
Getting Started Guide
for Borland® Together® Edition for Microsoft® Visual Studio® .NET

(version 2.0)

Borland® Together®

Integrated and Agile Design Solutions

Borland Software Corporation
100 Enterprise Way
Scotts Valley, California 95066-3249
www.borland.com

TogetherSoft Corporation, a wholly owned subsidiary of Borland Software Corporation, may have
patents and/or pending patent applications covering subject matter in this document. Please refer to
the product CD or the About dialog box for the list of applicable patents. The furnishing of this
document does not give you any license to these patents.

Copyright © 2003-2004 TogetherSoft Corporation, a wholly owned subsidiary of Borland Software
Corporation. All rights reserved. All Borland brand product names are trademarks or registered
trademarks of Borland Software Corporation in the United States and other countries. Microsoft and
Visual Studio are registered trademarks of Microsoft Corp. in the United States and/or other
countries. All other marks are the property of their respective owners.

Updated: May 20, 2004

iii

Introducing Borland Together Edition
for Microsoft Visual Studio .NET 5

About Borland Together Edition for Microsoft Visual
Studio .NET 5

About this guide 6
Together VS .NET documentation set 7
About licensing 8

Getting Started with Modeling 9
Navigating around Together VS .NET 9

Setting global modeling options 10
Creating a project and opening the Model and

Diagram Views. 11
Creating a use case diagram 12

Populating the diagram. 13
Adding a system boundary 14
Adding use case elements and

communication links 14
Adding a stereotype. 15
Completing the scenario 16

Using a class diagram. 17
Setting compartment controls 17
Adding methods and fields 18
Creating relationships and links 21
Creating hyperlinks. 23

Creating a sequence diagram 25
Creating the initial sequence 25
Associating an object with a class 26
Adding a new method to a message link. . . 26
Generating a sequence diagram from existing

source code 27
Converting between sequence and collaboration

diagrams 28
Using the Model View 29

Viewing references 30
Showing expandable diagram nodes. 30
Finding diagram elements 31

Using the Properties Window 32
Using the Overview 33
Managing diagram views 34

Hiding/Showing Information 34
Using the Show Hidden dialog 35

Using Together VS .NET Features 37
Using and creating patterns 37
Running quality assurance 40

Running audits 40

Working with the audit results view 41
Opening source code and viewing an audit

description 41
Printing audit results 42
Saving audit results. 43
Sorting or grouping audit results 43
Refreshing and restarting audits 44

Choosing specific elements to run audits against
44

Refactoring 45
Renaming 46
Working with the Refactoring window 46

Generating documentation 47
Exporting and Importing XMI projects 50

Exporting XMI projects. 50
Importing XMI projects. 51

Contents

iv

Chapter 1: Introducing Bor land Together Edi t ion for Microsoft Visual Studio .NET 5

C H A P T E R

Chapter 1Introducing Borland Together Edition
for Microsoft Visual Studio .NET

This chapter includes the following topics:
■ “About Borland Together Edition for Microsoft Visual Studio .NET” on

page 5
■ “About this guide” on page 6
■ “Together VS .NET documentation set” on page 7
■ “About licensing” on page 8

About Borland Together Edition for Microsoft Visual Studio .NET
Borland Together Edition for Microsoft Visual Studio .NET (Together VS .NET)
is a UML modeling extension package for Microsoft® Visual Studio® .NET
2003 (Visual Studio .NET). Together VS .NET provides a new edition to the
Borland product line of the award-winning, design-driven environment with
features such as UML modeling, patterns, QA audits, code refactoring, XMI
import and export, and documentation generation combined seamlessly with
your C# and Visual Basic .NET projects in the Visual Studio .NET
development environment.

Note QA audits and code refactorings are available only for C# projects.

A key feature of Together VS .NET, LiveSource™, keeps your Together VS
.NET diagrams synchronized with your source code in the Visual Studio .NET
editor.

6 Gett ing Star ted Guide

This guide assumes that you have installed Together VS .NET and Visual
Studio .NET on your computer. You can have Together VS .NET and Visual
Studio .NET installed in any location. There is no advantage or disadvantage
to coordinating installations or installing on the same root directory. For
information about installing Together VS .NET or Visual Studio .NET, refer to
the respective product documentation.

About this guide
The goal of this guide is to provide you with a basis for understanding and
using Together VS .NET. It explains how to create a sample C# project and
then uses the project to exercise the primary features of Together VS .NET.

As such, it is recommended that you follow the examples in this guide in
sequential order. For more task-oriented instructions, refer to the online help
for Together VS .NET. Choose Contents from the Visual Studio .NET Help
menu, and select, Borland Together Edition for Microsoft Visual Studio .NET,
in the Contents pane.

Note The instructions provided in this guide are specific to Borland Together Edition
for Microsoft Visual Studio .NET.

This guide provides examples for:

• “Navigating around Together VS .NET”

• “Creating a project and opening the Model and Diagram Views”

• “Creating a use case diagram”

• “Using a class diagram”

• “Creating a sequence diagram”

• “Using the Model View”

• “Using the Properties Window”

• “Using the Overview”

• “Managing diagram views”

• “Using and creating patterns”

• “Running quality assurance”

• “Refactoring”

• “Generating documentation”

• “Exporting and Importing XMI projects”

Chapter 1: Introducing Bor land Together Edi t ion for Microsoft Visual Studio .NET 7

Together VS .NET documentation set
The documentation set for Together VS .NET consists of the items listed in
Table 1.

Table 1 Together Edition for Microsoft Visual Studio .NET documentation

Item Description Location

Readme Late-breaking information including:
• Licensing notes
• System requirements
• Installing and starting Together VS

.NET
• Known problems

Readme located as follows:
• The Docs directory of your Together VS

.NET installation:
Docs/readme.html

• http://info.borland.com/techpubs/
together

What’s New Information detailing new and
improved features in Together Edition
for Microsoft Visual Studio .NET

What’s New located as follows:

• The Docs directory of your Together VS
.NET installation:
Docs/what’s_new.html

• http://info.borland.com/techpubs/
together

Getting Started
Guide

Information for the first time user
including:

• Creating a C# project for use in
Together VS .NET and Visual
Studio .NET

• Working with use case and class
diagrams

• Setting options in Together VS
.NET

• Other information specific to using
Together VS .NET

PDF located as follows:

• The Docs directory of your Together VS
.NET installation:
Docs/gettingStarted.pdf

• http://info.borland.com/techpubs/
together

Online Help Online help for Together VS .NET.
Comprehensive information most
relevant to the user, including:
• Introduction to Together VS .NET
• Setting personal preferences and

options
• Detailed instructions for using

Together VS .NET features
• Working with UML diagrams in

Together VS .NET

The Visual Studio .NET main menu under
Help | Contents

Registering
Together VS .NET

Setting up licensing for Together VS
.NET

• The Docs directory of your Together VS
.NET installation:
Docs/setting_up_licensing.html

• http://info.borland.com/techpubs/
together

http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together
http://info.borland.com/techpubs/together

8 Gett ing Star ted Guide

About licensing
Together VS .NET and Visual Studio .NET require separate licenses. For
information regarding licensing for Visual Studio .NET, refer to the Visual
Studio .NET documentation.

For information about Together VS .NET licensing, refer to the Licensing and
Registering Borland Together Edition for Microsoft Visual Studio .NET
(setting_up_licensing.html) document, included in the Docs directory of your
Together VS .NET installation.

Chapter 2: Gett ing Star ted wi th Model ing 9

C H A P T E R

Chapter 2Getting Started with Modeling
This chapter explains the basics of using Together VS .NET, including: how to
navigate the Together VS .NET environment, how to create a project, and how
to create diagrams.

This chapter includes the following topics:
■ “Navigating around Together VS .NET” on page 9
■ “Creating a project and opening the Model and Diagram Views” on page 11
■ “Creating a use case diagram” on page 12
■ “Using a class diagram” on page 17
■ “Creating a sequence diagram” on page 25
■ “Using the Model View” on page 29
■ “Using the Properties Window” on page 32
■ “Using the Overview” on page 33
■ “Managing diagram views” on page 34

Navigating around Together VS .NET
Together VS .NET provides a Model View and corresponding Diagram View
and Properties Window to Visual Studio .NET. Combined, these tools are
central to designing projects in UML and creating source code for your project.
Moreover, Together VS .NET simultaneously synchronizes your diagrams and
source code.

10 Gett ing Started Guide

Together VS .NET, is integrated into your Visual Studio .NET development
environment. The Together VS .NET modeling features are automatically
activated for C# and Visual Basic .NET projects.

Note This guide models a C# project.

Together VS .NET brings three main components to the Visual Studio .NET
development environment:
■ Model View – The primary navigational view for Together VS .NET. You

can use this view to manage diagram elements, open, create, delete, and
so on. Explore the context menus of the different elements as you
encounter them.

■ Diagram View – Displays UML diagrams. This view provides a tab for each
open diagram.

■ Properties Window – Using Together VS .NET, this view shows the
properties for an element selected from the Diagram or Model Views.
Properties for each element are usually broken into two categories:
■ Design – Define foreground and background colors for design elements
■ General – UML properties for the selected element as well as source

code properties for source code elements

Note For classifiers – classes, interfaces, delegates, enumerations, structures (C#
projects only), and modules (Visual Basic .NET projects only) – the Comments
category is also added to the Properties Window enabling you to add Author,
Since, and Version comment tags to your source code.

Opening the Model and Diagram Views
To begin using Together VS .NET for an existing or new C# project, open the
Model View and the corresponding Diagram view for your project.

To open the Model View and show the corresponding Diagram view for a C#
project:

1 From the View menu, choose Together VS .NET Model View. The Model
View opens.

2 Expand the root project node.

3 To open the Diagram View for the corresponding project, double click the
default class diagram node .

Setting global modeling options

Together VS .NET options allow you to globally deactivate Together VS .NET
modeling support for all of your open C# and Visual Basic .NET projects or for
all new C# and Visual Basic .NET projects using the Options dialog.

To deactivate modeling support for all new projects:

1 From the Tools menu, choose Options. The Options dialog opens.

Chapter 2: Gett ing Started wi th Model ing 11

2 Click the Together VS .NET folder to view Together VS .NET-specific
configuration options. The General options display.

3 In the Options dialog, click on the Automatically enable Together VS .NET
support for new projects field. A drop down arrow appears.

4 Click the drop down arrow. Select False from the drop down list, and click
OK. This disables Together VS .NET modeling support. Be sure to set the
value as True to complete this tutorial.

Tip You can also click on Automatically enable Together VS .NET support for
opened projects to activate/deactivate modeling support for currently opened
projects. This option works only for projects that have never been exposed to
Together VS .NET support.

Creating a project and opening the Model and Diagram Views
This guide models a simple video store project to explore the various features
of Together VS .NET.

To create a new project:

1 From the File menu, choose New > Project. The New Project dialog opens.

2 From the Project Types pane, choose Visual C# Projects.

3 From the Templates pane, choose Empty Project.

4 Enter “Video Store” as the project name.

5 Click Ok.

The project is created and displays in the Solution Explorer.

Tip To quickly open the Solution Explorer, enter CTRL+ALT+L.

To open the Model View:

1 From the View menu, choose Together VS .NET Model View. The Model
View opens.

2 Expand the Video Store project node.

3 Double click the default class diagram node . The Diagram View opens
as shown in Figure 1.

Notice that the Model View is a dockable window. The Model View opens
initially as a free-floating window; however, it can be free-floating or docked to
a docking area. The docking areas for the Model View are comprised of any of
the four borders of the Visual Studio .NET window. You can position the Model
View window according to your preferences.

12 Gett ing Started Guide

Figure 1 Video Store project as viewed using Together VS .NET

Creating a use case diagram
These instructions assume that you have created the Video Store project as
explained in the previous section.

To create a use case diagram:
1 In the Model View, right click on the Video Store project node, and choose

Add > Other Diagram.

2 In the resulting dialog box, choose Use Case Diagram. Enter “Video Store
Use Case” as the name.

3 Click OK. The use case diagram opens in the Diagram View.

Tip You can use this dialog box to create any of the diagrams supported by
Together VS .NET.

Chapter 2: Gett ing Started wi th Model ing 13

Populating the diagram

Use case diagrams are scenarios describing what your system does. These
diagrams contain actors, use cases, and communication links as three main
items of interest. The Toolbox and diagram context menu contain the design
elements to populate the diagram.

To populate the diagram:

1 Use the Toolbox to add design elements to the use case diagram. To open
the Toolbox, choose Toolbox from the View menu.

2 To view the design elements, click UML Use Case Diagram on the Toolbox.

The UML Use Case Diagram Toolbox elements are shown in Figure 2.

Figure 2 Use Case Diagram Toolbox elements

3 Click the Actor button , and click on the diagram background.

4 The in-place editor automatically activates. Enter “Clerk” as the actor name.
Press Enter to apply the name and close the in-place editor.

Tip To activate the in-place editor for diagram elements, double click the textual
caption on the element.

14 Gett ing Started Guide

Adding a system boundary
Add a system boundary to the diagram to separate the inventory system from
the external actors.
To add a system boundary:

1 Click the System Boundary button , and click the diagram background to
the right of the Clerk.

2 Using the in-place editor, name the system boundary “Inventory System.”

Tip Alternatively, hold down the left mouse button, click the diagram background
once, and drag the mouse over the diagram background to draw the System
Boundary to a specific size.

To resize the system boundary, or any diagram element, select the system
boundary object on the diagram. Drag the corner of the element to the desired
size as shown in Figure 3. The element expands or contracts in the direction
of the cursor.

Figure 3 Resizing the system boundary

Adding use case elements and communication links
Use case elements represent a summary of scenarios for a single task, such
as finding a movie by its title. Communication links show associations between
actor and use case elements.

To add use case elements and communication links:

1 Click the Use Case button , and create two use cases inside the system
boundary. Name the use cases “Find Item by Keywords” and “Find Item by
Title.”

2 Click the Communicates button , and drag-and-drop from the actor to
the use case. Repeat this step to create a link for each use case.

Your use case diagram should be similar to the diagram in Figure 4.

Chapter 2: Gett ing Started wi th Model ing 15

Figure 4 Sample use case diagram

Adding a stereotype
Together VS .NET supports the use of stereotypes. You can adhere to UML-
defined stereotypes or customize stereotypes based on your requirements.

To add a stereotype:

1 Select the Clerk actor to view the properties for Clerk in the Properties
Window as shown in Figure 5. You can open the Properties Window by
choosing Properties Window from the View menu. Alternatively, use the
F4 key on your keyboard.

Figure 5 Properties Window for Clerk

2 In the Properties Window, click on the Stereotype field. A drop down arrow
displays as shown in Figure 5.

3 Click the drop down arrow, and select manager from the list.

Note Several properties contain the drop down arrow or the information button .
These provide you with additional choices for selection or entry, either as drop
down lists or dialogs.

16 Gett ing Started Guide

Tip Once a stereotype has been added to a diagram element, you can make
changes to the stereotype field using the in-place editor as shown in Figure 6.

Figure 6 Using the in-place editor on the stereotype field

Completing the scenario
To complete the Video Store Use Case Diagram, we will need to add
additional use case and actor elements and the communication links between
the appropriate elements.

To complete the diagram:

1 Add another use case inside the Inventory System boundary. Name it “Rent
Item.”

2 To the right of the Inventory System boundary, add another actor. Name it
“Customer.”

3 Using the Communicates link, link the use case to both the Customer and
Clerk actors.

Your diagram should be similar to the one shown in Figure 7.

Figure 7 Use case diagram for Video Store project

Chapter 2: Gett ing Started wi th Model ing 17

Using a class diagram
Together VS .NET creates a physical class diagram for each namespace in a
project. The Video Store project has a default class diagram that represents
the project at the root level.

To open and use the default class diagram:

1 In the Model View, expand the Video Store project node.

2 Double click the Video Store default class diagram node . The default
class diagram opens in the Diagram View.

3 Use the Toolbox to create a class. Click UML Class Diagram in the Toolbox
to reveal the Class Diagram elements. Click the Class button , and click
on the diagram background. Using the in-place editor, rename the class
“Store.”

4 Select the Store class to view its details in the Properties Window.

5 Select the Stereotype field, click the drop down arrow, and select place.

6 Repeat steps 3-5 to create classes for Clerk (stereotype = role) and Item
(stereotype = description).

As alternatives to the steps previously described, Together VS .NET provides
two other methods for creating a class:

• Right click on the diagram background, and choose Add > Class.

• In the Model View, right click on the root project node or the default class
diagram, and choose Add > Class.

Setting compartment controls

You can collapse or expand compartments for the different members of class
and interface elements. By default, compartments are displayed on the
diagram. You can use the Options dialog to set viewing preferences for
compartment controls so that they are displayed as a straight line or with
compartments. Compartment controls are particularly useful when you have
large container elements with content that does not need to be visible at all
times.

To view the compartment controls:

1 From the Tools menu, select Options. The Options dialog opens.

2 Click the Together VS .NET folder, and select the Diagram node.

3 Click on the Show compartments as line field.

4 Click the drop down arrow, and select False.

5 Click OK. Your diagram elements should be similar to Figure 8.

18 Gett ing Started Guide

To collapse or expand compartments:

1 Select the class (or interface) on the diagram.

2 Click the “+” or “-” in the left corner of the compartment.

Figure 8 Video Store diagram with Store, Clerk, and Item classes

Adding methods and fields

As part of the requirements identified in the use case diagram for the Video
Store Inventory system, Table 2 lists the methods and fields that you need to
add to the classes you have created.

To create members for a class:

1 Open the Video Store class diagram, right click on the Store class and
choose Add > Field. Alternatively, select the Store class on the diagram or
in the Model View, and enter Ctrl+W.

2 The in-place editor activates. Using the in-place editor, name the field
address:string. When you use the in-place editor to name a class member on
the diagram, you can also enter its type.

Tip Alternatively, you can activate the in-place editor by selecting the field, and clicking F2
on your keyboard.

Table 2 Requirements for the Video Store sample project

Class Fields Methods

Store address
storeNumber
hours
phone

findByTitle
findByKeywords
findByItemNumber

Clerk employeeId
name

Item itemNumber
title

getItemNumber
setItemNumber
getTitle
setTitle

Chapter 2: Gett ing Started wi th Model ing 19

3 In the Properties Window, click the Visibility field and choose private from
the drop down list. By default, Together VS .NET creates public int fields
and public void return methods.

Tip Once you click the Visibility field, you can click the Tab key on your keyboard, and then
use the down arrow on your keyboard to scroll through the different visibility values.

4 To add a method to the class, right click on the Store class and choose Add
> Method. Alternatively, select the Store class on the diagram or in the
Model View, and enter Ctrl+M.

5 Using the in-place editor, name the method findByTitle.

6 Repeat the previous steps to add the remaining fields and methods for the
Store class as listed in Table 2. The Store class should be similar to Figure
9.

Figure 9 Store class with fields and methods

7 Continue adding the fields and methods listed in Table 2 to the Clerk and
Item classes. For the getItemNumber and getTitle methods, specify string as
the return type.

Tip Select a class member such as a field or method on the diagram or in the Model View,
and use the Insert key on your keyboard to quickly add another member of the same
type to the current class. After the new member has been added, press F2 on your
keyboard to activate the in-place editor. You can also use the shortcut keys displayed
on the context menus to quickly add members and diagram elements.

20 Gett ing Started Guide

8 Select the storeNumber field of Store. In the Properties Window, enter “Store
Number” as the alias value as shown in Figure 10.

Tip The alias property is useful for specifying a different name from that in the actual code.

Figure 10 Creating an alias for a field

The alias changes only the visual label for the field in the diagram, as shown in
Figure 11. The field remains storeNumber within the source code.

Tip To view the source code, double click the class node or right click on the field, and
choose Go to Definition.

Chapter 2: Gett ing Started wi th Model ing 21

Figure 11 Alias for storeNumber and corresponding code

Creating relationships and links

The sample Video Store project includes two relationships:

• A Clerk is associated with a Store

• A Store consists of many Items

You can create an association link to establish the relationship between Clerk
and Store as “client” and “supplier.” For the second relationship, you can create
an aggregation since Store has several Items. By using the Link By Pattern
button, you can easily implement the aggregation as a collection.

To create relationships and links:

1 Click the Association Link button in the Toolbox. Click on Store and
then drag-and-drop the link to Clerk. This action establishes the relationship
from “client” to “supplier.” Notice that as you move over a class, a blue
border highlights the location that Together VS .NET recognizes as a valid
destination for dropping the end of the link as shown in Figure 12.

22 Gett ing Started Guide

Figure 12 Using drag-and-drop to create an association link

2 Click the Link by Pattern button in the Toolbox. Click on Store and then
drag-and-drop the link to Item. The Pattern Wizard dialog opens.

3 In the Pattern Wizard, expand TCC code templates > Links, and select
Aggregation as Collection.

4 As shown in Figure 13, for the field name enter “itemList” to indicate a
collection, and click Ok.

Chapter 2: Gett ing Started wi th Model ing 23

Figure 13 Pattern Wizard dialog

Together VS .NET automatically adds the link information to the code by placing
tags above the field. In this example, the link is an aggregation linked to the Item
class. By double clicking on a class in the Diagram or Model Views, you can
open its source code in the Visual Studio Editor to view such tags. For example,
the source for the itemList field in the Store class is as follows:

/// <link_link>aggregation</link_link>
/// <link_supplierCardinality>0..*<link_supplierCardinality>
/// <Associates>Item</Associates>

Creating hyperlinks

The Video Store has a findByKeywords method used for searching for items. The
requirements for this method are defined as the use case you created earlier,
Find Item by Keywords. By using hyperlinks, you can link diagrams and
elements to express these types of relationships and record them in the model
for others to use.

24 Gett ing Started Guide

To create a hyperlink between the use case and the method:

1 Open the Video Store Use Case Diagram.

2 Right click on the Find Item by Keywords use case and choose
Hyperlinks > Edit. The Hyperlinks dialog opens.

3 From the Available Content pane, select Video Store > Store >
findByKeywords.

4 Click Add to add the element to the Selected pane on the right, and
click OK.

The use case with the newly created hyperlink is highlighted in blue font
as shown in Figure 14.

Figure 14 Hyperlinked element

5 To test the hyperlink, right click on the use case and choose Hyperlinks >
Video Store.Store.findByKeywords. The class diagram containing the
corresponding method opens with the method selected.

Note Hyperlinks are bi-directional. The hyperlinked method on the class diagram is
also highlighted in blue font. You can navigate from the method on the class
diagram to the use case diagram and vice versa using the Hyperlinks
command for the hyperlinked element.

Chapter 2: Gett ing Started wi th Model ing 25

Creating a sequence diagram
Sequence diagrams are used to design the dynamic aspects of an object
model.

Together VS .NET provides three modes for creating sequence diagrams:

• A simple “sketch pad”

• Two-way with source code and classes

• Generating a sequence diagram from an existing method

Creating the initial sequence

You can create a sequence diagram in the Video Store project to model some
of the steps necessary to rent a video.

To create a sequence diagram:

1 In the Model View, right click on the Video Store project node, and choose
Add > Other Diagram.

2 In the resulting dialog box, choose Sequence Diagram.

3 Enter “Rent Movie Sequence” as the name, and click OK.

4 From the Toolbox, select UML Interaction Diagram. Click the Actor button
, and then click the diagram background.

5 Using the in-place editor, enter “Clerk” as the actor name.

6 Using the Toolbox, click the Object button and click to the right of the
actor line. Name the object “theStore” as shown in Figure 15.

Figure 15 Clerk actor and the Store object

7 To add a message link, click the Message button and then drag-and-
drop from the Actor lifeline to theStore lifeline.

26 Gett ing Started Guide

Associating an object with a class

In sequence or collaboration diagrams you can create associations between
objects and classifiers.

Note You can associate an object with all classifiers including, classes, interfaces,
structures (in C# projects only), modules (in Visual Basic .NET projects only),
enums, or delegates.

Instantiated classifiers for an object can be selected from the model, or the
classifiers can be created and added to the model. In the interaction diagrams
there are two commands available on the object right-click menu:
■ Add that creates a new classifier in the model, and
■ Choose class that provides a list of available classifiers.

In this example, we will associate theStore object with the Store class.

To associate an object with a classifier:

1 Right-click on theStore object, and select Choose class > Store. The
resulting sequence diagram is shown in Figure 16. Notice that the object
name is followed by the name of the associated classifier.

Note After you associate a classifier to an object, you can right click the object and
select Unlink class from the context menu to remove the association.

Figure 16 theStore object associated with the Store class

Adding a new method to a message link

Message links can be associated with the methods of the recipient class. You
can select methods from existing methods in the recipient class or create new
ones. This is accomplished by two commands provided by the message right-
click menu, Add and Choose method.

Chapter 2: Gett ing Started wi th Model ing 27

In this example, we will create a new method in the Store class, validateUser.

To add a new method to a message link:

1 Right click on the message link, and choose Add > Method. A new method
named, Method1():void is created in the Store class.

2 In the Properties Window for the message link, select the Operation field,
to rename the new method, and enter, validateUser():float.

3 The Rename Operation dialog opens indicating that the validateUser
operation does not exist in the Store class. The dialog gives you the option
to either create a new method or rename the existing method. Select
Rename to rename the existing method. The resulting diagram is shown in
Figure 17.

Figure 17 validateUser method

You can also use the Choose method command on the message link right-
click menu to associate the message link with an existing method in the
object’s recipient class.

Note After you associate a method to a message link, you can right-click the object
and select Unlink method from the context menu to remove the association.

Generating a sequence diagram from existing source code

You can create sequence and collaboration diagrams and populate them
using buttons in the Toolbox. You can also generate sequence diagrams from
methods on a class diagram.

Note This feature is available for C# projects only.

In this example, we will generate a simple sequence diagram using the Video
Store project.

28 Gett ing Started Guide

To generate a sequence diagram:

1 Double click the Video Store default class diagram node . The default
class diagram opens in the Diagram View.

2 Right click on the findByKeywords method on the Store class, and choose
Generate Sequence Diagram.

3 The Generate Sequence Diagram dialog opens. Click Ok.

The sequence diagram is generated and opens in the Diagram View.

You can close this sequence diagram without saving any changes to it.

Tip To generate a collaboration diagram from an operation, first generate the
sequence diagram and then convert the diagram into a collaboration diagram.
For more information, see “Converting between sequence and collaboration
diagrams”.

Converting between sequence and collaboration diagrams

You can convert between sequence and collaboration diagrams. However,
when you create a new diagram in Together VS .NET using the Add New
Diagram dialog, you must specify whether it is a sequence or collaboration
diagram.

To convert the Rent Movie sequence diagram to a collaboration diagram:

1 Open the Rent Movie sequence diagram.

2 Right click on the diagram background, and choose Show as
Collaboration from the context menu. The collaboration diagram opens.

3 Open the Toolbox. From the View menu, choose Toolbox.

4 In the Toolbox, click UML Interaction Diagram to display the collaboration
diagram elements as shown in Figure 18.

Notice that the sequence and collaboration diagrams share the UML
Interaction Diagram toolbox, however, only certain diagram elements are
enabled for each type of diagram.

Chapter 2: Gett ing Started wi th Model ing 29

Figure 18 Collaboration diagram elements

5 Right click on the diagram background, and choose Layout > Do Full
Layout.

6 To convert back to the sequence diagram, right click on the collaboration
diagram background, and choose Show as Sequence. The sequence
diagram view displays in the diagram.

Using the Model View
Use the Model View as your primary navigational view in Together VS .NET to
manage diagram elements. Using the context menus in the Model View, you
can open, create, and delete diagrams and diagram elements.

The Model View consists of a number of icons and context menu commands
that you should become familiar with. Explore the context menus of the
different elements and diagrams as you encounter them.

Using the context menu of your root project node, you have access to the
following features of Together VS .NET:

• Adding diagrams to your project

• Adding diagram elements such as, namespaces, classes, and interfaces

• Refactoring code

• Running audits against C# projects

30 Gett ing Started Guide

Viewing references

The Model View enables you to view class diagrams for references included in
your project. You can add references to your project using the Solution
Explorer.

To view the MsCorLib.dll in the Video Store project:

1 Expand the References node and the MsCorLib.dll node in the Model View.

2 Right click on the default diagram, and choose Open Diagram. The default
diagram opens in the Diagram View.

You can expand the Microsoft and System folders to view other class
diagrams as well.

Use the context menu in the Model View or the File main menu (File > Print or
File > Export Diagram to Image) to print diagrams or export diagrams to
image files.

Showing expandable diagram nodes

By default, the diagram nodes in the Model View are expandable. You can
control whether you can expand nodes in the Model View to show their
contents.

To make diagram nodes expandable:

1 From the Tools menu, choose Options. The Options dialog opens.

2 Click the Together VS .NET folder to view Together VS .NET-specific
configuration options. The General options display.

3 Select Model View from the list.

4 Click on the Show diagram nodes expandable field. A drop down arrow
displays.

5 Click the drop down arrow, and select True from the list.

6 Click OK to close the dialog and apply the changes.

The Model View diagrams display as expandable nodes. Expand the node for
the Video Store Use Case diagram to view its elements.

Chapter 2: Gett ing Started wi th Model ing 31

Finding diagram elements

When selecting a diagram element in the Model View, the element is not
automatically selected in the Diagram View. To show an element selected from
the Model View in the Diagram View, right click on the element in the Model
View, and choose Select on Diagram. Using this command, you can open the
corresponding diagram of the element, and highlight the element on it as
shown in Figure 19.

Similarly, while working in the Diagram View, you can use the Synchronize
Model View command to navigate directly to an element in the Model View.
Right click on a diagram element, and choose Synchronize Model View from
the context menu.

Figure 19 Highlighted diagram element

32 Gett ing Started Guide

Using the Properties Window
You can use the Properties Window to view and edit values such as alias,
name, visibility, and others as shown in Figure 20.

Figure 20 Properties Window

To add details to the Item class:

1 Open the Video Store class diagram, and select the “title” field of the Item
class.

2 Open the Properties Window by choosing Properties Window from the
View menu. Alternatively, use F4.

3 In the Initial field, enter “Title” (include the quotes), as shown in Figure 20.

The source code automatically updates to reflect this change. You can easily
navigate from the diagram view to the source code.

To open the source code editor for the title field:

1 Right click the title field of the Item class on the diagram.

2 Choose Go to Definition from the context menu.

The source code editor opens, highlighting the appropriate code. Notice that
the initial value for the title field is defined as specified within the Properties
Window.

Chapter 2: Gett ing Started wi th Model ing 33

Using the Overview
The overview feature of the Diagram View provides a thumbnail view of the
current diagram. The Overview button is located in the bottom right corner of
every diagram, as shown in Figure 21.

Figure 21 Overview button

To use the overview feature:

1 On the Video Store class diagram, click the Overview button. The pane
expands to show a thumbnail image of the current diagram.

2 Use the mouse to click on the shaded area and drag it. This is a convenient
way to scroll around the diagram.

3 Alter the size of the Overview pane by clicking on the upper left corner of
the pane and dragging to resize it.

The Overview pane automatically closes when you select an element on
the diagram. Figure 22 shows the overview pane for a large class diagram.

Figure 22 Thumbnail of a large class diagram

34 Gett ing Started Guide

Managing diagram views
View management controls which diagrams and elements are displayed in
Together VS .NET.

Hiding/Showing Information

When dealing with large projects, the amount of information shown on a
diagram can become overwhelming. In Together VS .NET, you can selectively
show or hide information.

For global control over the diagram view, you can use the filters in the Options
dialog. From the Tools menu, select Options. Click the Together VS .NET
folder, and select the View Management node as shown in Figure 23.

Figure 23 Options dialog for view management

The filters shown in Figure 23 are global filters. To specifically filter members,
you can set the Show members property to False.

To filter members:

1 Click on the Show members field.

2 Click the drop down arrow, and select False.

3 Click OK.

This results in disabling the Fields, Methods, Non-public Members filters as
well as any inner classifiers.

Chapter 2: Gett ing Started wi th Model ing 35

Since inner classifiers are treated as members of the container element, the
following filters do not filter inner classifiers:
■ Show classes
■ Show delegates
■ Show enumerations
■ Show interfaces
■ Show structures

Note Structure elements are currently available in C# projects only.

Using the Show Hidden dialog

You can also use the Show Hidden dialog to selectively show or hide
information on your diagrams. The next example demonstrates how to hide
and show information on the default class diagram of the Video Store project.

To hide/show elements:

1 Double click the Video Store default class diagram node in the Model
View. The default class diagram opens in the Diagram View.

2 In the Diagram View, right click on the Store class, and choose Hide from
the context menu. The Store class disappears from the diagram.

3 To show the Store class, right click on the diagram background, and choose
Show/Hide from the context menu. The Show Hidden dialog opens.

4 The Store class displays in the Hidden Elements list on the right of the
dialog. Select the Store class, and click <<Remove, and then click Ok. The
Store class displays on the diagram again.

36 Gett ing Started Guide

Chapter 3 : Using Together VS .NET Features 37

C H A P T E R

Chapter 23Using Together VS .NET
Features

The information in this chapter is specific to using the special features of
Borland Together Edition for Microsoft Visual Studio .NET (Together VS .NET).
For more comprehensive information, refer to the online help for Together VS
.NET.

This chapter includes the following topics:
■ “Using and creating patterns” on page 37
■ “Running quality assurance” on page 40
■ “Generating documentation” on page 47
■ “Exporting and Importing XMI projects” on page 50

Using and creating patterns
Together VS .NET provides support of frequently used patterns such as the
GoF patterns. You can use patterns to create or modify existing links and
classes.

For the following example, assume that the Item class requires a dynamic
system so that after an Item has been returned, the counter is updated and
other systems are notified. The Observer pattern is useful for designing such a
system. To apply the Observer pattern information to the Item class, we will
use the Pattern Wizard.

38 Gett ing Started Guide

To use the Pattern Wizard:

1 Right click on the Video Store class diagram background, and choose
Create by Pattern. The Pattern Wizard opens as shown in Figure 24.

Figure 24 Pattern Wizard

2 From the Patterns pane on the left, choose the GoF > Behavioral >
Observer pattern.

3 In the Pattern Properties pane on the right, change the Class Subject name
to Item.

4 Accept the other default properties settings, and click OK. The diagram is
updated as shown in Figure 25.

Chapter 3 : Using Together VS .NET Features 39

Figure 25 Applying the Observer pattern

Item is updated with the notification and observer methods (attach and detach).
The other classes and interfaces have been created ready for use. Together
VS .NET recognizes the pattern and visualizes the element on the diagram as
an oval shape. In addition, it lists the participants of the pattern and the pattern
links. You can expand the Participants node on the oval Observer element to
view pattern participant information.

The pattern elements on the diagram have specific pattern actions that you
can choose relevant to the pattern. Right click on the oval Observer element,
and choose Add to view the specific pattern actions available.

40 Gett ing Started Guide

Running quality assurance
You can run quality assurance (QA audits) on your C# projects to check the
quality of your code against a set of predefined measurements.

Note The QA audits feature is available for C# projects only.

Running audits

Audits help you unobtrusively enforce company standards and conventions
and improve what you do. When you run audits, you select specific rules to
which your source code should conform to. The results display the violations
of those rules so that you can examine each problem and decide whether to
correct the source code or not. Together VS .NET provides a wide variety of
audits to choose from, ranging from design issues to naming conventions,
along with online descriptions of what each audit looks for and suggestions on
how to fix violations.

To run audits on the Video Store project:

1 Right click on the Video Store class diagram background, and choose QA
Audits. The Audits dialog opens.In the Scope drop down list, choose
Model.

2 On the left side of the dialog, expand the nodes of the audit categories
(Coding Style, Declaration Style, and so on) to view the available audits,
and check (or clear) the appropriate checkboxes to indicate which audits to
run. As you click on an audit, its description displays in the lower pane of
the dialog.

3 For each audit, the severity level and other audit-specific options are
displayed in the right-hand panel of the Audits dialog box. Change the
settings if necessary.

4 For this example, accept the default settings, and click Start. The Operation
in progress dialog opens displaying a status bar that indicates the progress
completed, until the process finishes. The Audit results are shown in Figure
26.

Chapter 3 : Using Together VS .NET Features 41

Figure 26 Audits view (your results may differ)

Working with the audit results view

Using the audit results view, you can perform several tasks, such as:
■ Opening the corresponding source code for an audit violation.
■ Viewing the description of an audit violation.
■ Printing and saving audit results.
■ Sorting or grouping audit results.
■ Refreshing (recalculating) the audit violations that are currently displayed.
■ Restarting the audit calculation.

Notice that the audit results view is a dockable window. The audit results open
initially as a free-floating window; however, it can be free-floating or docked to
a docking area. The docking areas for the audit results are comprised of any
of the four borders of the Visual Studio .NET window -- position the audit
results window according to your preferences.

Opening source code and viewing an audit description

The results report is tightly connected with the diagram elements and the
source code. Using the report, you can navigate to the specific location in the
source code where the violation actually takes place.

42 Gett ing Started Guide

To open the source code for an audit violation and view an audit description:

1 In the Audit results view, double click the second entry for Field ‘name’ is
not used. Together VS .NET opens the source in the Visual Studio Editor,
and highlights the line of code.

2 In the Audit results view, right click Field ‘name’ is not used, and choose
Show Description. This opens a description of the Member is Not Used
(MNU) audit.

Printing audit results

You can print the entire table of audit violations or select specific rows and
columns to print.

To print audit results:

1 Select the rows of the table that you want to print. If you want to print the
entire list, you do not need to select anything.

2 Click the Print button on the toolbar. The Print Audit dialog opens.

3 Choose the scope of the results to print using the Select View combobox
(All Results, Active Group, or Selected Rows). Audit results display in
tabbed-pages in the audit results report view. You can group and ungroup
the results using the Group by command on the report view context menu.
Note: Unless the results have been grouped using the Group by
command, the Active Group option is not enabled in the dialog. The
possible view options are:
■ All Results - If the results are grouped, choosing All Results prints a

report for all groups in the current tabbed-page. If the results are not
grouped, then all results print for the current tabbed-page.

■ Active Group - If the results are grouped, then you can select a group in
the current-tabbed page, and the printed report contains the results from
the selected group.

■ Selected Rows - You can select single or multiple rows in the audit
results report view. Choosing Selected Rows prints a report for such
selections.

4 If desired, specify the print zoom factor in the Print zoom field, or check Fit
to page if you want to print the results on a single page. If checked, the Print
zoom field is disabled.

5 If necessary, adjust the page and printer settings:
■ Click the Print combobox, and choose the Print dialog command to

select the target printer.
■ Choose, Tools | Options | Together VS.NET - Print from the main

menu, and use the Options dialog to set up the paper size, orientation,
and margins.
■ Click the drop-down arrow to the right of the Preview option to open

the preview pane. Use the Preview zoom (auto) slider, or Auto

Chapter 3 : Using Together VS .NET Features 43

preview zoom checkbox as required. Click the upward arrow to the
right of the Preview option to close the preview pane.

6 Click Print to open the system print dialog, and send the file to the printer.

Saving audit results

Export audit results to an XML or HTML file so you can share them with team
members or review them later.

To save audit results:

1 Select the rows of the table that you want to save. If you want to save the
entire list, you do not need to select anything.

2 Click the Save button on the toolbar.

3 In the Save Audit Results dialog that opens, choose the scope of the results
to export using the Select View combobox (All Results, Active Group, or
Selected Rows). Audit results display in tabbed-pages in the audit results
report view. You can group and ungroup the results using the Group by
command on the report view context menu. Note: Unless the results have
been grouped using the Group by command, the Active Group option is not
enabled in the dialog. The possible view options are:
■ All Results - If the results are grouped, choosing All Results generates a

report for all groups in the current tabbed-page. If the results are not
grouped, then all results for the current tabbed-page are exported.

■ Active Group - If the results are grouped, then you can select a group in
the current-tabbed page, and the exported report contains the results
from the selected group.

■ Selected Rows - You can select single or multiple rows in the audit
results report view. Choosing Selected Rows generates a report for such
selections.

4 In the Select Format combobox, select the format for the exported file.
■ XML- Generates an XML-based report.
■ HTML - Generates an HTML-based report.

Selecting HTML format activates the checkboxes, Add Description and
Launch Browser.
■ Add Description - This saves the audit descriptions in a separate

folder with hyperlinks to the descriptions from the results file.
■ Launch Browser - This option opens the generated HTML file in the

default viewer.
5 Click Save to save the results in the specified location.

Sorting or grouping audit results
When viewing audit results, you might want to compare and organize the
items in the results report. You can sort and group the results as follows:

44 Gett ing Started Guide

■ Sorting by one column: To sort all the items according to the values for a
specific column, click on the column heading. Click once to sort in
ascending order. Click a second time to sort in descending order.

■ Grouping audit results: To group items according to the current column,
right-click in the Audit results table and choose Group By. This enables
you to organize the results by changing the relationship of rows and
columns. To ungroup the results, right click on the table, and choose
Ungroup.

Refreshing and restarting audits
You can update or refresh the results table using the Toolbar.
■ Click Refresh to recalculate the results that are currently displayed.
■ Click Restart to open the Audits dialog, where you can change the

settings as necessary and run the audits again. The new results replace the
results that are currently displayed.

Close the Audits view by clicking the Close button in the upper-right corner
of the dialog.

Choosing specific elements to run audits against

Using the Audits feature of Together VS .NET, you can selectively determine
which classes to run a set of audits against.

To run audits on a particular class element:

1 Go to the Video Store diagram, right click on the Item class and choose QA
Audits. This restricts the Scope of the audit to the Item class.

2 Accept all other default settings, and click Start. The Audit results view
opens. As you run audits on your project, the results display in the Audit
results view in a tabbed-page format. The most recent audits ran have
focus.

3 You can close the audit results (individual tabbed-pages) by right clicking on
the corresponding tab, and choosing Close. Click the Close button in
the upper right corner of the results dialog to close the audit results.

Chapter 3 : Using Together VS .NET Features 45

Refactoring

Refactoring means rewriting existing source code with the intent of improving
its design rather than changing its external behavior. The focus of refactoring
is on the structure of the source code, changing the design to make the code
easier to understand, maintain, and modify.

Together VS .NET supports the following refactoring commands:

• Rename: Rename a code-generating element. Available in the Diagram
and Model Views and the Visual Studio Editor.

• Move: Move a static method to a different class. Available in the Diagram
and Model Views and the Visual Studio Editor.

• Extract Interface: Create a new interface from an existing classes,
structure, method, property, event, or indexer. Available in the Diagram and
Model Views and the Visual Studio Editor.

• Extract Superclass: Create a superclass from an existing class, interface,
method, property, event, field, or indexer. Available in the Diagram and
Model Views and the Visual Studio Editor.

• Pull Members Up: Move selected members higher in the class hierarchy.
Available in the Diagram and Model Views and the Visual Studio Editor.

• Push Members Down: Move selected members lower in the class
hierarchy. Available in the Diagram and Model Views and the Visual Studio
Editor.

• Safe Delete: The Safe Delete command allows you to view whether there
are any usages of an element before deleting it. Available in the Diagram
and Model Views and the Visual Studio Editor.

• Change Parameters: Change existing parameters or create new
parameters in a selected method. Available in the Diagram and Model
Views and the Visual Studio Editor.

• Extract Method: Extract a set of complete statements in the Visual Studio
Editor to create a new method. Available in the Visual Studio Editor only.

• Inline Variable: Create an inline variable by selecting a local variable in the
Visual Studio Editor. Available in the Visual Studio Editor only.

• Introduce Field: Create a new field from a single, complete expression.
Available in the Visual Studio Editor only.

• Introduce Variable: Create a new variable from a single, complete
expression. Available in the Visual Studio Editor only.

The commands are available from the Refactoring main menu or via the
Refactoring | <menu command> context menu for class diagram code-
generating elements. For more complete details on these commands, refer to
Together VS .NET online help.

46 Gett ing Started Guide

Renaming

You can rename any code element: class, interface, method, field, parameter,
local variable, and so on. Together VS .NET propagates the name changes to
the dependent code in your project files.
To use the rename command on the Item class:

1 Right click on the Clerk class in the Diagram View, and choose Refactoring
> Rename class “Clerk”. The Rename dialog opens.

2 For the new name, enter Employee in the New name field of the dialog.

3 Be sure that the option, View references before refactoring, is checked.
With this option activated, upon clicking Rename, the Refactoring window
opens allowing you to review the refactoring before committing to it. If the
option, View references before refactoring, is cleared, then upon clicking
Rename, the Refactoring window opens, and the renaming is completed.

4 Click Rename. The Refactoring window opens. The Refactoring window
displays the results of using the rename command. The Rename command
will change the name of the Clerk class and any usages found for the Clerk
class. For this example, only one usage displays because a relationship
exists between the Clerk and Store classes. The relationship is represented
in the source code of the Store class by the field Clerk.

5 Click the perform refactoring button on the left of the dialog to complete
the renaming.

6 Close the Refactoring window. Click the Close button in the upper right
corner of the window.

Working with the Refactoring window

The Refactoring window is a dockable window. It opens initially as a free-
floating window; however, it can be free-floating or docked to a docking area.
The docking areas for the window are comprised of any of the four borders of
the Visual Studio .NET window -- position the Refactoring window according to
your preferences.

Each time that you use a Refactoring command for the same project, the
results display in a tabbed-page format with the most recent results having
focus in the window. You can close the results by right clicking on the
corresponding tab, and choosing:

• Close: Closes the current tab in focus.

• Close All: Closes all tabs and the Refactoring window.

• Close All But This: Closes all tabs except for the tab currently in focus.

To close the Refactoring window (leaving all tabs open), click the Close
button in the upper right corner of the window.

Chapter 3 : Using Together VS .NET Features 47

Generating documentation
Together VS .NET features a UML documentation wizard that you can use to
generate HTML documentation for the Video Store project.

To generate HTML documentation for a project:

1 Select Tools | Generate Documentation from the main menu. The
Generate Documentation dialog opens, as shown in Figure 27.

2 Select your preferred Scope and Options settings, and click OK to generate
documentation.

3 You are prompted to create the out/doc directory in the Video Store project.
Click Yes.

By default, the Generate Documentation wizard creates documentation for
your entire project. You can limit the scope of the documentation to a smaller
set by choosing a different Scope option.

The Scope section at the top of the dialog has radio buttons to indicate what
parts of the project should be parsed and included in the generated
documentation.

• Current namespace: Generated output includes only the current
namespace selected in the Model View.

• Current namespace with descendant namespaces: Generated output
includes the current namespace selected in the Model View and any
descendant namespaces under it.

• Current diagram: Generated output for the current diagram that is in focus
in the Diagram View.

• All: Generated output covers the entire project.

The Options section of the dialog has options to specify the destination and
other optional actions.

• Output folder: Enter the location for the generated output, or select from
the file chooser.

• Checkboxes:

• Include diagrams: Check to include diagram images in the output.

• Include navigation tree: Check to include a navigation tree in the
output.

• Launch HTML browser: Check to load the documentation in the default
web browser for your operating system. This starts the application if
necessary. If you do not select this option, you can open the
documentation later by navigating to your designated output folder and
accessing the index.html file.

48 Gett ing Started Guide

Figure 27 Generate Documentation dialog

When Together VS .NET finishes generating the documentation, it opens in
the default web browser for your system. The browser opens with a frameset
to display the generated documentation. Expand the Video Store node in the
tree in the lower left frame. Your browser displays a page similar to Figure 28.
Notice that clicking a class name in the lower left frame opens the
documentation in the lower right pane.

Chapter 3 : Using Together VS .NET Features 49

Figure 28 Resulting documentation

You can further explore the generated documentation with the following
exercises:

• Use the Project tab to navigate through the project.

• Click the Store class to display its corresponding documentation.

• Click findByKeywords to jump to that section in the documentation.

• Use the hypertext to navigate through the documentation and access the
index.

50 Gett ing Started Guide

Exporting and Importing XMI projects
Together VS .NET also features XMI import and export capabilities. You can
import a model described by an XMI file into a Together VS .NET project
generating source code. You can also export your Together VS .NET project to
an XMI file making the model information available outside of Together VS
.NET.

Exporting XMI projects

To export a project as an XMI file:

1 In the Model View, right click on the Video Store project and choose Export
Project to XMI, or choose File | Export Project to XMI from the main
menu (you must have a diagram open or have the project root node
selected in the Model View). The XMI Export dialog opens as shown in
Figure 29.

Figure 29 XMI Export dialog

2 In the resulting dialog box, you can select the XMI Type information and
export destination for the XMI file. For this example, accept the defaults.
Click Export.

3 A confirmation dialog asks if you want to create the new directory. Click
Yes.

4 In the directory structure of your system, locate the new XML file:
<project_directory>\out\xmi\Video Store.xml.

Chapter 3 : Using Together VS .NET Features 51

Importing XMI projects

Though this guide does not import an existing XMI file, the process is similar to
exporting.

To import an XMI file into a project:

1 In the Model View, right click on the Video Store project and choose Import
Project from XMI, or choose File | Import Project from XMI from the main
menu (you must have a diagram open or have the project root node
selected in the Model View). The XMI Import dialog opens as shown in
Figure 30.

2 Browse for the source file.

3 Click Import.

Figure 30 XMI Import dialog

	Getting Started Guide for Borland® Together® Edition for Microsoft® Visual Studio® .NET (version 2.0)
	Contents
	Introducing Borland Together Edition for Microsoft Visual Studio .NET
	About Borland Together Edition for Microsoft Visual Studio .NET
	About this guide
	Together VS .NET documentation set
	About licensing

	Getting Started with Modeling
	Navigating around Together VS .NET
	Setting global modeling options

	Creating a project and opening the Model and Diagram Views
	Creating a use case diagram
	Populating the diagram
	Adding a system boundary
	Adding use case elements and communication links
	Adding a stereotype
	Completing the scenario

	Using a class diagram
	Setting compartment controls
	Adding methods and fields
	Creating relationships and links
	Creating hyperlinks

	Creating a sequence diagram
	Creating the initial sequence
	Associating an object with a class
	Adding a new method to a message link
	Generating a sequence diagram from existing source code
	Converting between sequence and collaboration diagrams

	Using the Model View
	Viewing references
	Showing expandable diagram nodes
	Finding diagram elements

	Using the Properties Window
	Using the Overview
	Managing diagram views
	Hiding/Showing Information
	Using the Show Hidden dialog

	Using Together VS .NET Features
	Using and creating patterns
	Running quality assurance
	Running audits
	Working with the audit results view
	Opening source code and viewing an audit description
	Printing audit results
	Saving audit results
	Sorting or grouping audit results
	Refreshing and restarting audits

	Choosing specific elements to run audits against

	Refactoring
	Renaming
	Working with the Refactoring window

	Generating documentation
	Exporting and Importing XMI projects
	Exporting XMI projects
	Importing XMI projects

