, 1461–1462
removing, 805–806

Elements() method, 641, 649, 650
ElementsAfterSelf() method, 649
ElementsBeforeSelf() method, 649
Ellipse class, 1453, 1463
Ellipse element, 1463
Ellipse objects, 1463
Email control, 919

<embed> tag, 1199
embedding dynamic graphics in web pages

custom controls that use GDI+,
1158–1162

overview, 1154
passing information to dynamic images,

1155–1158
using PNG format, 1155

emp.get_FirstName() function, 1280
Employee class, 611, 615, 1278, 1280,

1281, 1284
Employee convenience property, 587
Employee() function, 1279, 1280
employee objects, 606, 611, 1278, 1280, 1281
EmployeeAge column, 438
EmployeeDateOfBirth field, 438
EmployeeDB class, 325, 326, 331, 389,

392, 397
EmployeeDB.GetEmployee()

method, 390
EmployeeDB.GetEmployees() method, 389
EmployeeDB.UpdateEmployee()

method, 394
EmployeeDetails class, 323, 331, 388, 392,

423, 434, 568
EmployeeDetails.EmployeeID property, 394
EmployeeID field, 405, 419, 608, 614
employeeID parameter, 391
EmployeeID value, 419
EmployeeName class, 569, 570
EmployeeName variable, 354
EmployeeReference navigation

property, 587
employees collection, 567
Employees table, 323, 331, 364, 367, 371,

465, 586, 604
EmployeesDB class, 389
EmptyDataRowStyle format string, 411
EmptyDataTemplate, 436, 448, 457
EmptyItemTemplate, 448, 452
Enable automatic deletes option, 610
Enable automatic inserts option, 610
Enable automatic updates option, 610
Enable Deleting option, 610
Enable Editing option, 610
Enable Inserting option, 610
Enable remote connections option, 801
Enable Roles for This Web Site box, 974
Enable Roles link, 974
Enable Selection option, 607
ENABLE_BROKER flag, 508
EnableCaching property, 374, 499
EnableClientScript member, 166

■ INDEX

1518

enableCompression setting, 266
enableCrossAppRedirects property, 860
Enabled attribute, Tracing Options, 126
Enabled member, 166
Enabled property, 144, 976, 1269
Enabled value, 245
EnableEventValidation attribute, 304,

1230, 1231
enablePasswordReset property, 892
enablePasswordRetrieval property, 892
EnablePersistedSelection property, 403, 429
EnableSession property, 1246
EnableSortingAndPagingCallbacks

property, 433
EnableTheming attribute, 713, 718
EnableViewState property, 85, 99, 101, 102,

131, 245, 1120, 1121, 1267
enableViewStateMac attribute, 246
EnableViewStateMAC property, 246
encoding

information, with SSL, 848
text, 548

Encoding class, 1044
Encoding.UTF8.GetBytes() method, 1045
Encrypt() method, 536
EncryptCommand button, 1046
EncryptData() function, 1042, 1043, 1048
Encrypted attribute, 536
Encrypted value, 535
EncryptedDataText text box, 1046
EncryptedQueryString class, 1054, 1055,

1056, 1057
EncryptedQueryString.ToString()

method, 1056
encrypting data. See cryptography
Encrypting File System (EFS), 536
encryption

command-line, 213
programmatic, 212

Encryption option, 859
EncryptPassword method, 1080
End Template Editing option, 437
EndCap property, Pens class, 1150
EndExecuteReader() method, 519, 522,

523, 524
EndPageLoad() function, 1192
EndpointAddress object, 1487
EndRead() method, 517
EndReader() method, 517
EndRequest event, 1263, 1264, 1266, 1287
endRequest() function, 1264
EndsWith search option, 613
EndTask() method, 518, 523

EndXxx() method, 517, 519
EnsureChildControls method, 1331
entities

associated, inserting, 596–598
classes, 584–585, 595–596
compiling queries, 594–595
data model classes

derived object context class, 583–584
entity classes, 584–585

filtering too late, 590–591
generating data models, 582–583
overview, 581
querying stored procedures, 587–589
relationships of, 586–587
using explicit loading, 593–594
using lazy and eager data loading,

591–593
Entity Data Model, 583, 587, 599, 604, 605,

607, 611
Entity Framework, 582, 589, 593, 594, 598,

599, 600, 601, 602, 612
entity templates, 1407–1411
EntityCollection class, 586, 587, 595, 598
EntityCollection<Order>, 586
EntityCollection.Load method, 593
EntityCollections, 588
EntityDataSource control

displaying data, 604–609
editing data, 610
getting related data, 609–610
validation, 611–612

EntityDataSource tag, 610
EntityDataSourceValidationException, 612
EntityDataSource.Where property, 607
EntitySetName property, 607
EntityTemplates folder, 1404, 1409, 1411
EntityTemplateUserControl class, 1410
entry pages, 1445–1448
enum keyword, 1245
EnumerableRowCollection<T> class, 580
Enumerable.Select() method, 576
Enumeration types, 1245
enumerations, 147–148
Equals method, 1072
Error List window, 36, 39–41
Error.argument, 1282
Error.aspx view, 1374
ErrorMessage property, 167, 174, 1392, 1430
errors

handling, 379, 519–521, 1262–1264,
1373–1374

underlining, 49–50
escaped character sequence, 530

■ INDEX

1519

Eval() method, 433, 434, 441
event attributes, 1180
event bubbling, 439
event handling, 252–253

in GridView templates, 439–440
overview, 100

event models, ASP.NET, 81–82
event validation feature, disabling, 1230–1231
EventArgs class, 1486
EventArgs object, 472, 691, 1486
event-driven model, 81, 82, 100
EventLog class, 231
events

adding, 690–693
application, 189–192
client-side, 1181–1183
connecting to event handlers, 61–62
control

control state, 1121–1122
postback data and change events,

1123–1125
triggering postbacks, 1125–1127
view state, 1119–1121

handling, 154–155, 1457–1458
overview, 745–746
processing, 1330–1332
server-side, handling, 139–142

Exception.Message property, 302
ExceptionType property, 1374
Exclusive locks, 312
Exclusive search bounds, 614
EXE (executable file), 183
ExecuteNonQuery() method, 291,

298–299, 306
ExecuteReader() method, and DataReader

CommandBehavior, 295
null values, 294–295
overview, 292–293
processing multiple result sets, 295–298

ExecuteScalar() method, 291, 298
ExecuteStatementInDb method, 599,

600, 603
executions, side-by-side, 826
Exists() method, 528, 529
ExpandImageUrl property, 780
Expired value, 506
Expires property, 115
ExpiresAbsolute property, 115
<expiryDate> element, 623
explicit loading, 593–594
Export verb, 1356
ExportMode property, 1318, 1355, 1357
/ expression, 647

// expression, 647
Expression property, 350
Expression Web, Microsoft, 1136
ExpressionBuilder class, 358
expressions

data binding, 356–360
filtering and sorting, 570–571
grouping and aggregation, 571–575
lambda, 577–578
methods of, 576
multipart, 578
overview, 567
projections, 568–570

ExtendedModel project, 1371
extenders, of controls

ASP.NET AJAX Control Toolkit, 1297–1302
AutoCompleteExtender, 1294–1297
installing ASP.NET AJAX Control Toolkit,

1292–1293
overview, 1291

extending
HTTP pipeline

configuring custom handlers, 222–223
creating advanced handlers, 223–225
creating custom handlers, 221
creating custom modules, 231
creating handlers for non-HTML content,

226–228
handlers, 219–220
modules, 229–230
using configuration-free HTTP

handlers, 223
integrated pipeline

configuring handler, 829–830
creating handler, 828
deploying handler, 829
testing handler, 830–831

Extensibility Method Definitions region, 1433
extensibility, output caching, 488–493
Extensible Application Markup Language

(XAML). See XAML (Extensible
Application Markup Language)

Extensible caching, ASP.NET 4, 16
Extensible Hypertext Markup Language

(XHTML). See XHTML (Extensible
Hypertext Markup Language)
compliance

Extensible Markup Language (XML). See
XML (Extensible Markup
Language)

Extensible Stylesheet Language (XSL), 654
Extensions class, 649

■ INDEX

1520

■ F
\f character, 169
FactoredProfileProvider

coding
initialization, 1021–1022
reading profile information, 1023–1024
updating profile information, 1024–1025

designing, 1020–1021
testing, 1025–1028

factories, 316–317
FailureAction property, 903
FailureText control, 906
FailureTextStyle style, 901
features

application warm-up
configuring application warm-up,

827–828
overview, 826
preparing IIS 7, 827

browser history
adding history points, 1273–1274
how history state is stored in URL, 1275
overview, 1272
restoring page state, 1274–1275

compression, 266–267
event validation, disabling, 1230–1231
request validation

disabling, 1201–1203
extending, 1203–1205
overview, 1200

security trimming, 770–771
user instances, 284–285

field formatting, customizing, 1428–1429
Field name header, 1409
field templates, 1411–1414, 1429–1430
Field value header, 1409
Field<T> method, 579, 581
Fields dialog box, 407, 414
FieldTemplates folder, 1404, 1429
file access objects, locking, 556–557
File class, 527, 528–530, 549
file item dependencies, 502–503
file management

Projectless development, 63
web projects, 64

file pop-up menu, Solution Explorer, 38
file properties window, 954
file structures, extending

creating Section class, 208–209
overview, 207
registering Section class, 209–211

File System button, 26

file version information, retrieving, 537
FileAccess value, 552
FileAttributes enumeration, 529, 534
FileAttributes.ReadOnly value, 536
FileAuthorizationModule, 970
file-based SQL server stores, 889–890
file-browsing application, 541–545
FileBuildPart property, 537
FileCacheProvider class, 490, 492, 493
FileCopy application, 829
FileCopy directory, 796, 797, 800
FileCopy item, IIS Manager, 797, 798
FileDescription property, 537
FileExists method, 821, 822
FileInfo class, 527, 530–533, 536, 542, 544,

1157, 1158
FileInfo.Length property, 542
FileInfo.Name property, 1158
FileList property, 272
FileMajorPart property, 537
FileMinorPart property, 537
FileMode.Create value, 546
FileName property, 537
FileName setting, 1088
_FileName variable, 1069
filenames, creating unique, 553–555
File.OpenWrite() method, 549
FileOutputCacheProvider, 491
FilePath property, 113, 355
FilePrivatePart property, 537
FileResult class, 1394
FileResult helper method, 1394
files

attributes, 534–536
authorization of, 970
code-behind, connecting to pages, 59–60
controlling access to, 968
deploying by copying

configuring deployment, 799–800
deploying websites, 797–798
preparing IIS, 796
websites, 797

Directory class, 528–530
DirectoryInfo class, 530–533
DriveInfo class, 533
File class, 528–530
file-browsing application, 541–545
FileInfo class, 530–533
filtering with wildcards, 536–537
global.asax application, 187–192
machine.config, 193–195
overview, 527
Path class, 538–540

■ INDEX

1521

retrieving file version information, 537
serialization, 558–561
with streams

binary files, 549
compression, 557–558
making files safe for multiple users,

552–557
overview, 546
text files, 547–548
uploading files, 550–552

web.config
configuration inheritance, 197–198
overview, 195–196
using <location> elements, 198–199

XML, binding to, 1174–1176
FileStream class, 547, 1143, 1460
FileStream constructor, 546, 552
FileStream.Close() method, 547
FileStream.Lock() method, 552
FileSystemInfo class, 530, 541
FileUpload control, 550, 1264, 1300, 1310
FileUpload.PostedFile.InputStream

property, 552
FileVersion property, 537
FileVersionInfo object, 545
Fill() method, 337, 339
FillBehavior property, Animation class,

1475, 1479
FillClosedCurve() method, Graphics

class, 1146
FillEllipse() method, Graphics class, 1146
FillPath() method, Graphics class,

1146, 1148
FillPie() method, Graphics class, 1146
FillPolygon() method, Graphics class, 1146
FillRectangle() method, Graphics class,

1142, 1146
FillRectangles() method, Graphics

class, 1146
FillSchema() method, 337
FillXxx() methods, 1146, 1152
Filter option, 74, 615
FilteredTextBoxExtender, 1298
filtering

data, 348–349
entities, 590–591
files with wildcards, 536–537
overview, 570–571
with relationships, 350

<FilterParameters> section, 501
filters

MethodExpression, 615
PropertyExpression, 614–615

RangeExpression, 614
SearchExpression, 613–614

Filters folder, 1404
final rendering, 1332–1333
find method, 1069
FindAll method, 1085
FindBook class, 1195
FindControl() method, 110, 112, 132, 175,

908, 915, 922, 1051, 1235
FindInactiveProfilesByUserName()

method, 1014, 1020
FindProfilesByUserName() method, 1014,

1019, 1020
FindUsersByEmail method, 1085
FindUsersInRole method, 982
FindUsersInRoles method, 1091
FinishButtonClick event, 746
FinishNavigationTemplate template, 749
FinishPreviousButtonStyle style, 748
FirefoxSlideMenuAdapter, 1118
First property, 568
FirstBulletNumber property, 161
FirstName column, 422
FirstName property, 568, 570, 1004,

1007, 1278
FirstName string variable, 1278
_firstName variable, 1279
FirstPageText property, 432
Fixed Decimal format string, 409
Flash technology, vs. Silverlight, 1439–1440
Flush() method, 548
FlushFinalBlock method, 1044
Focus() method, 150–151
folders, themes, 709–710
Font object, 1142, 1161
Font property, 144, 148–149, 414, 1101, 1108
font selection dialog box, Visual Studio, 29
FontInfo object, 1142
FontInfo properties, 148
FooterStyle format string, 411
FooterStyle property, 407
FooterTemplate property, 436, 457
FooterText property, 406
ForeColor property, 144, 411, 694, 710,

1101, 1108
foreign key constraints, adding support

for, 1378
Form collection, 80, 84
Form property, Request object, 113
<form runat="server"> tag, 134, 1198
<form> element, 78, 79, 80, 84, 91, 92, 101,

107, 550, 1198, 1215

■ INDEX

1522

Format HTML on Paste option, Visual
Studio, 34

Format property, 686
Format Selection command, Visual Studio, 34
formatting

fields, 1428–1429
specific values, GridView, 414–416

Formatting and Validation option, 33
FormCollection class, 1370
forms

login, controlling appearance of, 853
web, and MVC, 1363

<forms /> tag, 858, 860, 862, 866, 867
forms authentication

classes of, 856–857
configuring, 857–860, 882–883
controlling appearance of login forms, 853
controlling authentication code, 853
creating custom login pages

cookieless forms authentication,
867–868

hashing passwords in web.config,
866–867

logging out, 866
overview, 862–865

custom credentials store, 868–869
denying access to anonymous users, 861
downsides of

creating login interfaces, 854
intercepting network traffic, 855
maintaining user details, 854–855

and IIS 7.x, 871–876
implementing cookie authentication

fixing flaws, 856
integrating with ASP.NET security

framework, 856
keeping secure, 855–856

overview, 851–854
persistent cookies in, 869–870
storing user information, 853–854
working with range of browsers, 853

Forms Collection, Trace Log, 122
<forms> element, 869
FormsAuthentica- tion.RedirectFromLogin-

Page() method, 898
FormsAuthentication class, 851, 856, 862,

865, 869, 1029
FormsAuthenticationEventArgs class, 856
FormsAuthentication.HashPasswordFor-

StoringInConfigFile method, 867
FormsAuthenticationModule class, 856,

857, 858, 860, 876, 989, 991

FormsAuthentication.RedirectFromLogin-
Page method, 868

FormsAuthentication.SignOut() method,
866, 869, 909

FormsAuthenticationTicket class, 856
FormsIdentity class, 857
FormView control, 95, 366, 374, 454–458, 544
FormView template model, 457
FormViewMode.ReadOnly mode, 458
FPSE (Front Page Server Extensions), 801
fragment caching, 478, 484
frames

inline, 1216
navigation of, 1214–1215
overview, 1213

Frames property, HttpBrowserCapabilities
class, 1116

Framework version, 24–25
framework, web-page

Application class, 1286–1287
client-side AJAX control, 1288–1291
PageRequestManager class, 1287

FrameworkElement class, 1460
Frameworks and Runtimes section, 793
From property, 1474, 1482
FromLoginPage() method, 966
FromXml() method, 1048
Front Page Server Extensions (FPSE), 801
FrontPage Extensions, 27
FTP (File Transfer Protocol), 26
FTP Site button, 27
FTP_Projectless_Deploy folder, 813
FTPDeploy folder, 811
FTPProjectlessDeploy directory, 813
Full Unicode encoding, 548
FullName property, 252
Function Import Name option, 587
function providers, 1084–1086
Function type, 1283

■ G
GAC (global assembly cache), 46, 186
gacutil.exe command-line utility, 795
gatekeepers, 837
GDI+

custom controls that use
custom control class, 1159–1160
overview, 1158
rendering pages, 1161–1162

drawing with
brushes, 1152–1153
Graphics class, 1145–1147

■ INDEX

1523

image format and quality, 1143–1144
pens, 1149–1151
simple, 1141–1143
using GraphicsPath, 1148–1149

General format string, 410
General section, Options dialog box, 34
General Toolbox Tab, 39
GenerateKey() method, 1037, 1042, 1043,

1046, 1047, 1048
GenerateKeyCommand button, 1046
generating data models, 582–583
GenericWebPart class, 1316, 1317, 1319,

1322, 1324, 1340, 1343
Get Column Information button, 588
Get() method, 490, 492, 1461
GET request, 964
Get Selection button, 361
get_FirstName() method, 1279, 1280
get_FirstName property, 1280
get_isLoggedIn() method, 1253
get_LastName property, 1280
get_message() method, 1250
get_roles() method, 1256
get_stacktrace() method, 1250
GetAccessControl() method, 528, 529
GetAllEmployees() method, 344, 400
GetAllInactiveProfiles() method, 1013, 1019
GetAllProfiles() method, 1014, 1019
GetAllRoles method, 982
GetAllUsers method, 928
GetAnonymous() method,

WindowsIdentity class, 953
GetAttributes() method, 529, 530
GetAuthCookie() method, 869, 870
GetBookImage() function, 1194, 1195
GetBookImage.aspx page, 1194, 1195
GetBytes() method, 469, 1056
GetCacheDependency method, 822
GetCallbackEventReference() method, 1229
GetCallbackResult() method, 1226,

1227, 1233
GetCallbackScript() method, 1235
GetChar() method, DataReader class, 292
GetChildNodesDescr() method, 632,

634, 636
GetClrVersions() method, 1116
GetCodeExpression() method, 358
GetCoordinates() method, 1140
GetCreationTime() method, 528, 529
GetCurrent() method, WindowsIdentity

class, 953
GetCurrentDirectory() method, 528
GetData method, 1173

GetDateTime() method, 293
GetDescriptionFromTitle() method,

788, 789
GetDirectories() method, 528, 531, 537
GetDrives() method, 534
GetElementsByTagName() method,

643, 646
GetEmployee() method, 327, 344, 390, 391
GetEmployeePage stored procedure, 430
GetEmployees() method, 327, 387, 390, 423,

424, 430, 431
GetFactory() method, 316
GetFile method, 821, 822
GetFileFromDB function, 822
GetFileHash method, 822
GetFileName() method, 539, 540, 554
GetFileNameWithoutExtension()

method, 540
GetFilePath() function, 355
GetFiles() method, 528, 531, 537
GetFullPath() method, 540
GetImageUrl method, 1158
GetImageUrl() method, 1195, 1196
GetInt32() method, DataReader class, 292
GetLastAccessTime() method, 528, 529
GetLastError() method, 118
GetLastWriteTime() method, 528, 529
GetLogicalDrives() method, 528
GetNames() method, 1295, 1296
GetNumberOfInactive Profiles() method,

1013, 1020
GetNumberOfProfiles() method, 1013
GetNumberOfUsersOnline method, 1086
GetOutputCacheProviderName()

method, 493
GetParent() method, 528
GetPassword method, 930
GetPathRoot() method, 540
GetProductCategories() method, 501
GetProductsByCategory() method, 501
GetProfile() method, 1012, 1013
GetPropertyValue() method, 1004
GetPropertyValues() method, 1019,

1023, 1024
GetRandom() quote method, 214
GetRandomNumber() method, 358, 359
GetRedirectUrl() method, 870
GetRole() method, 1072, 1089
GetRolesForUser method, 982, 1091
GetSection() method, 203, 204, 205
GetSelectedTitle() method, 443
GetServerTime() method, 1486
GetServerTimeAsync() method, 1486

■ INDEX

1524

GetServerTimeCompleted event, 1486
GetServerTimeCompletedEventArgs

class, 1486
GetSiteMap procedure, 768
GetStatusPicture() method, 438
GetStore() method, 1067, 1068
GetString() method, 293, 1045, 1056
GetStringFromDb method, 600
GetTerritories() function, 1248
GetTerritoriesInRegion() method, 1246,

1247, 1251
getType() method, 1283
getTypeName() method, 1283
GetUser() method, 1084, 1086
GetUserByName method, UserStore

class, 1085
getUserProcedure attribute, 1021
GetUsersInRole method, 982
GetValue() method, 291, 292, 297
GetVaryByCustomString() function, 482
GetVersionInfo() method, 537
GetVersionInfoString() method, 545
GetWebPageAsString() method, 1195
GetXml() method, 337, 673
GetXmlSchema() method, 337, 673
GetXNavDescr() method, 636
GetXxx() method, DataReader class, 292
GIF format, 1143, 1155
Global Application Class template, 188
global assembly cache (GAC), 46, 186
global unique identifier (GUID), 553
global.asax application file

application events, 189–192
overview, 187–188

<globalization> element, web.config
file, 409

GotFocus event, 1458
GradientLabel class, 1159, 1160
GradientLabel.aspx page, 1159, 1160, 1161
GradientTest.aspx page, 1159
graphics

drawing with GDI+
brushes, 1152–1153
Graphics class, 1145–1147
image format and quality, 1143–1144
pens, 1149–1151
simple drawing, 1141–1143
using GraphicsPath, 1148–1149

embedding dynamic graphics in web
pages

custom controls that use GDI+,
1158–1162

overview, 1154

passing information to dynamic images,
1155–1158

using PNG format, 1155
ImageMap control

creating hotspots, 1136–1137
custom hotspots, 1139–1140
handling hotspot clicks, 1137–1138
overview, 1135

using Chart control, 1163–1178. See also
charts, populating with data

Graphics class, 1141, 1142, 1144, 1149,
1152, 1157

Graphics.DrawPath method, 1148
Graphics.FillPath method, 1148
Graphics.FromImage method, 1142
Graphics.MeasureString argument, 1161
GraphicsPath class, 1141, 1145, 1146,

1148–1149, 1150
Graphics.SmoothingMode property, 1144
Graphics.TextRenderingHint

property, 1144
greedy matching, 1131
Grid class, 1452, 1454, 1460, 1468, 1469,

1470, 1471
Grid layout container

fine-tuning rows and columns, 1468
nesting, 1468–1470
overview, 1466–1467
spanning rows and columns, 1470–1471

Grid tags, 1466
Grid.Column property, 1467
Grid.ColumnDefinitions collection, 1466
Grid.Row property, 1467
Grid.RowDefinitions collection, 1466
Grid.ShowGridLines property, 1466
GridSplitter class, 1452, 1453
GridView

defining columns, 404–407
formatting fields, 409–410
formatting-specific values, 414–416
paging

automatic, 427–428
customizing pager bar, 432–433
with ObjectDataSource, 429–432
selection and, 429

row selection
creating master-details form, 418–419
overview, 416–417
SelectedIndexChanged event, 420–421
using data field as Select button, 421–422

sorting
advanced, 425–426
with ObjectDataSource, 423–425

■ INDEX

1525

selection and, 425
with SqlDataSource, 422–423

styles
configuring with Visual Studio, 414
defining, 411–413
overview, 410

summaries in, 459–461
templates

binding to method, 437–439
Client IDs in, 447
editing in Visual Studio, 436
editing with, 440–446
event handling in, 439–440
overview, 433–434
using multiple, 435–436

GridView Tasks menu, 1404, 1405
GridView template, 1158
GridView.AllowSorting property, 422
GridView.AutoGenerateColumns

property, 404
GridView.AutoGenerateDeleteButton

property, 384
GridView.AutoGenerateEditButton

property, 380, 440
GridView.AutoGenerateSelectButton

property, 417
GridView.BackColor property, 415
GridView.Columns collection, 607
GridView.DataBind() method, 566
GridView.DataBound event, 460, 461
GridView.DataKeyNames property, 382,

384, 418
GridView.DataSourceID property, 372
GridView.EditIndex property, 440
GridView.EnablePersistedSelection

property, 425
GridView.EnableSortingAndPagingCallback

s property, 439
GridView.EnableViewState property, 611
GridView.FooterRow property, 459
GridViewRow control property, 414
GridViewRow.Cells collection, 414
GridView.RowCommand event, 421, 439, 692
GridView.RowDataBound event, 414, 439, 463
GridViewRow.DataItem property, 414
GridView.SelectedIndex property, 417
GridView.SelectedIndexChanged event, 417
GridView.SelectedIndexChanging event, 417
GridView.ShowFooter property, 459
GridView.Sort() method, 426
GridView.Sorting event, 425
GridViewUpdatedEventArgs, 472
<group> element, 1008

grouping
expressions, 571–575
ListView, 451–452
of profiles, 1008

GroupItemCount property, 451
GroupSeparatorTemplate, 448
GroupTemplate, 448, 452
GtDateTime() method, DataReader

class, 292
Guest role, WindowsBuiltInRole

Enumeration, 952
GUID (global unique identifier), 553
guidelines, coding, 836–837
GZipStream class, 557

■ H
<h1> tag, 1180
<h2> tag, 704
HACK token tag, 41
HandleError filter, 1373, 1374
HandleError Order property, 1375
Handler Mappings icon, 829
Handler Mappings summary screen, 829
handlers

configuring, 829–830
creating, 828
creating advanced HTTP, 223–225
custom HTTP, 221–223
deploying, 829
event, connecting events to, 61–62
testing, 830–831
using configuration-free HTTP, 223

<handlers> element, 200, 220
handling events, 100, 154–155, 684–685,

1457–1458
HasChanged property, 510
HasChildNodes property, 636
HasControls() method, 132
HasExtension() method, 540
hash code, 246
hash value, 937
HashAlgorithm class, 1034
hashed message authentication codes

(HMAC), 1030
hashes, salted password, 1082–1084
hashing passwords in web.config, 866–867
HashPasswordForStoringInConfigFile, 1084
Hashtable collections, 361
Hashtable object, 361
HasSharedData property, WebPart

Class, 1318
HasUserData property, WebPart Class, 1318

■ INDEX

1526

HatchBrush class, 1152
HEAD request, 964
<head> element, 109, 717, 724, 1189
HeaderImageUrl property, 406
Headers Collection, 122
headers, page, 109
Headers property, 113
HeaderStyle format string, 411
HeaderStyle property, 407, 414, 747
HeaderTemplate, 436, 457, 749
HeaderText property, 406, 747
Height and Width property, 411
height attribute, 1206, 1467
Height property, 144, 1468
Help verb, 1319
HelpMode property, 1319, 1335
HelpPageIconUrl property, 904
HelpPageText property, 904
HelpPageUrl property, 904
HelpUrl property, 1319, 1320, 1321, 1335
hidden fields, 837
Hidden property, WebPart Class, 1319
Hidden value, 535
Hide Trace option, 127
hierarchical binding, with TreeView,

667–669
HireDate field, 293
history points, adding, 1273–1274
history state, stored in URL, 1275
HistoryEventArgs.State collection, 1274
Hit Count option, 74
HMAC (hashed message authentication

codes), 1030
Home.aspx page, 754
HomeController class, 1371, 1372, 1374
HorizontalAlign property, 411
HorizontalAlignment property, 1461
HorizontalPadding property, 779
HotButton control, 1455
HotSpot.HotSpotMode property, 1137
HotSpotMode.Inactive property, 1137
HotSpotMode.Navigate property, 1137
HotSpotMode.PostBack property, 1137
HotSpot.NavigateUrl property, 1137
HotSpot.PostBackValue property, 1137
hotspots

creating, 1136–1137
custom, 1139–1140
handling clicks, 1137–1138

HotSpots property, 1137
hover event, 1289, 1290
HoverButton class, 1288, 1289, 1290, 1291
HoverButton.js file, 1288, 1290

_hoverHandler delegate, 1289
HoverMenuExtender, 1298
HoverNodeStyle property, 781
HRef property, 137
HTML (HyperText Markup Language)

Document Object Model (DOM),
1180–1181

encoding, 119–120
manipulating elements, 1185–1186
server controls

classes, 134–136
handling server-side events, 139–142
HtmlContainerControl class, 133
HtmlControl class, 133
HtmlInputControl class, 134
overview, 132
programmatically creating, 137–139
setting style attributes and properties,

136–137
static tags, 31–32
structuring markup, 33–35
tables, 32–33

HTML tab, Toolbox, 31, 32, 39
<html> element, 90, 92, 1189
Html32TextWriter class, 1113, 1114
Html32TextWriter.ShouldPerformDivTable

Substitution property, 1114
HtmlAnchor control, 137
Html.CheckBoxFor helper method, 1380
HtmlContainerControl class, 133
HtmlContent control, 331
HtmlControl class, 133
HtmlDecode() method, 118, 120
HtmlEncode() method, 118, 120
HtmlEncode property, 407
HtmlForm class, 107
HtmlForm.DefaultButton property, 151
HtmlGenericControl class, 133, 1216
HtmlHead class, 77, 109
HtmlHead control, 109, 110, 136
HtmlInputControl class, 134
HtmlInputFile control, 550, 1264
HtmlInputText control, 136
HtmlInputText object, 10
HtmlInputText.Value property, 10
HtmlMeta control class, 109, 136
HtmlSelect control, 95, 360
HtmlTable control, 1113
HtmlTextWriter class, 1102, 1103, 1113–1114,

1129, 1333
HtmlTextWriterAttribute enumeration, 1103
HtmlTextWriterStyle enumeration, 1103
HtmlTextWriterTag enumeration, 1103

■ INDEX

1527

HtmlTextWriterTag.A parameter, 1112
HtmlTextWriter.TagRightChar, 1103
HtmlTextWriter.Write() method, 1102
HtmlTitle control, 136
Html.ValidationSummary method, 1389
HTTP (Hypertext Transfer Protocol)

context, accessing in another class, 127–128
extending pipeline

configuring custom HTTP handlers,
222–223

creating an advanced HTTP handlers,
223–225

creating an HTTP handler for non-HTML
content, 226–228

creating custom HTTP handlers, 221
creating custom HTTP modules, 231
HTTP handlers, 219–220
HTTP modules, 229–230
using configuration-free HTTP

handlers, 223
HttpApplication class, 188, 233, 271
HttpApplication.AuthenticateRequest

event, 231
HttpApplication.EndRequest event, 187, 188
HttpApplication.Start event, 556
HttpBrowserCapabilities class, 113, 1115,

1116, 1117
HttpCachePolicy class, 115, 483–484
HttpClientCertificate object, 113
HttpContext class, 128, 229, 485, 1011,

1095, 1096
HttpContext.Current class, 1075
HttpContext.Current property, 1121, 1245
HttpContext.Current static property, 1484
HttpContext.Current.User property,

856, 984
HttpContext.Items collection, 1011
HttpContext.SetSessionStateBehavior()

method, 235
HttpExtensions.dll assembly, 232
HttpForbiddenHandler class, 220
<httpHandlers> section, 219, 220
HttpModule class, 856
<httpModules> section, 230
HttpPostedFile.SaveAs() method, 551
HttpRequest object, 113, 1115
HttpRequest Properties, 113
HttpResponse class, 116, 117, 250
HttpResponse members, 114, 115, 116
<httpRuntime> element, 552, 1201, 1205
HttpServerUtility class, 249
HttpServerUtility Members, 118

HttpServerUtility.HtmlEncode()
method, 1130

HttpServerUtility.UrlDecode() method, 249
HttpServerUtility.UrlEncode()

method, 1055
HttpSessionState class, 260
HttpUtility.HtmlEncode() method, 836
HyperLink attribute, 1111
HyperLink control, 179, 248
hyperLink field, 1119
HyperLink property, 1119, 1121
hyperLink variable, 1109
HyperlinkButton class, 1452
HyperLinkField column, 405
HyperLinkStyle style, 901
HyperLink.Target property, 89
HyperText Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

■ I
IAsyncResult class, 517, 518, 519, 521, 522, 524
IButtonControl interface, 250, 252
ICallbackContainer interface, 1235
ICallbackEventHandler interface, 1226,

1233, 1242
ICallbackEventHandler object, 1229
ICollection interface, 361, 363, 364
IComparable object, 571
IComparer object, 571
Icon object, 1145
ICryptoTransform interface, 1037–1038
ID attribute, 663, 710, 1216
ID property, 101, 131, 140
IDataReader interface, 368
IDataSource interface, 368
IDbCommand interface, 289
IDbCommand.ExecuteReader() method, 317
IDbConnection interface, 281, 283
IDbTransaction interface, 311, 314
IDE. See integrated development

environment (IDE)
Identity column, 824
Identity property, 951
identity values, handling in inserts, 395–396
<identity> element, web.config file, 958
IdentityReference classes, 953, 954–955
ID-generation algorithm, 447
IDisposable interface, 1285
IEnumerable interface, 579, 661, 1167
Ienumerable<T> class, 576
IEnumerable<T> interface, 565, 566, 567, 580
IEnumerable<XElement> collections, 650

■ INDEX

1528

IEnumerator<T> reference, 568
IETF (Internet Engineering Task Force), 939
<iframe> element, 1216, 1446
IGrouping<T, K> interface, System.Linq

namespace, 571, 572, 574
IHttpAsyncHandler interface, 515
IHttpHandler interface, 469, 515, 828
IHttpModule interface, 231
IHttpSessionState interface, 259
IIS (Internet Information Services), 791

installing and configuring
installing IIS 7, 791–793
managing IIS 7, 793–795

preparing, 796–811
IIS 7.x

with ASP.NET roles, 989–991
authorization and roles, 986–989
configuring, 942–944
configuring bindings for Secure Sockets

Layer (SSL), 847–848
configuring membership API in

configuring providers and users, 922–924
using with other applications, 924–926

encoding information with SSL, 848
and forms authentication, 871–876
managing ASP.NET roles with IIS 7.x, 991
overview, 845–849
pipelines, 945–948
using custom providers with, 1095

IIS Manager tool, 26, 793, 796, 797, 798,
799, 800

IIS_USRS group, 530
<iisClientCertificateMapping> section, 849
ildasm.exe file, 6
image check box control, 1300
Image class, 1451
Image control, 1135, 1136
Image object, 1213
Image web control, 1154
ImageButton class, 1127
ImageButton control, 154–155, 439, 1135,

1183, 1298
ImageButton tag, 439
ImageClickEventArgs object, 154
Image-derived object, 1145
ImageField column, 405
ImageFormat namespace, 1141
Image.FromFile method, 1157
ImageMap control

creating hotspots, 1136–1137
custom hotspots, 1139–1140
handling hotspot clicks, 1137–1138
overview, 1135

ImageMap designer, Visual Studio, 1136
ImageMap1 map, 1135
ImageMap.Click event, 1137
ImageMap.HotSpotMode property, 1137
ImageMap.HotSpots collection, 1135
ImageMap.HotSpots property, 1136
images

dynamic, passing information to,
1155–1158

serving from database
displaying binary data, 467
integrating images with other content,

469–471
overview, 466
reading binary data efficiently, 468–469

TreeView, 782–783
using JavaScript to download

asynchronously, 1193–1198
Image.Save method, 1142, 1154
ImageSet property, 783
Image.src property, 1213
ImageToolTip property, 775
ImageUrl element, 178
ImageUrl property, 355, 775, 779, 784,

1136, 1154
 tags, 355, 691, 1126, 1154, 1156, 1159,

1194, 1200, 1210, 1211
Immediate response events, 100
Impersonate() method, 953, 960
impersonation

configured, 958–959
and delegation, 956–958
overview, 839
programmatic

getting tokens, 959–960
performing, 960–961

implementsInterface, 1282
ImportCatalog web part, 1359
ImportCatalogPart class, 1354, 1358
Impressions element, 178
In Stock field value, 1434
IN(a,b,c) operator, 348
INamingContainer interface, 95, 1128
Include attribute, 609
Include extension method, 592
Include property, 609
Inclusive search bounds, 614
IncrementalDownloadGrid.aspx page, 1193
Index method, 1366, 1367, 1372
Index view, 1366–1367, 1370, 1381, 1386
Index.aspx file, 1367, 1371
IndexOutOfRangeException exception, 291
InferXmlSchema() method, 673

■ INDEX

1529

Inherit value, 245
inheritance, 197–198, 1284–1285
Inherits attribute, ASP.NET, 59
inheritsFrom property, 1282
Init() method, 231
Initial Catalog property, 285
initialization

of custom profile providers, 1021–1022
page framework, 98
user code, 99

initialization vector (IV), 1044
Initialize() method, 490, 493, 764, 1018,

1022, 1073, 1087, 1289
initializeBase() method, 1285, 1288
InitializeComponent() method, 1457
InitializeControl() method, 697
initializeRequest event, 1287
InitialValue property, 167
injection attacks, 299–302, 425
Inline code model, Visual Studio, 56, 57, 59
inline frames, 1216
in-memory XML processing

overview, 631
XDocument

creating XML with, 638–640
namespaces, 642–643
reading XML with, 640–642

XmlDocument, 632–636
XPathNavigator, 636–638

inner web control, exposing, 694
innerHTML property, 133, 1185, 1186
InnerHtml tag, 120
InnerText property, 133
innerText property, 1185
InnerText tag, 120
INotesContract communication contract

interface, 1343
InProc mode, 262
<input type> tag, 135
input validation controls

BaseValidator class, 165–167
CompareValidator, 168
CustomValidator, 171–172
overview, 162
RangeValidator, 167
RegularExpressionValidator, 168–170
RequiredFieldValidator, 167
using validators programmatically,

174–175
validation, 163–164
validation groups, 175–177
validation process, 164
ValidationSummary, 172–173

<input> controls, 84, 1123
<input> tags, 10, 78, 134, 1123, 1180
Insert action, 1418, 1420
Insert command, 459
Insert() method, 399, 494
Insert mode, 456, 1407
Insert submenu, cell right-click menu, 32
Insert.aspx template, 1407, 1420
InsertCommand property, 337, 338, 371,

379, 384
Inserted event, 396
InsertEmployee() method, 396
inserting

associated entities, 596–598
elements, 804
records, SqlDataSource, 384–385

Inserting event, 378
InsertItemTemplate, 436, 448, 457, 458, 459
InsertMethod property, 387
InsertNewNote button, 1329, 1331, 1332
inserts database operations, 595–598
InsertVisible property, 385, 406
InstallCommon.sql script, 887
installing IIS, 791–793
InstallMembership.sql script, 887
InstallPersistSqlState.sql script, 888
InstallPersonalization.sql script, 887
InstallProfile.sql script, 888
InstallRoles.sql script, 887
InstallSqlState.sql script, 888
InstructionText property, 903
InstructionTextStyle style, 902
Integer_Edit template, 1413
integrated development environment (IDE)

document window, 38
Error List and Task List windows, 39–41
overview, 35–36
Server Explorer window, 41
Solution Explorer window, 37–38
Toolbox window, 38–39

integrated pipeline, extending
configuring handler, 829–830
creating handler, 828
deploying handler, 829
overview, 828–831
testing handler, 830–831

integrated pipeline mode, 824, 825
integrated web server, Visual Studio, 21
Integrated Windows authentication

Kerberos, 939–942
NT LAN Manager, 938
overview, 937

integrated with .NET framework, 4

■ INDEX

1530

integrity, 840–841
IntelliSense

error underlining, 49–50
member list, 47–48
overview, 46

intercepting network traffic, 855
interfaces

ICryptoTransform, 1037–1038
IWebPart, 1321–1325
login, creating, 854
overview, 1285–1286

InternalName property, 537
Internet Engineering Task Force (IETF), 939
Internet Information Services (IIS). See IIS

(Internet Information Services)
Internet Options dialog box, 1186
interop assembly, 217
interrupted updates, 1265–1266
Interval property, 1268
IntPtr objects, 959, 960
InvalidCastException exception, 292
InvalidOperationException, 287, 519, 1259
I/O completion port feature, 515, 517
IPostBackDataHandler interface, 1123,

1124, 1125
IPostBackEventHandler interface, 1126,

1210, 1212
IPrincipal interface, 979
IPrincipal object, 856, 951
IQueryable<T>, 615
IReadOnlySessionState interface, 229
IRequiresSessionState interface, 229
IS NULL operator, 348
IsAnonymous property, 952
IsAsyncPostBack property, 1274
IsAuthenticated property, 114
IsAuthorized property, 1360
IsClientConnected property, 115
IsClientScriptBlockRegistered()

method, 1211
IsClosed property, 1319
IsCookieless property, 260, 268
IsCrossPagePostBack properties, 253–254
IsDebug property, 538
IsGuest property, 952
IsInRole() method, 951, 970–971, 972, 979
isInstanceOfType property, 1282
IsLoaded method, 593
IsLocal property, 114
IsLockedOut property, 930
IsNavigating property, 1274
IsNewSession member, 260
ISO Sortable Standard format string, 410

isolation levels, 312–314
IsolationLevel enumeration, 313
IsPatched property, 538
IsPathRooted() method, 540
IsPostBack properties, 99, 112, 253–254
IsPreRelease property, 538
IsPrivateBuild property, 538
IsReusable member, 221
IsSecureConnection property, 114
isSensitive parameter, 1355
IsShared property, WebPart Class, 1319
IsSpecialBuild property, 538
IsStandalone property, WebPart Class, 1319
IsStartupScriptRegistered() method, 1211
IsStatic property, WebPart Class, 1319
IsSystem property, WindowsIdentity

class, 952
IStyleSheet object, 109
IsUserInRole method, 982, 1091
isUserInRole() method, 1256
IsValid member, 166
IsValid method, 1392
IsValid property, 171
IsValidRequestString() method, 1203,

1204, 1205
IT administrators, 854
Italic property, 149
item removed callback, 504–506
ItemDeleted event, 612
ItemInserted event, 612
items, adding to cache, 494–496
Items property, 156
ItemSeparatorTemplate, 448
ItemStyle property, 407
ItemTemplate, 435, 436, 445, 448, 450, 452,

457, 458, 459
ItemUpdated event, 472, 612
iterator class, 568
IUSR_[ComputerName] account, 958
IV (initialization vector), 1044
IWebEditable interface, 1340
IWebPart interface, 1321–1325, 1333
IXPathNavigable interface, 663

■ J
JavaApplets property, HttpBrowserCapabilities

class, 1116
JavaScript

basic examples of
creating page processors, 1190–1193
overview, 1189
rendering script blocks, 1198–1199

■ INDEX

1531

using to download images
asynchronously, 1193–1198

client-side events, 1181–1183
custom controls

pop-up windows, 1205–1209
rollover buttons, 1210–1213

debugging, 1186–1189
frames

inline, 1216
navigation of, 1214–1215
overview, 1213

HTML DOM, 1180–1181
manipulating HTML elements, 1185–1186
object-oriented programming in

base types, 1282–1283
closures, 1278–1279
inheritance, 1284–1285
interfaces, 1285–1286
namespaces, 1283–1284
overview, 1277
prototypes, 1280–1281
registering classes with ASP.NET AJAX,

1281–1282
overview, 1179
script blocks, 1184–1185
script injection attacks

disabling request validation feature,
1201–1203

extending request validation feature,
1203–1205

overview, 1199
request validation feature, 1200

JavaScriptResult class, 1394
JOIN queries, 336, 342
JPEG format, 1143, 1155
jQuery library, 25
.js files, 1180, 1185, 1187
JSON data, returning, 1394–1395
JSON emitter, 1394
Json method, 1394
JsonDetails method, 1395
JsonRequestBehavior enumeration, 1395
JsonResult class, 1394
just-in-time (JIT), 4, 1440

■ K
KDC (key distribution center), 940
Kerberos authentication, 939–942
-Key Cryptography Standard (PKCS

stands), 1030
key distribution center (KDC), 940
Key property, 363, 1043

KeyDown event, 1458
keyFile parameter, 1043
keys, foreign, 1378
KeyUp event, 1458
key/value pairs, 1057
Keyword element, 178
KeywordFilter property, 179
keywords metatag, 109
Kothari, Nikhil, 74

■ L
Label control, 80, 101, 731, 1128, 1130,

1261, 1298
Label.AssociatedControlID property, 151
Label.CssStyle property, 706
labels, creating for specific data, 1130
LabelStyle style, 902
lambda expressions, 574, 577–578
Language Integrated Query. See LINQ
Language property, 538
large objects (LOBs), 279
Last property, 568
LastActivityDate property, 1006, 1013, 1081,

1085, 1086
last-in-wins concurrency, 331
LastLoginDate property, 1081
LastName field, 293, 611, 613
LastName property, 568, 570, 1278
LastName string variable, 1278
_lastName variable, 1279
LastPageText property, 432
LastUpdatedDate property, 1006, 1013
LastWriteTime property, 542
layering elements, in Canvas layout

container, 1461–1462
layout model

Canvas layout container
dragging circles, 1462–1465
layering elements in, 1461–1462
overview, 1460

Grid layout container
fine-tuning rows and columns, 1468
nesting, 1468–1470
overview, 1466–1467
spanning rows and columns, 1470–1471

LayoutEditorPart editor part, 1335
layouts, 747–750
LayoutTemplate, 403, 448, 449, 450, 451,

452, 453, 749, 750, 904
lazy data loading, 591–593
lazy initialization, 185
lblInfo label, 101

■ INDEX

1532

lblSummary control, 746
lblXml control, 632
LeafNodeStyle property, 781
leeching, 227
Left coordinate, 1460
Left property, 1460, 1461
LegalCopyright property, 538
LegalTrademarks property, 538
 element, 140
libraries

script, 1240–1241
Silverlight class, browsing, 1459

Lifetime option, 236, 237
LIKE operator, 348
Limited-length field, 171
Line class, 1452
LinearGradientBrush class, 1152, 1162
LineCap properties, 1150
LineJoin property, Pens class, 1149
<link> element, 706, 717, 724, 728
LinkButton class, 447, 1119, 1235
LinkButton control, 458, 684, 694, 1183, 1298
LinkClicked event, 692
LinkClickedEventHandler class, 691
LinkControl class, 1105, 1108
LinkTable control, 688, 689
LinkTableEventArgs class, 691
LinkTableItem objects, 689, 691
LinkWebControl class, 1108, 1109, 1119, 1121
LinkWebControl constructor, 1108
LINQ (Language Integrated Query)

and ASP.NET, 13–14
binding to, 1176–1178
database operations

creating partially populated entity
classes, 595–596

deletes, 598
handling concurrency conflicts,

599–603
inserting associated entities, 596–598
inserts, 595–598
managing concurrency, 598–599
updates, 598

to DataSet, 578–581
deferred execution, 565–566
to entities

compiling queries, 594–595
data model classes, 583–585
derived object context class, 583–584
entity classes, 584–585
filtering too late, 590–591
generating data models, 582–583
one-to-many relationships, 586–587

one-to-one relationships, 587
overview, 581
querying stored procedures, 587–589
relationships of, 586–587
using explicit loading, 593–594
using lazy and eager data loading,

591–593
EntityDataSource control

displaying data, 604–609
editing data, 610
getting related data, 609–610
validation, 611–612

expressions
filtering and sorting, 570–571
grouping and aggregation, 571–575
lambda, 577–578
methods of, 576
multipart, 578
overview, 567
projections, 568–570

overview, 563–564
searching XDocument, 649
using QueryExtender control

overview, 612
using MethodExpression, 615
using PropertyExpression, 614–615
using RangeExpression, 614
using SearchExpression, 613–614

XDocument, 651
LINQ to DataSet feature, 13, 14
LINQ to Entities feature, 13, 14, 18
LINQ to Objects feature, 13, 14
LINQ to SQL, 14, 18, 26, 1365, 1394
LINQ to XML, 13, 14, 658–660
LinqDataSource control, 605
List action, 1406, 1418, 1419, 1420
List page template, 1418
list server controls

BulletedList control, 161
overview, 156
selectable, 157–159

List<EmployeeDetails> collection, 567
List<T> collection, 565, 576
List.aspx page, 1403, 1405, 1406, 1421
List.aspx template, 1404, 1415, 1418,

1420, 1423
ListBox class, 1452
ListBox control, 95, 157, 360, 1298
ListBox.DataSourceID property, 372
ListBox.DataTextField, 372
ListBoxFor Helper Method, 1381
ListControl control class, 157

■ INDEX

1533

ListDetails.asax template, 1403, 1419,
1420, 1423

ListItem.Enabled property, 160
ListItem.Selected property, 159
ListSearchExtender, 1298
ListView

grouping, 451–452
overview, 447–450
paging, 453

Literal control, 331, 357
LiteralControl objects, 107, 1128
LiteralControl type, 107
lnkTime_Click event handler, 685
lnkTime.ForeColor property, 694
load event, 1286, 1324, 1325, 1326, 1330, 1338
Load() method, 594, 632, 634, 1256, 1257,

1258, 1333
LoadControl() method, 699
LoadControlState() method, 1122
Loaded event, 1458
loading data

explicit, 593–594
and processing events, 1330–1332
using lazy and eager, 591–593

LoadPostData() method, 1123, 1124
LoadStore() method, 1068
LoadViewState() method, 1121
LoadXml() method, 634
LOBs (large objects), 279
Local IIS button, Choose Location dialog

box, 26
Local IIS location type, 26
Local Security Policy management

console, 956
local theme, 710
localOnly attribute, 125, 126
Locals window, Visual Studio, 72, 73
LocalSqlServer string, 203
location, 26–27
<location> elements, 198–199, 968
Locator element, 803
Lock() method, 270
locking, file access objects, 556–557
Log() method, 554, 559
LoggedIn event, 907
LoggedInTemplate, 981
<LoggedInTemplate> template, 981
Logger class, 556
logging out, 866
LoggingIn event, 907
Login control

overview, 898–903
programming, 906–909

templates, 904–906
validating users on, 1080–1082

login dialog box, 936
login forms, controlling appearance of, 853
login interfaces, creating, 854
login() method, 1253, 1254
login pages, custom

cookieless forms authentication, 867–868
hashing passwords in web.config, 866–867
logging out, 866
overview, 862–866

Login Toolbox Tab, 39
LoginButtonImageUrl property, 903
LoginButtonStyle style, 902
LoginButtonText property, 903
LoginButtonType property, 903
LoginCancelEventArgs event, 913
LoginError event, 907
LoginImageUrl property, 910
LoginStatus control, 897, 909
LoginText property, 910
loginUrl property, 859
LoginView control, 897, 910, 981, 1050, 1051
LogMessage() method, 556
LogonUser() method, 959, 960
logout() method, 1253
LogoutAction property, 910
LogoutImageUr property, 910
LogoutPageUrl property, 910
LogoutText property, 910
Long Date and Long Time format string, 410
Long Date and Short Time format string, 410
Long Date format string, 410
lookup list, 464, 465
lookup tables, editing fields using, 464–466
LostFocus event, 1458
Low value, CacheItemPriority

enumeration, 498
lstCities.SelectedValue property, 375
lstCountry control, 83
lstEmployees control, 391
lstTerritories control, 1231

■ M
machine.config file, 193–195, 316, 370, 796,

857, 965, 1044, 1080
<machineKey> element, 247, 262
MachineName property, 118
machine-specific key, 857
Macro Explorer window, Visual Studio, 36
MailDefinition element, 912, 916
Main() method, 6

■ INDEX

1534

MainPage.xaml file, 1450
MajorVersion property,

HttpBrowserCapabilities
class, 1115

makecert.exe command, 1032
Manage Styles window, 36, 707
managed application, 6
managed code, 8
Managed Pipeline Mode column, 824
managedHandler, 876
management console, IIS, 991
Management Service Delegation icon, 801
Management Service feature page, 801
Management Service option, 801
Manager group, 969
managing ASP.NET roles with IIS 7.x, 991
managing websites

creating new site, 817–818
creating virtual directories, 818–819
using application pools

assigning applications to, 825–826
creating new, 825
overview, 823–824
starting and stopping, 826
using side-by-side executions, 826

using application warm-up feature
configuring application warm-up,

827–828
overview, 826
preparing IIS 7, 827

using VirtualPathProvider class, 819–822
<map> tag, 1135
MapPageRoute() method, 773
MapPath() method, 118, 119
mapping URL, 772–773
MapRoute method, 1372
Margin property, 1461
MarkupName property, 1140
MaskedEditExtender, 1298
MaskedEditValidator, 1298
master pages

advanced
dynamically setting master page, 732
interacting with master page class,

730–732
nesting master pages, 732–734

applying through configuration file, 730
default content, 725–726
relative paths and, 729
simple content page, 723–725
simple master page, 721–723
standardizing website layout, 720

with tables and cascading style sheets
(CSS) layout, 726–729

master-details form, GridView selection,
418–419

MasterPageFile attribute, 723, 724, 730, 733
MasterPage.FindControl() method, 731
MasterType directive, 731
matches object, 565
MathML format, 619
MatrixTransform class, 1480
MAX() method, 350, 351, 509, 574
Max Pool Size setting, 288
maxCachedResults property, 977
MaxDataBindDepth property, 775
maximumRows parameter, 431
MaximumRowsParameterName property,

429, 431
MaximumValue property, 167
maxInvalidPasswordAttempts property, 893
maxPageStateFieldLength attribute, 88
maxRequestLength attribute, 552
MaxType property, 614
MD5 (Message Digest 5), 195
MediaElement class, 1453
member list, 47–48
<membership /> section, 879
membership API

ChangePassword control, 916–917
configuring connection string and

membership provider, 890–893
configuring forms authentication,

882–883
configuring in IIS 7.x

providers and users, 922–924
using with other applications, 924–926

CreateUserWizard control, 917–922
creating and authenticating users,

893–896
creating data stores

database scripts for ASP.NET services,
886–889

file-based SQL server stores, 889–890
overview, 883–885

Login control
overview, 898–903
programming, 906–909
and templates, 904–906

LoginStatus control, 909
LoginView control, 910
overview, 877–880
PasswordRecovery control, 911–916
using membership class

creating and deleting users, 930–931

■ INDEX

1535

overview, 926
retrieving users from stores, 927–929
updating users in stores, 929–930
validating users, 931

using security controls, 897–922
Membership class, 878, 879, 926, 929, 930,

931, 1080, 1085, 1086, 1092
membership providers, custom. See custom

membership providers
membership roles feature, 1252
Membership Service, 1049, 1050
<membership> section, 890
MembershipCollection object, 929
MembershipCreateStatus object, 931
MembershipCreateUserException class, 879
Membership.GetUser method, 927
MembershipProvider class, 879, 927, 1063,

1064, 1072, 1073
MembershipProviderCollection class, 879
MembershipUser class, 879, 880, 926, 1049,

1050, 1052, 1053, 1063, 1064, 1078
MembershipUser method, 931
MembershipUserCollection class, 879,

928, 1085
Membership.ValidateUser() method, 898, 899
memory usage, low, 489
MemoryStream, 557, 821, 1155
Menu control

overview, 783–785
styles, 786–787
templates, 788–789

menuBar attribute, 1206
Menu.IncludeStyleBlock property, 789
MenuItem class, 783
MenuItem object, 788
MenuItem.Text property, 788
Menu.StaticDisplayLevels property, 787
Merge() method, 337
merging PrincipalPermission objects, 972
Message class, 512
Message Digest 5 (MD5), 195
Message property, 913
message queues, custom cache dependency

using, 512–514
MessageQueue class, 512
MessageQueueCacheDependency class, 512
metadata

changing display names, 1424–1426
changing visibility, 1426–1428
creating class, 1424
customizing field formatting, 1428–1429
overview, 1423
using custom field templates, 1429–1430

<metadata> section, .WebPart file, 1357
Metadata.cs file, 1424, 1426, 1429, 1430,

1433, 1434
MetaDataType attribute, 1390, 1424, 1425
method parameters, selecting records with,

390–391
method signatures, nonstandard, 394–395
MethodExpression filter, 615
methods

controller, calling another, 1395–1396
ExecuteNonQuery(), 298–299
ExecuteReader() and DataReader

CommandBehavior, 295
null values, 294–295
overview, 292–293
processing multiple result sets, 295–298

ExecuteScalar(), 298
of expressions, 576
Focus, 150–151
IsInRole(), 970–971
web

creating, 1245–1248
placing in pages, 1250–1251

Microsoft AJAX Library, 1240
Microsoft Expression Web, 1136
Microsoft Intermediate Language (MSIL), 4
Microsoft Message Queuing (MSMQ) Server

Core, 512
Microsoft Messaging Queuing (MSMQ)

queue, 512
Microsoft Professional Developer

Conference, 839
MicrosoftAjax.js file, 1240
MicrosoftAjaxTimer.js file, 1240
MicrosoftAjaxWebForms.js file, 1240
Microsoft.CSharp.dll assembly, 44
MigrateAnonymous event, 1016, 1017
migrating

anonymous profiles, 1016–1017
websites, from previous versions, 66–68

MIN() method, 350, 351, 509, 574
Min Pool Size setting, 288
Minimize verb, 1319, 1351
MinimumPrefixLength property, 1296
MinimumValue property, 167
MinorVersion property,

HttpBrowserCapabilities
class, 1115

minRequiredNonalphanumericCharacters
property, 892

minRequiredPasswordLength property, 892
MinRequireNonAlphanumericCharacters

property, 1078

■ INDEX

1536

minRuntimeVersion parameter, 1447
MinType property, 614
Miscellaneous section, Options dialog box, 34
mmc.exe command, 1032
modal dialog box, 1299
ModalPopupExtender, 1299
mode attribute, 91
Mode member, 260
model access consolidator class, 1376
Model property, DynamicDataRoute

class, 1415
model.Fieldname model reference, 1386
model.product.Fieldname model

reference, 1386
Model.ProductID class, 1380
models

adding MVC, 1383–1387
client, 1276
creating, 1365
data, generating, 582–583

Models folder, 1364, 1365, 1386, 1390
ModelState.IsValid method, 1388
Model.UnitPrice property, 1380
Model-View-Controller (MVC)

adding to models, 1383–1387
and ASP.NET, 17–18
creating applications

completing controllers and views,
1368–1371

creating controllers, 1365–1366
creating Index View, 1366–1367
creating models, 1365
modifying Site.Master file, 1371
overview, 1364
testing (incomplete) applications,

1367–1368
customizing views

adding data, 1381–1382
modifying, 1379–1381
overview, 1378

extending application
adding authentication, 1374–1375
adding error handling, 1373–1374
adding support for foreign key

constraints, 1378
configuring routing, 1371–1372
consolidating data store access,

1375–1378
using action results

calling controller methods,
1395–1396

overview, 1393
returning JSON data, 1394–1395

validating data
adding validation annotations,

1390–1392
performing basic validation, 1388–1390

and web forms, 1363
modified URLs, 259
Modify Style dialog box, Visual Studio,

31, 33
<modules> section, 230
Money.ToString() method, 409
Month and Day format string, 410
mostRecent attribute, 126
MouseEnter event, 1458
MouseLeave event, 1458, 1482
MouseLeftButtonDown event, 1458, 1476
MouseLeftButtonUp event, 1458
MouseMove event, 1458, 1465
MouseUp event, 1465
Move() method, 528, 529
Move Up button, 543
MoveTo() method, 531
MoveToContent() method, 629
MoveToFirstAttribute() method, 637
MoveToNext() method, 636
MoveToNextAttribute() method, 629, 637
<Movie> element, 659
mozilla.browser file, 1118
mscorlib.dll assembly, 44, 1459
MSDN Help library reference, 4
MSDomVersion property, 1116
MSIL (Microsoft Intermediate Language), 4
MSMQ (Microsoft Messaging Queuing)

queue, 512
MultiHandleSliderExtender, 1299
multilanguage ASP.NET, 6–7
multilanguage development, Visual

Studio, 22
multipart expressions, 578
multiple users, making files safe for

creating unique filenames, 553–555
locking file access objects, 556–557
overview, 552

MultiScaleImage class, 1453
multitargeting, 24, 25
MultiView control, 177, 252, 735,

736–741, 744
MultiView.ActiveViewIndex control, 738
MultiView.ActiveViewIndexChanged

event, 740
MutuallyExclusiveCheckBoxExtender, 1299
MVC. See Model-View-Controller (MVC)
MyAuthenticate function, 868
MyCustomers_Load event, 1325

■ INDEX

1537

MyLoginTextBoxStyle class, 900
MyObjectDataSource class, 1173
MyStyles.css, 900
MyWebServer namespace, 1485

■ N
\n character, 169
{N,} quantifier, 170
{N} quantifier, 170
name attribute, 91, 92, 97, 803, 1003, 1457
Name column, Application Pool, 824
Name field, Add Managed Handler dialog

box, 830
Name() method, 149, 1018
Name property, 542, 859, 892, 977, 1017,

1173, 1176
Namespace box, Add Service Reference

dialog box, 1485
namespaces

.NET cryptography, 1030–1032
overview, 1283–1284
XDocument, 642–643
XML, 621–622

name/value collection, 84
name/value pair, 1055
name/value settings, 283, 1055
NameValueCollection parameter,

1073, 1075
NAT (network address translation), 114
Navigate event, 1274
Navigate To window, Visual Studio, 55
NavigateUrl element, 178
NavigateUrl property, 355, 775, 776, 784
navigation

breadcrumb, 754–756
of frames, 1214
websites. See website navigation

Navigation controls, 12, 130
navigation mode, 776
Navigation To window, Visual Studio, 55
Navigation Toolbox Tab, 39
navigation tools, 52–55
NavigationButtonStyle property, 747
NavigationButtonStyle style, 747
NavigationStyle style, 747
nested grids, 665–666
nesting

layout containers, 1468–1470
master pages, 732–734

.NET components
creating component, 214–215
overview, 213

using component through App_Code
directory, 215–216

using component through bin directory,
216–218

.NET cryptography classes
abstract encryption classes, 1037
asymmetric encryptions, 1036
CryptoStream class, 1038–1039
ICryptoTransform interface, 1037–1038
overview, 1033–1034
symmetric encryption algorithms,

1035–1036
.NET cryptography namespaces, 1030–1032
.NET framework, integrated with ASP.NET, 3
network address translation (NAT), 114
Network Service account, 840
network traffic, intercepting, 855
New command, 459
New Project dialog box, Visual Studio,

64, 1101
New Web Site dialog box, Visual Studio,

23, 26
New Web Site window, 23
NewPage.aspx page, 1214
NextButtonClick event, 746
NextPageText property, 432
NextPrevious mode, 432
NextPreviousFirstLast mode, 432
NextResult() method, 292, 296
NextSibling property, 761
NextView command, 740
{N,M} quantifier, 170
NoBot control, 1301
nodes

applying style to levels, 781–782
applying style to types, 781
current, starting from, 758
populating on demand, 778–779
root, skipping, 757
specific, starting from, 758–760

Nodes() method, 641
NodeSpacing property, 779
NodeStyle property, 781
NodeStyle style, 756
NodeType property, 637
NoExpandImageUrl property, 780
nonce value, 937, 938
None option, 859
nonhierarchical binding, 660–662
NonSerialized attribute, 241, 559
nonstandard method signatures, 394–395
Normal value, 498, 535

■ INDEX

1538

NorthwindAccessConsolidator class, 1375,
1378, 1381, 1385

Northwind.dbml file, 1398, 1432
Northwind.designer.cs file, 1432
NorthwindEntities class, 583, 585, 606,

1178, 1366
Northwind.mdf file, 285, 1399
NorthwindModel.Designer.cs file, 583
NorthwindModel.edmx file, 583, 584,

587, 599
NorthwindModel.Store node, 587
NoSuchRecordError.aspx view, 1373, 1374
NoSuchRecordException() method, 1374
NOT operator, 348
NotContentIndexed value, 535
Notes column, 413
Notes field, 440, 441
Notes property, 1346
NotifyDependencyChanged() method,

511, 512
notifyScriptLoaded() method, 1290
NotImplementedException, 1018, 1285
NotRemovable value, CacheItemPriority

enumeration, 498
NotSupportedException, 501, 1039
nStuff.WebDevHelper.Server.dll

assembly, 76
NT LAN Manager (NTLM), 938
NTAccount class, 954, 955
NTAccount instance, 955
NTFS format, 970
NTLM (NT LAN Manager), 938
null salt value, 1082
null values, 294–295, 581
NullDisplayText property, 407
NullReferenceException, 1120
Number type, 1282
Numeric mode, 432
NumericFirstLast mode, 432
NumericUpDownExtender, 1299
NVarChar, 306

■ O
Obj subdirectory, 63
Object Browser, Visual Studio, 25, 1459, 1460
Object class, 1281, 1282
object context class, derived, 583–584
object datasources, binding to, 1173–1174
object property type, 1471
Object Relational Designer window, 1398
Object type, 1283
<object> element, 1445, 1446, 1447

<object> tag, 1199, 1446
ObjectContext class, 583, 584, 585, 586, 587,

588, 593, 595, 596, 597
ObjectContext property, 587
ObjectContext.Refresh method, 601
ObjectCreating event, 389, 390
ObjectDataSource

caching with, 501
GridView paging with

counting records, 429–430
paged selection method, 431–432
stored procedure to get paged

records, 430
GridView sorting with, 423–425
handling extra options with, 400–401
overview, 386
selecting records

overview, 387–388
using method parameters, 390–391
using parameterized constructor,

389–390
updating records

with data object, 393–396
overview, 392

ObjectDataSource.EnablePaging
property, 429

ObjectDataSourceEventArgs, 389
ObjectDataSource.Selecting event, 391
ObjectDataSourceSelectingEventArgs.Input

Parameters collection, 391
ObjectDataSource.SortParameterName

property, 423
ObjectDataSource.UpdateParameters

collection, 392
ObjectDataSource.Updating event, 394
ObjectDisposing event, 390
object-oriented ASP.NET, 9–10
object-oriented programming (OOP), 9
Object-Relational Mapping (ORM), 582
objects

creating with factories, 317
PrincipalPermission, merging, 972
Request, 113
Response, 114–118
Server, 118–120
Session, 112
site map, 760–761
storing, 241–243
Trace

application tracing, 125–126
overview, 121–124
tracing with Web Development Helper

tool, 127

■ INDEX

1539

TreeNode, 775–777
User, 121
XMLHttpRequest

handling responses, 1220
overview, 1218
sending requests, 1219

ObjectSet properties, 584
ObjectSet<Product>, 583
OCI (Oracle Call Interface), 282
OdbcCommand class, 282
OdbcConnection class, 282
OdbcDataAdapter class, 282
OdbcDataReader class, 282
OdbcException class, 287
ODP.NET (Oracle Data Provider for

.NET), 279
off mode, 261
Offline value, 535
OldValuesParameterFormatString property,

382, 385, 474
OleDbCommand class, 282
OleDbConnection class, 282
OleDbDataAdapter class, 282
OleDbDataReader class, 282
OleDbException class, 287
OleDbTransaction class, 311
On<FieldName>Changing methods, 1433
onabort event, 1181
onblur event, 1181
onchange attribute, 83, 1183
onchange event, 83, 1181, 1183, 1229, 1248
onchange JavaScript event, 83
onclick attribute, 83, 1126, 1183
onclick event, 1181, 1210, 1211
onclick JavaScript event, 83
OnClientClick property, 1183
onError event handler, 1447
OnError function, 1249
OnError() function, 1250
one-to-many relationships, 586–587
one-to-one relationships, 587
OnEventName attribute, 61
one-way encryption algorithms, 1034
onfocus event, 1181
OnInit() method, 1109, 1118, 1120, 1121,

1124, 1130, 1326, 1330
onkeydown event, 1181
onkeyup event, 1181, 1222
OnLastNameChanging method, 611
Online Certification Authority wizard, 846
Online Templates heading, New Web Site

dialog box, 26
onload event, 1182

OnLoad method, 1326, 1330
onLoginCompleted() function, 1254
onmouseout event, 1181, 1210, 1211
onmouseover attribute, 1182, 1183
onmouseover event, 1181, 1210, 1211
OnPreRender event, 1353
OnPreRender() method, 1209, 1211, 1213
onreadystatechange property, 1220
OnRequestComplete() function, 1249
OnRequestCompleteOnError function, 1249
onselect event, 1181
OnServerChange attribute, 140, 141
OnSessionStart() method, 233
OnUnitsInStockChanging method, 1434
onunload event, 1182
OnXxx() method, 1125
OOP (object-oriented programming), 9
Opacity setting, 1479
Open dialog box, 550
Open() method, 281, 286, 287, 529, 532, 821,

1219, 1224
Open value, 546
Open Web Site dialog box, 814, 815
Open With option, 38
OpenFileDialog class, 1459, 1460
OpenMachineConfiguration() method, 203
OpenOrCreate value, 546
OpenRead() method, 529, 532
OpenText() method, 529, 532, 547
OpenWebConfiguration() method, 203,

204, 205
OpenWrite() method, 529, 532
OperationContract attribute, 1484
operations, database

deletes, 598
handling concurrency conflicts, 599–603
inserts

creating partially populated entity
classes, 595–596

inserting associated entities,
596–598

managing concurrency, 598–599
updates, 598

<= operator, 348
+ operator, 348
* operator, 348
> operator, 348
= operator, 348
% operator, 348
< operator, 348
<> operator, 348
- operator, 348
/ operator, 348

■ INDEX

1540

>= operator, 348
Operator property, 168
optimistic concurrency, 331
OptimisticConcurrencyException, 599, 600,

601, 602, 603
Opt-in view state, 16, 235
Options dialog box, Visual Studio, 33, 34, 41
or (||) operator, 570
OR operator, 348
Oracle Call Interface (OCI), 282
Oracle Data Provider for .NET (ODP

.NET), 279
OracleCommand class, 282
OracleConnection class, 279, 282
OracleDataAdapter class, 282
OracleDataReader class, 282
OracleException class, 287
OracleTransaction class, 311
ORDER BY clause, 422, 425
Order entity class, 586, 587
Order object, 598
Order property, 1375
Order table, Northwind database,

1399, 1402
Order_Detail class, 1424
Order_Detail instances, 1378
Order_Detail table, Northwind

database, 1399
Order_DetailMetadata class, 1424, 1425
Order_Details link, 1402
Order_Details table, Northwind database,

1378, 1402, 1420, 1423, 1424, 1425
OrderDatecolumn, Orders table, 1428
OrderML standard, 621
Orders folder, 1421
Orders link, home page, 1402
Orders table, Northwind database, 1401,

1402, 1418, 1420, 1421, 1422, 1423,
1428, 1430

OrderService class, 208, 211
<orderService> element, 208
Ordinary characters, 169
Orientation property, 1460
OriginalFilename property, 537
ORM (Object-Relational Mapping), 582
Other Windows submenu, Visual Studio, 35
outlining

error underlining, 49–50
member list, 47–48
overview, 46

output caching
building custom providers, 489–492
configuration, 487–488

custom control, 481–483
declarative, 479–480
extensibility, 488–493
fragment, 484
with HttpCachePolicy class, 483–484
overview, 478
post-cache substitution, 485–486
profiles, 487
and query string, 480–481
with specific query string parameters, 481
using custom providers, 492–493

OutputCache directive, 479, 482, 483, 484,
485, 487, 699, 701

<outputCacheProfiles> section, 487
OutputCacheProvider class, 489
OutputCaching.aspx page, 490, 493
OutputStream property, HttpResponse

class, 116
Overline property, 149
Overrides category, Call Hierarchy

window, 53
Owner member, WindowsIdentity class, 953

■ P
-P password command-line switch, 885
<p> tags, 1180
Package/Publish SQL tab, 806
Package/Publish Web properties tab, 806
packages of data, 323–324
Padding property, 1461, 1469
Page class, 112–128
page class, 127, 128, 130, 1180, 1457
Page class

accessing HTTP context in another class,
127–128

Request object, 113
Response object, 114–118
Server object, 118–120
Session, Application, and Cache

objects, 112
Trace object, 121–127

application tracing, 125–126
tracing with Web Development Helper

tool, 127
User object, 121

Page class, .NET class library, 60
page classes, 65
Page directive, 62, 65, 89, 102, 122, 304, 479,

525, 711, 1117
Page event handlers, 101, 103
page framework initialization, 98
page header, 109

■ INDEX

1541

page methods, 59
Page naming container, 95
page object, Locals window, 73
page processing, 78–97

ASP.NET event model, 81–82
automatic postbacks, 82–83
client-side control IDs, 94–97
dynamic user interface, 80–81
HTML forms, 78–80
view state, 84–88
XHTML compliance, 88–94

configuring rendering, 90–92
default doctype, 92
document type definitions, 89–90
validation, 93–94

page properties, 85
Page property, 99, 112, 131, 356
page state, restoring, 1274–1275
page variables, connecting control tags to,

60–61
Page_Load event procedure, 927
Page_Load method, 62, 1050, 1168, 1169,

1175, 1177
Page_Load routine, 984
PageAction enumeration, 1415
PageAction.List action, 1416
page.aspx page, 79
PageAsyncTask() method, 526
Page.Cache property, 484
PageCatalogPart, 1311, 1313, 1315, 1318,

1322, 1358, 1360
Page.ClientScript property, 1198
Page.ClientScript.GetPostBackEvent-

Reference() method, 1126, 1212
Page.ClientScript.RegisterForEvent-

Validation() method, 1230
Page.ClientTarget property, 1117
Page.Context property, 1011
Page.Controls collection, 104, 110
Page.DataBind() method, 347, 354, 356,

360, 362
Page.Disposed event, 101
Page.FindControl() method, 110, 175, 695
PageFlow example, 101–103
PageFlow.aspx web form, 101
Page.GetRouteUrl() helper method, 774
Page.GetValidators() method, 176
PageHandlerFactory class, 220
PageIndex property, 427
PageIndexChanged event, 457
PageIndexChanged property, 427
PageIndexChanging property, 427
Page.Init event, 98, 101, 103, 369, 725, 732

Page.Init event handler, 1231
Page.IsCallback property, 1231
Page.IsPostBack property, 99, 1231
Page.IsValid property, 99
Page.Load event, 99, 103, 111, 331, 479, 671,

687, 697, 1141, 1261
Page.Load event handler, 105, 110, 111, 122,

244, 269, 1231
pageLoad() function, 1256, 1263, 1264, 1287
Page.LoadControl() method, 695
Page.LoadControl method, 1351, 1353
pageLoaded event, PageRequestManager

class, 1287
pageLoading event, PageRequestManager

class, 1287
Page.Master property, 730
Page.MasterPageFile property, 732
PageMethods object, 1251
Page.OnPreRenderComplete() method,

374, 399
pageOutput attribute, 125, 126
Page.PreInit event, 719
Page.PreInit event handler, 719
Page.PreRender event, 100, 101, 369, 374
Page.PreRenderComplete event, 518, 524
Page.PreviousPage.IsCrossPagePostBack

property, 253
PageProcessor_Start.aspx page, 1193
PageProcessor_Target.aspx page, 1193
PageProcessor.aspx page, 1190
Page.Profile property, 1012
pager bar, customizing, 432–433
Page.RegisterRequiresControlState()

method, 1121
Page.RegisterRequiresPostback()

 method, 1124
Page.RegisterRequiresViewStateEncryption()

method, 247, 1120
Page.Render() method, 1230
Page.Request.Browser.EcmaScriptVersion

property, 1208
Page.Request.Browser.JavaScript

property, 1207
PageRequestManager class, 1263, 1264,

1266, 1276, 1287
Page.RouteData property, 773
PagerSettings property, 427, 432
PagerSettings.Mode property, 432
PagerSettings.PageButtonCount

property, 432
PagerStyle format string, 411
PagerStyle property, 427, 432
PagerTemplate, 433, 436, 457

■ INDEX

1542

pages. See also web part pages
adding web parts to, 1309–1313
asynchronous, 514–526

creating, 515–517
handling errors, 519–521
multiple asynchronous tasks and

timeouts, 524
querying data in, 517–519
using caching with asynchronous tasks,

522–524
basic, building, 1226
client, 1236–1237
connecting code-behind files to, 59–60
as control containers, 104–111

dynamic control creation, 110–111
page header, 109
showing control tree, 104–108

converting to user control, 684
creating design, 1306–1307
customizing, 1313–1315
entry, 1445–1448
moving between, 116–118
placing web methods in, 1250–1251
portal, 1304–1305
rendering, 1161–1162
Silverlight, designing, 1450–1451

pages, transferring information between,
247–256

cross-page posting, 249–256
getting page-specific information,

251–252
IsPostBack and IsCrossPagePostBack

properties, 253–254
performing in any event handlers,

252–253
validation, 254–256

query string, 248–249
URL encoding, 249
using, 248–249

pages with multiple views, 736–750
MultiView control, 736–741
Wizard control, 741–750

events, 745–746
steps, 742–744
styles, templates, and layout, 747–750

<pages> element, 68, 88, 91, 96, 245, 246,
717, 1202

PageSize property, 427, 428, 429
Page.StyleSheet property, 718
PageTemplates folder, 1403, 1405, 1415
Page.Theme property, 718
<%=PageToLoad %> data binding

expression, 1191

PageToLoad variable, 1191
Page.Unload event, 101
pageUnload() function, 1263
Page.Validate() method, 177, 865
Page.Validators collection, 174
Page.xaml file, 1450, 1457
Page.xaml.cs file, 1457, 1458
pagination, 427
paging

GridView, 427–433
automatic, 427–428
customizing pager bar, 432–433
with ObjectDataSource, 429–432
selection and, 429

ListView, 453
PagingBulletedListExtender, 1299
PagingSettings property, 454
PagingStyle property, 454
Pair object, 1122
Panel class, 95, 1261
Panel control, 110, 147, 408, 475, 736, 1261
Panel web control, 105
PanelID property, 1235
panels, scrollable, 152–153
Panel.Scrollbars, 408
<param> elements, 1446
parameter array, 639
Parameter class, 306, 317
Parameter Source box, 377
Parameter Source field, Expression

Editor, 608
parameterized commands, 303, 374–379
parameterized constructor, selecting

records with, 389–390
Parameters collection, 305, 306, 379
parameters, query string, 481
Parent property, 131, 1320
parent.[FrameName].location

property, 1214
parent/child view, in single table, 461–463
parentElement property, 1186
parentID attribute, <browser> element, 1115
ParentLevelsDisplayed property, 755
ParentNode property, 761
ParentNodeStyle property, 781
parse() method, 1282
PartChromeState property, 1318
PartChromeType property, 1318
partial classes, 59, 60
partial page caching, 699–702

sharing cached controls, 701–702
VaryByControl, 699–701

partial rendering, 1259

■ INDEX

1543

Partial session state, 235
PartialCaching attribute, 701
partially populated entity classes, creating,

595–596
Pascal case filtering, Visual Studio, 51
Passive Mode option, Publish Web dialog

box, 813
Passport authentication, 853, 854, 855
Passport servers, 855
Passport site, 854
Password control, 906, 919
Password field, 863
password hashes, salted, 1082–1084
passwordAttemptWindow property, 893
PasswordBox class, 1451
PasswordFor Helper Method, 1381
passwordFormat option, 866
passwordFormat property, 892
PasswordFormat property, 1079, 1080
passwordFormat="Hashed" option, 895
PasswordLabelText property, 903
PasswordRecovery control, 897, 911–916
PasswordRecovery template, 914
PasswordRecoveryIconUrl property, 904
PasswordRecoveryText property, 904
PasswordRecoveryUrl property, 904
PasswordRequiredErrorMessage

property, 903
passwords, hashing in web.config, 866–867
PasswordSalt field, 1082, 1083
PasswordStrength extender, 1299
PasswordStrengthRegularExpression

property, 892, 1078
path attribute, 199
Path class, 538–540, 1453
path property, 860
Path.Combine() method, 538
PathDirection property, 756
PathSeparator property, 756
PathSeparatorStyle style, 756
pause button, Visual Studio toolbar, 71
Pause() method, 1474
.pdb files, 63
-pe switch, 213
Pen object, 1146
pens, 1149–1151
Pens class, 1146
PenType property, Pens class, 1149
Percentage format string, 409
Percentage() method, 147
percentagePhysicalMemoryUsedLimit, 488
Performance implications option, 236,

237, 238

PermissionState parameter, 971
Personalizable attribute, 1328, 1355
personalization, 1360–1361
Personalization property, WebPartManager

class, 1361
pessimistic concurrency, 331
Physical path box, Add Virtual Directory

dialog box, 819
PhysicalApplicationPath property, Request

object, 113
physicalFile argument, 773
pipelines, IIS 7.x, 945–948
Pixel() method, 147
PKCS stands (-Key Cryptography

Standard), 1030
Place Code in a Separate File check box,

Visual Studio, 57
placeholder, adding, 449
PlaceHolder control, 110, 449, 695, 750
Platform property, HttpBrowserCapabilities

class, 1116
Pluralize/Singularize option, 583
PNG format, 1143, 1155
Point property type, 1471
PointAnimation class, 1472
PointAnimationUsingKeyFrames class, 1472
Points collection, 1167, 1176
Points.DataBindXY method, Series

class, 1172
PolygonHotSpot class, 1136
Pooling setting, 288
pooling user instances connections, 287–289
pools, application, 823–826

assigning applications to, 825–826
creating new, 825
starting and stopping, 826
using side-by-side executions, 826

PopOutImageUrl property, 784
Popularity property, DataItem class, 1173
populated entity classes, partially, creating,

595–596
PopulateOnDemand property, 778
populating nodes on demand, 778–779
PopUnder property, PopUp control, 1206
PopUp component, 1209
PopUp control, 1206, 1208, 1209
PopUp properties, 1206
pop-up windows, 1205–1209
PopupControlExtender, 1299
portal, ASP.NET 2.0, 12
portal frameworks, 695–699
portal pages, 1304–1305
position function, 648

■ INDEX

1544

Position property, CryptoStream class, 1039
positioning, absolute, 29–30
POST injection attacks, 304
POST operation, HTTP, 79
POST request, 964
postback technique, 78
postbacks

automatic, 82–83
data of, 1123–1125
triggering, 1125–1127

PostBackTrigger, 1267
PostBackUrl property, 250, 251
post-cache substitution, 484, 485–486
PostedFile.SaveAs() method, 550
posting, cross-page, 249–256

getting page-specific information,
251–252

IsPostBack and IsCrossPagePostBack
properties, 253–254

performing in any event handlers,
252–253

validation, 254–256
PowerUser role, WindowsBuiltInRole

Enumeration, 952
precompiling, 4
PreRender event, 516, 996, 1330, 1346
PreRender stage, 374
PreRenderComplete event, 996
preserveForm parameter, 252
PreSource tag, 807
PreviousButtonClick event, 746
PreviousPage object, 250
PreviousPage property, 251, 253
PreviousPageText property, 432
PreviousPageType control directive, 251
PreviousSibling property, 761
PrevView command, 740
PrincipalPermission class, 971–973

merging objects, 972
using attributes, 973

PrincipalPermission.Demand()
method, 971

PrincipalPermission.Intersect() method, 972
PrincipalPermission.Union() method, 972
PrintOperator role, WindowsBuiltInRole

Enumeration, 952
private key, 843
private variables, 61
privateBytesLimit setting, 488
procedures, stored, 324

calling, 304–307
querying, 587–589

processing events, 1330–1332

processing stages, 97–103
automatic data binding, 100–101
cleanup stage, 101
event handling, 100
page framework initialization, 98
PageFlow example, 101–103
user code initialization, 99
validation, 99

ProcessRequest() member, 221
ProcessRequest() method, 229, 469, 1159
Product class, 1369, 1379, 1390, 1424, 1433
product controller class, 1375
Product entity class, 583
Product entity type, 585
Product model data type, 1390
ProductBuildPart property, 538
<productCatalog> element, 623
ProductController class, 1365, 1372, 1374,

1375, 1395
ProductController.cs file, 1365, 1375
Product/Details.aspx view, 1372, 1379
ProductID field, 1378
ProductID parameter, 481, 585
ProductListWrapper class, 1386, 1388
ProductMajorPart property, 538
ProductMetaData class, 1390
ProductMinorPart property, 538
ProductName column, 1170, 1171, 1172, 1431
ProductName property, 538
ProductName value, 585, 1178
ProductPrivatePart property, 538
Products folder, 1405, 1406
Products ObjectSet, 585
Products property, 583, 585, 1366
Products table, 465, 466, 1366, 1378
Products_Edit.ascx template, 1411
<products> element, 623
Products.ascx template, 1409, 1410
Products.aspx node, 758
Products.aspx page, 754
Products.CategoryID field, 464
Products/Index.aspx file, 1367
ProductVersion property, 538
Professional Developer Conference,

Microsoft, 839
profile element, 200
Profile object, 996, 1010
profile service, 1257–1259
Profile value parameter, 376
<profile> element, 1002, 1003, 1010
ProfileAutoSaving event, 1011, 1012
ProfileBase class, 1004, 1012, 1018
ProfileCommon object, 1013

■ INDEX

1545

ProfileCommon.Address property, 1013
ProfileCommon.LastUpdatedDate

property, 1013
Profile.FirstName property, 1005
Profile.GetProfile() method, 1016
ProfileInfo class, 1013, 1014
ProfileManager class, 1012, 1013, 1016, 1018
ProfileMigrateEventArgs, 1016
ProfileModule, 996, 1010, 1017
ProfileModule.MigrateAnonymous

event, 1016
ProfileModule.ProfileAutoSaving

event, 1010
ProfileProvider class, 1018, 1019, 1020
profiles, 487

and authentication, 998
vs. custom data components, 998
custom providers, 1017–1028
FactoredProfileProvider

coding, 1021–1025
designing, 1020–1021
initialization, 1021–1022
reading information, 1023–1024
testing, 1025–1028
updating information, 1024–1025

overview, 995
performance of, 996
storing data, 997
using SqlProfileProvider, 998–1017

anonymous, 1015–1017
anonymous, migrating, 1016–1017
API, 1012–1014
automatic saves, 1010–1012
configuring provider, 1002–1003
creating tables, 999–1001
and custom data types, 1008–1012
custom type serialization, 1009–1010
defining properties, 1003
groups, 1008
serialization, 1006–1007
using properties, 1004–1006

Profile.Save() method, 1006, 1010, 1012
<profileService> element, web.config

file, 1257
programmatic encryption, 212
programmatic impersonation, 956, 959–962

getting tokens, 959–960
performing, 960

programming, object-oriented, in
JavaScript, 1277–1286

base types, 1282–1283
closures, 1278–1279
inheritance, 1284–1285

interfaces, 1285–1286
namespaces, 1283–1284
prototypes, 1280–1281
registering classes with ASP.NET AJAX,

1281–1282
Programs and Features icon, Control

Panel, 512
ProgressBar class, 1452
ProgressTemplate, UpdateProgress control,

1271, 1272
project files, 63
project model, 23
Project Types tree, New Project dialog

box, 64
project-based development, 22, 23, 63
projectless websites, creating, 23–27

development language, 24
Framework version, 24–25
location, 26–27
templates, 25–26

projects
creating, 1449–1459

browsing Silverlight class
libraries, 1459

designing Silverlight pages, 1450–1451
handling events, 1457–1458
setting properties, 1455
understanding XAML, 1454
XAML code-behind, 1456–1457

deploying websites without, 813–816
Projects tab, 218
Project/Solution command, Open menu, 66
properties

adding to user control, 685–687
animation, configuring, 1474
browser, 1115–1117
Color, 148
Font, 148–149
IsPostBack and IsCrossPagePostBack,

253–254
OnClientClick, 1183
profile, defining, 1003
profile, using, 1004–1006
setting, 136–137, 1455
style, creating web controls that

support, 1108–1111
properties collection, Profile Service, 1258
Properties node, 25, 1450
Properties window, 181, 371, 377, 388, 414,

599, 609
Properties window, Visual Studio, 25, 28, 31,

36, 61, 62, 101, 1110, 1129, 1137
<properties> element, 1003

■ INDEX

1546

PropertyExpression filter, 614–615
PropertyGridEditorPart, 1335, 1337
PropertyNames field, 1002, 1006, 1007
PropertyPath object, 1478
PropertyValuesBinary field, 1002, 1007, 1017
PropertyValuesString field, 1006, 1007, 1017
PropertyValuesStrings field, 1002
protected accessibility keyword, 60
protected keywork, 62
protected variables, 60, 61
ProtectedData class, 1041, 1055
protection property, 859
ProtectKey flag, 1043
ProtectKey property, 1042
ProtectSection() method, 212
prototype property, 1288
prototypes, 1280–1281
-prov switch, 213
provider attribute, 1004
Provider method, 982
Provider Model, ASP.NET 2.0, 13
Provider tab, 976
provider web parts, 1343–1345
provider-agnostic code, 315–319

creating factories, 316–317
creating objects with factories, 317
queries with, 318–319

ProviderBase class, 1018, 1073
ProviderConnectionPointID

parameter, 1350
ProviderID property, 1347
providers

configuring, 922–924, 1002–1003
creating, 764–768
custom

building, 489–492
using, 492–493

custom membership. See custom
membership providers

custom profile, 1017–1028
coding FactoredProfileProvider,

1021–1025
custom profile provider

classes, 1018
designing FactoredProfileProvider,

1020–1021
testing FactoredProfileProvider,

1025–1028
membership, configuring, 890–893

Providers feature, 991
Providers method, 982
ProviderSpecific option, 1007
ProviderUserKey class, 1049

ProviderUserKey property, 1052, 1053,
1063, 1065

public key, 843, 844, 1036
public keyword, 62
public prototype property, 1280
Publish button, 809, 813
Publish dialog box, 807, 808
Publish method, 807
Publish Method list, Publish Web dialog

box, 811
publishing databases, 806–807

■ Q
QEL (Quotation Exchange Language), 214
? quantifier, 170
+ quantifier, 170
* quantifier, 170
Quantity property, Series class, 1176
queries

compiling, 594–595
with provider-agnostic code, 318–319

query strings, 248–249, 480–481
encrypting, 1054–1059

creating test pages, 1057
wrapping, 1054–1057

parameters, 481
URL encoding, 249
using, 248–249

QueryDataFromDatabase() method, 496
QueryExtender, 614, 615
QueryExtender control, 612–616

using MethodExpression, 615
using PropertyExpression, 614–615
using RangeExpression, 614
using SearchExpression, 613–614

querying
data, in asynchronous pages, 517–519
stored procedures, 587–589

QueryString Collection, Trace Log, 122
QueryString dictionary collection, 248
QueryString property, Request object, 114
Question control, 920
question mark character, 861, 965
QuestionTemplate template, 913, 914, 915
quirks mode, Internet Explorer, 90
Quotation class, 214, 215
Quotation Exchange Language (QEL), 214

■ R
\r character, 169
-R command-line switch, 886

■ INDEX

1547

RadialGradientBrush class, 1455, 1456
RadioButton class, 1452
RadioButton control, 163
RadioButtonFor Helper Method, 1381
RadioButtonList control, 157, 361
Raise_CallbackEvent() method, 1233
RaiseCallbackEvent() method, 1226,

1227, 1228
RaisePostBackEvent() method, 1126, 1212
RaisePostDataChangedEvent() method,

1123, 1124, 1125
<%$ RandomNumber:1,6 %> expression, 360
RandomNumberExpressionBuilder, 358
Range annotation, 1391
Range attribute, 1391, 1431, 1433
range of browsers, 853
RangeAttribute, 1391
RangeExpression filter, 614
RangeValidator control, 163, 167
RBDMS (relational database management

system), 278
RC2CryptoServiceProvider class, 1035
.rdata section, test.txt file, 1040
RDBMS (Relational Database Management

System), 527
Read() method, 291, 293, 296, 548
readAccessProperties attribute, 1257, 1258
ReadAllBytes() method, 529, 549
ReadAllLines() method, 529
ReadAllText() method, 529, 549
ReadCommitted value, IsolationLevel

enumeration, 313
ReadEndElement() method, 630
reader.HasRows, 1024
reading

profile information, 1023–1024
sections, programmatically, 203–205
XML files, 628–630
XML with XDocument, 640–642

ReadInt32() method, 549
ReadKey() method, 1042, 1043, 1048
ReadLine() method, 548
ReadMe.html file, 1292
readOnly attribute, 1003
ReadOnly mode, 456
ReadOnly property, 406
ReadStartElement() method, 629
ReadString() method, 549
ReadToEnd() method, 549
ReadUncommitted value, IsolationLevel

enumeration, 313
ReadXml() method, 337, 673
ReadXml method, 1176

ReadXmlSchema() method, 337, 673
readyState property, 1224
Recent tab, 218
records

counting, GridView paging, 429–430
deleting, SqlDataSource, 384
DetailsView, 456
inserting, SqlDataSource, 384–385
selecting, ObjectDataSource, 387–391
updating

ObjectDataSource, 392–396
SqlDataSource, 379–384

recordsUpdated property, 603
RecreateChildControls() method, 1129
Rectangle class, 1453
RectangleHotSpot class, 1136
recursive path operator, 646
Redirect() method, 115, 116, 117
RedirectFromLoginPage() method, 865,

866, 869, 899
RedirectPermanent() method, 115, 117
RedirectResult class, 1394
RedirectToAction method, 1393, 1394,

1395, 1396
RedirectToRoute() method, 115, 1393
RedirectToRoutePermanent() method,

Response object, 115
RedirectToRouteResult class, 1393
REDText template, 1429
Refactor Implement Abstract Class, 1021
reference assemblies, Visual Studio, 25
Reference.cs file, 1485
references

assembly, adding, 43–46
web, adding, 1484

References node, Solution Explorer, 46
Reference.svcmap node, 1485
referential integrity, 343
Reflector tool, 6
Refresh button, browser, 68
Refresh() method, 531, 532, 601, 602
Refresh Now verb, 1351
Refresh option, method right-click

menu, 54
Refresh Parameters button, 377
Refresh Schema link, 388, 405
RefreshMode enumeration, 601, 602
RefreshPanel() method, 1235
RefreshTime() method, 685, 686, 697
regenerateExpiredSessionId attribute, 268
region list, 1229
Regional and Language Options section,

Control Panel, 409

■ INDEX

1548

RegionID property, 1227
<%@ Register %> directive, 1334
Register directive, 1104, 1106, 1208, 1295
RegisterAsyncTask() method, 525, 526
registerClass() method, 1281, 1282, 1284,

1285, 1286
RegisterClientScriptBlock() method, 1198,

1199, 1215
registering

classes, with ASP.NET AJAX,
1281–1282

Section class, 209–211
registerInterface() method, 1285
RegisterRoutes method, 1371, 1399, 1415,

1419, 1422
RegisterStartupScript() method, 1198,

1199, 1215
RegisterStyle() method, 109
regular expression, 168
Regular- ExpressionValidator control, 863
RegularExpressionAttribute, 1391
RegularExpressionValidator control, 163,

168–170, 906
Relational Database Management System

(RDBMS), 278, 527
relational operators, 570
Relations property, 335
relationships, 586–587

filtering with, 350
one-to-many, 586–587
one-to-one, 587
working with DataAdapter, 340–342

relative paths, 729
Release button, 1348
RememberMe control, 906
RememberMeSet property, 903
Remote Web Site button, Choose Location

dialog box, 27
Remove Formatting option, 414
Remove() method, 490, 492
<remove> element, 219
RemoveAttributes method, 806
Removed value, 506
removeHandler() method, 1288
RemoveUserFromRole method, 982
RemoveUserFromRoles method, 983
RemoveUsersFromRole method, 983
RemoveUsersFromRoles method, 983, 1089
removing elements, 805–806
Rename Tab option, tab heading right-click

menu, 39
Render() method, 1102, 1103, 1108, 1111,

1118, 1207, 1209

RenderBeginTag() mehtod, 1114
RenderBeginTag() method, 1102, 1103,

1108, 1110, 1111, 1118
RenderChildren() method, 1111, 1112, 1118
RenderContents() method, 1108, 1110,

1111, 1112, 1118, 1132, 1326,
1329, 1332

RenderControl() method, 132, 1111, 1112,
1113, 1326, 1333

RenderCurrentNodeAsLink property, 755
RenderEndTag() method, 1102, 1103, 1108,

1111, 1114, 1118
rendering

adaptive, 1117–1118
configuring, 90–92
final, 1332–1333
pages, 1161–1162
process of, 1111–1112
script blocks, 1198–1199

RenderMode property, 1261
RenderTransform property, 1480, 1481, 1482
RenderTransformOrigin property, 1481
ReorderLevel field, 1389, 1390
ReorderList, 1301
ReparsePoint value, 535
RepeatableRead value, IsolationLevel

enumeration, 313
RepeatBehavior property, Animation

class, 1475
RepeatColumns property, 158
RepeatDirection property, 157
repeated user controls, 97
repeated-value data binding, 360–368

to DataReader object, 363–366
to DataView object, 368
rich data controls, 366–367

RepeatLayout property, 157
Replace option, Publish Web dialog box, 812
replacing sections, 805
replay attacks, 855, 937
Replicator role, WindowsBuiltInRole

Enumeration, 952
Reporting Toolbox Tab, 39
ReportView control, 26
ReportViewer control, Visual Studio, 39
Request Context Parameter field, IIS

Manager, 828
Request Details, Trace Log, 121
Request object, 113
Request Path field, Add Managed Handler

dialog box, 829
Request Restrictions button, Add Managed

Handler dialog box, 830

■ INDEX

1549

Request Send Mode, IIS Manager, 828
request validation feature, 1200

disabling, 1201–1203
extending, 1203–1205

Request.Browser.EcmaScriptVersion
property, 1219

Request.Browser.SupportsCallback
property, 1231

Request.Cookies collection, 257
Request.Form collection, 80
Request.Forms collection, 1231
requestLimit attribute, 125, 126
Request.Path property, 772
Request.QueryString collection, 249, 1054
Request.QueryString property, 772
Request.RawUrl property, 773
requests, sending, 1219
requestValidationMode property, 1201
requestValidationSource argument,

IsValidRequestString() method, 1204
RequestValidationSource enumeration, 1204
requestValidationType attribute, 1205
RequestValidator class, 1203
Required attribute, 1430, 1431
Required- FieldValidator control, 863
RequiredAttribute, 1391
RequiredDate column, Orders table, 1428
RequiredFieldValidator control, 167, 906
RequiredFieldValidator property, 254
RequiredFieldValidator.EnableClientScript

property, 255
RequiresPersonalization property,

WebPartDisplayMode item, 1314
requiresQuestionAndAnswer property, 893
requireSSL property, 859
requiresUniqueEmail property, 893
ResetPassword function, 1084
ResetPassword method, 1082
resizable attribute, 1206
Resizable property, PopUp control, 1206
ResizableControlExtender, 1299
ResourceExpressionBuilder, 357
Resources collection, 1473, 1482
Resources property, 1473
Response object, 114–118, 256, 485
Response.BinaryWrite() method, 226, 467,

468, 469
Response.Cache property, 483, 484
Response.OutputStream, 1141, 1155
Response.Redirect() method, 118, 248, 267
Response.Redirect method, 866
Response.Redirect() method, 1056
responses, handling, 1220

responseText property, 1220
Response.Write() commands, 250
Response.Write() method, 104, 105, 116, 467
Response.WriteSubstitution() method,

485, 486
responseXML property, 1220
restoring page state, 1274–1275
Result property, 522, 1486
result sets, multiple, processing, 295–298
Resume() method, 1474
retrieving users from stores, 927–929
rich controls, 129, 177–182, 366–367, 403–476

AdRotator, 178–179
advanced grids, 459–476

detecting concurrency conflicts, 472–476
editing field using lookup table, 464–466
parent/child view in single table, 461–463
serving images from database, 466–471
summaries in GridView, 459–461

Calendar, 180–182
DetailsView, 454–456

defining fields, 455–456
record operations, 456

FormView, 454–458
GridView, 404–416

defining columns, 404–407
formatting fields, 409–410
formatting-specific values, 414–416
paging, 427–433
row selection, 416–422
sorting, 422–426
styles, 410–414
templates, 433–447

ListView, 447–453
grouping, 451–452
paging, 453

rich navigational controls, 735
RID (Role Identifier), 951
RijndaelManaged class, 1035, 1037
Rivest, Ron, 1036
robots metatag, 109
Role Identifier (RID), 951
role information, and IdentityReference

class, 954–955
role service, 1255–1257
role-based authorization, 12, 840
RoleExists method, 983, 1088
RoleGroup control, 910
RoleGroups template, 981
<roleManager> tag, 200, 975, 976, 982
RoleManagerModule class, 974, 978, 979, 984
roleName parameter, 1092
roleNames parameter, 1090

■ INDEX

1550

RolePrincipal class, 951, 974, 978, 979, 984, 985
RolePrincipal instance, 979
RoleProvider class, 978, 1063, 1064, 1087
RoleProviderCollection class, 978
roles

authorization based on, 974–986
accessing roles programmatically,

981–984
using LoginView control with roles, 981
using Roles API with Windows

authentication, 984–986
controlling access for, 968–970
in IIS 7.x, 986–993

authorization with ASP.NET roles,
989–991

managing ASP.NET roles, 991
roles attribute, 771, 981
Roles class, 974, 978, 981, 982, 984, 1089, 1094
Roles.AddUsersToRole method, 984
roleService element, web.config file, 1255
RoleService.load() method, 1257
RoleStore class, 1064, 1066, 1067, 1069,

1086, 1088, 1089, 1091
Rollback() method, 311, 315
rollover buttons, 1210–1213
RollOverButton control class, 1210
Ron Rivest, Adi Shamir, and Leonard

Adleman (RSA), 1036
root <schema> element, 623
root <stylesheet> element, 655
root nodes, skipping, 757
root web.config, 220, 890
root web.config file, 91, 96, 219
RootDirectory, DriveInfo member, 534
RootNode property, 761
RootNodeStyle property, 781
RootNodeStyle style, 756
RotateTransform class, 1480, 1481
RoundedCornersExtender, 1299
RouteCollection class, 1415
routeName argument, 773
routes, 1414–1423

changing URL format, 1416–1417
constraining, 1417–1418
overview, 1415–1418
switching to single-page editing, 1419
for tables, 1419

routeUrl argument, 773
RouteValueDictionary, 1418, 1420
RouteValueDictionary class, 1418
routing

configuring, 1371–1372
URL, 773–774

Routing, ASP.NET 4, 17
Row property, 1467, 1470
RowCommand event, 439
RowDataBound event, 414, 415, 416
RowDefinition element, 1466
RowDefinition object, 1468
RowDeleted event, 612
RowFilter property, 345
RowInserted event, 612
ROWNUM operator, 430
ROWNUMBER() function, 431
rows

fine-tuning, 1468
searching for, 343
spanning, 1470–1471

Rows collection, 138, 336
RowSpan property, 1470
RowStyle format string, 411
RowUpdated event, 472, 612
RowUpdating event, 444
RSA (Ron Rivest, Adi Shamir, and Leonard

Adleman), 1036
RSA provider, 211
RSACryptoServiceProvider class, 1036
Run elements, 1451
Run to Cursor command, Visual Studio

break mode, 72
runat="server" attribute, 32, 39, 60, 80, 104,

109, 134, 1216

■ S
\s character, 170
-S switch, 885, 888
sa (system administrator), 283
sabotage, 64
SalesEmployee class, 1284, 1285
salted password hashes, 1082–1084
SampleWebSite folder, 1292
Sanderson, Steven, 18
Save dialog box, 115
Save() method, 314, 636, 1013, 1069, 1258
SaveAs() method, 205
SaveChanges method, 595, 597, 598, 599,

600, 602, 603, 1376
SaveControlState() method, 1122
savepoints, 314–315
SaveStore() method, 1068, 1069
SaveViewState() method, 1121
saving automatically, 1010–1012
ScaffoldAllTable property, 1400
ScaffoldColumn attribute, 1426, 1427
scaffolding, 1400

■ INDEX

1551

ScaffoldTable attribute, 1427
ScaleTransform class, 1480
schemas, 622–623
Schneier, Bruce, 1035
Scientific (Exponential) format string, 409
Scope option, 236, 237, 238
script blocks, 1184–1185, 1198–1199
script injection attacks, 1199–1205

disabling request validation feature,
1201–1203

extending request validation feature,
1203–1205

request validation feature, 1200
script libraries, 1240–1241
script resource, 1241
<script> tags, 120, 684, 1179, 1180, 1184,

1185, 1198, 1199, 1200, 1204
ScriptManager control, 1241–1242, 1248,

1251, 1259, 1260, 1271, 1273, 1275,
1282, 1290

ScriptManager.AddHistoryPoint()
method, 1273

ScriptManager.EnableHistory property, 1273
ScriptManager.EnablePageMethods

property, 1251
ScriptManager.EnablePartialRendering

property, 1260
ScriptManager.EnableSecureHistoryState

property, 1275
ScriptManager.Navigate event, 1274
ScriptManagerProxy control, 1241
scripts

client-side, writing, 1228–1229
database, for ASP.NET services, 886–889

Scripts folder, 25
ScriptService attribute, 1244, 1245
scrollable panels, 152–153
scrollbars attribute, 1206
Scrollbars property, PopUp control, 1206
ScrollViewer class, 1452
SDK (software development kit), 6
Seadragon, 1301
Search terms box, Visual Studio, 55
search tools, 52–55
SearchExpression filter, 613–614
searching

for rows, 343
XML content, 643–651

XDocument with LINQ, 649–651
with XmlDocument, 644–646
XmlDocument with XPath, 646–648

SearchType attribute, 613
secret key, 844

secrets, managing, 1039–1041
Section class

creating, 208–209
registering, 209–211

<section> element, 209
sections

<machineKey>, 193–195
encrypting, 211–213

command-line encryption, 213
programmatic encryption, 212

reading and writing programmatically,
203–205

replacing, 805
Secure Sockets Layer (SSL). See SSL (Secure

Sockets Layer)
Secure subdirectory, 198
SecuredPage.aspx file, 968
security, 246–247, 835–849

controls, 897–922
ChangePassword, 916–917
CreateUserWizard, 917–922
Login, 898–909
LoginStatus, 909
LoginView, 910
PasswordRecovery, 911–916

creating software, 835–837
coding guidelines, 836–837
gatekeepers, 837
potential threats, 835–836

levels of, 838–841
authentication, 838–839
authorization, 839–840
confidentiality and integrity, 840–841
impersonation, 839
in web applications, 841

making files safe for multiple users,
552–557

creating unique filenames, 553–555
locking file access objects, 556–557

Secure Sockets Layer (SSL) technology,
842–849

certificates, 843
configuring bindings for, 847–848
configuring in IIS 7.x, 845–849
encoding information with, 848

securing session state, 268–269
security controls, ASP.NET 2.0, 12
security identifier (SID), 839
Security option, 236, 237, 238
Security Setup Wizard, 974
Security tab, 530, 954, 974, 978
security trimming feature, 770–771
SecurityCritical attribute, 1460

■ INDEX

1552

SecurityException, 973, 1460
SecurityIdentifier class, 954, 955
Seek() method, 550, 1039, 1474
Select a Different Provider for Each Feature

link, 976
Select All option, Configure Data Source

wizard, 607
Select Application Pool dialog box, 825
Select button, using data field as, 421–422
Select column, 607
SELECT command, 371, 607
Select link, 422
Select() method, 343, 344, 399, 463, 576,

577, 578, 648
Select property, 607
SELECT query, 364, 508
<select runat="server"> tag, 135
Select Start Without Debugging option,

Debug menu, 1367
SELECT statement, 330, 343, 508, 571
Select Stored Procedures option, Add tab, 587
Select<T> method, 576
<select> tag, 360
Selectable property, 784
SelectCommand property, 371, 379
SelectCountMethod property, 429, 430
Selected event, 379
SelectedCategory field, 1387
SelectedDataKey property, 418, 419
SelectedDate property, 180, 1316
SelectedDates property, 180
SelectedIndex property, 156, 418, 421, 429
SelectedIndexChanged event, 157, 420–421,

544, 929
SelectedItem property, 156, 159, 691
SelectedItemTemplate, 448
SelectedNodeChanged event, 776, 777
SelectedNodeStyle property, 781
SelectedNodeStyle style settings, 781
SelectedRowStyle, 417
SelectedRowStyle format string, 411
SelectedSupplier field, 1387
SelectedValue property, 444, 466, 927
SelectImageUrl property, 416
SelectIndexChanged event, 440
Selecting event, 399
selecting records

ObjectDataSource, 387–391
using method parameters, 390–391
using parameterized constructor,

389–390
SqlDataSource, 371–374

selection mode, 776

selection, row
GridView, 416–422

creating master-details form, 418–419
SelectedIndexChanged event, 420–421
using data field as Select button, 421–422

GridView paging and, 429
SelectionChanged event, 180, 1458
SelectionChanged event, Calendar control,

1316
SelectIterator class, 576
SelectIterator<T>, 565
selectively disabling view state, 244–246
SelectList class, 1380, 1386, 1387
SelectMany extension method, 587
SelectMethod property, 387
SelectNodes() method, 648
selectors, 706
SelectParameters, 371
SelectQuery property, 371, 377
SelectSingleNode() method, 648
SelectText property, 416
send() method, 1219, 1220
SendCommand button, 1057
SendingMail event, 913, 915, 920
SendMailError event, 913, 920
SendToBack() method, 1462
sensitive data, 837
SeparatorImageUrl property, 784
Serializable attribute, 241, 558, 1008, 1010
Serializable value, IsolationLevel

enumeration, 313
serialization, 558–561

custom type, 1009–1010
of profiles, 1006–1007

SerializationException, 558
serializeAs attribute, 1003, 1006
Series class, 1166, 1167, 1171, 1172, 1176, 1178
Series collection, 1172
Series1 class, 1171
Series.ChartType property, 1166
SeriesChartType property, 1166
Series.ChartType property, 1171
SeriesChartType.Column property, 1166
Series.XValueMember property, 1174
Series.YValueMember property, 1174
Server Agent, 1016
server callbacks, 1242–1259

application services, 1252–1259
authentication, 1252–1255
profile, 1257–1259
role, 1255–1257

placing web methods in pages, 1250–
1251

■ INDEX

1553

web services in, 1243–1250
calling, 1248–1250
creating, 1244–1245
creating web methods, 1245–1248

Server Certificates feature, 845, 846
Server class, 119
server controls, 129–182, 1259–1275. See

also custom server controls
browser history feature, 1272–1275

adding history points, 1273–1274
how history state is stored in URL, 1275
restoring page state, 1274–1275

HTML, 132–142
classes, 134–136
handling server-side events, 139–142
HtmlContainerControl class, 133
HtmlControl class, 133
HtmlInputControl class, 134
programmatically creating, 137–139
setting style attributes and properties,

136–137
input validation, 162–177

BaseValidator class, 165–167
CompareValidator control, 168
CustomValidator control, 171–172
RangeValidator control, 167
RegularExpressionValidator control,

168–170
RequiredFieldValidator control, 167
using validators programmatically,

174–175
validation controls, 163–164
validation groups, 175–177
validation process, 164
ValidationSummary control, 172–173

list, 156–161
BulletedList control, 161
selectable, 157–159

rich, 177–182
AdRotator control, 178–179
Calendar control, 180–182

Timer, 1268–1269
types of, 129–131
UpdatePanel, 1260–1268

conditional updates, 1264
handling errors, 1262–1264
interrupted updates, 1265–1266
optimizing, 1267–1268
triggers, 1266–1267

UpdateProgress, 1269–1272
web, 142–155

classes, 145–146
Color property, 148

default button, 151–152
enumerations, 147–148
Focus method, 150–151
Font property, 148–149
handling events, 154–155
scrollable panels, 152–153
units, 147
WebControl Base class, 143–144

Server Explorer, Visual Studio, 36, 41, 285,
1310, 1327, 1399

Server object, 118–120, 1203
server stores, SQL, file-based, 889–890
Server Variables, Trace Log, 122
Server View, IIS Manager, 794
ServerChange event, 139, 140–142
ServerClick event, 139, 140–142, 153
Server.HtmlEncode() method, 107, 120
server-side events, handling, 139–142
server-side HTML controls, 62
Server.Transfer() method, 113, 117, 252,

718, 745, 772
ServerVariables collection, 114
ServerVariables property, Request object, 113
Service Broker database, 508
Service References node, Add Service

Reference dialog box, 1485
Service URL box, 807
services

application, 1252–1259
authentication, 1252–1255
profile, 1257–1259
role, 1255–1257

ASP.NET, database scripts for, 886–889
web, 1243–1250

calling, 1248–1250
creating, 1244–1245
creating web methods, 1245–1248

Services section, ScriptManager control, 1251
Services tool, 801
<Services> section, ScriptManager control

tag, 1248
Session collection, 1163
Session compression, 235
session hijacking, 869
session key, 844
Session object, 112, 229, 1246
Session property, 1121
session state, 258–269

architecture, 258–259
configuring, 261–268

compression feature, 266–267
cookieless setting, 267–268
custom mode, 266

■ INDEX

1554

session state (continued)
configuring (continued)

InProc mode, 262
modes, 261–266
off mode, 261
off setting, 261
SQLServer mode, 264–266
StateServer mode, 262–263
timeout, 268

securing, 268–269
using, 259–260

Session state compression, ASP.NET 4, 16
Session State, Trace Log, 121
Session state value parameter, 376
session ticket (ST), 940
session tickets, 940
Session_End() method, 191
Session_Start() method, 190
Session.Abandon() method, 260
session-based cookies, 84
SessionID member, 260
sessionState element, 200
<sessionState> element, 261, 265, 266
SessionStateModule event, 258
SessionStateModule.End event, 262
SessionStateModule.Start event, 233
Set() method, 490, 491
Set Next Statement command, Visual Studio

break mode, 72
Set Profile Data button, 1005
Set programmatically parameter, 377
set_errorHandled() method, 1264
set_FirstName() method, 1279
set_FirstName property, Employee()

function, 1280
set_LastName property, Employee()

function, 1280
SetAccessControl() method, 528, 529
SetAttributes() method, 529, 530
SetAuthCookie() method, 869
SetCacheability() method, 483
SetExpires() method, 483
SetFocusOnError member, 166
SetPropertyValue() method, 1004
SetPropertyValues() method, 1019, 1024, 1025
SetSessionStateBehavior() method, 235
settings, cookieless, 267–268
SettingsContext dictionary, 1023
SettingsContext object, 1023
SettingsPropertyCollection object, 1023, 1024
SettingsPropertyValue objects, 1024
SettingsPropertyValueCollection, 1023
SettingsProvider class, 1018, 1019

SetValue() method, 1463
SGML (Standard Generalized Markup

Language), 619
SHA1 value, 866
shadow copy, 186
ShadowOffset property, 1167
Shamir, Adi, 1036
shape attribute, <area> tag, 1140
Shared locks, 312
ShipName column, Orders table, 1429
ShipName fields, Orders table, 1430
ShippedDate column, Orders table, 1428
ShipperID primary key, 472
Shippers table, Northwind database, 473
ShoppingCart class, 1017
ShoppingCartItem class, 1017
ShoppingCartTest.aspx page, 1017
Short Date format string, 410
Show Advanced Properties link, Expression

Editor, 608
Show All Files button, Add Service

Reference dialog box, 1485
Show Next Statement command, Visual

Studio break mode, 72
Show Only Data Components option, 397
Show Profile Data button, 1005
ShowDeleteButton property, 384
ShowDirectoryContents() method, 543
ShowEditButton property, 440
ShowGridLines property, 1467
ShowHeader property, 456, 541
ShowInsertButton, 385
ShowMessageBox property, 172
ShowSelectButton property, 416
ShowSummary property, 172
ShowToolTips property, 755
SID (security identifier), 839
SideBarButtonClick event, 746
SideBarButtonStyle style, 747
SideBarStyle style, 747
SideBarTemplate template, 749
side-by-side executions, 826
SignOut() method, 866
Silverlight Application template, 1442
Silverlight technology, 1437–1489

animation, 1471–1483
animation class, 1472
configuring properties, 1474
defining, 1472
example of, 1475–1479
overview, 1471
Storyboard class, 1472–1474
transforms, 1479–1483

■ INDEX

1555

and ASP.NET, 18–19
creating projects, 1449–1459

browsing Silverlight class
libraries, 1459

designing Silverlight pages, 1450–1451
handling events, 1457–1458
setting properties, 1455
understanding XAML, 1454
XAML code-behind, 1456–1457

creating solutions, 1442
entry pages, 1445–1448
Silverlight compilations, 1443–1444

vs. Flash, 1439–1440
layout model, 1460–1471. See also Grid

layout container
system requirements, 1441
web services, 1483–1489

adding web references, 1484
calling, 1485–1487
configuring URL, 1487
creating, 1484
cross-domain web service calls,

1488–1489
Silverlight User Control template, 1450
SilverlightApplication1.dll file, 1443
SilverlightApplication1.Page class, 1456
SilverlightApplication1TestPage.aspx

page, 1445
SilverlightApplication1TestPage.html

page, 1445
SilverlightApplication1.Web virtual

directory, 1487
SilverlightApplication1.xap file, 1444
SilverlightApplication1.xap.zip file, 1444
Silverlight-enabled WCF service, 1484
Silverlight-enabled WCF Service

template, 1484
simple content page, 723–725
simple cookies, 84
simple master page, 721–723
simple themes, applying, 711–712
simple user control, 682–684
SimpleAsyncPage.aspx page, 517
SimpleDrawing.aspx, 1154
SimpleHandler class, 222, 828
SimpleHandler.dll file, 829
SimplerHandler.cs, file, 828
SimpleRole array, 1066
SimpleRole class, 1064, 1072, 1088, 1091
SimpleRole objects, 1091
SimpleUser array, 1066
SimpleUser class, 1064, 1069, 1072, 1077,

1078, 1082, 1085

simultaneous task, 525
single quote character, 864
single-page Ajax-enabled template, 1421
single-page editing, 1419
single-step debugging, 69–71
single-value binding, 354
single-value data binding, 354–356
site map model, 735
site maps, 750–771

adding custom information, 762
binding to, 753–754
breadcrumb navigation, 754–756
creating custom SiteMapProvider class,

763–770
adding caching, 769–770
adding sorting, 768
creating provider, 764–768
storing information in databases,

763–764
defining, 752
objects, 760–761
security trimming feature, 770–771
showing portions of, 757–760

skipping root nodes, 757
starting from current nodes, 758
starting from specific nodes, 758–760

Site name field, Add Web Site dialog
box, 818

Site/application field, Publish dialog
box, 808

SiteMap class, 752, 761
<siteMap> element, 752, 764
SiteMapDataSource control, 369, 751, 753,

755, 758
SiteMapDataSource property, 758
SiteMapDataSource.ShowStartingNode

property, 757
SiteMapDataSource.StartFromCurrentNode

property, 758
SiteMapDataSource.StartingNodeOffset

property, 759
siteMapFile attribute, 759
SiteMapNode indexer, 762
SiteMapNode object, 761
<siteMapNode> element, 752
SiteMapNode.ChildNodes collection, 767
SiteMapPath control, 754
SiteMapPath.ParentLevelsDisplayed

property, 760
SiteMapProvider class, 752

custom, creating, 763–770
adding caching, 769–770
adding sorting, 768

■ INDEX

1556

SiteMapProvider class (continued)
custom, creating (continued)

creating provider, 764–768
storing information in databases,

763–764
SiteMapProvider object, 761
SiteMap.Provider.FindSiteMapNode()

method, 761
Site.Master file, modifying, 1371
sites

creating, 1397–1400
customizing, 1404–1435
customizing validation, 1430–1435

requiring field values, 1430–1431
specifying valid ranges, 1431–1432
using extensibility methods, 1432–1435

customizing with metadata, 1423–1430
changing display names, 1424–1426
changing visibility, 1426–1428
creating class, 1424
customizing field formatting, 1428–1429
using custom field templates, 1429–1430

customizing with routes, 1414–1423
changing URL format, 1416–1417
constraining, 1417–1418
overview, 1415–1418
switching to single-page editing, 1419
for tables, 1419

customizing with templates, 1404–1414
custom page, creating, 1405–1406
editing default, 1404–1405
entity, 1407–1411
field, 1411–1414

exploring, 1400–1402
Sites item, IIS Manager, 794
Size, 149
Size column, 542
SkewTransform class, 1480
SkinID attribute, 713, 720
skins

with templates and images, 714–716
themes, 709–710

SkinStyle property, 1165
skipping root nodes, 757
slash characters, 491
SlideMenu control, 1118
Slider class, 1452
SliderExtender, 1299
SlideShowExtender, 1299
slidingExpiration property, 495, 859
.sln solution file, 63
smart tag, GridView, 367, 414
smart tag, ObjectDataSource, 388

smart tags, 30
SmoothingMode property, Graphics

object, 1144
SmtpClient class, 912
Snapshot value, IsolationLevel

enumeration, 313
Snyder, Window, 836
SOAP XML format, 559
SoapFormatter class, 559, 560, 561
software development kit (SDK), 6
Software.aspx page, 754
SolidBrush class, 1152
Solution Explorer, Visual Studio, 37–38
Sort() method, 423
Sort property, 345, 346
SortExpression property, 407, 422
sorting

data, 346–347
expressions, 570–571
GridView, 422–426

advanced, 425–426
with ObjectDataSource, 423–425
selection and, 425
with SqlDataSource, 422–423

SortParameterName, 423
source view, Visual Studio, 28, 33, 34
sourceEmployees data source, 376, 607
 tag, 706, 1108, 1128
spanning rows and columns, 1470–1471
SparseFile value, 535
SpecialBuild property, 538
Specific-length password, 171
specifying valid ranges, 1431–1432
SpeedRatio property, Animation class, 1475
split view, Visual Studio, 28, 29
SQL (Structured Query Language)

cache notifications, 507
injection attacks, 299–302
server stores, file-based, 889–890

SQL injection attacks, 425
SQL Profiler tool, Anjlab, 590
SQL Server Agent, 1016
SQL Server cache, 769
SQL Server database, 855, 868
SQL Server Express Edition, 881
SQL Server Profiler tool, 590
SQL Server Reporting Services, 26
SQL statements, 836
SqlCacheDependency class, 507
SqlCacheDependency property, 499
SqlClientFactory class, 316
sqlcmd.exe command-line tool, 888
SqlCommand class, 305, 517, 1171

■ INDEX

1557

sqlCommandTimeout attribute, 266
SqlConnection class, 278, 279, 289
sqlConnectionString attribute, 264
SqlDataAdapter class, 339
SqlDataReader class, 282, 517, 1170,

1171, 1172
SqlDataSource, 370–386, 607

caching with, 499–501
deleting records, 384
disadvantages of, 385–386
error handling, 379
GridView sorting with, 422–423
handling extra options with, 399–400
inserting records, 384–385
parameterized commands, 374–379
selecting records, 371–374
updating records, 379–384

with stored procedures, 382–384
strict concurrency checking,

381–382
SqlDataSource tag, 375, 383, 501
SqlDataSource.ConflictDetection property,

381, 382, 384, 474
SqlDataSourceMode.DataReader, 373
SqlDataSourceMode.DataSet, 373, 422
SqlDataSource.OldValuesParameterFormat

String property, 382
SqlDataSource.Selecting event, 476
SqlDataSourceSelectingEventArgs.Comman

d property, 378
SqlDataSourceStatusEventArgs.Exception

property, 379, 385
SqlDataSourceStatusEventArgs.ExceptionH

andled property, 379
SqlDataSource.Update() method, 380
SqlDataSource.UpdateParameters

collection, 380, 383
SqlDataSource.Updating event, 383
SqlDbCommand class, 282
SqlDbConnection class, 282
SqlDBDataAdapter class, 282
SqlDbType enumeration, 305
SqlDbType, NVarChar, 306
SqlDependency.OnChange event, 509
SqlDependency.Start() method, 509, 510
SqlException, 287
SqlException class, 287
SqlException object, 310
-sqlexportonly command-line switch, 886
SqlMembershipProvider class, 879, 880, 881,

883, 889, 892, 1092
SqlMembershipProviderUser class, 880
SqlParameter class, 305, 306

SqlProfileProvider, 998–1017
anonymous profiles, 1015–1017
configuring provider, 1002–1003
creating profile tables, 999–1001
defining profile properties, 1003
profile groups, 1008
profile serialization, 1006–1007
profiles and custom data types,

1008–1012
automatic saves, 1010–1012
custom type serialization, 1009–1010

profiles API, 1012–1014
using profile properties, 1004–1006

SqlRoleProvider, 978, 984
SQLServer mode, 262, 264–266
SqlSiteMapProvider class, 764, 765, 766, 768
SqlSiteMapProvider.Clear() method, 769
SqlTransaction class, 311, 314
src attribute, 355, 466, 1185, 1194, 1216
Src attribute, ASP.NET, 59
-ssadd parameter, 265
SSL (Secure Sockets Layer), 114, 836,

842–849, 1016
certificates, 843
configuring in IIS 7.x, 845–849

configuring bindings for SSL, 847–848
encoding information with SSL, 848

SSL session key, 843
-sstype c (for custom) parameter, 265
ST (session ticket), 940
Stacked image controls, 1135
StackPanel class, 1452, 1454, 1460, 1468,

1470, 1471
StackPanel control, 1454
<StackPanel> element, 1454, 1455
StackPanel.Background property, 1455
Standard Generalized Markup Language

(SGML), 619
Standard Toolbox Tab, 38
standardization in ADO.NET, 280–281
<Star> element, 659, 670
<Starring> element, 626
Start Debugging button, Visual Studio

toolbar, 68
Start() method, 509, 510
Start Options, Website menu, 66
Start Page, IIS Manager, 793
Start Web site immediately option, Add Web

Site dialog box, 818
StartCap proeprty, Pens class, 1150
StartFigure() method, 1149
StartFromCurrentNode property, 760
StartingNodeOffset property, 758, 760

■ INDEX

1558

StartingNodeUrl property, 758, 759
StartNavigationTemplate template, 749, 750
StartNextButtonStyle property, 747
StartNextButtonStyle style, 747
startRowIndex parameter, 431
StartRowIndexParameterName property,

429, 431
starts-with method, 647
StartsWith search option, 613
State argument, AddHistoryPoint()

method, 1273
state management, 235–273

application state, 269–273
static application variables, 271–273

ASP.NET, 236–238
control states, 1119–1127

control, 1121–1122
postback data and change, 1123–1125
triggering postbacks, 1125–1127
view, 1119–1121

cookies, 256–257
session state, 258–269

architecture, 258–259
configuring, 261–268
securing, 268–269
using, 259–260

transferring information between pages,
247–256

cross-page posting, 249–256
query string, 248–249

view state, 238–247
assessing, 243–244
example of, 239–240
security, 246–247
selectively disabling, 244–246
storing objects in, 241–243

stateConnectionString setting, 262
stateful Graphics members, 1144
StateServer mode, 262–263, 264
StateServer service, 262
static application variables, 271–273
static connections, between web parts,

1347–1348
static HTML tags, 31–32
static items, 786
StaticConnections configuration,

WebPartManager class, 1348
<StaticConnections> section, 1343
StaticHoverStyle static style, 786
StaticMenuItemStyle static style, 786
StaticMenuItemTemplate property, 788
StaticMenuStyle static style, 786
StaticObjects member, 260

StaticPartialCachingControl object, 699
StaticSelectedStyle static style, 786
StaticSiteMapProvider class, 763, 767
StaticSiteMapProvider property, 764
Status Codes field, IIS Manager, 828
Status column, Application Pool, 824
status property, 1224
Step Into command (F11), Visual Studio

break mode, 72
Step Into command, Visual Studio break

mode, 72
Step Out command (Shift+F11) , Visual

Studio break mode, 72
Step Over command (F10), Visual Studio

break mode, 72
StepNavigationTemplate template, 749
StepNextButtonImageUrl property, 747
StepNextButtonStyle property, 747
StepNextButtonStyle style, 748
StepNextButtonText property, 747
StepNextButtonType property, 747
StepPreviousButtonStyle style, 748
steps, 742–744
StepStyle style, 747
StepType property, 742
Stop() method, 1474
Stop Outlining option, code window right-

click menu, 47
stopping application pools, 826
Storage location option, 236, 237
store locations, 1031
stored procedures, 324

calling, 304–307
GridView paging, 430
querying, 587–589
SqlDataSource, 376, 382–384
transactions, 309–310

Stored Procedures folder,
NorthwindModel.Store node, 587

Stored Procedures option, 587
StoredProcedure type, 371
StoreLocation.CurrentUser flag, 1031, 1032
StoreLocation.LocalMachine flag, 1031, 1032
stores

creating and adding users to, 1076–1080
credential

custom, 868–869
using web.config as, 860

custom, designing and implementing,
1065–1072

data, creating, 883–890
database scripts for ASP.NET services,

886–889

■ INDEX

1559

file-based SQL server stores, 889–890
file-based SQL server, 889–890
retrieving users from, 927–929
updating users in, 929–930

StoreWins value, RefreshMode
enumeration, 601

storing
information in databases, 763–764
objects, 241–243
user information, 853–854

Storyboard class, 1472–1474
Storyboard.Completed event, 1475
Storyboard.SetTarget() method, 1482
Storyboard.Target property, 1478
Storyboard.TargetName property, 1473
Storyboard.TargetProperty property,

1473, 1478
strategies, concurrency, 330–331
StreamReader class, 547, 548
streams

reading and writing files with, 546–558
binary files, 549
compression, 557–558
making files safe for multiple users,

552–557
text files, 547–548
uploading files, 550–552

stream-based XML processing, 624–630
reading XML files, 628–630
writing XML files, 624–627

StreamWriter class, 547
strict match-all concurrency, 331
strict XHTML 1.0 markup, 90
Strikeout property, 149
string concatenation, 350, 836
String option, 1007
String type, 1282
StringBuilder class, 293, 636
StringCollection class, 1057, 1091
StringComparison.OrdinalIgnoreCase

parameter, 1072
StringDictionary class, 1054
string.Empty salt value, 1082, 1083
String.Format, 1384
String.Format() method, 639, 1380
StringLengthAttribute, 1391
String.Replace() method, 120
strings

connection, 283–285
query, 248–249

encrypting, 1054–1059
URL encoding, 249
using, 248–249

strongly typed helper methods, 1381
Structured Query Language (SQL). See SQL

(Structured Query Language)
style attributes, 136–137, 146
Style base class, 786
Style box, Properties window, 31, 33
Style collection, 136
Style property, 133
Style Sheet toolbar, 707
styles, 747–750, 779–787

applying to node levels, 781–782
applying to node types, 781
GridView, 410–414

configuring with Visual Studio, 414
defining, 411–413

images, 782–783
properties, creating web controls that

support, 1108–1111
Styles.css file, 703
<stylesheet> element, 655
StyleSheetTheme attribute, 712, 717, 718
Substitution control, 177, 484, 486
substitution, post-cache, 485–486
Subtitle property, IWebPart interface, 1322
SuccessTemplate template, 913, 914, 916
SUM() method, 291, 298
summaries, in GridView, 459–461
summary screen, WebPI, 793
.suo file, 24
Supervisor group, 969
Supervisors role, 970
SupName key, 1382
Supplier field, 1385
SupplierID column, Products table, 1427
SupplierID field, 1381, 1382, 1387
Supported data types, 622
SupportsEventValidation attribute, 1230
.svc files, 37
swapImg() function, 1213
Swiderski, Frank, 836
SwitchViewByID command, 740
SwitchViewByIndex command, 740
% symbol, 1014
symmetric algorithms, 1041–1046
symmetric encryption, 843, 844
symmetric encryption algorithms, 1035–1036
symmetric key, 844
SymmetricAlgorithm class, 1033, 1034,

1043, 1044
SymmetricEncryptionUtility class, 1045–

1046, 1050
SyncChanges method, 1339
Sys.Application class, 1286

■ INDEX

1560

Sys.ArgumentException object, 1282
Sys.IDisposable interface, 1285
Sys.ProfileService.properties.First-

Name, 1258
Sys.Services property, 1252
Sys.Services.AuthenticationService, 1252
Sys.Services.AuthenticationService.get_is-

LoggedIn() method, 1257
Sys.Services.Profile-Service class, 1258
Sys.Services.RoleService class, 1255
Sys.StringBuilder class, 1282
system administrator (sa), 283
System namespace, 1459
System value, 535
<system.codedom> section, 68
System.CodeDom.CodeExpression

object, 358
System.Collections.Generic namespace, 242
System.Collections.Specialized

namespace, 1022
System.ComponentModel namespace, 397
System.ComponentModel.Component

class, 390
System.ComponentModel.DataAnnotations

namespace, 1391
System.Configuration namespace, 1018
System.Configuration.dll assembly, 44, 867
System.Configuration.Provider

namespace, 1018
System.Configuration.Provider.Provider-

Base class, 1073
System.Core.dll assembly, 44, 65, 1459
System.Data namespace, 282, 579
System.Data.Common namespace, 282
System.Data.Common.DbProviderFactories

class, 316
System.Data.DataSet class, 1174
System.Data.DataSetExtensions.dll

assembly, 44, 579
System.Data.dll assembly, 44
System.Data.Objects.ObjectQuery

instance, 589
System.Data.Odbc namespace, 282, 370
System.Data.OleDb namespace, 282, 370
System.Data.OracleClient namespace,

282, 370
System.Data.OracleClient.OracleClient-

Factory class, 316
System.Data.SqlClient namespace, 282, 286,

326, 370, 1170
System.Data.SqlClient.SqlClientFactory

class, 316
System.Data.SqlTypes namespace, 282

System.Diagnostics namespace, 231
System.Diagnostics trace features, 126
System.dll assembly, 44, 1459
System.Drawing namespace, 148, 1141
System.Drawing.Bitmap class, 1141
System.Drawing.dll assembly, 44
System.Drawing.Drawing2D namespace,

1141, 1148
System.Drawing.Font object, 1142
System.Drawing.Graphics class, 1141
System.Drawing.Graphics object, 1142
System.Drawing.Imaging namespace, 1141
System.Drawing.Pens class, 1149
System.EnterpriseServices.dll assembly, 44
System.EventArgs class, 691
System.EventArgs object, 154
System.Globalization namespace, 227
System.IDisposable interface, 1285
System.IO classes, 1157
System.IO namespace, 224, 227, 527,

547, 1155
System.IO.Compression namespace,

557, 1020
System.IO.FileStream class, 517
System.IO.MemoryStream, 1155
System.IO.Path class, 538
System.IO.Stream class, 546
System.Linq namespace, 571, 576
System.Linq.Enumerable class, 565, 574,

576, 578
System.Linq.Enumerable.Count()

method, 574
System.Messaging namespace, 512
System.Messaging.dll assembly, 512
System.Net namespace, 1032
<system.net> configuration, 912
System.Net.dll assembly, 1459
System.Net.HttpCookie object, 256
System.Net.Mail namespace, 912
SystemOperator role, WindowsBuiltInRole

Enumeration, 952
System.Runtime.Serialization.Formatters.

Binary namespace, 559
System.Runtime.Serialization.Formatters.

Binary.BinaryFormatter
option, 1007

System.Runtime.Serialization.Formatters.
Soap namespace, 559

System.Runtime.Serialization.Formatters.
Soap.dll, 559

System.Security namespace, 838
System.Security.AccessControl

classes, 955

■ INDEX

1561

System.Security.AccessControl namespace,
953, 1030

System.Security.Cryptography namespace,
195, 491, 1020, 1041, 1084

System.Security.Cryptography.Protected-
Data class, 1041

System.Security.Cryptography.Random-
NumberGenerator class, 1032

System.Security.Cryptography.X509-
Certificates namespace, 1030

System.Security.Cryptography.Xml
namespace, 1030

System.Security.dll assembly, 1030, 1041
System.Security.Permissions namespace, 971
System.Security.Principal namespace, 951
System.Security.Principal.IPrincipal

class, 121
System.Text namespace, 293, 548, 1044
System.Text.RegularExpressions

namespace, 1078, 1132
System.Threading namespace, 557
System.Uri type, 539
system.web block, web.config file, 805
System.Web namespace, 763
system.web section, web.config file, 1373
<system.web> element, 199, 219, 230, 873,

890, 947, 949, 964, 986, 1093
System.Web.ApplicationServices.dll

assembly, 44
System.Web.Caching namespace, 489
System.Web.Caching.Cache class, 112
System.Web.Compilation namespace, 358
System.Web.Configuration namespace, 201,

203, 204, 284, 867
System.Web.dll assembly, 44, 222, 1354
System.Web.DynamicData namespace, 1410
System.Web.DynamicData.dll assembly, 44
System.Web.Entity.dll assembly, 44
<system.web.extensions> section, 1252
System.Web.Extensions.dll assembly, 44, 65,

1240, 1241
System.Web.Hosting namespace, 820
System.Web.HttpApplicationState class,

112, 269
System.Web.HttpCachePolicy class, 483
System.Web.HttpContext class, 128
System.Web.HttpRequest class, 113
System.Web.HttpResponse class, 114
System.Web.HttpServerUtility class, 118
System.Web.IHttpModule interface, 231
System.Web.PageRequestManager

class, 1263
System.Web.Pair class, 1122

System.Web.Profile namespace, 1013, 1018
System.Web.Profile.ProfileBase, 1004
System.Web.Profile.SqlProfileProvider

class, 1002
System.Web.Routing namespace, 773
System.Web.Script.Services.ScriptMethod

attribute, 1251
System.Web.Security namespace, 856, 878,

927, 1064
System.Web.Security.MembershipProvider

class, 1072
System.Web.Security.MembershipProvider

namespace, 879
<system.webServer> section, 196, 200, 220,

849, 947, 986, 987, 988
>system.webServer> section, web.config

file, 949
System.Web.Services.dll assembly, 44
System.Web.SessionState.HttpSessionState

class, 112, 259
System.Web.TraceContext class, 121
System.Web.UI namespace, 112, 130
System.Web.UI.Adapters.ControlAdapter

class, 1118
System.Web.UI.Control class, 1101
System.Web.UI.DataBinder class, 433
System.Web.UI.DataVisualization.Charting

namespace, 1164
System.Web.UI.HtmlControls

namespace, 132
System.Web.UI.Page class, 112
System.Web.UI.UserControl class, 682
System.Web.UI.WebControls namespace,

148, 165, 1108
System.Web.UI.WebControls.Adapters.Web

ControlAdapter class, 1118
System.Web.UI.WebControls.Composite-

Control class, 1127
System.Web.UI.WebControls.WebControl

class, 1101
System.Web.UI.WebControls.WebParts

namespace, 1316, 1328
System.Web.UI.WebControls.WebParts.

WebPart class, 1316, 1317,
1326, 1351

System.Web.Util namespace, 1203
System.Windows.Browser.dll assembly, 1459
System.Windows.Controls.Data.dll

assembly, 1453
System.Windows.Controls.dll assembly, 1453
System.Windows.dll assembly, 1459
System.Windows.Media.Animation

namespace, 1472

■ INDEX

1562

System.Xml namespace, 624, 1063
System.Xml.dll assembly, 44, 1459
System.Xml.Linq.dll assembly, 44, 638
System.Xml.Schema namespace, 653
System.Xml.Serialization namespace,

1010, 1063
System.Xml.XmlNode, 1246
System.Xml.XmlSerialization.Xml-

Serializer, 1007
System.Xml.XPath namespace, 636
Sys.UI.Component.create() method, 1290
Sys.WebForms.BeginRequestEventArgs

object, 1287
Sys.WebForms.EndRequestEventArgs

object, 1287
Sys.WebForms.InitializeRequestEventArgs

object, 1287
Sys.Web-Forms.PageLoadedEventArgs

object, 1287
Sys.WebForms.PageLoadingEventArgs

object, 1287

■ T
\t character, 169
T navigation property, 587
TabContainer, 1301
TabControl class, 1452, 1453
TabIndex property, 144
Table control, 177
Table property, 1417, 1420
<table runat="server"> tag, <td

runat="server"> tag, 135
{table} tag, 1417, 1418
tables, 1419

binding to, 1170–1172
HTML, 32–33
master pages, 726–729
profile, creating, 999–1001
working with DataAdapter class, 340–342

Tables property, 335, 1419
Tables property, HttpBrowserCapabilities

class, 1116
Tabs section, Options dialog box, 34
Tabular Data Stream (TDS), 281
Tag Specific Options button, Visual

Studio, 34
TagName property, 133, 1104
tagName property, 1186
TagPrefix, 1104
tags

control, connecting to page variables,
60–61

HTML, static, 31–32
smart, 30

target attribute, 89
target attribute, ASP.NET controls, 89
target attribute, HTML, 89
Target Framework, Visual Studio, 25
Target Location field, Publish Web dialog

box, 812
Target property, 179, 775, 784
TargetControlID, 613
targetFramework attributes, 806
TargetName property, 1473
TargetProperty property, 1473
Task List tab, Options dialog box, 41
Task List window, 36, 39–41
tasks, 1316–1325
<td> element, 450, 452
TDS (Tabular Data Stream), 281
team collaboration, Projectless

development, 63
Team Explorer window, Visual Studio Team

Suite edition, 36
template cache, Visual Studio, 92
TemplateControl class, 682
TemplateField, 433, 457, 609, 610, 611
TemplateField column, 405, 449
templates, 25–26, 747–750, 788–789,

1404–1414
custom page, creating, 1405–1406
editing default, 1404–1405
entity, 1407–1411
field, 1411–1414
field, custom, 1429–1430
GridView, 433–447

binding to method, 437–439
Client IDs in, 447
editing in Visual Studio, 436
editing with, 440–446
event handling in, 439–440
using multiple, 435–436

and Login control, 904–906
PasswordRecovery, 913–916

Temporary value, 535
Territories table, 418
TerritoriesService class, 1244
TerritoriesService web service template, 1244
TerritoriesService.asmx file, 1244, 1248
TerritoriesService.cs file, 1244
Territory class, 1247
Territory objects, 1247, 1249
TerritoryDescription field, 1228
TerritoryID field, 1228
test pages, creating, 1057

■ INDEX

1563

Test Settings... button, IIS Manager, 800
TestClassic.asp file, 873
Test-driven development, ASP.NET MVC, 17
TestEmployee() method, 570, 571
testing

data components, 331–332
user instances connections, 286–287

testing (incomplete) applications,
1367–1368

testing FactoredProfileProvider, 1025–1028
testing handlers, 830–831
TestPage.html page, 1444
tests, cache, 496–497
TestService, 1485
TestServiceClient proxy class, 1485
TestService.GetServerTime() method, 1486
TestService.svc web service, 1487
test.txt file, 1040
Text attribute, 1111
text, encodings, 548
text field, 1119
text files, streams, 547–548
Text member, 166
Text node, 635
Text property, 10, 146, 163, 355, 731, 775,

784, 1119, 1121, 1123
text variable, 1109
Text_Edit field template, 1413
Text_Edit.ascx template, 1412
TextAlign property, 158
<textarea runat="server"> tag, 135
TextAreaFor Helper Method, 1381
Text.ascx file, 1429
Text.ascx template, 1413
TextBlock class, 1451, 1454, 1461, 1469, 1486
TextBlock element, 1451, 1454
TextBlock object, 1454
<TextBlock> element, 1454
TextBox class, 1451
TextBox control, 96, 97, 613, 1123, 1128,

1199, 1294, 1299, 1300
TextBox controls, 1051, 1182, 1294
TextBox named control, Default.aspx

page, 96
TextBox server control, 1294
TextBox.AutoPostBack property, 1266
TextBox-derived class, 1294
TextBoxFor Helper Method, 1381
TextBoxFor HTML helper method, 1384
TextBox.MaxLength property, 302
TextBoxStyle style, 902
TextBox.TextChanged event, 1129, 1266
TextBoxWatermarkExtender, 1300

TextChanged event, 1011, 1458
TextureBrush class, 1152
TGT (ticket-granting ticket), 940
Thawte CA, 843
Theme attribute, 711, 712, 718
Themeable attribute, 714
Themes, 709
themes

applying dynamically, 718–720
applying simple theme, 711–712
applying through configuration file,

717–718
cascading style sheets (CSS), 703–709

applying rules, 706–709
creating, 703–706

creating multiple skins for same control,
713–714

folders and skins, 709–710
handling conflicts, 712–713
skins with templates and images,

714–716
using cascading style sheets (CSS), 717

Themes, ASP.NET 2.0, 12
this.DataBind() method, 356
Thread class, 517
ThreadPool.QueueUserWorkItem()

method, 517
threat modeling, 836
three-tier application, 386
ThrobberID property, 1300
ThumbnailsInDirectory.aspx page, 1157
ThumbnailViewer.aspx page, 1156, 1157, 1158
Tick event, 1268
Ticket property, 857
ticket-based system, 851
ticket-granting ticket (TGT), 940
TimeConsumingPage.aspx page, 1190
Timeout member, 261
timeout property, 859
timeout session state, 268
timeouts, and multiple asynchronous

tasks, 524
Timer control, 1259, 1268–1269, 1276, 1291
TimeSpan.Zero, 495
timestamp-based concurrency, 331
Title argument, AddHistoryPoint()

method, 1273
Title attribute, 724
Title property, 742, 1129, 1318, 1322,

1324, 1335
Title property, IWebPart interface, 1322
Title property, WebPart Class, 1319
<Title> element, 642

■ INDEX

1564

TitledTextBox control, 1128, 1129
TitledTextBox.TextChanged event, 1129
TitleIconImageUrl property, 1324
TitleIconImageUrl property, IWebPart

interface, 1322
TitleImage property, 1325
TitleImageUrl property, 1325
TitleOfCourtesy field, 293, 415, 442, 465,

571, 572
TitleOfCourtesy group, 572
TitleOfCourtesy values, 572
Titles collection, 1165
TitlesOfCourtesy property, 443
TitleText property, 903
TitleTextBox control, 1128
TitleTextStyle style, 902
TitleUrl property, 1324, 1335
TitleUrl property, IWebPart interface, 1322
TitleUrl property, WebPart Class, 1319
To property, Animation class, 1474
ToBase64String() method, 1055
TODO token tag, 40, 41
ToggleButtonExtender, 1300
token, 838
Token member, WindowsIdentity class, 953
token-based system, 851
tokens, getting, 959–960
toolbar attribute, 1206
Toolbox, 606, 1105–1107, 1241
Toolbox, design view, 34
Toolbox tab, Visual Studio, 1292, 1293
Toolbox, Visual Studio, 28, 31, 32, 1292
Toolbox, Visual Studio 2005, 1354
Toolbox window, 38–39
Toolbox window, Visual Studio, 36
Toolkit, 1297–1302

installing, 1292–1293
tools, 619

search and navigation, 52–55
Tooltip property, 144, 775, 784
Top coordinate, 1460
Top property, 1460, 1461
ToString() method, 121, 410, 535, 1055
TotalFreeSpace, DriveInfo member, 533
TotalSize, DriveInfo member, 533
ToTraceString method, 589
ToXmlString() function, 1047
ToXmlString() method, 1047, 1048
<tr runat="server"> tag, 135
<tr> element, 450
<tr> tag, 450
Trace attribute, 244
Trace attribute, Page directive, 122

trace element, 200
Trace Information, Trace Log, 121
trace information, web page, 75
Trace object, 121–127

application tracing, 125–126
tracing with Web Development Helper

tool, 127
<trace> element, web.config file, 125, 126
trace.axd application extension, 125, 126
TraceContext objects, 124
Trace.IsEnabled property, 122
traceMode attribute, 125
TraceMode attribute, Page directive, 122
traceMode attribute, Tracing Options, 126
TraceMode property, Trace object, 122
tracepoints feature, Visual Studio, 74
Trace.TraceFinished event, 124
Trace.Warn() method, 123
Trace.Write() method, 123
tracing

applications, 125–126
with Web Development Helper tool, 127

tracing mode, web page, 74
Tracing Options, 126
traffic, network intercepting, 855
Transaction class, 311
Transaction object, 311, 312
transactions, 307–315

and ASP.NET applications, 307–312
client-initiated ADO.NET, 311–312
stored procedure, 309–310

isolation levels, 312–314
savepoints, 314–315

Transaction.Save() method, 314
Transfer() method, Response object, 115
Transfer() method, Server object, 118
TransferRequest() method, Response

object, 115
Transform attribute, 804, 805
Transform Classes, 1480
Transform element, 803
Transform() method, GraphicsPath

class, 1149
Transform property, 658
TransformGroup class, 1480, 1481
transforming XML content, 654–660

basic stylesheet, 655–656
LINQ to XML, 658–660
Xml control, 657–658
XslCompiledTransform, 656–657

TransformPassword function, 1082
TransformPassword method, 1079, 1081,

1082, 1083

■ INDEX

1565

transforms, 1479–1483
animating, 1481–1483
using, 1480–1481

TransformSource property, 657
Translate method, IdentityReference

class, 954
TranslateTransform class, 1480
tree control, IIS Manager, 811, 823
TreeNode class, 783
TreeNode object, 775–777
<TreeNodeBinding> element, 668
TreeNode.Checked property, 780
TreeNodePopulate event, 778, 779
TreeNodeStyle class, 779
TreeView control, 30, 754, 774–783, 786

populating nodes on demand, 778–779
styles, 779–783

applying to node levels, 781–782
applying to node types, 781
images, 782–783

TreeNode object, 775–777
TreeView controls, 709
TreeView mapping, 668
TreeView.AutoGenerateDataBindings

property, 667
TreeView.ExpandDepth property, 775
TreeViewImageSet enumeration, 783
TreeView.ImageSet property, 783
TreeViewNode.ImageUrl property, 782
TreeView.NodeStyle property, 781
TreeView.PopulateNodesFromClient

property, 778
TreeView.ShowExpandCollapse

property, 780
TReference navigation property, 587
TriangleHotSpot class, 1140
triggering postbacks, 1125–1127
triggers, 1266–1267
TripleDESCryptoServiceProvider class, 1035
Truncate value, 546
try...catch...finally block, 600
.txt extension, 491, 536
txtInput object, 60
type attribute, 1003
type converter, 687
Type field, Add Managed Handler dialog

box, 829
Type property, 134, 168, 1115
type serialization, custom, 1009–1010
<type> tag, <metadata> section, 1357
typed DataSets, 581, 1326–1328
TypeName, 615
TypeName property, 387

Type.registerNamespace() method, 1283
Typical use option, 236, 237, 238

■ U
-U username command-line switch, 885
UAC (User Account Control), 93
UIHint attribute, 1429
 element, 140
Underline property, 149
Underused value, 506
Undo() method,

WindowsImpersonationContext
object, 959, 960

UNDONE token tag, 41
Uniform Resource Locator (URL), 27,

963–970
changing format, 1416–1417
configuring, 1487
controlling access for specific roles,

968–970
controlling access for specific users,

965–966
controlling access to specific directories,

967–968
controlling access to specific files, 968
encoding, 119–120, 249
history state stored in, 1275
mapping, 772–773
routing, 773–774

uniform resource names (URNs), 621
UninstallXXX scripts, 886
UnionIterator<T> class, 565
UniqueID property, 1124, 1126
UnitPrice column, Products table, 1425
UnitPrice field, 1380
UnitPrice value, 1178
units, 147
UnitsInStock class, 1171
UnitsInStock column, 1170, 1171, 1172,

1425, 1430, 1431
UnitsInStock field, 1391, 1392, 1433
UnitsInStock property, 1390, 1391
UnitsInStock value, 1178, 1430
UnitsOnOrder field, 1389
UnitType enumeration, 147
universal resource identifiers (URIs), 621
Universally Unique ID (UUID), 954
UnknownBook.gif file, 1194
Unload event, 996, 1286
UnLock() method, 270
UnlockUser method, 930
UnprotectSection() method, 212

■ INDEX

1566

UPDATE command, 330, 458, 474
Update link, 380, 1401
Update() method, 338, 399, 1268
Update Model From Database option, data

model diagram, 587
Update panel server control, 1260–1268

conditional updates, 1264
handling errors, 1262–1264
interrupted updates, 1265–1266
optimizing, 1267–1268
triggers, 1266–1267

UPDATE statement, 330, 331, 472
UpdateCommand, 337, 338, 371, 379,

382, 444
UpdateEmployee() method, 328, 330, 331,

392, 393
UpdateEmployeeAddress() method, 331
UpdateMethod property, 387
UpdateMode property, 1266, 1268
UpdateModel method, 1370
UpdatePanel control, 1233, 1240, 1241,

1259, 1268, 1270, 1272, 1286,
1287, 1300

UpdatePanelAnimationExtender, 1261, 1300
UpdatePanels.ContentTemplateContainer.

Controls collection, 1261
UpdatePanels.Controls collection, 1261
Update-Panel.UpdateMode property, 1264
UpdateProgress control, 1259, 1266,

1269–1272, 1276, 1287, 1291
UpdateProgress.AssociatedUpdatePanelID

property, 1271
UpdateProgressMeter() function, 1191
UpdateUser method, 927, 929, 930
updateUserProcedure attribute, 1021
updating

ASP.NET applications, 186
conditional, 1264
interrupted, 1265–1266
profile information, 1024–1025
records

ObjectDataSource, 392–393
SqlDataSource, 379–384

users in stores, 929–930
Upload directory, 550, 551
uploading

files with streams, 550–552
web parts dynamically, 1354–1358

Uri object, 114
URIs (universal resource identifiers), 621
URL. See Uniform Resource Locator

(URL)
Url property, 114, 1206

UrlAuthorizationModule, 963, 966, 986, 988,
989, 991

UrlDecode() method, 118, 249
UrlEncode() method, 118, 120
<urlMappings> section, 772
UrlReferrer property, Request object, 114
URNs (uniform resource names), 621
UseCookies option, 859, 868
UseCookies value, 267
UseDeviceProfile option, 859, 868
UseDeviceProfile value, 267
<user /> elements, 866
User Account Control (UAC), 93
user code initialization, 99
user controls, 681–702

adding code, 684–694
adding events, 690–693
adding properties, 685–687
exposing inner web control, 694
handling events, 684–685
using custom objects, 688–690

and advanced web parts, 1351–1354
converting pages to, 684
creating, 682–684
dynamically loading, 695–699
partial page caching, 699–702

sharing cached controls, 701–702
VaryByControl, 699–701

user information
storing, 853–854
Windows, accessing, 950–955

IdentityReference and role information,
954–955

WindowsIdentity class, 952–953
WindowsPrincipal class, 951–952

user instances features, 284–285
User Instances property, 285
user interface, dynamic, 80–81
User member, WindowsIdentity class, 953
User Name field, 863
User object, 121, 951
user profiles feature, 1252
User property, 950, 951
User role, WindowsBuiltInRole

Enumeration, 952
user tasks, Task List window, 40
UserAgent property, 1115
UserAgent property, Request object, 114
UserControl class, 1450, 1456, 1460, 1467
UserControl element, 1466
UserControl naming containers, 95
UserControl start tag, 1467
<UserControl> element, 1454

■ INDEX

1567

UserControlHost web part, 1353, 1354
UserControlHostPart class, 1353, 1354
UserHostAddress property, Request

object, 114
UserHostName property, Request

object, 114
User.IsInRole() method, 984
UserIsOnlineTimeWindow property, 1086
UserLanguages property, Request

object, 114
UserLookupError event, 913
UserName control, 906, 919
UserName field, 927
UserName property, 903
UserNameLabelText property, 903
UsernameRequiredErrorMessage

property, 903
UserNameTemplate template, 913, 914, 915
user.PasswordSalt field, 1083
users

anonymous, denying access to, 861,
948–950

configuring, 922–924
controlling access for, 965–966
creating and adding to stores, 1076–1080
creating and authenticating, 893–896
creating and deleting, 930–931
retrieving from stores, 927–929
updating in stores, 929–930
validating, 931
validating on Login control, 1080–1082

_Users collection, 1068
Users property, 1069
_Users variable, 1068
Users_GetByUserName procedure, 1026
Users_Update procedure, 1026
UserStore class, 1064, 1066, 1067, 1068,

1069, 1072, 1075, 1076, 1084, 1085
UserStore.Users collection, 1084
UseUri option, 859, 868
UseUri value, 267
using extensibility methods, 1432–1435
using statement, 46
UtcLastModified property, 510
UTF-7 encoding, 548
UTF-8 encoding, 548, 1045
utility class, data, 325–331
UUID (Universally Unique ID), 954

■ V
\v character, 169
Validate() method, 166, 174, 654

ValidateEmptyText property, 172
ValidatePassword method, 1077
validateRequest attribute, <pages>

element, 1202
ValidateRequest property, Page

directive, 1201
ValidateUser method, 931, 1080, 1086
ValidateUserInternal() method, 1081,

1083, 1084
ValidateUserName method, 1077
validation, 93–99, 254–256, 1388–1392,

1430–1435
annotations, adding, 1390–1392
of EntityDataSource control, 611–612
performing, 1388–1390
process, 164
requiring field values, 1430–1431
specifying valid ranges, 1431–1432
users, 931, 1080–1082
using extensibility methods, 1432–1435
XML content, 651–654

basic schema, 651
with XDocument, 654
with XmlDocument, 652–653

validation controls, 130, 163–164
validation groups, 175–177
Validation option, 859
Validation section, Options dialog box, 35
Validation Toolbox Tab, 39
<validation validateIntegratedMode-

Configuration=\"false"/>
element, 220

ValidationAttribute class, 1391
ValidationEventHandler event, 653
ValidationExpression property, 168
validationFailureIndex argument,

IsValidRequestString()
method, 1204

ValidationGroup member, 166
ValidationGroup property, 175
validationKey attribute, 195
validationKey value, 194
ValidationMessageFor helper method, 1390
ValidationProperty attribute, 163
ValidationSummary control, 167, 172–173
ValidatorCalloutExtender, 1300
validators, using programmatically, 174–175
ValidatorTextStyle style, 902
value argument, IsValidRequestString()

method, 1204
Value column, Watch window, 73
Value property, 10, 134, 136, 163, 171, 355,

363, 641, 775, 784

■ INDEX

1568

<value-of> command, 656
values, null, 294–295
ValueToCompare property, 168
var keyword, 568, 569, 572, 580, 1278
VARBINARY, 1050
VARCHAR, 1050
variable highlighting feature, Visual

Studio, 52
variable watches, 72–73
variables, static, 271–273
VaryByControl, 699–701
VaryByCustom attribute, 482
VaryByHeader attribute, 483
VaryByParam attribute, 479, 480
VaryByParam behavior, 487
VaryByParameter property, 700
VBScript property, HttpBrowserCapabilities

class, 1116
verbs, custom, 1350–1351
Verbs property, 1350
Verbs property, WebPart Class, 1319
VerifyingAnswer event, 913
VerifyingUser event, 913
VeriSign CA, 843
Version property, HttpBrowserCapabilities

class, 1115
versions, migrating websites from previous,

66–68
VerticalAlign property, 411
VerticalAlignment property, 1461
VerticalPadding property, 779
View Call Hierarchy option, method right-

click menu, 53, 54
View Code button, Visual Studio, 42
View control, 177
View Designer button, Visual Studio, 42
View Details link, 125
View helper method, 1395
View method, 1366, 1368, 1369, 1386, 1393
View Orders link, Customers

page, 1401
View Source command, web browser, 87
view state, 84–88, 238–247, 1119–1121

assessing, 243–244
chunking, 88
example of, 239–240
security, 246–247
selectively disabling, 244–246
storing objects in, 241–243

View state encryption, 837
view state persistence mechanism, 78
View window, Visual Studio, 35
ViewChanging control, 911

ViewData class, 1387
ViewData feature, 1386
ViewName property, 1415, 1418
ViewResult class, 1393, 1394
views

completing, 1368–1371
Model-View-Controller (MVC),

1378–1382
adding data, 1381–1382
modifying, 1379–1381

pages with multiple, 736–750
MultiView control, 736–741
Wizard control, 741–750

Views folder, 1364
Views helper method, 1394
Views/Home folder, 1372
Views/Product folder, 1371
Views/Products folder, 1367
Views/Shared directory, 1371
Views/Shared/Error.aspx view, 1373
ViewState collection, 239, 1119, 1120
Viewstate column feature, Trace Log

Control Tree, 121
ViewState property, 1119, 1120, 1121
ViewStateEncryptionMode property, 247
virtual directories, 183, 818–819
VirtualFile class, 821
VirtualPathProvider class, 819–822
visibility, changing, 1426–1428
Visible property, 131, 407, 736
VisibleWhenLoggedIn property, 904
Visual Studio, 21–76

code editor, 42–56
adding assembly references, 43–46
improvements, 50–56
IntelliSense and outlining, 46–50

code model, 56–62
connecting code-behind files to pages,

59–60
connecting control tags to page variables,

60–61
connecting events to event handlers,

61–62
configuring GridView styles with, 414
creating projectless websites, 23–27

development language, 24
Framework version, 24–25
location, 26–27
templates, 25–26

debugging, 68–74
advanced breakpoints, 74
single-step, 69–71
variable watches, 72–73

■ INDEX

1569

designing web pages, 28–35
absolute positioning, 29–30
HTML tables, 32–33
smart tags, 30
static HTML tags, 31–32
structuring HTML markup, 33–35

editing GridView templates in, 436
integrated development environment

(IDE), 35–41
document window, 38
Error List and Task List windows, 39–41
Server Explorer window, 41
Solution Explorer window, 37–38
Toolbox window, 38–39

Web Development Helper tool, 74–76
web projects, 22–23, 63–68

creating, 64–65
development, 63–64
migrating websites from previous

versions, 66–68
Visual Studio Command Prompt

window, 883
VolumeLabel, DriveInfo member, 534

■ W
\w character, 170, 864
W3C (World Wide Web Consortium), 618
W3C validation service, 94
WaitForMessage() method, 512
Warp() method, GraphicsPath class, 1149
WAT (Website Administration Tool),

206–207, 1094–1095
Watch window, Visual Studio, 72, 73,

1187, 1189
watch windows, Visual Studio, 73
WCF (Windows Communication Foundation),

13, 37, 44, 184, 1243, 1440, 1484
web applications

and DataSet, 334–335
security in, 841

Web Author role, 986
web control model, 105
web controls, 62, 129, 146

extending, 1127–1133
composite, 1127–1129
creating labels for specific data, 1130
derived, 1130–1133

that support style properties, creating,
1108–1111

Web Deploy feature, 807
Web Deployment model, 802
Web Deployment Tool option, 801

Web Development Helper tool, 74–76, 87, 127
web forms, 12

and Model-View-Controller (MVC), 1363
overview, 77
Page class, 112–128

accessing HTTP context in another class,
127–128

Request object, 113
Response object, 114–118
Server object, 118–120
Session, Application, and Cache

objects, 112
Trace object, 121–127
User object, 121

page processing, 78–97
ASP.NET event model, 81–82
automatic postbacks, 82–83
client-side control IDs, 94–97
dynamic user interface, 80–81
HTML forms, 78–80
view state, 84–88
XHTML compliance, 88–94

pages as control containers, 104–111
dynamic control creation, 110–111
page header, 109
showing control tree, 104–108

processing stages, 97–103
automatic data binding, 100–101
cleanup stage, 101
event handling, 100
page framework initialization, 98
PageFlow example, 101–103
user code initialization, 99
validation, 99

Web forms (.aspx files), 184
Web Management Service, Services

tool, 801
web methods

creating, 1245–1248
placing in pages, 1250–1251

web package feature, Visual Studio, 64
web packages, ASP.NET 4, 17
web pages. See also websites

designing, 28–35
absolute positioning, 29–30
HTML tables, 32–33
smart tags, 30
static HTML tags, 31–32
structuring HTML markup, 33–35

embedding dynamic graphics in,
1154–1162

custom controls that use GDI+,
1158–1162

■ INDEX

1570

web pages (continued)
embedding dynamic graphics in

(continued)
passing information to dynamic images,

1155–1158
using PNG format, 1155

web part pages, 1303–1361
adding to pages, 1309–1313
connecting, 1341–1350

communication contracts, 1343
consumer, 1345–1347
dynamically configuring connection

points, 1348
multiple connection points,

1349–1350
provider, 1343–1345
static connections between, 1347–1348

creating, 1316–1361
authorizing, 1360
custom verbs, 1350–1351
customization steps, 1333
editors, 1335–1340
final rendering, 1332–1333
initializing, 1328–1329
loading data and processing events,

1330–1332
personalization, 1360–1361
tasks, 1316–1325
typed DataSets, 1326–1328
uploading web parts dynamically,

1354–1358
user controls, 1351–1354
using, 1334

creating page design, 1306–1307
customizing page, 1313–1315
portal pages, 1304–1305
WebPartManager and WebPartZone

controls, 1307–1308
Web parts controls, 130
Web Parts toolbox, Visual Studio, 1305
Web Platform Installer (WebPI), 791
Web Platform tab, WebPI, 792, 793, 801, 810
web project, 25
web projects, 22–23, 63–68

creating, 64–65
development, 63–64
migrating websites from previous

versions, 66–68
web references, adding, 1484
web server controls, 142–155

classes, 145–146
Color property, 148
default button, 151–152

enumerations, 147–148
Focus method, 150–151
Font property, 148–149
handling events, 154–155
scrollable panels, 152–153
units, 147
WebControl Base class, 143–144

Web Server section, WebPI, 792
Web Service template, Visual Studio, 1244
web services, 1243–1250, 1483–1489

adding web references, 1484
calling, 1248–1250, 1485–1487
configuring URL, 1487
creating, 1244–1245, 1484
creating web methods, 1245–1248
cross-domain calls, 1488–1489
cross-domain web service calls,

1488–1489
Web services (.asmx files), 184
Web Site command, Open menu, 66
WebBrowsable attribute, 1328
[WebBrowsable] attribute, 1337
WebBrowsableObject property, 1340
[WebBrowsable(true)] attribute, 1335
web.config file, 195–199

configuration inheritance, 197–198
hashing passwords in, 866–867
transforming, 802–806

inserting elements, 804
removing elements, 805–806
replacing sections, 805
setting an attribute, 803–804

using <location> elements, 198–199
using as credentials store, 860

WebConfigurationManager class, 203
WebConfigurationManager control, 206
WebConfigurationManager.ConnectionStri

ngs collection, 284
WebConfigurationManager.ConnectionStri

ngs property, 203
WebConfigurationManager.GetSection()

method, 203
WebConfigurationSettings class, 201
WebControl Base class, 143–144
WebControl class, 1108, 1109, 1111, 1114,

1118, 1121, 1123, 1127, 1210, 1211
WebControl constructor, 1108
WebControlAdapter class, 1118
WebControl.Font property, 148
WebCustomControl1 class, 1110
web.Debug.config, 198
WebDevHelper.dll assembly, 76
[WebDisplayName] attribute, 1337

■ INDEX

1571

WebForm_AutoFocus() method, 150
WebForm_cb.aspx file, 92
WebForm.aspx file, 92
WebHandler directive, 223
WebMethod attribute, 1246, 1251
web-page class, 46, 443, 1158
web-page framework, 1286–1291

Application class, 1286–1287
client-side AJAX control, 1288–1291
PageRequestManager class, 1287

web-page model, 60
WebPart, 1340
WebPart class, 1306, 1316, 1317, 1333, 1337,

1343, 1345, 1357
WebPart control, 1319
WebPart control class, 1340
WebPart controls, Controls collection, 1319
.WebPart file, 1356, 1357, 1358
WebPartAuthorizationEventArgs

structure, 1360
WebPartDisplayMode item, 1314
WebPartExportMode property type, 1355
WebPartManager class, 1313, 1314, 1317,

1320, 1347, 1348, 1360, 1361
WebPartManager control, 1305, 1307–1308,

1312, 1313
<WebPartManager> control tag, .aspx

page, 1343
WebParts collection property, 1317
WebParts collection, WebPartManager

class, 1317
WebParts section, Visual Studio

Toolbox, 1307
WebParts Toolbox Tab, 39
<webParts> element, 1360
WebPartToEdit property, 1339
WebPartVerb class, 1350, 1351
WebPartVerbCollection class, 1351
WebPartZone control, 1305, 1306, 1307–1308,

1310, 1354
WebPI (Web Platform Installer), 791
web.Release.config, 198
WebResource attribute, 1185, 1211
WebResource.axd extension, 150
WebService attribute, 1245
WebService directive, 1244
WebServiceBinding attribute, 1245
WebServiceCallback_PageMethods web

page, 1251
Website Administration Tool (WAT), 206–207,

1094–1095
website deployment, 791–831

by copying files, 796–800

configuring deployment, 799–800
deploying websites, 797–798
preparing IIS, 796
websites, 797

extending integrated pipeline, 828–831
configuring handler, 829–830
creating handler, 828
deploying handler, 829
testing handler, 830–831

FTP deployment, 809–816
deploying project-less website, 813–816
deploying websites, 811–813
preparing IIS, 810–811
websites, 811

installing and configuring IIS, 791–795
installing IIS 7, 791–793
managing IIS 7, 793–795

managing websites, 817–828
assigning applications to application

pools, 825–826
configuring application warm-up,

827–828
creating new application pools, 825
creating new site, 817–818
creating virtual directories, 818–819
preparing IIS 7, 827
starting and stopping application

pools, 826
using application pools, 823–826
using application warm-up feature,

826–828
using side-by-side executions, 826
using VirtualPathProvider class,

819–822
preparing IIS, 801
publishing databases, 806–807
transforming web.config, 802–806

inserting elements, 804
removing elements, 805–806
replacing sections, 805
setting attributes, 803–804

websites, 801–809
website navigation, 735–789

Menu control, 783–789
styles, 786–787
templates, 788–789

pages with multiple views, 736–750
MultiView control, 736–741
Wizard control, 741–750

site maps, 750–771
adding custom information, 762
binding to, 753–754
breadcrumb navigation, 754–756

■ INDEX

1572

website navigation (continued)
site maps (continued)

creating custom SiteMapProvider class,
763–770

defining, 752
objects, 760–761
security trimming feature, 770–771
showing portions of, 757–760

TreeView control, 774–783
populating nodes on demand, 778–779
styles, 779–783
TreeNode object, 775–777

URL mapping, 772–773
URL routing, 773–774

WebsiteDeployment directory, 796, 811, 813
websites, 22–23. See also web pages

layout, standardizing, 720
migrating from previous versions, 66–68
projectless, creating, 23–27

development language, 24
Framework version, 24–25
location, 26–27
templates, 25–26

well-formed XML, 620
WF (Windows Workflow Foundation), 13
What's New? tab, WebPI, 827
When Hit option, breakpoint right-click

menu, 74
WHERE clause, 322, 330, 343, 348, 381, 430,

472, 500
Where item, EntityDataSource Properties

window, 607
Where() method, 578
Where property, EntityDataSource, 608
WhereIterator<T> class, 565, 566, 567
Widen() method, GraphicsPath class, 1149
Widgets namespace, 1455
Widgets.dll assembly, 1455
Width property, 144

cmdGrow button, 1472
ColumnDefinition object, 1468
Pens class, 1150

wildcards, 536–537, 540, 861, 965
Win16 property, HttpBrowserCapabilities

class, 1116
Win32 property, HttpBrowserCapabilities

class, 1116
WindowHeight property, PopUp

control, 1206
window.open() function, 1206
windows

document, 38, 56
Error List and Task List, 39–41

pop-up, 1205–1209
Server Explorer, 41
Solution Explorer, 37–38
Toolbox, 38–39

Windows administrator, 971
Windows application event log, 232
Windows authentication, 841, 853, 855,

933–962, 963, 965, 968, 970, 988
impersonation, 956–962

configured, 958–959
and delegation, 956–958
getting tokens, 959–960
performing, 960
programmatic, 959–962

implementing, 942–955
accessing Windows user information,

950–955
configuring ASP.NET, 944
configuring IIS 7.x, 942–944
denying access to anonymous users,

948–950
IdentityReference and role information,

954–955
IIS 7.x pipeline, 945–948
WindowsIdentity class, 952–953
WindowsPrincipal class, 951–952

mechanisms for, 935–942
Basic authentication, 936–937
Digest authentication, 937
Integrated Windows authentication,

937–942
Kerberos authentication, 939–942
NT LAN Manager authentication, 938

overview, 933–942
uses for, 933–935
using Roles API with, 984–986

Windows Communication Foundation (WCF),
13, 37, 44, 184, 1243, 1440, 1484

Windows Features dialog box, 26
Windows Internet Explorer section, Visual

Studio, 1187
Windows Media Audio (WMA), 1440
Windows Media Video (WMV7-9), 1440
Windows Presentation Foundation (WPF),

13, 17, 1437
Windows Server. SharePoint, 986
Windows SharePoint Services.

SharePoint, 986
Windows submenu, Visual Studio Debug

menu, 73
Windows Workflow Foundation

(WF), 13
WindowsAuthentication module, 945

■ INDEX

1573

WindowsAuthenticationModule module,
944, 945

WindowsBuiltInRole enumeration, 951,
952, 971

WindowsBuiltInRole types, 951
window.setInterval() method, 1191
WindowsIdentity class, 951, 952–953, 960
WindowsIdentity.GetCurrent() method, 961
WindowsIdentity.Impersonate() method,

959, 960
WindowsIdentity.Token property, 959
WindowsImpersonationContext object,

959, 960
WindowsPrincipal class, 951–952, 971
WindowsTokenRoleProvider class, 978, 984
WindowWidth property, PopUp

control, 1206
Wizard control

events, 745–746
overview, 741
steps, 742–744
styles, templates, and layout, 747–750

wizard interface, 883
Wizard.ActiveStepIndex property, 744
Wizard.DisplaySideBar property, 741
Wizard.GetHistory() method, 747
WMA (Windows Media Audio), 1440
WMV7-9 (Windows Media Video), 1440
World Wide Web Consortium (W3C), 618
WPF (Windows Presentation Foundation),

13, 17, 1437
wrapper class, 1386
wrapping query strings, 1054–1057
Write() method, 116, 547, 557, 1102,

1103, 1114
writeAccessProperties attribute, 1257, 1258
WriteAllBytes() method, 529
WriteAllLines() method, 529
WriteAllText() method, 529
WriteAttribute() method, 1103, 1104
WriteAttributeString() method, 628
WriteBeginTag() method, 1103, 1104
WriteComment() method, 625
WriteElementString() method, 626
WriteEmployeesList() method, 331
WriteEndElement() method, 626
WriteEndTag() method, HtmlTextWriter

class, 1104
WriteFile() method, HttpResponse

class, 116
WriteLine() method, 547
WriteStartDocument() method, 625
WriteStartElement() method, 628

WriteSubstitution() method, 485
writeToDiagnosticsTrace attribute, Tracing

Options, 126
WriteXml() method, 337
WriteXML() method, 624, 627, 673
WriteXml() method, 673
WriteXmlSchema() method, 337, 673
writing

client-side scripts, 1228–1229
sections programmatically, 203–205
XML files, 624–627

■ X
X509Certificate class, 1030, 1031
X509Certificate2 class, 1030, 1031
X509CertificateCollection class, 1031
X509Store class, 1031
XAML (Extensible Application Markup

Language)
code-behind, 1456–1457
understanding, 1454

XAttribute class, 638, 641
XDocument, 638–643

creating XML with, 638–640
namespaces, 642–643
reading XML with, 640–642
searching with LINQ, 649–651
validating XML content, 654

XDocument.Elements() method, 641
XDocument.Load() method, 640
XDocument.Save() method, 640
XElement class, 638, 641
XElement object, 650
XElement.Descendants() method, 650
XElement.Element() method, 642, 649
XElement.Elements() method, 649, 650
XHTML (Extensible Hypertext Markup

Language) compliance, 88–94
configuring rendering, 90–92
default doctype, 92
document type definitions, 89–90
validation, 93–94

<xhtmlConformance> element, 91, 92
<xhtmlConformance> setting, 91, 92
XhtmlTextWriter class, 1113
XML (Extensible Markup Language), 335,

617–678
ADO.NET DataSet, 672–678
advantages, 619–620
binding to XML files, 1174–1176
data binding, 660–672

binding to XML content from other
sources, 671–672

■ INDEX

1574

XML (continued)
data binding (continued)

hierarchical binding with TreeView,
667–669

nested grids, 665–666
nonhierarchical binding, 660–662
updating XML through XmlData-

Source, 672
XPath, 662–665

XSLT, 669–671
in-memory XML processing, 631–643

XDocument, 638–643
XmlDocument, 632–636
XPathNavigator, 636–638

namespaces, 621–622
schemas, 622–623
searching content, 643–651

XDocument with LINQ, 649–651
with XmlDocument, 644–646
XmlDocument with XPath, 646–648

stream-based XML processing, 624–630
reading XML files, 628–630
writing XML files, 624–627

transforming content, 654–660
basic stylesheet, 655–656
transforming XML with LINQ to XML,

658–660
Xml control, 657–658
XslCompiledTransform, 656–657

validating content, 651–654
basic schema, 651
validating with XDocument, 654
validating with XmlDocument,

652–653
well-formed XML, 620
when to use, 617–618

Xml control, 177, 657–658, 1130
XML DOM (Document Object Model), 631
XML namespace, <html> element, 90
Xml option, 1007
XmlAttribute, 1010
XMLBinding.aspx file, 1175
XmlDataDocument class, 676
XmlDataDocument.DataSet property, 676
XmlDataSource control, 369, 478, 498, 660,

671, 672, 777
XmlDataSource.Data property, 671
XmlDataSource.DataFile property, 671
XmlDataSource.GetHierarchicalView()

method, 667
XmlDataSource.GetXmlDocument()

method, 661, 672
XmlDataSource.Save() method, 672
XmlDataSource.XPath property, 665

XmlDocument, 632–636
searching with XPath, 646–648
searching XML content with, 644–646
validating XML content, 652–653

XmlDocument class, 624, 628, 631, 645, 654
XmlDocument object, 634, 661
XmlDocument.ChildNodes property, 632
XmlDocument.CreateNavigator()

method, 636
XmlDocument.GetElementsByTagName()

method, 644, 646, 649
XmlDocument.Load() method, 634
XmlDocument.Nodes collection, 661
XmlDocument.Save() method, 640
XmlDownloadResolver object, 634
XmlElement class, 645, 1010
XmlElement.Element() method, 643
XmlElement.GetElementsByTagName()

method, 645
XMLHttpRequest object, 15, 433, 1218–

1220, 1224, 1231, 1243, 1261, 1262
handling responses, 1220
sending requests, 1219

XmlIgnore, 1010
XmlLabel control, 1131, 1132
XmlMembershipProvider class, 1064, 1072,

1073, 1079, 1093
XmlNode, 1246
XmlNodeList object, 634
XmlNode.Nodes collection, 661
XmlNodeType property, 637
XmlReader class, 1459
XmlReader.Create() method, 652
XmlReaderSettings object, 652
XmlReaderSettings.Schemas.Add()

method, 652
XmlRoleProvider class, 1064, 1086–1092, 1093
XmlSerialization, 1010
XmlSerializer class, 1009, 1010, 1063, 1066,

1067, 1072
XmlSiteMapProvider class, 752, 773
XmlSiteMapProvider control, 751, 752
XmlTextReader class, 624, 652, 1063
XmlTextReader.Read() method, 628
XmlTextWriter class, 624, 1063
XmlUrlResolver object, 634
XmlValidation.aspx page, 653
XmlWriter class, 1459
XNamespace class, 643
XNamespace object, 642
XPath, 662–665
XPathNavigator class, 628, 631, 636–638, 641
XPathNodeType property, 637
XPathSelect() method, 666

■ INDEX

1575

XSL (Extensible Stylesheet Language), 654
XSL Transformations (XSLT), 89, 669–671
XslCompiledTranform.Transform()

method, 656
XslCompiledTransform class, 656–657
XSLT (XSL Transformations), 89, 669–671
XslTransform object, 658

■ Y
YouDataContextType property, 1400

■ Z
ZIndex property, 1460, 1461, 1462
Zone property, WebPart Class, 1319
ZoneIndex property, WebPart Class, 1319
ZoneTemplate, 1311, 1316, 1354

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Introduction
	What Does This Book Cover?
	Who Is This Book For?
	What Do You Need to Use This Book?
	Customer Support

	Part 1: Core Concepts
	Introducing ASP.NET
	The Seven Pillars of ASP.NET
	#1: ASP.NET Is Integrated with the .NET Framework
	#2: ASP.NET Is Compiled, Not Interpreted
	#3: ASP.NET Is Multilanguage
	#4: ASP.NET Is Hosted by the Common Language Runtime
	#5: ASP.NET Is Object-Oriented
	#6: ASP.NET Supports all Browsers
	#7: ASP.NET Is Easy to Deploy and Configure

	The Evolution of ASP.NET
	ASP.NET 1.0 and 1.1
	ASP.NET 2.0
	ASP.NET 3.5
	LINQ
	ASP.NET AJAX
	ASP.NET 4
	ASP.NET MVC
	ASP.NET Dynamic Data
	Silverlight

	Summary

	Visual Studio
	Introducing Visual Studio
	Websites and Web Projects
	Creating a Projectless Website
	The Development Language
	The Framework Version
	The Template
	The Location
	Designing a Web Page
	Absolute Positioning
	Smart Tags
	Static HTML Tags
	HTML Tables
	Structuring HTML Markup

	The Visual Studio IDE
	Solution Explorer
	Document Window
	Toolbox
	Error List and Task List
	Server Explorer

	The Code Editor
	Adding Assembly References
	IntelliSense and Outlining
	Outlining
	Member List
	Error Underlining
	Visual Studio 2010 Improvements
	IntelliSense Gets More Intelligent
	New Tools for Search and Navigation
	Draggable Document Windows

	The Code Model
	How Code-Behind Files Are Connected to Pages
	How Control Tags Are Connected to Page Variables
	How Events Are Connected to Event Handlers

	Web Projects
	Project-Based Development
	Creating a Web Project
	Migrating a Website from a Previous Version of Visual Studio

	Visual Studio Debugging
	Single-Step Debugging
	Variable Watches
	Advanced Breakpoints

	The Web Development Helper
	Summary

	Web Forms
	Page Processing
	HTML Forms
	Dynamic User Interface
	The ASP.NET Event Model
	Automatic Postbacks
	Automatic Postbacks “Under the Hood”
	View State
	View State “Under the Hood”
	View State Chunking
	XHTML Compliance
	Document Type Definitions
	Configuring XHTML Rendering
	Visual Studio’s Default Doctype
	XHTML Validation
	Client-Side Control IDs

	Web Forms Processing Stages
	Page Framework Initialization
	User Code Initialization
	Validation
	Event Handling
	Automatic Data Binding
	Cleanup
	A Page Flow Example

	The Page As a Control Container
	Showing the Control Tree
	The Page Header
	Dynamic Control Creation

	The Page Class
	Session, Application, and Cache
	Request
	Response
	Moving Between Pages
	Server
	HTML and URL Encoding
	User
	Trace
	Application Tracing
	Tracing with the Web Development Helper
	Accessing the HTTP Context in Another Class

	Summary

	Server Controls
	Types of Server Controls
	The Server Control Hierarchy

	HTML Server Controls
	The HtmlControl Class
	The HtmlContainerControl Class
	The HtmlInputControl Class
	The HTML Server Control Classes
	Setting Style Attributes and Other Properties
	Programmatically Creating Server Controls
	Handling Server-Side Events
	The ServerClick and ServerChange Events

	Web Controls
	The WebControl Base Class
	Basic Web Control Classes
	Units
	Enumerations
	Colors
	Fonts
	Focus
	The Default Button
	Scrollable Panels
	Handling Web Control Events
	The Click Event and the ImageButton Control

	The List Controls
	The Selectable List Controls
	The BulletedList Control

	Input Validation Controls
	The Validation Controls
	The Validation Process
	The BaseValidator Class
	The RequiredFieldValidator Control
	The RangeValidator Control
	The CompareValidator Control
	The RegularExpressionValidator Control
	The CustomValidator Control
	The ValidationSummary Control
	Using the Validators Programmatically
	Validation Groups

	Rich Controls
	The AdRotator Control
	The Calendar Control

	Summary

	ASP.NET Applications
	Anatomy of an ASP.NET Application
	The Application Domain
	Application Lifetime
	Application Updates
	Application Directory Structure

	The global.asax Application File
	Application Events
	Demonstrating Application Events

	ASP.NET Configuration
	The machine.config File
	<machineKey>
	The web.config File
	Configuration Inheritance
	Using <location> Elements
	<system.web>
	<system.webServer>
	<appSettings>
	<connectionStrings>
	Reading and Writing Configuration Sections Programmatically
	The Website Administration Tool (WAT)
	Extending the Configuration File Structure
	Creating a Section Class
	Registering a Section Class
	Encrypting Configuration Sections
	Programmatic Encryption
	Command-Line Encryption

	.NET Components
	Creating a Component
	Using a Component Through the App_Code Directory
	Using a Component Through the Bin Directory

	Extending the HTTP Pipeline
	HTTP Handlers
	Creating a Custom HTTP Handler
	Configuring a Custom HTTP Handler
	Using Configuration-Free HTTP Handlers
	Creating an Advanced HTTP Handler
	Creating an HTTP Handler for Non-HTML Content
	HTTP Modules
	Creating a Custom HTTP Module

	Summary

	State Management
	ASP.NET State Management
	View State
	A View State Example
	Storing Objects in View State
	Assessing View State
	Selectively Disabling View State
	View State Security

	Transferring Information Between Pages
	The Query String
	Using the Query String
	URL Encoding
	Cross-Page Posting
	Getting Page-Specific Information
	Performing Cross-Page Posting in Any Event Handler
	The IsPostBack and IsCrossPagePostBack Properties
	Cross-Page Posting and Validation

	Cookies
	Session State
	Session Architecture
	Using Session State
	Configuring Session State
	Mode
	Compression
	Cookieless
	Timeout
	Securing Session State

	Application State
	Static Application Variables

	Summary

	Part 2: Data Access
	ADO.NET Fundamentals
	The ADO.NET Architecture
	ADO.NET Data Providers
	Standardization in ADO.NET
	Fundamental ADO.NET Classes

	The Connection Class
	Connection Strings
	User Instance Connections
	Testing a Connection
	Connection Pooling

	The Command and DataReader Classes
	Command Basics
	The DataReader Class
	The ExecuteReader() Method and the DataReader
	Null Values
	CommandBehavior
	Processing Multiple Result Sets
	The ExecuteScalar() Method
	The ExecuteNonQuery() Method
	SQL Injection Attacks
	Using Parameterized Commands
	Calling Stored Procedures

	Transactions
	Transactions and ASP.NET Applications
	Stored Procedure Transactions
	Client-Initiated ADO.NET Transactions
	Isolation Levels
	Savepoints

	Provider-Agnostic Code
	Creating the Factory
	Create Objects with Factory
	A Query with Provider-Agnostic Code

	Summary

	Data Components and the DataSet
	Building a Data Access Component
	The Data Package
	The Stored Procedures
	The Data Utility Class
	Concurrency Strategies
	Testing the Database Component

	Disconnected Data
	Web Applications and the DataSet
	XML Integration

	The DataSet
	The DataAdapter Class
	Filling a DataSet
	Working with Multiple Tables and Relationships
	Searching for Specific Rows
	Using the DataSet in a Data Access Class
	Data Binding

	The DataView Class
	Sorting with a DataView
	Filtering with a DataView
	Advanced Filtering with Relationships
	Calculated Columns

	Summary

	Data Binding
	Basic Data Binding
	Single-Value Binding
	Other Types of Expressions
	Custom Expression Builders
	Repeated-Value Binding
	Binding to a DataReader
	The Rich Data Controls
	Binding to a DataView

	Data Source Controls
	The Page Life Cycle with Data Binding

	The SqlDataSource
	Selecting Records
	Data Binding “Under the Hood”
	Parameterized Commands
	Stored Procedures
	More Parameter Types
	Handling Errors
	Updating Records
	Strict Concurrency Checking
	Updating with Stored Procedures
	Deleting Records
	Inserting Records
	Disadvantages of the SqlDataSource

	The ObjectDataSource
	Selecting Records
	Using a Parameterized Constructor
	Using Method Parameters
	Updating Records
	Updating with a Data Object
	Dealing with Nonstandard Method Signatures
	Handling Identity Values in an Insert

	The Limits of the Data Source Controls
	The Problem
	Adding the Extra Items
	Handling the Extra Options with the SqlDataSource
	Handling the Extra Options with the ObjectDataSource

	Summary

	Rich Data Controls
	The GridView
	Defining Columns

	Formatting the GridView
	Formatting Fields
	Styles
	Defining Styles
	Configuring Styles with Visual Studio
	Formatting-Specific Values

	GridView Row Selection
	Using Selection to Create a Master-Details Form
	The SelectedIndexChanged Event
	Using a Data Field As a Select Button

	Sorting the GridView
	Sorting with the SqlDataSource
	Sorting with the ObjectDataSource
	Sorting and Selection
	Advanced Sorting

	Paging the GridView
	Automatic Paging
	Paging and Selection
	Custom Pagination with the ObjectDataSource
	Counting the Records
	A Stored Procedure to Get Paged Records
	The Paged Selection Method
	Customizing the Pager Bar

	GridView Templates
	Using Multiple Templates
	Editing Templates in Visual Studio
	Binding to a Method
	Handling Events in a Template
	Editing with a Template
	Editing with Advanced Controls
	Editing Without a Command Column
	Client IDs in Templates

	The ListView
	Grouping
	Paging

	The DetailsView and FormView
	The DetailsView
	Defining Fields
	Record Operations
	The FormView

	Advanced Grids
	Summaries in the GridView
	A Parent/Child View in a Single Table
	Editing a Field Using a Lookup Table
	Serving Images from a Database
	Displaying Binary Data
	Reading Binary Data Efficiently
	Integrating Images with Other Content
	Detecting Concurrency Conflicts

	Summary

	Caching and Asynchronous Pages
	Understanding ASP.NET Caching
	Output Caching
	Declarative Output Caching
	Caching and the Query String
	Caching with Specific Query String Parameters
	Custom Caching Control
	Caching with the HttpCachePolicy Class
	Post-Cache Substitution and Fragment Caching
	Fragment Caching
	Post-Cache Substitution
	Cache Profiles
	Cache Configuration
	Output Caching Extensibility
	Building a Custom Cache Provider
	Using a Custom Cache Provider

	Data Caching
	Adding Items to the Cache
	A Simple Cache Test
	Cache Priorities
	Caching with the Data Source Controls
	Caching with SqlDataSource
	Caching with ObjectDataSource

	Cache Dependencies
	File and Cache Item Dependencies
	Aggregate Dependencies
	The Item Removed Callback
	Understanding SQL Cache Notifications
	How Cache Notifications Work
	Enabling Notifications
	Creating the Cache Dependency

	Custom Cache Dependencies
	A Basic Custom Cache Dependency
	A Custom Cache Dependency Using Message Queues

	Asynchronous Pages
	Creating an Asynchronous Page
	Querying Data in an Asynchronous Page
	Handling Errors
	Using Caching with Asynchronous Tasks
	Multiple Asynchronous Tasks and Timeouts

	Summary

	Files and Streams
	Working with the File System
	The Directory and File Classes
	The DirectoryInfo and FileInfo Classes
	The DriveInfo Class
	Working with Attributes
	Filter Files with Wildcards
	Retrieving File Version Information
	The Path Class
	A File Browser

	Reading and Writing Files with Streams
	Text Files
	Binary Files
	Uploading Files
	Making Files Safe for Multiple Users
	Creating Unique Filenames
	Locking File Access Objects
	Compression

	Serialization
	Summary

	LINQ
	LINQ Basics
	Deferred Execution
	How LINQ Works
	LINQ Expressions
	Projections
	Filtering and Sorting
	Grouping and Aggregation
	LINQ Expressions “Under the Hood”
	Extension Methods
	Lambda Expressions
	Multipart Expressions

	LINQ to DataSet
	Typed DataSets
	Null Values

	LINQ to Entities
	Generating the Data Model
	The Data Model Classes
	The Derived Object Context Class
	The Entity Classes
	Entity Relationships
	One-to-Many Relationships
	One-to-One Relationships
	Querying Stored Procedures
	LINQ to Entities Queries “Under the Hood”
	Filtering Too Late
	Using Lazy and Eager Data Loading
	Using Explicit Loading
	Compiling Queries

	Database Operations
	Inserts
	Creating Partially Populated Entity Classes
	Inserting Associated Entities
	Updates
	Deletes
	Managing Concurrency
	Handling Concurrency Conflicts

	The EntityDataSource Control
	Displaying Data
	Getting Related Data
	Editing Data
	Validation

	Using the QueryExtender Control
	Using a SearchExpression
	Using a RangeExpression
	Using a PropertyExpression
	Using a MethodExpression

	Summary

	XML
	When Does Using XML Make Sense?
	An Introduction to XML
	The Advantages of XML
	Well-Formed XML
	XML Namespaces
	XML Schemas

	Stream-Based XML Processing
	Writing XML Files
	Reading XML Files

	In-Memory XML Processing
	The XmlDocument
	The XPathNavigator
	The XDocument
	Creating XML with XDocument
	Reading XML with XDocument
	Namespaces

	Searching XML Content
	Searching with XmlDocument
	Searching XmlDocument with XPath
	Searching XDocument with LINQ

	Validating XML Content
	A Basic Schema
	Validating with XmlDocument
	Validating with XDocument

	Transforming XML Content
	A Basic Stylesheet
	Using XslCompiledTransform
	Using the Xml Control
	Transforming XML with LINQ to XML

	XML Data Binding
	Nonhierarchical Binding
	Using XPath
	Nested Grids
	Hierarchical Binding with the TreeView
	Using XSLT
	Binding to XML Content from Other Sources
	Updating XML Through the XmlDataSource

	XML and the ADO.NET DataSet
	Converting the DataSet to XML
	Accessing a DataSet As XML

	Summary

	Part 3: Building ASP.NET Websites
	User Controls
	User Control Basics
	Creating a Simple User Control
	Converting a Page to a User Control

	Adding Code to a User Control
	Handling Events
	Adding Properties
	Using Custom Objects
	Adding Events
	Exposing the Inner Web Control

	Dynamically Loading User Controls
	Portal Frameworks

	Partial Page Caching
	VaryByControl
	Sharing Cached Controls

	Summary

	Themes and Master Pages
	Cascading Style Sheets
	Creating a Stylesheet
	Applying Stylesheet Rules

	Themes
	Theme Folders and Skins
	Applying a Simple Theme
	Handling Theme Conflicts
	Creating Multiple Skins for the Same Control
	Skins with Templates and Images
	Using CSS in a Theme
	Applying Themes Through a Configuration File
	Applying Themes Dynamically

	Standardizing Website Layout
	Master Page Basics
	A Simple Master Page
	A Simple Content Page
	Default Content
	Master Pages with Tables and CSS Layout
	Master Pages and Relative Paths
	Applying Master Pages Through a Configuration File

	Advanced Master Pages
	Interacting with the Master Page Class
	Dynamically Setting a Master Page
	Nesting Master Pages

	Summary

	Website Navigation
	Pages with Multiple Views
	The MultiView Control
	The Wizard Control
	Wizard Steps
	Wizard Events
	Wizard Styles, Templates, and Layout

	Site Maps
	Defining a Site Map
	Binding to a Site Map
	Breadcrumbs
	Showing a Portion of the Site Map
	Skipping the Root Node
	Starting from the Current Node
	Starting from a Specific Node
	The Site Map Objects
	Adding Custom Site Map Information
	Creating a Custom SiteMapProvider
	Storing Site Map Information in a Database
	Creating the Site Map Provider
	Adding Sorting
	Adding Caching
	Security Trimming

	URL Mapping and Routing
	URL Mapping
	URL Routing

	The TreeView Control
	The TreeNode
	Populating Nodes on Demand
	TreeView Styles
	Applying Styles to Node Types
	Applying Styles to Node Levels
	TreeView Images

	The Menu Control
	Menu Styles
	Menu Templates

	Summary

	Website Deployment
	Installing and Configuring IIS
	Installing IIS 7
	Managing IIS 7

	Deploying a Website
	Deploying by Copying Files
	Preparing IIS
	The Website
	Deploying the Website
	Configuring the Deployment
	Using Web Deployment
	Preparing IIS
	The Website
	Transforming web.config
	Publishing Databases
	Deploying the Website
	Using FTP Deployment
	Preparing IIS
	The Website
	Deploying the Website
	Variation: Deploying a Project-less Website

	Managing a Website
	Creating a New Site
	Creating Virtual Directories
	Using the VirtualPathProvider
	Using Application Pools
	Creating a New Application Pool
	Assigning an Application to an Application Pool
	Starting and Stopping an Application Pool
	Using Side-by-Side Execution
	Using Application Warm-Up
	Preparing IIS 7
	Configuring Application Warm-Up

	Extending the Integrated Pipeline
	Creating the Handler
	Deploying the Handler
	Configuring the Handler
	Testing the Handler

	Summary

	Part 4: Security
	The ASP.NET Security Model
	What It Means to Create Secure Software
	Understanding Potential Threats
	Secure Coding Guidelines
	Understanding Gatekeepers

	Understanding the Levels of Security
	Authentication
	Impersonation
	Authorization
	Confidentiality and Integrity
	Pulling It All Together

	Understanding Secure Sockets Layer
	Understanding Certificates
	Understanding SSL
	Configuring SSL in IIS 7.x
	Configuring Bindings for SSL
	Encoding Information with SSL

	Summary

	Forms Authentication
	Introducing Forms Authentication
	Why Use Forms Authentication?
	Controlling the Authentication Code
	Controlling the Appearance of the Login Form
	Working with a Range of Browsers
	Storing User Information
	Why Would You Not Use Forms Authentication?
	Creating Your Own Login Interface
	Maintaining User Details
	Intercepting Network Traffic
	Why Not Implement Cookie Authentication Yourself?
	Keeping the Authentication Cookie Secure
	Forms Authentication Is Well Tested
	Integrating with the ASP.NET Security Framework
	The Forms Authentication Classes

	Implementing Forms Authentication
	Configuring Forms Authentication
	Credentials Store in web.config
	Denying Access to Anonymous Users
	Creating a Custom Login Page
	Logging Out
	Hashing Passwords in web.config
	Cookieless Forms Authentication
	Custom Credentials Store
	Persistent Cookies in Forms Authentication

	IIS 7.x and Forms Authentication
	Summary

	Membership
	Introducing the ASP.NET Membership API
	Using the Membership API
	Configuring Forms Authentication
	Creating the Data Store
	Database Scripts for ASP.NET Services
	File-Based SQL Server Store
	Configuring Connection String and Membership Provider
	Creating and Authenticating Users

	Using the Security Controls
	The Login Control
	Templates and the Login Control
	Programming the Login Control
	The LoginStatus Control
	The LoginView Control
	The PasswordRecovery Control
	PasswordRecovery Templates
	The ChangePassword Control
	The CreateUserWizard Control

	Configuring Membership in IIS 7.x
	Configuring Providers and Users
	Using the Membership API with Other Applications

	Using the Membership Class
	Retrieving Users from the Store
	Updating Users in the Store
	Creating and Deleting Users
	Validating Users

	Summary

	Windows Authentication
	Introducing Windows Authentication
	Why Use Windows Authentication?
	Why Would You Not Use Windows Authentication?
	Mechanisms for Windows Authentication
	Basic Authentication
	Digest Authentication
	Integrated Windows Authentication

	Implementing Windows Authentication
	Configuring IIS 7.x
	Configuring ASP.NET
	Deeper Into the IIS 7.x Pipeline
	Denying Access to Anonymous Users
	Accessing Windows User Information
	The WindowsPrincipal Class
	The WindowsIdentity Class
	IdentityReference and Role Information

	Impersonation
	Impersonation and Delegation in Windows
	Configured Impersonation
	Programmatic Impersonation
	Getting a Token
	Performing the Impersonation

	Summary

	Authorization and Roles
	URL Authorization
	Authorization Rules
	Controlling Access for Specific Users
	Controlling Access to Specific Directories
	Controlling Access to Specific Files
	Controlling Access for Specific Roles

	File Authorization
	Authorization Checks in Code
	Using the IsInRole() Method
	Using the PrincipalPermission Class
	Merging PrincipalPermission Objects
	Using the PrincipalPermission Attribute

	Using the Roles API for Role-Based Authorization
	Using the LoginView Control with Roles
	Accessing Roles Programmatically
	Using the Roles API with Windows Authentication

	Authorization and Roles in IIS 7.x
	Authorization with ASP.NET Roles in IIS 7.x
	Managing ASP.NET Roles with IIS 7.x

	Summary

	Profiles
	Understanding Profiles
	Profile Performance
	How Profiles Store Data
	Profiles and Authentication
	Profiles vs. Custom Data Components

	Using the SqlProfileProvider
	Creating the Profile Tables
	Configuring the Provider
	Defining Profile Properties
	Using Profile Properties
	Profile Serialization
	Profile Groups
	Profiles and Custom Data Types
	Custom Type Serialization
	Automatic Saves
	The Profiles API
	Anonymous Profiles
	Migrating Anonymous Profiles

	Custom Profile Providers
	The Custom Profile Provider Classes
	Designing the FactoredProfileProvider
	Coding the FactoredProfileProvider
	Initialization
	Reading Profile Information
	Updating Profile Information
	Testing the FactoredProfileProvider

	Summary

	Cryptography
	Encrypting Data: Confidentiality Matters
	The .NET Cryptography Namespace
	Understanding the .NET Cryptography Classes
	Symmetric Encryption Algorithms
	Asymmetric Encryption
	The Abstract Encryption Classes
	The ICryptoTransform Interface
	The CryptoStream Class

	Encrypting Sensitive Data
	Managing Secrets
	Using Symmetric Algorithms
	Using the SymmetricEncryptionUtility Class
	Using Asymmetric Algorithms
	Encrypting Sensitive Data in a Database

	Encrypting the Query String
	Wrapping the Query String
	Creating a Test Page

	Summary

	Custom Membership Providers
	Architecture of Custom Providers
	Basic Steps for Creating Custom Providers
	Overall Design of the Custom Provider
	Designing and Implementing the Custom Store
	Implementing the Provider Classes
	Creating Users and Adding Them to the Store
	Validating Users on Login
	Using Salted Password Hashes
	The Remaining Functions of the Provider
	Implementing the XmlRoleProvider
	Using the Custom Provider Classes
	Debugging Using the WAT
	Using Custom Providers with IIS 7.x

	Summary

	Part 5: Advanced User Interface
	Custom Server Controls
	Custom Server Control Basics
	Creating a Bare-Bones Custom Control
	Using a Custom Control
	Custom Controls in the Toolbox
	Creating a Web Control That Supports Style Properties
	The Rendering Process

	Dealing with Different Browsers
	The HtmlTextWriter
	Browser Detection
	Browser Properties
	Overriding Browser Type Detection
	Adaptive Rendering

	Control State and Events
	View State
	Control State
	Postback Data and Change Events
	Triggering a Postback

	Extending Existing Web Controls
	Composite Controls
	Derived Controls
	Creating a Label for Specific Data

	Summary

	Graphics, GDI+, and Charting
	The ImageMap Control
	Creating Hotspots
	Handling Hotspot Clicks
	A Custom Hotspot

	Drawing with GDI+
	Simple Drawing
	Image Format and Quality
	The Graphics Class
	Using a GraphicsPath
	Pens
	Brushes

	Embedding Dynamic Graphics in a Web Page
	Using the PNG Format
	Passing Information to Dynamic Images
	Custom Controls That Use GDI+
	The Custom Control Class
	The Rendering Page

	Using the Chart Control
	Creating a Basic Chart
	Populating a Chart with Data
	Binding to a Database Table
	Binding to a Object DataSource
	Binding to an XML File
	Binding to LINQ

	Summary

	JavaScript and Ajax Techniques
	JavaScript Essentials
	The HTML Document Object Model
	Client-Side Events
	Adding JavaScript Attributes Declaratively
	The OnClientClick Property
	Script Blocks
	Manipulating HTML Elements
	Debugging JavaScript

	Basic JavaScript Examples
	Creating a JavaScript Page Processor
	Using JavaScript to Download Images Asynchronously
	Rendering Script Blocks

	Script Injection Attacks
	Request Validation
	Disabling Request Validation
	Extending Request Validation

	Custom Controls with JavaScript
	Pop-Up Windows
	Rollover Buttons

	Frames
	Frame Navigation
	Inline Frames

	Understanding Ajax
	The XMLHttpRequest Object
	Sending a Request
	Handling the Response
	An Ajax Example

	Using Ajax with Client Callbacks
	Creating a Client Callback
	Building the Basic Page
	Implementing the Callback
	Writing the Client-Side Script
	Disabling Event Validation
	Client Callbacks “Under the Hood”
	Client Callbacks in Custom Controls
	The DynamicPanel
	The DynamicPanelRefreshLink
	The Client Page

	Summary

	ASP.NET AJAX
	Introducing ASP.NET AJAX
	ASP.NET AJAX on the Client: The Script Libraries
	ASP.NET AJAX on the Server: The ScriptManager

	Server Callbacks
	Web Services in ASP.NET AJAX
	Creating the Web Service
	Creating the Web Method
	Calling the Web Service
	Placing a Web Method in a Page
	ASP.NET AJAX Application Services
	Authentication Service
	Role Service
	Profile Service

	ASP.NET AJAX Server Controls
	Partial Rendering with the UpdatePanel
	Handling Errors
	Conditional Updates
	Interrupted Updates
	Triggers
	Optimizing the UpdatePanel
	Timed Refreshes with the Timer
	Time-Consuming Updates with UpdateProgress
	Cancellation
	Managing Browser History
	Adding History Points
	Restoring Page State
	How State Is Stored in the URL

	Deeper into the Client Libraries
	Understanding the Client Model
	Object-Oriented Programming in JavaScript
	Closures
	Prototypes
	Registering Classes with ASP.NET AJAX
	Base Types
	Namespaces
	Inheritance
	Interfaces
	The Web-Page Framework
	The Application Class
	The PageRequestManager Class
	A Client-Side AJAX Control

	Control Extenders
	Installing the ASP.NET AJAX Control Toolkit
	The AutoCompleteExtender
	The ASP.NET AJAX Control Toolkit

	Summary

	Portals with Web Part Pages
	Typical Portal Pages
	Basic Web Part Pages
	Creating the Page Design
	WebPartManager and WebPartZone Controls
	Adding Web Parts to the Page
	Customizing the Page

	Creating Web Parts
	Simple Web Part Tasks
	Implementing the IWebPart Interface
	Developing Advanced Web Parts
	Before You Start: Creating Typed DataSets
	The Custom WebPart’s Skeleton
	Initializing the Web Part
	Loading Data and Processing Events
	The Final Rendering
	More Customization Steps
	Using the Web Part
	Web Part Editors
	Creating a Custom Editor
	Connecting Web Parts
	Defining the Communication Contract
	Implementing the Provider Web Part
	Creating the Consumer Web Part
	Static Connections Between Web Parts
	Dynamically Configuring Connection Points
	Multiple Connection Points
	Custom Verbs and Web Parts
	User Controls and Advanced Web Parts
	Uploading Web Parts Dynamically
	Authorizing Web Parts
	Final Tasks for Personalization
	Clearing Personalization

	Summary

	MVC
	Choosing Between MVC and Web Forms
	Creating a Basic MVC Application
	Creating the Model
	Creating the Controller
	Creating the Index View
	Testing the (Incomplete) Application
	Completing the Controller and Views
	Modifying the Site.Master File

	Extending the Basic MVC Application
	Configuring Routing
	Adding Error Handling
	Adding Authentication
	Consolidating Data Store Access
	Adding Support for Foreign Key Constraints

	Customizing Views
	Modifying the View
	Adding View Data

	Adding to the Model
	Validating Data
	Performing Basic Validation
	Adding Validation Annotations

	Using Action Results
	Returning JSON Data
	Calling Another Controller Method

	Summary

	Dynamic Data
	Creating a Dynamic Data Application
	Creating the Dynamic Data Site
	Exploring the Dynamic Data Site

	Understanding the Anatomy of a Dynamic Data Project
	Customizing a Dynamic Data Site
	Customizing with Templates
	Editing the Default Templates
	Creating a Custom Page Template
	Using Entity Templates
	Customizing Field Templates
	Customizing with Routes
	Understanding Routes
	Switching to Single-Page Editing
	Using Different Templates for Tables
	Customizing with Metadata
	Creating a Metadata Class
	Changing Display Names
	Changing Visibility
	Customizing Field Formatting
	Using a Custom Field Template
	Customizing Validation
	Requiring a Field Value
	Specifying a Valid Range
	Customizing Validation Using Extensibility Methods

	Summary

	Silverlight
	Understanding Silverlight
	Silverlight vs. Flash
	Silverlight System Requirements

	Creating a Silverlight Solution
	Silverlight Compilation
	The Entry Page

	Creating a Silverlight Project
	Designing a Silverlight Page
	Understanding XAML
	Setting Properties
	The XAML Code-Behind
	Handling Events
	Browsing the Silverlight Class Libraries

	Layout
	The Canvas
	Layering Elements in a Canvas
	Dragging Circles
	The Grid
	Fine-Tuning Rows and Columns
	Nesting Layout Containers
	Spanning Rows and Columns

	Animation
	Animation Basics
	Defining an Animation
	The Animation Class
	The Storyboard Class
	Configuring Animation Properties
	An Interactive Animation Example
	Transforms
	Using a Transform
	Animating a Transform

	Using Web Services with Silverlight
	Creating the Web Service
	Adding a Web Reference
	Calling the Web Service
	Configuring the Web Service URL
	Cross-Domain Web Service Calls

	Summary

	Index
	¦ ¦ ¦ ¦ Special Characters
	¦ A
	¦ B
	¦ C
	¦ D
	¦ E
	¦ F
	¦ G
	¦ H
	¦ I
	¦ J
	¦ L
	¦ K
	¦ M
	¦ N
	¦ O
	¦ P
	¦ Q
	¦ R
	¦ S
	¦ T
	¦ U
	¦ V
	¦ W
	¦ X
	¦ Y
	¦ Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

